
Higher Inductive Types and Internal
Parametricity for Cubical Type Theory

Evan Cavallo

CMU-CS-21-100

February 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Robert Harper, Chair
Stephen Brookes

Karl Crary
Daniel R. Licata (Wesleyan University)

Anders Mörtberg (Stockholm University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Evan Cavallo

This research was sponsored by the United States Air Force Office of Scientific Research award numbers
FA9550-15-1-0053 and FA9550-19-1-0216. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either expressed or implied,
of any sponsoring institution, the U.S. government or any other entity.

Keywords: dependent type theory, computational semantics, cubical type theory,
internal parametricity, cohesive type theory

iii

Abstract

Recent innovation in the design of type theories—foundational systems of mathe-
matics with a focus on constructivity—has produced the concept of interval variable,
which can be used to capture relations between objects that carry computational
content. We examine two such relationships in type theory: equality, in particular
quotients, and arbitrary relations as applied in parametricity interpretations.

Cubical type theory, a system using an interval-based formulation of equality,
enables a permissive kind of content-carrying equality that includes in particular
isomorphism. Cubical type theory provides a constructive interpretation of homo-
topy type theory and the Univalent Foundations, formalisms that introduced the idea
of isomorphism as equality but which lack intrinsic computational meaning. The cu-
bical approach to equality also rectifies long-standing deficiencies in the behavior of
quotients in type theory. We realize a system of generalized quotients for cubical
type theory originally conceived in homotopy type theory, called higher inductive
types, that merges the concepts of inductive type and quotient. Such a mutual gen-
eralization is particularly essential in the contentful equality setting, but also has
significant applications to ordinary mathematics.

Parametricity is, among other things, a proof technique for deriving properties
of constructions performed in type theories, based on the idea that constructions
preserve all relations between objects. Traditionally a meta-theoretical tool, recent
work has shown that parametricity properties can be integrated into a type theory
itself using an interval-based system. We develop internal parametricity on top of
cubical type theory, examining the similarities and distinctions between the two ap-
plications of intervals, finding that a background of cubical equality improves the
behavior of internal parametricity, and applying internal parametricity as a tool to
solve difficult problems in cubical type theory. We introduce a system of cohesion
modalities to express the interaction between parametric and non-parametric type
theory, enabling the use of parametricity results in a non-parametric setting.

Acknowledgments

I met Bob Harper in the first year of my undergraduate degree, when I sent him an email
expressing interest in functional programming. At that point I had other plans—a physics
degree, for one—but over the years, Bob and the Programming Languages group coaxed
me first from physics into mathematics and finally computer science, entrancing me with
tales of computational trinitarianism and elegant structure. We have always been an odd
couple: Bob bombastic and firm in his convictions, me milquetoast and evasive. But I
would not have had it any other way; I have learned and will surely continue to learn a
great deal from Bob about integrity, commitment, and passion, in science and in life. Bob,
thank you for your expectations and for your boundless faith in me to meet them.

My career owes its foundation to Carlo Angiuli, who tookme under his wing inmy un-
dergraduate years, has always been ready to listen to my latest madcap idea, and whose
cubical type theory became the foundation for the work of this dissertation. Jon Ster-
ling has revolutionized my world more times than I can count. I thank the many others
who have passed through Bob’s group and its environs in my time for all the discus-
sions, hacking sessions, and fika we’ve had together: Dan Licata, Favonia, Ed Morehouse,
Daniel Gratzer, Anders Mörtberg. The Principles of Programming group, and especially
the Concert Reading Group, supplied me with my earliest understandings of program-
ming languages and type theory; I am grateful to the generation of students before me
for explaining it all to me and to the generation after for making me figure out how to
explain it myself. Steve Awodey and his gang of philosophers taught me everything I
know about category theory over years and years of seminars; I am particularly indebted
to Steve, Ulrik Buchholtz, Egbert Rijke, and Mathieu Anel for their insights, but many
others have influenced my work. Much of my understanding of internal parametricity
was driven by discussions with the directed type theory group at the Snowbird MRC and
subsequent conversations with Emily Riehl and Christian Sattler. I thank my committee
for their time, and Dan in particular for suggesting a modal parametric type theory.

I thank my many friends at CMU and in Pittsburgh for keeping my spirits bright;
special thanks go to the Wednesday cohort, who have kept me from hermitage in the age
of distance. Finally, I thank Mom, Dad, and Lindsay, who host me for the moment, for
their everlasting support. To everyone else, may we meet again in person someday!

v

vii

There are places that contain you,
There are corners in your soul,
Plastic laminations in your life.
But when you’re on the inside
Of the outside of your thoughts,
Do they restrain or do you stay yourself?

Now the inside of the near place
Is the outside of the far,
But you can only face your space one way.
You’re really in the middle
Of the inside of yourself,
And there is only one thing we can say...

You’ll never get out, you’ll never get out,
You’ll never get out of the cube! It’s sad!
But you’ll never get out, you’ll never get out,
You’ll never get out ’til you’re dead!

— Jim Henson’s The Cube

Contents

Contents ix

Introduction 1
Contributions . 3

I Cubical type theory 5

1 Introduction 7
1.1 Equality in type theory . 7
1.2 Realizing contentful equality . 12

2 Martin-Löf’s type theory 19
2.1 A logic of programs . 20
2.2 Formalisms . 39

3 Cubical type theory 45
3.1 Cubical computational type theory . 48
3.2 Programming in a cubical type theory . 71
3.3 Formalism and models . 77

II Higher inductive types 83

4 Introduction 85

5 Case studies 95
5.1 Quotients and pushouts . 95
5.2 Truncations . 102
5.3 Identity types . 106

ix

x Contents

6 General higher inductive types 111
6.1 Specifications . 112
6.2 Interpreting specifications . 119
6.3 Kan operations . 131
6.4 Elimination . 139
6.5 Strengthening canonicity . 147

7 Conclusions 151
7.1 Related work . 151
7.2 Outlook . 155

III Internal parametricity 157

8 Introduction 159

9 Parametric cubical type theory 167
9.1 The bridge interval . 168
9.2 Bridge types . 173
9.3 Function types and the extent operator 177
9.4 Gel types and relativity . 181

10 Programming with parametricity 189
10.1 Characterizing Church booleans . 189
10.2 The relativity principle . 192
10.3 Bridge-discrete types . 194
10.4 The excluded middle . 201
10.5 Iterated smash products . 202

11 Formalism and models 209
11.1 Bicubical set model . 212

12 Conclusions 217
12.1 Related work . 217
12.2 Outlook . 224

IV Cohesive parametricity 225

13 Introduction 227

Contents xi

14 Cohesive parametric type theory 233
14.1 Interval theory and type systems . 237
14.2 Open judgments . 238
14.3 Rules for modal operators and hypotheses 246
14.4 Modal types . 254

15 Programming in cohesive parametric type theory 265
15.1 Properties of the discrete embedding . 265
15.2 Church booleans . 267
15.3 Bridge-discreteness . 270
15.4 Iterated smash products . 272

16 Formalism 281
16.1 Cubical set model . 285

17 Conclusions 289
17.1 Related work . 289
17.2 Outlook . 293

Bibliography 295

Introduction

This dissertation presents two applications of interval variables to the design of type the-
ories: first, to representing quotients, and second, to internalizing parametricity.

A (dependent) type theory is a kind of mathematical framework: a language in which
one can describe constructions and establish their properties. Dependent type theories
trace their origins to the seminal work of Martin-Löf [Mar75; Mar82]. That work, in turn,
grows out of a longer tradition of constructive mathematics, going back to Brouwer’s
philosophy of intuitionism. One persistent idea in the history of type theories, inherited
ultimately from Brouwer, is the identification of mathematical constructions—including
both definitions and proofs—with programs. In this view, a type theory is specifically
a language for describing computational mathematics. The fundamental objects of type
theory, the types, are collections of programs; we think of a type as a specification of
computational behavior, and its elements as programs that behave in accordance with the
specification.

Interval variables are a novel technical device, introduced in the past decade [CCHM15;
BCM15; AFH18], for designing type theories where each type is equipped with some kind
of predicate or relation on its elements. The most fundamental relation between elements
in mathematics is equality: so much of mathematics revolves around establishing that
two objects are in fact the same (or different). Despite its foundational importance, the
representation of equality in type theories has been problematic since the inception of
the field. Interval variables present a new approach that resolves many long-standing
theoretical and practical issues with existing treatments of equality. Of key importance
is the fact that interval-based equality is contentful: proofs of equality are programs with
non-trivial computational content, in contrast to most earlier approaches. Type theories
that use interval variables to represent equalities have been dubbed cubical type theories.

The first goal of this dissertation is to develop a general theory of quotient types
for cubical type theories, in the guise of higher inductive types. A quotient is simply a
type defined by taking a pre-existing type and declaring that certain elements should be
regarded as equal. The integers modulo n are one classical example: an integer modulo
𝑛 is simply an integer, but we regard two such integers 𝑚0 and 𝑚1 as equal whenever
their difference is a multiple of 𝑛. As with many constructions that involve equality in an

1

2

essential way, quotients in type theory have long been ill-behaved, lacking in particular
the crucial property of effectivity. A quotient is effective when it is possible to extract a
proof of relatedness from an equality in the quotient; in the case of integers modulo𝑛, this
would mean that a proof of an equality𝑚0 =𝑚1 between integers modulo 𝑛 can be used
to compute an integer 𝑝 such that𝑚0 −𝑚1 = 𝑝 · 𝑛. This essential property fails to hold in
general in traditional type theories precisely because their equality proofs are contentless;
with contentful interval-based equality, we are able to achieve effectivity without issue.

In a cubical type theory, it is natural to regard quotients as analogous to inductive
types. An inductive type is one whose elements are those built from some collection of
constructors. The natural numbers are the prototypical example: a natural number is
a term built from the two constructors zero and suc(−), with suc(zero) representing 1,
suc(suc(zero)) representing 2, and so on. We can, in the same way, think of the equalities
introduced by a quotient type as being built by constructors. Higher inductive types pro-
vide a mutual generalization of inductive types and quotients, allowing for both term and
equality constructors. We argue that higher inductive types are a more natural abstrac-
tion than quotients in cubical type theory; they directly provide common constructions
(such as truncations) that can only be indirectly represented using ordinary quotients.
The first part of this dissertation lays out an schema for specifying higher inductive types
and defines a computational realization of each such specification, providing a general
framework that unifies existing examples of higher inductive types [Uni13, Chapter 6;
CCHM15; AFH18; CHM18].

The second goal of this dissertation is to extend cubical type theory with internal para-
metricity. Parametricity is a technique used in computer science to analyze polymorphic
programs, programs parameterized by type variables. Developed by Reynolds [Rey83],
parametricity rests on the fact that the polymorphic programs definable in sufficiently re-
strictive type theories are guaranteed to act on relations. Parametricity theorems are nor-
mally external—they are theorems about type theories, not theorems proven inside type
theories—but Bernardy and Moulin have recently shown that parametricity can be given
a computational interpretation and made available within a type theory [BM12; BM13].
Like cubical type theory, the mechanisms of internal parametricity also rest on interval
variables. Where cubical type theory uses interval variables to equip each type with an
equality relation, internal parametricity uses intervals to equip each type with an arbi-
trary relation. In the second part of this dissertation, we show that internal parametricity
can be combined with cubical type theory. By taking advantage of the good properties
of cubical equality, we are able to simplify aspects of existing internally parametric type
theories. Moreover, we are able to use parametricity to prove theorems involving higher
inductive constructions that are prohibitively difficult to verify in plain cubical type the-
ory.

3

Contributions
This dissertation is divided into four parts. Each part begins with an introduction; the
introductions are meant to be more accessible than the thesis as a whole, and can be read
in sequence for a more extended overview of its objectives and contributions.

Part I is a review first of dependent type theory and then cubical type theory, roughly
as presented by Angiuli [Ang19]. These are the prerequisites on which the rest of the dis-
sertation depends; each subsequent part presents an extension to the cubical type theory
framework.

Part II presents our schema for higher inductive types as an extension to cubical type
theory. We develop a language for specifying such types and show that each specification
can be realized in type theory with a computational interpretation.

Part III extends cubical type theory with internal parametricity, which endows every
construction in the theory with an action on relations. We examine the consequences of
such an action, and apply it in particular to mechanically check theorems which are pro-
hibitively difficult to prove in ordinary cubical type theory. Our motivating example uses
higher inductive types, but we do not depend on the entirety of Part II; the introduction
of that part is sufficient background for an intuitive understanding. We also present a
formalism for the type theory and a presheaf model of that formalism.

Part IV builds on Part III, extending parametric cubical type theory with a system of
cohesive modalities that allow the interaction of parametric and non-parametric construc-
tions. This is essential for the results we prove in the previous part to be used in ordinary
cubical type theory.

Publications The results of Part II and Part III have been published in the following
papers.

• Evan Cavallo and Robert Harper. “Higher inductive types in cubical computational type
theory”. In: PACMPL 3.POPL (2019), 1:1–1:27. doi: 10.1145/3290314

• Evan Cavallo and Robert Harper. “Internal Parametricity for Cubical Type Theory”.
In: 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16,
2020, Barcelona, Spain. 2020, 13:1–13:17. doi: 10.4230/LIPIcs.CSL.2020.13

The contents of Part II have been generalized from their form in the first paper to admit
dependency and path types in recursive arguments.

https://doi.org/10.1145/3290314
https://doi.org/10.4230/LIPIcs.CSL.2020.13

Part I

Cubical type theory

5

Chapter 1

Introduction

1.1 Equality in type theory

A (dependent) type theory is a kind of framework for mathematics organized around the
idea of a type. “Type theory” is not a term with a precise, universal definition; rather, it
is a term with many definitions, some formal and mathematical, others philosophical. In
practice, it refers to a vaguely-delimited constellation of systems surrounded by a common
literature: a type theory is that which a type theorist studies. Nevertheless, there are some
largely-unifying principles that guide the design of type theories. One is, of course, the
concept of a type. Another is the idea that type theories are constructive or computational:
that proofs conducted in a type theory have some kind of computational content, or that
they are proofs about computational objects. Our own perspective on type theory, which
derives fromMartin-Löf’s Constructive Mathematics and Computer Programming [Mar82]
and Constable’s subsequent program of computational type theory [Con09], is that type
theory is a language for classifying programs, that is, reasoning about their computational
behavior.

A type, then, is a classifier of programs, which is to say that it is a collection of pro-
grams possessing some property. A definition of a type theory consists of a specification
of its types and the programs each classifies. For example, a theory might contain a type
Int classifying programs that compute integers. Then “2 + 2” would be one such program
(it computes the integer 4); we say 2 + 2 is an element of Int (or is a term of type Int, or
simply is in Int) and write 2 + 2 ∈ Int. The statements we make in a type theory, dubbed
judgments by Martin-Löf, assert typehood and elementhood (Figure 1.1).

Type formers enable us to build new types from old ones: perhaps Int×Int is the type of
programs that compute pairs of integers, while Int → Int is the type of programs that take
an integer as input and output a new integer. In a type theorywith a sufficiently expressive
collection of type formers, we can formulate complex mathematical results as instances

7

8 Introduction

Judgment Reading
𝐴 type 𝐴 is a type
𝐴 = 𝐴′ type 𝐴 and 𝐴′ are equal types
𝑀 ∈ 𝐴 𝑀 is an element of type 𝐴
𝑀 = 𝑀′ ∈ 𝐴 𝑀 and𝑀′ are equal elements of type 𝐴

Figure 1.1: Judgments of a type theory (simplified)

of the typing judgment 𝑀 ∈ 𝐴. For a trivial example, a program 𝐹 ∈ Int → Int validates
the (boring) theorem “for every integer, there exists an integer”. To express something
more involved, like the existence of additive inverses, we need more sophisticated types;
with the machinery we will develop in Chapter 2, the type of additive inverse functions
can be written as follows.

(𝑛 : Int) → (𝑚 : Int) × Id(Int,𝑚 + 𝑛, 0)

Glossed, this is the type of functions that take an input integer 𝑛 ∈ Int and output a pair
of results: another integer𝑚 ∈ Int, but also a certificate that𝑚+𝑛 is equal to 0. This “type
of certificates” Id(Int,𝑚 + 𝑛, 0) is called an identity type: its elements are proofs that𝑚 +𝑛
and 0 are identical (or identified) as elements of Int. To set up a type theory including
such types, we must answer a tricky question: what kind of program constitutes a proof
that two integers are the same? More broadly, how do we understand proofs of equality
from a computational perspective? These questions are at the root of this thesis; as we
will see, they are not at all straightforward to answer.

The history of identity types is a complex one, entangled intimately with a distinc-
tion between “extensional” and “intensional” type theories. But until relatively recently,
all computational explanations of identity types have shared a common feature: the pro-
grams classified by an identity type Id(𝐴,𝑀, 𝑁) are computationally trivial. That is, the
output or computational behavior of a program 𝑃 ∈ Id(𝐴,𝑀, 𝑁) (“𝑀 and 𝑁 are identified
in 𝐴”) is uninteresting; the only interesting question is whether such a program exists.
This seems natural from a classical mathematical perspective: once you have proven two
objects are equal, you need never again to think about why or how they are equal. You
merely cite the theorem when you need it. However, committing to this apparently in-
nocuous conception of equality in a computational setting actually has disastrous con-
sequences for mathematical reasoning. For the purposes of this thesis, the most notable
casualty is the quotient type.

Effective quotients Given a type𝐴, a quotient of𝐴 is, roughly speaking, a type that has
the same elements of𝐴 but where some previously distinct elements are now regarded as
equal. As a simple example, we might define the integers modulo 𝑛 (Int𝑛) for any natural

Equality in type theory 9

number 𝑛 ∈ Nat as a quotient of Int. Elements of Int𝑛 are integers, but we say that
𝑚0,𝑚1 ∈ Int𝑛 are equal as soon as they differ by some integer multiple of 𝑛. (Thus Int3,
for example, has three distinct elements: every element is equal to one of 0, 1, or 2.) In
syntax, we intend the equality relation for Int𝑛 to be given by the following type.

𝑚0 ≈𝑚1 B (𝑝 : Int) × Id(Int,𝑚1 −𝑚0, 𝑝 · 𝑛)

That is,𝑚0 and𝑚1 are equal whenever there is some 𝑝 ∈ Int equipped with a proof that
𝑚1 −𝑚0 is equal to 𝑝 · 𝑛.

In a traditional computation-based type theory, we could have something like the
following rule for deducing equalities in Int𝑛 . A rule is simply a principle for deducing
true judgments; we write the premises above a horizontal line and the conclusion below.

𝑃 ∈𝑚0 ≈𝑚1

★ ∈ Id(Int𝑛,𝑚0,𝑚1)

That is, if we have some element 𝑃 of the type𝑚0 ≈𝑚1, we can conclude that𝑚0 and𝑚1
are equal in Int𝑛 . Because equality has no computational content, the program serving as
evidence for this equality is simply a placeholder symbol ★.

Using this rule, we can check that the program that takes any element 𝑃 ∈ 𝑚0 ≈𝑚1
as input and returns ★—written (𝜆𝑃 .★)—has the type (𝑚0 ≈𝑚1) → Id(Int𝑛,𝑚0,𝑚1). But
what about the other direction? An element of Id(Int𝑛,𝑚0,𝑚1) carries no information, so
is no little help in constructing an element 𝑃 ∈ 𝑚0 ≈𝑚1. In the particular case of Int𝑛 ,
we can get by with the other information we have on hand: we can compute the quotient
𝑄 B (𝑚1−𝑚0)/𝑛 and know by the fact that Id(Int𝑛,𝑚0,𝑚1) is inhabited that we will have
〈𝑄,★〉 ∈ 𝑚0 ≈𝑚1. This route is not available in general, however. Consider quotienting
Int → Int, the type of functions from integers to integers, by the following relation, which
identifies functions that agree on all arguments𝑚 above some number 𝑛.

𝑓0 ⊲⊳ 𝑓1 B (𝑝 : Int) × ((𝑚 : Int) → (𝑚 > 𝑛) → Id(Int, 𝑓0𝑚, 𝑓1𝑚))

Just knowing that there is some number 𝑝 with this property will not suffice to reconstruct
such a number; writing 𝑇 for the quotient type, we can construct no program of type
Id(𝑇, 𝑓0, 𝑓1) → (𝑓0 ⊲⊳ 𝑓1). There is thus a general mismatch between relations and the
induced equalities in their quotient types, a failure of effectivity of quotients. Lack of
effectivity is a serious problem: it prevents us from relating properties of𝑇 with properties
of Int → Int.

In short, quotients are constructions where data and equality collide: we frequently
want to quotient by a relation whose proofs carry data (like the 𝑝 ∈ Int in these examples),
what we will call a contentful relation. We simply cannot do so in a satisfactory way
when we forbid proofs of equality from carrying data. (For a more formal analysis of this
incompatibility, see [Mai98].)

10 Introduction

We are naturally led, then, to search for a computational interpretation that does allow
equality proofs to carry data, what wewill call contentful equality. (Effectivity of quotients
is not the sole reason to do so, not by a long shot, but is a convenient potted motivation
for the purposes of this thesis.) We take inspiration and intuition from two phenomena:
the informal treatment of isomorphisms as equalities in everyday mathematics, and the
notion of path in topology and homotopy theory.

Isomorphism as equality We look to isomorphism as an example of a contentful rela-
tion that is often treated like equality on an informal level. For an illustrative example,
we draw from group theory, the study of sets equipped with binary operations and sat-
isfying certain axioms we will not enumerate. One example of a group is the set of real
numbers with the operation of addition: (R, +). Another is the set of positive real num-
bers with the operation of multiplication: (R+, ·). These two groups are not equal in the
standard sense, but they are isomorphic. That is, there are functions exp ∈ R → R+ and
ln ∈ R+ → R converting between the two sets that (1) are mutually inverse, meaning
that ln(exp(𝑎)) = 𝑎 and exp(ln(𝑏)) = 𝑏, and (2) preserve the operations, meaning that
exp(𝑎 + 𝑏) = exp(𝑎) · exp(𝑏) and ln(𝑎 · 𝑏) = ln(𝑎) + ln(𝑏). The existence of this isomor-
phism means that (R, +) and (R+, ·) are practically identical from the perspective of group
theory. Any “group-theoretic property” that holds of one will hold of the other. Unlike an
actual equality, however, we cannot only remember that (R, +) and (R+, ·) are isomorphic:
we need to remember how they are isomorphic. As an example, consider the following
true statement.

For every 𝑎 ∈ R, we have 𝑎 + 0 = 𝑎. 4

If (R, +) and (R+, ·) were equal, we would be able to replace one with the other and
get another true statement. But the following is clearly false!

For every 𝑎 ∈ R+, we have 𝑎 · 0 = 𝑎. 8

To convert results between the two groups properly, we need to transport the constant
0 along the isomorphism (exp, ln). In this case, we have exp(0) = 1, so the result is the
following true statement.

For every 𝑎 ∈ R+, we have 𝑎 · 1 = 𝑎. 4

Moreover, there actually multiple isomorphisms between (R, +) and (R+, ·): a second
sends 𝑎 ∈ R to 1/exp(𝑎) ∈ R+ and 𝑏 ∈ R+ to −ln(𝑏) ∈ R. Thus, (R, +) and (R+, ·) are
“equal” in (at least) two different ways. When we use the fact that they are “equal” to
transport facts between them, we need to be consistent about which “equality” we are

Equality in type theory 11

using. Isomorphism is therefore a contentful notion of equality, in that the way we use an
equality depends on the contents of its proof (the functions defining the isomorphism).

To be clear, this kind of equality is usually exercised on an informal level in everyday
mathematics. While it is possible to give precise definitions of “group-theoretic property”
so that one can transport such properties between isomorphic groups, this is simply taken
for granted inmost mathematical writing. Isomorphisms are tacitly treated as if they were
true equalities, because experience suggests that this kind of shortcut is harmless and can
be eliminated by anyone who cares to be precise.

Remarkably, however, this informal use of contentful equality can not only be inte-
grated with type theory in a completely precise way, but actually resolves several long-
standing issues with existing treatments of equality, and hasmoreover been latent in some
versions of dependent type theory since the genesis of the field. The key idea is to see
equality as something along which we can transport results, where the effect of the trans-
port may depend on the proof of the equality. This principle is embodied in Martin-Löf’s
elimination rule for equality types, the so-called J rule.

Equality as path Contentful relations also appear extensively in the fields of (alge-
braic) topology and homotopy theory in the form of paths in a space. These fields study
abstract notions of spaces (which we will avoid defining precisely here); a path is simply
a way to get from one point in a space to another. Let us take the following image as an
example of a two-dimensional space 𝑋 , with marked points A,B,C,D and a few examples
of paths between them.

A
B

C

D

A path from one point to another is a contentful relationship between them: we can
ask not only whether a path exists, but which path it is. Indeed, one of the central tech-
niques for classifying spaces in algebraic topology is to count the number of “distinct”
paths between given pairs of points. To do so, we also need a criterion for when two
paths between a given pair of points are “distinct” or “the same”. The standard device is
to say that two paths are the same when there is a homotopy between them: a way to
smoothly deform one path into the other. In our example, the two paths from C to D are
homotopic, but the two paths from A to B are not, as the hole between them prevents us
from deforming one into the other. A homotopy is essentially a path between paths; it too
is a contentful relationship, one between paths rather than points. We can go further and
consider paths between paths between paths and so forth.

12 Introduction

We can formulate paths in terms of functions out of an interval space “I”, a space
consisting of two points with a single path between them.

0 1

A path from A to B in our example space 𝑋 is the same as a continuous function I → 𝑋
that sends 0 to A and 1 to B; in other words, a path is a picture of I drawn in 𝑋 . A
homotopy, being a path between paths, is then a function I → (I → 𝑋), or equivalently
a function I × I→ 𝑋 from the product of two intervals into 𝑋 .

This will be the central organizing concept of the type theory with contentful equality
we are about to describe: the representation of equalities in a type as functions from an
“interval” into that type.

1.2 Realizing contentful equality
We now apply the two preceding ideas, equality as path and as effecting transport, to
the design of type theory. We arrive at cubical type theory, which was first developed in
two parallel variations by Cohen, Coquand, Huber and Mörtberg [CCHM15] and Angiuli,
Favonia, and Harper [AFH18].

Interval terms Cubical type theory enriches Martin-Löf’s type theory with a new in-
terval object I, which behaves much like a type and is used to represent equalities. (The
interval is not actually a type, for technical reasons that we sweep under the rug here.)
Following the topological definition, we take paths in a type 𝐴 to be functions from the
interval into 𝐴.

𝑃 ∈ I→ 𝐴

Among the elements of the interval are two distinguished “endpoint” constants, 0 ∈ I and
1 ∈ I. Any path 𝑃 ∈ I→ 𝐴 is thus more specifically a path from 𝑃 0 to 𝑃 1. As we are
usually interested in paths between a particular pair of elements, we introduce a type of
paths in 𝐴 with fixed endpoints𝑀0 ∈ 𝐴 and𝑀1 ∈ 𝐴.

𝑃 ∈ Path(𝐴,𝑀0, 𝑀1)

The elements of this type are functions 𝑃 ∈ I→ 𝐴 such that 𝑃 0 = 𝑀0 ∈ 𝐴 and 𝑃 1 = 𝑀1 ∈
𝐴. Here we come to one of the subtler aspects of type theory, cubical or otherwise: the
“=” here is not the contentful equality we are in the process of fleshing out, but a separate,
contentless equality we call exact equality. It is necessary to have such a notion of “strict”
equality—to formulate the conditions on elements of path types, for one. We merely want
to separate it from the paths we use as “mathematical” equalities to avoid the pitfalls of
contentless equality. Exact equality differs from path equality on two axes.

Realizing contentful equality 13

First, an exact equality 𝑀 = 𝑁 ∈ 𝐴 is not a type but a judgment, a statement of the
same kind as the elementhood judgment 𝑀 ∈ 𝐴. Judgments are not themselves types, so
we cannot speak about the exact equality judgment inside our type theory. That is, the
following is not a well-formed type.

(𝑛 : Int) → ((𝑚 : Int) × (𝑚 + 𝑛 = 0 ∈ Int)) 8

In contrast, the path type is of course a type. We say that exact equality is an external
equality, while the path type is an internal equality.

Second, 𝑀 = 𝑁 ∈ 𝐴 is a substitutional equality. This means that, given any judgment
depending on an element of𝐴, we can silently replace𝑀 with𝑁 anywherewe likewithout
affecting the validity of the judgment. For example, if 𝑃 ∈ Path(𝐴,𝑂,𝑀), then it is also
the case that 𝑃 ∈ Path(𝐴,𝑂, 𝑁). In contrast, paths are merely transportational: if we
have 𝑄 ∈ Path(𝐴,𝑀, 𝑁) and 𝑃 ∈ Path(𝐴,𝑂,𝑀), then it is not necessarily the case that
𝑃 ∈ Path(𝐴,𝑂, 𝑁). Instead, there is an operation, “transport”, which we can apply with𝑄
to obtain a new term 𝑃 ′ ∈ Path(𝐴,𝑂, 𝑁). In particular, the result 𝑃 ′ can vary depending
on the form of 𝑄 .

The substitutional/transportational distinction is correlated with, if not identical to,
our previous contentless/contentful distinction: we think of the former as a description
of the available logical principles, while the latter is a description of a computational in-
terpretation. The external/internal and substitutional/transportational axes, on the other
hand, are independent. For example, the identity type in Martin-Löf’s extensional type
theory is internal and substitutional.

Conversely, cubical type theory’s path type is merely the internalization of an external
transportational notion of path. To understand this, we need to delve a bit deeper into the
details of type theory by introducing the idea of a hypothetical judgment. A hypothetical
judgment is one that depends on some collection of typed variables (the hypotheses). For
example, the judgment 𝑎 : 𝐴 � 𝑀 ∈ 𝐵 asserts that the term 𝑀 has type 𝐵 under the
assumption that the variable 𝑎 has type 𝐴. Both𝑀 and 𝐵 may make use of the variable 𝑎.
As a concrete example, the judgment𝑚 : Int, 𝑛 : Int �𝑚 + 𝑛 ∈ Int asserts that𝑚 + 𝑛 is an
integer whenever𝑚 and 𝑛 are integers.

Using the hypothetical judgment, we can state the following rule for constructing
elements of the function type (𝑎 :𝐴) → 𝐵.

𝑎 :𝐴 � 𝑁 ∈ 𝐵
𝜆𝑎. 𝑁 ∈ (𝑎 :𝐴) → 𝐵

In words, if𝑁 is an element of 𝐵 under the assumption that 𝑎 has type𝐴, then the function
that takes in an element 𝑎 of 𝐴 and returns 𝑁—here written 𝜆𝑎. 𝑁—is a function of type
(𝑎 : 𝐴) → 𝐵. (The prefix 𝜆 for the function constructor is traditional, dating back to

14 Introduction

Church’s 𝜆-calculus; we uniformly write variable bindings either in the form “𝑎.” or with
a type annotation as “𝑎 :𝐴”.)

Conversely, if we have an element of a function type 𝐹 ∈ (𝑎 :𝐴) → 𝐵, we can apply
it to any element 𝑀 ∈ 𝐴 to obtain an element of 𝐵 [𝑀/𝑎] (the result of substituting the
term𝑀 for the variable 𝑎 in 𝐵).

𝐹 ∈ (𝑎 :𝐴) → 𝐵 𝑀 ∈ 𝐴
𝐹 𝑀 ∈ 𝐵 [𝑀/𝑎]

We may therefore say that the function type (𝑎 : 𝐴) → 𝐵 is an internalization of the
external concept of hypothetical judgment. Indeed, it is a unifying design principle of
type theories that each type former internalizes some judgmental concept. In the case
of paths, the path type Path(𝐴,𝑀0, 𝑀1) serves to internalize the hypothetical judgment
𝑥 : I � − ∈ 𝐴 (together with conditions on the endpoints).

The name cubical type theory comes from the intuitive reading of judgments such as
𝑥1 : I, . . ., 𝑥𝑛 : I � 𝑀 ∈ 𝐴 that depend on multiple interval variables. Where the term 𝑀
in 𝑥 : I � 𝑀 ∈ 𝐴 is a path or line in the type 𝐴, a term 𝑥1 : I, . . ., 𝑥𝑛 : I � 𝑀 ∈ 𝐴 is an
𝑛-dimensional (hyper)cube in 𝐴, filled in as each of the variables ranges between 0 and 1.

Coercion The utility of paths—the ability to transport results across them—is delivered
by an operation called coercion. The effect of coercion is expressed by the following rule.

𝑥 : I � 𝐴 type 𝑟 ∈ I 𝑠 ∈ I 𝑀 ∈ 𝐴[𝑟/𝑥]
coe𝑟�𝑠𝑥 .𝐴 (𝑀) ∈ 𝐴[𝑠/𝑥]

In words, if we have a line of types 𝑥 : I � 𝐴 type and an inhabitant𝑀 ∈ 𝐴[𝑟/𝑥] of some
type along that line, then we may coerce it to obtain an element of any other type 𝐴[𝑠/𝑥]
along the line.

Transport along paths within types arises as a corollary of coercion. Suppose we have
a family of types 𝑎 :𝐴 � 𝐵 type depending on a variable of type𝐴, a path 𝑥 : I � 𝑃 ∈ 𝐴 in
the indexing type, and an inhabitant 𝑁 ∈ 𝐵 [𝑃 [0/𝑥]/𝑎], which we can read as a proof that
the property 𝐵 holds of the term 𝑃 [0/𝑥]. Then we can obtain a term of type 𝐵 [𝑃 [1/𝑥]/𝑎]
using coercion as follows.

transport0→1
𝑎.𝐵 (𝑥 .𝑃, 𝑁) B coe0�1

𝑥 .𝐵 [𝑃/𝑎] (𝑁) ∈ 𝐵 [𝑃 [1/𝑥]/𝑎]
Thus, any “property” 𝐵 that is satisfied by a term 𝑀 ∈ 𝐴 is also satisfied by any term
connected to𝑀 by a path.

Specifying the computational behavior of coe𝑟�𝑠𝑥 .𝐴 (𝑀) for each possible type line 𝑥 .𝐴
is the main technical challenge of designing a cubical type theory. (To do so requires
an additional concept, path composition, that we will introduce later on.) Reflecting the
contentful nature of path equality, this behavior does depend in general on the entirety
of the line 𝑥 .𝐴, not only on the source and destination points 𝐴[𝑟/𝑥] and 𝐴[𝑠/𝑥].

Realizing contentful equality 15

Univalence With some clever programming, one may show that the coercion function
𝜆𝑎. coe0�1

𝑥 .𝐴 (𝑎) ∈ 𝐴[0/𝑥] → 𝐴[1/𝑥] induced by a type path 𝑥 .𝐴 is in fact an isomorphism,
with inverse given by the reverse coercion 𝜆𝑎. coe1�0

𝑥 .𝐴 (𝑎). That is, every 𝑥 : I � 𝐴 type
induces an isomorphism between its endpoints, which we call coe0'1𝑥 .𝐴 ∈ 𝐴[0/𝑥] ' 𝐴[1/𝑥].
In keeping with our conception of isomorphism as a kind of contentful equality, we might
hope for the reverse: that every 𝐴[0/𝑥] ' 𝐴[1/𝑥] induces a path from 𝐴[0/𝑥] to 𝐴[1/𝑥],
with the property that coercing along said path applies the underlying function of the
isomorphism. To have this correspondence would be a great boon: it would allow us
to automatically transport theorems between isomorphic types, justifying formally that
common informal mathematical practice.

Such a principle was first proposed by Voevodsky [Voe14] in the form of the univalence
axiom for Martin-Löf’s intensional type theory. To state the univalence axiom, we need to
introduce two preliminaries: first, a more careful definition of isomorphism1, and second,
the concept of a universe.

Definition 1.2.1 (Isomorphism). Given a function 𝑓 ∈ 𝐴 → 𝐵, a left inverse for 𝑓 is an
element of the type Linv(𝐴, 𝐵, 𝑓) defined as follows.

Linv(𝐴, 𝐵, 𝑓) B (𝑔 : 𝐵 → 𝐴) × ((𝑎 :𝐴) → Path(𝐴,𝑔 (𝑓 𝑎), 𝑎))

That is, a left inverse is a function 𝑔 ∈ 𝐵 → 𝐴 such that 𝑔 (𝑓 𝑎) is equal to 𝑎 for all 𝑎 ∈ 𝐴.
A right inverse for 𝑓 is an element of Rinv(𝐴, 𝐵, 𝑓).

Rinv(𝐴, 𝐵, 𝑓) B (ℎ : 𝐵 → 𝐴) × ((𝑏 : 𝐵) → Path(𝐵, 𝑓 (ℎ𝑏), 𝑏))

A function is an isomorphism when it has both a left and right inverse.

IsIso(𝐴, 𝐵, 𝑓) B Linv(𝐴, 𝐵, 𝑓) × Rinv(𝐴, 𝐵, 𝑓)

The type of isomorphisms between 𝐴 and 𝐵, written 𝐴 ' 𝐵, is then defined as follows.

(𝐴 ' 𝐵) B (𝑓 :𝐴 → 𝐵) × IsIso(𝐴, 𝐵, 𝑓)

When 𝑓 is an isomorphism, we can prove its left and right inverse functions 𝑔,ℎ ∈
𝐵 → 𝐴 are equal up to a path. Nevertheless, requiring that they be the same a priori
leads to an ill-behaved definition of isomorphism, interprovable with but not isomorphic
to the one we present here. We will not get into the reasons here, but the reader can

1I use isomorphism for what is more commonly called an equivalence in the homotopy type theory and
cubical type theory community. I feel that isomorphism is the more suggestive term for a computer scien-
tist’s ears: “equivalence” suggests a contentless relation such as contextual equivalence or logical equiva-
lence. Mathieu Anel has also suggested that isomorphism is a more appropriate term from an∞-categorical
perspective.

16 Introduction

find a detailed discussion in [Uni13, Chapter 4], where several isomorphic definitions of
isomorphism are presented. Voevodsky’s original definition is there called a contractible
map, while the definition we use here was suggested by Joyal and is there called a bi-
invertible map.

A universe is a typewhose elements are themselves types. While there cannot be a type
of all types—this leads to paradoxes [Gir72]—we can consistently introduce a type of some
types. It is common for type theories to contain an infinite hierarchy of universes, each
contained in the next (U0 ∈ U1 ∈ U2 ∈ · · ·) and closed under operations like the product
and function type formers (if 𝐴, 𝐵 ∈ U𝑛 then𝐴 × 𝐵 ∈ U𝑛 , and so on), such that every type
belongs to some universe. Universes make it possible to express internally statements that
quantify over types or talk about paths between types; Voevodsky’s univalence principle
is one such statement.

Definition 1.2.2 (Univalence). A universe U is univalent when the canonical map from
paths in U to isomorphisms is itself an isomorphism.

IsUnivalent[U] B (𝐴, 𝐵 : U) → IsIso(Path(U, 𝐴, 𝐵), (𝐴 ' 𝐵), 𝜆𝑝. coe0'1𝑥 .𝑝 𝑥)

Voevodsky’s original definition of univalence was stated in terms ofMartin-Löf’s iden-
tity types and their elimination principle rather than paths and coercion, but the spirit is
the same. Voevodsky presented the univalence axiom as an extension to Martin-Löf’s
intensional type theory (ITT) formalism [Mar75]. By formalism, we mean a collection of
rules for deducing true judgments. The ITT formalism is validated by Martin-Löf’s com-
putational reading of the judgments: if the premises of one of the rules of ITT are true
in that interpretation, so is the conclusion. We say therefore say that Martin-Löf’s type
theory is amodel of the formalism. Voevodsky showed that ITT is consistent with the uni-
valence axiom, meaning that there exists some model of the combined theory, by defining
a classical (that is, non-computational and non-constructive) interpretation in simplicial
sets [KL12a]. It is, however, incompatible with Martin-Löf’s computational interpretation
of ITT, which uses a contentless interpretation of equality.

The first cubical type theories were conceived in the search for a computational in-
terpretation for ITT with the univalence axiom. Although the implementation of the
univalence isomorphism in cubical type theory is intimidatingly technical, the bedrock
that makes it all work is the contentful equality provided by paths.

In this dissertation, we are primarily interested in cubical type theories and their rel-
atives in their own right, divorced from the originally motivating formalism of ITT with
univalence. Paths are not only better-behaved but also in many ways more convenient for
reasoning than the equality interface provided by ITT. One simple example is the proof of
function extensionality, the principle that two functions are equal whenever they return
equal results on all arguments. This principle is not even provable in pure ITT; Voevodsky
observed that it is a consequence of the univalence axiom [Voe15, §11], but the proof is

Realizing contentful equality 17

non-trivial [Uni13, §4.9]. In a cubical type theory, on the other hand, its proof is incredi-
bly simple: if two functions 𝑓 , 𝑔 :𝐴 → 𝐵 come with a proof 𝑝 : (𝑎 :𝐴) → Path(𝐵, 𝑓 𝑎, 𝑔 𝑎),
then we have 𝜆I𝑥 . 𝜆𝑎. 𝑝 𝑎 𝑥 ∈ Path(𝐴 → 𝐵, 𝑓 , 𝑔). A second concept streamlined by the use
of paths for equality—and the subject of the first contribution of this thesis—is that of the
higher inductive type.

Outline In this part, we review first Martin-Löf’s type theory (Chapter 2) and then cu-
bical type theory (Chapter 3). None of this material is novel. Our presentation of both
theories hews fairly closely to Angiuli’s dissertation [Ang19], itself a modernization and
extension to the cubical setting of Allen’s computational interpretation of Martin-Löf’s
type theory [All87]. In our description of cubical type theory, we omit some of the me-
chanically involved aspects, in particular the implementations of coercion in “V types”
and composition in the universe. For these details, we refer to Angiuli.

In each chapter, we focus primarily on the understanding of type theories as systems
for reasoning about programs. However, we also include discussion of related formalisms
and their non-computational models, having developments to present on these fronts in
Part III.

Chapter 2

Martin-Löf’s type theory

Martin-Löf’s vision of type theory is the shared core of the systems we will develop and
apply in this thesis. Although we will need to modify our conception of computation to
develop cubical type theory—and so Parts II to IV do not depend directly on the technical
content of this chapter—a tour through “ordinary” type theory will be useful to establish
the basic vocabulary and organizational principles on which will rely going forwards.

FollowingMartin-Löf’sConstructiveMathematics and Computer Programming [Mar82]
and Constable’s program of computational type theory [Con09], we take the computa-
tional aspect of type theories as primary: a type theory is a system for reasoning about
computational constructions. That is, the central judgments of a type theory—𝐴 type and
𝑀 ∈ 𝐴—make assertions about the behavior of programs, here𝐴 and𝑀 . In Section 2.1, we
give a computational definition of type theory in the mode of Allen [All87]. Our presenta-
tion closely follows the modernized account given by Angiuli [Ang19, Chapter 2]. Once
we have defined what it means to be a type theory, we give a (fairly minimal) example: a
type theory with products, natural numbers, identity types, and one universe of types.

In Section 2.2, we also present a formalism for Martin-Löf type theories, a curated
collection of rules for establishing the validity of judgments (𝐴 type, 𝑀 ∈ 𝐴, and so on).
A formalismwill not capture completely the truth defined by a computational type theory,
but this is not the objective: the goal is to specify a useful interface, which can serve as
an abstract window on type theories computational and otherwise. A formalism must
balance expressivity and applicability, be abstract enough to serve as an interface to a
variety of type theories but concrete enough to prove the kinds of theorems its user wants
to prove. The study of formalisms is in particular essential for the implementation of proof
assistants, computer systems that check the validity of mathematical arguments within
some formalism and assist users in constructing them. An informed choice of formalism
canmake a great difference in the usability of a system, particularly by affecting the degree
to which bureaucratic arguments can be automated.

After designing a formalism with an eye towards a computational interpretation, we

19

20 Martin-Löf’s type theory

Judgment Reading
Γ ctx Γ is a context
Γ � 𝐴 type 𝐴 is a type in context Γ
Γ � 𝐴 = 𝐴′ type 𝐴 and 𝐴′ are equal types in context Γ
Γ � 𝑀 ∈ 𝐴 𝑀 is an element of type 𝐴 in context Γ
Γ � 𝑀 = 𝑀′ ∈ 𝐴 𝑀 and𝑀′ are equal elements of 𝐴 in context Γ

Figure 2.1: Judgments of Martin-Löf type theories

can moreover consider alternative interpretations, that is, readings of the judgments that
validate the rules of the formalism. When we prove a result in a formalism, we obtain
a result in each of its interpretations; thus breadth of interpretability is another goal in
formalism design. In Section 2.2.2 we briefly describe one alternative interpretation for
our formalism, interpreting types as classical sets.

2.1 A logic of programs

A type theory is a system for behavioral classification of programs: a judgment in type
theory asserts something about how a program behaves. More specifically, it tells us
something about the value that a program returns; for example, the judgment 𝑁 ∈ Int
asserts that 𝑁 evaluates to a value 𝑉 that is an integer.

A type theory is therefore defined by two components. First, we need a definition of
program: what does it mean to evaluate the term 𝑁 ? This component is the operational
semantics. Second, we need a system for classifying the values that are returned by pro-
grams: what does it mean for the value 𝑉 returned by 𝑁 to belong to the type Int? This
component is the value type system. From the two components, we derive an interpreta-
tion for the judgments of Martin-Löf type theory, which are shown in Figure 2.1.

2.1.1 Operational semantics
We specify our language of untyped programs by a structural operational semantics [Plo04].
A structural operational semantics describes the evaluation of programs in terms of two
judgments, 𝑀 val (“𝑀 is a value”) and 𝑀 ↦−→ 𝑁 (“𝑀 steps to 𝑁 ”). These judgments op-
erate on closed programs, i.e., programs not containing any free variables. A particular
operational semantics is specified by defining these two judgments, typically as generated
by a collection of reduction rules.

Definition 2.1.1. An operational semantics is a definition of two judgments 𝑀 val and
𝑀 ↦−→ 𝑁 on closed terms, satisfying the following determinism properties.

A logic of programs 21

• If𝑀 ↦−→ 𝑁 and𝑀 ↦−→ 𝑁 ′, then 𝑁 = 𝑁 ′.

• It is never the case that both𝑀 val and𝑀 ↦−→ 𝑁 for some 𝑁 .

Given an operational semantics, which specifies the one-step behavior of a program—
either it is an inert value or reduces—we derive judgments𝑀 ↦−→∗ 𝑁 (“𝑀 reduces to 𝑁 ”)
and𝑀 ⇓ 𝑉 (“𝑀 evaluates to “𝑉 ”) as generated by the following rules.

𝑀 ↦−→∗ 𝑀

𝑀 ↦−→∗ 𝑁 𝑁 ↦−→ 𝑃

𝑀 ↦−→∗ 𝑃

𝑀 ↦−→∗ 𝑉 𝑉 val

𝑀 ⇓ 𝑉

That is,𝑀 ↦−→∗ 𝑁 holds when𝑀 becomes 𝑁 after zero or more steps, while𝑀 ⇓ 𝑉 holds
when𝑀 becomes the value 𝑉 after zero or more steps. We write Val for the collection of
values.

Remark 2.1.2. It would suffice to require not determinism but merely confluence: that if
𝑀 ↦−→ 𝑁 and𝑀 ↦−→ 𝑁 ′, then there is some 𝑃 such that 𝑁 ↦−→ 𝑃 and 𝑁 ′ ↦−→ 𝑃 . What we
really need is that evaluation𝑀 ⇓ 𝑉 produces unique results.

2.1.2 Value type system
A value type system defines two notions: the values that are names for types (such as
Int) and the values that are elements of those types (such as 0,1,2,. . .). Each of these is
specified in a binary way by a partial equivalence relation, which simultaneously specifies
which terms are types/elements and when they are equal as types/elements.

Notation 2.1.3. Given a binary relation 𝑅 on terms—that is, a set of pairs of terms—and
two terms𝑀,𝑀′, we write𝑀 ≈ 𝑀′ ∈ 𝑅 as syntactic sugar for (𝑀,𝑀′) ∈ 𝑅, and𝑀 ∈ 𝑅 for
(𝑀,𝑀) ∈ 𝑅.

Definition 2.1.4. A partial equivalence relation (PER) on terms is a binary relation satis-
fying the following properties.

• Symmetry: If𝑀 ≈ 𝑁 ∈ 𝑅 then 𝑁 ≈ 𝑀 ∈ 𝑅.

• Transitivity: If𝑀 ≈ 𝑁 ∈ 𝑅 and 𝑁 ≈ 𝑃 ∈ 𝑅, then𝑀 ≈ 𝑃 ∈ 𝑅.

The field of a partial equivalence relation 𝑅 is the collection of terms𝑀 such that𝑀 ∈ 𝑅;
restricted to its field, 𝑅 becomes an equivalence relation. Thus, a PER concisely specifies
a subset of the collection of all terms and an equivalence relation on that set.

Definition 2.1.5. A candidate type system is a ternary relation 𝜏 ⊆ Val × Val × PER(Val)
that relates values 𝑉 , 𝑉 ′, and partial equivalence relations 𝑅 on values.

22 Martin-Löf’s type theory

Notation 2.1.6. Given a candidate type system 𝜏 , we write 𝜏 ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 as syntactic
sugar for (𝑉 ,𝑉 ′, 𝑅) ∈ 𝜏 , and 𝜏 ⊨ 𝑉 ↓ 𝑅 for (𝑉 ,𝑉 , 𝑅) ∈ 𝜏 . We write 𝜏 [𝑅] for the binary
relation 𝜏 ⊨ (−) ≈ (−) ↓ 𝑅, which relates types when they are equated by 𝜏 with interpre-
tation 𝑅.

We read an instance 𝜏 ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 of the relation as asserting that𝑉 and𝑉 ′ are equal
type names in 𝜏 and that their elements are defined by the PER 𝑅: 𝑊 ≈ 𝑊 ′ ∈ 𝑅 means
that𝑊 and𝑊 ′ are equal elements of the type named by 𝑉 (or 𝑉 ′).

Definition 2.1.7. A candidate type system is a type systemwhen it satisfies the following
additional axioms.

• PER: For any fixed PER 𝑅, the relation 𝜏 [𝑅] is a partial equivalence relation.

• Unicity: If 𝜏 ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 and 𝜏 ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅′, then 𝑅 = 𝑅′.

The former ensures that value type equality is a partial equivalence relation; the latter
ensures that each type name has at most one interpretation as a relation.

2.1.3 Typing judgments
Given an operational semantics and candidate type system 𝜏 , we derive an interpretation
of the typing judgments in two stages: first, we extend the type system to closed terms that
may not be values, then to open terms. The status of non-value closed terms is determined
by evaluating them: if terms evaluate to equal values, then they are equal terms.

Definition 2.1.8. Let 𝑅 be a relation. We define a relation ⇓𝑅 as follows: 𝑀 ≈ 𝑀′ ∈ ⇓𝑅
holds when there exist values 𝑉 ,𝑉 ′ such that𝑀 ⇓ 𝑉 ,𝑀′ ⇓ 𝑉 ′, and 𝑉 ≈ 𝑉 ′ ∈ 𝑅.

Definition 2.1.9 (Closed judgments).

• Closed types: ⊩ 𝐴 = 𝐴′ type is defined to hold when 𝐴 ≈ 𝐴′ ∈ ⇓𝜏 [𝑅] for some 𝑅.

• Closed terms: ⊩ 𝑀 = 𝑀′ ∈ 𝐴 is defined to hold when 𝐴 ∈ ⇓𝜏 [𝑅] for some 𝑅 such that
𝑀 ≈ 𝑀′ ∈ ⇓𝑅.

The unary judgment ⊩ 𝐴 type is shorthand for ⊩ 𝐴 = 𝐴 type. Likewise, ⊩ 𝑀 ∈ 𝐴 is
shorthand for ⊩ 𝑀 = 𝑀 ∈ 𝐴.

Both types and terms are programs: a type is simply a program that computes the
name of a value type (as specified by the type system). Note that if ⊩ 𝑀 ∈ 𝐴 and 𝑀 ⇓ 𝑉 ,
we always have ⊩ 𝑀 = 𝑉 ∈ 𝐴.

A logic of programs 23

The open judgments are defined by functionality: an open type is well-formed when
it takes equal instantiations of its variables to equal closed types, and likewise for ele-
ments. The two open judgments are defined together with the context judgment Γ ctx and
the closing substitution judgment ⊩ 𝛾 ∈ Γ. A context is a collection of typed variables
(𝑎1 :𝐴1, . . ., 𝑎𝑛 :𝐴𝑛), while a closing substitution into a context Γ is a list of instantiations
(𝑀1/𝑎1, . . ., 𝑀𝑛/𝑎𝑛) for the variables listed in Γ. Given a term 𝑀 and a substitution 𝛾 , we
write𝑀𝛾 for the result of applying the substitutions in 𝛾 to𝑀 .

Definition 2.1.10 (Contexts, closing substitutions, and open judgments).

• Closing substitutions: ⊩ 𝛾 = 𝛾 ′ ∈ Γ is the least judgment closed under the following
rules.

⊩ · = · ∈ ·
⊩ 𝛾 = 𝛾 ′ ∈ Γ ⊩ 𝑀 = 𝑀′ ∈ 𝐴𝛾
⊩ (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, 𝑎 :𝐴)

• Open types: Γ � 𝐴 = 𝐴′ type is defined to hold when ⊩ 𝐴𝛾 = 𝐴′𝛾 ′ type holds for all
⊩ 𝛾 = 𝛾 ′ ∈ Γ.

• Open terms: Γ � 𝑀 = 𝑀′ ∈ 𝐴 is defined to hold when ⊩ 𝑀𝛾 = 𝑀𝛾 ′ ∈ 𝐴𝛾 holds for all
⊩ 𝛾 = 𝛾 ′ ∈ Γ.

• Contexts: Γ = Γ′ ctx is the least judgment closed under the following rules.

· = · ctx
Γ = Γ′ ctx Γ � 𝐴 = 𝐴′ type

(Γ, 𝑎 :𝐴) = (Γ′, 𝑎 :𝐴′) ctx

The unary judgments ⊩ 𝛾 ∈ Γ, Γ � 𝐴 type, Γ � 𝑀 ∈ 𝐴, and Γ ctx are shorthand for
⊩ 𝛾 = 𝛾 ∈ Γ, Γ � 𝐴 = 𝐴 type, Γ � 𝑀 = 𝑀 ∈ 𝐴, and Γ = Γ ctx respectively.

Notation 2.1.11. When we want to emphasize the dependence of the judgments on the
background type system, we add the prefix 𝜏 ⊨ · · ·, as in 𝜏 ⊨ Γ � 𝐴 = 𝐴′ type.

Notation 2.1.12. In a value type system 𝜏 , given𝐴 type, we write J𝐴K𝜏 for the necessarily
unique value relation such that 𝜏 ⊨ 𝐴 ↓ J𝐴K𝜏 . We omit the annotation 𝜏 when it is clear
from context.

Having defined the type-theoretic judgments, we can begin checking that they satisfy
the kind of properties we would expect, assembling a collection of rules that can be used
to build up larger results without explicitly working with the definitions of the judgments.
From this point forward, we assume that our candidate type system 𝜏 is a genuine type
system. As all of these rules are standard and fairly intuitive, we will not provide proofs
except to give a feel for the general shape of the arguments; for a more thorough tour, we
refer as always to [Ang19].

24 Martin-Löf’s type theory

Symmetry and transitivity We warm up by proving symmetry and transitivity of the
binary judgments, which follow more or less immediately from the corresponding prop-
erties of the value type system. It is convenient to first prove the rules for the closed
judgments, then extend them uniformly to the open judgments.

Rules 2.1.13 (Symmetry and transitivity for closed judgments).

⊩ 𝐴 = 𝐵 type

⊩ 𝐵 = 𝐴 type

⊩ 𝐴 = 𝐵 type ⊩ 𝐵 = 𝐶 type

⊩ 𝐴 = 𝐶 type

⊩ 𝑀 = 𝑁 ∈ 𝐴
⊩ 𝑁 = 𝑀 ∈ 𝐴

⊩ 𝑀 = 𝑁 ∈ 𝐴 ⊩ 𝑁 = 𝑃 ∈ 𝐴
⊩ 𝑀 = 𝑃 ∈ 𝐴

Proof. Consider first the symmetry of the typing judgment. By definition of ⊩ 𝐴 = 𝐵 type,
our assumption is that 𝐴 ⇓ 𝐴0 and 𝐵 ⇓ 𝐵0 for some values 𝐴0, 𝐵0 and 𝜏 ⊨ 𝐴0 ≈ 𝐵0 ↓ 𝑅 for
some 𝑅. By symmetry of the value type system, it follows that 𝜏 ⊨ 𝐵0 ≈ 𝐴0 ↓ 𝑅 and thus
that ⊩ 𝐵 = 𝐴 type.

For transitivity, ⊩ 𝐴 = 𝐵 type tells us that 𝐴 ⇓ 𝐴0 and 𝐵 ⇓ 𝐵0 with 𝜏 ⊨ 𝐴0 ≈ 𝐵0 ↓ 𝑅,
while ⊩ 𝐵 = 𝐶 type tells us that 𝐵 ⇓ 𝐵′0 and𝐶 ⇓ 𝐶0 with 𝜏 ⊨ 𝐵′0 ≈ 𝐶0 ↓ 𝑅′. By determinism
of the type system, we know that 𝐵0 = 𝐵′0. Applying symmetry and transitivity of the
value type system, we can conclude that 𝜏 ⊨ 𝐵0 ↓ 𝑅 and 𝜏 ⊨ 𝐵0 ↓ 𝑅′; thus 𝑅 = 𝑅′ by
unicity. Finally, transitivity of the value type system now applied with 𝜏 ⊨ 𝐴0 ≈ 𝐵0 ↓ 𝑅
and 𝜏 ⊨ 𝐵0 ≈ 𝐶0 ↓ 𝑅 gives the result.

Symmetry and transitivity for terms follow by similar arguments, this time using the
fact that the relations returned by a value type system are always PERs. □

Rules 2.1.14 (Symmetry and transitivity for closing substitutions).

Γ ctx ⊩ 𝛾 = 𝛾 ′ ∈ Γ

⊩ 𝛾 ′ = 𝛾 ∈ Γ

Γ ctx ⊩ 𝛾 = 𝛾 ′ ∈ Γ ⊩ 𝛾 ′ = 𝛾 ′′ ∈ Γ

⊩ 𝛾 = 𝛾 ′′ ∈ Γ

Proof. By induction on the defining rules for closing substitutions and Rules 2.1.13. □

Rules 2.1.15 (Symmetry and transitivity for open judgments).

Γ ctx Γ � 𝐴 = 𝐵 type

Γ � 𝐵 = 𝐴 type

Γ ctx Γ � 𝐴 = 𝐵 type Γ � 𝐵 = 𝐶 type

Γ � 𝐴 = 𝐶 type

Γ ctx Γ � 𝑀 = 𝑁 ∈ 𝐴
Γ � 𝑁 = 𝑀 ∈ 𝐴

Γ ctx Γ � 𝑀 = 𝑁 ∈ 𝐴 Γ � 𝑁 = 𝑃 ∈ 𝐴
Γ � 𝑀 = 𝑃 ∈ 𝐴

A logic of programs 25

Proof. We give the proof for type symmetry; the others follow the same pattern. Suppose
that Γ � 𝐴 = 𝐵 type. To show Γ � 𝐵 = 𝐴 type, let an arbitrary ⊩ 𝛾 = 𝛾 ′ ∈ Γ; we must
show that ⊩ 𝐵𝛾 = 𝐴𝛾 ′ type. By symmetry of the closing substitution judgment, we have
⊩ 𝛾 ′ = 𝛾 ∈ Γ. Applying Γ � 𝐴 = 𝐵 type with this substitution, we get ⊩ 𝐴𝛾 ′ = 𝐵𝛾 type.
By symmetry of the closed typing judgment, we thus conclude ⊩ 𝐵𝛾 = 𝐴𝛾 ′ type. □

Rules for open judgments follow in general from the closed case in this fashion: each
instance of the hypotheses implies the corresponding instance of the conclusion. For this
reason, we will typically only give proofs for closed versions of rules.

Exact coercion Unicity of the value type system implies the important exact coercion
rule, which allows us to transfer terms between equal types.

Rule 2.1.16 (Exact coercion).

Γ � 𝑀 = 𝑀′ ∈ 𝐴 Γ � 𝐴 = 𝐵 type

Γ � 𝑀 = 𝑀′ ∈ 𝐵

Structural rules The structural rules describe the behavior of variables in the context.
Weakening states that any true judgment is still true in the presence of additional hypothe-
ses; cut allows us to substitute terms for variables. For types, for example, we have the
following; similar principles apply to their elements.

Rules 2.1.17 (Structural rules for types).

Weakening
Γ � 𝐴 = 𝐴′ type Γ � 𝐵 type

Γ, 𝑏 : 𝐵 � 𝐴 = 𝐴′ type

Cut
Γ, 𝑏 : 𝐵 � 𝐴 = 𝐴′ type Γ � 𝑁 = 𝑁 ′ ∈ 𝐵

Γ � 𝐴[𝑁 /𝑏] = 𝐴′[𝑁 ′/𝑏] type

Open substitutions Although not strictly necessary to fill out the picture in Figure 2.1,
it is useful to introduce a notion of open substitutions, substitutions from one context to
another. We can define these in the same way we defined closed substitutions, just with
all judgments parameterized by another context.

Definition 2.1.18 (Open substitutions). We define Γ′ � 𝛾 = 𝛾 ′ ∈ Γ to be the least
judgment closed under the following principles.

Γ′ � · = · ∈ ·
Γ′ � 𝛾 = 𝛾 ′ ∈ Γ Γ′ � 𝑀 = 𝑀′ ∈ 𝐴𝛾
Γ′ � (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, 𝑎 :𝐴)

26 Martin-Löf’s type theory

An essential property of the open judgments is their stability under substitution: if
some open judgment Γ � J holds and we have a substitution Γ′ � 𝛾 ∈ Γ, then Γ′ � J𝛾
also holds.

Rules 2.1.19 (Stability under substitution).

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ Γ � 𝐴 = 𝐴′ type

Γ′ � 𝐴𝛾 = 𝐴′𝛾 ′ type

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ Γ � 𝑀 = 𝑀′ ∈ 𝐴
Γ′ � 𝑀𝛾 = 𝑀′𝛾 ′ ∈ 𝐴𝛾

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ Γ � 𝛿 = 𝛿′ ∈ Δ

Γ′ � 𝛿𝛾 = 𝛿′𝛾 ′ ∈ Δ

In particular, we can see the structural rules as arising from this principle. For any
Γ ctx, we have a trivial identity substitution Γ � idΓ ∈ Γ that replaces each variable
with itself. Weakening for types and terms then follows from the fact that we also have
Γ, 𝑏 : 𝐵 � idΓ ∈ Γ. Similarly, cut follows from the existence of the extended substitutions
Γ � (idΓ, 𝑁 /𝑏) = (idΓ, 𝑁 ′/𝑏) ∈ (Γ, 𝑏 : 𝐵) for any Γ � 𝑁 = 𝑁 ′ ∈ 𝐵. Finally, note
that the stability of substitutions themselves under substitution gives us composition of
substitutions.

2.1.4 Constructing a type system

Now that we have seen how to obtain a type theory from an operational semantics and
type system, let us instantiate the framework with an example or two. We list the defining
operational semantics rules for a bare-bones language in Figure 2.2, the terms of which
are drawn from the following grammar.

𝐴, 𝐵,𝑀, 𝑁, 𝑃 F 𝑎 | (𝑎 :𝐴) → 𝐵 | 𝜆𝑎. 𝑁 | 𝑁 𝑀
| (𝑎 :𝐴) × 𝐵 | 〈𝑀, 𝑁 〉 | fst(𝑃) | snd(𝑃)
| Nat | zero | suc(𝑀) | elimNat(𝑛.𝐵;𝑀 ;𝑁,𝑛.𝑏.𝑃)
| Id(𝐴,𝑀, 𝑁) | refl(𝑀) | elimId(𝑎0.𝑎1.𝑝.𝐵, 𝑃, 𝑎.𝑁)
| Unit | ★
| Void | abort
| U

To define a value type system closed under the various type formers, we use the
Knaster-Tarski fixed-point theorem [Tar55; DP02, §8.20], which states that any monotone
operator on a complete lattice has a least fixed-point. (Here, we only need the theorem
for lattices of subsets.)

A logic of programs 27

Functions

(𝑎 :𝐴) → 𝐵 val 𝜆𝑎. 𝑁 val

𝐹 ↦−→ 𝐹 ′

𝐹 𝑀 ↦−→ 𝐹 ′𝑀 (𝜆𝑎. 𝑁)𝑀 ↦−→ 𝑁 [𝑀/𝑎]

Products

(𝑎 :𝐴) × 𝐵 val 〈𝑀, 𝑁 〉 val
𝑃 ↦−→ 𝑃 ′

fst(𝑃) ↦−→ fst(𝑃 ′)
𝑃 ↦−→ 𝑃 ′

snd(𝑃) ↦−→ snd(𝑃 ′)

fst(〈𝑀, 𝑁 〉) ↦−→ 𝑀 snd(〈𝑀, 𝑁 〉) ↦−→ 𝑁

Natural numbers

Nat val zero val suc(𝑀) val

𝑁 ↦−→ 𝑁 ′

elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆) ↦−→ elimNat(𝑛.𝐵;𝑁 ′;𝑍,𝑛.𝑏.𝑆)

elimNat(𝑛.𝐵; zero;𝑍,𝑛.𝑏.𝑆) ↦−→ 𝑍

elimNat(𝑛.𝐵; suc(𝑁);𝑍,𝑛.𝑏.𝑆) ↦−→ 𝑆 [𝑁 /𝑛, elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆)/𝑏]

Identity types

Id(𝐴,𝑀0, 𝑀1) val refl(𝑀) val

𝑃 ↦−→ 𝑃 ′

elimId(𝑎0.𝑎1.𝑝.𝐵, 𝑃, 𝑎.𝑁) ↦−→ elimId(𝑎0.𝑎1.𝑝.𝐵, 𝑃 ′, 𝑎.𝑁)

elimId(𝑎0.𝑎1.𝑝.𝐵, refl(𝑀), 𝑎.𝑁) ↦−→ 𝑁 [𝑀/𝑎]

Unit

Unit val ★ val

Void

Void val

Universe

U val

Figure 2.2: Operational semantics for a bare-bones type theory

28 Martin-Löf’s type theory

Theorem 2.1.20 (Knaster-Tarski for power sets). Let 𝑆 be a set and let 𝐹 be an opera-
tor on subsets of 𝑆 . Suppose that 𝐹 is monotone: if 𝑇 ⊆ 𝑇 ′ ⊆ 𝑆 , then 𝐹 (𝑇) ⊆ 𝐹 (𝑇 ′). Then
there is a subset 𝜇𝐹 ⊆ 𝑆 satisfying the following properties.

• 𝜇𝐹 is a fixed-point of 𝐹 : we have 𝐹 (𝜇𝐹) = 𝜇𝐹 .

• 𝜇𝐹 is the least pre-fixed-point of 𝐹 : if any subset 𝑇 ⊆ 𝑆 satisfies 𝐹 (𝑇) ⊆ 𝑇 , then 𝜇𝐹 ⊆ 𝑇 .

In particular, 𝜇𝐹 is also the least fixed-point of 𝐹 .

We construct value type systems by applying this theorem to the set Val × Val ×
PER(Val), the subsets of which are the candidate value type systems. We also apply the
theorem with Val × Val in order to construct the relations interpreting individual types
with recursive structure, such as the natural numbers and inductive types more generally.
For these purposes, it is necessary that we obtain not only relations but PERs; in the case
of a candidate type system, we also need to check the uniqueness condition. To do so, we
introduce the following definitions.

Definition 2.1.21. Let𝑅 be a binary relation. We define relations Sym+(𝑅) and Trans+(𝑅)
as follows.

• 𝑀 ≈ 𝑀′ ∈ Sym+(𝑅) holds when𝑀 ≈ 𝑀′ ∈ 𝑅 and𝑀′ ≈ 𝑀 ∈ 𝑅.

• 𝑀 ≈ 𝑀′ ∈ Trans+(𝑅) when𝑀 ≈ 𝑀′ ∈ 𝑅 and for any term 𝑁 , we have:

– if 𝑁 ≈ 𝑀 ∈ 𝑅, then 𝑁 ≈ 𝑀′ ∈ 𝑅
– if𝑀′ ≈ 𝑁 ∈ 𝑅, then𝑀 ≈ 𝑁 ′ ∈ 𝑅.

Proposition 2.1.22. Given any binary relation 𝑅, we have Sym+(⇓𝑅) = ⇓Sym+(𝑅) and
Trans+(⇓𝑅) = ⇓Trans+(𝑅).

The following lemma, a trivial consequence of the universal property of the least pre-
fixed-point, provides a convenient set of conditions we can check to verify PER-hood.

Lemma 2.1.23. Let 𝐹 be a monotone operator on binary relations. If 𝐹 (Sym+(𝜇𝐹)) ⊆
Sym+(𝜇𝐹), then 𝜇𝐹 is symmetric; if 𝐹 (Trans+(𝜇𝐹)) ⊆ Trans+(𝜇𝐹), then 𝜇𝐹 is transitive.
In particular, if both hold, then 𝜇𝐹 is a PER.

Proof. The hypotheses say exactly that Sym+(𝜇𝐹) and Trans+(𝜇𝐹) are pre-fixed-points of
𝐹 , thus that 𝜇𝐹 ⊆ Sym+(𝜇𝐹) and 𝜇𝐹 ⊆ Trans+(𝜇𝐹). By inspection of the definitions of
Sym+(𝜇𝑅) and Trans+(𝜇𝐹), these two inclusions give that 𝜇𝐹 is symmetric and transitive
respectively. □

A logic of programs 29

For example, we may define a relation for natural numbers to be generated by zero
and suc (“successor”) constructors and check that this is a PER.

Example 2.1.24 (Natural numbers PER). We define a monotone operator 𝐹 on relations.
For any 𝑅, 𝐹 (𝑅) is the union of the following clauses.

• zero ≈ zero ∈ 𝐹 (𝑅).

• suc(𝑀) ≈ suc(𝑀) ∈ 𝐹 (𝑅) whenever𝑀 ≈ 𝑀′ ∈ ⇓𝑅.

Set Nat B 𝜇𝐹 . By simple inspection, we have 𝐹 (Sym+(𝑅)) = Sym+(𝐹 (𝑅)) for any 𝑅,
so in particular 𝐹 (Sym+(𝜇𝐹)) = Sym+(𝜇𝐹). For transitivity, suppose we have 𝑉 ≈ 𝑉 ′ ∈
𝐹 (Trans+(𝜇𝐹)). We want to show𝑊 ≈𝑊 ′ ∈ Trans+(𝜇𝐹), so let𝑊,𝑊 ′ with𝑊 ≈ 𝑉 ∈ 𝜇𝐹
and 𝑉 ′ ≈ 𝑊 ′ ∈ 𝜇𝐹 be given. By definition of 𝐹 , we are in one of two cases: either
𝑉 = 𝑉 ′ = zero, or 𝑉 = suc(𝑀) and 𝑉 ′ = suc(𝑀′) with 𝑀 ≈ 𝑀′ ∈ ⇓Trans+(𝜇𝐹). In the
former case, wemust also have𝑊 =𝑊 ′ = zero, so𝑊 ≈𝑊 ′ ∈ 𝜇𝐹 . In the latter, we can first
conclude that𝑊 = suc(𝑁) and𝑊 ′ = suc(𝑁 ′) with 𝑁 ≈ 𝑀 ∈ ⇓𝜇𝐹 and 𝑀′ ≈ 𝑁 ′ ∈ ⇓𝜇𝐹 .
From 𝑀 ≈ 𝑀′ ∈ ⇓Trans+(𝜇𝐹), we have 𝑀 ≈ 𝑀′ ∈ Trans+(⇓𝜇𝐹) by Proposition 2.1.22. It
follows that 𝑁 ≈ 𝑁 ′ ∈ ⇓𝜇𝐹 , and thus that suc(𝑁) ≈ suc(𝑁 ′) ∈ 𝜇𝐹 .

We define analogous operators on candidate type systems.

Definition 2.1.25. Let 𝜏 be a candidate value type system. We define candidate value
type systems Sym+(𝜏), Trans+(𝜏), and Uni+(𝜏) as follows.

• Sym+(𝜏) ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 holds when 𝑉 ≈ 𝑉 ′ ∈ Sym+(𝜏 [𝑅]).

• Trans+(𝜏) ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 holds when 𝑉 ≈ 𝑉 ′ ∈ Trans+(𝜏 [𝑅]).

• Uni+(𝜏) ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 holds when 𝜏 ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 and for any other PER 𝑅′, if
𝜏 ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅′ holds then 𝑅 = 𝑅′.

Lemma 2.1.26. Let 𝐹 be a monotone operator on candidate value type systems such that
𝐹 (Uni+(𝜇𝐹)) ⊆ Uni+(𝜇𝐹), 𝐹 (Sym+(𝜇𝐹)) ⊆ Sym+(𝜇𝐹), and 𝐹 (Trans+(𝜇𝐹)) ⊆ Trans+(𝜇𝐹).
Then 𝜇𝐹 is a value type system.

Proof. Following the proof of Lemma 2.1.23. □

Our first example of a type system includes function, product, and identity types, a
natural numbers type, and unit and empty types.

Example 2.1.27 (Small type system). We define an operator 𝐹 on candidate value type sys-
tems as follows: given 𝜏 , 𝐹 (𝜏) is the union of the following clauses.

30 Martin-Löf’s type theory

• 𝐹 (𝜏) ⊨ (𝑎 :𝐴) → 𝐵 ≈ (𝑎 :𝐴′) → 𝐵′ ↓ 𝑅 whenever

– 𝐴 ≈ 𝐴′ ∈ ⇓𝜏 [𝑆] for some PER 𝑆 ,
– we have a family of value PERs (𝑇𝑀)𝑀∈⇓𝑆 such that for every𝑀 ≈ 𝑀′ ∈ ⇓𝑆 , we have
𝐵 [𝑀/𝑎] ≈ 𝐵′[𝑀′/𝑎] ∈ ⇓𝜏 [𝑇𝑀] and 𝑇𝑀 = 𝑇𝑀 ′ ,

– 𝑉 ≈ 𝑉 ′ ∈ 𝑅 holds exactly when 𝑉 = 𝜆𝑎. 𝑁 and 𝑉 ′ = 𝜆𝑎. 𝑁 ′ for some 𝑁 , 𝑁 ′ with
𝑁 [𝑀/𝑎] ≈ 𝑁 ′[𝑀′/𝑎] ∈ ⇓𝑇𝑀 for every𝑀 ≈ 𝑀′ ∈ ⇓𝑆 .

• 𝐹 (𝜏) ⊨ (𝑎 :𝐴) × 𝐵 ≈ (𝑎 :𝐴′) × 𝐵′ ↓ 𝑅 whenever

– we have 𝑆 and (𝑇𝑀)𝑀∈⇓𝑆 as in the function type clause,
– 𝑉 ≈ 𝑉 ′ ∈ 𝑅 holds exactly when𝑉 = 〈𝑀, 𝑁 〉 and𝑉 ′ = 〈𝑀′, 𝑁 ′〉 for some𝑀 ,𝑀′, 𝑁 , 𝑁 ′

with𝑀 ≈ 𝑀′ ∈ ⇓𝑆 and 𝑁 ≈ 𝑁 ′ ∈ ⇓𝑇𝑀 .

• 𝐹 (𝜏) ⊨ Id(𝐴,𝑀0, 𝑀1) ≈ Id(𝐴,𝑀′
0, 𝑀

′
1) ↓ 𝑅 whenever

– 𝐴 ≈ 𝐴′ ∈ ⇓𝜏 [𝑆] for some PER 𝑆 ,
– 𝑀0 ≈ 𝑀′

0 ∈ ⇓𝑆 ,
– 𝑀1 ≈ 𝑀′

1 ∈ ⇓𝑆 ,
– 𝑉 ≈ 𝑉 ′ ∈ 𝑅 holds exactly when 𝑉 = refl(𝑀) and 𝑉 ′ = refl(𝑀′) with 𝑀 ≈ 𝑀′ ∈ ⇓𝑆 ,
𝑀 ≈ 𝑀0 ∈ ⇓𝑆 , and𝑀 ≈ 𝑀1 ∈ ⇓𝑆 .

• 𝐹 (𝜏) ⊨ Nat ≈ Nat ↓ Nat, where Nat is as defined in Example 2.1.24.

• 𝐹 (𝜏) ⊨ Unit ≈ Unit ↓ 𝑅 when 𝑉 ≈ 𝑉 ′ ∈ 𝑅 if and only if 𝑉 = 𝑉 ′ = ★.

• 𝐹 (𝜏) ⊨ Void ≈ Void ↓ 𝑅 when 𝑅 is the empty relation.

We define the candidate value type system 𝜏0 to be the least fixed point of 𝐹 .

Proposition 2.1.28. 𝜏0 is a value type system.

Proof. By way of Lemma 2.1.26, as in Example 2.1.24; see [Ang19, Lemma 2.6] for an
explicit proof. □

We show below that 𝜏0 validates standard rules for each of the types included. We
may use 𝜏0 as a stepping stone to construct a type system 𝜏1 with a universe: the elements
of U in 𝜏1 will be the types of 𝜏0.

Example 2.1.29 (Type system with one universe). Wedefine amonotone operator𝑈 on can-
didate type systems as follows: given 𝜏 ,𝑈 (𝜏) ⊨ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 holds when𝑉 = 𝑉 ′ = U and 𝑅
is the relation𝑊 ≈𝑊 ′ ∈ 𝑅 ⇐⇒ ∃𝑆. 𝜏 ⊨𝑊 ≈𝑊 ′ ↓ 𝑆 . We define a candidate value type
system 𝜏1 to be the least fixed point of the monotone operator 𝜏 ↦→ 𝐹 (𝜏) ∪𝑈 (𝜏0).

A logic of programs 31

Proposition 2.1.30. 𝜏1 is a value type system.

Both 𝜏1 and its universe Uwill be closed under functions, products, and identity types
and contain natural numbers, unit, and empty types; the universe does not of course
contain itself. As demonstrated in [Ang19, §2.2], we could repeat this process to define
type systems 𝜏𝑛 with𝑛 universes, and ultimately a type system 𝜏𝜔 B

⋃
𝑛 𝜏𝑛 with an infinite

hierarchy of universes U0 ∈ U1 ∈ U2 ∈ · · · . For our purposes, a single universe is
sufficient, so we satisfy ourselves with 𝜏1.

Remark 2.1.31. In the case that a monotone operator 𝐹 on a complete lattice is Scott-
continuous—that is, preserves directed sets—its fixed point may be characterized as the
union of the sequence ∅ ⊆ 𝐹 (∅) ⊆ 𝐹 2(∅) ⊆ · · · [Sco72]. The operator 𝐹 used in Exam-
ple 2.1.27 is not continuous, however, as a counterexample observed by Harper demon-
strates [Har92, Theorem 7.1]. Consider the following type.

𝐴 B (𝑛 : Nat) → elimNat(.U;𝑛;Nat, .𝐵.𝐵 × Nat)

This is the type of functions that, for every natural number 𝑛, returns an element of the
(𝑛+1)-fold product ofNat. For each 𝑛 ∈ N, the candidate type system 𝐹𝑛 (∅) for 𝐹 defined
in Example 2.1.27 only contains the 𝑘-fold product of Nat for every 𝑘 ≤ 𝑛, so the union⋃
𝑛∈N 𝐹

𝑛 (∅) does not contain𝐴. The least fixed point of 𝐹 , on the other hand, does contain
this type.

2.1.5 Rules for type and term formers
We now take a look at the specific properties of 𝜏0 and 𝜏1, namely the types that they
support. The rules we check for each type follow a general pattern we will see repeated
across every type former we introduce in this thesis: there are formation, introduction,
elimination, reduction, and (possibly) uniqueness rules.

2.1.5.1 Functions

To start with, let us consider function types, which we have included in both 𝜏0 and 𝜏1.
Our first rule, formation, gives conditions under which a function type is well-formed. For
this rule and for all subsequent rules, we give a proof for the case where the conclusion is
a closed judgment. The rule for open judgments then follows by applying the closed rule
pointwise, as in the derivation of Rules 2.1.15 from Rules 2.1.13 above.

Rule 2.1.32 (Function formation).

⊩ 𝐴 = 𝐴′ type 𝑎 :𝐴 � 𝐵 = 𝐵′ type

⊩ (𝑎 :𝐴) → 𝐵 = (𝑎 :𝐴′) → 𝐵′ type

32 Martin-Löf’s type theory

Proof. Function types are always values: we have (𝑎 :𝐴) → 𝐵 ⇓ (𝑎 :𝐴) → 𝐵 and likewise
for (𝑎 :𝐴′) → 𝐵′. Thus the conclusion follows from the hypotheses and the definition of
the type system, which gives 𝜏𝑖 ⊨ (𝑎 :𝐴) → 𝐵 ≈ (𝑎 :𝐴′) → 𝐵′ ↓ 𝑅 (for a certain 𝑅). □

Next, we have the introduction rule, which gives conditions under which we may
construct (i.e., introduce) an element of a function type. An element of (𝑎 :𝐴) → 𝐵 is, as
one might expect, an element of 𝐵 that is typed in a context extended with a hypothesis
of type 𝐴.

Rule 2.1.33 (Function introduction).

⊩ 𝐴 type 𝑎 :𝐴 � 𝐵 type 𝑎 :𝐴 � 𝑁 = 𝑁 ′ ∈ 𝐵
⊩ 𝜆𝑎. 𝑁 = 𝜆𝑎. 𝑁 ′ ∈ (𝑎 :𝐴) → 𝐵

Proof. 𝜆-abstractions are always values, so it is enough to check that 𝜏𝑖 ⊨ (𝑎 :𝐴) → 𝐵 ↓ 𝑅
with 𝜆𝑎. 𝑁 ≈ 𝜆𝑎. 𝑁 ′ ∈ 𝑅, which holds by the hypotheses and definition of 𝜏𝑖 . □

So far we have dealt only with values; now we come to some actual computation.
Whereas we introduce a function by abstracting a variable, we use (or eliminate) a function
by applying it to some term.

Rule 2.1.34 (Function elimination).

⊩ 𝐹 = 𝐹 ′ ∈ (𝑎 :𝐴) → 𝐵 ⊩ 𝑀 = 𝑀′ ∈ 𝐴
⊩ 𝐹 𝑀 = 𝐹 ′𝑀′ ∈ 𝐵 [𝑀/𝑎]

Proof. From the assumption ⊩ 𝐹 = 𝐹 ′ ∈ (𝑎 :𝐴) → 𝐵 and the definition of the relation
for the function type, we have that 𝐹 ⇓ 𝜆𝑎. 𝑁 and 𝐹 ⇓ 𝜆𝑎. 𝑁 ′ for some 𝑁, 𝑁 ′ such that
𝑎 :𝐴 � 𝑁 = 𝑁 ′ ∈ 𝐵. We may instantiate the latter judgment with the closing substitution
(𝑀/𝑎) = (𝑀′/𝑎) ∈ (𝑎 :𝐴) to obtain ⊩ 𝑁 [𝑀/𝑎] = 𝑁 ′[𝑀′/𝑎] ∈ 𝐵 [𝑀/𝑎]. Expanding the
definition, we have 𝐵 [𝑀/𝑎] ⇓ 𝑉 , 𝑁 [𝑀/𝑎] ⇓𝑊 , and 𝑁 ′[𝑀′/𝑎] ⇓𝑊 ′ with 𝜏𝑖 ⊨ 𝑉 ↓ 𝑅 (for
some 𝑅) and𝑊 ≈𝑊 ′ ∈ 𝑅.

Referring to the operational semantics for functions in Figure 2.2, we see that 𝐹 𝑀 ↦−→∗

(𝜆𝑎. 𝑁)𝑀 and (𝜆𝑎. 𝑁)𝑀 ↦−→ 𝑁 [𝑀/𝑎]; thus 𝐹 𝑀 ⇓𝑊 . Likewise, we have 𝐹 ′𝑀′ ⇓𝑊 ′. It
therefore follows from𝑊 ≈𝑊 ′ ∈ 𝑅 that ⊩ 𝐹 𝑀 = 𝐹 ′𝑀′ ∈ 𝐵 [𝑀/𝑎]. □

We can show that the operational semantics rule (𝜆𝑎. 𝑁)𝑀 ↦−→ 𝑁 [𝑀/𝑎] gives rise to
an equation in the type theory: if we define a function by abstracting a variable in a term
and then apply it to some second term, this is the same as substituting the second term
for the variable in the first. Such a rule that governs the reduction of an elimination form
applied to an introduction form is often called a 𝛽-rule.

A logic of programs 33

Rule 2.1.35 (Function reduction).

𝑎 :𝐴 � 𝑁 ∈ 𝐵 ⊩ 𝑀 ∈ 𝐴
⊩ (𝜆𝑎. 𝑁)𝑀 = 𝑁 [𝑀/𝑎] ∈ 𝐵 [𝑀/𝑎]

Proof. By instantiating 𝑎 :𝐴 � 𝑁 ∈ 𝐵, we have ⊩ 𝑁 [𝑀/𝑎] ∈ 𝐵 [𝑀/𝑎]. Thus 𝐵 [𝑀/𝑎] ⇓ 𝑉
and 𝑁 [𝑀/𝑎] ⇓𝑊 with 𝜏𝑖 ⊨ 𝑉 ↓ 𝑅 (for some 𝑅) and𝑊 ∈ 𝑅. As (𝜆𝑎. 𝑁)𝑀 ↦−→ 𝑁 [𝑀/𝑎],
we also have (𝜆𝑎. 𝑁)𝑀 ⇓ 𝑉 , and thus ⊩ (𝜆𝑎. 𝑁)𝑀 = 𝑁 [𝑀/𝑎] ∈ 𝐵 [𝑀/𝑎]. □

The proof of function reduction is an instance of a general principle called head ex-
pansion: if𝑀 ↦−→∗ 𝑁 and 𝑁 = 𝑁 ′ ∈ 𝐴, then𝑀 = 𝑁 ′ ∈ 𝐴.

Finally, we can show that any element of a function type is equal to some 𝜆-abstraction.
A rule of this kind, characterizing all elements of a type as equal to some introduction
form, is often called an 𝜂-rule.

Rule 2.1.36 (Function uniqueness).

⊩ 𝐴 type 𝑎 :𝐴 � 𝐵 type ⊩ 𝐹 ∈ (𝑎 :𝐴) → 𝐵

⊩ 𝐹 = 𝜆𝑎. 𝐹 𝑎 ∈ (𝑎 :𝐴) → 𝐵

Proof. By ⊩ 𝐹 ∈ (𝑎 :𝐴) → 𝐵, we have that 𝐹 ⇓ 𝜆𝑎. 𝑁 with 𝑎 : 𝐴 � 𝑁 ∈ 𝐵. By head
expansion, it follows that ⊩ 𝐹 = 𝜆𝑎. 𝑁 ∈ (𝑎 :𝐴) → 𝐵. By weakening and function elim-
ination (for open terms), we thus have 𝑎 : 𝐴 � 𝐹 𝑎 = (𝜆𝑎. 𝑁) 𝑎 ∈ 𝐵. Function reduction
then gives 𝑎 : 𝐴 � (𝜆𝑎. 𝑁) 𝑎 = 𝑁 ∈ 𝐵, so by transitivity 𝑎 : 𝐴 � 𝐹 𝑎 = 𝑁 ∈ 𝐵. Applying
function introduction and symmetry, we get ⊩ 𝜆𝑎. 𝑁 = 𝜆𝑎. 𝐹 𝑎 ∈ (𝑎 :𝐴) → 𝐵. A second
application of head expansion with 𝐹 ↦−→∗ 𝜆𝑎. 𝑁 gives the result. □

2.1.5.2 Products

The elements of the product type (𝑎 : 𝐴) × 𝐵 are pairs 〈𝑀, 𝑁 〉 where 𝑀 is in 𝐴 and 𝑁 is
in 𝐵 [𝑀/𝑎]; given an element of the product type, we can project its first component with
the fst operator or its second component with the snd operator. The proofs of the rules
for function types are readily adapted to check the corresponding rules for product types,
so we merely list the results here and leave the proofs as an exercise for the reader.

34 Martin-Löf’s type theory

Rules 2.1.37 (Rules for products).

Formation
⊩ 𝐴 = 𝐴′ type 𝑎 :𝐴 � 𝐵 = 𝐵′ type

⊩ (𝑎 :𝐴) × 𝐵 = (𝑎 :𝐴′) × 𝐵′ type

Introduction
⊩ 𝐴 type 𝑎 :𝐴 � 𝐵 type ⊩ 𝑀 = 𝑀′ ∈ 𝐴 ⊩ 𝑁 = 𝑁 ′ ∈ 𝐵 [𝑀/𝑎]

⊩ 〈𝑀, 𝑁 〉 = 〈𝑀′, 𝑁 ′〉 ∈ (𝑎 :𝐴) × 𝐵

Elimination-Fst
⊩ 𝑃 = 𝑃 ′ ∈ (𝑎 :𝐴) × 𝐵
⊩ fst(𝑃) = fst(𝑃 ′) ∈ 𝐴

Elimination-Snd
⊩ 𝑃 = 𝑃 ′ ∈ (𝑎 :𝐴) × 𝐵

⊩ snd(𝑃) = snd(𝑃 ′) ∈ 𝐵 [fst(𝑃)/𝑎]

Reduction-Fst
⊩ 𝑀 ∈ 𝐴

⊩ fst(〈𝑀, 𝑁 〉) = 𝑀 ∈ 𝐴

Reduction-Snd
⊩ 𝑁 ∈ 𝐵 [𝑀/𝑎]

⊩ snd(〈𝑀, 𝑁 〉) = 𝑁 ∈ 𝐵 [𝑀/𝑎]

Uniqeness
⊩ 𝑃 ∈ (𝑎 :𝐴) × 𝐵

⊩ 𝑃 = 〈fst(𝑃), snd(𝑃)〉 ∈ (𝑎 :𝐴) × 𝐵

2.1.5.3 Natural numbers

The natural numbers will be our paradigmatic example of an inductive type, a type whose
elements those constructible from a specified set of operators. (Eventually, they will be
one particularly trivial instance of the schema for higher inductive types introduced in
Part II.) The two introduction rules provide the two ways of constructing a natural num-
ber: zero is a natural, and the successor of any natural is again a natural number.

Rules 2.1.38 (Formation and introduction for natural numbers).

Formation

⊩ Nat type

Introduction-Zero

⊩ zero ∈ Nat

Introduction-Suc
⊩ 𝑁 = 𝑁 ′ ∈ Nat

⊩ suc(𝑁) = suc(𝑁 ′) ∈ Nat

Rather than a projection rule in the vein of function or product types, elimination from
the natural numbers is accomplished by an induction principle: to construct a dependent
function from Nat into some type family 𝑛 :Nat � 𝐵 type, we describe what to do in the
zero and suc cases. As shown in the first rule of Rules 2.1.39 below, that data comes in
the form of a term 𝑍 ∈ 𝐵 [zero/𝑛], explaining what to do with zero, and a parameterized
term 𝑛 : Nat, 𝑏 : 𝐵 � 𝑆 ∈ 𝐵 [suc(𝑛)/𝑛], explaining what to do with suc(𝑛) given a natural
𝑛 and the result 𝑏 of recursively applying the eliminator to 𝑛.

A logic of programs 35

Rules 2.1.39 (Elimination for natural numbers).

Elimination
𝑛 : Nat � 𝐵 = 𝐵′ type

⊩ 𝑁 = 𝑁 ′ ∈ Nat ⊩ 𝑍 = 𝑍 ′ ∈ 𝐵 [zero/𝑛] 𝑛 : Nat, 𝑏 : 𝐵 � 𝑆 = 𝑆′ ∈ 𝐵 [suc(𝑛)/𝑛]
⊩ elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆) = elimNat(𝑛.𝐵′;𝑁 ′;𝑍 ′, 𝑛.𝑏.𝑆′) ∈ 𝐵 [𝑁 /𝑛]

Reduction-Zero
⊩ 𝑍 ∈ 𝐵 [zero/𝑛]

⊩ elimNat(𝑛.𝐵; zero;𝑍,𝑛.𝑏.𝑆) = 𝑍 ∈ 𝐵 [zero/𝑛]

Reduction-Suc
𝑛 : Nat � 𝐵 type

⊩ 𝑁 ∈ Nat ⊩ 𝑍 ∈ 𝐵 [zero/𝑛] 𝑛 : Nat, 𝑏 : 𝐵 � 𝑆 ∈ 𝐵 [suc(𝑛)/𝑛]
⊩ elimNat(𝑛.𝐵; suc(𝑁);𝑍,𝑛.𝑏.𝑆) = 𝑆 [𝑁 /𝑛, elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆)/𝑏] ∈ 𝐵 [suc(𝑁)/𝑛]

Because of the recursive character of Nat, we need a bit of setup to prove the well-
typedness of the eliminator. We begin by defining a value relation 𝐸Nat whose elements
are the values on which the Nat eliminator is well-behaved.

Definition 2.1.40. We define 𝑉 ≈ 𝑉 ′ ∈ 𝐸Nat to hold when 𝑉 ≈ 𝑉 ′ ∈ JNatK and for every
𝑛 :Nat � 𝐵 = 𝐵′ type, 𝑍 = 𝑍 ′ ∈ 𝐵 [zero/𝑛], and 𝑛 : Nat, 𝑏 : 𝐵 � 𝑆 = 𝑆′ ∈ 𝐵 [suc(𝑛)/𝑛], we
have ⊩ elimNat(𝑛.𝐵;𝑉 ;𝑍,𝑛.𝑏.𝑆) = elimNat(𝑛.𝐵′;𝑉 ′;𝑍 ′, 𝑛.𝑏.𝑆′) ∈ 𝐵 [𝑉 /𝑛].

We will show that all values of Nat are contained in 𝐸Nat by exploiting the definition
of the value relation for Nat as the least closed under zero and suc.

Lemma 2.1.41. zero ∈ 𝐸Nat.

Proof. For any 𝐵, 𝐵′, 𝑍, 𝑍 ′, 𝑆, 𝑆′ as in the definition of 𝐸Nat, the operational semantics tells
us that elimNat(𝑛.𝐵; zero;𝑍,𝑛.𝑏.𝑆) ↦−→ 𝑍 and elimNat(𝑛.𝐵′; zero;𝑍 ′, 𝑛.𝑏.𝑆′) ↦−→ 𝑍 ′. That
⊩ elimNat(𝑛.𝐵; zero;𝑍,𝑛.𝑏.𝑆) = elimNat(𝑛.𝐵′; zero;𝑍 ′, 𝑛.𝑏.𝑆′) ∈ 𝐵 [zero/𝑛] thus follows
from the assumption ⊩ 𝑍 = 𝑍 ′ ∈ 𝐵 [zero/𝑛] by head expansion on either side. □

Lemma 2.1.42. If 𝑁 ≈ 𝑁 ′ ∈ ⇓𝐸Nat, then suc(𝑁) ≈ suc(𝑁 ′) ∈ 𝐸Nat.

Proof. For any 𝐵, 𝐵′, 𝑍, 𝑍 ′, 𝑆, 𝑆′ as in the definition of 𝐸Nat, the operational semantics gives
us the following reductions.

elimNat(𝑛.𝐵; suc(𝑁);𝑍,𝑛.𝑏.𝑆) ↦−→ 𝑆 [𝑁 /𝑛, elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆)/𝑏]
elimNat(𝑛.𝐵′; suc(𝑁);𝑍 ′, 𝑛.𝑏.𝑆′) ↦−→ 𝑆′[𝑁 ′/𝑛, elimNat(𝑛.𝐵′;𝑁 ′;𝑍 ′, 𝑛.𝑏.𝑆′)/𝑏]

36 Martin-Löf’s type theory

Expanding𝑁 ≈ 𝑁 ′ ∈ ⇓𝐸Nat, we have𝑁 ⇓ 𝑉 and𝑁 ′ ⇓ 𝑉 ′with⊩ elimNat(𝑛.𝐵;𝑉 ;𝑍,𝑛.𝑏.𝑆) =
elimNat(𝑛.𝐵′;𝑉 ′;𝑍 ′, 𝑛.𝑏.𝑆′) ∈ 𝐵 [𝑉 /𝑛]. By head expansion on either side, we see that ⊩
elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆) = elimNat(𝑛.𝐵′;𝑁 ′;𝑍 ′, 𝑛.𝑏.𝑆′) ∈ 𝐵 [𝑉 /𝑛]. We also have ⊩ 𝑁 =
𝑉 ∈ Nat by head expansion, so it follows from exact coercion that these two terms are
also equal as elements of 𝐵 [𝑁 /𝑛].

Instantiating the hypothesis 𝑛 : Nat, 𝑏 : 𝐵 � 𝑆 = 𝑆′ ∈ 𝐵 [suc(𝑛)/𝑛] with ⊩ 𝑁 = 𝑁 ′ ∈
Nat (which follows from 𝑁 ≈ 𝑁 ′ ∈ ⇓𝐸Nat) and the above, we see that

𝑆 [𝑁 /𝑛, elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆)/𝑏] = 𝑆′[𝑁 ′/𝑛, elimNat(𝑛.𝐵′;𝑁 ′;𝑍 ′, 𝑛.𝑏.𝑆′)/𝑏]

in 𝐵 [suc(𝑁)/𝑛]. Now our desired equation follows by head expansion on either side. □

These two lemmas give us what we need to prove Rules 2.1.39.

Proof (of Rules 2.1.39). By Lemmas 2.1.41 and 2.1.42, 𝐸Nat is closed under the clauses in-
ductively defining JNatK, so we conclude that JNatK ⊆ 𝐸Nat.

Suppose we have ⊩ 𝑁 = 𝑁 ′ ∈ Nat along with the other hypotheses of the elimination
rule; then 𝑁 ⇓ 𝑉 and 𝑁 ′ ⇓ 𝑉 ′ with 𝑉 ≈ 𝑉 ′ ∈ JNatK, and in particular 𝑉 ≈ 𝑉 ′ ∈ 𝐸Nat. By
definition of 𝐸Nat, this means ⊩ elimNat(𝑛.𝐵;𝑉 ;𝑍,𝑛.𝑏.𝑆) = elimNat(𝑛.𝐵′;𝑉 ′;𝑍 ′, 𝑛.𝑏.𝑆′) ∈
𝐵 [𝑉 /𝑛]. Applying head expansion on either side and using the equation ⊩ 𝑁 = 𝑉 ∈ Nat
in the type, we obtain the conclusion of the elimination rule: ⊩ elimNat(𝑛.𝐵;𝑁 ;𝑍,𝑛.𝑏.𝑆) =
elimNat(𝑛.𝐵′;𝑁 ′;𝑍 ′, 𝑛.𝑏.𝑆′) ∈ 𝐵 [𝑁 /𝑛].

The reduction rules now follow immediately from head expansion. □

2.1.5.4 Identity types

Although part of our goal in this thesis is to replace Martin-Löf’s identity types with
cubical path types, it will nevertheless be useful to have a working understanding of the
former. The identity type is an example of an indexed inductive type, a type generated by
constructors that inhabit different indices of a family of types. It, too, will be an instance
of our schema for higher inductive types in Part II.

In particular, the identity type at type 𝐴 is indexed by two terms 𝑀0, 𝑀1 ∈ 𝐴; the
elements of the instance Id(𝐴,𝑀0, 𝑀1) are proofs that 𝑀0 and 𝑀1 are equal. The sole
constructor for the identity type, called refl for “reflexivity”, establishes that the reflexive
identity types Id(𝐴,𝑀,𝑀) are inhabited; by exact coercion, this implies that the types
Id(𝐴,𝑀0, 𝑀1) are moreover inhabited whenever𝑀0 = 𝑀1 ∈ 𝐴.

A logic of programs 37

Rules 2.1.43 (Formation and introduction for identity types).

Formation
⊩ 𝐴 = 𝐴′ type ⊩ 𝑀0 = 𝑀

′
0 ∈ 𝐴 ⊩ 𝑀1 = 𝑀

′
1 ∈ 𝐴

⊩ Id(𝐴,𝑀0, 𝑀1) = Id(𝐴′, 𝑀′
0, 𝑀

′
1) type

Introduction
⊩ 𝐴 type ⊩ 𝑀 = 𝑀′ ∈ 𝐴

⊩ refl(𝑀) = refl(𝑀′) ∈ Id(𝐴,𝑀,𝑀′)

One elimination principle for identity types, historically known as the “J rule” after
Martin-Löf, expresses the inductive generation of the family of identity types by the refl
constructor. When we have a property 𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 : Id(𝐴, 𝑎0, 𝑎1) � 𝐵 type dependent
on pairs of terms and identities between them, it suffices to prove it in the case that the
identity is refl.

Rules 2.1.44 (Elimination for identity types).

Elimination
𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 : Id(𝐴, 𝑎0, 𝑎1) � 𝐵 = 𝐵′ type ⊩ 𝑀0 ∈ 𝐴

⊩ 𝑀1 ∈ 𝐴 ⊩ 𝑃 = 𝑃 ′ ∈ Id(𝐴,𝑀0, 𝑀1) 𝑎 :𝐴 � 𝑁 = 𝑁 ′ ∈ 𝐵 [𝑎/𝑎0, 𝑎/𝑎1, refl(𝑎)/𝑝]
⊩ elimId(𝑎0.𝑎1.𝑝.𝐵, 𝑃, 𝑎.𝑁) = elimId(𝑎0.𝑎1.𝑝.𝐵′, 𝑃 ′, 𝑎.𝑁 ′) ∈ 𝐵 [𝑀0/𝑎0, 𝑀1/𝑎1, 𝑃/𝑝]

Reduction
𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 : Id(𝐴, 𝑎0, 𝑎1) � 𝐵 type

⊩ 𝑀 ∈ 𝐴 𝑎 :𝐴 � 𝑁 ∈ 𝐵 [𝑎/𝑎0, 𝑎/𝑎1, refl(𝑎)/𝑝]
⊩ elimId(𝑎0.𝑎1.𝑝.𝐵, refl(𝑀), 𝑎.𝑁) = 𝑁 [𝑀/𝑎] ∈ 𝐵 [𝑀/𝑎0, 𝑀/𝑎1, refl(𝑀)/𝑝]

Although the J rule captures the inductive generation of the identity family by the
refl constructor, it is actually a fairly weak principle. In particular, it does not suffice to
show that proofs of identities are unique: that for any 𝑃,𝑄 ∈ Id(𝐴,𝑀0, 𝑀1), there exists
some 𝑇 ∈ Id(Id(𝐴,𝑀0, 𝑀1), 𝑃,𝑄). This principle is nonetheless true in the computational
semantics—indeed, we have refl(𝑃) ∈ Id(Id(𝐴,𝑀0, 𝑀1), 𝑃,𝑄). The semantics validates
the much stronger equality reflection rule, which turns elements of identity types into
judgmental equalities.

Rule 2.1.45 (Equality reflection).

⊩ 𝑀0 ∈ 𝐴 ⊩ 𝑀1 ∈ 𝐴 ⊩ 𝑃 ∈ Id(𝐴,𝑀0, 𝑀1)
⊩ 𝑀0 = 𝑀1 ∈ 𝐴

38 Martin-Löf’s type theory

The equality reflection rule presents difficulties from the perspective of formalism
design; a formalism that includes equality reflection (such as Nuprl [Con+86]) necessar-
ily has an undecidable equality judgment, which precludes techniques for automatically
checking the truth of judgments. This motivates the restriction to the J rule in formalisms,
possibly supported by the uniqueness of identity proofs principle (UIP). As a side effect,
the fact that the J rule is compatible with non-unique identity proofs motivated early work
in higher-dimensional type theory and models thereof, as we will see below.

2.1.5.5 The unit and empty types

We have included also a type with one element, Unit, and a type with no elements, Void.
These are somewhat degenerate: the unit type needs no elimination rule, because its single
element carries no interesting information, while the empty type needs no introduction
rule, because there is nothing to introduce. The empty type is useful in particular for
expressing falsehoods: we can inhabit 𝐴 → Void if 𝐴 is empty, i.e., if 𝐴 regarded as a
theorem is false. The elimination rule for Void says that we can construct an element of
any type if we have an element of Void.

Rules 2.1.46 (Unit type).

Formation

⊩ Unit type

Introduction

⊩ ★ ∈ Unit

Rules 2.1.47 (Empty type).

Formation

⊩ Void type

Elimination
⊩ 𝐴 type ⊩ 𝑀 ∈ Void

⊩ abort ∈ 𝐴

2.1.5.6 Universe

Finally, our type theory 𝜏1 includes a universe of (so-called “small”) types. The typical
rules for a universe are fairly simple: any element of the universe is a type, and the uni-
verse is closed under the same operators as 𝜏0.

Rules 2.1.48 (Universes).

⊩ U type

⊩ 𝐴 = 𝐴′ ∈ U

⊩ 𝐴 = 𝐴′ type

⊩ 𝐴 = 𝐴′ ∈ U 𝑎 :𝐴 � 𝐵 = 𝐵′ ∈ U

⊩ (𝑎 :𝐴) → 𝐵 = (𝑎 :𝐴′) → 𝐵′ ∈ U
· · ·

Formalisms 39

The benefit of having a universe is that we can write definitions and prove theorems
that quantify over types within the theory. For example, we can define composition of
functions between arbitrary types:

𝜆𝐴, 𝐵,𝐶,𝑔, 𝑓 , 𝑎. 𝑔 (𝑓 𝑎) ∈ (𝐴, 𝐵,𝐶 : U) → (𝐵 → 𝐶) → (𝐴 → 𝐵) → (𝐴 → 𝐶)

(For concision, we group iterated abstractions, such as (𝐴 : U) → (𝐵 : U) → · · · and
𝜆𝐴. 𝜆𝐵. · · · in the above, as comma-separated lists.)

2.2 Formalisms
If a type theory is a definition of truth, a formalism is a window onto truth; in computer
science terms, an interface. The concerns of formalism design are much the same as those
of interface design. On the one hand, there is usability: is the formalism expressive enough
to prove the kind of results we want to prove, and is it structured to make them easy to
prove? On the other hand, there is range of applicability: is the interface generic enough
to be used as a window on a wide variety of notions of truth (i.e., implementations)?
Formalisms are particulary relevant to type theories because they can form the basis of
proof assistants, programs that help a user develop proofs and check their correctness.

Algebraic theories Our type theories are built on top of an untyped programming lan-
guage, the terms of which are the subjects of the typing judgments. This is sensible if
we want to ground our truth in computation, but for an interface we would like to ab-
stract away those details; this way we can realize the interface with implementations
that compute differently, do not compute, or are not syntactic at all (such as set-theoretic
interpretations).

Various techniques therefore exist to ensure that a formalism does not make reference
to so-called “raw terms”. For example, the substitution operation −[𝑀/𝑎] we have used
in our computational type theories is an operator on raw terms; in our formalisms, we
avoid it by using explicit substitutions [ACCL91], term formers that are internal to the
type theory (of the same status as, say, suc(−)) rather than external operations.

These techniques have the additional useful effect of making our formalisms instances
of the class of generalized algebraic theories (GATs) [Car86]. All GATs satisfy certain
generic results; for example, the collection of interpretations of a given GAT can be orga-
nized into a category (the category of models) with an initial object given by the so-called
syntactic model. These results are tremendously useful for establishing key properties of
the formalism such as normalization, as is well-demonstrated by a recent explosion of re-
search (e.g., [Shu15; Coq19; CHS19; KHS19; SAG19; SA21]). Proving any such properties
is beyond the scope of this thesis, but we aimwith our novel formalism in Part III to create
a setting amenable to such approaches.

40 Martin-Löf’s type theory

We make one concession to readability by not completely annotating terms. For our
formalism to be a GAT, the terms should be annotated with enough information to recover
the derivation of their well-formedness; for example, the function application 𝐹 𝑁 should
be annotated with the domain and codomain types of 𝐹 . It is mechanical enough for a
reader to deduce what annotations should be present in a completely formal presentation,
so we will suppress them here.

In the following, we describe the skeleton of a formalism for our small type theory,
highlighting the considerations that drive formalism design (as opposed to the design of
computational models).

2.2.1 Intensional type theory

Judgment Presuppositions Reading
Γ ctx Γ is a context
Γ′ ` 𝛾 : Γ (Γ, Γ′ ctx) 𝛾 is a substitution from Γ to Δ
Γ′ ` 𝛾 = 𝛾 ′ : Γ (Γ′ ` 𝛾,𝛾 ′ : Γ) 𝛾 and 𝛾 ′ are equal substitutions
Γ ` 𝐴 type (Γ ctx) 𝐴 is a type in context Γ
Γ ` 𝐴 = 𝐴′ type (Γ ` 𝐴,𝐴′ type) 𝐴 and 𝐴′ are equal types in context Γ
Γ ` 𝑀 : 𝐴 (Γ ` 𝐴 type) 𝑀 is a term of type 𝐴 in context Γ
Γ ` 𝑀 = 𝑀′ : 𝐴 (Γ ` 𝑀,𝑀′ : 𝐴) 𝑀 and𝑀′ are equal terms

Figure 2.3: Judgments of the ITT formalism

Judgments and presuppositions Like a type theory, a formalism is based on a collec-
tion of judgments delineating the well-formed and equal types and elements. For ITT, we
have the judgments shown in Figure 2.3. We use ` and : for entailment and elementhood
in formal judgments, reserving � and ∈ for computational judgments. Whereas a com-
putational type theory defines the judgments, a formalism merely provides an interface
in the form of a collection of rules.

To simplify the presentation of rules, we attach to each formal judgment a collection
of presuppositions, assumptions under which it makes sense to state a judgment. For ex-
ample, the judgment Γ ` 𝑀 : 𝐴 presupposes that Γ is a context and𝐴 is a type; only under
those circumstances does it make sense to ask whether 𝑀 is an element of 𝐴 supposing
Γ. This allows us to omit hypotheses like Γ ctx and Γ ` 𝐴 type from rules when it is clear
the rule would not make sense otherwise. Unlike the PER-based computational interpre-
tation, in which we define the unary judgment forms from the binary, here we require
both sides of an equation to be well-formed before we can state it.

Formalisms 41

Explicit substitutions We eliminate the dependence on raw term substitution by mak-
ing substitution application an operation inside the type theory, taking an open substitu-
tion Γ′ ` 𝛾 : Γ as an argument.

Γ′ ` 𝛾 : Γ Γ ` 𝐴 type

Γ′ ` 𝐴[𝛾] type
Γ′ ` 𝛾 : Γ Γ ` 𝑀 : 𝐴

Γ′ ` 𝑀 [𝛾] : 𝐴[𝛾]
The substitutions form a category: there is always an identity substitution, and we can
compose substitutions.

Γ ` id : Γ
Γ′′ ` 𝛾 ′ : Γ′ Γ′ ` 𝛾 : Γ

Γ′′ ` 𝛾 ◦ 𝛾 ′ : Γ
These are subject to the usual equations: id ◦ 𝛾 = 𝛾 , 𝛾 ◦ id = 𝛾 , and 𝛾 ◦ (𝛾 ′ ◦ 𝛾 ′′) =
(𝛾 ◦ 𝛾 ′) ◦ 𝛾 ′′. We moreover have equations for computing the action of a substitution.

𝐴[id] = 𝐴 type

Γ′′ ` 𝛾 ′ : Γ′ Γ′ ` 𝛾 : Γ Γ ` 𝐴 type

Γ ` 𝐴[𝛾 ◦ 𝛾 ′] = 𝐴[𝛾] [𝛾 ′] type
When we arrive at the function type below, we will introduce further equations that com-
pute substitutions at each term and type former; for example, function application will
come with an equation (𝐹 𝑀) [𝛾] = 𝐹 [𝛾]𝑀 [𝛾].

Hypotheses and variables Again for the purpose of simplifyingmetatheoretic analysis,
we avoid introducing named variables. Thus, a context is not a lookup table associating
names with types, but merely a list of types.

· ctx
Γ ` 𝐴 type

Γ.𝐴 ctx

An extended context Γ.𝐴 comes with a weakening substitution (written p for “projection”)
that throws away the assumption. On the other hand, we can construct a substitution from
some Γ′ into an extended context Γ.𝐴 by taking a substitution Γ′ ` 𝛾 : Γ and attaching an
additional term Γ′ ` 𝑀 : 𝐴[𝛾].

Γ ctx Γ ` 𝐴 type

Γ.𝐴 ` p : Γ
Γ′ ` 𝛾 : Γ Γ ` 𝐴 type Γ′ ` 𝑀 : 𝐴[𝛾]

Γ′ ` 𝛾 .𝑀 : Γ.𝐴

In an extended context Γ.𝐴, we always have access to at least one variable, namely
the one of type 𝐴 at the top of the the context; we write v for this variable. (Note that we
weaken 𝐴 so that it is well-formed in context Γ.𝐴.)

Γ ` 𝐴 type

Γ.𝐴 ` v : 𝐴[p]

42 Martin-Löf’s type theory

In a context like Γ.𝐶.𝐵.𝐴, variables further back in the context are accessible by way of
the projection substitution: we have Γ.𝐶.𝐵.𝐴 ` v : 𝐴[p], Γ.𝐶.𝐵.𝐴 ` v[p] : 𝐵 [p ◦ p],
and Γ.𝐶.𝐵.𝐴 ` v[p ◦ p] : 𝐶 [p ◦ p ◦ p]. (Henceforth we write p2, p3, etc. for such iterated
projections.) When we apply a substitution Γ′ ` 𝛾 .𝑀 : Γ.𝐴 into an extended context,
the top variable v is instantiated with 𝑀 by way of the first equation below, while other
variables search deeper in the context via the second.

Γ′ ` 𝛾 : Γ Γ ` 𝐴 type Γ′ ` 𝑀 : 𝐴[𝛾]
Γ′ ` v[𝛾 .𝑀] = 𝑀 : 𝐴[𝛾]

Γ′ ` 𝛾 : Γ Γ ` 𝐴 type Γ′ ` 𝑀 : 𝐴[𝛾]
Γ′ ` p ◦ (𝛾 .𝑀) = 𝛾 : Γ

Note that the substitution pairing operator−.− and the two projections p and v behave
much like the constructor 〈−,−〉 and projections fst and snd of the dependent product
type; intuitively, the extended context Γ.𝐴 is the dependent product of Γ and 𝐴. The
uniqueness rule for products also has a counterpart.

Γ′ ` 𝛾 : Γ.𝐴 Γ ` 𝐴 type

Γ′ ` 𝛾 = (p ◦ 𝛾).v[𝛾] : Γ.𝐴

The mechanical simplicity of nameless variables does unfortunately come at the cost
of some readability, so we might be forgiven for using names and leaving the translation
to p’s and v’s to the reader. We nevertheless stick to a nameless presentation, as such
a translation becomes less evident in the presence of the new context formers (bridge
interval extension and restriction, modalities) we introduce in Parts III and IV.

Function types Now that we have seen how to deal with variables in an algebraic fash-
ion, the rules for function types contain no surprises. (Since there is no need to include a
variable binding, we write 𝐴 → 𝐵 here even for dependent function types.)

Γ ` 𝐴 type Γ.𝐴 ` 𝐵 type

Γ ` 𝐴 → 𝐵 type

Γ.𝐴 ` 𝑁 : 𝐵
Γ ` 𝜆(𝑁) : 𝐴 → 𝐵

Γ.𝐴 ` 𝐵 type Γ ` 𝐹 : 𝐴 → 𝐵 Γ ` 𝑀 : 𝐴
Γ ` 𝐹 𝑀 : 𝐵 [id.𝑀]

Γ.𝐴 ` 𝑁 : 𝐵 Γ ` 𝑀 : 𝐴
Γ ` 𝜆(𝑁)𝑀 = 𝑁 [id.𝑀] : 𝐵 [id.𝑀]

Γ ` 𝐹 : 𝐴 → 𝐵

Γ ` 𝐹 = 𝜆(𝐹 [p] v) : 𝐴 → 𝐵

Formalisms 43

We leave off congruence rules—if𝐴 = 𝐴′ type and𝐵 = 𝐵′ type then𝐴 → 𝐵 = 𝐴′ → 𝐵′ type
and so on—as these can be mechanically inferred.

To give equations for the calculation of substitutions in function types, we first observe
that context extension has a functorial action on substitutions: given Γ′ ` 𝛾 : Γ and a type
Γ ` 𝐴 type, we have Γ′.𝐴[𝛾] ` 𝛾× : Γ.𝐴 defined by 𝛾× B (𝛾 ◦ p) .v. Using this, we can
propagate substitutions beneath binders as follows.

(𝐴 → 𝐵) [𝛾] = 𝐴[𝛾] → 𝐵 [𝛾×]
(𝜆(𝑀)) [𝛾] = 𝜆(𝑀 [𝛾×])
(𝐹 𝑀) [𝛾] = 𝐹 [𝛾]𝑀 [𝛾]

Remember, this is not a definition of substitution by clauses; this is a specification of
equations that an interpretation of substitution should satisfy. Of course, if we do not
provide sufficient equations, the formalismwill be poorly behaved, but this does not mean
the formalism is incompletely defined, only unsatisfactory.

We leave the formulation of rules for the other types to the reader; one may simply
mimic the suite of rules developed in Section 2.1.

Interpretation in computational type theories Once we have laid out a formalism,
we can ask whether a given computational type theory is an instance of the interface it
presents.

To start with, we need an interpretation |−| of formal contexts, substitutions, types,
and terms as untyped syntax (or operations, in the case of substitutions).1 Given this, there
is a canonical candidate interpretation for a formalism with the judgments given above
in the kind of computational type theory we have described: we interpret Γ ` 𝐴 type as
|Γ | � |𝐴| type, Γ ` 𝑀 : 𝐴 as |Γ | � |𝑀 | ∈ |𝐴|, and so on. The interpretation is sound if
the interpretation of every rule in the formalism is a true principle in the interpretation.
We will not go through the work of proving such a theorem here, but the process is fairly
straightforward: we have already done the bulk of the work by proving rules for each of
the type formers in Section 2.1.

Adequacy One key property we can ask of a formalism for a computational interpre-
tation is computational adequacy, the property that the reductions of the interpretation’s
operational semantics are tracked by the equational theory of the formalism.

Proposition 2.2.1 (Adequacy). If · ` 𝑀 : 𝐴 and |𝑀 | ↦−→ |𝑁 |, then · ` 𝑀 = 𝑁 : 𝐴.

1Aswe are translating from a nameless to named representation of variables, this function should really
be parameterized by a variable environment.

44 Martin-Löf’s type theory

This property is indeed satisfied by ITT, reflecting intuitively that it includes the nec-
essary rules for calculating the results of eliminators and substitutions at each type. Ade-
quacy expresses a kind of constructive character of a formalism: for example, if we con-
struct a term of natural number type, it can be “run” to obtain an explicit natural number.
Note that a formalism that is constructive in this sense may still have non-constructive
models: adequacy only shows that elements definable in the formalism can be computed.

2.2.2 A non-computational model
As mentioned above, properties like adequacy of a formalism do not prevent us from
interpreting that formalism in non-constructive settings. As an example, we sketch a
set-theoretic interpretation of the formalism described above.

We begin by interpreting contexts Γ as sets JΓK ∈ Set and substitutions Γ′ ` 𝛾 : Γ
as set-theoretic functions, J𝛾K : JΓ′K → JΓK. We interpret Γ ` 𝐴 type as a family of
sets (J𝐴K𝐼)𝐼∈JΓK, and terms Γ ` 𝑀 : 𝐴 as families of elements: (J𝑀K𝐼)𝐼∈JΓK where J𝑀K𝐼 ∈J𝐴K𝐼 for each 𝐼 ∈ JΓK. The equality judgments are interpreted by set-theoretic equality.
Application of substitution is interpreted by reindexing of families: given Γ′ ` 𝛾 : Γ and
Γ ` 𝐴 type, we define J𝐴[𝛾]K𝐼 B J𝐴KJ𝛾K(𝐼) . We interpret the empty context by a one-
element set, J · K B {★}, and context extension by disjoint union (i.e., coproduct) over the
elements of the base context: JΓ.𝐴K B ∐

𝐼∈JΓKJ𝐴K𝐼 .
Moving on to type formers, we can interpret dependent function types as products,J𝐴 → 𝐵K𝐼 B ∏

𝑎∈J𝐴K𝐼 J𝐵K(𝐼 ,𝑎) , and dependent products as disjoint unions J𝐴 × 𝐵K𝐼 B∐
𝑎∈J𝐴K𝐼 J𝐵K(𝐼 ,𝑎) . The identity type Id(𝐴,𝑀0, 𝑀1) can be interpreted as a one-element set

when𝑀0 and𝑀1 are equal and the empty set otherwise.

JId(𝐴,𝑀0, 𝑀1)K𝐼 B {
★ | J𝑀0K𝐼 = J𝑀1K𝐼 }

We may interpret the universe by assuming that our set theory supports a Grothendieck
universe, essentially a set large enough to be closed under the various type formers.

Chapter 3

Cubical type theory

Cubical type theory enhances Martin-Löf’s type theory with a contentful notion of equal-
ity, the path. It will be the basic substrate with which we work for the remainder of this
thesis; Parts II to IV each describe extensions of cubical type theory. We can separate the
history of cubical type theory into several distinct if frequently interacting strands: the
history of higher-dimensional models of intensional type theory, the history of higher-
dimensional formalisms, and the history of constructivity and computation for the two.

Higher-dimensional models The earliest higher-dimensional model of ITT is Hof-
mann and Streicher’s groupoid interpretation [HS98]. By higher-dimensional model, we
mean one that refutes the uniqueness of identity proofs (UIP) principle. Said principle
states that any pair of proofs of identity are themselves identical.

𝐴 type 𝑀, 𝑁 ∈ 𝐴 𝑃,𝑄 ∈ Id(𝐴,𝑀, 𝑁)
uip ∈ Id(Id(𝐴,𝑀, 𝑁), 𝑃,𝑄)

Hofmann and Streicher’s model was indeed designed for the purpose of refuting this prin-
ciple, showing it independent of ITT. They interpret types as groupoids, categories in
which every morphism is invertible. The identity type between elements 𝑎 and 𝑏 of a
groupoid 𝐺 is then the set (i.e., discrete groupoid) of morphisms between them, which
may contain multiple elements. The model thus has one level of higher structure: there
can be distinct proofs of identity between two objects, but any two proofs of identities
between identities are necessarily identical.

Awodey and Warren [AW09] picked up this thread by establishing a connection be-
tween ITT’s identity type and the concept of a weak factorization system from homotopy
theory. In his dissertation, Warren shows that one can construct 𝑛-dimensional models
of ITT for every 𝑛—each refuting an 𝑛-dimensional version of UIP—as well as an infinite-
dimensional model in strict𝜔-groupoids that refutes all such principles. Van den Berg and

45

46 Cubical type theory

Garner generalized Awodey and Warren’s results to construct a larger class of higher-
dimensional models of ITT, including the infinite-dimensional topological spaces and sim-
plicial sets [BG12]. Beyond proving independence results for UIP-like principles, these
models opened the possibility of using ITT as a language for proving theorems about
such higher-dimensional settings.

Formalisms Around the same time, Gambino and Garner established a result in the op-
posite direction: the syntactic category of ITT—the category with contexts as objects and
substitutions as morphisms—contains a non-trivial weak factorization system [GG08].
That is, this structure can not only appear in models of ITT, but is visible in the formal-
ism itself. Van den Berg and Garner further showed that that every syntactic type has
the structure of a weak 𝜔-groupoid, with operations such as composition and inverse of
identities defined using the J rule [BG11].

Separately, Voevodsky became interested in ITT as a tool for formalizing results from
homotopy theory. He proposed extending ITT with an axiom, which he dubbed the uni-
valence axiom [Voe14], that identifies identities between types in a universe with isomor-
phisms. Voevodsky developed amodel of ITTwith the univalence axiom in simplicial sets,
which has been since been described by Kapulkin and Lumsdaine [KL12a]. It is perhaps
worth noting that Voevodsky was not primarily interested in using higher-dimensional
theory to study homotopy theory synthetically in the style of, e.g., [Uni13, §8]. Rather,
he was interested in formalizing zero-dimensional (“set-level”) mathematics and saw the
univalence axiom as indispensable for this purpose. His program, which he referred to as
the Univalent Foundations, is embodied in the ongoing UniMath project [VAG+20].

The Special Year on Univalent Foundations of Mathematics at the Princeton Institute
for Advanced Study culminated in the publication of Homotopy Type Theory: Univalent
Foundations of Mathematics [Uni13], the “HoTT Book”, produced collaboratively by the
participating researchers. The HoTT Book explores the consequences of the univalence
axiom in ITT, with a particular eye towards synthetic homotopy theory: using the higher-
dimensional elements of ITT as a language to study higher-dimensional mathematics. For
this purpose, the HoTT Book also assumed a (not-so-precisely delineated) collection of
higher inductive types. Conceived at a 2011 workshop in Oberwolfach by Bauer, Lums-
daine, Shulman, and Warren, higher inductive types generalize inductive types to enable
the direct construction of higher-dimensional spaces such as𝑛-dimensional spheres. With
these in hand, it became possible to replicate and formalize results from classical homo-
topy, such as the calculation of the fundamental group of the circle [LS13] and the 4th
homotopy group of the 3-sphere [Bru16]. We use the name homotopy type theory (HoTT)
for the particular extension of ITT with the univalence axiom and higher inductive types
defined in the Book, although it is sometimes used as a name for the field more generally.

However, the introduction of all these axioms in ITT destroyed the constructive char-

47

acter of the theory. The axioms provide no way to evaluate a term · ` 𝑁 : Nat that uses
the univalence axiom or higher inductive types, so canonicity fails inHoTT. Indeed, it was
not even known whether homotopy theory had a constructive model, that is, whether it
was possible to interpret the formalismwithout relying on classical principles; Bezem, Co-
quand, and Parmann showed that Voevodsky’s simplicial model relied in an essential way
on non-constructivity [BCP15]. Despite this dismal state of affairs, computer scientists
were drawn to the promise of homotopy type theory: if it could be made computational,
it had the potential to resolve several unsatisfactory aspects of ITT. The univalence axiom
implies function extensionality, the principle that functions are identified when they are
pointwise identified, which is infuriatingly unprovable using only the J rule. Univalence
itself, of course, gives a satisfying characterization of equality in the universe, which ITT
fails to say anything about on its own. Higher inductive types, meanwhile, would provide
effective quotients.

Constructivity and computation In pursuit of a computational interpretation of—or
computational replacement for—HoTT, Licata and Harper [LH11; LH12] defined a for-
malism called two-dimensional type theory (2DTT), which with our numbering conven-
tions would be one-dimensional type theory: like the groupoid model, it permits distinct
identities between elements but identifies all identities between identities. Their theory
contains a single univalent universe. By including rules for calculating with the paths
produced by univalence, Licata and Harper were able to prove canonicity for this theory.
The principle underlying the design of 2DTT is one that is ubiquitous in the study of
type theories: types internalize judgmental structure. That is, if there is to be a type whose
elements are contentful paths, then there should be a judgmental notion capturing the
concept of contentful path. In 2DTT, this judgment takes the form Γ ` 𝛼 : 𝑀 '𝐴 𝑁 , read
“𝛼 is a path from𝑀 to 𝑁 in type 𝐴”.

The next leap in the struggle for computation came from Bezem, Coquand, and Hu-
ber [BCH13], who built the first constructively-definable model of ITT with univalence.
Their model, known as the BCH model, replaces the simplicial sets of Voevodsky’s model
with affine cubical sets. To give a very rough idea, where simplicial sets describe higher-
dimensional objects as being built out of 𝑛-dimensional triangles (the eponymous sim-
plices), cubical sets describe higher-dimensional objects as assemblies of 𝑛-dimensional
cubes. For reasons too technical to get into here, this change of setting neatly sidesteps the
constructivity issues with the simplicial model. Unfortunately, the BCH model presented
problems for interpreting higher inductive types; indeed, it is still unknown whether any
but the most trivial of higher inductive types can be interpreted in the BCH model.

The solution, it turned out, was to replace affine cubical sets with structural cubical
sets. This adjustment was pursued in parallel by Cohen, Coquand, Huber, and Mörtberg
(CCHM) [CCHM15] and Angiuli, Favonia, and Harper (AFH) [AFH18], using different

48 Cubical type theory

variations on structural cubical sets. In both cases, the result was notmerely a constructive
model but a cubical type theory. In the CCHM case, this came in the form of a formalism
with an interpretation in cubical sets and a canonicity result due to Huber [Hub19]; in
the AFH case, in the form of a type theory in our computational sense. Each presented a
theory with a full-fledged, infinite hierarchy of univalent universes, along with examples
of higher inductive types. Apart from the difference in settings (formal vs. computational),
the CCHM and AFH approaches are broadly similar, but do differ substantially in the finer
details. In technical terms, CCHM is based on the De Morgan cube category, while AFH is
based on the cartesian cube category; that basic difference leads to divergences in the ways
coercions are calculated at each type. The CCHMmodel is generalized to give a variety of
topos models for De Morgan cubical type theory in [OP18; LOPS18]; the same is done for
cartesian type theory in [ABCFHL19]. Cavallo, Mörtberg, and Swan show that the two
branches can be viewed as instances of a single construction [CMS20]. As in 2DTT, the
basic move in each of these theories is to treat contentful identities as internalizations of a
judgmental phenomenon. in the cubical case, that structure is dependency on an interval
variable.

Outline We begin in Section 3.1 with a framework for cartesian cubical type theories in
the style of Angiuli, Favonia, and Harper, hewing most closely to the account presented in
Angiuli’s dissertation [Ang19]. With an instance of the framework in hand, we exercise it
a bit in Section 3.2, proving some elementary results in cubical type theory that will serve
us later on. As with Martin-Löf type theory, we round out the chapter with a discussion
of formalisms and non-computational models in Section 3.3.

3.1 Cubical computational type theory

To start, let us lay out the structure we intend cubical type theories to support. The
distinguishing characteristic of all cubical type theories is the ability to assume an interval
variable.

Γ ctx

(Γ, 𝑥 : I) ctx

Although this notationally resembles an ordinary term hypothesis 𝑎 :𝐴, it is really a sep-
arate context forming operation; the interval is not a type. Interval terms, which can be
substituted for such variables, are characterized by separate judgments Γ � 𝑟 ∈ I and
Γ � 𝑟 = 𝑠 ∈ I, the resemblance to Γ � 𝑀 ∈ 𝐴 and Γ � 𝑀 = 𝑁 ∈ 𝐴 again being merely
suggestive. The intuition is that I is an interval in the sense of topology, a space with two

Cubical computational type theory 49

points (the endpoints) and a line between them. We name these two endpoints “0” and “1”.

0 ∈ I 1 ∈ I

A path is then a type or term that depends on an interval variable: 𝑥 : I � 𝐴 type is
a path of types, and 𝑥 : I � 𝑀 ∈ 𝐴 is a path of terms. The endpoints of a path are
recovered by substituting the constants 0 and 1: 𝑥 : I � 𝐴 type is a path from𝐴[0/𝑥] type
to 𝐴[1/𝑥] type. (Note that as far as substitution is concerned, interval variables behave
exactly like ordinary term variables.)

The judgmental concept of path can then be straightforwardly internalized by path
types: for each 𝑥 : I � 𝐴 type, and pair of endpoint terms𝑀0 ∈ 𝐴[0/𝑥] and𝑀1 ∈ 𝐴[1/𝑥],
we introduce a type Path(𝑥 .𝐴,𝑀0, 𝑀1) typewhose values are abstracted terms 𝜆I𝑥 . 𝑀 such
that 𝑥 : I � 𝑀 ∈ 𝐴, 𝑀 [0/𝑥] = 𝑀0 ∈ 𝐴[0/𝑥], and 𝑀 [1/𝑥] = 𝑀1 ∈ 𝐴[1/𝑥]. This type will
behave much like a function type, albeit one with constraints on its values at 0 and 1. In
general, it is like a dependent function type: elements of Path(𝑥 .𝐴,𝑀0, 𝑀1) are paths over
the “path of types” 𝑥 : I � 𝐴 type.

Notation 3.1.1. When 𝐴 type does not depend on 𝑥 , we abbreviate Path(𝑥 .𝐴,𝑀0, 𝑀1) as
Path(𝐴,𝑀0, 𝑀1).

In a type theory with interval variables, each type comes equipped with a contentful
relation: for any 𝑀0 ∈ 𝐴 and 𝑀1 ∈ 𝐴, the collection of paths 𝑥 : I � 𝑀 ∈ 𝐴 such
that 𝑀 [0/𝑥] = 𝑀0 ∈ 𝐴 and 𝑀 [1/𝑥] = 𝑀1 ∈ 𝐴 can be thought of as a collection of
witnesses that𝑀0 and𝑀1 are related. Note that this relation is reflexive byway of constant
functions: given any 𝑀 ∈ 𝐴, we have 𝜆 .𝑀 ∈ Path(𝐴,𝑀,𝑀). In order for this contentful
relation to be a notion of equality, however, more structure is required. For one, nothing
here implies that the path relation is symmetric or transitive. More fundamentally, there
is no way to transport along these paths, to transfer results about a given term to any
path-equal term.

Coercion and composition The second essential component of cubical type theory
is thus a pair of operations called the Kan operations, so called in reference to the Kan
condition in classical homotopy theory [Kan55]. The first of these, coercion, implements
the transport of terms along paths of types.

𝑥 : I � 𝐴 type 𝑟 ∈ I 𝑠 ∈ I 𝑀 ∈ 𝐴[𝑟/𝑥]
coe𝑟�𝑠𝑥 .𝐴 (𝑀) ∈ 𝐴[𝑠/𝑥]

That is, if 𝑥 : I � 𝐴 type is a path of types and we have an element of 𝐴[𝑟/𝑥], then we
can transform it into an element of 𝐴[𝑠/𝑥] for any other 𝑠 .

50 Cubical type theory

The second Kan operation, homogeneous composition (hcom), serves a more technical
purpose. Note that the existence of coercion at all type lines implies that paths are transi-
tive and symmetric. For example, given 𝑃 ∈ Path(𝐴,𝑀0, 𝑀1), we can compute its inverse
as coe0�1

𝑥 .Path(𝐴,𝑃 𝑥,𝑀0) (𝜆
I𝑥 . 𝑀0) ∈ Path(𝐴,𝑀1, 𝑀0). Turning this around, however, we will

find that we need paths to be symmetric and transitive in order to implement coercion at
all types, at path types in particular. In other words, we must strengthen our induction
hypothesis. Homogeneous composition provides these symmetry and transitivity opera-
tions; more precisely, it is a box-filling operation that includes the two as special cases.

As an example of box-filling, consider the following situation: we have a path 𝑦 : I �
𝑀 ∈ 𝐴 together with two additional paths 𝑥 : I � 𝑁0 ∈ 𝐴 and 𝑥 : I � 𝑁1 ∈ 𝐴 that extend
from 𝑀’s endpoints, i.e., satisfy 𝑀 [0/𝑦] = 𝑁0 [0/𝑥] ∈ 𝐴 and 𝑀 [1/𝑦] = 𝑁1 [0/𝑥] ∈ 𝐴. We
can picture these as forming the “open box” shown below, a square with one missing side.

𝑦

𝑥 • •

• •

𝑀

𝐾

𝑁0 𝑁1

The homogeneous composition of these terms is the dotted line: a path𝑦 : I � 𝐾 ∈ 𝐴 such
that 𝐾 [0/𝑦] = 𝑁0 [1/𝑥] ∈ 𝐴 and 𝐾 [1/𝑦] = 𝑁1 [1/𝑥] ∈ 𝐴. In syntax, this path is written as
follows.

𝑦 : I � 𝐾 B hcom0�1
𝐴 (𝑀 ;𝑦 ≡ 0 ↩→ 𝑥 .𝑁0, 𝑦 ≡ 1 ↩→ 𝑥 .𝑁1) ∈ 𝐴

We can think of 𝐾 as a composite of three paths: first the inverse of 𝑥 .𝑁0, then 𝑦.𝑀 ,
then 𝑥 .𝑁1. In particular, symmetry and transitivity are special cases. If we instantiate𝑦.𝑀
and 𝑥 .𝑁1 with reflexive paths, then 𝑦.𝐾 is the inverse of 𝑥 .𝑁0; if we instantiate 𝑥 .𝑁0 with
a reflexive path, then 𝑦.𝐾 is the composite of 𝑦.𝑀 with 𝑥 .𝑁1.

The general form of homogeneous composition replaces 0 → 1 with 𝑟 → 𝑠 , allowing
us to take a “horizontal” term 𝑦.𝑀 at any point on the 𝑥-axis and move it to any other
point. In particular, if we allow the destination point to vary in the example above, we
can obtain an interior (or filler) for the open box.

𝑥 : I, 𝑦 : I � 𝐹 B hcom0�𝑥
𝐴 (𝑀 ;𝑦 ≡ 0 ↩→ 𝑥 .𝑁0, 𝑦 ≡ 1 ↩→ 𝑥 .𝑁1) ∈ 𝐴

This two-dimensional term will satisfy the equations 𝑥 : I � 𝐹 [0/𝑦] = 𝑁0 ∈ 𝐴,
𝑥 : I � 𝐹 [1/𝑦] = 𝑁1 ∈ 𝐴, 𝑦 : I � 𝐹 [0/𝑥] = 𝑀 ∈ 𝐴, and 𝑦 : I � 𝐹 [1/𝑥] = 𝐾 ∈ 𝐴, thereby
filling in the open box as shown below.

Cubical computational type theory 51

𝑦

𝑥 • •

• •

𝑀

𝐾

𝑁0 𝑁1𝐹

The general hcom also replaces the pair (𝑥 ≡ 0 ↩→ 𝑦.𝑁0, 𝑥 ≡ 1 ↩→ 𝑦.𝑁1) with an
arbitrary collection of equation-path pairs, which may involve any number of interval
variables. These are required to agree on their overlaps; if, for example, they include
𝑦 ≡ 0 ↩→ 𝑥 .𝑁0 and 𝑧 ≡ 0 ↩→ 𝑥 .𝑃0, then it must be the case that 𝑥 : I � 𝑁0 [0/𝑧] =
𝑃0 [0/𝑦] ∈ 𝐴. In effect, such a collection forms a frame into which a term may fit, which
we call the tube of the composite. An hcom takes a term (𝑀 in our example) that fits into
the tube at one index 𝑟 , which we call the cap, and produces a term that fits into the tube at
any other index 𝑠 . In particular, the picture above generalizes to 𝑛-dimensional open box
filling: given an 𝑛-dimensional cube with one face missing, we can use hcom to produce
a term that fits in the missing face.

Computing with cubical terms Of course, everything we have said so far is merely
aspirational; we need to set up a computational setting in which these dreams come
true. The main obstruction to that dream is the evaluation of coercion, terms of the
form coe𝑟�𝑠𝑥 .𝐴 (𝑀). Let us recall some intuition: a line of types 𝑥 : I � 𝐴 type is sup-
posed to correspond to an isomorphism, with coe0�1

𝑥 .𝐴 and coe1�0
𝑥 .𝐴 executing the forward

and backward functions of the isomorphism respectively. In particular, the evaluation of
coe𝑟�𝑠𝑥 .𝐴 (𝑀) depends on the form of x.A: we have to look at 𝐴 to determine what isomor-
phism it represents. If, for example, we have a path 𝑃 ∈ Path(U,Bool,Bool), it could
represent either the identity isomorphism Bool ' Bool or the isomorphism that swaps tt
and ff. In the former case, we should have coe0�1

𝑥 .𝑃 𝑥 (tt) = tt ∈ Bool; in the latter, we should
have coe0�1

𝑥 .𝑃 𝑥 (tt) = ff ∈ Bool.
The upshot of this situation is that we must be able to compute in a context with inter-

val variables: we need to evaluate 𝑥 .𝐴 to examine it. This is a stark change of pace from
Chapter 2, where our operational semantics only applied to closed terms. Fortunately, we
do not need to be able to evaluate all open terms, just those that depend only on interval
terms. For this chapter, those terms will be our “closed” terms.

When we evaluate terms containing interval variables, there is a question of coher-
ence: how does substitution for interval variables interact with evaluation? Suppose, for
example, that we have some 𝑥 : I � 𝑀 ∈ 𝐴. Then 𝑀 should evaluate to some value:

52 Cubical type theory

𝑀 ⇓ 𝑉 . On the other hand, we can substitute 0 for 𝑥 to obtain𝑀 [0/𝑥] ∈ 𝐴[0/𝑥] and then
evaluate: 𝑀 [0/𝑥] ⇓ 𝑉0. What should the relationship between 𝑉 [0/𝑥] and 𝑉0 be?

If we assume that the typing judgments are stable under substitution and that terms
are equal to their values—which wewould certainly like to be true—then wewill have that
𝑥 : I � 𝑀 = 𝑉 ∈ 𝐴, thus𝑀 [0/𝑥] = 𝑉 [0/𝑥] ∈ 𝐴[0/𝑥], as well as𝑀 [0/𝑥] = 𝑉0 ∈ 𝐴[0/𝑥]. It
follows that 𝑉 [0/𝑥] = 𝑉0 ∈ 𝐴[0/𝑥]. Flipping our perspective around, if we want stability
under substitution and equality to values, we must ensure that our definition of the term
judgment guarantees these kind of coherence equations. It is too permissive to say that
𝑥 : I � 𝑀 ∈ 𝐴 whenever 𝑀 evaluates to a value in 𝐴; we must require that all the
substitution instances of𝑀 evaluate in a coherent way. The two ideas of evaluation in an
interval context and coherent evaluation form the basis of the computational interpretation
of cartesian cubical type theory as presented by Angiuli, Favonia, and Harper, as well as
the proof of canonicity for De Morgan cubical type theory due to Huber.

3.1.1 Interval contexts

Now getting into the definition of the framework proper, we first want to distinguish
the contexts and substitutions that deal only with interval assumptions; the contexts in
which we consider terms to be “closed”. We use the letters Ψ and𝜓 for these contexts and
substitutions, distinguishing them from the general Γ and 𝛾 . The interval judgments are
prior to the definitions that deal with terms; in particular, they do not depend at all on the
choice of type system.

Definition 3.1.2 (Contexts). The well-formed interval contexts, Ψ ictx, are inductively
defined by the following rules.

· ictx
Ψ ictx

(Ψ, 𝑥 : I) ictx

Definition 3.1.3 (Interval elements). Ψ ⊩ 𝑟 ∈ I holds when 𝑟 = 0, 𝑟 = 1, or 𝑟 = 𝑥 for
some (𝑥 : I) ∈ Ψ.

Definition 3.1.4 (Interval substitutions). Thewell-formed interval substitutions,Ψ′ ⊩
𝜓 ∈ Ψ, are inductively defined by the following rules.

Ψ′ ⊩ · ∈ ·
Ψ′ ⊩ 𝜓 ∈ Ψ Ψ′ ⊩ 𝑟 ∈ I
Ψ′ ⊩ (𝜓, 𝑟/𝑥) ∈ (Ψ, 𝑥 : I)

Cubical computational type theory 53

3.1.2 Operational semantics and type systems
The two defining components of a cubical type theory—its operational semantics and its
type system—must take an ambient interval context into account. For the operational
semantics, this just means that the judgments operate on terms that may contain interval
variables.

Definition 3.1.5. An operational semantics is a definition of two judgments 𝑀 val and
𝑀 ↦−→ 𝑁 operating on terms that contain only interval variables, satisfying the following
properties.

• Determinism: If𝑀 ↦−→ 𝑁 and𝑀 ↦−→ 𝑁 ′, then 𝑁 = 𝑁 ′. For any𝑀 , it is not the case that
both𝑀 val and𝑀 ↦−→ 𝑁 for some 𝑁 .

• Variable preservation: If 𝑀 ↦−→ 𝑁 , then the free interval variables in 𝑁 are a subset of
the free variables in𝑀 .

Given an operational semantics, we define the induced multi-step judgment 𝑀 ↦−→∗ 𝑁
and evaluation judgment𝑀 ⇓ 𝑉 as in Definition 2.1.1.

Notably, we do not require that the operational semantics is stable under interval
substitution. That is, we do not ask that 𝑀 val implies 𝑀𝜓 val or that 𝑀 ↦−→ 𝑁 implies
𝑀𝜓 ↦−→ 𝑁𝜓 for every Ψ′ ⊩ 𝜓 ∈ Ψ. Indeed, the operational semantics will contain several
rules that fail to be stable in this way. This kind of stability will be enforced on the level
of typed equality judgments, but not at the level of untyped operational semantics.

On the type system side, the data that defines a type 𝐴 in an interval context Ψ will
now consist of a family of relations indexed by substitutions into Ψ, specifying the values
of 𝐴𝜓 for each possible Ψ′ ⊩ 𝜓 ∈ Ψ.

Definition 3.1.6 (𝚿-relations). Given Ψ ictx, a Ψ-relation 𝑅 is a family of relations 𝑅〈𝜓 〉
indexed by substitutions Ψ′ ⊩ 𝜓 ∈ Ψ from arbitrary interval contexts Ψ′ into Ψ. A Ψ-
relation is a Ψ-PER when each 𝑅〈𝜓 〉 is a PER. Given a Ψ-relation 𝑅 and substitution Ψ′ ⊩
𝜓 ∈ Ψ, we define the Ψ′-relation 𝑅𝜓 by 𝑅𝜓 〈𝜓 ′〉 B 𝑅〈𝜓𝜓 ′〉.

Notation 3.1.7. When 𝑅 is a Ψ-relation and 𝑀 and 𝑀′ are terms in context Ψ, we will
write 𝑀 ≈ 𝑀′ ∈ 𝑅 as syntactic sugar for 𝑀 ≈ 𝑀′ ∈ 𝑅〈idΨ〉. This permits us to write
𝑀 ≈ 𝑀′ ∈ 𝑅𝜓 in place of𝑀 ≈ 𝑀′ ∈ 𝑅〈𝜓 〉.

Note that we do not require Ψ-relations to be stable under substitution in general: we
do not ask that𝑀 ≈ 𝑀′ ∈ 𝑅 implies𝑀𝜓 ≈ 𝑀′𝜓 ∈ 𝑅𝜓 . Indeed, we are primarily interested
in Ψ-relations on values, and it may not even be the case that 𝑉𝜓 is a value for 𝑉 val.

With each value type assigned a Ψ-relation of values, we extend the value relation
to terms by coherent extension. As described above, we want to require that the interval
substitution instances of a term in a type evaluate in a coherent way.

54 Cubical type theory

Definition 3.1.8 (Incoherent evaluation). We generalize the evaluation operator ⇓−
from relations (Definition 2.1.8) to Ψ-relations pointwise: 𝑀 ≈ 𝑀′ ∈ (⇓𝑅)〈𝜓 〉 holds when
𝑀 ⇓ 𝑉 and𝑀′ ⇓ 𝑉 ′ with 𝑉 ≈ 𝑉 ′ ∈ 𝑅〈𝜓 〉.

Definition 3.1.9 (Coherent evaluation). Given a Ψ-relation 𝑅, we define its coherent
extension to terms ⤋𝑅 as follows. Let Ψ′ ⊩ 𝜓 ∈ Ψ be given. Then 𝑀 ≈ 𝑀′ ∈ (⤋𝑅)〈𝜓 〉
holds when for every subsequent pair of substitutions, Ψ1 ⊩ 𝜓1 ∈ Ψ′ and Ψ2 ⊩ 𝜓2 ∈ Ψ1,
the following conditions are satisfied.

• 𝑀𝜓1 ⇓ 𝑉 and𝑀′𝜓1 ⇓ 𝑉 ′ for some values 𝑉 and 𝑉 ′.

• 𝑁 ≈ 𝑁 ′ ∈ ⇓𝑅𝜓𝜓1𝜓2 for 𝑁 ∈ {𝑀𝜓1𝜓2,𝑉𝜓2} and 𝑁 ′ ∈ {𝑀′𝜓1𝜓2,𝑉
′𝜓2}.

Proposition 3.1.10. If 𝑅 is a Ψ-PER, then ⤋𝑅 is a Ψ-PER.

We will ultimately use⤋− to define the typing judgments induced by a type system.
The third condition imposes the “coherence”; it requires that the following square of sub-
stitutions and evaluations commutes up to the equality defined by ⇓𝑅.

𝑀𝜓1 𝑉

𝑀𝜓1𝜓2 •
−𝜓2 −𝜓2

The outer quantification over 𝜓1 ensures that ⤋𝑅 is always stable under interval sub-
stitution; if 𝑀 ≈ 𝑀′ ∈ ⤋𝑅, then 𝑀𝜓 ≈ 𝑀′𝜓 ∈ ⤋𝑅𝜓 for any 𝜓 . In order for a value
Ψ-relation 𝑅 to be suitable as the interpretation of a type, it must satisfy an additional
well-formedness condition called value-coherence, which asks that all values related by 𝑅
are in fact coherently related by 𝑅.

Definition 3.1.11. A Ψ-relation 𝑅 on values is value-coherent when 𝑅 ⊆ ⤋𝑅.

As with ordinary relations, the collection of Ψ-relations on a given field is a lattice,
and so we can obtain fixed-points of monotone operators on Ψ-relations. To check that
these fixed-points are PERs, we again use operators Sym+ and Trans+ defined in Defini-
tion 2.1.21, which we extend pointwise to Ψ-relations.

Lemma 3.1.12. Let 𝐹 be a monotone operator on Ψ-relations. If we have 𝐹 (Sym+(𝜇𝐹)) ⊆
Sym+(𝜇𝐹), then 𝜇𝐹 is symmetric. If 𝐹 (Trans+(𝜇𝐹)) ⊆ Trans+(𝜇𝐹), then 𝜇𝐹 is transitive.

Proposition 3.1.13. Wehave⤋Sym+(𝑅) ⊆ Sym+(⤋𝑅) and⤋Trans+(𝑅) ⊆ Trans+(⤋𝑅).

Cubical computational type theory 55

We likewise parameterize type systems by an interval context, separately specifying
the value types available at each Ψ.

Definition 3.1.14. A candidate type system is a four-place relation 𝜏 relating interval
contexts Ψ, values 𝑉 and 𝑉 ′ with free variables contained in Ψ, and value-coherent Ψ-
PERs 𝑅.

Notation 3.1.15. Given a candidate type system 𝜏 , we write 𝜏 ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 as
syntactic sugar for (Ψ,𝑉 ,𝑉 ′, 𝑅) ∈ 𝜏 , and 𝜏 ⊨ Ψ ⊩ 𝑉 ↓ 𝑅 for (Ψ,𝑉 ,𝑉 , 𝑅) ∈ 𝜏 . Given a Ψ-
PER 𝑅, we write 𝜏 [𝑅] for the Ψ-relation 𝑉 ≈ 𝑉 ′ ∈ 𝜏 [𝑅]〈𝜓 〉 :⇐⇒ 𝜏 ⊨ Ψ′ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅𝜓 .

Definition 3.1.16. A candidate type system is a type system when it satisfies the follow-
ing additional axioms.

• PER: For any fixed Ψ-PER 𝑅, 𝜏 [𝑅] is a Ψ-PER.

• Unicity: If 𝜏 ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 and 𝜏 ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅′, then 𝑅 = 𝑅′.

• Value-coherence: For any fixed 𝑅, 𝜏 [𝑅] is value-coherent.

We have analogues of the operators Uni+(−), Sym+(−), and Trans+(−) from Defini-
tion 2.1.25 defined pointwise in the context Ψ. Defining a similar operator for value-
coherence, we can derive a condition analogous to Lemma 2.1.26 for checking that a can-
didate is a type system.

Definition 3.1.17. For any candidate 𝜏 , we define a candidate type system Coh+(𝜏) as
follows: Coh+(𝜏) ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 holds when 𝑉 ≈ 𝑉 ′ ∈ ⤋𝜏 [𝑅] holds.

Proposition 3.1.18. Let 𝐹 be a monotone operator on candidate type systems such that
𝐹 (Sym+(𝜇𝐹)) ⊆ Sym+(𝜇𝐹), 𝐹 (Trans+(𝜇𝐹)) ⊆ Trans+(𝜇𝐹), 𝐹 (Uni+(𝜇𝐹)) ⊆ Uni+(𝜇𝐹), and
𝐹 (Coh+(𝜇𝐹)) ⊆ Coh+(𝜇𝐹). Then 𝜇𝐹 is a type system.

3.1.3 Pretypes
Going forward, we assume a candidate type system 𝜏 and begin defining the judgments of
type theory. We are not quite ready to define types; we still need to cut down to relations
that support the coercion and composition operations. As it will usually take some work
to prove that each type supports those operations, however, it is useful to introduce some
intermediate notation. We therefore introduce a preliminary judgment, the pretype judg-
ment, that does not require Kan operations. We can also define the element judgment at
this stage; we do not need to know that a pretype supports the Kan operations to define
what its elements are.

56 Cubical type theory

As inMLTT, the first step is to define the closed judgments, where “closed” nowmeans
dependent only on an interval context, extending the type system from values to all closed
terms. As suggested above, we replace the use of evaluation in MLTT with coherent
evaluation.

Definition 3.1.19 (Closed pretype judgments).

• Pretypes: Ψ ⊩ 𝐴 = 𝐴′ pretype holds when 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑅] for some Ψ-PER 𝑅.

• Terms: Ψ ⊩ 𝑀 = 𝑀′ ∈ 𝐴 holds when 𝐴 ∈ ⤋𝜏 [𝑅] for some Ψ-PER 𝑅 such that𝑀 ≈ 𝑀′ ∈
⤋𝑅.

As always, Ψ ⊩ 𝐴 pretype and Ψ ⊩ 𝑀 ∈ 𝐴 are shorthand for Ψ ⊩ 𝐴 = 𝐴 pretype and
Ψ ⊩ 𝑀 = 𝑀 ∈ 𝐴 respectively.

Next, we come to open judgments. At this point, we also want to introduce a notion
of constraints, equations 𝜉 = (𝑟 ≡ 𝑠) on interval terms. These will come in handy when
we specify homogeneous composition, which involves terms that are only well-typed
when some such equation is assumed. To express well-typedness under the assumption
of constraints, we allow constraints to appear in contexts: if Γ is a context and 𝜉 is a
constraint well-formed over Γ, then Γ, 𝜉 is also a context. Before we define the open type
and term judgments, we first define the open interval and constraint judgments.

Definition 3.1.20 (Open interval judgments). The judgment Γ � 𝑟 ∈ I is defined to
hold when 𝑟 = 0, 𝑟 = 1, or 𝑟 = 𝑥 for some (𝑥 : I) occurring in Γ. The equality judgment
Γ � 𝑟 = 𝑠 ∈ I is defined to hold when Γ � 𝑟, 𝑠 ∈ I and 𝑟 and 𝑠 are in the equivalence
relation generated by the constraints appearing in Γ.

Definition 3.1.21 (Open constraint judgments). The judgments Γ � 𝜉 = 𝜉′ ∈ F and
Γ � 𝜉 satisfied are inductively defined by the following rules.

Γ � 𝑟 = 𝑟 ′ ∈ I Γ � 𝑠 = 𝑠′ ∈ I
Γ � (𝑟 ≡ 𝑠) = (𝑟 ′ ≡ 𝑠′) ∈ F

Γ � 𝑟 = 𝑠 ∈ I
Γ � (𝑟 ≡ 𝑠) satisfied

Note that we define the interval and constraint judgments independently of the term
hypotheses in the context. In particular, an inconsistent term hypothesis does not cause
interval terms to be equated: we will not have 𝑎 : Void � 0 = 1 ∈ I.

To define the open typing judgments, we again introduce an auxiliary notion of closing
substitution. Like pretypes and terms, these substitutions now take place relative to an
interval context. Aside from that wrinkle, however, the definitions are precisely the same.

Cubical computational type theory 57

Definition 3.1.22 (Closing substitutions). The judgment Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ is generated
by the following rules.

Ψ ⊩ · = · ∈ ·
Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ Ψ ⊩ 𝑟 ∈ I

Ψ ⊩ (𝛾, 𝑟/𝑥) = (𝛾 ′, 𝑟/𝑥) ∈ (Γ, 𝑥 : I)

Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ Ψ ⊩ 𝜉𝛾 satisfied

Ψ ⊩ 𝛾 = 𝛾 ′ ∈ (Γ, 𝜉)
Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ Ψ ⊩ 𝑀 = 𝑀′ ∈ 𝐴𝛾
Ψ ⊩ (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, 𝑎 :𝐴)

Definition 3.1.23 (Open pretype and element judgments).

• Open pretypes: Γ � 𝐴 = 𝐴′ pretype is defined to hold when Ψ ⊩ 𝐴𝛾 = 𝐴′𝛾 ′ pretype
holds for all Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.

• Open terms: Γ � 𝑀 = 𝑀′ ∈ 𝐴 is defined to hold when Ψ ⊩ 𝑀𝛾 = 𝑀𝛾 ′ ∈ 𝐴𝛾 holds for
all Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.

Definition 3.1.24 (Contexts). The judgment Γ = Γ′ ctx is generated by the following
rules.

· = · ctx
Γ = Γ′ ctx

(Γ, 𝑥 : I) = (Γ′, 𝑥 : I) ctx
Γ = Γ′ ctx Γ � 𝜉 = 𝜉′ ∈ F

(Γ, 𝜉) = (Γ′, 𝜉′) ctx

Γ = Γ′ ctx Γ � 𝐴 = 𝐴′ pretype

(Γ, 𝑎 :𝐴) = (Γ′, 𝑎 :𝐴′) ctx

We derive the unary versions of these judgments from their binary versions in the
usual way. Although the notation Ψ′ ⊩ 𝜓 ∈ Ψ is now a priori ambiguous—it could refer
to an interval substitution or closing substitution—the two conflated judgments coincide.
Moreover, because the closed judgments are stable under interval substitution, we have
Ψ � 𝐴 pretype if and only if Ψ ⊩ 𝐴 pretype and so on.

It will be useful in the future to extend the notion of substitution-indexed relations
from substitutions into interval contexts to closing substitutions into arbitrary contexts.

Definition 3.1.25 (Open relations). Given a Ψ-PER 𝑅 on lists of terms, an 𝑅-relation 𝑆
is a family of relations 𝑆 〈𝛾〉 indexed by lists 𝛾 ∈ 𝑅〈𝜓 〉 with the property that 𝑆 〈𝛾〉 = 𝑆 〈𝛾 ′〉
whenever 𝛾 ≈ 𝛾 ′ ∈ 𝑅〈𝜓 〉. We extend ⤋− to 𝑅-relations in the obvious way, replacing the
initial interval substitution Ψ′ ⊩ 𝜓 ∈ Ψ in Definition 3.1.9 with an instantiation 𝛾 ∈ 𝑅〈𝜓 〉.

In a type system 𝜏 with 𝜏 ⊨ Γ ctx, a Γ-relation is a JΓK𝜏 -relation, where JΓK𝜏 is the
· -PER defined by 𝛾 ≈ 𝛾 ′ ∈ JΓK𝜏 〈Ψ〉 if and only if Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ. Given a Γ-relation
𝑅 and Γ′ � 𝛾 ∈ Γ, we write 𝑅𝛾 for the Γ′-relation defined by 𝑅𝛾 〈𝛾 ′〉 B 𝑅〈𝛾𝛾 ′〉. Given a

58 Cubical type theory

Γ-relation 𝑅 and terms𝑀,𝑀′, we write Γ � 𝑀 ≈ 𝑀′ ∈ 𝑅 to mean that𝑀𝛾 ≈ 𝑀′𝛾 ′ ∈ 𝑅〈𝛾〉
holds for all Ψ ⊩ 𝛾 ∈ Γ.

Note that while the definitions of Ψ- and 𝑅-relations are dependent only on the theory
of interval substitutions, the definition of Γ-relation is of course relative to a type system.

3.1.4 Kan operations and types

Finally, we define the conditions under which a pretype becomes a type: when it supports
the coercion and homogeneous composition operations.

Definition 3.1.26 (Coercion). We say that aΨ-relation𝑅 supports coercion at𝐴,𝐴′when
it validates the following rules for every Ψ′, 𝑥 : I ⊩ 𝜓 ∈ Ψ and Ψ′ ⊩ 𝑟, 𝑠 ∈ I.

𝑀 ≈ 𝑀′ ∈ ⤋𝑅 [𝜓, 𝑟/𝑥]
coe𝑟�𝑠𝑥 .𝐴𝜓 (𝑀) ≈ coe𝑟�𝑠𝑥 .𝐴′𝜓 (𝑀

′) ∈ ⤋𝑅 [𝜓, 𝑠/𝑥]
𝑀 ∈ ⤋𝑅 [𝜓, 𝑟/𝑥]

coe𝑟�𝑟𝑥 .𝐴𝜓 (𝑀) ≈ 𝑀 ∈ ⤋𝑅 [𝜓, 𝑟/𝑥]

That is, a relation 𝑅 supports coercion at𝐴,𝐴′ when we can coerce along any substitution
instance 𝑅𝜓 that forms a line of types in some direction 𝑥 ; moreover, we require that the
trivial coercion 𝑟 → 𝑟 is equal to the identity function. We say that Ψ ⊩ 𝐴 = 𝐴′ pretype
support coercion when J𝐴K (equivalently, J𝐴′K) supports coercion at 𝐴,𝐴′.

Definition 3.1.27 (Homogeneous composition). We say that a Ψ-relation 𝑅 supports
homogeneous composition at𝐴,𝐴′ when it validates the following rules for every Ψ′ ⊩ 𝜓 ∈
Ψ, interval terms Ψ′ ⊩ 𝑟, 𝑠 ∈ I, and list of constraints Ψ′ ⊩ 𝜉𝑖 ∈ F for 0 ≤ 𝑖 < 𝑛.

𝑀 ≈ 𝑀′ ∈ 𝑅𝜓
(∀𝑖, 𝑗) Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 ′

𝑗 ∈ ⤋𝑅𝜓 (∀𝑖) Ψ′, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝜓

hcom𝑟�𝑠
𝐴𝜓 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ hcom𝑟�𝑠

𝐴′𝜓 (𝑀
′;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ ⤋𝑅𝜓

𝑀 ∈ ⤋𝑅𝜓
(∀𝑖, 𝑗) Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 𝑗 ∈ ⤋𝑅𝜓 (∀𝑖) Ψ′, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝜓

hcom𝑟�𝑟
𝐴𝜓 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ 𝑀 ∈ ⤋𝑅𝜓

Ψ′ ⊩ 𝜉𝑘 satisfied 𝑀 ∈ ⤋𝑅𝜓
(∀𝑖, 𝑗) Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 𝑗 ∈ ⤋𝑅𝜓 (∀𝑖) Ψ′, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝜓

hcom𝑟�𝑠
𝐴𝜓 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ 𝑁𝑘 [𝑠/𝑥] ∈ ⤋𝑅𝜓

Cubical computational type theory 59

We use the notation −⇀· · · to denote lists (here of entries 𝜉𝑖 ↩→ 𝑥 .𝑁𝑖), leaving quantification
over the indexing variable (here 𝑖) implicit for sake of concision. In short, 𝑅 has homo-
geneous composition when we can compose in any instance 𝑅𝜓 ; the result must fit into
the tube

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖 instantiated at 𝑠 , and the trivial composition 𝑟 → 𝑟 is required to

be the identity. In order for a tube to be well-formed, its entries must agree where their
equations overlap; this is effected by the requirement Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 𝑗 ∈ 𝑅𝜓 .

We say that Ψ ⊩ 𝐴 = 𝐴′ pretype support composition when J𝐴K supports composition
at 𝐴,𝐴′.

Remark 3.1.28. As above, we use the word trivial to describe coercions and composites
𝑟 → 𝑟 ; degenerate, one the other hand, refers to paths of the form 𝜆I . 𝑀 .

Definition 3.1.29 (Kan types).

• Closed types: Ψ ⊩ 𝐴 = 𝐴′ type is defined to hold when Ψ ⊩ 𝐴 = 𝐴′ pretype support
coercion and homogeneous composition.

• Open types: Γ � 𝐴 = 𝐴′ type is defined to hold when Ψ ⊩ 𝐴𝛾 = 𝐴′𝛾 ′ type holds for all
Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.

Like the pretype judgment, the closed type judgment is stable under interval substitu-
tion by construction: if Ψ′ ⊩ 𝜓 ∈ Ψ and Ψ ⊩ 𝐴 = 𝐴′ type, then Ψ′ ⊩ 𝐴𝜓 = 𝐴′𝜓 type.

This completes the derivation of the type-theoretic judgments from an operational
semantics and type system. We leave the definition of Γ′ � 𝛾 = 𝛾 ′ ∈ Γ to the reader, this
being simple to extrapolate from Definition 2.1.18 and the definition of closing substitu-
tions above.

3.1.5 Constructing a cubical type theory
We now upgrade our examples of type systems to include cubical elements. To the syn-
tax described in Section 2.1, we add the following terms for path types, V types (to be
introduced below), and the Kan operations.

𝐴, 𝐵,𝑀, 𝑁, 𝐼 F · · ·
| Path(𝑥 .𝐴,𝑀, 𝑁) | 𝜆I𝑥 . 𝑀 | 𝑃 𝑟
| V𝑟 (𝐴, 𝐵, 𝐼) | v𝑟 (𝑀, 𝑁) | vproj𝑟 (𝑀, 𝐼)
| coe𝑟�𝑠𝑥 .𝐴 (𝑀) | hcom𝑟�𝑠

𝐴 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)

We give the operational semantics for formation, introduction, and elimination of
path and V types in Figure 3.1. In addition to these, we must also describe the evaluation

60 Cubical type theory

Paths

Path(𝑥 .𝐴,𝑀, 𝑁) val 𝜆I𝑥 . 𝑀 val

𝑃 ↦−→ 𝑃 ′

𝑃 𝑟 ↦−→ 𝑃 ′ 𝑟 (𝜆I𝑥 . 𝑀) 𝑟 ↦−→ 𝑃 [𝑟/𝑥]

V types

V𝑥 (𝐴0, 𝐴1, 𝐼) val V𝜀 (𝐴0, 𝐴1, 𝐼) ↦−→ 𝐴𝜀 v𝑥 (𝑀0, 𝑀1) val v𝜀 (𝑀0, 𝑀1) ↦−→ 𝑀𝜀

𝑀 ↦−→ 𝑀′

vproj𝑥 (𝑀, 𝐼) ↦−→ vproj𝑥 (𝑀′, 𝐼) vproj𝑥 (v𝑥 (𝑀, 𝑁), 𝐼) ↦−→ 𝑁

vproj0(𝑀, 𝐼) ↦−→ fst(𝐼)𝑀 vproj1(𝑁, 𝐼) ↦−→ 𝑁

Figure 3.1: Additional operational semantics for cubical type theory

Generic

𝐴 ↦−→ 𝐴′

coe𝑟�𝑠𝑥 .𝐴 (𝑀) ↦−→ coe𝑟�𝑠𝑥 .𝐴′ (𝑀)
𝐴 ↦−→ 𝐴′

hcom𝑟�𝑠
𝐴 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ hcom𝑟�𝑠

𝐴′ (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)

Functions

coe𝑟�𝑠𝑥 .(𝑎:𝐴)→𝐵 (𝐹) ↦−→ 𝜆𝑎. coe𝑟�𝑠𝑥 .𝐵 [coe𝑠�𝑥
𝑥.𝐴 (𝑎)/𝑎] (𝐹 (coe𝑠�𝑟𝑥 .𝐴 (𝑎)))

hcom𝑟�𝑠
(𝑎:𝐴)→𝐵 (𝐹 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝐺𝑖) ↦−→ 𝜆𝑎. hcom𝑟�𝑠

𝐵 (𝐹 𝑎;−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .𝐺𝑖 𝑎)

Paths

coe𝑟�𝑠𝑥 .Path(𝑦.𝐴,𝑀0,𝑀1) (𝑃) ↦−→ 𝜆I𝑦. com𝑟�𝑠
𝑥 .𝐴 (𝑃 ;𝑦 ≡ 0 ↩→ 𝑥 .𝑀0, 𝑦 ≡ 1 ↩→ 𝑥 .𝑀1)

hcom𝑟�𝑠
Path(𝑦.𝐴,𝑀0,𝑀1) (𝑃 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑄𝑖)

↦−→
𝜆I𝑦. hcom𝑟�𝑠

𝐴 (𝑃 𝑦;−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .𝑄𝑖 𝑦,𝑦 ≡ 0 ↩→ .𝑀0, 𝑦 ≡ 1 ↩→ .𝑀1)

Figure 3.2: Selected rules for coercion and homogeneous composition

Cubical computational type theory 61

of coe and hcom at each value type. We give two examples—function and path types—
in Figure 3.2. In each case, coercion and composition at the compound type reduce to
coercion and composition at the component types. To coerce a function along the type
line 𝑥 .(𝐴 → 𝐵) from 𝑟 to 𝑠 , for example, we precompose with a reversed coercion coe𝑠�𝑟𝑥 .𝐴
in the domain type and then postcompose with a coercion coe𝑟�𝑠𝑥 .𝐵 in the codomain type,
thus transforming a function of type𝐴[𝑟/𝑥] → 𝐵 [𝑟/𝑥] into one of type𝐴[𝑠/𝑥] → 𝐵 [𝑠/𝑥].

The evaluation of coercion for paths, meanwhile, relies on heterogeneous composition,
a compound operation derived from coercion and homogeneous composition. Heteroge-
neous composition combines the functionality of the two Kan operations, coercing the
base term𝑀 along a type line 𝑥 .𝐴 while maintaining a tube of paths

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖 lying over

said line of types.

Definition 3.1.30. We define the heterogeneous composition operator, com, as follows.

com𝑟�𝑠
𝑥 .𝐴 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) B hcom𝑟�𝑠

𝐴[𝑠/𝑥] (coe
𝑟�𝑠
𝑥 .𝐴 (𝑀);

−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .coe𝑥�𝑠𝑥 .𝐴 (𝑁𝑖))

Rules 3.1.31 (Heterogeneous composition). For the following rules, we assume type
lines Γ, 𝑥 : I � 𝐴 = 𝐴′ type, interval terms Γ � 𝑟 = 𝑟 ′ ∈ I and Γ � 𝑠 = 𝑠′ ∈ I, and
constraints Γ � 𝜉𝑖 = 𝜉′𝑖 ∈ F for some 0 ≤ 𝑖 < 𝑛.

Γ � 𝑀 = 𝑀′ ∈ 𝐴[𝑟/𝑥]
(∀𝑖, 𝑗) Γ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 = 𝑁

′
𝑗 ∈ 𝐴 (∀𝑖) Γ, 𝜉𝑖 � 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ 𝐴[𝑟/𝑥]

Γ � com𝑟�𝑠
𝑥 .𝐴 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = com𝑟 ′�𝑠 ′

𝑥 .𝐴′ (𝑀′;
−−−−−−−−−⇀
𝜉′𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ 𝐴[𝑠/𝑥]

Γ � 𝑀 ∈ 𝐴[𝑟/𝑥]
(∀𝑖, 𝑗) Γ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 = 𝑁 𝑗 ∈ 𝐴 (∀𝑖) Γ, 𝜉𝑖 � 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ 𝐴[𝑟/𝑥]

Γ � com𝑟�𝑟
𝑥 .𝐴 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = 𝑀 ∈ 𝐴[𝑠/𝑥]

Γ � 𝜉𝑘 satisfied Γ � 𝑀 ∈ 𝐴[𝑟/𝑥]
(∀𝑖, 𝑗) Γ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 = 𝑁 𝑗 ∈ 𝐴 (∀𝑖) Γ, 𝜉𝑖 � 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ 𝐴[𝑟/𝑥]

Γ � com𝑟�𝑠
𝑥 .𝐴 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = 𝑁𝑘 [𝑠/𝑥] ∈ 𝐴[𝑠/𝑥]

Proof. Straightforward consequences of the defining rules for coercion and composition
in types (given in Section 3.1.4). □

The definition of coercion at path types demonstrates the necessity of the composition
operator. To ensure that the result of coercing has the necessary endpoints, we need an
operation that maintains them. The definition of homogeneous composition at the path

62 Cubical type theory

type, meanwhile, motivates the general form of hcom, as we must to add new entries to
the tube for the endpoints whenever we compose in a path type.

We have deliberately omitted the most complex pieces of cubical type theory: the
definitions of coercion and composition in the V types and the definition of composition
in the universe. While these are of course crucial to cubical type theory, they will not
play an explicit role in this thesis. We therefore refer to [AFH18, Figure 4.2, Section 4.4.9,
Section 4.4.11] for details.

We now define our first candidate type system. To the constructs of our Martin-Löf
type theory, we add path types, V types, and composite types (which implement composi-
tion in the universe). We encourage the unfamiliar reader to ignore the specification of V
types for now; we will explain them in Section 3.1.6. As we will never need the definition
of composite types, we gloss over these entirely. Note that we do not include identity
types in our cubical type system; as they are in Chapter 2, these will fail to support the
Kan operations. Of course, it has been our intention to replace identity types with path
types from the beginning. (We will, however, return to identity types in Part II.)

Example 3.1.32 (Small type system). We define an operator 𝐹 on candidate type systems
as follows: given 𝜏 , 𝐹 (𝜏) is the union of the following clauses.

• 𝐹 (𝜏) ⊨ Ψ ⊩ (𝑎 :𝐴) → 𝐵 ≈ (𝑎 :𝐴′) → 𝐵′ ↓ 𝑅 whenever

– 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑆] for some Ψ-PER 𝑆 ,
– 𝐵𝜓 [𝑀/𝑎] ≈ 𝐵′𝜓 [𝑀′/𝑎] ∈ ⤋𝜏 [𝑇𝑀] for all𝑀 ≈ 𝑀′ ∈ 𝑅𝜓 , for some 𝑆-PER 𝑇 ,
– 𝑉 ≈ 𝑉 ′ ∈ 𝑅〈𝜓 〉 holds for Ψ′ ⊩ 𝜓 ∈ Ψ exactly when 𝑉 = 𝜆𝑎. 𝑁 and 𝑉 ′ = 𝜆𝑎. 𝑁 ′ for

some 𝑁 , 𝑁 ′ with 𝑁 [𝑀/𝑎] ≈ 𝑁 ′[𝑀′/𝑎] ∈ ⤋𝑇𝑀𝜓 for all𝜓 and𝑀 ≈ 𝑀′ ∈ ⤋𝑆𝜓 ,

• 𝐹 (𝜏) ⊨ Ψ ⊩ Path(𝑥 .𝐴,𝑀0, 𝑀1) ≈ Path(𝑥 .𝐴,𝑀′
0, 𝑀

′
1) ↓ 𝑅 whenever

– 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑆] for some (Ψ, 𝑥 : I)-PER 𝑆 ,
– 𝑀𝜀 ≈ 𝑀′

𝜀 ∈ ⤋𝑆 [𝜀/𝑥] for 𝜀 ∈ {0, 1},
– 𝑉 ≈ 𝑉 ′ ∈ 𝑅〈𝜓 〉 holds for Ψ′ ⊩ 𝜓 ∈ Ψ exactly when 𝑉 = 𝜆I𝑥 . 𝑀 and 𝑉 ′ = 𝜆I𝑥 . 𝑀′ for

some𝑀 ,𝑀′ with𝑀 ≈ 𝑀′ ∈ ⤋𝑆𝜓 and𝑀 [𝜀/𝑥] ≈ 𝑀𝜀𝜓 ∈ ⤋𝑆𝜓 [𝜀/𝑥] for 𝜀 ∈ {0, 1}.

• 𝐹 (𝜏) ⊨ Ψ ⊩ V𝑟 (𝐴, 𝐵, 𝐼) ≈ V𝑟 (𝐴′, 𝐵′, 𝐼 ′) ↓ 𝑅 whenever

– Ψ ⊩ 𝑟 ∈ I,
– 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑆] for some (Ψ, 𝑟 ≡ 0)-PER 𝑆 ,
– 𝐵 ≈ 𝐵′ ∈ ⤋𝜏 [𝑇] for some Ψ-PER 𝑇 ,
– 𝐼 ≈ 𝐼 ′ ∈ (𝑆 ' 𝑇), where 𝑆 ' 𝑇 is the (Ψ, 𝑟 ≡ 0)-PER that relates equal isomorphisms

(Definition 1.2.1) between the elements of 𝑆 and 𝑇 .

Cubical computational type theory 63

– 𝑉 ≈ 𝑉 ′ ∈ 𝑅〈𝜓 〉 holds for Ψ′ ⊩ 𝜓 ∈ Ψ exactly when one of the following holds:

∗ 𝑟𝜓 = 0, and 𝑉 ≈ 𝑉 ′ ∈ 𝑆𝜓 ,
∗ 𝑟𝜓 = 1, and 𝑉 ≈ 𝑉 ′ ∈ 𝑇𝜓 ,
∗ 𝑟𝜓 = 𝑥 , and 𝑉 = v𝑥 (𝑀, 𝑃) and 𝑉 ′ = v𝑥 (𝑀′, 𝑃 ′) with 𝑀 ≈ 𝑀′ ∈ ⤋𝑆𝜓 , 𝑃 ≈ 𝑃 ′ ∈
⤋𝑇𝜓 , and (fst(𝐼𝜓))𝑀 ≈ 𝑃 ∈ ⤋𝑇𝜓 , where in the final equation we regard 𝑇𝜓 as a
(Ψ′, 𝑥 ≡ 0)-PER by weakening.

• Clauses for dependent products and composites of types. The first two are pointwise ex-
tensions of the clauses in Example 2.1.27, as with function types above. For composites
of types, see [Ang19, Figure 4.3, Section 4.4.11].

We define the candidate type system 𝜏0 to be the least fixed point of 𝐹 .

In order for 𝐹 to be a genuine operator on candidate type systems, it must be the case
that the Ψ-relations it assigns to each value type are actually value-coherent Ψ-PERs.
This is most easily seen to be true as a corollary of the introduction rules for each type’s
relation, so we defer the proof for the moment. Similarly, the condition on Coh+(−) re-
quired by Proposition 3.1.18, which we need to see that the fixed-point is a type system,
will be a consequence of the formation rules for each type in 𝐹0(𝜏). The unicity and PER
conditions, on the other hand, are as straightforward as before.

Example 3.1.33 (Type system with one universe). We can define a type system with a uni-
verse by following the recipe of Example 2.1.29. For a candidate 𝜏 , we define a candidate
𝑈 (𝜏) by declaring that that 𝑈 (𝜏) ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 holds when 𝑉 = 𝑉 ′ = U and 𝑅 is
the Ψ-relation𝑊 ≈ 𝑊 ′ ∈ 𝑅〈𝜓 〉 ⇐⇒ ∃𝑆. 𝜏 ⊨ Ψ′ ⊩ 𝑊 ≈ 𝑊 ′ ↓ 𝑆 for Ψ′ ⊩ 𝜓 ∈ Ψ. Our
candidate type system with a universe, 𝜏1, is then the fixed point of 𝜏 ↦→ 𝐹 (𝜏) ∪𝑈 (𝜏0).

3.1.6 Rules for cubical type theories
Taking 𝜏0 and 𝜏1 as our prototypical (candidate) type systems, we now build up an edifice
of rules associated to each type. This is a more difficult task than for pure Martin-Löf type
theory because of the demands of coherent evaluation: to show that some term belongs to
a type, we have to analyze its behavior under iterated applications of interval substitution
and evaluation. Fortunately, we can at least factor the results through a collection of more
intuitive lemmas, so that we need not interact with the definition of ⤋− directly.

First, the following lemma can be used to show that a pair of values in some 𝑅 belongs
also to ⤋𝑅: it suffices to show that every substitution instance belongs either to 𝑅 or to
⤋𝑅. Often, while the terms themselves are values, but some substitutions cause them to
become non-values already known to belong to ⤋𝑅.

64 Cubical type theory

Lemma 3.1.34 (Coherent value introduction). Let 𝑅 be a value Ψ-relation, and let 𝑀
and 𝑀′ be terms in context Ψ. If for all Ψ′ ⊩ 𝜓 ∈ Ψ, either 𝑀𝜓 ≈ 𝑀′𝜓 ∈ 𝑅𝜓 or 𝑀𝜓 ≈
𝑀′𝜓 ∈ ⤋𝑅𝜓 , then𝑀 ≈ 𝑀′ ∈ ⤋𝑅.

Proof. Let Ψ1 ⊩ 𝜓1 ∈ Ψ and Ψ2 ⊩ 𝜓2 ∈ Ψ1 be given. We are in one of two cases.

• 𝑀𝜓1 ≈ 𝑀′𝜓1 ∈ ⤋𝑅𝜓1.

Instantiating this relation with the substitutions Ψ1 ⊩ idΨ1 ∈ Ψ1 and Ψ2 ⊩ 𝜓2 ∈ Ψ1, we
get that 𝑀𝜓1 ⇓ 𝑉 and 𝑀′𝜓1 ⇓ 𝑉 ′ with 𝑁 ≈ 𝑁 ′ ∈ ⇓𝑅𝜓𝜓1𝜓2 for 𝑁 ∈ {𝑀𝜓1𝜓2,𝑉𝜓2} and
𝑁 ′ ∈ {𝑀′𝜓1𝜓2,𝑉

′𝜓2}, as needed.

• 𝑀𝜓1 ≈ 𝑀′𝜓1 ∈ 𝑅𝜓1.

Then 𝑀𝜓1 and 𝑀′𝜓1 are values, so the requirement reduces to showing that 𝑀𝜓1𝜓2 ≈
𝑀′𝜓1𝜓2 ∈ ⇓𝑅𝜓𝜓1𝜓2. This is the case both if 𝑀𝜓1𝜓2 ≈ 𝑀′𝜓1𝜓2 ∈ 𝑅𝜓1𝜓2 and if 𝑀𝜓1𝜓2 ≈
𝑀′𝜓1𝜓2 ∈ ⤋𝑅𝜓1𝜓2. □

Second, we have an analogue of head expansion. Given a term 𝑀′ in 𝑅, it is not
necessarily the case that any𝑀 such that𝑀 ↦−→ 𝑀′ is equal to𝑀′ in 𝑅. If, however, every
instance𝑀𝜓 steps to a term equal to𝑀′𝜓 , then we can deduce an equality.

Lemma 3.1.35 (Coherent head expansion). Let 𝑅 be a value Ψ-PER, and let 𝑀,𝑀′ be
terms in context Ψ. If for every Ψ′ ⊩ 𝜓 ∈ Ψ, we have 𝑀𝜓 ↦−→∗ 𝑀𝜓 for some 𝑀𝜓 with
𝑀𝜓 ≈ 𝑀′𝜓 ∈ ⤋𝑅𝜓 , then𝑀 ≈ 𝑀′ ∈ ⤋𝑅.

Proof. Let Ψ1 ⊩ 𝜓1 ∈ Ψ and Ψ2 ⊩ 𝜓2 ∈ Ψ1 be given. First, we have some 𝑀1 with
𝑀𝜓1 ↦−→∗ 𝑀1 and𝑀𝜓1 ≈ 𝑀′𝜓 ∈ ⤋𝑅𝜓1. By instantiating the latter fact at the substitutions
Ψ1 ⊩ idΨ1 ∈ Ψ1 and Ψ2 ⊩ 𝜓2 ∈ Ψ1, we have some 𝑉 and 𝑉 ′ such that 𝑀𝜓1 ↦−→∗ 𝑀1 ⇓ 𝑉 ,
𝑀𝜓2 ⇓ 𝑉 ′, and 𝑁 ≈ 𝑁 ′ ∈ ⇓𝑅𝜓𝜓1𝜓2 for 𝑁 ∈ {𝑀1𝜓2,𝑉𝜓2} and 𝑁 ′ ∈ {𝑀′𝜓1𝜓2,𝑉

′𝜓2}.
Second, we have some 𝑀2 with 𝑀𝜓1𝜓2 ↦−→∗ 𝑀2 and 𝑀2 ≈ 𝑀′𝜓1𝜓2 ∈ ⤋𝑅𝜓1𝜓2. This

implies in particular that 𝑀𝜓1𝜓2 ≈ 𝑀′𝜓1𝜓2 ∈ ⇓𝑅𝜓1𝜓2. Finally, by the assumption that 𝑅
is a PER, we can deduce the final necessary relation, 𝑀𝜓1𝜓2 ≈ 𝑉 ′𝜓2 ∈ ⇓𝑅𝜓1𝜓2, from the
other three. □

Once we can establish that Ψ-PER 𝑅 is value-coherent—something we usually use the
above lemmas to prove—we can deduce that terms in ⤋𝑅 are related to their values.

Lemma 3.1.36 (Evaluation). Let 𝑅 be a value-coherent value Ψ-PER and let 𝑀 ∈ ⤋𝑅.
Then𝑀 ⇓ 𝑉 with𝑀 ≈ 𝑉 ∈ ⤋𝑅.

Proof. Instantiating𝑀 ∈ ⤋𝑅 with identity substitutions, we know that𝑀 ⇓ 𝑉 . Moreover,
for any Ψ′ ⊩ 𝜓 ∈ Ψ, instantiating 𝑀 ∈ ⤋𝑅 with idΨ and 𝜓 tells us in particular that

Cubical computational type theory 65

𝑀𝜓 ≈ 𝑉 ∈ ⇓𝑅𝜓 . Expanding ⇓𝑅𝜓 , we have that 𝑀𝜓 ⇓ 𝑉𝜓 for some 𝑉𝜓 with 𝑉𝜓 ≈ 𝑉 ∈ 𝑅𝜓 .
By value-coherence, we then have𝑉𝜓 ≈ 𝑉 ∈ ⤋𝑅𝜓 . It follows by coherent head expansion
that𝑀 ≈ 𝑉 ∈ ⤋𝑅. □

Finally, we have a lemma allowing us to analyze the behavior of “eliminator-like”
terms—that evaluate some argument and then do something with its value—in terms of
their behavior of values.

Definition 3.1.37 (Eager terms). We say that a term 𝑎.𝑁 depending on one term vari-
able and interval variables in Ψ is eager when for every Ψ′ ⊩ 𝜓 ∈ Ψ and term𝑀 in Ψ′, we
have𝑁𝜓 [𝑀/𝑎] ⇓𝑊 if and only if there exists some𝑉 such that𝑀 ⇓ 𝑉 and𝑁𝜓 [𝑉 /𝑎] ⇓𝑊 .

Lemma 3.1.38 (Elimination). Fix an ambient candidate type system satisfying the unic-
ity and PER conditions. Let 𝑎.𝑁 , 𝑎.𝑁 ′ be eager terms. Suppose we have Ψ ⊩ 𝐴 pretype
and a (Ψ, 𝑎 :𝐴)-PER 𝑆 . Given any sub-relation 𝑅 ⊆ J𝐴K with the property that 𝑁𝜓 [𝑉 /𝑎] ≈
𝑁 ′𝜓 [𝑉 ′/𝑎] ∈ ⤋𝑆 〈𝜓,𝑉 /𝑎〉 for all Ψ′ ⊩ 𝜓 ∈ Ψ and 𝑉 ≈ 𝑉 ′ ∈ 𝑅𝜓 , we have 𝑁𝜓 [𝑀/𝑎] ≈
𝑁 ′[𝑀′/𝑎] ∈ ⤋𝑆 〈idΨ, 𝑀/𝑎〉 for all𝑀 ≈ 𝑀′ ∈ ⤋𝑅.

Proof. Suppose 𝑀 ≈ 𝑀′ ∈ ⤋𝑅, and let Ψ1 ⊩ 𝜓1 ∈ Ψ and Ψ2 ⊩ 𝜓2 ∈ Ψ1 be given. Then we
have 𝑀𝜓1 ⇓ 𝑉 , 𝑀′𝜓1 ⇓ 𝑉 ′, 𝑀𝜓1𝜓2 ⇓ 𝑉12, 𝑀′𝜓1𝜓2 ⇓ 𝑉 ′

12, 𝑉𝜓2 ⇓ 𝑉2, and 𝑉 ′𝜓2 ⇓ 𝑉 ′
2 , for some

values such that 𝑉12, 𝑉2 are pairwise related to 𝑉 ′
12, 𝑉

′
2 by 𝑅𝜓1𝜓2.

By assumption, we know that 𝑁𝜓1 [𝑉 /𝑎] ≈ 𝑁 ′𝜓1 [𝑉 ′/𝑎] ∈ ⤋𝑆 〈𝜓1,𝑉 /𝑎〉. Note that
as J𝐴K is value-coherent, we have Ψ1 ⊩ 𝑀𝜓1 = 𝑉 ∈ 𝐴𝜓1 by Lemma 3.1.36, thus that
⤋𝑆 〈𝜓1,𝑉 /𝑎〉 = ⤋𝑆 〈𝜓1, 𝑀𝜓1/𝑎〉. By instantiating with idΨ1 and 𝜓2, we can conclude
that 𝑁𝜓1 [𝑉 /𝑎] ⇓ 𝑊 and 𝑁 ′𝜓1 [𝑉 ′/𝑎] ⇓ 𝑊 ′ with 𝑃 ≈ 𝑃 ′ ∈ ⇓𝑆 〈𝜓1𝜓2,𝑉𝜓1𝜓2/𝑎〉 for 𝑃 ∈
{𝑁𝜓1𝜓2 [𝑉𝜓2/𝑎],𝑊𝜓2} and 𝑃 ′ ∈ {𝑁 ′𝜓1𝜓2 [𝑉 ′𝜓2/𝑎],𝑊 ′𝜓2}.

Also by assumption, we know that𝑁𝜓1𝜓2 [𝑋/𝑎] ≈ 𝑁 ′𝜓1𝜓2 [𝑋 ′/𝑎] ∈ ⤋𝑆 〈𝜓1𝜓2, 𝑋/𝑎〉 for
𝑋 ∈ {𝑉12,𝑉2} and 𝑋 ′ ∈ {𝑉 ′

12,𝑉
′
2 }; again, we have ⤋𝑆 〈𝜓1𝜓2, 𝑋/𝑎〉 = ⤋𝑆 〈𝜓1𝜓2, 𝑀𝜓1𝜓2/𝑎〉

for such 𝑋 . Using the inclusion of ⤋ in ⇓, we have in particular that 𝑁𝜓1𝜓2 [𝑋/𝑎] ≈
𝑁 ′𝜓1𝜓2 [𝑋 ′/𝑎] ∈ ⇓𝑆 〈𝜓1𝜓2, 𝑀𝜓1𝜓2/𝑎〉 for such𝑋,𝑋 ′. Because 𝑎.𝑁 , 𝑎.𝑁 ′ are eager terms, we
know that𝑁𝜓1𝜓2 [𝑉12/𝑎] has the same value as𝑁𝜓1𝜓2 [𝑀𝜓1𝜓2/𝑎] and𝑁𝜓1𝜓2 [𝑉2/𝑎] has the
same value as 𝑁𝜓1𝜓2 [𝑉𝜓2/𝑎]; likewise for their primed equivalents. Thus 𝑁𝜓1𝜓2 [𝑄/𝑎] ≈
𝑁 ′𝜓1𝜓2 [𝑄′/𝑎] ∈ ⇓𝑆 〈𝜓1𝜓2, 𝑀𝜓1𝜓2/𝑎〉 for 𝑄 ∈ {𝑀𝜓1𝜓2,𝑉𝜓2} and 𝑄′ ∈ {𝑀′𝜓1𝜓2,𝑉

′𝜓2}.
Using that 𝑆 is a PER, we may combine the above to conclude that we have 𝑃 ≈ 𝑃 ′ ∈

⇓𝑆 〈𝜓1𝜓2,𝑉𝜓1𝜓2/𝑎〉 for 𝑃 ∈ {𝑁𝜓1𝜓2 [𝑀𝜓1𝜓2/𝑎],𝑊𝜓2} and 𝑃 ′ ∈ {𝑁𝜓1𝜓2 [𝑀′𝜓1𝜓2/𝑎],𝑊 ′𝜓2},
as required. □

3.1.6.1 Path types

The first type we consider is the path type, which provides a gentle introduction to reason-
ing with Ψ-relations. None of the operational semantics rules for path types depends on

66 Cubical type theory

the status of an interval term, with the effect that the proofs are more or less the same as
they would be in ordinary Martin-Löf type theory. By the same token, the rules for the ex-
isting types of Martin-Löf type theory are easy to reprove in the cubical setting. Of course,
we must now also check that each of these types supports coercion and composition.

Rule 3.1.39 (Path pretype formation).

Ψ, 𝑥 : I ⊩ 𝐴 = 𝐴′ type Ψ ⊩ 𝑀0 = 𝑀
′
0 ∈ 𝐴[0/𝑥] Ψ ⊩ 𝑀1 = 𝑀

′
1 ∈ 𝐴[1/𝑥]

Ψ ⊩ Path(𝑥 .𝐴,𝑀0, 𝑀1) = Path(𝑥 .𝐴′, 𝑀′
0, 𝑀

′
1) pretype

Proof. We aim to apply coherent value introduction, Lemma 3.1.34. For every Ψ′ ⊩ 𝜓 ∈ Ψ,
we see that Path(𝑥 .𝐴,𝑀0, 𝑀1)𝜓 and Path(𝑥 .𝐴′, 𝑀′

0, 𝑀
′
1)𝜓 are values. Moreover, we have

𝜏𝑖 ⊨ Ψ′ ⊩ Path(𝑥 .𝐴,𝑀0, 𝑀1)𝜓 ≈ Path(𝑥 .𝐴′, 𝑀′
0, 𝑀

′
1) ↓ 𝑅𝜓 where the Ψ-relation 𝑅 is defined

like so.

𝑉 ≈ 𝑉 ′ ∈ 𝑅〈𝜓 〉 ⇐⇒

𝑉 = 𝜆I𝑥 . 𝑀 and 𝑉 ′ = 𝜆I𝑥 . 𝑀′ for some𝑀 ,𝑀′

with 𝜏 ⊨ Ψ′, 𝑥 : I ⊩ 𝑀 = 𝑀′ ∈ 𝐴𝜓 and
𝜏 ⊨ Ψ′ ⊩ 𝑀 [𝜀/𝑥] = 𝑀𝜀𝜓 ∈ 𝐴𝜓 [𝜀/𝑥] for each 𝜀 ∈ {0, 1}

This relies on the stability of the judgments under substitution: for all Ψ′ ⊩ 𝜓 ∈ Ψ, we
have Ψ′, 𝑥 : I ⊩ 𝐴𝜓 = 𝐴′𝜓 pretype, Ψ′ ⊩ 𝑀0𝜓 = 𝑀′

0𝜓 ∈ 𝐴𝜓 [0/𝑥], and Ψ′ ⊩ 𝑀1𝜓 = 𝑀′
1𝜓 ∈

𝐴𝜓 [1/𝑥].
In other words, we have Path(𝑥 .𝐴,𝑀0, 𝑀1)𝜓 ≈ Path(𝑥 .𝐴′, 𝑀′

0, 𝑀
′
1)𝜓 ∈ 𝜏𝑖 [𝑅]𝜓 for every

Ψ′ ⊩ 𝜓 ∈ Ψ. It follows by Lemma 3.1.34 that Path(𝑥 .𝐴,𝑀0, 𝑀1) ≈ Path(𝑥 .𝐴′, 𝑀′
0, 𝑀

′
1) ∈

⤋𝜏𝑖 [𝑅], which is to say that Ψ ⊩ Path(𝑥 .𝐴,𝑀0, 𝑀1) = Path(𝑥 .𝐴′, 𝑀′
0, 𝑀

′
1) pretype. □

The above provides one case of type value-coherence, necessary to show 𝜏𝑖 is a type
system: it implies that whenever 𝜏𝑖 ⊨ Ψ ⊩ Path(𝑥 .𝐴,𝑀0, 𝑀1)𝜓 ≈ Path(𝑥 .𝐴′, 𝑀′

0, 𝑀
′
1)𝜓 ↓ 𝑅,

we actually have Ψ ⊩ Path(𝑥 .𝐴,𝑀0, 𝑀1)𝜓 = Path(𝑥 .𝐴′, 𝑀′
0, 𝑀

′
1)𝜓 pretype.

The introduction rule follows by a similar argument.

Rule 3.1.40 (Path introduction).

Ψ, 𝑥 : I ⊩ 𝐴 type Ψ, 𝑥 : I ⊩ 𝑀 ∈ 𝐴
Ψ ⊩ 𝜆I𝑥 . 𝑀 = 𝜆I𝑥 . 𝑀′ ∈ Path(𝑥 .𝐴,𝑀 [0/𝑥], 𝑀 [1/𝑥])

Proof. Once again, we go by Lemma 3.1.34. For every Ψ′ ⊩ 𝜓 ∈ Ψ, we have (𝜆I𝑥 . 𝑀)𝜓 ≈
(𝜆I𝑥 . 𝑀′)𝜓 ∈ 𝑅𝜓 , where 𝑅 is as defined in the proof of Rule 3.1.39, using the stability of
our hypotheses under substitution. It therefore follows that 𝜆I𝑥 . 𝑀 ≈ 𝜆𝑥. 𝑀′ ∈ ⤋𝑅. □

Cubical computational type theory 67

The introduction rule shows that the relation named by the path type is itself value-
coherent. Formally, this result is a prerequisite to defining the candidate type system, but
there is no real circularity here, only a perversion of the conceptual order for presenta-
tion’s sake.

For elimination, it is convenient to prove the reduction rule before the binary elim-
ination rule itself. At this point we switch from blindly applying value introduction to
blindly applying coherent head expansion (Lemma 3.1.35).

Rule 3.1.41 (Path reduction).

Ψ, 𝑥 : I ⊩ 𝐴 type Ψ, 𝑥 : I ⊩ 𝑀 ∈ 𝐴 Ψ ⊩ 𝑟 ∈ I
Ψ ⊩ (𝜆I𝑥 . 𝑀) 𝑟 = 𝑀 [𝑟/𝑥] ∈ 𝐴[𝑟/𝑥]

Proof. By substitution, we know that Ψ ⊩ 𝑀 [𝑟/𝑥] ∈ 𝐴[𝑟/𝑥]. For all Ψ′ ⊩ 𝜓 ∈ Ψ, we
have ((𝜆I𝑥 . 𝑀) 𝑟)𝜓 ↦−→ 𝑀 [𝑟/𝑥]𝜓 , so Ψ ⊩ (𝜆I𝑥 . 𝑀) 𝑟 = 𝑀 [𝑟/𝑥] ∈ 𝐴[𝑟/𝑥] by coherent
expansion. □

As path application evaluates its principal argument, we use the elimination lemma
(Lemma 3.1.38) to prove its well-typedness.

Rule 3.1.42 (Path elimination).

Ψ, 𝑥 : I ⊩ 𝐴 type (∀𝜀) Ψ ⊩ 𝑀𝜀 ∈ 𝐴[𝜀/𝑥]
Ψ ⊩ 𝑃 = 𝑃 ′ ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1) Ψ ⊩ 𝑟 ∈ I

Ψ ⊩ 𝑃 𝑟 = 𝑃 ′ 𝑟 ∈ 𝐴[𝑟/𝑥]

Proof. By applying Lemma 3.1.38 with the eager terms (−) 𝑟 and (−) 𝑟 , it suffices to prove
that for every Ψ′ ⊩ 𝜓 ∈ Ψ and Ψ′, 𝑥 : I ⊩ 𝑀 = 𝑀′ ∈ 𝐴𝜓 , we have Ψ′ ⊩ (𝜆I𝑥 . 𝑀) (𝑟𝜓) =
(𝜆I𝑥 . 𝑀′) (𝑟𝜓) ∈ 𝐴[𝑟/𝑥]𝜓 . By substitution, we have Ψ′ ⊩ 𝑀 [𝑟𝜓/𝑥] = 𝑀′[𝑟𝜓/𝑥] ∈
𝐴[𝑟/𝑥]𝜓 , fromwhich the necessary equation follows by applying path reduction on either
side. □

In addition to the usual suite of rules, we also want to know that the endpoints of
a path element are equal to those prescribed by its type. For this we use the evaluation
lemma (Lemma 3.1.36) to reduce to the case where the path is a value. Here we need that
the relation named by the path type is value-coherent, which we established with the
introduction rule.

Rule 3.1.43 (Path boundary).

Ψ, 𝑥 : I ⊩ 𝐴 type (∀𝜀) Ψ ⊩ 𝑀𝜀 ∈ 𝐴[𝜀/𝑥]
Ψ ⊩ 𝑃 ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1) 𝜀 ∈ {0, 1}

Ψ ⊩ 𝑃 𝜀 = 𝑀𝜀 ∈ 𝐴[𝜀/𝑥]

68 Cubical type theory

Proof. By Lemma 3.1.36, we have that 𝑃 ⇓ 𝑉 with Ψ ⊩ 𝑃 = 𝑉 ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1). By the
elimination rule already proven, we know Ψ ⊩ 𝑃 𝜀 = 𝑉 𝜀 ∈ 𝐴[𝜀/𝑥]. Moreover, 𝑉 is of the
form 𝜆I𝑥 . 𝑀 with Ψ, 𝑥 : I ⊩ 𝑀 ∈ 𝐴 and Ψ ⊩ 𝑀 [𝜀/𝑥] = 𝑀𝜀 ∈ 𝐴[𝜀/𝑥]. By path reduction, we
then have Ψ ⊩ 𝑉 𝜀 = 𝑀 [𝜀/𝑥] ∈ 𝐴[𝜀/𝑥]. We obtain the result by concatenating 𝑃 𝜀 = 𝑉 𝜀,
𝑉 𝜀 = 𝑀 [𝜀/𝑥], and𝑀 [𝜀/𝑥] = 𝑀𝜀 . □

Finally, the uniqueness rule follows in much the same way.

Rule 3.1.44 (Path uniqueness).

Ψ, 𝑥 : I ⊩ 𝐴 type (∀𝜀) Ψ ⊩ 𝑀𝜀 ∈ 𝐴[𝜀/𝑥] Ψ ⊩ 𝑃 ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1)
Ψ ⊩ 𝑃 = 𝜆I𝑥 . 𝑃 𝑥 ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1)

Proof. By Lemma 3.1.36, we have that 𝑃 ⇓ 𝜆I𝑥 . 𝑀 with with Ψ, 𝑥 : I ⊩ 𝑀 ∈ 𝐴 and Ψ ⊩
𝑀 [𝜀/𝑥] = 𝑀𝜀 ∈ 𝐴[𝜀/𝑥] for 𝜀 ∈ {0, 1}; by weakening and path elimination, we know
Ψ, 𝑥 : I ⊩ 𝑃 𝑥 = (𝜆I𝑥 . 𝑀) 𝑥 ∈ 𝐴. Path reduction then gives 𝑥 : I ⊩ (𝜆I𝑥 . 𝑀) 𝑥 = 𝑀 ∈ 𝐴, so
by transitivity 𝑥 : I ⊩ 𝑃 𝑥 = 𝑀 ∈ 𝐴. Applying path introduction, we get Ψ ⊩ 𝜆I𝑥 . 𝑃 𝑥 =
𝜆I𝑥 . 𝑀 ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1), which combined with Ψ ⊩ 𝑃 = 𝜆I𝑥 . 𝑀 ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1)
gives the desired equation. □

To prove that the function type supports the Kan operations is equally straightfor-
ward. Like the reduction rules for function application, the reduction rules for coe and
hcom in the function type (Figure 3.2) are stable under interval substitution. Therefore,
it is only necessary to check that the reduced terms are well-typed and satisfy the nec-
essary equations (e.g., that coercion and composition 𝑟 → 𝑟 are identity functions); the
results for the unreduced terms then follow by coherent head expansion. We leave these
verifications as an exercise for the reader.

3.1.6.2 V types

The univalence axiom is realized in cubical type theory by V types, which create lines of
types from isomorphisms. Although we will not have much need to work with V types
directly—we mostly use the univalence theorem they imply—they do provide a more thor-
ough exercise of the lemmas defined above: unlike function types, the operational seman-
tics rules of V types are not stable under interval substitution.

Given Ψ ⊩ 𝐴, 𝐵 type and an isomorphism Ψ ⊩ 𝐼 ∈ 𝐴 ' 𝐵 between them, the V type
Ψ, 𝑥 : I ⊩ V𝑥 (𝐴, 𝐵, 𝐼) type is a path that connects the types 𝐴 and 𝐵: we will have Ψ ⊩
V0(𝐴, 𝐵, 𝐼) = 𝐴 type and Ψ ⊩ V1(𝐴, 𝐵, 𝐼) = 𝐵 type, as the reduction rules in Figure 3.1
suggest. While we will not go through this in any detail here, coercion along a V type
applies the isomorphism: 𝜆𝑎. coe0�1

𝑥 .V𝑥 (𝐴,𝐵,𝐼) (𝑎) is equal, up to a path, to the underlying

Cubical computational type theory 69

function fst(𝐼) of the isomorphism. Thus V types provide an inverse to the function that
converts paths of types to isomorphisms using coe.

The precise formulation of V is slightly more subtle: rather than merely creating a
path from an isomorphism, V actually composes an isomorphism onto an existing path
to produce a new path. That is, given Ψ ⊩ 𝐴 type, a path Ψ, 𝑥 : I ⊩ 𝐵 type, and an
isomorphism Ψ ⊩ 𝐼 ∈ 𝐴 ' 𝐵 [0/𝑥] between𝐴 and the zero endpoint of 𝐵, the type Ψ, 𝑥 :I ⊩
V𝑥 (𝐴, 𝐵, 𝐼) type is a path between 𝐴 and the one endpoint of 𝐵. The V type therefore
connects the two ends of a “V” shape formed by 𝐼 and 𝐵.

𝐴

𝐵 [0/𝑥] 𝐵 [1/𝑥]
𝑥 →

𝐼

' V𝑥 (𝐴, 𝐵, 𝐼)

𝐵

When 𝐵 happens to be a degenerate path, we recover the picture of a path directly con-
structed from an isomorphism.

Put in terms of an arbitrary interval term 𝑟 , as opposed to a variable 𝑥 , we arrive at
the following formation and boundary rules, which require the arguments𝐴 and 𝐼 to exist
only under the constraint 𝑟 ≡ 0.

Rules 3.1.45 (V type formation).

Ψ ⊩ 𝑟 ∈ I
Ψ, 𝑟 ≡ 0 � 𝐴 = 𝐴′ type Ψ ⊩ 𝐵 = 𝐵′ type Ψ, 𝑟 ≡ 0 � 𝐼 = 𝐼 ′ ∈ 𝐴 ' 𝐵

Ψ ⊩ V𝑟 (𝐴, 𝐵, 𝐼) = V𝑟 (𝐴′, 𝐵′, 𝐼 ′) pretype

Ψ ⊩ 𝐴 type

Ψ ⊩ V0(𝐴, 𝐵, 𝐼) = 𝐴 pretype

Ψ ⊩ 𝐵 type

Ψ ⊩ V1(𝐴, 𝐵, 𝐼) = 𝐵 pretype

Proof. The reduction rules follow immediately from coherent head expansion, as we have
V0(𝐴, 𝐵, 𝐼)𝜓 ↦−→ 𝐴𝜓 and V1(𝐴, 𝐵, 𝐼)𝜓 ↦−→ 𝐵𝜓 for all interval substitutions 𝜓 . For the
formation rule, we go by the coherent value lemma applied to 𝜏𝑖 [𝑅], where 𝑅 is the Ψ-
PER assigned to the V type in Example 3.1.32. For a given Ψ′ ⊩ 𝜓 ∈ Ψ, we are in one of
the following cases.

• Case: 𝑟𝜓 = 0. Then by the reduction rule already proven, we have Ψ′ ⊩ V𝑟𝜓 (𝐴, 𝐵, 𝐼) =
𝐴 pretype and Ψ′ ⊩ V𝑟𝜓 (𝐴′, 𝐵′, 𝐼 ′) = 𝐴′ pretype. By transitivity, it follows that Ψ′ ⊩
V𝑟 (𝐴, 𝐵, 𝐼)𝜓 = V𝑟 (𝐴′, 𝐵′, 𝐼 ′)𝜓 pretype.

• Case: 𝑟𝜓 = 1. Symmetric to the previous case.

70 Cubical type theory

• Case: 𝑟𝜓 = 𝑥 . Then V𝑟 (𝐴, 𝐵, 𝐼)𝜓 and V𝑟 (𝐴′, 𝐵′, 𝐼 ′)𝜓 are values, and we have 𝜏𝑖 ⊨ Ψ′ ⊩
V𝑟 (𝐴, 𝐵, 𝐼)𝜓 ≈ V𝑟 (𝐴′, 𝐵′, 𝐼 ′)𝜓 ↓ 𝑅𝜓 by definition of the type system. □

The above proof is representative of the shape of formation and introduction proofs
for types with unstable operational semantics. Typically, the boundary of a term reduces
in some way, in which case we apply some reduction rules to simplify the goal to an
equation we already know to hold. When we are not on the boundary, on the other hand,
the terms in question are typically values.

A value of the type Ψ, 𝑥 : I ⊩ V𝑥 (𝐴, 𝐵, 𝐼) type is a term v𝑥 (𝑀, 𝑃), which collects a line
Ψ, 𝑥 : I ⊩ 𝑃 ∈ 𝐵 in direction 𝑥 with a term Ψ ` 𝑀 : 𝐴, living at 𝑥 ≡ 0, which is mapped by
fst(𝐼) to 𝑃 [0/𝑥]. This data parallels the shape of the V type itself.

𝑀 𝐴

𝑃 [0/𝑥] 𝑃 [1/𝑥] 𝐵 [0/𝑥] 𝐵 [1/𝑥]
𝑥 → 𝑥 →

𝐼

↦→ v𝑥 (𝑀, 𝑃)
∈ 𝐼

' V𝑥 (𝐴, 𝐵, 𝐼)

𝑃 𝐵

We see intuitively that the dependent paths over the V type, i.e., the elements of some type
Path(𝑥 .V𝑥 (𝐴, 𝐵, 𝐼), 𝑀, 𝑁), correspond to paths in 𝐵 establishing that𝑀 and 𝑁 correspond
to each other across the isomorphism 𝐼 . That is, the prototypical element of this path type
is of the form 𝜆𝑥 . v𝑥 (𝑀, 𝑃) where Ψ ⊩ 𝑃 [0/𝑥] = (fst(𝐼))𝑀 ∈ 𝐵 and Ψ ⊩ 𝑃 [1/𝑥] = 𝑁 ∈ 𝐵.

Rules 3.1.46 (V type introduction).

Ψ ⊩ 𝑟 ∈ I Ψ, 𝑟 ≡ 0 � 𝐼 ∈ 𝐴 ' 𝐵
Ψ, 𝑟 ≡ 0 � 𝑀 = 𝑀′ ∈ 𝐴 Ψ ⊩ 𝑁 = 𝑁 ′ ∈ 𝐵 Ψ, 𝑟 ≡ 0 � (fst(𝐼))𝑀 = 𝑁 ∈ 𝐵

Ψ ⊩ v𝑟 (𝑀, 𝑁) = v𝑟 (𝑀′, 𝑁 ′) ∈ V𝑟 (𝐴, 𝐵, 𝐼)

Ψ ⊩ 𝑀 ∈ 𝐴
Ψ ⊩ v0(𝑀, 𝑁) = 𝑀 ∈ 𝐴

Ψ ⊩ 𝑁 ∈ 𝐵
Ψ ⊩ v1(𝑀, 𝑁) = 𝑁 ∈ 𝐵

We leave the proofs of these rules as an exercise to the reader; they follow the same
pattern as the proof of the formation rules.

The elimination operator for V types extracts an element of 𝐵. With the reduction
rules for V types, we have examples of coherent head expansion where the reduction rule
is not stable under substitution.

Programming in a cubical type theory 71

Rules 3.1.47 (V type reduction).

Ψ ⊩ 𝑟 ∈ I Ψ, 𝑟 ≡ 0 � 𝐼 ∈ 𝐴 ' 𝐵
Ψ, 𝑟 ≡ 0 � 𝑀 ∈ 𝐴 Ψ ⊩ 𝑁 ∈ 𝐵 Ψ, 𝑟 ≡ 0 � (fst(𝐼))𝑀 = 𝑁 ∈ 𝐵

Ψ ⊩ vproj𝑟 (v𝑟 (𝑀, 𝑁), 𝐼) = 𝑁 ∈ 𝐵

Ψ ⊩ 𝑀 ∈ 𝐴 Ψ ⊩ 𝐼 ∈ 𝐴 ' 𝐵
Ψ ⊩ vproj0(𝑀, 𝐼) = (fst(𝐼))𝑀 ∈ 𝐴

Ψ ⊩ 𝑁 ∈ 𝐵
Ψ ⊩ vproj1(𝑀, 𝑁) = 𝑁 ∈ 𝐵

Proof. Again, the reduction rules in the 0 and 1 cases follow immediately by coherent
head expansion. We also apply coherent head expansion for the first rule, but now we
have to do some case analysis. Let Ψ′ ⊩ 𝜓 ∈ Ψ be given. Then we are in one of three
cases.

• Case: 𝑟𝜓 = 0. Then vproj𝑟 (v𝑟 (𝑀, 𝑁), 𝐼)𝜓 ↦−→ vproj𝑟 (𝑀, 𝐼)𝜓 . By the reduction rule for
0 just proven and the assumed equation Ψ, 𝑟 ≡ 0 � (fst(𝐼))𝑀 = 𝑁 ∈ 𝐵, the latter is
equal to 𝑁𝜓 in 𝐵𝜓 .

• Case: 𝑟𝜓 = 1. Then vproj𝑟 (v𝑟 (𝑀, 𝑁), 𝐼)𝜓 ↦−→ vproj𝑟 (𝑁, 𝐼)𝜓 , and the latter is equal to
𝑁𝜓 in 𝐵𝜓 by the reduction rule for 1 just proven.

• Case: 𝑟𝜓 = 𝑥 . Then vproj𝑟 (v𝑟 (𝑀, 𝑁)𝜓, 𝐼) ↦−→ 𝑁𝜓 , and the latter is well-typed by
hypothesis. □

With these rules, we have seen enough to get a sense of how proofs of rules proceed
in cubical computational type theory. Although the definition of⤋− is hairy, the process
is fairly intuitive filtered through the lens of our battery of lemmas: when we check that
a term is well-typed, we need to make sure that its substitution instances behave in a way
that is coherent up to the equality of the type.

3.2 Programming in a cubical type theory

We now give a few basic definitions and constructionswithin a cubical type theory. These
are largely chosen for their relevance to more novel results in parametric cubical type the-
ory that we construct in Part III, Chapter 10 and Part IV, Chapter 15, but we hope to also
give a taste of cubical argumentation. The reader interested in developing further intu-
ition can find further examples of cubical programming and theorem-proving in [VMA19,
§2; Ben19; MP20; ACMZ21]; we also suggest experimenting with the redtt proof assis-
tant [redtt] and the Agda proof assistant’s cubical mode and library [Agda; CubAg].

72 Cubical type theory

We give our proofs in a style reminiscent of the HoTT Book [Uni13]: a combination
of textual argument and explicit syntax. Textual statements should be understood as syn-
tactic sugar for type expressions: when we say “for all 𝑎 :𝐴, there exists 𝑏 :𝐵 such that. . . ”,
we mean that the type (𝑎 : 𝐴) → (𝑏 : 𝐵) × · · · is inhabited, not some metatheoretic prop-
erty. Also, we will use the notation 𝑀0 ⇝ 𝑀1 an informal shorthand for the path type
Path(𝐴,𝑀0, 𝑀1).

3.2.1 Path induction
We have seen that, via coercion, we can transport properties between path-equal terms.
We now show that transport further induces an a priori stronger principle: a version of
the J eliminator that defines identity types (Section 2.1.5.4). We obtain this result as a
corollary of singleton contractibility.

Definition 3.2.1. 𝐴 type is a proposition if there is a path between any pair of elements
in 𝐴, that is, if the following type is inhabited.

IsProp(𝐴) B (𝑎0, 𝑎1 :𝐴) → Path(𝐴, 𝑎0, 𝑎1)

We define the universe of propositions as U B (𝐴 : U) × IsProp(𝐴). 𝐴 is contractible when
it is an inhabited proposition.

IsContr(𝐴) B 𝐴 × IsProp(𝐴)

Equivalently, a type is contractible when it contains an element to which all its other
elements are equal up to a path. Singleton contractibility says that singleton type (𝑎 :𝐴) ×
Path(𝐴, 𝑎0, 𝑎) of terms path-equal to some fixed point 𝑎0 : 𝐴 is always contractible, the
canonical inhabitant being 〈𝑎0, 𝜆I . 𝑎0〉. Given any other element 〈𝑏, 𝑝〉, we have evidence
𝑝 that the first component 𝑏 is path-equal to 𝑎0, and we can moreover show that 𝜆I . 𝑎0
and 𝑝 correspond over this path.

Lemma 3.2.2 (Singleton contractibility). For any𝐴 type and 𝑎0 :𝐴, the singleton type
(𝑎 :𝐴) × Path(𝐴, 𝑎0, 𝑎) is contractible.

Proof. The singleton type is inhabited, as 𝑎0 is equal to itself by the reflexive path: we have
〈𝑎0, 𝜆I . 𝑎0〉 : (𝑎 :𝐴) × Path(𝐴, 𝑎0, 𝑎). To see that the singleton type is a proposition, sup-
pose we are given 〈𝑏, 𝑝〉, 〈𝑏, 𝑝′〉 : (𝑎 :𝐴) × Path(𝐴, 𝑎0, 𝑎). To construct a path between these
in the type (𝑎 :𝐴) ×Path(𝐴, 𝑎0, 𝑎), we need a pair of terms 𝑥 : I � 𝑇𝑥 ∈ 𝐴 and 𝑥 : I � 𝑄𝑥 ∈
Path(𝐴, 𝑎0,𝑇𝑥) that reduce to 〈𝑏, 𝑝〉 when 𝑥 = 0 and 〈𝑏′, 𝑝′〉 when 𝑥 = 1. We might look to
define 𝜆I𝑥 .𝑇𝑥 as the concatenation of 𝑝−1 : 𝑏 ⇝ 𝑎0 with 𝑝 : 𝑎0⇝ 𝑏′, but we will actually

Programming in a cubical type theory 73

have an easier time if we take a look at 𝑄𝑥 first. For this term, what we need is a two-
dimensional termfitting in the following square boundary.

𝑦

𝑥
𝑎0 𝑏

𝑎0 𝑏′

𝑝 𝑦

𝑝′𝑦

𝑎0 𝑇𝑥𝑄𝑥 𝑦

This is a perfect candidate for the application of homogeneous composition: we have a
box with three fixed sides and one undetermined side (𝑇𝑥 , which is up to us to define as
we like) that we must fill with a square term. We may therefore define 𝑄𝑥 as follows.

𝑄𝑥 B 𝜆I𝑦. hcom0�𝑦
𝐴 (𝑎0;𝑥 = 0 ↩→ 𝑧.𝑝 𝑧, 𝑥 = 1 ↩→ 𝑦.𝑝′ 𝑧)

From the tube constraints of this composite, we have that 𝑄0 = 𝑝 ∈ Path(𝐴, 𝑎0, 𝑏) and
𝑄1 = 𝑝′ ∈ Path(𝐴, 𝑎0, 𝑏′). If we define 𝑇𝑥 B 𝑄𝑥 1, we moreover see that 𝑥 : I � 𝑄𝑥 ∈
Path(𝐴, 𝑎0,𝑇𝑥), and so

𝜆I𝑥 . 〈𝑇𝑥 , 𝑄𝑥〉 ∈ Path((𝑎 :𝐴) × Path(𝐴, 𝑎0, 𝑎), 〈𝑏, 𝑝〉, 〈𝑏′, 𝑝′〉)

as desired. □

Lemma 3.2.3 (J for paths). Let a 𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 :Path(𝐴, 𝑎0, 𝑎1) � 𝐵 type be given with
some 𝑑 : (𝑎 :𝐴) → 𝐵 [𝑎/𝑎0, 𝑎/𝑎1, 𝜆I . 𝑎/𝑝]. Then 𝐵 is inhabited for any 𝑎0 : 𝐴, 𝑎1 : 𝐴, and
𝑝 : Path(𝐴, 𝑎0, 𝑎1).

Proof. Given 𝑎0 : 𝐴, 𝑎1 : 𝐴, and 𝑝 : Path(𝐴, 𝑎0, 𝑎1), we have two elements of the singleton
type (𝑎 :𝐴) × Path(𝐴, 𝑎0, 𝑎): the canonical 〈𝑎0, 𝜆I . 𝑎0〉 as well as 〈𝑎1, 𝑝〉. By Lemma 3.2.2,
there is a path between these, some 𝑄 of type 〈𝑎0, 𝜆I . 𝑎0〉 ⇝ 〈𝑎1, 𝑝〉. Fixing 𝑎0, we can
recast 𝐵 as a type family indexed by singletons like so.

𝑐 : (𝑎 :𝐴) × Path(𝐴, 𝑎0, 𝑎) � 𝐵′ B 𝐵 [fst(𝑐)/𝑎1, snd(𝑐)/𝑝] type

Then we have 𝑑 𝑎0 ∈ 𝐵′[〈𝑎0, 𝜆I . 𝑎0〉/𝑐]. We obtain our desired result by coercing 𝑑 𝑎0
along our path between the singletons: coe0�1

𝑥 .𝐵′[𝑄 𝑥/𝑐] (𝑑 𝑎0) ∈ 𝐵
′[〈𝑏1, 𝑞〉/𝑐]. □

74 Cubical type theory

3.2.2 Paths in compound types
One theoretical and practical benefit of path equality is the ease with which we can char-
acterize the path types of compound types. We have already seen this implicitly in the
previous section, where we built a path in a product type (the singleton type) from a pair
of paths 𝜆I𝑥 .𝑇𝑥 and 𝜆I𝑥 .𝑄𝑥 in the component types. That particular case is an instance of
the following general principle: we have an isomorphism between paths in products and
products of paths.

Lemma 3.2.4 (Paths in products). Let 𝑥 : I � 𝐴 type and 𝑥 : I, 𝑎 :𝐴 � 𝐵 type be given
together with 𝑡0 : ((𝑎 :𝐴) × 𝐵) [0/𝑥] and 𝑡1 : ((𝑎 :𝐴) × 𝐵) [1/𝑥]. Then we have an isomor-
phism of the following type.

Path(𝑥 .(𝑎 :𝐴) × 𝐵, 𝑡0, 𝑡1)
'

(𝑝 : Path(𝑥 .𝐴, fst(𝑡0), fst(𝑡1))) × Path(𝑥 .𝐵 [𝑝 𝑥/𝑎], snd(𝑡0), snd(𝑡1))

That is, a path in a product type is a product of paths.

Proof. In the forward direction, given 𝑡 :Path(𝑥 .(𝑎 :𝐴) × 𝐵, 𝑡0, 𝑡1), we have the pair of paths
〈𝜆I𝑥 . fst(𝑡 𝑥), 𝜆I𝑥 . snd(𝑡 𝑥)〉. In the reverse, given a pair of paths across the two types,
𝑝 : Path(𝑥 .𝐴, fst(𝑡0), fst(𝑡1)) and 𝑞 : Path(𝑥 .𝐵 [𝑝 𝑥/𝑎], snd(𝑡0), snd(𝑡1)), we have a path in
the product type 𝜆I𝑥 . 〈𝑝 𝑥, 𝑞 𝑥〉. It is straightforward to check that these two constructions
are inverse up to exact equality. □

The following characterization of paths in function types—a path between functions
is a proof they are path-equal on all arguments—is similarly immediate.

Lemma 3.2.5 (Function extensionality). Let 𝐴 type and 𝑥 : I, 𝑎 : 𝐴 � 𝐵 type be given
together with 𝑓0 : (𝑎 :𝐴) → 𝐵 [0/𝑥] and 𝑓1 : (𝑎 :𝐴) → 𝐵 [1/𝑥]. Then we have an isomor-
phism of the following type.

Path(𝑥 .(𝑎 :𝐴) → 𝐵, 𝑓0, 𝑓1) ' (𝑎 :𝐴) → Path(𝑥 .𝐵, 𝑓0 𝑎, 𝑓1 𝑎)

That is, a path in a function type is a family of paths when the domain is homogeneous.

Proof. Given 𝑝 in the former type, we have 𝜆𝑎. 𝜆I𝑥 . 𝑝 𝑥 𝑎 in the latter; given ℎ in the latter,
we have 𝜆I𝑥 . 𝜆𝑎. ℎ 𝑎 𝑥 in the former. These two constructions are clearly inverse up to
exact equality. □

The above is, however, limited to dependent paths Path(𝑥 .(𝑎 :𝐴) → 𝐵, 𝐹0, 𝐹1) where
the domain type 𝐴 is independent of 𝑥 . We can give a more general principle in the case

Programming in a cubical type theory 75

that 𝐴 depends on 𝑥 : a path between functions is a function from paths in the domain to
paths in the codomain. The proof of this result is rather more involved and in particular
makes use of coercion.

Lemma 3.2.6 (Paths in function types). Let 𝑥 : I � 𝐴 type and 𝑥 : I, 𝑎 :𝐴 � 𝐵 type be
given together with 𝑓0 : ((𝑎 :𝐴) → 𝐵) [0/𝑥] and 𝑓1 : ((𝑎 :𝐴) → 𝐵) [1/𝑥]. Then we have an
isomorphism of the following type.

Path(𝑥 .(𝑎 :𝐴) → 𝐵, 𝑓0, 𝑓1)
'

(𝑎0 :𝐴[0/𝑥]) (𝑎1 :𝐴[1/𝑥]) (𝑝 : Path(𝑥 .𝐴, 𝑎0, 𝑎1)) → Path(𝑥 .𝐵 [𝑝 𝑥/𝑎], 𝑓0 𝑎0, 𝑓1 𝑎1)

That is, a path in a function type is a function from paths in the domain to paths in the
codomain.

Proof. Given 𝑞 in the former type, we have 𝜆𝑎0. 𝜆𝑎1. 𝜆𝑝. 𝜆I𝑥 . (𝑞 𝑥) (𝑝 𝑥) in the latter.
Conversely, suppose we are given ℎ in the latter. Supposing 𝑥 : I and 𝑎 : 𝐴, we must

construct an element of 𝐵 that becomes 𝑓0 𝑎 when 𝑥 = 0 and 𝑓1 𝑎 when 𝑥 = 1. Employing
coercion, we can create a path 𝑃𝑥 along 𝐴 from the single element 𝑎.

𝑃𝑥 B 𝜆I𝑦. coe𝑥�𝑦𝑥.𝐴 (𝑎) ∈ Path(𝑦.𝐴[𝑦/𝑥], coe𝑥�0
𝑥 .𝐴 (𝑎), coe𝑥�1

𝑥 .𝐴 (𝑎))

Note that we have 𝑃𝑥 𝑥 = 𝑎 ∈ 𝐴. By applying ℎ to this path, we obtain a corresponding
path along 𝐵.

ℎ (𝑃𝑥 0) (𝑃𝑥 1) 𝑃𝑥 ∈ Path(𝑦.𝐵 [𝑦/𝑥, 𝑃𝑥 𝑦/𝑎], 𝑓0 (𝑃𝑥 0), 𝑓1 (𝑃𝑥 1))

Our solution is the evaluation of this path at 𝑥 , the term ℎ (𝑃𝑥 0) (𝑃𝑥 1) 𝑃𝑥 𝑥 ∈ 𝐵, which
has the right type thanks to the equation 𝑃𝑥 𝑥 = 𝑎 ∈ 𝐴. When 𝑥 is 0, it becomes 𝑓0 (𝑃0 0),
which is again 𝑓0 𝑎; when 𝑥 is 1, it is 𝑓1 (𝑃1 1) = 𝑓1 𝑎.

Now we must check that the two constructions above are mutually inverse. First,
given 𝑞 : Path(𝑥 .(𝑎 :𝐴) → 𝐵, 𝑓0, 𝑓1), we need a path of the following type.

(𝜆I𝑥 . 𝜆𝑎. 𝑞 𝑥 ((𝜆I𝑦. coe𝑥�𝑦𝑥.𝐴 (𝑎)) 𝑥)) ⇝ 𝑞

In fact, this equation holds up to exact equality, thanks to the reduction equation for trivial
coercions.

For the other inverse condition, we see after a bit of computation that we must con-
struct a path of the following type for ℎ in the right hand type.

(𝜆𝑎0. 𝜆𝑎1. 𝜆𝑝. 𝜆I𝑥 . ℎ (coe𝑥�0
𝑥 .𝐴 (𝑝 𝑥)) (coe𝑥�1

𝑥 .𝐴 (𝑝 𝑥)) (𝜆I𝑦. coe𝑥�𝑦𝑥.𝐴 (𝑝 𝑥)) 𝑥) ⇝ ℎ

76 Cubical type theory

The key step, then, is to construct paths coe𝑥�0
𝑥 .𝐴 (𝑝 𝑥) ⇝ 𝑎0, coe𝑥�1

𝑥 .𝐴 (𝑝 𝑥) ⇝ 𝑎1, and
coe𝑥�𝑦𝑥.𝐴 (𝑝 𝑥) ⇝ 𝑝 𝑦. We can produce the third, which implies the others, as follows.

coe𝑥�𝑦
𝑧.Path(𝐴[𝑧/𝑥],coe𝑥�𝑧

𝑥.𝐴 (𝑝 𝑥),𝑝 𝑧) (𝜆
I . 𝑝 𝑥) ∈ Path(𝐴[𝑦/𝑥], coe𝑥�𝑦𝑥.𝐴 (𝑝 𝑥), 𝑝 𝑦)

That is, the equation holds by reflexivity when 𝑦 is 𝑥 , so we can extend it to all other
values of 𝑦 by coercion. □

Remark 3.2.7. In the case where 𝐴 is degenerate, Lemma 3.2.6 gives us the following iso-
morphism.

Path(𝑥 .(𝑎 :𝐴) → 𝐵, 𝑓0, 𝑓1)
'

(𝑎0 :𝐴) (𝑎1 :𝐴) (𝑝 : Path(𝐴, 𝑎0, 𝑎1)) → Path(𝑥 .𝐵 [𝑝 𝑥/𝑎], 𝑓0 𝑎0, 𝑓1 𝑎1)
We can re-derive the alternative characterization in Lemma 3.2.5 from this principle by
singleton contractibility: any pair of arguments 𝑎1, 𝑝 is equal up to a path to 𝑎0, 𝜆I . 𝑎0.

We round out this section with a couple of results that we will not prove in detail—
they are not particularly difficult, but are easiest to prove with a larger toolbox of lemmas
than we want to set up here—but which will be useful in the future.

The first of these shows that in order to characterize the path family at some type, we
do not need to build an isomorphism explicitly: we only need one of the inverse condi-
tions, the one showing that the characterization is a retract of the path family.

Lemma 3.2.8 (Characterization by retract). Let𝐴 type and𝑅:𝐴 ×𝐴 → U and suppose
we have two functions as follows.

𝑓 : (𝑎0, 𝑎1 :𝐴) → 𝑅 〈𝑎0, 𝑎1〉 → Path(𝐴, 𝑎0, 𝑎1)
𝑔 : (𝑎0, 𝑎1 :𝐴) → Path(𝐴, 𝑎0, 𝑎1) → 𝑅 〈𝑎0, 𝑎1〉

If we have paths 𝑔 𝑎0 𝑎1 (𝑓 𝑎0 𝑎1 𝑞) ⇝ 𝑞 for all 𝑎0, 𝑎1 :𝐴, then Path(𝐴, 𝑎0, 𝑎1) is isomorphic
to 𝑅 〈𝑎0, 𝑎1〉 for all 𝑎0, 𝑎1 :𝐴. Moreover, in this case any function with the type of 𝑓 or 𝑔 is
an isomorphism.

Proof (sketch). See [Rij18, Corollary 1.2.6] for a more detailed proof (in HoTT).
Such a family of retracts implies that the product type (𝑎1 :𝐴) × 𝑅 〈𝑎0, 𝑎1〉 is a retract

of (𝑎1 :𝐴) ×Path(𝐴, 𝑎0, 𝑎1). The latter is a singleton type, therefore contractible. A retract
of a contractible type is also contractible, so (𝑎1 :𝐴) × 𝑅 〈𝑎0, 𝑎1〉 is contractible.

Given any family of functions with the same type as 𝑓 or 𝑔, the induced map from
(𝑎1 :𝐴) × 𝑅 〈𝑎0, 𝑎1〉 to (𝑎1 :𝐴) × Path(𝐴, 𝑎0, 𝑎1) is an isomorphism, because any function
between contractible types is an isomorphism. That the induced map is an isomorphism
in turn implies that the original family of functions is a family of isomorphisms [Rij18,
Proposition 1.2.4].

Formalism and models 77

Finally, we have the crucial univalence principle relating paths between types in the
universe U to isomorphisms between those types. Note that by the above, we need only
prove that the types 𝐴 ' 𝐵 are retracts of the types Path(U, 𝐴, 𝐵).

Theorem 3.2.9 (Univalence). Let 𝐴, 𝐵 ∈ U. Then the following function from paths in
U to isomorphisms is an isomorphism.

𝜆𝑝. coe0'1𝑥 .𝑝 𝑥 ∈ Path(U, 𝐴, 𝐵) → (𝐴 ' 𝐵)

Proof. From [Ang19, Theorem 4.105] via Lemma 3.2.8 and [Uni13, Theorem 4.3.2], the last
of which shows that isomorphisms are path-equal whenever their underlying forward
functions are path-equal. □

3.3 Formalism and models

The cubical type theory 𝜏1 interprets most of the constructs of the ITT formalism sketched
in Section 2.2, with the notable exception of identity types (which we have replaced with
path types). In Section 5.3 of Part II, we describe one way to recover identity types in
a cubical setting. With that lacuna patched, we will be able interpret ITT as well as the
univalence axiom; using the higher inductive types also constructed in Part II, we can
obtain a computational interpretation of HoTT.

Alternatively, we may abandon identity types andHoTT entirely and instead develop
a natively cubical formalism. This approach has some notable benefits. For one, HoTT
is lacking as a formalism from a computational standpoint, failing to satisfy any kind of
adequacy theorem (Proposition 2.2.1) thanks to its lack of rules for reducing applications
of univalence and higher inductive type eliminators. This makes it difficult to use HoTT
to prove calculational results. Indeed, cubical type theory has an advantage in usability
more broadly. This observation goes back to Licata and Brunerie, who showed that merely
adopting a cubical organization for arguments in HoTT could drastically simplify proofs
[LB15]. (My own master’s thesis [Cav15] owes a tremendous debt to that observation.)
The effect is even more pronounced in a natively cubical theory, as many of the rules
which hold only up to identity inHoTT are exact in cubical type theory. The formulation
of path equality as function-like also means that the characterization of paths in com-
pound negative types is very straightforward, as in the proofs of Lemmas 3.2.4 and 3.2.5
above.

We can straightforwardly adjust the formalism for intensional type theory introduced
in Section 2.2 to expose cubical elements. We add judgments for two new concepts: the
interval and constraints.

78 Cubical type theory

Judgment Presuppositions Reading
Γ ` 𝑟 : I (Γ ctx) 𝑟 is a path interval term in context Γ
Γ ` 𝑟 = 𝑟 ′ : I (Γ ` 𝑟, 𝑟 ′ : I) 𝑟 and 𝑟 ′ are equal path interval terms
Γ ` 𝜉 : F (Γ ctx) 𝜉 is a constraint in context Γ
Γ ` 𝜉 = 𝜉′ : F (Γ ` 𝜉, 𝜉′ : F) 𝜉 and 𝜉′ are equal constraints
Γ ` 𝜉 satisfied (Γ ` 𝜉 : F) 𝜉 is a satisfied constraint in context Γ

The interval and constraint judgments are simple to axiomatize, interval and con-
straint assumptions behaving not dissimilarly to ordinary term variable assumptions. To
begin with, we have two new context formers.

Γ ctx

Γ.I ctx

Γ ` 𝜉 : F
Γ.𝜉 ctx

The rules for substitutions into contexts with an interval or constraint match their term
equivalents.

Γ′ ` 𝛾 : Γ Γ′ ` 𝑟 : I
Γ′ ` 𝛾 .𝑟 : Γ.I Γ.I ` pI : Γ

Γ′ ` 𝛾 : Γ Γ′ ` 𝜉 [𝛾] satisfied
Γ′ ` 𝛾 .★ : Γ.𝜉

Γ ` 𝜉 : F
Γ.𝜉 ` pF : Γ

Γ′ ` p ◦ (𝛾 .𝑟) = 𝛾 : Γ Γ′ ` 𝛾 = (pI ◦ 𝛾).vI [𝛾] : Γ.I

Γ′ ` pF ◦ (𝛾 .★) = 𝛾 : Γ Γ′ ` 𝛾 = (pF ◦ 𝛾).★ : Γ.𝜉

In addition to variables, the interval is inhabited by the two constants; constraints take
the form of equations and are satisfied when those equations hold.

Γ ctx

Γ.I ` vI : I Γ ` 0 : I Γ ` 1 : I
Γ ` 𝛿 : Δ Γ ` 𝑟 : I
Γ ` vI [𝛿.𝑟] = 𝑟 : I

Γ ctx

Γ.𝜉 ` 𝜉 satisfied

Γ ` 𝑟 : I Γ ` 𝑠 : I
Γ ` 𝑟 ≡ 𝑠 : F

Γ ` 𝑟 : I
Γ ` 𝑟 ≡ 𝑟 satisfied

Γ ` 𝑟 : I Γ ` 𝑠 : I Γ ` 𝑟 ≡ 𝑠 satisfied
Γ ` 𝑟 = 𝑠 : I

With the judgmental apparatus in place, we can specify the type-generic rules for coer-
cion.

Formalism and models 79

Γ.I ` 𝐴 type Γ ` 𝑟, 𝑠 : I Γ ` 𝑀 : 𝐴[id.𝑟]
coe𝑟�𝑠𝐴 (𝑀) : 𝐴[id.𝑠]

Γ.I ` 𝐴 type Γ ` 𝑟 : I Γ ` 𝑀 : 𝐴[id.𝑟]
coe𝑟�𝑟𝐴 (𝑀) = 𝑀 : 𝐴[id.𝑟]

Composition is more involved, as we need a way to represent the list of terms con-
stituting a tube. But our goal here is not to give a complete formalism for cubical type
theory, only to set up enough structure to make sense of further additions in Part III.
We therefore leave the remainder as an exercise to the reader and refer to [ABCFHL19;
CCHM15] for more complete examples of cubical formalisms.

3.3.1 Models in cubical sets
The “standard” non-computational models for cubical formalisms interpret contexts as
cubical sets, presheaves on a given cube category. For cartesian cubical type theory, the
cube category has a simple description in terms of interval contexts. We assume some
basic knowledge of category-theoretic terminology.

Definition 3.3.1. The cartesian cube category �c is the category whose objects are in-
terval contexts Ψ ictx and whose morphisms 𝜓 ∈ �c [Ψ′,Ψ] from Ψ′ to Ψ are interval
substitutions Ψ′ ⊩ 𝜓 ∈ Ψ.

A presheaf on a category C is a family of sets indexed by elements of C, with transition
functions between those sets indexed by the morphisms of C. More concisely, it is a
functor from the opposite category of C into the category of sets.

Definition 3.3.2. A presheaf 𝐺 on a category C consists of the following data.

• For every 𝑐 ∈ C, an set 𝐺 (𝑐).

• For every 𝑓 ∈ C[𝑐′, 𝑐], a function 𝐺 (𝑓) : 𝐺 (𝑐) → 𝐺 (𝑐′).

We require that 𝐺 (id𝑐) = id𝐺 (𝑐) for every 𝑐 ∈ C and 𝐺 (𝑓 ◦ 𝑔) = 𝐺 (𝑔) ◦ 𝐺 (𝑓) for every
𝑔 ∈ C[𝑐′′, 𝑐′] and 𝑓 ∈ C[𝑐′, 𝑐].

We write PSh(C) for the category of presheaves on C. We define the morphisms
𝛼 ∈ PSh(C)[𝐺,𝐻] to be families of functions 𝛼 (𝑐) : 𝐺 (𝑐) → 𝐻 (𝑐) satisfying a naturality
condition.

Definition 3.3.3. A morphism 𝛼 ∈ PSh(C)[𝐺,𝐻] is a family 𝛼 (𝑐) : 𝐺 (𝑐) → 𝐻 (𝑐) of
functions such that 𝐻 (𝑓) ◦ 𝛼 (𝑐) = 𝛼 (𝑐′) ◦𝐺 (𝑓) for every 𝑓 ∈ C[𝑐′, 𝑐].

80 Cubical type theory

A presheaf 𝐺 ∈ PSh(�c), then, is a family of sets 𝐺 (Ψ) indexed by interval contexts
(which we think of as the elements in context Ψ) with a function 𝐺 (𝜓) : 𝐺 (Ψ) → 𝐺 (Ψ′)
for every Ψ′ ⊩ 𝜓 ∈ Ψ (which we think of as the action of interval substitution on those
elements). Note the analogy to a context Γ ctx of one of our cubical type theories: for
every Ψ, we have the set of closing substitutions Ψ ⊩ 𝛾 ∈ Γ (modulo equality), and
given Ψ′ ⊩ 𝜓 ∈ Ψ and Ψ ⊩ 𝛾 ∈ Γ we have an induced Ψ′ ⊩ 𝛾𝜓 ∈ Γ. In accordance
with this analogy, cubical sets can serve as an alternative interpretation of the contexts of
our cubical formalism, with substitutions between contexts interpreted as morphisms of
presheaves.

To interpret the interval judgment, we make use of the Yoneda embedding , which
takes objects of the indexing category to objects of the presheaf category.1

Definition 3.3.4. Given 𝑐 ∈ C, we define (𝑐) ∈ PSh(C) by (𝑐) (𝑑) B C[𝑑, 𝑐] and
(𝑐) (𝑓) B (−) ◦ 𝑓 .

We have an interval presheaf I B (𝑥 :I) ∈ PSh(�c) defined as the Yoneda embedding
of the single-interval context. By definition, the elements of I(Ψ) at a context Ψ are the
substitutions Ψ ⊩ 𝜓 ∈ (𝑥 : I), which is to say interval terms Ψ ⊩ 𝑟 ∈ I. We then interpret
open interval terms Γ ` 𝑟 : I as morphisms J𝑟K ∈ PSh(�c) [JΓK, I] from the context’s
interpretation (a cubical set) into this interval presheaf. Context extension by an interval
hypothesis is interpreted by (pointwise) product of presheaves: JΓ.IK B JΓK × I where
(JΓK × I) (Ψ) B JΓK(Ψ) × I(Ψ).

Types over a context Γ, meanwhile, are interpreted as families indexed by elements
of JΓK and equipped with interpretations of the Kan operations. First, let us define an
intermediate notion of semantic pretype.

Definition 3.3.5. Given a presheaf 𝐺 , a semantic pretype over 𝐺 is a family 𝑇 of sets
𝑇 (Ψ, 𝑔) indexed by pairs of Ψ ∈ �c and 𝑔 ∈ 𝐺 (Ψ) and equipped with transition functions
𝑇 (𝜓,𝑔) : 𝑇 (Ψ, 𝑔) → 𝑇 (Ψ′,𝐺 (𝜓) (𝑔)) for every Ψ′ ⊩ 𝜓 ∈ Ψ such that 𝑇 (idΨ) = id𝑇 (Ψ,𝑔) and
𝑇 (𝜓𝜓 ′) = 𝑇 (𝜓 ′) ◦𝑇 (𝜓).

Again, this matches the computational setting, where an open pretype Γ � 𝐴 type
is defined by the elements of its instances Ψ ⊩ 𝐴𝛾 type for Ψ ictx and Ψ ⊩ 𝛾 ∈ Γ. Note
that given a transformation 𝛼 : 𝐻 → 𝐺 of syntactic contexts, we can reindex 𝑇 above
to get a semantic pretype 𝛼∗𝑇 over 𝐻 : (𝛼∗𝑇)(Ψ, ℎ) B 𝑇 (Ψ, 𝛼 (Ψ)(ℎ)) and (𝛼∗𝑇) (𝜓,ℎ) B
𝑇 (𝜓, 𝛼 (Ψ)(ℎ)). We thereby interpret substitution on types.

Syntactic elements are interpreted by families of semantic elements.

1We employ the character よ (“yo”) from the Japanese hiragana syllabary to represent the Yoneda
embedding. The stylized symbol used here was created by Favonia.

Formalism and models 81

Definition 3.3.6. Given a presheaf 𝐺 and pretype 𝑇 over 𝐺 , a semantic term in 𝑇 is
a family of elements 𝑡 (Ψ, 𝑔) ∈ 𝑇 (Ψ, 𝑔) indexed by Ψ ∈ �c and 𝑔 ∈ 𝐺 (Ψ) such that
𝑇 (𝜓) (𝑡 (Ψ, 𝑔)) = 𝑡 (Ψ′,𝐺 (𝜓) (𝑔)).

Finally, a semantic type is a pretype equipped with operations interpreting the rules
for coercion and homogeneous composition.

Definition 3.3.7. Given a presheaf𝐺 and semantic pretype𝑇 over𝐺 , a coercion operator
𝑐 for 𝑇 is a family of elements as follows: for every Ψ ∈ �c , interval terms 𝑟, 𝑠 ∈ I(Ψ),
context element 𝑔 ∈ 𝐺 (Ψ, 𝑥 : I), and 𝑡 ∈ 𝑇 (Ψ,𝐺 (idΨ, 𝑟/𝑥)(𝑔)), we require an element
𝑐 (Ψ, 𝑟 , 𝑠, 𝑔, 𝑡) ∈ 𝑇 (Ψ,𝐺 (idΨ, 𝑠/𝑥)(𝑔)). We ask that these satisfy the following properties.

• 𝑇 (𝜓)(𝑐 (Ψ, 𝑟 , 𝑠, 𝑔, 𝑡)) = 𝑐 (Ψ′, 𝑟𝜓, 𝑠𝜓,𝐺 (𝜓) (𝑔),𝑇 (𝜓,𝑔) (𝑡)) for every Ψ′ ⊩ 𝜓 ∈ Ψ.

• 𝑐 (Ψ, 𝑟 , 𝑟 , 𝑔, 𝑡) = 𝑡 .

We similarly define the concept of homogeneous composition operator for a semantic
pretype. A semantic type is then a triple (𝑇, 𝑐, ℎ) consisting of a semantic pretype with
accompanying coercion and homogeneous composition operators.

For interpretations of the individual type formers, we refer to [ABCFHL19], which
describes a family of models for a cartesian cubical type theory (broadly similar to ours)
in settings such as PSh(�c). One may also turn to [BCH13; CCHM15; OP18; LOPS18;
CMS20] for presheaf-based or presheaf-like models of other variations of cubical type
theory.

Part II

Higher inductive types

83

Chapter 4

Introduction

We now return to the question that motivated our search for contentful equality: defining
(effective) quotients in a computational, type-theoretic setting. In fact, we will obtain our
quotients as instances of a broader class of constructions, the higher inductive types (or
HITs). Higher inductive types unify the concepts of inductive type and quotient, recog-
nizing that a quotient is generated by a collection of equalities in the same way that an
inductive type is generated by a collection of constructors. When elements and equalities
are ultimately the same kind of object, as is the case in cubical type theory, these two
varieties of generation can be collapsed into instances of a single phenomenon.

Inductive types Before going “higher”, let us first recall the concept of inductive type,
one of the fundamental building blocks of traditional type theory. An inductive type
is one whose elements are generated by some collection of constructors, term formers
that introduce elements of the type. The type of natural numbers, Nat, for example, is
generated by two constructors: zero and suc (for “successor”), the latter of which takes a
natural number as input. By “generated”, we mean that every element of Nat is obtained
by iterating the constructors: we have zero (i.e., 0), suc(zero) (i.e., 1), suc(suc(zero)) (i.e.,
2), and so on, but nothing else. Schematically, we might write the specification of Nat as
follows.

inductive Nat where
| zero ∈ Nat
| suc(𝑛 : Nat) ∈ Nat

The fact thatNat is generated by these constructors is expressed internally by an elim-
inator term, which we can use to construct functions (𝑛 :Nat) → 𝐷 by case analysis. The
eliminator for Nat corresponds to the principles of primitive recursion and mathematical
induction of classical mathematics. To construct a function out ofNat, it suffices to define

85

86 Introduction

𝑓 (0) and to define 𝑓 (𝑛+1) in terms of 𝑓 (𝑛); to show that a property 𝑃 holds of all elements
of Nat, it suffices to show that 𝑃 (0) holds and that 𝑃 (𝑛) implies 𝑃 (𝑛 + 1).

An inductive type might be defined relative to some collection of parameters; for ex-
ample, given parameter types 𝐴, 𝐵 ∈ U, we can form their coproduct (i.e., disjoint union,
or sum), whose elements are tagged elements of either 𝐴 or 𝐵.

𝐴 : U, 𝐵 : U � inductive 𝐴 + 𝐵 where
| inl(𝑎 : 𝐴) ∈ 𝐴 + 𝐵
| inr(𝑏 : 𝐵) ∈ 𝐴 + 𝐵

The eliminator for the coproduct expresses that we can construct a function (𝑐 :𝐴 + 𝐵) →
𝐷 given functions (𝑎 : 𝐴) → 𝐷 [inl(𝑎)/𝑐] and (𝑏 : 𝐵) → 𝐷 [inr(𝑏)/𝑐]; from the logical
perspective, we can prove a property of elements of 𝐴 + 𝐵 by showing that it holds of all
elements of the form inl(𝑎) and all elements of the form inr(𝑏).

A bit more generally, an inductive type might also take one or more indices [CP88;
Dyb94], as in the following inductive type of vectors of elements of 𝐴 of length 𝑛. Here
𝐴 is a parameter, while 𝑛 is an index.

𝐴 : U � inductive Vec(𝐴,𝑛 : Nat) where
| nil ∈ Vec(𝐴, zero)
| cons(𝑛 : Nat, 𝑎 : 𝐴, 𝑣 : Vec(𝐴,𝑛)) ∈ Vec(𝐴, suc(𝑛))

An index is distinguished from a parameter in that the constructors may introduce ele-
ments at different indices. In this case, nil constructs the empty vector, which has length
zero, while cons(𝑛, 𝑎, 𝑣) takes a vector 𝑣 of length 𝑛 as input and constructs a vector of
length suc(𝑛) by appending a new element 𝑎. By contrast, the parameter 𝐴 is uniform
across all constructors. We call inductive types with indices indexed inductive types; they
are also known as inductive families.

The concept of (indexed) inductive type admits various further generalizations, in par-
ticular to inductive-inductive types [NS10] and inductive-recursive types [Dyb00], which
permit the interleaving of multiple inductive and recursive definitions in a certain way.
Our objective in this thesis is to generalize in a different direction, to higher inductive
types, by adding the ability to declare path constructors. We take the class of indexed in-
ductive types as our starting point for this generalization for two reasons. First, some in-
genuity is required to give a computational interpretation for inductive types with indices
in cubical type theory, in particular to interpret coercion in these types. By contrast, our—
admittedly untested—expectation is that the implementation of coercion in indexed induc-
tive types generalizes straightforwardly to inductive-inductive and inductive-recursive
types. Second, Martin-Löf’s identity type is an indexed inductive type. By interpreting
indexed inductive types, we are therefore able to interpret Martin-Löf’s intensional type
theory (Section 2.2) en passant; because cubical type theory also validates the univalence
axiom, this makes cubical type theory a constructive interpretation of HoTT.

87

Path constructors Higher inductive types, conceived at a 2011 workshop in Oberwol-
fach by Bauer, Lumsdaine, Shulman, and Warren, enlarge the class of inductive types by
allowing a new form of constructor, the path constructor. Originally proposed for HoTT
and thus specified in terms of identity types, we describe HITs here in terms of the cu-
bical interval. A path constructor is exactly what it sounds like: a term that constructs
paths in an inductive type. As a simple and somewhat contrived first example, we might
define the type of integers as a type with two ordinary (“point”) constructors and one path
constructor.

inductive Int where
| neg(𝑛 : Nat) ∈ Int
| pos(𝑛 : Nat) ∈ Int
| seg(𝑥 : I) ∈ Int [𝑥 ≡ 0 ↩→ neg(zero) | 𝑥 ≡ 1 ↩→ pos(zero)]

The first constructor defines a “negative” integer for every natural number, while the
second defines a “positive” integer for every natural number. The final constructor ex-
presses that negative zero is the same as positive zero by defining a path between them: a
term 𝑥 :I � seg(𝑥) ∈ Int such that seg(0) = neg(zero) ∈ Int and seg(1) = pos(zero) ∈ Int.
Pictorially, the elements of Int look something like the following.

· · · -3 -2 -1 -0

+0 +1 +2 +3 · · ·

seg(𝒙)

In this way, we define Int as the quotient of two copies of Nat by the relation that
relates the two zeroes. We think of the point constructors as “zero-dimensional” elements
of the type, while path constructors are “one-dimensional” elements; we can more gener-
ally consider 𝑛-dimensional constructors for 𝑛 > 1, which would construct paths between
paths and so on. The only special feature of path constructors, from a specification per-
spective, is that we should be able to specify their boundary, a collection of equations on
interval terms at which the constructor should reduce. In the case of seg(𝑥), these are the
requirements that seg(0) = neg(zero) and seg(1) = pos(zero).

Elimination from a higher inductive type also treats path constructors simply as or-
dinary constructors with boundary conditions. To define a function (𝑧 : Int) → 𝐷 , we
must explain what to do on each of the constructor. For the negative elements, we need
a term 𝑛 : Nat � 𝑇neg ∈ 𝐷 [neg(𝑛)/𝑧]; for the positive elements, a term 𝑛 : Nat � 𝑇pos ∈
𝐷 [pos(𝑛)/𝑧]. For the path constructor, we require a path 𝑥 : I � 𝑇seg ∈ 𝐷 [seg(𝑥)/𝑧] such
that𝑇seg [0/𝑥] = 𝑇neg [0/𝑛] and𝑇seg [1/𝑥] = 𝑇pos [0/𝑛], mimicking the boundary conditions
on the path constructor. In other words, we need functions for the positive and negative

88 Introduction

cases with a path in 𝐷 connecting the images of the two zeroes, i.e., functions on the
elements that respect the quotienting equality.

Thinking more generally, we can express the general idea of quotienting by a relation
with a higher inductive type that takes the relation as a parameter. Given a type 𝐴 ∈ U, a
binary relation on 𝐴 is a family of types 𝑅 ∈ 𝐴 ×𝐴 → U: for each pair 𝑎, 𝑎′ ∈ 𝐴, we think
of 𝑅 〈𝑎, 𝑎′〉 ∈ U as the type of proofs that 𝑎 and 𝑎′ are related by 𝑅. Given such a relation,
we can define the quotient of 𝐴 by 𝑅 as follows.

𝐴 : U, 𝑅 :𝐴 ×𝐴 → U � inductive 𝐴 � 𝑅 where
| pt(𝑎 : 𝐴) ∈ 𝐴 � 𝑅
| rel(𝑎 : 𝐴, 𝑎′ : 𝐴, 𝑟 : 𝑅 〈𝑎, 𝑎′〉, 𝑥 : I) ∈ 𝐴 � 𝑅 [𝑥 ≡ 0 ↩→ pt(𝑎) | 𝑥 ≡ 1 ↩→ pt(𝑎′)]

The quotient of 𝐴 by 𝑅 has a point for every point of 𝐴, and draws a path between pt(𝑎)
and pt(𝑎′) whenever there is some 𝑟 ∈ 𝑅 〈𝑎, 𝑎′〉. To define a map out of this type into some
𝐷 , we specify a map from𝐴 to 𝐷 together with a path between the image of every pair of
related elements.

It would seem at first glance that this single higher inductive type is the only one
we need, if we are only interested in constructing quotients. The reality is not quite so
simple. In a system where equality is contentful, the quotient 𝐴 � 𝑅 can behave in ways
that are unintuitive to the contentless mind. Although many of the more complex higher
inductive types can be encoded using only inductive types and −�−, we contend that the
full generality of higher inductive types is the more natural abstraction in a type theory
with contentful equality, as demonstrated by the following example.

The higher structure of cubical types To get a feeling for the potentially surprising
behavior of𝐴�𝑅, let us consider an example. Suppose that we have a unit type,Unit, a type
with exactly one element (★), and a boolean type Bool, a type with exactly two elements
(tt and ff). For any type 𝐴 ∈ U, the constant function Tot(𝐴) B 𝜆 .Unit ∈ 𝐴 ×𝐴 → U is
the total relation on𝐴, which relates each pair of elements 𝑎, 𝑎′ ∈ 𝐴 by way of the witness
★ ∈ Tot(𝐴) 〈𝑎, 𝑎′〉. If we take the quotient Bool�Tot(Bool), we might expect to get a type
which is isomorphic to Unit; we have equated every pair of elements in Bool, after all.
Instead, we get a type that looks something like the following picture.

tt ff

rel(tt,ff,★,−)

rel(ff,tt,★,−)

rel(tt,tt,★,−) rel(ff,ff,★,−)

89

Indeed, we have a path between every pair of elements—but because some of these
paths are redundant, we wind up with a type that contains non-trivial loops. This type
is not isomorphic to Unit; we can even prove as much inside the type theory, using tech-
niques we sketch below. In short, the types of cubical type theory are not character-
ized purely by their zero-dimensional elements: they have higher structure. The zero-
dimensional structure of Bool�Tot(Bool) matches that of Unit—every point is connected
by some path to pt(tt)—but their one-dimensional structures differ.

If what we want is an operator on types that collapses the structure of its input, then,
quotienting by the total relation will not suffice. Instead, we can take what is called the
propositional truncation [Uni13, §3.7], a higher inductive type that is not obviously ex-
pressible as a quotient.

𝐴 : U � inductive ‖𝐴‖ where
| pt(𝑎 : 𝐴) ∈ ‖𝐴‖
| squash(𝑡 : ‖𝐴‖, 𝑡 ′ : ‖𝐴‖, 𝑥 : I) ∈ ‖𝐴‖ [𝑥 ≡ 0 ↩→ 𝑡 | 𝑥 ≡ 1 ↩→ 𝑡 ′]

Like 𝐴 � Tot(𝐴), the propositional truncation contains an element pt(𝑎) for every
𝑎 ∈ 𝐴. While the former’s path constructor identifies every pair of elements coming from
𝐴, the latter’s identifies every pair of elements of ‖𝐴‖, that is, every pair of elements
in the very type being defined. The effect is that the squash constructor does not only
collapse the zero-dimensional structure, but can be used recursively to collapse first the
one-dimensional structure, then the two-dimensional structure, and so on. For example,
consider the following term 𝑥 : I, 𝑦 : I � 𝑀 (𝑥,𝑦) ∈ ‖Bool‖.

𝑀 (𝑥,𝑦) B squash(squash(pt(tt), pt(ff), 𝑦), pt(tt), 𝑥)

When 𝑥 = 0, the outer squash term is equal to its first argument, squash(pt(tt), pt(ff), 𝑦);
when 𝑥 = 1, it is equal to pt(tt). This term therefore constructs a homotopy, a path
between paths, connecting the constant path 𝜆I . pt(tt) ∈ Path(‖Bool‖, pt(tt), pt(tt)) and
the “redundant” loop 𝜆I𝑦. squash(pt(tt), pt(ff), 𝑦) of the same type. Pictorially,𝑀 “fills in”
the loop at pt(tt).

ff

squash(pt(tt), pt(ff),−)

squash(pt(ff), pt(tt),−)

squash(pt(tt), pt(tt),−) 𝑴 squash(pt(ff), pt(ff),−)tt

Similar applications of squash fill in the other two holes in this picture. A bit more ab-
stractly, we can visualize 𝑀 as a square varying in the two axes 𝑥 and 𝑦, with edges and

90 Introduction

vertices given by the terms shown below. (In this case, three of the four edges are actually
degenerate.)

𝑦

𝑥
pt(tt) pt(tt)

pt(tt) pt(tt)

squash(pt(tt), pt(ff), 𝑦)

pt(tt) pt(tt)

pt(tt)

𝑀 (𝑥,𝑦)

Of course, the squash constructor also creates many redundant homotopies, just as
it creates redundant loops, but these too can be filled in by further iterations of squash.
In the end, ‖Bool‖ does turn out to be isomorphic to Unit, as is ‖𝐴‖ for any type that
contains at least one element. (If 𝐴 is empty, then so too is ‖𝐴‖).

In truth, propositional truncations—and many other HITs, though not all [LS20, §9]—
can be indirectly obtained by constructions that rely only the quotient HIT [Doo16; Kra16;
Rij17, §7]. However, these constructions are fairly involved; while it is useful to know
they are possible, providing general higher inductive types as primitive is much more
convenient for the cubical programmer.1

The upshot of this example is that identifying elements of a type—a process cleanly
accomplished by quotienting in classical mathematics—is a more delicate business when
equality is contentful, because we must consider how we identify those elements. We can
think of this as an acceptable cost of univalence and (what we will see to be) effective
quotients. That cost can be mitigated; for one, we can define a set truncation HIT that col-
lapses the higher structure of a type in the same way that ‖−‖ collapses all structure, and
use this to destroy any higher-dimensional structure we inadvertantly create.2 However,
we can also see the higher structure of cubical type theory as a benefit in and of itself,
allowing us to use type theory as a language for higher-dimensional mathematics.

Synthetic homotopy theory Algebraic topology and homotopy theory are closely re-
lated mathematical fields that study objects carrying higher structure: their properties,
techniques for classifying them, and so on. Right from the origins of higher-dimensional

1Also, the computation rules for path constructors in these encodings often only hold up to path equal-
ity, whereas we can get exact equalities with a direct construction.

2Taking a different tack along these lines, the type theories OTT [AMS07] and XTT [SAG19] include
contentful equality but nevertheless require that all types have trivial higher structure: proofs of equalities
do carry computational content, but all such proofs are interchangeable. Univalent universes do not fit into
this paradigm, but effectivity of quotients can be obtained.

91

type theories—Awodey and Warren’s work on modeling identity types with weak fac-
torization systems [War08; AW09]—a guiding motivation has been their potential as a
language for proving results in topology and homotopy theory. This program, labelled
synthetic homotopy theory, took center stage in the seminal HoTT Book [Uni13], and has
continued to expand since, even generating new classical results [FFLL16; ABFJ20].

To get a taste of the kind of topological results we can state and prove in cubical type
theory, let us consider a simple HIT with non-trivial higher structure: a circle.

inductive Circle where
| base ∈ Circle
| loop(𝑥 : I) ∈ Circle [𝑥 ≡ 0 ↩→ base | 𝑥 ≡ 1 ↩→ base]

This circle has a single base point and a single loop at that point, that is, a path
from that point to itself. One way we can analyze the circle is by characterizing the
type Path(Circle, base, base) of paths from the base point to itself; this is the fundamental
group of (Circle, base).3 Calculating fundamental groups is one of the most basic tools
for classifying spaces in algebraic topology; for example, we can see that Circle is not
isomorphic to Unit or to Circle × Circle by comparing their fundamental groups.

We certainly expect there to be at least two paths from base to base: the constant path,
𝜆I𝑥 . base, and the path given by the loop constructor, 𝜆I𝑥 . loop(𝑥). In fact, because paths
(like equalities) are invertible and composable, there are integer-many paths: we wind up
with an isomorphism Path(Circle, base, base) ' Int. The path that goes around the loop
“forward” 𝑛 times corresponds to the positive integer 𝑛, while the path that goes around
the loop “backward” 𝑛 times corresponds to −𝑛.

We will not give a proof of this isomorphism here—see [LS13] or [Uni13, §8.1]—but
we do want to call attention to one aspect. To construct the isomorphism, we must of
course be able to define a function Path(Circle, base, base) → Int. That is, we must be
able to extract data (an integer) from a path. Thus we arrive again at the problem at the
root of effectivity of quotients. This time, with contentful equality in hand, we will be
able to solve it.

Descent and effectivity Both the characterization of Path(Circle, base, base) and ef-
fectivity of quotients depend on a more fundamental descent property, a concept which
originates in category theory and arises in cubical type theory from a combination of
univalence and the ability to define types by case analysis.

Observe that we have an isomorphism 𝐼 ∈ Int ' Int whose forward map sends the
integer 𝑛 to its successor 𝑛 + 1. By univalence, this isomorphism induces a path in the

3A bit more precisely, this is the loop space, while the fundamental group is the set truncation
‖Path(Circle, base, base)‖0 of this type. In this case, the two are isomorphic, as the circle has no structure
above dimension one.

92 Introduction

universe, which we will call UA 𝐼 ∈ Path(U, Int, Int). By case analysis, we can use this
path to define a function Code ∈ Circle → U as follows.

Code 𝑐 B

case 𝑐 of
| base ↦→ Int
| loop(𝑥) ↦→ UA 𝐼 𝑥


That is, we draw a picture of a circle inU by choosing the type Int as our point andUA 𝐼 as
our loop at that point. The transformation of the data (Int, 𝐼) into a function Circle → U,
instrumented by the circle eliminator, is the aforementioned descent.

Now suppose we have an arbitrary path 𝑝 ∈ Path(Circle, base, base). By applying
Code to this path pointwise, we obtain a path 𝜆I𝑥 .Code (𝑝 𝑥) ∈ Path(U, Int, Int). We
define our candidate integer corresponding to 𝑝 by coercing 0 ∈ Int along this path.

encode 𝑝 B coe0�1
𝑥 .Code (𝑝 𝑥) (0) ∈ Int

This gives us an integer; is it the integer we want? If we apply encode to the constant
path, we have a coercion along a constant path, which we can show corresponds to the
identity function. (We henceforth use⇝ as an informal infix notation for paths.)

encode (𝜆I𝑥 . base) = coe0�1
𝑥 .Int(0) ⇝ 0 ∈ Int

On the other hand, if we supply 𝜆I𝑥 . loop(𝑥), coercion on a path formed by univalence
transforms into an application of the underlying isomorphism, which sends 𝑛 to 𝑛 + 1.

encode (𝜆I𝑥 . loop(𝑥)) = coe0�1
𝑥 .UA 𝐼 𝑥 (0) ⇝ 0 + 1 = 1 ∈ Int

So encode does, at least, distinguish between the constant and single loop paths. Although
we cannot inspect its behavior further without getting into the nature of composition and
inversion of paths, suffice to say that we indeed have encode (𝜆I𝑥 . loop𝑛 (𝑥)) ⇝ 𝑛 ∈ Int
for every integer 𝑛, where loop𝑛 is an 𝑛-fold composition of the loop constructor.

By the same technique, we can extract witnesses from paths in our example of a quo-
tient from Chapter 1, the integers modulo 𝑛. Recall that we wanted Int𝑛 to be the quotient
of Int by the following relation.

𝑚0 ≈𝑚1 B (𝑝 : Int) × Id(Int,𝑚1 −𝑚0, 𝑝 · 𝑛)

We can write a definition of Int𝑛 as a higher inductive type as follows.

𝑛 : Nat � inductive Int𝑛 where
| int(𝑚 : Int) ∈ Int𝑛
| mod(𝑚 : Int, 𝑥 : I) ∈ Int𝑛 [𝑥 ≡ 0 ↩→ int(𝑚) | 𝑥 ≡ 1 ↩→ int(𝑚 + 𝑛)]

93

This is a bit different from the naive quotient Int � ≈: to avoid introducing redundant
higher structure, we only construct paths𝑚 ⇝ 𝑚 + 𝑛, not paths𝑚 ⇝ 𝑚 + 𝑝 · 𝑛 for all
𝑝 : Int. The latter are instead obtained by interated composition of the mod constructor:
𝑚⇝𝑚 + 1 · 𝑛⇝ · · ·⇝𝑚 + (𝑝 − 1) · 𝑛⇝𝑚 + 𝑝 · 𝑛.

For any𝑚0,𝑚1 ∈ Int, we have an isomorphism 𝐼 𝑚0𝑚1 ∈ (𝑚0 ≈𝑚1) ' (𝑚0 ≈𝑚1 + 𝑛):
if 𝑚0 and 𝑚1 differ by a multiple of 𝑛, then so do 𝑚0 and 𝑚1 + 𝑛, and vice versa. Using
this, we can define a type family Code ∈ Int → Int𝑛 → U that takes 𝑚0 and int(𝑚1) to
𝑚0 ≈𝑚1 by case analysis.

Code𝑚0 𝑡1 B

case 𝑡1 of
| int(𝑚1) ↦→𝑚0 ≈𝑚1
| mod(𝑚1, 𝑥) ↦→ UA (𝐼 𝑚0𝑚1) 𝑥


Now, given any path 𝑝 ∈ Path(Int, int(𝑚0), int(𝑚1)), we can extract a proof of𝑚0 ≈

𝑚1 by coercing the element 〈0, 𝑃〉 ∈ 𝑚0 ≈𝑚0 (where 𝑃 is some proof that𝑚0−𝑚0⇝ 0 ·𝑛)
along the line of types obtained by applying Code𝑚0 to 𝑝 pointwise.

encode𝑝 B coe0�1
𝑥 .Code𝑚0 (𝑝 𝑥) (〈0, 𝑃〉) ∈ 𝑚0 ≈𝑚1

So we have encode ∈ Path(Int, int(𝑚0), int(𝑚1)) →𝑚0 ≈𝑚1. With a bit more coding,
we can show that encode is even an isomorphism; Int𝑛 is an effective quotient of Int by
− ≈ −.

The computational content of paths is essential to this argument: Code examines the
content of path constructors to convert them into univalence-wrapped isomorphisms, and
coercion in turn inspects its input type line to extract an isomorphism and apply it.

Outline In the following chapters, we realize the promise of higher inductive types
sketched above, defining a class of specifications that include such types as Int𝑛 and ‖𝐴‖
and explaining each such specification as a computational object in a cubical type theory.

In Chapter 5, we begin by considering a number of representative examples of higher
inductive types in more detail, exploring in particular how to implement coercion for
each. In addition to proper higher inductive types, we also consider indexed inductive
types; implementing coercion for these requires similar techniques despite the absence of
explicit higher structure.

Chapter 6 is the meat of this part: we define a schema for specifying indexed higher
inductive types, show that we can construct type systems closed under these types, prove
that they support coercion and composition, and formulate and prove their introduction
and elimination principles.

We close with a discussion of related and future work in Chapter 7.

Chapter 5

Case studies

A reasonably complete theory of higher inductive types must accommodate a number of
features, each of which introduces its own complications. Fortunately, each of these fea-
tures can be examined in isolation. In this chapter, we consider a collection of representa-
tive examples that highlight those features in turn. To get a computational interpretation
off the ground, the main problem we need to solve is the interpretation of the Kan oper-
ations, coercion and composition. Finding solutions to that problem will in turn require
us to think carefully about what the values of a higher inductive type should be, and how
an eliminator should behave when applied to each value.

5.1 Quotients and pushouts

Integers modulo two Our most basic examples of higher inductive types are quotients.
As a first cut, then, let us consider a single concrete instance of a quotient, the integers
modulo 2. (We will suppose that we already have an integer type, which could be imple-
mented in any number of ways.)

inductive Int2 where
| int(𝑚 : Int) ∈ Int2
| mod(𝑚 : Int, 𝑥 : I) ∈ Int2 [𝑥 ≡ 0 ↩→ int(𝑚) | 𝑥 ≡ 1 ↩→ int(𝑚 + 2)]

Note that this definition gives us the free (higher-dimensional) equivalence relation gen-
erated by the path constructors: we only put in paths int(𝑚) ⇝ int(𝑚+2), but we should
be able to derive paths int(𝑚) ⇝ int(𝑚+2·𝑝) from the general properties of path equality.

A first interesting property of higher inductive specifications is that a constructor
may depend on previous constructors: we cannot state the boundary of mod without
knowledge of the int. By contrast, the constructors of an ordinary indexed inductive type
are always independent of each other.

95

96 Case studies

To give a computational definition of this type, we have a number of pieces to as-
semble: its operational semantics (including both the constructors and eliminator), the
relation named by Int2, and its coercion and composition operators. To start with, it is at
least clear that the constructors of the inductive type should be values, with the exception
that the boundary of a path constructor should reduce as specified.

int(𝑀) val mod(𝑀,𝑥) val mod(𝑀, 0) ↦−→ int(𝑀) mod(𝑀, 1) ↦−→ int(𝑀 + 2)

Naively, we might take the terms int(𝑀) and mod(𝑀,𝑥) as the sole values of Int2.
For this to be sensible, however, we need to check that the Kan operations are definable.
Because we have restricted our attention to a concrete HIT with no parameters, we have
no problem with coercion: the only line of the form 𝑥 .Int2 is the constant line, so we can
define coercion across it as the identity function.

coe𝑟�𝑠𝑥 .Int2 (𝑀) ↦−→ 𝑀

It is with composition that we find ourselves in hot water. Recall that hcom in par-
ticular implements symmetry and transitivity of the path relation. In order for these to
be implementable in int(𝑀), they must hold on the level of values; for one, given any
value 𝑥 : I � 𝑉 ∈ Int2, there should be some inverse value 𝑥 : I � 𝑊 ∈ Int2 with
𝑊 [0/𝑥] = 𝑉 [1/𝑥] ∈ Int2 and𝑊 [1/𝑥] = 𝑉 [0/𝑥] ∈ Int2. But this clearly fails for our
choice of values: we always have a path int(𝑀) ⇝ int(𝑀 + 2), but there is no value
that provides a path int(𝑀 + 2) ⇝ int(𝑀). Likewise, our selection of values fails to be
transitive, there being no paths int(𝑀) ⇝ int(𝑀 + 4) or int(𝑀) ⇝ int(𝑀 + 6).

We therefore have no choice but to revise our choice of values, adding new terms to
stand for these values obtained by composition. Of course, we need to account not only
for the special cases of symmetry and transitivity, but for all kinds of composition. We
therefore introduce formal composite values, fhcom, that provide composites for every
possible composition problem.

𝑟 ≠ 𝑠 (�𝑖) 𝜉𝑖 satisfied

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) val

(�𝑖) 𝜉𝑖 satisfied

fhcom𝑟�𝑟 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ 𝑀

(�𝑖 < 𝑘) 𝜉𝑖 satisfied 𝜉𝑘 satisfied

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ 𝑁𝑘 [𝑠/𝑥]

The reduction rules for fhcom line up exactly with the equations imposed in the defi-
nition of composition (Definition 3.1.27). By adding fhcom values to our definition of the

Quotients and pushouts 97

relation for Int2, we can use them to define composition in Int2.

hcom𝑟�𝑠
Int2 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ fhcom𝑟�𝑠 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)

Translating this into a precise definition in the framework of Section 3.1, we would
define the · -relation JInt2K to be the least closed under the following three principles.

• int(𝑀) ≈ int(𝑀′) ∈ JInt2K〈𝜓 〉 for all Ψ ⊩ 𝜓 ∈ · and Ψ ⊩ 𝑀 = 𝑀′ ∈ Int.

• mod(𝑀,𝑥) ≈ mod(𝑀′, 𝑥) ∈ JInt2K〈𝜓 〉 for all Ψ ⊩ 𝜓 ∈ · , 𝑥 ∈ Ψ, and Ψ ⊩ 𝑀 = 𝑀′ ∈ Int.

• fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ fhcom𝑟�𝑠 (′𝑀 ;

−−−−−−−−−⇀
𝜉′𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ JInt2K〈𝜓 〉 whenever the argu-
ments are well-formed and equal composition problems in ⤋JInt2K〈𝜓 〉, as specified in
Definition 3.1.27.

In short, we are now defining Int2 as freely generated by the constructors together with
their composites.

In order to justify throwing new values into the definition of Int2, however, we must
check that we can still define the expected eliminator for the higher inductive type. That
is, we must be able to construct a function (𝑎 : Int2) → 𝐷 given a clause for each construc-
tor as follows.

• 𝑚 : Int � 𝑇int ∈ 𝐷 [int(𝑚)/𝑎].

• 𝑚 : Int, 𝑥 : I � 𝑇mod ∈ 𝐷 [mod(𝑚, 𝑥)/𝑎] satisfying

– 𝑚 : Int � 𝑇mod [0/𝑥] = 𝑇int ∈ 𝐷 [int(𝑚)/𝑎]
– 𝑚 : Int � 𝑇mod [1/𝑥] = 𝑇int [𝑚 + 2/𝑚] ∈ 𝐷 [int(𝑚)/𝑎].

Given these and an element𝑀 ∈ Int2, let us use the syntax elim(𝑎.𝐷 ;𝑀 ;𝑚.𝑇int,𝑚.𝑥 .𝑇mod)
for the application of the eliminator with these clauses to 𝑀 . It is clear how the elimina-
tor should evaluate when applied to constructor values: simply step to the appropriate
provided clause.

elim(𝑎.𝐷 ; int(𝑀);𝑚.𝑇int,𝑚.𝑥 .𝑇mod) ↦−→ 𝑇int [𝑀/𝑚]

elim(𝑎.𝐷 ;mod(𝑀,𝑦);𝑚.𝑇int,𝑚.𝑥 .𝑇mod) ↦−→ 𝑇mod [𝑀/𝑚,𝑦/𝑥]

The boundary equations on 𝑇mod will ensure that this definition evaluates coherently on
a mod term, as is necessary to establish well-typedness.

98 Case studies

But how should the eliminator evaluate on a formal composite? We are rescued by
the assumption that 𝑎 : Int2 � 𝐷 type—in particular, that 𝐷 itself supports coercion and
composition. Wemay therefore evaluate an eliminator applied to a composite by stepping
to a composite of the same shape in the target type. For example, if we apply the eliminator
to the inverse of a path 𝑃 , the result will be the inverse of the same eliminator applied to
𝑃 ; if we apply it to the composition of two paths 𝑃 and𝑄 , the result will be the composite
of the eliminator applied to 𝑃 and the eliminator applied to 𝑄 .

Formally, this intention is expressed by the following operational semantics rule, which
uses the heterogeneous composition operator com introduced in Definition 3.1.30.

𝑟 ≠ 𝑠 (�𝑖) 𝜉𝑖 satisfied 𝐷𝑦 B 𝐷 [fhcom𝑟�𝑦 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖)/𝑎]

elim(𝑎.𝐷 ; fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖);𝑚.𝑇int,𝑚.𝑥 .𝑇mod)
↦−→

com𝑟�𝑠
𝑦.𝐷𝑦

(elim(𝑎.𝐷 ;𝑀 ;𝑚.𝑇int,𝑚.𝑥 .𝑇mod);
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.elim(𝑎.𝐷 ;𝑁𝑖 ;𝑚.𝑇int,𝑚.𝑥 .𝑇mod))

In words, by applying the eliminator to each component of the composition problem,
we obtain a composition problem in 𝐷 . In particular, this problem lies over the filler
𝑦.fhcom𝑟�𝑦 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖): at 𝑟 = 𝑦 we have elim(𝑎.𝐷 ;𝑀 ;𝑚.𝑇int,𝑚.𝑥 .𝑇mod) in 𝐷 [𝑀/𝑎],

while at each 𝜉𝑖 we have 𝑦.elim(𝑎.𝐷 ;𝑁𝑖 ;𝑚.𝑇int,𝑚.𝑥 .𝑇mod) in 𝑦.𝐷 [𝑁𝑖/𝑎]. The composite of
these terms is then a term in 𝐷 [fhcom𝑟�𝑠 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖)/𝑎] as required. The evaluation

is moreover coherent in𝐷 when the inputs are well-typed, thanks to the equations com is
required to satisfy. To summarize, because the composites in Int2 are freely generated and
any target type has its own composites, we have a canonical way to extend any function
covering the constructors to also cover formal composites.

Remark 5.1.1. We motivated our need to introduce homogeneous composites with the
observation that the elements introduced by mod do not otherwise satisfy symmetry or
transitivity. It may be tempting, therefore, to instead simply require that the data for a
path constructor specifies an equivalence relation, disallowing mod but allowing a con-
structormod′(𝑚, 𝑝,−) that connects int(𝑚) ⇝ int(𝑚 +2 ·𝑝) for each integer 𝑝 . However,
such a definition will also fail to be Kan “one dimension up”. For example, path induction
implies the existence of the following square not derivable from mod′ alone.

𝑦

𝑥
int(𝑚) int(𝑚 + 2)

int(𝑚 + 2) int(𝑚 + 2)

mod′(𝑚, 1, 𝑦)

mod′(𝑚, 1, 𝑥) int(𝑚 + 2)

int(𝑚 + 2)

Quotients and pushouts 99

Indeed, we would need to require that the input relation is an ∞-equivalence relation
[Rij18, Chapter 13], a serious burden to place on the programmer.

General relations We have now seen how to handle a single concrete higher inductive
type, in particular how to interpret composition in such a type. The next step is to consider
a higher inductive type with parameters, in which case we will also have a non-trivial
coercion operation to implement. Let us start with a particularly simple case: quotienting
by a type-valued relation, as introduced in Chapter 4.

𝐴 : U, 𝑅 :𝐴 ×𝐴 → U � inductive 𝐴 � 𝑅 where
| pt(𝑎 : 𝐴) ∈ 𝐴 � 𝑅
| rel(𝑎 : 𝐴, 𝑎′ : 𝐴, 𝑟 : 𝑅 〈𝑎, 𝑎′〉, 𝑥 : I) ∈ 𝐴 � 𝑅 [𝑥 ≡ 0 ↩→ pt(𝑎) | 𝑥 ≡ 1 ↩→ pt(𝑎′)]

As before, the constructors alone are not sufficient to interpret composition. We do not
know that 𝑅 is symmetric or transitive, for example. (Indeed, the higher inductive type
produced is really the quotient of 𝐴 by the higher equivalence relation generated by 𝑅,
which is captured by the addition of free composites.) Accordingly, we once again im-
plement composition with formal composites; the addition of parameters has no effect
here.

For coercion, consider the situation where we have a line of types 𝑥 .(𝐴 � 𝑅), made
up of lines 𝑥 : I � 𝐴 ∈ U and 𝑥 : I � 𝑅 ∈ 𝐴 ×𝐴 → U in the parameters. Given some
element 𝑀 ∈ 𝐴[𝑟/𝑥] � 𝑅 [𝑟/𝑥] at some 𝑟 ∈ I, we are charged with producing an element
of 𝐴[𝑠/𝑥] � 𝑅 [𝑠/𝑥] for any other 𝑠 ∈ I. The natural course of action is to do so by case
analysis on the value of 𝑀 . We begin by evaluating the argument of the coercion to a
value.

𝑀 ↦−→ 𝑀′

coe𝑟�𝑠
𝑥 .𝐴�𝑅 (𝑀) ↦−→ coe𝑟�𝑠

𝑥 .𝐴�𝑅 (𝑀′)

Once we arrive at a value 𝑉 , we inspect it. If 𝑉 is a point pt(𝑁) where 𝐴 : 𝐴[𝑟/𝑥], for
example, we can coerce by coercing the inner argument along 𝑥 .𝐴 and then repackaging
it with pt.

coe𝑟�𝑠
𝑥 .𝐴�𝑅 (pt(𝑁)) ↦−→ pt(coe𝑟�𝑠𝑥 .𝐴 (𝑁))

The output of the inner coercion has type 𝐴[𝑠/𝑥], and so the reduct is indeed of type
𝐴[𝑠/𝑥] � 𝑅 [𝑠/𝑥]. The same works for the path constructor: coerce each argument and

100 Case studies

repackage.

coe𝑟�𝑠
𝑥 .𝐴�𝑅 (rel(𝑁, 𝑁 ′, 𝑃,𝑦))

↦−→
rel(coe𝑟�𝑠𝑥 .𝐴 (𝑁), coe𝑟�𝑠𝑥 .𝐴 (𝑁 ′), coe𝑟�𝑠

𝑥 .𝑅〈coe𝑟�𝑦
𝑥.𝐴 (𝑁),coe𝑟�𝑦

𝑥.𝐴 (𝑁 ′)〉 (𝑃), 𝑦)

While the above looks a bit more complicated thanks to the dependency of the type of 𝑃
on 𝑁 and 𝑁 ′, the essential idea is the same. As required, the reduction is coherent: if, for
example, we reduce and then instantiate𝑦 with 0, the result steps to pt(coe𝑟�𝑠𝑥 .𝐴 (𝑁)), which
is the same as the result we would arrive at by instantiating 𝑦 with 0 and then reducing.

Finally, we must consider coercion on a formal composite. In this case, the idea is
the same as with the eliminator. A coercion applied to a formal composite becomes a
composite of coercions in the target type—which is to say, another formal composite.

coe𝑟�𝑠
𝑥 .𝐴�𝑅 (fhcom𝑡�𝑢 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖)) ↦−→ fhcom𝑡�𝑢 (coe𝑟�𝑠

𝑥 .𝐴�𝑅 (𝑀);
−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.coe𝑟�𝑠

𝑥 .𝐴�𝑅 (𝑁𝑖))
Again, it is easy to see that this is a coherent definition, and it completes our specification
of coercion in the quotient type.

Note that we do not have the option of defining coercion in the quotient type by
simply introducing formal coercions, as we did with composition—at least, not without
imposing severe restrictions on the parameters. The problem is that, unlike composition,
coercion moves between different instantiations of the parameters of a type. If we intro-
duced formal coercion values, the values of a given 𝐴 � 𝑅 would depend on the values of
𝐴′ � 𝑅′ for every 𝐴′, 𝑅′ connected by paths to 𝐴, 𝑅; as such, we would have to define the
semantics of the quotient type for every possible parameter instantiation simultaneously.
This dependency on the complete parameter space precludes including𝐴�𝑅 in the same
universe as its type parameters; given 𝐴 ∈ U𝑛 and 𝑅 ∈ 𝐴 ×𝐴 → U𝑛 , we would not have
𝐴 � 𝑅 ∈ U𝑛 but only 𝐴 � 𝑅 ∈ U𝑛+1. This issue was encountered by Lumsdaine and Shul-
man in their semantics of higher inductive types in simplicial model categories, where
it manifests as the failure of a fibrant replacement operation to preserve size. It is thus
an important feature of the cubical setting that the Kan operations can be divided into
homogeneous composition, which can be added formally in HITs, and coercion, which is
definable in HITs. In the simplicial setting, there is instead only an operation analogous
to com which is not known to decompose in such a way.1

Elimination, meanwhile, is not complicated by the addition of parameters; we may
state the elimination principle and define its computational behavior in the same way as

1Shulman has recently proposed an alternative (yet unpublished) technique for realizing higher induc-
tive types in the simplicial case.

Quotients and pushouts 101

in the concrete case, arriving at the following typing rule.

𝑞 :𝐴 � 𝑅 � 𝐷 type 𝑀 ∈ 𝐴 � 𝑅 𝑎 :𝐴 � 𝑇pt ∈ 𝐷 [pt(𝑎)/𝑞]
𝑎 :𝐴, 𝑎′ :𝐴, 𝑟 : 𝑅 〈𝑎, 𝑎′〉, 𝑥 : I � 𝑇rel ∈ 𝐷 [rel(𝑎, 𝑎′, 𝑟 , 𝑥)/𝑞]
𝑎 :𝐴, 𝑎′ :𝐴, 𝑟 : 𝑅 〈𝑎, 𝑎′〉 � 𝑇rel [0/𝑥] = 𝑇pt ∈ 𝐷 [pt(𝑎)/𝑞]

𝑎 :𝐴, 𝑎′ :𝐴, 𝑟 : 𝑅 〈𝑎, 𝑎′〉 � 𝑇rel [1/𝑥] = 𝑇pt [𝑎′/𝑎] ∈ 𝐷 [pt(𝑎′)/𝑞]
elim(𝑞.𝐷 ;𝑀 ;𝑎.𝑇pt, 𝑎.𝑎′.𝑟 .𝑥 .𝑇rel) ∈ 𝐷 [𝑀/𝑞]

Pushouts The quotient type is actually a deceptively simple example of a parameterized
higher inductive type, at least as far as coercion is concerned. It has the special property
that the naive definition of coercion for the path constructor—coerce each argument and
repackage—produces coherent results. This is not the case in general, as demonstrated by
our next example: the pushout [Uni13, §6.8].

The pushout of a pair of maps 𝐹 ∈ 𝐶 → 𝐴 and𝐺 ∈ 𝐶 → 𝐵 is the coproduct of𝐴 and 𝐵
“modulo𝐶”: it has an element inl(𝑎) for every 𝑎 : 𝐴 and an element inr(𝑏) for every 𝑏 : 𝐵,
but also identifies inl(𝐹 𝑐) with inr(𝐺 𝑐) for every 𝑐 : 𝐶 .

𝐴, 𝐵,𝐶 : U, 𝑓 :𝐶 → 𝐴,𝑔 :𝐶 → 𝐵 � inductive Push(𝐴, 𝐵,𝐶, 𝑓 , 𝑔) where
| inl(𝑎 : 𝐴) ∈ Push(𝐴, 𝐵,𝐶, 𝑓 , 𝑔)
| inr(𝑏 : 𝐵) ∈ Push(𝐴, 𝐵,𝐶, 𝑓 , 𝑔)
| push(𝑐 : 𝐶, 𝑥 : I) ∈ Push(𝐴, 𝐵,𝐶, 𝑓 , 𝑔) [𝑥 ≡ 0 ↩→ inl(𝑓 𝑐) | 𝑥 ≡ 1 ↩→ inr(𝑔 𝑐)]

The notable feature of this definition, in comparison to what we have seen before, is that
the boundary of the path constructor push depends on the parameters 𝑓 , 𝑔 to the type.
(Strictly speaking, push should be annotatedwith 𝑓 and𝑔 so that these are available for the
boundary reductions in the operational semantics, but we will suppress such annotations
here for readability.)

As with the quotient, we can define composition in Push(𝐴, 𝐵,𝐶, 𝐹,𝐺) using formal
composites, and we can define coercion on the point constructors by moving the coercion
inside the constructor.

coe𝑟�𝑠𝑥 .Push(𝐴,𝐵,𝐶,𝐹,𝐺) (inl(𝑀)) ↦−→ inl(coe𝑟�𝑠𝑥 .𝐴 (𝑀))

coe𝑟�𝑠𝑥 .Push(𝐴,𝐵,𝐶,𝐹,𝐺) (inr(𝑁)) ↦−→ inr(coe𝑟�𝑠𝑥 .𝐵 (𝑁))

It is tempting to do the same for the path constructor.

coe𝑟�𝑠𝑥 .Push(𝐴,𝐵,𝐶,𝐹,𝐺) (push(𝑃,𝑦)) ↦−→ push(coe𝑟�𝑠𝑥 .𝐶 (𝑃), 𝑦)
8

Looking closely at this definition, however, we notice that it fails to be coherent.
If we instantiate 𝑦 with 0, the left side will reduce to coe𝑟�𝑠

𝑥 .Push(𝐴,𝐵,𝐶,𝐹,𝐺) (inl(𝐹 [𝑟/𝑥] 𝑃)),

102 Case studies

which in turn reduces to inl(coe𝑟�𝑠𝑥 .𝐴 (𝐹 [𝑟/𝑥] 𝑃)) by our rules for coercion of point con-
structors. If, on the other hand, we instantiate 𝑦 with 0 on the right side, we instead
obtain inl(𝐹 [𝑠/𝑥] (coe𝑟�𝑠𝑥 .𝐶 (𝑃))). That is, depending on our ordering of reduction and in-
terval substitution, we apply 𝐹 and coercion in different orders. Nothing guarantees that
coe𝑟�𝑠𝑥 .𝐴 (𝐹 [𝑟/𝑥] 𝑃) and 𝐹 [𝑠/𝑥] (coe𝑟�𝑠𝑥 .𝐶 (𝑃)) will be equal as elements of 𝐴[𝑠/𝑥], and so this
reduction rule fails to give us a well-typed coercion operator.2

Fortunately, although we have a mismatch up to exact equality, these two terms are
the same up to path equality, which means we will be able to correct the definition using
composition. Consider the following term varying in 𝑥 : I.

𝑥 : I � coe𝑥�𝑠𝑥 .𝐴 (𝐹 (coe𝑟�𝑥𝑥 .𝐶 (𝑃))) ∈ 𝐴

When we instantiate 𝑥 with 𝑟 , the inner coercion vanishes, and so the term simplifies to
coe𝑟�𝑠𝑥 .𝐴 (𝐹 [𝑟/𝑥] 𝑃). Conversely, when we instantiate 𝑥 with 𝑠 , the outer coercion disap-
pears and we are left with 𝐹 [𝑠/𝑥] (coe𝑟�𝑠𝑥 .𝐶 (𝑃)). We can use this adjustment path, together
with the corresponding path for 𝐺 , as the tube of a formal composition that “fixes” the
boundary of our naive definition.

coe𝑟�𝑠𝑥 .Push(𝐴,𝐵,𝐶,𝐹,𝐺) (push(𝑃,𝑦))
↦−→

fhcom𝑠�𝑟 (
push(coe𝑟�𝑠𝑥 .𝐶 (𝑃), 𝑦); 𝑦 ≡ 0 ↩→ 𝑥 .inl(coe𝑥�𝑠𝑥 .𝐴 (𝐹 (coe𝑟�𝑥𝑥 .𝐶 (𝑃))))

𝑦 ≡ 1 ↩→ 𝑥 .inr(coe𝑥�𝑠𝑥 .𝐵 (𝐺 (coe𝑟�𝑥𝑥 .𝐶 (𝑃))))

)
4

This rectified definition satisfies the coherence conditions we require, and still simplifies
to push(𝑃,𝑦) when 𝑟 = 𝑠 . This shape of coercion implementation—with coherence en-
sured by formal composition—will suffice for all non-indexed higher inductive types. For
indexed higher inductive types (indeed, for indexed inductive types more generally), an-
other adjustment will be necessary, as we will see in Section 5.3.

5.2 Truncations

For our next class of examples, we examine the role of recursive constructors by con-
sidering the propositional truncation and more generally the higher truncations. These

2Indeed, in order for this condition to hold in general, we would need exact uniqueness of identity
proofs in 𝐴. Consider the case where 𝐹 is a constant function 𝜆 .𝑀 for some 𝑀 ∈ 𝐴. The coherence
condition then requires that coe𝑟�𝑠

𝑥 .𝐴 (𝑀 [𝑟/𝑥]) is exactly 𝑀 [𝑠/𝑥] for all 𝑟, 𝑠 , which implies in particular that
𝑦 : I � 𝑀 [𝑦/𝑥] = coe0�𝑦

𝑥.𝐴 (𝑀 [0/𝑥]) ∈ 𝐴[𝑦/𝑥]. Were this true for all 𝑀 , any path 𝑄 ∈ Path(𝑥 .𝐴,𝑀0, 𝑀1)
would be equal to the path 𝜆𝑦. coe0�𝑦

𝑥.𝐴 (𝑀0).

Truncations 103

examples do not present any new difficulties as far as implementing the Kan operations
is concerned. Rather, they demonstrate constructor shapes we want to be able to express
in our schema.

Propositional truncation Recall the following specification of the propositional trun-
cation from Chapter 4.

𝐴 : U � inductive ‖𝐴‖ where
| pt(𝑎 : 𝐴) ∈ ‖𝐴‖
| squash(𝑡 : ‖𝐴‖, 𝑡 ′ : ‖𝐴‖, 𝑥 : I) ∈ ‖𝐴‖ [𝑥 ≡ 0 ↩→ 𝑡 | 𝑥 ≡ 1 ↩→ 𝑡 ′]

Like the suc constructor for the natural numbers, the squash constructor is recursive:
it takes arguments from the type being constructed. In the case of a path constructor,
we therefore also want to allow recursive arguments to occur in the boundary of a path
constructor, as they do in squash.

For the eliminator, we aim to satisfy the following rule.

𝑞 : ‖𝐴‖ � 𝐷 type 𝑀 ∈ ‖𝐴‖ 𝑎 :𝐴 � 𝑇pt ∈ 𝐷 [pt(𝑎)/𝑞]
𝑡 : ‖𝐴‖, 𝑡 ′ : ‖𝐴‖, 𝑥 : I, 𝑟 : 𝐷 [𝑡/𝑞], 𝑟 ′ : 𝐷 [𝑡 ′/𝑞] � 𝑇squash ∈ 𝐷 [squash(𝑡, 𝑡 ′, 𝑥)/𝑞]

𝑡 : ‖𝐴‖, 𝑡 ′ : ‖𝐴‖, 𝑟 : 𝐷 [𝑡/𝑞], 𝑟 ′ : 𝐷 [𝑡 ′/𝑞] � 𝑇squash [0/𝑥] = 𝑟 ∈ 𝐷 [𝑡/𝑞]
𝑡 : ‖𝐴‖, 𝑡 ′ : ‖𝐴‖, 𝑟 : 𝐷 [𝑡/𝑞], 𝑟 ′ : 𝐷 [𝑡 ′/𝑞] � 𝑇squash [1/𝑥] = 𝑟 ′ ∈ 𝐷 [𝑡/𝑞]

elim(𝑞.𝐷 ;𝑀 ;𝑎.𝑇pt, 𝑎.𝑎′.𝑥 .𝑟 .𝑟 ′.𝑇squash) ∈ 𝐷 [𝑀/𝑞]

To the squash clause, we supply not only the arguments 𝑡 : ‖𝐴‖, 𝑡 ′ : ‖𝐴‖, 𝑥 : I to the con-
structor, but also the results 𝑟 : 𝐷 [𝑡/𝑞], 𝑟 ′ : 𝐷 [𝑡 ′/𝑞] of applying the eliminator to those
terms, just as in the suc case of the natural number eliminator. In the operational seman-
tics, these hypotheses are instantiated by recursive calls as in the following rule.

𝑁 B elim(𝑞.𝐷 ;𝑀 ;𝑎.𝑇pt, 𝑎.𝑎′.𝑥 .𝑟 .𝑟 ′.𝑇squash)
𝑁 ′ B elim(𝑞.𝐷 ;𝑀′;𝑎.𝑇pt, 𝑎.𝑎′.𝑥 .𝑟 .𝑟 ′.𝑇squash)

elim(𝑞.𝐷 ; squash(𝑀,𝑀′, 𝑦);𝑎.𝑇pt, 𝑎.𝑎′.𝑥 .𝑟 .𝑟 ′.𝑇squash)
↦−→

𝑇squash [𝑀/𝑡, 𝑀′/𝑡 ′, 𝑦/𝑥, 𝑁 /𝑟, 𝑁 ′/𝑟 ′]

The equations in the elimination rule require the endpoints of the squash clause to agree
with the two recursive calls, ensuring that the reduction rule above is sufficiently coher-
ent.

104 Case studies

Set truncation The propositional truncation sits at the bottom of a tower of truncation
operators that cut off the higher structure of a type at some dimensionality. Where the
propositional truncation identifies all points of a type, the set truncation collapses all paths
between each pair of elements in a type [Uni13, §6.9]. We can express the set truncation
by the following specification.

𝐴 : U � inductive ‖𝐴‖0 where
| pt0(𝑎 : 𝐴) ∈ ‖𝐴‖0
| squash0(𝑡, 𝑡 ′ : ‖𝐴‖0, 𝑝, 𝑝′ : Path(‖𝐴‖0, 𝑡, 𝑡 ′), 𝑥 : I, 𝑦 : I) ∈ ‖𝐴‖0
[𝑥 ≡ 0 ↩→ 𝑝 𝑦 | 𝑥 ≡ 1 ↩→ 𝑝′𝑦 | 𝑦 ≡ 0 ↩→ 𝑡 | 𝑦 ≡ 1 ↩→ 𝑡 ′]

The constructor squash0 is our first example of a 2-dimensional constructor. Given
two paths, it creates a higher path (i.e., square) identifying them: abstracting, we have
𝜆I𝑦. squash0(𝑡, 𝑡 ′, 𝑝, 𝑝′, 0, 𝑦) = 𝑝 ∈ Path(‖𝐴‖0, 𝑡, 𝑡 ′) and 𝜆I𝑦. squash0(𝑡, 𝑡 ′, 𝑝, 𝑝′, 1, 𝑦) = 𝑝′ ∈
Path(‖𝐴‖0, 𝑡, 𝑡 ′). The cubical notation for specifying boundaries generalizes gracefully to
the greater-than-one-dimensional case.

Note that the arguments of squash0 now draw not only from the elements of the type
being defined, but from its path types. In particular, supporting this specification requires
that we allow dependencies between recursive arguments—here, the dependency in the
types of 𝑝 and 𝑝′ on 𝑡 and 𝑡 ′. This is atypical in a schema for indexed inductive types, where
recursive arguments are usually completely independent of each other. (Dependency
among recursive arguments does, however, arise in schemata for inductive-inductive and
inductive-recursive types.) We must also be able to apply the path arguments 𝑝 and 𝑝′ to
interval terms (here 𝑦) in order to specify the boundary of the squash0 constructor.

General truncation The propositional truncation and set truncation are also known as
the (−1)-truncation and 0-truncation respectively; more generally, the 𝑛-truncation triv-
ializes the structure of a type above dimension 𝑛. We could continue defining individual
𝑛-truncations using 𝑛-dimensional constructors, but many applications require that we
have a single, parameterized definition of 𝑛-truncation uniformly in 𝑛 : Nat.

The HoTT Book proposes a fairly direct general definition of 𝑛-truncation using what
is called a hub-and-spoke construction [Uni13, §6.7]. This definition relies on our ability
to construct 𝑛-sphere types uniformly in 𝑛 :Nat, generalizing the circle (i.e., 1-sphere) we
saw in Chapter 4, by iteratively applying a suspension construction.

𝐴 : U � inductive Susp(𝐴) where
| north ∈ Susp(𝐴)
| south ∈ Susp(𝐴)
| merid(𝑎 : 𝐴, 𝑥 : I) ∈ Susp(𝐴) [𝑥 ≡ 0 ↩→ north | 𝑥 ≡ 1 ↩→ south]

Truncations 105

If we take the type Circle defined in Chapter 4 and apply the suspension, we get a
type Susp(Circle) with two “poles” (north and south) and a “line of longitude” (merid)
from pole to pole for every “point on the equator” (element of the circle). This type
is the 2-sphere. Iterating the suspension construction produces the 𝑛-spheres for ev-
ery 𝑛. Actually, we can start this definition from −1, defining Sphere(−1) B Void and
Sphere(𝑛 + 1) B Susp(Sphere(𝑛)) for 𝑛 ≥ −1; the type Susp(Void) is isomorphic to Bool,
and Susp(Bool) to Circle.

Given a type 𝐴, a map 𝐹 ∈ Sphere(0) → 𝐴 picks out two points in 𝐴, namely 𝐹 north
and 𝐹 south. A map 𝐹 ∈ Sphere(1) → 𝐴 picks out two points and two paths in𝐴 between
them: 𝐹 north, 𝐹 south, 𝜆I𝑥 . 𝐹 (merid(north, 𝑥)), and 𝜆I𝑥 . 𝐹 (merid(south, 𝑥)). These col-
lections of data are exactly the inputs to the squash and squash0 constructors respectively,
which inspires the following general definition of 𝑛-truncation.

𝑛 : Nat, 𝐴 : U � inductive ‖𝐴‖𝑛 where
| pt𝑛 (𝑎 : 𝐴) ∈ ‖𝐴‖𝑛
| hub𝑛 (𝑓 : Sphere(𝑛) → ‖𝐴‖𝑛) ∈ ‖𝐴‖𝑛
| spoke𝑛 (𝑓 : Sphere(𝑛) → ‖𝐴‖𝑛, 𝑠 : Sphere(𝑛), 𝑥 : I) ∈ ‖𝐴‖𝑛
[𝑥 ≡ 0 ↩→ hub𝑛 (𝑓) | 𝑥 ≡ 1 ↩→ 𝑓 𝑠]

For each diagram to be squashed, i.e., map Sphere(𝑛) → ‖𝐴‖𝑛 , the 𝑛-truncation type adds
a point hub𝑛 (𝑓) and draws a path 𝜆I𝑥 . spoke𝑛 (𝑓 , 𝑠, 𝑥) from the hub to each element 𝑓 𝑠 of
the diagram, thus filling it in.

From a schema design perspective, the notable feature of this specification is its use
of recursive arguments of function type—in this case, maps from Sphere(𝑛) into the type
being constructed—and likewise the application of these in the definition of the boundary,
paralleling the use of paths in our previous definition of ‖𝐴‖0. Such recursive arguments
are called generalized recursive arguments in Dybjer’s schema for (non-higher) indexed
inductive types [Dyb94].

Note that not all function types involving the type being defined should be permissible
in an inductive definition. For example, the existence of a type inductively defined by the
following specification is contradictory.

inductive 8 where
| fold(𝑓 : 8 → Bool) ∈ 8

The non-existence of this type can be blamed on the fact that 8 occurs negatively
in the arguments to fold, that is, in the domain of a function type. Thus, for one, the
existence of a fixed point is not guaranteed by theorems such as Theorem 2.1.20 that
rely on monotonicity. Following the standard approaches for inductive type schemata,
therefore, we will restrict recursive argument types to a strictly positive grammar, only
allowing the type being defined to occur in the codomain of function types. Note that the

106 Case studies

path type is monotone in its sole type argument, and so does not pose a problem in this
regard.

5.3 Identity types
Our final illustrative example of the schema we wish to implement is not a higher induc-
tive type at all, merely an ordinary indexed inductive type: Martin Löf’s identity type
with its J elimination rule (Section 2.1.5.4). While non-indexed inductive types such as
Nat can be adapted to the cubical setting without any change, indexed inductive types
are a different story; we will see that the implementation of their Kan operations requires
tactics similar to those we have used for higher inductive types.

The identity type at 𝐴 is a type indexed by two elements of 𝐴, which is inhabited by
refl when those two elements are the same.

𝐴 : U � inductive Id(𝐴, 𝑎 : 𝐴, 𝑎′ : 𝐴) where
| refl(𝑎 : 𝐴) ∈ Id(𝐴, 𝑎, 𝑎)

Deriving the elimination rule for this type following Dybjer [Dyb94], we arrive at the
so-called J rule, the elimination rule previously described in Section 2.1.5.4.

𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 : Id(𝐴, 𝑎0, 𝑎1) � 𝐵 type
𝑀0 ∈ 𝐴 𝑀1 ∈ 𝐴 𝑃 ∈ Id(𝐴,𝑀0, 𝑀1) 𝑎 :𝐴 � 𝑁 ∈ 𝐵 [𝑎/𝑎0, 𝑎/𝑎1, refl(𝑎)/𝑝]

elim(𝑎0.𝑎1.𝑝.𝐵;𝑀0, 𝑀1; 𝑃 ;𝑎.𝑁) ∈ 𝐵 [𝑀0/𝑎0, 𝑀1/𝑎1, 𝑃/𝑝]

𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 : Id(𝐴, 𝑎0, 𝑎1) � 𝐵 type
𝑀 ∈ 𝐴 𝑎 :𝐴 � 𝑁 ∈ 𝐵 [𝑎/𝑎0, 𝑎/𝑎1, refl(𝑎)/𝑝]

elim(𝑎0.𝑎1.𝑝.𝐵;𝑀,𝑀 ; refl(𝑀);𝑎.𝑁) = 𝑁 [𝑀/𝑎] ∈ 𝐵 [𝑀/𝑎0, 𝑀/𝑎1, refl(𝑀)/𝑝]

In words, in order to construct a map into a type 𝐵 predicated on two elements of 𝐴
and an identity between them, it suffices to provide a clause for the refl case. Note that
this elimination principle does not, for example, directly provide any way of constructing
functions into type families such as 𝑎 :𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑎) � 𝐵′ type.

Naively, we might try to interpret Id(𝐴,𝑀0, 𝑀1) as the relation consisting only of a
refl value whenever 𝑀0 and 𝑀1 are exactly equal in 𝐴. However, this definition fails to
support coercion. We can see this by observing that coercion requires Id(𝐴,𝑀0, 𝑀1) to
be inhabited not only when 𝑀0 and 𝑀1 are exactly equal, but whenever there is a path
𝑃 ∈ Path(𝐴,𝑀0, 𝑀1) between them.

coe0�1
𝑥 .Id(𝐴,𝑀0,𝑃 𝑥) (refl(𝑀0)) ∈ Id(𝐴,𝑀0, 𝑀1)

Identity types 107

Conversely, one can easily use the eliminator for the identity type to transform identities
𝑄 ∈ Id(𝐴,𝑀0, 𝑀1) into paths, starting the existence of reflexive paths.

elim(𝑎0.𝑎1.𝑝.Path(𝐴, 𝑎0, 𝑎1);𝑀0, 𝑀1;𝑄 ;𝑎.𝜆I𝑥 . 𝑎) ∈ Path(𝐴,𝑀0, 𝑀1)

In fact, one may straightforwardly show that these functions would constitute an iso-
morphism between Path(𝐴,𝑀0, 𝑀1) and Id(𝐴,𝑀0, 𝑀1). This would seem to suggest that
wemay define identity types to be path types—after all, we intended path types to play the
role of identity types from the start. To do so, we would have to give some definition of
the identity type eliminator as an operator on path types, a term satisfying the following
typing rule.

𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 : Path(𝐴, 𝑎0, 𝑎1) � 𝐵 type
𝑀0 ∈ 𝐴 𝑀1 ∈ 𝐴 𝑃 ∈ Path(𝐴,𝑀0, 𝑀1) 𝑎 :𝐴 � 𝑁 ∈ 𝐵 [𝑎/𝑎0, 𝑎/𝑎1, 𝜆I . 𝑎/𝑝]

“elim”(𝑎0.𝑎1.𝑝.𝐵;𝑀0, 𝑀1; 𝑃 ;𝑎.𝑁) ∈ 𝐵 [𝑀0/𝑎0, 𝑀1/𝑎1, 𝑃/𝑝]

This much is possible: we may define the eliminator directly as follows.

“elim”(𝑎0.𝑎1.𝑝.𝐵;𝑀0, 𝑀1; 𝑃 ;𝑎.𝑁) B coe0�1
𝑥 .𝐵 [𝑀0/𝑎0,𝐻𝑥 1/𝑎1,𝐻𝑥/𝑝] (𝑁 [𝑀0/𝑎])

where 𝐻𝑥 B 𝜆I𝑦. hcom0�𝑦
𝐴 (𝑀0;𝑥 ≡ 0 ↩→ 𝑦.𝑀0, 𝑥 ≡ 1 ↩→ 𝑦.𝑃 𝑦)

The term 𝐻𝑥 here is constructed so that 𝐻0 = 𝜆I . 𝑀0 and 𝐻1 = 𝑃 , allowing us to transfer
terms over the former to terms over the latter by coercion.

While this term has the correct type, however, it fails to satisfy the equation required of
an identity eliminator: the reduction rule “elim”(𝑎0.𝑎1.𝑝.𝐵;𝑀,𝑀 ; 𝜆I(𝑀);𝑎.𝑁) = 𝑁 [𝑀/𝑎].
The equation can be shown to hold up to a path, but there is no reason it should hold up
to exact equality in general. The representative counterexamples involve composition in
the universe, so we will not present them here; a detailed walkthrough can be found in
[Ang19, §3.4]. The situation is actually quite dire: Swan has shown that, under certain
basic assumptions, the semantic path types in cubical set models cannot be used construc-
tively as an interpretation of identity types [Swa18b].

Of course, this does not mean that there is no way to construct identity types, only
that they will not coincide with path types. As we saw above, the problem with the naive
construction is that it is not closed under coercion. This parallels the issuewe encountered
back in Section 5.1, where we found that the naive interpretation of quotients failed to be
closed under composition. The solution will be the same: introduce formal coercions.

As mentioned in Section 5.1, formal coercions are not a satisfactory general solution
to coercion in higher inductive types: they require the resulting type to be as large as the
types of its parameters, which precludes, e.g., universes closed under quotients. However,
we can improve on this “worst case” by introducing only formal coercions between indices

108 Case studies

of an indexed inductive type, implementing general coercionwith a combination of formal
coercion between indices and non-formal coercion between parameters. In the case of an
inductive type with trivial indexing, this reduces to the non-formal coercion solution we
have used so far. With this approach, the size of an inductive type is only dependent on
the size of its indices, not its parameters: Id(𝐴,𝑀0, 𝑀1) will be as large as 𝐴, this being
the type of𝑀0 and𝑀1, but not as large as the type of 𝐴 (some U).

In the case of identity types, formal coercion takes the following form, allowing us to
coerce between different instantiations of𝑀0 and𝑀1 but not of 𝐴.

𝐴 type 𝑥 : I � 𝑀0, 𝑀1 ∈ 𝐴 𝑟, 𝑠 ∈ I 𝑃 ∈ Id(𝐴,𝑀0 [𝑟/𝑥], 𝑀1 [𝑟/𝑥])
fcoe𝑟�𝑠𝑥 .(𝑀0,𝑀1) (𝑃) ∈ Id(𝐴,𝑀0 [𝑠/𝑥], 𝑀1 [𝑠/𝑥])

As is our custom, we also impose the equation fcoe𝑟�𝑟𝑥 .(𝑀0,𝑀1) (𝑃) = 𝑃 . Operationally, formal
coercions are values unless trivial.

𝑟 ≠ 𝑠

fcoe𝑟�𝑠𝑥 .(𝑀0,𝑀1) (𝑃) val fcoe𝑟�𝑟𝑥 .(𝑀0,𝑀1) (𝑃) ↦−→ 𝑃

To implement general coercion, we combine formal index coercion with a parameter co-
ercion operator implemented by case analysis, satisfying the following typing rule.

𝑥 : I � 𝐴 type 𝑀0, 𝑀1 ∈ 𝐴[𝑟/𝑥] 𝑟, 𝑠 ∈ I 𝑃 ∈ Id(𝐴[𝑟/𝑥], 𝑀0, 𝑀1)
pcoe𝑟�𝑠𝑥 .𝐴▶Id(𝑃) ∈ Id(𝐴[𝑠/𝑥], coe𝑟�𝑠𝑥 .𝐴 (𝑀0), coe𝑟�𝑠𝑥 .𝐴 (𝑀1))

In this case, we have a line 𝑥 .𝐴 in the type parameter, but indices 𝑀0, 𝑀1 only at the
departure point 𝑟 . These input indices are coerced along the parameter path 𝑥 .𝐴 in order
to produce the indices for the output.

The general coercion operation is then derived by combining the parameter and index
coercions: we first coerce to the correct parameters, then adjust the indices using a formal
coercion.

coe𝑟�𝑠𝑥 .Id(𝐴,𝑀0,𝑀1) (𝑃) ↦−→ fcoe𝑟�𝑠𝑥 .(coe𝑥�𝑠
𝑥 .𝐴 (𝑀0),coe𝑥�𝑠

𝑥 .𝐴 (𝑀1)) (pcoe
𝑟�𝑠
𝑥 .𝐴▶Id(𝑃))

To complete the picture, we just need to implement parameter coercion. For this, we
follow the pattern of coercion in higher inductive types: evaluate the argument to a value
and push the coercion inside. For identity types, there will be three types of values: refl
terms, formal coercions, and formal composites. Note that despite the lack of explicit path
constructors, formal composite values become necessary in order to ensure that the paths

Identity types 109

created by formal coercion are composable.

pcoe𝑟�𝑠𝑥 .𝐴▶Id(refl(𝑀)) ↦−→ refl(coe𝑟�𝑠𝑥 .𝐴 (𝑀))

pcoe𝑟�𝑠𝑥 .𝐴▶Id(fcoe
𝑡�𝑢
𝑦.(𝑀0,𝑀1) (𝑃)) ↦−→ fcoe𝑡�𝑢𝑦.(coe𝑟�𝑠

𝑥 .𝐴 (𝑀0),coe𝑟�𝑠
𝑥 .𝐴 (𝑀1)) (pcoe

𝑟�𝑠
𝑥 .𝐴▶Id(𝑃))

pcoe𝑟�𝑠𝑥 .𝐴▶Id(fhcom
𝑡�𝑢 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖))

↦−→
fhcom𝑡�𝑢 (pcoe𝑟�𝑠𝑥 .𝐴▶Id(𝑀);

−−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.pcoe𝑟�𝑠𝑥 .𝐴▶Id(𝑁𝑖))

In the general case, the constructor case becomes slightly more complex in the same
way that coercion in pushouts is more involved than in quotients: if the index of a con-
structor involves outside parameters, then an additional formal coercion is necessary in
order to commute coercion past uses of those parameters. A simple example where this
is needed is the fiber family Fib(𝐴, 𝐵, 𝑓 ,−) of a function 𝑓 ∈ 𝐴 → 𝐵, a family indexed by
𝐵 whose elements at index 𝑏 : 𝐵 are the elements of 𝐴 mapped to 𝑏 by 𝑓 .

𝐴 : U, 𝐵 : U, 𝑓 :𝐴 → 𝐵 � inductive Fib(𝐴, 𝐵, 𝑓 , 𝑏 : 𝐵) where
| fib(𝑎 : 𝐴) ∈ Fib(𝐴, 𝐵, 𝑓 , 𝑓 𝑎)

In this example, parameter coercion of the constructor along a line 𝑥 : I � 𝐹 ∈ 𝐴 → 𝐵
can be defined as follows, with an fcoe applying the necessary adjustment.

pcoe𝑟�𝑠𝑥 .(𝐴,𝐵,𝐹)▶Fib(fib(𝑀)) ↦−→ fcoe𝑟�𝑠𝑥 .coe𝑥�𝑠
𝑥 .𝐵 (𝐹 (coe𝑟�𝑥

𝑥.𝐴 (𝑀))) (fib(coe
𝑟�𝑠
𝑥 .𝐴 (𝑀)))

To wrap up our definition of identity types, we still need to implement the eliminator.
In addition to the refl constructor, we must handle the two formal Kan operator values.
The same pattern used for composition in higher inductive types applies to both coer-
cion and composition here: convert formal Kan operations in the domain into “real” Kan
operations in the codomain, as shown for formal coercion below.

𝐻𝑥 B fcoe𝑟�𝑥𝑥 .(𝑀 ′
0,𝑀

′
1)
(𝑃)

elim(𝑎0.𝑎1.𝑝.𝐵;𝑀0, 𝑀1; fcoe𝑟�𝑠𝑥 .(𝑀 ′
0,𝑀

′
1)
(𝑃);𝑎.𝑁)

↦−→
coe𝑟�𝑠𝑥 .𝐵 [𝑀 ′

0/𝑎0,𝑀 ′
1/𝑎1,𝐻𝑥/𝑝] (elim(𝑎0.𝑎1.𝑝.𝐵;𝑀′

0 [𝑟/𝑥], 𝑀′
1 [𝑟/𝑥]; 𝑃 ;𝑎.𝑁))

If applied to the refl constructor, of course, the eliminator should simply apply the pro-
vided clause 𝑎.𝑁 , straightforwardly validating the reduction rule that cannot be achieved

110 Case studies

with path types.

elim(𝑎0.𝑎1.𝑝.𝐵;𝑀0, 𝑀1; refl(𝑀);𝑎.𝑁) ↦−→ 𝑁 [𝑀/𝑎]

Comparing MLTT and cubical identity types In Martin-Löf type theory, the J elimi-
nator is unnecessarily weak from the perspective of the computational semantics. Indeed,
as noted in Section 2.1.5.4, the semantics justify an equality reflection rule that recovers
exact equalities from elements of the identity type. It is worth examining why our defini-
tion of identity types for cubical type theory fails to satisfy the same principles.

The equality reflection rule in MLTT, for one, relies on the fact that the only values
of the identity type are refl(𝑀) terms. Thus, the only way a type Id(𝐴,𝑀0, 𝑀1) can be
inhabited in an empty context is if the elements 𝑀0 and 𝑀1 are exactly equal. In cubical
type theory, on the other hand, an element of an identity type may be an fcoe or fhcom
term, in which case it does not follow that the two indices are exactly equal.

A fortiori, the MLTT semantics of identity types also validates the “K” rule, which
constructs elements of type families over loops (identities from a given 𝑎 to 𝑎) rather than
arbitrary identities.

𝑎 :𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑎) � 𝐵 type
𝑀 ∈ 𝐴 𝑃 ∈ Id(𝐴,𝑀,𝑀) 𝑎 :𝐴 � 𝑁 ∈ 𝐵 [refl(𝑎)/𝑝]

K(𝑎.𝑝.𝐵;𝑀 ; 𝑃 ;𝑎.𝑁) ∈ 𝐵 [𝑀/𝑎, 𝑃/𝑝]
(MLTT)

K is implemented by the reduction K(𝑎.𝑝.𝐵;𝑀 ; refl(𝑀′);𝑎.𝑁) ↦−→ 𝑁 [𝑀′/𝑎]. The K
rule does not imply equality reflection on its own, but does imply that any loop 𝑃 ∈
Id(𝐴,𝑀,𝑀) is equal to refl(𝑀) up to higher identity.

If we were to try to implement the K eliminator for our cubical identity types, on the
other hand, we find ourselves stuck at the case K(𝑎.𝑝.𝐵;𝑀 ; fcoe𝑟�𝑠𝑥 .𝑀0,𝑀1

(𝑃);𝑎.𝑁). While
the compound term fcoe𝑟�𝑠𝑥 .𝑀0,𝑀1

(𝑃) is a loop by assumption, the inner identity 𝑃 need not
be. We cannot therefore progress by recursively applying K to 𝑃 . In short, because of the
presence of fcoe terms, applying the eliminator at one index may require the recursive
application of the eliminator at a different index. This provides some justification for the
form of the J eliminator for identity types and eliminators for indexed inductive types
more generally: we require a type family 𝑎0 :𝐴, 𝑎1 :𝐴, 𝑝 :Path(𝐴, 𝑎0, 𝑎1) � 𝐵 type defined
on all possible indices, not only on those indices that can be inhabited using the generating
constructors.

Chapter 6

General higher inductive types

We now assemble the strategies used for the examples in Chapter 5 into a general schema
for higher inductive types and a computational interpretation for the instances thereof.

We begin in Section 6.1 by defining a specification schema: a formal language making
precise the pseudo-code “inductive” declarationswe have used thus far. The specification
of a higher inductive type involves both types (the types of arguments to constructors)
and terms (the boundaries of constructors), and so the specification language itself has
the structure of a formal type theory, restricted so that its instances describe monotone
operators on indexed relations.

In Section 6.2, we define an interpretation of this formal type theory into the un-
derlying computational type theory. We use the interpretation to define the monotone
operator on relations corresponding to an inductive specification. The relation for the
inductive type in question is then defined as the least fixed-point of said operator. Using
this definition on the level of relations, we construct a type system closed under indexed
higher inductive pretypes. In the process, we show that the inductive relations are value-
coherent, which amounts to proving the introduction rules for each constructor and for
formal composition and coercion terms.

Next, in Section 6.3, we establish that the higher inductive pretypes support the Kan
operations, making them full-fledged types. We easily dispense with composition, hav-
ing already shown that the inductive type is closed under formal compositions. Defining
and checking the well-typedness of coercion is much more involved. The definition re-
quires a combination of the techniques used to handle path constructors (Section 5.1) and
indices (Section 5.3) above. The proof of well-typedness, meanwhile, requires careful stag-
ing to manage the recursive structure of inductive types, stemming both from recursive
constructors and the recursive formal Kan operators.

We complete the picture in Section 6.4 by establishing elimination principles for our
higher inductive types. This again proceeds in several stages: defining the data required
to eliminate from a given inductive type, defining the operational semantics of an elimina-

111

112 General higher inductive types

Judgment Reading
Γ � Δ tel Δ is a telescope of types
Γ � 𝛿 ∈ Δ 𝛿 is an instantiation of Δ
Γ � Δ ▶ K spec K specifies a Δ-indexed HIT
Γ � Δ ▶ K ↠ K′ K′ is a prefix of K
Γ � Δ | K ▶ C constr C is a constructor definition over K
Γ � Δ ▶ K @ ℓ ⇒ (K′ | C) C appears in K with label ℓ , preceded by K′

Γ � Δ | K ▶ Θ actx Θ is a context of recursive argument types over K
Γ � Δ | K | Θ ▶ a atype a is a recursive argument type over K and Θ
Γ � Δ | K | Θ ▶ m ∈ a m is an argument term of type a
Γ � Δ | K | Θ′ ▶ 𝜃 ∈ Θ 𝜃 is an argument substitution from Θ′ to Θ

Figure 6.1: Judgments used in the definition of HIT specifications

tor given such data, and showing that said eliminator is indeed well-typed and validates
the expected reduction rules. Like coercion, the final step requires an argument by the
universal property of the inductive type relation as a least fixed-point.

Finally, in Section 6.5, we describe the validity restriction, an adjustment to the homo-
geneous composition operation introduced by Angiuli, Favonia, and Harper [AFH18] that
enables a stronger characterization of the values of a higher inductive type.

6.1 Specifications

To give a computational interpretation of higher inductive types, we must first settle on
a definition of higher inductive type. We define a class of HIT specifications relative to a
value type system by way of a judgment Γ � Δ ▶ K spec, read “K is a higher inductive
type specification indexed by Δ in context (i.e., with parameters) Γ”. To define this judg-
ment, we make use of a series of auxiliary judgments, catalogued in Figure 6.1, that define
the well-formed constructors, recursive argument types, and boundary terms. (Each of
the judgments in this figure is the unary form of a binary judgment.) These judgments are
all defined relative to an ambient value type system, which we leave implicit in this sec-
tion. The raw grammar of specifications, constructors, and so on is shown in Figure 6.2;
the judgments operate on syntax drawn from said grammar.

The final four judgments of Figure 6.1—contexts, types, terms, and substitutions—
constitute a small formal type theory within which the recursive parts of a specification
are defined. For lack of a better name, we refer to these as argument contexts, types,
terms, and substitutions respectively. Argument types are used to specify the types of
recursive arguments to constructors, while argument terms appear in two places: as in-

Specifications 113

Δ,Ω F · | (Δ, 𝑎 :𝐴) 𝛿, 𝜔 F · | (𝛿,𝑀/𝑎) K F · | (K, ℓ : C)

C F Φ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖] ΘF · | (Θ, 𝑎 : a) 𝜃 F · | (𝜃,m/𝑎)

a, bF ind(𝛿) | (𝑎 :𝐴) → b | Path(𝑥 .a,m0,m1)

m F introℓ (𝜙 ;𝜔 ;𝜃) | fcoe𝑟→𝑠
𝑥 .𝛿

(m) | fhcom𝑟→𝑠
𝛿

(m;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .n𝑖)
| 𝜆𝑎.m | m𝑁 | 𝜆I𝑥 .m | m 𝑟

Figure 6.2: Grammar of HIT specifications

dices to dependent argument types (specifically, path types), and as the boundary terms
for path constructors.

Before getting into the meat of the specification language, we first define the telescope
judgment. A (type) telescope is a list of types Δ = (𝑎1 :𝐴1, . . ., 𝑎𝑛 :𝐴𝑛) in a context Γ, each
dependent on its predecessors. In other words, a telescope is a context (here, consisting
only of types) over a context. We use these to specify the indices to a HIT as well as the
non-recursive arguments to a constructor.

Definition 6.1.1 (Telescopes). The type telescopes, Γ � Δ = Δ′ tel, are inductively
generated by the following rules.

Γ � · = · tel
Γ � Δ = Δ′ tel Γ,Δ � 𝐴 = 𝐴′ type

Γ � (Δ, 𝑎 :𝐴) = (Δ′, 𝑎 :𝐴′) tel

Note that we have (Γ,Δ) ctx whenever Γ ctx and Γ � Δ tel. Also, a telescope over the
empty context is simply a context.

A telescope, like a context, can be instantiated by a list of terms.

Definition 6.1.2 (Instantiations). The telescope instantiations, Γ � 𝛿 = 𝛿′ ∈ Δ, are
inductively generated by the following rules.

Γ � · = ·
Γ � 𝛿 = 𝛿′ ∈ Δ Γ � 𝑀 = 𝑀′ ∈ 𝐴𝛿
Γ � (𝛿,𝑀/𝑎) = (𝛿′, 𝑀′/𝑎) ∈ (Δ, 𝑎 :𝐴)

We have a substitution Γ′ � (𝛾, 𝛿) ∈ Γ whenever Γ′ � 𝛾 ∈ Γ and Γ′ � 𝛿 ∈ Δ𝛾 .
Given Γ � Δ tel, we always have a canonical “variable” instantiation, for which we write
Γ,Δ � 𝑣Δ ∈ Δ; given an instantiation Γ � 𝛿 ∈ Δ, we will also write 𝑣𝛿 for 𝑣Δ.

114 General higher inductive types

We start at the top-level with the definition of the specification judgment, then pro-
gressively go deeper into the auxiliary judgments; formally, of course, the dependency
goes in the opposite direction. A specification is simply a list of named constructors, each
of which may depend on previous constructors. (We adopt a global convention that the
constructor names in a specification, like variables in a context, are mutually distinct.)

Definition 6.1.3 (Specifications). The specifications Γ � Δ ▶ K = K′ spec are gener-
ated by the following rules.

Γ � Δ ▶ · = · spec
Γ � Δ ▶ K = K′ spec Γ � Δ | K ▶ C = C′ constr

Γ � Δ ▶ (K, ℓ : C) = (K′, ℓ : C′) spec

A constructor over some Δ ▶ K spec, as defined below, consists of several compo-
nents: interval arguments (specified by an interval context Φ), non-recursive arguments
(a telescope Ω), the index of the type in which it constructs an element (an instantiation
𝛿 of Δ), and a boundary (constraints 𝜉𝑖 associated with boundary terms m𝑖).

Definition 6.1.4 (Constructors). The constructors Γ � Δ | K ▶ C = C′ constr are
generated by the following rule.

Φ ictx
Γ,Φ � Ω = Ω′ tel Γ,Φ,Ω � 𝛿 = 𝛿′ ∈ Δ Γ,Φ,Ω � Δ | K ▶ Θ = Θ′ actx

(∀𝑖) Φ ⊩ 𝜉𝑖 ∈ F (∀𝑖, 𝑗) Γ,Φ,Ω, 𝜉𝑖, 𝜉 𝑗 � Δ | K | Θ ▶ m𝑖 = m′
𝑗 ∈ ind(𝛿)

Γ � Δ | K ▶ Φ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖] = Φ.Ω′.[𝛿′;Θ′.
−−−−−−−⇀
𝜉𝑖 ↩→ m′

𝑖] constr

While we have generally written the interval arguments as the final arguments of a
constructor in our examples, we place them at the start for the general case; this is slightly
more general, as it allows the types of subsequent arguments to depend on the interval
variables. For the most part, each piece of a constructor may depend on what comes
before: the non-recursive arguments can mention the interval arguments, the index and
recursive arguments may depend on the non-recursive arguments, and the boundary can
depend on all arguments.

Remark 6.1.5. Most of the data of a constructor can freely depend on the ambient context
Γ. However, we require that the constraints 𝜉𝑖 specifying the boundary mention only in-
terval variables that are arguments to the constructor (Φ above), not external variables.
We can see why this restriction is necessary by examining the following malformed spec-
ification, in which the boundary of b depends on an external parameter 𝑥 : I.

𝑥 : I � inductive 8(𝑥) where
| a𝑥 ∈ 8(𝑥)
| b𝑥 ∈ 8(𝑥) [𝑥 ≡ 0 ↩→ a]

Specifications 115

Suppose that such a type does exist, and consider the coercion coe0�1
𝑥 .8(𝑥) (b0). On the

one hand, we have a path 𝜆𝑦. coe𝑦�1
𝑥 .8(𝑥) (b𝑦) ∈ coe0�1

𝑥 .8(𝑥) (b0) ⇝ b1. On the other hand, b0
is equal to a0 by definition, so we also have a path 𝜆𝑦. coe

𝑦�1
𝑥 .8(𝑥) (a𝑦) ∈ coe0�1

𝑥 .8(𝑥) (b0) ⇝ a1.
Combining these with composition, we should have a path 𝑎1 ⇝ 𝑏1. However, there is
no such path among the values of 8(1), which consist only of a and b constructors and
formal homogeneous composites.

In order to speak of the constructors within a given specification, we define construc-
tor lookup and sub-specification judgments.

Definition 6.1.6 (Constructor lookup). We define Γ � Δ ▶ K @ ℓ ⇒ (K′ | C)
(specificationK contains C at label ℓ , preceded by the sub-specificationK′) as generated
by the following rules.

Γ � Δ | K ▶ C = C′ constr

Γ � Δ ▶ (K, ℓ : C) @ ℓ ⇒ (K | C′)

Γ � Δ ▶ ℓ @ K ⇒ (K′ | C) Γ � Δ | K ▶ C constr

Γ � Δ ▶ (K, ℓ′ : C′) @ ℓ ⇒ (K′ | C)

Definition 6.1.7 (Sub-specifications). We define Γ � Δ ▶ K ↠ K′ (specification K
extends K′) as generated by the following rules.

Γ � Δ ▶ K ↠ ·
Γ � Δ ▶ K @ ℓ ⇒ (K′ | C)
Γ � Δ ▶ K ↠ (K′, ℓ : C)

Finally, we come to the definition of the formal argument type theory, which consists
of mutually inductively defined context, substitution, type, and term judgments. We de-
fine the argument type theory as a formalism rather than a computational theory because
we want to be able to analyze the syntax of argument types and terms, in particular to
generate the eliminator premise induced by a constructor.

Definition 6.1.8. We define Γ � Δ | K ▶ Θ = Θ′ actx, Γ � Δ | K | Θ′ ▶ 𝜃 = 𝜃 ′ ∈ Θ,
Γ � Δ | K | Θ ▶ a = a′ atype, and Γ � Δ | K | Θ ▶ m = m′ ∈ a as mutually inductively
generated by the rules in Figures 6.3 and 6.4.

The type theory so defined is fairly minimal: it has function types and path types with
their associated introduction and elimination forms, and it has a stand-in ind(−) for the
inductive family being defined with its own associated introduction forms (constructors
and formal Kan operators). Each constructor is equipped with a reduction rule for each

116 General higher inductive types

Contexts

Δ | K ▶ · actx
Δ | K ▶ Θ actx Δ | K | Θ ▶ a atype

Δ | K ▶ (Θ, 𝑎 : a) actx

Substitutions

Δ | K | Θ′ ▶ · ∈ ·
Δ | K | Θ′ ▶ 𝜃 = 𝜃 ′ ∈ Θ Δ | K | Θ′ ▶ m = m′ ∈ a

Δ | K | Θ′ ▶ (𝜃,m/𝑎) = (𝜃 ′,m′/𝑎) ∈ (Θ, 𝑎 : a)

Types

𝛿 = 𝛿′ ∈ Δ

Δ | K | Θ ▶ ind(𝛿) = ind(𝛿′) atype

𝐴 = 𝐴′ type 𝑎 :𝐴 � Δ | K | Θ ▶ b = b′ atype
Δ | K | Θ ▶ (𝑎 :𝐴) → b = (𝑎 :𝐴′) → b′ atype

𝑥 : I � Δ | K | Θ ▶ a = a′ atype
Δ | K | Θ ▶ m0 = m′

0 ∈ a[0/𝑥] Δ | K | Θ ▶ m1 = m′
1 ∈ a[1/𝑥]

Δ | K | Θ ▶ Path(𝑥 .a,m0,m1) = Path(𝑥 .a′,m′
0,m

′
1) atype

Figure 6.3: Inductive definition of the argument contexts, substitutions, and types. The
ambient context Γ is omitted for readability.

boundary constraint. In order to ensure that the recursive arguments to a constructor
are strictly positive in the type being defined, the domain of an argument function type
(𝑎 :𝐴) → b is not itself an argument type but an ordinary “external” type.

This language could be straightforwardly extended to include product types (𝑎 :a)×b,
for example, without significantly disrupting the development that follows. Our choice
of a fairly minimal theory is motivated by a desire to avoid huge definitions and proofs
by case analysis in what follows, not by any fundamental concerns about particular ex-
tensions.

Wewill take for granted standard admissibility theorems such asweakening and stabil-
ity under substitution for the formal type theory; the theory does not contain any features
that would interfere with standard proofs of such results.

Specifications 117

Constructors

Γ � Δ ▶ K @ ℓ ⇒ (| Φ.Ω.[𝛿 ;Θ′.
−−−−−−−⇀
𝜉𝑖 ↩→ m𝑖])

𝜙 = 𝜙′ ∈ Φ 𝜔 = 𝜔′ ∈ Ω𝜙 Δ | K | Θ ▶ 𝜃 = 𝜃 ′ ∈ Θ′𝜙𝜔

Δ | K | Θ ▶ introℓ (𝜙 ;𝜔 ;𝜃) = introℓ (𝜙′;𝜔′;𝜃 ′) ∈ ind(𝛿 (𝜙,𝜔))

Γ � Δ ▶ K @ ℓ ⇒ (| Φ.Ω.[𝛿 ;Θ′.
−−−−−−−⇀
𝜉𝑖 ↩→ m𝑖])

𝜙 = 𝜙′ ∈ Φ 𝜔 = 𝜔′ ∈ Ω𝜙 Δ | K | Θ ▶ 𝜃 = 𝜃 ′ ∈ Θ′𝜙𝜔 𝜉 𝑗𝜙 satisfied

Δ | K | Θ ▶ introℓ (𝜙 ;𝜔 ;𝜃) = m 𝑗 (𝜙,𝜔, 𝜃) ∈ ind(𝛿 (𝜙,𝜔))

Coercion

𝑥 : I � 𝛿 = 𝛿′ ∈ Δ 𝑟 = 𝑟 ′ ∈ I 𝑠 = 𝑠′ ∈ I Δ | K | Θ ▶ m = m′ ∈ ind(𝛿 [𝑟/𝑥])
Δ | K | Θ ▶ fcoe𝑟→𝑠

𝑥 .𝛿 (m) = fcoe𝑟
′→𝑠 ′

𝑥 .𝛿 ′ (m′) ∈ ind(𝛿 [𝑠/𝑥])

𝑥 : I � 𝛿 ∈ Δ 𝑟 ∈ I Δ | K | Θ ▶ m ∈ ind(𝛿 [𝑟/𝑥])
Δ | K | Θ ▶ fcoe𝑟→𝑟

𝑥 .𝛿 (m) = m ∈ ind(𝛿 [𝑟/𝑥])

Composition

𝛿 = 𝛿′ ∈ Δ 𝑟 = 𝑟 ′ ∈ I 𝑠 = 𝑠′ ∈ I Δ | K | Θ ▶ m = m′ ∈ ind(𝛿)
(∀𝑖) 𝜉𝑖 = 𝜉′𝑖 ∈ F (∀𝑖, 𝑗) 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � Δ | K | Θ ▶ n𝑖 = n′

𝑗 ∈ ind(𝛿)
(∀𝑖) 𝜉𝑖 � Δ | K | Θ ▶ m = n𝑖 [𝑟/𝑥] ∈ ind(𝛿)

Δ | K | Θ ▶ fhcom𝑟→𝑠
𝛿 (m;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .n𝑖) = fhcom𝑟

′→𝑠 ′

𝛿 ′ (m′;
−−−−−−−−−⇀
𝜉′𝑖 ↩→ 𝑥 .n′

𝑖) ∈ ind(𝛿)

𝛿 ∈ Δ 𝑟 ∈ I Δ | K | Θ ▶ m ∈ ind(𝛿)
(∀𝑖) 𝜉𝑖 ∈ F (∀𝑖, 𝑗) 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � Δ | K | Θ ▶ n𝑖 = n 𝑗 ∈ ind(𝛿)

(∀𝑖) 𝜉𝑖 � Δ | K | Θ ▶ m = n𝑖 [𝑟/𝑥] ∈ ind(𝛿)

Δ | K | Θ ▶ fhcom𝑟→𝑟
𝛿 (m;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .n𝑖) = m ∈ ind(𝛿)

𝛿 ∈ Δ 𝑟, 𝑠 ∈ I Δ | K | Θ ▶ m ∈ ind(𝛿)
(∀𝑖) 𝜉𝑖 ∈ F (∀𝑖, 𝑗) 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � Δ | K | Θ ▶ n𝑖 = n 𝑗 ∈ ind(𝛿)
(∀𝑖) 𝜉𝑖 � Δ | K | Θ ▶ m = n𝑖 [𝑟/𝑥] ∈ ind(𝛿) 𝜉𝑘 satisfied

Δ | K | Θ ▶ fhcom𝑟→𝑠
𝛿 (m;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .n𝑖) = n𝑘 [𝑠/𝑥] ∈ ind(𝛿)

Figure 6.4: Inductive definition of argument terms (constructors and Kan operations). The
ambient context Γ is omitted for readability.

118 General higher inductive types

Functions

𝑎 :𝐴 � Δ | K | Θ ▶ n = n′ ∈ b
Δ | K | Θ ▶ 𝜆𝑎. n = 𝜆𝑎. n′ ∈ b

Δ | K | Θ ▶ f = f′ ∈ (𝑎 :𝐴) → b 𝑀 = 𝑀′ ∈ 𝐴
Δ | K | Θ ▶ f𝑀 = f′𝑀′ ∈ b[𝑀/𝑎]

𝑎 :𝐴 � Δ | K | Θ ▶ n ∈ b 𝑀 ∈ 𝐴
Δ | K | Θ ▶ (𝜆𝑎. n)𝑀 = n[𝑀/𝑎] ∈ b[𝑀/𝑎]

𝐴 type 𝑎 :𝐴 � Δ | K | Θ ▶ b atype Δ | K | Θ ▶ f ∈ (𝑎 :𝐴) → b
Δ | K | Θ ▶ f = 𝜆𝑎. f𝑎 ∈ (𝑎 :𝐴) → b

Paths

𝑥 : I � Δ | K | Θ ▶ m = m′ ∈ a

𝑥 : I � Δ | K | Θ ▶ 𝜆I𝑥 .m = 𝜆I𝑥 .m′ ∈ Path(𝑥 .a,m[0/𝑥],m′[1/𝑥])

Δ | K | Θ ▶ p = p′ ∈ Path(𝑥 .a,m0,m1) 𝑟 = 𝑟 ′ ∈ I
Δ | K | Θ ▶ p 𝑟 = p′ 𝑟 ′ ∈ a[𝑟/𝑥]

𝑥 : I � Δ | K | Θ ▶ n = n′ ∈ a 𝑟 ∈ I
Δ | K | Θ ▶ (𝜆I𝑥 . 𝑁) 𝑟 = 𝑁 [𝑟/𝑥] ∈ 𝐴[𝑟/𝑥]

Δ | K | Θ ▶ p = p′ ∈ Path(a,m0,m1)
Δ | K | Θ ▶ p = 𝜆I𝑥 . p𝑥 ∈ Path(𝑥 .a,m0,m1)

Δ | K | Θ ▶ p ∈ Path(𝑥 .a,m0,m1)
Δ | K | Θ ▶ p 𝜀 = m𝜀 ∈ a[𝜀/𝑥]

Structural

(𝑎 : a) ∈ Θ

Δ | K | Θ ▶ 𝑎 ∈ a
Δ | K | Θ ▶ m ∈ a Δ | K | Θ ▶ a = b atype

Δ | K | Θ ▶ m ∈ b

Δ | K | Θ ▶ m = n ∈ a
Δ | K | Θ ▶ n = m ∈ a

Δ | K | Θ ▶ m = n ∈ a Δ | K | Θ ▶ n = p ∈ a
Δ | K | Θ ▶ m = p ∈ a

Figure 6.4: Inductive definition of argument terms (functions, paths, and structural rules).
The ambient context Γ is omitted for readability.

Interpreting specifications 119

Proposition 6.1.9 (Standard admissibilities).

• Term substitution. If Γ′ � 𝛾 = 𝛾 ′ ∈ Γ and Γ � Δ | K ▶ Θ = Θ′ actx, then we have
Γ′ � Δ𝛾 | K𝛾 ▶ Θ𝛾 = Θ′𝛾 ′ actx; the argument substitutions, types, and terms are
likewise stable under substitution.

• Argument substitution. If Γ � Δ | K | Θ′ ▶ 𝜃 = 𝜃 ′ ∈ Θ and Γ � Δ | K | Θ ▶ a =
a′ atype, then we have Γ � Δ | K | Θ′ ▶ a𝜃 = a′𝜃 ′ atype; the argument substitutions
and terms are likewise stable under argument substitution.

• Specification weakening. If Γ � Δ ▶ K ↠ K′ and Γ � Δ | K′ ▶ Θ = Θ′ actx, then
we have Γ � Δ | K ▶ Θ = Θ′ actx; the argument substitutions, types, and terms are
likewise stable under specification extension.

As with ordinary substitutions, the argument substitutions include identity and weaken-
ing substitutions, each of which is the identity on raw terms.

6.2 Interpreting specifications
To get from a specification language to a type system closed under HITs, the first step is
to define the interpretation of the formal argument type theory. There are two sides of
such an interpretation: the syntactic and the semantic (i.e., relational).

On the one hand, an argument type or term may be interpreted as a piece of syntax
in the untyped programming language. On the other hand, each argument type may
also be interpreted as an operator on indexed value relations, taking an interpretation for
the inductive family ind(−) as input and producing an interpretation of the compound
type. For example, given Δ ▶ K spec and a Δ-indexed relation 𝑅, we would interpret
𝐴 → ind(𝛿) at 𝑅 as relating 𝜆-values that take terms in 𝐴 to terms in the instantiation of
𝑅 at 𝛿 . Using the interpretation of argument types as operators on relations, we likewise
build up an interpretation of constructors C and then specifications K as operators on
relations. Finally, we define the inductive relation associated to K to be the least fixed
point of its interpretation as a relational operator. With this definition in hand, it becomes
straightforward to construct a type system which is closed under (and supports universes
closed under) such relations.

6.2.1 Syntactic interpretation
We start with the syntactic interpretation of the argument type theory, defined here as

a collection of operations taking raw terms of that language to terms in the untyped pro-
gramming language. We show later on that these raw operations preserve well-typedness
in the right circumstances.

120 General higher inductive types

Type former

IndΔK (𝛿) val

Constructors

(ℓ : Ψ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K (�𝑖) 𝜉𝑖 satisfied
introKℓ (𝜙 ;𝜔 ; 𝜒) val

(ℓ : Ψ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K (�𝑖 < 𝑘) 𝜉𝑖 satisfied 𝜉𝑘 satisfied

introKℓ (𝜙 ;𝜔 ; 𝜒) ↦−→ LΘ.m𝑘 [𝜙,𝜔]MK (𝜒)

Formal coercions

𝑟 ≠ 𝑠

fcoe𝑟�𝑠𝑥 .𝛿 (𝑀) val fcoe𝑟�𝑟𝑥 .𝛿 (𝑀) ↦−→ 𝑀

Formal composites

𝑟 ≠ 𝑠 (�𝑖) 𝜉𝑖 satisfied

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) val

(�𝑖) 𝜉𝑖 satisfied

fhcom𝑟�𝑟 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ 𝑀

(�𝑖 < 𝑘) 𝜉𝑖 satisfied 𝜉𝑘 satisfied

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ 𝑁𝑘 [𝑠/𝑥]

Formal heterogeneous composites

fcom𝑟�𝑠
𝑥 .𝛿 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) B fhcom𝑟�𝑠 (fcoe𝑟�𝑠𝑥 .𝛿 (𝑀);

−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .fcoe𝑥�𝑠𝑥 .𝛿 (𝑥 .𝑁𝑖))

Figure 6.5: Operational semantics for formation and introduction in HITs

Interpreting specifications 121

At this point, of course, we need to begin making assumptions about the untyped
programming language in question. Henceforth, we assume that the programming lan-
guage supports the operational semantics shown in Figure 6.5, in addition to the usual
operational semantics for terms associated with function and path types. The operational
semantics contains no surprises: constructors are values except on their boundary, while
formal coercions and composites are values except where reduction is required by the
Kan operation equations.

Argument types, terms, and substitutions are all defined relative to an argument con-
text Θ; to interpret them, we therefore require an interpretation of the variables in Θ as
input. Writing L−MΔK for interpretation relative to a specificationΔ ▶ K spec (dropping the
Δ annotation where unnecessary), the intent is that interpretation produces well-typed
results in the following fashion.

Δ | K ▶ Θ actx ⇒ LΘMΔK tel
𝜒 ∈ LΘMΔK ∧ Δ | K | Θ ▶ a atype ⇒ LΘ.aMΔK (𝜒) type
𝜒 ∈ LΘMΔK ∧ Δ | K | Θ ▶ m ∈ a ⇒ LΘ.mMK (𝜒) ∈ LΘ.aMΔK (𝜒)
𝜒 ∈ LΘ′MΔK ∧ Δ | K | Θ′ ▶ 𝜃 ∈ Θ ⇒ LΘ′.𝜃MK (𝜒) ∈ LΘMΔK

All of these interpretations are exceedingly straightforward; we transform each argu-
ment term or type into its “real” equivalent.

Definition 6.2.1 (Interpretation of terms and substitutions). LetK be a specification,
Θ be an argument context, and m be an argument term. Let 𝜒 be an instantiation for the
variables in Θ. We define the interpretation of m at Θ, written LΘ.mMK (𝜒), as follows.

LΘ.𝑎MK (𝜒) B 𝑎𝜒LΘ.introℓ (𝜙 ;𝜔 ;𝜃)MK (𝜒) B introKℓ (𝜙 ;𝜔 ; LΘ.𝜃MK (𝜒))LΘ.fcoe𝑟→𝑠
𝑥 .𝛿 (m)MK (𝜒) B fcoe𝑟�𝑠𝑥 .𝛿 (LΘ.mMK (𝜒))

LΘ.fhcom𝑟→𝑠
𝛿 (m;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .n𝑖)MK (𝜒) B fhcom𝑟�𝑠 (LΘ.mMK (𝜒);

−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .LΘ.n𝑖MK (𝜒))LΘ.𝜆𝑎. nMK (𝜒) B 𝜆𝑎. LΘ.nMK (𝜒)LΘ.f𝑀MK (𝜒) B (LΘ.fMK (𝜒))𝑀LΘ.𝜆I𝑥 .mMK (𝜒) B 𝜆I𝑥 . LΘ.mMK (𝜒)LΘ.p 𝑟MK (𝜒) B (LΘ.pMK (𝜒)) 𝑟

We define LΘ.𝜃MK (𝜒) for argument substitutions 𝜃 elementwise.

LΘ. · MK (𝜒) B ·LΘ.(𝜃,m/𝑎)MK (𝜒) B (LΘ.𝜃MK (𝜒), LΘ.mMK (𝜒)/𝑎)

122 General higher inductive types

Definition 6.2.2 (Syntactic interpretation of types and contexts). Let a telescopeΔ,
specification K , argument context Θ, and argument type b be given. Let 𝜒 be an instan-
tiation for the variables in Θ. We define the syntactic interpretation of b at 𝜒 , writtenLΘ.bMΔK (𝜒), as follows.

LΘ.ind(𝛿)MΔK (𝜒) B IndΔK (𝛿)LΘ.(𝑏 : 𝐵) → cMΔK (𝜒) B (𝑏 : 𝐵) → LΘ.cMΔK (𝜒)LΘ.Path(𝑥 .b,m0,m1)MΔK (𝜒) B Path(𝑥 .LΘ.bMΔK (𝜒), 𝑀0, 𝑀1)
where𝑀𝜀 B LΘ.m𝜀MK (𝜒) for 𝜀 ∈ {0, 1}

We define a telescope LΘMΔK , the syntactic interpretation of Θ, as follows.

L · MΔK B ·LΘ, 𝑎 : aMΔK B LΘMΔK, 𝑎 : LΘ.aMΔK (𝑣LΘMΔK)
6.2.2 Relational interpretation
Next, we have a second interpretation of argument types and contexts as operators on
indexed relations. Given a specification Ψ ⊩ Δ ▶ K spec and (Ψ,Δ)-relation 𝑅, we can
interpret any argument type Ψ ⊩ Δ | K | · ▶ a atype as a Ψ-relation by interpreting
instances of ind(−) with 𝑅 and interpreting compound types by their usual relational def-
initions. (Recall that we defined Γ-relations for arbitrary contexts Γ in Definition 3.1.25).

First, we define some notation for the function and path type formers as relational
operators, following the definitions in Sections 2.1.4 and 3.1.5 respectively.

Definition 6.2.3. Given a term𝐴 and (Ψ, 𝑎:𝐴)-relation𝑅, we define aΨ-relation Fun(𝐴, 𝑅)
for Ψ′ ⊩ 𝜓 ∈ Ψ as follows.

𝑉 ≈ 𝑉 ′ ∈ Fun(𝐴, 𝑅)〈𝜓 〉 :⇐⇒
{
𝑉 = 𝜆𝑎. 𝑁 and 𝑉 = 𝜆𝑎. 𝑁 ′ with
Ψ′, 𝑎 :𝐴𝜓 � 𝑁 ≈ 𝑁 ′ ∈ ⤋𝑅(𝜓, 𝑎/𝑎)

Definition 6.2.4. Given a (Ψ, 𝑥 :I)-relation𝑅 and terms𝑀0 and𝑀1, we define aΨ-relation
Path(𝑅,𝑀0, 𝑀1) for Ψ′ ⊩ 𝜓 ∈ Ψ as follows.

𝑉 ≈ 𝑉 ′ ∈ Path(𝑅,𝑀0, 𝑀1)〈𝜓 〉 :⇐⇒

𝑉 = 𝜆I𝑥 . 𝑀 and 𝑉 = 𝜆I𝑥 . 𝑀′ with
𝑀 ≈ 𝑀′ ∈ ⤋𝑅(𝜓, 𝑥/𝑥) and
𝑀 [𝜀/𝑥] ≈ 𝑀𝜀𝜓 ∈ ⤋𝑅(𝜓, 𝜀/𝑥) for 𝜀 ∈ {0, 1}

These components then assemble straightforwardly into an interpretation of argu-
ment types and contexts.

Interpreting specifications 123

Definition 6.2.5. Let Δ be a telescope, K be a specification, Θ be an argument context,
and a be an argument type. Let 𝑅 be a (Ψ,Δ)-relation and let 𝜒 be an instantiation for the
variables in Θ. We define a Ψ-relation {|Θ.a|}K (𝑅, 𝜒), the relational interpretation of Θ.a
at 𝑅 and 𝜒 , as follows.

{|Θ.ind(𝛿)|}K (𝑅, 𝜒) B 𝑅 [idΨ, 𝛿]
{|Θ.(𝑏 :𝐴) → b|}K (𝑅, 𝜒) B Fun(𝐴, 𝑆)

{|Θ.Path(𝑥 .a,m0,m1)|}K (𝑅, 𝜒) B Path({|Θ.a|}K (𝑅, 𝜒), LΘ.m0MK (𝜒), LΘ.m1MK (𝜒))

The (Ψ, 𝑎 :𝐴)-relation 𝑆 in the function case is defined as follows.

where 𝑆 〈𝜓,𝑀/𝑎〉 B
⋂

{{|Θ.b𝜓 [𝑀′/𝑎]|}K (𝑅𝜓, 𝜒𝜓)〈idΨ′〉 | Ψ′ ⊩ 𝑀 = 𝑀′ ∈ 𝐴𝜓 }

We use the intersection above to ensure that this is a well-defined (Ψ, 𝑎 :𝐴)-relation, these
being required to respect equality in the indexing context.

Definition 6.2.6. Let Δ be a telescope, K be a specification, and let Θ be an argument
context. Let 𝑅 be a (Ψ,Δ)-relation. We define a Ψ-relation {|Θ|}K (𝑅) on telescope instan-
tiations, the relational interpretation of Θ at 𝑅, as inductively generated by the following
rules.

· ≈ · ∈ {| · |}K (𝑅)〈𝜓 〉
𝜒 ≈ 𝜒′ ∈ {|Θ|}K (𝑅)〈𝜓 〉 𝑀 ≈ 𝑀′ ∈ ⤋{|Θ.a𝜓 |}K𝜓 (𝑅𝜓, 𝜒)

(𝜒,𝑀/𝑎) ≈ 𝜒′, 𝑀′/𝑎) ∈ {|Θ, 𝑎 : a|}K (𝑅)〈𝜓 〉
(Note that this is a relation on terms, not on values—coherent evaluation is built in.)

In order to check that our ultimate construction of the inductive relation generated
by a specification is a PER, we will need the simple observation.

Lemma 6.2.7. For any (Ψ,Δ)-relation 𝑅, we have {|Θ|}K (Sym+(𝑅)) ⊆ Sym+({|Θ|}K (𝑅))
and {|Θ|}K (Trans+(𝑅)) ⊆ Trans+({|Θ|}K (𝑅)).

Proof. By induction on the shape of Θ and the types within. □

6.2.3 The inductive relation
We now define the (Ψ,Δ)-relation IndK induced by a specification Ψ ⊩ Δ ▶ K spec,
which we intend to install in a value type system as the interpretation of the syntactic
type family IndΔK (−). IndK will be defined as the least fixed point of an operator StepK
that takes a relation and adds one “layer” of introduction forms. For an inductive type,
the introduction forms consist of formal Kan operators and constructors. Thus, StepK (𝑅)
is the union of relations Fcoe(𝑅), Fhcom(𝑅), and IntroKℓ (𝑅) for each ℓ ∈ K ; it is useful
to define each of these explicitly so that we can work with them individually in future
proofs.

124 General higher inductive types

Definition 6.2.8. Given a value (Ψ,Δ)-relation 𝑅, some K in context Ψ, and a label ℓ ,
we define the value (Ψ,Δ)-relation IntroKℓ (𝑅) as inductively generated by the principle
introK

′
ℓ (𝜙 ;𝜔 ; 𝜒) ≈ introK

′′
ℓ (𝜙′;𝜔′; 𝜒′) ∈ IntroKℓ (𝑅)〈𝜓, 𝛿〉 for Ψ′ ⊩ (𝜓, 𝛿) ∈ (Ψ,Δ) when-

ever the following hold.

• Ψ′ ⊩ Δ𝜓 ▶ K𝜓 = K′ spec and Ψ′ ⊩ Δ𝜓 ▶ K𝜓 = K′′ spec.

• (ℓ : Φ.Ω.[𝛿′;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K𝜓 for some such constructor data.

• Ψ′ ⊩ 𝛿′[𝜙,𝜔] = 𝛿 ∈ Δ𝜓 .

• Ψ′ ⊩ 𝜙 = 𝜙′ ∈ Φ.

• Ψ′ ⊩ 𝜔 = 𝜔′ ∈ Ω𝜙 .

• 𝜒 ≈ 𝜒′ ∈ {|Θ[𝜙,𝜔]|}K𝜓 (𝑅𝜓) and {|Θ[𝜙,𝜔]|}K𝜓 (𝑅𝜓) = {|Θ[𝜙′, 𝜔′]|}K𝜓 (𝑅𝜓).

• There is no 𝜉𝑖 such that Ψ′ ⊩ 𝜉𝑖 satisfied holds.

Definition 6.2.9. Given a (Ψ,Δ)-relation 𝑅, we define a (Ψ,Δ)-relation Fcoe(𝑅) as in-
ductively generated by the principle fcoe𝑟�𝑠𝑥 .𝛿 ′ (𝑀) ≈ fcoe𝑟�𝑠𝑥 .𝛿 ′′ (𝑀′) ∈ Fcoe(𝑅)〈𝜓, 𝛿〉 for
Ψ′ ⊩ (𝜓, 𝛿) ∈ (Ψ,Δ) whenever the following hold.

• Ψ′, 𝑥 : I ⊩ 𝛿′ = 𝛿′′ ∈ Δ𝜓 with Ψ′ ⊩ 𝛿′[𝑠/𝑥] ∈ Δ𝜓 .

• Ψ′ ⊩ 𝑟, 𝑠 ∈ I with 𝑟 ≠ 𝑠 .

• 𝑀 ≈ 𝑀′ ∈ ⤋𝑅 [𝜓, 𝛿′[𝑟/𝑥]].

Definition 6.2.10. Given a Γ-relation 𝑅, we define a Γ-relation Fhcom(𝑅) as inductively
generated by fhcom𝑟�𝑠 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ fhcom𝑟�𝑠 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ Fhcom(𝑅)〈𝛾〉 for
Ψ′ ⊩ 𝛾 ∈ Γ whenever the following hold.

• Ψ′ ⊩ 𝑟, 𝑠 ∈ I with 𝑟 ≠ 𝑠 .

• 𝑀 ≈ 𝑀′ ∈ ⤋𝑅𝛾 .

• Ψ′ ⊩ 𝜉𝑖 ∈ F for each 𝑖 , and there is no 𝜉𝑖 such that Ψ′ ⊩ 𝜉𝑖 satisfied holds.

• Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 ′
𝑗 ∈ ⤋𝑅𝛾 for all 𝑖, 𝑗 .

• Ψ′, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝛾 for all 𝑖 .

The following, which we again need to check that the inductive relation is a PER, is
straightforward to check.

Interpreting specifications 125

Proposition 6.2.11. For any (Ψ,Δ)-relation𝑅, we have Fcoe(Sym+(𝑅)) ⊆ Sym+(Fcoe(𝑅))
and Fcoe(Trans+(𝑅)) ⊆ Trans+(Fcoe(𝑅)), and likewise for Fhcom(−) and IntroKℓ (−).

Definition 6.2.12. Given a (Ψ,Δ)-relation 𝑅 and Ψ ⊩ Δ ▶ K spec, we define a (Ψ,Δ)-
relation StepK (𝑅) as follows.

StepK (𝑅) B Fcoe(𝑅) ∪ Fhcom(𝑅) ∪
⋃
ℓ∈K

IntroKℓ (𝑅)

StepK is a monotone operator on (Ψ,Δ)-relations. We may therefore define a (Ψ,Δ)-
relation IndK , the higher inductive relation generated by K , to be the least fixed-point of
StepK . Using Lemma 6.2.7 and Proposition 6.2.11, we see that IndK is a (Ψ,Δ)-PER.

6.2.4 Introduction
Although IndK is ultimately the relation we want to construct, it will prove prudent to
state the introduction rules in greater generality, showing for example that any fixed point
of Fhcom supports formal compositions.

Definition 6.2.13. Let 𝐹 be a monotone operator on Γ-relations. We define two derived
monotone operators on Γ-relations, 𝐹? and 𝐹 ∗, as follows.

𝐹?(𝑅) B 𝑅 ∪ 𝐹 (𝑅)
𝐹 ∗(𝑅) B 𝜇 (𝑆 ↦→ 𝑅 ∪ 𝐹 (𝑆))

Given a value (Ψ,Δ)-PER 𝑅, we see that formal coercions formed from elements in
the coherent extension of 𝑅 belong to the coherent extension of Fcoe?(𝑅). Note that such
terms do not necessarily belong to Fcoe(𝑅) itself: in the case that a formal coercion is of
the form fcoe𝑟�𝑟𝑥 .𝛿 (𝑀), its value is an element of 𝑅, not of Fcoe(𝑅).

Lemma 6.2.14 (Formal coercion introduction). Let 𝑅 be a (Ψ,Δ)-PER. Then the fol-
lowing rules are validated for all Ψ′ ⊩ 𝜓 ∈ Ψ and Ψ′, 𝑥 : I ⊩ 𝛿 = 𝛿′ ∈ Δ𝜓 .

𝑀 ≈ 𝑀′ ∈ ⤋𝑅(𝜓, 𝛿 [𝑟/𝑥])
fcoe𝑟�𝑠𝑥 .𝛿 (𝑀) ≈ fcoe𝑟�𝑠𝑥 .𝛿 ′ (𝑀

′) ∈ ⤋Fcoe?(𝑅) [𝜓, 𝛿 [𝑠/𝑥]]

𝑀 ∈ ⤋𝑅(𝜓, 𝛿 [𝑟/𝑥])
fcoe𝑟�𝑟𝑥 .𝛿 (𝑀) ≈ 𝑀 ∈ ⤋Fcoe?(𝑅) [𝜓, 𝛿 [𝑟/𝑥]]

Proof. The second rule follows immediately from coherent head expansion, as we have
fcoe𝑟�𝑟𝑥 .𝛿 (𝑀)𝜓 ′ ↦−→ 𝑀𝜓 ′ for all 𝜓 ′, together with the inclusion 𝑅 ⊆ Fcoe?(𝑅). For the

126 General higher inductive types

first rule, we use coherent value introduction. Given any Ψ′′ ⊩ 𝜓 ′ ∈ Ψ′, we are in
one of two cases. If 𝑟𝜓 ′ = 𝑠𝜓 ′, then fcoe𝑟�𝑠𝑥 .𝛿 (𝑀)𝜓 ′ ≈ fcoe𝑟�𝑠𝑥 .𝛿 ′ (𝑀′)𝜓 ′ ∈ ⤋𝑅 [𝜓, 𝛿 [𝑠/𝑥]]𝜓 ′

holds by 𝑀𝜓 ′ ≈ 𝑀′𝜓 ′ ∈ ⤋𝑅 [𝜓, 𝛿 [𝑟/𝑥]]𝜓 ′ combined with the reduction rule we have al-
ready proven on both sides. If 𝑟𝜓 ′ ≠ 𝑠𝜓 ′ then both sides are values, and fcoe𝑟�𝑠𝑥 .𝛿 (𝑀)𝜓 ′ ≈
fcoe𝑟�𝑠𝑥 .𝛿 ′ (𝑀′)𝜓 ′ ∈ Fcoe?(𝑅) [𝜓, 𝛿 [𝑟/𝑥]]𝜓 ′ holds by definition of Fcoe(𝑅). □

We can prove the same kind of lemma for constructing terms in the coherent extension
of Fhcom?(𝑅) from terms in the extension of 𝑅.

Lemma 6.2.15 (Formal composite introduction). Let 𝑅 be a Γ-PER. Then the follow-
ing rules are validated for all Ψ ⊩ 𝛾 ∈ Γ, interval terms Ψ ⊩ 𝑟, 𝑠 ∈ I, and list of constraints
Ψ ⊩ 𝜉𝑖 ∈ F for 0 ≤ 𝑖 < 𝑛.

(1)
𝑀 ≈ 𝑀′ ∈ ⤋𝑅𝛾

(∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 ′
𝑗 ∈ ⤋𝑅𝛾 (∀𝑖) Ψ, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝛾

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ fhcom𝑟�𝑠 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ ⤋Fhcom?(𝑅)𝛾

(2)
𝑀 ∈ ⤋𝑅𝛾

(∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 𝑗 ∈ ⤋𝑅𝛾 (∀𝑖) Ψ, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝛾

fhcom𝑟�𝑟 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ 𝑀 ∈ ⤋Fhcom?(𝑅)𝛾

(3)
Ψ ⊩ 𝜉𝑘 satisfied 𝑀 ∈ ⤋𝑅𝛾

(∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 𝑗 ∈ ⤋𝑅𝛾 (∀𝑖) Ψ, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝛾

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ 𝑁𝑘 [𝑠/𝑥] ∈ ⤋Fhcom?(𝑅)𝛾

Proof. We prove the three rules in reverse order.

(3) By coherent head expansion. For any Ψ′ ⊩ 𝜓 ∈ Ψ, there is some minimal 𝑙 ≤ 𝑘 such
that 𝜉𝑙𝜓 is satisfied. Then fhcom𝑟�𝑠 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)𝜓 ↦−→ 𝑁𝑙 [𝑠/𝑥]𝜓 , and we have

𝑁𝑙 [𝑠/𝑥] ≈ 𝑁𝑘 [𝑠/𝑥] ∈ ⤋𝑅𝛾𝜓 by assumption.

(2) Again by coherent head expansion. For any Ψ′ ⊩ 𝜓 ∈ Ψ, we are in one of two cases. If
there is some minimal 𝑘 such that 𝜉𝑙𝜓 is satisfied, then fhcom𝑟�𝑟 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)𝜓 ↦−→

𝑁𝑘 [𝑠/𝑥]𝜓 and we have 𝑁𝑘 [𝑠/𝑥] ≈ 𝑀 ∈ ⤋𝑅𝛾𝜓 by assumption. Otherwise, we have
fhcom𝑟�𝑟 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)𝜓 ↦−→ 𝑀𝜓 , and𝑀𝜓 is in ⤋𝑅𝛾𝜓 by assumption.

Interpreting specifications 127

(1) By coherent value introduction. For any Ψ′ ⊩ 𝜓 ∈ Ψ, we are in one of three cases.
If there is some minimal 𝑘 such that 𝜉𝑙𝜓 is satisfied, then we apply (3) on either side
of the equation 𝑁𝑖𝜓 ≈ 𝑁 ′

𝑖𝜓 ∈ ⤋𝑅𝛾𝜓 , which holds by assumption. If there is no such
𝑘 but we have 𝑟𝜓 = 𝑠𝜓 , then we do the same with (2) and 𝑀𝜓 ≈ 𝑀′𝜓 ∈ ⤋𝑅𝛾𝜓 .
If we are in neither of these situations, then both terms are values and we have
fhcom𝑟�𝑠 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)𝜓 ≈ fhcom𝑟�𝑠 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁 ′

𝑖)𝜓 ∈ Fhcom(𝑅)𝛾𝜓 by defini-
tion of Fhcom(𝑅). □

The situation for constructor introduction is a bit more complicated: the coherence
of an introduction term depends on the well-behavedness of argument term interpreta-
tion, which is used to define the boundary of the constructor in the operational seman-
tics. Conversely, the well-behavedness of argument term interpretation depends on the
well-behavedness of prior constructors. We therefore proceed by a mutually inductive
argument.

Definition 6.2.16. Given a specification K and a label ℓ ∈ K , write |ℓ |K for the height
of ℓ in K , the index at which ℓ occurs in the list K . Given K and an argument term m,
define |m|K , the height of m inK , to be the maximum height inK among labels occurring
in m. We likewise define |a|K and |Θ|K for types and contexts.

Definition 6.2.17. Let Ψ ⊩ Δ ▶ K = K′ spec, a (Ψ,Δ)-relation 𝑅, and 𝑛 ∈ N be given.
We say that 𝑅 interprets K,K′ below 𝑛 when the following two conditions hold for any
Ψ′ ⊩ 𝜓 ∈ Ψ.

• Given

– Ψ′ ⊩ Δ𝜓 | K𝜓 | Θ ▶ a = a′ atype with |Θ|K𝜓 , |a|K𝜓 , |a′|K𝜓 all less than 𝑛,
– 𝜒 ≈ 𝜒′ ∈ {|Θ|}K𝜓 (𝑅𝜓),

we have {|Θ.a|}K𝜓 (𝑅𝜓, 𝜒) = {|Θ.a′|}K𝜓 (𝑅𝜓, 𝜒′).

• Given

– Ψ′ ⊩ Δ𝜓 | K𝜓 | Θ ▶ m = m′ ∈ a with |Θ|K𝜓 , |m|K𝜓 , |m′|K𝜓 , |a|K𝜓 all less than 𝑛,
– 𝜒 ≈ 𝜒′ ∈ {|Θ|}K𝜓 (𝑅𝜓),

we have LΘ.mMK𝜓 (𝜒) ≈ LΘ.m′MK ′𝜓 (𝜒′) ∈ ⤋{|Θ.a|}K𝜓 (𝑅𝜓, 𝜒).

Note that these operations are always well-defined; the condition is that they preserve
equality in their inputs (and in the latter case, are in the field of a relation). Note that
when these conditions hold, it follows by induction that the interpretation functions for
contexts and substitutions of height below 𝑛 are likewise well-behaved.

128 General higher inductive types

Lemma 6.2.18 (Constructor introduction). Let Ψ ⊩ Δ ▶ K = K′ spec, a constructor
(ℓ : Φ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K , and a (Ψ,Δ)-PER 𝑅 be given such that 𝑅 interprets K,K′

below |ℓ |K . Then the following rules are validated.

(1)
Ψ ⊩ 𝜙 = 𝜙′ ∈ Φ Ψ ⊩ 𝜔 = 𝜔′ ∈ Γ𝜙 𝜒 ≈ 𝜒′ ∈ {|Θ[𝜙,𝜔]|}K (𝑅)
introKℓ (𝜙 ;𝜔 ; 𝜒) ≈ introK

′
ℓ (𝜙′;𝜔′; 𝜒′) ∈ ⤋IntroKℓ ?(𝑅) [idΨ, 𝛿 [𝜙,𝜔]]

(2)
Ψ ⊩ 𝜉 𝑗 satisfied Ψ ⊩ 𝜙 ∈ Φ Ψ ⊩ 𝜔 ∈ Γ𝜙 𝜒 ∈ {|Θ[𝜙,𝜔]|}K (𝑅)

introKℓ (𝜙 ;𝜔 ; 𝜒) ≈ LΘ.m 𝑗 [𝜙,𝜔]MK (𝜒) ∈ ⤋IntroKℓ ?(𝑅) [idΨ, 𝛿 [𝜙,𝜔]]

Proof. We prove the two rules in reverse order.

(2) By coherent head expansion. For any Ψ′ ⊩ 𝜓 ∈ Ψ, there is some minimal 𝑘 ≤ 𝑗
such that Ψ′ ⊩ 𝜉𝑘𝜓 satisfied, so introKℓ (𝜙 ;𝜔 ; 𝜒)𝜓 ↦−→ LΘ.m𝑘 [𝜙,𝜔]MK (𝜒)𝜓 . From
Ψ ⊩ Δ ▶ K spec we can extract Ψ,Φ,Ω, 𝜉𝑘 , 𝜉 𝑗 � Δ | K | Θ ▶ m𝑘 = m 𝑗 ∈ ind(𝛿).
As m 𝑗 and m𝑘 come from the entry for ℓ inK , we know that |m𝑘 [𝜙,𝜔]𝜓 |K < |ℓ |K and
|m 𝑗 [𝜙,𝜔]𝜓 |K < |ℓ |K . By our assumption that 𝑅 interprets K,K′ below |ℓ |K , then, we
conclude that LΘ.m𝑘 [𝜙,𝜔]MK (𝜒)𝜓 ≈ LΘ.m 𝑗 [𝜙,𝜔]MK (𝜒)𝜓 ∈ ⤋𝑅 [idΨ, 𝛿 [𝜙,𝜔]]𝜓 .

(1) By coherent value introduction. For any Ψ′ ⊩ 𝜓 ∈ Ψ, we are in one of two cases. If
there is someminimal 𝑘 such that Ψ′ ⊩ 𝜉𝑘𝜓 satisfied, then we combine the fact that we
have LΘ.m𝑘 [𝜙,𝜔]MK (𝜒)𝜓 ≈ LΘ.m 𝑗 (𝜙′, 𝜔′)MK ′ (𝜒′)𝜓 in the relation ⤋𝑅 [idΨ, 𝛿 [𝜙,𝜔]]𝜓 ,
which is derivable as in the proof of (2), with applications of (2) on either side to derive
introKℓ (𝜙 ;𝜔 ; 𝜒)𝜓 ≈ introK

′
ℓ (𝜙′;𝜔′; 𝜒′)𝜓 ∈ ⤋IntroKℓ ?(𝑅) [idΨ, 𝛿 [𝜙,𝜔]]𝜓 . If there is no

such 𝑘 , then the terms are values related in IntroKℓ (𝑅) [idΨ, 𝛿 [𝜙,𝜔]]𝜓 by definition. □

Lemma 6.2.19 (Interpretation of argument terms). Let Ψ ⊩ Δ ▶ K = K′ spec and
let 𝑅 be a (Ψ,Δ)-PER such that Fcoe(𝑅) ⊆ 𝑅, Fhcom(𝑅) ⊆ 𝑅, and IntroKℓ (𝑅) ⊆ 𝑅 for every
ℓ with |ℓ |K < 𝑛. Then 𝑅 interprets K,K′ below 𝑛.

Proof. By strong induction on𝑛 ∈ N and then an inner mutual induction on the derivation
of the argument context, type, and term equalities hypothesized in the three conditions of
Definition 6.2.17. We leave the details to the reader, as the proof is tedious but completely
straightforward. Each rule for deriving argument term well-typedness corresponds to a
rule for ordinary terms we have already established, whether for constructors, fhcom or
fcoe terms, functions, or paths. In the case of an hcom and fcoe terms, we apply Lem-
mas 6.2.14 and 6.2.15, using Fcoe(𝑅) ⊆ 𝑅 and Fhcom(𝑅) ⊆ 𝑅—which imply Fcoe?(𝑅) ⊆ 𝑅

Interpreting specifications 129

and Fhcom?(𝑅) ⊆ 𝑅—to get an equation in ⤋𝑅. For a constructor term, we similarly ap-
ply Lemma 6.2.18, taking advantage of the induction hypothesis that 𝑅 interprets K,K′

below𝑚 for every𝑚 < 𝑛 and the fact that IntroKℓ (𝑅) ⊆ 𝑅. □

Theorem 6.2.20. IndK interprets K,K′ below every 𝑛 ∈ N.

Proof. Immediate from the universal property of IndK and Lemma 6.2.19. □

Corollary 6.2.21. For any Ψ ⊩ Δ tel, Ψ ⊩ Δ ▶ K spec, and Ψ ⊩ 𝛿 ∈ Δ, the Ψ-relation
IndK [idΨ, 𝛿] is value-coherent.

Proof. By Lemmas 6.2.14 and 6.2.15 for fcoe and fhcom values respectively, and the com-
bination of Lemma 6.2.18 and Theorem 6.2.20 for intro values. □

6.2.5 Type systems closed under HITs
Having defined the (value-coherent) Ψ-PER corresponding to an inductive specification,
it is now straightforward to create a type system closed under these.

Example 6.2.22 (Small type system with HITs). Wedefine an operator𝐻 on candidate value
type systems: given 𝜏 , 𝐻 (𝜏) is generated by the following.

• 𝐻 (𝜏) ⊨ Ψ ⊩ IndΔK (𝛿) ≈ IndΔ
′

K ′ (𝛿′) ↓ 𝑅 whenever

– 𝜏 ⊨ Ψ ⊩ Δ = Δ′ tel,

– 𝜏 ⊨ Ψ ⊩ Δ ▶ K = K′ spec,

– 𝜏 ⊨ Ψ ⊩ 𝛿 = 𝛿′ ∈ Δ,

– 𝑅 = IndK [idΨ, 𝛿].

Here we sweep a detail under the rug: as we do not know our type system satisfies unicity
in the midst of the fixed-point construction, it is important that we make a consistent
choice of interpreting relations for the telescopes Δ, Δ′ and the types occuring in K and
K′. We have not kept track of these in our definition of IndK [idΨ, 𝛿]; as it is clear how to
do so, however, we leave this bookkeeping to the reader to imagine.

We define 𝜏𝐻0 to be the least fixed point of 𝐹∪𝐻 , where 𝐹 is as defined in Example 3.1.32.

Example 6.2.23 (Type system with HITs and one universe). Wedefine𝜏𝐻1 to be the least fixed
point of 𝐹 ∪ 𝐻 ∪𝑈 (𝜏𝐻0), where𝑈 is as defined in Example 3.1.33.

Proposition 6.2.24. 𝜏𝐻0 and 𝜏𝐻1 are type systems.

130 General higher inductive types

Observe that the universe U of 𝜏𝐻1 is closed under HITs whose index and types are
drawn from U. The parameters of a family of HITs in U, on the other hand, are not
required to be of types belonging to U. Suppose, for example, we have some family
of HITs 𝜏𝐻1 ⊨ Γ � Δ ▶ K spec well-formed in the larger type system. For the induced
family of inductive types Γ,Δ � IndΔK (𝑣Δ) type to belong to U, we need only that
𝜏𝐻0 ⊨ Ψ ⊩ Δ𝛾 ▶ K𝛾 = K𝛾 ′ spec holds for every Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ. This can be the case
even if the types in Γ do not themselves belong to 𝜏𝐻0 . As mentioned in Chapter 5, for
example, we will have𝐴 : U, 𝑎0 :𝐴, 𝑎1 :𝐴 � Id(𝐴, 𝑎0, 𝑎1) ∈ U, which requires that the type
𝐴 of the indices belongs to U but not that the type U of the parameter belongs to U.

We work relative to the type system 𝜏𝐻1 for the remainder of this chapter, in which we
check that the inductive pretypes enjoy the rules we expect from them. The formation rule
is immediate by coherent value introduction and stability of the specification judgment—
the type and its substitution instances are all values—while the introduction follows from
lemmas we have already proven.

Rule 6.2.25 (Pretype formation).

Ψ ⊩ Δ = Δ′ tel Ψ ⊩ Δ ▶ K = K′ spec Ψ ⊩ 𝛿 = 𝛿′ ∈ Δ

Ψ ⊩ IndΔK (𝛿) = IndΔ
′

K ′ (𝛿′) pretype

Proof. By coherent value introduction. □

Rule 6.2.26 (Constructor introduction). Let Ψ ⊩ Δ ▶ K = K′ spec and a constructor
(ℓ : Φ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K be given.

Ψ ⊩ 𝜙 = 𝜙′ ∈ Φ Ψ ⊩ 𝜔 = 𝜔′ ∈ Γ𝜙 Ψ ⊩ 𝜒 = 𝜒′ ∈ LΘ[𝜙,𝜔]MΔK
Ψ ⊩ introKℓ (𝜙 ;𝜔 ; 𝜒) = introK

′
ℓ (𝜙′;𝜔′; 𝜒′) ∈ IndΔK (𝛿 [𝜙,𝜔])

Ψ ⊩ 𝜉 𝑗 satisfied Ψ ⊩ 𝜙 ∈ Φ Ψ ⊩ 𝜔 ∈ Γ𝜙 Ψ ⊩ 𝜒 ∈ LΘ[𝜙,𝜔]MΔK
Ψ ⊩ introKℓ (𝜙 ;𝜔 ; 𝜒) = LΘ.m 𝑗 [𝜙,𝜔]MK (𝜒) ∈ IndΔK (𝛿 [𝜙,𝜔])

Proof. By Lemma 6.2.18. □

Rule 6.2.27 (Formal coercion introduction). Let Ψ ⊩ Δ ▶ K spec.

Ψ, 𝑥 : I ⊩ 𝛿 = 𝛿′ ∈ Δ Ψ ⊩ 𝑟, 𝑠 ∈ I Ψ ⊩ 𝑀 = 𝑀′ ∈ IndΔK (𝛿 [𝑟/𝑥])
Ψ ⊩ fcoe𝑟�𝑠𝑥 .𝛿 (𝑀) = fcoe𝑟�𝑠𝑥 .𝛿 ′ (𝑀

′) ∈ IndΔK (𝛿 [𝑠/𝑥])

Ψ, 𝑥 : I ⊩ 𝛿 ∈ Δ Ψ ⊩ 𝑟 ∈ I Ψ ⊩ 𝑀 ∈ IndΔK (𝛿 [𝑟/𝑥])
Ψ ⊩ fcoe𝑟�𝑟𝑥 .𝛿 (𝑀) = 𝑀 ∈ IndΔK (𝛿 [𝑟/𝑥])

Kan operations 131

Proof. By Lemma 6.2.14. □

Rule 6.2.28 (Formal composition introduction). Let Ψ ⊩ Δ ▶ K spec and Ψ ⊩ 𝛿 ∈ Δ
be given togetherwith interval termsΨ ⊩ 𝑟, 𝑠 ∈ I, and constraintsΨ ⊩ 𝜉𝑖 ∈ F for 0 ≤ 𝑖 < 𝑛.

Ψ ⊩ 𝑀 = 𝑀′ ∈ IndΔK (𝛿)
(∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I ⊩ 𝑁𝑖 = 𝑁 ′

𝑗 ∈ IndΔK (𝛿) (∀𝑖) Ψ, 𝜉𝑖 ⊩ 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ IndΔK (𝛿)

Ψ ⊩ fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = fhcom𝑟�𝑠 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ IndΔK (𝛿)

Ψ ⊩ 𝑀 ∈ IndΔK (𝛿)
(∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I ⊩ 𝑁𝑖 = 𝑁 𝑗 ∈ IndΔK (𝛿) (∀𝑖) Ψ, 𝜉𝑖 ⊩ 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ IndΔK (𝛿)

Ψ ⊩ fhcom𝑟�𝑟 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = 𝑀 ∈ IndΔK (𝛿)

Ψ ⊩ 𝜉𝑘 satisfied Ψ ⊩ 𝑀 ∈ IndΔK (𝛿)
(∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I ⊩ 𝑁𝑖 = 𝑁 𝑗 ∈ IndΔK (𝛿) (∀𝑖) Ψ, 𝜉𝑖 ⊩ 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ IndΔK (𝛿)

Ψ ⊩ fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = 𝑁𝑘 [𝑠/𝑥] ∈ IndΔK (𝛿)

Proof. By Lemma 6.2.15. □

6.3 Kan operations
We now show that the inductive pretypes are indeed types by proving the typing

rules and boundary conditions for the Kan operators at inductive type. The operational
semantics for these operations are shown in Figure 6.6.

We dispatch with composition first: support follows immediately from the existence
and well-typedness of formal composites in the inductive type.

Theorem 6.3.1 (Composition). Ψ ⊩ IndΔK (𝛿) = IndΔ
′

K ′ (𝛿′) pretype support homoge-
neous composition for any Ψ ⊩ Δ = Δ′ tel, Ψ ⊩ Δ ▶ K = K′ spec, and Ψ ⊩ 𝛿 = 𝛿′ ∈ Δ.

Proof. Any hcom in a higher inductive type reduces to an fhcom term, as shown in
Figure 6.6. Support for homogeneous composition therefore follows immediately from
Lemma 6.2.15. □

As one piece of coercion in inductive types, we must be able to apply coercion to a
list of arguments. We therefore extend coercion from types to telescopes, coercing them
as we might elements of product types. Defined in Figure 6.6, this operator satisfies the
following rules.

132 General higher inductive types

Coercion along telescopes

coe𝑟�𝑠𝑥 .· (·) B ·
coe𝑟�𝑠𝑥 .(Ω,𝑎:𝐴) (𝜔,𝑀/𝑎) B (coe𝑟�𝑠𝑥 .Ω (𝜔), coe𝑟�𝑠𝑥 .𝐴[coe𝑟�𝑥

𝑥.Ω (𝜔)] (𝑀)/𝑎)

Parameter coercion

𝑀 ↦−→ 𝑀′

pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (𝑀) ↦−→ pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (𝑀′)

(ℓ : Φ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K
(�𝑖) 𝜉𝑖 satisfied (∀𝑡) 𝜔𝑡 B coe𝑟�𝑡𝑥 .𝜔𝜙 (𝜔) (∀𝑡) 𝜒𝑡 B coe𝑟�𝑡

𝑥 .LΘ[𝜙,𝜔𝑥]MΔK (𝜒)
(∀𝑖) 𝑀𝑥

𝑖 B pcoe𝑥�𝑠𝑥 .Δ▶𝑥 .K (LΘ.m𝑘 [𝜙,𝜔𝑥]MK (𝜒𝑥)) 𝛿𝑥 B coe𝑥�𝑠𝑥 .Δ (𝛿𝜔𝑥)

pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (introK ′
ℓ (𝜙 ;𝜔 ; 𝜒)) ↦−→ fcom𝑠�𝑟

𝑥 .𝛿𝑥 (intro
K[𝑠/𝑥]
ℓ (𝜙 ;𝜔𝑠 ; 𝜒𝑠);

−−−−−−−−−−−⇀
𝜉𝑖𝜙 ↩→ 𝑥 .𝑀𝑥

𝑖)

𝑡 ≠ 𝑢 (�𝑖) 𝜉𝑖 satisfied

pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (fhcom𝑡�𝑢 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖))

↦−→
fhcom𝑡�𝑢 (pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (𝑀);

−−−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (𝑁𝑖))

𝑡 ≠ 𝑢

pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (fcoe𝑡�𝑢𝑦.𝛿 (𝑀)) ↦−→ fcoe𝑡�𝑢𝑦.coe𝑟�𝑠
𝑥 .Δ (𝛿) (pcoe

𝑟�𝑠
𝑥 .Δ▶𝑥 .K (𝑀))

Coercion

coe𝑟�𝑠
𝑥 .IndΔK (𝛿) (𝑀) ↦−→ fcoe𝑟�𝑠𝑥 .coe𝑥�𝑠

𝑥 .Δ (𝛿) (pcoe
𝑟�𝑠
𝑥 .Δ▶𝑥 .K (𝑀))

Composition

hcom𝑟�𝑠
IndΔK (𝛿) (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ fhcom𝑟�𝑠 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)

Figure 6.6: Operational semantics of coercion and composition in HITs

Kan operations 133

Lemma 6.3.2 (Telescope coercion). Given Ψ, 𝑥 : I ⊩ Ω = Ω′ tel, the following rules are
validated.

Ψ ⊩ 𝑟, 𝑠 ∈ I Ψ ⊩ 𝜔 = 𝜔′ ∈ Ω[𝑟/𝑥]
Ψ ⊩ coe𝑟�𝑠𝑥 .Ω (𝜔) = coe𝑟�𝑠𝑥 .Ω′ (𝜔′) ∈ Ω[𝑠/𝑥]

Ψ ⊩ 𝑟 ∈ I Ψ ⊩ 𝜔 ∈ Ω[𝑟/𝑥]
Ψ ⊩ coe𝑟�𝑟𝑥 .Ω (𝜔) = 𝜔 ∈ Ω[𝑟/𝑥]

Proof. By induction on the length of the telescopes. In the case Ψ, 𝑥 : I ⊩ · = · tel,
the two rules are immediate, as 𝜔 = 𝜔′ = coe𝑟�𝑠𝑥 .Ω (𝜔) = coe𝑟�𝑠𝑥 .Ω′ (𝜔′) = · . Otherwise,
we are in the case Ψ, 𝑥 : I ⊩ (Ω, 𝑎 :𝐴) = (Ω′, 𝑎 :𝐴′) tel where Ψ, 𝑥 : I ⊩ Ω = Ω′ tel and
Ψ, 𝑥 : I ⊩ 𝐴 = 𝐴′ type, so that 𝜔 = (𝜒.𝑀) and 𝜔′ = (𝜒′, 𝑀′/𝑎). By induction hypothesis,
we know that Ψ, 𝑥 : I ⊩ coe𝑟�𝑥𝑥 .Ω (𝜒) = coe𝑟�𝑥𝑥 .Ω′ (𝜒′) ∈ Ω, so by substituting in 𝐴,𝐴′ we get
Ψ, 𝑥 : I ⊩ 𝐴[coe𝑟�𝑥𝑥 .Ω (𝜒)] = 𝐴′[coe𝑟�𝑥𝑥 .Ω′ (𝜒′)] type. As 𝐴 and 𝐴′ are Kan, we may coerce 𝑀
and𝑀′ along these lines, obtaining the following.

Ψ ⊩ coe𝑟�𝑠𝑥 .𝐴[coe𝑟�𝑥
𝑥.Ω (𝜒)] (𝑀) = coe𝑟�𝑠𝑥 .𝐴′[coe𝑟�𝑥

𝑥.Ω′ (𝜒 ′)] (𝑀
′) ∈ 𝐴[coe𝑟�𝑠𝑥 .Ω (𝜒), 𝑠/𝑥]

Combining this with Ψ, 𝑥 : I ⊩ coe𝑟�𝑥𝑥 .Ω (𝜒) = coe𝑟�𝑥𝑥 .Ω′ (𝜒′) ∈ Ω and consulting the definition
of coe, we thus have Ψ ⊩ coe𝑟�𝑠𝑥 .Ω,𝑎:𝐴 (𝜒,𝑀/𝑎) = coe𝑟�𝑠𝑥 .Ω′,𝑎:𝐴′ (𝜒′, 𝑀′/𝑎) ∈ (Ω, 𝑎 :𝐴) [𝑠/𝑥].
The second rule follows by a similar argument. □

It will be convenient to have a notion of when an open relation or relation on instan-
tiations supports coercion at some syntactic type.

Definition 6.3.3. Given a Γ-relation 𝑅, we say that 𝑅 supports coercion at 𝐴,𝐴′ when 𝑅𝛾
supports coercion at 𝐴𝛾,𝐴′𝛾 ′ for every Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.

Definition 6.3.4. We say that a Ψ-PER 𝑅 on instantiations supports coercion at telescopes
Ω,Ω′ when it validates the following rules for every Ψ′, 𝑥 : I ⊩ 𝜓 ∈ Ψ and Ψ′ ⊩ 𝑟, 𝑠 ∈ I.

𝜔 ≈ 𝜔′ ∈ 𝑅𝜓 [𝑟/𝑥]
coe𝑟�𝑠𝑥 .Ω𝜓 (𝜔) ≈ coe𝑟�𝑠𝑥 .Ω′𝜓 (𝜔′) ∈ 𝑅𝜓 [𝑠/𝑥]

𝜔 ∈ 𝑅𝜓 [𝑟/𝑥]
coe𝑟�𝑟𝑥 .Ω𝜓 (𝜔) ≈ 𝜔 ∈ 𝑅𝜓 [𝑟/𝑥]

Recall from Section 5.3 that we separate coercion into two parts: the formal coercions
between indices of the family—which we have already shown are well-typed—and param-
eter coercion, which coerces along lines Ψ, 𝑥 : I ⊩ Δ tel and Ψ, 𝑥 : I ⊩ Δ ▶ K spec in the
specification (and thus in the parameters of the type). We intend the parameter coercion
operator, pcoe, is intended to satisfy the following rules.

134 General higher inductive types

Declaration of Intent 6.3.5.

Ψ, 𝑥 : I ⊩ Δ = Δ′ tel Ψ, 𝑥 : I ⊩ Δ ▶ K = K′ spec
Ψ ⊩ 𝑟, 𝑠 ∈ I Ψ ⊩ 𝛿 ∈ Δ[𝑟/𝑥] Ψ ⊩ 𝑀 = 𝑀′ ∈ IndΔ[𝑟/𝑥]K[𝑟/𝑥] (𝛿)

Ψ ⊩ pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (𝑀) = pcoe𝑟�𝑠𝑥 .Δ′▶𝑥 .K ′ (𝑀′) ∈ IndΔ[𝑠/𝑥]K[𝑠/𝑥] (coe
𝑟�𝑠
𝑥 .Δ (𝛿))

Ψ, 𝑥 : I ⊩ Δ tel
Ψ, 𝑥 : I ⊩ Δ ▶ K spec Ψ ⊩ 𝑟 ∈ I Ψ ⊩ 𝛿 ∈ Δ[𝑟/𝑥] Ψ ⊩ 𝑀 ∈ IndΔ[𝑟/𝑥]K[𝑟/𝑥] (𝛿)

Ψ ⊩ pcoe𝑟�𝑟𝑥 .Δ▶𝑥 .K (𝑀) = 𝑀 ∈ IndΔ[𝑟/𝑥]K[𝑟/𝑥] (𝛿)

The proof of this will constitute the bulk of this section. For the remainder, we fix
Ψ ⊩ Δ = Δ′ tel and Ψ ⊩ Δ ▶ K = K′ spec. We use the universal property of IndK—its
status as a least pre-fixed-point—to prove that its elements satisfy coercion, defining a
sub-PER Pcoe𝜈 ⊆ IndK of “coercible values” and showing it is a pre-fixed-point of StepK .

The reduction of a single coercion applied to a constructor of inductive typemay cause
component terms to be coerced multiple times; recall from Section 5.1 that we use terms
such as coe𝑥�𝑠𝑥 .𝐴 (𝐹 (coe𝑟�𝑥𝑥 .𝐶 (𝑃))) to correct the boundary in coercion of path constructors.
The relation of “once-coercible” values is therefore not necessarily closed under the IntroKℓ
operators, so we define Pcoe𝜈 as relating infinitely-coercible values by way of a greatest
fixed-point.

Lemma 6.3.6. If 𝐹 is a monotone operator on Ψ-relations that takes Ψ-PERs to Ψ-PERs,
then the greatest post-fixed-point 𝜈𝐹 is a Ψ-PER.

Proof. Given a Ψ-relation 𝑅, write𝐶 (𝑅) for the symmetric transitive closure of 𝑅. We have
𝜈 (𝐶 ◦ 𝐹) ⊆ 𝐶 (𝐹 (𝜈 (𝐶 ◦ 𝐹))) by construction. As 𝜈 (𝐶 ◦ 𝐹)) is a Ψ-PER and 𝐹 preserves Ψ-
PERs, we have 𝐶 (𝐹 (𝜈 (𝐶 ◦ 𝐹))) = 𝐹 (𝜈 (𝐶 ◦ 𝐹)). Hence 𝜈 (𝐶 ◦ 𝐹) is a post-fixed-point of 𝐹 ,
and we deduce that 𝜈 (𝐶 ◦ 𝐹) ⊆ 𝜈𝐹 . On the other hand, 𝜈𝐹 is trivially a post-fixed-point
of𝐶 ◦ 𝐹 , as 𝜈𝐹 ⊆ 𝐹 (𝜈𝐹) ⊆ 𝐶 (𝐹 (𝜈𝐹)). Thus 𝜈𝐹 ⊆ 𝜈 (𝐶 ◦ 𝐹). In sum, we have 𝜈𝐹 = 𝜈 (𝐶 ◦ 𝐹),
and so 𝜈𝐹 is a Ψ-PER. □

Definition 6.3.7 (Coercibility relation). Let 𝑅 be a value (Ψ,Δ)-relation. We define a
new value (Ψ,Δ)-relation Pcoe−1(𝑅) by declaring 𝑉 ≈ 𝑉 ′ ∈ Pcoe−1(𝑅)〈𝜓, 𝛿〉 to hold for
Ψ′ ⊩ (𝜓, 𝛿) ∈ (Ψ,Δ) whenever 𝑉 ≈ 𝑉 ′ ∈ IndK 〈𝜓, 𝛿〉 and the following hold for all
Ψ′, 𝑥 : I ⊩ 𝜓𝑥 ∈ Ψ and Ψ′ ⊩ 𝑟, 𝑠 ∈ I such that𝜓𝑥 [𝑟/𝑥] = 𝜓 .

• pcoe𝑟�𝑠
𝑥 .Δ𝜓𝑥▶𝑥 .K𝜓𝑥 (𝑊) ≈ pcoe𝑟�𝑠

𝑥 .Δ′𝜓𝑥▶𝑥 .K ′𝜓𝑥
(𝑊 ′) ∈ ⤋𝑅 [𝜓𝑥 [𝑠/𝑥], coe𝑟�𝑠𝑥 .Δ𝜓𝑥

(𝛿)] for each pair
of values𝑊,𝑊 ′ ∈ {𝑉 ,𝑉 ′}.

• pcoe𝑟�𝑟
𝑥 .Δ𝜓𝑥▶𝑥 .K𝜓𝑥 (𝑊) ≈𝑊 ∈ ⤋𝑅 [𝜓, 𝛿] for each𝑊 ∈ {𝑉 ,𝑉 ′}.

Kan operations 135

We define Pcoe𝜈 to be the greatest fixed-point of Pcoe−1, which is a Ψ-PER by virtue of
Lemma 6.3.6.

We quickly see that not only values but terms in Pcoe−1 are coercible.

Lemma 6.3.8 (Parameter coercion from Pcoe−1). Any (Ψ,Δ)-PER 𝑅 validates the fol-
lowing rules for all Ψ′, 𝑥 : I ⊩ 𝜓 ∈ Ψ, Ψ′ ⊩ 𝑟, 𝑠 ∈ I, and Ψ′ ⊩ 𝛿 ∈ Δ𝜓 [𝑟/𝑥].

𝑀 ≈ 𝑀′ ∈ ⤋Pcoe−1(𝑅) [𝜓 [𝑟/𝑥], 𝛿]
pcoe𝑟�𝑠𝑥 .Δ𝜓▶𝑥 .K𝜓 (𝑀) ≈ pcoe𝑟�𝑠𝑥 .Δ′𝜓▶𝑥 .K ′𝜓 (𝑀

′) ∈ ⤋𝑅 [𝜓 [𝑠/𝑥], coe𝑟�𝑠𝑥 .Δ𝜓 (𝛿)]

𝑀 ∈ ⤋Pcoe−1(𝑅)(𝜓 [𝑟/𝑥], 𝛿)
pcoe𝑟�𝑟𝑥 .Δ𝜓▶𝑥 .K𝜓 (𝑀) ≈ 𝑀 ∈ ⤋𝑅 [𝜓 [𝑟/𝑥], 𝛿]

Proof. We apply our elimination lemma, Lemma 3.1.38. Here we use that Pcoe−1(𝑅) ⊆JIndΔK (−)K by definition. It then suffices to check that these rules hold when the input
terms are values in Pcoe−1(𝑅) [𝜓 [𝑟/𝑥], 𝛿], in which case the conclusions are also true by
definition of Pcoe−1(𝑅). □

We now show that Pcoe𝜈 is closed under the individual introduction form relations
making up StepK : Fcoe, Fhcom, and IntroKℓ for ℓ ∈ K . In each case, we first show that
parameter coercion applied to the introduction form can be reduced to some application
of introduction forms to coercions of the arguments.

Lemma 6.3.9 (Reduction of pcoe on fcoe). The following holds for any (Ψ,Δ)-PER 𝑅,
substitution Ψ′, 𝑥 : I ⊩ 𝜓 ∈ Ψ, Ψ′ ⊩ 𝑟, 𝑠 ∈ I, and Ψ′, 𝑦 : I ⊩ 𝛿 ∈ Δ𝜓 [𝑟/𝑥].

Ψ′ ⊩ 𝑡,𝑢 ∈ I 𝑀 ∈ ⤋Pcoe−1(𝑅) [𝜓 [𝑟/𝑥], 𝛿 [𝑡/𝑦]]
pcoe𝑟�𝑠𝑥 .K𝜓▶𝑥 .Δ𝜓 (fcoe

𝑡�𝑢
𝑦.𝛿 (𝑀))

≈
fcoe𝑡�𝑢𝑦.coe𝑟�𝑠

𝑥 .Δ (𝛿) (pcoe
𝑟�𝑠
𝑥 .Δ▶𝑥 .K (𝑀))

∈
⤋Fcoe?(𝑅) [𝜓 [𝑠/𝑥], coe𝑟�𝑠𝑥 .Δ𝜓 (𝛿 [𝑢/𝑦])]

Proof. By coherent head expansion. LetΨ′′ ⊩ 𝜓 ′ ∈ Ψ′ be given. We are in one of two cases.
If 𝑡𝜓 ′ = 𝑢𝜓 ′, then we have pcoe𝑟�𝑠

𝑥 .K𝜓▶𝑥 .Δ𝜓 (fcoe
𝑡�𝑢
𝑦.𝛿 (𝑀))𝜓 ↦−→ pcoe𝑟�𝑠

𝑥 .K𝜓▶𝑥 .Δ𝜓 (𝑀)𝜓 , and the
reduct is related to our right side by Lemmas 6.3.8 and 6.2.14. If 𝑡𝜓 ′ = 𝑢𝜓 ′, then the left
side reduces to the right side, which is again in the relation by Lemmas 6.3.8 and 6.2.14.□

Corollary 6.3.10. For any (Ψ,Δ)-PER 𝑅, we have Fcoe(Pcoe−1(𝑅)) ⊆ Pcoe−1(Fcoe?(𝑅)).

136 General higher inductive types

Proof. Given any 𝑉 ≈ 𝑉 ′ ∈ Fcoe(Pcoe−1(𝑅))〈𝜓, 𝛿〉, we have that 𝑉 and 𝑉 ′ are fcoe terms
with well-typed boundaries. When we apply pcoe to the two, each reduces to a term to
which it is related in Fcoe?(𝑅) by Lemma 6.3.9. These two reducts are in turn related to
each other in Fcoe?(𝑅), and related to 𝑉 and 𝑉 ′ in Fcoe?(𝑅) when the pcoe is trivial, by
Lemmas 6.3.8 and 6.2.14. Thus we have 𝑉 ≈ 𝑉 ′ ∈ Pcoe−1(Fcoe?(𝑅))〈𝜓, 𝛿〉. □

Corollary 6.3.11. We have Fcoe?(Pcoe𝜈) ⊆ Pcoe𝜈 .

Proof. It suffices to show that Fcoe? is a post-fixed-point of Pcoe−1. Using Corollary 6.3.10,
we have Fcoe?(Pcoe𝜈) = Fcoe?(Pcoe−1(Pcoe𝜈)) ⊆ Pcoe−1(Fcoe?(Pcoe𝜈)). □

Lemma 6.3.12 (Reduction of pcoe on fhcom). The following rule is validated for any
(Ψ,Δ)-PER 𝑅, substitution Ψ′, 𝑥 : I ⊩ 𝜓 ∈ Ψ, Ψ′ ⊩ 𝑟, 𝑠 ∈ I, and Ψ′ ⊩ 𝛿 ∈ Δ𝜓 [𝑟/𝑥].

Ψ′ ⊩ 𝑡,𝑢 ∈ I (∀𝑖) Ψ′ ⊩ 𝜉𝑖 ∈ F 𝑀 ∈ ⤋Pcoe−1(𝑅) [𝜓 [𝑟/𝑥], 𝛿]
(∀𝑖, 𝑗) Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑦 : I � 𝑁𝑖 ≈ 𝑁 𝑗 ∈ ⤋Pcoe−1(𝑅) [𝜓 [𝑟/𝑥], 𝛿]
(∀𝑖) Ψ′, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑡/𝑦] ∈ ⤋Pcoe−1(𝑅) [𝜓 [𝑟/𝑥], 𝛿]

pcoe𝑟�𝑠𝑥 .K𝜓▶𝑥 .Δ𝜓 (fhcom
𝑡�𝑢 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖))

≈
fhcom𝑡�𝑢 (pcoe𝑟�𝑠𝑥 .Δ𝜓▶𝑥 .K𝜓 (𝑀);

−−−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.pcoe𝑟�𝑠𝑥 .Δ▶𝑥 .K (𝑁𝑖))

∈
⤋Fhcom?(𝑅) [𝜓 [𝑠/𝑥], coe𝑟�𝑠𝑥 .Δ𝜓 (𝛿)]

Proof. Again by a straightforward application of coherent head expansion, now using
Lemma 6.2.15 to check that the right side is in the desired relation. □

Corollary 6.3.13. For any 𝑅, we have Fhcom(Pcoe−1(𝑅)) ⊆ Pcoe−1(Fhcom?(𝑅)).

Proof. As with Corollary 6.3.10. □

Corollary 6.3.14. We have Fhcom?(Pcoe𝜈) ⊆ Pcoe𝜈 .

Proof. As with Corollary 6.3.11. □

Definition 6.3.15. Define Fcom(𝑅) B Fhcom(Fcoe?(𝑅)).

Lemma 6.3.16. For any 𝑅, we have Fcom(Pcoe−1(𝑅)) ⊆ Pcoe−1(Fcom?(𝑅)).

Proof. By Corollaries 6.3.10 and 6.3.13. □

Kan operations 137

Using the fact that Pcoe𝜈 is closed under formal coercions, we see that it supports not
only parameter coercion but coercion in general.

Lemma 6.3.17. Pcoe𝜈 supports coercion at IndΔ𝜓K𝜓 (𝑣Δ), Ind
Δ′𝜓
K ′𝜓 (𝑣Δ).

Proof. Per Figure 6.6, a coercion in a higher inductive type reduces to a parameter coercion
followed by a formal coercion. By Lemma 6.3.8, Pcoe𝜈 is closed under parameter coercion,
and it is likewise closed under formal coercion by Corollary 6.3.11. □

To coerce a constructor term, we must be able to coerce its arguments. Below, we
see that we can coerce in the instantiation relation {|Θ|}K (𝑅) induced by a relation 𝑅 that
itself supports coercion.

Lemma 6.3.18. Let Ψ ⊩ Δ | K ▶ Θ = Θ′ actx be given. If a (Ψ,Δ)-PER 𝑅 supports
coercion at IndΔK (𝑣Δ), IndΔ

′

K ′ (𝑣Δ), then {|Θ|}K (𝑅) supports coercion at LΘMΔK ,LΘ′MΔ′

K ′ .

Proof. By induction on the derivation of Ψ ⊩ Δ | K ▶ Θ = Θ′ actx, proving an auxiliary
lemma for support of coercion in argument types to handle the successor case. Argument
types are built from the inductive family, function types, and path types; the proposition
thus follows by the arguments that function and path types are Kan, together with the
assumption that 𝑅 supports coercion at the inductive types. □

Coercion in a constructor term applies coercions to the arguments and wraps the
result in the same constructor, but also applies a formal heterogeneous composite (fcom,
defined in Figure 6.5) to correct the boundary and index. As with the introduction rules,
showing the reduction is well-typed for a constructor ℓ requires assuming Pcoe𝜈 is closed
under the preceding constructors.

Lemma 6.3.19 (Reduction of pcoe on intro). Let ℓ ∈ K be given. Suppose that we
have IntroKℓ ′ (Pcoe𝜈) ⊆ Pcoe𝜈 for every ℓ′ with |ℓ′|K < |ℓ |K . Then the following rule is
validated for any substitution Ψ′, 𝑥 : I ⊩ 𝜓 ∈ Ψ, terms Ψ′ ⊩ 𝑟, 𝑠 ∈ I, and Ψ′ ⊩ 𝛿 ∈ Δ𝜓 [𝑟/𝑥].

(ℓ : Φ.Ω.[𝛿 ;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K𝜓 Ψ′ ⊩ Δ𝜓 [𝑟/𝑥] ▶ K𝜓 [𝑟/𝑥] = K′ spec
Ψ′ ⊩ 𝜙 ∈ Φ[𝑟/𝑥] Ψ′ ⊩ 𝜔 ∈ Ω[𝑟/𝑥]𝜙 𝜒 ∈ ⤋{|Θ[𝑟/𝑥] [𝜙,𝜔]|}K (Pcoe𝜈𝜓 [𝑟/𝑥])

(∀𝑡) 𝜔𝑡 B coe𝑟�𝑡𝑥 .𝜔𝜙 (𝜔) (∀𝑡) 𝜒𝑡 B coe𝑟�𝑡
𝑥 .LΘ[𝜙,𝜔𝑥]MΔ𝜓K𝜓

(𝜒)

(∀𝑖) 𝑀𝑥
𝑖 B pcoe𝑥�𝑠𝑥 .Δ𝜓▶𝑥 .K𝜓 (LΘ.m𝑘 [𝜙,𝜔𝑥]MK𝜓 (𝜒𝑥)) 𝛿𝑥 B coe𝑥�𝑠𝑥 .Δ𝜓 (𝛿𝜔𝑥)

pcoe𝑟�𝑠𝑥 .Δ𝜓▶𝑥 .K𝜓 (intro
K ′
ℓ (𝜙 ;𝜔 ; 𝜒))

≈
fcom𝑠�𝑟

𝑥 .𝛿𝑥 (intro
K𝜓 [𝑠/𝑥]
ℓ (𝜙 ;𝜔𝑠 ; 𝜒𝑠);

−−−−−−−−−−−⇀
𝜉𝑖𝜙 ↩→ 𝑥 .𝑀𝑥

𝑖)
∈

⤋Fcom?(IntroKℓ ?(Pcoe𝜈)) [𝜓 [𝑠/𝑥], coe
𝑟�𝑠
𝑥 .Δ𝜓 (𝛿)]

138 General higher inductive types

Proof. We first check that the right side is well-typed, beginning by verifying that each
of the auxiliary terms is well-typed.

• Ψ′, 𝑥 : I ⊩ 𝜔𝑥 ∈ Ω𝜙 and Ψ′ ⊩ 𝜔𝑟 = 𝜔 ∈ Ω[𝑟/𝑥]𝜙 by Lemma 6.3.2.

• 𝜒𝑥 ∈ ⤋{|Θ𝑥 |}K (Pcoe𝜈𝜓) and 𝜒𝑟 ≈ 𝜒 ∈ ⤋{|Θ𝑟 |}K (Pcoe𝜈𝜓 [𝑟/𝑥]), where Θ𝑥 = Θ[𝜙,𝜔𝑥],
by the above properties of 𝜔𝑥 and Lemmas 6.3.17 and 6.3.18.

• Ψ′, 𝑥 : I ⊩ 𝛿𝑥 ∈ Δ𝜓 and Ψ′, 𝑥 : I ⊩ 𝛿𝑠 = 𝛿 [𝑠/𝑥]𝜔𝑠 ∈ Δ𝜓 [𝑠/𝑥] by Lemma 6.3.2.

• 𝑀𝑥
𝑖 ≈ 𝑀𝑥

𝑗 ∈ ⤋Pcoe𝜈 [𝜓, 𝛿𝑥] for all 𝑖, 𝑗 by the above and Lemmas 6.2.19 and 6.3.8.

From the first three of these instantiated at [𝑠/𝑥] and Lemma 6.2.18, we can conclude
that introK𝜓 [𝑠/𝑥]ℓ (𝜙 ;𝜔𝑠 ; 𝜒𝑠) ∈ ⤋IntroKℓ ?(Pcoe𝜈) [𝜓, 𝛿𝑠]. Said lemma moreover gives us the
following boundary equation for each 𝑖 .

Ψ′, 𝜉𝑖 � introK𝜓 [𝑠/𝑥]ℓ (𝜙 ;𝜔𝑠 ; 𝜒𝑠) ≈ 𝑀𝑠
𝑖 ∈ ⤋IntroKℓ ?(Pcoe𝜈) [𝜓, 𝛿𝑠]

It then follows from Lemmas 6.2.14 and 6.2.15, combinedwith Corollaries 6.3.11 and 6.3.14,
that the right side is in ⤋Fcom?(IntroKℓ ?(Pcoe𝜈)) [𝜓 [𝑠/𝑥], coe

𝑟�𝑠
𝑥 .Δ𝜓 (𝛿)]. Moreover, under

the assumption of some constraint 𝜉𝑖 , it is related to 𝑀𝑟
𝑖 , which is in turn related to

pcoe𝑟�𝑠
𝑥 .Δ𝜓▶𝑥 .K𝜓 (LΘ.m𝑘 [𝑟/𝑥] [𝜙,𝜔]MK ′ (𝜒)) by the above.
We proceed with a standard argument by coherent head expansion. Under any sub-

stitution Ψ′′ ⊩ 𝜓 ′ ∈ Ψ′, either some 𝜉𝑘𝜓 ′ holds for a minimal 𝑘 or there is no such 𝑘 .
In the latter case, the left side reduces to the right side. In the former case, it reduces
to pcoe𝑟�𝑠

𝑥 .Δ𝜓▶𝑥 .K𝜓 (LΘ.m𝑘 [𝑟/𝑥] [𝜙,𝜔]MK ′ (𝜒)), which we have just seen is equal to the right
side in that circumstance. □

Corollary 6.3.20. For any ℓ ∈ K such that IntroKℓ ′ (Pcoe𝜈) ⊆ Pcoe𝜈 for every ℓ′ with
|ℓ′|K < |ℓ |K , we have IntroKℓ (Pcoe𝜈) ⊆ Pcoe−1(Fcom?(IntroKℓ ?(Pcoe𝜈))).

Proof. As with Corollaries 6.3.10 and 6.3.13. □

Lemma 6.3.21. We have IntroKℓ (Pcoe𝜈) ⊆ Pcoe𝜈 for all ℓ ∈ K .

Proof. By strong induction on the height of ℓ in K . Suppose that IntroKℓ ′ (Pcoe𝜈) ⊆ Pcoe𝜈

for every ℓ′ with |ℓ′|K < |ℓ |K .
Rather than showing IntroKℓ (Pcoe𝜈) ⊆ Pcoe𝜈 directly, we prove the stronger claim that

Fcom∗(IntroKℓ ?(Pcoe𝜈)) ⊆ Pcoe𝜈 . By the universal property of Pcoe𝜈 , it suffices to show
that Fcom∗(IntroKℓ ?(Pcoe𝜈)) is a post-fixed-point of Pcoe−1, i.e., that the following holds.

Fcom∗(IntroKℓ ?(Pcoe𝜈)) ⊆ Pcoe−1(Fcom∗(IntroKℓ ?(Pcoe𝜈)))

Elimination 139

In turn, by universal property of Fcom∗, it is enough to show that the right side is a pre-
fixed-point of 𝑅 ↦→ IntroKℓ ?(Pcoe𝜈) ∪ Fcom(𝑅). This splits into two inclusions, which we
prove as follows.

• IntroKℓ ?(Pcoe𝜈) ⊆ Pcoe−1(Fcom∗(IntroKℓ ?(Pcoe𝜈))). This is true byCorollary 6.3.20, using
the induction hypothesis.

• Fcom(Pcoe−1(Fcom∗(IntroKℓ ?(Pcoe𝜈)))) ⊆ Pcoe−1(Fcom∗(IntroKℓ ?(Pcoe𝜈))). This is true
by Corollaries 6.3.13 and 6.3.10. □

Theorem 6.3.22 (Coercion). Ψ′ ⊩ IndΔ𝜓K𝜓 (𝛿) = IndΔ
′𝜓

K ′𝜓 (𝛿
′) pretype support coercion for

any Ψ′ ⊩ 𝜓 ∈ Ψ and Ψ′ ⊩ 𝛿 = 𝛿′ ∈ Δ𝜓 .

Proof. Combining Corollaries 6.3.14 and 6.3.11 and Lemma 6.3.21, we can conclude that
StepK (Pcoe𝜈) ⊆ Pcoe𝜈 and therefore that IndK ⊆ Pcoe𝜈 . We have IndK ⊇ Pcoe𝜈 by defini-
tion, so the two are equal. Thus this is exactly Lemma 6.3.17. □

Corollary 6.3.23 (Typehood). Ψ′ ⊩ IndΔ𝜓K𝜓 (𝛿) = IndΔ
′𝜓

K ′𝜓 (𝛿
′) type for any Ψ′ ⊩ 𝜓 ∈ Ψ

and Ψ′ ⊩ 𝛿 = 𝛿′ ∈ Δ𝜓 .

6.4 Elimination
Finally, we establish the elimination principle for a higher inductive type. The opera-

tional semantics for the eliminator and associated operators are shown in Figure 6.7. The
eliminator takes a list of clauses E of the following format as an argument.

E = (ℓ1 : 𝑣H1 .𝑇1, . . ., ℓ𝑛 : 𝑣H𝑛 .𝑇𝑛)

The clause for each constructor ℓ is an open term taking the arguments of that constructor
as arguments as well as the results of recursive calls applied to each recursive argument.
As an operator that evaluates its principal argument (the element of the inductive type),
the proof of its well-typedness proceeds in a manner similar to that for pcoe, although
this case is somewhat simpler.

Perhaps the more involved task is stating the elimination principle. In particular, we
must define the the types of the results of recursive calls at compound types as well as
the coherence conditions that the case branches provided for path constructors should
satisfy. To do so, we define a new, dependent interpretation of the argument type theory.

We first define the dependent interpretation of terms. It is easiest to understand what
this means for an argument term of the form Δ | K | Θ ▶ m ∈ ind(𝛿) where Θ =
𝑎1 : ind(𝛿1), . . ., 𝑎𝑛 :ind(𝛿𝑛). Recall that in such a case, we will have LΘ.mMK (𝜒) ∈ IndΔK (𝛿)

140 General higher inductive types

Eliminator

𝑀 ↦−→ 𝑀′

elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ;𝑀 ; E) ↦−→ elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ;𝑀′; E)

(ℓ : Φ.Ω.[;Θ.
−−−−−−−⇀
𝜉𝑖 ↩→ m𝑖]) ∈ K

𝜌 B act(Θ; 𝑣𝛿 .ℎ.elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ;ℎ; E); 𝜒) (ℓ : 𝑣Φ.𝑣Ω .𝑣 𝜒 .𝑣𝜌 .𝑇) ∈ E
elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ; introKℓ (𝜙 ;𝜔 ; 𝜒); E) ↦−→ 𝑇 [𝜙,𝜔, 𝜒, 𝜌]

𝐹𝑥 B fcoe𝑟�𝑥𝑥 .𝛿 ′ (𝑀)
elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ; fcoe𝑟�𝑠𝑥 .𝛿 ′ (𝑀); E) ↦−→ coe𝑟�𝑠𝑥 .𝐷 [𝛿 ′,𝐹𝑥/ℎ] (elim(𝑣𝛿 .ℎ.𝐷 ;𝛿′[𝑟/𝑥];𝑀 ; E))

𝐹𝑥 B fhcom𝑟�𝑥 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)

elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ; fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖); E)

↦−→
com𝑟�𝑠

𝑥 .𝐷 [𝛿 ′,𝐹𝑥/ℎ] (elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ;𝑀 ; E);−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ;𝑁𝑖 ; E))

Action of argument types

act(Θ.ind(𝛿); 𝑣𝛿 .ℎ.𝑇 ;𝑀) ↦−→ 𝑇 [𝛿,𝑀/𝑎]

act(Θ.(𝑎 :𝐴) → b; 𝑣Δ.ℎ.𝑇 ;𝑀) ↦−→ 𝜆𝑎. act(Θ.b; 𝑣Δ.ℎ.𝑇 ;𝑀 𝑎)

act(Θ.Path(𝑥 .a,m0,m1); 𝑣Δ.ℎ.𝑇 ;𝑀) ↦−→ 𝜆I𝑥 . act(Θ.a; 𝑣Δ.ℎ.𝑇 ;𝑀 𝑥)

Action of argument contexts

act(· ; 𝑣Δ.ℎ.𝑇 ; 𝜒) B ·
act((Θ, 𝑎 : a); 𝑣Δ.ℎ.𝑇 ; (𝜒,𝑀/𝑎)) B (act(Θ; 𝑣Δ.ℎ.𝑇 ; 𝜒), act(Θ.a; 𝑣Δ.ℎ.𝑇 ;𝑀)/𝑎)

Figure 6.7: Operational semantics of the eliminator and action of argument contexts

Elimination 141

for any 𝜒 ∈ (𝑎1 : IndΔK (𝛿1), . . ., 𝑎𝑛 : IndΔK (𝛿𝑛)): we combine elements of the inductive fam-
ily according to the shape of m. The dependent interpretation is similar, but we now
combine results of recursive calls according to the shape of m. For example, suppose we
have some target familyΔ, ℎ:IndΔK (𝑣Δ) � 𝐷 type into whichwemight eliminate and a sec-
ond list 𝜌 ∈ (𝑎′1 : 𝐷 [𝛿1, 𝑎1𝜒/ℎ], . . ., 𝑎′𝑛 : 𝛿𝑛, 𝑎𝑛𝜒/ℎ). The dependent interpretation, writtenLΘ.mMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) ∈ 𝐷 [𝛿, LΘ.mMK (𝜒)/ℎ], tells us what the result of calling the eliminator
with clauses E on LΘ.mMK (𝜒) would be assuming that the results of the recursive calls on
the terms 𝜒 are given by 𝜌 . This is necessary to express the coherence conditions required
of a clause for a path constructor with recursive arguments that appear in its boundary,
as in the truncations of Section 5.2.

In general, wemust handle hypotheses and terms of argument types other than ind(𝛿).
Given a list of terms in some context LΘMΔK , we can apply the eliminator to the elements
of the inductive type inside it: given 𝐹 ∈ 𝐴 → IndΔK (𝛿), for example, we may apply an
eliminator into some family Δ, ℎ : IndΔK (𝑣Δ) � 𝐷 type pointwise to compute a term of
type (𝑎 : 𝐴) → 𝐷 [𝛿, 𝐹 𝑎/ℎ]. The output type of the action of an eliminator on an instan-
tiation 𝜒 ∈ LΘMΔK is given by the dependent interpretation of argument contexts, writtenLΘMΔ.ℎ.𝐷K,E (𝜒).

The general rule we intend to obtain is the following: given results of recursive calls
for a context Θ′ and a substitution from Θ′ into Θ, we obtain the results of recursive calls
for Θ.

Δ | K | Θ′ ▶ 𝜃 ∈ Θ 𝜒 ∈ LΘ′MΔK 𝜌 ∈ LΘ′MΔ.ℎ.𝐷K,E (𝜒)LΘ′.𝜃MK,E
Δ.ℎ.𝐷

(𝜒 ; 𝜌) ∈ LΘMΔ.ℎ.𝐷K,E (𝜒)

The action of argument contexts on the eliminator (and Δ-indexed families of func-
tions more generally), meanwhile, is defined by the act and act operators shown in Fig-
ure 6.7. Given a context Θ and map Δ, ℎ : IndΔK (𝑣Δ) � 𝑇 ∈ 𝐷 , we will obtain a function
act(Θ; 𝑣Δ.ℎ.𝑇 ;−) taking instantiations 𝜒 : LΘMΔK to instantiations of LΘMΔ.ℎ.𝐷K,E (𝜒).

As with non-dependent interpretation, we define the dependent interpretations first
as operators on raw syntax.

Definition 6.4.1 (Dependent interpretation of terms). LetΔ be a telescope andΔ.ℎ.𝐷
be a type,K and E be constructor and eliminator specifications, and let m be an argument
term in context Θ. Let 𝜒 and 𝜌 be instantiations for the variables in Θ. We define the de-

142 General higher inductive types

pendent interpretation of m, written LΘ.mMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌), as follows.

LΘ.𝑎MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B 𝑎𝜌LΘ.introℓ (𝜙 ;𝜔 ;𝜃)MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B 𝑇 [𝜙,𝜔, 𝜒′, 𝜌′]
where 𝜒′ B LΘ.𝜃MK (𝜒)

𝜌′ B LΘ.𝜃MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)
(ℓ : 𝑣𝜙 .𝑣𝜔 .𝑣 𝜒 ′ .𝑣𝜌 ′ .𝑇) ∈ ELΘ.fcoe𝑟→𝑠

𝑥 .𝛿 (m)MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B coe𝑟�𝑠𝑥 .𝐷 [𝛿,𝐹𝑥/ℎ] (LΘ.mMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌))
where 𝐹𝑥 B fcoe𝑟�𝑥𝑥 .𝛿 (LΘ.mMK (𝜒))LΘ.fhcom𝑟→𝑠

𝛿 (m;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .n𝑖)MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B com𝑟�𝑠
𝑥 .𝐷 [𝛿,𝐹𝑥/ℎ] (𝑀 ;

−−−−−−−⇀
𝜉𝑖 ↩→ 𝑁𝑖)

where 𝑀 B LΘ.mMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)
𝑁𝑖 B LΘ.mMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)

𝐹𝑥 B fhcom𝑟�𝑥 (LΘ.mMK (𝜒);
−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ LΘ.n𝑖MK (𝜒))LΘ.𝜆𝑎. nMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B 𝜆𝑎. LΘ.nMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)LΘ.f𝑀MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B (LΘ.fMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌))𝑀LΘ.𝜆I𝑥 .mMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B 𝜆I𝑥 . LΘ.nMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)LΘ.p 𝑟MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) B (LΘ.pMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)) 𝑟

We define LΘ.𝜃MK,E
Δ.ℎ.𝐷

(𝜒 ; 𝜌) for argument substitutions 𝜃 elementwise.

LΘ. · MK,E
Δ.ℎ.𝐷

(𝜒 ; 𝜌) B ·LΘ.(𝜃,m/𝑎)MK,E
Δ.ℎ.𝐷

(𝜒 ; 𝜌) B (LΘ.𝜃MK,E
Δ.ℎ.𝐷

(𝜒 ; 𝜌), LΘ.mMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)/𝑎)

Definition 6.4.2 (Dependent interpretation of types). LetΔ be a telescope andΔ.ℎ.𝐷
be a type,K and E be constructor and eliminator specifications, and let a be an argument
type in context Θ. Let 𝜒 and 𝜌 be instantiations for the variables in Θ and let𝑀 be a term.
We define the dependent interpretation of a, written LΘ.aMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ;𝑀), as follows.

LΘ.ind(𝛿)MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ;𝑀) B 𝐷 [𝛿,𝑀/ℎ]LΘ.(𝑎 :𝐴) → bMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ;𝑀) B (𝑎 :𝐴) → LΘ.bMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ;𝑀 𝑎)LΘ.Path(𝑥 .a,m0,m1)MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ;𝑀) B Path(𝑥 .LaMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ;𝑀 𝑥), 𝑀′
0, 𝑀

′
1)

where𝑀′
𝜀 B LΘ.m0MΔ.ℎ.𝐷K,E (𝜒 ; 𝜌)

Elimination 143

Given an argument context Θ, we define a telescope LΘMΔ.ℎ.𝐷K,E (𝜒) elementwise.

L · MΔ.ℎ.𝐷K,E (·) B ·LΘ, 𝑎 : aMΔ.ℎ.𝐷K,E (𝜒,𝑀/𝑎) B (LΘMΔ.ℎ.𝐷K,E (𝜒), 𝑎 : LΘ.aMΔ.ℎ.𝐷K,E (𝜒 ; 𝑣LΘMΔ.ℎ.𝐷K,E (𝜒) ;𝑀))

We can now state the criteria defining the well-formed lists of clauses E for the
eliminator. To build these up inductively, we define a partial specification judgment
Γ � Δ | K ▶ E ∈ [K′ ⇒ ℎ.𝐷], which states that the eliminator E contains clauses
for eliminating from some prefix K′ of a specification K . A complete eliminator specifi-
cation for K is then one satisfying Δ | K ▶ E ∈ [K ⇒ ℎ.𝐷]. It is necessary to keep
a reference to the complete K throughout, as recursive clauses should be able to handle
arguments not from IndΔK ′ (−) but from IndΔK (−).

Definition 6.4.3 (Eliminator specification). The partial eliminator specification judg-
ment, Γ � Δ | K ▶ E = E′ ∈ [K′ ⇒ ℎ.𝐷], is defined as follows.

Γ � Δ | K ▶ · = · ∈ [· ⇒ ℎ.𝐷]

Γ � Δ ▶ K @ ℓ ⇒ (K′ | C) Γ � Δ | K ▶ E = E′ ∈ [K′ ⇒ ℎ.𝐷]
C = [Φ;Ω;𝛿 ;Θ;−−−−−−−⇀𝜉𝑖 ↩→ m𝑖] R B LΘMΔ.ℎ.𝐷K,E (𝑣LΘMΔK)

H B (Φ,Ω, LΘMΔK, R) Γ,H � 𝑇 = 𝑇 ′ ∈ 𝐷 [𝛿, introKℓ (𝑣Φ; 𝑣Ω; 𝑣LΘMΔK)/ℎ]
(∀𝑖) Γ,H, 𝜉𝑖 � 𝑇 = Lm𝑖MΔ.ℎ.𝐷K,E (𝑣LΘMΔK ; 𝑣R) ∈ 𝐷 [𝛿, introKℓ (𝑣Φ; 𝑣Ω; 𝑣LΘMΔK)/ℎ]

Γ � Δ | K ▶ (E, ℓ : 𝑣H.𝑇) = (E′, ℓ : 𝑣H.𝑇 ′) ∈ [(K′, ℓ : C) ⇒ ℎ.𝐷]

It is now straightforward to show that the dependent interpretation functions are well-
behaved when supplied with a well-formed eliminator specification.

Lemma 6.4.4 (Dependent interpretation). Let Γ � Δ = Δ′ tel, Γ � Δ ▶ K = K′ spec,
Γ,Δ, ℎ : IndΔK (𝑣Δ) � 𝐷 = 𝐷′ type, and Γ � Δ | K ▶ E = E′ ∈ [K ⇒ ℎ.𝐷] be given. Then
the following rules are validated.

Γ � Δ | K ▶ Θ = Θ′ actx Γ � 𝜒 = 𝜒′ ∈ LΘMΔK
Γ � LΘMΔ.ℎ.𝐷K,E (𝜒) = LΘ′MΔ′.ℎ.𝐷 ′

K ′,E ′ (𝜒′) tel

Γ � Δ | K | Θ ▶ a = a′ atype
Γ � 𝜒 = 𝜒′ ∈ LΘMΔK Γ � 𝜌 = 𝜌′ ∈ LΘMΔ.ℎ.𝐷K,E (𝜒) Γ � 𝑀 = 𝑀′ ∈ LaMΔK (𝜒)

Γ � LΘ.aMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ;𝑀) = LΘ.a′MΔ′.ℎ.𝐷 ′

K ′,E ′ (𝜒′; 𝜌′;𝑀′) type

144 General higher inductive types

Γ � Δ | K | Θ′ ▶ 𝜃 = 𝜃 ′ ∈ Θ Γ � 𝜒 = 𝜒′ ∈ LΘ′MΔK Γ � 𝜌 = 𝜌′ ∈ LΘ′MΔ.ℎ.𝐷K,E (𝜒)
Γ � LΘ′.𝜃MK,E

Δ.ℎ.𝐷
(𝜒 ; 𝜌) = LΘ′.𝜃 ′MK ′,E ′

Δ′.ℎ.𝐷 ′ (𝜒′; 𝜌′) ∈ LΘMΔ.ℎ.𝐷K,E (𝜒)

Γ � Δ | K | Θ ▶ m = m′ ∈ a Γ � 𝜒 = 𝜒′ ∈ LΘMΔK Γ � 𝜌 = 𝜌′ ∈ LΘMΔ.ℎ.𝐷K,E (𝜒)
Γ � LmMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌) = Lm′MΔ′.ℎ.𝐷 ′

K ′,E ′ (𝜒′; 𝜌′) ∈ LΘ.aMΔ.ℎ.𝐷K,E (𝜒 ; 𝜌 ; LmMK (𝜒))

Proof. Simultaneously by mutual induction on the argument contexts, types, substitu-
tions, and terms. □

Now we show that the eliminator operator itself is well-typed. For the remainder of
this section we fix Ψ ⊩ Δ tel, Ψ ⊩ Δ ▶ K spec, Ψ,Δ, ℎ : IndΔK (𝑣Δ) � 𝐷 = 𝐷′ type, and
Ψ ⊩ Δ | K ▶ E = E′ ∈ [K ⇒ ℎ.𝐷]. As with coercion, we define a PER of values that
produces well-typed results when supplied to the eliminator, then show that this PER is
closed under StepK .

Definition 6.4.5 (Eliminability relation). Wedefine a value (Ψ,Δ)-PER Elim−1 ⊆ IndK
by declaring 𝑉 ≈ 𝑉 ′ ∈ Elim−1〈𝜓, 𝛿〉 to hold for Ψ′ ⊩ (𝜓, 𝛿) ∈ (Ψ,Δ) whenever the follow-
ing hold.

• 𝑉 ≈ 𝑉 ′ ∈ IndK 〈𝜓, 𝛿〉.

• Ψ′ ⊩ elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ;𝑊 ; E𝜓) = elim(𝑣Δ.ℎ.𝐷′𝜓 ;𝛿′;𝑊 ′; E′𝜓) ∈ 𝐷𝜓 [𝛿,𝑊 /ℎ] for all pairs
𝑊,𝑊 ′ ∈ {𝑉 ,𝑉 ′} and 𝛿′ with Ψ′ ⊩ 𝛿 = 𝛿′ ∈ Δ𝜓 .

Lemma 6.4.6 (Extension to terms). For any Ψ′ ⊩ 𝜓 ∈ Ψ, Ψ′ ⊩ 𝛿 = 𝛿′ ∈ Δ𝜓 , and
𝑀 ≈ 𝑀′ ∈ ⤋Elim−1〈𝜓, 𝛿〉, we have the following.

Ψ′ ⊩ elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ;𝑀 ; E𝜓) = elim(𝑣Δ.ℎ.𝐷′𝜓 ;𝛿′;𝑀′; E′𝜓) ∈ 𝐷𝜓 [𝛿,𝑀/ℎ]

Proof. By Lemma 3.1.38 and the definition of Elim−1, as the eliminator operator is eager.□

Lemma 6.4.7 (Reduction of elim on fcoe). The following rule is validated for any sub-
stitutions Ψ′ ⊩ (𝜓, 𝛿) ∈ (Ψ,Δ) and Ψ′, 𝑥 : I ⊩ 𝛿′ ∈ Δ𝜓 with Ψ′ ⊩ 𝛿′[𝑠/𝑥] = 𝛿 ∈ Δ𝜓 .

Ψ′ ⊩ 𝑟, 𝑠 ∈ I 𝑀 ∈ ⤋Elim−1 [𝜓, 𝛿′[𝑟/𝑥]]
𝐹𝑥 B fcoe𝑟�𝑥𝑥 .𝛿 ′ (𝑀) 𝐸 B elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿′[𝑟/𝑥];𝑀 ; E𝜓)

Ψ′ ⊩ elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ; 𝐹𝑠 ; E𝜓) = coe𝑟�𝑠𝑥 .𝐷𝜓 [𝛿 ′,𝐹𝑥/ℎ] (𝐸) ∈ 𝐷 [𝛿, 𝐹𝑠/ℎ]

Proof. Note that Ψ′ ⊩ 𝐸 ∈ 𝐷 [𝛿′[𝑟/𝑥], 𝑀/ℎ] holds by Lemma 6.4.6. We proceed by
Lemma 3.1.35. For any Ψ′′ ⊩ 𝜓 ′ ∈ Ψ′, we are in one of two cases.

Elimination 145

• 𝑟𝜓 ′ = 𝑠𝜓 ′. Then elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ; 𝐹𝑠 ; E𝜓)𝜓 ′ ↦−→ 𝐸𝜓 ′. We know that Ψ′ ⊩ 𝐹𝑟𝜓 ′ = 𝑀𝜓 ′ ∈
IndΔK (𝛿)𝜓 ′ by fcoe introduction for the inductive type (Lemma 6.2.14). By the prin-
ciples required of coercion in 𝐷 , it follows that Ψ′′ ⊩ 𝐸𝜓 ′ = coe𝑟�𝑠

𝑥 .𝐷𝜓 [𝛿 ′,𝑀/ℎ] (𝐸)𝜓
′ ∈

𝐷 [𝛿, 𝐹𝑟/ℎ]𝜓 ′.

• 𝑟𝜓 ′ ≠ 𝑠𝜓 ′. Then elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ; 𝐹𝑠 ; E𝜓)𝜓 ′ ↦−→ coe𝑟�𝑠
𝑥 .𝐷𝜓 [𝛿 ′,𝐹𝑥/ℎ] (𝐸)𝜓

′, and we know that
the reduct is well-typed by coercion in 𝐷 . □

Corollary 6.4.8. Fcoe(Elim−1) ⊆ Elim−1.

Proof. As in the proof of Corollary 6.3.10 for coercion: given two applications of fcoe to
equal eliminable terms, we can show that the results are equal by applying Lemma 6.4.7.□

Lemma 6.4.9 (Reduction of elim on fhcom). The following rule is validated for any
substitutions Ψ′ ⊩ (𝜓, 𝛿) ∈ (Ψ,Δ).

Ψ′ ⊩ 𝑟, 𝑠 ∈ I (∀𝑖) Ψ′ ⊩ 𝜉𝑖 ∈ F
𝑀 ∈ ⤋Elim−1 [𝜓, 𝛿] (∀𝑖, 𝑗) Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 𝑗 ∈ ⤋Elim−1 [𝜓, 𝛿]

(∀𝑖) Ψ′, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑠/𝑥] ∈ ⤋Elim−1 [𝜓, 𝛿] 𝐹𝑥 B fhcom𝑟�𝑥 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖)

𝐸 B elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ;𝑀 ; E𝜓) (∀𝑖) 𝐸𝑖 B elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ;𝑁𝑖 ; E𝜓)

Ψ′ ⊩ elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ; 𝐹𝑠 ; E𝜓) = com𝑟�𝑠
𝑥 .𝐷𝜓 [𝛿,𝐹𝑥/ℎ] (𝐸;

−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝐸𝑖) ∈ 𝐷 [𝛿, 𝐹𝑠/ℎ]

Proof. Straightforward application of coherent head expansion following the pattern of
Lemma 6.4.7. □

Corollary 6.4.10. Fhcom(Elim−1) ⊆ Elim−1.

The case of constructor terms is, as usual, entangledwith a property of interpretations,
here the well-typedness of the act operator.

Lemma 6.4.11 (Action of argument contexts and types). Let𝑛 ∈ N and let𝑅 ⊆ IndK
be a (Ψ,Δ)-relation such that Fcoe(𝑅) ⊆ 𝑅, Fhcom(𝑅) ⊆ 𝑅, and IntroKℓ (𝑅) ⊆ 𝑅 for all ℓ with
|ℓ |K < 𝑛. Finally, let 𝑣Δ.ℎ.𝑇 , 𝑣Δ.ℎ.𝑇 ′ be terms such that Ψ′ ⊩ 𝑇 [𝛾,𝑀/ℎ] = 𝑇 ′[𝛾 ′, 𝑀′/ℎ] ∈
𝐷 [𝛾,𝑀/ℎ] for all Ψ′ ⊩ 𝛾 = 𝛾 ′ ∈ (Ψ,Δ) and 𝑀 ≈ 𝑀′ ∈ ⤋𝑅𝛾 . Then the following rule is
validated for all Ψ′ ⊩ 𝜓 ∈ Ψ.

Ψ′ ⊩ Δ𝜓 | K𝜓 ▶ Θ = Θ′ actx |Θ|K𝜓 < 𝑛 𝜒 ≈ 𝜒′ ∈ {|Θ|}K𝜓 (𝑅𝜓)
Ψ′ ⊩ act(Θ; 𝑣Δ.ℎ.𝑇𝜓 ; 𝜒) = act(Θ′; 𝑣Δ.ℎ.𝑇 ′𝜓 ; 𝜒′) ∈ LΘMΔ𝜓 .ℎ.𝐷𝜓K𝜓,E𝜓 (𝜒)

146 General higher inductive types

Proof. By induction on the derivation ofΨ′ ⊩ Δ𝜓 | K𝜓 ▶ Θ = Θ′ actx. In the case of a non-
empty context, well-typedness of act follows by induction on the argument type, using
(trivial) coherent expansion in each case in accordance with the operational semantics
shown in Figure 6.7. □

We moreover need to know that the action of argument contexts commutes with ar-
gument substitution in an appropriate sense, as captured by the following definition.

Definition 6.4.12. We say that a term 𝑣Δ.ℎ.𝑇 commutes with substitution interpretation
below 𝑛 when for every Ψ′ ⊩ 𝜓 ∈ Ψ, argument substitution Ψ′ ⊩ Δ𝜓 | K𝜓 | Θ′ ▶ 𝜃 ∈ Θ
with |Θ′|K, |Θ|K, |𝜃 |K < 𝑛, and 𝜒 ∈ {|Θ′|}K (Elim−1), we have

Ψ′ ⊩ act(Θ; 𝑣Δ.ℎ.𝑇𝜓 ; L𝜃MK𝜓 (𝜒)) = L𝜃MK𝜓,E𝜓
𝑣Δ .ℎ.𝐷𝜓

(𝜒 ; act(Θ′; 𝑣Δ.ℎ.𝑇𝜓 ; 𝜒))

at the type LΘM𝑣Δ .ℎ.𝐷𝜓K𝜓,E𝜓 (L𝜃MK𝜓 (𝜒)).
Lemma 6.4.13 (Naturality). If IntroKℓ (Elim

−1) ⊆ Elim−1 for all ℓ with |ℓ |K < 𝑛, then
elim(𝑣Δ.ℎ.𝐷 ;−;−; E) commutes with substitution interpretation below 𝑛.

Proof. By induction on the derivation of Ψ′ ⊩ Δ𝜓 | K𝜓 | Θ′ ▶ 𝜃 ∈ Θ in the definition of
Definition 6.4.12. □

Remark 6.4.14. There are reasonable extensions to the argument term language thatwould
invalidate Lemma 6.4.13. It depends in particular on the fact that the argument type for-
mers are all negative, satisfying uniqueness principles up to exact equality. If these were
positive—like inductive types—the property would instead hold only up to a path. We
expect it would still be possible, although certainly more complicated, to define the elim-
inator by including “correction” composites in the reduction rules for path constructors
as we do in coercion.

Lemma 6.4.15 (Reduction of elim on intro). Let ℓ ∈ K . Suppose that the eliminator
elim(𝑣Δ.ℎ.𝐷 ;−;−; E) commutes with substitution interpretation below |ℓ |K . Then the
following rule is validated for any Ψ′ ⊩ (𝜓, 𝛿) ∈ (Ψ,Δ).

(ℓ : Φ.Ω.[𝛿′;Θ.−−−−−−−⇀𝜉𝑖 ↩→ m𝑖]) ∈ K𝜓 Ψ′ ⊩ Δ𝜓 ▶ K𝜓 = K′′ spec
Ψ′ ⊩ 𝜙 ∈ Φ Ψ′ ⊩ 𝜔 ∈ Ω𝜙 Ψ′ ⊩ 𝛿′[𝜙,𝜔] = 𝛿 ∈ Δ𝜓

𝜒 ∈ ⤋{|Θ[𝜙,𝜔]|}K (Elim−1𝜓) 𝜌 B act(Θ; 𝑣Δ.ℎ.elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ;ℎ; E𝜓); 𝜒)
H B (Φ,Ω, LΘMΔ𝜓K𝜓 , LΘMΔ.ℎ.𝐷𝜓K𝜓,E𝜓 (𝑣LΘMΔ𝜓K𝜓

)) (ℓ : 𝑣H.𝑇) ∈ E𝜓

Ψ′ ⊩ elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ; introK
′′

ℓ (𝜙 ;𝜔 ; 𝜒); E𝜓) = 𝑇 [𝜙,𝜔, 𝜒, 𝜌] ∈ 𝐷𝜓 [𝛿, introK ′′
ℓ (𝜙 ;𝜔 ; 𝜒)/ℎ]

Strengthening canonicity 147

Proof. By coherent head expansion. Let Ψ′′ ⊩ 𝜓 ∈ Ψ be given. We are in one of two cases.

• There is some minimal 𝑘 such that Ψ′′ ⊩ 𝜉𝑘𝜓 ′ satisfied. Then we have the following
reduction.

elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ; introK
′′

ℓ (𝜙 ;𝜔 ; 𝜒); E𝜓)𝜓 ′

↦−→
elim(𝑣Δ.ℎ.𝐷𝜓 ;𝛿 ; LΘ.m𝑘 [𝜙,𝜔]MK ′′ (𝜒); E𝜓)𝜓 ′

By Lemma 6.4.13, the latter term is equal to LΘ.m𝑘 [𝜙,𝜔]MΔ.ℎ.𝐷𝜓K ′′,E𝜓 (𝜒 ; 𝜌)𝜓
′ as an element

of 𝐷𝜓 [𝛿, introK ′′
ℓ (𝜙 ;𝜔 ; 𝜒)/ℎ]𝜓 ′, which is in turn equal to 𝑇 [𝜙,𝜔, 𝜒, 𝜌]𝜓 ′ by the require-

ments on the clause (ℓ : 𝑣H.𝑇) ∈ E𝜓 imposed by Ψ ⊩ Δ | K ▶ E ∈ [K ⇒ ℎ.𝐷].

• There is no 𝑘 such that Ψ′′ ⊩ 𝜉𝑘𝜓 ′ satisfied. Then the left hand side steps to the right
hand side, which is well-typed by Ψ ⊩ Δ | K ▶ E ∈ [K ⇒ ℎ.𝐷]. □

Corollary 6.4.16. IntroKℓ (Elim
−1) ⊆ Elim−1 for all ℓ ∈ K .

Proof. By induction on the height of ℓ , first applying Lemma 6.4.13 and then Lemma 6.4.15.□

Rule 6.4.17 (Elimination).

Ψ ⊩ Δ tel Ψ ⊩ Δ ▶ K spec Ψ,Δ, ℎ : IndΔK (𝑣Δ) � 𝐷 = 𝐷′ type
Ψ ⊩ Δ | K ▶ E = E′ ∈ [K ⇒ ℎ.𝐷] Ψ ⊩ 𝛿 = 𝛿′ ∈ Δ Ψ ⊩ 𝑀 = 𝑀′ ∈ IndΔK (𝛿)

Ψ ⊩ elim(𝑣Δ.ℎ.𝐷 ;𝛿 ;𝑀 ; E) = elim(𝑣Δ.ℎ.𝐷′;𝛿′;𝑀′; E′) ∈ 𝐷 [𝛿,𝑀/ℎ]

Proof. By the combination of Lemmas 6.4.7, 6.4.9 and 6.4.15, Lemma 6.4.6, and the defini-
tion of IndK as the least fixed-point of StepK . □

6.5 Strengthening canonicity

By definition of the typing judgment, anywell-typed termΨ ⊩ 𝑀 ∈ IndΔK (𝛿) is guaranteed
to compute to a value belonging to the inductive relation IndK . Such a value is of one of
three kinds: it may be a constructor term (intro), but it may also be a formal coercion
(fcoe) or composite (fhcom).

This is a broader range of possibilities than one would like, especially in the case that
Ψ is empty. For example, we might compute a term · ⊩ 𝑀 ∈ Int2 (an integer modulo 2,
as defined in Section 5.1) and get the following unsightly result.

fcoe0�1
𝑥 .· (fhcom0�1(fhcom0�1(fcoe1�0

𝑥 .· (int(3)); ·); 0 ≡ 1 ↩→ .int(8)))

148 General higher inductive types

We can see an int(3) somewhere inside, and this term is indeed equal to int(3) up to a
path, but it is buried beneath a pile of “frivolous” formal coercions and composites. Note
that there can be no truly significant coercions or composites in a non-indexed type in an
empty context. There are no indices to coerce between, and the boundary constraints of
a composite will either be true (0 ≡ 0 or 0 ≡ 1), in which case the composite reduces, or
false (0 ≡ 1 or 1 ≡ 0), in which case they are irrelevant.

The problem of coercions is easy to solve; we can simply add a rule to the operational
semantics so that such frivolous coercions reduce away. (To keep the operational seman-
tics deterministic, we should also add a condition that 𝛿 ≠ · on rules that operate on
fcoe𝑟�𝑠𝑥 .𝛿 (𝑀) values.)

𝑟 ≠ 𝑠

fcoe𝑟�𝑠𝑥 .· (𝑀) ↦−→ 𝑀

Compositions are less simple, however, because a non-frivolous composite can become a
frivolous composite through interval substitution. It takes a few steps to dig up how this
becomes a problem; to start, recall the reduction of the inductive type eliminator applied
to a formal composite (Figure 6.7).

elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ; fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖); E)

↦−→
com𝑟�𝑠

𝑥 .𝐷 [𝛿 ′,𝐹𝑥/ℎ] (elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ;𝑀 ; E);−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .elim(𝑣𝛿 .ℎ.𝐷 ;𝛿 ;𝑁𝑖 ; E))

For this application of the eliminator to be well-typed (i.e., for Lemma 6.4.9 to go through),
this reduction must be coherent. If some interval substitution makes the input fhcom
frivolous, causing it to reduce to its cap, the right hand side must simplify in a corre-
sponding way. Essentially, if frivolous fhcom terms are made equal to their caps, then,
so must all frivolous compositions be equal to their caps.1 In particular, a coercion in
a degenerate type line must be equal to its input: coe𝑟�𝑠.𝐴 (𝑀) = 𝑀 . Because of the way
composition in path types is defined, ensuring this further requires that any composite
with a degenerate type line and tube is equal to its cap: com𝑟�𝑠

.𝐴 (𝑀 ;
−−−−−−−−⇀
𝜉𝑖 ↩→ .𝑁𝑖) = 𝑀 .

Unfortunately, it is apparently impossible to impose this condition, known variously
as regularity [CCHM15, Acknowledgements] or normality [Awo18, Definition 31], with-
out compromising either univalence or constructivity. The reasons are beyond the scope
of this work: the obstruction is composition in the universe, which we have studiously
avoided defining. For an illustration of the problems with regularity at the universe type,
see [Ang19, §3.4]. More formally, Swan shows that reconciling regularity with univalence
requires non-constructivity in a large class of cubical models of type theory [Swa18b].

1Alternatively, this reduction rule must be changed in some way—pursuing that option leads to similar
conclusions.

Strengthening canonicity 149

Angiuli, Favonia, and Harper therefore solve the original problem by different route,
introducing a validity restriction that prevents the formation of frivolous composites in
the first place [AFH18, Definition 12]. In brief, composite tubes are restricted to certain
forms that can never become frivolous by substitution.

Definition 6.5.1 (Validity). A collection Ψ ⊩ 𝜉1, . . . , 𝜉𝑛 ∈ F is valid when there exist
Ψ ⊩ 𝑟 ∈ I and 1 ≤ 𝑖, 𝑗 ≤ 𝑛 such that Ψ, 𝑟 ≡ 0 ⊩ 𝜉𝑖 satisfied and Ψ, 𝑟 ≡ 1 ⊩ 𝜉 𝑗 satisfied.

This condition has the following two important properties.

Proposition 6.5.2. If Ψ ⊩
−⇀
𝜉𝑖 ∈ F is valid, then Ψ′ ⊩

−⇀
𝜉𝑖𝜓 ∈ F is valid for any Ψ′ ⊩ 𝜓 ∈ Ψ.

Proposition 6.5.3. If · ⊩ −⇀𝜉𝑖 ∈ F is valid, then there is some 𝑖 such that · ⊩ 𝜉𝑖 satisfied.

The first of these simply checks that validity is stable under interval substitution;
this is essential if it is to be a sensible condition to impose. The second implies that any
composite with a valid tube in an empty interval context can be simplified.

The solution, then, is to require only that composites exist when the shape of the tube
is valid; that is, we add validity as a prerequisite in Definition 3.1.27. Valid composites are
sufficient for motivating use of composites, namely coercion in path types. In any case,
non-valid composites can be recovered using iterated valid composites [Ang19, Theorem
4.34].

If we add the reduction rule for reducing frivolous formal coercions, impose the valid-
ity condition on homogeneous compositions, and add only valid formal composites to in-
ductive types, we can obtain the following improved canonicity theorem for non-indexed
HITs in an empty interval context.

Theorem 6.5.4. Assume the above adjustments have been made. Let · ⊩ · ▶ K spec
and · ⊩ 𝑀 ∈ Ind(·)K (·) be given. Then𝑀 evaluates to an intro term.

Thus we can run a closed integer modulo 2 and expect to obtain an actual integer as a
result. Even simpler, we can define the type of natural numbers as a (particularly degen-
erate) higher inductive type and have our computations produce actual natural numbers.

Note that we absolutely cannot expect such a strong result for indexed inductive types.
In these case, we can still exclude fhcom values with the validity restriction, but there is
nothing to be done about formal coercions. The paradigmatic example is the identity type:
an element · ⊩ 𝑃 ∈ Id(𝐴,𝑀, 𝑁) cannot be guaranteed to evaluate to a refl value, because
Id(𝐴,𝑀, 𝑁) is inhabited as soon as there is a path from𝑀 to 𝑁 in 𝐴.

Chapter 7

Conclusions

7.1 Related work

HITs for ITT Higher inductive types were introduced in the context of univalent in-
tensional type theory at the 2011 Oberwolfach meeting, in discussions between Andrej
Bauer, Peter Lumsdaine, Mike Shulman, and Michael Warren (see [Uni13, §6 Notes]). The
HoTT Book presents many examples of higher inductive types and sketches criteria for a
general definition, but definite syntax and semantics for higher inductive types has since
taken time to mature. In this and future extensions of ITT with higher inductive types,
“path” constructors are expressed with identity types. Notably, the reduction rules for
eliminators on path constructors are posited only up to identities, not up to exact equal-
ity, as such exact equations typically fail to hold in models. In particular, there are many
identified-but-not-equal ways to define the action of an eliminator on an identity, and it
is not clear that any one deserves to be designated canonical and made to satisfy an exact
reduction rule.

There is one obvious and extremely simple schema: include only the quotient type
𝐴�𝑅 introduced in Section 5.1 (or the inter-derivable pushout). From this minimal base, it
is actually possible to build out a number of more sophisticated HITs. Van Doorn [Doo16]
and Kraus [Kra16] each give constructions of the propositional truncation using only the
quotient, obtaining the truncation as the homotopy colimit of an 𝜔-indexed sequence
of types. (Colimits indexed by 𝜔 can be defined using quotients and a natural numbers
type.) Rijke [Rij17] generalized the latter to construct general 𝑛-truncations. While these
results are theoretically valuable, the complexity of the definitions makes them unwieldy
for computational purposes. Moreover, there are limits to this approach: Lumsdaine and
Shulman give an example of a HIT which cannot be constructed from pushouts and the
natural numbers [LS20, §9].

Moving up a degree of (a priori) expressivity, Sojakova [Soj14; Soj15; Soj16] intro-

151

152 Conclusions

duced the class of W-quotients, also called W-suspensions, and showed these could be
characterized as homotopy-initial algebras, building on work on ordinary inductive types
in HoTT [AGS12]. These generalize Martin-Löf’s W-types [Mar82], which are inductive
types of the following form.

𝐴 : U, 𝐵 :𝐴 → U � inductive W(𝐴, 𝐵) where
| sup(𝑎 : 𝐴, 𝑓 : 𝐵 𝑎 → W(𝐴, 𝐵)) ∈ W(𝐴, 𝐵)

W-types are useful for encoding inductive types with recursive structure; for example,
the type of natural numbers may be defined asW(Bool, 𝜆𝑏. elimBool(.U;𝑏;Void,U)), with
zero B sup(tt, 𝜆 . abort) and suc(𝑀) B sup(ff, 𝜆 . 𝑀).

Expressed in our notation, aW-quotient is an instance of the following parameterized
HIT, which enhances the W-type with a path constructor.

𝐴,𝐶 : U, 𝐵 :𝐴 → U, 𝑙, 𝑟 :𝐶 → 𝐴 � inductiveWQ (𝐵, 𝑙, 𝑟) where
| sup(𝑎 : 𝐴, 𝑓 : 𝐵 𝑎 → WQ (𝐵, 𝑙, 𝑟)) ∈ WQ (𝐵, 𝑙, 𝑟)
| cell(𝑐 : 𝐶, 𝑓 : 𝐵 (𝑙 𝑐) → WQ (𝐵, 𝑙, 𝑟), 𝑔 : 𝐵 (𝑟 𝑐) → WQ (𝐵, 𝑙, 𝑟), 𝑥 : I) ∈ WQ (𝐵, 𝑙, 𝑟)
[𝑥 ≡ 0 ↩→ sup(𝑙 𝑐, 𝑓) | 𝑥 ≡ 1 ↩→ sup(𝑟 𝑐, 𝑔)]

As an example, Sojakova applies the W-quotient to constructing such types as Int𝑛 , com-
bining the recursive structure of Int and quotient in a single definition. However, because
the cell constructor can only connect instances of sup, it is less useful for representing
types such as the propositional truncation which have recursive path constructors with
non-constructor boundaries. (These can of course be indirectly encoded, as W-quotients
subsume ordinary quotients.)

Basold, Geuvers, and van der Weide [BGW17] and Dybjer and Moeneclaey [DM17]
present schemata for HITs in ITT that include recursive path constructors, using a gram-
mar of argument types and terms similar to our own. Our work can be seen as a cubical
counterpart to these efforts. Kaposi and Kovács [KK18; KK20a] generalize further, defin-
ing a schema for higher inductive-inductive types, which include indexed higher inductive
types as a special case. Their syntax, like ours, also permits path constructors of dimen-
sionality higher than one; unlike in cubical type theory, however, the induction principles
for such types rapidly become prohibitively complex, as coherence adjustments must be
introduced to reflect the fact that the eliminator does not compute on path constructors
up to exact equality.

On the semantic side, Lumsdaine and Shulman [LS20] develop the notion of cell monad
with parameters, a semantic specification of a higher inductive type, and gave a class of
simplicial model categories in which such HITs exist. This class does not obviously cor-
respond to a particular syntactic schema, but includes, in some form, all of the examples
we have encountered. As discussed briefly in Section 5.1, however, their universes are
not closed under parameterized inductive types: because of the fibrant replacement used

Related work 153

to make HITs Kan, a HIT always lives one universe higher than its type parameters. (By
way of contrast, our HITs only depend on their size of their indices in this way.) Recent
work of Shulman, not yet publicly available, closes this gap.

In almost all cases where a formalism is presented, it fails to be computationally ade-
quate, in part because reduction equations for the eliminator of a HIT on a path construc-
tor are required to hold only up to identity. Of course, any formalism including HoTT
will already be problematic due to the presence of the univalence axiom. The one excep-
tion is Dybjer and Moeneclaey’s theory, which targets an interpretation in Hofmann and
Streicher’s groupoid model [HS98] where these equations hold exactly. However, no ade-
quacy proof is presented in this work, and it is not clear that one should be expected. By
contrast, a large part of this work’s contribution goes into verifying a coercion algorithm
for higher inductive types, essential for canonicity with path-based equality.

From a usability standpoint, cubical HITs are a notable improvement on their ITT
equivalents. To begin with, the cubical models justify exact reduction rules for elim-
inators on path constructors, eliminating a common source of bureaucracy in HoTT
proofs. More conceptually, cubical type theory scales much more gracefully to higher-
dimensional arguments, supporting in its judgmental structure an easily manipulable no-
tion of “𝑛-dimensional term”. While Licata and Brunerie [LB15] show that some amount
of cubical apparatus can be developed inHoTT—defining 2-dimensional “square” types as
indexed inductive types and so on—the “native” version is significantly more convenient.
As we observe in the introduction of Part III, high-dimensional coherence obligations
often arise from iterated induction even when the individual HITs at play are merely one-
dimensional. While Part III notes that these are difficult to manage even in cubical type
theory, the improvement over HoTT is significant.

Cubical HITs Both Cohen, Coquand, Huber, and Mörtberg [CCHM15] and Angiuli,
Favonia, and Harper [AFH18], in their respective cubical type theories, include basic ex-
amples of higher inductive types. Subsequently, Coquand, Huber, andMörtberg [CHM18]
defined additional examples of higher inductive types in their theory, modeled these in
cubical sets, and sketched a (non-indexed) schema. The implementations of the Kan op-
erators for higher inductive types in their setting—De Morgan cubical type theory, which
includes additional operations on interval terms—are broadly similar to ours, although
they differ in the details. Cavallo, Mörtberg, and Swan [CMS20] show that their cubi-
cal type theory, which simultaneously generalizes the cartesian and De Morgan theories,
supports at least a circle type, and it is expected that HITs are supported more generally.

Parts of the schema described in this dissertation have been implemented as part of
the cartesian proof assistantsRedPRL [ACFHS18; RedPRL] and redtt [redtt], while HITs
in the style of [CHM18] have been implemented in a De Morgan cubical mode for Agda
[Agda; VMA19]. The latter also integrates HITs with its pattern matching machinery,

154 Conclusions

providing a convenient interface for elimination akin to the case analysis pseudo-code
we employ in this thesis.

Quotient inductive types Although we have focused on the combination of higher
inductive types with univalence and higher-dimensional equality more generally, higher
inductive types are also useful in “zero-dimensional” settings. Higher inductive types trun-
cated at the set level have become known as quotient inductive types (QITs) [ACDKN18].

Of particular interest are quotient inductive-inductive types (QIITs), which permit the
simultaneous definition of several inductive types inwhich one inductive typemay appear
as an index to another. A schema for QIITs can serve as a logical framework, a schema
for defining logics. The syntax of ITT, for example, is higher inductive-inductive type, a
collection of interdependent inductively generated judgments (Γ ctx, Γ ` 𝐴 type) together
with their equality judgments (e.g., Γ ` 𝐴 = 𝐴′ type). This application is explored by
Altenkirch and Kaposi [AK16; Kap17]. Dijkstra [Dij17], Altenkirch et al. [ACDKN18], and
Kovács and Kaposi [KK20b] define theories and semantics of quotient inductive-inductive
types.

Some quotient inductive types can be realized by taking an ordinary inductive type
and applying a simple (truncated) quotient in the sense of Section 5.1. In cases with re-
cursive constructors, however, the correctness of this construction may rely on the axiom
of choice (AC). Primitive quotient inductive types may therefore be used to avoid rely-
ing on AC. This is exploited by Altenkirch, Danielsson, and Kraus to define a partiality
monad [ADK17]. Fiore, Pitts, and Steenkamp observe, however, that a combination of
(ordinary) inductive-inductive types, quotient types, and size types is sufficient to obtain
many quotient inductive types [FPS20].

On the subject of choice, Lumsdaine and Shulman describe a higher inductive type
that can be interpreted in Zermelo-Fraenkel set theory with but not without choice [LS20,
§9]. As written, this type is not an instance of our schema; it uses definitions by natural
number recursion into the type being specified in the boundary of a path constructor, as
in the following example.

inductive Ex where
| a ∈ Ex
| b(𝑡 : Ex) ∈ Ex
| c(𝑛 : Nat, 𝑥 : I) ∈ Ex [𝑥 ≡ 0 ↩→ a | 𝑥 ≡ 1 ↩→ elimNat(.Ex;𝑛; a, .𝑡 .b(𝑡))]

However, this kind of specification can be encoded by taking a function matching the
recursive definition as an argument as follows, where 𝑇zero B Path(Ex, 𝑓 zero, a) and
𝑇suc B (𝑛 : Nat) → Path(Ex, 𝑓 (suc(𝑛)), b(𝑓 𝑛)).

Outlook 155

inductive Ex where
| a ∈ Ex
| b(𝑡 : Ex) ∈ Ex
| c(𝑛 : Nat, 𝑓 : Nat → Ex, 𝑝 : 𝑇zero, 𝑞 : 𝑇suc, 𝑥 : I) ∈ Ex [𝑥 ≡ 0 ↩→ a | 𝑥 ≡ 1 ↩→ 𝑓 𝑛]

Our own schema therefore includes a type satisfying the induction principle of Lumsdaine
and Shulman’s type.

Identity types A primary motivation for constructing indexed inductive types in cu-
bical type theory is to obtain an identity type. As discussed in Section 5.3, while the
Path type is a suitable replacement for Id in most regards, it does not satisfy the same J
principle—there is a term with the type of J for path types (Lemma 3.2.3), but it does not
validate an exact reduction principle on reflexive paths. This failure is explored in detail
by Swan [Swa18b].

An alternative construction is therefore necessary to realize identity types in cubical
type theory, and in particular to show that cubical type theory interprets HoTT. Swan
[Swa18a] presents one technique, using the cofibration-trivial fibration factorization of
a model structure to obtain identity types from path types; this construction applies in
the various structural cubical sets models as well as affine cubical sets. Cohen, Coquand,
Huber, and Mörtberg define identity types whose elements are cubical paths paired with
constraints on which they are guaranteed reflexive [CCHM15, §9.1]; this construction
is also possible in a cartesian setting [ABCFHL19, §2.16], and is analyzed by Swan as a
simplified special case of his construction [Swa18a, §6]. Our own construction is distinct
from these. In [Cav19], a model-categorical reformulation is presented; it relies instead
on a trivial cofibration-fibration factorization and resembles van den Berg and Garner’s
interpretation of identity types in simplicial sets and related settings [BG12].

7.2 Outlook

We have developed a full-featured schema for higher inductive types in cartesian cubical
type theory, complete with a computational interpretation. Our specification grammar
accommodates almost all features that appear in the HoTT book [Uni13] and subsequent
work in homotopy and cubical type theory, including recursive path constructors, recur-
sive arguments of function and path types in the type being constructed, and indices.
We expect that similar schemata could now be straightforwardly developed in De Mor-
gan cubical type theory [CCHM15] or Cavallo, Mörtberg, and Swan’s minimal cubical
type theory [CMS20], taking their examples of higher inductive constructions and gener-
alizing following the pattern developed here. It seems safe to say at this point that the

156 Conclusions

community’s understanding of cubical higher inductive types has reached a state of ma-
turity. Cubical HITs are already being effectively exploited both in synthetic homotopy
theory and mathematics more generally [FXG20; MP20; ACMZ21].

The most notable case not handled by our schema is that of the inductive-inductive
type [NS10], in which where a type and a family indexed over that type are simultane-
ously defined by a joint inductive definition. Higher inductive-inductive types are used in
theHoTT Book to define a type of real numbers [Uni13, §11.3]; as mentioned above, they
may also be employed to define type theories within a type theory. We can expect that
care is required to give a computational semantics even of non-higher inductive-inductive
types, given that these include indexed inductive types as a special case. However, we op-
timistically conjecture that the techniques we use for indexed inductive types—formal
coercion values—will generalize gracefully to indexed inductive types, though a proof of
correctness would certainly takemorework to set up. This view is bolstered byHugunin’s
demonstration that inductive-inductive types can be indirectly derived from indexed in-
ductive types in cubical type theory [Hug19]. Similarly, we expect that higher inductive-
recursive types [Dyb00], wherein an inductive type is given simultaneously with a family
of types defined recursively over it, are now within reach; these have, however, seen less
use in homotopy or cubical type theory thus far.

A tempting avenue for future work is to develop a notion of higher coinductive type.
Coinductive types are the duals of inductive types: where inductive types are least fixed-
points generated by constructors, coinductive types are greatest fixed-points supporting
destructors [Coq93]. However, while coinductive types have found extensive use in type
theory (typically to represent infinite data structures), few applications have been pro-
posed for a higher generalization. Indeed, it is not obvious what the concept dual to
higher inductive types should even be.

Finally, the status of higher inductive types in Bezem, Coquand, and Huber’s model in
affine cubical sets remains unclear. This is not of pressing practical importance, as we can
expect that any implementation of HITs in that setting would be more unwieldy than a
structural equivalent. We nevertheless believe there is theoretical value in further analysis
of the BCH model. For one, affine cubes are indisputably relevant in other settings, as we
see in Parts III and IV. Moreover, the BCH model’s status as an outlier among the few
basic constructive models we know of for homotopy type theory makes it an essential
case to understand on the way to any general analysis of such models.

Part III

Internal parametricity

157

Chapter 8

Introduction

The second part of this thesis is dedicated to realizing a second extension of cubical
type theory, this time with internal parametricity. Parametricity, introduced by Reynolds
[Rey83], is a tool for proving naturality and related properties of type-theoretic construc-
tions. While the technical aspects of this extension are largely orthogonal to those of
higher inductive types—shared cubical substrate aside—the strongest motivations for in-
tegrating parametricity with cubical type theory come from its potential for reasoning
with HITs. To get a sense of that potential, then, let us take an extended look at an exam-
ple of a higher inductive type, the smash product, and the problems it presents for practical
theorem proving.

The smash product The smash product originates in homotopy theory as a binary
operator on pointed spaces. In synthetic homotopy theory, where types play the role
of spaces, a pointed type is a type paired with a single “basepoint” element: the uni-
verse of pointed types is U∗ B (𝐴 : U) × 𝐴, its elements thus pairs 〈𝐴, 𝑎0〉 with 𝐴 ∈
U and 𝑎0 ∈ 𝐴. For the sake of readability, let us adopt a few notational conventions
for pointed types. We write pointed types with a subscript ∗, as in 𝐴∗, 𝐵∗, . . . ∈ U∗,
then write 𝐴, 𝐵, . . . ∈ U and 𝑎0 ∈ 𝐴, 𝑏0 ∈ 𝐵, . . . for their first and second projections
respectively. Given two pointed types 𝐴∗, 𝐵∗ ∈ U∗, the type of pointed functions be-
tween them is the type (𝐴∗ → 𝐵∗) B (𝑓 :𝐴 → 𝐵) × Path(𝐵, 𝑓 𝑎0, 𝑏0) ∈ U of functions
that send the basepoint of 𝐴 to that of 𝐵, up to a path. This type is itself pointed, as
we always have a unique pointed constant function 〈𝜆 . 𝑏0, 𝜆

I . 𝑏0〉 ∈ 𝐴∗ → 𝐵∗; we write
(𝐴∗ →∗ 𝐵∗) B 〈𝐴∗ → 𝐵∗, 〈𝜆 . 𝑏0, 𝜆

I . 𝑏0〉〉 ∈ U∗ for that pointed type. An isomorphism of
pointed types, 𝐴∗ ' 𝐵∗, is an isomorphism whose underlying function is pointed.

The smash product, written ∧∗, is the natural notion of (monoidal) product for the
category of pointed types. In particular, it interacts with the pointed function type in the
same way that the ordinary function and product types interact. In categorical terms, ∧∗

159

160 Introduction

is left adjoint to →∗.

(𝐴 × 𝐵) → 𝐶 ' 𝐴 → (𝐵 → 𝐶)
(𝐴∗ ∧∗ 𝐵∗) →∗ 𝐶∗ ' 𝐴∗ →∗ (𝐵∗ →∗ 𝐶∗)

In cubical type theory, we can define the smash product as the following higher in-
ductive type [Doo18, Definition 4.3.6].

𝐴∗ : U∗, 𝐵∗ : U∗ � inductive 𝐴∗ ∧ 𝐵∗ where
| ⟪𝑎 : 𝐴,𝑏 : 𝐵⟫ ∈ 𝐴∗ ∧ 𝐵∗
| ⊛L ∈ 𝐴∗ ∧ 𝐵∗
| spokeL(𝑏 : 𝐵, 𝑥 : I) ∈ 𝐴∗ ∧ 𝐵∗ [𝑥 ≡ 0 ↩→ ⊛L | 𝑥 ≡ 1 ↩→ ⟪𝑎0, 𝑏⟫]
| ⊛R ∈ 𝐴∗ ∧ 𝐵∗
| spokeR(𝑎 : 𝐴, 𝑥 : I) ∈ 𝐴∗ ∧ 𝐵∗ [𝑥 ≡ 0 ↩→ ⊛R | 𝑥 ≡ 1 ↩→ ⟪𝑎, 𝑏0⟫]

The smash product of 𝐴∗ and 𝐵∗ is a quotient of the product 𝐴 × 𝐵; we start with
elements ⟪𝑎, 𝑏⟫ ∈ 𝐴∗ ∧ 𝐵∗ for every 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then identify all pairs of the form
⟪𝑎0, 𝑏⟫ or ⟪𝑎, 𝑏0⟫. The latter is accomplished by first adding two “hub” points ⊛L and ⊛R,
then equating all terms of the form ⟪𝑎0, 𝑏⟫ and ⟪𝑎,𝑏0⟫ with ⊛L and ⊛R respectively using
“spoke” path constructors. We can picture the smash product as in the following image,
with the two axes of the product 𝐴 × 𝐵 connected to their respective hub points.

𝐴

𝑎 0

𝑏0
𝐵

⊛L

⊛R

⟪𝑎0, 𝑏⟫

spokeL (𝑏,−)

We write 𝐴∗ ∧∗ 𝐵∗ for the pointed type 〈𝐴∗ ∧ 𝐵∗, ⟪𝑎0, 𝑏0⟫〉.
The precise definition of the smash product, the intuition behind it, and its use in al-

gebraic topology are not our focus here. Rather, we want to make some generic points
about the difficulty of proving results that involve higher inductive types. The smash
product appears repeatedly in work on synthetic homotopy, for example in the theses of
Brunerie [Bru16, Chapter 4] and Van Doorn [Doo18, §4.3]. In both these cases, a major

161

pain point is proving that the smash product satisfies some apparently innocuous prop-
erties: commutativity, associativity, unit laws, and higher-dimensional coherence laws
relating these.

Why are these so difficult to prove? We can start to get a sense by looking at commu-
tativity and associativity. It is simple to define a commutator, a map 𝐴∗ ∧ 𝐵∗ → 𝐵∗ ∧𝐴∗,
by case analysis on the input.

commute 𝑠 B



case 𝑠 of
| ⟪𝑎,𝑏⟫ ↦→ ⟪𝑏, 𝑎⟫
| ⊛L ↦→ ⊛R
| spokeL(𝑏, 𝑥) ↦→ spokeR(𝑏, 𝑥)
| ⊛R ↦→ ⊛L
| spokeR(𝑎, 𝑥) ↦→ spokeL(𝑎, 𝑥)


Defining an associator, (𝐴∗ ∧∗ 𝐵∗) ∧𝐶∗ → 𝐴∗ ∧ (𝐵∗ ∧∗ 𝐶∗), is more tedious. Notably,

we must go through two layers of case analysis, because the domain (𝐴∗ ∧∗ 𝐵∗) ∧ 𝐶∗ of
our function contains a twice-iterated smash product.

assoc 𝑠 B



case 𝑠 of
| ⟪⟪𝑎,𝑏⟫, 𝑐⟫ ↦→ ⟪𝑎, ⟪𝑏, 𝑐⟫⟫
| ⟪⊛L, 𝑐⟫ ↦→ · · ·
| ⟪spokeL(𝑏, 𝑥), 𝑐⟫ ↦→ · · ·
| ⟪⊛R, 𝑐⟫ ↦→ · · ·
| ⟪spokeR(𝑎, 𝑥), 𝑐⟫ ↦→ · · ·
| ⊛L ↦→ · · ·
| spokeL(𝑐,𝑦) ↦→ · · ·
| ⊛R ↦→ · · ·
| spokeR(⟪𝑎,𝑏⟫, 𝑦) ↦→ · · ·
| spokeR(⊛L, 𝑦) ↦→ · · ·
| spokeR(spokeL(𝑏, 𝑥), 𝑦) ↦→ · · ·
| spokeR(⊛R, 𝑦) ↦→ · · ·
| spokeR(spokeR(𝑎, 𝑥), 𝑦) ↦→ · · ·


The proliferation of cases is daunting, but this would not be a serious problem if each

individual branch were straightforward to fill. Unfortunately, this is not the case; the
real killer is the increased dimensionality that comes from iterated case analysis on higher
inductive types. Consider the spokeR(spokeL(𝑏, 𝑥), 𝑦) case in the definition of assoc. This
is a two-dimensional case, that is, depends on two interval variables 𝑥 and 𝑦; in order for
assoc to be well-defined, the boundary of this case’s output must agree with the output of
the appropriate lower-dimensional cases. Here, spokeR(spokeL(𝑏, 𝑥), 𝑦) has the following

162 Introduction

boundary.

𝑦

𝑥
⊛R ⟪⊛L, 𝑐0⟫

⊛R ⟪⟪𝑎0, 𝑏⟫, 𝑐0⟫

spokeR(⊛L, 𝑦)

spokeR(⟪𝑎0, 𝑏⟫, 𝑦)

⊛R ⟪spokeL(𝑏, 𝑥), 𝑐0⟫spokeR(spokeL(𝑏, 𝑥), 𝑦)

Our goal for the two-dimensional spokeR(spokeL(𝑏, 𝑥), 𝑦) case thus depends on what
we have written in the zero- and one-dimensional ⊛R, spokeR(⊛L, 𝑦), ⟪spokeL(𝑏, 𝑥), 𝑐⟫,
and spokeR(⟪𝑎,𝑏⟫, 𝑦) cases. In particular, the complexity of higher-dimensional cases is
very sensitive to the complexity of lower-dimensional cases. If, for example, each one-
dimensional case involves some non-trivial composition of constructors, then it falls to
the two-dimensional constructors to untangle and relate these. Worse, the complexity
often depends on essentially arbitrary choices. For example, we can equally well send
⊛L ↦→ ⊛L, ⊛L ↦→ ⊛R, ⊛L ↦→ ⟪⊛L, 𝑐0⟫, ⊛L ↦→ ⟪⊛R, 𝑐0⟫, or ⊛L ↦→ ⟪⟪𝑎0, 𝑏0⟫, 𝑐0⟫, given that
all of these options are equal up to a path. If we send ⊛L ↦→ ⊛L, then the spokeL(𝑐, 𝑥)
case requires a path ⊛L ⇝ ⟪𝑎0, ⟪𝑏0, 𝑐⟫⟫, which is easily satisfied by spokeL(⟪𝑏0, 𝑐⟫, 𝑥);
if we send ⊛L ↦→ ⊛R, the necesssary path ⊛R ⇝ ⟪𝑎0, ⟪𝑏0, 𝑐⟫⟫ cannot be satisfied with
a single constructor, instead requiring some composition. Sometimes it is clear which
choice produces the simplest higher-dimensional goals, but it is often not.

These problems are further exacerbated if we want to prove any properties of these
definitions. For example, we would certainly like to know that the associator is an iso-
morphism. After defining a candidate inverse assoc−1, we would then have to construct
some inv ∈ (𝑠 : (𝐴∗ ∧∗ 𝐵∗) ∧𝐶∗) → Path((𝐴∗ ∧∗ 𝐵∗) ∧𝐶∗, assoc−1 (assoc 𝑠), 𝑠). Like the
definition of assoc itself, this requires twice-iterated case analysis on the smash product.
This time, however, the codomain is a path type, so the dimensionality of each case is
bumped up by one. And again, our solution for each case of inv depends in a delicate way
on how we have defined assoc and assoc−1 as well as the lower-dimensional cases of inv.

Worse still, there are actually infinitely many coherence conditions of increasing di-
mensionality that one might like the commutator and associator (and unitors) to satisfy.
One step up from associativity, we have Mac Lane’s pentagon identity, which states that
the following diagram commutes. In words, the pentagon asserts that the two ways of
re-associating from ((𝐴∗ ∧∗ 𝐵∗) ∧∗𝐶∗) ∧𝐷∗ to 𝐴∗ ∧ (𝐵∗ ∧∗ (𝐶∗ ∧∗ 𝐷∗))—beginning either

163

by re-associating the inner or the outer triple—produce the same results.

((𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗) ∧ 𝐷∗

(𝐴∗ ∧∗ 𝐵∗) ∧ (𝐶∗ ∧∗ 𝐷∗)

𝐴∗ ∧ (𝐵∗ ∧∗ (𝐶∗ ∧∗ 𝐷∗))𝐴∗ ∧ ((𝐵∗ ∧∗ 𝐶∗) ∧∗ 𝐷∗)

(𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗)) ∧ 𝐷∗

'

'

'

'

'

To prove this would require a case analysis on the elements of a thrice-iterated smash
product. As the codomain is again a path type, this means dealing with four-dimensional
terms. Then we might require a further coherence operator relating the different ways of
iteratively applying the pentagon identity, and so on without end. (These operators are
collectively known as associahedra.) To add another wrinkle of complexity, each of these
operators should also satisfy a naturality condition that lives one dimension higher.

Admittedly, there is (as yet) no pressing need in synthetic homotopy theory to climb
very far up this tower of results. However, both Brunerie and Van Doorn’s results do rely
on the pentagon identity. Brunerie does not give a proof, only sketches an argument that
one should be possible. Van Doorn adapts a result of Eilenberg and Kelly [EK66, Chap-
ter 2, Theorem 5.3] to derive the pentagon identity from the pointed natural isomorphism
transpose ∈ (𝐴∗ ∧∗ 𝐵∗) →∗ 𝐶∗ '∗ 𝐴∗ →∗ (𝐵∗ →∗ 𝐶∗). It is plausible that the higher co-
herences would also follow from this result without further case analysis, which would be
a substantial reduction of complexity from the direct approach. However, even the con-
struction of transpose is non-trivial, and Van Doorn leaves one component of the proof
unchecked.1 Brunerie has also attempted to generate proofs of these coherences auto-
matically, using an algorithm that looks for opportunities to apply Martin-Löf’s identity
elimination rule, but this too reaches the limits of practicality around the pentagon level
[Bru18].

Despite the difficulty of verifying these results, the proofs are not at all conceptually
interesting, and it is hard to imagine how they could fail to hold. Is it even possible to write
down an associator that does not satisfy the pentagon identity? In fact, under sufficient
restrictions on the language, it is not. We will arrive at this realization by using a classic
technique from programming language theory: parametricity.

1The missing piece is described in [Doo18, Remark 4.3.29]. Briefly, naturality requires an operation
relating the isomorphisms (𝐴∗ ∧∗ 𝐵∗) →∗ 𝐶∗ '∗ 𝐴∗ →∗ (𝐵∗ →∗ 𝐶∗) and (𝐴′

∗ ∧∗ 𝐵′
∗) →∗ 𝐶 ′

∗ '∗ 𝐴′
∗ →∗

(𝐵′
∗ →∗ 𝐶 ′

∗) whenever there are pointed functions 𝐴∗ → 𝐴′
∗, 𝐵∗ → 𝐵′

∗, and 𝐶∗ → 𝐶 ′
∗. Pointed naturality

requires that this operation satisfies a further condition when one of 𝑓 , 𝑔, ℎ is a constant function. Van
Doorn relies on pointed naturality in 𝐶 to obtain the pentagon identity, but does not show that it holds.

164 Introduction

Reynolds’ parametricity Parametricity, introduced in the seminal work of Reynolds
[Rey83], is a property that constrains the behavior of polymorphic functions, functions that
depend on type variables. Strachey [Str67] distinguishes two varieties of polymorphism:
parametric and ad-hoc. As retold by Reynolds, a parametrically polymorphic function is
intuitively one whose behavior is uniform in its type variables, which “does the same
thing” no matter how those variables are instantiated, such as the following commutator
for the sum/coproduct type.

𝜆𝐴. 𝜆𝐵. 𝜆𝑐.


case 𝑐 of
| inl(𝑎) ↦→ inr(𝑎)
| inr(𝑏) ↦→ inr(𝑏)

 ∈ (𝐴, 𝐵 : U) → 𝐴 + 𝐵 → 𝐵 +𝐴

An ad-hoc polymorphic function, on the other hand, is one whose behavior does depend
on how its type variables are instantiated, such as the following bizarre function that
behaves differently when its type argument is Int.

𝜆𝐴. 𝜆𝑎.


case 𝐴 of
| Int ↦→ 2
| ↦→ 𝑎

 ∈ (𝐴 : U) → 𝐴 → 𝐴

In this telling, the property of being parametric is a syntactic condition: a function
is parametric when its definition does not use any case analysis on its type variables.
Reynolds’ realization was that this syntactic condition implies a powerful semantic prop-
erty: the existence of an action on relations.

Reynolds’ original results apply to a formal simple type theory with type variables:
the theory with non-dependent functions (𝐴 → 𝐵), non-dependent products (𝐴 × 𝐵), and
booleans (Bool). Terms are built from function definition and application, pairing and
projections, boolean constructors tt and ff, and boolean case analysis. (Reynolds also al-
lows for some additional fixed collection of type and term constants.) Note that no facility
for case analysis on types is provided. This type theory has a canonical interpretation in
set theory: given an assignment 𝐸 = {𝑋1 ↦→ 𝑆1, . . . , 𝑋𝑛 ↦→ 𝑆𝑛} of sets to each type vari-
able in a type 𝐴, we have an induced set J𝐴K𝐸 , with function types translated into sets of
set-theoretic functions and so on. Likewise, any term 𝑡 : 𝐴 has an interpretation as an
element J𝑡K𝐸 ∈ J𝐴K𝐸 . Reynolds’ semantic definition of parametric polymorphism is given
in terms of this interpretation.

To understand Reynolds’ result, let us focus our attention on the simplest case: the
type of functions 𝑋 → 𝑋 polymorphic in the type variable 𝑋 . Given an interpretation
𝑋 ↦→ 𝑆 , the interpretation of this type is naturally the set of functions 𝑆 → 𝑆 .

Definition. A family of set-theoretic functions (𝑓𝑆 ∈ 𝑆 → 𝑆 | 𝑆 ∈ Set) is parametric
when it preserves all binary relations: for every pair of sets 𝑆,𝑇 ∈ Set and binary relation
𝑅 ⊆ 𝑆 ×𝑇 , if (𝑠, 𝑡) ∈ 𝑅, then (𝑓𝑆 (𝑠), 𝑓𝑇 (𝑡)) ∈ 𝑅.

165

In this vein, Reynolds defines systematically what it means for a set-theoretic family
(𝑎𝐸 ∈ J𝐴K𝐸 | 𝐸 ∈ TypeVars(𝐴) → Set) to be parametric for each type 𝐴 of the formal
theory. The capstone result is then the abstraction theorem, which states that the interpre-
tation of any term is parametric.

Definition (Reynolds’ abstraction theorem). For any term 𝑡 : 𝐴, the induced family
(J𝑡K𝐸 ∈ J𝐴K𝐸 | 𝐸 ∈ TypeVars(𝐴) → Set) is parametric.

To be parametric is a powerful property. Returning to our example 𝑋 → 𝑋 , suppose
that (𝑓𝑆 ∈ 𝑆 → 𝑆 | 𝑆 ∈ Set) is a parametric family. For any set 𝑆 and element 𝑠 ∈ 𝑆 , we
have a relation 𝑅 B {(𝑠,★)} ⊆ 𝑆×{★}. As (𝑠,★) ∈ 𝑅, we must have (𝑓𝑆 (𝑠), 𝑓{★} (★)) ∈ 𝑅 as
well—but thismeans that 𝑓𝑆 (𝑠) = 𝑠 . In otherwords, the only parametric family of functions
𝑆 → 𝑆 is the family of identity functions. And by the abstraction theorem, this means
that any term 𝑡 : 𝑋 → 𝑋 is semantically identical to the identity term 𝜆𝑎. 𝑎 : 𝑋 → 𝑋 .

Now we get an inkling of how we might apply parametricity to the problem of smash
products. Certainly we can expect to obtain naturality properties from parametricity: nat-
urality is merely the restriction of parametricity to relations that are graphs of functions.
(Wadler memorably dubbed the naturality results that fall out of parametricity “Theorems
for Free!” [Wad89].) In fact, we can go even farther. For example, we can show that any
parametric candidate associator assoc ∈ (𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗ →∗ 𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗) is an iso-
morphism so long as it is not the constant function 𝜆 . ⟪𝑎0, ⟪𝑏0, 𝑐0⟫⟫; it is then a simple
matter to exclude the latter case by testing assoc on small inputs. We can even show that
any parametric assoc satisfies the pentagon identity.

Internalizing parametricity We deviate from Reynolds’ original program, which is
based in a set-theoretic denotational semantics, by instead adapting the more recent sys-
tem of internal parametricity developed by Bernardy and Moulin [BM12; BM13; BCM15].
In an internally parametric type theory, the consequences of parametricity are available
within the theory, rather than holding of an external interpretation (in set theory or oth-
erwise). In particular, in a computational type theory, the operators that implement the
abstraction theorem are themselves computational; thus we are able to obtain results with-
out departing from our computational conception of type theory.

On another level, internal parametricity is attractive to us because its realization
shares many features with cubical type theory, right down to the crucial use of an in-
terval object. Recall that, as captured by univalence, a line of types 𝑥 : I � 𝐴 ∈ U
corresponds to an isomorphism 𝑒 ∈ 𝐴[0/𝑥] ' 𝐴[1/𝑥]; moreover, terms 𝑥 : I � 𝑎 ∈ 𝐴
in that line correspond to paths 𝑒 (𝑎[0/𝑥]) ⇝ 𝑎[1/𝑥] relating their endpoints across the
isomorphism. Recall also that all constructions have an action on paths: given a func-
tion 𝑓 ∈ 𝐴 → 𝐵 and a path 𝑝 ∈ Path(𝐴, 𝑎0, 𝑎1), we can apply 𝑓 to 𝑝 pointwise to ob-
tain a path 𝜆I𝑥 . 𝑓 (𝑝 𝑥) ∈ Path(𝐵, 𝑓 𝑎0, 𝑓 𝑎1). The combined consequence of these facts is

166 Introduction

that every polymorphic function in cubical type theory has an action on isomorphisms:
given some 𝑓 ∈ (𝑋 : U) → 𝑋 → 𝑋 and an isomorphism 𝑒 : 𝐴 ' 𝐵, for example, we have
𝑒 (𝑓 𝑎) ⇝ 𝑓 𝑏 whenever 𝑒 𝑎 ⇝ 𝑏. Internal parametricity operates on the same principle:
now, lines 𝒙 : I � 𝐴 ∈ U corresponding to relations 𝑅 ∈ 𝐴[0/𝑥] ×𝐴[1/𝑥] → U and terms
𝒙 : I � 𝑎 ∈ 𝐴 to proofs of 𝑅 〈𝑎[0/𝑥], 𝑎[1/𝑥]〉. By exploiting the action of terms on the
parametric equivalent of paths—which we call bridges, following Nuyts et al. [NVD17]—
we obtain a theory in which all terms are guaranteed to act on relations.

Outline In this part, we extend the cubical framework of Part I to incorporate bridge
interval variables, usingmany of the same strategies as in Part I, followed by the type form-
ers of internal parametricity employed by Bernardy, Coquand, and Moulin [BCM15]. The
definition of the extended framework and construction of an instance occurs in Chap-
ter 9; we also remark there on the similarities and distinctions between the behavior
of the two kinds of interval. There is little explicit interaction between the “path” and
“bridge” elements of the combined type theory, and so this chapter is largely a retelling of
[BCM15]. However, cubical equality notably improves the theory around the parametric-
ity primitives—much as we have seen it do with functions, universes, and quotients in
previous parts.

In Chapter 10, we apply parametric cubical type theory to prove a number of results,
showing how classical consequences of parametricity are validated, establishing some
methodology of internal parametricity, and proving the promised results concerning the
smash product. In Chapter 11, we explore a formalism for internally parametric type the-
ory and a presheaf model thereof, developing a novel treatment of affine interval variables
and simplifying some aspects of Bernardy, Coquand, and Moulin’s model by relying on
cubical equality. We discuss related and future work in Chapter 12.

This part depends heavily on Part I, but is largely independent of Part II; we do need
an intuitive understanding of higher inductive types to prove results involving the smash
product, of course, but our intent is that an intuitive understanding is sufficient.

Chapter 9

Parametric cubical type theory

We now enrich the cubical type theory defined in Part I with a bridge interval—an interval
for internal parametricity—and its attendant type formers and operators, as developed by
Bernardy, Coquand, andMoulin [BCM15]. At each stage, we will be revisiting a cubical el-
ement from a new angle. Unsurprisingly, the bridge interval parallels the path interval, as
do bridge types path types. In addition, the function extensionality principle is paralleled
by a new extent operator, while V types are paralleled by Gel types.

Of course, none of these parallels are exact. The differences between cubical and
parametric type theory have two sources. The first is mundane: we do not expect to able to
coerce along relations as we can along equivalences, so the bridge interval comes with no
notion of coercion or composition. Happily, this means the parametric extension is rather
less technically involved than the cubical. The second is more interesting: the bridge
interval does not support contraction. This means we are prohibited from performing
substitutions, like the one shown below, which substitute the same bridge variable for
two different variables.

𝒛 : I ⊩ (𝒛/𝒙, 𝒛/𝒚) ∈ (𝒙 : I,𝒚 : I) 8

In the traditional parlance of substructural logic, bridge interval hypotheses are affine.
The differences between the cubical constructs and their cubical equivalents nearly all
flow from this single modification to the interval theory.

The original cubical model of identity types, the BCH model of Bezem, Coquand, and
Huber [BCH13], also used an affine interval. Bernardy, Coquand, and Moulin’s internal
parametricity therefore naturally adopted the same structure [BCM15]. Cubical type the-
ory later drifted to a structural approach; affinity is more problematic for higher inductive
types, and is simply unnecessarily complex when a structural interval will do. We will
see here that it is, on the other hand, indispensable for internal parametricity.

167

168 Parametric cubical type theory

9.1 The bridge interval

The first step is to extend the theory of interval contexts and substitutions from Sec-
tion 3.1.1 with the new bridge interval, which exists in parallel with the cubical path in-
terval. For the most part, we will not repeat the cubical elements here; instead we present
only the new components, which are typically either definitions of new judgments or
extensions of existing inductively defined judgments by new rules.

9.1.1 Interval contexts and substitutions
Definition 9.1.1 (Interval contexts). We extend the interval context judgment Ψ ictx,
specified in Definition 3.1.2, by adding extension by a bridge interval as a context former.

Ψ ictx

(Γ, 𝒙 : I) ictx

Definition 9.1.2 (Bridge interval elements). Ψ ⊩ 𝒓 ∈ I holds when 𝒓 = 0, 𝒓 = 1, or
𝒓 = 𝒙 for some (𝒙 : I) ∈ Ψ.

We see our first difference between the two intervals in the definition of substitution.
Recall that we define substitutions into a context with a path interval hypothesis as shown
below.

Ψ′ ⊩ 𝜓 ∈ Ψ Ψ′ ⊩ 𝑟 ∈ I
Ψ′ ⊩ (𝜓, 𝑟/𝑥) ∈ (Ψ, 𝑥 : I)

As described above, we intend the bridge interval to be affine, so we cannot define sub-
stitutions into contexts with a bridge hypothesis in the same way; it is easy to construct
a contraction substitution from this rule. Intuitively, a substitution Ψ′ ⊩ 𝜓 ∈ (Ψ, 𝒙 : I)
should still consist of two components: a substitution Ψ′ ⊩ 𝜓 ′ ∈ Ψ and a bridge term
Ψ′ ⊩ 𝒓 ∈ I. In this case, however, we want to also ensure that the same variable is not
used twice between 𝜓 ′ and 𝒓 : in other words, if 𝒓 is a variable in Ψ′, then 𝜓 ′ should not
use that variable.

To express this condition, we define an interval restriction operation that removes an
interval variable from its context. Here we adapt the nominal restriction operation from
Cheney’s nominal type theory [Che12], which likewise extends type theory with a new
kind of affine hypothesis; we only adjust the definition to accommodate the constants 0
and 1. Restriction by these has no effect: while we cannot duplicate variables, we can use
constants freely.

The bridge interval 169

Definition 9.1.3 (Restriction for interval contexts). We define the restriction of an
interval context Ψ by a bridge interval term Ψ ⊩ 𝒓 ∈ I, written Ψ \ 𝒓 , as follows.

Ψ \ 0 B Ψ

Ψ \ 1 B Ψ

(Ψ, 𝑦 : I) \ 𝒙 B (Ψ \ 𝒙), 𝑦 : I

(Ψ,𝒚 : I) \ 𝒙 B
{
Ψ if 𝒙 = 𝒚
(Ψ \ 𝒙),𝒚 : I otherwise

Definition 9.1.4 (Interval substitutions). Weextend the interval substitution judgment
Ψ′ ⊩ 𝜓 ∈ Ψ, specified in Definition 3.1.4, by the following rule.

Ψ′ ⊩ 𝒓 ∈ I Ψ′ \ 𝒓 ⊩ 𝜓 ∈ Ψ

Ψ′ ⊩ (𝜓, 𝒓/𝒙) ∈ (Ψ, 𝒙 : I)

To construct the identity substitution 𝒙 : I,𝒚 : I ⊩ (𝒙/𝒙,𝒚/𝒚) ∈ (𝒙 : I,𝒚 : I), we must
show that 𝒙 : I,𝒚 : I \𝒚 ⊩ (𝒙/𝒙) ∈ (𝒙 : I), which is to say that 𝒙 : I ⊩ (𝒙/𝒙) ∈ (𝒙 : I). Here
we have no problem. If we try to type the forbidden “𝒛 : I ⊩ (𝒛/𝒙, 𝒛/𝒚) ∈ (𝒙 : I,𝒚 : I)”, on
the other hand, we find we need the evidently nonsensical “ · ⊩ (𝒛/𝒙) ∈ (𝒙 : I)”.

Finally, we add equations on bridge interval terms to the language of constraints.
While a path constraint may identify any pair of terms, 𝑟 ≡ 𝑠 , we only allow the identi-
fication of a bridge interval term with a constant. This reflects the affine nature of these
terms: the only way two bridge variables can become equal is if they both become the
same constant. More practically, while the general path constraints are apparently nec-
essary to implement coercion in V types in this theory—see the discussion of diagonal
cofibrations in [CMS20]—such a need does not arise in the bridge theory.

Definition 9.1.5 (Closed constraint judgments). We extend the constraint and con-
straint satisfaction judgments, specified in Definition 3.1.21, by the following.

Ψ ⊩ 𝒓 ∈ I 𝜺 ∈ {0, 1}
Ψ ⊩ (𝒓 ≡ 𝜺) ∈ F

𝜺 ∈ {0, 1}
Ψ ⊩ 𝜺 ≡ 𝜺 satisfied

Much as composition with path constraints is necessary to implement coercion in
path types (Figure 3.2), we will need bridge constraints to do the same for bridge types.

In theory, these additions to the interval theory could invalidate theorems we already
have proven for cubical type theory; for example, some Kan operation might rely on
analyzing the shape of constraints. In practice, however, it is easy to check that this is not
the case.

170 Parametric cubical type theory

9.1.2 Type systems and open judgments
Next, we introduce the type theory proper. There is no change in the underlying def-
initions of operational semantics, Ψ-relation, and type system; we simply repeat Defini-
tions 3.1.5, 3.1.6 and 3.1.16 with the adjusted theory of interval contexts and substitutions.
We do, however, need to modify the induced judgments, in particular the term context
judgment and the closing and general substitution judgments.

The well-formed contexts and closing substitutions are simple enough to extend, fol-
lowing exactly the pattern of interval contexts and substitutions.

Definition 9.1.6 (Contexts). We extend the context judgment Γ = Γ′ ctx, specified in
Definition 3.1.23, as follows.

Γ = Γ′ ctx

(Γ, 𝒙 : I) = (Γ′, 𝒙 : I) ctx

Definition 9.1.7 (Closing substitutions). We extend the closing substitution judgment
Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ, specified in Definition 3.1.23, as follows.

Ψ \ 𝒓 ⊩ 𝛾 = 𝛾 ′ ∈ Γ Ψ ⊩ 𝒓 ∈ I

Ψ ⊩ (𝛾, 𝒓/𝒙) = (𝛾 ′, 𝒓/𝒙) ∈ (Γ, 𝒙 : I)

In a substitution Ψ,𝒚 : I ⊩ (𝛾,𝒚/𝒙) ∈ (Γ, 𝒙 : I), we are guaranteed that the terms in 𝛾
do not use𝒚. To put it another way, any instantiation of the context (Γ, 𝒙 : I) will have the
property that the terms supplied for Γ will not intersect with any variable substituted for
𝒙 . Note that the same does not apply to terms that come after a bridge interval hypoth-
esis: in an instantiation of (Γ, 𝒙 : I,Δ), the terms supplied for Δ can reference a variable
substituted for 𝒙 .

The open bridge interval judgments are defined as in the path case.

Definition 9.1.8 (Open interval judgments). The judgment Γ � 𝒓 ∈ I is defined to
hold when 𝒓 = 0, 𝒓 = 1, or 𝒓 = 𝒙 for some (𝒙 : I) ∈ Γ. The equality judgment Γ � 𝒓 = 𝒔 ∈ I
is defined to hold when Γ � 𝒓 , 𝒔 ∈ I and their equality is in the equivalence relation
generated by the equational constraints occurring in Γ.

To define general substitutions, we must first extend the definition of interval restric-
tion from interval to arbitrary contexts.

Definition 9.1.9 (Restriction for term contexts). If a bridge term 𝒓 is equal to some
constant, then restriction has no effect.

Γ \ 𝒓 B Γ if Γ � 𝒓 = 𝜺 ∈ I for some 𝜺 ∈ {0, 1}

The bridge interval 171

Otherwise, restriction is defined as follows.

(Γ, 𝑦 : I) \ 𝒙 B (Γ \ 𝒙), 𝑦 : I

(Γ,𝒚 : I) \ 𝒙 B
{
Γ if 𝒙 = 𝒚
(Γ \ 𝒙),𝒚 : I otherwise

(Γ, 𝜉) \ 𝒙 B (Γ \ 𝒙), 𝜉
(Γ, 𝑎 :𝐴) \ 𝒙 B Γ \ 𝒙

Restriction by a bridge variable 𝒙 removes any term hypotheses that succeed 𝒙 , but
not those that precede it. For example, we have (𝑎 :𝐴, 𝒙 : I, 𝑏 :𝐵) \𝒙 = (𝑎 :𝐴). It would not
make sense to preserve the term hypotheses following 𝒙 , as their types may only make
sense in the presence of 𝒙 ; even putting dependency aside, they can be instantiated with
terms that use 𝒙 , so they could be used to indirectly “smuggle in” an 𝒙 if left alone. The
hypotheses that precede 𝒙 , on the other hand, can never be instantiated with terms that
use 𝒙 ; this is ensured by the use of restriction in the definition of closing substitutions.

Definition 9.1.10 (Open substitutions). Γ′ � 𝛾 = 𝛾 ′ ∈ Γ is inductively generated by
the the following rules.

Γ′ � · = · ∈ ·
Γ′ \ 𝒓 � 𝛾 = 𝛾 ′ ∈ Γ Γ′ � 𝒓 = 𝒓 ′ ∈ I

Γ′ � (𝛾, 𝒓/𝒙) = (𝛾 ′, 𝒓 ′/𝒙) ∈ (Γ, 𝒙 : I)

Γ′ � 𝑟 ∈ I Γ′ � 𝛾 = 𝛾 ′ ∈ Γ

Γ′ � (𝛾, 𝑟/𝑥) = (𝛾 ′, 𝑟/𝑥) ∈ (Γ, 𝑥 : I)
Γ′ � 𝛾 = 𝛾 ′ ∈ Γ Γ′ � 𝜉𝛾 satisfied

Γ′ � 𝛾 = 𝛾 ′ ∈ (Γ, 𝜉)

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ Γ′ � 𝑀 = 𝑀′ ∈ 𝐴𝛾
Γ′ � (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, 𝑎 :𝐴)

It is important that restriction have an action on substitutions, particularly closing
substitutions. This is essential for our usual method of proving rules, where we show a
given rule holds relative to an arbitrary interval context and infer that it must hold for
arbitrary term contexts by instantiating pointwise. If a hypothesis involves a restriction,
then we must apply a restricted instantiation at that hypothesis.

Lemma 9.1.11 (Action of restriction). Given a context Γ, substitution 𝛾 into Γ, and in-
terval term 𝒓 over Γ, we define the action of restriction by 𝒓 on 𝛾 , written (𝛾 : Γ) \ 𝒓 , as
follows. If 𝒓 is a constant, then restriction is the identity.

(𝛾 : Γ) \ 𝒓 B 𝛾 if Γ � 𝒓 = 𝜺 ∈ I for some 𝜺 ∈ {0, 1}

172 Parametric cubical type theory

Otherwise, restriction is defined as follows.

(Γ, 𝑦 : I) \ 𝒙 B (Γ \ 𝒙), 𝑦 : I

(Γ,𝒚 : I) \ 𝒙 B
{
Γ if 𝒙 = 𝒚
(Γ \ 𝒙),𝒚 : I otherwise

(Γ, 𝜉) \ 𝒙 B
{
Γ \ 𝒙 if 𝒙 occurs in 𝜉
(Γ \ 𝒙), 𝜉 otherwise

(Γ, 𝑎 :𝐴) \ 𝒙 B Γ \ 𝒙

Given contexts Γ = Γ′ ctx, substitutions Γ′′ � 𝛾 = 𝛾 ′ ∈ Γ, and terms Γ � 𝒓 = 𝒓 ′ ∈ I, we
have that Γ′′ \ 𝒓𝛾 � (𝛾 : Γ) \ 𝒓 = (𝛾 ′ : Γ′) \ 𝒓 ′ ∈ Γ \ 𝒓 .

Proof. If 𝒓 is equal to a constant, then this is immediate. Otherwise, we go by induction
on the derivation of Γ′′ � 𝛾 = 𝛾 ′ ∈ Γ.

• Case: Γ′ � · = · ∈ · . Immediate.

• Case: Γ′′ � (𝛾, 𝒔/𝒚) = (𝛾 ′, 𝒔′/𝒚) ∈ (Γ,𝒚 : I). If 𝒓 = 𝒚, then we have Γ′′ \ 𝒔 � 𝛾 = 𝛾 ′ ∈ Γ
by assumptions of this rule, which is exactly what we need. If not, then we instead have
the substitutions Γ′′\𝒔 \𝒓𝛾 � (𝛾 : Γ) \ 𝒓 = (𝛾 ′ : Γ′) \ 𝒓 ′ ∈ Γ \ 𝒓 by induction hypothesis,
to which we append Γ′′ \ 𝒓𝛾 � 𝒔 ∈ I using the fact that Γ′′ \ 𝒔 \ 𝒓𝛾 = Γ′′ \ 𝒓𝛾 \ 𝒔.

• Case: Γ′ � (𝛾, 𝑟/𝑥) = (𝛾 ′, 𝑟/𝑥) ∈ (Γ, 𝑥 : I). By induction hypothesis and the substitution
formation rule for path dimensions.

• Case: Γ′ � 𝛾 = 𝛾 ′ ∈ (Γ, 𝜉). By induction hypothesis and the substitution formation rule
for constraints.

• Case: Γ′ � (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, 𝑎 :𝐴). Immediate by induction hypothesis. □

Remark 9.1.12. On the level of syntax, the effect of a restricted substitution is the same as
that of the original substitution. That is, if 𝑀 is a term depending only on the variables
in Γ \ 𝑟 , then𝑀 [(𝛾 : Γ) \ 𝒓] = 𝑀𝛾 .

Now we get down to specifics. The new operational semantics rules we use for para-
metric type theory are shown in Figure 9.1. We construct our type systems in the usual
way, taking the least fixed-point of an operator that introduces one layer of each type
former. Below we get a sneak peak at the key type formers of parametric type theory, the
bridge and Gel types, which we introduce in more detail below.

Example 9.1.13 (Small type system). We define an operator IP on candidate type systems
as follows: given 𝜏 , IP (𝜏) is the union of the following clauses.

Bridge types 173

• IP (𝜏) ⊨ Ψ ⊩ Bridge(𝒙 .𝐴,𝑀0, 𝑀1) ≈ Bridge(𝒙 .𝐴,𝑀′
0, 𝑀

′
1) ↓ 𝑅 whenever

– 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑆] for some (Ψ, 𝒙 : I)-PER 𝑆 ,
– 𝑀𝜀 ≈ 𝑀′

𝜀 ∈ ⤋𝑆 [𝜀/𝑥] for 𝜺 ∈ {0, 1},
– 𝑉 ≈ 𝑉 ′ ∈ 𝑅〈𝜓 〉 holds for Ψ′ ⊩ 𝜓 ∈ Ψ exactly when 𝑉 = 𝜆I𝑥 . 𝑀 and 𝑉 ′ = 𝜆I𝑥 . 𝑀′ for

some𝑀 ,𝑀′ with𝑀 ≈ 𝑀′ ∈ ⤋𝑆𝜓 and𝑀 [𝜺/𝒙] ≈ 𝑀𝜀𝜓 ∈ ⤋𝑆𝜓 [𝜺/𝒙] for 𝜀 ∈ {0, 1}.

• IP (𝜏) ⊨ Ψ ⊩ Gel𝒓 (𝐴, 𝐵, 𝑎.𝑏.𝑅) ≈ Gel𝒓 (𝐴′, 𝐵′, 𝑎.𝑏.𝑅′) ↓ 𝑆 whenever

– 𝜏 ⊨ Ψ ⊩ 𝒓 ∈ I,
– 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑆] for some (Ψ \ 𝒓)-PER 𝑆 ,
– 𝐵 ≈ 𝐵′ ∈ ⤋𝜏 [𝑇] for some (Ψ \ 𝒓)-PER 𝑇 ,
– 𝑅𝜓 [𝑀/𝑎, 𝑁 /𝑏] ≈ 𝑅′𝜓 [𝑀′/𝑎, 𝑁 ′/𝑏] ∈ ⤋𝜏 [𝑈𝑀,𝑁] for all Ψ′ ⊩ 𝜓 ∈ (Ψ \ 𝒓), 𝑀 ≈ 𝑀′ ∈

⤋𝑆𝜓 , and 𝑁 ≈ 𝑁 ′ ∈ ⤋𝑇𝜓 , for some family of PERs 𝑈𝑀,𝑁 respecting equality in ⤋𝑆
and ⤋𝑇 ,

– 𝑉 ≈ 𝑉 ′ ∈ 𝑆 〈𝜓 〉 holds for Ψ′ ⊩ 𝜓 ∈ Ψ exactly when one of the following holds:
∗ 𝒓𝜓 = 0, and 𝑉 ≈ 𝑉 ′ ∈ 𝑆𝜓 ,
∗ 𝒓𝜓 = 1, and 𝑉 ≈ 𝑉 ′ ∈ 𝑇𝜓 ,
∗ 𝒓𝜓 = 𝒙 , and 𝑉 = gel𝒙 (𝑀, 𝑁, 𝑃) and 𝑉 ′ = gel𝒙 (𝑀′, 𝑁 ′, 𝑃 ′) with 𝑀 ≈ 𝑀′ ∈ ⤋𝑆𝜓 ,
𝑁 ≈ 𝑁 ′ ∈ ⤋𝑇𝜓 , and 𝑃 ≈ 𝑃 ′ ∈ ⤋𝑈𝑀,𝑁𝜓 .

We define the candidate type system 𝜏 IP0 to be the least fixed point of 𝐹 ∪ 𝐻 ∪ IP , where
𝐹 is as defined in Example 3.1.32 and 𝐻 is as defined in Example 6.2.22; we may omit 𝐻 if
we have no interest in interpreting higher inductive types.

As in Examples 3.1.33 and 6.2.23, we may construct a type system for internally para-
metric type theory with a universe by taking the least fixed point of 𝐹 ∪𝐻 ∪ IP ∪𝑈 (𝜏 IP0),
where𝑈 is as defined in Example 3.1.33.

9.2 Bridge types
The first type former we need for parametric type theory is the internalization of bridge
interval abstraction: the bridge type. We think of an element of Bridge(𝒙 .𝐴,𝑀0, 𝑀1) as a
proof that𝑀0 and𝑀1 are related across the relation 𝒙 .𝐴.

We display the standard collection of rules for bridge types in Figure 9.2. Like paths,
bridges are formed by abstraction and used by application, and they satisfy familiar re-
duction, boundary, and uniqueness equations. The only distinction is the addition of
the interval restriction \ 𝒓 in the application rule, which forbids us from instantiating a

174 Parametric cubical type theory

Bridges

Bridge(𝒙 .𝐴,𝑀, 𝑁) val 𝜆I𝒙 . 𝑀 val

𝑃 ↦−→ 𝑃 ′

𝑃 𝒓 ↦−→ 𝑃 ′ 𝒓 (𝜆I𝒙 . 𝑀) 𝒓 ↦−→ 𝑃 [𝒓/𝒙]

coe𝑟�𝑠𝑥 .Bridge(𝒚.𝐴,𝑀0,𝑀1) (𝑃) ↦−→ 𝜆I𝒚. com𝑟�𝑠
𝑥 .𝐴 (𝑃 ;𝒚 ≡ 0 ↩→ 𝑥 .𝑀0,𝒚 ≡ 1 ↩→ 𝑥 .𝑀1)

hcom𝑟�𝑠
Bridge(𝒚.𝐴,𝑀0,𝑀1) (𝑃 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑄𝑖)

↦−→
𝜆I𝒚. hcom𝑟�𝑠

𝐴 (𝑃 𝒚;−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .𝑄𝑖 𝒚,𝒚 ≡ 0 ↩→ .𝑀0,𝒚 ≡ 1 ↩→ .𝑀1)

Gel types

Gel𝒙 (𝐴0, 𝐴1, 𝑎.𝑏.𝑅) val Gel𝜺 (𝐴0, 𝐴1, 𝑎.𝑏.𝑅) ↦−→ 𝐴𝜀

gel𝒙 (𝑀0, 𝑀1, 𝑃) val gel𝜺 (𝑀0, 𝑀1, 𝑃) ↦−→ 𝑀𝜀

𝑄 ↦−→ 𝑄′

ungel(𝒙 .𝑄) ↦−→ ungel(𝒙 .𝑄′)
𝒙 ∉ 𝑃

ungel(𝒙 .gel𝒙 (𝑀0, 𝑀1, 𝑃)) ↦−→ 𝑃

𝑀
𝑦
𝜀 B hcom𝑟�𝑦

𝐴𝜀
(𝑄 [𝜺/𝒙];−−−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 [𝜺/𝒙] ↩→ 𝑦.𝑄𝑖 [𝜺/𝒙])

𝑃 B com𝑟�𝑠
𝑦.𝑅 [𝑀𝑦

0 /𝑎0,𝑀
𝑦
1 /𝑎1]

(ungel(𝒙 .𝑄); (−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑦.ungel(𝒙 .𝑄𝑖))𝒙∉𝜉𝑖)

hcom𝑟�𝑠
Gel𝒙 (𝐴0,𝐴1,𝑎0 .𝑎1 .𝑅) (𝑄 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑄𝑖) ↦−→ gel𝒙 (𝑀𝑠

0, 𝑀
𝑠
1, 𝑃)

𝑀
𝑦
𝜀 B coe𝑟�𝑦𝑦.𝐴𝜀

(𝑄 [𝜺/𝒙]) 𝑃 B coe𝑟�𝑠
𝑦.𝑅 [𝑀𝑦

0 /𝑎0,𝑀
𝑦
1 /𝑎1]

(ungel(𝒙 .𝑄))

coe𝑟�𝑠𝑦.Gel𝒙 (𝐴0,𝐴1,𝑎0 .𝑎1 .𝑅) (𝑄) ↦−→ gel𝒙 (𝑀𝑠
0, 𝑀

𝑠
1, 𝑃)

The extent operator

extent𝜺 (𝑀 ;𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁) ↦−→ 𝑁𝜀 [𝑀/𝑎]

extent𝒙 (𝑀 ;𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁) ↦−→ 𝑁 [𝑀 [0/𝒙]/𝑎0, 𝑀 [1/𝒙]/𝑎1, 𝜆I𝒙 . 𝑀/𝑎] 𝒙

Figure 9.1: Additional operational semantics for parametric type theory

Bridge types 175

Ψ, 𝒙 : I ⊩ 𝐴 = 𝐴′ type Ψ ⊩ 𝑀0 = 𝑀
′
0 ∈ 𝐴[0/𝒙] Ψ ⊩ 𝑀1 = 𝑀

′
1 ∈ 𝐴[1/𝒙]

Ψ ⊩ Bridge(𝒙 .𝐴,𝑀0, 𝑀1) = Bridge(𝒙 .𝐴′, 𝑀′
0, 𝑀

′
1) type

Ψ, 𝒙 : I ⊩ 𝐴 type Ψ, 𝒙 : I ⊩ 𝑀 = 𝑀′ ∈ 𝐴
Ψ ⊩ 𝜆I𝑎.𝑀 = 𝜆I𝑎.𝑀′ ∈ Bridge(𝒙 .𝐴,𝑀 [0/𝒙], 𝑀 [1/𝒙])

Ψ, 𝒙 : I ⊩ 𝐴 type (∀𝜀) Ψ ⊩ 𝑀𝜀 ∈ 𝐴[𝜺/𝒙]
Ψ ⊩ 𝒓 ∈ I Ψ \ 𝒓 ⊩ 𝑃 = 𝑃 ′ ∈ Bridge(𝒙 .𝐴,𝑀0, 𝑀1)

Ψ ⊩ 𝑃 𝒓 = 𝑃 ′ 𝒓 ∈ 𝐴[𝒓/𝒙]

Ψ \ 𝒓, 𝒙 : I ⊩ 𝐴 type Ψ ⊩ 𝒓 ∈ I Ψ \ 𝒓, 𝒙 : I ⊩ 𝑀 ∈ 𝐴
Ψ ⊩ (𝜆I𝒙 . 𝑀) 𝒓 = 𝑀 [𝒓/𝒙] ∈ 𝐴[𝒓/𝒙]

Ψ, 𝒙 : I ⊩ 𝐴 type (∀𝜀) Ψ ⊩ 𝑀𝜀 ∈ 𝐴[𝜺/𝒙]
Ψ ⊩ 𝑃 ∈ Bridge(𝒙 .𝐴,𝑀0, 𝑀1) 𝜀 ∈ {0, 1}

Ψ ⊩ 𝑃 𝜺 = 𝑀𝜀 ∈ 𝐴[𝜺/𝒙]

Ψ, 𝒙 : I ⊩ 𝐴 type (∀𝜀) Ψ ⊩ 𝑀𝜀 ∈ 𝐴[𝜺/𝒙] Ψ ⊩ 𝑃 ∈ Bridge(𝒙 .𝐴,𝑀0, 𝑀1)
Ψ ⊩ 𝑃 = 𝜆I𝒙 . 𝑃 𝒙 ∈ Bridge(𝒙 .𝐴,𝑀0, 𝑀1)

Figure 9.2: Rules for bridge types

bridge 𝑃 with a term 𝒓 that already occurs in 𝑃 . This matches the situation for judgmental
bridges: given Ψ, 𝒙 : I ⊩ 𝑀 ∈ 𝐴, we can only instantiate 𝒙 with some Ψ ⊩ 𝒓 ∈ I if𝑀 and 𝐴
are actually well-typed in the sub-context (Ψ \ 𝒓, 𝒙 : I) ⊆ (Ψ, 𝒙 : I), in which case we can
apply the substitution Ψ ⊩ (idΨ\𝑟 , 𝒓/𝒙) ∈ (Ψ \ 𝒓, 𝒙 : I) to get Ψ ⊩ 𝑀 [𝒓/𝒙] ∈ 𝐴[𝒓/𝒙].

As the proofs of these rules do not deviate noticeably from those for path types (Sec-
tion 3.1.6.1), we leave them as an exercise to the reader; the Kan operations, too, are the
same as for paths, though now relying on the presence of 𝒓 ≡ 𝜺 constraints. (Full proofs
may be found in [CH19b, §5].) However, it is worth observing explicitly that, even with
the complication of restriction in hypotheses, we can still derive open rules from their
closed form, as in the example below. As mentioned above, the key fact is that interval
restriction has an action on closing substitutions.

Rule 9.2.1 (Open bridge reduction). Let Γ ctx.

Γ, 𝒙 : I � 𝐴 type Γ � 𝒓 ∈ I Γ \ 𝒓, 𝒙 : I � 𝑀 ∈ 𝐴
Γ � (𝜆I𝒙 . 𝑀) 𝒓 = 𝑀 [𝒓/𝒙] ∈ 𝐴[𝒓/𝒙]

176 Parametric cubical type theory

Proof. By definition of the open typing judgment, we must show for every Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ
that Ψ ⊩ ((𝜆I𝒙 . 𝑀) 𝒓)𝛾 = 𝑀 [𝒓/𝒙]𝛾 ′ ∈ 𝐴[𝒓/𝒙]𝛾 . By instantiating Γ, 𝒙 : I � 𝐴 type
with (𝛾, 𝒙/𝒙), we have Ψ, 𝒙 : I ⊩ 𝐴𝛾 type; by instantiating Γ � 𝒓 ∈ I with 𝛾 , we have
Ψ ⊩ 𝒓𝛾 ∈ I; by instantiating Γ \ 𝒓, 𝒙 : I � 𝑀 ∈ 𝐴 with Ψ \ 𝒓𝜓 ⊩ (𝛾 : Γ) \ 𝒓 , we have
Ψ \ 𝒓𝛾, 𝒙 : I ⊩ 𝑀𝛾 ∈ 𝐴𝛾 . We thus obtain Ψ ⊩ ((𝜆I𝒙 . 𝑀) 𝒓)𝛾 = 𝑀 [𝒓/𝒙]𝛾 ′ ∈ 𝐴[𝒓/𝒙]𝛾 by
applying the closed rule. □

To give a concrete consequence of affinity, we cannot take the diagonal of a two-
dimensional bridge. That is, given a term𝑄 ∈ Bridge(𝒚.Bridge(𝐴,𝑀0, 𝑀1), 𝑃0, 𝑃1), we can-
not write the term “𝜆I𝒙 . 𝑄 𝒙 𝒙 ∈ Bridge(𝐴, 𝑃0 0, 𝑃1 1)”, the diagonal of the square shown
below.

𝒚

𝒙 • •

• •

𝑀0

𝑀1

𝑃0 𝒙 𝑃1 𝒙8

Indeed, the term 𝑄 𝒙 already mentions 𝒙 , so cannot be applied to 𝒙 a second time.
Note, however, that nothing prevents a bridge variable from occurring multiple times

in a term in general. We see an example in the proof of the following lemma, which is a
carbon copy of Lemma 3.2.4.

Lemma 9.2.2 (Bridges in products). Let 𝒙 : I � 𝐴 type and 𝒙 : I, 𝑎 : 𝐴 � 𝐵 type be
given together with 𝑇0 ∈ ((𝑎 :𝐴) × 𝐵) [0/𝒙] and 𝑇1 ∈ ((𝑎 :𝐴) × 𝐵) [1/𝒙]. Then we have
an isomorphism of the following type.

Bridge(𝒙 .(𝑎 :𝐴) × 𝐵,𝑇0,𝑇1)
'

(𝑝 : Bridge(𝒙 .𝐴, fst(𝑇0), fst(𝑇1))) × Bridge(𝒙 .𝐵 [𝑝 𝒙/𝑎], snd(𝑇0), snd(𝑇1))

Proof. In the forward direction, given 𝑡 : Bridge(𝒙 .(𝑎 :𝐴) × 𝐵,𝑇0,𝑇1), we have the pair of
bridges 〈𝜆I𝒙 . fst(𝑡 𝒙), 𝜆I𝒙 . snd(𝑡 𝒙)〉. In the reverse, given a pair of bridges across the two
types, 𝑝 :Bridge(𝒙 .𝐴, fst(𝑇0), fst(𝑇1)) and 𝑞 :Bridge(𝒙 .𝐵 [𝑝 𝒙/𝑎], snd(𝑇0), snd(𝑇1)), we have
a bridge in the product type 𝜆I𝒙 . 〈𝑝 𝒙, 𝑞 𝒙〉. These constructions are inverse up to exact
equality. □

In the term 𝜆I𝒙 . 〈𝑝 𝒙, 𝑞 𝒙〉 above, we have used 𝒙 in two places, but this is not a prob-
lem: the only requirement is that 𝒙 be fresh for 𝑝 and 𝑞 individually. This is the case here

Function types and the extent operator 177

because 𝑝 and 𝑞 were introduced prior to 𝒙 : they precede 𝒙 in the context, so are not
deleted by \ 𝒙 .

As was the case for cubical equality, Lemma 9.2.2 is one of a laundry list of results we
will be able to prove relating bridges in compound types to bridges in their component
types. In particular, we can characterize bridges in path types: a path between bridges is
the same as a bridge between paths.

Lemma 9.2.3 (Bridges in path types). Let𝑦 : I, 𝒙 :I � 𝐴 type, 𝒙 :I � 𝑀0 ∈ 𝐴[0/𝑦], and
𝒙 : I � 𝑀0 ∈ 𝐴[0/𝑦] be given together with 𝑃0 ∈ Path(𝑦.𝐴[0/𝒙], 𝑀0 [0/𝒙], 𝑀1 [0/𝒙]) and
𝑃1 ∈ Path(𝑦.𝐴[1/𝒙], 𝑀0 [1/𝒙], 𝑀1 [1/𝒙]). Then we have an isomorphism of the following
type.

Bridge(𝒙 .Path(𝑦.𝐴,𝑀0, 𝑀1), 𝑃0, 𝑃1)
'

Path(𝑦.Bridge(𝒙 .𝐴, 𝑃0𝑦, 𝑃1𝑦), 𝜆I𝒙 . 𝑀0, 𝜆
I𝒙 . 𝑀1)

Proof. Like the function extensionality isomorphism for paths, this isomorphism simply
swaps the order of binders. Given 𝑝 of the former type, we have 𝜆I𝑦. 𝜆I𝒙 . 𝑝 𝒙 𝑦 in the
latter; given 𝑞 in the former, we have 𝜆I𝒙 . 𝜆I𝑦. 𝑞 𝑦 𝒙 in the latter. (We use here the fact
that restriction ignores path interval variables.) These are evidently inverses up to exact
equality. □

The above, read in reverse, doubles as a characterization of paths in bridge types. The
type of bridges across many compound types can be characterized in the same way and
with the same proof as the type of paths, as in the case of products. There are, however,
key differences. As our next step, we consider function types, a case where the stories
diverge.

9.3 Function types and the extent operator

In Section 3.2, we proved two results characterizing the behavior of paths at function type.
First, we had function extensionality (Lemma 3.2.5), a practically trivial result characteriz-
ing the type Path(𝑥 .(𝑎 :𝐴) → 𝐵, 𝐹0, 𝐹1) when𝐴 does not depend on 𝑥 . Second, we gave a
more general characterization for the case where 𝐴 does depend on 𝑥 , the proof of which
relied on the existence of coercion for paths (Lemma 3.2.6).

For bridges, we again want the more general characterization, in accordance with the
standard definition of relation at function type used in classical parametricity and logical
relations more generally: two functions are related when they take related arguments to

178 Parametric cubical type theory

related results.

Bridge(𝒙 .(𝑎 :𝐴) → 𝐵, 𝐹0, 𝐹1)
?'

(𝑎0 :𝐴[0/𝒙]) (𝑎1 :𝐴[1/𝒙]) (𝑝 : Bridge(𝒙 .𝐴, 𝑎0, 𝑎1)) → Bridge(𝒙 .𝐵 [𝑝 𝒙/𝑎], 𝐹0 𝑎0, 𝐹1 𝑎1)

We cannot, however, simply repeat our proof of paths: we have no coercion across bridges.
Instead, we will rely here for the first time on the affinity of bridge variables.

We can easily implement the forward direction as in the proof of Lemma 3.2.6: given
𝑞 : Bridge(𝒙 .(𝑎 :𝐴) → 𝐵, 𝐹0, 𝐹1), we define the function 𝜆𝑎0. 𝜆𝑎1. 𝜆𝑝. 𝜆I𝒙 . (𝑞 𝒙) (𝑝 𝒙) from
bridges in the domain to bridges in the codomain. The difficulty, then, is in the converse.
Suppose we are given a function ℎ of the right hand type above. We need to transform
this into a path of functions: given 𝒙 : I and then 𝑎 : 𝐴, we must produce an element of
𝐵 that is 𝐹0 𝑎 when 𝒙 = 0 and 𝐹1 𝑎 when 𝒙 = 1. In the proof of Lemma 3.2.6, we used
coercion to create a path from 𝑎 and applied ℎ, but we cannot do this now.

Consider the situation where 𝑎 : 𝐴 has been instantiated with some closed term 𝑀 .
Because𝑀 is introduced after 𝒙 , it might use 𝒙 ; indeed, we can think of it as a function of
𝒙 . If we could abstract the variable 𝒙 in 𝑀 , writing 𝜆I𝒙 . 𝑀 , we would have a bridge over
𝐴, and could take ℎ (𝑀 [0/𝒙]) (𝑀 [1/𝒙]) (𝜆I𝒙 . 𝑀) 𝒙 as our result. Of course, we cannot
literally do so with 𝑎: the term 𝜆I𝒙 . 𝑎 is a constant bridge, as 𝑎 does not mention 𝒙 . As
our operational semantics is defined on closed terms, however, we can instead define an
auxiliary operator that performs interval abstraction on such terms.

For this purpose, we introduce the extent operator to the operational semantics, as
shown in Figure 9.1 and replicated below. We call this operator “extent” because it reveals
the extent of a term (𝑀 below) in a given direction, a bridge interval term 𝒓 . If 𝒓 is a
constant, then 𝑀 is simply a point; if 𝒓 is a variable 𝒙 , then 𝑀 is one point on a bridge,
namely the point at 𝒙 of the bridge 𝜆I𝑥 . 𝑀 .

extent𝜺 (𝑀 ;𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁) ↦−→ 𝑁𝜀 [𝑀/𝑎]

extent𝒙 (𝑀 ;𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁) ↦−→ 𝑁 [𝑀 [0/𝒙]/𝑎0, 𝑀 [1/𝒙]/𝑎1, 𝜆I𝒙 . 𝑀/𝑎] 𝒙

Like an eliminator for an inductive type, extent takes a case branch term for each possible
value of 𝒓 , the terms 𝑁0, 𝑁1, and 𝑁 above. If 𝒓 is an endpoint constant, we pass𝑀—which
is just a point—to the corresponding case, per the first reduction rule above. If 𝒓 is a
variable 𝒙 , then we pass the bridge 𝜆I𝑥 . 𝑀 (and its two endpoints) to the variable case.

The extent operator satisfies the following principles. We have a typing rule as well
as reductions for the constant and variable cases.

Function types and the extent operator 179

Rules 9.3.1 (Extent). We present the first rule in unary form for lack of space, but extent
does preserve exact equality in each argument.

(1)
Ψ ⊩ 𝒓 ∈ I Ψ \ 𝒓, 𝒙 : I ⊩ 𝐴 type Ψ \ 𝒓, 𝒙 : I, 𝑎 :𝐴 � 𝐵 type
Ψ ⊩ 𝑀 ∈ 𝐴[𝒓/𝒙] (∀𝜀) Ψ \ 𝒓, 𝑎𝜀 :𝐴[𝜺/𝒙] � 𝑁𝜀 ∈ 𝐵 [𝜺/𝒙, 𝑎𝜀/𝑎]

Ψ \ 𝒓, 𝑎0 :𝐴[0/𝒙], 𝑎1 :𝐴[1/𝒙], 𝑎 : Bridge(𝒙 .𝐴, 𝑎0, 𝑎1) � 𝑁 ∈ Bridge(𝒙 .𝐵 [𝑎 𝒙/𝑎], 𝑁0, 𝑁1)
Ψ ⊩ extent𝒓 (𝑀 ;𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁) ∈ 𝐵 [𝒓/𝒙, 𝑀/𝑎]

(2)
𝜀 ∈ {0, 1} Ψ, 𝒙 : I ⊩ 𝐴 type Ψ, 𝒙 : I, 𝑎 :𝐴 � 𝐵 type

Ψ ⊩ 𝑀 ∈ 𝐴[𝜺/𝒙] (∀𝜀) Ψ \ 𝒓, 𝑎𝜀 :𝐴[𝜺/𝒙] � 𝑁𝜀 ∈ 𝐵 [𝜺/𝒙, 𝑎𝜀/𝑎]
Ψ ⊩ extent𝜺 (𝑀 ;𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁) = 𝑁𝜀 [𝑀/𝑎𝜀] ∈ 𝐵 [𝜺/𝒙, 𝑀/𝑎]

(3)
Ψ ⊩ 𝒓 ∈ I Ψ \ 𝒓, 𝒙 : I ⊩ 𝐴 type Ψ \ 𝒓, 𝒙 : I, 𝑎 :𝐴 � 𝐵 type

Ψ \ 𝒓, 𝒙 : I ⊩ 𝑀 ∈ 𝐴 (∀𝜀) Ψ \ 𝒓, 𝑎𝜀 :𝐴[𝜺/𝒙] � 𝑁𝜀 ∈ 𝐵 [𝜺/𝒙, 𝑎𝜀/𝑎]
Ψ \ 𝒓, 𝑎0 :𝐴[0/𝒙], 𝑎1 :𝐴[1/𝒙], 𝑎 : Bridge(𝒙 .𝐴, 𝑎0, 𝑎1) � 𝑁 ∈ Bridge(𝒙 .𝐵 [𝑎 𝒙/𝑎], 𝑁0, 𝑁1)

𝑂 B 𝑁 [𝑀 [0/𝒙]/𝑎0, 𝑀 [1/𝒙]/𝑎1, 𝜆I𝒙 . 𝑀/𝑎] 𝒓
Ψ ⊩ extent𝒓 (𝑀 [𝒓/𝒙];𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁) = 𝑂 ∈ 𝐵 [𝑀/𝑎] [𝒓/𝒙]

Wewill prove thesemomentarily; first, though, we see that we can use extent to define
the bridge of functions induced by ℎ as follows. Indeed, extent is precisely what we need.

𝜆I𝒙 . 𝜆𝑎. extent𝒙 (𝑎;𝑎0.(𝐹0 𝑎0), 𝑎1.(𝐹1 𝑎1), 𝑎0.𝑎1.𝑝.(ℎ 𝑎0 𝑎1 𝑝))

Proof (of Rules 9.3.1). As usual, we prove the reduction rules first.

(2) Immediate by coherent head expansion.

(3) By coherent head expansion. It is easy to check that𝑂 is well-typed in 𝐵 [𝑀/𝑎] [𝒓/𝒙].
Let Ψ′ ⊩ 𝜓 ∈ Ψ be given; we are in one of two cases.

• 𝒚𝜓 = 𝜺 ∈ {0, 1}. Then extent𝒚 (𝑀 [𝒚/𝒙];𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁)𝜓 reduces to the
term 𝑁𝜀 [𝑀 [𝒚/𝒙]/𝑎𝜀]𝜓 . By the boundary rule for bridges, the latter is equal to 𝑂𝜓
in 𝐵 [𝑀/𝑎] [𝒚/𝒙]𝜓 .

• 𝒓𝜓 = 𝒚 for some variable𝒚. Then extent𝒓 (𝑀 [𝒓/𝒙];𝑎0.𝑁0, 𝑎1.𝑁1, 𝑎0.𝑎1.𝑎.𝑁)𝜓 reduces
to the following term.

𝑁𝜓 [𝑀 [𝒓/𝒙]𝜓 [0/𝒚]/𝑎0, 𝑀 [𝒓/𝒙]𝜓 [1/𝒚]/𝑎1, 𝜆I𝒚. 𝑀 [𝒓/𝒙]𝜓/𝑎]𝒚

180 Parametric cubical type theory

Note that 𝒓 must itself be a variable in this case. We have𝑀 [𝒓/𝒙]𝜓 = 𝑀𝜓 [𝒚/𝒙], so
the above term is equal to the following.

𝑁𝜓 [𝑀𝜓 [0/𝒙]/𝑎0, 𝑀𝜓 [1/𝒙]/𝑎1, 𝜆I𝒚. 𝑀𝜓 [𝒚/𝒙]/𝑎]𝒚

Finally, we know that 𝒓 does not occur in 𝑀 by typing assumption. As 𝜓 is affine,
it can send no variables but 𝒓 to 𝒚, so 𝒚 does not occur in 𝑀𝜓 . It follows that
𝜆I𝒚. 𝑀𝜓 [𝒚/𝒙] = 𝜆I𝒙 . 𝑀𝜓 . The term above is therefore syntactically equal to 𝑂𝜓 .

(1) By cases on Ψ ⊩ 𝒓 ∈ I. If 𝒓 is a constant, then this follows from the constant reduction
rule. If 𝒓 is a variable, then it follows from the variable reduction rule. □

In the proof above we see the crucial role of affinity in the well-behavedness of extent:
it delivers the equation 𝜆I𝒚. 𝑀𝜓 [𝒚/𝒙] = 𝜆I𝒙 . 𝑀𝜓 . Intuitively, interval abstraction is stable
under affine substitution, but not all structural substitutions. Say, for example, that we
have some two-dimensional path term 𝑃 applied to path interval variables 𝑥 and 𝑦. By
interleaving abstraction by 𝑥 with the diagonal substitution 𝑧 : I ⊩ (𝑧/𝑥, 𝑧/𝑦) ∈ (𝑥 : I, 𝑦 : I)
in different orders, we get different results.

(𝑥, 𝑃 𝑥 𝑦) 𝜆I𝑥 . 𝑃 𝑥 𝑦

𝜆I𝑥 . 𝑃 𝑥 𝑧

(𝑧, 𝑃 𝑧 𝑧) 𝜆I𝑧. 𝑃 𝑧 𝑧

−[𝑧/𝑥, 𝑧/𝑦]

𝜆I−.−

−[𝑧/𝑥, 𝑧/𝑦]

≠

𝜆I−.−

This instability is familiar to any programmerwho has had to implement capture-avoiding
substitution. With affine variables, on the other hand, this situation cannot occur.

Theorem 9.3.2 (Bridges in function types). Let 𝒙 : I � 𝐴 type and 𝒙 : I, 𝑎 :𝐴 � 𝐵 type
be given together with 𝐹0 ∈ ((𝑎 :𝐴) → 𝐵) [0/𝒙] and 𝐹1 ∈ ((𝑎 :𝐴) → 𝐵) [1/𝒙]. Then we
have an isomorphism of the following type.

Bridge(𝒙 .(𝑎 :𝐴) → 𝐵, 𝐹0, 𝐹1)
'

(𝑎0 :𝐴[0/𝒙]) (𝑎1 :𝐴[1/𝒙]) (𝑝 : Bridge(𝒙 .𝐴, 𝑎0, 𝑎1)) → Bridge(𝒙 .𝐵 [𝑝 𝑥/𝑎], 𝐹0 𝑎0, 𝐹1 𝑎1)

That is, a bridge in a function type is a function from bridges in the domain to bridges in
the codomain.

Gel types and relativity 181

Proof. We have the functions in either direction defined above. One of inverse condition
is the reduction rule for extent; the other may proven by applying extent. □

It is worth noting that, while affine variables allow us to prove this characterization
without using coercion, they also prevent us from proving a function extensionality princi-
ple for bridges à la Lemma 3.2.5. That is, even when𝐴 does not depend on 𝒙 , the following
does not hold in general.

Bridge(𝒙 .(𝑎 :𝐴) → 𝐵, 𝐹0, 𝐹1) ' (𝑎 :𝐴) → Bridge(𝒙 .𝐵, 𝐹0 𝑎, 𝐹1 𝑎) 8

To see why the proof of Lemma 3.2.5 does not apply, suppose we are given a function
ℎ : (𝑎 :𝐴) → Bridge(𝒙 .𝐵, 𝐹0 𝑎, 𝐹1 𝑎). We would like to write the following.

𝜆I𝒙 . 𝜆𝑎. ℎ 𝑎 𝒙 ∈ Bridge(𝒙 .(𝑎 :𝐴) → 𝐵, 𝐹0, 𝐹1) 8

But this term is not in fact well-typed. We cannot apply ℎ 𝑎 to 𝒙 , because 𝑎 is not apart
from 𝒙 : it was introduced after 𝒙 , so can be instantiated with terms that contain 𝒙 . Put
another way, we have (𝒙 : I, 𝑎 :𝐴) \ 𝒙 = · , so ℎ 𝑎 is not well-typed in (𝒙 : I, 𝑎 :𝐴) \ 𝒙 .

To note one more point in the space of possibility, the BCH cubical sets model of
homotopy type theory is based on affine cubical sets, like parametric type theory, but
includes a coercion operation, like our structural cubical type theory. In this setting, we
can obtain the equivalent of Theorem 9.3.2 by the extent argument. There, however, co-
ercion can then be used to show derive function extensionality as well. (Indeed, function
extensionality is a formal consequence of univalence [Uni13, §4.9], so it must hold in the
BCH model.)

9.4 Gel types and relativity
As in cubical type theory, the coup de grâce of parametric type theory is a characteriza-
tion of bridges in the universe. For cubical type theory, this is the univalence axiom (The-
orem 3.2.9), which identifies paths in the universe with isomorphisms. More precisely,
univalence states that the canonical function from paths to isomorphisms, implemented
by coercion as shown below, is invertible.

𝑝 : Path(U, 𝐴, 𝐵) ↦→


𝐴 𝐵

coe0�1
𝑥 .𝑝 𝑥 (−)

'

coe1�0
𝑥 .𝑝 𝑥 (−)


∈ 𝐴 ' 𝐵

Recall that the inverse of this map is provided by a new type former, the V type (Sec-
tion 3.1.6.2), that composes paths with isomorphisms.

182 Parametric cubical type theory

The characterization of bridges in the universe follows the same blueprint. This time,
however, the aim is to identify bridges with relations. In one direction, the bridge type
former provides our map from bridges to relations.

𝑝 : Bridge(U, 𝐴, 𝐵) ↦→ 𝜆〈𝑎, 𝑏〉.Bridge(𝒙 .𝑝 𝒙, 𝑎, 𝑏) ∈ 𝐴 × 𝐵 → U

That is, the relation induced by 𝑝 : Path(U, 𝐴, 𝐵) relates 𝑎 with 𝑏 when there is a bridge
from 𝑎 to 𝑏 over 𝑝 . We dub the equivalent of univalence relativity.

Definition 9.4.1 (Relativity). We say a universeU closed under bridge types is relativis-
tic if the canonical mapBridge(U, 𝐴, 𝐵) → (𝐴 × 𝐵 → U) defined above is an isomorphism.

To make our universes relativistic, we again introduce a new type former, the Gel
type, which converts relations to bridges between types. The operational semantics for
Gel types is shown in Figure 9.1. We call them “Gel” types because they share a basic
structure with the G operation of the BCH cubical set model [BCH19, §3] but apply to
relations rather than isomorphisms.

In comparison to the V type, the Gel type is refreshingly simple: given a relation
Ψ \ 𝒓, 𝑎0 :𝐴0, 𝑎1 : 𝐴1 � 𝑅 type, it directly produces a bridge between 𝐴0 and 𝐴1, which
is to say a type dependent on a fresh bridge variable 𝒓 . The proofs of the formation,
introduction, and elimination rules for Gel are similar in complexity to those we gave for
V types in Section 3.1.6.2: there are non-trivial coherence obligations to check, but they
are of a fairly simple character.

Rules 9.4.2 (Gel pretype formation).

Ψ ⊩ 𝒓 ∈ I (∀𝜀) Ψ \ 𝒓 ⊩ 𝐴𝜀 = 𝐴′
𝜀 type Ψ \ 𝒓, 𝑎0 :𝐴0, 𝑎1 :𝐴1 � 𝑅 = 𝑅′ type

Ψ ⊩ Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) = Gel𝒓 (𝐴′
0, 𝐴

′
1, 𝑎0.𝑎1.𝑅

′) pretype

𝜀 ∈ {0, 1} Ψ ⊩ 𝐴𝜀 type

Ψ ⊩ Gel𝜺 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) = 𝐴𝜀 pretype

Proof. Straightforward by coherent value introduction and expansion respectively. □

Note that the term-level arguments of Gel (the types 𝐴0, 𝐴1 and the relation 𝑅) are
all precluded from using the interval term 𝒓 . The introduction form for Gel types takes
a similar form: an element of Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) consists of a pair of terms and a proof
they are related, and draws a bridge across the Gel type between those terms. This is one
direction of an isomorphism Bridge(𝒙 .Gel𝒙 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅), 𝑀0, 𝑀1) ' 𝑅 [𝑀0/𝑎0, 𝑀1/𝑎1]
we intend to set up.

Gel types and relativity 183

Rules 9.4.3 (Gel introduction).

(∀𝜀) Ψ \ 𝒓 ⊩ 𝑀𝜀 = 𝑀
′
𝜀 ∈ 𝐴𝜀 Ψ \ 𝒓 ⊩ 𝑃 = 𝑃 ′ ∈ 𝑅 [𝑀0/𝑎0, 𝑀1/𝑎1]

Ψ ⊩ gel𝒓 (𝑀0, 𝑀1, 𝑃) = gel𝒓 (𝑀′
0, 𝑀

′
1, 𝑃

′) ∈ Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅)

𝜀 ∈ {0, 1} Ψ ⊩ 𝑀𝜀 ∈ 𝐴𝜀
Ψ ⊩ gel𝜺 (𝑀0, 𝑀1, 𝑃) = 𝑀𝜀 ∈ 𝐴𝜀

Proof. Straightforward by coherent value introduction and expansion respectively. □

Finally, the projection operator ungel provides the other direction of the isomorphism:
given a bridge over the Gel type, it produces a witness to the relation.

Rules 9.4.4 (Gel elimination).

Ψ, 𝒙 : I ⊩ 𝑄 = 𝑄′ ∈ Gel𝒙 (𝐴0, 𝐴1, 𝑅)
Ψ ⊩ ungel(𝒙 .𝑄) = ungel(𝒙 .𝑄′) ∈ 𝑅 [𝑄 [0/𝒙]/𝑎0, 𝑄 [1/𝒙]/𝑎1]

Ψ ⊩ 𝑃 ∈ 𝑅 [𝑀0/𝑎0, 𝑀1/𝑎1]
Ψ ⊩ ungel(𝒙 .gel𝒙 (𝑀0, 𝑀1, 𝑃)) = 𝑃 ∈ 𝑅 [𝑀0/𝑎0, 𝑀1/𝑎1]

Ψ ⊩ 𝒓 ∈ I Ψ \ 𝒓 ⊩ 𝐴0 type Ψ \ 𝒓 ⊩ 𝐴1 type
Ψ \ 𝒓 , 𝑎0 : 𝐴0, 𝑎1 : 𝐴1 ⊩ 𝑅 type Ψ \ 𝒓, 𝒙 : I ⊩ 𝑄 ∈ Gel𝒙 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅)
Ψ ⊩ 𝑄 [𝒓/𝒙] = gel𝒓 (𝑄 [0/𝒙], 𝑄 [1/𝒙], ungel(𝒙 .𝑄)) ∈ Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅)

Proof. For the first, we cannot directly apply Lemma 3.1.38, because the argument 𝑄 to
ungel appears under a binder (of 𝒙). We instead give a hand-rolled argument by coherent
head expansion. (We could have instead proven a more general form of Lemma 3.1.38,
but this is the only place we would use it.) By Lemma 3.1.36, we have for every Ψ′ ⊩
𝜓 ∈ Ψ that 𝑄𝜓 ⇓ gel𝒙 (𝑀𝜓 , 𝑁𝜓 , 𝑃𝜓) for some terms 𝑀𝜓 , 𝑁𝜓 , and 𝑃𝜓 with Ψ′, 𝒙 : I ⊩ 𝑄𝜓 =
gel𝒙 (𝑀𝜓 , 𝑁𝜓 , 𝑃𝜓) ∈ Gel𝒙 (𝐴0, 𝐴1, 𝑅)𝜓 . By stability of typing under substitution, it follows
that 𝑃idΨ𝜓 = 𝑃𝜓 ∈ 𝑅 [𝑀idΨ/𝑎0, 𝑁idΨ/𝑎1] for all 𝜓 . By the same and the boundary rules for
gel, we also have Ψ � 𝑄 [0/𝒙] = 𝑀idΨ ∈ 𝐴0 and likewise for𝑄 [1/𝒙] and 𝑁idΨ . Combining
these, we have ungel(𝒙 .𝑄)𝜓 ↦−→∗ 𝑃𝜓 and Ψ′ ⊩ 𝑃𝜓 = 𝑃𝜓 ∈ 𝑅 [𝑄 [0/𝒙]/𝑎0, 𝑄 [1/𝒙]/𝑎1]
for all 𝜓 , whence Ψ ⊩ ungel(𝒙 .𝑄) = 𝑃idΨ ∈ 𝑅 [𝑄 [0/𝒙]/𝑎0, 𝑄 [1/𝒙]/𝑎1] by coherent head
expansion.

We apply the same reasoning to the right hand side, finding that Ψ ⊩ ungel(𝒙 .𝑄′) =
𝑃 ′idΨ ∈ 𝑅 [𝑄 [0/𝒙]/𝑎0, 𝑄 [1/𝒙]/𝑎1] for some 𝑃 ′idΨ that satisfies the equation Ψ, 𝒙 : I ⊩ 𝑄′ =

184 Parametric cubical type theory

gel𝒙 (𝑀′
idΨ
, 𝑁 ′

idΨ
, 𝑃 ′idΨ) ∈ Gel𝒙 (𝐴0, 𝐴1, 𝑅). We combine this with the above to get that

gel𝒙 (𝑀idΨ, 𝑁idΨ, 𝑃idΨ) is equal to gel𝒙 (𝑀′
idΨ
, 𝑁 ′

idΨ
, 𝑃 ′idΨ) at the Gel type, which implies that

𝑃idΨ is equal to 𝑃 ′idΨ ; the result follows by transitivity.
The second rule is immediate by coherent expansion. For the third rule, we apply

Lemma 3.1.36 to see that 𝑄 is equal to some gel value. The equation then follows by
previously proven rules for gel. □

It is worth interrogating the difference in form between the V types of Section 3.1.6.2
and the new Gel types. In contrast to Gel, which simply converts a relation into a bridge
of types, V extends an existing path of types by an isomorphism, as shown below.

𝐴

𝐵 [0/𝑥] 𝐵 [1/𝑥]
𝑥 →

𝐼

' V𝑥 (𝐴, 𝐵, 𝐼)

𝐵

The formulation of Gel is unavailable for V because path dimensions are structural: we
cannot forbid the path interval variable from occurring in the other arguments, except in
a sense by hypothesizing 𝑥 ≡ 0 or 𝑥 ≡ 1. We cannot put all of the inputs under one of
these assumptions, as then we would have no type at the other endpoint! So we allow
the argument 𝐵 to depend on the variable. This is not a problem for univalence, because
we always have the option of supplying a degenerate 𝐵—we are merely unable to enforce
degeneracy. Note however that, conversely, a V-like type former would be insufficient for
relativity. In the world of paths, we know that a degenerate path of types corresponds to
the identity isomorphism, so composing with a degenerate path is a way of converting an
isomorphism into a path. But a degenerate bridge of types does not necessarily correspond
to the identity relation. Indeed, according to the formulation of relativity, a degenerate
bridge of types 𝐵 corresponds instead to the bridge relation Bridge(𝐵,−,−), which can
be distinct from the identity relation Path(𝐵,−,−). The canonical example, of course, is
𝐵 B U.

Remark 9.4.5. Our Gel types are weaker than the equivalent introduced in [BCM15], our
sole departure from their blueprint. They require that the equation

Bridge(𝒙 .Gel𝒙 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅), 𝑀0, 𝑀1) = 𝑅 [𝑀0/𝑎0, 𝑀1/𝑎1] type

hold up to exact equality, while for us this only holds up to an isomorphism. Note that
we need this equation up to a path in order to show that Bridge and Gel are inverse,
thus for relativity. In a cubical type theory, we can rely on univalence to turn the iso-
morphism into the necessary path. Without univalence, one must instead posit an exact

Gel types and relativity 185

equation. Such an equation is rather onerous to satisfy in semantics. In particular, it re-
quires Bernardy et al. to divert from a standard presheafmodel to amodel in what they call
refined presheaves. By contrast, our own presheaf model (Section 11.1) does not require
any such refinement.

Finally, wemust check thatGel supports coercion and composition. In typical fashion,
we prove reduction rules for the two operations first, then conclude they are well-typed
and preserve equality. The reader familiar with the intricacies of cubical type theory will
notice that the reduction for coercion is much simpler than its equivalent for V types
(see, e.g., [Ang19, §4.4.9]). This is a reflection of the fact that the principal direction of a
coercion—the interval variable abstracted in the type line—is always a path variable. For
V types, one must consider both the cases coe𝑥 .V𝑥 (𝐴,𝐵,𝐼) and coe𝑥 .V𝑟 (𝐴,𝐵,𝐼) where 𝑟 ≠ 𝑥 , the
former of which is the more involved. With Gel, on the other hand, the directions of the
coercion is always orthogonal to the direction of the type itself.

Lemma 9.4.6 (Coercion reduction in Gel types).

Ψ ⊩ 𝑠, 𝑡 ∈ I Ψ ⊩ 𝒓 ∈ I (∀𝜀) Ψ \ 𝒓, 𝑦 : I ⊩ 𝐴𝜀 type
Ψ \ 𝒓, 𝑦 : I, 𝑎0 :𝐴0, 𝑎1 :𝐴1 � 𝑅 type Ψ \ 𝒓, 𝒙 : I ⊩ 𝑄 ∈ Gel𝒙 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) [𝑠/𝑦]

(∀𝜀) 𝑀𝑦
𝜀 B coe𝑠�𝑦𝑦.𝐴𝜀

(𝑄 [𝜺/𝒙]) 𝑃 B coe𝑠�𝑡
𝑦.𝑅 [𝑀𝑦

0 /𝑎0,𝑀
𝑦
1 /𝑎1]

(ungel(𝒙 .𝑄))

Ψ ⊩ coe𝑠�𝑡𝑦.Gel𝒓 (𝐴0,𝐴1,𝑎0 .𝑎1 .𝑅) (𝑄 [𝒓/𝒙]) = gel𝒙 (𝑀𝑡
0, 𝑀

𝑡
1, 𝑃) ∈ Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) [𝑡/𝑦]

Proof. By coherent expansion. Let Ψ′ ⊩ 𝜓 ∈ Ψ be given. We are in one of two cases.

• 𝒓𝜓 = 𝜺 ∈ {0, 1}. Then we have coe𝑠�𝑡
𝑦.Gel𝒓 (𝐴0,𝐴1,𝑎0 .𝑎1 .𝑅) (𝑄 [𝒓/𝒙])𝜓 ↦−→ coe𝑠�𝑡𝑦.𝐴𝜀

(𝑄 [𝒓/𝒙])𝜓 ,
and we know Ψ′ ⊩ coe𝑠�𝑡𝑦.𝐴𝜀

(𝑄 [𝒓/𝒙])𝜓 = gel𝒙 (𝑀𝑡
0, 𝑀

𝑡
1, 𝑃)𝜓 ∈ 𝐴𝜀 [𝑡/𝑦]𝜓 by the boundary

rule for gel and definition of𝑀𝑡
𝜀 .

• 𝒓𝜓 = 𝒛 for some variable 𝒛. Then the left hand side steps to the right hand side, which
is well-typed by coercion for 𝐴0, 𝐴1, and 𝑅. As with extent, this relies on the affinity of
bridge substitutions, in this case the fact that ungel(𝒛.𝑄𝜓 [𝒛/𝒙]) = ungel(𝒙 .𝑄)𝜓 . □

Corollary 9.4.7 (Trivial coercion in Gel types).

Ψ ⊩ 𝑠 ∈ I Ψ ⊩ 𝒓 ∈ I (∀𝜀) Ψ \ 𝒓 , 𝑦 : I ⊩ 𝐴𝜀 type
Ψ \ 𝒓, 𝑦 : I, 𝑎0 :𝐴0, 𝑎1 :𝐴1 � 𝑅 type Ψ ⊩ 𝑄 ∈ Gel𝒙 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) [𝑠/𝑦]

Ψ ⊩ coe𝑠�𝑠𝑥 .Gel𝒓 (𝐴0,𝐴1,𝑎0 .𝑎1 .𝑅) (𝑄) = 𝑄 ∈ Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) [𝑠/𝑦]

Proof. We are in one of two cases.

186 Parametric cubical type theory

If 𝒓 is a constant 𝜺 ∈ {0, 1}, then we have by coherent head expansion that Ψ ⊩
coe𝑠�𝑠

𝑥 .Gel𝒓 (𝐴0,𝐴1,𝑎0 .𝑎1 .𝑅) (𝑄) = coe𝑠�𝑠𝑥 .𝐴𝜀
(𝑄) ∈ Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) [𝑠/𝑦], in which case the re-

sult follows from the conditions on coercion in 𝐴𝜀 .
If 𝒓 is a variable 𝒙 , then we apply Lemma 9.4.6 to find that the coercion is equal to

gel𝒙 (𝑀𝑠
0, 𝑀

𝑠
1, 𝑃) as defined in that rule. The reduction of trivial coercions in 𝐴0, 𝐴1, and 𝑅

shows that this term is equal to gel𝒙 (𝑄 [0/𝒙], 𝑄 [1/𝒙], ungel(𝒙 .𝑄)), thus to 𝑄 by unique-
ness for Gel types. □

Lemma 9.4.8 (Composition reduction in Gel types).

Ψ ⊩ 𝑠, 𝑡 ∈ I Ψ ⊩ 𝒓 ∈ I (∀𝜀) Ψ \ 𝒓 ⊩ 𝐴𝜀 type Ψ \ 𝒓, 𝑎0 :𝐴0, 𝑎1 :𝐴1 � 𝑅 type
𝐺 B Gel𝒙 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) Ψ \ 𝒓, 𝒙 : I ⊩ 𝑄 ∈ 𝐺 (∀𝑖) Ψ \ 𝒓, 𝒙 : I ⊩ 𝜉𝑖 ∈ F

(∀𝑖, 𝑗) Ψ \ 𝒓 , 𝒙 : I, 𝑥 : I, 𝜉𝑖, 𝜉 𝑗 ⊩ 𝑄𝑖 = 𝑄 𝑗 ∈ 𝐺 (∀𝑖) Ψ \ 𝒓 , 𝒙 : I, 𝜉𝑖 ⊩ 𝑄 = 𝑄𝑖 [𝑠/𝑥] ∈ 𝐺
𝑀
𝑦
𝜀 B hcom𝑠�𝑦

𝐴𝜀
(𝑄 [𝜺/𝒙];−−−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 [𝜺/𝒙] ↩→ 𝑦.𝑄𝑖 [𝜺/𝒙])

𝑃 B com𝑠�𝑡
𝑦.𝑅 [𝑀𝑦

0 /𝑎0,𝑀
𝑦
1 /𝑎1]

(ungel(𝒙 .𝑄); (−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑦.ungel(𝒙 .𝑄𝑖))𝒙∉𝜉𝑖)

Ψ ⊩ hcom𝑠�𝑡
𝐺 (𝑄 [𝒓/𝒙];−−−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 [𝒓/𝒙] ↩→ 𝑦.𝑄𝑖 [𝒓/𝒙]) = gel𝒙 (𝑀𝑡

0, 𝑀
𝑡
1, 𝑃) ∈ 𝐺 [𝒓/𝒙]

Proof. By coherent expansion. Let Ψ′ ⊩ 𝜓 ∈ Ψ be given. We are in one of two cases.

• 𝒓𝜓 = 𝜺 ∈ {0, 1}. Then the composition at𝐺𝜓 steps to the same composition𝐴𝜀𝜓 , which
is𝑀𝑡

𝜀𝜓 . We know Ψ′ ⊩ 𝑀𝑡
𝜀𝜓 = gel𝒙 (𝑀𝑡

0, 𝑀
𝑡
1, 𝑃) ∈ 𝐴𝜀 [𝑡/𝑦]𝜓 by the boundary rule for gel.

• 𝒓𝜓 = 𝒛 for some variable 𝒛. Then the left hand side steps to the right hand side,
which is well-typed by composition for 𝐴0, 𝐴1, and 𝑅. We use affinity to ensure that
ungel(𝒛.𝑄𝜓 [𝒛/𝒙]) = ungel(𝒙 .𝑄)𝜓 and ungel(𝒛 .𝑄𝑖𝜓 [𝒛/𝒙]) = ungel(𝒙 .𝑄𝑖)𝜓 . □

Corollary 9.4.9 (Boundary of composition in Gel types). Let Ψ ⊩ 𝒓 ∈ I, Ψ \ 𝒓 ⊩
𝐴𝜀 type for each 𝜀 ∈ {0, 1}, and Ψ \ 𝒓, 𝑎0 :𝐴0, 𝑎1 : 𝐴1 � 𝑅 type be given, and set 𝐺 B
Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅). Then the following rules are validated.

Ψ ⊩ 𝑠 = 𝑡 ∈ I
(∀𝑖) Ψ ⊩ 𝜉𝑖 ∈ F (∀𝑖, 𝑗) Ψ, 𝑥 : I, 𝜉𝑖, 𝜉 𝑗 ⊩ 𝑄𝑖 = 𝑄 𝑗 ∈ 𝐺 (∀𝑖) Ψ, 𝜉𝑖 ⊩ 𝑄 = 𝑄𝑖 [𝑠/𝑥] ∈ 𝐺

Ψ ⊩ hcom𝑠�𝑡
𝐺 (𝑄 ;−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑦.𝑄𝑖) = 𝑄 ∈ 𝐺

Ψ ⊩ 𝑠, 𝑡 ∈ I (∀𝑖) Ψ ⊩ 𝜉𝑖 ∈ F (∀𝑖, 𝑗) Ψ, 𝑥 : I, 𝜉𝑖, 𝜉 𝑗 ⊩ 𝑄𝑖 = 𝑄 𝑗 ∈ 𝐺
(∀𝑖) Ψ, 𝜉𝑖 ⊩ 𝑄 = 𝑄𝑖 [𝑠/𝑥] ∈ 𝐺 Ψ ⊩ 𝜉 𝑗 satisfied

Ψ ⊩ hcom𝑠�𝑠
𝐺 (𝑄 ;−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑦.𝑄𝑖) = 𝑄 𝑗 [𝑡/𝑥] ∈ 𝐺

Gel types and relativity 187

Proof. We are in one of two cases. If 𝒓 is a constant 𝜺 ∈ {0, 1}, then these equations follow
from the corresponding conditions in 𝐴𝜀 by coherent head expansion. If 𝒓 is a variable
𝒙 , then we apply Lemma 9.4.8 to see that the composition is equal to gel𝒙 (𝑀𝑡

0, 𝑀
𝑡
1, 𝑃) as

defined in that lemma. We then prove the two rules as follows.
For the first rule, if 𝑠 = 𝑡 , then the rule for trivial compositions in𝐴0,𝐴1, and 𝑅 provide

that Ψ ⊩ 𝑀𝑡
𝜀 = 𝑄 [𝜺/𝒙] ∈ 𝐴𝜀 for 𝜀 ∈ {0, 1} and Ψ ⊩ 𝑃 = ungel(𝒙 .𝑄) ∈ 𝑅 [𝑀𝑡

0/𝑎0, 𝑀𝑡
1/𝑎1], so

that the combined term is equal to 𝑄 by uniqueness for Gel types.
For the second rule, suppose Ψ ⊩ 𝜉 𝑗 satisfied for some 𝑗 . By the rule for the boundary

of composition in 𝐴0 and 𝐴1, we have that Ψ ⊩ 𝑀𝑡
𝜀 = 𝑄 𝑗 [𝜺/𝒙] ∈ 𝐴𝜀 for 𝜀 ∈ {0, 1}.

Moreover, we know that 𝜉 𝑗 does not refer to 𝒙 . If it did, it would have to be of the form
𝒙 ≡ 0 or 𝒙 ≡ 1, which would contradict our assumption that Ψ ⊩ 𝜉 𝑗 satisfied. Thus we
have an entry in the composition defining 𝑃 corresponding to 𝜉 𝑗 , and the composition
boundary rule for 𝑅 then implies that Ψ ⊩ 𝑃 ∈ ungel(𝒙 .𝑄 𝑗)𝑅 [𝑀𝑡

0/𝑎0, 𝑀𝑡
1/𝑎1]. Again, we

conclude by uniqueness that the combined term is equal to 𝑄𝑖 . □

Theorem 9.4.10 (Type formation).

Ψ ⊩ 𝒓 ∈ I (∀𝜀) Ψ \ 𝒓 ⊩ 𝐴𝜀 = 𝐴′
𝜀 type Ψ \ 𝒓, 𝑎0 :𝐴0, 𝑎1 :𝐴1 � 𝑅 = 𝑅′ type

Ψ ⊩ Gel𝒓 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) = Gel𝒓 (𝐴′
0, 𝐴

′
1, 𝑎0.𝑎1.𝑅

′) type

𝜀 ∈ {0, 1} Ψ ⊩ 𝐴𝜀 type

Ψ ⊩ Gel𝜺 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) = 𝐴𝜀 type

Proof. For the first, we must show the coercion and composition are well-typed and equal
in the two Gel types and that the satisfy the necessary coherence conditions. The former
follows from Lemmas 9.4.6 and 9.4.8—we reduce the operations and see that the reducts
arewell-typed and equal—and the coherence conditions hold by Corollaries 9.4.7 and 9.4.9.

The second equation requires, beyond the equality of pretypes, that coe and hcom are
defined in equal ways at Gel𝜺 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) and 𝐴𝜀 . This is immediate, as coercion and
composition in the former reduce to their equivalents in the latter. □

Chapter 10

Programming with parametricity

We now put our tools to the test and explore the consequences of internal parametricity.
We start with a simple example to warm up in Section 10.1: a proof that the Church
encoding of the booleans is isomorphic to the “primitive” boolean inductive type, which
is a classical consequence of external parametricity [Wad07].

Next, in Section 10.2, we tackle a more theoretical result: the relativity principle, the
equivalent of univalence for bridges, which states that bridges in U are isomorphic to
relations. This result is novel: the principle is also true in Bernardy et al.’s calculus, but
is ensured by imposing stricter equations on the equivalents of Gel types, while we do
without them by leaning on function extensionality and univalence.

In Section 10.3, we identify the class of bridge-discrete types, those whose bridge types
are isomorphic to their path types. We find that assumptions of bridge-discreteness play
the role of classical parametricity’s identity extension lemma, which Nuyts et al. [NVD17]
note is conspicuously absent from parametric type theory in the style of Bernardy, Co-
quand, and Moulin. We also show that the type of booleans is bridge-discrete, suggesting
more generally how the bridge types of (higher) inductive types can be characterized. In
Section 10.4, we note that this implies the refutation of a form of the excluded middle as
a corollary.

Finally, we fulfill in Section 10.5 our promise of using internal parametricity to prove
coherence results for the smash product.

10.1 Characterizing Church booleans

Church encodings are a method of obtaining inductive-like types through impredicative
quantification, essentially defining an inductive type as the type of elements to which its
recursion principle can be applied. As an example, consider the type of booleans, which
we have as a primitive type as a particularly trivial consequence of Part II.

189

190 Programming with parametricity

inductive Bool where
| tt ∈ Bool
| ff ∈ Bool

A Church boolean is a function that takes a type and two elements of that type and
returns a third element of that type. There are two canonical such booleans: the function
that always returns the first element, and the function that always returns the second.

Definition 10.1.1. We define the type of Church booleans, B type, as follows.

B B (𝐴 : U) → 𝐴 → 𝐴 → 𝐴

We define terms t, f ∈ B by t B 𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . 𝑡 and f B 𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . 𝑓 .

The Church booleans enjoy a recursion principle: given 𝑐 : B, 𝑎0 : 𝐴, and 𝑎1 : 𝐴, we
have 𝑐 𝐴𝑎0 𝑎1 ∈ 𝐴, and moreover we have reduction equations t𝐴𝑎0 𝑎1 = 𝑎0 ∈ 𝐴 and
f 𝐴𝑎0 𝑎1 = 𝑎1 ∈ 𝐴. However, they do not necessarily satisfy the induction (that is, depen-
dent elimination) principle for the booleans—unless we assume parametricity [Wad90;
Has94].

In the presence of parametricity and impredicative quantification, one can show that
the only elements of B are t and f , thus obtaining a type of booleans without relying on
a primitive inductive type mechanism. Because our universes are predicative, this is not
quite possible, but we can show that B is isomorphic to the primitive Boolwhen the latter
type already exists.

Theorem 10.1.2. B ' Bool.

Proof. We can easily define functions in either direction. Starting with a Church boolean
𝑐 :B, we apply it to Bool, tt, and ff to obtain a primitive boolean; starting from a primitive
boolean 𝑏 : Bool, we behave either as t or as f by case analysis on 𝑏.

𝐻 B 𝜆𝑐. 𝑐 Bool tt ff ∈ B→ Bool

𝐾 B 𝜆𝑏. 𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . elimBool(.𝐴;𝑏; 𝑡, 𝑓) ∈ Bool → B

One inverse condition is easy to check. Given𝑏 :Bool, we construct a path𝐻 (𝐾 𝑏) ⇝ 𝑏
by case analysis (i.e., by elimBool). In the case that 𝑏 is tt, we have 𝐻 (𝐾 tt) = 𝐻 t ∈ Bool
and then𝐻 t = (𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . 𝑡) Bool tt ff = tt ∈ Bool. By the same token, we have𝐻 (𝐾 ff) =
ff ∈ Bool.

It is the second condition that requires the use of parametricity. Let 𝑐 :B be given. By
function extensionality (Lemma 3.2.5), it suffices to show that, for all𝐴 :U, 𝑡 :𝐴, and 𝑓 :𝐴,
we have a path (𝐾 (𝐻 𝑐))𝐴𝑡 𝑓 ⇝ 𝑐 𝐴 𝑡 𝑓 . Expanding the definition of 𝐻 and simplifying,

Characterizing Church booleans 191

the left hand side is equal to elimBool(.𝐴; 𝑐 Bool tt ff; 𝑡, 𝑓). Our goal, then, is to relate the
behavior of 𝑐 at Bool to its behavior at an arbitrary 𝐴.

To do so, we first single out a relation between Bool and 𝐴.

𝑅 B 𝜆〈𝑏, 𝑎〉. Path(𝐴, elimBool(.𝐴;𝑏; 𝑡, 𝑓), 𝑎) ∈ Bool ×𝐴 → U

Notice that our goal is to show 𝑅 〈𝑐 Bool tt ff, 𝑐 𝐴 𝑡 𝑓 〉. To do so, we invoke parametricity:
𝑐 takes related arguments to related results. In parametric type theory, that slogan cashes
out in our ability to form Gel types. In particular, given a fresh bridge interval variable
𝒙 , we have the type𝐺𝒙 B Gel𝒙 (Bool, 𝐴, 𝑅) corresponding to 𝑅 with two canonical inhab-
itants.

𝑡𝒙 B gel𝒙 (tt, 𝑡, 𝜆I . 𝑡) ∈ 𝐺𝒙

𝑓𝒙 B gel𝒙 (ff, 𝑓 , 𝜆I . 𝑓) ∈ 𝐺𝒙

The first element expresses that tt is related to 𝑡 in 𝑅, as witnessed by the term 𝜆I . 𝑡 ∈
𝑅 〈tt, 𝑡〉; the second does the same for ff and 𝑓 .

By applying 𝑐 at this Gel type and its elements, we obtain a bridge relating 𝑐 Bool tt ff
and 𝑐 𝐴 𝑡 𝑓 over 𝒙 .𝐺𝒙 ; in effect, we have applied 𝑐 at the relation 𝑅.

𝜆I𝒙 . 𝑐 𝐺𝒙 𝑡𝒙 𝑓𝒙 ∈ Bridge(𝒙 .𝐺𝒙, 𝑐 Bool tt ff, 𝑐 𝐴 𝑡 𝑓)

Note the endpoints of this bridge: by definition, we have 𝐺0 = Bool ∈ U, 𝑡0 = tt ∈ Bool,
and 𝑓0 = ff ∈ Bool, likewise𝐺1 = 𝐴 ∈ U, 𝑡1 = 𝑡 ∈ 𝐴, and 𝑓1 = 𝑓 ∈ 𝐴. At 0, every relational
term reduces to its 0 endpoint; at 1, to its 1 endpoint. Finally, the ungel eliminator takes
a bridge over a Gel type to a witness of the underlying relation.

ungel(𝒙 .𝑐 𝐺𝒙 𝑡𝒙 𝑓𝒙) ∈ 𝑅〈𝑐 Bool tt ff, 𝑐 𝐴 𝑡 𝑓 〉

This is exactly the type we needed to inhabit, and so we are satisfied.
It is perhaps instructive to consider how the inverse, constructed with parametricity

primitives, evaluates when instantiated with a concrete 𝑐 :B. Say, for example, we take t.
Then the term ungel(𝒙 .t𝐺𝒙 𝑡𝒙 𝑓𝒙) steps first to ungel(𝒙 .𝑡𝒙), then extracts the witness in-
side 𝑡𝒙 to produce the reflexive proof 𝜆I . 𝑡 ∈ 𝑅〈tBool tt ff, t𝐴𝑡 𝑓 〉. Likewise, instantiating
𝑐 with f produces the reflexive path 𝜆I . 𝑓 packaged in 𝑓𝒙 . □

Note that there are actually closed elements of B that are exactly equal neither to t or
to f . For example, we have the term 𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . coe0�1

.𝐴 (𝑡) ∈ B; a coercion in a degenerate
type line is only guaranteed to be equal to its input up to a path in general, not exactly,
so this term is not exactly equal to t. Nevertheless, the result above shows it is equal
to t up to a path. Notice also that we obtain parametricity results despite the fact that

192 Programming with parametricity

the cubical language does contain terms that evaluate by case analysis on types, namely
the Kan operators coe and hcom. Indeed, nothing prevents us from including a general
type-case operator in the language; it will simply fail to be well-typed if used in a non-
parametric way. In short, our parametricity is not a syntactic condition, but a semantic
one. Indeed, the fact that 𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . coe0�1

.𝐴 (𝑡) can be given the type B reflects the fact
that coe is defined on all elements of the universe, in particular Gel types, and so must
behave parametrically.

10.2 The relativity principle
For our next trick, we prove the relativity principle (Definition 9.4.1): the isomorphism
between bridges in the universe and relations, the equivalent of the univalence principle
for bridges. Like univalence, it is rare that we need the principle in all its strength: as
in the previous sections, we usually only use the ability to turn a relation into a bridge,
which is to say the Gel type former. Nevertheless, it forms the conceptual backbone of
the system.

Notation 10.2.1. Given a relation 𝑅 ∈ 𝐴 × 𝐵 → U valued in some universe, we abbrevi-
ate the type Gel𝒓 (𝐴, 𝐵, 𝑎.𝑏.𝑅 〈𝑎,𝑏〉) ∈ U as Gel𝒓 (𝐴, 𝐵, 𝑅).

One thing to notice in the following proof is its reliance on function extensionality
and univalence. To prove an isomorphism between Bridge(U, 𝐴, 𝐵) and 𝐴 × 𝐵 → U, we
necessarily must prove path equations in function types and the universe. In particular,
it is essential that we can turn the isomorphism Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅), 𝑎, 𝑏) ' 𝑅 〈𝑎,𝑏〉
into a path; this is one of the inverse conditions for the main relativity isomorphism. The
argument to come would not, therefore, go through in a type theory built on ITT rather
than cubical type theory. To avoid the issue in their own formalism, Bernardy, Coquand,
and Moulin therefore impose this as an exact equation, Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅), 𝑎, 𝑏) =
𝑅 〈𝑎, 𝑏〉 type, as discussed in Remark 9.4.5.

Lemma 10.2.2 (Bridges in an isomorphism type). Let 𝒙 : I � 𝐴, 𝐵 type be given to-
gether with isomorphisms 𝑖0 :𝐴[0/𝒙] ' 𝐵 [0/𝒙] and 𝑖1 :𝐴[1/𝒙] ' 𝐵 [1/𝒙]. Then we have
an isomorphism of the following type.

Bridge(𝒙 .𝐴 ' 𝐵, 𝑖0, 𝑖1)
'

((𝑎0 :𝐴[0/𝒙]) (𝑎1 :𝐴[1/𝒙]) → Bridge(𝒙 .𝐴, 𝑎0, 𝑎1) ' Bridge(𝒙 .𝐵, 𝑖0 𝑎0, 𝑖1 𝑎1))

Proof. The type of isomorphisms (Definition 1.2.1) is defined using product, function,
and path types. We already have characterizations of bridges in each of these types

The relativity principle 193

(Lemma 9.2.2, Theorem 9.3.2, and Lemma 9.2.3). Applying each of these characterizations
in turn beginningwithBridge(𝒙 .𝐴 ' 𝐵, 𝑖0, 𝑖1), we arrive at a type readily seen to be isomor-
phic to the right hand side above. Specifically, the characterizations deliver us to a type
of tuples consisting of a family of functions Bridge(𝒙 .𝐴, 𝑎0, 𝑎1) → Bridge(𝒙 .𝐵, 𝑖0 𝑎0, 𝑖1 𝑎1)
indexed over 𝑎0, 𝑎1, two families of functions in the opposite direction, and proofs that
these are left and right inverses respectively for every 𝑎0, 𝑎1. It then remains only to pull
the indices 𝑎0, 𝑎1 out to the top level. □

Theorem 10.2.3 (Relativity). Let 𝐴, 𝐵 type be given. Then the following function is an
isomorphism.

𝜆𝑝. 𝜆〈𝑎,𝑏〉.Bridge(𝒙 .𝑝 𝒙, 𝑎, 𝑏) ∈ Bridge(U, 𝐴, 𝐵) → (𝐴 × 𝐵 → U)

Proof. We use the Gel types to build our candidate inverse.

𝜆𝑅. 𝜆I𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅) ∈ (𝐴 × 𝐵 → U) → Bridge(U, 𝐴, 𝐵)

We have two inverse conditions to show.

1. (𝑅 :𝐴 × 𝐵 → U) → (𝜆〈𝑎,𝑏〉.Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅), 𝑎, 𝑏)) ⇝ 𝑅.
By function extensionality (Lemma 3.2.5), it suffices to construct a path in U from
Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅), 𝑎, 𝑏) to 𝑅 〈𝑎,𝑏〉 for all 𝑎 : 𝐴 and 𝑏 : 𝐵. In turn, by univalence
(Theorem 3.2.9), it is enough to give an isomorphism from Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅), 𝑎, 𝑏)
to 𝑅 〈𝑎, 𝑏〉 for all 𝑎, 𝑏.
Such an isomorphism is provided up to exact equality by the constructor and eliminator
for the Gel type, with functions in either direction defined as follows.

𝜆𝑡 . 𝜆I𝒙 . gel𝒙 (𝑎,𝑏, 𝑡) ∈ 𝑅 〈𝑎,𝑏〉 → Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅), 𝑎, 𝑏)
𝜆𝑞. ungel(𝒙 .𝑞 𝒙) ∈ Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵, 𝑅), 𝑎, 𝑏) → 𝑅 〈𝑎, 𝑏〉

By the reduction and uniqueness rules for Gel types, these functions cancel each other
up to exact equality.

2. (𝑝 : Bridge(U, 𝐴, 𝐵)) → (𝜆I𝒙 .Gel𝒙 (𝐴, 𝐵,Bridge(𝒙 .𝑝 𝒙,−,−))) ⇝ 𝑝 .
Let 𝑝:Bridge(U, 𝐴, 𝐵) be given. By the characterization of paths in bridges (Lemma 9.2.3),
it is equivalent to give a bridge between paths of the following type.

Bridge(𝒙 .Path(U,Gel𝒙 (𝐴, 𝐵,Bridge(𝒙 .𝑝 𝒙,−,−)), 𝑝 𝒙), 𝜆I . 𝐴, 𝜆I . 𝐵)

Now we take advantage of univalence to replace the inner type of paths in U above
with a type of isomorphisms, finding that the above type is isomorphic to the following.

Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵,Bridge(𝒙 .𝑝 𝒙,−,−)) ' 𝑝 𝒙, coe0'1.𝐴 , coe0'1.𝐵)

194 Programming with parametricity

Finally, we apply Lemma 10.2.2, reducing this bridge in the isomorphism type to an
isomorphism of bridge types; this is where we rely on extent. We are left to show, for
every 𝑎 :𝐴 and 𝑏 : 𝐵, the following isomorphism.

Bridge(𝒙 .Gel𝒙 (𝐴, 𝐵,Bridge(𝒙 .𝑝 𝒙,−,−)), 𝑎, 𝑏)
'

Bridge(𝒙 .𝑝 𝒙, coe0�1
.𝐴 (𝑎), coe0�1

.𝐵 (𝑏))

We have a pair of paths 𝜆I𝑦. coe𝑦�1
.𝐴 (𝑎) ∈ Path(𝐴, coe0�1

.𝐴 (𝑎), 𝑎) and 𝜆I𝑦. coe𝑦�1
.𝐵 (𝑏) ∈

Path(𝐵, coe0�1
.𝐴 (𝑏), 𝑏), so we can delete the coercions in the above. This leaves us to

showBridge(𝒙 .Gel𝒙 (𝐴, 𝐵,Bridge(𝒙 .𝑝 𝒙,−,−)), 𝑎, 𝑏) is isomorphic toBridge(𝒙 .𝑝 𝒙, 𝑎, 𝑏).
This is an instance of the inverse condition we have already proven, instantiated at the
relation Bridge(𝒙 .𝑝 𝒙,−,−). □

10.3 Bridge-discrete types
In classical parametricity, the identity extension lemma is a key basic result: it says that
the relational interpretation of an operator on types takes identity relations to identity
relations. In particular, the interpretation of any closed type is the identity relation. In
internal parametricity, the corresponding statement would be that any “homogeneous”
bridge type Bridge(𝐴,𝑀0, 𝑀1)—where 𝐴 is a type rather than a line 𝒙 : I � 𝐴 type—is
isomorphic to Path(𝐴,𝑀0, 𝑀1), the relation Bridge(𝐴,−,−) being the analogue of the re-
lational interpretation of𝐴. We have just seen that this is false: we have Bridge(U, 𝐴, 𝐵) '
(𝐴 × 𝐵 → U) ; (𝐴 ' 𝐵) ' Path(U, 𝐴, 𝐵). We can, however, identify the types that do
satisfy this property, which we call the bridge-discrete types. We will see that the class
of bridge-discrete types is closed under every type former we have introduced except the
universe, and that assumptions of bridge-discreteness can effectively play the role of the
identity extension lemma.

A bit more precisely, we define the bridge-discrete types to be those for which the
canonical map from paths to bridges is an isomorphism.

Definition 10.3.1. Let 𝐴 type be given. We define a map loosen𝐴 as follows, so that
loosen𝐴 ∈ Path(𝐴, 𝑎0, 𝑎1) → Bridge(𝐴, 𝑎0, 𝑎1) for any 𝑎0, 𝑎1 :𝐴.

loosen𝐴 B 𝜆𝑝. coe0�1
𝑥 .Bridge(𝐴,𝑝 0,𝑝 𝑥) (𝜆

I . 𝑝 0)

We say 𝐴 is bridge-discrete if loosen𝐴 is an isomorphism for every pair of endpoints, i.e.,
if the following type is inhabited.

IsBDisc(𝐴) B (𝑎0, 𝑎1 :𝐴) → IsIso(Path(𝐴, 𝑎0, 𝑎1),Bridge(𝐴, 𝑎0, 𝑎1), loosen𝐴)

Bridge-discrete types 195

We define the universe of bridge-discrete types as Ubdisc B (𝐴 : U) × IsBDisc(𝐴).

Remark 10.3.2. The map loosen𝐴 takes reflexive paths to reflexive bridges, up to a path:
for any 𝑎 :𝐴, we have 𝜆I𝑦. coe𝑦�1

𝑥 .Bridge(𝐴,𝑎,𝑎) (𝜆
I . 𝑎) ∈ loosen𝐴 (𝜆I . 𝑎) ⇝ (𝜆I . 𝑎).

By requiring loosen𝐴 in particular to be an isomorphism, we ensure that the type
IsBDisc(𝐴) is a proposition (Definition 3.2.1), as the type IsIso(𝐴, 𝐵, 𝑓) is always a propo-
sition [Uni13, Theorem 4.3.2]. To show that a type is bridge-discrete, however, it suffices
to show that any map is an isomorphism (indeed, a retraction); this is a special case of a
result stated in Section 3.2.

Lemma 10.3.3 (Bridge-discreteness by retract). Let𝐴 type and suppose we have two
functions as follows.

𝑓 : (𝑎0, 𝑎1 :𝐴) → Bridge(𝐴, 𝑎0, 𝑎1) → Path(𝐴, 𝑎0, 𝑎1)
𝑔 : (𝑎0, 𝑎1 :𝐴) → Path(𝐴, 𝑎0, 𝑎1) → Bridge(𝐴, 𝑎0, 𝑎1)

If 𝑔 𝑎0 𝑎1 (𝑓 𝑎0 𝑎1 𝑞) ⇝ 𝑞 for all 𝑎0, 𝑎1 :𝐴 and 𝑞 :Bridge(𝐴, 𝑎0, 𝑎1), then𝐴 is bridge-discrete.

Proof. By Lemma 3.2.8. □

Before we show that any types are bridge-discrete, the following demonstrates why
this collection of types is worth identifying. Whenever we want to prove a parametricity
result about a type that involves an “external” type parameter, we likely need to assume
that parameter is bridge-discrete.

Theorem 10.3.4. For any bridge-discrete𝐴 type, we have an isomorphism of the follow-
ing type.

((𝐵 : U) → (𝐴 → 𝐵) → 𝐵) ' 𝐴

Proof. Set A B ((𝐵 : U) → (𝐴 → 𝐵) → 𝐵). We follow the pattern established in Theo-
rem 10.1.2. The functions in either direction are simple to define.

𝐻 B 𝜆𝑐. 𝑐 𝐴 (𝜆𝑎. 𝑎) ∈ A→ 𝐴

𝐾 B 𝜆𝑎. 𝜆𝐴. 𝜆𝑓 . 𝑓 𝑎 ∈ 𝐴 → A

Moreover, calculation shows immediately that 𝐻 (𝐾 𝑎) = 𝑎 ∈ 𝐴 for any 𝑎 : 𝐴. For the
other inverse, we work by parametricity. We must show that for every 𝑐 : A, 𝐵 : U, and
𝑓 :𝐴 → 𝐵, we have a path from 𝑓 (𝑐 𝐴 (𝜆𝑎. 𝑎)) to 𝑐 𝐵 𝑓 . We define a relation from 𝐴 to 𝐵,
the graph of 𝑓 , by 𝑅 B 𝜆〈𝑎,𝑏〉. Path(𝐵, 𝑓 𝑎, 𝑏). We aim to apply 𝑐 at the Gel type for 𝑅 in
a fresh direction 𝒙 .

196 Programming with parametricity

To do so, we will need a term 𝑓𝒙 ∈ 𝐴 → Gel𝒙 (𝐴, 𝐵, 𝑅) to supply as the function ar-
gument. It is here that we use bridge-discreteness of 𝐴, which gives us some function
𝑡 ∈ (𝑎0, 𝑎1 :𝐴) → Bridge(𝐴, 𝑎0, 𝑎1) → Path(𝐴, 𝑎0, 𝑎1). Using 𝑡 , we can define 𝑓𝒙 by way of
extent.

𝑓𝒙 B 𝜆𝑎. extent𝒙 (𝑎;𝑎0.𝑎0, 𝑎1.𝑓 𝑎1, 𝑎0.𝑎1.𝑞.𝜆I𝒙 . gel𝒙 (𝑎0, 𝑓 𝑎1, 𝜆I𝑦. 𝑓 (𝑡 𝑎0 𝑎1 𝑞𝑦)))

We have 𝑓0 = 𝜆𝑎. 𝑎 ∈ 𝐴 → 𝐴 and 𝑓1 = 𝑓 ∈ 𝐴 → 𝐵. In words, to construct 𝑓𝒙 , we need
to know that any 𝑎0, 𝑎1 : 𝐴 related by Bridge(𝐴,−,−) satisfy 𝑓 𝑎0 ⇝ 𝑓 𝑎1. This is only
guaranteed if bridges in the constant 𝐴 give rise to paths in the same; thus the necessity
of bridge-discreteness.

The remainder of the argument proceeds as in Theorem 10.1.2. By applying 𝑐 at 𝑓𝒙 , we
obtain an element ofGel𝒙 (𝐴, 𝐵, 𝑅), which we can ungel to get the witness to 𝑅 we require.

ungel(𝒙 .𝑐 (Gel𝒙 (𝐴, 𝐵, 𝑅)) 𝑓𝒙) ∈ Path(𝐵, 𝑓 (𝑐 𝐴 (𝜆𝑎. 𝑎)), 𝑐 𝐵 𝑓) □

Now we take a look at types formed from bridge-discrete arguments. When we have
a bridge-discrete family of types, we have the following result, which will help analyze
dependent function and product types.

Lemma 10.3.5. Let 𝐴 type and 𝑎 : 𝐴 � 𝐵 type. Suppose that 𝐵 is bridge-discrete for
every 𝑎 :𝐴. Then for any path 𝑎0, 𝑎1 :𝐴, 𝑝 :Path(𝐴, 𝑎0, 𝑎1), and 𝑏0 :𝐵 [𝑎0/𝑎] and 𝑏1 :𝐵 [𝑎1/𝑎],
we have the following isomorphism.

Path(𝑥 .𝐵 [𝑝 𝑥/𝑎], 𝑏0, 𝑏1) ' Bridge(𝒙 .𝐵 [loosen𝐴 𝑝 𝒙/𝑎], 𝑏0, 𝑏1)

Proof. By Lemma 3.2.3, it suffices to show this when 𝑎0 = 𝑎1 and 𝑝 is the degenerate path
𝜆 . 𝑎0. In that case, we have loosen𝐴 (𝜆I . 𝑎0) ⇝ (𝜆I . 𝑎0), and so the isomorphism we
must construct follows directly from bridge-discreteness of 𝐵 [𝑎0/𝑎]. □

Theorem 10.3.6. The universe of bridge-discrete types is closed under product, function,
path, and bridge types.

Proof. For product types, (𝑎 : 𝐴) × 𝐵, this follows from Lemmas 3.2.4 and 9.2.2, using
Lemma 10.3.5 to get a correspondence between dependent bridges and paths in 𝐵 over
the correspondence in 𝐴. For functions, it follows from Lemma 3.2.6 and Theorem 9.3.2.
For paths and bridges, it follows from Lemma 9.2.3. □

We may also show that inductive types preserve bridge-discreteness. Here, we show
as an example that Bool is bridge-discrete. The argument is more involved than for the
preceding types, employing in particular relativity (that is, Gel types). This presents an
interesting parallel to the use of univalence to characterize the path types of higher in-
ductive types, sketched in our discussion of descent in Chapter 4.

Bridge-discrete types 197

Theorem 10.3.7 (Bridges in Bool). Bool is bridge-discrete.

Proof. We define a right inverse to loosenBool ∈ Path(Bool, 𝑏0, 𝑏1) → Bridge(Bool, 𝑏0, 𝑏1)
given 𝑏0, 𝑏1 : Bool. We make use of the Gel type for the path relation in Bool.

𝒙 : I � 𝐺𝒙 B Gel𝒙 (Bool,Bool, Path(Bool,−,−)) type

This type has two canonical elements corresponding to the reflexive proofs of equality in
Bool, 𝑡𝒙 B gel𝒙 (tt,tt, 𝜆I . tt) and 𝑓𝒙 B gel𝒙 (ff,ff, 𝜆I . ff). We first define an auxiliary map
𝐹𝒙 ∈ Bool → 𝐺𝒙 by case analysis, returning the corresponding reflexivity path in each
case.

𝐹𝒙 B 𝜆𝑏. elimBool(.𝐺𝒙 ;𝑏; 𝑡𝒙, 𝑓𝒙) ∈ Bool → 𝐺𝒙

Note we can transform this bridge in a function type into a function from bridges to
bridges, then use ungel to extract a path from the resulting bridge over 𝒙 .𝐺𝒙 .

𝐹 B 𝜆𝑝. ungel(𝒙 .𝐹𝒙 (𝑝 𝒙)) ∈ Bridge(Bool, 𝑏0, 𝑏1) → Path(Bool, 𝐹0 𝑏0, 𝐹1 𝑏1)

Modulo the not-quite-correct endpoints of the output, this will be our candidate right
inverse. Conversely, we can extract a map 𝐺𝒙 → Bool from loosenBool using extent.

𝐿𝒙 B 𝜆𝑔. extent𝒙 (𝑔;𝑏0.𝑏0, 𝑏1.𝑏1, . .𝑞.loosenBool (ungel(𝒙 .𝑞 𝒙))) ∈ 𝐺𝒙 → Bool

To check the inverse condition, we start by checking that 𝐹𝒙 is right inverse to 𝐿𝒙 , con-
structing a term of the following type.

𝑃𝒙 ∈ (𝑏 : Bool) → Path(Bool, 𝐿𝒙 (𝐹𝒙 𝑏), 𝑏)

Examining 𝐿𝒙 (𝐹𝒙 tt), we have the following sequence of equations and paths in Bool.

𝐿𝒙 (𝐹𝒙 tt) = extent𝒙 (𝑡𝒙 ;𝑏0.𝑏0, 𝑏1.𝑏1, . .𝑞.loosenBool (ungel(𝒙 .𝑞 𝒙)))
= loosenBool(ungel(𝒙 .𝑡𝒙)) 𝒙
= loosenBool(𝜆I . tt) 𝒙
⇝ (𝜆I . tt) 𝒙
= tt

We likewise have a path 𝐿𝒙 (𝐹𝒙 ff) ⇝ ff, so we can define 𝑃𝒙 by case analysis. Finally,
we move from bridges of functions to functions of bridges once more, defining the term
𝜆𝑞. 𝜆I𝒙 . 𝑃𝒙 (𝑞 𝒙) of the following type.

(𝑞 : Bridge(Bool, 𝑏0, 𝑏1)) → Bridge(𝒙 .Path(Bool, 𝐿𝒙 (𝐹𝒙 𝑞 𝒙), 𝑞 𝒙), 𝑃0 𝑏0, 𝑃1 𝑏1)

198 Programming with parametricity

Exploiting the isomorphism between bridges in path types and paths in bridge types
(Lemma 9.2.3), this induces a family of dependent paths as follows.

(𝑞 : Bridge(Bool, 𝑏0, 𝑏1)) → Path(𝑦.Bridge(Bool, 𝑃0 𝑏0𝑦, 𝑃1 𝑏1𝑦), 𝜆I𝒙 . 𝐿𝒙 (𝐹𝒙 (𝑞 𝒙)), 𝑞)
A quick calculation, reducing the extent term in 𝐿𝒙 , reveals that 𝜆I𝒙 . 𝐿𝒙 (𝐹𝒙 𝑞 𝒙) is equal
to loosenBool(𝐹 𝑞) in Path(Bool, 𝐹0 𝑏0, 𝐹1 𝑏1).

We are almost at the end; we just have to deal with some endpoints. Abstracting
slightly, we have shown that the following is inhabited for some pair of singletons 〈𝑏′0, 𝜂0〉 :
(𝑏′0 : Bool) × Path(Bool, 𝑏′0, 𝑏0) and 〈𝑏′1, 𝜂1〉 : (𝑏′1 : Bool) × Path(Bool, 𝑏′1, 𝑏1).

(𝑓 : Bridge(Bool, 𝑏0, 𝑏1) → Path(Bool, 𝑏′0, 𝑏′1)) ×
(𝑞 : Bridge(Bool, 𝑏0, 𝑏1)) → Path(𝑦.Bridge(Bool, 𝜂0𝑦, 𝜂1𝑦), loosenBool(𝑓 𝑞), 𝑞)

Namely, we have a witness at 𝜂0 B 𝑃0 𝑏0 and 𝜂1 B 𝑃1 𝑏1. By singleton contractibility
(Lemma 3.2.2), this choice of singletons is equal, up to a path, to the pair of reflexive
singletons 〈𝑏0, 𝜆I . 𝑏0〉 and 〈𝑏1, 𝜆I . 𝑏1〉. By coercion, we thus obtain an element of the
type above instantiated with that choice of singletons, which is exactly a right inverse for
loosenBool. □

To give an idea of how this argument would proceed for inductive types more gener-
ally, we sketch the proof for Nat, showing how to define the map from bridges to paths.

Lemma 10.3.8. For any𝑛0, 𝑛1:Nat, we have amapBridge(Nat, 𝑛0, 𝑛1) → Path(Nat, 𝑛0, 𝑛1).

Proof. We begin again with Gel type for the path relation in Nat.

𝒙 : I � 𝐺𝒙 B Gel𝒙 (Nat,Nat, Path(Nat,−,−)) type
We have canonical terms 𝑧𝒙 ∈ 𝐺𝒙 and 𝑠𝒙 ∈ 𝐺𝒙 → 𝐺𝒙 defined as follows.

𝑧𝒙 B gel𝒙 (zero, zero, 𝜆I . zero)
𝑠𝒙 B 𝜆𝑔. extent𝒙 (𝑔;𝑚0.suc(𝑚0),𝑚1.suc(𝑚1),𝑚0.𝑚1.𝑔

′.𝒚.𝑆)
where 𝑆 = gel𝒚 (suc(𝑚0), suc(𝑚1), 𝜆I𝑧. suc(ungel(𝒚.𝑔′𝒚) 𝑧))

The term 𝑧𝒙 carries the reflexive path zero⇝ zero, while 𝑠𝒙 takes a gel term containing a
path𝑚0⇝𝑚1 and returns a path suc(𝑚0) ⇝ suc(𝑚1). Now we get a function from Nat
to its path relation.

𝐹𝒙 B 𝜆𝑏. elimNat(.𝐺𝒙 ;𝑏; 𝑧𝒙, .𝑔.𝑠𝒙 𝑔) ∈ Nat → 𝐺𝒙

Given a bridge 𝑞 : Bridge(Nat, 𝑛0, 𝑛1), we apply 𝐹𝒙 pointwise to get a path.

𝐹 B ungel(𝒙 .𝐹𝒙 (𝑞 𝒙)) ∈ Path(Nat, 𝐹0 𝑛0, 𝐹1 𝑛1)
By inspection, we have 𝐹𝜺 𝑛 = elimNat(.Nat;𝑛; zero, .𝑚.suc(𝑚)) ∈ Nat for 𝜀 ∈ {0, 1},
and the latter is path-equal to 𝑛 by induction. □

Bridge-discrete types 199

The bridge-discrete universe even inherits univalence and relativity. This means in
particular that we can use internal parametricity to characterize functions out of the
bridge-discrete universe. For example, we can show that the “bridge discrete Church
boolean” type, (𝐴 : Ubdisc) → fst(𝐴) → fst(𝐴) → fst(𝐴), is also isomorphic to Bool.

Theorem 10.3.9. Ubdisc is univalent, in the sense that Path(Ubdisc, 𝐴, 𝐵) is isomorphic to
fst(𝐴) ' fst(𝐵) by way of the coercion isomorphism map for any 𝐴, 𝐵 : Ubdisc.

Proof. By univalence of U, it is equivalent to show that the projection function from
Path(Ubdisc, 𝐴, 𝐵) to Path(U, fst(𝐴), fst(𝐵)) is an isomorphism. This follows quickly from
Lemma 3.2.4 and the fact that IsBDisc(𝐶) is a proposition for any 𝐶 : U. □

Relativity comes down to the closure of the bridge-discrete universe under Gel-types.

Theorem 10.3.10. Let 𝐴, 𝐵 type and 𝑎 :𝐴,𝑏 : 𝐵 � 𝑅 type be given. If 𝐴, 𝐵 are bridge-
discrete and 𝑅 is pointwise bridge-discrete, then Gel𝒙 (𝐴, 𝐵, 𝑎.𝑏.𝑅) is bridge-discrete for
any fresh 𝒙 .

Proof. Set 𝐺𝒙 B Gel𝒙 (𝐴, 𝐵, 𝑎.𝑏.𝑅). We aim to show that paths and bridges from 𝑔0 to 𝑔1
in 𝐺𝒙 are isomorphic for any 𝑔0, 𝑔1 : 𝐺𝒙 . By applying extent, it suffices to show this is
the case when either 𝒙 is an endpoint or 𝑔0 and 𝑔1 are points on bridges. When 𝒙 is an
endpoint, we apply the loosen𝐴 or loosen𝐵 isomorphism accordingly. For the remaining
case, we need

Path(𝐺𝒙, 𝑞0 𝒙, 𝑞1 𝒙) ' Bridge(𝐺𝒙, 𝑞0 𝒙, 𝑞1 𝒙)

for all 𝑞0 : Bridge(𝒙 .𝐺𝒙, 𝑎0, 𝑏0) and 𝑞1 : Bridge(𝒙 .𝐺𝒙, 𝑎1, 𝑏1), coherently with the endpoint
cases. Now, by Lemma 10.2.2, it suffices to construct an isomorphism of the following
type for any 𝑝 ∈ Path(𝐴, 𝑎0, 𝑎1) and 𝑝′ ∈ Path(𝐵,𝑏0, 𝑏1).

Bridge(𝒙 .Path(𝐺𝒙, 𝑞0 𝒙, 𝑞1 𝒙), 𝑝, 𝑝′)
'

Bridge(𝒙 .Bridge(𝐺𝒙, 𝑞0 𝒙, 𝑞1 𝒙), loosen𝐴 𝑝, loosen𝐵 𝑝′)

By Lemma 3.2.3, we can assume that the paths 𝑝 and 𝑝′ are reflexive; together with the
fact that loosen takes reflexive paths to reflexive bridges, this simplifies our goal to the
following.

Bridge(𝒙 .Path(𝐺𝒙, 𝑞0 𝒙, 𝑞1 𝒙), 𝜆I . 𝑎0, 𝜆I . 𝑏0)
'

Bridge(𝒙 .Bridge(𝐺𝒙, 𝑞0 𝒙, 𝑞1 𝒙), 𝜆I . 𝑎0, 𝜆I . 𝑏0)

200 Programming with parametricity

Next, we know that swapping iterated bridge and path types is an isomorphism, so it
is enough to prove the following isomorphism where we have flipped the order of type
constructors on either side.

Path(Bridge(𝒙 .𝐺𝒙, 𝑎, 𝑏), 𝑞0, 𝑞1) ' Bridge(Bridge(𝒙 .𝐺𝒙, 𝑎, 𝑏), 𝑞0, 𝑞1)

Finally, we know that Bridge(𝒙 .𝐺𝒙, 𝑎, 𝑏) ' 𝑅. Thus this follows directly from bridge-
discreteness of 𝑅. □

Corollary 10.3.11. Ubdisc is relativistic. That is, for any𝐴, 𝐵:Ubdisc, we have the following
isomorphism with the forward map given by the bridge type former (which preserves
bridge-discreteness per Theorem 10.3.6).

Bridge(Ubdisc, 𝐴, 𝐵) ' (fst(𝐴) × fst(𝐵) → Ubdisc)

Proof. Suppose 𝐴 = 〈𝐴0, 𝑝〉 and 𝐵 = 〈𝐵0, 𝑞〉. By Lemma 9.2.3, Bridge(Ubdisc, 𝐴, 𝐵) is iso-
morphic to the following.

(𝐶 : Bridge(U, 𝐴0, 𝐵0)) × Bridge(𝒙 .IsBDisc(𝐶 𝒙), 𝑝, 𝑞)

The right hand type, meanwhile, is also isomorphic to a product.

(𝑅 :𝐴0 × 𝐵0 → U) × ((𝑎 :𝐴) (𝑏 : 𝐵) → IsBDisc(𝑅 〈𝑎,𝑏〉))

Wehave an isomorphism between the first components by relativity ofU, implemented by
the bridge and Gel types. Each second component, meanwhile, is a proposition. (For the
first, it is straightforward to check that the bridge type of a proposition is a proposition.) It
therefore suffices to show that the isomorphism of the first components takes𝐶 such that
Bridge(𝒙 .IsBDisc(𝐶 𝒙), 𝑝, 𝑞) to 𝑅 such that ((𝑎 : 𝐴) (𝑏 : 𝐵) → IsBDisc(𝑅 〈𝑎,𝑏〉)) and vice
versa. The forward direction is the fact that bridge-types preserve bridge-discreteness,
the converse is the fact that Gel-types preserve the same. □

Note that the relativity of Ubdisc implies that Ubdisc itself is not bridge discrete.

Example 10.3.12. Bbdisc B (𝐴 :Ubdisc) → fst(𝐴) → fst(𝐴) → fst(𝐴) is isomorphic to Bool.

Proof (Sketch). Suppose we are given 𝑐 : Bbdisc. Given 𝐴 : Ubdisc, 𝑡 : fst(𝐴) and 𝑓 : fst(𝐴),
we define a relation 𝑅 ∈ Bool × fst(𝐴) → U as in Theorem 10.1.2.

𝑅 B 𝜆〈𝑏, 𝑎〉. Path(fst(𝐴), elimBool(.fst(𝐴);𝑏; 𝑡, 𝑓), 𝑎) ∈ Bool × fst(𝐴) → U

The type fst(𝐴) is bridge-discrete by assumption and bridge-discrete types are closed un-
der path types, so this relation is pointwise bridge-discrete. Thus Theorem 10.3.10 gives
us a bridge in Ubdisc from Bool (coupled with the proof of bridge-discreteness from Theo-
rem 10.3.7) to 𝐴 corresponding to 𝑅. Applying 𝑐 at this bridge, we then proceed as in the
proof of Theorem 10.3.10. □

The excluded middle 201

10.4 The excluded middle

The bridge-discreteness of Bool implies a cute result concerning the law of the excluded
middle in parametric type theory.

Definition 10.4.1. Write ¬𝐴 B (𝐴 → Void) for intuitionistic negation. We define three
varieties of excluded middle.

LEM∞ B (𝐴 : U) → (𝑏 : Bool) × elimBool(.U;𝑏;𝐴,¬𝐴)
LEM−1 B (𝐴 : U) → IsProp(𝐴) → (𝑏 : Bool) × elimBool(.U;𝑏;𝐴,¬𝐴)
LEM¬ B (𝐴 : U) → (𝑏 : Bool) × elimBool(.U;𝑏;¬𝐴,¬¬𝐴)

We call LEM∞ the unrestricted excludedmiddle, LEM−1 the excludedmiddle for propositions,
and LEM¬ the weak excluded middle.

Clearly LEM∞ implies LEM−1. Moreover, LEM−1 implies LEM¬, as every negated type
is a proposition—this is a consequence of function extensionality and the fact that the
empty type is a proposition.

The unrestricted excluded middle is independent of ITT, but is contradictory to the
univalence axiom. We refer to [Uni13, Corollary 4.2.7] for a full proof, but the basic in-
tuition is as follows. An element 𝑑 : LEM∞ picks out a distinguished element of every
inhabited type; in particular, some distinguished element 𝑀 of Bool. At the same time,
univalence implies that 𝑑 has an action on isomorphisms. By examining the action of 𝑑
on the automorphism not ∈ Bool ' Bool that swaps the two booleans, we can derive a
path from (not𝑀) to𝑀 , a clear contradiction.

The excluded middle for propositions, on the other hand, is perfectly consistent with
homotopy type theory and is validated in the simplicial model thereof [KL20]; propo-
sitions have at most one element up to path equality, so there is no problem choosing
elements uniformly with respect to isomorphisms. By contrast, even the weak law of the
excluded middle is refuted in parametric type theory.

Lemma 10.4.2. If 𝐴 type is bridge-discrete, then any function 𝑓 : U → 𝐴 is constant.

Proof. For any pair of types 𝐵0, 𝐵1 :U, we have an abundance of bridges between them; to
choose one, we have a bridge 𝜆I𝒙 .Gel𝒙 (𝐵0, 𝐵1, . .Void) ∈ Bridge(U, 𝐵0, 𝐵1) given by the
empty relation. By applying 𝑓 pointwise, we obtain a bridge 𝜆I𝒙 . 𝑓 (Gel𝒙 (𝐵0, 𝐵1, . .Void))
from 𝑓 𝐵0 to 𝑓 𝐵1. As 𝐴 is bridge-discrete, this bridge induces a path between the same.□

Theorem 10.4.3. The weak excluded middle is refuted.

202 Programming with parametricity

Proof. Suppose we are given 𝑑 : LEM¬. Then 𝜆𝐴. fst(𝑑 𝐴) is a function U → Bool, so
is constant by Lemma 10.4.2 and Theorem 10.3.7. But this implies that fst(𝑑 Unit) and
fst(𝑑 Void) have the same value, from which we readily derive a contradiction. □

Corollary 10.4.4. The excluded middle for propositions is refuted.

For further analysis of the relationship between classical principles and parametricity,
we refer to Booij et al. [BELS16].

10.5 Iterated smash products
Finally, we return to our motivating example of an application of parametricity unique
to higher-dimensional type theory: coherence laws for the smash product. Recall from
Chapter 8 that the smash product of two pointed types 𝐴∗, 𝐵∗ ∈ U∗ B (𝐴 : U) ×𝐴 is the
following higher inductive type.

𝐴∗ : U∗, 𝐵∗ : U∗ � inductive 𝐴∗ ∧ 𝐵∗ where
| ⟪𝑎 : 𝐴,𝑏 : 𝐵⟫ ∈ 𝐴∗ ∧ 𝐵∗
| ⊛L ∈ 𝐴∗ ∧ 𝐵∗
| spokeL(𝑏 : 𝐵, 𝑥 : I) ∈ 𝐴∗ ∧ 𝐵∗ [𝑥 ≡ 0 ↩→ ⊛L | 𝑥 ≡ 1 ↩→ ⟪𝑎0, 𝑏⟫]
| ⊛R ∈ 𝐴∗ ∧ 𝐵∗
| spokeR(𝑎 : 𝐴, 𝑥 : I) ∈ 𝐴∗ ∧ 𝐵∗ [𝑥 ≡ 0 ↩→ ⊛R | 𝑥 ≡ 1 ↩→ ⟪𝑎, 𝑏0⟫]

Notation 10.5.1 (Recollections from Chapter 8). Weabbreviate𝐴 B fst(𝐴∗) ∈ U and
𝑎0 B snd(𝐴∗) ∈ 𝐴 for the underlying type and point of a given pointed type 𝐴∗ ∈ U∗.
Given 𝐴∗, 𝐵∗ ∈ U∗, we have the type (𝐴∗ → 𝐵∗) B (𝑓 :𝐴 → 𝐵) × Path(𝐵, 𝑓 𝑎0, 𝑏0) ∈ U of
functions that send the basepoint of𝐴 to that of 𝐵. For the pointed type of such functions,
we write (𝐴∗ →∗ 𝐵∗) B 〈𝐴∗ → 𝐵∗, 〈𝜆 . 𝑏0, 𝜆

I . 𝑏0〉〉 ∈ U∗; we write 𝑓∗ for elements of this
type and abbreviate 𝑓 B fst(𝑓∗) and 𝑓0 B snd(𝑓) as with types. A pointed isomorphism,
written 𝐴∗ ' 𝐵∗, is an isomorphism whose underlying function is pointed.

The elements of the smash product are pairs ⟪𝑎 : 𝐴,𝑏 : 𝐵⟫ but with all elements of the
form ⟪𝑎0, 𝑏⟫ identified with a distinguished point ⊛L and all elements of the form ⟪𝑎,𝑏0⟫
identified with ⊛R. We write 𝐴∗ ∧∗ 𝐵∗ for the pointed type 〈𝐴∗ ∧ 𝐵∗, ⟪𝑎0, 𝑏0⟫〉.

In Chapter 8, we imagined that various coherence conditions expected of the commu-
tator and associator—themselves feasible if tedious to construct—could be verified auto-
matically by using parametricity. First, we note that it suffices to characterize the inhabi-
tants of types of the following form, where the input and output smash products are both
associated in the same (arbitrary) way.

(𝐴1∗, . . . , 𝐴𝑛∗ : U∗) → (𝐴1∗ ∧∗ · · · ∧∗ 𝐴𝑛∗) → (𝐴1∗ ∧∗ · · · ∧∗ 𝐴𝑛∗) (∗)

Iterated smash products 203

To show that a commutator 𝐹 ∈ (𝐴∗, 𝐵∗ : U∗) → 𝐴∗ ∧∗ 𝐵∗ → 𝐵∗ ∧∗ 𝐴∗ is an isomor-
phism, for example, it suffices to show that the composite 𝜆𝑐. 𝐹 𝐵∗𝐴∗ (𝐹 𝐵∗𝐴∗ 𝑐) is the
(pointed) identity function for every 𝐴∗, 𝐵∗ : U∗. By the same token, we can show that a
pair of associator functions

𝐺 ∈ (𝐴∗, 𝐵∗,𝐶∗ : U∗) → (𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗ → 𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗)
𝐻 ∈ (𝐴∗, 𝐵∗,𝐶∗ : U∗) → 𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗) → (𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗

constitute an isomorphism by showing that the two round-trip composites are identi-
ties. The pentagon identity displayed in Chapter 8 can also be cast as the equality of
a round-trip composite to the identity function at a type of the form (∗); higher coher-
ences amount to equalities between such equalities. We cannot expect that every para-
metric term of the form (∗) is an identity function, because the existence of basepoints
makes the pointed constant function a possibility. However, we will see that this is the
only exception. It is moreover easy to check that such a function is not constant by
testing it on small inputs, namely the pointed type Bool∗ B 〈Bool,tt〉. For example,
𝐾 ∈ (𝐴∗, 𝐵∗ : U∗) → 𝐴∗ ∧∗ 𝐵∗ → 𝐴∗ ∧∗ 𝐵∗ is an identity function if and only if we have
𝐾 Bool∗ Bool∗ ⟪ff,ff⟫⇝ ⟪ff,ff⟫.

To illustrate the argument, we start with the binary case.

Theorem 10.5.2. Any function (𝐴∗, 𝐵∗ : U∗) → 𝐴∗ ∧∗ 𝐵∗ → 𝐴∗ ∧∗ 𝐵∗ is either the poly-
morphic identity or the polymorphic constant pointed function.

The proof of this theorem will involve a bit of serious higher-dimensional program-
ming. We want to avoid clouding the main thrust of the proof with routine verification of
boundary conditions, so we will mainly dispatch higher-dimensional obligations without
much comment. Our argument is not that one is completely saved from verifying such
conditions. Rather, our claim is that parametricity permits the characterization of terms
of the form (∗) without being swamped in complexity as 𝑛 increases.

We first introduce a couple of auxiliary terms that will come in handy for checking
coherence conditions.

Definition 10.5.3 (Concatenation by inverse). let 𝑀 ∈ 𝐴, 𝑟 ∈ I, and 𝑥 : I � 𝑁 ∈ 𝐴
with 𝑟 ≡ 1 � 𝑀 = 𝑁 [1/𝑥] ∈ 𝐴 be given. For any 𝑠 ∈ I, define conc-inv𝑟,𝑠𝐴 (𝑀,𝑥.𝑁) ∈ 𝐴 as
follows.

conc-inv𝑟,𝑠𝐴 (𝑀,𝑥.𝑁) B hcom1�𝑠
𝐴 (𝑀 ; 𝑟 ≡ 0 ↩→ .𝑀, 𝑟 ≡ 1 ↩→ 𝑥 .𝑁)

The term conc-inv𝑟,0𝐴 (𝑀,𝑥.𝑁) is the result of concatenating 𝑀 (as a path in direction 𝑟)
with the inverse of 𝑥 .𝑁 ; we will use the general form conc-inv𝑟,𝑠𝐴 (𝑀,𝑥.𝑁) to relate the
composite to other terms.

204 Programming with parametricity

Lemma 10.5.4 (Join connection). For any 𝑎0, 𝑎1 : 𝐴 and 𝑝 : Path(𝐴, 𝑎0, 𝑎1), we have a
term as follows, a square with 𝑝 on the two “0” sides and reflexivity on the two “1” sides.

cnx𝐴 (𝑝) ∈ Path(𝑥 .Path(𝐴, 𝑝 𝑥, 𝑎1), 𝑝, 𝜆I . 𝑎1)

Proof. By J for paths (Lemma 3.2.3), it suffices to construct such a term in the case that 𝑝
is a reflexive path 𝜆I . 𝑎, in which case we may take 𝜆I . 𝜆I . 𝑎. □

Our uses of parametricity for this theorem are limited to cases where the relation is
the graph of a function, so we introduce some notation for this case.

Notation 10.5.5. Given 𝑓 : 𝐴 → 𝐵, write Gr𝑟 (𝐴, 𝐵, 𝑓) B Gel𝑟 (𝐴, 𝐵, 𝑎.𝑏.Path(𝐵, 𝑓 𝑎, 𝑏)).
Given 𝑓∗ :𝐴∗ → 𝐵∗, define Gr𝑟 (𝐴∗, 𝐵∗, 𝑓∗) B 〈Gr𝑟 (𝐴, 𝐵, 𝑓), gel𝑟 (𝑎0, 𝑏0, 𝑓0)〉 ∈ U∗.

The first property we need of the smash product is that it acts on pointed functions
in either argument.

Definition 10.5.6. Given pointed functions 𝑓∗ : 𝐴∗ → 𝐶∗ and 𝑔∗ : 𝐵∗ → 𝐷∗, we define a
map 𝑓∗ ∧ 𝑔∗ ∈ (𝐴∗ ∧ 𝐵∗) → (𝐶∗ ∧ 𝐷∗) by smash product elimination as follows.

(𝑓∗ ∧ 𝑔∗) 𝑠 B



case 𝑠 of
| ⟪𝑎, 𝑏⟫ ↦→ ⟪𝑓 𝑎, 𝑔 𝑏⟫
| ⊛L ↦→ ⊛L
| spokeL(𝑏,𝑦) ↦→ conc-inv𝑦,0𝐶∗∧𝐷∗

(spokeL(𝑔𝑏,𝑦), 𝑧.⟪𝑓0 𝑧, 𝑔 𝑏⟫)
| ⊛R ↦→ ⊛R
| spokeR(𝑎, 𝑥) ↦→ conc-inv𝑥,0𝐶∗∧𝐷∗

(spokeR(𝑓 𝑎,𝑦), 𝑧.⟪𝑓 𝑎, 𝑔0 𝑧⟫)


This map is basepoint-preserving; we write 𝑓∗ ∧∗ 𝑔∗ B 〈𝑓∗ ∧ 𝑔∗, 𝜆I𝑥 . ⟪𝑓0 𝑥, 𝑔0 𝑥⟫〉 for the
pointed function.

The second is that Bool∗ B 〈Bool,tt〉 is a unit for the smash product; actually, we only
need the special case Bool∗ ∧ Bool∗ ' Bool.

Lemma 10.5.7 (Smash of booleans). Bool∗∧Bool∗ is isomorphic to Bool; in particular,
any element of Bool∗ ∧ Bool∗ is path-equal to either ⟪tt,tt⟫ or ⟪ff,ff⟫.

Proof. In one direction, we define 𝐹 ∈ Bool → Bool∗ ∧ Bool∗ to send tt to ⟪tt,tt⟫ and ff
to ⟪ff,ff⟫. In the other, we define 𝐺 ∈ Bool∗ ∧ Bool∗ → Bool to send ⟪ff,ff⟫ to ff and all
other constructors to tt. Clearly 𝜆𝑏.𝐺 (𝐹 𝑏) is the identity. For the other inverse condition,
we show (𝑠 :Bool∗ ∧ Bool∗) → Path(Bool∗ ∧ Bool∗, 𝑠, 𝐹 (𝐺 𝑠)) by smash product induction
as follows.

Iterated smash products 205

• Case ⟪tt,tt⟫: Reflexivity.

• Case ⟪tt,ff⟫:
𝜆I𝑦. hcom0�1

Bool∗∧Bool∗ (spoke
L(tt, 𝑦);𝑦 ≡ 0 ↩→ 𝑥 .spokeL(ff, 𝑥), 𝑦 ≡ 1 ↩→ .⟪tt,tt⟫).

• Case ⟪ff,ff⟫: Reflexivity.

• Case ⊛L: 𝜆I𝑦. spokeL(tt, 𝑦).

• Case spokeL(tt, 𝑥): cnxBool∗∧Bool∗ (𝜆I𝑦. spokeL(tt, 𝑦)) 𝑥 .

• Case spokeL(ff, 𝑥):
𝜆I𝑦. hcom0�𝑥

Bool∗∧Bool∗ (spoke
L(tt, 𝑦);𝑦 ≡ 0 ↩→ 𝑥 .spokeL(ff, 𝑥), 𝑦 ≡ 1 ↩→ .⟪tt,tt⟫).

The cases for ⟪tt,ff⟫, ⊛R, and spokeR are obtained by taking the cases for ⟪ff,tt⟫, ⊛L, and
spokeL respectively and replacing spokeL with spokeR everywhere. □

Finally, we need part of a characterization of bridges across smash product types. For
our purposes, we only need to analyze bridges across 𝒙 .(Gr𝒙 (𝐴∗,𝐶∗, 𝑓∗)∧Gr𝒙 (𝐵∗, 𝐷∗, 𝑔∗));
we also do not need a full isomorphism, only a map in one direction.

Lemma 10.5.8 (Graph Lemma for ∧). For any 𝒓 : I, there is a map

∧-graph𝒓 ∈ Gr𝒓 (𝐴∗,𝐶∗, 𝑓∗) ∧ Gr𝒓 (𝐵∗, 𝐷∗, 𝑔∗) → Gr𝒓 (𝐴∗ ∧ 𝐵∗,𝐶∗ ∧ 𝐷∗, 𝑓∗ ∧ 𝑔∗)
equal to the identity function on 𝐴∗ ∧ 𝐵∗ when 𝒓 = 0 and on 𝐶∗ ∧ 𝐷∗ when 𝒓 = 1.

Proof. We define the map by induction on the smash product in the domain.

• Case ⟪𝑚,𝑛⟫: We test whether 𝒓 is a constant or variable using extent. In the constant
cases, we return ⟪𝑚,𝑛⟫. In the case 𝒓 is a variable 𝒙 , we learn that 𝑚 and 𝑛 are the
instantiation at 𝒙 of bridges over their types; by uniqueness, they are of the form𝑚 =
gel𝒙 (𝑎, 𝑐, 𝑝) and 𝑛 = gel𝒙 (𝑏, 𝑑, 𝑞). We return gel𝒙 (⟪𝑎, 𝑏⟫, ⟪𝑐, 𝑑⟫, 𝜆I𝑧. ⟪𝑝 𝑦, 𝑞 𝑦⟫).

• Case ⊛L: We return gel𝑟 (⊛L, ⊛L, 𝜆I . ⊛L).

• Case ⊛R: Symmetric to ⊛L.

• Case spokeL(𝑛,𝑦): We test whether 𝒓 is a constant or variable using extent. In the
constant cases, we return spokeL(𝑛,𝑦). In the case 𝒓 is a variable 𝒙 , we learn that 𝑛 is
the instantiation at 𝒙 of a bridge; by uniqueness, it is of the form 𝑛 = gel𝒙 (𝑏, 𝑑, 𝑞). We
return gel𝒙 (spokeL(𝑏,𝑦), spokeL(𝑑,𝑦), 𝜆I𝑧. · · ·), where · · · is the following composite.

hcom1�0
𝐶∗∧𝐷∗

©­­­«spoke
L(𝑞 𝑧,𝑦);

𝑦 ≡ 0 ↩→ .⊛L

𝑦 ≡ 1 ↩→ 𝑤.⟪cnx𝐴 (𝑓0) 𝑧 𝑤,𝑞 𝑧⟫
𝑧 ≡ 0 ↩→ 𝑤.conc-inv𝑦,𝑤𝐶∗∧𝐷∗

(spokeL(𝑔𝑏,𝑦), 𝑧.⟪𝑓0 𝑧, 𝑔 𝑏⟫)
𝑧 ≡ 1 ↩→ .spokeL(𝑑,𝑦)

ª®®®¬

206 Programming with parametricity

• Case spokeR(𝑚,𝑦): Symmetric to spokeL(𝑛,𝑦).

When 𝒓 is a constant, the resulting function simplifies to a term path-equal to the identity
function on 𝐴∗ ∧ 𝐵∗. We may therefore apply an hcom to adjust the boundary and obtain
a function that is exactly the identity when 𝒓 = 0 or 𝒓 = 1. □

The following lemma represents the sole use of parametricity in the final proof.

Lemma 10.5.9 (Workhorse lemma). Let 𝐹 ∈ (𝐴∗, 𝐵∗ : U∗) → 𝐴 → 𝐵 → 𝐴∗ ∧∗ 𝐵∗. Then
𝐹 is path equal to one of either (𝜆 . 𝜆 . 𝜆𝑎. 𝜆𝑏. ⟪𝑎,𝑏⟫) or (𝜆𝐴∗. 𝜆𝐵∗. 𝜆 . 𝜆 . ⟪𝑎0, 𝑏0⟫).

Proof. We show that 𝐹 is determined by the value of 𝐹 Bool∗ Bool∗ ff ff. Let 𝐴∗ : U∗,
𝐵∗ : U∗, 𝑎 : 𝐴, and 𝑏 : 𝐵 be given.

We have a pointed function [𝑎]∗ ∈ Bool∗ → 𝐴∗ sending tt to 𝑎0 and ff to 𝑎, likewise
[𝑏]∗ ∈ Bool∗ → 𝐵∗ sending tt to 𝑏0 and ff to 𝑏. Abstract a fresh bridge variable 𝒙 : I. We
abbreviate 𝐺𝑎∗ B Gr𝒙 (Bool∗, 𝐴∗, [𝑎]∗) and 𝐺𝑏∗ B Gr𝒙 (Bool∗, 𝐵∗, [𝑏]∗). Applying 𝐹 at 𝐺𝑎∗
and 𝐺𝑏∗ , we have the following.

𝐹 𝐺𝑎∗ 𝐺
𝑏
∗ (gel𝒙 (ff, 𝑎, 𝜆I . 𝑎)) (gel𝒙 (ff, 𝑏, 𝜆I . 𝑏)) ∈ 𝐺𝑎∗ ∧𝐺𝑏∗

At 𝒙 = 0, this term is 𝐹 Bool∗ Bool∗ ff ff, while at 𝒙 = 1 it is 𝐹 𝐴∗ 𝐵∗ 𝑎 𝑏. Now we apply the
Graph Lemma to obtain a term in Gr𝒙 (Bool∗ ∧ Bool∗, 𝐴∗ ∧ 𝐵∗, [𝑎]∗ ∧ [𝑏]∗) with the same
boundary. Finally, we apply ungel to extract a path from ([𝑎]∗ ∧ [𝑏]∗)(𝐹 Bool∗ Bool∗ ff ff)
to 𝐹 𝐴∗ 𝐵∗ 𝑎 𝑏. We thereby conclude that 𝐹 is the pairing function if 𝐹 Bool∗ Bool∗ ff ff is
⟪ff,ff⟫ and the constant function if it is ⟪tt,tt⟫; by Lemma 10.5.7, we are in one of these
two cases. □

Corollary 10.5.10. (𝐴∗, 𝐵∗ :U∗) → 𝐴 → 𝐵 → 𝐴∗ ∧∗ 𝐵∗ is a set, which is to say that every
path type in this type is a proposition.

Proof. Lemma 10.5.9 shows that the type is isomorphic to Bool, which is a set. □

This is everything we need to prove the final result.

Proof (of Theorem 10.5.2). Let 𝐹∗ ∈ (𝐴∗, 𝐵∗ : U∗) → 𝐴∗ ∧∗ 𝐵∗ → 𝐴∗ ∧∗ 𝐵∗ be given. To
characterize 𝐹∗, we need to characterize its behavior on each constructor of 𝐴∗ ∧ 𝐵∗ as
well as the proof that it preserves the basepoint of 𝐴∗ ∧∗ 𝐵∗.

First, by Lemma 10.5.9, we know that 𝜆𝑎. 𝜆𝑏. 𝐹 𝐴∗ 𝐵∗ ⟪𝑎, 𝑏⟫ is either pairing or con-
stant. The values of 𝐹 𝐴∗ 𝐵∗ ⊛L and 𝐹 𝐴∗ 𝐵∗ ⊛R must be path-equal to ⊛L and ⊛R re-
spectively, as 𝐹 is basepoint-preserving and ⊛L (⊛R) is connected to the basepoint by
spokeL(𝑏0,−) (spokeR(𝑎0,−)).

Iterated smash products 207

Next, observe that we can capture the behavior of 𝐹 on spokeL by the following term,
which is a path in (𝐴∗, 𝐵∗ :U∗) → 𝐴 → 𝐵 → 𝐴∗ ∧∗ 𝐵∗ between 𝜆𝐴∗. 𝜆𝐵∗. 𝜆 . 𝜆 . 𝐹 𝐴∗ 𝐵∗ ⊛L

and 𝜆𝐴∗. 𝜆𝐵∗. 𝜆 . 𝜆𝑏. 𝐹 𝐴∗ 𝐵∗ ⟪𝑎,𝑏⟫.

𝜆I𝑦. 𝜆𝐴∗. 𝜆𝐵∗. 𝜆 . 𝜆𝑏. 𝐹 𝐴∗ 𝐵∗ (spokeL(𝑏,𝑦))

By Corollary 10.5.10, this path is path-equal to any other path in this type, in particular
path-equal to whatever we need it to be to complete this proof. The same applies to ⊛R.
Finally, we can apply the same trick for the basepoint path, writing it as a path in the type
from Corollary 10.5.10 as follows.

𝜆I𝑦. 𝜆𝐴∗. 𝜆𝐵∗. 𝜆 . 𝜆 . 𝑓0𝐴∗ 𝐵∗𝑦 □

Now we argue that this strategy can be used to prove the 𝑛-ary generalization in a
uniform way. (The binary version is in fact not very useful on its own; the direct proof of
commutativity for the smash product is uncharacteristically straightforward because the
definition of ∧ is completely symmetric.)

Theorem 10.5.11. Any function of the form (∗) is either the polymorphic identity or the
polymorphic constant pointed function.

Proof. First, consider the case where we associate to the left everywhere in (∗). We show
by induction on 𝑖 ≤ 𝑛 + 1 that any

𝐴0 → · · · → 𝐴𝑛−𝑖 → (𝐴(𝑛−𝑖+1)∗ ∧∗ · · · ∧∗ 𝐴𝑛∗) → (𝐴0∗ ∧∗ · · · ∧∗ 𝐴𝑛∗)

polymorphic in 𝐴0∗, . . . , 𝐴𝑛∗ : U∗ is either given by iterated pairing or constant. For 𝑖 = 0,
it follows from a simple 𝑛-ary generalization of the workhorse lemma (instantiating each
type argument with a graph and applying the binary Graph Lemma repeatedly). For 𝑖 > 0,
it follows from the induction hypothesis by the same argument as in the proof of Theorem
10.5.2.

The case wherewe associate to the right everywhere then follows from commutativity
of the smash product. These two cases are sufficient to prove associativity, from which
the theorem follows for all other associations. □

The key here is that we are never involved in an iterated induction on smash products:
for each 𝑖 in the proof of Theorem 10.5.11, we have an argument by induction on one
occurrence of the smash product, but these arguments do not overlap.

Chapter 11

Formalism and models

To extend the cubical formalism sketched in Section 3.3 to include parametricity primi-
tives, the essential task is to develop an algebraic equivalent of the interval restriction
operator − \ 𝒓 , which is necessary to capture the affine quality of bridge interval vari-
ables. In the type theory of Chapter 9, −\ 𝒓 is defined as an operator on raw contexts; like
substitution as an operator on raw terms, this must be avoided in an algebraic formalism.

In the following, we therefore develop a novel formulation that regards − \ 𝒓 as a
primitive context former, characterized by an adjoint relationship with context extension
by an interval variable. We note that this issue is not addressed in Bernardy, Coquand,
and Moulin’s account of internal parametricity [BCM15]. In the formalism they present,
rules that we would express using restriction are expressed by including interval variables
in the context of the conclusion as in the following rule for bridge elimination.

Γ.I ` 𝐴 type Γ ` 𝑀0 : 𝐴[0I] Γ ` 𝑀1 : 𝐴[1I] Γ ` 𝑃 : Bridge(𝐴,𝑀0, 𝑀1)
Γ.I ` 𝑃 vI : 𝐴

While this does ensure bridge variables are only used affinely, the calculus fails to satisfy
cut elimination, which in the algebraic setting means that it is not always possible to
reduce away an explicit substitution. In this case, there is no way to reduce (𝑃 vI) [𝛾]
given Γ′ ` 𝛾 : Γ.I. In our calculus, by contrast, this term can reduce to 𝑃 [𝛾 \ vI] vI [𝛾],
using the functorial action of interval restriction on substitutions.

In addition to the judgments of Section 3.3, we nowhave judgments forwell-formedness
and equality of bridge interval variables.

Judgment Presuppositions Reading
Γ ` 𝒓 : I (Γ ctx) 𝒓 is a bridge interval variable
Γ ` 𝒓 = 𝒓 ′ : I (Γ ` 𝒓, 𝒓 ′ : I) 𝒓 and 𝒓 ′ are equal bridge interval variables

209

210 Formalism and models

Like path intervals, we may add a bridge interval to the context, in which case we
have a variable interval term.

Γ ctx

Γ.I ctx

Γ ctx

Γ.I ` vI : I
Γ ` 𝑟 : I Γ′ ` 𝛾 : Γ

Γ′ ` 𝒓 [𝛾] : I

Where the context Γ.I is characterized as the cartesian product of Γ with · .I, however,
here we need the extension to behave as a separated product. To express this, we introduce
a new context former for interval restriction.

Γ ctx Γ ` 𝒓 : I
Γ.\𝒓 ctx

Γ′ ` 𝒓 : I Γ′.\𝒓 ` 𝛾 : Γ
Γ′ ` 𝛾 .𝒓 : Γ.I

A substitution from Γ′ into some Γ.I is therefore composed of an interval term Γ′ ` 𝒓 : I
paired with a substitution Γ′.\𝒓 ` 𝛿 : Γ, an instantiation of Γ which “does not use” 𝒓 . (At
this point the intuition of “use” becomes more intuition than reality; in the formalism and
computational interpretation, it is indeed impossible to access an interval variable from
behind the restriction, but the meaning of “use” is less obvious in non-syntactic models
such as the upcoming presheaf interpretation.)

Moreover, we make this principle invertible: given Γ′ ` 𝛾 : Γ.I, there is an underlying
substitution into Γ that does not use the term Γ′ ` vI [𝛾] : I substituted for I. We write 𝛾†
for this substitution.

Γ′ ` 𝛾 : Γ.I

Γ′.\vI [𝛾] ` 𝛾† : Γ
Γ ctx Γ′ ` 𝛾 : Γ.I

Γ′ ` 𝛾 = 𝛾†.vI [𝛾] : Γ.I
Γ′ ` 𝒓 : I Γ′.\𝒓 ` 𝛾 : Γ

Γ′.\𝒓 ` 𝛾 = (𝛾 .𝒓)† : Γ

This sets up an adjunction between the category of contexts sliced over the bridge
interval and the category of contexts. An object of said slice category is a pair (Γ′,𝒓)
consisting of a context Γ′ and term Γ′ ` 𝒓 : I. Given such an object and a second context
Γ, we have a correspondence between substitutions Γ′.\𝒓 ` 𝛾 : Γ and substitutions Γ′ ` 𝛾 ′ :
Γ.I with the property that Γ′ ` vI [𝛾 ′] = 𝒓 : I, instrumented by the −.𝒓 and −† substitution
formers. Note that we can also derive functorial actions of extension and restriction using
said operators.

Γ′ ` 𝛾 : Γ

Γ′.I ` 𝛾 I B (𝛾 ◦ id†).vI : Γ.I
Γ′ ` 𝛾 : Γ Γ ` 𝒓 : I

Γ′.\𝒓 [𝛾] ` (𝛾 \ 𝒓) B ((id.𝒓) ◦ 𝛾)† : Γ.\𝒓

Wemake the correspondence into a genuine adjunction by additionally imposing natural-

211

ity equations.
Γ′′ ` 𝒓 : I Γ′′.\𝒓 ` 𝛾 ′ : Γ′ Γ′ ` 𝛾 : Γ

Γ′′ ` (𝛾 ◦ 𝛾 ′).𝒓 = 𝛾 I ◦ (𝛾 ′.𝒓) : Γ.I

Γ′′ ` 𝛾 ′ : Γ′ Γ′ ` 𝛾 : Γ.I

Γ′′.\vI [𝛾 ◦ 𝛾 ′] ` (𝛾 ◦ 𝛾 ′)† = 𝛾† ◦ (𝛾 ′ \ vI [𝛾]) : Γ
Finally, we include the two interval constants and the additional structural rules avail-

able to bridge interval variables: weakening and exchange as well as exchange with path
interval variables.

Γ ` 0I : Γ.I Γ ` 1I : Γ.I Γ.I ` pI : Γ
Γ ctx

Γ.I.I ` exII : Γ.I.I
Γ ctx

Γ.I.I ` exII : Γ.I.I
The constant interval terms are then obtained as Γ ` vI [0I] : I and Γ ` vI [1I] : I. We

deliberately introduce the constants as substitutions rather than as terms, as the former
is stronger than the latter: given some Γ ` 𝒓 : I, we can only construct a substitution
Γ ` id.𝒓 : Γ.\𝒓 .I, not a substitution from Γ to Γ.I. Using Γ ` 𝜺I : Γ.I, on the other hand, we
are able to access hypotheses beneath restriction by a constant: Γ.\vI [𝜺I] ` 𝜺I† : Γ.

We require the structural and endpoint substitutions to satisfy various unsurprising
equations, expressing their naturality and interactions with each other. (We refer to Gran-
dis and Mauri [GM03] for more detailed analysis of the equations generating various cat-
egories of cubical sets.)

𝜀 ∈ {0, 1} Γ′ ` 𝛾 : Γ

Γ′ ` 𝛾 I ◦ 𝜺I = 𝜺I ◦ 𝛾 : Γ.I

Γ′ ` 𝛾 : Γ

Γ′.I ` 𝛾 ◦ pI = pI ◦ 𝛾 I : Γ

Γ′ ` 𝛾 : Γ

Γ′.I.I ` 𝛾 II ◦ exII = exII ◦ 𝛾 II : Γ.I.I
𝜀 ∈ {0, 1}

Γ ` pI ◦ 𝜺I = id : Γ
Γ ctx

Γ.I.I ` pI ◦ exII = pII : Γ.I

Γ ctx

Γ.I.I.I ` exIII ◦ exII ◦ exIII = exII ◦ exIII ◦ exII : Γ.I.I.I
Γ ctx

Γ.I.I ` (pII.vI) ◦ exII = id : Γ.I.I

Γ ctx

Γ.I.I ` exII ◦ (pII.vI) = id : Γ.I.I
This judgmental structure is sufficient to express the typing rules for the bridge and

Gel types as well as the extent operator. We display rules for bridge and Gel types in Fig-
ures 11.1 and 11.2 respectively. (Expressing the rules for extent without named variables
is sufficiently painful that we leave this as an exercise to the reader.)

212 Formalism and models

Γ.I ` 𝐴 type Γ ` 𝑀0 : 𝐴[0I] Γ ` 𝑀1 : 𝐴[1I]
Γ ` Bridge(𝐴,𝑀0, 𝑀1) type

Γ.I ` 𝐴 type Γ.I ` 𝑀 : 𝐴

Γ ` 𝜆I(𝑀) : Bridge(𝐴,𝑀 [0I], 𝑀 [1I])

Γ ` 𝒓 : I Γ.\𝒓 .I ` 𝐴 type
Γ.\𝒓 ` 𝑀0 : 𝐴[0I] Γ.\𝒓 ` 𝑀1 : 𝐴[1I] Γ.\𝒓 ` 𝑃 : Bridge(𝐴,𝑀0, 𝑀1)

Γ ` 𝑃 𝑟 : 𝐴[id.𝒓]

𝜀 ∈ {0, 1}
Γ.I ` 𝐴 type Γ ` 𝑀0 : 𝐴[0I] Γ ` 𝑀1 : 𝐴[1I] Γ ` 𝑃 : Bridge(𝐴,𝑀0, 𝑀1)

Γ ` 𝑃 [𝜺I†] vI [𝜺I] = 𝑀𝜀 : 𝐴[𝜺I]

Γ ` 𝒓 : I Γ.\𝒓 .I ` 𝐴 type Γ.\𝒓 .I ` 𝑀 : 𝐴
Γ ` 𝜆(𝑀) 𝑟 = 𝑀 [id.𝒓] : 𝐴[id.𝒓]

Γ.I ` 𝐴 type Γ ` 𝑀0 : 𝐴[0I] Γ ` 𝑀1 : 𝐴[1I] Γ ` 𝑃 : Bridge(𝐴,𝑀0, 𝑀1)
Γ ` 𝑃 = 𝜆I(𝑃 [id†] vI) : Bridge(𝐴,𝑀0, 𝑀1)

Figure 11.1: Rules for bridge types in a parametric type theory formalism

11.1 Bicubical set model
We can build a non-computational model in the category of Kan presheaves following the
pattern established in Section 3.3.1. This time around, our presheaves are over the inter-
val contexts of parametric cubical type theory, i.e., contexts of bridge and path interval
variables.

Definition 11.1.1. The cartesian-affine bicube category �c×a is the category whose ob-
jects are interval contexts Ψ ictx of parametric cubical type theory and whose morphisms
𝜓 ∈ �c [Ψ′,Ψ] from Ψ′ to Ψ are interval substitutions Ψ′ ⊩ 𝜓 ∈ Ψ.

Because we have exchange between path and bridge interval variables, �c×a is equiv-
alent to the product �c ×�a of the cartesian cube category �c from Section 3.3.1 and the
category �a of bridge variables and substitutions, but we do not need this fact here.

Within the presheaf category PSh(�c×a), we have two interval objects provided by the
Yoneda embedding: the path interval I B (𝑥 :I) is joined by a bridge interval I B (𝒙 :I).

Bicubical set model 213

Γ ` 𝒓 : I Γ.\𝒓 ` 𝐴0 type Γ.\𝒓 ` 𝐴1 type Γ.\𝒓 .𝐴0.𝐴1 [p] ` 𝑅 type

Γ ` Gel𝑟 (𝐴0, 𝐴1, 𝑅) type

𝜀 ∈ {0, 1} Γ ` 𝐴0 type Γ ` 𝐴1 type Γ.𝐴0.𝐴1 [p] ` 𝑅 type

Γ ` Gel𝜀 (𝐴0 [𝜺I†], 𝐴1 [𝜺I†], 𝑅 [𝜺I†
××]) = 𝐴𝜀 type

Γ ` 𝒓 : I Γ.\𝒓 ` 𝑀0 : 𝐴0
Γ.\𝒓 ` 𝑀1 : 𝐴1 Γ.\𝒓 .𝐴0.𝐴1 [p] ` 𝑅 type Γ.\𝒓 ` 𝑃 : 𝑅 [id.𝑀0.𝑀1]

Γ ` gel𝑟 (𝑀0, 𝑀1, 𝑃) : Gel𝑟 (𝐴0, 𝐴1, 𝑅)

𝜀 ∈ {0, 1}
Γ ` 𝑀0 : 𝐴0 Γ ` 𝑀1 : 𝐴1 Γ.𝐴0.𝐴1 [p] ` 𝑅 type Γ ` 𝑃 : 𝑅 [id.𝑀0.𝑀1]

Γ ` gel𝜀 (𝑀0 [𝜺I†], 𝑀1 [𝜺I†], 𝑃 [𝜺I†]) = 𝑀𝜀 : 𝐴𝜀

Γ ` 𝐴0 type
Γ ` 𝐴1 type Γ.𝐴0.𝐴1 [p] ` 𝑅 type Γ.I ` 𝑄 : GelvI (𝐴0 [id†], 𝐴1 [id†], 𝑅 [id†

××])
Γ ` ungel(𝑄) : 𝑅 [id.𝑄 [0I] .𝑄 [1I]]

Γ ` 𝑀0 : 𝐴0 Γ ` 𝑀1 : 𝐴1 Γ.𝐴0.𝐴1 [p] ` 𝑅 type Γ ` 𝑃 : 𝑅 [id.𝑀0.𝑀1]
Γ ` ungel(gelvI (𝑀0 [id†], 𝑀1 [id†], 𝑃 [id†])) = 𝑃 : 𝑅 [id.𝑀0.𝑀1]

Γ ` 𝒓 : I Γ.\𝒓 ` 𝐴0 type Γ.\𝒓 ` 𝐴1 type
Γ.\𝒓 .𝐴0.𝐴1 [p] ` 𝑅 type Γ.\𝒓 .I ` 𝑄 : GelvI (𝐴0 [id†], 𝐴1 [id†], 𝑅 [id†

××])
Γ ` 𝑄 [id.𝒓] = gel𝑟 (𝑄 [0I], 𝑄 [1I], ungel(𝑄)) : Gel𝑟 (𝐴0, 𝐴1, 𝑅)

Figure 11.2: Rules for Gel types in a parametric type theory formalism

214 Formalism and models

We can repeat the constructions from Section 3.3.1 to define the interpretations of the
judgments as well as the context, substitution, type, and term formers inherited from
cubical type theory.

To interpret the parametric constructs, the first step is to identify two functors be-
tween the bicube category �c×a and its slice �c×a/(𝒙 : I) over the interval context with a
single bridge variable, which we henceforth abbreviate as�c×a/I. Objects of the latter cat-
egory are pairs (Ψ, 𝒓) of interval contexts Ψ ictx equipped with a distinguished Ψ ⊩ 𝒓 ∈ I,
while morphisms 𝜓 ∈ (�c×a/I) [(Ψ′, 𝒓 ′), (Ψ, 𝒓)] are substitutions Ψ′ ⊩ 𝜓 ∈ Ψ such that
Ψ′ ⊩ 𝒓𝜓 = 𝒓 ′ ∈ I. We have a functor (−) ⊗ I : �c×a → �c×a/I, extension by a bridge
interval, defined on objects and morphisms as follows.

Ψ ⊗ I B ((Ψ, 𝒙 : I), 𝒙)
𝜓 ⊗ I B (𝜓, 𝒙/𝒙)

That is, we take Ψ to the extended context (Ψ, 𝒙 : I) with its canonical variable element
Ψ, 𝒙 : I ⊩ 𝒙 ∈ I.

We also have a second restriction functor Res : �c×a/I → �c×a in the opposite direc-
tion, using the functorial action of interval restriction (Lemma 9.1.11).

Res(Ψ, 𝒓) B Ψ \ 𝒓
Res(Ψ′ ⊩ 𝜓 ∈ Ψ) B (𝜓 : Ψ) \ 𝒓

As we observed while establishing our formalism, restriction is left adjoint to extension:
there is an isomorphism between �c×a [Ψ′ \ 𝒓,Ψ] and (�c×a/I) [(Ψ′, 𝒓),Ψ ⊗ I] for any
(Ψ′, 𝒓) and Ψ, natural in both arguments.

A single functor 𝐹 : C → D between index categories induces a trio of adjoint func-
tors 𝐹! a 𝐹 ∗ a 𝐹∗ between the presheaf categories PSh(C) and PSh(D). The center functor
𝐹 ∗ : PSh(D) → PSh(C) is given by precomposition: 𝐹 ∗(𝐺)(𝑐) B 𝐺 (𝐹 (𝑐)) for 𝑐 ∈ C.
The left and right adjoints are given by left and right Kan extension respectively. For a
thorough and general account of these we refer to [Rie14, Chapter 1]. For our purposes,
we only need the left adjoint and really only need to know that it exists, but we give a
description of its behavior on objects for intuition’s sake. Given 𝐺 ∈ PSh(C) and 𝑑 ∈ D,
we define

𝐹!(𝐺) (𝑑) B {(𝑐, 𝑓 , 𝑡) | 𝑐 ∈ C, 𝑓 ∈ D[𝑑, 𝐹 (𝑐)], 𝑡 ∈ 𝐺 (𝑐)}/≈

where ≈ is the equivalence relation generated by (𝑐, 𝑓 , 𝑡) ≈ (𝑐′, 𝑓 ′, 𝑡 ′) whenever there
exists 𝑔 ∈ C[𝑐, 𝑐′] such that 𝑓 ′ = 𝐹 (𝑔) ◦ 𝑓 and𝐺 (𝑔) (𝑡 ′) = 𝑡 . For us, one essential property
of this definition is that it commutes with the Yoneda embedding: we have 𝐹!((𝑐)) �
(𝐹 (𝑐)).

Bicubical set model 215

Returning to cubical sets, we thus we have two pairs of induced adjoint functors on
presheaves as shown in the diagram below.

PSh(�c×a/I) PSh(�c×a) PSh(�c×a/I)

Res!

⊥

Res∗

((−) ⊗ I)!

⊥

((−) ⊗ I)∗

Henceforth we abbreviate I! B ((−) ⊗ I)! and I∗ B ((−) ⊗ I)∗. The fact that Res is left
adjoint to (−) ⊗ I moreover implies that Res∗ is also left adjoint to I∗. This implies that in
fact I! � Res∗: both are left adjoint to I∗ (or right adjoint to Res!) and adjoints are uniquely
determined.

Finally, the category PSh(�c×a/I) is equivalent to the slice category PSh(�c×a)/I. If
we thereby regard these functors as going between PSh(�c×a) and PSh(�c×a)/I, we may
calculate the effect of Res! : PSh(�c×a)/I → PSh(�c×a) for (𝐺,𝑔) ∈ PSh(�c×a)/I and
Ψ ∈ �c×a as follows.

Res!(𝐺,𝑔) (Ψ) =


(Φ, 𝒔,𝜓, 𝑡)

����������
Φ ictx
Φ ⊩ 𝒔 ∈ I
Ψ ⊩ 𝜓 ∈ Φ \ 𝒔
𝑡 ∈ 𝑃 (Φ)
𝑔(Φ) (𝑡) = 𝒔


/≈

Here ≈ is the equivalence relation generated by (Φ, 𝒔,𝜓, 𝑡) ≈ (Φ′, 𝒔′,𝜓 ′, 𝑡 ′) whenever there
is some Φ′ ⊩ 𝜙 ∈ Φ such that Φ′ ⊩ 𝒔′ = 𝒔𝜙 ∈ I, Ψ ⊩ 𝜓 = ((𝜙 : Φ) \ 𝒔)𝜓 ′ ∈ Φ \ 𝒔, and
𝑃 (𝜙) (𝑡) = 𝑡 ′. The functor I!, meanwhile, is more simply obtained as follows, reflecting its
characterization as Res∗.

I!(𝐺) = (𝐺′, 𝑔) where
{
𝐺′(Ψ) B ∑

Ψ⊩𝒓∈I𝐺 (Ψ \ 𝒓)
𝑔(Ψ)(𝒓, 𝑡) B 𝒓

With these tools in hand, we begin interpreting the parametricity elements of the
formalism. We interpret bridge interval terms Γ ` 𝒓 : I by morphisms J𝒓K : JΓK → I. For
any semantic context 𝐺 , we interpret its extension by a bridge interval by as 𝜋0(I!(𝐺)) ∈
PSh(�c×a), with the accompanying variable projection given by 𝜋1(I!(𝐺)) : 𝐺 → I; notice
that the definition of I!(𝐺) is exactly what we would expect from context extension. From
the calculation of I!(𝐺) above, it is straightforward to check that it validates the structural
rules we require of the bridge interval. We likewise interpret context restriction by Res!,
the left adjoint to I!.

216 Formalism and models

What remains is to interpret the various type and term formers. We will not go
through these explicitly, but rather observe that the proofs of the rules in our compu-
tational interpretation can be mechanically adapted. The key here is that, like the compu-
tational interpretation, types and terms in the presheaf interpretation are defined by their
behavior after “closing” substitutions. Recall, for example, that a semantic pretype over a
cubical set𝐺 is a family of sets𝑇 (Ψ, 𝑔) indexed by pairs of Ψ ∈ �c and 𝑔 ∈ 𝐺 (Ψ) and with
transition functions between them. As such, 𝑇 is determined by the instances 𝛼∗𝑇 given
by substitutions 𝛼 : (Ψ) → 𝐺 . This means that, to prove that the presheaf interpreta-
tion interprets the various rules, it suffices to show each holds when the conclusion is in
a “closed” context. In these cases, we can exploit the aforementioned key property of the
left Kan extension: we have Res!((Ψ), 𝒓) � (Ψ \ 𝒓) and I!((Ψ)) � (Ψ, 𝒙 : I). Thus the
statements of the rules on closed contexts are more or less the same in the computational
interpretation and presheaf semantics.

Chapter 12

Conclusions

12.1 Related work

Internal parametricity The concept of parametricity originateswith Reynolds [Rey83],
who gave a relational interpretation of simply-typed 𝜆-calculus with type variables in or-
der to show that polymorphic functions treat their type arguments parametrically. His
vision of parametricity is external and semantic: the results that follow from parametricity
are theorems about the denotation of terms in a set-theoretic model. This kind of para-
metricity has been extended in every which direction—mostly notably for our purposes,
to dependent type theory, by Atkey, Ghani, and Johann [AGJ14].

Mairson [Mai91], as well as Abadi, Cardellin, Curien, and Lévy [ACC93] and Plotkin
and Abadi [PA93], developed early syntactic accounts of parametricity. In these systems,
one has a logic on top of a type-theoretic formalism (typically the impredicative polymor-
phic 𝜆-calculus) in which parametricity properties can be derived. The relational logic can
then be interpreted in some setting such as Reynolds’ (modulo issues of impredicativity).

Bernardy and Lasson [BL11] observed more generally that, given a pure type system
(PTS) [Bar91], one can find a new, possibly stronger PTS in which the relational interpre-
tation of the former system can be defined. Bernardy, Jansson, and Paterson [BJP10] show
that in a sufficiently expressive, so-called reflective PTS, such as a dependent type theory,
the relational interpretation can be defined in the same PTS. This is a step towards fully
internal parametricity: the inputs and outputs of the parametricity translation belong to
the same theory, but the translation function itself is metatheoretical. Keller and Lasson
[KL12b] proved a similar result, constructing—and implementing as a tactic in the Coq
proof assistant [Coq]—a parametricity translation from types to elements of an impred-
icative universe of propositions.

Krishnaswami and Dreyer [KD13], meanwhile, define a relational realizability seman-
tics of a formalism for extensional dependent type theory that validates parametricity

217

218 Conclusions

theorems. They observe that the consequences of parametricity may be added as axioms
to the theory without disrupting its computational character, thereby internalizing para-
metricity. Their relations are contentless; our own computational interpretation may, to
some extent, be seen as a contentful reimagining of their semantics.

True internal parametricity in our sense was introduced by Bernardy and Moulin
[BM12], who extended dependent type theory with internal operators − ∈ J−K and J−K
computing the relational interpretations of types and terms respectively. Their formalism
is moreover adequate from a computational perspective. This earliest foray into internal
parametricity was substantially complicated by the higher-dimensional structure of iter-
ated parametricity—the need to define the parametricity interpretation of − ∈ J−K andJ−K themselves—and included operations for permuting the order of iterated parametric-
ity applications and “hypercube” syntax. In later work, influenced by cubical type theory,
these elements were replaced by interval variables [BM13; BCM15].

Our own parametric type theory is inspired directly from the formalism and refined
presheaf interpretation for internal parametricity defined by Bernardy, Coquand, and
Moulin (BCM) [BCM15], also described with slight differences in Moulin’s dissertation
[Mou16]. We enrich the theory by replacing the underlying ITT with a cubical type the-
ory, which provides a better-behaved equality and opportunities to apply parametricity to
higher-dimensional problems (as in Section 10.5). As noted in Section 11.1, the improved
equality allows us to relax some equations they require, with the effect of simplifying the
presheaf interpretation; they use not-quite-presheaves of 𝐼 -sets. (Admittedly, one must in
exchange deal with Kan operations and so on.) Much of the theory developed in Chap-
ter 10, although novel, can be replicated to some extent in their theory. The inadequacies
of ITT equality, however, are an ever-present irritant; for example, one cannot show that
the class of bridge-discrete types is closed under function types, as ITT does not charac-
terize the identity types of functions. A more cosmetic difference is that we use binary
parametricity (based on relations) rather than unary parametricity (based on predicates).

On the formalistic level, we import Cheney’s concept of name restriction, developed
for a theory of nominal sets [Che12], to give rules for Bridge and Gel types that permit
substitution elimination, rectifying a defect of the BCM formalism. The theory presented
in [BM13] uses a system of “tainted” and “oblivious” hypotheses to enforce apartness
restrictions, but is different enough from the BCM theory on the whole that it is difficult
to make a comparison.

We have eschewed the BCM notation in favor of one that emphasizes the similarity
with cubical type theory. To ease comparison, we provide a translation dictionary in Fig-
ure 12.1. Note that, because of the additional equations BCM impose to ensure relativity,
the correspondence is not one-to-one, with the same type and term formers in their the-
ory playing multiple roles from our perspective. In Moulin’s dissertation, the notion of a
function (𝑖 : I) → 𝐴 without a fixed endpoint (called a “ray”) is included separately from
bridge types, and term formers that are primitive in [BCM15] are often implemented as

Related work 219

This paper [BCM15] [Mou16]
Bridge(𝒙 .𝐴, 𝑎0, 𝑎1) 𝐴 3𝒙 𝑎 (∀𝒙 .𝐴) 3 𝑎

𝜆I([)𝒙]𝑎 𝑎 · 𝒙 (〈𝒙〉𝑎)!
𝑝 𝒙 (𝑎,𝒙 𝑝) L𝑎,𝒙 𝑝M

extent𝒙 (−;𝑎0.𝑡0, 𝑎1.𝑡1, 𝑎0.𝑎1.𝑎.𝑢) 〈𝜆𝑎.𝑡,𝒙 𝜆𝑎.𝜆𝑎.𝑢〉 〈|𝜆𝑎.𝑡,𝒙 𝜆𝑎.𝜆𝑎.𝑢 |〉
Gel𝒙 (𝐴0, 𝐴1, 𝑎0.𝑎1.𝑅) (𝑎 : 𝐴) ×𝒙 𝑅 𝐴 ⊲⊳𝒙 𝑅

gel𝒙 (𝑎0, 𝑎1, 𝑐) (𝑎,𝒙 𝑐) L𝑎,𝒙 𝑝M
ungel(𝒙 .𝑎) 𝑎 · 𝒙 (〈𝒙〉𝑎)!

Figure 12.1: Translation dictionary for internal parametricity

combinations of terms relating first interval dependency to rays and then rays to bridges.
In particular, 𝐴 ⊲⊳𝒙 𝑅 is syntactic sugar for a term L𝐴,Ψ𝐴𝑅M@𝒙 , while 〈|𝑓 ,𝒙 ℎ |〉 is sugar
for 〈|𝑓 ,Φ𝑓ℎ |〉@𝒙 . As a result, equivalents of Gel and extent are sometimes called Ψ- and
Φ-operators respectively in the literature.

Internal parametricity à la Nuyts et al. Nuyts, Vezzosi, and Devriese [NVD17] define
a second internally parametric type theory building on Bernardy et al.’s work. Their sys-
tem, ParamDTT, follows the BCM theory by employing intervals to express the action
of terms on relations. Like our own theory, Nuyts et al.’s includes two kinds of interval,
defining “bridges” and “paths”, and our own use of the word “bridge” is borrowed from
this word.

However, the coincidence of terminology is somewhat misleading. ParamDTT’s
paths provide a much weaker notion of heterogeneous equality; paths are not in gen-
eral required to satisfy anything like the Kan operations. The only requirement is that
homogeneous paths give rise to identities, what Nuyts et al. call the path degeneracy ax-
iom.

𝑃 ∈ Path(.𝐴,𝑀0, 𝑀1)
degax(𝑃) ∈ Id(𝐴,𝑀0, 𝑀1)

ParamDTT’s paths are therefore closer in spirit to the heterogeneous equalities of Obser-
vational Type Theory [AMS07] than to those of cubical type theory. From our perspec-
tive, it may be more natural to think of these paths as more like a second, stronger form of
bridge. Indeed, Nuyts and Devriese [ND18] have since developed a more general system
that includes a tower of notions of 𝑛-relatedness, with ParamDTT’s paths and bridges as
the first two levels. In order to avoid confusion with our own terminology, we henceforth

220 Conclusions

take a page from this sequel by refering to ParamDTT’s paths as 0-bridges and bridges
as 1-bridges.

ParamDTT includes multiple function types requiring different behavior on bridges;
Nuyts et al. identify parametric functions not as those that merely preserve 𝑛-bridges,
but as those that take 1-bridges to 0-bridges. The interaction between 0- and 1-bridges is
mediated by a system of modalities. In particular, variables in type positions are checked
under a different modality than variables in element position. Their system therefore
captures a phase distinction where term-level computation cannot depend significantly
on type-level computation, an aspect of parametricity absent from our work.

The introduction of two kinds of bridge is principally motivated by the desire for an
identity extension lemma. If we want to analyze a term of typeU → 𝐴with parametricity,
we cannot have identity extension for bridges in the domain type: bridges in the universe
must be given by relations, not paths. However, if we want every parametric function
U → 𝐴 to be constant, we do need identity extension in the codomain 𝐴. This is resolved
in ParamDTT by asking that parametric functions send 1-bridges, which do not support
identity extension, to 0-bridges, which do. We take a different approach: rather than
requiring any form of global identity extension lemma, we can internally identify the
class of types that satisfy it. Thus not all parametric functions U → 𝐴 are constant, but
they are if 𝐴 is bridge-discrete (Lemma 10.4.2), and we can show that a large class of type
formers preserve bridge-discreteness.

Another notable departure from the BCM theory is that ParamDTT uses structural
variables (for both kinds of bridge), whereas we have stressed the importance of affine
variables. As we have discussed in Section 9.4, proper Gel-types require an affine in-
terval; ParamDTT instead uses Glue-types [CCHM15], of which V-types are a special
case, and Weld-types, their dual. Recall from Section 9.4 that V-types are insufficient in
our setting because degenerate type bridges need not correspond to identity relations.
This is smoothed over in ParamDTT by the stronger requirements on parametric func-
tions: degenerate type 0-bridges do correspond to identity relations. One casualty of this
setup is that iterated parametricity becomes impossible: the function arguments to Glue
and Weld types are checked under a pointwise modality that prevents such types from
stacking. Thus the coherence functions produced by a parametricity argument are not
themselves guaranteed to be parametric. This situation is improved in [ND18], where the
infinite hierarchy of 𝑛-relations prevents parametricity from “running out”.

Nuyts [Nuy20] has also developed a unified treatment of V, Gel, and similar types
as instances of what he calls a transpension type. We discuss this in more detail in Sec-
tion 17.1.

Higher-dimensional parametricity Outside the area of internal parametricity, higher-
dimensional or contentful (or proof-relevant) parametricity, as well as logical relations

Related work 221

more generally, have been explored in a number of contexts.
Benton, Hofmann, and Nigam [BHN13; BHN14] use a proof-relevant logical rela-

tion to analyze abstract effects, making use in particular of proof-relevant existential
quantification over allocations to a heap. More recently, proof-relevant logical relations
have been exploited to cleanly obtain canonicity and normalization results for dependent
type theories [Shu15; Coq19; CHS19; KHS19; SAG19; GKNB20]. Proof-relevant relations
naturally accommodate the universes of dependent type theory, which frequently beg
for proof-relevant interpretation. In the case of parametricity, for example, one wants
to interpret the universe as the proof-relevant relation of relations—that is, one wants
“Bridge(U, 𝐴, 𝐵) ' (𝐴 × 𝐵 → U)”. Sterling and Harper [SH20] use proof-relevant (and
syntactic) parametricity to obtain an abstraction theorem for a program module calculus;
proof-relevance becomes critical because modules can contain not only terms but types,
which again have a naturally contentful parametricity interpretation.

Higher-dimensionally parametricmodels of the impredicative polymorphic 𝜆-calculus
have been explicitly explored by Ghani, Nordvall Forsberg, and Orsanigo [GNO16] as well
as Sojakova and Johann [SJ18]. Johann and Sojakova have moreover defined a notion of
𝑛-dimensionally parametric model for 𝑛 ≤ ∞ based on cubical sets [JS17].

Directed type theory Riehl and Shulman’s directed type theory formalism [RS17], and its
fibrant presheaf model in particular, bears a strong resemblance to parametric cubical type
theory. Like our theory, it combines higher-dimensional equality structure (here cubical,
there simplicial) with a second layer of relational structure. In their work, the objective is
to identify the typeswhose relational structure is∞-categorical, i.e., supports composition
of morphisms in an appropriate sense, enabling the use of the theory as a language for
synthetic higher category theory. However, the theory itself allows arbitrarily relational
structure, in order to avoid involving issues of variance at the judgmental level.

It was initially suspected that this model would contain a universe satisfying what
we call relativity, but Cavallo, Riehl, and Sattler later found that this was not the case
[Rie18]. Our comparative analysis of Gel and V in Section 9.4 provides some intuition for
this failure: relativity relies on the peculiar structure of the affine cube category, failing
in more “structural” settings like cartesian cubical and simplicial sets. Subsequent work
on this flavor of directed type theory has focused on instead constructing a covariant uni-
verse in whichmorphisms/bridges correspond to functors [Rie18]; Weaver and Licata have
developed a structural cubical model of directed type theory containing such a universe
[WL20].

One could try developing a version of directed type theory based on affine cubical
sets in order to obtain a relativistic universe, but is unlikely that the concept of (∞, 1)-
category theory it produced would be equivalent to the classical one. Sattler has shown
that the BCH model, as a setting for homotopy theory (i.e., Quillen model category), is

222 Conclusions

not equivalent to the classical model in spaces. It is unclear whether one can in some way
get “the best of both worlds”: a relational setting that contains a relativistic universe but
becomes equivalent to a classical setting when restricted to (∞, 1)-categories or (∞, 1)-
groupoids.

Substructural cubes Our parametric type theory, following Bernardy et al., adopts
the affine cubical structure used in Bezem, Coquand and Huber’s cubical model of ITT
with the univalence axiom. This model has been largely abandoned in favor of structural
cubical type theories, in part because of the comparative intuitive simplicity of structural
variables, but also due to the difficulty of interpreting higher inductive types in this model.

To get an intuitive sense of the problem, consider the following “interval” higher in-
ductive type, consisting of two points with a path between them.

inductive Ival where
| zero ∈ Ival
| one ∈ Ival
| seg(𝑥 : I) ∈ Ival [𝑥 ≡ 0 ↩→ zero, 𝑥 ≡ 0 ↩→ one]

We would expect an eliminator for this type validating the following rule.

𝑖 : Ival � 𝐴 type 𝑀 ∈ Ival
𝑍 ∈ 𝐴[zero/𝑖] 𝑂 ∈ 𝐴[one/𝑖] 𝒙 : I � 𝑆 ∈ 𝐴[seg(𝑥)/𝑖]

elim(𝑖 .𝐴;𝑀 ;𝑍,𝑂, 𝑥 .𝑆) ∈ 𝐴[𝑀/𝑖]

When we attempt to devise an operational semantics for this eliminator, however, we
get stuck: how should elim(𝑖 .𝐴; seg(𝑦);𝑍,𝑂, 𝑥 .𝑆) reduce? Following Part II, we would
like to reduce to 𝑆 [𝑦/𝑥], but the typing rule does not guarantee that 𝑆 is apart from 𝑦,
so this substitution is not permitted for affine interval variables. On a more conceptual
level, the elimination principle sets up an isomorphism between structural functions 𝑓 :
Ival → 𝐴 and bridges of type Bridge(𝐴, 𝑓 zero, 𝑓 one); higher inductive types are in a way
inherently structural.

By leveraging the Kan operations to simulate structural substitution, it is possible to
model an interval higher inductive type in affine cubical sets that contains an elimina-
tor with the above type. In the non-dependent case, to give an idea, we can define the
reduction for the path constructor as follows.

elim(.𝐴; seg(𝑦);𝑍,𝑂, 𝑥 .𝑆) ↦−→ hcom0�𝑦
𝐴 (𝑆 [0/𝑥];𝑥 = 0 ↩→ 𝑆 [0/𝑥], 𝑥 = 1 ↩→ 𝑧.𝑆 [𝑧/𝑥])

Given 𝑍,𝑂, 𝑥 .𝑆 with types as in the rule above, we can construct a path in Path(𝐴,𝑍,𝑂)
from 𝜆I𝑦. elim(.𝐴; seg(𝑦);𝑍,𝑂, 𝑥 .𝑆) to 𝜆I𝑥 . 𝑆 , although we do not obtain it as an exact
equality.

Related work 223

This means that at least some simple higher inductive types can be obtained in Bezem,
Coquand, and Huber’s model, although the result is certainly less usable than in the struc-
tural case, and it is unclear whether, e.g., parameterized HITs exist. On the other hand, the
problem spells disaster for any hope of higher inductive types “in the bridge direction”,
that is, inductive types with bridge rather than path constructors. In that case, we cannot
rely on Kan operations to get out of a jam. In fact, we can confirm using relativity that no
“bridge interval HIT” can exist.

Theorem 12.1.1. There is no type inductively generated by points zero and one and a
bridge seg between them.

Proof. In ITT, the existence of such a type proves function extensionality [Hof95, §3.2.7;
Uni13, Lemma 6.3.2]. The same applies here: given 𝑝 : (𝑎 :𝐴) → Bridge(𝐵, 𝑓0 𝑎, 𝑓1 𝑎), we
can derive a map 𝐹 ∈ 𝐴 → Ival → 𝐵 such that 𝐹 𝑎 zero = 𝑓0 𝑎 ∈ 𝐵 and 𝐹 𝑎 one = 𝑓1 𝑎 ∈ 𝐵,
swap arguments to get 𝜆𝑖. 𝜆𝑎. 𝐹 𝑖 𝑎 ∈ Ival → 𝐴 → 𝐵, then extract a bridge:

𝜆I𝒙 . 𝜆𝑎. 𝐹 (seg(𝒙)) 𝑎 ∈ Bridge(𝐴 → 𝐵, 𝑓0, 𝑓1)

Generalizing to allow some dependency, the same argument shows that a pointwise fam-
ily (𝑎 :𝐴) → Bridge(𝒙 .𝐵, 𝑓0 𝑎, 𝑓1 𝑎) implies Bridge(𝒙 .(𝑎 :𝐴) → 𝐵, 𝑓0, 𝑓1) for any 𝒙 .𝐵.

Next, we show that this function extensionality for bridges is contradictory. Define
𝐼 ∈ (𝐴0, 𝐴1 : U) → Bridge(U,Unit,Unit) like so.

𝐼 𝐴0𝐴1 𝒙 B Gel𝒙 (Unit,Unit, . .𝐴0 ' 𝐴1)

Then extent gives us an induced term 𝐵 ∈ Bridge(U → U, 𝜆 .Unit, 𝜆 .Unit).

𝐵 𝒙 𝐴 B extent𝒙 (𝐴; .Unit, .U, 𝐴0.𝐴1. .𝒙 .𝐼 𝐴0𝐴1 𝒙)

We have a term 𝑃 as follows, where idiso(𝐴) is the identity isomorphism at 𝐴.

𝑃 B 𝜆𝐴. 𝜆I𝒙 . gel𝒙 (★,★, idiso(𝐴)) ∈ (𝐴 : U) → Bridge(𝒙 .𝐵 𝒙 𝐴,★,★)

By applying first the just-derived function extensionality and then our characterization
of functions at bridge type, we derive the following.

(𝐴0, 𝐴1 : U) (𝑝 : Bridge(U, 𝐴0, 𝐴1)) → Bridge(𝒙 .𝐵 𝒙 (𝑝 𝒙),★,★)

But by definition of Gel, this means that any bridge 𝑝 : Bridge(U, 𝐴0, 𝐴1) induces an iso-
morphism 𝐴0 ' 𝐴1, which clearly contradicts relativity. □

224 Conclusions

12.2 Outlook
We have brought internal parametricity to cubical type theory, showing that the latter
is a solid backdrop against which to develop the general consequences of internal para-
metricity and to prove concrete free theorems. We hope that the preliminary results of
Chapter 10—extending Bernardy and Moulin’s methodology for proving free theorems
to HITs and introducing notions such as bridge-discreteness—can serve as a jumping-off
point for further investigation of the internally parametric world. Our computational in-
terpretation and formalism likewise set the stage for implementation and metatheoretic
analysis.

The theory described in Chapter 11 is a first step towards the study of parametric for-
malisms, but we have yet to develop metatheorems such as normalization which would be
necessary to validate it as a “good” definition. We have developed an experimental type-
checker for a (non-cubical) parametric formalism, ptt1, forked from Gratzer, Sterling and
Birkedal’s blott typechecker for a modal type theory [GSB19]. Based on normalization
by evaluation [BS91; Abe13], it rests on an algorithm for normalizing terms, but we have
not done any work to verify its correctness. As ptt uses named variables for usability’s
sake, its relationship with the formalism in Chapter 11—in which we use a novel setup to
capture affine variables—is also not immediately clear.

Zooming out, parametric type theory is just one point in a design space of higher-
dimensional type theories that is still poorly understood. On the one hand, we have cubi-
cal type theory, where structural cubes (in any of several varieties) are preferable and lines
in the universe correspond to isomorphisms; on the other, we have parametric type the-
ory, which seems naturally affine and where lines in the universe correspond to relations.
Work on directed type theory has moreover exhibited universes where lines correspond
to functions [Rie18; WL20]. It is at present unclear whether these three varieties can be
situated in a broader spectrum of higher-dimensional type theories with univalence-like
properties.

1https://github.com/ecavallo/ptt

https://github.com/ecavallo/ptt

Part IV

Cohesive parametricity

225

Chapter 13

Introduction

We saw in Part III that internal parametricity can be a powerful tool, mechanically resolv-
ing problems of considerable complexity in cubical type theory. In a sense, however, we
have merely shifted the goalposts: we have not actually proven anything about the smash
product of cubical type theory, only theorems about the smash product in a different the-
ory we invented. To exaggerate a little, it is as if we added associativity as an axiom and
claimed to have proven it. In particular, our formalism for parametric type theory would
not be interpretable using the computational interpretation or presheaf model of cubical
type theory introduced in Part I; the elements of those models do not in general satisfy
parametricity theorems. In contrast, Reynolds’ original work established a property of a
non-parametric, set-theoretic model, namely that any element of this model definable in
a certain type-theoretic formalism is parametric. The parametric type theory of Part III is
a priori useless for this purpose.

In this part, we address the objection bymaking a further extension to parametric cubi-
cal type theory. We separate the theory into twomodes: one for parametric constructions,
one for non-parametric (“pointwise”) constructions. Each mode comes with its own no-
tion of context, type, and term; thus we essentially have two separate type theories, with
the judgments of the former matching those of Part III and of the latter matching those
of Parts I and II. The two halves are able to influence each other, however, via modal op-
erators that transform parametric contexts/types into pointwise contexts/types and vice
versa.

Using this judgmental and type structure, we are able to move in between the para-
metric and pointwise worlds, making use of parametricity results also in non-parametric
settings. To understand how this plays out, let us draw an analogy with the Reynolds’
original methodology. The pointwise type theory is like the set-theoretic model: the el-
ements of its types need not satisfy parametricity properties in general. The parametric
type theory, meanwhile, corresponds to the formalism: the elements of its types are guar-
anteed to behave parametrically. For types such as (𝐴:U) → 𝐴 → 𝐴, a parametric element

227

228 Introduction

has an underlying pointwise element derivable through the use of the modal operators,
mirroring the interpretation of the formalism into the set-theoretic model. What we can
say, then, is that pointwise terms that arise from parametric terms satisfy parametricity
properties.

Getting a bit more specific, we draw our modal operators from the theory of axiomatic
cohesion, defined by Lawvere [Law07] in a categorical setting and first formulated in type-
theoretic terms by Schreiber and Shulman [SS12; Shu18]. To say that a category C is cohe-
sive over another categoryD is, on an intuitive level, to say that objects of C are “spaces”
whose collections of “underlying points” are objects of D. (A category is a collection of
objects equipped with a notion of function between objects satisfying certain axioms.)

As a representative example, let us consider the category of cartesian cubical sets
PSh(�c), which we have used to model a cubical formalism in Section 3.3.1. Recalling
briefly the definition from that section, an object of PSh(�c) is a family of sets indexed by
contexts of interval variables, with functions between them for each interval substitution.

Definition (Replica of Definition 3.3.2). A cubical set𝐺 consists of the following data.

• For every context Ψ = (𝑥1 : I, . . ., 𝑥𝑛 : I), a set 𝐺 (Ψ).

• For every substitution 𝜓 = (𝑟1/𝑥1, . . ., 𝑟𝑛/𝑥𝑛) replacing the variables of a context Ψ as
above with terms in a context Ψ′ (variables or 0,1), a function 𝐺 (𝜓) : 𝐺 (Ψ) → 𝐺 (Ψ′).

We ask that 𝐺 preserve identity and composition of substitutions.

The intuition is that a cubical set𝐺 is a “space” described as an assemblage of higher-
dimensional cubes. Each set 𝐺 (𝑥1 : I, . . ., 𝑥𝑛 : I) is the collection of 𝑛-dimensional cubes
of the space: 𝐺 (·) is the set of points, 𝐺 (𝑥 : I) is the set of lines, 𝐺 (𝑥 : I, 𝑦 : I) is the
set of squares, and so on. The substitution functions, meanwhile, explain how the cubes
attach to each other. Given a line 𝑔 ∈ 𝐺 (𝑥 : I), for example, we have a pair of points
𝐺 (0/𝑥)(𝑔),𝐺 (1/𝑥) (𝑔) ∈ 𝐺 (·) representing the endpoints of that line.

The category of cubical sets is cohesive over the category of sets, Set: a cubical set
𝐺 consists of a set 𝐺 (·) of underlying points equipped with spatial information in the
form of higher-dimensional path structure. In Lawvere’s formulation, this is captured by
a chain of four functors (functions between categories) relating the two and satisfying

229

certain properties.

PSh(�c) Set

CComp
⊥

Disc
⊥
Glo
⊥

Codisc

The third functor in this chain,Glo, is the global sections functor, which takes a cubical
set 𝐺 and produces its set of underlying points Glo(𝐺) B 𝐺 (·). Above it is Disc, the
discrete embedding, which takes a set 𝑆 and produces a cubical set with a point for every
point of 𝑆 and trivial higher-dimensional path structure: Disc(𝑆) (Ψ) B 𝑆 for all Ψ. Disc
is adjoint to Glo, which means that cubical set functions Disc(𝑆) → 𝐺 are in natural
correspondence with set functions 𝑆 → Glo(𝐺): drawing a picture of a cubical setDisc(𝑆)
consisting only of points 𝑆 in the cubical set𝐺 is the same as drawing a picture of 𝑆 in the
set Glo(𝐺) of points of 𝐺 . We say that Disc is the left adjoint and Glo is the right adjoint
and write Disc a Glo to express the relationship between them.

On the other side ofDisc, a right adjoint codiscrete embedding Codisc turns a set into a
cubical set by adding paths between every pair of elements (and higher-dimensional cubes
between these paths); here we have a correspondence between set functions Glo(𝐺) → 𝑆
and cubical set functions 𝐺 → Codisc(𝑆), making Glo left adjoint to Codisc. Finally, the
furthest left adjoint is the connected components functor, which takes a cubical set to a
set by quotienting the set of points (i.e., global sections) by the path relation: we define
CComp(𝐺) B 𝐺 (·)/≈ where ≈ is the following relation.

𝑎 ≈ 𝑏 :⇐⇒ ∃𝑝 ∈ 𝐺 (𝑥 : I). 𝐺 (0/𝑥) (𝑝) = 𝑎 ∧𝐺 (1/𝑥) (𝑝) = 𝑏

For cohesive parametric type theory, we are interested in the cohesive structure of
parametric cubical type theory over ordinary cubical type theory. Thus the objects of both
the “cohesive” and “underlying points” categories are equipped with cubical structure, but
the objects of the cohesive category also carry bridge structure.

To translate this picture into our type-theoretic setting, we follow Shulman [Shu18]
in using a system of modalities. Loosely speaking, a modality is simply a unary opera-
tor on types; the terminology originates in modal logic, which generalizes formal logic
from statements about truth—e.g., “the proposition 𝑃 is true”—to statements such as “𝑃
is necessary” or “𝑃 is possible”. These different modes in which we may consider a state-
ment are related by modalities, operators on propositions that transfer between modes.
For example, we might define the proposition “□𝑃” (“necessarily 𝑃”) to be true when 𝑃 is
necessary.

230 Introduction

The main challenge in designing modal logics and type theories is in handling hypo-
thetical judgments, that is, formulating the interaction between modalities and the con-
text. Turning to the example of cohesion, suppose we have a type Γ � 𝐴 type in the
parametric mode and wish to take its type of global sections, Glo(𝐴). In what context
does this type live? It is nonsensical to ask that it live over Γ, which is after all a point-
wise rather than a parametric context. In truth, the more relevant question is the opposite
one: if we want to show Γ � Glo(𝐴) type, in what context should 𝐴 be well-typed?

There are many ways to approach this question, as we discuss further in Section 17.1.
Here we emulate the Fitch style [Clo18; BCMEPS20], arriving at an answer by exploiting
the fact the structure of Glo as a right adjoint. We will formulate its left adjoint, the dis-
crete embedding, as an operator −.dsc on contexts. We then have the following formation
and introduction rules for the global sections type—note that we annotate each judgment
with a mode.

Γ.dsc � 𝐴 type @ par

Γ � Glo(𝐴) type @ pt

Γ.dsc � 𝑀 ∈ 𝐴 @ par

Γ � mod(𝑀) ∈ Glo(𝐴) @ pt

The introduction rule—which in away forces the formation rule—provides some intuition:
the adjunction between Disc and Glo means that “maps” from Γ to Glo(𝐴) correspond to
“maps” from Γ.dsc to𝐴. Following this pattern, our type-theoretic incarnation of cohesion
will see the three left adjoints (CComp, Disc, Glo) appearing as operations on contexts,
while the three right adjoints (Disc, Glo, Codisc) will be internalizable as type formers.
The formulation of elimination rules, meanwhile, raises its own questions of context we
defer for now.

Once the modal apparatus is in place, we can apply it to convert between paramet-
ric and pointwise results. The main players are the discrete embedding Disc and global
sections functor Glo. (Indeed, the only role of the connected components functor is to
enable the formulation of rules for Disc, while the codiscrete embedding is principally
useful because its existence implies properties of Disc and Glo.) Suppose, for example,
we are given a parametric function 𝐹 ∈ (𝑋 : U) → 𝑋 → 𝑋 → 𝑋 @ par. This function is
defined on all types𝐴 in the parametric universe. But the pointwise universe is embedded
in the parametric universe via Disc, so we can also apply 𝐹 at pointwise types 𝐴:

𝐹 (Disc(𝐴)) ∈ Disc(𝐴) → Disc(𝐴) → Disc(𝐴) @ par

With some further work, we can demonstrate that this function between discrete types in
the parametric mode corresponds to a function 𝐴 → 𝐴 → 𝐴 in the pointwise mode. We
thus have an interpretation of the parametric function as a pointwise function. The main
result, then, is that this pointwise function inherits the parametricity theorems enjoyed
by its parametric equivalent.

231

Outline In Chapter 14, we develop our cohesive extension of parametric cubical type
theory. In Chapter 15, we apply the theory, showing how to take advantage of parametric-
ity in the non-parametric theory. In Chapter 16, we describe an extension of our previ-
ously developed formalisms to match the computational extension and sketch a cubical
set model. We discuss related work and future directions in Chapter 17.

Chapter 14

Cohesive parametric type theory

We develop a framework for cohesive parametric type theories following the pattern of
definition first established in Chapter 3. In Section 14.1, we first define an interval theory,
then give a notion of value type system that defines the value types and elements in each
interval context. A value type system induces definitions of the closed judgments in the
usual way. Up to this point, we are straightforwardly setting the theories of Parts I and III
side by side, defining judgments Ψ ⊩ 𝑀 ∈ 𝐴 @𝑚 in each mode𝑚 ∈ {par, pt}.

The next step, taken in Section 14.2, is to extend the closed judgments to open judg-
ments. It is easy enough to give the definition: an open judgment holds when it holds after
any closing substitution. It is significantly more complicated to show that this definition
satisfies the properties we need, as the forms of context are much more complex than
in previous iterations. We spend Section 14.3 doing so. Everything flows from the need
to formulate the rules for modal types, to which we finally arrive in Section 14.4. These
motivate first modal context operators, then endpoint hypotheses and modal hypotheses.

Context operators As sketched in Chapter 13, we will have a context operator for each
left adjoint of the cohesion situation and a modal type for each right adjoint, as in the
following rules for Disc(𝐴).

Γ.cc � 𝐴 type @ pt

Γ � Disc(𝐴) type @ par

Γ.cc � 𝑀 ∈ 𝐴 @ pt

Γ � mod(𝑀) ∈ Disc(𝐴) @ par

Thus we must define three modal context operators. We write −.cc for the connected
components functor, −.dsc for the discrete embedding, and −.glo for global sections.

Γ ctx @ par

Γ.cc ctx @ pt

Γ ctx @ pt

Γ.dsc ctx @ par

Γ ctx @ par

Γ.glo ctx @ pt

233

234 Cohesive parametric type theory

We define each of these by recursion on the raw context Γ; we then must show that each
modal operator takes well-typed contexts (those satisfying Γ ctx @ 𝑚) to well-formed
contexts.

One wrinkle appears when we try to define the global sections of the context (𝒙 : I).
The bridge interval is meant to have two global sections, namely the endpoints 0 and 1.
To express this, we introduce a new form of endpoint hypothesis that ranges over the two
constants.

Γ ctx @𝑚

(Γ, 𝒙 : 2) ctx @𝑚

We can then define (Γ, 𝒙 : I).glo B Γ.glo, 𝒙 : 2. One unfortunate consequence of this
definition is that −.glo does not restrict to an operator on interval contexts: (𝒙 : I) is an
interval context but (𝒙 : I).glo = (𝒙 :2) is not. This is a source of friction when we develop
the theory of closing substitutions.

Aside from this exception, the behaviors of the context operators on interval hypothe-
ses are straightforward. The connected components operator deletes bridge interval hy-
potheses, in effect collapsing them: the bridge interval has a single connected component.

(Γ, 𝒙 : I).cc B Γ.cc

It is useful to think of −.cc as having a similar character to the interval restriction op-
erator − \ 𝒙 : where restriction deletes a single bridge interval variable 𝒙 , cc deletes all
bridge interval variables. The discrete embedding −.dsc is not defined on bridge interval
hypotheses, as these only appear in parametric contexts. Each operator commutes with
path interval and endpoint hypotheses.

A final question that needs answering is how to define the action of modalities on
term hypotheses; this we defer for the moment.

Negative elimination We take two different approaches to elimination: one for the
global type Glo(𝐴) and codiscrete type Codisc(𝐴), one for the discrete type Disc(𝐴). The
former two have additional structure we can exploit to give simple projection rules: not
only are they right adjoints, but their left adjoints are themselves right adjoints. Tak-
ing Glo(𝐴) as our example, we are able to give the following projection, reduction, and

235

uniqueness rules.

Γ.cc.dsc � 𝐴 type @ par Γ.cc � 𝑃 ∈ Glo(𝐴) @ pt

Γ � unmod(𝑃) ∈ 𝐴 @ par

Γ.cc.dsc � 𝐴 type @ par Γ.cc.dsc � 𝑀 ∈ 𝐴 @ par

Γ � unmod(mod(𝑀)) = 𝑀 ∈ 𝐴 @ par

Γ.dsc � 𝐴 type @ par Γ � 𝑃 ∈ Glo(𝐴) @ pt

Γ � 𝑃 = mod(unmod(𝑃)) ∈ Glo(𝐴) @ pt

Wemotivate these rules by the following categorical intuition. Per the adjunction between
connected components and the discrete embedding, any Γ.cc � 𝑃 ∈ Glo(𝐴) @ pt corre-
sponds to a term Γ � 𝑃 ′ ∈ Disc(Glo(𝐴)) @ par. Meanwhile, the adjunction between the
discrete embedding and global sections functor provides a counit mapDisc(Glo(𝐴)) → 𝐴
induced by the identity function Glo(𝐴) → Glo(𝐴). The projector unmod is then the
composite of these two steps.

We note the similarity between these rules and the rules for the bridge application:
Glo(𝐴) is analogous to Bridge(𝒙 .𝐴,𝑀0, 𝑀1), −.dsc to (−, 𝒙 : I), and −.cc to context restric-
tion − \ −. In that case, too, we have an adjoint relationship between − \ − and (−, 𝒙 : I),
as discussed in Chapter 11. Definitions of this kind are explored in more generality in
[GCKGB21].

Positive elimination With the discrete type, on the other hand, we have no further left
adjoint upon which to rely. Instead, we formulate a positive elimination rule by introduc-
ing a new context former, the modal hypothesis. Recall once more the introduction rule
for Disc(𝐴).

Γ.cc � 𝑀 ∈ 𝐴 @ pt

Γ � mod(𝑀) ∈ Disc(𝐴) @ par

Elements of Disc(𝐴) are elements of 𝐴 well-typed under −.cc. If we want to inhabit
some type family 𝑑 : Disc(𝐴) � 𝐵 type, then, it would suffice to show that 𝐵 [mod(𝑎)/𝑑]
holds given amodal variable (cc | 𝑎 : 𝐴). Such variables range exactly over terms that are
well-typed under some modality; we will have the following defining rules for contexts
and substitutions.

Γ ctx @ par Γ.cc � 𝐴 pretype

(Γ, (cc | 𝑎 : 𝐴)) ctx @ par

Γ′ � 𝛾 ∈ Γ @ par Γ′.cc � 𝑀 ∈ 𝐴𝛾 @ pt

Γ′ � (𝛾,𝑀/𝑎) ∈ (Γ, (cc | 𝑎 : 𝐴)) @ par

236 Cohesive parametric type theory

Note in particular that substitutions from Γ′ into (cc | 𝑎 : 𝐴) correspond to substitutions
from Γ′.cc into 𝐴. Thus (cc | 𝑎 : −) represents the right adjoint to −.cc, which is to say
the discrete embedding.

We may now formulate an elimination rule for Disc(𝐴) as suggested above.

Γ.cc � 𝐴 type @ pt Γ, 𝑑 : Disc(𝐴) � 𝐵 type @ par
Γ � 𝑃 ∈ Disc(𝐴) @ par Γ, (cc | 𝑎 : 𝐴) � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @ par

Γ � letdisc(𝑑.𝐵, 𝑃, 𝑎.𝑁) ∈ 𝐵 [𝑃/𝑑] @ par

Modal hypotheses and context operators It is useful to more generally allow modal
hypotheses under arbitrary compound modalities, sequences 𝜇 = (𝜇1, . . . , 𝜇𝑛) where each
𝜇𝑖 is one of cc, dsc, or glo. Here we follow Gratzer, Kavvos, Nuyts, and Birkedal’s MTT
framework for modal type theories [GKNB20]. This is not only convenient in practice,
but also gives us a way to define the right adjoint modal context operators (−.dsc and
−.glo) on term hypotheses.

(Γ, (𝜇 | 𝑎 : 𝐴)) .dsc B Γ.dsc, (cc, 𝜇 | 𝑎 : 𝐴)
(Γ, (𝜇 | 𝑎 : 𝐴)) .glo B Γ.glo, (dsc, 𝜇 | 𝑎 : 𝐴)

Recall that a modal hypothesis over cc can be thought of as a hypothesis of discrete type.
Thus we apply −.dsc to a modal term hypothesis by adding cc to its modality. By the same
token, a modal hypothesis over dsc corresponds to a hypothesis of global section type.
Thus we define these operators by what Nuyts, Vezzosi, and Devriese call left division
[NVD17], that is, by adjusting the modality of each hypothesis.

The leftmost adjoint again demands special treatment. To apply the connected compo-
nents modality to a hypothesis, we check if it is already typed under the connected com-
ponents modality. If so, the context application cancels the hypothesis modality. Other
hypotheses are simply thrown away; there is no way to access an ordinary term hypoth-
esis beneath −.cc.

(Γ, (𝜇 | 𝑎 : 𝐴)) .cc B
{
Γ.cc, (𝜇′ | 𝑎 : 𝐴), if 𝜇 = cc, 𝜇′

Γ.cc, otherwise

Again, it is instructive to draw a parallel with interval restriction. The restriction − \ 𝒙
deletes term hypotheses that succeed 𝒙 in the context, as these could be instantiated with
terms that use 𝒙 . Likewise, −.cc deletes hypotheses that could use any bridge interval
variable, which is to say all hypotheses except those hidden behind cc.

Many of the complications of the theory developed below have their root in modal
hypotheses. For example, to check that −.glo takes well-formed contexts to well-formed
contexts, we must first know that Γ.𝜇 � 𝐴 pretype implies Γ.𝜇.glo.dsc � 𝐴 pretype.
Thus careful staging is required.

Interval theory and type systems 237

14.1 Interval theory and type systems
Nowwe begin making the preceding sketch precise. Every judgment in our cohesive type
theory is indexed by a mode, par (parametric) or pt (pointwise).

Definition 14.1.1. The modes,𝑚 mode, are generated by the following inference rules.

par mode pt mode

The characteristic difference between the two modes is that the parametric mode in-
cludes bridges, both on the judgmental and on the type level. We see this first in the
definition of interval contexts: bridge interval variables can only be hypothesized in the
parametric mode.

Definition 14.1.2. The interval 𝑚-contexts, Ψ ictx @ 𝑚 for 𝑚 mode, are inductively
generated by the following inference rules.

· ictx @𝑚

Ψ ictx @𝑚

(Ψ, 𝑥 : I) ictx @𝑚

Ψ ictx @ par

(Ψ, 𝒙 : I) ictx @ par

Aside from the restriction of parametric elements to the parametric mode, the devel-
opment of the interval theory proceeds without change from the single-mode parametric
cubical case. Note that we do still allow the formation of constraints such as 0 ≡ 1, which
involve bridge terms but not bridge variables, in the pointwise mode.

Definition 14.1.3 (Closed interval elements).

• Ψ ⊩ 𝑟 ∈ I @𝑚 holds when either 𝑟 = 0, 𝑟 = 1, or 𝑟 = 𝑥 with (𝑥 : I) ∈ Ψ.

• Ψ ⊩ 𝒓 ∈ I @𝑚 holds when either 𝒓 = 0, 𝒓 = 1, or 𝒓 = 𝒙 with (𝒙 : I) ∈ Ψ.

Definition 14.1.4 (Interval substitutions). The judgment Ψ′ ⊩ 𝜓 ∈ Ψ @ 𝑚 is gener-
ated by the following rules.

Ψ′ ⊩ · ∈ · @𝑚

Ψ′ ⊩ 𝜓 ∈ Ψ @𝑚 Ψ′ ⊩ 𝑟 ∈ I @𝑚

Ψ′ ⊩ (𝜓, 𝑟/𝑥) ∈ (Ψ, 𝑥 : I) @𝑚

Ψ′ ⊩ 𝒓 ∈ I @ par Ψ′ \ 𝒓 ⊩ 𝜓 ∈ Ψ @ par

Ψ′ ⊩ (𝜓, 𝒓/𝒙) ∈ (Ψ, 𝒙 : I) @ par

We similarly enrich type systems, and subsequently the closed judgments, by a mode
parameter. Again, these definitions are not notably different from the their ordinary para-
metric (indeed, ordinary cubical) equivalents.

238 Cohesive parametric type theory

Definition 14.1.5. Given Ψ ictx @𝑚, an (𝑚,Ψ)-relation is a family of relations indexed
by interval substitutions into Ψ.

Definition 14.1.6. A candidate modal type system is a five-place relation 𝜏 relatingmodes
𝑚, interval𝑚-contexts Ψ, values 𝑉 and 𝑉 ′ with free variables contained in Ψ, and value-
coherent (𝑚,Ψ)-PERs 𝑅. A candidate is a modal type system if it meets the requirements
of Definition 3.1.16 at each mode. We write 𝜏 ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 @ 𝑚 to mean that
(𝑚,Ψ,𝑉 ,𝑉 ′, 𝑅) ∈ 𝜏 .

Given a modal candidate 𝜏 , we have component pointwise and parametric candidates
(that is, candidate type systems for plain cubical and parametric cubical type theory) de-
fined as follows.

𝜏pt ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 :⇐⇒ 𝜏 ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 @ pt

𝜏par ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 :⇐⇒ 𝜏 ⊨ Ψ ⊩ 𝑉 ≈ 𝑉 ′ ↓ 𝑅 @ par

Conversely, any pointwise or parametric candidate may be regarded as a modal candidate
that contains types only in a single mode.

We define the closed judgments induced by a value type system in the usual way.

Definition 14.1.7 (Closed judgments). Fix a candidate modal type system 𝜏 .

• Ψ ⊩ 𝐴 = 𝐴′ pretype @𝑚 holds when 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑅] for some (𝑚,Ψ)-PER 𝑅.

• Ψ ⊩ 𝑀 = 𝑀′ ∈ 𝐴 @ 𝑚 holds when 𝐴 ∈ ⤋𝜏 [𝑅] for some (𝑚,Ψ)-PER 𝑅 such that
𝑀 ≈ 𝑀′ ∈ ⤋𝑅.

• Ψ ⊩ 𝐴 = 𝐴′ type @ 𝑚 holds when Ψ ⊩ 𝐴 = 𝐴′ pretype @ 𝑚 support coercion and
homogeneous composition.

14.2 Open judgments

We now fix an ambient candidate modal type system 𝜏 and begin deriving the open judg-
ments. Here we get to the meat of the cohesive structure: the modalities.

Definition 14.2.1 (Modalities). The modalities, 𝜇 : 𝑚 → 𝑛, are inductively generated
by the following rules.

id :𝑚 →𝑚

𝜇 :𝑚 → pt

(cc, 𝜇) :𝑚 → par

𝜇 :𝑚 → par

(dsc, 𝜇) :𝑚 → pt

𝜇 :𝑚 → pt

(glo, 𝜇) :𝑚 → par

Open judgments 239

Note that modalities will act contravariantly on contexts: given 𝜇 : 𝑚 → 𝑛, the oper-
ator −.𝜇 takes contexts in mode 𝑛 to contexts in mode𝑚.

Raw contexts are drawn from the following grammar: they consist of modal term hy-
potheses, bridge and path interval hypotheses, constraints, and the new bridge endpoint
hypotheses.

Γ ::= · | Γ, (𝜇 | 𝑎 : 𝐴) | Γ, 𝒙 : I | Γ, 𝑥 : I | Γ, 𝜉 | Γ, 𝒙 : 2

Notation 14.2.2. We write 𝑎 :𝐴 as shorthand for (id | 𝑎 : 𝐴).

As usual, the definition of the context judgment Γ ctx @ 𝑚 will be one of our last.
We first define the closing substitutions and then the open judgments as ranging over
raw contexts, with the aim that these be well-behaved when the context arguments are
well-formed.

14.2.1 Interval judgments
Before getting into term judgments, we define the open interval and bridge interval end-
point judgments. As before, term hypotheses have no bearing on interval judgments;
in particular, a contradictory term assumption like 𝑣 : Void does not imply any interval
equalities.

Definition 14.2.3 (Open interval judgments).

• Γ � 𝑟 ∈ I @𝑚 holds when either 𝑟 = 0, 𝑟 = 1, or 𝑟 = 𝑥 with (𝑥 : I) ∈ Γ.

• Γ � 𝒓 ∈ 2 @𝑚 holds when either 𝒓 = 0, 𝒓 = 1, or 𝒓 = 𝒙 with (𝒙 : 2) ∈ Γ.

• Γ � 𝒓 ∈ I @𝑚 holds when either Γ � 𝒓 ∈ 2 @𝑚 or 𝒓 = 𝒙 with (𝒙 : I) ∈ Γ.

An equality—Γ � 𝑟 = 𝑟 ′ ∈ I @ 𝑚, Γ � 𝒓 = 𝒓 ′ ∈ 2 @ 𝑚, or Γ � 𝒓 = 𝒓 ′ ∈ I @ 𝑚—is
defined to hold when it follows from the equivalence relation closure of the constraint
hypotheses appearing in Γ.

We define the judgments Γ � 𝜉 = 𝜉′ ∈ F @ 𝑚 and Γ � 𝜉 satisfied @ 𝑚 as generated
by the following rules.

Γ � 𝑟 = 𝑟 ′ ∈ I @𝑚 Γ � 𝑠 = 𝑠′ ∈ I @𝑚

Γ � (𝑟 ≡ 𝑠) = (𝑟 ′ ≡ 𝑠′) ∈ F @𝑚

Γ � 𝒓 = 𝒓 ′ ∈ I @𝑚 𝜺 ∈ {0, 1}
Γ � (𝒓 ≡ 𝜺) = (𝒓 ′ ≡ 𝜺) ∈ F @𝑚

Γ � 𝑟 = 𝑠 ∈ I @𝑚

Γ � 𝑟 ≡ 𝑠 satisfied @𝑚

𝜺 ∈ {0, 1}
Γ � 𝜺 ≡ 𝜺 satisfied @𝑚

Definition 14.2.4. Given 𝜺 ∈ {0, 1}, we define ¬𝜺 to be its opposite.

¬0 B 1 ¬1 B 0

240 Cohesive parametric type theory

14.2.2 Context operators: modalities and restriction
To state the rules for closing substitutions, we must first define the modal operators on
contexts, as these appear in the defining rule for substitutions into modal hypotheses. The
intent is that we have Γ.𝜇 ctx @𝑚 whenever Γ ctx @ 𝑛 and 𝜇 :𝑚 → 𝑛.

Definition 14.2.5. Given a context Γ, we define the context Γ.𝜇 for the three basic modal-
ities (cc, dsc, and glo) in Figure 14.1. Application of a compound modality is defined by
sequential application of basic modalities: Γ.(cc, 𝜇) B Γ.cc.𝜇 and so on.

The salient aspects of these definitions are their behavior on bridge interval hypothe-
ses and term hypotheses, reproduced below.

(𝒙 : I).cc B · (𝜇 | 𝑎 : 𝐴).cc B
{
(𝜇′ | 𝑎 : 𝐴), if 𝜇 = cc, 𝜇′

· , otherwise
(𝜇 | 𝑎 : 𝐴).dsc B (cc, 𝜇 | 𝑎 : 𝐴)

(𝒙 : I).glo B 𝒙 : 2 (𝜇 | 𝑎 : 𝐴).glo B (dsc, 𝜇 | 𝑎 : 𝐴)

The connected components operator squashes interval hypotheses, while the global sec-
tions operator replaces them with endpoint hypotheses. The two right adjoints evaluate
on term hypotheses by adding their left adjoints to the hypothesis modality, while the
connected components operator removes all term hypotheses not beneath cc. The evalua-
tion of cc on constraints is also somewhat tricky: it leaves constraints on endpoints alone
and squashes consistent equations on variables while preserving inconsistent equations.
Each modality also induces a functorial action on substitutions following the same pat-
tern. Here we intend to have Γ′.𝜇 � (𝛾 : Γ) ⊗ 𝜇 ∈ Γ.𝜇 @ 𝑚 whenever 𝜇 : 𝑚 → 𝑛 and
Γ′ � 𝛾 ∈ Γ @ 𝑛.

Definition 14.2.6. Given a context Γ and substitution𝛾 into Γ, we define the substitution
(𝛾 : Γ) ⊗ 𝜇 for the basic modalities in Figure 14.2. The action of compound modalities is
defined as with contexts.

Remark 14.2.7. The effect of a substitution (𝛾 : Γ) ⊗ 𝜇 on syntax is the same as that of 𝛾 .
That is, if𝑀 is a term depending only on the variables in Γ.𝜇, then𝑀 [(𝛾 : Γ) ⊗ 𝜇] = 𝑀𝛾 .

Finally, we update the definition of interval restriction (Definition 9.1.9) to handle the
new forms of hypothesis. We also specify that restriction by an endpoint variable, like
that by an endpoint constant, is the identity.

Definition 14.2.8 (Interval restriction). Given a context Γ and term Γ � 𝒓 ∈ I, we
define Γ \ 𝒓 in Figure 14.3. The action (𝛾 : Γ) \ 𝒓 is defined analogously.

Open judgments 241

Connected components (Γ.cc)

· .cc B ·
(Γ, 𝑥 : I).cc B Γ.cc, 𝑥 : I
(Γ, 𝒙 : 2).cc B Γ.cc, 𝒙 : 2
(Γ, 𝒙 : I).cc B Γ.cc

(Γ, 𝑟 ≡ 𝑠).cc B Γ.cc, 𝑟 ≡ 𝑠

(Γ, 𝒓 ≡ 𝜺).cc B


Γ.cc, 𝒓 ≡ 𝜺, if Γ � 𝒓 ∈ 2 @ par
Γ.cc,¬𝜺 ≡ 𝜺, if not but Γ � 𝒓 = ¬𝜺 ∈ I @ par
Γ.cc, otherwise

(Γ, (𝜇 | 𝑎 : 𝐴)) .cc B
{
Γ.cc, (𝜇′ | 𝑎 : 𝐴), if 𝜇 = cc, 𝜇′

Γ.cc, otherwise

Discrete embedding (Γ.dsc)

· .dsc B ·
(Γ, 𝑥 : I).dsc B Γ.dsc, 𝑥 : I
(Γ, 𝒙 : 2).dsc B Γ.dsc, 𝒙 : 2

(Γ, 𝜉).dsc B Γ.dsc, 𝜉

(Γ, (𝜇 | 𝑎 : 𝐴)) .dsc B Γ.dsc, (cc, 𝜇 | 𝑎 : 𝐴)

Global sections (Γ.glo)

· .glo B ·
(Γ, 𝑥 : I).glo B Γ.glo, 𝑥 : I
(Γ, 𝒙 : 2).glo B Γ.glo, 𝒙 : 2
(Γ, 𝒙 : I).glo B Γ.glo, 𝒙 : 2

(Γ, 𝜉).glo B Γ.glo, 𝜉

(Γ, (𝜇 | 𝑎 : 𝐴)) .glo B Γ.glo, (dsc, 𝜇 | 𝑎 : 𝐴)

Figure 14.1: Definitions of the modal context operators

242 Cohesive parametric type theory

Connected components ((𝛾 : Γ) ⊗ cc)

(· : ·) ⊗ cc B ·

((𝛾,𝑀/𝑎) : (Γ, (𝜇 | 𝑎 : 𝐴))) ⊗ cc B
{
((𝛾 : Γ) ⊗ cc, 𝑀/𝑎), if 𝜇 = cc, 𝜇′

(𝛾 : Γ) ⊗ cc, otherwise
((𝛾, 𝑟/𝑥) : (Γ, 𝑥 : I)) ⊗ cc B ((𝛾 : Γ) ⊗ cc, 𝑟/𝑥)
((𝛾, 𝒓/𝒙) : (Γ, 𝒙 : 2)) ⊗ cc B ((𝛾 : Γ) ⊗ cc, 𝒓/𝒙)
((𝛾, 𝒓/𝒙) : (Γ, 𝒙 : I)) ⊗ cc B (𝛾 : Γ) ⊗ cc

(𝛾 : (Γ, 𝜉)) ⊗ cc B (𝛾 : Γ) ⊗ cc

Discrete embedding ((𝛾 : Γ) ⊗ dsc)

(𝛾 : Γ) ⊗ dsc B 𝛾

Global sections ((𝛾 : Γ) ⊗ glo)

(𝛾 : Γ) ⊗ glo B 𝛾

Figure 14.2: Definitions of the modal substitution operators

Interval restriction (Γ \ 𝒓)
If a bridge term 𝒓 is equal to an endpoint term, then restriction has no effect.

Γ \ 𝒓 B Γ if Γ � 𝒓 = 𝒔 ∈ I @ par for some Γ � 𝒔 ∈ 2 @ par

Otherwise, restriction is defined as follows.

(Γ, 𝑦 : I) \ 𝒙 B (Γ \ 𝒙), 𝑦 : I
(Γ,𝒚 : 2) \ 𝒙 B (Γ \ 𝒙),𝒚 : 2

(Γ,𝒚 : I) \ 𝒙 B
{
Γ if 𝒙 = 𝒚
(Γ \ 𝒙),𝒚 : I otherwise

(Γ, 𝑦 : I) \ 𝒙 B Γ \ 𝒙, 𝑦 : I
(Γ, 𝜉) \ 𝒙 B (Γ \ 𝒙), 𝜉

(Γ, (𝜇 | 𝑎 : 𝐴)) \ 𝒙 B
{
Γ \ 𝒙, (𝜇 | 𝑎 : 𝐴), if 𝜇 = (cc, 𝜇′)
Γ \ 𝒙, otherwise

Figure 14.3: Definition of interval restriction

Open judgments 243

Notable in this definition is the effect on term hypotheses. In plain parametric type
theory, restriction deletes hypotheses that proceed the interval hypothesis; here we have
nearly the same behavior, but hypotheses under the connected component modality can
be left alone, as they cannot depend on any interval variables.

We can observe a couple of equations already.

Proposition 14.2.9. The following equations on contexts hold up to syntactic equality.

(Γ \ 𝒓).cc = Γ.cc Γ.dsc.cc = Γ

The first of these equations matches the previously mentioned intuition that where
restriction removes a single interval variable, cc removes all bridge interval variables.

14.2.3 Extended interval contexts
The nature of the computational interpretation of type theory is that the open judgments
are defined from the closed judgments; consequently, the properties of open judgments
flow from the properties of the closed judgments. In our cohesive type theory, however,
this is complicated by the fact that the “closed” (i.e., interval) contexts and substitutions
are not closed under the modalities: (𝒙 : I) is an interval context, but (𝒙 : I).glo B (𝒙 : 2)
is not.

It is therefore technically convenient to introduce a notion of “extended” closed judg-
ment which allows for endpoint hypotheses but still excludes term hypotheses. This class
of contexts and substitutions is closed under the modalities and will help us get off the
ground on our way to the open judgments.

Definition 14.2.10. The extended interval 𝑚-contexts, Υ eictx @ 𝑚 for 𝑚 mode, are in-
ductively generated by the following inference rules.

· eictx @𝑚

Υ eictx @𝑚

(Υ, 𝑥 : I) eictx @𝑚

Υ eictx @𝑚

(Υ, 𝒙 : 2) eictx @𝑚

Υ eictx @ par

(Υ, 𝒙 : I) eictx @ par

Proposition 14.2.11. If Υ eictx @ 𝑛 and 𝜇 :𝑚 → 𝑛, then Υ.𝜇 eictx @𝑚.

Definition 14.2.12 (Extended interval substitutions). The extended interval substitu-
tions, Υ′ � 𝜓 ∈ Υ @𝑚, are inductively defined by the following rules.

Υ′ � · ∈ · @𝑚

Υ′ � 𝜓 ∈ Υ @𝑚 Υ′ � 𝑟 ∈ I @𝑚

Υ′ � (𝜓, 𝑟/𝑥) ∈ (Υ, 𝑥 : I) @𝑚

Υ′ � 𝜓 ∈ Υ @𝑚 Υ′ � 𝒓 ∈ 2 @𝑚

Υ′ � (𝜓, 𝒓/𝒙) ∈ (Υ, 𝒙 : 2) @𝑚

Υ′ � 𝒓 ∈ I @ par Υ′ \ 𝒓 � 𝜓 ∈ Υ @ par

Υ′ � (𝜓, 𝒓/𝒙) ∈ (Υ, 𝒙 : I) @ par

244 Cohesive parametric type theory

When the domain is a genuine interval context, we write Ψ ⊩ 𝜓 = 𝜓 ′ ∈ Υ @𝑚.

It is simple to check directly that the extended closed substitutions satisfy the proper-
ties we eventually hope to extend to all substitutions: the well-formedness of the actions
on substitutions and the adjunctions between successive modalities.

Proposition 14.2.13. Given any Υ′ � 𝜓 ∈ Υ @ 𝑛 and 𝜇 :𝑚 → 𝑛, the action of 𝜇 on 𝜓 is
well-typed: we have Υ′.𝜇 � (𝜓 : Υ) ⊗ 𝜇 ∈ Υ @𝑚.

Proposition 14.2.14 (Adjunctions).

• We have Υ′.cc � 𝜓 ∈ Υ @ pt if and only if Υ′ � 𝜓 ∈ Υ.dsc @ par.

• We have Υ′.dsc � 𝜓 ∈ Υ @ par if and only if Υ′ � 𝜓 ∈ Υ.glo @ pt.

Using the notion of extended substitution, we extend the closed judgments to extended
contexts in the standard way: a judgment holds when all of its closed instantiations hold.
In turn we get a definition of extended closing substitution.

Definition 14.2.15 (Extended closed judgments). We extend the typing judgments to
extended interval contexts pointwise. Υ � 𝐴 = 𝐴′ pretype @ 𝑚 is defined to hold when
Ψ ⊩ 𝐴𝜓 = 𝐴′𝜓 pretype @𝑚 for all Ψ ⊩ 𝜓 ∈ Υ @𝑚, and we define Υ � 𝐴 = 𝐴′ type @𝑚
and Υ � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚 analogously.

Definition 14.2.16 (Extended closing substitutions). We define the extended closing
substitutions Υ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 inductively as follows.

Υ ictx @𝑚

Υ � · = · ∈ · @𝑚

Υ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑛 𝜇 :𝑚 → 𝑛 Υ.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴𝛾 @𝑚

Υ � (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, (𝜇 | 𝑎 : 𝐴)) @ 𝑛

Υ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 Υ � 𝑟 ∈ I @𝑚

Υ � (𝛾, 𝑟/𝑥) = (𝛾 ′, 𝑟/𝑥) ∈ (Γ, 𝑥 : I) @𝑚

Υ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 𝜺 ∈ {0, 1}
Υ � (𝛾, 𝜺/𝒙) = (𝛾 ′, 𝜺/𝒙) ∈ (Γ, 𝒙 : 2) @𝑚

Υ \ 𝒓 � 𝛾 = 𝛾 ′ ∈ Γ @ par Υ � 𝒓 ∈ I @ par

Υ � (𝛾, 𝒓/𝒙) = (𝛾 ′, 𝒓/𝒙) ∈ (Γ, 𝒙 : I) @ par

Υ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 Υ � 𝜉𝛾 satisfied @𝑚

Υ � 𝛾 = 𝛾 ′ ∈ (Γ, 𝜉) @𝑚

We write Ψ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 when the domain is a genuine interval context.

Open judgments 245

Note the appearance of Υ.𝜇 in the rule for modal hypotheses. Even if Υ is a genuine
interval context, Υ.𝜇 need not be. Thus the extended judgments are essential to give a
definition of closing substitution.

14.2.4 Open type and term judgments
As always, the closing substitutions give us the open term judgments and in turn the
context and substitution judgments.

Definition 14.2.17 (Open judgments). Wedefine the open typing judgments pointwise
as follows.

• Γ � 𝐴 = 𝐴′ pretype @𝑚 when Ψ ⊩ 𝐴𝛾 = 𝐴′𝛾 ′ pretype @𝑚 for all Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ @𝑚.

• Γ � 𝐴 = 𝐴′ type @𝑚 when Ψ ⊩ 𝐴𝛾 = 𝐴′𝛾 ′ type @𝑚 for all Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ @𝑚.

• Γ � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚 when Ψ ⊩ 𝑀𝛾 = 𝑀′𝛾 ′ ∈ 𝐴𝛾 @𝑚 for all Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ @𝑚.

Definition 14.2.18 (Substitutions). We define the substitution judgment, Γ′ � 𝛾 =
𝛾 ′ ∈ Γ @𝑚, as inductively generated by the following rules.

Γ′ � · = · ∈ · @𝑚

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑛 𝜇 :𝑚 → 𝑛 Γ′.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴𝛾 @𝑚

Γ′ � (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, (𝜇 | 𝑎 : 𝐴)) @ 𝑛

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 Γ′ � 𝑟 = 𝑟 ′ ∈ I @𝑚

Γ′ � (𝛾, 𝑟/𝑥) = (𝛾 ′, 𝑟 ′/𝑥) ∈ (Γ, 𝑥 : I) @𝑚

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 Γ′ � 𝒓 = 𝒓 ′ ∈ 2 @𝑚

Γ′ � (𝛾, 𝒓/𝒙) = (𝛾 ′, 𝒓 ′/𝒙) ∈ (Γ, 𝒙 : 2) @𝑚

Γ′ \ 𝒓 � 𝛾 = 𝛾 ′ ∈ Γ @ par Γ′ � 𝒓 = 𝒓 ′ ∈ I @ par

Γ′ � (𝛾, 𝒓/𝒙) = (𝛾 ′, 𝒓 ′/𝒙) ∈ (Γ, 𝒙 : I) @ par

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚 Γ′ � 𝜉𝛾 satisfied @𝑚

Γ′ � 𝛾 = 𝛾 ′ ∈ (Γ, 𝜉) @𝑚

246 Cohesive parametric type theory

Definition 14.2.19 (Contexts). We define the context judgment, Γ = Γ′ ctx @ 𝑚, as
generated by the following rules.

· = · ctx @𝑚

𝜇 :𝑚 → 𝑛 Γ = Γ′ ctx @ 𝑛 Γ.𝜇 � 𝐴 = 𝐴′ pretype @𝑚

(Γ, (𝜇 | 𝑎 : 𝐴)) = (Γ′, (𝜇 | 𝑎 : 𝐴′)) ctx @ 𝑛

Γ = Γ′ ctx @𝑚

(Γ, 𝑥 : I) = (Γ′, 𝑥 : I) ctx @𝑚

Γ = Γ′ ctx @𝑚

(Γ, 𝒙 : 2) = (Γ′, 𝒙 : 2) ctx @𝑚

Γ = Γ′ ctx @ par

(Γ, 𝒙 : I) = (Γ′, 𝒙 : I) ctx @ par

Γ = Γ′ ctx @𝑚 Γ � 𝜉 = 𝜉′ ∈ F @𝑚

(Γ, 𝜉) = (Γ′, 𝜉′) ctx @𝑚

14.3 Rules for modal operators and hypotheses

With the definitions of the judgments complete, we now verify that modal context oper-
ators and hypotheses validate the expected rules. Namely, the context operators should
take well-formed contexts to well-formed contexts, their actions on substitutions should
be likewise well-behaved, and we should be able to access modal variables from the con-
text under the right conditions.

As the route to these theorems is somewhat circuitous, we encourage readers disinter-
ested in the gnarly details to skip to Section 14.3.2, where the main results can be found.

14.3.1 Extended closing substitutions

As the open judgments are defined by closing substitutions, we start with their properties.
It is fruitful to more generally consider extended closing substitutions. First we have some
basic stability results, straightforward consequences of the definitions.

Proposition 14.3.1 (Extended closed stability for terms). Given any Υ′ � 𝜓 ∈ Υ @

𝑚 and any Υ � 𝐴 = 𝐴′ pretype @𝑚, we have Υ′ � 𝐴𝜓 = 𝐴′𝜓 pretype @𝑚; likewise for
types and terms.

Lemma 14.3.2 (Extended closed stability for substitutions). Given Υ′ � 𝜓 ∈ Υ @

𝑚 and Υ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚, we have Υ′ � 𝛾𝜓 = 𝛾 ′𝜓 ∈ Γ @𝑚.

Proof. By induction on Υ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑚. The modal hypothesis case relies on the
functorial action of modalities on extended closing substitutions (Proposition 14.2.13). □

Rules for modal operators and hypotheses 247

Corollary 14.3.3 (Extended instantiation). Given any Υ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑚 and any
Γ � 𝐴 = 𝐴′ pretype @ 𝑚, we have Υ � 𝐴𝛾 = 𝐴′𝛾 ′ pretype @ 𝑚; likewise for types and
terms.

In order to avoid repetition, we introduce the following notion of modality division,
following Nuyts, Vezzosi, and Devriese [NVD17].

Definition 14.3.4 (Division). We define 𝜇 ÷ 𝜈 :𝑚 → 𝑛 as a partial function of 𝜇 :𝑚 →
𝑝 and 𝜈 : 𝑛 → 𝑝 as follows.

𝜇 ÷ id B 𝜇

(cc, 𝜇) ÷ (cc, 𝜈) B 𝜇 ÷ 𝜈
𝜇 ÷ (dsc, 𝜈) B (cc, 𝜇) ÷ 𝜈
𝜇 ÷ (glo, 𝜈) B (dsc, 𝜇) ÷ 𝜈

This expresses compactly the effect of context operators on modal hypotheses, as
shown by the following equations.

Γ, (𝜇 | 𝑎 : 𝐴).𝜈 = Γ.𝜈, (𝜇 ÷ 𝜈 | 𝑎 : 𝐴) if 𝜇 ÷ 𝜈 is defined
Γ, (𝜇 | 𝑎 : 𝐴).𝜈 = Γ.𝜈 otherwise

The following lemma is key; it tells us that modal hypotheses remain well-typed after the
application of a modality.

Lemma 14.3.5 (Division of extended closed terms). Let 𝜇 : 𝑚 → 𝑝 and 𝜈 : 𝑛 → 𝑝 . If
Υ.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚 and 𝜇 ÷ 𝜈 is defined, then Υ.𝜈 .(𝜇 ÷ 𝜈) � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚.

Proof. By induction on 𝜈 .

• Case: 𝜈 = id. Immediate.

• Case: 𝜈 = (cc, 𝜈′). Then we must have 𝜇 = (cc, 𝜇′), and the result follows by induction
hypothesis applied with 𝜈′ and 𝜇′.

• Case: 𝜈 = (dsc, 𝜈′). We have Υ = Υ.dsc.cc, so we can apply the induction hypothesis
with 𝜈′ and (cc, 𝜇) at Υ.dsc.cc.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚 to get the result.

• Case: 𝜈 = (glo, 𝜈′). We have a substitution Υ.glo.dsc.𝜇 � idΥ.𝜇 ∈ Υ.𝜇 by the action
of modalities on and adjunction laws for extended interval substitutions. It follows by
stability that Υ.glo.dsc.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚. Applying the induction hypothesis with
𝜈′ and (dsc, 𝜇) gives the result. □

248 Cohesive parametric type theory

Corollary 14.3.6 (Modalities on extended substitutions). Given Υ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑛
and 𝜇 :𝑚 → 𝑛, we have Υ.𝜇 � (𝛾 : Γ) ⊗ 𝜇 = (𝛾 ′ : Γ) ⊗ 𝜇 ∈ Γ.𝜇 @𝑚.

Proof. By induction on Υ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑛, applying Lemma 14.3.5 in the modal
hypothesis case. □

We have an analogous lemma for the action of interval restriction.

Lemma 14.3.7 (Restriction on extended substitutions). Given Υ � 𝛾 = 𝛾 ′ ∈ Γ @

par and any Γ � 𝒓 = 𝒓 ′ ∈ I @ par, we have Υ \ 𝒓𝛾 � (𝛾 : Γ) \ 𝒓 = (𝛾 ′ : Γ′) \ 𝒓 ′ ∈ Γ \ 𝒓 @

par.

Proof. If Γ � 𝒓 = 𝒔 ∈ I @ par for some Γ � 𝒔 ∈ 2 @ par, then the result is trivial. If not,
we proceed by induction on Υ � 𝛾 = 𝛾 ′ ∈ Γ @ par.

• Case: Υ � · = · ∈ · @ par. Immediate.

• Case: Υ � (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ, (𝜇 | 𝑎 : 𝐴)) @ par.

– Case: 𝜇 = (cc, 𝜇′). By assumption, Υ � 𝛾 = 𝛾 ′ ∈ Γ @ par. We can conclude
Γ � 𝒓 = 𝒓 ′ ∈ I @ par from Γ, (𝜇 | 𝑎 : 𝐴) � 𝒓 = 𝒓 ′ ∈ I @ par. Thus Υ \ 𝒓𝛾 �
(𝛾 : Γ) \ 𝒓 = (𝛾 ′ : Γ) \ 𝒓 ′ ∈ Γ \ 𝒓 @ par by induction hypothesis. We moreover have
Υ.cc.𝜇′ � 𝑀 = 𝑀′ ∈ 𝐴𝛾 @𝑚, and we know that Υ.cc.𝜇′ = Υ \ 𝒓𝛾 .cc.𝜇′.

– Case: 𝜇 = · or 𝜇 = (glo, 𝜇′). Immediate by induction hypothesis.

• Case: Υ � (𝛾, 𝑠/𝑥) = (𝛾 ′, 𝑠/𝑥) ∈ (Γ, 𝑥 : I) @ par. By induction hypothesis and the
substitution formation rule.

• Case: Υ � (𝛾, 𝒔/𝒙) = (𝛾 ′, 𝒔/𝒙) ∈ (Γ, 𝒙 : 2) @ par. As 𝒓 is not identified with an
endpoint, we know that 𝒓 ≠ 𝒙 . It follows that Γ � 𝒓 = 𝒓 ′ ∈ I @ par. By induction
hypothesis we then have Υ \ 𝒓𝛾 � (𝛾 : Γ) \ 𝒓 = (𝛾 ′ : Γ′) \ 𝒓 ′ ∈ Γ \ 𝒓 @ par. As Υ � 𝒔 ∈
2 @ par, we also have Υ \ 𝒓𝛾 � 𝒔 ∈ 2 @ par.

• Case: Υ � (𝛾, 𝒔/𝒙) = (𝛾 ′, 𝒔/𝒙) ∈ (Γ, 𝒙 : I) @ par.

– Case: 𝒓 = 𝒙 .
By the assumptions of this case, we have Υ \ 𝒓 � 𝛾 = 𝛾 ′ ∈ Γ @ par as required.

– Case: 𝒓 ≠ 𝒙 .
Then Γ � 𝒓 ∈ I @ par. By induction hypothesis we get Υ \ 𝒔 \ 𝒓𝛾 � (𝛾 : Γ) \ 𝒓 =
(𝛾 ′ : Γ′) \ 𝒓 ′ ∈ Γ \ 𝒓 @ par, and we can see that Υ \ 𝒔 \ 𝒓𝛾 = Υ \ 𝒓𝛾 \ 𝒔.

• Case: Υ � 𝛾 = 𝛾 ′ ∈ (Γ, 𝜉) @𝑚. By induction hypothesis and the substitution formation
rule. As 𝒓 is not identified with an endpoint, we know that 𝜉 does not mention 𝒓 . □

Rules for modal operators and hypotheses 249

We next check that the components-discrete and discrete-global adjunctions hold for
extended closing substitutions.

Lemma 14.3.8 (Components-discrete adjunction). We have Υ.cc � 𝛾 = 𝛾 ′ ∈ Γ @ pt
if and only if Υ � 𝛾 = 𝛾 ′ ∈ Γ.dsc @ par.

Proof. If Υ.cc � 𝛾 = 𝛾 ′ ∈ Γ @ pt, then Υ.cc.dsc � (𝛾 : Γ) ⊗ dsc = (𝛾 ′ : Γ) ⊗ dsc ∈
Γ.dsc @ par by Corollary 14.3.6. Note that (𝛾 : Γ) ⊗ dsc = 𝛾 and (𝛾 ′ : Γ) ⊗ dsc = 𝛾 ′. By
the adjunction for interval substitutions, we have Υ � idΥ.cc ∈ Υ.cc.dsc @ par. Hence
Υ � 𝛾 = 𝛾 ′ ∈ Γ.dsc @ par by stability of closing substitutions.

Conversely, if Υ � 𝛾 = 𝛾 ′ ∈ Γ.dsc @ par, then we have Υ.cc � (𝛾 : Γ.dsc) ⊗ cc =
(𝛾 ′ : Γ.dsc) ⊗ cc ∈ Γ.dsc.cc @ pt by Corollary 14.3.6. By inspection we have Γ.dsc.cc = Γ,
(𝛾 : Γ.dsc) ⊗ cc = 𝛾 , and (𝛾 ′ : Γ.dsc) ⊗ cc = 𝛾 up to syntactic equality. Thus Υ � 𝛾 = 𝛾 ′ ∈
Γ.dsc @ par. □

Lemma 14.3.9 (Discrete-global adjunction). We have Υ.dsc � 𝛾 = 𝛾 ′ ∈ Γ @ par if
and only if Υ � 𝛾 = 𝛾 ′ ∈ Γ.glo @ pt.

Proof. For the forward direction, we first have Υ.dsc.glo � (𝛾 : Γ) ⊗ glo = (𝛾 ′ : Γ) ⊗ glo ∈
Γ.glo @ pt by Corollary 14.3.6. Then Υ.dsc.glo = Υ, (𝛾 : Γ) ⊗ glo = 𝛾 , and (𝛾 ′ : Γ) ⊗ glo = 𝛾 ′,
so Υ � 𝛾 = 𝛾 ′ ∈ Γ.glo @ pt. For the converse, we go by induction the shape of Γ and on
Υ � 𝛾 = 𝛾 ′ ∈ Γ.glo @ pt.

• Case: · and Υ � · = · ∈ · @ pt. Immediate.

• Case: (Γ, (𝜇 | 𝑎 : 𝐴)) and Υ � (𝛾,𝑀/𝑎) = (𝛾 ′, 𝑀′/𝑎) ∈ (Γ.glo, (dsc, 𝜇 | 𝑎 : 𝐴)) @ pt
where Υ � 𝛾 = 𝛾 ′ ∈ Γ.glo @ pt and Υ.dsc.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴𝛾 @ 𝑚. By induction
hypothesis, we have Υ.dsc � 𝛾 = 𝛾 ′ ∈ Γ @ par, and so the result follows by the modal
hypothesis rule.

• Case: (Γ, 𝒙 : I) and Υ � (𝛾, 𝒓/𝒙) = (𝛾 ′, 𝒓/𝒙) ∈ (Γ, 𝒙 : I).glo @ pt. By induction
hypothesis, we have Υ.dsc � 𝛾 = 𝛾 ′ ∈ Γ @ par, and Υ � 𝒓 ∈ 2 @ pt implies
Υ.dsc � 𝒓 ∈ I @ par.

The cases for path interval, bridge endpoint, and constraint hypotheses follow the same
pattern of argument. □

Finally, we prove a result aimed at generalizing Lemma 14.3.5—which says that when-
ever Υ.𝜇 � 𝑀 ∈ 𝐴 @ 𝑚, we have Υ.𝜈 .(𝜇 ÷ 𝜈) � 𝑀 ∈ 𝐴 @𝑚—to open judgments. As the
open judgments are defined by closing substitutions, this result will fall out of showing
that every Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.𝜈 .(𝜇 ÷ 𝜈) @𝑚 induces a corresponding Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.𝜇 @𝑚.
To get there, we first prove the following lemma. Item (1), which is a special case of the

250 Cohesive parametric type theory

property we need, is the one we are really after; the others represent a strengthening of
induction hypothesis.

Lemma 14.3.10. Let 𝜇 :𝑚 → 𝑛. Then the following hold.

(1) If 𝑛 = par and Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.glo.dsc.𝜇 @𝑚, then there exist Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.𝜇 @𝑚.

(2) If 𝑛 = par and Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.𝜇 @𝑚, then there exist Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.cc.dsc.𝜇 @𝑚.

(3) If 𝑛 = pt and Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.𝜇 @𝑚, then there exist Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.dsc.glo.𝜇 @𝑚.

(4) If 𝑛 = pt and Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.dsc.glo.𝜇 @𝑚, then there exist Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.𝜇 @𝑚.

(5) If 𝑛 = pt and Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.glo.𝜇 @𝑚, then there exist Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.cc.𝜇 @𝑚.

Moreover, in each case, we have𝑀𝛾+ = 𝑀𝛾 and𝑀𝛾 ′+ = 𝑀𝛾 ′ for any term𝑀 , up to syntactic
equality.

Proof. By induction on the length of 𝜇, proving all of the above simultaneously as follows.

(1) By cases on 𝜇.

• 𝜇 = id. Then by the adjunctions on closing substitutions, we have Ψ.dsc.cc � 𝛾 =
𝛾 ′ ∈ Γ @ par, and we have Ψ.dsc.cc = Ψ.

• 𝜇 = (cc, 𝜇′). Then we are given Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.glo.dsc.cc.𝜇′ @ 𝑚. As −.cc cancels
−.dsc, this means we have Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.glo.𝜇′ @ 𝑚. It follows from (5) applied
with 𝜇′ that we have some Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.𝜇 @𝑚.

• 𝜇 = (glo, 𝜇′). Then we are given Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.glo.dsc.glo.𝜇′ @𝑚. It follows from
(4) applied with 𝜇′ that we have some Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.𝜇 @𝑚.

(2) By cases on 𝜇.

• 𝜇 = id. Then by the action of cc on closing substitutions we have some Ψ.cc ⊩
𝛾+ = 𝛾 ′+ ∈ Γ.cc @ pt, and it follows by the components-discrete adjunction that
Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.cc.dsc @ par.

• 𝜇 = (cc, 𝜇′). Then we are given Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.cc.𝜇′ @ 𝑚, and it follows that Ψ ⊩
𝛾 = 𝛾 ′ ∈ Γ.cc.dsc.cc.𝜇′ @𝑚 because −.cc cancels −.dsc (up to syntactic equality).

• 𝜇 = (glo, 𝜇′). Then we are given Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.glo.𝜇′ @ 𝑚. It follows from (5)
applied with 𝜇′ that Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.cc.𝜇′ @ 𝑚, and then we proceed as in the
previous case.

(3) By cases on 𝜇.

Rules for modal operators and hypotheses 251

• 𝜇 = id. We have Ψ = Ψ.dsc.cc, so Ψ.dsc.cc ⊩ 𝛾 = 𝛾 ′ ∈ Γ @ pt, and then Ψ ⊩
𝛾 = 𝛾 ′ ∈ Γ.dsc.glo @ pt follows from the components-discrete and discrete-global
adjunctions.

• 𝜇 = (dsc, id). By the components-discrete adjunction, we have Ψ.cc ⊩ 𝛾 = 𝛾 ′ ∈ Γ @

pt. By the argument of the previous case, it follows that Ψ.cc ⊩ 𝛾 = 𝛾 ′ ∈ Γ.dsc.glo @

pt, and then Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.dsc.glo.dsc @ par follows by applying the adjunction
in reverse.

• 𝜇 = (dsc, cc, 𝜇′). Then as −.cc cancels −.dsc, this follows by (3) applied with 𝜇′.
• 𝜇 = (dsc, glo, 𝜇′). Then this follows by (3) applied with 𝜇′.

(4) By cases on 𝜇.

• 𝜇 = id. Then by the discrete-global and components-discrete adjunctions, it follows
that Ψ.dsc.cc ⊩ 𝛾 = 𝛾 ′ ∈ Γ @ pt, and we have Ψ.dsc.cc = Ψ.

• 𝜇 = (dsc, 𝜇′). Then this follows from (1) applied with 𝜇′.

(5) By cases on 𝜇.

• 𝜇 = id. By the discrete-global adjunction we have Ψ.dsc ⊩ 𝛾 = 𝛾 ′ ∈ Γ @ par. Then
we apply the action of cc on closing substitutions and the fact that Ψ.dsc.cc = Ψ to
get some Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.cc @ pt.

• 𝜇 = (dsc, 𝜇′). Then the result follows by applying first (1) and then (2) with 𝜇′. □

Lemma 14.3.11. Let 𝜇 : 𝑚 → 𝑛 and 𝜈 : 𝑝 → 𝑚 be given such that 𝜇 ÷ 𝜈 is defined. If
Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.𝜈 .(𝜇 ÷ 𝜈) @ 𝑚, then there exist some Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.𝜇 @ 𝑚 such that
𝑀𝛾+ = 𝑀𝛾 and𝑀𝛾 ′+ = 𝑀𝛾 ′ for any term𝑀 .

Proof. By induction on 𝜈 . Suppose Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.𝜈 .(𝜇 ÷ 𝜈) @𝑚; we have four cases.

• 𝜈 = id. Then Γ.𝜈 .(𝜇 ÷ 𝜈) = Γ.𝜇.

• 𝜈 = (cc, 𝜈′). As we assumed 𝜇÷𝜈 is defined, we must have 𝜇 = (cc, 𝜇′) for some 𝜇′. Then
Γ.𝜈 .(𝜇 ÷ 𝜈) = Γ.cc.𝜈′.(𝜇′ ÷ 𝜈′). The result thus follows by induction hypothesis applied
at Γ.cc, 𝜇′, and 𝜈′.

• 𝜈 = (dsc, 𝜈′). Then Γ.𝜈 .(𝜇 ÷ 𝜈) = Γ.dsc.𝜈′.((cc, 𝜇) ÷ 𝜈′). By induction hypothesis applied
at Γ.dsc, 𝜈′, and (cc, 𝜇), we have some Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.dsc.(cc, 𝜇) @𝑚, and Γ.dsc.cc = Γ
by inspection.

• 𝜈 = (glo, 𝜈′). Then Γ.glo.𝜈′.((dsc, 𝜇) ÷ 𝜈′). By induction hypothesis applied at Γ.glo,
𝜈′, and (dsc, 𝜇), we have some Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.glo.(dsc, 𝜇) @ 𝑚. By property (1) of
Lemma 14.3.10, it follows that we have some Ψ ⊩ 𝛾++ = 𝛾 ′++ ∈ Γ.𝜇 @𝑚. □

252 Cohesive parametric type theory

14.3.2 Contexts and substitutions

Finally, we use the properties of the extended closing substitutions to bootstrap our way
to the open judgments and then general substitutions. The first main result is that −.𝜇
preserves well-formed contexts, which follows from the division lemma foreshadowed in
the previous section.

Lemma 14.3.12 (Division of open judgments). Let 𝜇 :𝑚 → 𝑛 and 𝜈 : 𝑝 →𝑚 be given
and assume 𝜇 ÷ 𝜈 is defined.

• Given Γ.𝜇 � 𝐴 = 𝐴′ pretype @𝑚, we have Γ.𝜈 .(𝜇 ÷ 𝜈) � 𝐴 = 𝐴′ pretype @𝑚.

• Given Γ.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚, we have Γ.𝜈 .(𝜇 ÷ 𝜈) � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚.

Proof. Without loss of generality we focus on the first property; we go by definition of the
open pretype judgment. Let closing substitutions Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.𝜈 .(𝜇 ÷ 𝜈) @𝑚 be given.
By Lemma 14.3.11, we derive substitutions Ψ ⊩ 𝛾+ = 𝛾 ′+ ∈ Γ.𝜇 @ 𝑚. Then by definition
of Γ.𝜇 � 𝐴 = 𝐴′ pretype @ 𝑚, we have Ψ ⊩ 𝐴𝛾+ = 𝐴′𝛾 ′+ pretype @ 𝑚, which is to say
Ψ ⊩ 𝐴𝛾 = 𝐴′𝛾 ′ pretype @𝑚. □

Theorem 14.3.13 (Modal context operators).

Γ = Γ′ ctx @ 𝑛 𝜇 :𝑚 → 𝑛

Γ.𝜇 = Γ′.𝜇 ctx @𝑚

Proof. By induction on Γ = Γ′ ctx @ 𝑛, using Lemma 14.3.12 in the modal hypothesis
case. □

The second essential result is the variable rule for modal hypotheses.

Lemma 14.3.14. For any 𝜇 :𝑚 → 𝑛, (𝜇 ÷ 𝜇) is defined and does not contain glo.

Proof. After generalizing to the claim that (𝜈, 𝜇) ÷ 𝜇 is defined and does not contain glo
for any 𝜈 : 𝑛 → 𝑛 not containing glo, this follows straightforwardly by induction on 𝜇. □

Theorem 14.3.15 (Variable).

𝜇 :𝑚 → 𝑛 Γ.𝜇 � 𝐴 pretype @𝑚

Γ, (𝜇 | 𝑎 : 𝐴).𝜇 � 𝑎 ∈ 𝐴 @𝑚

Rules for modal operators and hypotheses 253

Proof. We have Γ, (𝜇 | 𝑎 : 𝐴).𝜇 = Γ.𝜇, (𝜇 ÷ 𝜇 | 𝑎 : 𝐴) by Lemma 14.3.14. Note that we have
Γ.𝜇, (𝜇 ÷ 𝜇 | 𝑎 : 𝐴) � 𝐴 pretype @𝑚 by weakening, which is an immediate consequence
of the definitions of the open judgments. Let a closing substitution Ψ ⊩ (𝛾,𝑀/𝑎) =
(𝛾 ′, 𝑀′/𝑎) ∈ (Γ.𝜇, (𝜇 ÷ 𝜇 | 𝑎 : 𝐴)) @ 𝑚 be given; we have Ψ ⊩ 𝛾 = 𝛾 ′ ∈ Γ.𝜇 @ 𝑚 and
Ψ.(𝜇 ÷ 𝜇) ⊩ 𝑀 = 𝑀′ ∈ 𝐴𝛾 @ 𝑚. Using that 𝜇 ÷ 𝜇 does not contain glo, we can see
that Ψ ⊩ idΨ ∈ Ψ.(𝜇 ÷ 𝜇) @ 𝑚. By stability of the element judgment, we thus have
Ψ ⊩ 𝑀 = 𝑀′ ∈ 𝐴𝛾 @𝑚 as needed. □

Corollary 14.3.16 (Action of modal hypotheses).

Γ′, Γ ctx @ 𝑛 Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑛 𝜇 :𝑚 → 𝑛 Γ.𝜇 � 𝐴 pretype @𝑚

Γ′, (𝜇 | 𝑎 : 𝐴𝛾) � (𝛾, 𝑎/𝑎) = (𝛾 ′, 𝑎/𝑎) ∈ Γ, (𝜇 | 𝑎 : 𝐴) @ 𝑛

Proof. By the substitution formation rule and variable rule. □

Corollary 14.3.17 (Identity substitution).

Γ = Γ′ ctx @𝑚

Γ � idΓ = idΓ′ ∈ Γ @𝑚

Proof. By induction on Γ = Γ′ ctx @𝑚, using the action of each context constructor. □

The remaining properties of the open judgments now require little ingenuity to ver-
ify, being for the most part a rehash of the corresponding properties of extended closing
substitutions. We leave the construction of detailed proofs as an exercise to the reader.

Proposition 14.3.18 (Instantiation of substitutions). If Ψ ⊩ 𝛿 = 𝛿′ ∈ Γ′ @ 𝑚 and
Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚, then Ψ ⊩ 𝛾𝛿 = 𝛾 ′𝛿′ ∈ Γ @𝑚.

Proof. By induction on the derivation of Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑚. In the case of a modal
hypothesis, we use the functorial action of modalities on extended closing substitutions.□

Corollary 14.3.19 (Stability of open typing judgments). Given Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚
and Γ � 𝐴 = 𝐴′ pretype @ 𝑚, we have Γ′ � 𝐴𝛾 = 𝐴′𝛾 ′ pretype @ 𝑚; likewise for types
and terms.

Proposition 14.3.20 (Action by modalities).

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @ 𝑛 𝜇 :𝑚 → 𝑛

Γ′.𝜇 � (𝛾 : Γ) ⊗ 𝜇 = (𝛾 ′ : Γ) ⊗ 𝜇 ∈ Γ.𝜇 @𝑚

Proof. Following the proof of Corollary 14.3.6, now using Lemma 14.3.12. □

254 Cohesive parametric type theory

Proposition 14.3.21 (Components-discrete adjunction).

Γ′.cc � 𝛾 = 𝛾 ′ ∈ Γ @ pt

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ.dsc @ par

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ.dsc @ par

Γ′.cc � 𝛾 = 𝛾 ′ ∈ Γ @ pt

Proof. Following the proof of Lemma 14.3.8. □

Proposition 14.3.22 (Discrete-global adjunction).

Γ′.dsc � 𝛾 = 𝛾 ′ ∈ Γ @ par

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ.glo @ pt

Γ′ � 𝛾 = 𝛾 ′ ∈ Γ.glo @ pt

Γ′.dsc � 𝛾 = 𝛾 ′ ∈ Γ @ par

Proof. Following the proof of Lemma 14.3.9. □

Proposition 14.3.23 (Stability/composition of substitutions). If Γ′′ � 𝛾 ′′ = 𝛾 ′′′ ∈
Γ′ @𝑚 and Γ′ � 𝛾 = 𝛾 ′ ∈ Γ @𝑚, then Γ′′ � 𝛾 ′′𝛾 = 𝛾 ′′′𝛾 ′ ∈ Γ @𝑚.

Proof. Following the proof of Proposition 14.3.18, using the action of modalities on sub-
stitutions and stability of open typing judgments in the modal hypothesis case. □

14.4 Modal types

With the judgmental apparatus sorted, we now construct a specific type systemwith types
corresponding to the discrete, global, and codiscrete cohesion functors.

To avoid repetition, we introduce a uniform notation for modal types: we write 〈𝜇 |𝐴〉
for the type corresponding to the right adjoint of each 𝜇 ∈ {cc, dsc, glo}. Thus we have
the following encodings.

Disc(𝐴) B 〈cc | 𝐴〉 Glo(𝐴) B 〈dsc | 𝐴〉 Codisc(𝐴) B 〈glo | 𝐴〉

This notation reflects the role of the left adjoint in the intended introduction rule for each
modal type.

Γ.𝜇 � 𝑀 ∈ 𝐴
Γ � mod(𝑀) ∈ 〈𝜇 | 𝐴〉

Note also the parallel with the modal hypothesis notation (𝜇 | 𝑎 : 𝐴). We display the
operational semantics rules for modal types in Figures 14.4 and 14.5.

It will be useful to first give names to the relations that will interpret these types.

Modal types 255

Formation

𝜇 ∈ {cc, dsc, glo}
〈𝜇 | 𝐴〉 val

Introduction

mod(𝑀) val

Projection

𝑃 ↦−→ 𝑃 ′

unmod(𝑃) ↦−→ unmod(𝑃 ′) unmod(mod(𝑀)) ↦−→ 𝑀

Discrete elimination

𝑃 ↦−→ 𝑃 ′

letdisc(𝑑.𝐵, 𝑃, 𝑎.𝑁) ↦−→ letdisc(𝑑.𝐵, 𝑃 ′, 𝑎.𝑁) letdisc(𝑑.𝐵,mod(𝑀), 𝑎.𝑁) ↦−→ 𝑁 [𝑀/𝑎]

letdisc(𝑑.𝐵, fhcom𝑟�𝑠 (𝑃 ;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .𝑃𝑖), 𝑎.𝑁)
↦−→

com𝑟�𝑠
𝑥 .𝐵 [fhcom𝑟�𝑥 (𝑃 ;−−−−−−−⇀𝜉𝑖 ↩→𝑥 .𝑃𝑖)/𝑑]

(letdisc(𝑑.𝐵, 𝑃, 𝑎.𝑁);−−−−−−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ letdisc(𝑑.𝐵, 𝑃𝑖, 𝑎.𝑁))

Splitting

split0(𝑀0, 𝑀1) ↦−→ 𝑀0 split1(𝑀0, 𝑀1) ↦−→ 𝑀1

Figure 14.4: Operational semantics for modal parametric type theory: formation, intro-
duction, elimination, splitting

Definition 14.4.1. Let Ψ ictx @ 𝑛 and 𝜇 : 𝑚 → 𝑛. Given a value (𝑚,Ψ.𝜇)-relation 𝑅, we
define a value (𝑛,Ψ)-relation Mod𝜇 (𝑅) for Ψ′ ⊩ 𝜓 ∈ Ψ.

𝑉 ≈ 𝑉 ′ ∈ Mod𝜇 (𝑅)〈𝜓 〉 :⇐⇒
{
𝑉 = mod(𝑀) and 𝑉 ′ = mod(𝑀′)
with𝑀 ≈ 𝑀′ ∈ ⤋𝑅 [(𝜓 : Ψ) ⊗ 𝜇]

For Glo(𝐴) and Codisc(𝐴), the above will be their defining relation. These two types
support projection rules that invert the introduction rule, a setup that reflects the status
of dsc and glo as right adjoints. As such, the Kan operations for these types are easily
implemented: as with functions or products, we unpack the underlying elements of 𝐴,
coerce or compose them, and repackage.

256 Cohesive parametric type theory

Coercion

𝜇 ∈ {dsc, glo}
coe𝑟�𝑠𝑥 .〈𝜇 |𝐴〉 (𝑃) ↦−→ mod(coe𝑟�𝑠𝑥 .𝐴 (unmod(𝑃 ′)))

𝑃 ↦−→ 𝑃 ′

coe𝑟�𝑠𝑥 .〈cc|𝐴〉 (𝑃) ↦−→ coe𝑟�𝑠𝑥 .〈cc|𝐴〉 (𝑃
′) coe𝑟�𝑠𝑥 .〈cc|𝐴〉 (mod(𝑀)) ↦−→ mod(coe𝑟�𝑠𝑥 .𝐴 (𝑀))

coe𝑟�𝑠𝑥 .〈cc|𝐴〉 (fhcom
𝑡�𝑢 (𝑃 ;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑦.𝑃𝑖))

↦−→
fhcom𝑡�𝑢 (coe𝑟�𝑠𝑥 .〈cc|𝐴〉 (𝑃);

−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.coe𝑟�𝑠𝑥 .〈cc|𝐴〉 (𝑃𝑖))

Composition

𝜇 ∈ {dsc, glo}

hcom𝑟�𝑠
〈𝜇 |𝐴〉 (𝑃 ;

−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑃𝑖) ↦−→ mod(hcom𝑟�𝑠

𝐴 (unmod(𝑃);−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .unmod(𝑃𝑖)))

hcom𝑟�𝑠
〈cc|𝐴〉 (𝑃 ;

−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑃𝑖) ↦−→ fhcom𝑟�𝑠 (𝑃 ;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .𝑃𝑖)

Formal composites

𝑟 ≠ 𝑠 (�𝑖) 𝜉𝑖 satisfied

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) val

(�𝑖) 𝜉𝑖 satisfied

fhcom𝑟�𝑟 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ 𝑀

(�𝑖 < 𝑘) 𝜉𝑖 satisfied 𝜉𝑘 satisfied

fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ↦−→ 𝑁𝑘 [𝑠/𝑥]

Figure 14.5: Operational semantics for modal parametric type theory: Kan operations

Modal types 257

For Disc(𝐴), on the other hand, the relation Modcc alone does not provide enough
elements to implement the Kan operations. Consider that whenever we have a value
of the form Ψ ⊩ mod(𝑀) ∈ Disc(𝐴), the term 𝑀 has type Ψ.cc ⊩ 𝑀 ∈ 𝐴; as such,
𝑀 cannot depend on any bridge interval hypotheses in Ψ. For Disc(𝐴) to implement
the Kan operations, however, it must contain elements that depend non-trivially on such
hypotheses. In particular, we can use loosen (Definition 10.3.1) to create bridges from
(possibly non-degenerate) paths.

𝑃 ∈ Path(Disc(𝐴), 𝑁0, 𝑁1)
loosenDisc(𝐴) 𝑃 ∈ Bridge(Disc(𝐴), 𝑁0, 𝑁1)

The discrete type must therefore contain additional values. The values we introduce are
formal composite values: rather than evaluating in some way, composites in the discrete
type will be inert values. These will be familiar to the reader who has been through
Part II—see Section 5.1 for their motivation in that case—but we re-introduce them below.
As a consequence, the discrete type will fail to support a projection with an exact unique-
ness principle, containing as it does values other than mod terms. Instead, we will have
a dependent eliminator that extends maps (cc | 𝑎 : 𝐴) � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] to maps
𝑑 : Disc(𝐴) � letdisc(𝑑.𝐵, 𝑑, 𝑎.𝑁) ∈ 𝐵.

The operational semantics for formal composites are replicated in Figure 14.5: they
are values unless one of their boundary conditions is satisfied, in which case they reduce.
The following defines the relation Fhcom(𝑅) of formal composites formed in elements of
⤋𝑅.

Definition 14.4.2 (Replica of Definition 6.2.10). Given a Ψ-relation 𝑅, we define a Ψ-
relation Fhcom(𝑅) as inductively generated by the principle that, for each Ψ′ ⊩ 𝜓 ∈ Ψ,
we have fhcom𝑟�𝑠 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) ≈ fhcom𝑟�𝑠 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ Fhcom(𝑅)〈𝜓 〉 whenever
the following hold.

• Ψ′ ⊩ 𝑟, 𝑠 ∈ I with 𝑟 ≠ 𝑠 .

• 𝑀 ≈ 𝑀′ ∈ ⤋𝑅𝜓 .

• Ψ′ ⊩ 𝜉𝑖 ∈ F for each 𝑖 , and there is no 𝜉𝑖 such that Ψ′ ⊩ 𝜉𝑖 satisfied holds.

• Ψ′, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 ≈ 𝑁 ′
𝑗 ∈ ⤋𝑅𝜓 for all 𝑖, 𝑗 .

• Ψ′, 𝜉𝑖 � 𝑀 ≈ 𝑁𝑖 [𝑟/𝑥] ∈ ⤋𝑅𝜓 for all 𝑖 .

The relation interpretingDisc(𝐴) is then obtained by closingModcc(J𝐴K) under formal
composites, where J𝐴K is the relation represented by 𝐴.

258 Cohesive parametric type theory

Example 14.4.3 (Small type system). We define an operatorMo on candidate type systems
as follows: given 𝜏 , Mo(𝜏) is the union of the following clauses.

• Mo(𝜏) ⊨ Ψ ⊩ 〈𝜇 | 𝐴〉 ≈ 〈𝜇 | 𝐴′〉 ↓ 𝑅 @ 𝑛 for 𝜇 :𝑚 → 𝑛 with 𝜇 ∈ {dsc, glo} whenever

– 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑆] for some Ψ.𝜇-PER 𝑆 ,
– 𝑅 = Mod𝜇 (𝑆).

• Mo(𝜏) ⊨ Ψ ⊩ 〈cc | 𝐴〉 ≈ 〈cc | 𝐴′〉 ↓ 𝑅 @ par whenever

– 𝐴 ≈ 𝐴′ ∈ ⤋𝜏 [𝑆] for some Ψ.cc-PER 𝑆 ,
– 𝑅 is the least fixed-point of the operator 𝑅 ↦→ Modcc(𝑅) ∪ Fhcom(𝑅).

We define the candidate type system 𝜏Mo
0 to be the least fixed point of the following oper-

ator, where 𝐹, 𝐻, IP are as defined in Examples 3.1.32, 6.2.22 and 9.1.13 respectively.

𝜏 ↦→
(⋃

𝑚∈{pt,par} 𝐹 (𝜏𝑚)
)
∪

(⋃
𝑚∈{pt,par} 𝐻 (𝜏𝑚)

)
∪ IP (𝜏par) ∪Mo(𝜏)

That is, we include the basic cubical (𝐹) and higher inductive (𝐻) type formers in both
the pointwise and parametric modes, but restrict the Bridge and Gel types (IP) to the
parametric mode.

We can construct a larger type system 𝜏Mo
1 closed under these type formers and con-

taining 𝜏Mo
0 as a universe in the usual fashion. We henceforth assume we are working in

such a type system.
For the first couple of rules—pretype formation and mod introduction—we can treat

the three modal types uniformly.

Rule 14.4.4 (Pretype formation). The following rule is validated for 𝜇 ∈ {cc, dsc, glo}
with 𝜇 :𝑚 → 𝑛.

Ψ.𝜇 � 𝐴 = 𝐴′ type @𝑚

Ψ ⊩ 〈𝜇 | 𝐴〉 = 〈𝜇 | 𝐴′〉 pretype @ 𝑛

Proof. Immediate by coherent value introduction. We use the action of 𝜇 on substitutions:
for any Ψ′ ⊩ 𝜓 ∈ Ψ @ 𝑛, we have Ψ′.𝜇 � (𝜓 : Ψ) ⊗ 𝜇 ∈ Ψ @ 𝑚, thus Ψ′.𝜇 � 𝐴𝜓 =
𝐴′𝜓 type @ 𝑚 and therefore 𝜏Mo

0 ⊨ Ψ
′ ⊩ 〈𝜇 | 𝐴𝜓 〉 ≈ 〈𝜇 | 𝐴′𝜓 〉 ↓ 𝑅 @ 𝑛 for the appropriate

𝑅. □

Rule 14.4.5 (Introduction). The following rule is validated for 𝜇 ∈ {cc, dsc, glo} with
𝜇 :𝑚 → 𝑛.

Ψ.𝜇 � 𝑀 = 𝑀′ ∈ 𝐴 @𝑚

Ψ ⊩ mod(𝑀) = mod(𝑀′) ∈ 〈𝜇 | 𝐴〉 @ 𝑛

Modal types 259

Proof. By coherent value introduction, following the proof of pretype formation. □

For the remainder of the rules—elimination, reduction and uniqueness equations, and
the Kan operations—we must handle 〈𝜇 | 𝐴〉 for 𝜇 = dsc separately from the two right
adjoints dsc and glo.

14.4.1 Right adjoint modalities
The type formers Glo and Codisc do not only have left adjoint context operators; those
left adjoints are themselves right adjoints, to cc and dsc respectively. This enables a neg-
ative treatment of Glo and Codisc, that is, one characterized by a projection operator and
uniqueness principle rather than an induction principle. An analogous situation appears
in Shulman’s cohesive type theory: his ♯ operator, which corresponds to the composite
Codisc(Glo(−)), is axiomatized negatively. We treat the two type formers uniformly by
introducing the following shorthand.

Definition 14.4.6. Given 𝜇 ∈ {dsc, glo}, define a𝜇 as follows.

adsc B cc
aglo B dsc

Note that a𝜇 = id ÷ 𝜇, where division is as specified in Definition 14.3.4.

In the following, it may be useful to notice the similarity to bridge types: if we think of
the context operator −.𝜇 as analogous to 𝒙 :I, then −.a𝜇 corresponds to interval restriction.
Modulo the absence of endpoint constraints in the type and the binding of an interval
variable, the projection rules for bridge and negative modal types then match exactly.

Rules 14.4.7 (Projection). The following rules are validated for any 𝜇 ∈ {dsc, glo} with
𝜇 :𝑚 → 𝑛.

Ψ.a𝜇.𝜇 � 𝐴 type @𝑚 Ψ.a𝜇 � 𝑃 = 𝑃 ′ ∈ 〈𝜇 | 𝐴〉 @ 𝑛

Ψ ⊩ unmod(𝑃) = unmod(𝑃 ′) ∈ 𝐴 @𝑚

Ψ.a𝜇.𝜇 � 𝐴 type @𝑚 Ψ.a𝜇.𝜇 � 𝑀 ∈ 𝐴 @𝑚

Ψ ⊩ unmod(mod(𝑀)) = 𝑀 ∈ 𝐴 @𝑚

Ψ.𝜇 � 𝐴 type @𝑚 Ψ ⊩ 𝑃 ∈ 〈𝜇 | 𝐴〉 @ 𝑛

Ψ ⊩ 𝑃 = mod(unmod(𝑃)) ∈ 〈𝜇 | 𝐴〉 @ 𝑛

260 Cohesive parametric type theory

Proof. First, note that Ψ ⊩ idΨ.a𝜇 ∈ Ψ.a𝜇.𝜇 @𝑚, either by the components-discrete adjunc-
tion or the discrete-global adjunction. The hypothesis Ψ.a𝜇.𝜇 � 𝐴 type @𝑚 thus implies
that Ψ ⊩ 𝐴 type @𝑚, justifying the use of 𝐴 in the conclusions of the first two rules.

As usual, we prove the reduction rule first. As with 𝐴, we deduce Ψ ⊩ 𝑀 ∈ 𝐴 @ 𝑚
from Ψ.a𝜇.𝜇 � 𝑀 ∈ 𝐴 @ 𝑚 by stability. The rule is then immediate by coherent head
expansion, as unmod(mod(𝑀))𝜓 ↦−→ 𝑀𝜓 for any𝜓 .

For the first rule, we have that unmod is eager, so we apply Lemma 3.1.38 to reduce
to the case where 𝑃 and 𝑃 ′ are values of 〈𝜇 | 𝐴〉; the result then follows by applying the
reduction rule on either side.

For the final rule, we first use Lemma 3.1.36 to see that Ψ ⊩ 𝑃 = mod(𝑀) ∈ 〈𝜇 | 𝐴〉 @ 𝑛
for some Ψ.𝜇 � 𝑀 ∈ 𝐴 @ 𝑚. Again using the adjunction from above, we have the
substitution Ψ.𝜇.a𝜇 � idΨ.𝜇 ∈ Ψ @ 𝑛. By stability, we thus have Ψ.𝜇.a𝜇 � 𝑃 = mod(𝑀) ∈
〈𝜇 | 𝐴〉 @ 𝑛. Applying the unmod rules just proven, we obtain first Ψ.𝜇 � unmod(𝑃) =
unmod(mod(𝑀)) ∈ 𝐴 @ 𝑚 and thereby Ψ.𝜇 � unmod(𝑃) = 𝑀 ∈ 𝐴 @ 𝑚. Applying the
introduction rule then gives Ψ ⊩ mod(unmod(𝑃)) = mod(𝑀) ∈ 〈𝜇 | 𝐴〉 @ 𝑛, from which
the result follows by combination with Ψ ⊩ 𝑃 = mod(𝑀) ∈ 〈𝜇 | 𝐴〉 @ 𝑛. □

Rule 14.4.8 (Type formation). The following rule is validated for 𝜇 ∈ {dsc, glo} with
𝜇 :𝑚 → 𝑛.

Ψ.𝜇 � 𝐴 = 𝐴′ type @𝑚

Ψ ⊩ 〈𝜇 | 𝐴〉 = 〈𝜇 | 𝐴′〉 type @ 𝑛

Proof. As the reductions for coercion and composition in 〈𝜇 |𝐴〉 are stable under interval
substitution, it suffices to check that the reducts are well-typed and satisfy the necessary
boundary equations; the results then follow straightforwardly from coherent head expan-
sion.

For coercion, suppose we have (Ψ, 𝑥 : I).𝜇 � 𝐴 type @ 𝑚, Ψ ⊩ 𝑟, 𝑠 ∈ I @ 𝑛, and
Ψ ⊩ 𝑃 ∈ 〈𝜇 | 𝐴〉[𝑟/𝑥] @ 𝑛. Reindexing Ψ ⊩ 𝑃 ∈ 〈𝜇 | 𝐴〉[𝑟/𝑥] @ 𝑛 along the substitution
Ψ.𝜇.a𝜇 � idΨ.𝜇 ∈ Ψ @ 𝑛 and then applying the projection rule gives Ψ.𝜇 � unmod(𝑃) ∈
𝐴[𝑟/𝑥] @ 𝑚. By coercion in 𝐴, we then have Ψ.𝜇 � coe𝑟�𝑠𝑥 .𝐴 (unmod(𝑃)) ∈ 𝐴[𝑠/𝑥] @

𝑚. Hence Ψ � mod(coe𝑟�𝑠𝑥 .𝐴 (unmod(𝑃))) ∈ 〈𝜇 | 𝐴〉[𝑠/𝑥] @ 𝑛 by the introduction rule.
Finally, in the case 𝑟 = 𝑠 , this is equal to 𝑃 by reduction of trivial coercions in 𝐴 and the
uniqueness rule.

For composition, suppose we have Ψ.𝜇 � 𝐴 type @ 𝑚, Ψ ⊩ 𝑟, 𝑠 ∈ I @ 𝑛, Ψ ⊩
𝑃 ∈ 〈𝜇 | 𝐴〉 @ 𝑛, Ψ � 𝜉𝑖 ∈ F @ 𝑛 for all 𝑖 , and Ψ, 𝑥 : I, 𝜉𝑖 ⊩ 𝑃𝑖 ∈ 〈𝜇 | 𝐴〉 @ 𝑛 for all 𝑖
satisfying the equations required of the cap and tube of a composite. Again reindexing
along Ψ.𝜇.a𝜇 � idΨ.𝜇 ∈ Ψ @ 𝑛 and applying the projection, we have Ψ.𝜇 ⊩ unmod(𝑃) ∈
𝐴 @ 𝑚 and (Ψ, 𝑥 : I, 𝜉𝑖).𝜇 ⊩ 𝑃𝑖 ∈ 𝐴 @ 𝑚 for each 𝑖 . Recall that for 𝜇 ∈ {dsc, glo}, we have
(Ψ, 𝑥 : I, 𝜉𝑖).𝜇 = Ψ.𝜇, 𝑥 : I, 𝜉𝑖 . We can therefore form a composite in 𝐴, the term Ψ.𝜇 �

Modal types 261

hcom𝑟�𝑠
𝐴 (unmod(𝑃);−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .unmod(𝑃𝑖)) ∈ 𝐴 @ 𝑚. Finally, we apply the introduction

rule to obtain the composite in 〈𝜇 | 𝐴〉, which clearly has the necessary boundary by the
equations for the composite in 𝐴. □

14.4.2 The discrete type
Unlike the other two modal types, the discrete type is defined by a modality cc with
no left adjoint, so the previous approach is unavailable. Instead, we give a dependent
elimination principle, a case analysis operator analogous to that used for inductive types.
Again, there is an analogy to Shulman’s presentation of cohesion, wherein the ♭ operator
corresponding to the composite Disc(Glo(−)) is axiomatized in a positive style.

The first step is to confirm that formal composites are also elements of the type, which
in turn implies that the type supports composition.

Rule 14.4.9 (Formal composites in the discrete type). Given Ψ.cc � 𝐴 type @ pt,
Ψ ⊩ 𝑟, 𝑠 ∈ I @ par and Ψ ⊩ 𝜉𝑖 ∈ F @ par for all 𝑖 , the following rules are validated.

Ψ ⊩ 𝑀 = 𝑀′ ∈ Disc(𝐴) @ par (∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 = 𝑁
′
𝑗 ∈ Disc(𝐴) @ par

(∀𝑖) Ψ, 𝜉𝑖 � 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ Disc(𝐴) @ par

⊩ fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = fhcom𝑟�𝑠 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁 ′

𝑖) ∈ Disc(𝐴) @ par

Ψ ⊩ 𝑀 ∈ Disc(𝐴) @ par (∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 = 𝑁 𝑗 ∈ Disc(𝐴) @ par
(∀𝑖) Ψ, 𝜉𝑖 � 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ Disc(𝐴) @ par

Ψ ⊩ fhcom𝑟�𝑟 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = 𝑀 ∈ Disc(𝐴) @ par

Ψ ⊩ 𝜉𝑘 satisfied @ par
Ψ ⊩ 𝑀 ∈ Disc(𝐴) @ par (∀𝑖, 𝑗) Ψ, 𝜉𝑖, 𝜉 𝑗 , 𝑥 : I � 𝑁𝑖 = 𝑁 𝑗 ∈ Disc(𝐴) @ par

(∀𝑖) Ψ, 𝜉𝑖 � 𝑀 = 𝑁𝑖 [𝑟/𝑥] ∈ Disc(𝐴) @ par

Ψ ⊩ fhcom𝑟�𝑠 (𝑀 ;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑥 .𝑁𝑖) = 𝑁𝑘 [𝑠/𝑥] ∈ Disc(𝐴) @ par

Proof. A by-now standard argument by coherent introduction and head expansion. For
details, see the proof of the more general Lemma 6.2.15 in Part II. □

Lemma 14.4.10 (Composition). Ψ ⊩ Disc(𝐴) = Disc(𝐴′) pretype @ par support com-
position for any Ψ.cc � 𝐴 = 𝐴′ type @ pt.

Proof. This follows as a corollary of Rule 14.4.9 by coherent head expansion: composites
in the discrete type reduce to formal composites, which are well-typed and satisfy the
necessary boundary equations. □

262 Cohesive parametric type theory

Coercion is more involved, as it analyzes the value of its input. In particular, because
we have included formal composites as values of the discrete type, the coercion operator
at the discrete typemust also handle these elements. Fortunately, this is straightforwardly
resolved: a coercion applied to a formal composite reduces to a formal composite of coer-
cions. (This is the same as the reduction used for higher inductive types in Part II.)

Lemma 14.4.11 (Coercion). Ψ ⊩ Disc(𝐴) = Disc(𝐴′) pretype @ par support coercion
for any Ψ.cc � 𝐴 = 𝐴′ type @ pt.

Proof. We define a value Ψ-PER Coe−1 by declaring that 𝑉 ≈ 𝑉 ′ ∈ Coe−1〈𝜓 〉 holds for
Ψ′ ⊩ 𝜓 ∈ Ψ exactly when Ψ′ ⊩ 𝑉 = 𝑉 ′ ∈ Disc(𝐴) and the following are satisfied for all
Ψ′, 𝑥 : I ⊩ 𝜓𝑥 ∈ Ψ and Ψ′ ⊩ 𝑟, 𝑠 ∈ I such that𝜓𝑥 [𝑟/𝑥] = 𝜓 .

• Ψ′ ⊩ coe𝑟�𝑠
𝑥 .Disc(𝐴)𝜓𝑥 (𝑉) = coe𝑟�𝑠

𝑥 .Disc(𝐴′)𝜓𝑥 (𝑉
′) ∈ Disc(𝐴)𝜓𝑥 [𝑠/𝑥] @ par.

• Ψ′ ⊩ coe𝑟�𝑟
𝑥 .Disc(𝐴)𝜓𝑥 (𝑉) = 𝑉 ∈ Disc(𝐴)𝜓 @ par.

Note that for any terms 𝑁 ≈ 𝑁 ′ ∈ ⤋Coe−1𝜓 and 𝜓𝑥 , 𝑟 , 𝑠 as above, we can deduce
that Ψ′ ⊩ coe𝑟�𝑠

𝑥 .Disc(𝐴)𝜓𝑥 (𝑁) = coe𝑟�𝑠
𝑥 .Disc(𝐴′)𝜓𝑥 (𝑁

′) ∈ Disc(𝐴)𝜓𝑥 [𝑠/𝑥] @ par and Ψ′ ⊩
coe𝑟�𝑟

𝑥 .Disc(𝐴)𝜓𝑥 (𝑁) = 𝑁 ∈ Disc(𝐴)𝜓 @ par. This follows by Lemma 3.1.38, as coercion
at the discrete type is an eager operator.

We aim to show that JDisc(𝐴)K ⊆ Coe−1. By definition of the former as a least fixed-
point, it suffices to show that Modcc(J𝐴K) ∪ Fhcom(Coe−1) ⊆ Coe−1, which is to say that
Modcc(J𝐴K) ⊆ Coe−1 and Fhcom(Coe−1) ⊆ Coe−1.

Given values mod(𝑀) ≈ mod(𝑀′) ∈ Modcc(J𝐴K)𝜓 and 𝜓𝑥 , 𝑟 , 𝑠 as above, we have by
head expansion and coercion in 𝐴 that coe𝑟�𝑠

𝑥 .Disc(𝐴)𝜓𝑥 (mod(𝑀)) = mod(coe𝑟�𝑠
𝑥 .𝐴𝜓𝑥

(𝑀)) ∈
Disc(𝐴)𝜓𝑥 [𝑠/𝑥], likewise for𝑀′. It follows that Modcc(J𝐴K) ⊆ Coe−1.

As for Fhcom(Coe−1) ⊆ Coe−1, suppose we are given a pair of values in the former rela-
tion, fhcom𝑡�𝑢 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖) ≈ fhcom𝑡�𝑢 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁 ′

𝑖) ∈ Fhcom(Coe−1)〈𝜓 〉, and 𝜓𝑥 ,
𝑟 , 𝑠 , as above. By definition of Fhcom and the properties of terms in Coe−1, the argument
terms 𝑀,𝑀′, 𝑁𝑖, 𝑁 ′

𝑖 may be coerced to obtain well-typed elements of Disc(𝐴′)𝜓𝑥 [𝑠/𝑥],
then assembled into well-typed formal composites by Rule 14.4.9. That is, the following
are well-typed and moreover equal in Disc(𝐴)𝜓𝑥 [𝑠/𝑥].

fhcom𝑡�𝑢 (coe𝑟�𝑠𝑥 .Disc(𝐴)𝜓𝑥 (𝑀);
−−−−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.coe𝑟�𝑠𝑥 .Disc(𝐴)𝜓𝑥 (𝑁𝑖)) ∈ Disc(𝐴)𝜓𝑥 [𝑠/𝑥] @ par

fhcom𝑡�𝑢 (coe𝑟�𝑠𝑥 .Disc(𝐴′)𝜓𝑥 (𝑀
′);

−−−−−−−−−−−−−−−−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.coe𝑟�𝑠𝑥 .Disc(𝐴′)𝜓𝑥 (𝑁

′
𝑖)) ∈ Disc(𝐴)𝜓𝑥 [𝑠/𝑥] @ par

It now follows by the definition of the operational semantics and coherent head expan-
sion that the term coe𝑟�𝑠

𝑥 .Disc(𝐴)𝜓𝑥 (fhcom
𝑡�𝑢 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖)) is equal to the former, likewise

Modal types 263

coe𝑟�𝑠
𝑥 .Disc(𝐴′)𝜓𝑥 (fhcom

𝑡�𝑢 (𝑀′;
−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁 ′

𝑖)) to the latter. Thus the two formal composites
are coercible, and we can also see that coercion 𝑟 → 𝑟 produces an term equal to the
input. Hence Fhcom(Coe−1) ⊆ Coe−1 as required. □

Rule 14.4.12 (Type formation).

Ψ.cc � 𝐴 = 𝐴′ type @𝑚

Ψ ⊩ Disc(𝐴) = Disc(𝐴′) type @ 𝑛

Proof. By Lemmas 14.4.10 and 14.4.11. □

Finally, we have the elimination rule for the discrete type.

Rules 14.4.13 (Discrete elimination). The following hold for any Ψ.cc � 𝐴 type @ pt
and Ψ, 𝑑 : Disc(𝐴) � 𝐵 = 𝐵′ type @ par.

Ψ ⊩ 𝑃 = 𝑃 ′ ∈ Disc(𝐴) @ par Ψ, (cc | 𝑎 : 𝐴) � 𝑁 = 𝑁 ′ ∈ 𝐵 [mod(𝑎)/𝑑] @ par

Ψ ⊩ letdisc(𝑑.𝐵, 𝑃, 𝑎.𝑁) = letdisc(𝑑.𝐵′, 𝑃 ′, 𝑎.𝑁 ′) ∈ 𝐵 [𝑃/𝑑] @ par

Ψ.cc ⊩ 𝑀 ∈ 𝐴 @ pt Ψ, (cc | 𝑎 : 𝐴) � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @ par

Ψ ⊩ letdisc(𝑑.𝐵,mod(𝑀), 𝑎.𝑁) = 𝑁 [𝑀/𝑎] ∈ 𝐵 [mod(𝑀)/𝑑] @ par

Ψ � 𝑟, 𝑠 ∈ I @ par Ψ ⊩ 𝑃 ∈ Disc(𝐴) @ par
(∀𝑖) Ψ ⊩ 𝜉𝑖 ∈ F @ par (∀𝑖, 𝑗) Ψ, 𝑥 : I, 𝜉𝑖, 𝜉 𝑗 � 𝑃𝑖 = 𝑃 𝑗 ∈ Disc(𝐴) @ par

(∀𝑖) Ψ, 𝜉𝑖 � 𝑃 = 𝑃𝑖 [𝑟/𝑥] ∈ Disc(𝐴) @ par

𝐹𝑥 B fhcom𝑟�𝑠 (𝑃 ;−−−−−−−−⇀𝜉𝑖 ↩→ 𝑥 .𝑃𝑖) Ψ, (cc | 𝑎 : 𝐴) � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @ par

𝑇 B com𝑟�𝑠
𝑥 .𝐵 [𝐹𝑥/𝑑] (letdisc(𝑑.𝐵, 𝑃, 𝑎.𝑁);−−−−−−−−−−−−−−−−−−−−−−−⇀𝜉𝑖 ↩→ letdisc(𝑑.𝐵, 𝑃𝑖, 𝑎.𝑁))
Ψ ⊩ letdisc(𝑑.𝐵, 𝐹𝑠, 𝑎.𝑁) = 𝑇 ∈ 𝐵 [𝐹𝑠/𝑑] @ par

Proof. We define a Ψ-relation Elim−1 by declaring that 𝑉 ≈ 𝑉 ′ ∈ Elim−1〈𝜓 〉 whenever
Ψ ⊩ letdisc(𝑑.𝐵𝜓,𝑉 , 𝑎.𝑁𝜓) = letdisc(𝑑.𝐵′𝜓,𝑉 ′, 𝑎.𝑁 ′𝜓) ∈ 𝐵𝜓 [𝑉 /𝑑] @ par and ⊩ 𝑉 =
𝑉 ′ ∈ Disc(𝐴)𝜓 @ par hold. By Lemma 3.1.38, we have that Ψ ⊩ letdisc(𝑑.𝐵𝜓, 𝑃, 𝑎.𝑁𝜓) =
letdisc(𝑑.𝐵′𝜓, 𝑃 ′, 𝑎.𝑁 ′𝜓) ∈ 𝐵𝜓 [𝑃/𝑑] @ par for 𝑃 ≈ 𝑃 ′ ∈ ⤋Elim−1𝜓 . To prove the first
rule, it therefore suffices to show that JDisc(𝐴)K ⊆ Elim−1, which by universal property
of JDisc(𝐴)K means showing that Modcc(J𝐴K) ⊆ Elim−1 and Fhcom(Elim−1) ⊆ Elim−1.

To show that Modcc(J𝐴K) ⊆ Elim−1, we observe that the second rule above holds
immediately by coherent head expansion. It follows that any equal values in Modcc(J𝐴K)
are also equal in Elim−1.

264 Cohesive parametric type theory

To show that Fhcom(Elim−1) ⊆ Elim−1, suppose we are given a pair of formal compos-
ites fhcom𝑡�𝑢 (𝑀 ;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁𝑖) ≈ fhcom𝑡�𝑢 (𝑀′;

−−−−−−−−−⇀
𝜉𝑖 ↩→ 𝑦.𝑁 ′

𝑖) ∈ Fhcom(Elim−1)〈𝜓 〉. When
we apply the eliminator to these values, the results reduce to composites of eliminations
in the target family 𝐵, which are well-typed because the arguments to the formal compos-
ites belong to ⤋Elim−1. It is straightforward to check that we can then apply coherent
expansion to see that these reductions induce equalities, and we thereby deduce that the
formal composites belong to Elim−1 as required. □

14.4.3 Splitting
Before we finish, there is one last construct we need to make proper use of bridge end-
point assumptions, an operator split that performs endpoint case analysis. Its operational
semantics are included in Figure 14.4. This operator is easily seen to satisfy the following
rules; note that in a interval context Ψ, any endpoint term is either 0 or 1.

Rules 14.4.14 (Splitting).

Ψ ⊩ 𝒓 ∈ 2 @𝑚
Ψ ⊩ 𝐴 type @𝑚 Ψ, 𝒓 ≡ 0 ⊩ 𝑀0 = 𝑀

′
0 ∈ 𝐴 @𝑚 Ψ, 𝒓 ≡ 1 ⊩ 𝑀1 = 𝑀

′
1 ∈ 𝐴 @𝑚

Ψ ⊩ split𝒓 (𝑀0, 𝑀1) = split𝒓 (𝑀′
0, 𝑀

′
1) ∈ 𝐴

Ψ ⊩ 𝐴 type @𝑚 Ψ ⊩ 𝑀0 ∈ 𝐴 @𝑚

Ψ ⊩ split𝒓 (𝑀0, 𝑀1) = 𝑀0 ∈ 𝐴
Ψ ⊩ 𝐴 type @𝑚 Ψ ⊩ 𝑀1 ∈ 𝐴 @𝑚

Ψ ⊩ split𝒓 (𝑀0, 𝑀1) = 𝑀1 ∈ 𝐴

Proof. Immediate by coherent expansion. □

Chapter 15

Programming in cohesive parametric
type theory

Having established a basic suite of rules governing themodal context operators andmodal
types, we now apply the theory. As described in Chapter 13, our overarching goal is to
show that the free theorems that hold of terms defined in the parametric mode can be
used to obtain results in the pointwise mode.

We begin in Section 15.1 with a few lemmas for conveniently reasoning about the dis-
crete embedding type Disc. In Section 15.2 we return to the example of Church booleans
from Section 10.1: we show that any pointwise Church boolean that arises from a para-
metric Church boolean is “true” or “false”. Section 15.3 revisits the concept of bridge-
discreteness introduced in Section 10.3; we show in particular that types of the form
Disc(𝐴) are bridge-discrete. Finally, Section 15.4 shows that we can apply our charac-
terization of parametrically polymorphic functions between smash products from Sec-
tion 10.5 to obtain algebraic laws and coherences for the pointwise smash product.

15.1 Properties of the discrete embedding

Before getting into concrete examples, it is useful to derive a few basic properties of the
discrete type, which plays the central role in transferring parametricity results.

First, in addition to the ordinary discrete eliminator, the presence of the codiscrete
type allows us to derive an eliminator for inhabiting pointwise families indexed by amodal
hypothesis (dsc | 𝑑 : Disc(𝐴)) of discrete type. This is analogous to Shulman’s derivation
of “crisp ♭-induction” [Shu18, Lemma 5.1] in his own cohesive type theory; our modal
hypotheses under dsc play the role of his crisp hypotheses, while Disc-types play the role
of ♭-types.

265

266 Programming in cohesive parametric type theory

Lemma 15.1.1 (Pointwise elimination). We have a term letdiscpt(𝑑.𝐵, 𝑃, 𝑎.𝑁) validat-
ing the following for any Γ � 𝐴 type @ pt, family Γ, (dsc | 𝑑 : Disc(𝐴)) � 𝐵 type @ pt,
and Γ, 𝑎 :𝐴 � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @ pt.

Γ.dsc � 𝑃 ∈ Disc(𝐴) @ par

Γ � letdiscpt(𝑑.𝐵, 𝑃, 𝑎.𝑁) ∈ 𝐵 [𝑃/𝑑] @ pt

Γ � 𝑀 ∈ 𝐴 @ pt

Γ � letdiscpt(𝑑.𝐵,mod(𝑀), 𝑎.𝑁) = 𝑁 [𝑀/𝑎] ∈ 𝐵 [mod(𝑀)/𝑑] @ pt

Proof. We define pointwise elimination as ordinary elimination into the codiscrete em-
bedding of 𝐵.

letdiscpt(𝑑.𝐵, 𝑃, 𝑎.𝑁) B unmod(letdisc(𝑑.Codisc(𝐵), 𝑃, 𝑎.mod(𝑁)))

We aim to show this term has type 𝐵 [𝑃/𝑑]. By the projection rule for Codisc, it suffices
to show that Γ.dsc � letdisc(𝑑.Codisc(𝐵), 𝑃, 𝑎.mod(𝑁)) ∈ Codisc(𝐵 [𝑃/𝑑]).

To show Γ.dsc, 𝑑 : Disc(𝐴) � Codisc(𝐵) type @ par, it suffices by Codisc-formation
to check that (Γ.dsc, 𝑑 : Disc(𝐴)) .glo � 𝐵 type @ pt. We have (Γ.dsc, 𝑑 : Disc(𝐴)) .glo =
Γ.dsc.glo, (dsc | 𝑑 : Disc(𝐴)) by definition. It follows from Γ, (dsc | 𝑑 : Disc(𝐴)) �
𝐵 type @ pt and the counit substitution of the discrete-global adjunction that we have
Γ.dsc.glo, (dsc | 𝑑 : Disc(𝐴)) � 𝐵 type @ pt.

To show Γ.dsc, (cc | 𝑎 : 𝐴) � mod(𝑁) ∈ Codisc(𝐵 [mod(𝑎)/𝑑]) @ par, it suffices by
Codisc-introduction to show (Γ.dsc, (cc | 𝑎 : 𝐴)) .glo � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @ pt. Again
we compute the action of context modality.

(Γ.dsc, (cc | 𝑎 : 𝐴)) .glo = Γ.dsc.glo, (dsc, cc | 𝑎 : 𝐴)

We deduce Γ.dsc.glo, (dsc, cc | 𝑎 : 𝐴) � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @ pt from the assumption
Γ, 𝑎 : 𝐴 � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @ pt using the counit substitution of the discrete-global
adjunction and the unit of the components-discrete adjunction.

Combining these with Γ.dsc � 𝑃 ∈ Disc(𝐴) @ par, we apply parametric elimination
to see that Γ.dsc � letdisc(𝑑.Codisc(𝐵), 𝑃, 𝑎.mod(𝑁)) ∈ Codisc(𝐵 [𝑃/𝑑]) @ par. The
projection rule for the codiscrete type now gives the conclusion of the first rule. The
second rule follows analogously by the reduction rules for the discrete eliminator and
codiscrete projection. □

In truth, we will use this elimination principle only to define the following construc-
tion for projecting the underlying element of 𝐴 from a hypothesis (dsc | 𝑑 : Disc(𝐴)).

Lemma 15.1.2. Given 𝐴 type and (dsc | 𝑑 : Disc(𝐴)), there is some undisc(𝑑) ∈ 𝐴 with
the following properties.

Church booleans 267

• For any 𝑎 :𝐴, we have undisc(mod(𝑎)) = 𝑎 ∈ 𝐴.

• For any (dsc | 𝑑 : Disc(𝐴)), we have a path as follows.

undisc-uniq(𝑑) ∈ Glo(Path(Disc(𝐴),mod(undisc(𝑑)), 𝑑))

Proof. Set undisc(𝑑) B letdiscpt(.𝐴, 𝑑, 𝑎.𝑎). The first property follows from the reduction
rule for the pointwise eliminator. For the second, we construct the path by pointwise
elimination into 𝐵 B Glo(Path(Disc(𝐴),mod(undisc(𝑑)), 𝑑)).

undisc-uniq(𝑑) B letdiscpt(𝑑.𝐵, 𝑑, 𝑎.mod(𝜆I .mod(𝑎))) □

From this point forward, we will use the following syntactic sugar for the discrete
eliminator, mimicking our higher inductive type pseudocode.[

case 𝑃 of
| mod(𝑎) ↦→ 𝑁

]
B letdisc(𝑑.𝐵, 𝑃, 𝑎.𝑁)

The type argument 𝐵 is implicit here, but should be straightforward for the reader to
infer in concrete cases. Again as with HITs, we will also collapse iterated case analyses
into a single block branching on two or more terms, as in the following definition.

Proposition 15.1.3 (Action of the discrete embedding). For any (cc | 𝐴, 𝐵 : U), we
have a term map-disc ∈ Disc(𝐴 → 𝐵) → Disc(𝐴) → Disc(𝐵) @ par defined as follows.

map-disc B 𝜆𝑓 . 𝜆𝑑.

[
case 𝑓 , 𝑑 of
| mod(𝑔),mod(𝑎) ↦→ mod(𝑓 𝑎)

]
De-sugared, this is 𝜆𝑓 . 𝜆𝑑. letdisc(.Disc(𝐵), 𝑓 , 𝑔.letdisc(.Disc(𝐵), 𝑑, 𝑎.mod(𝑓 𝑎))).

15.2 Church booleans
To demonstrate how we can apply parametricity results in the pointwise fragment, let us
revisit the Church boolean example presented in Section 10.1.

B B (𝐴 : U) → 𝐴 → 𝐴 → 𝐴

Built from a universe and function types, the type of Church booleans exists in both
the pointwise and parametric modes: we have both B type @ par and B type @ pt.
Note that while these types are syntactically identical, they are interpreted as different
relations: the elements of B in the parametric mode must have an action on bridges, while
the elements of B in the pointwise mode need only act on paths. (Indeed, it is merely a

268 Programming in cohesive parametric type theory

coincidence that we have used the same syntax for the parametric and pointwise type
formers.) As such, we cannot expect to show that any element of the pointwise B is path-
equal to a t or f . However, we can expect that any pointwise Church boolean that arises
from a parametric Church boolean can be so characterized.

Within the pointwise mode, we have access to the type of parametric Church booleans
via the global typeGlo(B). Such a term is a polymorphic function defined for all elements
of the parametric universe; by restricting it to discrete types, we can access its “underly-
ing” pointwise function.

Lemma 15.2.1. We have a function shadow ∈ Glo(B) → B @ pt defined as follows.

shadow 𝑐 B 𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . undisc(unmod(𝑐) (Disc(𝐴)) (mod(𝑡)) (mod(𝑓)))

Proof. It is instructive to go through a typing derivation for the above term, working our
way inward from the outside. By the introduction rule for functions, we must type the
inner term in the context Γ B (𝑐 : Glo(B), 𝐴 : U, 𝑡 :𝐴, 𝑓 : 𝐴). Next we come to undisc. To
apply Lemma 15.1.2, we must show the following.

Γ.dsc � unmod(𝑐) (Disc(𝐴)) (mod(𝑡)) (mod(𝑓)) ∈ Disc(𝐴) @ par

First, we have Γ � 𝑐 ∈ Glo(B) @ pt. As Γ = Γ.dsc.cc, we can apply the projec-
tion for the global type to see that Γ.dsc � unmod(𝑐) ∈ B @ par. Next, we have
Γ � 𝐴 type @ pt; again using Γ = Γ.dsc.cc, we can apply the formation rule for the
discrete type to learn that Γ.dsc � Disc(𝐴) type @ par. Similarly, we use Γ.dsc.cc �
𝑡 ∈ 𝐴 @ pt and Γ.dsc.cc � 𝑓 ∈ 𝐴 @ pt to derive Γ.dsc � mod(𝑡) ∈ Disc(𝐴) @ par
and Γ.dsc � mod(𝑓) ∈ Disc(𝐴) @ par. Applying unmod(𝑐) at these arguments gives
Γ.dsc � unmod(𝑐) (Disc(𝐴)) (mod(𝑡)) (mod(𝑓)) ∈ Disc(𝐴) @ par as required. □

In particular, if we take the “shadows” of the canonical parametric elements t, f ∈ B @

par, we obtain their pointwise equivalents.

Lemma 15.2.2. We have the following equations.

shadow (mod(t)) = t ∈ B @ pt shadow (mod(f)) = f ∈ B @ pt

Proof. By the reduction equation for undisc. □

Using the action of unmod on paths, we can then say that the shadow of any paramet-
ric Church boolean is equal to one of the canonical pointwise elements.

Theorem 15.2.3. For any 𝑐 : Glo(B), we have either a path (shadow 𝑐) ⇝ t or a path
(shadow 𝑐) ⇝ f .

Church booleans 269

Proof. By the projection rule, we have (𝑐 : Glo(B)) .dsc � unmod(𝑐) ∈ B @ par. Per
the argument in Section 10.1—which we can apply in the parametric mode—we either
have some path (𝑐 : Glo(B)) .dsc � 𝑃 ∈ Path(B, unmod(𝑐), t) @ par or some path
(𝑐 : Glo(B)) .dsc � 𝑃 ∈ Path(B, unmod(𝑐), f) @ par. Without loss of generality, let us
suppose the former is the case. Applying 𝑃 pointwise, we have (𝑐 : Glo(B), 𝑥 : I).dsc �
𝑃 𝑥 ∈ B @ par, here using that dsc—like all of our modalities—commutes with path in-
terval hypotheses. We can then apply the global introduction rule and shadow to derive
𝑐 : Glo(B), 𝑥 : I � shadow (mod(𝑃 𝑥)) ∈ Glo(B) @ pt, followed by path abstraction for
𝑐 : Glo(B) � 𝜆I𝑥 . shadow (mod(𝑃 𝑥)) ∈ Path(Glo(B), shadow 𝑐, t) @ pt. □

Put another way, any pointwise 𝐾 ∈ Bool in the image of shadow is either t or f up to
a path. This is perhaps not so useful in the case of Church booleans. However, the same
technique applies more generally: if we can show that a pointwise term is the “shadow”
of some parametric term, then we can deduce that it satisfies parametricity theorems. We
apply this technique to the case of the smash product in Section 15.4.

Codiscrete shadow In the particular example of Church booleans, it is also possible to
define the shadow of a Church boolean by instantiation at codiscrete types.

shadow′ 𝑐 B 𝜆𝐴. 𝜆𝑡 . 𝜆𝑓 . unmod(unmod(𝑐) (Codisc(𝐴)) (mod(𝑡)) (mod(𝑓)))

One obtains the same results: the shadow′ of any Church boolean is t or f up to a path.
However, this route fails to generalize to type expressions containing inductive types.
Unlike the discrete embedding, the codiscrete embedding does not commute with such
type formers. For example, we have Codisc(𝐴 + 𝐵) ; Codisc(𝐴) + Codisc(𝐵) in general,
as only the former contains bridges between inl and inr elements. In categorical terms,
this reflects that the codiscrete type is only a right adjoint, not a left adjoint, and so need
not preserve colimits.

The limits of shadowing We saw in Section 10.4 that internal parametricity suffices to
refute the (weak) law of the excluded middle; that is, we have some term of the following
type.

((𝐴 : U) → (𝑏 : Bool) × elimBool(.U;𝑏;¬𝐴,¬¬𝐴)) → Void

Given the methodology just outlined, one may wonder if this result can be transferred
to the pointwise setting as well. In this case, however, the polarity is wrong. In the Church
boolean type (𝐴 : U) → 𝐴 → 𝐴 → 𝐴, the universe U occurs in a negative position (to
the left of an odd number of function arrows). We can therefore exploit the fact that
the pointwise universe is embedded in the parametric universe via Disc, restricting a
function defined on parametric types to one defined on pointwise types. In the type of the

270 Programming in cohesive parametric type theory

refutation of LEM¬, on the other hand, U occurs in a positive position. In sum, although
we cannot decide the inhabitation of parametric types, this does not imply we cannot
decide the inhabitation of the “smaller” class of pointwise types.1

15.3 Bridge-discreteness

Before introducing cohesive parametric type theory, we already had a notion of discrete-
ness: the concept of bridge-discrete type introduced in Section 10.3. These play an im-
portant role in parametricity theorems that involve external type parameters, such as the
characterization of (𝐵 : U) → (𝐴 → 𝐵) → 𝐵 for bridge-discrete 𝐴 given in that section.
We would therefore hope that pointwise types brought to the parametric fragment by
Disc are bridge-discrete. This is indeed the case. (We do not, on the other hand, expect to
be able to show that every bridge-discrete type is isomorphic to one of the form Disc(𝐴).)

Theorem 15.3.1. For any (cc | 𝐴 : U), Disc(𝐴) is bridge-discrete.

Proof. Per Lemma 10.3.3, it suffices to show that Bridge(Disc(𝐴), 𝑑0, 𝑑1) is a retract of
Path(Disc(𝐴), 𝑑0, 𝑑1) for every 𝑑0, 𝑑1 : Disc(𝐴). We take an approach similar to our proof
of boolean bridge-discreteness (Theorem 10.3.7), first defining a function into theGel type
𝐺𝒙 B Gel𝒙 (Disc(𝐴),Disc(𝐴), Path(Disc(𝐴),−,−)) as follows.

𝐹𝒙 B 𝜆𝑑.

[
case 𝑑 of
| mod(𝑎) ↦→ gel𝒙 (mod(𝑎),mod(𝑎), 𝜆I .mod(𝑎))

]
∈ Disc(𝐴) → 𝐺𝒙

For this term to be well-typed according to Rules 14.4.13, we must show that we have
(cc | 𝐴 : U), 𝒙 : I, (cc | 𝑎 : 𝐴) � gel𝒙 (mod(𝑎),mod(𝑎), 𝜆I .mod(𝑎)) ∈ 𝐺𝒙 @ par. We
want to apply Gel introduction and Disc introduction in each argument. Looking at the
first, we then need ((cc | 𝐴 : U), 𝒙 : I, (cc | 𝑎 : 𝐴) \ 𝒙).cc � 𝑎 ∈ 𝐴 @ pt. This follows by
computing the effect of restriction and connected components on the context: we have
((cc | 𝐴 : U), 𝒙 : I, (cc | 𝑎 : 𝐴) \ 𝒙).cc = 𝐴 : U, 𝑎 : 𝐴. The same argument allows us to type
the other two arguments. The key here is that we can guarantee 𝑎 is apart from the
interval variable 𝒙 , because it is hypothesized under cc: it only depends on the connected
components of its predecessors in the context. Using 𝐹𝒙 , we obtain a function from bridges
in Disc(𝐴) to paths in Disc(𝐴).

𝐹 B 𝜆𝑝. ungel(𝒙 .𝐹𝒙 (𝑝 𝒙)) ∈ Bridge(Disc(𝐴), 𝑑0, 𝑑1) → Path(Disc(𝐴), 𝐹0 𝑑0, 𝐹1 𝑑1)
1The pointwise excluded middle may of course fail for other reasons. Sattler has claimed that LEM−1 is

in fact falsified in the Kan cartesian cubical set model of type theory [Sat18], a fact that would presumably
carry over to our computational interpretation.

Bridge-discreteness 271

Conversely, we have a function𝐺𝒙 → Disc(𝐴) given by loosen and extent, as in the case
of Bool.

𝐿𝒙 B 𝜆𝑔. extent𝒙 (𝑔;𝑑0.𝑑0, 𝑑1.𝑑1, . .𝑞.loosenDisc(𝐴) (ungel(𝒙 .𝑞 𝒙))) ∈ 𝐺𝒙 → Disc(𝐴)

We next construct a term 𝑃𝒙 ∈ (𝑑 : Disc(𝐴)) → Path(Disc(𝐴), 𝐿𝒙 (𝐹𝒙 𝑑), 𝑑) showing that
𝐹𝒙 is a right inverse to 𝐿𝒙 . By parametric elimination for the discrete type, it suffices to
show Path(Disc(𝐴), 𝐿𝒙 (𝐹𝒙 mod(𝑎)),mod(𝑎)) for all (cc | 𝑎 : 𝐴). This follows from the
following sequence of paths and equations in Disc(𝐴).

𝐿𝒙 (𝐹𝒙 (mod(𝑎))) = extent𝒙 (𝐹𝒙 (mod(𝑎));𝑑0.𝑑0, 𝑑1.𝑑1, . .𝑞.loosenDisc(𝐴) (ungel(𝒙 .𝑞 𝒙)))
= loosenDisc(𝐴) (ungel(𝒙 .gel𝒙 (mod(𝑎),mod(𝑎), 𝜆I .mod(𝑎)))) 𝒙
= loosenDisc(𝐴) (𝜆I .mod(𝑎)) 𝒙
⇝ (𝜆I .mod(𝑎)) 𝒙
= mod(𝑎)

For any𝑞 :Bridge(Bool, 𝑑0, 𝑑1), the term 𝜆𝑞. 𝜆I𝑦. 𝜆I𝒙 . 𝑃𝒙 (𝑞 𝒙) 𝑦 then has the following type.

Path(𝑦.Bridge(Bool, 𝑃0 𝑑0𝑦, 𝑃1 𝑑1𝑦), loosenDisc(𝐴) (𝐹 𝑞), 𝑞)

By the same argument used to prove Theorem 10.3.7, we can use singleton contractibility
to replace 𝐹 by some 𝐹 ′ ∈ Bridge(Disc(𝐴), 𝑑0, 𝑑1) → Path(Disc(𝐴), 𝑑0, 𝑑1) that satisfies
the above with 𝑃0 𝑑0 and 𝑃1 𝑑1 replaced by reflexive paths, showing that the bridge type
is a retract of the path type. □

We therefore have, for example, that ((𝐵 : U) → (Disc(𝐴) → 𝐵) → 𝐵) ' Disc(𝐴) as
a consequence of Theorem 10.3.4. Polymorphic types like this one—where external point-
wise types appear wrapped in Disc—are also amenable to the construction of “shadows”,
as in the example below. (We leave the type-checking as an exercise to the reader.)

Proposition 15.3.2. For any 𝐴 :U and 𝑐 :Glo((𝐵 : U) → (Disc(𝐴) → 𝐵) → 𝐵), we have
an induced function shadow𝐴 𝑐 ∈ (𝐵 : U) → (𝐴 → 𝐵) → 𝐵 @ pt defined as follows.

shadow𝐴 𝑐 B undisc(unmod(𝑐) (Disc(𝐵)) (map-disc (mod(𝑓))))

The codiscrete type satisfies a complementary property: it is bridge-codiscrete, in the
sense that its bridge types are contractible. Here we see how the split operator allows us
to construct bridges in the codiscrete type.

Theorem 15.3.3. For any type (glo | 𝐴 : U) and 𝑐0, 𝑐1 : Codisc(𝐴), the type of bridges
Bridge(Codisc(𝐴), 𝑐0, 𝑐1) is contractible.

272 Programming in cohesive parametric type theory

Proof. We have an element 𝑃 of the bridge type defined as follows.

𝑃 B 𝜆I𝒙 .mod(split𝒙 (unmod(𝑐0), unmod(𝑐1))) ∈ Bridge(Codisc(𝐴), 𝑐0, 𝑐1) @ par

Note that we type split in the context ((glo | 𝐴 : U), 𝑐0, 𝑐1 : Codisc(𝐴), 𝒙 : I).glo, with the
application of glo brought about by the introduction rule for the codiscrete type. The
global modality transforms the hypothesis 𝒙 : I into 𝒙 : 2, enabling us to analyze it with
split.

We prove uniqueness of 𝑃 in a similar fashion. For any 𝑞 : Bridge(Codisc(𝐴), 𝑐0, 𝑐1),
we define a path 𝑆 ∈ Path(Bridge(Codisc(𝐴), 𝑐0, 𝑐1), 𝑞, 𝑃) @ par from 𝑞 to 𝑃 as follows.

𝜆I𝑦. 𝜆I𝒙 .mod(split𝒙 (𝜆I . unmod(𝑐0), 𝜆I . unmod(𝑐1)) 𝑦)

Here we are applying split at a path type like so.

split𝒙 (𝜆I . unmod(𝑐0), 𝜆I . unmod(𝑐1)) ∈ Path(𝐴, unmod(𝑞 𝒙), unmod(𝑃 𝒙)) @ par

That is, we know that unmod(𝑞 𝒙) and unmod(𝑃 𝒙) agree for any 𝒙 : 2 by virtue of their
endpoint equations, and it follows by nature of the codiscrete type that 𝑞 𝒙 and 𝑃 𝒙 agree
for any 𝒙 : I. □

15.4 Iterated smash products
We now return to the showcase result of Part III, the characterization of polymorphic
pointed functions between smash products (Section 10.5). We see that given commuta-
tor and associator functions defined in the parametric mode, we can derive pointwise
functions that are guaranteed by parametricity to satisfy various coherence properties.

Preliminaries It will pay at this point to develop a more structured toolkit for deriving
shadows of parametric functions. First, we introduce shorthand notation for instantiating
a parametrically polymorphic function at a discrete type; we also here shift attention from
types to pointed types.

Definition 15.4.1. Given a pointwise pointed type (cc | 𝐴∗ : U∗), we define its discrete
embedding as Disc∗(𝐴∗) B 〈Disc(𝐴),mod(𝑎0)〉 ∈ U∗ @ par.

Notation 15.4.2. Given 𝑋 : U∗ � 𝐵 type @ par, a function 𝑓 : (𝑋 : U∗) → 𝐵, and a type
(cc | 𝐴 : U∗), we define 𝑓 ⊳𝐴∗ B 𝑓 (Disc∗(𝐴∗)) ∈ 𝐵 [Disc∗(𝐴)/𝑋] @ pt.

Let us also explicitly define identity and composition of pointed functions.

Iterated smash products 273

Definition 15.4.3 (Identity and composites of pointed functions). Given 𝐴∗ : U∗ in
any mode𝑚, we define the pointed identity function id∗(𝐴∗) ∈ 𝐴∗ → 𝐴∗ @𝑚 as follows.

id∗(𝐴∗) B 〈𝜆𝑎. 𝑎, 𝜆I . 𝑎0〉

Given two pointed functions 𝑓 :𝐴∗ → 𝐵∗ and𝑔:𝐵∗ → 𝐶∗, we define their pointed composite
𝑔∗ ◦∗ 𝑓∗ ∈ 𝐴∗ → 𝐶∗ @𝑚 as follows

𝑔∗ ◦∗ 𝑓∗ B 〈𝜆𝑎. 𝑔 (𝑓 𝑎), 𝜆I𝑥 . hcom0�1
𝐶 (𝑔 (𝑓0 𝑥);𝑥 ≡ 0 ↩→ .𝑔 (𝑓 𝑎0), 𝑥 ≡ 1 ↩→ 𝑦.𝑔0𝑦)〉

The second component here is the composite of the path 𝜆I𝑥 . 𝑔 (𝑓0 𝑥) from 𝑔 (𝑓 𝑎0) to 𝑔𝑏0
with the path 𝑔0 from 𝑔𝑏0 to 𝑐0.

We take a few basic algebraic properties of pointed functions for granted, namely the
unit laws and associativity of pointed composition.

The first essential result for constructing shadows is the following isomorphism, which
equates pointwise functions with globally-defined parametric functions between discrete
types.

Lemma 15.4.4. Given a pair of pointed types𝐴∗, 𝐵∗ :U∗ and 𝑓∗ :𝐴∗ → 𝐵∗, we have a term
♢∗𝑓∗ ∈ Glo(Disc∗(𝐴∗) → Disc∗(𝐵∗)) @ pt. Conversely, given a global pointed function
𝑢 :Glo(Disc∗(𝐴∗) → Disc∗(𝐵∗)), we have a term ♦∗𝑢 ∈ 𝐴∗ → 𝐵∗ @ pt. The two functions
♢∗ and ♦∗ constitute an isomorphism.

Proof. We define ♢∗𝑓∗ and ♦∗𝑢 as follows.

♢∗𝑓∗ B mod(〈map-disc 𝑓 , 𝜆I𝑥 .mod(𝑓0 𝑥)〉)
♦∗𝑢 B 〈𝜆𝑎. undisc(fst(unmod(𝑢)) (mod(𝑎))), 𝜆I𝑥 . undisc(snd(unmod(𝑢)) 𝑥)〉

One inverse condition holds up to exact equality: we have ♦∗♢∗𝑓∗ = 𝑓∗ ∈ 𝐴∗ → 𝐵∗ for any
𝑓∗ : 𝐴∗ → 𝐵∗. For the other, given any 𝑢 : Glo(Disc∗(𝐴∗) → Disc∗(𝐵∗)), we have a path
♢∗♦∗𝑢 ⇝ 𝑢 defined as follows. First we construct an auxiliary family of paths as follows.

𝐻 ∈ Glo((𝑑 : Disc(𝐴)) → Path(Disc(𝐵), fst(unmod(♢∗♦∗𝑢)) 𝑑, fst(unmod(𝑢)) 𝑑))

𝐻 B mod
(
𝜆𝑑.

[
case 𝑑 of
| mod(𝑎) ↦→ unmod(undisc-uniq(unmod(𝑢) (mod(𝑎))))

])
Then we use this to define a path 𝑃 from ♢∗♦∗𝑢 to 𝑢.

𝑃 B 𝜆I𝑦.mod(〈𝜆𝑑. unmod(𝐻) 𝑑 𝑦, 𝜆I𝑥 . undisc-uniq(𝑓0 𝑥) 𝑦〉) □

274 Programming in cohesive parametric type theory

The second key lemma is more specific to the smash product: we must know that it
commutes with the discrete embedding. From a categorical perspective, this follows from
the fact that Disc is both a left and right adjoint. Because it is a left adjoint (to Glo), it
commutes with colimits, here in the guise of a higher inductive type; because it is a right
adjoint (to cc), it commutes with products.

Lemma 15.4.5. For any pointwise pointed types (cc | 𝐴∗, 𝐵∗ : U∗), we have a pointed
isomorphism ∧-disc ∈ Disc∗(𝐴∗) ∧∗ Disc∗(𝐵∗) ' Disc∗(𝐴∗ ∧∗ 𝐵∗) @ par.

Proof. For the forward function 𝐹 ∈ Disc∗(𝐴∗) ∧ Disc∗(𝐵∗) → Disc(𝐴∗ ∧ 𝐵∗) @ par, we
go by induction on the smash product input. To cover the pair case, we define a map
𝐹pair ∈ Disc(𝐴) → Disc(𝐵) → Disc(𝐴∗ ∧ 𝐵∗) @ par.

𝐹pair B 𝜆𝑢. 𝜆𝑣 .

[
case 𝑢, 𝑣 of
| mod(𝑎),mod(𝑏) ↦→ mod(⟪𝑎,𝑏⟫)

]
Next we have 𝐹L ∈ (𝑣 : Disc(𝐵)) → Path(Disc(𝐴∗ ∧ 𝐵∗),mod(⊛L), 𝐹pair (mod(𝑎0)) 𝑣) @

par.

𝐹L B 𝜆𝑣.

[
case 𝑢, 𝑣 of
| mod(𝑏) ↦→ 𝜆I𝑦.mod(spokeL(𝑏,𝑦))

]
The symmetric 𝐹R ∈ (𝑢 : Disc(𝐴)) → Path(Disc(𝐴∗ ∧ 𝐵∗),mod(⊛R), 𝐹pair𝑢 (mod(𝑏0))) @

par is likewise definable. We then assemble these to construct the inverse map 𝐹 .

𝐹 B 𝜆𝑠.



case 𝑠 of
| ⟪𝑢, 𝑣⟫ ↦→ 𝐹pair𝑢 𝑣
| ⊛L ↦→ mod(⊛L)
| spokeL(𝑏,𝑦) ↦→ 𝐹L 𝑏 𝑦
| ⊛R ↦→ mod(⊛R)
| spokeR(𝑎, 𝑥) ↦→ 𝐹R 𝑎 𝑥


Note that 𝐹 ⟪mod(𝑎0),mod(𝑏0)⟫ = mod(⟪𝑎0, 𝑏0⟫) ∈ Disc(𝐴∗ ∧ 𝐵∗), so 𝐹 is a pointed
function.

In the reverse direction, wemake use of the adjunction betweenDisc andGlo, defining
first an auxiliary 𝐴∗, 𝐵∗ : U∗ � 𝐺′ ∈ 𝐴∗ ∧ 𝐵∗ → Glo(Disc∗(𝐴∗) ∧ Disc∗(𝐵∗)) @ pt.

𝐺′ B 𝜆𝑠.



case 𝑠 of
| ⟪𝑎,𝑏⟫ ↦→ mod(⟪mod(𝑎),mod(𝑏)⟫)
| ⊛L ↦→ mod(⊛L)
| spokeL(𝑏,𝑦) ↦→ mod(spokeL(mod(𝑏), 𝑦))
| ⊛R ↦→ mod(⊛R)
| spokeR(𝑎, 𝑥) ↦→ mod(spokeR(mod(𝑎), 𝑥))



Iterated smash products 275

We then transpose to define 𝐺 ∈ Disc(𝐴∗ ∧ 𝐵∗) → Disc∗(𝐴∗) ∧ Disc∗(𝐵∗) @ par as fol-
lows.

𝐺 B 𝜆𝑤.

[
case𝑤 of
| mod(𝑠) ↦→ unmod(𝐺′ 𝑠)

]
We leave detailed proofs of the inverse conditions as an exercise to the reader. The proofs
predictably follow the structure of the functions themselves. Briefly, to define a map

(𝑠 : Disc∗(𝐴∗) ∧ Disc∗(𝐵∗)) → Path(Disc∗(𝐴∗) ∧ Disc∗(𝐵∗),𝐺 (𝐹 𝑠), 𝑠)

we use smash product induction followed by discrete induction in each case; to show

(𝑤 : Disc(𝐴∗ ∧ 𝐵∗)) → Path(Disc(𝐴∗ ∧ 𝐵∗), 𝐹 (𝐺 𝑤),𝑤)

we first prove

(𝑠 :𝐴∗ ∧ 𝐵∗) → Glo(Path(Disc(𝐴∗ ∧ 𝐵∗), 𝐹 (unmod(𝐺′ 𝑠)),mod(𝑠)))

by smash product induction and then transpose. □

Commutativity For our first concrete application, we show that any parametric com-
mutator that behaves correctly on Bool induces a pointwise commutator that is an iso-
morphism.

Assumption 15.4.6. We assume given a global commutator as follows.

comm ∈ Glo((𝐴∗, 𝐵∗ : U∗) → 𝐴∗ ∧∗ 𝐵∗ → 𝐵∗ ∧∗ 𝐴∗) @ pt

We assume moreover that this term satisfies the following path equality.

comm Bool∗ Bool∗ ⟪ff,ff⟫⇝ ⟪ff,ff⟫

We derive a pointwise commutator by instantiating comm at discrete types and then
applying ♦∗, using also that ∧ commutes with Disc.

Definition 15.4.7 (Commutator shadow). Given pointwise types𝐴∗, 𝐵∗ :U∗, we define
commpt𝐴∗ 𝐵∗ ∈ 𝐴∗ ∧∗ 𝐵∗ → 𝐵∗ ∧∗ 𝐴∗ @ pt as follows.

commpt𝐴∗ 𝐵∗ B ♦∗(mod(∧-disc ◦∗ (unmod(comm) ⊳𝐴∗ ⊳ 𝐵∗) ◦∗ ∧-disc−1))

276 Programming in cohesive parametric type theory

That is, we first apply the parametric comm at the discrete embeddings of𝐴∗ and 𝐵∗, then
adjust by ∧-disc to obtain the following dashed composite function.

Disc∗(𝐴∗) ∧∗ Disc∗(𝐵∗) Disc∗(𝐴∗ ∧∗ 𝐵∗)

Disc∗(𝐵∗) ∧∗ Disc∗(𝐴∗) Disc∗(𝐵∗ ∧∗ 𝐴∗)

unmod(comm) ⊳𝐴∗ ⊳ 𝐵∗

'
∧-disc

'
∧-disc

Applying ♦∗(mod(−)) then yields a map 𝐴∗ ∧∗ 𝐵∗ → 𝐵∗ ∧∗ 𝐴∗.

We show that commpt𝐴∗ 𝐵∗ is an isomorphism by checking that commpt 𝐵∗𝐴∗ is its
inverse, i.e., that commpt 𝐵∗𝐴∗ ◦∗ commpt𝐴∗ 𝐵∗ for any 𝐴∗ and 𝐵∗. The aim is to reduce
this condition to the corresponding condition on the parametric commutator. To do so,
we need to know how ♦∗ interacts with function identity and composition.

Proposition 15.4.8 (Functoriality of ♦∗). Given 𝐴∗, 𝐵∗,𝐶∗ : U∗ and a pair of functions
𝑢 : Glo(Disc∗(𝐴∗) → Disc∗(𝐵∗)) and 𝑣 : Glo(Disc∗(𝐵∗) → Disc∗(𝐴∗)), we have paths of
the following types.

id∗(𝐴∗) ⇝ ♦∗(mod(id∗(Disc∗(𝐴∗)))) ∈ 𝐴∗ → 𝐴∗
♦∗𝑣 ◦∗ ♦∗𝑢 ⇝ ♦∗(mod(unmod(𝑣) ◦∗ unmod(𝑢))) ∈ 𝐴∗ → 𝐶∗

Proof (sketch). The first of these two paths holds up to exact equality. The second takes
more work to establish; its proof involves undisc-uniq and, to relate the basepoint preser-
vation paths, the fact that mod (as a constructor for Disc) commutes with hcom. □

This work can be avoided by instead defining composition in the pointwise mode as
the shadow of parametric composition.

𝑔∗ ◦pt∗ 𝑓∗ B ♦∗(mod(unmod(♢∗𝑔∗) ◦∗ unmod(♢∗𝑓∗)))

The path ♦∗𝑣 ◦pt∗ ♦∗𝑢 ⇝ ♦∗(mod(unmod(𝑣) ◦∗ unmod(𝑢))) then follows as a corollary of
the inverse conditions of the ♢∗-♦∗ isomorphism.

Theorem 15.4.9. commpt is a family of isomorphisms.

Proof. It suffices to show that for any 𝐴∗, 𝐵∗ : U∗, we have a path in 𝐴∗ ∧∗ 𝐵∗ → 𝐵∗ ∧∗ 𝐴∗
as follows.

commpt 𝐵∗𝐴∗ ◦∗ commpt𝐴∗ 𝐵∗⇝ id∗(𝐴∗ ∧∗ 𝐵∗)

Iterated smash products 277

By functoriality of ♦∗ and the path ∧-disc−1 ◦∗ ∧-disc⇝ id∗(𝐵∗ ∧∗𝐴∗), the left-hand side
is path-equal to the image by ♦∗(mod(−)) of the following dashed composite.

Disc∗(𝐴∗) ∧∗ Disc∗(𝐵∗) Disc∗(𝐴∗ ∧∗ 𝐵∗)

Disc∗(𝐵∗) ∧∗ Disc∗(𝐴∗)

Disc∗(𝐴∗) ∧∗ Disc∗(𝐵∗) Disc∗(𝐴∗ ∧∗ 𝐵∗)

unmod(comm) ⊳𝐴∗ ⊳ 𝐵∗

'
∧-disc

unmod(comm) ⊳ 𝐵∗ ⊳𝐴∗

'
∧-disc

The composite map on the left is an instance of a parametrically polymorphic function:

𝜆𝑋∗. 𝜆𝑌∗. unmod(comm) 𝑌∗𝑋∗ ◦∗ unmod(comm)𝑋∗𝑌∗
3

(𝑋∗, 𝑌∗ : U∗) → 𝑋∗ ∧∗ 𝑌∗ →∗ 𝑋∗ ∧∗ 𝑌∗

By assumption, this function sends ⟪ff,ff⟫ to ⟪ff,ff⟫ when instantiated at Bool∗ and
Bool∗. By our characterization of such polymorphic functions in Part III, namely The-
orem 10.5.11, we can conclude it is path-equal to the identity function. Thus we have

commpt 𝐵∗𝐴∗ ◦∗ commpt𝐴∗ 𝐵∗⇝ ♦∗(∧-disc ◦∗ ∧-disc−1)
⇝ ♦∗(id∗(𝐴∗ ∧∗ 𝐵∗))
⇝ id∗(𝐴∗ ∧∗ 𝐵∗)

as required. □

Associativity and the pentagon We can apply the same chain of reasoning to the
associator, obtaining not only the isomorphism inverse conditions but also the pentagon
by parametricity.

Assumption 15.4.10. We assume given a global associator and candidate inverse as fol-
lows.

assoc ∈ Glo((𝐴∗, 𝐵∗,𝐶∗ : U∗) → (𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗ → 𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗)) @ pt

assoc−1 ∈ Glo((𝐴∗, 𝐵∗,𝐶∗ : U∗) → 𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗) → (𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗) @ pt

We assume moreover that these terms satisfy the following path equalities.

assoc Bool∗ Bool∗ Bool∗ ⟪⟪ff,ff⟫,ff⟫⇝ ⟪ff, ⟪ff,ff⟫⟫
assoc−1 Bool∗ Bool∗ Bool∗ ⟪ff, ⟪ff,ff⟫⟫⇝ ⟪⟪ff,ff⟫,ff⟫

278 Programming in cohesive parametric type theory

Definition 15.4.11 (Associator shadow). Given pointwise types 𝐴∗, 𝐵∗,𝐶∗ : U∗, we de-
fine assocpt𝐴∗ 𝐵∗𝐶∗ ∈ (𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗ → 𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗) @ pt as in the case of the
commutator, as the image under ♦∗(mod(−)) of the following composite.

(Disc∗(𝐴∗) ∧∗ Disc∗(𝐵∗)) ∧∗ Disc∗(𝐶∗) Disc∗(𝐴∗) ∧∗ (Disc∗(𝐵∗) ∧∗ Disc∗(𝐶∗))

Disc∗(𝐴∗ ∧∗ 𝐵∗) ∧∗ Disc∗(𝐶∗) Disc(𝐴∗) ∧∗ Disc∗(𝐵∗ ∧∗ 𝐶∗)

Disc∗((𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗) Disc∗(𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗))

unmod(assoc) ⊳𝐴∗ ⊳ 𝐵∗ ⊳𝐶∗

'∧-disc ∧∗ id∗ (Disc∗ (𝐶∗))

' id∗ (Disc∗ (𝐶∗)) ∧∗ ∧-disc

'∧-disc ' ∧-disc

We likewise define assoc−1pt 𝐴∗ 𝐵∗𝐶∗ ∈ 𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗) → (𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗ @ pt.

The statement of the pentagon identity involves the action of the smash product on
pointed functions. As with function identity and composition, we therefore need that the
parametric and pointwise action correspond across the ♦∗ isomorphism. As our objective
is to avoid reasoning about the smash product, we take the way out suggested in our
discussion of Proposition 15.4.8, defining the pointwise action so that the correspondence
is immediate.

Definition 15.4.12. Given pointwise pointed functions 𝑓∗ : 𝐴∗ → 𝐶∗ and 𝑔∗ : 𝐵∗ → 𝐷∗,
we define the map 𝑓∗ ∧pt

∗ 𝑔∗ ∈ (𝐴∗ ∧ 𝐵∗) →∗ (𝐶∗ ∧ 𝐷∗) as the “shadow” of its parametric
analogue (defined in Definition 10.5.6).

𝑔∗ ∧pt
∗ 𝑓∗ B ♦∗(mod(∧-disc ◦∗ (unmod(♢∗𝑔∗) ∧∗ unmod(♢∗𝑓∗)) ◦∗ ∧-disc−1))

Now we have the main theorem, which proceeds exactly as with commutativity.

Theorem 15.4.13. assocpt is a family of isomorphisms and satisfies the pentagon iden-
tity.

Proof. To show that assocpt is an isomorphism, it suffices to construct two paths as follows
for every 𝐴∗, 𝐵∗,𝐶∗ : U.

assoc−1pt 𝐴∗ 𝐵∗𝐶∗ ◦∗ assocpt𝐴∗ 𝐵∗𝐶∗⇝ id∗((𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗)
assocpt𝐴∗ 𝐵∗𝐶∗ ◦∗ assoc−1pt 𝐴∗ 𝐵∗𝐶∗⇝ id∗(𝐴∗ ∧∗ (𝐵∗ ∧∗ 𝐶∗))

Iterated smash products 279

Without loss of generality, we restrict attention to the first. As in the proof of Theo-
rem 15.4.9, the functoriality of ♦∗ allows us to reduce our goal to proving that the follow-
ing parametrically polymorphic function is the identity.

𝜆𝑋∗. 𝜆𝑌∗. 𝜆𝑍∗. unmod(assoc−1)𝑋∗𝑌∗ 𝑍∗ ◦∗ unmod(assoc)𝑋∗𝑌∗ 𝑍∗

3

(𝑋∗, 𝑌∗, 𝑍∗ : U∗) → (𝑋∗ ∧∗ 𝑌∗) ∧∗ 𝑍∗ →∗ (𝑋∗ ∧∗ 𝑌∗) ∧∗ 𝑍∗

We finish by applying Theorem 10.5.11. Finally, the pentagon identity asserts that the
following round-trip composite is the identity function on ((𝐴∗ ∧∗ 𝐵∗) ∧∗ 𝐶∗) ∧∗ 𝐷∗.

•

•

••

•
asso

c−
1
pt
𝐴∗𝐵∗

𝐶∗ ∧
pt
∗
id∗(𝐷

∗)

as
so
c−
1 pt
𝐴
∗(
𝐵
∗∧

∗𝐶
∗)
𝐷
∗

id∗(𝐴∗)∧
pt
∗assoc−1

pt𝐵∗𝐶∗𝐷∗

assocpt (𝐴 ∧∗ 𝐵∗)𝐶∗ 𝐷∗

assocpt𝐴
∗
𝐵∗(𝐶∗∧

𝐷
∗)

Using the fact that ♦∗ commutes with identities, composition, and the action of the smash
product on pointed functions (that is, converts ∧∗ to ∧pt

∗), we again reduce this to an
equation on a composite of parametric functions and apply Theorem 10.5.11. □

These first few coherences give a sense of the effectiveness and limitations of our
approach. The method is easiest to apply when all the constructions involved in the co-
herence are induced from parametric constructions. In the statement of the pentagon
identity, for example, we use id∗, ◦∗, ∧pt

∗ , assocpt, and assoc−1pt . We have defined the latter
three terms as the shadows of parametric constructions, making the relationship between
the parametric and pointwise equivalents obvious. For id∗ and ◦∗, we instead require a
lemma (Proposition 15.4.8) connecting the naive pointwise definition to the shadow of
some parametric term. For low-dimensional constructions like these two, the latter is fea-
sible; for a term like the associator, on the other hand, it would be much more difficult
to relate the “naive” pointwise definition to the shadow of assocpt. On the other hand,
the exact definition of assocpt is less likely to be important to future “non-free” theorems

280 Programming in cohesive parametric type theory

than the definition of ◦∗. There is thus an intuitive trade-off: while we can easily exploit
“free” theorems by using the shadows of parametric definitions directly, such definitions
are more difficult to reason with in the pointwise mode.

Chapter 16

Formalism

Building on the parametric formalism and presheaf model developed in Chapter 11, we
sketch an extension to a modal parametric type theory. Following the framework de-
veloped in Licata and Shulman’s adjoint logic [LS16] and used in Gratzer et al.’s MTT
[GKNB20], we express the properties of the context modalities compactly by formulating
a mode theory.1 This consists of the two judgments 𝑚 mode and 𝜇 : 𝑚 → 𝑛 we have
already encountered as well as a 2-cell judgment 𝛼 :: 𝜇 ⇒ 𝜈 : 𝑚 → 𝑛 specifying maps
between modalities, which together constitute a definition of a strict 2-category [JY20,
§2.3]. Each 2-cell 𝛼 :: 𝜇 ⇒ 𝜈 :𝑚 → 𝑛 will induce a transformation Γ′.𝜇 ` 𝛾 ⊗ 𝜇 : Γ.𝜇 @𝑚
between modal contexts. We also annotate each of the previously-existing judgments
with a mode.

Judgment Presuppositions Reading
𝑚 mode 𝑚 is a mode
𝜇 :𝑚 → 𝑛 (𝑚,𝑛 mode) 𝜇 is a modality from𝑚 to 𝑛
𝛼 :: 𝜇 ⇒ 𝜇′ :𝑚 → 𝑛 (𝜇, 𝜇′ :𝑚 → 𝑛) 𝛼 is a 2-cell from 𝜇 to 𝜇′
Γ ctx @𝑚 (𝑚 mode) Γ is a context at mode𝑚
...

...
...

The logic of modalities we use—the set of rules mediating −.𝜇 and modal hypotheses—
is a mechanical specialization of the MTT framework. The negative treatment of the
modal type operators Disc and Glo is novel, though it might be viewed as an algebraiciza-
tion of a Fitch-style calculus [Clo18; BCMEPS20]. The discrete type we use is a restricted
version of MTT’s formulation of modal types, as discussed in Section 14.4.2.

1In those works, the aim is to define a general formalism that can be instantiated at various mode
theories, while we are interested only in the specific mode theory describing the cohesive relationship
between pointwise and parametric modes. Nevertheless, specification in terms of mode theory judgments
is convenient for expressing the functoriality of modalities and naturality of transformations between them
concisely.

281

282 Formalism

Mode theory As always, we have two modes, the pointwise and the parametric.

par mode pt mode

We seed the modality judgment with the three basic modalities, then generate a cate-
gory structure by including an identity id and composition − ⊗ −.

cc : pt → par dsc : par → pt glo : pt → par id :𝑚 →𝑚

𝜈 : 𝑛 → 𝑝 𝜇 :𝑚 → 𝑛

𝜈 ⊗ 𝜇 :𝑚 → 𝑝

𝜇 :𝑚 → 𝑛

𝜇 ⊗ id = 𝜇 :𝑚 → 𝑛

𝜇 :𝑚 → 𝑛

id ⊗ 𝜇 = 𝜇 :𝑚 → 𝑛

𝜋 : 𝑝 → 𝑞 𝜈 : 𝑛 → 𝑝 𝜇 :𝑚 → 𝑛

(𝜋 ⊗ 𝜈) ⊗ 𝜇 = 𝜋 ⊗ (𝜈 ⊗ 𝜇) :𝑚 → 𝑞

The 2-cell judgment, 𝛼 :: 𝜇 ⇒ 𝜇′ :𝑚 → 𝑛, codifies the adjunctions between the three
basic modalities and the fact that cc and glo both cancel dsc up to isomorphism. To avoid
some repetition, we encapsulate the basic adjoint relationships by an auxiliary judgment
𝑚 : 𝜇 a 𝜈 : 𝑛 (presupposing 𝜇 :𝑚 → 𝑛 and 𝜈 : 𝑛 →𝑚).

pt : cc a dsc : par par : dsc a glo : pt

The 2-cell judgment is then required to support the following morphisms: unit and
counit transformations for each adjunction, inverses for these in the dsc⊗cc and dsc⊗glo
cases, and vertical and horizontal composition operations endowing themode theorywith
the structure of a (strict) 2-category. (The former is “ordinary” composition of 2-cells, the
latter the action of − ⊗ − on 2-cells).

𝑚 : 𝜇 a 𝜈 : 𝑛
unit :: 𝜇 ⊗ 𝜈 ⇒ id : 𝑛 → 𝑛

𝑚 : 𝜇 a 𝜈 : 𝑛
cou :: id ⇒ 𝜈 ⊗ 𝜇 :𝑚 →𝑚

cou−1 :: dsc ⊗ cc ⇒ id : pt → pt unit−1 :: id ⇒ dsc ⊗ glo : pt → pt

𝛼′ :: 𝜇′ ⇒ 𝜇′′ :𝑚 → 𝑛 𝛼 :: 𝜇 ⇒ 𝜇′ :𝑚 → 𝑛

𝛼′ ◦ 𝛼 :: 𝜇 ⇒ 𝜇′′ :𝑚 → 𝑛

𝛽 :: 𝜈 ⇒ 𝜈′ : 𝑛 → 𝑝 𝛼 :: 𝜇 ⇒ 𝜇′ :𝑚 → 𝑛

𝛽 ⊗ 𝛼 :: 𝜈 ⊗ 𝜇 ⇒ 𝜈′ ⊗ 𝜇′ :𝑚 → 𝑝

283

These are required to satisfy various equations we will not list explicitly: triangle
equalities relating the unit and counit of each adjunction, the fact that cou−1 and unit−1

provide the inverses suggested by the notation, and the laws of a strict 2-category [JY20,
Proposition 2.3.4].

Contexts The collection of context formers is now extended with the application of
modalities, modal hypotheses, and endpoint hypotheses. Like other operations defined
by recursion in the computational framework—substitution, interval restriction—the ap-
plication of a modality here becomes a primitive context former.

Γ ctx @ 𝑛 𝜇 :𝑚 → 𝑛

Γ.𝜇 ctx @𝑚

𝜇 :𝑚 → 𝑛 Γ.𝜇 ` 𝐴 type @𝑚

Γ.(𝜇 | 𝐴) ctx @ 𝑛

Γ ctx @𝑚

Γ.2 ctx @𝑚

Γ.id = Γ ctx @𝑚

𝜈 : 𝑛 → 𝑝 𝜇 :𝑚 → 𝑛

Γ.(𝜈 ⊗ 𝜇) = Γ.𝜈 .𝜇 ctx @𝑚

Modalities in substitutions Each modality has a functorial action on substitutions,
and each 2-cell moreover induces a substitution between modal contexts. These are re-
quired to preserve the 2-categorical structure—for example, we require Γ′ ` 𝛾 ⊗ id = 𝛾 :
Γ @ 𝑚—and we ask that each substitution {𝛼} satisfies a naturality condition as shown
below.

𝜇 :𝑚 → 𝑛 Γ′ ` 𝛾 : Γ @ 𝑛

Γ′.𝜇 ` 𝛾 ⊗ 𝜇 : Γ.𝜇 @𝑚

𝛼 :: 𝜇 ⇒ 𝜈 :𝑚 → 𝑛

Γ.𝜈 ` {𝛼} : Γ.𝜇 @𝑚

𝛼 :: 𝜇 ⇒ 𝜈 :𝑚 → 𝑛 Γ′ ` 𝛾 : Γ
Γ′.𝜈 ` {𝛼} ◦ (𝛾 ⊗ 𝜈) = (𝛾 ⊗ 𝜇) ◦ {𝛼} : Γ.𝜇 @𝑚

The rule for forming substitutions into amodal hypothesis matches the computational
definition, and the variable rule is as in Theorem 14.3.15.

𝜇 :𝑚 → 𝑛 Γ′ ` 𝛾 : Γ @ 𝑛 Γ.𝜇 ` 𝐴 type @𝑚 Γ′.𝜇 ` 𝑀 : 𝐴[𝛾 ⊗ 𝜇] @𝑚

Γ′ ` 𝛾 .𝑀 : Γ.(𝜇 | 𝐴) @ 𝑛

𝜇 :𝑚 → 𝑛 Γ.𝜇 ` 𝐴 type @𝑚

Γ.(𝜇 | 𝐴).𝜇 ` v : 𝐴[p ⊗ 𝜇] @𝑚

284 Formalism

Endpoints and interval The bridge endpoint object is populated with the two end-
points, and is included in the bridge interval by way of a “boundary” substitution 𝝏.

Γ ` 02 : Γ.2 @𝑚 Γ ` 12 : Γ.2 @𝑚

Γ ctx @ par

Γ.2 ` 𝝏 : Γ.I @ par

We express the interaction between the interval and action of modalities by a series of
isomorphisms (up to judgmental equality) corresponding to clauses of Figure 14.1. (While
these isomorphisms are equalities in the computational interpretation, we do not expect
this to be the case in all models.) For example, endpoint hypotheses (and path interval
hypotheses) commute with all modalities, while cc collapses interval hypotheses and glo
turns them into endpoint hypotheses.

Γ ctx @ 𝑛 𝜇 :𝑚 → 𝑛

Γ.2.𝜇 ` ex𝜇2 : Γ.𝜇.2 @𝑚

Γ ctx @ 𝑛 𝜇 :𝑚 → 𝑛

Γ.𝜇.2 ` ex2𝜇 : Γ.2.𝜇 @𝑚

Γ ctx @ par

Γ.cc ` ccI : Γ.I.cc @ pt

Γ ctx @ par

Γ.I.glo ` gloI : Γ.glo.2 @ pt

We ask that the two exchange substitutions ex𝜇2 and ex𝜇2 are mutually inverse (as
are their equivalents for paths) and that ccI and gloI invert the substitutions pI ⊗ cc and
(𝝏 ⊗ glo) ◦ ex2glo respectively. We also ask each substitution to be natural in Γ and 𝜇
if applicable and interact correctly with interval-related substitutions; for example, we
should have Γ.𝜇 ` ex𝜇2 ◦ (02 ⊗ 𝜇) = 02 : Γ.𝜇.2 @𝑚.

We do not impose any additional substitutions specifying the action of the modalities
on term hypotheses. It already follows from the existing rules for modalities and term
hypotheses that we have the following isomorphisms.

Γ.(𝜇 | 𝐴).dsc � Γ.dsc.(cc ⊗ 𝜇 | 𝐴[{cou} ⊗ 𝜇])
Γ.(𝜇 | 𝐴).glo � Γ.glo.(dsc ⊗ 𝜇 | 𝐴[{cou} ⊗ 𝜇])

Γ.(cc ⊗ 𝜇 | 𝐴).cc � Γ.cc.(𝜇 | 𝐴)

That cc completely removes hypotheses not typed under cc, meanwhile, is not something
wewant to require in all models (and indeed fails in the cubical setmodel described below).

Negative modal types The two negative modal types—Glo and Codisc—are specified
by rules following those we proved in Section 14.4.1. We show the rules for the global type
here, and leave it to the reader to infer the rules for the codiscrete type. With substitutions
now explicit, we see how the reduction and uniqueness equations involve the unit and

Cubical set model 285

counit substitutions. We note again the similarity between these rules and the rules for
the bridge type, with dsc playing the rule of −.I and cc the role of −.\𝒓 .

Γ.dsc ` 𝐴 type @ par

Γ ` Glo(𝐴) type @ pt

Γ.dsc ` 𝑀 : 𝐴 @ par

Γ ` mod(𝑀) : Glo(𝐴) @ pt

Γ.cc.dsc ` 𝐴 type @𝑚 Γ.cc ` 𝑀 : Glo(𝐴) @ 𝑛

Γ ` unmod(𝑀) : 𝐴[{unit}] @𝑚

Γ.cc.dsc ` 𝐴 type @𝑚 Γ.cc.dsc ` 𝑀 : 𝐴 @𝑚

Γ ` unmod(mod(𝑀)) = 𝑀 [{unit}] : 𝐴[{unit}] @𝑚

Γ.dsc ` 𝐴 type @𝑚 Γ ` 𝑀 : Glo(𝐴) @ 𝑛

Γ ` 𝑀 = mod(unmod(𝑀 [{cou}])) : Glo(𝐴) @ 𝑛

Discrete type Finally, our formal rules for the discrete type likewise mimic the suite of
rules proven in Section 14.4.2.

Γ.cc ` 𝐴 type @ par

Γ ` Disc(𝐴) type @ pt

Γ.cc ` 𝑀 : 𝐴 @ par

Γ ` mod(𝑀) : Disc(𝐴) @ pt

Γ.cc ` 𝐴 type @ pt Γ.Disc(𝐴) ` 𝐵 type @ par
Γ ` 𝑃 : Disc(𝐴) @ par Γ.(cc | 𝐴) ` 𝑁 : 𝐵 [p.mod(v)] @ par

Γ ` letdisc(𝐵, 𝑃, 𝑁) : 𝐵 [id.𝑃] @ par

Γ.cc ` 𝐴 type @ pt Γ.Disc(𝐴) ` 𝐵 type @ par
Γ.cc ` 𝑀 : 𝐴 @ par Γ.(cc | 𝐴) ` 𝑁 : 𝐵 [p.mod(v)] @ par

Γ ` letdisc(𝐵,mod(𝑀), 𝑁) = 𝑁 [id.𝑀] : 𝐵 [id.mod(𝑀)] @ par

16.1 Cubical set model
To construct a model in cubical sets, we combine the pointwise and parametric models
described in Sections 3.3.1 and 11.1 respectively. We interpret judgments in the pointwise
mode as statements about the category PSh(�c) of cartesian cubical sets and judgments
in the parametric mode as statements about the category PSh(�c×a) of cartesian-affine
bicubical sets. Henceforth we rename �c and �c×a to �pt and �par respectively to reflect
their roles.

286 Formalism

Modal operators As with the interpretation of bridge interval context extension and re-
striction, we derive the modal context operators from functors between the two cube cat-
egories. We have two such functors, the connected components functor Comp : �par →�pt and discrete embedding Disc : �pt → �par, both obtained by assembling the opera-
tions defined in Figures 14.1 and 14.2.

Comp(Ψ) B Ψ.cc Disc(Ψ) B Ψ.dsc

Comp(Ψ′ ⊩ 𝜓 ∈ Ψ) B (𝜓 : Ψ) ⊗ cc Disc(Ψ′ ⊩ 𝜓 ∈ Ψ) B (𝜓 : Ψ) ⊗ dsc

Per Proposition 14.2.14, Comp is left adjoint toDisc. Note that the global sections operator
cannot be defined as a map between the cube categories: the category �pt contains no
“endpoint object”.

As described in Section 11.1, a functor 𝐹 : C → D between index categories in-
duces an adjoint triple 𝐹! a 𝐹 ∗ a 𝐹∗ between the presheaf categories PSh(C) and PSh(D),
with the central functor 𝐹 ∗ : PSh(D) → PSh(C) given by precomposition—𝐹 ∗(𝑃) (𝑐) =
𝐺 (𝑃 (𝑐))—and 𝐹!, 𝐹∗ : PSh(C) → PSh(D) by left and right Kan extension respectively.
Applying with Comp and Disc, we have in particular the following adjoint quadruple, our
cohesion situation. Here we also use the fact that Comp a Disc implies Comp! a Disc!.

PSh(�par) PSh(�pt)

Comp!
⊥

Disc!
⊥

Disc∗
⊥

Disc∗

We interpret contexts in the pointwise mode as objects of PSh(�pt) and contexts in
the parametric mode as objects of PSh(�par). The first three functors of the quadruple
above accordingly implement the three modal operators on contexts: we interpret −.cc
by Comp!, −.dsc by Disc!, and −.glo by Disc∗. Recall again that 𝐹!((𝑐)) � (𝐹 (𝑐)), so
we know the connected components and discrete functors have the desired behavior on
interval hypotheses: Comp!(I) � (·), Disc!(Ipt) � Ipar, and so on. (We henceforth use
pt and par subscripts to disambiguate between objects in PSh(�pt) and PSh(�par) when
necessary.) We can also quickly check that the connected components and global sections
functors cancel the discrete embedding, using formal properties of (−)! and (−)∗.

Comp! ◦ Disc! � (Comp ◦ Disc)! � (id�pt)! � idPSh(�pt)

Disc∗ ◦ Disc! � Disc∗ ◦ Comp∗ � (Comp ◦ Disc)∗ � (id�pt)∗ � idPSh(�pt)

Cubical set model 287

Endpoints We may define the endpoint objects in each mode by the judgment defined
in Chapter 14: we set 2𝑚 (Ψ) B {𝒓 | Ψ ⊩ 𝒓 ∈ I @𝑚}. We then interpret endpoint context
extension by product: JΓ.2K B JΓK × 2𝑚 for Γ ctx @𝑚, and terms Γ ` 𝒓 : 2 @𝑚 by mapsJ𝒓K ∈ JΓK → 2𝑚 . We can check that the global sections functor Disc∗ takes I to 2pt as
follows.

Disc∗(I) (Ψ) = I(Ψ.dsc) � {𝒓 | Ψ.dsc ⊩ 𝒓 ∈ I @ par} � {𝒓 | Ψ ⊩ 𝒓 ∈ 2 @ pt} = 2pt(Ψ)

We can also characterize each endpoint object as the coproduct 2𝑚 � 1𝑚 + 1𝑚 of two
copies of the terminal presheaf 1𝑚 (Ψ) = {★}: there are two endpoints in any interval
context. Being left adjoints, Comp!, Disc!, and Disc∗ all preserve coproducts. Disc! and
Disc∗ are also right adjoints and thus preserve terminal objects, and we can manually
check that Comp!(1pt) � Comp!((·)) � (·) � 1par. It follows that the three preserve
the endpoint object as required.

By interpreting the three basic modalities as above and composites by composition of
functors, we can interpret each 𝜇 : 𝑚 → 𝑛 by a functor J𝜇K : PSh(�𝑛) → PSh(�𝑚), and
so define JΓ.𝜇K B J𝜇K(JΓK).
Modal hypotheses Given a modality 𝜇 :𝑚 → 𝑛, a semantic context 𝐺 ∈ PSh(�𝑛), and
a semantic pretype 𝑇 over a J𝜇K(𝐺), we will define a new semantic pretype (𝜇 | 𝑇) over
𝐺 . Let us first consider the special case 𝜇 = cc. We may define (cc | 𝑇) as follows.

(cc | 𝑇) (Ψ, 𝑔) B 𝑇 (Ψ.cc, JccK(𝑔))
(cc | 𝑇) (𝜓,𝑔) B 𝑇 ((𝜓 : Ψ) ⊗ cc, JccK(𝑔))

Here we make implicit use of the Yoneda lemma [Mac98, §III.2]: for any presheaf 𝐺 ∈
PSh(C), the elements of𝐺 (𝑐) are in (natural) correspondence with morphisms (𝑐) → 𝐺 ,
with any 𝑔 ∈ 𝐺 (𝑐) inducing 𝛼 : (𝑐) → 𝐺 defined by 𝛼 (𝑑) (𝑓) B 𝐺 (𝑓) (𝑔) and any
𝛼 : (𝑐) → 𝐺 inducing 𝛼 (𝑐)(id𝑐) ∈ 𝐺 (𝑐). In the above, we first regard 𝑔 ∈ 𝐺 (Ψ)
as a morphism 𝑔 : (Ψ) → 𝐺 , apply the functorial action of cc to obtain a morphismJccK(𝑔) : (Ψ.cc) � JccK((Ψ)) → JccK(𝐺), then apply the Yoneda lemma once more
to regard this as an element JccK(𝑔) ∈ JccK(𝐺)(Ψ.cc). The effect, analogously to the
computational setting, is that an element of (cc | 𝑇) in some context instantiation 𝑔 is an
element of 𝑇 over the connected component of 𝐺 to which 𝑔 belongs.

This definition relies on the fact that cc takes interval contexts to interval contexts;
this is not the case for all modalities, thanks to the presence of glo. In the general case,
we compensate by quantifying over all closing substitutions using a categorical limit.

(𝜇 | 𝑇) (Ψ, 𝑔) B lim
(
𝑇 (Ψ′, J𝜇K(𝑔) ◦ ℎ) �� Ψ′ ∈ �𝑚, ℎ : (Ψ′) → J𝜇K((Ψ))

)

288 Formalism

Explicitly, an element of (𝜇 | 𝑇)(Ψ, 𝑔) is a family of terms 𝑡Ψ′,ℎ ∈ 𝑇 (Ψ′, J𝜇K(𝑔) ◦ℎ) indexed
by contexts Ψ′ and closing substitutions ℎ : (Ψ′) → J𝜇K((Ψ)) and satisfying the
property that 𝑇 (𝜓,ℎ)(𝑡Ψ′,ℎ) = 𝑡Ψ′′,ℎ◦ (𝜓) for every Ψ′′ ⊩ 𝜓 ∈ Ψ′ @𝑚.

Finally, the extension 𝐺.(𝜇 | 𝑇) ∈ PSh(�𝑛) of a context 𝐺 by a modal hypotheses 𝑇
over J𝜇K(𝐺) is defined as the ordinary context extension by (𝜇 | 𝑇).

(𝐺.(𝜇 | 𝑇)) (Ψ) B
∑

𝑔∈𝐺 (Ψ)
(𝜇 | 𝑇)(Ψ, 𝑔)

(𝐺.(𝜇 | 𝑇)) (𝜓)(𝑔, 𝑡) B (𝐺 (𝜓)(𝑔), (𝜇 | 𝑇) (𝜓,𝑔) (𝑡))

Modal types We can interpret the two right adjoint modal types using the modal hy-
pothesis pretypes already defined. Given a semantic type 𝑇 over JdscK(𝐺), we define the
semantic typeGlo(𝑇) B (dsc | 𝑇); given𝑇 over JgloK(𝐺), we likewise defineCodisc(𝑇) B
(glo | 𝑇). We leave it to the reader to reconstruct the interpretations of the introduction
and elimination rules and Kan operators following their computational definitions.

For the discrete type, we must close (cc | 𝑇) under formal homogeneous composites.
Just as we construct the value relation for the computational type Disc(𝐴) as the least
fixed-point of a process adding formal composite values, we can arrive at Disc(𝑇) as a
sequential colimit of presheaves beginning with (cc | 𝑇) and adding a layer of formal
composites in each step. Alternatively, a second method of constructing cubical sets with
formal composites can be found in [CHM18, §2.4] in the context of constructing higher
inductive types.

Chapter 17

Conclusions

17.1 Related work

Cohesive type theory Lawvere’s axiomatic cohesion [Law07] defines an abstract, cate-
gorical setting in which the objects of one category may be regarded as “spaces” whose
“points” are drawn from another category. This framework was first applied in type the-
ory by Schreiber and Shulman [SS12], in the form of an extension of HoTT by axioms
capturing some consequences of a cohesive situation, in pursuit of synthetic quantum
field theory. Shulman [Shu18] proceeded to develop a second theory, this one extending
homotopy type theory by a combination of axioms and modal judgmental structure, to
more precisely capture the axioms of cohesion.

Shulman’s aim is to addressHoTT’s inability to reason about non-homotopy-invariant
constructions, i.e., constructions that do not support coercion. His theory combines the
homotopical structure of HoTT with a second layer of topological structure, the two lay-
ers interacting via cohesion. This enables the use of HoTT-style synthetic homotopy
theory in the service of topological theorems, Brouwer’s fixed-point theorem being the
showcase example. Extensions to Shulman’s theory incorporating additional modalities
have been further used to capture differential topological structure [GLNPRSW17; Wel18]
building on ideas of Schreiber [Sch13]. On a different note, Kavvos has studied connec-
tions between cohesion and calculi for information flow [Kav19].

A major difference between our work and Shulman’s is that our cohesion is defined
around an explicit judgmental (bridge) interval: the connected components functor col-
lapses bridges, the global sections functor returns the type of elements in an empty bridge
context, and so on. In contrast, Shulman’s judgmental structure only includes modal fea-
tures; the connection to topology is established via axioms relating the modal operators
to the type of real numbers.

A more mundane difference is that we explicitly include two modes (pt and par). Shul-

289

290 Conclusions

man’s theory instead takes place entirely in the “cohesive mode”, our par, taking the com-
posite operators ♭(−) B Disc(Glo(−)) and ♯(−) B Codisc(Glo(−)) as the primitive
modal types. It is still possible to speak of “pointwise” types in such a theory: roughly,
they are the types 𝐴 such that a canonical map ♭𝐴 → 𝐴 is an isomorphism [Shu18, Def-
inition 6.12]. Given that our objective is to use parametricity in the service of pointwise
theorems, however, we consider it clearer to give the pointwise world the status of a
full-fledged mode. Shulman’s formulation of the two type formers ♭ and ♯ nevertheless
bears clear similarities to our own modal types: ♯ is specified by a negative elimination
rule, while ♭ is positive and relies on a notion of crisp hypothesis paralleling our modal
hypotheses.

In addition to the ♭ and ♯ modalities, Shulman’s theory also includes a third shape
modality, written S, which corresponds to a composite Disc(CComp(−)) not available
as a type former in our theory. In Shulman’s theory, S𝐴 is defined as the localization of
𝐴 at the map R → Unit, where R is type of the Dedekind real numbers; this is to say
that S𝐴 is defined by contracting all images of R in 𝐴 (all “topological” paths in 𝐴), an
operation that may be effected by a higher inductive type [Shu18, Definition 9.6; RSS20,
Definition 2.14]. It is then postulated, indirectly, that this operation is left adjoint to ♭
[Shu18, AxiomC0, Theorem 9.15]. If our schema for higher inductive types were extended
to allow bridge types in recursive arguments, it might be possible to similarly obtain a
connected component type former in our theory by localizing at “I → Unit”; however, it
is not clear that this would relate correctly to the primitive cohesive type formers.

There is, in any case, a major difference in focus. We concentrate on providing a
computational justification for our theory, which is largely orthogonal to Shulman’s goals;
he uses axioms freely in the specification of his theory, although he makes an effort to be
constructive whenever possible. The direction of application is also reversed: Shulman
uses homotopical methods to prove topological results, i.e., results in the cohesive mode,
whereas we use cohesive methods (parametricity) to prove results in the pointwise mode.

Modal type theory Modalities more generally have a storied history in type theory and
logic. The question of how to represent connectives like our cohesive operators that enact
a change of context has long been a source of consternation among proof theorists; only
relatively recently have well-behaved and general techniques for specifying modal logics
and type theories begun to appear.

Early modal logics, emanating from Lewis and Langford’s seminal axiomatizations
[LL32], are typically concerned with capturing necessity and possibility, introducing con-
nectives □𝐴 and ♢𝐴 to represent the propositions “𝐴 is necessary” and “𝐴 is possible”.
Another canonical application is to temporal reasoning, for example with connectives
representing “𝐴 holds later” or “𝐴 holds at time 𝑡”. We refer to [Sim94; PGM04; Kav16] for
detailed surveys of constructive modal logics in particular. Modal dependent type theories

Related work 291

are much more recent [PR15; Shu18; GSB19; Zwa19; BCMEPS20], as the more complex
structure of a dependent context naturally complicates the treatment of modalities. Sim-
ilar issues arise in efforts to define dependent substructural type theories [CP02; Vák14;
KPB15], which, like modal type theories, place restrictions on how variables can be ac-
cessed from the context.

Fortunately for us, frameworks for defining modal type theories have recently be-
gun to crop up. Licata and Shulman [LS16] introduced the concept of a mode theory, a
2-category with modes as objects, modalities as morphisms, and maps between modali-
ties as 2-cells, as a way of specifying a system of modalities. Their work builds on that
of Reed [Ree09], who considers the special case of preorder mode theories. The gener-
alization was motivated in particular by cohesive type theory, which requires the two
parallel modalities cc, glo : pt → par. We use such a mode theory in the specification of
our formalism in Chapter 16. Licata, Shulman, and Riley [LSR17] further generalize the
Licata-Shulman framework to capture substructural phenomena.

The mode theory machinery was picked up by Gratzer, Kavvos, Nuyts, and Birkedal
[GKNB20] in theirmultimodal type theory (MTT), a framework for dependent modal type
theories. While our theory takes advantage of various simplifications appropriate to our
special case,MTT has been tremendously useful as a template. Our formulation of modal
hypotheses in particular is taken directly fromMTT.

Our eliminator for discrete types is a restricted version of theMTT eliminator, which
would additionally permit the principal argument (𝑃 below) to be supplied beneath an
auxiliary modality.

MTT-Elim
𝜈 : par →𝑚 Γ.𝜈 .cc � 𝐴 type @ pt Γ, (𝜈 | 𝑑 : Disc(𝐴)) � 𝐵 type @𝑚

Γ.𝜈 � 𝑃 ∈ Disc(𝐴) @ par Γ, (𝜈, cc | 𝑎 : 𝐴) � 𝑁 ∈ 𝐵 [mod(𝑎)/𝑑] @𝑚

Γ � letdisc𝜈 (𝑑.𝐵, 𝑃, 𝑎.𝑁) ∈ 𝐵 [𝑃/𝑑] @𝑚

This parameter is necessary in general to take advantage of interactions between cc and
other modalities; note how 𝜈 and cc are combined in the hypotheses of𝑁 . In the particular
case of cohesion, however, the only essential property of modalities of the form (𝜈, cc) is
the equation Γ.(dsc, cc) = Γ, and the 𝜈 = dsc instance of the MTT eliminator is derivable
(Lemma 15.1.1) by use of the codiscrete type. (A similar derivability was observed by
Shulman for ♭-types [Shu18, Lemma 5.1].) This is fortunate, as the general rule would
seriously complicate the computational interpretation. Consider that when the ambient
context is an interval context Ψ, the principal argument 𝑃 is typed in context Ψ.𝜈 . This
may not be an interval context: if Ψ = (𝒙 : I) and 𝜈 = (glo, dsc), for example, then we have
Ψ.𝜈 = (𝒙 : 2). We would therefore need to be able to evaluate terms in extended interval
contexts (possibly containing endpoints). We conjecture that a system could be designed
in which endpoint hypotheses can appear in genuine interval contexts and split becomes
a sheaf condition imposed on types, but our approach seems much simpler.

292 Conclusions

The type formers Glo and Codisc diverge further from MTT, which gives positive
eliminators for all modal types. A similar projection rule was at some point considered by
Gross et al. [GLNPRSW17] for ♯-types, but to our knowledge this formulation of cohesion
is otherwise novel. Similar situations—where a type former has two adjoints to its left, or
more generally has a left adjoint that is a parametric right adjoint—are analyzed in detail
in [GCKGB21]. Such structure has previously appeared implicitly in several type theories
of modal character [BGM17; BCMEPS20], as well as in nominal type theory [Che12] and
our own treatment of affine interval variables.

The definitions of the modal context operators −.dsc and −.glo in our computational
interpretation performwhat Nuyts et al. [NVD17] call left division onmodal term hypothe-
ses, adjusting the modality of each such hypothesis. They trace this style of definition to
Pfenning [Pfe01] and Abel (as “inverse application”) [Abe08], while the broader idea of
marking the hypotheses in a context by different modes or modalities goes back to Avron
et al. [AHMP98]. Others have used a split context representation wherein the hypotheses
at each mode or modality are listed in their own context—see for example [PD01; Kav20].

Internal parametricity à la Nuyts et al. Nuyts, Vezzosi, and Devriese [NVD17], al-
ready mentioned in Chapter 12, also use modalities to formulate their type theory for
internal parametricity. We follow here the convention introduced in Chapter 12 of refer-
ring to their paths as “0-bridges” and bridges as “1-bridges”; we write I0 and I1 for the two
intervals.

Their system is interpreted in a presheaf category PSh(BPCube) (bridge-path cubical
sets), which is cohesive over the category PSh(�c) of cartesian cubical sets. (In fact there
is a string of five adjoint functors between them.) Here the objects of�c should be thought
of as contexts of hypotheses 𝒙 : I0, while the objects of BPCube are contexts containing
both 𝒙 : I0 and 𝒙 : I1 hypotheses. BPCube is not the equivalent to the product �c × �c ,
however, as there is amap from the 1-bridge interval to the 0-bridge interval. That is, there
is some (Ψ, 𝒙 : I1) ⊩ 𝜓 ∈ (Ψ, 𝒙 : I0). The cohesive situation arising from the inclusion�c ↩→ BPCube then includes functors that send 0-bridges to 1-bridges and vice versa,
enabling the expression of parametric functions (which take 1-bridges to 0-bridges) as
elements of modal function types. Like Shulman, Nuyts et al. also design their type theory
around a single mode, corresponding to our par. The modal operators, like our −.dsc and
−.glo, are defined on term hypotheses by left division.

It may be possible, following this setup, to design a version of our theorywhere there is
amap I → I. In such a system, themap loosen from paths to bridges could be defined using
the judgmental interval structure rather than the Kan operations, which is intuitively
appealing. However, complications arise from the affine nature of I. In particular, the
restriction operator − \ 𝒓 would need to convert bridge variables to path variables rather
than deleting them, with consequences for the formulations of extent and Gel.

Outlook 293

Modalities and intervals As mentioned in Section 12.1, Nuyts [Nuy20] shows that V,
Gel, and similar types can be derived from the presence of a transpension type that is
available in all presheaf categories. His system is an instantiationMTT; the transpension
in particular is the modal type corresponding to a context operator ≬𝑟 indexed by an
interval term. This operator is right adjoint to (possibly affine) context extension (−, 𝑥 : I),
making the transpension type former 〈≬ 𝑥 | −〉 right adjoint to interval quantification
〈∀(𝑥 : I) | −〉. Nuyts analyzes, among other things, how the properties of assumptions
𝑥 : I (such as structurality or affinity) affect the behavior of transpension. In the affine
cubical setting, the transpension of a type 𝐴 is analogous to the type Gel𝒓 (U,Unit, . .𝐴).
Nuyts recovers the general Gel-type (there called the Ψ-combinator) as a combination of
transpension and quantification over the boundary of 𝒓 [Nuy20, §7.8]. The extent operator
(there the Φ-combinator) is also obtainable using ≬ 𝑥 .

In our system, theGel-type resembles, at least informally, a modal type corresponding
to the context operator −.\𝒓 , which is left adjoint to context extension by an interval. We
speculate that these two views ofGel—as deriving from a left adjoint −\ 𝒓 or right adjoint
≬𝑟 to context extension—are dual views of the equivalence between bridges and types in
an interval context.

Gratzer et al. [GCKGB21] also analyze affine interval variables as amodal phenomenon,
drawing out the commonalities between our rules for bridge types and the modal type for-
mers Glo and Codisc.

17.2 Outlook

We have now truly fulfilled the promise put forth at the start of Part III: that we can ap-
ply parametricity to the analysis of higher inductive types in cubical type theory. We
synthesize the recently well-developed body of work on type-theoretic cohesion to relate
a model with logical-relational structure to a “basic” model, allowing us to access para-
metricity results in the pointwise world and thereby translate Reynolds’ methodology to
Bernardy and Moulin’s internal parametricity. We find that while additional effort is re-
quired to drag free theorems from the parametric to the pointwise mode, we are still able
to take effective advantage of parametricity, as exemplified by our coherence theorems
for the smash product.

One question that remains—beyond those already discussed in Section 12.2—iswhether
formal internal parametricity is able to prove results about a pure cubical formalism. In
our presheaf model, the judgments of the pointwise mode are interpreted exactly as they
are in their plain cubical equivalents introduced in Part I. The same is nearly the case
in the computational interpretation, with the minor exception that the inductively gen-
erated universes must now contain Glo types. It is therefore reasonable to say that we
can use internal parametricity as a tool to prove results in pointwise settings. We do not

294 Conclusions

know whether this is true on the level of formalisms: is the modal parametric cubical
formalism conservative over the cubical formalism, in the sense that any theorem of the
pointwise mode expressible in the extended formalism is already provable in the basic
cubical formalism? We conjecture that this is indeed the case. However, one factor that
may inhibit a translation from cohesive parametric type theory to pure cubical type the-
ory is the pointwise type Glo(U). Naively, one might attempt to translate this to a type of
affine cubical types, i.e., families of types indexed by bridge interval context, but it is un-
clear if the type of such structures is internally definable. The similar question of whether
(semi-)simplicial types can be defined in homotopy type theory is a long-standing open
problem.

Recent work of Sterling and Harper [SH20] and Sterling and Angiuli [SA21] lays out
a system of synthetic Tait computability, suggesting that the internalization of logical rela-
tions is a technique with broader applications. In these works, the syntactic category of a
type theory is related by modalities to a gluing model, in which each type is equipped with
some computability structure. Our addition of cohesion to relate parametric and point-
wise theories brings an analogy between their work and internal parametricity closer
within reach.

Bibliography

[ABCFHL19] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou
(Favonia), Robert Harper, and Daniel R. Licata. “Syntax and Models of
CartesianCubical Type Theory”. Unpublished draft. Feb. 2019.url: https:
//github.com/dlicata335/cart-cube.

[Abe08] Andreas Abel. “Polarised subtyping for sized types”. In: Math. Struct.
Comput. Sci. 18.5 (2008), pp. 797–822.doi: 10.1017/S0960129508006853.
url: https://doi.org/10.1017/S0960129508006853.

[Abe13] Andreas Abel. “Normalization by Evaluation: Dependent Types and Im-
predicativity”. Habilitation. Ludwig-Maximilians-Universität München,
2013.

[ABFJ20] Mathieu Anel, Georg Biedermann, Eric Finster, and André Joyal. “A gen-
eralized Blakers-Massey theorem”. In: Journal of Topology 13.4 (2020),
pp. 1521–1553. doi: 10.1112/topo.12163.

[ACC93] Martn Abadi, Luca Cardelli, and Pierre-Louis Curien. “Formal Paramet-
ric Polymorphism”. In: Theor. Comput. Sci. 121.1&2 (1993), pp. 9–58. doi:
10.1016/0304-3975(93)90082-5.

[ACCL91] Martn Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
“Explicit Substitutions”. In: J. Funct. Program. 1.4 (1991), pp. 375–416.
doi: 10.1017/S0956796800000186.

[ACDKN18] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and
FredrikNordvall Forsberg. “Quotient Inductive-Inductive Types”. In: Foun-
dations of Software Science and Computation Structures - 21st Interna-
tional Conference, FOSSACS 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings. 2018, pp. 293–310. doi: 10.1007/
978-3-319-89366-2_16.

295

https://github.com/dlicata335/cart-cube
https://github.com/dlicata335/cart-cube
https://doi.org/10.1017/S0960129508006853
https://doi.org/10.1017/S0960129508006853
https://doi.org/10.1112/topo.12163
https://doi.org/10.1016/0304-3975(93)90082-5
https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1007/978-3-319-89366-2_16

296 Bibliography

[ACFHS18] Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper,
and Jonathan Sterling. “The RedPRL Proof Assistant (Invited Paper)”. In:
Proceedings of the 13th International Workshop on Logical Frameworks
and Meta-Languages: Theory and Practice, LFMTP@FSCD 2018, Oxford,
UK, 7th July 2018. Ed. by Frédéric Blanqui and Giselle Reis. Vol. 274.
EPTCS. 2018, pp. 1–10. doi: 10.4204/EPTCS.274.1.

[ACMZ21] Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. “Inter-
nalizing representation independence with univalence”. In: Proc. ACM
Program. Lang. 5.POPL (2021), pp. 1–30. doi: 10.1145/3434293.

[ADK17] Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. “Par-
tiality, Revisited - The PartialityMonad as aQuotient Inductive-Inductive
Type”. In: Foundations of Software Science and Computation Structures -
20th International Conference, FOSSACS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Upp-
sala, Sweden, April 22-29, 2017, Proceedings. Ed. by Javier Esparza and
Andrzej S. Murawski. Vol. 10203. Lecture Notes in Computer Science.
2017, pp. 534–549. doi: 10.1007/978-3-662-54458-7_31.

[AFH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. “Carte-
sian Cubical Computational Type Theory: Constructive Reasoning with
Paths and Equalities”. In: 27th EACSL Annual Conference on Computer
Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK . 2018, 6:1–
6:17. doi: 10.4230/LIPIcs.CSL.2018.6.

[Agda] The Agda Development Team. The Agda Programming Language. 2020.
url: http://wiki.portal.chalmers.se/agda/pmwiki.php.

[AGJ14] Robert Atkey, Neil Ghani, and Patricia Johann. “A relationally paramet-
ric model of dependent type theory”. In: The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. 2014, pp. 503–516. doi: 10 .
1145/2535838.2535852.

[AGS12] SteveAwodey, Nicola Gambino, and Kristina Sojakova. “Inductive Types
in Homotopy Type Theory”. In: Proceedings of the 27th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June
25-28, 2012. 2012, pp. 95–104.

[AHMP98] Arnon Avron, Furio Honsell, Marino Miculan, and Cristian Paravano.
“Encoding Modal Logics in Logical Frameworks”. In: Stud Logica 60.1
(1998), pp. 161–208. doi: 10.1023/A:1005060022386. url: https://
doi.org/10.1023/A:1005060022386.

https://doi.org/10.4204/EPTCS.274.1
https://doi.org/10.1145/3434293
https://doi.org/10.1007/978-3-662-54458-7_31
https://doi.org/10.4230/LIPIcs.CSL.2018.6
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1023/A:1005060022386
https://doi.org/10.1023/A:1005060022386
https://doi.org/10.1023/A:1005060022386

Bibliography 297

[AK16] Thorsten Altenkirch and Ambrus Kaposi. “Type theory in type theory
using quotient inductive types”. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. 2016, pp. 18–29.
doi: 10.1145/2837614.2837638.

[All87] Stuart Allen. “A Non-Type-Theoretic Definition of Martin-Löf’s Types”.
In: Proceedings of the Symposium on Logic in Computer Science (LICS ’87),
Ithaca, New York, USA, June 22-25, 1987 . 1987, pp. 215–221.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observa-
tional equality, now!” In: Proceedings of the ACMWorkshop Programming
Languages meets Program Verification, PLPV 2007, Freiburg, Germany, Oc-
tober 5, 2007 . 2007, pp. 57–68. doi: 10.1145/1292597.1292608.

[Ang19] CarloAngiuli. “Computational Semantics of CartesianCubical Type The-
ory”. PhD thesis. CarnegieMellonUniversity, 2019.url: http://reports-
archive.adm.cs.cmu.edu/anon/2019/abstracts/19-127.html.

[AW09] Steve Awodey and Michael A. Warren. “Homotopy theoretic models
of identity types”. In: Math. Proc. Cambridge Philos. Soc. 146.1 (2009),
pp. 45–55. doi: 10.1017/S0305004108001783.

[Awo18] Steve Awodey. “A cubical model of homotopy type theory”. In:Ann. Pure
Appl. Logic 169.12 (2018), pp. 1270–1294. doi: 10.1016/j.apal.2018.
08.002.

[Bar91] Henk Barendregt. “Introduction to generalized type systems”. In: Jour-
nal of Functional Programming 1.2 (1991), pp. 122–154. doi: 10.1017/
S0956796800020025.

[BCH13] Marc Bezem, Thierry Coquand, and Simon Huber. “A Model of Type
Theory in Cubical Sets”. In: 19th International Conference on Types for
Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse, France. 2013,
pp. 107–128. doi: 10.4230/LIPIcs.TYPES.2013.107.

[BCH19] Marc Bezem, Thierry Coquand, and Simon Huber. “The Univalence Ax-
iom in Cubical Sets”. In: J. Autom. Reasoning 63.2 (2019), pp. 159–171.
doi: 10.1007/s10817-018-9472-6.

[BCM15] Jean-Philippe Bernardy, Thierry Coquand, andGuilhemMoulin. “A Presheaf
Model of Parametric Type Theory”. In: Electr. Notes Theor. Comput. Sci.
319 (2015), pp. 67–82. doi: 10.1016/j.entcs.2015.12.006.

https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/1292597.1292608
http://reports-archive.adm.cs.cmu.edu/anon/2019/abstracts/19-127.html
http://reports-archive.adm.cs.cmu.edu/anon/2019/abstracts/19-127.html
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1016/j.apal.2018.08.002
https://doi.org/10.1016/j.apal.2018.08.002
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.1007/s10817-018-9472-6
https://doi.org/10.1016/j.entcs.2015.12.006

298 Bibliography

[BCMEPS20] Lars Birkedal, Ranald Clouston, BasselMannaa, Rasmus EjlersMøgelberg,
AndrewM. Pitts, and Bas Spitters. “Modal dependent type theory and de-
pendent right adjoints”. In:Mathematical Structures in Computer Science
30.2 (2020), pp. 118–138. doi: 10.1017 /S0960129519000197. eprint:
1804.05236.

[BCP15] Marc Bezem, Thierry Coquand, and Erik Parmann. “Non-Constructivity
in Kan Simplicial Sets”. In: 13th International Conference on Typed Lambda
Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland. Ed.
by ThorstenAltenkirch. Vol. 38. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2015, pp. 92–106. doi: 10.4230/LIPIcs.TLCA.2015.92.

[BELS16] Auke Bart Booij, Martn Hötzel Escardó, Peter LeFanu Lumsdaine, and
Michael Shulman. “Parametricity, Automorphisms of the Universe, and
Excluded Middle”. In: 22nd International Conference on Types for Proofs
and Programs, TYPES 2016, May 23-26, 2016, Novi Sad, Serbia. 2016, 7:1–
7:14. doi: 10.4230/LIPIcs.TYPES.2016.7.

[Ben19] Bruno Bentzen.Naive cubical type theory. 2019. arXiv: 1911.05844 [cs.LO].
url: http://arxiv.org/abs/1911.05844.

[BG11] Benno van den Berg and Richard Garner. “Types areweak𝜔-groupoids”.
In: Proceedings of the London Mathematical Society 102.2 (2011), pp. 370–
394. doi: 10.1112/plms/pdq026.

[BG12] Benno van den Berg and Richard Garner. “Topological and Simplicial
Models of Identity Types”. In: ACM Trans. Comput. Log. 13.1 (2012), 3:1–
3:44. doi: 10.1145/2071368.2071371.

[BGM17] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg.
“The clocks are ticking: No more delays!” In: 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017 . IEEE Computer Society, 2017, pp. 1–12. doi: 10.1109/
LICS.2017.8005097. url: https://doi.org/10.1109/LICS.2017.
8005097.

[BGW17] Henning Basold, Herman Geuvers, and Niels van der Weide. “Higher
Inductive Types in Programming”. In: J. UCS 23.1 (2017), pp. 63–88.

[BHN13] Nick Benton, Martin Hofmann, and Vivek Nigam. “Proof-Relevant Logi-
cal Relations for Name Generation”. In: Typed Lambda Calculi and Appli-
cations, 11th International Conference, TLCA 2013, Eindhoven, The Nether-
lands, June 26-28, 2013. Proceedings. Ed. byMasahitoHasegawa. Vol. 7941.
Lecture Notes in Computer Science. Springer, 2013, pp. 48–60. doi: 10.
1007/978-3-642-38946-7_6.

https://doi.org/10.1017/S0960129519000197
1804.05236
https://doi.org/10.4230/LIPIcs.TLCA.2015.92
https://doi.org/10.4230/LIPIcs.TYPES.2016.7
https://arxiv.org/abs/1911.05844
http://arxiv.org/abs/1911.05844
https://doi.org/10.1112/plms/pdq026
https://doi.org/10.1145/2071368.2071371
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1007/978-3-642-38946-7_6
https://doi.org/10.1007/978-3-642-38946-7_6

Bibliography 299

[BHN14] Nick Benton, Martin Hofmann, and Vivek Nigam. “Abstract effects and
proof-relevant logical relations”. In: The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. 2014, pp. 619–632. doi: 10 .
1145/2535838.2535869.

[BJP10] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. “Parametric-
ity and dependent types”. In: ICFP 2010, Baltimore,Maryland, USA, Septem-
ber 27-29, 2010. 2010, pp. 345–356.

[BL11] Jean-Philippe Bernardy and Marc Lasson. “Realizability and Parametric-
ity in Pure Type Systems”. In: Foundations of Software Science and Com-
putational Structures - 14th International Conference, FOSSACS 2011, Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Pro-
ceedings. Ed. by Martin Hofmann. Vol. 6604. Lecture Notes in Computer
Science. Springer, 2011, pp. 108–122. doi: 10.1007/978-3-642-19805-
2_8.

[BM12] Jean-Philippe Bernardy and Guilhem Moulin. “A Computational Inter-
pretation of Parametricity”. In: LICS 2012, Dubrovnik, Croatia, June 25-28,
2012. 2012, pp. 135–144. doi: 10.1109/LICS.2012.25.

[BM13] Jean-Philippe Bernardy and Guilhem Moulin. “Type-theory in color”.
In: ICFP 2013, Boston, MA, USA - September 25 - 27, 2013. 2013, pp. 61–72.
doi: 10.1145/2500365.2500577.

[Bru16] Guillaume Brunerie. “On the homotopy groups of spheres in homotopy
type theory”. PhD thesis. Université de Nice Sophia Antipolis, 2016.

[Bru18] GuillaumeBrunerie. “Computer-generated proofs for themonoidal struc-
ture of the smash product”. Homotopy Type Theory Electronic Seminar
Talks. Nov. 2018.url: https://www.uwo.ca/math/faculty/kapulkin/
seminars/hottest.html.

[BS91] Ulrich Berger and Helmut Schwichtenberg. “An Inverse of the Evalua-
tion Functional for Typed lambda-calculus”. In: Proceedings of the Sixth
Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam,
The Netherlands, July 15-18, 1991. 1991, pp. 203–211. doi: 10.1109/LICS.
1991.151645.

[Car86] JohnCartmell. “Generalised algebraic theories and contextual categories”.
In: Annals of Pure and Applied Logic 32 (1986), pp. 209–243. issn: 0168-
0072. doi: 10.1016/0168-0072(86)90053-9.

https://doi.org/10.1145/2535838.2535869
https://doi.org/10.1145/2535838.2535869
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1109/LICS.2012.25
https://doi.org/10.1145/2500365.2500577
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1016/0168-0072(86)90053-9

300 Bibliography

[Cav15] Evan Cavallo. “Synthetic cohomology in homotopy type theory”. MA
thesis. Carnegie Mellon University, 2015.

[Cav19] Evan Cavallo. Stable factorization from a fibred algebraic weak factoriza-
tion system. 2019. arXiv: 1910.03121 [math.CT].

[CCHM15] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg.
“Cubical Type Theory: A Constructive Interpretation of the Univalence
Axiom”. In: 21st International Conference on Types for Proofs and Pro-
grams, TYPES 2015, May 18-21, 2015, Tallinn, Estonia. 2015, 5:1–5:34. doi:
10.4230/LIPIcs.TYPES.2015.5.

[CH19a] Evan Cavallo and Robert Harper. “Higher inductive types in cubical
computational type theory”. In: PACMPL 3.POPL (2019), 1:1–1:27. doi:
10.1145/3290314.

[CH19b] Evan Cavallo and Robert Harper. Parametric Cubical Type Theory. 2019.
arXiv: 1901.00489 [cs.LO].

[CH20] Evan Cavallo and Robert Harper. “Internal Parametricity for Cubical
Type Theory”. In: 28th EACSL Annual Conference on Computer Science
Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. 2020, 13:1–13:17.
doi: 10.4230/LIPIcs.CSL.2020.13.

[Che12] James Cheney. “A dependent nominal type theory”. In: Logical Methods
in Computer Science 8.1 (2012). doi: 10.2168/LMCS-8(1:8)2012.

[CHM18] Thierry Coquand, Simon Huber, and Anders Mörtberg. “On Higher In-
ductive Types in Cubical Type Theory”. In: LICS 2018, Oxford, UK, July
9-12, 2018. 2018. doi: 10.1145/3209108.3209197.

[CHS19] Thierry Coquand, SimonHuber, andChristian Sattler. “HomotopyCanon-
icity for Cubical Type Theory”. In: 4th International Conference on For-
mal Structures for Computation and Deduction, FSCD 2019, June 24-30,
2019, Dortmund, Germany. 2019, 11:1–11:23. doi: 10 . 4230 / LIPIcs .
FSCD.2019.11.

[Clo18] Ranald Clouston. “Fitch-Style Modal Lambda Calculi”. In: Foundations of
Software Science and Computation Structures. Ed. by Christel Baier and
Ugo Dal Lago. Springer International Publishing, 2018, pp. 258–275.

[CMS20] Evan Cavallo, Anders Mörtberg, and Andrew W. Swan. “Unifying Cubi-
cal Models of Univalent Type Theory”. In: 28th EACSL Annual Confer-
ence on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona,
Spain. 2020, 14:1–14:17. doi: 10.4230/LIPIcs.CSL.2020.14.

https://arxiv.org/abs/1910.03121
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3290314
https://arxiv.org/abs/1901.00489
https://doi.org/10.4230/LIPIcs.CSL.2020.13
https://doi.org/10.2168/LMCS-8(1:8)2012
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.4230/LIPIcs.FSCD.2019.11
https://doi.org/10.4230/LIPIcs.FSCD.2019.11
https://doi.org/10.4230/LIPIcs.CSL.2020.14

Bibliography 301

[Con+86] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland,
J. F. Cremer, R. W. Harper, Douglas J. Howe, Todd B. Knoblock, N. P.
Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. Im-
plementing mathematics with the Nuprl proof development system. Pren-
tice Hall, 1986.

[Con09] R. L. Constable. “Computational type theory”. In: Scholarpedia 4.2 (2009).
revision #130876, p. 7618. doi: 10.4249/scholarpedia.7618.

[Coq] The Coq Development Team. The Coq Proof Assistant. url: https://
www.coq.inria.fr.

[Coq19] Thierry Coquand. “Canonicity and normalization for dependent type
theory”. In: Theor. Comput. Sci. 777 (2019), pp. 184–191. doi: 10.1016/
j.tcs.2019.01.015.

[Coq93] Thierry Coquand. “Infinite Objects in Type Theory”. In: Types for Proofs
and Programs, International Workshop TYPES’93, Nijmegen, The Nether-
lands, May 24-28, 1993, Selected Papers. Ed. by Henk Barendregt and To-
bias Nipkow. Vol. 806. Lecture Notes in Computer Science. Springer,
1993, pp. 62–78. doi: 10.1007/3- 540- 58085- 9_72. url: https:
//doi.org/10.1007/3-540-58085-9%5C_72.

[CP02] Iliano Cervesato and Frank Pfenning. “A Linear Logical Framework”. In:
Inf. Comput. 179.1 (2002), pp. 19–75. doi: 10.1006/inco.2001.2951.
url: https://doi.org/10.1006/inco.2001.2951.

[CP88] Thierry Coquand and Christine Paulin. “Inductively defined types”. In:
COLOG-88, International Conference on Computer Logic, Tallinn, USSR,
December 1988, Proceedings. 1988, pp. 50–66.

[CubAg] The Agda Development Team. Cubical Agda Library. 2020. url: https:
//github.com/agda/cubical.

[Dij17] Gabe Dijkstra. “Quotient inductive-inductive definitions”. PhD thesis.
University of Nottingham, UK, 2017. url: http : / / ethos . bl . uk /
OrderDetails.do?uin=uk.bl.ethos.728471.

[DM17] Peter Dybjer and Hugo Moeneclaey. “Finitary Higher Inductive Types
in the Groupoid Model”. In: Mathematical Foundations of Programming
Semantics, 33rd International Conference, Ljubljana, Slovenia. 2017.

[Doo16] Floris van Doorn. “Constructing the propositional truncation using non-
recursive HITs”. In: Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs, Saint Petersburg, FL, USA, January 20-22,
2016. 2016, pp. 122–129. doi: 10.1145/2854065.2854076.

https://doi.org/10.4249/scholarpedia.7618
https://www.coq.inria.fr
https://www.coq.inria.fr
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9%5C_72
https://doi.org/10.1007/3-540-58085-9%5C_72
https://doi.org/10.1006/inco.2001.2951
https://doi.org/10.1006/inco.2001.2951
https://github.com/agda/cubical
https://github.com/agda/cubical
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728471
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728471
https://doi.org/10.1145/2854065.2854076

302 Bibliography

[Doo18] Floris van Doorn. “On the Formalization of Higher Inductive Types and
Synthetic Homotopy Theory”. PhD thesis. Carnegie Mellon University,
2018.

[DP02] BrianA. Davey andHilaryA. Priestley. Introduction to Lattices andOrder,
Second Edition. Cambridge University Press, 2002. isbn: 978-0-521-78451-
1. doi: 10.1017/CBO9780511809088.

[Dyb00] Peter Dybjer. “AGeneral Formulation of Simultaneous Inductive-Recursive
Definitions in Type Theory”. In: J. Symb. Log. 65.2 (2000), pp. 525–549.
doi: 10.2307/2586554.

[Dyb94] Peter Dybjer. “Inductive Families”. In: Formal Aspects of Computing 6.4
(1994), pp. 440–465.

[EK66] Samuel Eilenberg and G. Max Kelly. “Closed categories”. In: Proceedings
of the Conference on Categorical Algebra (1966), pp. 421–562. doi: 10.
1007/978-3-642-99902-4_22.

[FFLL16] Kuen-BangHou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu
Lumsdaine. “A Mechanization of the Blakers-Massey Connectivity The-
orem in Homotopy Type Theory”. In: Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York,
NY, USA, July 5-8, 2016. 2016, pp. 565–574. doi: 10 . 1145 / 2933575 .
2934545.

[FPS20] Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. “Constructing
Infinitary Quotient-Inductive Types”. In: Foundations of Software Science
and Computation Structures - 23rd International Conference, FOSSACS
2020, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceed-
ings. 2020, pp. 257–276. doi: 10.1007/978-3-030-45231-5_14.

[FXG20] Fredrik Nordvall Forsberg, Chuangjie Xu, and Neil Ghani. “Three equiv-
alent ordinal notation systems in cubical Agda”. In: Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020. Ed. by Jas-
min Blanchette and Catalin Hritcu. ACM, 2020, pp. 172–185. doi: 10.
1145/3372885.3373835.

[GCKGB21] Daniel Gratzer, Evan Cavallo, G.A. Kavvos, Adrien Guatto, and Lars
Birkedal. “Modalities and Parametric Adjoints”. In submission. 2021.

[GG08] Nicola Gambino and Richard Garner. “The identity type weak factori-
sation system”. In: Theor. Comput. Sci. 409.1 (2008), pp. 94–109. doi: 10.
1016/j.tcs.2008.08.030.

https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.2307/2586554
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.1007/978-3-030-45231-5_14
https://doi.org/10.1145/3372885.3373835
https://doi.org/10.1145/3372885.3373835
https://doi.org/10.1016/j.tcs.2008.08.030
https://doi.org/10.1016/j.tcs.2008.08.030

Bibliography 303

[Gir72] Jean-YvesGirard. “Interprétation fonctionnelle et élimination des coupures
de l’arithmetique d’ordre supérieur”. PhD thesis. Université Paris VII,
1972.

[GKNB20] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. “Mul-
timodal Dependent Type Theory”. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’20. ACM,
2020. doi: 10.1145/3373718.3394736.

[GLNPRSW17] Jacob A. Gross, Daniel R. Licata, Max S. New, Jennifer Paykin, Mitchell
Riley, Michael Shulman, and Felix Wellen. “Differential Cohesive Type
Theory (Extended Abstract)”. In: Extended abstracts for the Workshop
“Homotopy Type Theory and Univalent Foundations” . 2017. url: https:
//hott-uf.github.io/2017/abstracts/cohesivett.pdf.

[GM03] Marco Grandis and Luca Mauri. “Cubical sets and their site”. In: Theory
and Applications of Categories 11.8 (2003), pp. 185–211. url: http://
www.tac.mta.ca/tac/volumes/11/8/11-08abs.html.

[GNO16] Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo. “Proof-
Relevant Parametricity”. In: A List of Successes That Can Change the
World - Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday. Ed. by Sam Lindley, Conor McBride, Philip W. Trinder, and
Donald Sannella. Vol. 9600. LectureNotes in Computer Science. Springer,
2016, pp. 109–131. doi: 10.1007/978-3-319-30936-1_6.

[GSB19] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. “Implementing a
modal dependent type theory”. In: Proc. ACM Program. Lang. 3.ICFP
(2019), 107:1–107:29. doi: 10.1145/3341711.

[Har92] Robert Harper. “Constructing Type Systems over an Operational Seman-
tics”. In: J. Symb. Comput. 14.1 (1992), pp. 71–84. doi: 10.1016/0747-
7171(92)90026-Z.

[Has94] Ryu Hasegawa. “Categorical Data Types in Parametric Polymorphism”.
In: Math. Struct. Comput. Sci. 4.1 (1994), pp. 71–109. doi: 10 . 1017 /
S0960129500000372.

[Hof95] MartinHofmann. “Extensional concepts in intensional type theory”. PhD
thesis. Edinburgh: University of Edinburgh, Jan. 1995.

[HS98] Martin Hofmann and Thomas Streicher. “The groupoid interpretation
of type theory”. In: Twenty-five years of constructive type theory (Venice,
1995). Vol. 36. Oxford Logic Guides. New York: Oxford Univ. Press, 1998,
pp. 83–111.

https://doi.org/10.1145/3373718.3394736
https://hott-uf.github.io/2017/abstracts/cohesivett.pdf
https://hott-uf.github.io/2017/abstracts/cohesivett.pdf
http://www.tac.mta.ca/tac/volumes/11/8/11-08abs.html
http://www.tac.mta.ca/tac/volumes/11/8/11-08abs.html
https://doi.org/10.1007/978-3-319-30936-1_6
https://doi.org/10.1145/3341711
https://doi.org/10.1016/0747-7171(92)90026-Z
https://doi.org/10.1016/0747-7171(92)90026-Z
https://doi.org/10.1017/S0960129500000372
https://doi.org/10.1017/S0960129500000372

304 Bibliography

[Hub19] Simon Huber. “Canonicity for Cubical Type Theory”. In: J. Autom. Rea-
son. 63.2 (2019), pp. 173–210. doi: 10.1007/s10817-018-9469-1.

[Hug19] JasperHugunin. “Constructing Inductive-Inductive Types in Cubical Type
Theory”. In: Foundations of Software Science and Computation Structures
- 22nd International Conference, FOSSACS 2019, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings. Ed. by Mikolaj Bo-
janczyk and Alex Simpson. Vol. 11425. Lecture Notes in Computer Sci-
ence. Springer, 2019, pp. 295–312. doi: 10.1007/978-3-030-17127-
8_17.

[JS17] Patricia Johann and Kristina Sojakova. “Cubical Categories for Higher-
Dimensional Parametricity”. arXiv:1701.06244. Jan. 2017.

[JY20] Niles Johnson and Donald Yau. 2-Dimensional Categories. 2020. arXiv:
2002.06055 [math.CT].

[Kan55] Daniel M. Kan. “Abstract Homotopy. I”. In: Proceedings of the National
Academy of Sciences of the United States of America 41.12 (1955), pp. 1092–
1096. issn: 00278424.

[Kap17] Ambrus Kaposi. “Type theory in a type theory with quotient inductive
types”. PhD thesis. University of Nottingham, UK, 2017. url: http://
ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713896.

[Kav16] G.A. Kavvos. The Many Worlds of Modal 𝜆-calculi: I. Curry-Howard for
Necessity, Possibility and Time. 2016. arXiv: 1605.08106 [cs.LO].

[Kav19] G. A. Kavvos. “Modalities, cohesion, and information flow”. In: Proc.
ACM Program. Lang. 3.POPL (2019), 20:1–20:29. doi: 10.1145/3290333.
url: https://doi.org/10.1145/3290333.

[Kav20] G. A. Kavvos. “Dual-Context Calculi for Modal Logic”. In: Log. Methods
Comput. Sci. 16.3 (2020). url: https://lmcs.episciences.org/6722.

[KD13] Neelakantan R. Krishnaswami and Derek Dreyer. “Internalizing Rela-
tional Parametricity in the Extensional Calculus of Constructions”. In:
Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013,
Torino, Italy. 2013, pp. 432–451.

[KHS19] Ambrus Kaposi, Simon Huber, and Christian Sattler. “Gluing for Type
Theory”. In: 4th International Conference on Formal Structures for Compu-
tation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany.
2019, 25:1–25:19. doi: 10.4230/LIPIcs.FSCD.2019.25.

https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/978-3-030-17127-8_17
https://doi.org/10.1007/978-3-030-17127-8_17
https://arxiv.org/abs/2002.06055
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713896
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.713896
https://arxiv.org/abs/1605.08106
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://lmcs.episciences.org/6722
https://doi.org/10.4230/LIPIcs.FSCD.2019.25

Bibliography 305

[KK18] Ambrus Kaposi andAndrás Kovács. “A syntax for higher inductive-inductive
types”. In: 3nd International Conference on Formal Structures for Compu-
tation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK . 2018.

[KK20a] Ambrus Kaposi and András Kovács. “Signatures and Induction Princi-
ples for Higher Inductive-Inductive Types”. In: Log. Methods Comput.
Sci. 16.1 (2020). doi: 10.23638/LMCS-16(1:10)2020.

[KK20b] András Kovács andAmbrus Kaposi. “Large and InfinitaryQuotient Inductive-
Inductive Types”. In: LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020. Ed.
by Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller.
ACM, 2020, pp. 648–661. doi: 10.1145/3373718.3394770.

[KL12a] Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of
Univalent Foundations (after Voevodsky). 2012. arXiv: 1211.2851 [math.LO].

[KL12b] Chantal Keller andMarc Lasson. “Parametricity in an Impredicative Sort”.
In: Computer Science Logic (CSL’12) - 26th International Workshop/21st
Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau,
France. 2012, pp. 381–395.

[KL20] Chris Kapulkin and Peter LeFanu Lumsdaine. “The Law of ExcludedMid-
dle in the Simplicial Model of Type Theory”. Unpublished note. 2020.
url: https://www.uwo.ca/math/faculty/kapulkin/papers/LEM_
in_sSet.pdf.

[KPB15] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. “Inte-
grating Linear and Dependent Types”. In: Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. Ed. by Sri-
ram K. Rajamani and David Walker. ACM, 2015, pp. 17–30. doi: 10 .
1145/2676726.2676969. url: https://doi.org/10.1145/2676726.
2676969.

[Kra16] Nicolai Kraus. “ConstructionswithNon-RecursiveHigher Inductive Types”.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016. 2016, pp. 595–
604. doi: 10.1145/2933575.2933586.

[Law07] F. William Lawvere. “Axiomatic Cohesion”. In: Theory and Applications
of Categories 19.3 (2007), pp. 31–49. url: http://www.tac.mta.ca/
tac/volumes/19/3/19-03abs.html.

https://doi.org/10.23638/LMCS-16(1:10)2020
https://doi.org/10.1145/3373718.3394770
https://arxiv.org/abs/1211.2851
https://www.uwo.ca/math/faculty/kapulkin/papers/LEM_in_sSet.pdf
https://www.uwo.ca/math/faculty/kapulkin/papers/LEM_in_sSet.pdf
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/2933575.2933586
http://www.tac.mta.ca/tac/volumes/19/3/19-03abs.html
http://www.tac.mta.ca/tac/volumes/19/3/19-03abs.html

306 Bibliography

[LB15] Daniel R. Licata and Guillaume Brunerie. “A Cubical Approach to Syn-
thetic Homotopy Theory”. In: 30th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. 2015,
pp. 92–103. doi: 10.1109/LICS.2015.19.

[LH11] Daniel R. Licata and Robert Harper. “2-Dimensional Directed Type The-
ory”. In: Twenty-seventh Conference on the Mathematical Foundations
of Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28,
2011. 2011, pp. 263–289. doi: 10.1016/j.entcs.2011.09.026.

[LH12] Daniel R. Licata and Robert Harper. “Canonicity for 2-dimensional type
theory”. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012, Philadelphia, Penn-
sylvania, USA, January 22-28, 2012. 2012, pp. 337–348. doi: 10.1145/
2103656.2103697.

[LL32] C.I. Lewis and C.H. Langford. Symbolic Logic. New York: The Century
Co, 1932.

[LOPS18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. “Inter-
nal Universes in Models of Homotopy Type Theory”. In: 3rd Interna-
tional Conference on Formal Structures for Computation and Deduction,
FSCD 2018, July 9-12, 2018, Oxford, UK . Ed. by Hélène Kirchner. Vol. 108.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 22:1–
22:17. doi: 10.4230/LIPIcs.FSCD.2018.22.

[LS13] Daniel R. Licata and Michael Shulman. “Calculating the Fundamental
Group of the Circle inHomotopy Type Theory”. In: 28thAnnual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA,
USA, June 25-28, 2013. 2013, pp. 223–232. doi: 10.1109/LICS.2013.28.

[LS16] Daniel R. Licata andMichael Shulman. “Adjoint Logic with a 2-Category
of Modes”. In: Logical Foundations of Computer Science - International
Symposium, LFCS 2016, Deerfield Beach, FL, USA, January 4-7, 2016. Pro-
ceedings. Ed. by Sergei N. Artëmov and Anil Nerode. Vol. 9537. Lecture
Notes in Computer Science. Springer, 2016, pp. 219–235. doi: 10.1007/
978-3-319-27683-0_16.

[LS20] Peter LeFanu Lumsdaine and Michael Shulman. “Semantics of higher in-
ductive types”. In:Mathematical Proceedings of the Cambridge Philosoph-
ical Society 169.1 (2020), pp. 159–208.doi: 10.1017/S030500411900015X.

https://doi.org/10.1109/LICS.2015.19
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1017/S030500411900015X

Bibliography 307

[LSR17] Daniel R. Licata, Michael Shulman, and Mitchell Riley. “A Fibrational
Framework for Substructural and Modal Logics”. In: 2nd International
Conference on Formal Structures for Computation and Deduction, FSCD
2017, September 3-9, 2017, Oxford, UK . Ed. by Dale Miller. Vol. 84. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 25:1–25:22.
doi: 10.4230/LIPIcs.FSCD.2017.25. url: https://doi.org/10.
4230/LIPIcs.FSCD.2017.25.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. 0072-
5285. Graduate Texts in Mathematics. New York: Springer, 1998.

[Mai91] Harry G.Mairson. “Outline of a Proof Theory of Parametricity”. In: Func-
tional Programming Languages and Computer Architecture, 5th ACMCon-
ference, Cambridge, MA, USA, August 26-30, 1991, Proceedings. Ed. by
John Hughes. Vol. 523. Lecture Notes in Computer Science. Springer,
1991, pp. 313–327. doi: 10.1007/3540543961_15.

[Mai98] Maria Emilia Maietti. “About Effective Quotients in Constructive Type
Theory”. In: Types for Proofs and Programs, InternationalWorkshop TYPES
’98, Kloster Irsee, Germany, March 27-31, 1998, Selected Papers. Ed. by
ThorstenAltenkirch,WolfgangNaraschewski, and Bernhard Reus. Vol. 1657.
Lecture Notes in Computer Science. Springer, 1998, pp. 164–178. doi:
10.1007/3-540-48167-2_12.

[Mar75] Per Martin-Löf. “An intuitionistic theory of types: predicative part”. In:
Logic Colloquium ’73. Ed. by H.E. Rose and J.C. Shepherdson. Vol. 80.
Studies in Logic and the Foundations of Mathematics. North-Holland,
1975, pp. 73–118. doi: 10.1016/S0049-237X(08)71945-1.

[Mar82] PerMartin-Löf. “ConstructiveMathematics andComputer Programming”.
In: Logic, Methodology and Philosophy of Science. Ed. by L.J. Cohen, J. o,
H. Pfeiffer, and K.-P. Podewski. Vol. VI. 1982, pp. 153–175.

[Mou16] Guilhem Moulin. “Internalizing Parametricity”. PhD thesis. Chalmers
University of Technology, Gothenburg, Sweden, 2016. url: https://
research.chalmers.se/en/publication/235758.

[MP20] Anders Mörtberg and Loc Pujet. “Cubical Synthetic Homotopy Theory”.
In: Proceedings of the 9th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs. CPP 2020. New Orleans, LA, USA: Associa-
tion for Computing Machinery, 2020, pp. 158–171. isbn: 9781450370974.
doi: 10.1145/3372885.3373825. url: https://doi.org/10.1145/
3372885.3373825.

https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1007/3540543961_15
https://doi.org/10.1007/3-540-48167-2_12
https://doi.org/10.1016/S0049-237X(08)71945-1
https://research.chalmers.se/en/publication/235758
https://research.chalmers.se/en/publication/235758
https://doi.org/10.1145/3372885.3373825
https://doi.org/10.1145/3372885.3373825
https://doi.org/10.1145/3372885.3373825

308 Bibliography

[ND18] Andreas Nuyts and Dominique Devriese. “Degrees of Relatedness: A
Unified Framework for Parametricity, Irrelevance, AdHoc Polymorphism,
Intersections, Unions and Algebra in Dependent Type Theory”. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018. 2018, pp. 779–788. doi:
10.1145/3209108.3209119.

[NS10] Fredrik Nordvall Forsberg and Anton Setzer. “Inductive-Inductive Def-
initions”. In: Computer Science Logic, 24th International Workshop, CSL
2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August
23-27, 2010. Proceedings. Ed. by Anuj Dawar and Helmut Veith. Vol. 6247.
Lecture Notes in Computer Science. Springer, 2010, pp. 454–468. doi:
10.1007/978-3-642-15205-4_35.

[Nuy20] Andreas Nuyts. “Contributions to Multimode and Presheaf Type The-
ory”. PhD thesis. KU Leuven, Leuven, Belgium, 2020. url: https://
lirias.kuleuven.be/3065223.

[NVD17] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. “Parametric
quantifiers for dependent type theory”. In: PACMPL 1.ICFP (2017), 32:1–
32:29. doi: 10.1145/3110276.

[OP18] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type
Theory in a Topos”. In: Logical Methods in Computer Science 14.4 (2018).
doi: 10.23638/LMCS-14(4:23)2018.

[PA93] Gordon D. Plotkin and Martn Abadi. “A Logic for Parametric Polymor-
phism”. In: Typed Lambda Calculi and Applications, International Confer-
ence on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The
Netherlands, March 16-18, 1993, Proceedings. 1993, pp. 361–375.

[PD01] Frank Pfenning and Rowan Davies. “A judgmental reconstruction of
modal logic”. In:Math. Struct. Comput. Sci. 11.4 (2001), pp. 511–540. doi:
10.1017/S0960129501003322.

[Pfe01] Frank Pfenning. “Intensionality, Extensionality, and Proof Irrelevance in
Modal Type Theory”. In: 16th Annual IEEE Symposium on Logic in Com-
puter Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings.
IEEE Computer Society, 2001, pp. 221–230. doi: 10.1109/LICS.2001.
932499. url: https://doi.org/10.1109/LICS.2001.932499.

[PGM04] Valeria de Paiva, Rajeev Goré, and Michael Mendler. “Modalities in Con-
structive Logics and Type Theories”. In: Journal of Logic and Computa-
tion 14.4 (2004), pp. 439–446.

https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1007/978-3-642-15205-4_35
https://lirias.kuleuven.be/3065223
https://lirias.kuleuven.be/3065223
https://doi.org/10.1145/3110276
https://doi.org/10.23638/LMCS-14(4:23)2018
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1109/LICS.2001.932499

Bibliography 309

[Plo04] Gordon D. Plotkin. “A structural approach to operational semantics”. In:
J. Log. Algebraic Methods Program. 60-61 (2004), pp. 17–139.

[PR15] Valeria de Paiva and Eike Ritter. “Fibrational Modal Type Theory”. In:
Proceedings of the Tenth Workshop on Logical and Semantic Frameworks,
with Applications, LSFA 2015, Natal, Brazil, August 31 - September 1, 2015.
Ed. by Mario R. F. Benevides and René Thiemann. Vol. 323. Electronic
Notes in Theoretical Computer Science. Elsevier, 2015, pp. 143–161. doi:
10.1016/j.entcs.2016.06.010. url: https://doi.org/10.1016/j.
entcs.2016.06.010.

[RedPRL] The RedPRLDevelopment Team. RedPRL – the People’s Refinement Logic.
url: http://www.redprl.org/.

[redtt] The RedPRL Development Team. redtt. url: https://github.com/
RedPRL/redtt.

[Ree09] Jason Reed. “A Judgmental Deconstruction ofModal Logic”. Unpublished
note. 2009. url: www.cs.cmu.edu/~jcreed/papers/jdml.pdf.

[Rey83] John C. Reynolds. “Types, Abstraction and Parametric Polymorphism”.
In: IFIP Congress. 1983, pp. 513–523.

[Rie14] Emily Riehl. Categorical Homotopy Theory. New Mathematical Mono-
graphs. CambridgeUniversity Press, 2014.doi: 10.1017/CBO9781107261457.

[Rie18] Emily Riehl. “On the directed univalence axiom”. Talk slides, AMS Spe-
cial Session on Homotopy Type Theory, Joint Mathematics Meetings.
Jan. 2018. url: http : / / www . math . jhu . edu / ~eriehl / JMM2018 -
directed-univalence.pdf.

[Rij17] Egbert Rijke. The join construction. Jan. 2017. arXiv: 1701.07538 [math.CT].
[Rij18] Egbert Rijke. “Classifying Types: Topics in synthetic homotopy theory”.

PhD thesis. Carnegie Mellon University, 2018. url: https://arxiv.
org/abs/1906.09435.

[RS17] Emily Riehl andMichael Shulman. “A type theory for synthetic∞-categories”.
In: Higher Structures 1.1 (2017), pp. 116–193. url: https://journals.
mq.edu.au/index.php/higher_structures/article/view/36.

[RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. “Modalities in homo-
topy type theory”. In: Log. Methods Comput. Sci. 16.1 (2020). doi: 10.
23638/LMCS-16(1:2)2020. url: https://doi.org/10.23638/LMCS-
16(1:2)2020.

[SA21] Jonathan Sterling and Carlo Angiuli.Normalization for Cubical Type The-
ory. 2021. arXiv: 2101.11479 [cs.LO].

https://doi.org/10.1016/j.entcs.2016.06.010
https://doi.org/10.1016/j.entcs.2016.06.010
https://doi.org/10.1016/j.entcs.2016.06.010
http://www.redprl.org/
https://github.com/RedPRL/redtt
https://github.com/RedPRL/redtt
www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://doi.org/10.1017/CBO9781107261457
http://www.math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
http://www.math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
https://arxiv.org/abs/1701.07538
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/1906.09435
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/2101.11479

310 Bibliography

[SAG19] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. “Cubical Syntax
for Reflection-Free Extensional Equality”. In: 4th International Confer-
ence on Formal Structures for Computation and Deduction, FSCD 2019,
June 24-30, 2019, Dortmund, Germany. 2019, 31:1–31:25. doi: 10.4230/
LIPIcs.FSCD.2019.31.

[Sat18] Christian Sattler. Do cubical models of type theory also model homotopy
types? Talk at the Types, Homotopy Type theory, and VerificationWork-
shop at the Hausdorff Research Institute for Mathematics. June 2018.
url: https://www.youtube.com/watch?v=wkPDyIGmEoA.

[Sch13] Urs Schreiber. Differential cohomology in a cohesive infinity-topos. 2013.
arXiv: 1310.7930 [math-ph].

[Sco72] Dana Scott. “Continuous lattices”. In: Toposes, Algebraic Geometry and
Logic. Ed. by F. W. Lawvere. Berlin, Heidelberg: Springer, 1972, pp. 97–
136. isbn: 978-3-540-37609-5.

[SH20] Jonathan Sterling and Robert Harper. Logical Relations as Types: Proof-
Relevant Parametricity for Program Modules. 2020. arXiv: 2010.08599
[cs.LO].

[Shu15] Michael Shulman. “Univalence for inverse diagrams and homotopy canon-
icity”. In: Math. Struct. Comput. Sci. 25.5 (2015), pp. 1203–1277. doi: 10.
1017/S0960129514000565.

[Shu18] Michael Shulman. “Brouwer’s fixed-point theorem in real-cohesive ho-
motopy type theory”. In:Math. Struct. Comput. Sci. 28.6 (2018), pp. 856–
941. doi: 10.1017/S0960129517000147.

[Sim94] Alex K. Simpson. “The proof theory and semantics of intuitionisticmodal
logic”. PhD thesis. University of Edinburgh, UK, 1994. url: http://hdl.
handle.net/1842/407.

[SJ18] Kristina Sojakova and Patricia Johann. “A General Framework for Rela-
tional Parametricity”. In: Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018. 2018, pp. 869–878. doi: 10.1145/3209108.3209141.

[Soj14] Kristina Sojakova. “Higher Inductive Types as Homotopy-Initial Alge-
bras”. arXiv:1402.0761. Feb. 2014.

[Soj15] Kristina Sojakova. “Higher Inductive Types as Homotopy-Initial Alge-
bras”. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015. 2015, pp. 31–42.

https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://www.youtube.com/watch?v=wkPDyIGmEoA
https://arxiv.org/abs/1310.7930
https://arxiv.org/abs/2010.08599
https://arxiv.org/abs/2010.08599
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.1017/S0960129517000147
http://hdl.handle.net/1842/407
http://hdl.handle.net/1842/407
https://doi.org/10.1145/3209108.3209141

Bibliography 311

[Soj16] Kristina Sojakova. “Higher Inductive Types as Homotopy-Initial Alge-
bras”. PhD thesis. Carnegie Mellon University, 2016.

[SS12] Urs Schreiber and Michael Shulman. “Quantum Gauge Field Theory in
CohesiveHomotopy Type Theory”. In: Proceedings 9thWorkshop onQuan-
tum Physics and Logic, QPL 2012, Brussels, Belgium, 10-12 October 2012.
Ed. by Ross Duncan and Prakash Panangaden. Vol. 158. EPTCS. 2012,
pp. 109–126. doi: 10.4204/EPTCS.158.8.

[Str67] Christopher Strachey. Fundamental Concepts in Programming Languages.
Copenhagen: Lecture notes, International Summer School in Computer
Programming, 1967.

[Swa18a] Andrew W Swan. Identity Types in Algebraic Model Structures and Cubi-
cal Sets. 2018. arXiv: 1808.00915 [math.CT].

[Swa18b] Andrew W Swan. Separating Path and Identity Types in Presheaf Models
of Univalent Type Theory. 2018. arXiv: 1808.00920 [math.LO].

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applica-
tions.” In: Pacific Journal of Mathematics 5.2 (1955), pp. 285–309. doi:
pjm/1103044538. url: https://doi.org/.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations ofMathematics. Institute for Advanced Study: Self-published,
2013. url: https://homotopytypetheory.org/book.

[VAG+20] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al.UniMath —
a computer-checked library of univalent mathematics. 2020. url: https:
//github.com/UniMath/UniMath.

[Vák14] Matthijs Vákár. Syntax and Semantics of Linear Dependent Types. 2014.
arXiv: 1405.0033 [cs.LO].

[VMA19] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. “Cubical Agda: a
dependently typed programming language with univalence and higher
inductive types”. In: Proc. ACM Program. Lang. 3.ICFP (2019), 87:1–87:29.
doi: 10.1145/3341691.

[Voe14] Vladimir Voevodsky. The equivalence axiom and univalent models of type
theory. Talk at CMUon February 4, 2010. 2014. arXiv: 1402.5556 [math.LO].

[Voe15] Vladimir Voevodsky. “An experimental library of formalized Mathemat-
ics based on the univalent foundations”. In: Math. Struct. Comput. Sci.
25.5 (2015), pp. 1278–1294. doi: 10 . 1017 / S0960129514000577. url:
https://doi.org/10.1017/S0960129514000577.

https://doi.org/10.4204/EPTCS.158.8
https://arxiv.org/abs/1808.00915
https://arxiv.org/abs/1808.00920
https://doi.org/pjm/1103044538
https://doi.org/
https://homotopytypetheory.org/book
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://arxiv.org/abs/1405.0033
https://doi.org/10.1145/3341691
https://arxiv.org/abs/1402.5556
https://doi.org/10.1017/S0960129514000577
https://doi.org/10.1017/S0960129514000577

312 Bibliography

[Wad07] PhilipWadler. “The Girard-Reynolds isomorphism (second edition)”. In:
Theor. Comput. Sci. 375.1-3 (2007), pp. 201–226. doi: 10.1016/j.tcs.
2006.12.042. url: https://doi.org/10.1016/j.tcs.2006.12.042.

[Wad89] Philip Wadler. “Theorems for Free!” In: FPCA 1989, London, UK, Septem-
ber 11-13, 1989. 1989, pp. 347–359. doi: 10.1145/99370.99404.

[Wad90] Philip Wadler. “Recursive types in polymorphic second-order lambda-
calculus”. Draft, University of Glasgow. 1990.

[War08] Michael Alton Warren. “Homotopy Theoretic Aspects of Constructive
Type Theory”. PhD thesis. Carnegie Mellon University, 2008. url: http:
//mawarren.net/papers/phd.pdf.

[Wel18] Felix Wellen. Cartan Geometry in Modal Homotopy Type Theory. 2018.
arXiv: 1806.05966 [math.DG].

[WL20] Matthew Z. Weaver and Daniel R. Licata. “A Constructive Model of Di-
rected Univalence in Bicubical Sets”. In: LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-
11, 2020. Ed. by Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and
Dale Miller. ACM, 2020, pp. 915–928. doi: 10.1145/3373718.3394794.

[Zwa19] Colin Zwanziger. “Natural Model Semantics for Comonadic and Adjoint
Type Theory: Extended Abstract”. In: Preproceedings of Applied Category
Theory Conference 2019. 2019.

https://doi.org/10.1016/j.tcs.2006.12.042
https://doi.org/10.1016/j.tcs.2006.12.042
https://doi.org/10.1016/j.tcs.2006.12.042
https://doi.org/10.1145/99370.99404
http://mawarren.net/papers/phd.pdf
http://mawarren.net/papers/phd.pdf
https://arxiv.org/abs/1806.05966
https://doi.org/10.1145/3373718.3394794

	Contents
	Introduction
	Contributions

	Cubical type theory
	Introduction
	Equality in type theory
	Realizing contentful equality

	Martin-Löf's type theory
	A logic of programs
	Formalisms

	Cubical type theory
	Cubical computational type theory
	Programming in a cubical type theory
	Formalism and models

	Higher inductive types
	Introduction
	Case studies
	Quotients and pushouts
	Truncations
	Identity types

	General higher inductive types
	Specifications
	Interpreting specifications
	Kan operations
	Elimination
	Strengthening canonicity

	Conclusions
	Related work
	Outlook

	Internal parametricity
	Introduction
	Parametric cubical type theory
	The bridge interval
	Bridge types
	Function types and the extent operator
	Gel types and relativity

	Programming with parametricity
	Characterizing Church booleans
	The relativity principle
	Bridge-discrete types
	The excluded middle
	Iterated smash products

	Formalism and models
	Bicubical set model

	Conclusions
	Related work
	Outlook

	Cohesive parametricity
	Introduction
	Cohesive parametric type theory
	Interval theory and type systems
	Open judgments
	Rules for modal operators and hypotheses
	Modal types

	Programming in cohesive parametric type theory
	Properties of the discrete embedding
	Church booleans
	Bridge-discreteness
	Iterated smash products

	Formalism
	Cubical set model

	Conclusions
	Related work
	Outlook

	Bibliography

