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Abstract
Modern applications of artificial intelligence are often characterized by training

large machine learning (ML) models on large datasets. These datasets are composed
of overlapping groups of samples, either explicitly (e.g. the large dataset is created
by combining multiple datasets) or implicitly (e.g. the samples belong to latent
sub-populations). Population models prefer weakly-predictive global patterns over
highly-predictive localized effects, a problem because localized effects are critical to
understanding complex processes such as in applications to computational biology
(in which samples come from latent cell types) and precision medicine (in which
patients come from latent disease subtypes).

In this thesis, we propose that: The performance of intelligent computer systems
can be improved by treating different samples as different tasks. This is especially
helpful in domains such as computational biology and precision medicine, in which
we care about understanding the highly specific context of each sample.

We propose to solve this problem by estimating a collection of many small mod-
els. For large collections, each model is responsible for only a small number of
samples, enabling simultaneous interpretability and accuracy. As we show in this
thesis, this framework can be scaled to estimate different model parameters for ev-
ery sample.

This thesis begins by studying the challenges of characterizing real-world data
with population-level models. Next, we develop the methodology of Personalized
Regression. Finally, we apply sample-specific inference to computational biology
and precision medicine by: (1) Identifying Discriminative Subtypes of Cancers from
Histopathology Images and (2) Cell-Specific Transcriptomic Regulatory Network
Inference.
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Chapter 1

Introduction

1.1 Motivation

Modern machine learning (ML) applications often seek to represent complex phenomena by
estimating large models from large datasets. However, these datasets are often composed of
overlapping groups of samples, either explicitly (e.g. the large datasets is created by combining
multiple datsets) or implicitly (e.g. the samples belong to latent sub-populations). As a result,
these datasets contain some globally predictive effects, but also contain many highly predictive
localized effects (applicable to a smaller number of samples). When faced with a localized effect,
traditional population-level ML models can either ignore this effect or encode the localized effect
as an interaction of many input variables. This is an important problem because localized effects
are critical to understanding heterogeneous datasets in which the samples represent different
underlying processes. Heterogeneity is especially important in applications to computational
biology (in which samples belong to latent cell types) and precision medicine (in which patients
belong to latent disease sub-types). In these settings, we need models which can simultaneously
capture sample variability while retaining the interpretability of small models.

We propose to explore a solution to this challenge by expanding the toolbox of heterogeneous
models. Instead of representing localized effects as high-order interaction effects, we propose to
estimate collections of models from which a different model can be chosen to be applied to each
localized region. In this way, we can explicitly reason about the structure of the collection and
the effects contained in each model.

To develop rigorous methodology which is useful for any level of localized effects, we go
to the extreme and study processes which vary continuously between all samples. For these
extreme problems, we propose to estimate parameters which take on different values for every
sample in the dataset. These models are able to accurately fit the data while also providing human
intelligibility.

Towards Precision Medicine

One of the fundamental goals of precision medicine is to understand the patterns of differentia-
tion between patients such that the appropriate care can be provided for each individual. How-
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ever, traditional cohort-level models estimate the same effect sizes for all patients. Since the
patients actually have different histories, environments, and disease sub-types, no cohort-level
model can appropriately model the patient journeys.

This perspective of individualized risk profiles aligns with clinicians’ practical thinking of
individualized treatments. As Yang et al. found in clinical evaluation of a predictive model:

“Some voiced strong concerns that using [a ML model] was the same as applying
‘populational statistics‘ to individual patient decision making. They felt this was
unethical. Others proposed that ‘instead of having one model that we apply to the
entire population, we would have a group of models. Those models predict for that
group of patients.” [198]

In this thesis, we seek methods to estimate such groups of models to satisfy the clinicians’ de-
sires. If we could instead estimate model parameters which vary smoothly between samples, we
could make principled sample-specific inferences (e.g. “is protein i influential for deciding the
treatment of patient j?”). Unfortunately, prior ML work on collections of models requires either
(1) a small number of sub-groups relative to the number of samples (e.g. mixture models) [162],
(2) known patterns of variation [94, 144, 176], or (3) significant domain knowledge to constrain
the solutions [196, 197]. These requirements are inappropriate for applications in computational
biology and precision medicine, in which each individual has a slightly different version of the
disease and the domain is too large to encode patterns of differentiation. Thus, we are motivated
to design methods which can automatically extract patient similarity and provide patient-specific
risk scores. We will especially focus on precision oncology, for which sample-specific models
can provide insight into the molecular subtype of the tumor and suggest therapeutic targets.

Towards Intelligible Artificial Intelligence
In many domains, the application of AI is limited due to a strict requirement for intelligible deci-
sions which can be audited by humans. Current standards of ML focus on optimizing predictive
accuracy by estimating large models, but these large population-level models are often difficult
to interpret. To overcome this problem, some works have proposed post-hoc procedures to ap-
proximate the large model with locally-interpretable models [160]. In this thesis, we propose
to approach the same endpoint more directly: we seek to estimate a collection of simple mod-
els from the data without ever optimizing a black-box model. In this way, we provide direct
interpretability of models and potentially unlock intelligible AI to be used in critical scenarios.

Biological Context and Datatypes Used
The main application area considered in this thesis is computational genomics. To supplement
the introductions of each individual application, we describe here some of the datatypes and
application goals used repeatedly throughout this thesis.

Gene Expression

The “central dogma” of molecular biology [39] states that genetic information flows from de-
oxyribonucleic acid (DNA) into expression physical traits through the formation of proteins
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which catalyze molecular reactions. Proteins are polypeptide chains [40] which catalyze molec-
ular reactions and effect phenotypic changes.

To construct these chains, DNA is transcribed into messenger ribonucleic acid (mRNA),
which is in turn translated by ribosomes into polypeptide chains of protein. The bulky nature
of proteins has made it more convenient for biologists to design assays to measure expression
levels of mRNA than expression levels of proteins. While all cells within an individual contain
the same DNA sequence, cells are differentiated based on gene expression – which genes are
turned on in which cells and what concentration levels. Each mRNA transcript can be connected
(sometimes imperfectly) to its precursor gene and many to their resulting proteins (some RNA
transcripts do not code for proteins). Thus, measuring mRNA concentration levels informs about
the gene expression, and turns the static gene sequence into a snapshot of cell state.

While mRNA is a precursor to protein synthesis, measuring the expression levels of mRNAs
provides only a messy picture of the concentration of effective proteins in cells for many rea-
sons. For example, post-translational modifications of proteins can change the effectiveness of
a protein’s ability to catalyze a reaction. In other cases, there can exist an inverse relationship
between the level of expression of an mRNA transcript and the corresponding protein when the
increase in mRNA expression indicates a bottleneck in the production of the downstream protein
(e.g. due to scarcity of a peptide needed to construct the poly-peptide chain). For these and other
reasons, mRNA expression levels provide only noisy views of protein expression levels and must
be de-noised through computational means.

The most common assay to measure mRNA expression levels is RNA-Seq. Traditional RNA-
seq assays blend a population of cells together, extract the expressed RNA, and provide a count
of the number of reads recovered for each RNA transcript. These integer counts are normalized
and mapped to the precursor gene to give a continuous-valued measure of the expression of each
gene in the cell population. For more information on RNA-seq processes and data, please refer
to [99].

More recently, the biological community has developed tools to measure single-cell RNA-
seq (scRNA-seq), which does not the blend the cell population together and instead provides the
expression levels of genes within individual cells [166]. This view provides more granularity to
observe heterogeneous processes which result in different levels of gene expression in different
cells, but comes at the cost of extra technical noise. Thus, ML techniques are critical to making
sense of scRNA-seq datasets.

Epigenetics

For a gene to be transcribed to RNA, it must be accessible by RNA polymerase (an enzyme tasked
with synthesizing RNA). Thus, the physical configuration of chromatin (DNA) and epigenetic
modifications dictates which genes can be expressed. As a result, we are interested in tying the
gene regulation encoded by DNA accessibility to the gene expression (measured by RNA-seq).

A common way to measure DNA accessibility is through the “transposase-accessible chro-
matin using sequencing assay” (ATAC-seq) [16]. ATAC-seq begins by lysing cells to extract
chromatin. The chromatin is then fragmented and tagged to identify which regions of the chro-
matin are accessible to the transposase enzyme. Chromatin regions can be mapped to functional
elements such as genes, providing a measure of the accessibility of each gene to the machinery
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of gene expression.
Similarly to the recent advances in scRNA-seq, single-cell ATAC-seq (scATAC-seq) assays

have also been developed to profile gene accessibility within individual cells [17]. Again, these
assays provide sharper granularity of heterogeneous biological processes but come with the
caveat of increased technical noise. As a result, there is a strong opportunity for ML to improve
the analysis of scATAC-seq datasets.

Multi-Omic

Finally, it should be considered that the RNA-seq and ATAC-seq assays are destructive; that is,
each cell can only be profiled a single time. As a result, we have not had simultaneous views of
gene expression and gene accessibility. Very recent advances in multi-omic sequencing assays
allow us to profile both of these simultaneously in the same cells. These assays provide, for the
first time, a view of concurrent gene expression and epigenetic markers in the same cell. As is
the trend with many of these high-resolution assays, by choosing this assays type we trade off
improved specificity against more technical noise. We explore some of the potential of using this
new datatype in Chapter 6.

1.2 Outline
This thesis is divided into several chapters:

• In Chapter 2, we study the challenges of using population-level models to understand com-
plex phenomena. Because datasets often contain heterogeneous samples which have dif-
ferent underlying effects, large population-level models often permit interaction effects of
many variables. As a result, estimation of these models can have excess variance.

• In Chapter 3, we show an equivalence between these high-order interaction effects and het-
erogeneous models and unify several types of heterogeneous models into a single frame-
work for future analysis. We push heterogeneous models to the extreme of estimating
model parameters which can be different for every observed sample.

• In Chapter 4, we apply these methods to precision oncology. First, we estimate discrimina-
tive subtypes of lung cancers from histopathology images. These discriminative subtypes
permit optimal predictions from transcriptomic assays, with transcriptomic model param-
eters generated according to the inferred discriminative subtype. This procedure allows us
to label phenotypic patterns according to transcriptomic variables.

• In Chapter 5, we propose “Personalized Regression” which is appropriate when we do not
believe a one-to-one relationship between covariates and regression parameters exists. We
apply this method to identify sample-specific patterns of cancer transcriptomics.

• Finally, in Chapter 6, we propose Contextualized NOTEARS, a method to estimate sample-
specific Bayesian Networks. We apply this method to estimate patient-specific transcrip-
tomic regulatory networks for cancer patients and cell-specific transcriptomic regulatory
networks which can be rewired according to each cell’s epigenetic markers.
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Chapter 2

Hidden Dangers in Population Models

Modern ML systems often seek to train large models on large datasets. To capture the complexity
inherent in these large datasets, practitioners often prefer large model classes with large repre-
sentational capactiy and few contraints. These models, such as fully-connected neural networks,
often have too many parameters for each to be intelligible, leading to a black-box nature. There
are many methods to peer inside trained black-box models, but can we actually trust what these
population-scale models have learned? Below we discuss two common problems which lead us
to believe that more targeted models can be preferred over population-scale black-box models.

Portions of this chapter have been previously published or are in review as [105, 106, 107].

2.1 Heterogeneous Effects
When analyzing datasets by estimating a single population model, it’s possible to get very de-
ceiving results if the population model is mis-specified – that is, there does not exist a population
model which accurately summarizes the processes underlying the observed data. This often hap-
pens in medical datasets, for which a medication’s treatment effect avereaged over the entire
population can be extremely limited (or even harmful), but the same drug may be helpful to par-
ticular types of patients. Such treatment effects which vary between patients are often referred
to as heterogeneous treatment effects [101, 189].

Heterogeneous Treatment Effects of Glucocorticoids on Covid-19
An interesting recent example of heterogeneous treatment effects is in the treatment of Covid-19
pneumonia. RCTs have shown that Glucocorticoids (GCs) can improve outcomes of patients
with severe cases of Covid-19 [79]. Here, we examine a large dataset of Covid-19 patients to
show that GCs may have a hetereogeneous treatment effect and thus could be targeted to patients
with high Neutrophil/Lymphocyte Ratio (NLR) at time of admission.

Dataset

We are interested in the outcome of in-hospital mortality for Covid-19 patients. Our dataset con-
sists of hospitalized patients who have lab-confirmed cases of Covid-19. To filter out patients
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who were hospitalized for reasons other than Covid-19, we exclude patients who have indica-
tors of (1) pregnancy: outpatient prenatal vitamins, in-patient oxytocics, folic acid preparations;
or (2) scheduled surgery: urinary tract radiopaque diagnostics, laxatives, general anesthetics,
antiemetic/antivertigo agents, or antiparasitics. We also require that the patients have recorded
temperature, age, BMI, and Admission Day. Finally, we remove patients who died within six
hours of admission.

Patient Features To correct for patient risk confounding, we observe pre-admission features
including demographics, comorbidities, outpatient medications, initial in-patient vitals, and ini-
tial in-patient lab tests. We exclude any measurement taken within 24 hours of the patient mortal-
ity. Neutrophil-Lymphocyte Ratio is calculated by dividing Neutrophil % by Lymphocyte %. We
exclude all patients who are missing either of these lab values. Because GCs can affect patient
NLR, we use only initial lab tests which are taken before in-patient medications are administered.

The patient population has changed over time. The majority of patients were admitted during
the first recognized wave of the pandemic, which is approximately a 3-week period in this dataset.
However, the range of NLR observed in the days and months following the peak of the pandemic
remains wide.

Treatment We define “GC treatment” as treatment with a GC within 24 hours of hospital
admission. Our control condition is not receiving any GC in the first 24 hours. Our analysis
includes 3108 patients hospitalized for Covid-19 with 193 receiving GCs. This cohort includes
patients hospitalized from March to August with an average mortality rate of 18.1%. Mortality
rate peaked over 25% and decreased to less than 5% in August.

To ensure a proper linking of lab values, treatments, and outcomes, we consider only GC
treatments that are given within 24 hours of the initial lab test and at least 24 hours before mor-
tality. In this set of patients, the number of doses by GC medication are: 627 Methylprednisolone,
291 Prednisone, 186 Hydrocortisone, 165 Dexamethasone. The proportion of Covid-19 patients
being prescribed GCs has increased over time from a minimum of less than 5% to a more recent
peak near 30%.

Glucocorticoid prescriptions are correlated with: Admission Day (R=0.16), Chronic Ob-
structive Pulmonary Disease (R=0.13), Outpatient Beta-Adrenergic Agents (R=0.11), Valve Re-
placement (R=0.10), and Increased Charlson Score (R=0.10). Glucocorticoid prescriptions are
anti-correlated with: In-Patient Hydroxychloroquine (R=-0.06), Hematocrit (R=-0.05), and In-
Patient Analgesic/Antipyretics (R=-0.05).

Methods

Treatment protocols changed over time with more GC prescriptions at later dates [80]. To cor-
rect for this and other confounding, we use a two-stage machine learning procedure [23, 70] to
estimate GC effect after correcting for patient mortality risk at admission.

We use generalized additive models (GAMs) to model patient mortality risk at admission.
GAMs are a version of logistic regression that are able to model non-linear effects [4]. While
logistic regression summarizes the influence of each feature with a single coefficient, GAMs
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estimate the influence of a feature for every value the feature can take on as a graph. This
means GAMs can accommodate non-linear effects, which improves both model accuracy and
interpretation. Modeling non-linear effects is particularly important when features have multiple
regions of high or low risk (e.g., both hyperthermia and hypothermia are associated with high
risk).

In particular, we use tree-based GAMs [23] implemented in the Python Interpret package
[142]. These GAMs are invariant to all monotonic feature transforms, so log-transforms of lab
values are not necessary.

The risk model achieves an ROC of 0.912 ± 0.001 and an F1-score of 0.598 ± 0.002 on held-
out patients. This significantly outperforms a logistic regression model which achieves an ROC
of 0.859 ± 0.001 and F1-score of 0.455 ± 0.002 on the same data.

If NLR is included in this model, it jumps to becoming the most important feature. This
agrees with clinical understanding of NLR as a marker of inflammation linked to severe cases
of Covid-19 [102]. Figure 2.1 demonstrates the effect of NLR on mortality risk estimated in
this model: while elevated NLR is a strong predictor of mortality, it is not the only risk factor.
Indeed, there are many patients with low NLR levels who nevertheless have large probabilities
of mortality, and many of these patients died.

Figure 2.1: Estimated probability of mortality for each patient, as predicted by the risk model
operating on patient features at admission. While there is a relation between elevated NLR and
increased risk of mortality, there are a sizable number of patients who have a large probability of
mortality without elevated NLR.

Results

Effect of NLR As a preliminary investigation, we explore marginalization. We see that ele-
vated NLR is associated with elevated mortality risk (Figure 2.2). These marginalization plots
indicate that the mortality rate of patients treated with GCs does not rise as rapidly with elevated
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NLR as does the mortality rate of patients not treated with GCs. GCs are associated with im-
proved outcomes for patients with NLR>6: for patients with NLR>6, 27.2% (31 of 114) treated
with GCs died compared to 32.9% (393 of 1195) not treated with GCs. For patients with NLR
below 6, 8.9% (7 of 79) treated with GCs die compared to 6.9% (120 of 1741) not treated with
GCs.

Figure 2.2: Marginal odds ratio of mortality by NLR in patients treated and not treated with GCs.
Shaded regions are 95% CIs. For patients not treated with GCs (blue), the probability of mortality
steadily increases with increased NLR; for patients treated with GCs (red), the probability of
mortality does not rise rapidly through the region of NLR 6-10. Each yellow tick mark along the
horizontal axis indicates 10 patients.

Lack of Homogeneous Treatment Effect of GCs We first seeek to estimate the effect of GCs
as a homogeneous benefit to all Covid-19 patients. After correcting for patient risk factors, our
analysis finds that GCs do not have a significant homogeneous effect, i.e., GCs do not benefit
all patients equally. After correcting for confounding variables, we estimate an Odds Ratio (OR)
of 0.96 with 95% confidence interval (CI) 0.86-1.09 across all patients (Table 2.1). Thus, we
examine possible heterogeneous effects of GCs.

NLR-Mediated GC Effect We examine the heterogeneous effect of GCs with benefit modu-
lated by NLR level. For each NLR value, the ratio I(x) = T1(x)/T0(x) where T1 is the OR for
patients treated with GCs and T0 is the OR for patients not treated with GCs, gives the benefit of
treatment with GCs. Once again, despite the reduced sample size in the NLR bins, Figures 2.3
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and 2.4 show that this benefit is best for patients with NLR between 6 and 10 and statistically
most significant near NLR=8.5.

One major difference between this result and the marginalization result shown in Figure S5 is
the estimated benefit to patients with extremely high NLR (above 10): while the marginalization
showed lower mortality rate for patients in this group prescribed GCs, this analysis does not
show any evidence of a beneficial effect of GCs to patients in this group. This suggests that the
lower mortality rate for patients with NLR > 10 is explainable by other risk factors taken into
account by the background risk model, e.g., recent patients who are more likely to be prescribed
GCs may have fewer high-risk comorbidities.

Figure 2.3: Estimated benefit I(x) of GC treatment for by NLR value, after correcting for patient
risk. Shaded regions indicate 95% CIs. Despite the small sample size in each NLR bin, there is
still statistical significance near NLR=8.5.

Estimating heterogeneous treatment effects for all NLR values greatly reduces statistical
power and inflates the width of the CIs. To test for statistical significance of the GC benefit,
we group NLR values into 3 ranges: NLR < 6, NLR 6-10, NLR > 10. Using these three ranges,
we estimate ORs (and 95% CIs) for NLR 0-6: 0.97(0.61-1.51), NLR 6-10: 0.64(0.44-0.93) and
NLR 10-25: 1.14(0.85-1.53) (corresponding sample sizees are given in Table 2.1). These values
indicate that the benefit of GCs is statistically significant at p<0.05 for NLR 6-10, but not for
either NLR < 6 or NLR > 10.

These results agree with current clinical understanding that GCs benefit patients with severe
cases of Covid-19, and that elevated NLR is associated with mortality. However, there are also
high-risk patients with NLR<6 (Figure 2.1), suggesting varying presentations of severe Covid-
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Figure 2.4: P-values of the estimated benefit of GC treatment by NLR value. Vertical gray lines
demarcate the NLR bins 0-6, 6-10, and 10-25. The horizontal gray line indicates p=0.05.

19, some of which may not respond to GCs. Our study comes with all caveats of observational
analyses, and we suggest randomized control trials to study heterogeneous treatment protocols.

Lessons

Our results suggest that GCs may have limited benefit to patients who are at high risk without
having an elevated NLR. Using a single population model to estimate a homogeneous treatment
effect would have estimated little to no benefit of GCs. Randomized control trials informed
us that GCs are indeed likely to be an effective treatment, so wee searched for heterogeneous
treatment effects of GCs and found a strong effect mediated by patient NLR. Automating this

NLR Values N GC, N Control Odds Ratio (OR) 95% CI P-Value
0–6 79, 1741 0.97 0.61 – 1.51 0.896

6–10 45, 561 0.64 0.44 – 0.93 0.004
10–25 54, 518 1.14 0.85 – 1.53 0.419
0–25 178, 2800 0.96 0.86 – 1.09 0.495

Table 2.1: Odds Ratios of mortality for patients treated with GCs compared to patients not treated
with GCs, calculated by patient NLR. ORs less than 1 indicate reduced mortality for patients
treated with GCs, i.e., a beneficial effect.

10



process could help future investigations into designing more individualized treatment regimens
for these complex diseases.

2.2 Interaction Effects
In the previous example, we saw that heterogeneous treatment effects can be critical to under-
standing patient outcomes and proper therapeutic choices. We discovered this heterogeneous
effect by examining the interaction between NLR, GCs, and mortality. This choice of three fea-
tures was chosen by domain knowledge and previous literature suggesting that NLR, GCs, and
Covid-19 mortality relate to similar inflammatory processes. Instead of using domain knowl-
edge to pick specific interaction effects to model, would it be possible to allow a large population
model to simultaneously explore all interactions? To begin to answer this question, we need to
define pure interaction effects.

Pure Interaction Effects
In the rest of this thesis, we will use the concept of pure interaction effects from [106]. According
to this definition, a pure interaction effect is variance explained by a group of variables u that
cannot be explained by any subset of u. This definition is equivalent to the functional ANOVA
decomposition of the overall function F : Given a density w(X) and Fu ⊂ L2(Ru

) the family of
allowable functions for variable set u, the weighted functional ANOVA [42, 77, 78] is:

{fu(Xu)∣u ⊆ [d]} = argmin
{gu∈F

u
}u∈[d]

∫ ( ∑
u⊆[d]

gu(Xu) − F (X))
2

w(X)dX,

where [d] indicates the power set of d features, such that

∀ v ⊆ u, ∫ fu(Xu)gv(Xv)w(X)dX = 0 ∀ gv, (2.1a)

i.e., each member fu is orthogonal to the members which operate on a subset of the variables
in u. Once this decomposition has been found, we have a set of functions fu which all have
zero-mean and can be analyzed independently. We say that an interaction effect fu is of order k
if ∣u∣ = k.

This definition of interaction effects demands a data distribution. As Lengerich et al. describe,
the correct distribution to use is the data-generating distribution p(x). In studies on real data,
estimating p(x) is one of the central challenges of machine learning; here, we use only simulation
data for which we know p(x) and can precisely study the effects of Dropout.

While multiplicative terms like X1X2 are often used to encode “interaction effects”, they
are only pure interaction effects if X1 and X2 are completely uncorrelated and have mean zero.
When the two variables are correlated, some portion of the variance in the outcome X1X2 can
be explained by main effects of each individual variable (e.g. if X1 and X2 are perfectly cor-
related, X1X2 = X2

1 ). Note, however, that in the general case correlation between two input
variables does not imply an interaction effect on the outcome, and an interaction effect of two
input variables on the outcome does not imply correlation between the variables.
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Statistical (Un)Reliability of Interaction Effects
One reason why models which ignore high-order interaction effects can perform so well is the
tremendous difficulty that higher-order interaction effects present to learning algorithms. When
trying to learn high-order interaction effects, we are stuck between a rock and a hard place: the
number of possible interaction effects grows exponentially (the number of k-order interaction
effects possible from N input features is (

N
k
), while the the variance of an interaction effect

grows with the interaction order [110]. This quandary is intensified when the effect strength
decreases with interaction order, which is reasonable for real data [57]. It is like searching for a
needle in a haystack, but as we increase k, the haystack gets larger and the needle gets smaller.
For large k, we are increasingly likely to select spurious effects rather than the true effect –
at some point it is better to stop searching the haystack. Viewed this way, it is less surprising
that in the absence of prior knowledge of which interaction effects, simple models are able to
outperform large models.

Interaction Effects in Neural Networks
The function estimated by a neural network can be decomposed as:

F̂ (X) = ∑
u∈[d]

f̂u(Xu) (2.2)

by the functional ANOVA. We will use this decomposition to measure the interaction effects
implicit in the estimated F̂ . To approximate this decomposition, we repeatedly apply model
distillation [15, 76] using the XGBoost software package [28]. First, we train boosted stumps
(XGBoost with max depth of 1) to approximate the output of the neural network using only main
effects of individual variables. We successively increase the maximum depth of trees (corre-
sponding to an increase in the maximum order of interaction effect permitted). By training on
the residuals of the previous model, we ensure that the estimated effects are orthogonal. In the
remainder of this paper, we will refer to VarX(f̂u(X)) as the effect size of an estimated effect f̂u.

Dropout Regularizes Against Interaction Effects
Dropout operates by probabilistically setting values to zero. For clarity, we call this action “Input
Dropout” if the perturbed values are input variables, and “Activation Dropout” if the perturbed
values are activations of hidden nodes. Input Dropout, which targets the input variables, is equiv-
alent to augmenting the training dataset with samples drawn from a perturbed distribution:
Theorem 1. Let E[Y ∣X] = ∑u∈[d] fu(Xu) with E[Y ] = 0. Then sampling with Input Dropout at
rate p has

E[Y ∣X ⊙M] = ∑
u∈[d]

(1 − p)∣u∣fu(X) + ζ (2.3)

where M is the Dropout mask, ⊙ is element-wise multiplication, and ζ is normally distributed
with mean zero. Without changing the outcomes Y , Input Dropout drives the conditional expec-
tation of Y ∣X ⊙M toward the marginal expectation of Y . Furthermore, it acts by preferentially

12



0.0 0.1250.250.375 0.5 0.6250.75
Dropout Rate

0

2

4

6

8

10

12

14

Ef
fe

ct
 S

ize
k = 1
k = 2
k = 3
k 4

(a) Total: Activation

0.0 0.1250.250.375 0.5 0.6250.75
Dropout Rate

0

2

4

6

8

10

12

14

Ef
fe

ct
 S

ize

k = 1
k = 2
k = 3
k 4

(b) Total: Input

0.0 0.1250.250.375 0.5 0.6250.75
Dropout Rate

0

2

4

6

8

10

12

14

Ef
fe

ct
 S

ize

k = 1
k = 2
k = 3
k 4

(c) Total: Input + Activation

0.0 0.1250.250.375 0.5 0.6250.75
Dropout Rate

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Ef

fe
ct

 S
ize

k = 1
k = 2
k = 3
k 4

(d) Normalized: Activation
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(g) Shrinkage: Activation
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(h) Shrinkage: Input
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(i) Shrinkage: Input + Activ.

Figure 2.5: Dropout regularizes neural networks by down-weighting higher-order interaction
effects. In this experiment, we train fully-connected neural networks on a dataset of pure noise.
Displayed values are the (mean ± std. over 10 initializations) of the trained model’s variance
explained by each order of interaction effect. The top row of graphs (a–c) shows the absolute
variance of the models for different values of Dropout — as Dropout grows, overfitting is reduced
and the variance of the predictions converges towards zero. The middle row (d–f) shows the
relative effect sizes of interactions of degree 1, 2, 3, and 4 or greater. The bottom row (g–i)
shows the effects normalized by their strength in the unregularized model.
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targeting high-order interactions: the scaling factor grows exponentially with ∣u∣. Because the
distribution of training data is actually different for different levels of Input Dropout, we should
expect that models will converge to different optima based on the level of Input Dropout (e.g.,
Input Dropout introduces bias). Finally, we note that Input Dropout acts on the data distribution,
not the model, so it has the same effect on the learning process regardless of the downstream
architecture.

To see this, we examine a set of neural networks trained to convergence with varying levels
of Dropout. In this experiment, we use a simulation setting in which there is no signal (so any
estimated effects are spurious). This gives us a testbench to easily see the regularization strength
of different levels of Dropout. Specially, we generate 1500 samples of 25 input features where
Xi ∼ Unif(−1,1) and Y ∼ N(0,1). We optimize neural networks with 3 hidden layers and
ReLU nonlinearities. In Fig. 2.5, we see the results for neural networks with 32 units in each
hidden layer. For this small network, both Activation and Input Dropout have strong regularizing
effects on a neural net. Not only do they reduce the overall estimated effect size, both Activation
and Input Dropout preferentially target higher-order interactions (e.g., the proportion of variance
explained by low-order interactions monotonically increases as the Dropout Rate is increased for
Figs. 2.5d,2.5e, and 2.5f).

Thus, Dropout does not simply introduce unbiased noise into learning — training with higher
levels of Dropout produces models that are likely to learn weaker interaction effects. This sug-
gests that even large black-box models such as deep neural networks suffer the pain of estimating
interaction effects and benefit from constraints on interaction effects.

Lessons
We have seen that pure interaction effects are difficult for unconstrained models to learn from
data. A major difficulty in learning these interaction effects is the number of interactions, which
grows exponentially with the number of variables in the interaction. As a result, deep neural net-
works are improved by Dropout, which regularizes against interaction effects. Going forward, we
should not expect larger population models to accurately capture high-order interaction effects
solely from data.
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Chapter 3

Samples as Tasks

In the previous chapter, we saw that estimating population-level models can hide sub-population
heterogeneity. Moreover, this problem is not avoided by simply expanding the population model’s
representational capacity, because the interaction effects inherent in heterogeneous samples are
difficult to find unless prior specification is provided. These challenges lead us to ask if we can
instead use principled methods to share statistical power between samples while still permitting
the estimated effects to vary between samples? This motivates us to examine the connection
between sample heterogeneity and multitask learning.

3.1 Tasks as Interaction Effects
We often observe multiple related phenomena, or “tasks”, which have distinct distributions
Pt(Y ∣X), where t ∈ T indexes the task1.Multitask learning [14, 22] seeks to improve the es-
timation of each Pt(Y ∣X) by sharing power between distinct tasks t. In some cases, the task
label is hidden and we are concerned with the single distribution shared by all tasks:

Y ∣X ∼ ∫
t
Pt(Y ∣X)λ(t)dt, (3.1)

where λ(t) is the scalar weight of task t. In other cases, the task label is provided as an input and
we are concerned with the task-specific distributions:

Y ∣X, t ∼ Pt(Y ∣X). (3.2)

We can view this latter distribution as an interaction effect of T and X on Y .
Theorem 2. The task-specific distribution is the sum of the overall distribution and a task-
specific pure interaction effect:

Y ∣X, t = Y ∣X + ρ(Y ∣X, t) (3.3)

where ρ(Y ∣X, t) is a pure interaction effect.
1For this section, we consider only supervised learning of conditional distributions.
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Proof. We show that ρ(Y ∣X, t) satisfy the integral conditions of a pure interaction effect:

ρ(Y ∣X, t) = Y ∣X, t − Y ∣X (3.4)

∫
t
ρ(Y ∣X, t)p(X, t)dt = Y ∣X − ∫

t
Y ∣X, tp(X, t)dt = Y ∣X − Y ∣X = 0 (3.5)

∫
Xj
ρ(Y ∣X, t)p(X, t)dXj = ∫

Xj
(Y ∣Xj,X/j, t − Y ∣Xj,X/j)p(X, t)dXj = 0 (3.6)

This means that any estimator of Y ∣X, t also gives us an estimator of Y ∣X and ρ(Y ∣X, t)
because the interactions between X and T are exactly the differences between task distributions.
Thus, if we regularize against interactions between X and T (as with Dropout on T ), we can
encourage similarity in the task-specific distributions. In addition, we can use the purification
algorithm from [106] to recover the task-specific interaction and the main effects from Y ∣X, t.

3.2 Heterogeneous Models for Sample Sub-populations
Defining multitask learning as above shows us that the task of estimating different models for
different samples is a form of multitask learning in which sample representations U are used as
task representations t. Notice that as defined above, multitask learning does not require discrete
task identifiers or specific algorithms for sharing models between tasks. Thus, in our transition
to regarding sample representations as task identifiers, we are free to use whichever sample rep-
resentation most accurately captures the patterns of variation underlying sample heterogeneity
(if there is no underlying variation and only stochastic noise, the optimal would be sample rep-
resentations which are all identical and thus produce a single population model). Our goal, then,
in order to build a framework for learning heterogeneous models which vary between samples
is two-fold: to identify meaningful sample covariates U which describe the processes underly-
ing each sample, and to construct a framework to estimate similar Y ∣X,U for similar U and
dissimilar Y ∣X,U for dissimilar U .

Heterogeneous Models and Interaction Effects
As a concrete example, let us consider the function

Y =

⎧⎪⎪
⎨
⎪⎪⎩

aX1 + bX2 X1X2 < 0

cX1 + dX2 X1X2 ≥ 0

which generates outcomes for uncorrelated features X1,X2. This function can be captured in
a simple, intelligible heterogeneous model Y = ⟨θ(X1,X2),X1⟩ where θ(X1,X2) = [a + (c −
a)sign(X1X2), b + (d − b)sign(X1X2)]. In this form, we can inspect the value of θ for each
sample and use the parameter values to readily identify the equivalence of models within each
quadrant.

Alternatively, we could use a black-box model capable of modeling high-order interaction
effects to fit this data. After fitting this model to the data, we could decompose it into main and
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Figure 3.1: Illustration of the benefits of personalized models. Each point represents the re-
gression parameters for a sample. Black points indicate true effect sizes, while the red points
are estimates. Mixture models (a) estimate a limited number of models. The varying-coefficients
model (b) estimates sample-specific models but the non-linear structure of the true parameters vi-
olates the model assumptions, leading to a poor fit. The locally-linear models induced by a deep
learning model (c) do not accurately recover the underlying effect sizes. In contrast, personalized
regression (d) accurately recovers effect sizes.

interaction effects according to the algorithm in [106]. The resulting decomposition is propor-
tional to

F (X1,X2) = f1(X1) + f2(X2) + f12(X1,X2)

f1(X1) = aX1

f2(X2) = bX2

f12(X1,X2) = (a − c)X1I(X1X2 ≥ 0) + (b − d)X2I(X1X2 ≥ 0)

These forms represent equivalent functions, but the heterogeneous form is much easier to
interpret. Intelligible parameters assist designers of regularization schemes, so the heterogenous
model is preferable if we have prior knowledge to encode in the sample-specific. In much of the
remainder of this thesis, we propose to use external data modalities to infer this prior knowledge
and make adapative regularization schemes which dynamically tie samples together based on
learned sample similarity.

3.3 The Extreme: Sample-Specific Models

Now we ask the question of what happens at the extreme: what if each sample is considered
its own task? In other words, what if the sample representations U are unique (possibly due to
continuous-valued attributes)? Despite the long history of statistical studies of heterogeneity, few
methods have been designed to estimate sample-specific effects, and the ones which do typically
require prior knowledge regarding the relation between samples (e.g. a network) [140]. At the
same time, as datasets continue to increase in size and complexity, the possibility of inferring
sample-specific phenomena by exploiting patterns in these large datasets has driven interest in
important scientific problems such as precision medicine [18, 141]. The relevance and potential
impact of sample-specific inference has also been widely acknowledged in applications including
psychology [52], education [69], and finance [2].
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Here, we explore a solution to this dilemma through the framework of “personalized” mod-
els. Personalized modeling seeks to estimate a large collection of simple models in which each
model is tailored—or “personalized”—to a single sample. This is in contrast to models that seek
to estimate a single, complex model. To make this more precise, suppose we have n samples
(X(i), Y (i)), where Y (i) denotes the response and X(i) ∈ Rp are predictors. A traditional ML
model would model the relationship between Y (i) and X(i) with a single function f(X(i); θ)
parametrized by a complex parameter θ (e.g. a deep neural network). In a personalized model,
we model each sample with its own function, allowing θ to be simple while varying with each
sample. Thus, the model becomes Y (i) = f(X(i); θ(i)). These models are estimated jointly with
a single objective function, enabling statistical power to be shared between sub-populations.

The flexibility of using different parameter values for different samples enables us to use a
simple model class (e.g. logistic regression) to produce models which are simultaneously in-
terpretable and predictive for each individual sample. By treating each sample separately, it is
also possible to capture heterogeneous effects within similar subgroups. Finally, the parameters
learned through our framework accurately capture underlying effect sizes, giving users confi-
dence that sample-specific interpretations correspond to real phenomena (Fig 3.1).

Motivating Example
Let us consider the problem of understanding election outcomes at the local level. For exam-
ple, given data on a particular candidate’s views and policy proposals, we wish to predict the
probability that a particular locality (e.g. county, township, district, etc.) will vote for this can-
didate. In this example we focus on counties for concreteness. More importantly, in addition
to making accurate predictions, we are interested in understanding and explaining how different
counties react to different platforms. The latter information—in addition to simple predictive
measures—is especially important to candidates and political consultants seeking advantages in
major elections such as a presidential election. This information is also important to social and
political scientists seeking to understand the characteristics of an electorate and how it is evolv-
ing. An application of this motivating example using personalized regression can be found in in
Section 5.

One approach would be to build individual models for each county, using historical data from
previous elections. Immediately we encounter several practical challenges: 1) By building inde-
pendent models for each county, we fail to share information between related counties, resulting
in a loss of statistical power, 2) Since elections are relatively infrequent, the amount of data on
each county is limited, resulting in a further loss of power, and 3) To ensure that the models are
able to explain the preferences of an electorate, we will be forced to use simple models (e.g. lo-
gistic regression or decision trees), which will likely have limited predictive power compared to
more complex models. This simultaneous loss of power and predictive accuracy is characteris-
tic of modeling large, heterogeneous datasets arising from aggregating multiple subpopulations.
Crucially, in this example the total number of samples may be quite large (e.g. there are more
than 3,000 US counties and there have been 58 US presidential elections), but the number of
samples per subpopulaton is small. Furthermore, these challenges are in no way unique to this
example: similar problems arise for examples in financial, biological, and marketing applica-
tions.
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One way to alleviate these challenges is to model the ith county using a regression model
f(X; θ(i)), where the θ(i) are parameters that vary with each sample and are trained jointly using
all of the data. This idea of personalized modeling allows us to train accurate models using
only a single sample from each county—this is useful in settings where collecting more data
may be expensive (e.g. biology and medicine) or impossible (e.g. elections and marketing). By
allowing the parameter θ(i) to be sample-specific, there is no longer any need for f to be complex,
and simple linear and logistic regression models will suffice, providing useful and interpretable
models for each sample.

Alternative approaches and related work. One natural approach to adapt to heterogeneity
is to use mixture models, e.g. a mixture of regression [154] or mixture of experts model [61].
While mixture models present an intriguing way to increase power and borrow strength across
the entire cohort, they are notoriously difficult to train and are best at capturing coarse-grained
heterogeneity in data. Importantly, mixture models do not capture individual, sample-specific
effects and thus cannot model heterogeneity within subgroups.

Furthermore, previous approaches to personalized inference [65, 116, 196, 197] assume that
there is a known network or similarity matrix that encodes how samples in a cohort are related
to each other. A crucial distinction between our approach and these approaches is that no such
knowledge is assumed. Recent work has also focused on estimating sample-specific parameters
for structured models [88, 89, 98, 111, 116, 188]; in these cases, prior knowledge of the graph
structure or causal constraints enables efficient testing of sample-specific deviations.

More classical approaches include varying-coefficient (VC) models [49, 71, 171], where the
parameter θ(i) = θ(U (i)) is allowed to depend on additional covariates U in some smooth way,
and random effects models [90], where θ is modeled as a random variable. More recently, the
spirit of the VC model has been adapted to use deep neural networks as encoders for complex
covariates like images [4, 5] or domain adaptation [151, 163]. In contrast to our approach, which
does not impose any regularity or structural assumptions on the model, these approaches typically
require strong smoothness (in the case of VC) or distributional (in the case of random effects)
assumptions.

Frameworks of Sample-Specific Model Parameters
Several frameworks have been proposed to estimate such models which use side information u
to generate parameters for models which operate on x. In general, we can write the operation of
these models with sample-specific parameters as f(xi; θi) where

θi = ziQ, (3.7)
zi = g(ui;φ)T . (3.8)

This formulation encompasses several framework of sample-specific models:
• If g is a linear model and Q is an identity matrix, we have the varying-coefficients model

[71].
• If g indexes the k-nearest neighbors in Q by a learned distance metric, we have low-rank

personalized regression [108, 109].
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• If g is a deep neural network and ∣∣zi∣∣ = 1, we have Contextual Explanation Networks
(CEN) [4].

• If g is a few steps of gradient-descent applied to the instances in ui beginning at the initial-
ization φ, we have meta-learning.

Note here that we are not specifying the learning algorithm used to optimize the dictionary el-
ements. For instance, CEN and the VC model optimize a loss defined on the sample-specific
models, while personalized regression makes employs distance-matching regularization to fill in
Q and a nearest neighbor criterion to select models from Q at test time.

Lessons
In this chapter, we have introduced the use of sample representations as task representation to
estimate different models for different samples. We see that task-specific models are implicitly
learning pure interactions between task representations and model parameters. As a result, het-
erogeneous models which change parameters are learn pure interactions between sample repre-
sentations and model parameters. We suggest taking this approach to the extreme and estimating
sample-specific model parameters which use continuous-valued sample representations to esti-
mate model parameters which vary continuously between samples. Several existing methods of
heterogeneous model estimation fit into this paradigm, and next seek to apply these methods to
real data.
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Chapter 4

Sample-Specific Models to Identify
Discriminative Subtypes of Lung Cancer

In this chapter, we explore an application of sample-specific models to understand transcrip-
tomic signatures of cancers. To design individualized treatment protocols for cancer patients,
clinicians must synthesize information from multiple data modalities into a single, parsimonious
description of the patient’s condition. However, the most informative description of each pa-
tient’s disease is fundamentally unknown, and thus tools for automatic, personalized subtyping
of cancer have not been built. In this work, we propose to describe patient conditions with la-
tent discriminative subtypes: sample representations which give the most informative context for
a model to understand and make accurate predictions about the tumor. According to this def-
inition, discriminative subtypes can be estimated from one data modality and used to improve
predictions about the patient in another modality. We apply contextual deep learning to extract
these discriminative subtypes from lung cancer histopathology images. Based on these subtypes,
our framework produces sample-specific transcriptomic models which accurately classify sam-
ples as adenocarcinoma, squamous cell carcinoma, or healthy tissue (F1 score of 0.97, achieving
a new state-of-the-art). Combining these data modalities via contextualization not only improves
the predictive accuracy but also gives biological interpretations of subtypes and ties the morpho-
logical patterns present in histopathology images to transcriptomic processes.

Portions of this chapter are available as [104].

4.1 Motivation

In many biological settings, inter-sample heterogeneity is critical to understanding the complex
biological processes under study. For example, in the analysis of cancer gene expression assays,
each patient in a cohort may have a different somatic mutation. As these mutations adjust the
baseline gene expression levels of each patient, the observed gene expression data must be inter-
preted with respect to patient-specific “contexts.” These contexts can be described as molecular
subtypes which are associated with patient outcomes [161] and can inform the decision-making
process behind surgery and radiation therapy [38]. Our understanding of molecular subtypes is
still advancing, and much recent work has focused on identifying fine-grained descriptions which
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Figure 4.1: The most concise description of the many variables regarding oncology patients
is an unobserved latent variable. In this work, we seek to estimate this latent variable as a
discriminative subtype which improves the discriminative ability of downstream predictors.

comprise previously-characterized subgroups (e.g. in breast [177] or lung cancers [92]).
If the perfect contexts were annotated (e.g., if molecular subtypes were to correspond exactly

to primary tissue sites), we could simply train a different probabilistic model for each context.
However, meaningful contexts are often complex and possibly unknown. Simply increasing
the capacity of the predictive model to handle multiple contexts is typically not feasible due to
limited sample size and an emphasis on fitting interpretable models. Instead, we would like
to use a model which captures the complexity of different contexts while retaining the domain
knowledge and interpretability of structured probabilistic models.

To do so, we introduce the notion of a discriminative subtype (Figure 4.1). A discriminative
subtype is a latent variable which captures the variation in many observable variables, and can
be used for a variety of downstream tasks. Discriminative subtypes may correspond, but are not
limited, to previously-characterized molecular subtypes.

In this work, we will use a deep neural network to estimate the discriminative subtype for
each sample based on contextual data. We will use this subtype information to generate the
parameters for an interpretable model for downstream tasks. This two-stage procedure allows us
to analyze transcriptomic data in the context of complex context data such as diagnostic images.
Specifically, we investigate the capacity of this architecture to predict disease subtypes from
the histopathology images and transcriptomic data of patients diagnosed with two types of lung
cancer: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC).

Lung Cancers

Lung cancer is one of the top ten most common cancers for males and females, and is estimated
to account for roughly 13% of all new cancer cases[173]. For males, it is second only to prostate
cancer, and for females it is second only to breast cancer. In terms of mortality, it is estimated to
be the most lethal cancer for both sexes, accounting for 23% of cancer deaths in males and 22%
of cancer deaths in females for the year 2020 [173]. It is estimated that in 2020 in the United
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States, 228,820 new cases of lung cancer will be diagnosed and 135,720 people will die from
lung cancer [173].

The most common category of lung cancer is Non-Small Cell Lung Cancer (NSCLC), ac-
counting for 85% of cases. LUAD and LUSC are subtypes within this NSCLC category, and are
the two most common types of lung cancers, accounting for 38.5% and 20% of all lung cancer
cases respectively [41]. When lung cancer is diagnosed, it is categorized into one of four stages
based on the TNM grading system (based on (T) the size of the tumor, (N) the spread of cancer
to lymph nodes, and (M) metastasis) where a lower stage number means that there is less cancer
in the patient. Early detection is critical in lung cancer: in the U.S., 61% of NSCLC patients di-
agnosed at the localized stage survived after five years compared to only 6% of those diagnosed
at the distant stage.1

While LUAD and LUSC are both major subtypes of lung cancer, they have important dis-
tinctions in terms of their clinicopathology, tumor microenvironments, and molecular organiza-
tion. For example, LUSC is associated with a history of smoking, while LUAD may occur in
smokers but is the most common form of lung cancer in non-smokers [159]. These differences
have implications for the best therapeutic approaches for each subtype. For example, epidermal
growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) are two commonly mu-
tated genes in LUAD and are targets for current therapies, while they are infrequently mutated
in LUSC [112]. In addition, LUAD and LUSC tumors each have different immune subtypes
(tumor subtypes characterized by differences in infiltrating immune cell types and immunogenic
expression), and these differences have been shown to have an effect on the efficacy of immune
therapies (immune checkpoint blockade therapy) [169]. Given this variety of subtypes at dif-
ferent pathological levels, estimating a discriminative subtype that encapsulates these variations
will be essential for machine learning tasks such as cancer type prediction.

Contributions and Generalizable Insights
As described above, effective machine learning systems for oncology require both the integration
of data modalities (e.g. temporal, demographic, radiological, histopathological data) and model
interpretability. The generic form of this problem is a significant open problem in machine
learning. In this manuscript, we demonstrate that we can apply contextual deep learning to
simultaneously achieve accuracy and interpretability for classification of lung cancers. This case
study brings to light the following insights that apply in general to the problem of using machine
learning techniques on multi-modal patient data:

• In applications with heterogeneous samples, understanding the context in which predic-
tions are made is important to making accurate predictions. In this work, we show that
sample-specific contexts can improve downstream predictions even when the contexts are
latent and must be inferred from data (Section 4.3). Towards this end, we show that con-
textual deep learning is a promising tool for estimating these latent variables and linking
different data modalities in a single pipeline.

• For transcriptomic analysis of lung cancer samples, we show that meaningful contexts can
be inferred from histopathology samples. These meaningful contexts form discriminative
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subtypes (Section 4.3), which are not themselves correlated with the cancer type, provide
meaningful context in which simple models can accurately label sample types.

• Finally, the learned transcriptomic models for different discriminative subtypes tend to
give high attention to different biological processes (Section 4.3). This suggests that the
sample-specific transcriptomic models learned from our discriminative subtypes are cap-
turing the heterogenity of the biological processes underlying lung cancer. This highlights
the promise of approaches which use contextual deep learning to learn biologically ex-
plainable/meaningful models for heterogenous data.

Related Work
Molecular profiling has increased understanding of the pathology of cancer [10, 34, 155, 183].
This understanding allows pathologists to use phenotypic molecular and morphological data to
identify increasingly specific cancer subtypes [60, 84, 168]. Improved cancer subtype identifica-
tion enables clinicians to devise more effective individualized treatment plans for patients with
cancer. The machine learning community is increasingly working to assist pathologists further
improve cancer subtype identification to better inform treatment based on molecular and morpho-
logical data [21, 58, 82, 96, 132, 138, 179, 186, 192, 193]. This common goal of better informing
treatment has also led the machine learning community to work towards creating patient specific
interpretable and explainable predictive models to provide actionable insights to clinicians about
the prognosis of their patient’s disease [132, 206].

Cancer Subtype Identification

Identifying cancer subtypes is crucial to devising individualized treatment protocols for patients
with cancer, but subtype identification has been hindered by the lack of knowledge of the bi-
ological processes underlying tumor growth [44, 67, 73, 172]. In previous work, this was
circumvented by using observed phenotypic and/or genotypic data to define cancer subtypes
[21, 58, 82, 96, 132, 138, 179, 192, 193]. These papers defined specific cancer subtypes based
on phenotypic and/or genotypic features which were meaningful for specific downstream tasks
such as predicting healthy versus cancer. Recently, a new definition of subtype was introduced in
which is based on mutations predicted from histopathology images within a clinically accepted
cancer type [36]. This approach is promising, as it could assist pathologists detect gene mu-
tations to inform treatment. While all of these definitions of a cancer subtype are useful, the
features they identify only capture a subset of the aspects of the biological processes underly-
ing tumor growth related to a specific task or data type. Our work is the first to our knowledge
to associate discriminative models with cancer subtypes, which we call discriminative subtypes
and infer from morphological data. This definition enables us to learn accurate patient-specific
models for downstream prediction tasks.

Downstream Clinical Prediction

The key challenge to prediction of downstream clinical outcomes is to use multimodal data to
generate predictions that are interpretable and explainable to clinicians. In previous work, inter-
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pretable predictive models have been based on only one type of data, such as histologic patterns
which are interpretable to pathologists [36, 58, 120, 121, 192, 193, 201]. Multimodal models
have leveraged different types of data to increase predictive capabilities, but their interpretability
has been hindered by the complexity of the models [29, 68, 132, 152, 206]. The only way some
of these complex models have been interpreted is with a retrospective analysis of the features
selected in their neural networks, and it is unclear how to use this type of interpretation to in-
form clinical decisions [68, 132]. Our approach allows us to generate predictive models linking
histopathology images and molecular data which are accurate, interpretable, and explainable to
clinicians.

Sample-Specific Model Parameters

In this work, we identify discriminative subtypes by estimating a basis set of models which can
be utilized to generate model parameters specific to each sample. Interest in such sample-specific
model parameters has grown in recent years, as increasing evidence has pointed to fine-grained
subtypes which do not form discrete clusters [18, 122]. Discovering these individualized molec-
ular profiles could lead to substantial advances in the diagnosis and treatment of disease, in
addition to refining our biological understanding of the mechanisms behind different diseases.
Despite the recent surge of interest in personalized modeling [6, 97, 115, 119, 135, 187], ba-
sic statistical challenges remain unanswered and deserve further study. Patient-specific analy-
sis of cancer patients has mainly focused on two areas: detection of personalized biomarkers
[12, 108, 109, 137], and inference of personalized regulatory networks [20, 89]. In this work,
we contextualize such personalized models with imaging data. We hope that this idea of con-
textualization can spur further development of such patient-specific modeling efforts that appear
promising.

4.2 Methods
To combine multi-modal data in an interpretable pipeline, we use Contextual Explanation Net-
works (CENs) [4], illustrated in Figure 4.2. CEN architecture assumes that the data is represented
by: (i) context variables, denoted C, (ii) semantically meaningful variables, denoted X , and (iii)
target variables, denoted Y . Here, we will use histopathology images as contextual data and
gene expression assays as semantically meaningful predictors of the cancer type. The model will
represent conditional probability of the cancer type given the histopathology and transcriptomic
inputs, P(Y ∣X,C), in the following form:

P(Y ∣X,C) = ∫ P(Y ∣X,θ)δ(θ = φw(C))dθ = P(Y ∣X,φw(C)), (4.1)

where P(Y ∣ X,θ) is a linear logistic model that predicts cancer types from gene expression
information. Note that parameters (or weights) θ of the logistic model are a function of the
contextual information, i.e., θ = φw(C). In other words, CEN architecture produces a sample-
specific parameterization of a linear probabilistic model that operates on transcriptomic data
based on the sample’s contextual data (i.e., based on histopathology).
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Figure 4.2: A CEN architecture combines “contextual” histopathology data (C) with gene ex-
pression data (X) through intermediate, sample-specific interpretable linear probabilistic mod-
els. We call the output of the context encoder the discriminitative subtype, as it is used to form
sample-specific parameters θ by weighting the archetypal models stored in a dictionary. Finally,
the formed sample-specific linear models operate on the transcriptomic data (X) to estimate the
final target Y (in our experiments, cancer type).

Generation of parameters for sample-specific linear models is accomplished via a context en-
coder represented by a convolutional neural network (Figure 4.2). To reduce model complexity,
parameters θ are further confined to be a linear combination of a small constant number (K) of
“archetypes,” denoted {θ1, . . . , θK} or θ1∶K . Specifically for a sample i with context ci, weights
θi are computed as follows:

θi =
K

∑
k=1

αkw(ci)θk, where αkw(ci) ≥ 0, k = 1, . . . ,K and
K

∑
k=1

αkw(ci) = 1, (4.2)

where (α1, . . . , αK) is a vector output of the context encoder, which we call discriminative sub-
type. This dictionary of parameter sets, θ1∶K , is learned jointly with the context encoder, and the
entire architecture is trained end-to-end via backpropagation. To summarize, the context encoder
is a deep neural network that processes contextual data (histopathology imagery) and outputs a
probability vector of length K that softly selects weights for a linear probabilistic model from a
dictionary of archtetypes.

Architectural Components To encode histopathology imagery, following Coudray et al. [36],
we used InceptionV3 [180] architecture as our context encoder. Since this architecture nat-
urally operated on images of size 299x299, to utilize it on the large histopathology images, we
sliced the images into non-overlapping patches of size 299x299, filtering out patches that had
more than 25% of background.

Further, for the interpretable probabilistic part of CEN, we used logistic regression (LR) that
predicted cancer type from gene expression data. Predictions were computed both on the level
of patches (in which case patches from the same slide were assigned the same slide-level labels
and gene expression data) and on the level of slides (using majority vote over the corresponding
patches).
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Baselines

To benchmark the performance of the CEN model, we compare against both uni-modal and
multi-modal baselines. Firstly, we compare against the two uni-modal parts of the CEN archi-
tecture: logistic regression on transcriptomic profiles and the convolutional neural network on
histopathology images. In addition, we compare performance against two multi-modal baselines.
Multi-modal baseline 1 (“Concatenated”) is the same architecture used for the state-of-the-art
subtype prediction in [132]. It predicts labels from a concatenation of the RNA-seq features
and the output of the InceptionV3 network that encodes histopathology. Multi-modal baseline
2 (“Ensemble”) is an ensemble (i.e., a weighted combination) of the two uni-modal models de-
scribed above.

Cohort

For this investigation, we use lung cancer data available in the NCI Genomic Data Commons
[63], which includes both TCGA and TCIA resources to provide multi-modal descriptions of a
large number of cancer patients. As of April 2, 2020, this depository includes 585 LUAD cases
and 504 LUSC cases, along with a variety of cases with cancer of other tissues. From this set,
we selected all samples which have both eosin-stained histopathology whole-slide images and
transcriptomic RNA-seq profiling. This reduces the dataset to a total of 992 patients. We selected
these datatypes because inference of discriminative subtype is most clinically-useful if it can be
done from phenotypic data. In addition, we look forward to the availability of transcriptomic
data from multiple time points to make dynamic predictions which track tumor progression.

We split this dataset into training, validation, and testing partitions. The size and composition
of each partition is shown in Table 4.1.

Partition Healthy LUAD LUSC Total
patches slides patches slides patches slides patches slides

Training 59,530 89 658,498 562 722,396 518 1,440,424 1,169
Validation 10,478 17 132,101 120 156,698 116 299,277 253
Test 11,899 18 118,521 124 183,946 113 314,366 255

Table 4.1: Dataset sizes by counts of slides and patches. The slides are divided into patches.

Feature Choices

Image Subsampling. For the image analysis, we use the 20x magnification whole-slide im-
ages. To make these large images suitable for the pretrained Inception architecture, we split each
whole-slide image into non-overlapping 299x299 image patches. The patches were controlled
for quality by discarding any patches with more than 25% white pixels, following the proce-
dure of Coudray et al. [36]. We treat each patch as a separate sample, with transcriptomic data
duplicated over each patch.
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Table 4.2: Performance of models on 3-way Normal/LUAD/LUSC classification. We report
accuracy on both the “patch” level (where each prediction corresponds to a small patch in the
image) and on the “sample” level (where a single prediction is made for the whole-slide im-
age). Some models are designed to operate on transcriptomic data (T), while some operate on
histopathology data (H), while others use both forms of data (H+T). CEN (our model) outper-
forms all existing models.

Level Model Data Accuracy (%) Macro F1

Patch

CEN H+T 96.18 96.97
Concatenated H+T 95.32 93.65

Ensemble H+T 94.61 90.23
Logistic Regression T 94.05 91.40
InceptionV3 H 69.14 65.85

Sample

CEN H+T 94.51 95.29
Concatenated H+T 93.33 93.65

Ensemble H+T 92.94 90.23
Logistic Regression T 92.16 89.67
InceptionV3 H 80.00 76.76

Transcriptomic Profiles. The transcriptomic profiling in TCGA captures the expression of
over 60,000 distinct transcripts in each sample. To reduce this dimensionality, we select the
1000 transcripts with the highest variance in the non-lung cancer cases in TCGA. In addition,
we augment this set with 695 transcripts corresponding to genes in the Catalogue of Somatic
Mutations in Cancer (COSMIC, [11]). This leaves us with a final set of 1695 transcriptomic
features.

4.3 Results
The goal of our study is not only to evaluate the predictive ability of the proposed multi-modal
approach, but also to study the biological meaning and clinical utility of the inferred clusters. To-
wards that end, first, we measure predictive accuracy compare performance of our model against
unimodal approaches: InceptionV3 trained to predict cancer type from histopathology only
[36] and logistic regression that predicts cancer type from transcriptomic data only. Then, we
seek to assign biological meaning to the learned model archetypes, find descriptive histopathol-
ogy images for each archetype, and analyze the discovered discriminative subtypes.

Contextualization Improves Prediction
First, we measure the ability of the model to discriminate between LUAD, LUSC, and healthy
samples. As shown in Table 4.2, the multi-modal CEN achieves the best classification results,
outperforming both the convolutional neural network (which operates solely on histopathology
images, had InceptionV3 architecture) and the regularized logistic regression (which operates
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Table 4.3: Slide-level confusion matrices for baselines and CEN. Rows correspond to ground
truth labels and columns to predictions made by the corresponding models.

CEN Logistic Regression InceptionV3
Healthy LUAD LUSC Healthy LUAD LUSC Healthy LUAD LUSC

Healthy 18 0 0 15 1 2 12 5 1
LUAD 1 117 6 3 115 6 4 102 18
LUSC 0 7 106 0 8 105 1 22 90

Concatenated Ensemble
Healthy LUAD LUSC Healthy LUAD LUSC

Healthy 17 1 0 15 1 2
LUAD 1 115 8 3 115 6
LUSC 0 7 106 0 6 107

solely on transcriptomic data). Our results for the InceptionV3 model come very close to the
performance reported by [36]. Based on these accuracy and macro F1 metrics, we can see that
most of the signal to distinguish the cancer types is held in the transcriptomic data, but a single
linear transcriptomic model is not flexible enough to achieve the best accuracy over the diverse
cohort.

Archetypal Models Correspond to Biologically Meaningful Processes
Next, we turn to interpret the learned models. A natural question is to what degree the different
model archetypes are redundant or look at different biological processes. Surprisingly, the model
archetypes coefficient vectors are nearly all orthogonal (Fig. 4.3), indicating that the archetype
emphasize distinct biological processes.

To identify these biological meanings, we turn to enrichment analysis. For each archetype,
we have 3 vectors of coefficients defining the 3-way logistic regression model. For each vector,
we sort the genes by the magnitude of the associated coefficient and we search the top 100
genes in this order for enriched biological terms against the background of the remaining 1595
genes using gProfiler[157]. We set a minimum intersection size of 3 genes (the number of genes
selected from each term must be at least 3) and a maximum Bonferroni-corrected p-value of 0.05.
Terms enriched in the archetypal models for prediction of the “normal” label (which corresponds
to case/control prediction) are shown in Table 4.4. Here we see that a large number a of the 32
archetypal models are significantly enriched for a diverse set of processes which are markers for
cancer.

As a vignette, below we discuss the significance terms in Table 4.4 which have a p-value of
less than 0.01:

• 13: Factor: Smad4. Intersection: CRNKL1, MYH11, ZRSR2.
SMAD family member 4 (SMAD4) is a necessary component of the transforming growth
factor beta (TGFβ) pathway and in this capacity regulates proliferation [199, 203, 205].
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Figure 4.3: Kendall Tau similarity of ranks of transcripts selected by each entry in the dictionary.
Nearly all off-diagonal comparisons have similarity less than 0.1, indicating that the models are
orthogonal.

SMAD4 has been established as a tumor suppressor in pancreatic, colon and lung cancer
[64, 124, 203]. Decreased expression of SMAD4 has been identified in NSCLC, and has
been shown to be correlated with poor prognosis in LUAD [32, 64, 83, 124].

• 18: Factor: REST. Intersection: FGFR1, NCOA1, CRTC1, CBLB, DGCR8, PRDM16,
BAP1, OTOS, FOXL2, ETV5.
RE1-silencing transcription factor (REST) is most widely known to repress neuronal genes
in non-neuronal genes, but has also been found to be an oncogene or tumor suppressor
gene in certain cancers as well [139]. In breast cancer, it has been shown to act as a tumor
suppressor, and loss of this gene is associated with aggressive breast cancer [190]. In lung
cancers, an isoform of REST has been indicated as a specific clinical marker for early
detection of small cell lung cancers [37, 170].

• 26: Apoptosis - multiple species. Intersection: BIRC3, BIRC6, CASP3.
A hallmark of cancer cells is their ability to limit or avoid cell death induced by apoptosis
[67]. In NSCLC multiple genes in the KEGG apoptosis pathway have been found to be
correlated with tumorigenesis, chemoresistance, and poor prognosis [47, 50, 62, 91, 91,
114, 153, 181, 200]. As an example, altered expression and/or localization of caspases
which are involved in the crucial last steps of the apoptosis pathway have been shown
to make cells resistant to apoptosis enabling cancer to progress and making cells resis-
tant to chemotherapy [50, 91, 145, 181, 200]. Both cancer progression and resistance to
chemotherapy increase the likelihood of a poor prognosis.

• 28: Positive Regulation of Multicellular Organismal Process. Intersection: PTPRC,
CRTC1, CPEB3, COL1A1, IL6ST, PIM1, LEF1, BCL10, RUNX1, ATP1A1, STAT3,
MYD88, SETD2, BCL9L, SRC, MIR126.
This Gene Ontology term is broadly defined as those processes which up-regulate or ac-
tivate the progress of organismal processes [9, 35]. In cancer, oncogenes activate tu-
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Table 4.4: Terms enriched in case/control archetypal models (p < 0.05).

Archetype Term ID Term Name P-Val

1
KEGG:04071 Sphingolipid signaling pathway 0.037
KEGG:04310 Wnt signaling pathway 0.049

6 REAC:R-HSA-6802952 Signaling by BRAF and RAF fusions 0.039

8 TF:M06732 Factor: ZNF304 0.023

12
REAC:R-HSA-8939236

RUNX1 regulates transcription of genes
0.022

involved in differentiation of HSCs
GO:0010629 negative regulation of gene expression 0.039

13 TF:M09657 1 Factor: Smad4 0.004

15 GO:0071385 cellular response to glucocorticoid stimulus 0.013

17 REAC:R-HSA-400206 Regulation of lipid metabolism by PPARα 0.018

18 TF:M04726 1 Factor: REST 0.001

19 TF:M05327 1 Factor: WT1 0.025

21 TF:M01224 1 Factor: P50:RELA-P65 0.034

25 TF:M09611 0 Factor: ER81 0.003

26 KEGG:04215 Apoptosis - multiple species 0.006

28 GO:0051240
positive regulation of

0.006
multicellular organismal process

30 REAC:R-HSA-4791275 Signaling by WNT in cancer 0.045

mor growth and proliferation processes by up-regulating other development processes,
including angiogenesis, cell migration, and metastasis. As an example, aggressive can-
cers achieve metastasis by up regulating the genes involved in inflammation and migration
of cells, which include genes that produce cell-to-cell or cell-to-extra-cellular-membrane
adhesion molecules [66, 67].

Morphologic Patterns of Archetypal Models

One of the advantages of contextual deep learning is that it enables us to tie the morphology
patterns recognized in histopathology images into the biological processes used to describe the
transcriptomic models. Towards this end, we visualize representative patches which maximize
the influence of archetypal models 12, 13, and 30 in Figure 4.4. We can see that the morphol-
ogy is more similar within the clusters corresponding to archetypes than between the clusters,
indicating that the transcriptomic patterns used for accurate downstream predictions have a cor-
respondence with morphological changes on a larger scale.
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Representative patches for model 12

Representative patches for model 13

Representative patches for model 30

Figure 4.4: Patches that made CEN assign the highest weights to the corresponding models in
the dictionary. Morphology of the patches is homogeneous within model-specific cluster and
varies between the clusters.
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Figure 4.5: Class-conditional distributions over the weights assigned to different archetypes by
CEN, visualized for healthy, LUAD, and LUSC slides. Observe only slight variation between
distributions of the weights assigned to different archetypes, while the relative ordering between
the archetypes being strictly preserved.
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Discriminative Subtypes Display Intratumor Heterogeneity

The spatial diversity of cells within lung tumors has recently been shown to encode prognostic
markers [1]; the CEN model enables us to ask questions regarding the localization of discrimi-
native subtypes. By making predictions for each patch independently, the CEN model allows us
to ask whether different locations in the image are indicative of distinct tumor subtypes and if
morphological patterns of a particular subtype tend to be clustered in a single location. Firstly,
we see that on held-out test data, in 46.3% of patches, the CEN assigns highest weight to a dis-
criminative subtype which is not the discriminative subtype chosen for the full slide by a majority
vote of the patches. This indicates that there may either be significant diversity or uncertainty
of morphological patterns or tumor subtypes in each tumor. To examine the spatial locality,
we visualize the predictions of discriminative subtypes. As shown in Figure 4.6, predictions of
discriminative subtype exhibit spatial locality, with nearby patches tending to correspond to the
same predicted subtype.

Analysis of the Discriminative Subtyping Hypothesis

Our discussion started with a hypothesis that gene expression data must be interpreted with re-
spect to patient-specific contexts that may correspond to different subtypes. The contextual learn-
ing approach we proposed to use in this work allowed us to discover latent subtypes, which we
termed discriminative since each of the subtypes corresponded to an interpretable linear model
that could accurately discriminate between different classes (cancer types in our case) based on
transcriptomic information.

However, if samples of the same type always mapped to the same linear model, while samples
of different types mapped to different models, this would have been troublesome—the biological
interpretation of the archetypal coefficients (Section 4.3) would have been confounded by the
assignment of different models to different classes. As shown in Figure 4.5, this is not the case:
the distribution over the weights assigned to archetypes by the context encoder conditional on
the target label are nearly identical across all classes. Thus, indeed linear models that correspond
to each of the subtypes are ultimately discriminating between the classes.

4.4 Discussion and Limitations
In this work, we have used contextual deep learning to estimate discriminative subtypes of lung
cancers. These discriminative subtypes improve prediction of cancer type from transcriptomic
data by allowing the sample-specific models to pay attention to different biological processes for
different samples.

For machine learning practitioners, this has several implications. Firstly, multi-modal data
analysis is critically important in healthcare applications (often because the technical noise in
each measurement can only be reduced by having multiple views of each sample), but multi-
modal pipelines are difficult to meld with interpretability. Contextual learning is a promising
framework which can be used to design these interpretable multi-modal approaches. By allow-
ing one data modality to select the model to be used on another modality, we can achieve both
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(a) Representative results of patch-level subtype prediction for a LUSC sample held out from training.

B C

D

A

(b) Representative results of patch-level subtype prediction for a LUAD sample held out from training.

Figure 4.6: Discriminative subtypes display significant heterogeneity throughout the sample, but
cluster spatially. Pane A shows the tumor whole-slide image. Pane B displays the archetype
which CEN assigned to each patch; for visual clarity, we display only the common archetypes 8,
12, 18, 19, and 30, and group all other archetypes under “other”. Pane C displays the inset square
outlined in blue in panes A and B. Pane D displays the discriminative subtypes for the patches in
the inset region. A similar result for a LUAD sample is shown in Figure S2, and matched control
samples from the surrounding tissue are shown in Figure S3, S4.
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accuracy and interpretability. This is extremely important for practitioners who want their ma-
chine learning models to be used in areas such as healthcare and public policy.

In addition, this work has clinical implications. Firstly, because the discriminative subtypes
correspond to biologically-meaningful processes, we can surmise that these are distinctive sig-
natures of cancers that may be used to improve personalized medicine beyond known histologic
or molecular subtypes. Furthermore, in this study, a deep learning model trained on images was
able to assign meaningful contexts for transcriptomic models, indicating that some patterns of
transcriptomic aberrations are contained in histopathology data with only basic hematoxylin and
eosin (H&E) staining. This concords with several recent works to predict genetic variants from
H&E stained histopathology data [8, 56, 152], and we are excited to see future works improve
on the connection between these datatypes to discover and analyze morphological patterns of
cellular modifications. Future work in this area will enable the machine learning community to
assist pathologists. Lastly, this approach of patient-specific modeling by contextualization has
clinical relevance because it suggests that the inter-sample heterogeneity which hampers clini-
cal predictive power may be overcome by more flexible modeling. Future work in this area may
lead to machine learning practitioners being able to assist clinicians by providing patient-specific
actionable insights about the prognosis of their patient’s disease.

Limitations.
While our work advances our understanding of machine learning and healthcare, we note some
important limitations. First, we only considered transcriptomic and histopathology data in our
model. It would be beneficial to add known clinical confounders for lung cancer to our model
such as smoking, age, and environment to add more relevant prognostic information to our model
and enable prediction of more clinically-relevant outcomes such as treatment responses. Second,
the labels for our histopathology data relied on the whole slide level labels provided by TCGA.
While other works [36] have also used this labeling scheme, it adds noise to the labels because not
every patch within a cancerous slide depicts cancerous tissue. Third, the distribution of healthy,
LUAD, LUSC samples were imbalanced because we only used samples with both transcriptomic
and histopathologic data and TCGA collected less transcriptomic data from healthy subjects.
Future work should consider validating these results with an external balanced dataset. Lastly,
we have focused on only one prediction task of classification. While this highlights the promise
of contextual deep learning, we are excited for future work to use our approach to predict stage,
survival, and optimal treatments.

Despite these limitations, our results suggest that with contextual deep models we can learn
a context called a discriminative subtype from histopathological data and this discriminative
subtype can produce sample-specific transcriptomic models which accurately classify LUAD,
LUSC, and healthy tissue. Our work takes another step towards creating patient-specific inter-
pretable predictive models of disease. We look forward to future work to expand on the use of
contextual deep models to learn from multi-modal patient data.
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Chapter 5

Personalized Regression: A
Non-parametric Parameter Generator

In the previous chapter, we explored the use of histopathology images to contextualize tran-
scriptomic models of cancer. This approach succeeded and indicated that histopathology images
contain significant information about the genomic patterns in tumors. What can we do when the
sample representations do not provide a complete picture of the sample-specific model param-
eters? Can we estimate sample-specific model parameters if there does not exist a one-to-one
function mapping covariates to model paramters? In this chapter we propose a method for this
case in which sample covariates only provide insight on sample similarity rather than directly
leading to model parameters.

Portions of this chapter have been previously published as [108, 109].

Personalized Regression
Here, we propose a framework to estimate sample-specific models by learning patterns of

differentiation between samples. Instead of learning a single model for an entire cohort, or
learning a generating function for model parameters, our framework learns a distance metric
between samples and uses this distance to encourage similarity between the model parameters
of similar samples. The key is to leverage the fact that although each sample is expected to have
a unique pattern of differentiation, these patterns are not independent of one another, and are
expected to share substantial similarities. Leveraging this, we can “borrow strength” from the
entire cohort to learn a useful model that is specific to a given sample. To do this, we propose a
novel distance matching regularizer which estimates sample similarity and encourages parameter
similarity for similar samples.

Instead of assuming a known parametric function that translates covariates into regression
parameters, we aim to recover the personalized regression parameters by matching the pairwise
distances implied by covariates U to the pairwise distances in regression parameters β. By focus-
ing on matching the two measurements of sample distance rather than learning a function of the
covariate values, our framework avoids assumptions of smoothness of the personalization effects.
In addition, our framework requires only a set ofK feature-wise distance metrics dUk ∶ Ω

2
k → R≥0

that each act on a single covariate feature. Note that here we do not require these distance met-
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rics to be differentiable. This allows for a wide variety of distance metrics, such as the discrete
metric dUk(U

(i)
k , U

(j)
k ) = I

{U
(i)
k

≠U
(j)
k

}
, and allows our framework to handle the realistic situation of

categorical covariates without ordering, which previous approaches do not handle. By applying
these feature-specific distance metrics, we produce K-dimensional distances between each pair
i, j of covariate values dZ(U (i), U (j)) = [dU1(U

(i)
1 , U

(j)
1 ), ..., dUK(U

(i)
K , U

(j)
K )].

Conveniently, the same analytic tools required to understand an individual sample in the
context of similar samples will also enable us to look at each sample group in the context of
other groups. In this way, our approach can lead to models of controllable granularity.

For clarity, we describe the main idea using a linear model for each personalized model;
extension to arbitrary generalized linear models including logistic regression is straightforward.
In Section 5, we include experiments using both linear and logistic regression. A traditional
linear model would dictate Y (i) = ⟨X(i), θ⟩ + w(i), where the w(i) are noise and the parameter
θ ∈ Rp is shared across different samples. We relax this model by allowing θ to vary with each
sample, i.e.

Y (i) = ⟨X(i), θ(i)⟩ +w(i). (5.1)

Clearly, without additional constraints, this model is overparametrized— there is a (p − 1)-
dimensional subspace of solutions to the equation Y (i) = ⟨X(i), θ(i)⟩ in θ(i) for each i. Thus,
the key is to choose a solution θ(i) that simultaneously leads to good generalization and accurate
inferences about the ith sample. We propose two strategies for this: (a) a novel regularization
scheme and (b) a low-rank latent representation of the parameters θ(i).

Model

We are interested in learning which features X ∈ RP are relevant for predicting a phenotype
Y ∈ R such as disease status. At the same time, we assume we have access to clinical covariates
U ∈ Ω1 ×⋯ ×ΩK for each individual, which are allowed to be arbitrary—unordered or ordered,
categorical or continuous, and even with missing values. Throughout, we let N denote the total
number of patients in the cohort and use superscripts to identify samples. Thus, Y (i), X(i), and
U (i) denote the data for the ith sample and β(i) denotes the personalized regression coefficients
for the ith sample.

5.1 Distance-Matching Regularization

To recover personalized model parameters β(i) without a priori knowledge of how samples
are related, we assume that there are unknown (pseudo)metrics dβ and dU such that dβ(β(i), β(j)) ≈

dU(U (i), U (j)). That is, similarity in parameters is related to similarity in covariates, however,
the nature of this similarity is unobserved, unknown, and may not correspond to usual notions
of distance such as Euclidean distance. This is closely related to the notion of distance metric
learning introduced by Xing et al. [195]. Existing work along these lines in the personalized esti-
mation literature typically assumes that either (a) The metrics are Euclidean, or (b) The pairwise
similarities are known [196, 197].
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To learn these latent distance metrics, we model them as follows:

dβ(x, y) = ζ⟨φβ, [dβ1(x1, y1), . . . , dβP (xP , yP )]⟩, (5.2a)

dU(x, y) = ⟨φU , [dU1(x1, y1), . . . , dUK(xK , yK)]⟩, (5.2b)

where ⟨⋅, ⋅⟩ denotes the dot product of two vectors and dβp (p = 1, . . . , P ) are user-specified met-
rics between scalars and dUk (k = 1, . . . ,K) are user-specified metrics between covariates. Note
that here we do not require these distance metrics to be differentiable. This allows for a wide va-
riety of distance metrics, such as the discrete metric dUk(x, y) that equals one if x = y and is zero
otherwise. This allows our framework to handle the realistic situation of categorical covariates
without ordering. The parameters φβ and φU represent unknown linear transformations of these
“simple” distances into more useful latent distance metrics given by (5.2a) and (5.2b) with scale
ζ > 0.

Define pairwise distance vectors for each i, j by

∆
(i,j)
β = [dβ1(β

(i)
1 , β

(j)
1 ), . . . , dβP (β

(i)
P , β

(j)
P )] (5.3a)

∆
(i,j)
U = [dU1(U

(i)
1 , U

(j)
1 ), . . . , dUK(U

(i)
K , U

(j)
K )] (5.3b)

Since the covariate values in U are fixed, ∆
(i,j)
U is also fixed, whereas ∆

(i,j)
β is not fixed since the

values of β(i) and β(j) will change during training. For simplicity, we take dβp(x, y) = ∣x − y∣
(p = 1, . . . , P ) in the remainder, although this could be replaced with any distance metric that is
differentiable for all x ≠ y.

Now define the following distance matching regularizer:

%
(i)
γ (dβ, dU) =

γ

2
∑
j≠i

(dβ(β
(i), β(j)) − dU(U

(i), U (j)))
2

=
γ

2
∑
j≠i

(ζ⟨φβ,∆
(i,j)
β ⟩ − ⟨φU ,∆

(i,j)
U ⟩)

2

.
(5.4)

This regularizer attempts to match the pairwise distances between covariate values to the pairwise
distances in the learned regression parameters. Let f be a loss function, e.g. least squares for
regression or logistic loss for classification. Define a sample-specific objective by

L(i)(β(i);dβ, dU)∝f(X
(i), Y (i), β(i)) + ρβλ(β

(i)) + %
(i)
γ (dβ, dU).

where γ trades off sensitivity to prediction of the response variable against sensitivity to sample
distances, f(X(i), Y (i), β(i)) is the prediction loss for sample i, and ρβλ ∶ RP → R≥0 regularizes
β(i) with strength set by λ. Summing these, we obtain the complete objective function

L(β, φβ, φU , ζ)∝
N

∑
i=1

L(i)(β, dβ, dU) + ψ
β
α(dβ) + ψ

U
υ (dU)

where ψβα, and ψUυ regularize the distance functions dβ , dU with strengths set by α, υ, respectively.
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Intuition

A visualization of this model is to imagine a set of marbles positioned at the top of a hill, with
springs connecting each pair of marbles. When the spring constants are set to +∞ and the springs
have a resting length of 0, the marbles cannot move (as in a classical population estimator which
constrains all estimates to be at the same point). When the spring constant is reduced and the
resting lengths of the springs are increased (to create our personalized estimator), the marbles
will be allowed to roll down the hill and will each follow their own path toward a minimum. In
this visualization, the spring constant κij between marbles i and j is given by κij = γ

2 and the
spring has a resting length of ∆

(i,j)
U φU . While the resting length of the spring may change over

the course of the optimization (as φU is updated), the spring imparts the same force in opposing
directions on marbles i and j, so it cannot move the midpoint of marbles i and j. Thus, the
pairwise regularization cannot move the bericenter of the personalized solutions.

5.2 Low-Rank Personalized Regression
We constrain the matrix of personalized parameters Ω = [θ(1) ∣⋯ ∣ θ(n)] ∈ Rp×n to be low-rank,
i.e. θ(i) = QTZ(i) for some loadings Z(i) ∈ Rq and some dictionary Q ∈ Rq×p. Letting Z ∈ Rq×n

denote the matrix of loadings, we have a low-rank representation of Ω = QTZ. The choice of q is
determined by the user’s desired latent dimensionality; for q ≪ p, using only Θ(q(n+p)) instead
of the Θ(np) of a full-rank solution can greatly improve computational and statistical efficiency.
In addition, the low-rank formulation enables us to use `2 distance in Z in Eq. (5.6) to restrict
Euclidean distances between the θ(i): After normalizing the columns of Q, we have

∥θ(i) − θ(j)∥ ≤
√
p∥Z(i) −Z(j)∥. (5.5)

This illustrates that closeness in the loadings Z(i) implies closeness in parameters θ(i). This fact
will be exploited to regularize θ(i) (Section 5).

This use of a dictionary Q is common in multi-task learning [129] based on the assumption
that tasks inherently use shared atomic representations. Here, we make the analogous assumption
that samples arise from combinations of shared processes, so sample-specific models based on
a shared dictionary efficiently characterize sample heterogeneity. Sparsity in θ can be realized
by sparsity in Z,Q; for instance, effect sizes which are consistently zero across all samples
can be created by zero vectors in the columns of Q. The low-rank formulation also implicitly
constrains the number of personalized sparsity patterns; this can be adjusted by changing the
latent dimensionality q.

Distance-matching of Low-Rank Personalized Models
By Eq. (5.5), in order for ∥θ(i) − θ(j)∥ ≈ ρφ(U (i), U (j)), it suffices to require ∥Z(i) − Z(j)∥ ≈

ρφ(U (i), U (j)). With this in mind, define the following distance-matching regularizer:

D
(i)
γ (Z,φ) =

γ

2
∑

j∈Br(i)

(ρφ(U
(i), U (j)) − ∥Z(i) −Z(j)∥2)

2
, (5.6)
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where Br(i) = {j ∶ ∥Z(i) − Z(j)∥2 < r}. This regularizer promotes imitating the structure of co-
variate values in the regression parameters. By usingZ instead of Ω in the regularizer, calculation
of distances is much more efficient when q ≪ p.
Missing values

When there is a missing value in the covariate data, we set the distance between this value and
all others to zero. This underestimates the distance between samples, biasing the solution toward
retaining a central population estimator rather than personalizing the models based on missing
features.

Full Model Let `(x, y, θ) be a loss function, e.g. least-squares or logistic loss. For each sample
i of the training data, define a regularized, sample-specific loss by

L(i)(Z,Q,φ) = `(X(i), Y (i),QTZ(i)) + ψλ(Q
TZ(i)) +D

(i)
γ (Z,φ), (5.7)

where ψλ is a regularizer such as the `1 penalty and D(i)
γ is the distance-matching regularizer

defined in Eq. (5.6). We learn Ω and φ by minimizing the following composite objective:

L(Z,Q,φ) =
n

∑
i=1

L(i)(Z,Q,φ) + υ∥φ − 1∥22, (5.8)

where the second term regularizes the distance function ρφ with strength set by υ, and we recall
that Ω = QTZ. The hyperparameter γ trades off sensitivity to prediction of the response variable
against sensitivity to covariate structure.

Optimization We minimize the composite objectiveL(Z,Q,φ) with subgradient descent com-
bined with a specific initialization and learning rate schedule. An outline of the algorithm can
be found in Alg. 1 below. In detail, we initialize Ω by setting θ(i) ∼ N(θ̂pop, εI) for a population
model θ̂pop such as the Lasso or elastic net and then initialize Z andQ by factorizing Ω with PCA.
ε is a very small value used only to enable factorization by the PCA algorithm. Each personalized
estimator is endowed with a personalized learning rate α(i)

t = αt/∥θ̂
(i)
t − θ̂(pop)∥∞, which scales

the global learning rate αt according to how far the estimator has traveled. In addition to working
well in practice, this scheme guarantees that the center of mass of the personalized regression
coefficients does not deviate too far from the intialization θ̂pop, even though the coefficients θ̂(i)

remain unconstrained. This property is discussed in more detail in Section 5.

Prediction Given a test point (X,U), we form a sample-specific model by averaging the model
parameters of the kn nearest training points, according to the learned distance metric ρφ:

θ =
1

kn

kn

∑
j=1

θ(η(ρφ,U)[j]), η(ρφ, U) = argsort
1≤i≤n

ρφ(U,U
(i)), (5.9a)

where argsort orders the indices {1, . . . , n} in descending order of covariate distance. Increasing
kn drives the test models toward the population model to control overfitting. In our experiments,
we use kn = 3.
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Algorithm 1 Personalized Estimation

Require: θ̂pop, λ, γ, υ,α, c
1: θ(1), . . . , θ(n) ← θ̂pop

2: Ω← [θ(1)∣ . . . ∣ θ(n)]
3: Z,Q← PCA(Ω)
4:
5: α ← α0

6: do
7: Z̃, Q̃, φ̃← Z,Q,φ
8: φ← φ − α ∂

∂φL(Z̃, Q̃, φ̃;λ, γ, υ)

9: Z(i) ← Z(i) − α
∥θ(i)−θ̂pop∥∞

[ ∂
∂Z(i) ∑

n
i=1D

(i)
γ (Z̃, φ̃)+

Q̃(∂`(X(i), Y (i), θ(i)) + ∂ψλ(θ(i)))] ∀ i ∈ [1, . . . , n]

10: Q← Q − α[ ∂
∂Q ∑

n
i=1D

(i)
γ (Z̃, φ̃) +∑

n
i=1 Z̃

(i)(∂`(X(i), Y (i), θ(i))T + ∂ψλ(θ(i))T )]
11: α ← αc
12: θ(i) ← QTZ(i) ∀ i ∈ [1, . . . , n]
13: Ω← [θ(1)∣ . . . ∣θ(n)]
14: while not converged
15: return Ω, Z,Q,φ

We have intentionally avoided usingX to select θ so that interpretation of θ is not confounded
by X . In some cases, however, the sample predictors can provide additional insight to sample
distances (e.g. [191]); we leave it to future work to examine how to augment estimations of
sample distances by including distances between predictors.

Scalability Naı̈vely, the distance-matching regularizer has O(n2) pairwise distances to cal-
culate, however this calculation can be made efficient as follows. First, the terms involving
d`(U

(i)
` , U

(j)
` ) remain unchanged during optimization, so that their computation can be amor-

tized. This allows the use of feature-wise distance metrics which are computationally intensive
(e.g. the output of a deep learning model for image covariates). Furthermore, these values are
never optimized, so the distance metrics d` need not be differentiable. This allows for a wide vari-
ety of distance metrics, such as the discrete metric for unordered categorical covariates. Second,
we streamline the calculation of nearest neighbors in two ways: 1) Storing Z in a spatial data
structure and 2) Shrinking the hyperparameter r used in (5.6). With these performance improve-
ments, we are able to fit models to datasets with over 10,000 samples and 1000s of predictors on
a Macbook Pro with 16GB RAM in under an hour.

Analysis

Initializing sample-specific models around a population estimate is convenient because the sample-
specific estimates do not diverge from the population estimate unless they have strong reason to
do so. Here, we analyze linear regression minimized by squared loss (e.g., f(X(i), Y (i), θ(i)) =
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(Y (i) −X(i)θ(i))2), though the properties extend to any predictive loss function with a Lipschitz-
continuous subgradient.
Theorem 3. Let us consider personalized linear regression with ψλ(x) = λ∥x∥1 (i.e. `1 regular-
ization). Let X be normalized such that maxi∥X(i)∥∞ ≤ 1, ∥X(i)∥1 = 1. Define θt ∶= 1

n ∑
n
i=1 θ̂

(i)
t ,

where θ̂(i)t is the current value of θ̂(i) after t iterations. Let the learning rate follow a multiplica-
tive decay such that αt = α0ct, where α0 is the initial learning rate and c is a constant decay
factor. Then at iteration τ ,

∥θτ − θ̂
pop∥∞ ∈ O(λ). (5.10)

That is, the center of mass of the personalized regression coefficients does not deviate too far
from the initialization θ̂pop, even though the coefficients θ̂(i) remain unconstrained. In addition,
the distance-matching regularizer does not move the center of mass and the update to the center
of mass does not grow with the number of samples. Proofs of these claims are included in
[109].

5.3 Applications
We compare personalized regression (hereafter, PR) to four baselines: 1) Population linear or

logistic regression, 2) A mixture regression (MR) model, 3) Varying coefficients (VC), 4) Deep
neural networks (DNN). First, we evaluate each method’s ability to recover the true parameters
from simulated data. Then we present three real data case studies, each progressively more
challenging than the previous: 1) Stock prediction using financial data, 2) Cancer diagnosis from
mass spectrometry data, and 3) Electoral prediction using historical election data. The results are
summarized in Table 5.3 for easy reference.

We believe the out-of-sample prediction results provide strong evidence that any harmful
overfitting of PR is outweighed by the benefit of personalized estimation. This agrees with
famous results such as [174], where it is showed that optimal ensembles of linear models consist
of overfitted atoms; see especially Eq. 12 and Fig. 2 therein.
Baselines For each experiment, we use several baseline models to benchmark performance:

• Population model. First, we use elastic net regularization [207] as a generalizable popula-
tion estimator.

• Mixture of regressions. To estimate a small collection of models, we use a standard mixture
model optimized by expectation-maximization. Since this model does not share informa-
tion between mixture components, the number of components must be much smaller than
the number of samples.

• Varying coefficient model. To estimate sample-specific models, we use an `1-regularized
linear varying-coefficients model [71].

• Deep neural network. Finally, to compare against models with large representational ca-
pacity, we include a neural network. This neural network contains 5 hidden layers, with
layer sizes and nonlinearities treated as hyperparameters optimized for cross-validation
loss by grid search. The final version contains 250 hidden nodes in each layer with sig-
moid nonlinearities.
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For the tasks with continuous outcomes, these are linear regression models; for classification
tasks, these are logistic regression models.

Choice of hyperparameters While the personalized regression approach estimates a large
number of parameters, there are relatively few hyperparameters. Hyperparameters to be se-
lected are: λ the strength of the traditional regression regularizer, γ the strength of the distance-
matching regularizer, r the diameter of the neighborhoods considered by the distance-matching
regularizer, υ the strength of regularizer on φ, and q the latent dimensionality. λ should be set
equivalent to the λ used in the population estimator. γ requires some tuning and should be set
such that the distance-matching regularizer contributes the a same order of magnitude on the
total loss as does the predictive loss. r should be set to reflect the user’s desired neighborhood of
personalization; larger r produces personalized estimates which reflect covariate distances even
for very different samples, smaller r improves computation speed but decreases the size of the
neighborhoods of personalization. Finally, υ regularizes φ and should be set to reflect the user’s
prior knowledge about the influence of each covariate on personalization.

For our experiments, we use the following hyperparameter values with PR:
• Simulation. λ = 1e−1, γ = 1e5, υ = 1e−2, q = 2

• Finance. λ = 1, γ = 1e8, υ = 1e−2, q = 50

• Cancer. λ = 1, γ = 1e6, υ = 1e−2, q = 50

• Election. λ = 1e−2, γ = 1e3, υ = 1e−2, q = 2

For all experiments, we dynamically set r such that each point has on average 10 neighbors,
and use the learning rate schedule of α0 = 1e−4, c = 1 − 1e−4. For each baseline described in
Section 5, hyperparameter values were selected by cross-validation.

Simulation Study We first investigate the capacity of personalized regression to recover true
effect sizes in simulation studies. For these experiments, we generate data according to X ∼

Unif(−1,1)p, U ∼ Unif(0,1)K , a ∼ Unif(0,1)p, b ∼ Unif(0,1)p, c ∼ Cat(K)p, θj = I{Ucj>aj} +
bj sinUcj , Y (i) = X(i)θ(i) +N(0,0.01). These experiments all use K = 5 covariates. As shown
in Fig. 3.1, this produces regression parameters with a discontinuous distribution.

The algorithms are given both X and U as input during training, and we use LIME [160] to
generate local linear approximations to the DNN in order to estimate parameters θ(i) for each
sample. In this setting, there exists a discontinuous function which could output exactly the
sample-specific regression models from the covariates. In this sense, the neural network is “cor-
rectly specified” for this dataset, testing how well locally-linear models approximate the true
parameters. To estimate personalized models for the simulated dataset, we initialize the person-
alized estimations with a varying-coefficient model, and personalize according to the distance
metric d1(x, y) = ∣x − y∣.

Results. In Table 5.1, we report results for varying n and in Table 5.2, we report results for
varying p. The values reported are: (1) the recovery error of the true regression parameters in
the training set, with (mean ± std) values calculated over 20 experiments with different values of
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p Model ∣∣Ω̂ −Ω∣∣2 R2 MSE

2

Pop. 9.97 0.87 0.13
MR 9.86 0.88 0.12
VC 14.55 0.76 0.22

DNN 30.42 0.75 0.24
PR 7.82 0.89 0.09

10

Pop. 15.19 0.79 0.73
MR 14.81 0.80 0.70
VC 23.86 0.69 1.09

DNN 67.49 0.80 0.85
PR 14.52 0.82 0.65

25

Pop. 25.86 0.85 1.26
MR 25.75 0.86 1.20
VC 38.77 0.66 3.05

DNN 103.72 0.68 2.78
PR 24.53 0.87 1.10

Table 5.1: Simulations with n = 500.

n Model ∣∣Ω̂ −Ω∣∣2 R2 MSE

100

Pop. 6.36 0.90 0.23
MR 6.48 0.90 0.23
VC 10.75 0.78 0.50

DNN 22.30 0.39 0.75
PR 6.03 0.91 0.21

500

Pop. 11.83 0.84 0.29
MR 11.78 0.84 0.30
VC 19.06 0.74 0.49

DNN 47.33 0.81 0.37
PR 10.30 0.86 0.26

2500

Pop. 33.03 0.87 0.26
MR 31.75 0.88 0.26
VC 33.71 0.87 0.27

DNN 102.88 0.88 0.29
PR 26.11 0.90 0.21

Table 5.2: Simulations with p = 5.

X,U,w, (2) correlation coefficient of predictions on the test set, and (3) mean squared error of
predictions on the test set.

As expected, the recovery error is much lower for PR, while the DNN shows competitive
predictive error. The population estimator successfully recovers the mean effect sizes, but this
central model is not accurate for any individual, resulting in poor performance both in recovering
Ω and in prediction. Similarly, both MR and VC perform poorly. As expected, the deep learn-
ing model excels at predictive error, however, the local linear approximations do not accurately
recover the sample-specific linear models. In contrast, PR exhibits both the flexibility and the
structure to learn the true regression parameters while retaining predictive performance.

Financial Prediction A common task in financial trading is to predict the price of a security at
some point in the future. This is a challenging task made more difficult by nonstationarity—the
interpretation of an event changes over time, and different securities may respond to the same
event differently.

Data. We built a dataset of security prices over a 30-year time frame by joining stock and
ETF trading histories1 to a database of global news headlines from Bloomberg [46] and Reddit2.
We transform news headlines into continuous representations by tf-idf weighting averaging [7]
of word embeddings under the GLoVE model [146] pre-trained on Wikipedia and Gigaword
corpora3. After dimensionality reduction, this news dataset consists of a 50-dimensional vector

1https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs/version/3
2https://www.kaggle.com/aaron7sun/stocknews
3https://nlp.stanford.edu/projects/glove
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Model Financial Cancer Election
R2 MSE AUROC Acc R2 MSE

Pop. 0.01 64144 0.794 0.962 0.00 0.019
MR 0.74 16146 0.876 0.939 −0.56 0.031
VC 0.06 60694 0.430 0.863 0.00 0.019
DNN −0.02 63028 0.901 0.955 0.00 0.019
PR 0.86 4822 0.923 0.975 0.45 0.011

Table 5.3: Predictive performance on test sets of real data experiments. For continuous response
variables, we report correlation coefficient (R2) and mean squared error (MSE) of the predic-
tions. For classification tasks, we report area under the receiver operating characteristic curve
(AUROC) and the accuracy (ACC).

for each date. The predictors X(i,t) consist of the trading history of the 24 securities over the
previous 2 weeks as well as global news headlines from the same time period. The covariates
U (i,t) consist of the date and security characteristics (name, region, and industry). The target
Y (i,t) is the price of this security 2 weeks after t. We split the dataset into training and test
sets at the 80th percentile date, which is approximately the beginning of 2011. To estimate
personalized models for the financial dataset, we initialize the personalized estimators with the
population model and personalize according to the `1 distance for time and the discrete metric
for the other covariates.

Results. PR significantly outperforms baseline methods to predict price movements (Table 5.3).
In contrast to standard models which average effects over long time periods and/or securities, PR
summarizes gradual shifts in attention. Shown in Fig. 5.1 are visualizations of the model pa-
rameters, colored by each of the covariates used for personalization. The strongest clustering
behavior is due to time (Fig. 5.1d). For instance, models fit to samples in the era of U.S. “stagfla-
tion” (1973-1975) are overlaid on models for samples in the early 1990s U.S. recession. In both
of these cases, real equity prices declined against the background of high inflation rates. In con-
trast, the recessions marked by structural problems such as the Great Financial Crisis of 2008
are separated from the others. Within each time period, we also see that industries (Fig. 5.1a),
regions (Fig. 5.1b), and securities (Fig. 5.1c) are strongly clustered.

Cancer Analysis In cancer analysis, the challenges of sample heterogeneity are paramount
and well-known. Increasing biomedical evidence suggests that patients do not fall into discrete
clusters [18, 123], but rather each patient experiences a unique disease that should be approached
from an individualized perspective [48]. Here, we investigate the capacity of PR to distinguish
malignant from benign skin lesions using a dataset of desorption electrospray ionization mass
spectrometry imaging (DESI-MSI) of a common skin cancer, basal cell carcinoma (BCC).

Data. This dataset, from [126], contains 17,053 total samples from 17 patients. Each sample
consists of 2,734 spectra intensities and is labeled with a binary outcome (0=benign, 1=malig-
nant). Data from 9 patients are used to fit models, while data from 8 patients are held-out for
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Figure 5.1: Personalized financial models using t-SNE [185] embedding. Each point represents
a regression model for one security at a single date, colored according to covariate value.

evaluation. In this dataset, the only explicit covariate is the patient label. To produce covari-
ates which are most useful for personalization, we augment the patient labels with 1500 of the
predictive features compressed to 2 dimensions by t-SNE dimensionality reduction. These 1500
predictive features are excluded from the set of predictors for PR, while baseline methods use the
entire set of features as predictors. We fit the personalized regression according to the distance
function d1(x, y) = I{x≠y}, d2(x, y) = ∣x − y∣, d3(x, y) = ∣x − y∣, where the first function checks if
the patients are the same and the final two calculate distance in the continuous covariates.

Results. As shown in Table 5.3, PR produces the best predictions of tumor status amongst
the methods evaluated. The substantial improvement over competing methods is likely due to
the long tail of the distribution of characteristic features. This may point to the “mosaic” view
of tumors, under which single tumors are comprised of multiple cell lines [113]. This example
underscores the benefits of treating sample heterogeneity as fundamental by designing algorithms
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to estimate sample-specific models.

Presidential Election Analysis Our last experiment illustrates a practical use case for the ex-
ample of modeling election outcomes discussed in Section 1. The goals are twofold: 1) To
predict county-level election results, and 2) To explore the use of distinct regression models
as embeddings of samples in order to better understand voting preferences at the county (i.e.
sample-specific) level.

Data. The election predictors are taken from the 2012 U.S. presidential election and consists
of discrete representations of each candidate based on candidate positions compiled by ProCon.4

Outcomes are the county-level vote proportions in the 2012 U.S. presidential election.5 For the
covariates U , we used county demographic information from the 2010 U.S. Census.6 As the
outcome varies across samples but the predictors remain constant, the personalized regression
models must encode sample heterogeneity by estimating different regression parameters for dif-
ferent samples, thus creating county representations (“embeddings”) which combine both voting
and demographic data.

Results. The out-of-sample predictive error is significantly reduced by personalization (Ta-
ble 5.3). Representations of the personalized models for Pennsylvania counties are shown in
Fig. 5.2. Generating county embeddings based solely on demographics produce embeddings
which do not strongly correspond to voting patterns (Fig. 5.2a), while voting outcomes are near
a one-dimensional manifold (Fig. 5.2b). In contrast, the personalized models produce a structure
which interpolates between the two types of data (Fig. 5.2e). These trends are not captured by the
baseline methods, such as the varying-coefficients model (Fig. 5.2d). In addition, concatenating
the demographic and voting outcomes does not recover the same structure (Fig. 5.2c).

An interesting case is that of the Lackawanna and Allegheny counties. While these counties
had similar voting results in the 2012 election, their embeddings are far apart due to the differ-
ence in demographics between their major metropolitan areas. This indicates that the county
populations may be voting for different reasons despite similar demographics, a finding that is
not discovered by jointly inspecting the demographic and voting data (Fig. 5.2c). Thus, sample-
specific models can be used to understand the complexities of election results.

Sample-Specific Pan-Cancer Analysis
A fundamental goal of personalized medicine is to understand the patterns of differentiation be-
tween individuals. With the advent of projects like The Cancer Genome Atlas7 (TCGA) and the
International Cancer Genome Consortium (ICGC)8, genomic cancer data are generated at an un-
precedented volume. We would like to use these data to understand patient-specific differences

4https://2012election.procon.org/view.source-summary-chart.php
5https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/21919
6https://www.census.gov/data/datasets/2016/demo/popest/counties-detail.html
7cancergenome.nih.giv
8dcc.icgc.org
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(c) Concatenated Embeddings.
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(e) Personalized Estimation, Ẑ

Figure 5.2: Embeddings of Pennsylvania counties. Each point represents the t-SNE embedding
of a representation of a county, with color gradient corresponding to the 2012 election result (red
for Republican candidate, blue for Democratic candidate). (a) The county demographics (U) lie
near a low-dimensional manifold that does not correspond to voter outcome. (b) The observed
voting results lie near a one-dimensional manifold. (c) Personalized regression produces sample
embeddings (Ẑ) that trade off between demographic and voting information.

for personalized medicine, but many analysis pipelines discard sample heterogeneity in order to
boost accuracy. Sample heterogeneity is particularly important for cancer, as cancer is increas-
ingly appreciated as a complex disease in which many distinct underlying mutations may present
with similar phenotypes [53]; even within a single patient, there is increasing evidence of tumor
mosaics composed of distinct cell lines [127]. This difficulty with complex diseases like cancer
motivates us to find new ways of analyzing data at increasingly small granularities.

Toward this aim, the bioinformatics community has developed increasingly specific assays
[100]. From targeted microarrays to whole-genome RNA-Seq and single cell RNA-Seq, the
granularity of data collected by genomic assays has continued to be refined, to the point that
we now possess data points representing the state of an individual cell at a single time point,
unlocking the potential to study inter-patient, inter-tissue, and inter-cell variability of complex
diseases.

A classic approach to personalization is to assume that we have access to a large volume of
multimodal data (e.g. clinical, genomic, proteomic, biometric, etc.) on each individual, which
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Tissue n Tissue n

Breast 1,092 Ovary 376
Lung 1,016 Liver 371
Kidney 885 Cervix 304
Brain 677 Soft Tissue 259
Colorectal 623 Adrenal Gland 258
Uterus 611 Pancreas 177
Thyroid 502 Esophagus 164
Head and Neck 501 Bone Marrow 151
Prostate 495 Eye 80
Skin 468 Lymph Nodes 48
Bladder 408 Bile Duct 36
Stomach 380

Table 5.4: Number of samples by tissue in TCGA.

is used to build large predictive models. Given enough data per individual, clinical outcomes
and decisions can be personalized [100, 150], and recent work along these lines has leveraged a
dizzying array of complex models including Gaussian processes [6], neural networks [119], and
tree-based models [135], just to name a few. Despite the successes of these methods, they are
still limited to this ‘one disease–one model’ perspective, in which a single predictive model—
often through model averaging—is built for a single cohort (e.g. corresponding to patients of a
particular disease type). Furthermore, these complex models are often difficult to interpret and
are not guaranteed to provide correct inference into the underlying biological drivers of disease.

Unfortunately, in many circumstances, we may only have access to a limited amount of mea-
surements per individual (e.g. either for cost or privacy reasons). In this case, it is advantageous
to leverage data from distinct but related cohorts in order to build personalized models for each
individual. For example, in cancer applications we now have access to large datasets for com-
monly studied cancers such as breast and lung cancer through repositories such as TCGA. At
the same time, less common cancers such as of the eye and lymph node, have much less data
(Table 5.4). A true “pan-cancer” study would combine all of this data, exploiting the similarities
between different types of cancer to improve the accuracy of models for eye and lymph node
cancer. That such similarities exist is well-established in the literature [e.g. 194]. However, in
the traditional ‘one disease–one model’ paradigm, data from other cancers play no role; while
this makes sense for diseases which have a single root cause, the heterogeneity of complex dis-
eases such as cancer renders these methods inadequate. Leveraging data from multiple cohorts
while simultaneously obtaining distinct models for different diseases and different patients is a
key challenge in personalized medicine.

Here, we investigate the potential of using personalized regression for personalized cancer
analysis. We use gene expression (RNA-Seq) quantification data from The Cancer Genome Atlas
(TCGA). This dataset compiles data from 37 projects spanning 36 disease types in 28 primary
sites. After pruning for missing values, this dataset contains 9663 profiles for 8944 case and 719
matched control samples; we divide this set into 75% training data and 25% testing. While this
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full dataset is sizable, previous analyses have been hampered by the small number of samples
for each particular cancer sub-type (e.g., there are only 36 cases present in the bile duct cancer
dataset). Because our framework of personalized regression allows models to share information
across diverse settings, we are able to jointly analyze the cancer subtypes while still recovering
subtype-specific characteristics. The number of samples available from each dataset was shown
in Table 5.4.

We subsample genes based on annotations in the COSMIC Catalogue of Somatic Mutations
in Cancer [54], so that there is exactly one putatively causal gene for each 5 non-annotated
genes. This resulting in P = 4123 features when an intercept term is added. We train each
logistic regression model to predict the case/control status of each sample with `1 regulariza-
tion to perform variable selection in order to study which genes are relevant for classification.
Our baseline models include: `1-regularized logistic regression model trained on all pan-cancer
data (“Population”), `1-regularized logistic regression model trained on each primary tissue type
(“Tissue-Population”), `1-regularized mixture model with the number of clusters equal to the
number of tissue types in the pan-cancer dataset (“Mixture”), a logistic regression model with
parameters that follow a linear varying coefficients model (“VC”), and the mixed model recently
proposed by Hayeck et al. 72.

In addition to the RNA-seq data, we used the following 14 covariates: disease type, primary
tumor site, age of the patient at diagnosis, year of birth of the patient, the number of days to
sample collection, gender of the patient, race of the patient, percent of neutrophil infiltration,
percent monocyte infiltration, percent normal cells, percent tumor nuclei, percent lymphocyte
infiltration, percent stromal cells, and percent tumor cells in the sample. These covariates span
a range of different types, including both continuous and discrete values; for continuous-valued
covariates, we use the `1 distance function, for discrete-valued covariates, we use the discrete
distance metric. For the VC model, unordered discrete covariates such as primary tissue must
be converted into one-hot vectors. This procedure increases the number of covariate features
to 64, underscoring the benefit of our model’s ability to directly use the 14 unordered, discrete
covariates without modification.

To predict case/control status of each sample, we implemented the personalized logistic re-
gression model with Lasso regularization. We selected λ in the population estimator by 10-fold
cross-validation on the training set. This value of λ is held fixed between the population estimator
and the personalized estimator. Next, we set γ so that the loss due to the distance matching regu-
larizer is similar in magnitude to the prediction loss. Finally, we set υ and α so that the loss due
to distance metric regularization is one order of magnitude smaller than the logistic classification
loss. This heuristic represents our uncertainty in the form of personalization for cancer; we prefer
to rely on the data than to set a rigid form of personalization. Empricially, we observe robust-
ness in the solutions up to an order of magnitude change in these hyperparasecdepthmeters. By
inspecting the variables (mRNA transcripts) selected by this method, we find that personalized
regression identifies (1) individualized genetic aberrations, (2) interpretable patterns of differ-
entiation, and (3) patient sub-typing that is more meaningful than clustering based on covariate
data.
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Figure 5.3: Contribution of each covariate to the learned personalization distance in the pan-
cancer dataset. We see that, as expected, this method learns to upweight differences in disease
type and primary site, along with other demographic features.
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Figure 5.4: Overlap of selected variables with annotated oncogenes (best viewed in color). Re-
sults for each tissue-specific model are displayed in dashed gray lines, with the sample-weighted
mean displayed in a solid black line. We see that the personalized models select oncogenes at
higher ranks than do the baseline methods, especially for the long tail of low rank oncogenes.

Personalization Effects

We also examine the learned distance metrics for contributions to personalization by each covari-
ate. The linear form of the distance msecdepthetric makes interpretation of φU straightforward
by inspection of the loadings (Figure 5.3). As expected, the disease and primary tissue site of
the sample have the heaviest influence on personalization, confirming our intuition that the vari-
ation between cell types is highest in cells of distinct differentiations. Next in importance to φU
are demographic and clinical features, which may be interpreted as a coarse-grained view of the
patient’s SNPs. Important molecular markers of cancer subtype appear to be (a) percent of neu-
trophil infiltration, (b) percent monocyte infiltration, and (c) percent stromal cells, confirming
clinical findings these phenotypic characteristics as indicative of molecular subtypes, especially
in breast cancers [45, 85, 117].

Accurate Recovery of Personalized Parameters

Personalized regression selects variables on a sample-specific level. Such fine-grained analytic
power, unobscured by cohort averaging, enables more accurate recovery of important features
than is possible by population-scale models. As a result, the number of variables selected for
each sample-specific model is much lower than the number of variables selected by the popula-
tion estimator (Figure 5.5, top). In addition, the number of samples for which each variable is
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selected follow a long-tailed distribution in which a few genes are selected for many samples,
but many genes are selected for a few samples (Figure 5.5, bottom). The set of common gene
selections represents well-studied oncogenes that are common to many types of cancer while the
infrequently selected genes may correspond to less common oncogenes.
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Figure 5.5: The sample-specific variable selection of personalized regression results in models
with fewer selected variables than those selected by population-level models. (Top) Histogram
of the number of variables selected for each patient by personalized regression. Vertical red lines
indicate the number of variables selected by the Tissue-Population model trained on a single
cancer type. Personalized models achieve similar or improved predictive performance with fewer
selected genes. (Bottom) Histogram of the number of samples for which each gene is selected.

To investigate this possibility of many infrequently selected oncogenes, we further examine
the oncogene distribution by rank of variable. Ranks are calculated by ordering the sums of the
magnitudes of each coefficient along the sample axis (for population models, this is simply the
magnitude of the coefficient associated with that variable). In this way, the rank captures both the
number of samples for which the variable was selected and the magnitude of the implied effect
size. As shown in Figure 5.4, the overlap between selected genetic markers and the annotations
in COSMIC [54] is improved by the process of personalization. We see that the highly ranked
oncogenes are efficiently selected by nearly all methods, but the performance of the baseline
models lags as the rank diminishes. In particular, although the Tissue-Population models that are
learned independently using only samples from a given tissue tend to select highly ranked genes
that are also annotated in COSMIC, the performance in the long-tail of infrequently selected
genes is less competitive compared to the personalized model. This confirms the intuition that
personalization is the most useful in this latter regime.

To test whether this increase in oncogene selection is due to novel identification of genetic
processes, we perform enrichment analysis of the ranked lists of genes. Reported in Table 5.5
are the most significant Gene Ontology (GO) terms from a ranked enrichment test using Panther
13.1 [131] on the Panther GO-SLIM Biological Process dataset [130] with a cutoff of p < 0.05
for the Bonferroni-corrected p-values. The genes selected by personalized models are enriched
with similar GO terms compared to the baseline models, which is expected since the gene on-
tology is largely comprised of well-studied annotations from large cohorts as opposed to harder
to detect personalized effects. This validates our hypothesis that the improved performance of
variable selection is not due to identification of a single group of genes, but rather is due to the
identification of many sample-specific effects.
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Model Biological Process p-value

Population
mRNA Processing 2.06e-8

DNA Metabolic Process 3.18e-6
Organelle Organization 3.86e-2

Tissue-Population

mRNA Processing 3.09e-9
Metabolic Process 3.26e-5

Transcription, DNA-Dependent 9.61e-5
DNA metabolic process 5.9e-3

Mixture

mRNA processing 1.45e-8
DNA Metabolic process 1.96e-5

transcription, DNA-dependent 2.62e-4
organelle organization 7.32e-3

VC None NA

LMM DNA metabolic process 2.02e-2

Personalized
mRNA processing 5.83e-6
metabolic process 1.1e-3

DNA metabolic process 3.15e-2

Table 5.5: Enrichment Analysis of Complete Variable Rankings

Discovery of Molecular Subtypes

The pattern of selection of genes is of particular interest for clinical application. As seen in Fig-
ure 5.6, there are a number of common oncogenes that are repeatedly selected throughout many
cancer types, including FOXA1, HOXC13, and FCGR2B. This set combines with a sparse selec-
tion of a number of oncogenes specific to each cancer type. These cancer types span surface-level
characteristics such as tissue type. Interestingly, we also see a small set of rarely selected onco-
genes that are consistently selected for a cluster of about 300 patients (outlined in Figure 5.6).
This set of oncogenes is highly over-represented for the GO biological process term “Modulation
of Chemical Synaptic Transmission” (Bonferroni corrected p-values of 2.32e-2), which includes
genes ATP1A2, SLC6A4, ASIC1, GRM3, and SLC8A3. These genes code for ion-transport pro-
cesses, which have long been seen in vivo as an important system in thyroid cancer [51] and in
vitro from leukemic cells [136], but only recently been appreciated as a functional marker across
many different cancer types [167].

Figure 5.7 depicts a tSNE projection of the learned effect vector for each sample, colored
by the primary tumor site. While the samples appear to form clusters, and the case samples
are separated from the control samples by a large margin, again these clusters do not appear to
correspond to any individual covariate. This complexity of personalization underscores the need
for learned distant metrics to capture relationships corresponding to molecular characterization
of tumors.

To identify molecular subtypes, we cluster the parameter embeddings using the HDBSCAN
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algorithm and perform an enrichment analysis of each cluster’s variable selection. The top 3
over-enriched leaf terms from the GO biological process dataset are shown in Table 5.6. We see
that the different clusters of models correspond to different biological processes. For instance,
cluster 3 is enriched for several terms associated with extracellular interactions, while cluster
2 emphasizes terms associated with nucleotide modification via splicing and repair. These re-
sults suggest that the clusters discovered by personalized regression may correspond to clinically
meaningful molecular subtypes.
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Cluster Biological Process p-value

1
Symbiont Process 2.62e-3

Regulation of Cellular Catabolic Process 1.96e-2
Protein Modification Process 3.43e-2

2

DNA repair 3.21e-12
RNA splicing, via Transesterification

3.64e-7
Reactions with Bulged Adenosine as Nucleophile

DNA Replication 1.00e-6

3
Symbiont Process 1.4e-3

Antigen Processing and Presentation of Peptide Antigen 1.06e-2
Antigen Processing and Presentation of Exogenous Antigen 1.08e-2

4
DNA Metabolic Process 3.83e-8

DNA repair 1.68e-6
Regulation of Cellular Macromolecule Biosynthetic Process 5.06e-6

5
Plasma Membrane Bounded Cell Projection Morphogenesis 1.45e-2

Neuron Projection Development 3.02e-2

6
mRNA Catabolic Process 8.78e-4

Gene Expression 6.02e-4
Macromolecule Biosynthetic Process 3.32e-2

7 None N/A

8
Generation of Precursor Metabolites and Energy 4.75e-5

Oxidation-Reduction Process 4.52e-5
Citrate Metabolic Process 9.84e-3

9
DNA Metabolic Process 3.96e-10

Cellular Response to DNA Damage Stimulus 5.57e-9
Protein Complex Subunit Organization 1.41e-4

10
DNA Metabolic Process 7.15e-8

ncRNA Metabolic Process 1.33e-4
Chromatin Organization 8.27e-4

11
Negative Regulation of Phosphorylation 3.74e-2

Hematopoietic or Lymphoid Organ Development 4.46e-2

Table 5.6: Enrichment Analysis of Tumor Clusters
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Figure 5.6: Selection of genetic markers as predictive of case/control status from a pan-cancer
dataset. The horizontal axis denotes genes while the vertical axis indexes samples. Selected vari-
ables in each row are colored by the primary tumor site of the sample, with unselected variables
colored white. We observe consistent selection of a number of common oncogenes throughout
all cancer types along with the sparse selection of a small number of oncogenes specific to each
cancer type. Genes annotated as oncogenes in the COSMIC census are marked by a red line
along the horizontal axis (zoom in for more detail as these lines may be difficult to differentiate
on some screens). (Top) Rows ordered by primary tissue site, (Bottom) Rows clustered according
to personalized variable selection. The boxed region is analyzed in Section 5.
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Figure 5.7: t-SNE projection of personalized regression parameters learned from a pan-cancer
dataset. Each point represents a single sample with color indicating primary tumor site and
marker type indicating case/control status of the patient. Labelled points indicate the centroids
of clusters analyzed in Table 5.6.
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Chapter 6

Sample-Specific Network Inference

6.1 Motivation

Estimating the structure of directed acyclic graphs (DAGs, i.e. Bayesian networks) is a classic
problem in which we seek to summarize relationships between many observed variables through
a graphical model. This approach has been frequently applied to many problems in biology
[164], genetics [202], machine learning [95], and causal inference [178].

However, the relationships between variables are often non-stationary, e.g. interactions change
over time. Time-varying networks [3, 144, 175] have enjoyed success in identifying changes in
network connections over time by permitting coefficients to vary with time. However, when deal-
ing with complex processes like cancer which vary according to many processes simultaneously,
we often do not know a priori how the factors influence network development. Thus, we would
like a method which can estimate Bayesian network with structures and coefficients that vary
according to several, and possibly latent, continuous covariates. These algorithms will enable us
to understand large heterogeneous datasets at new granularities.

Discovering New Molecular Profiles of Diseases

Complex diseases such as cancer[33, 53, 148] and Alzheimer’s disease[134, 158, 182] are af-
fected by many sources of variation which cause individuals to experience a unique patient
journey. Traditional classification of diseases based on coarse-grained factors such as tissue
morphology are increasingly outdated as fine-grained biological assays are revealing stunning
heterogeneity at the granularity of individual cells[18, 128]. While these assays provide data at a
finer resolution than previously possible, methods of analysis continue to rely on statistical meth-
ods which independently estimate cluster-level models. Increasing evidence points to molecular
subtypes which do not form discrete clusters[122, 137]. Discovering sample-specific molecular
profiles would refine our understanding of the mechanisms behind complex diseases. To this end,
sample-specific inference aims to build statistical models that are capable of tailoring estimation
for each sample.
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Regulatory Network Inference in Alzheimer’s Disease

Recent works have shown that neuronal cell types have strikingly distinct interactomes[133];
thus, estimating a single shared regulatory network will obscure the effects of the disease. With
the wealth of single-cell transcriptomics data recently available[128], we can apply the methods
of personalized network inference to estimate different regulatory networks for different cells.
In this way, we can uncover the heterogeneity of regulatory networks on the cellular level, and
investigate the effectiveness of pre-defined cell types to capture regulatory heterogeneity, or pos-
sibly define new cell types which have different regulatory modifications.

Sample-Specific Inferences for Multi-Modal Cancer Analysis

Sample heterogeneity is particularly important for cancer, as cancer is increasingly appreciated
as a complex disease in which many distinct underlying mutations may present with similar
phenotypes [53]; even within a single patient, there is increasing evidence of tumor mosaics
composed of distinct cell lines [127]. Thus, we are interested to estimate regulatory networks
for cell populations in individual cancer patients to examine which regulatory interactions are
modulated in which patients.

6.2 Preliminaries and Related Work

DAG Learning
The basic DAG learning problem is formulated as: Let X ∈ Rn×p be a data matrix consisting of
n IID observations of the random vector X = (X1, . . . ,Xp). Let D denote the space of DAGs
G = (V,E) of p nodes. Given X , we seek a DAG G ∈ D (i.e. Bayesian network) for the
joint distribution P(X) where X is modeled via a structural equation model (SEM) defined by a
weighted adjacency matrix W ∈ Rp×p [95, 178].

Structural Equation Models ForW ∈ Rp×p, we have a directed graph of p nodes with structure
defined by the binarized adjacency matrix A(W ) where A(W )ij = 1 ⇐⇒ wij ≠ 0. To translate
this graph into a joint distribution on X , we use the linear SEM Xj = wTj X + zj , where X =

(X1, . . . ,Xp) is a random vector and z = (z1, . . . , zp) is a random noise vector. For the remainder,
we assume that z is Gaussian with mean zero, but that is not strictly necessary. This form can
be expanded to use any generalized linear model as a transition function where E(Xj ∣Xpa(Xj)) =

f(wTj X) (e.g., for Boolean Xj , we can use a logistic link function).
For simplicity, we focus on this linear SEM with least-squares (LS) loss `(W ;X) = 1

2n∥X −

XW ∥2F , which has convenient properties such as consistency [19].

Network Inference via NOTEARS
Estimating DAG structure, even for a single population model, from data is NP-hard [30]. Much
of this challenge is due to the acyclicity constraint: DAGs representing Bayesian network cannot
contain cycles of any length (otherwise, the likelihood of a variable’s value would be indirectly
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linked to itself). When expressed as a combinatorial optimization problem, this constraint is
difficult to enforce efficiently while we simultaneous optimizing coefficients governing many
relationships.

Recent work has translated this combinatorial optimization problem into a continuous pro-
gram through the matrix exponential: h(W ) = tr(eW ⋅W ) − p = 0 ⇐⇒ W ∈ Rp×p is a DAG,
where ⋅ is the Hadamard product and eA is the matrix exponential of A. This expression of the
DAG constraint is useful because h(W ) has a simple gradient: ∇h(W ) = (eW ⋅W )

T
2̇W . With

this result, [204] developed the NOTEARS (Non-combinatorial Optimization via Trace Expo-
nential and Augmented lagRangian for Structure learning) algorithm for smooth optimization of
DAGs:

min
W ∈Rp×p

F (W ) such that h(W ) = 0 (6.1)

, which can be efficiently solved via the augmented Lagrangian to translate the equality constraint
on h(W ) into a smooth optimization.

Sample-Specific DAG Learning
Here, we are interested in learning DAGs for which the structure varies between samples. That
is, instead of estimating a single population Bayesian network representation by W , we seek
sample-specific Bayesian networks each represented by W (i), where i is the sample index. For
any sample, it is of course trivial to estimate a DAG which perfectly capitulates that sample’s
data. To ensure that the sample-specific DAGs vary according to underlying processes rather than
overfitting individual samples, we will also observe sample representations U = (U1, . . . , Um).

Related Work
In spirit, this problem of estimating sample-specific networks has its roots in context-specific
independence (CSI) [13]. CSI permitted that the independence relations captured in Bayesian
Network sparsity patterns may hold only for certain contexts. In general, context-specific inde-
pendence transforms the traditional Bayesian Network DAG into a multi-graph which cannot be
represented in the same data structure. Thus, a long line of work has gone into developing alter-
native representations and approaches for estimating CSIs [31, 55, 143, 147]. However, many of
these approaches rely on the combinatorial view of Bayesian Network optimization and result in
limited scalability. More recent approaches have used causality rules to perform instance-specific
independence tests [86, 87, 89].

In addition, several approaches have sought to construct an estimator of sample-specific net-
works based on the divergence from a population network. In particular, LIONESS [98] esti-
mates sample-specific linear networks as the weighted difference between the network estimated
by all N samples and the network estimated by leaving out the ith sample. While this approach
showcases the clever idea of the exchangability of these estimators and differences, it does not
share statistical power between sample estimators (the statistical power is only shared for the
population model). A similar approach was used to identify dysregulated pathways in a gene
regulatory network by examining the neighborhood regression residual, although this approach
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was more robust than the above because it sought only to estimate dysregulation rather than
a sample-specific network [20]. Other approaches to estimate sample-specific gene regulatory
networks have typically eschewed the search for Bayesian Networks, and found other heuristics
which can substitute for sample-specific regulatory networks. [43]

6.3 Contextualized NOTEARS
To estimate sample-specific Bayesian Networks, we propose Contextualized NOTEARS, which
uses the smooth NOTEARS loss [204] to estimate sample-specific networks as the output of a
function of contextual data.

Contextualized NOTEARS uses a version of Contextual Explanation Networks (CENs) [4],
which takes data represented by context variables C and interpretable variables X for which we
are interested in inferring the Bayesian Network W . The model represents conditional probabil-
ity of the activations given contextual inputs and network weights, P(X ∣W,C), in the following
form:

P(X ∣ C) = ∫ P(X ∣W )δ(W = φw(C))dW = P(X ∣ φθ(C)), (6.2)

where P(X ∣W ) is the likelihood of X under the linear SEM for DAG W . Note that the DAG W
is a function of the contextual information, i.e.,W = φθ(C). In other words, the CEN architecture
produces a sample-specific parameterization of the Bayesian network for each sample.

Generation of parameters for sample-specific networks is accomplished via a context encoder.
DAGs W are a linear combination of a small constant number (K) of “archetypes,” denoted
{W1, . . . ,WK} or W1∶K . For a sample i with context Ci, DAG W i is computed as:

W i = φθ(C
i) =

K

∑
k=1

σ (fθ(C
i))

k
Wk (6.3a)

where σ(⋅) is the softmax function and fθ(⋅) is the context encoder with aK-dimensional output.
The softmax constraint ensures that the weighting of each archetype is positive and sums to 1,
permitting these values to be interpreted as the probability of cluster membership. The dictionary
of DAGs,W1∶K , is estimated jointly with the context encoder, and the entire architecture is trained
end-to-end via backpropagation after initialization of the archetypes to random vectors.

To ensure that each W i is a DAG, we balance the estimation loss with the NOTEARS loss
applied to the sample-specific model. Thus, Contextualized NOTEARS can be summarized as
the following minimizer:

argmin
θ,W1∶k

n

∑
i=1

α

2
(X i −X iW i)

2
+ β∥W i∥1 + γtr (eW

i
⋅W i

) (6.4)

where W i = φθ(Ci) and α, β, and γ, are hyperparameters that trade off predictive loss against
DAG-ness and sparsity. Because the NOTEARS loss is smooth, this loss can be efficiently opti-
mized through backpropagation with automated gradient solvers. A Python implementation is
available at github.com/blengerich/ContextualizedNOTEARS.
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Scalability: Low-Rank Contextualized NOTEARS

Contextualized NOTEARS estimates O(Kp2 + ∣θ∣) parameters. As such, for large p, computa-
tionally permissive values of K may not have the representational capacity to accommodate our
data. As such, we can use a straightforward adaptation to make the dictionary of W archetypes
low-rank: Wj = AjBj where Aj ∈ Rp×d, Bj ∈ Rd×p for j = 1, . . . ,K. This reduces the number
of free parameters to O(2Kpd + ∣θ∣), allowing savings for d < p. Under this formulation, the N
sample-specific DAGs are contained in a convex hull of K exterior points in a D-dimensional
subspace of Rp×p.

Experiments

First, we test Contextualized NOTEARS and Low-Rank Contextualized NOTEARS on simula-
tion data. We generate N = 100 Erdos-Renyi DAGs with p = 16 nodes in each. These DAGs are
sparse, with a mean of only 8 edges in each. We observe 8 contextual features for each sample,
which are PCA-compressed representations of the N DAGs obfuscated by a 1:1 signal-to-noise
ratio.

As shown in Figure 6.1, both Contextualized NOTEARS and Low-Rank Contextualized
NOTEARS significantly outperform population models and the LIONESS sample-specific model.
For strong edges (with weight magnitudes above 0.2), edge recovery is quite strong, often above
an F1-score of 0.7. We can also see that the performance of the Contextualized models do not
decrease for increased K.

6.4 Gene Regulatory Network Inference

Next, we turn to estimate sample-specific gene regulatory networks. A common task in bioin-
formatics is to infer regulatory networks from gene expression data. That is, we seek a graphical
model which we can use to understand which gene products regulate the production of other gene
products. These networks enable systems biologists to probe the function of genes and proteins,
and to understand causal mechanisms through knockout and perturbation analyses.

Historically, inference of these transcriptomic regulatory networks was performed at a pop-
ulation level. However, recent advances in both the experimental assays (with high-throughput
single-cell sequencing) and the computational power have enabled new analyses to be performed
at a more granular scale, motivating us to examine sample-specific networks estimated through
Contextualized NOTEARS. Here, we briefly study two examples: personalized regulatory net-
works for cancer patients, and cell-specific networks for mouse brains.

Personalized Regulatory Networks for Analysis of Cancer

We first seek to estimate sample-specific regulatory network of cancer patients. Cancer is a
highly individualized disease [137], for which distinct gene processes are important for differ-
ent tumors, and tumors may vary continuously rather than falling into discrete clusters [184].
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Thus, we would like to estimate patient-specific networks to identify dysregulated pathways and
potential therapeutic targets.

Dataset

To estimate these patient-specific networks, we use bulk RNA-seq data from The Cancer Genome
Atlas 1. From the large number of RNA-seq transcripts available, we select 784 based on the
standard deviation and annotation in the COSMIC gene census [54]. On the other axis, we have
9715 patients each with 5 covariates used for contextualization: Age in Days, Gender, Year of
Birth, Race, and Sample Type. In addition, we hold out the following covariates for analysis of
the estimated networks: Disease Type, Primary Site, Percent Stromal Cells.

Results

The estimated personalized networks are visualized in Figure 6.2, with color indicating covariate
values. As expected, these networks cluster strongly with respect to the observed covariate of
patient race. Interestingly, the networks capture some of the variance with respect to disease
type and tissue. Finally, the networks do not cluster strongly with respect to the year of birth,
indicating that networks of gene interaction in tumors may not vary significantly with patient
age.

Cell-Specific Transcriptomic Regulatory Networks

Recent advances in high-throughput single-cell sequencing have enabled new analyses to be per-
formed at a more granular scale. For example, inference of tissue-specific [125, 149, 165] and
cell-type specific [25, 26, 74, 93, 133] regulatory networks have redefined biological understand-
ing of many genetic functions.

Here, we propose to take these analyses to the next level of granularity: a different regulatory
network for each cell. Successfully estimating different networks for every cell would enable the
next stage of biological inquires to be performed at a new level of specificity, allowing biologists
to understand the cellular diversity within and between defined cell types.

Dataset

To estimate single-cell regulatory networks, we require a covariate measured for each cell. Dual
assay technology, which allows simultaneously profiling transcriptomic (RNA-seq) and epige-
netic (ATAC-seq) markers have recently become available. In this example, we use the SNARE-
seq dataset of 10,309 cells from adult mouse brain cells [27].

To preprocess the scRNA-seq in this dataset, we initial perform quality control with poor
quality cell removal and doublet removal. Next, we remove empty droplets using DropletUtils
and doublets using scds with a threshold of 1.0. Finally, we normalize reads with linnorm.
Finally, we perform a PCA transform of the scATAC-seq data to compress to 5 covariates and

1https://portal.gdc.cancer.gov/

64

https://portal.gdc.cancer.gov/


estimate cell-specific networks by fitting Low-Rank Contextualized NOTEARS withK = 16 and
d = 5.

Results

Estimated cell-specific networks are shown in Figure 6.3. Even though the Contextualized
NOTEARS model did not have access to the labelled cell types, the gene interaction networks
tend to recapitulate these cell types. This indicates that the cell types, which are traditionally
identified by expression of particular genes, also correspond to distinct epigenetic patterns and
distinct gene–gene interaction networks. This demonstration of the Contextualized NOTEARS
motivates future work to quantify these relationships between epigenetic regulators and gene–
gene interaction networks.
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(a) Recovery of edges with
weight magnitude > 0.01

(b) Recovery of edges with
weight magnitude > 0.02

(c) Recovery of edges with
weight magnitude > 0.03

(d) Recovery of edges with
weight magnitude > 0.05

(e) Recovery of edges with
weight magnitude > 0.1

(f) Recovery of edges with
weight magnitude > 0.2

(g) Recovery of edges with
weight magnitude > 0.3

(h) Recovery of edges with
weight magnitude > 0.4

(i) Recovery of edges with
weight magnitude > 0.5

Figure 6.1: Recovery of Edges in Sample-Specific Graphs.
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Figure 6.2: TCGA Personalized Networks with colored by covariates. For visualization, net-
works are compressed by PCA to 2 dimensions. Annotated gray points correspond to the popu-
lation network estimated for samples of each particular tissue.
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Figure 6.3: Cell-specific networks in mouse brains, colored according to cell type.
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Chapter 7

Conclusions

7.1 Summary
In this thesis, we have explored the possibilities and challenges of sample-specific models. Since
many scientific questions fundamentally ask about individual samples (e.g. “which drug should
this patient receive?”), principled methods to estimate sample-specific inferences would be ex-
tremely useful. This is a very challenging problem because sample-specific inferences require
flexibility between samples, which works against the law of large numbers. Thus, our challenge
in performing sample-specific inference is to identify sample representations which inform us
about sample membership in underlying sub-populations and use these representations to share
power between similar samples.

We have shown this framework can be applied to histopathology images to estimate sample-
specific transcriptomic models in cancer, and we have developed methods to estimate sample-
specific model parameters even when a one-to-one function mapping sample representations to
model parameters does not exist (such as for demographic features of cancer patients). Finally,
we have extended these methods to estimate sample-specific network structure and begun to
apply these techniques to estimate patient-specific gene networks for cancer patients and cell-
specific gene networks for single-cell data. These experiments demonstrate that sample-specific
models have potential to answer questions of sample-specific inference. Much work remains to
improve methods for estimation of sample-specific models and post-hoc analysis of the estimated
models.

7.2 Future Research Directions
This thesis has demonstrated the utility of sample-specific models and motivates further research
into theory and applications of these flexible models.

Theoretical Understanding of Sample-Specific Models
Crystallizing Connection Between Interaction Effects, Dropout, and Multitask Learning
As discussed in Chapter 3, sample-specific model estimation can be viewed as an extreme form
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of task-specific learning in which sample representations are used as task representations. Under
this view, differences between task-specific models can be represented as pure interaction ef-
fects, and methods for sharing power between related tasks can be used to improve estimation of
sample-specific models. In particular, I am interested in methods to use sample representations as
input with a Dropout regularization to regularize the interaction between sample representations
and model parameters (i.e. driving sample-specific models toward group-level models). In addi-
tion, these methods which rely on the accuracy of sample representations; extending methods to
generate these sample representations from more diverse data sources (e.g. from distributional
data and conceptual knowledge graphs [103]) could have a meaningful impact on the quality of
the learned models. I believe these direction can give a new framework for estimating sample-
specific models that is more scalable than the methods discussed in this thesis.

Network Estimation In Chapter 6, I proposed to estimate sample-specific networks via Con-
textualized NOTEARS. However, many questions regarding sample-specific networks remain
open. For example, how much difficulty in estimating sample-specific networks is caused by
the non-convexity of DAG sets? Are there conditions on the DAG archetype dictionary which
could be enforced to guaranteed a convex set of archetypes, and if so, would those conditions
assist or hamper estimation? Further, what is the consequences of choosing to limit matrix rank
or choosing to limit the number of archetypes? These questions and others on the estimation of
sample-specific networks remain open.

Analysis In addition to questions of estimation procedures, there are also open questions re-
garding the analysis of estimated sample-specific models. Once we have estimated sample-
specific model parameters, what is the best way to summarize these new representations? Should
we perform clustering on the estimated parameters, or is it best to present these models to users
as sample-specific models?

Finally, when seeking to understand sample-specific models, we are interested in questions
of identifiablity: how many sets of sample-specific models could equivalently recapitulate the
observed data? For example, we know that both population and group-level linear models are
identifiable in common conditions [75, 118, 156], but sample-specific models without covariates
are not identifiable. What conditions on covariate structure must be met to retain identifiability
of sample-specific models? Answering this question will help understanding which situations
deserve analysis with sample-specific model estimation.

Discovering Molecular Profiles of Diseases
Complex diseases such as cancer [33, 53, 148] and Alzheimer’s disease[134, 158, 182] are af-
fected by many sources of variation which cause individuals to experience a unique patient
journey. Traditional classification of diseases based on coarse-grained factors such as tissue
morphology are increasingly outdated as fine-grained biological assays are revealing stunning
heterogeneity at the granularity of individual cells [18, 128]. While these assays provide data
at a finer resolution than previously possible, methods of analysis continue to rely on statisti-
cal methods which independently estimate cluster-level models. Increasing evidence points to
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molecular subtypes which do not form discrete clusters [122, 137]. Discovering sample-specific
molecular profiles would refine our understanding of the mechanisms behind complex diseases,
and may help to explain why different patients experience the same disease.

Regulatory Network Inference in Alzheimer’s Disease In particular, methods of sample-
specific network inference (discussed in Chapter 6) could be used to infer gene regulatory net-
works of complex diseases. Recent works have shown that neuronal cell types have strikingly
distinct interactomes [133]; thus, estimating a single shared regulatory network will obscure the
effects of neurodegenerative diseases. With the wealth of single-cell transcriptomics data re-
cently available [128], we can apply the methods of personalized network inference to estimate
different regulatory networks for different cells. In this way, we can uncover the heterogeneity
of regulatory networks on the cellular level, and investigate the effectiveness of pre-defined cell
types to capture regulatory heterogeneity, or possibly define new cell types which have different
regulatory modifications.

Interpretable Models for Clinical Risk Assessment of Diverse Patient Cohorts In this the-
sis, we have developed some tools to identify risk factors in patient cohorts. These projects have
included theoretical questions of model interpretability [24, 106] and applications to mortality
risk in Covid-19. However, it is a well-known problem that machine learning models do not
always generalize to diverse patient cohorts, including minority and underrepresented groups
[59, 81]. In cohorts of diverse patients, the risk factors are not the same for every patient — thus,
population-level models of risk are limited.

How can we extend clinical risk assessments to diverse patient cohorts? One approach is to
develop statistical methods to overcome sample heterogeneity and estimate distinct risk models
while also transferring statistical power for different groups of patients. Specifically, I aim to
develop methods of automated cohort detection which can use the estimated patient-specific
model coefficients to assist clinicians in understanding patient similarity. With these methods,
we will be able to make risk assessments at the individual level and extend the benefits of the
interpretable models to more diverse populations.

Multi-Cancer Discriminative Subtypes In addition to estimating discriminative subtypes of
lung cancers, I am interested in estimating discriminative subtypes which may be shared be be-
tween cancer types. As in Chapter 5, applying machine learning techniques to estimate models
shared among cancer types can increase statistical power and identify previously-unknown clus-
ters of cancers which appear in multiple tissue types.

To perform this analysis, we could apply the procedures from Chapter 4 to the pan-cancer
data in TCGA and TCIA. These methods naturally produce sample-specific embeddings which
we can analyze (using the methods in Section 5) to understand whether discriminative subtypes
are shared between or are unique to tissue types. Either result would have clinical implications;
current clinical practice is to understand tumor through a top-down approach that first breaks
tumors into groups by tissue, but from a molecular biology perspective it is not clear that this
is the correct approach. Such analysis of multi-cancer discriminative subtypes could provide an
indication of whether the most informative transcriptomic markers are shared between or unique
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to tissue types, giving insight on which direction the medical community should explore for more
clinically-relevant tumor clusters.
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