
Session-Typed Ordered Logical Specications

Henry DeYoung

CMU-CS-20-133
December 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Frank Pfenning (Chair)

Iliano Cervesato
Robert Harper
André Platzer

Simon Gay (University of Glasgow)
Carsten Schürmann (IT University of Copenhagen)

Submitted in partial fulllment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Henry DeYoung

This research was sponsored by National Science Foundation award number: 1718276; by a Na-
tional Science Foundation Graduate Research Fellowship award; and by a Google Lime Scholar-
ship award.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the ocial policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

3

For my parents and brother

Keywords: concurrency, bisimilarity, session types, proof construction, proof
reduction, ordered logic, singleton logic

Abstract

Concurrent systems are ubiquitous, but notoriously dicult to get right:
subtle races and deadlocks can lurk even in the most extensively tested
of systems. In a quest to tame concurrency, researchers have success-
fully applied the principle of computation as deduction to concurrency
in two distinct ways: concurrency as proof reduction and concurrency as
proof construction. These two approaches to concurrency have comple-
mentary advantages, with the proof-construction approach excelling at
global specication of a system’s dynamics, while the proof-reduction
approach is best suited to implementation of the processes that com-
prise the system.

This document explores the relationship between these two dier-
ent proof-theoretic characterizations of concurrency. To focus on the
essential aspects of their relationship, the exploration is carried out in
the context of concurrent systems that have chain topologies. From
a proof-construction perspective, chain topologies arise from ordered
logic; from a proof-reduction perspective, they arise from singleton logic,
a variant of ordered logic that restricts sequents to have exactly one an-
tecedent.

In this context, a rewriting framework is systematically derived from
the ordered sequent calculus, and a message-passing fragment of that
rewriting framework is identied. String rewriting specications of
concurrent systems can be choreographed into this fragment, and the
fragment supports a notion of bisimilarity. Along the way, we also
uncover a semi-axiomatic sequent calculus for singleton logic, which
blends a standard sequent calculuswith axiomatic aspects of Hilbert sys-
tems, and we then establish a correspondence between semi-axiomatic
proof normalization and asynchronous message-passing communica-
tion. Ultimately, the message-passing processes can be faithfully em-
bedded within the message-passing ordered rewriting framework in a
bisimilar way. Perhaps surprising is that, because the embedding is
left-invertible, we can also identify fairly broad conditions under which
local, process implementations can be extracted from global, message-
passing ordered rewriting specications.

Acknowledgments

First, and foremost, the debt of gratitude that I owe Frank Pfenning
cannot be overstated. Frank has been such a wonderful advisor and
mentor to me throughout my time here at CMU, always patient and
kind. Thank you, Frank, for inviting me on many a hike through the
woods of proof theory and programming languages with you.

I also wish to thank the members of my thesis committee – Iliano
Cervesato, Bob Harper, André Platzer, Simon Gay, and Carsten Schür-
mann – for being so generous with their time in talking with me and
for their detailed feedback on my thesis document.

I am also grateful to my co-authors and the other people with whom
I’ve had invaluable discussions over the years: Stephanie Balzer, Luís
Caires, AnkushDas, AnupamDatta, FarzanehDerakhshan, DeepakGarg,
Dilsun Kırlı Kaynar, Limin Jia, Andreia Mordido, Klaas Pruiksma, Rob
Simmons, and Bernardo Toninho.

Also, I would like to thank to Mark Stehlik for guiding me toward
logic and programming languages. What still impresses me even now,
all these years out of undergrad, is how he was able to recognize that it
was just the eld for me – before I had any inkling of that myself.

I am also thankful for everyone over the years who has helped me
with scribing and typing my school work.

Last, butmost importantly, I want to thankmy parents andmy brother
for all their love, care, and support through all these nearly 36 years –
not through only the good times, but most especially through the hard
times. I love you.

Contents

1 Introduction 13
1.1 Overview . 15

1.1.1 Concurrency as proof construction 16
1.1.2 Concurrency as proof reduction 18
1.1.3 Relationship between proof construction and reduction 20
1.1.4 Concluding thoughts 21

I Preliminaries 23

2 Binary relations and automata 25
2.1 Binary relations . 25
2.2 Alphabets, words, and languages 25
2.3 Nondeterministic and deterministic nite automata 26

2.3.1 NFA bisimilarity . 27
2.4 Innite-word sequential transducers 28
2.5 Turing machines . 29

3 Ordered logic 31
3.1 A sequent calculus presentation of ordered logic 32

3.1.1 Sequents and contexts 32
3.1.2 Judgmental principles 33
3.1.3 The ordered logical connectives 33

3.2 A vericationistmeaning-theory of the ordered sequent calculus 37
3.2.1 Cut elimination . 37
3.2.2 Identity elimination 40
3.2.3 Proof normalization 41

3.3 Circular propositions and proofs 42
3.4 Other extensions . 43

II Concurrency as proof construction 45

4 String rewriting for concurrent specications 47
4.1 A string rewriting framework 48

10

4.1.1 Symbols and strings 48
4.1.2 A rewriting relation 48
4.1.3 Properties of the string rewriting framework 50

4.2 Example: Nondeterministic nite automata 51
4.3 Example: Binary representations of natural numbers 52

4.3.1 Binary representations 52
4.3.2 An increment operation 53
4.3.3 A decrement operation 55

5 Ordered rewriting 59
5.1 Ordered resource decomposition as rewriting 60

5.1.1 Most left rules decompose ordered resources 60
5.1.2 An ordered rewriting framework 63
5.1.3 Properties of the ordered rewriting framework 65

5.2 A focused ordered rewriting framework 66
5.3 Using shifts to control focusing 69

5.3.1 Embedding unfocused ordered rewriting 69
5.3.2 Embedding weakly focused ordered rewriting 71

6 Choreographies: A formula-as-process interpretation of ordered rewrit-
ing 75
6.1 Rening ordered rewriting: A formula-as-process interpretation 77

6.1.1 Focused ordered rewriting as message-passing com-
munication . 79

6.1.2 Comments . 80
6.1.3 Coinductively dened negative propositions 82

6.2 A local interaction semantics 84
6.3 Choreographing string rewriting specications 87

6.3.1 Choreographies by example 88
6.3.2 A formal description of choreographing specications 90

6.4 Example: Choreographing binary counters 95
6.4.1 An object-oriented choreography 95
6.4.2 A functional choreography 98
6.4.3 Duality and other choreographies 99

6.5 Example: Choreographing nondeterministic nite automata . 100
6.5.1 A functional choreography 101
6.5.2 An object-oriented choreography 103
6.5.3 Incorporating NFA bisimilarity 104

7 Bisimilarity for ordered rewriting 109
7.1 Ordered rewriting bisimilarity 110

7.1.1 A labeled proof technique for rewriting bisimilarity . . 114
7.1.2 A simple up-to proof technique: Reexivity 119
7.1.3 Other properties of rewriting bisimilarity 119

7.2 Example: Rewriting bisimilarity and NFAs 120

11

7.3 Example: Rewriting bisimilarity and binary counters 122
7.3.1 A comment on atom directions and bisimilarity 125

III Concurrency as proof reduction 127

8 Singleton logic 129
8.1 The single-antecedent restriction 130
8.2 A sequent calculus for propositional singleton logic 131

8.2.1 Metatheory: Cut elimination and identity expansion . 134
8.3 A semi-axiomatic sequent calculus for singleton logic 137

8.3.1 A proof term assignment for the semi-axiomatic se-
quent calculus . 139

8.3.2 Non-analytic cut elimination for the semi-axiomatic
sequent calculus . 140

8.4 Extensions of singleton logic 143
8.5 Other related work . 144

8.5.1 Connections to Basic Logic 144
8.5.2 KeYmaera X . 145

9 Semi-axiomatic singleton sequent proofs as session-typed process
chains 147
9.1 Process chains and process expressions 148

9.1.1 Untyped process chains 148
9.1.2 Session-typed process expressions 149
9.1.3 Session-typed process chains 150
9.1.4 From admissibility of non-analytic cuts to an opera-

tional semantics . 153
9.2 Coinductively dened types and process expressions 155
9.3 Examples . 156

9.3.1 Binary counter . 156
9.3.2 Sequential transducers 158
9.3.3 Turing machines . 159

IV Relationship between proof construction and reduction 163

10 From processes to rewriting, and back 165
10.1 Embedding process congurations in formula-as-process or-

dered rewriting . 166
10.1.1 A weakly focused, strongly bisimilar embedding . . . 166
10.1.2 A strongly focused, strongly bisimilar embedding . . . 169
10.1.3 A strongly focused, weakly bisimilar embedding . . . 170
10.1.4 Examples and other comments 170

10.2 A session type system for ordered rewriting 172

12

11 Conclusion 177
11.1 Potential avenues for future work 177

11.1.1 From ordered rewriting to multiset rewriting, single-
ton processes to linear processes 177

11.1.2 First-order extension 178
11.1.3 Session-typed nondeterministic choice 179
11.1.4 Induction, coinduction, termination, and productivity 179
11.1.5 Generative invariants and session types 180

A Appendix 181

B List of notation 183

1
Introduction

With the increasingly complex, distributed nature of today’s software sys-
tems, concurrency is ubiquitous. Concurrency facilitates distributed compu-
tation by structuring systems as nondeterministic compositions of simpler
subsystems. But, being nondeterministic, concurrent systems are notoriously
dicult to get right: subtle races and deadlocks can be lurking in even the
most extensively tested of systems.

At the same time, decades of research into connections between proof
theory and programming languages – beginning with Curry’s observation
that simplication of axiomatic proofs corresponds to combinatory reduc-
tion,1 and notably continuing with Howard’s discovery of an isomorphism 1Curry 1934.

between intuitionistic natural deduction and the simply-typed 𝜆-calculus2 – 2Howard 1969.

have rmly established the principle of computation as deduction as the gold
standard for clear, expressive, and provably correct programs. Computation-
as-deduction interpretations of intuitionistic logic, for example, are the foun-
dations for both the typed functional3 and logic4 programming paradigms. 3Martin-Löf 1982.

4Miller et al. 1991; Andreoli 1992.The computation-as-deduction idea has also been successfully applied to
concurrent programming, originating from Girard’s suggestion of possible
connections between linear logic and concurrency.5 These research eorts 5Girard 1987.

have been directed along two dierent proof-theoretic paths: concurrency as
proof reduction and concurrency as proof construction.

Under a concurrency-as-proof-reduction view, processes are mapped to
linear sequent proofs or proof nets. Proof reduction, in the form of cut elimina-
tion, thus corresponds to concurrent, message-passing communication. This
view was pioneered by Abramsky,6 further pursued by Bellin and Scott,7 and 6Abramsky 1993.

7Bellin and Scott 1994.later extended to a true Curry–Howard isomorphism with the intuitionistic
linear sequent calculus by Caires and Pfenning with Toninho.8 Under this 8Caires and Pfenning 2010; Caires, Pfenning,

and Toninho 2012, 2016.isomorphism, propositions are types – specically, binary session types9 that
9Honda 1993.describe the interaction protocol to which a process adheres. And concur-

rency arises when the various interleavings of independent proof reductions
are treated indistinguishably.

Under the other, concurrency-as-proof-construction view, computation is
the act of building a partial, cut-free proof by nondeterministically applying

14

the inference rules one by one. In our setting, this proof construction tack
is perhaps best encapsulated by the process-as-formula encoding, in which
process constructors aremapped to linear logical connectives.10 Concurrency10Miller 1992.

is then manifested by the permutability of inference rules within a partial
proof.

Despite the various research eorts into proof-reduction and proof-con-
struction approaches to concurrency as deduction, it appears that relatively
little research on the relationship between the two approaches exists in the
literature, with an article by Cervesato and Scedrov being the notable in-
stance.11 In this document, we undertake a further study of the relationship11Cervesato and Scedrov 2009.

between proof reduction and proof construction.

Specifically, we begin by noticing that each of these two approaches to
concurrency as deduction has its own strengths and weaknesses. The proof-
reduction approach excels at implementation. Under Caires, Pfenning, and
Toninho’s isomorphism, proofs are immediately and directly well-typed pro-
cess implementations.12 Properties of cut elimination also ensure that the12Toninho et al. 2013; Grith 2016.

proof-reduction approach enjoys session-type preservation and progress the-
orems – well-typed processes will never deadlock.1313But they can livelock or diverge in the pres-

ence of recursive types, unless those re-
cursive types are strictly coinductive (Der-
akhshan and Pfenning 2020).

However, the proof-reduction approach does have its weaknesses. Owing
to the binary structure of the cut elimination procedure, the proof-reduction
approach lends itself more naturally to synchronous communication, whereas
asynchronous communication is often more consistent with programming
practice and more directly realizable. Also, because processes are generally
long-running or non-terminating, recursion is even more important than in
functional programming, and it is not obvious how to incorporate recursion
in a logically justied way within the session type isomorphism.1414Recursion can be incorporated in functional

languages in a logically justied way, using
inductive and coinductive types (Mendler
1987). Derakhshan and Pfenning (2020) and
Somayyajula and Pfenning (2020) are cur-
rently investigating logically justied induc-
tive and coinductive session types.

In contrast to proof reduction, the proof-construction approach excels at
the task of specifying the behavior of concurrent systems. It gives a more
global description of the system by focusing on the interactions between pro-
cesses, without prescribing how those interactions occur. Because computa-
tion is captured by the construction of a partial cut-free proof and each infer-
ence rule has a single principal formula, this approach reects asynchronous
communication. Moreover, recursion is relatively easy to incorporate because
the logical aspects of proof construction are conned to hypothetical deriv-
ability and partial proofs, rather than provability and complete proofs.

On the ip side, however, it is not obvious how to extract well-behaved,
local process implementations from these global specications. And, being
untyped, the proof-construction approach does not enjoy type preservation
and progress theorems like the concurrency-as-proof-reduction view does –
computation can easily deadlock or livelock when proof construction fails or
diverges, respectively.

In short, the strengths and weaknesses of the proof-reduction and proof-
construction approaches are almost exactly opposite each other. To gain the

introduction 15

strengths of both approaches without the weaknesses of either, we would like
to identify a kind of intersection between concurrency as proof reduction and
concurrency as proof construction. That is, we want to identify fragments of
proof reduction and proof construction that can be put in bijective correspon-
dence. On these fragments, we will be able to give global specications of
concurrent systems, while still being able to extract, or project, local imple-
mentations from them.

To focus our attention on the essential aspects of and relationship be-
tween the proof-reduction and proof-construction approaches to concurrency
as deduction, we will limit our investigation in this document to processes ar-
ranged in chain topologies, as opposed to the more general tree topologies
that Caires, Pfenning, and Toninho’s isomorphism supports. Chain topolo-
gies allow us to treat channels namelessly – each process has exactly two
channels, one with its unique left-hand neighbor and one with its right-hand
neighbor – which lifts a large but inessential notational burden.

In both the proof-reduction and proof-construction characterizations of
concurrency, chain topologies exist as logically motivated fragments of the
general case. From the proof-construction perspective, chain topologies arise
from (modality-free) ordered logic,15 an extension of the Lambek calculus;16 15 Lambek 1961; Abrusci 1990; Kanazawa 1992;

Polakow and Pfenning 1999b.
16 Lambek 1958.

from the proof-reduction perspective, chain topologies will arise from sin-
gleton logic,17 an astructural fragment of ordered and linear logics in which

17 Santocanale 2002; Fortier and Santocanale
2013.sequents have exactly one antecedent and one consequent.

Thus, the remainder of this document serves to establish the following
thesis statement.

Session types form a bridge between distinct notions of concurrency in com-
putational interpretations of singleton and ordered logics based on proof
reduction, on one hand, and proof construction, on the other hand.

We also conjecture that the results contained in this document can be gen-
eralized in a relatively straightforward way to tree topologies. This will intro-
duce a moderately large notational overhead, but should present no concep-
tual diculties. In section 11.1.1, we will sketch how we expect this generaliza-
tion to occur. Broadly, it will be based on a destination-passing style,18 and the 18 Simmons and Pfenning 2011a.

singleton logic used for proof-reduction-as-concurrency would be replaced
with propositional linear logic, and the modality-free ordered logic used for
proof-construction-as-concurrency would be replaced with rst-order linear
logic.

1.1 Overview

In this section, we provide a high-level overview of this document.
Part I reviews some necessary background information, namely denitions

of nite automata (chapter 2) and a sequent calculus presentation of ordered

16

logic19 (chapter 3). The reader who has some familiarity with these topics19 Polakow and Pfenning 1999b.

should feel free to skim or skip these chapters, returning to them as needed.

1.1.1 Concurrency as proof construction

Part II then delves into a proof-construction approach to concurrency, begin-
ning in chapter 4 with a review of a string rewriting framework for specifying
the dynamics of concurrent systems. Specically, string rewriting can be used
for systems whose components are arranged into a chain topology and have
a monoidal structure. Because disjoint segments of a string may be rewritten
independently, concurrency arises when the various interleavings of these
independent rewritings are treated as equivalent. String rewriting is an in-
stance of multiset rewriting, so these ideas are not new, but are applied in a
new setting.20 Chapter 4 closes by introducing specications for two systems20Meseguer 1992.

that will be used as running examples throughout this document: nondeter-
ministic nite automata (section 4.2) and binary counters (section 4.3).

Part II purports to give a proof-construction approach to concurrency, but
string rewriting, while indeed a framework for concurrency, is not obviously
connected to proof construction. For that, chapter 5 turns our attention to-
ward the Lambek calculus and ordered logic.

Implicit in Lambek’s calculus for categorial grammars is a notion of rewrit-
ing for free residuated monoids.21 Chapter 5 presents ordered rewriting, a re-21 Lambek’s calculus was later extended to free

residuated lattices (Lambek 1961; Abrusci
1990; Kanazawa 1992).

lated rewriting framework for free residuated lattices, which we will derive
from the ordered sequent calculus. As we will see, the sequent calculus’s left
rules share a large amount of boilerplate – only very little of each left rule
is devoted to the primary task of decomposing the principal proposition. In
response, we argue for a refactoring of the ordered sequent calculus, introduc-
ing a new judgment to decouple decomposition from the surrounding boil-
erplate (section 5.1.1). Ordered rewriting is then exactly the decomposition-
centered fragment of the refactored sequent calculus (section 5.1.2). To the
best of our knowledge, our refactoring of the sequent calculus left rules ap-
pears to be a new way of deriving rewriting from existing proof theory.

As in string rewriting, ordered rewriting permits disjoint segments of the
ordered context to be rewritten independently, and concurrency arises when
the dierent interleavings of these independent rewritings are treated indis-
tinguishably (section 5.1.3). And so ordered rewriting is the proof-construction
characterization of concurrency that we were looking for.2222 Incidentally, this focused ordered rewrit-

ing framework is roughly what would be
needed to combine the Ordered Logical
Framework (Polakow 2001) with the Con-
current Logical Framework (Watkins et al.
2002).

Chapter 5 closes by extending ordered rewriting with ideas from focus-
ing23 to better control the atomicity of individual rewriting steps (sections 5.2

23Andreoli 1992.

and 5.3). The particular formulation we choose is Zeilberger’s higher-order
focusing.24 In its focused form, ordered rewriting is closely related to the

24Zeilberger 2008. exponential-free fragment of Simmons’s SLS framework.25
25 Simmons 2012.

Despite being models of concurrency, both string rewriting and (focused)

introduction 17

ordered rewriting lack an immediate notion of local execution. Both frame-
works are global, state-transformation models of concurrency that presume
the existence of a central conductor that orchestrates the computation. This
kind of global rewriting, although reasonable for concurrent specications,
will not map well to the locally executing process implementations that a
proof-reduction approach to concurrency will eventually suggest in part III –
the gap is simply too large.

Strongly inspired by the process-as-formula view of linear logic,26 the rst 26Miller 1992; Cervesato and Scedrov 2009.

part of chapter 6 responds to this dilemma by presenting a local, message-
passing interpretation of focused ordered rewriting (section 6.1): non-atomic
propositions are viewed as static process expressions; ordered contexts, as
runtime process congurations; and atomic propositions, as messages. Sur-
prisingly, only two simple modications of chapter 5’s focused ordered rewrit-
ing framework are required to enable this message-passing interpretation.

With these modications in place, a local interaction semantics for this
message-passing interpretation of (focused) ordered rewriting can be given (sec-
tion 6.2).

At this point, we also introduce coinductively dened negative proposi-
tions (section 6.1.3), described with denitions of the form 𝑝− , 𝐴−. Tra-
ditionally, substructural frameworks introduce unbounded behavior by way
of replication and the ! exponential.27 However, surprisingly subtle interac- 27 Polakow 2001; Watkins et al. 2002.

tions between replication and order make recursive denitions a much more
suitable choice for bringing unbounded behavior to ordered rewriting in our
setting.

To summarize what we have so far, ordered rewriting has provided an ex-
planation of concurrency in terms of proof construction and, looking ahead
to our ultimate goal, the message-passing interpretation identies a fragment
of (focused) ordered rewriting that admits a local, process-like model of con-
currency. But how do the string rewriting specications of chapter 4 t into
this puzzle?

The second part of chapter 6 answers that question by providing a pro-
cedure for choreographing string rewriting specications into the message-
passing interpretation of ordered rewriting (section 6.3). The basic idea is
that the programmer will assign a role to each of the string rewriting sym-
bols – a symbol becomes either an atom or a coinductively dened proposi-
tion. Thus, under the message-passing interpretation, each symbol becomes
a message or a coinductively dened process. A choreography then consists
of a role assignment together with denitions for each of its coinductively
dened propositions.

Not all role assignments will lead to sensible choreographies, however.
A sensible choreography is one in which the coinductive denitions admit
rewritings that, up to the role assignment, exactly match the string rewriting
specication’s axioms. That is, a choreography is sensible if the role assign-

18

ment serves as a bisimulation between the string rewriting specication and
the message-passing choreography.28 Depending on the particular role as-28This is the rst appearance of a notion of

bisimilarity in this document. Bisimilarity in
its various guises will be a recurring theme
throughout this document.

signment, it is possible that no such set of denitions exists.
Section 6.3.1 describes, informally, the conditions under which a given role

assignment fails to yield a sensible choreography. Then, in section 6.3.2, we
present a procedure for constructing a solution if one exists. The algorithm is
formulated as a judgment on role assignments and string rewriting specica-
tions, and we prove that when a solution exists, the role assignment is indeed
a bisimulation between the string rewriting specication and its choreogra-
phy.

Chapter 6 closes by examining choreographies for the binary counter (sec-
tion 6.4) and NFAs (section 6.5). We show how to prove the end-to-end ade-
quacy of these choreographies as a composition of the string rewriting speci-
cation’s adequacy with the adequacy of the choreographing procedure.

In proving the adequacy of the NFA choreography, we nd ourselves wish-
ing for an equivalence on ordered contexts that is coarser than mere equal-
ity. So chapter 7 develops a notion of bisimilarity for the message-passing
ordered rewriting framework. It is an observational equivalence in which
atomic propositions are observable when they appear at the outside edges
of an ordered context, but all other propositions are opaque. Our ordered
rewriting bisimilarity is related to Deng et al.’s contextual preorder for linear
logic,29 although diering in its formulation (as well as the underlying logic29Deng et al. 2016.

and its structural rules).
The denition of ordered rewriting bisimilarity is suitable for directly prov-

ing that two contexts are not bisimilar, but it is dicult to directly prove that
two contexts are bisimilar. Therefore, section 7.1.1 presents a sound, and sur-
prisingly complete, proof technique for ordered rewriting bisimilarity that is
reminiscent of labeled bisimilarity from the 𝜋-calculus30 and Deng et al.’s30 Sangiorgi and Walker 2003.

simulation preorder.3131Deng et al. 2016.

Chapter 7 closes our discussion of bisimilarity and, more broadly, the proof-
construction approach to concurrency with two examples of ordered rewrit-
ing bisimilarity in action: a proof that the NFA choreography preserves bisimi-
larity (section 7.2), and a proof that binary counters are bisimilar exactly when
they have equal denotations (section 7.3).

1.1.2 Concurrency as proof reduction

Part III investigates a dierent proof-theoretic explanation of concurrency –
concurrency as proof reduction.

Chapter 8 begins this investigation by reviewing singleton logic,32 an astruc-32 Santocanale 2002; Fortier and Santocanale
2013. tural intuitionistic logic that exhibits many of the symmetries of classical logic

by restricting sequents to have exactly one antecedent and one consequent.3333 Fortier and Santocanale were originally mo-
tivated by categorical semantic concerns,
more so than symmetries.

Singleton sequents are thus𝐴 ` 𝐶 , as opposed to the sequents Ω ` 𝐶 found in
ordered logic, for example. Section 8.2 veries that singleton logic’s sequent

introduction 19

calculus satises cut and identity elimination, which ensure that singleton
logic has a well-dened proof-theoretic semantics. It is quite surprising that
such a severe restriction on the structure of sequents yields a well-dened
logic that will also prove in chapter 9 to be computationally useful.

Of course, sequent calculi are not the only way to present logics, with nat-
ural deduction and axiomatic systems being two notable alternatives. The
chapter continues in section 8.3 by introducing a novel presentation of single-
ton logic – its semi-axiomatic sequent calculus. As suggested by its name, the
semi-axiomatic sequent calculus blends the sequent calculus with axiomatic
features. Its rules are the same as those of the sequent calculus, except that
some rules34 are replaced with axioms. At rst glance, making such replace- 34 Specically, all right rules for positive con-

nectives and all left rules for negative con-
nectives.

ments might seem unmotivated – is it even possible to prove cut elimination
for such a calculus?

No, it is not possible to eliminate all cuts from semi-axiomatic proofs. But,
interestingly, the cuts that remain are nevertheless well-behaved: they are an-
alytic cuts that satisfy the subformula property. So, although cut elimination
does not, strictly speaking, hold for the semi-axiomatic sequent calculus, a
proof normalization result based on cut reduction does hold, as shown in sec-
tion 8.3.2. Key to this normalization procedure are several novel associative
cut reductions and a slightly unusual justication for their termination.

The principal cut reductions that appear in semi-axiomatic proof normal-
ization are also notable. Because axioms hold such a prominent position in
the calculus, none of these principal reductions carry over cuts – only one
of the cut’s two constituent proofs contributing to the reduced result. In this
way, the principal cut reductions are reminiscent of asynchronous message-
passing communication, an observation which will later be crucial.

The essential ideas behind the semi-axiomatic calculus appear to be widely
applicable, going beyond singleton logic. Follow-up work with Pfenning and
Pruiksma has extended the concept of semi-axiomatic sequent calculi to intu-
itionistic propositional logic, where the calculus yields an isomorphism with
shared memory concurrency.35 We further conjecture that semi-axiomatic se- 35DeYoung, Pfenning, and Pruiksma 2020.

quent calculi exist for all intuitionistic logics with sequent calculi that admit
cut elimination, including linear logic and ordered logic.

Chapter 9, following up on the observation that the semi-axiomatic sequent
calculus’s principal cut reductions have the same structure as asynchronous
message-passing communication, develops a session-typed process calculus
from singleton logic’s semi-axiomatic sequent calculus. Under this Curry–
Howard interpretation, propositions correspond to session types that describe
a process’s behavior; proofs, to processes arranged in a chain topology; and
proof reduction, to asynchronous message-passing communication between
processes (section 9.1).

This is very closely related to Sill, the Curry–Howard interpretation of
the intuitionistic linear sequent calculus as a session-typed 𝜋-calculus discov-

20

ered by Caires, Pfenning, and Toninho,36 but with two key dierences. First,36Caires and Pfenning 2010; Caires, Pfenning,
and Toninho 2012, 2016. as previously alluded, singleton logic’s single-antecedent restriction aects

proof structure in such a way that the corresponding processes have a chain
topology, as opposed to the tree topology of Sill processes.37 Second, and37The idea of restricting processes to have a

chain topology is also present in work by
Dezani-Ciancaglini et al. (2014); see chap-
ter 9.

arguably more importantly, the proof reductions of the semi-axiomatic se-
quent calculus correspond to asynchronous message-passing communication,
whereas Sill, being based on a standard sequent calculus, most naturally cor-
responds to synchronous communication.3838An earlier paper (DeYoung, Caires, et al.

2012) attempted to give an asynchronous in-
terpretation of the intuitionistic linear se-
quent calculus, but, in hindsight, that work
seems rather ad hoc and unsatisfactory
when compared with the asynchronous in-
terpretation of the semi-axiomatic sequent
calculus.

In section 9.2, coinductively dened types and processes are introduced
to make unbounded computation possible. This takes the calculus outside of
a true isomorphism, with the coinductive denitions being extralogical. But
research by Derakhshan and Pfenning (2020) and Somayyajula and Pfenning
(2020) on logical justications for behaviorally inductive and coinductive ses-
sion types could be adapted here to restore a true isomorphism.

Chapter 9 closes with some example programs. Process denitions are
given for the binary counter (section 9.3.1); innite-word sequential trans-
ducers (section 9.3.2), as a twist on the recurring NFA example; and Turing
machines (section 9.3.3). In particular, the Turing machine example shows
that, when combined with coinductive denitions, the computational inter-
pretation of even a logic as slight and seemingly feeble as singleton logic can
be Turing-complete.

1.1.3 Relationship between proof construction and proof reduction

Part IV studies the relationship between the two proof-theoretic characteriza-
tions of concurrency – concurrency as proof construction, on the one hand, as
exemplied by the (focused) ordered rewriting and choreographies of part II;
and concurrency as proof reduction, on the other hand, as exemplied by
singleton logic’s semi-axiomatic sequent calculus and the process chains of
part III. Chapter 10 begins by formalizing the message-passing view of or-
dered rewriting by dening an embedding of session-typed process chains
into ordered rewriting (section 10.1). This embedding serves as a bisimulation
between process chains and ordered contexts – between concurrency as proof
reduction and concurrency as proof construction.

The embedding is quite natural in two respects. First, it elegantly maps
process constructors to ordered logical connectives, with process composi-
tion corresponding to ordered conjunction, for example. Second, as shown in
section 10.1.4, when applied to the example processes from chapter 9, the em-
bedding results in the same coinductively dened propositions as those used
as choreographies in chapter 6.

Additionally, because the embedding is, syntactically speaking, an injec-
tive mapping, its left inverse provides a way to construct processes from a
large subset of ordered propositions. Thus, in section 10.2, we use the embed-
ding to reverse-engineer a session type system for ordered rewriting in which

introduction 21

well-typed processes correspond to well-typed propositions, and vice versa.
The left-invertible embedding and session type system for ordered rewrit-

ing allows us to write global, ordered rewriting specications of concurrent
systems and then extract local, process implementations from them, provided
that the specications are well-typed. We can have all of the advantages of
global specications, together with all of the advantages of local implementa-
tions.

Thus, our results can be seen as a proof-theoretic analogue of multiparty
session types.39 In multiparty session types, binary session types are general- 39Honda et al. 2008.

ized to conversations among several parties. Conversations in their entirety
are specied using global session types, which can then be projected to bi-
nary session types for each pair of participants; these projections are close to
implementations.

Intuitively, global types for multiparty sessions serve the same purpose
as our choreographies: both describe the conversation as a whole. And, be-
cause both extract local information from a global description, the projection
of local types from global types is related to our embedding of well-typed
processes as choreographies. Moreover, our framework has the advantage of
generating implementations directly from choreographies, whereas the mul-
tiparty session type discipline generates only local types that programmers
must then implement.

1.1.4 Concluding thoughts

Chapter 10 provides nal witness to the thesis stated earlier. At least for the
well-typed fragment, proof construction and proof reduction are truly two
sides of the same concurrent coin.

As described further in chapter 11, this document raises several avenues for
future work. These include the obvious generalization of choreographies and
the process embedding to proof-construction and proof-reduction notions of
concurrency found in intuitionistic linear logic, an investigation of session-
typed nondeterministic choice, a study of how the behaviorally inductive and
coinductive types of Derakhshan and Pfenning40 and sized types of Somayya- 40Derakhshan and Pfenning 2020.

jula and Pfenning41 might apply to the proof-construction notion of concur- 41 Somayyajula and Pfenning 2020.

rency, and an exploration of whether generative invariants42 might relate to 42 Simmons 2012.

session types.

Part I

Preliminaries

2
Binary relations and automata

In this chapter, we review the denitions of alphabets, words, languages, and
automata that we will use in the running examples throughout this document.
Our denitions, though equivalent to the classical ones found in Hopcroft et
al.’s text,1 dier slightly, having been tuned for the particular applications in 1Hopcroft et al. 2006.

this document.
First, however, we describe our notational conventions for binary rela-

tions.

2.1 Binary relations

In this and future chapters, we make signicant use of binary relations of
various kinds. These are often written in inx notation.

Given a binary relation R, we write R−1 for its inverse. For relations writ-
ten as arrows, such as −→ and =⇒, we often instead express their inverses
by writing the arrow in the other direction. For instance, ⇐= would be the
inverse of =⇒, so that 𝑦 ⇐= 𝑥 exactly when 𝑥 =⇒ 𝑦 .

We write the relational composition of R and S as juxtaposition, so that
𝑥 RS 𝑧 holds exactly when there exists a 𝑦 such that 𝑥 R 𝑦 and 𝑦 S 𝑧.
In particular, we often use relational composition in the various denitions
of bisimilarity that are presented, so that one of the relations is some form
of transition or reduction, which are often written as arrows. For instance,
𝑥 R−→ 𝑧 would hold exactly when there exists a 𝑦 such that 𝑥 R 𝑦 and
𝑦 −→ 𝑧.

2.2 Alphabets, words, and languages

An alphabet Σ is simply a set of symbols, 𝑎 ∈ Σ. A nite word 𝑤 over the
alphabet Σ is then a (possibly empty) nite sequence of symbols drawn from
Σ; we denote the empty word by 𝜖 . The nite words form a free monoid
under concatenation, with 𝜖 being the unit. We denote by Σ∗ the set of all
nite words over Σ.

It is also possible to construct innite words. An innite word over the

26

alphabet Σ is a countably innite sequence of letters drawn from Σ; we denote
the set of all innite words over Σ by Σ𝜔 . We also use Σ∞ to denote the set of
all words – nite or innite – over the alphabet Σ; that is, Σ∞ = Σ∗ ∪ Σ𝜔 .

A language is a set of words. Depending on the context, it will be a subset
of either Σ∞, Σ𝜔 , or Σ∗.

2.3 Nondeterministic and deterministic nite automata

Definition 2.1. Anondeterministic nite automaton (NFA) over a nite input
alphabet Σ is a triple A = (𝑄,Δ, 𝐹) consisting of:

• a nite set of states, 𝑄 ;

• a transition function, Δ : 𝑄 × Σ→ P(𝑄) such that Δ(𝑞, 𝑎) ≠ ∅ for all states
𝑞 ∈ 𝑄 and input symbols 𝑎 ∈ Σ; and

• a subset of nal states, 𝐹 ⊆ 𝑄 ,

If 𝑞′ ∈ Δ(𝑞, 𝑎), then we say that 𝑞′ is an 𝑎-successor of 𝑞 and write 𝑞 𝑎−→ 𝑞′.22The condition placed on Δ thus serves to en-
sure that, for all input symbols 𝑎, each state
𝑞 has an 𝑎-successor – that is, that the NFA
A cannot get stuck.

The transition function Δ can be lifted to a relation involving nite input
words: For each word 𝑤 = 𝑎1𝑎2 · · ·𝑎𝑛 ∈ Σ∗, dene a relation 𝑤−→ ⊆ 𝑄 × 𝑄
such that 𝑞 𝑤−→ 𝑞′when 𝑞 = 𝑞0

𝑎1−→ 𝑞1
𝑎2−→ · · · 𝑎𝑛−→ 𝑞𝑛 = 𝑞′ for some sequence

of states 𝑞0, 𝑞1, . . . , 𝑞𝑛 ∈ 𝑄 .
The NFAA accepts input word𝑤 from state 𝑞 if there exists a state 𝑞′ ∈ 𝑄

such that 𝑞 𝑤−→ 𝑞′ ∈ 𝐹 ; otherwise, the automaton rejects word𝑤 from state 𝑞.
The language of all words accepted by automaton A from state 𝑞 is denoted
by LA (𝑞).33We sometimes omit the subscript if the au-

tomaton is clear from the context.
Notice that, unlike the classical denition of NFAs, this denition does not

x an initial state for the automaton. This is because we will be primarily
interested in the operational aspects of an NFA, rather than its linguistic as-
pects.

A1 = 𝑞0

a,b

𝑞1
b

𝑞2
a,b

a,b

Figure 2.1: An NFA that accepts, from state
𝑞0, exactly those words that end with 𝑏.

Example 2.1. As a concrete example, consider the NFA A1 over the input
alphabet Σ = {𝑎, 𝑏} that is depicted in g. 2.1. This NFA accepts, from state 𝑞0,
exactly those words that end with 𝑏. For comparison, the only word accepted
from state 𝑞1 is 𝜖 . This NFA is indeed nondeterministic, as both 𝑞0

𝑏−→ 𝑞0 and
𝑞0

𝑏−→ 𝑞1 hold. �

Definition 2.2. A deterministic nite automaton (DFA) over a nite input
alphabet Σ is an NFA A = (𝑄,Δ, 𝐹) over Σ in which Δ(𝑞, 𝑎) is a singleton set
for all states 𝑞 and input symbols 𝑎. In this case, we write 𝛿 for the function
from 𝑄 × Σ to 𝑄 that underlies Δ.

A2 = 𝑠0

a

𝑠1

b

b

a
Figure 2.2: A DFA that accepts, from state 𝑠0,
exactly those words that end with 𝑏.

Example 2.2. Figure 2.2 depicts a DFA over the input alphabet Σ = {𝑎, 𝑏} that
accepts, from state 𝑠0, exactly those words that end with 𝑏. For comparison,
the empty word 𝜖 , too, is accepted from the state 𝑠1. �

binary relations and automata 27

2.3.1 NFA bisimilarity

In later chapters, we will refer to a standard notion of bisimilarity for NFAs.
In general, two objects are bisimilar if they cannot be distinguished by an

observer. Here, NFA bisimilarity is a relation on states, and the observer may
provide an input word and observe whether the word is accepted or rejected
by the given state.

Definition 2.3. Let A = (𝑄,Δ, 𝐹) be an NFA over an input alphabet Σ. An
NFA bisimulation on A is a symmetric binary relation on states, R ⊆ 𝑄 × 𝑄 ,
that satises the following conditions.

Input bisimulation If 𝑞 R 𝑎−→ 𝑠 ′, then 𝑞 𝑎−→R 𝑠 ′.4

𝑞 𝑞′

𝑠 𝑠′

←→𝑎

←←R ←← R

←→𝑎
and

𝑞

𝑠 𝐹

←←R ←←∈

∈
Figure 2.3: NFA bisimilarity, in diagrams

4Recall that we use juxtaposition of relations
to denote relational composition, so that, for
example, 𝑞 R 𝑎−→ 𝑠′ holds exactly when
there exists a state 𝑠 such that 𝑞 R 𝑠 and
𝑠

𝑎−→ 𝑠′. Similarly, 𝑞 R 𝑠 ∈ 𝐹 holds if both
𝑞 R 𝑠 and 𝑠 ∈ 𝐹 hold.

Finality bisimulation If 𝑞 R 𝑠 ∈ 𝐹 , then 𝑞 ∈ 𝐹 .

NFA bisimilarity onA, written ∼A , is the largest bisimulation onA. We will
usually omit the subscript because the automaton is nearly always clear from
context.

As a matter of convenience, NFA bisimilarity is dened on a single NFA. If
we wish to discuss the bisimilarity of states from distinct NFAs, we can form
the disjoint union of the two NFAs and work with its bisimilarity relation.

Bisimilarity is an equivalence relation.

Theorem 2.1. Let A = (𝑄,Δ, 𝐹) be an NFA over an input alphabet Σ. NFA
bisimilarity on A is reexive, symmetric, and transitive:

Reexivity Equality on 𝑄 is a bisimulation on A.
Symmetry If R is a bisimulation on A, then so is R−1.
Transitivity If R and S are bisimulations on A, then so is RS.

Proof. By the denition of bisimulation. �

The input bisimulation condition satised by an NFA bisimulation can be
lifted to a condition on words, not just input symbols.

Theorem 2.2. Let A = (𝑄,Δ, 𝐹) be an NFA over an input alphabet Σ, and let
R be an NFA bisimulation on A. Then 𝑞 R 𝑤−→ 𝑠 ′ implies 𝑞

𝑤−→R 𝑠 ′.

Proof. By induction over the structure of word𝑤 . �

NFA bisimilarity implies language equivalence.

Theorem 2.3. Let A = (𝑄,Δ, 𝐹) be an NFA over an input alphabet Σ. Then
𝑞 ∼ 𝑠 implies LA (𝑞) = LA (𝑠).

Proof. Because bisimilarity is symmetric (theorem 2.1), it suces to show that
𝑞 ∼ 𝑠 implies LA (𝑞) ⊆ LA (𝑠). Let 𝑞 ∈ 𝑄 and 𝑠 ∈ 𝑄 be bisimilar states,
and choose an arbitrary word 𝑤 that is accepted from state 𝑞. By denition,
𝑞

𝑤−→ 𝑞′𝑤 ∈ 𝐹 for some state 𝑞′𝑤 . It follows from theorem 2.2 and the nality
bisimulation condition that 𝑠 𝑤−→ 𝑠 ′𝑤 ∈ 𝐹 , for some state 𝑠 ′𝑤 , and so 𝑤 is also
accepted from state 𝑠 . �

28

But, because of nondeterminism, the converse does not hold.

False claim 2.4. LetA = (𝑄,Δ, 𝐹) be an NFA over an input alphabet Σ. Then
LA (𝑞) = LA (𝑠) implies 𝑞 ∼ 𝑠 .

Counterexample. Choose the NFAs A1 and A2 given in gs. 2.1 and 2.2. Al-
though the languages accepted by states 𝑞0 and 𝑠0 are the same, the two states
are not bisimilar.

For the sake of deriving a contradiction, assume that 𝑞0 ∼ 𝑠0. Because 𝑞0
is one of the 𝑏-successors of 𝑞0, it follows by the input bisimulation condition
that 𝑠0

𝑏−→∼ 𝑞0. But 𝑠1 is the unique 𝑏-successor of 𝑠0, and so we may deduce
that 𝑠1 ∼ 𝑞0. Just as 𝑠1 is a nal state, the nality bisimulation condition
demands that𝑞0 be nal, which it is not. From this contradiction, we conclude
that 𝑞0 and 𝑠0 are not bisimilar. �

However, if both automata are DFAs, then language equivalence does im-
ply bisimilarity.

Theorem 2.5. Let A = (𝑄, 𝛿, 𝐹) be a DFA over an input alphabet Σ. Then
LA (𝑞) = LA (𝑠) implies 𝑞 ∼ 𝑠 .

Proof. Let R = {(𝑞, 𝑠) | LA (𝑞) = LA (𝑠)}; we will prove that R is a bisimula-
tion on the DFAA. As the largest bisimulation, bisimilarity will then contain
R.

Input bisimulation Assume that 𝑞 R 𝑠
𝑎−→ 𝑠 ′𝑎 for some state 𝑠; we must

show that 𝑞 𝑎−→R 𝑠 ′𝑎 . Because A is deterministic, it suces to show that
LA (𝑞′𝑎) = LA (𝑠 ′𝑎), where 𝑞′𝑎 is the unique 𝑎-successor of 𝑞.

Choose an arbitrary word 𝑤 from the language accepted from state 𝑞′𝑎 .
Then 𝑎𝑤 is in the language accepted from state 𝑞, and, because 𝑞 and 𝑠 are
R-related, also in the language accepted from 𝑠 . Because A is determin-
istic, this can only be if 𝑤 is in the language accepted from state 𝑠 ′𝑎 , the
unique 𝑎-successor of 𝑠 . Thus LA (𝑞′𝑎) ⊆ LA (𝑠 ′𝑎). By symmetric reason-
ing, LA (𝑞′𝑎) ⊇ LA (𝑠 ′𝑎). It follows that 𝑞′𝑎 R 𝑠 ′𝑎 .

Finality bisimulation Assume that 𝑞 R 𝑠 ∈ 𝐹 ; we must show that 𝑞 ∈ 𝐹 .
Because 𝑠 is a nal state, it accepts the empty word, 𝜖 . The state 𝑞 must
also accept the empty word, because LA (𝑞) = LA (𝑠). A state accepts the
empty word only if it is a nal state, so it follows that 𝑞 ∈ 𝐹 . �

2.4 Innite-word sequential transducers

Sequential and subsequential transducers5 are usually described in terms of5Ginsburg and Rose 1966; Schützenberger
1977. nite words. In this document, we are interested in transducers for their com-

putational behavior rather than for the functions they induce. This, together
with technical considerations that will become apparent in chapter 9, means
that we are only interested in innite-word sequential transducers.

The following denition is adapted from Béal and Carton.66Béal and Carton 2002.

binary relations and automata 29

Definition 2.4. An innite-word sequential transducer over the nite input
and output alphabets Σ and Γ, respectively, is a triple T = (𝑄, 𝛿, 𝜎) consisting
of:

• a nite set of states, 𝑄 ;

• a transition function, 𝛿 : 𝑄 × Σ→ 𝑄 ; and

• an output function, 𝜎 : 𝑄 × Σ→ Γ∗.

We may dene a function ⇓ : 𝑄 × Σ𝜔 → Γ𝜔 as the largest function such that
(𝑞, 𝑎𝑤) ⇓ 𝜎 (𝑞, 𝑎) 𝑣 if (𝛿 (𝑞, 𝑎),𝑤) ⇓ 𝑣 . The transducer T maps, from state 𝑞,
the innite input word𝑤 into the innite output word 𝑣 if (𝑞,𝑤) ⇓ 𝑣 .

T = 𝑞0

𝑎 | 𝑎

𝑞1

𝑏 | 𝑏
𝑏 | 𝜖

𝑎 | 𝑎
Figure 2.4: An innite-word sequential trans-
ducer that compresses runs of consecutive𝑏s

Example 2.3. As a concrete example consider the innite-word transducer
T over the input and output alphabets Σ = Γ = {𝑎, 𝑏} that is depicted in
g. 2.4. This transducer maps, from state 𝑞0, innite input words into words
in which each run of 𝑏s has been compressed into a single 𝑏. For instance, it
maps𝑤 = 𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑎 · · · to 𝑣 = 𝑎𝑏𝑎𝑎𝑏𝑎 · · · because (𝑞0,𝑤) ⇓ 𝑣 . �

2.5 Turing machines

In section 9.3.3, we will construct session-typed processes that represent Tur-
ing machines. We are interested in how these machines compute, but not
interested in what functions they compute. In other words, our focus is on
computation, not computability.

This means that our denitions of Turing machines dier from the deni-
tions traditionally used, such as in Hopcroft et al.’s text.7 For example, we use 7Hopcroft et al. 2006.

innite words to describe truly innite tapes, rather than using nite words
to describe the frontiers of unbounded tapes, and our machines also have no
notion of acceptance. The specic reasons for these dierences will become
clear in section 9.3.3.

Definition 2.5. A two-way innite tape Turing machine over a nite alpha-
bet Σ is a pairM = (𝑄, 𝛿) consisting of:

• a nite set of states, 𝑄 ; and

• a transition function 𝛿 : 𝑄 × Σ→ 𝑄 × Σ × {L,R}.

The two-way innite tape is divided into two one-way halves, with the ma-
chine’s head placed between the two halves. A conguration of M is thus
either 𝑤 ⊳ 𝑞 � 𝑣 or 𝑤 � 𝑞 ⊲ 𝑣 for left-innite word 𝑤 ∈ Σ�̄� , right-innite word
𝑣 ∈ Σ𝜔 , and state 𝑞 ∈ 𝑄 .8 The machine’s head faces either the left- or right- 8 In other words, congurations are drawn

from Σ�̄� × (⋃𝑞∈𝑄 {⊳ 𝑞 � , � 𝑞 ⊲ }) × Σ𝜔 .hand half of the tape, as indicated by the notation surrounding the state 𝑞.
To describe the machine’s moves, we dene a function −→ on congura-

tions. For a left-facing head, this function is given by:

𝑤𝑎 ⊳ 𝑞 � 𝑣 −→
{
𝑤 ⊳ 𝑞′ � 𝑏 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)
𝑤𝑏 � 𝑞′ ⊲ 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

30

Symmetrically, for a right-facing head, this function is given by:

𝑤 � 𝑞 ⊲ 𝑎𝑣 −→
{
𝑤 ⊳ 𝑞′ � 𝑏 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)
𝑤𝑏 � 𝑞′ ⊲ 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

The direction that the head faces indicates the next symbol to be read from
the tape. When a left-facing head is instructed to move right or a right-facing
head is instructed to move left, the head’s direction changes but its placement
between the two tape halves does not.

Definition 2.6. A one-way innite tape Turing machine over a nite alpha-
bet Σ is a tupleM = (𝑄, 𝛿, 𝐹) consisting of:

• a nite set of states, 𝑄 ;

• a transition function 𝛿 : 𝑄 × Σ→ 𝑄 × Σ × {L,R}; and

• a subset of nal states, 𝐹 ⊆ 𝑄 .

Because the tape is only one-way innite, a conguration of machineM is
either𝑤 ⊳𝑞 �𝑣 or𝑤 �𝑞 ⊲𝑣 for left-innite word𝑤 ∈ Σ�̄� , nite word 𝑣 ∈ Σ∗, and
state 𝑞 ∈ 𝑄 ; i.e., congurations are drawn from Σ�̄� × (⋃𝑞∈𝑄 {⊳𝑞 � , �𝑞 ⊲}) ×Σ∗.

To describe the machine’s moves, we dene a function −→ on congura-
tions. For a left-facing head, this function is given by:

𝑤𝑎 ⊳ 𝑞 � 𝑣 −→
{
𝑤 ⊳ 𝑞′ � 𝑏 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)
𝑤𝑏 � 𝑞′ ⊲ 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

This is exactly as it was for the two-way innite tape Turing machines. Be-
cause the tape is only one-way innite, the right-facing head’s treatment dif-
fers:

𝑤 � 𝑞 ⊲ 𝑎𝑣 −→
{
𝑤 ⊳ 𝑞′ � 𝑏 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)
𝑤𝑏 � 𝑞′ ⊲ 𝑣 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

𝑤 � 𝑞 ⊲ 𝜖 −→
{
𝑤 if 𝑞 ∈ 𝐹
𝑤 ⊳ 𝑞 � 𝜖 if 𝑞 ∉ 𝐹

When a right-facing head reaches the nite end of the tape, its behavior de-
pends onwhether the state is nal. If the state is nal, themachine terminates;
otherwise, the machine remains in the same state but eectively moves left
one symbol (by turning to face left).

Notice that the machine does not terminate as soon as it enters a nal
state – it must also reach the nite end of the tape. It is up to the machine’s
programmer, by appropriately crafting the transition function 𝛿 , to ensure
that nal states eventually lead the machine to the tape’s nite end.

3
Ordered logic

In its traditional form, intuitionistic logic1 presumes that hypotheses admit 1And classical logic, too.

three structural properties: weakening, that hypotheses need not be used;
contraction, that hypotheses may be reused indenitely; exchange, that hy-
potheses may be freely permuted.

Substructural logics are so named because they reject some or all of these
structural properties. Most famously, linear logic2 is substructural because it 2Girard 1987.

rejects both weakening and contraction. The result is a system in which each
hypothesis must be used exactly once; accordingly, linear hypotheses may be
viewed as consumable resources.3 3Girard 1987.

Ordered logic, also known as the (full) Lambek calculus,4 goes a substruc- 4 Lambek 1958, 1961; Abrusci 1990; Kanazawa
1992.tural step further. Like its linear cousin, ordered logic rejects weakening and

contraction, making ordered hypotheses resources, too. But ordered logic
additionally eschews exchange; ordered hypotheses are resources that must
remain in order, with no reshuing.

This chapter serves to review a sequent calculus presentation of ordered
logic. Lambek leveraged the noncommutativity of antecedents to give a for-
mal description of sentence structure. In this work, however, our interest is
not mathematical linguistics but the logical foundations of concurrent com-
putation. Accordingly, the description of ordered logic in this chapter has a
proof-theoretic emphasis and is derived from presentations by Polakow and
Pfenning.5 5 Polakow and Pfenning 1999b; Pfenning 2016.

Section 3.1 introduces ordered logic’s sequent calculus as a collection
of inference rules, informally justifying them with a resource interpretation
similar to that of linear logic.

For this collection of rules to constitute a well-dened logic, it must have
a vericationist meaning-theory in the tradition of Gentzen, Dummett, and
Martin-Löf.6 Together, the cut elimination and identity elimination theo- 6Gentzen 1935; Dummett 1976; Martin-Löf

1983.rems (theorems 3.2 and 3.4, section 3.2) serve to establish a proof normal-
ization result: every proof has a corresponding verication.

Section 3.3 sketches an extension of the ordered sequent calculus with cir-
cular propositions and proofs, and section 3.4 briey describes several other

32

extensions that are possible.
The reader who is familiar with ordered logic’s sequent calculus and its

basic metatheory – particularly the cut elimination result – should feel free
to skip this chapter.

3.1 A sequent calculus presentation of ordered logic

The full sequent calculus for ordered logic will be summarized in g. 3.2, but
rst we will discuss the calculus’s judgmental principles and logical connec-
tives one by one.

3.1.1 Sequents and contexts

sequents In ordered logic’s sequent calculus presentation, the basic judg-
ment is a sequent

𝐴1𝐴2 · · ·𝐴𝑛 ` 𝐴 ,

where the propositions 𝐴1, 𝐴2, . . . , 𝐴𝑛 are assumptions, or antecedents, that
are arranged into an ordered list; the proposition 𝐴 is termed the consequent.

Ordered logic eschews the usual structural properties of antecedents –
namely weakening, contraction, and exchange. As in linear logic, the ab-
sence of weakening and contraction means that antecedents may neither be
discarded nor duplicated within a proof. Neither a proof of 𝐴2 · · ·𝐴𝑛 ` 𝐴

nor of 𝐴1𝐴1𝐴2 · · ·𝐴𝑛 ` 𝐴 implies a proof of 𝐴1𝐴2 · · ·𝐴𝑛 ` 𝐴, for example.
But ordered logic’s rejection of the exchange property takes things one step
further: antecedents may not even be permuted within a proof. For example,
𝐴2𝐴1 · · ·𝐴𝑛 ` 𝐴 does not imply 𝐴1𝐴2 · · ·𝐴𝑛 ` 𝐴.

Like linear sequents,7 ordered sequents can be given a resource interpreta-7Girard 1987.

tion – but with a slight twist. A proof of an ordered sequent 𝐴1𝐴2 · · ·𝐴𝑛 ` 𝐴
can be interpreted as a recipe for producing resource 𝐴 from the resources
𝐴1𝐴2 · · ·𝐴𝑛 . The small twist is that these resources are inherently ordered
and may not be permuted, exactly because ordered logic rejects the exchange
property that linear logic admits.

contexts To keep the notation for sequents concise, the list of antecedents
is usually packaged into an ordered context Ω = 𝐴1𝐴2 · · ·𝐴𝑛 , with the se-
quent then written Ω ` 𝐴. Algebraically, ordered contexts Ω form a free
noncommutative monoid:

Ω,Δ F Ω1 Ω2 | · | 𝐴 ,

where the monoid operation is concatenation, denoted by juxtaposition, and
the unit element is the empty context, denoted by (·). (We will also some-
times use the metavariable Δ for ordered contexts.) As a monoid, ordered
contexts are equivalent up to associativity and unit laws (see adjacent gure).

(Ω1 Ω2) Ω3 = Ω1 (Ω2 Ω3)
(·) Ω = Ω = Ω (·)

Figure 3.1: Monoid laws for ordered contexts

ordered logic 33

We choose to keep this equivalence implicit, however, treating equivalent con-
texts as syntactically indistinguishable.8 Associativity means that contexts 8Throughout this document, we will encoun-

ter free noncommutative monoids in various
guises. Each time, we will choose to keep
the equivalence induced by the monoid laws
implicit, as we do here.

are indeed lists, not trees; and noncommutativity means that those lists are
ordered, not multisets as in linear logic.

3.1.2 Judgmental principles

Evenwithout considering the specic structure of propositions, two judgmen-
tal principles must hold if sequents are to accurately describe the production
of resources.

First, given a resource 𝐴, producing the same resource 𝐴 should be eort-
less – it already exists! This amounts to an identity principle for sequents:

Identity principle 𝐴 ` 𝐴 for all propositions 𝐴.

This principle is adopted by the ordered sequent calculus as a primitive rule
of inference:

𝐴 ` 𝐴 id𝐴
.

Both the identity principle and its corresponding id rule capture the idea that
resource production is a reexive process.

Second, and dually, resource production should be transitive process. If a
resource 𝐵 can be produced from resource 𝐴 (i.e., 𝐴 ` 𝐵), and if a resource 𝐶
can be produced from resource 𝐵 (i.e., 𝐵 ` 𝐶), then, by chaining the produc-
tions, it ought to be possible to produce 𝐶 from 𝐴 (i.e., 𝐴 ` 𝐶). For sequents,
this amounts to a cut principle that is most useful in a generalized form:

Cut principle If Ω ` 𝐵 and Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶 , then Ω′

𝐿
Ω Ω′

𝑅
` 𝐶 .

As with the identity principle, this cut principle is adopted by the ordered
sequent calculus as a primitive rule of inference:

Ω ` 𝐵 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 cut𝐵

.

The importance of these two judgmental principles goes beyond that of
mere rules of inference. As wewill see in section 3.2, the admissibility of these
principles serves an important role in dening the meaning of the logical
connectives.

3.1.3 The ordered logical connectives

The propositions of ordered logic are given by the following grammar.

propositions 𝐴, 𝐵,𝐶 F 𝑎 | 𝐴 • 𝐵 | 1 | 𝐴 ◦ 𝐵 | 𝐴 � 𝐵 | 0
| 𝐴 N 𝐵 | > | 𝐴 \ 𝐵 | 𝐵 /𝐴

Among these are propositional atoms, 𝑎, which stand in for arbitrary propo-
sitions. The other propositions are built up from these atoms by using the
logical connectives.

34

Under the resource interpretation of ordered logic, these logical connec-
tives may be viewed as resource constructors. A connective’s right rule de-
nes how to produce that kind of resource, while the corresponding left rules
dene how that kind of resource may be used.

ordered conjunction and its unit Ordered conjunction9 is the propo-9Also known as multiplicative conjunction.

sition 𝐴 • 𝐵, read “𝐴 fuse 𝐵”. Under the resource interpretation, 𝐴 • 𝐵 is the
side-by-side pair of resources 𝐴 and 𝐵, packaged as a single ordered resource.
Its sequent calculus inference rules are:

Ω1 ` 𝐴 Ω2 ` 𝐵
Ω1 Ω2 ` 𝐴 • 𝐵

•r
Ω′
𝐿
𝐴𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 • 𝐵) Ω′

𝑅
` 𝐶 •l

The right rule, •r, says that 𝐴 • 𝐵 may be produced by partitioning the avail-
able resources into Ω1 Ω2 and then separately using the resources Ω1 and Ω2
to produce𝐴 and 𝐵, respectively. The left rule, •l, shows how to use resource
𝐴 •𝐵: simply unwrap the package to leave the separate contents, resources𝐴
and 𝐵, side by side.

Just as truth is the nullary analogue of conjunction in intuitionistic logic,
multiplicative truth, 1, is the nullary analogue of ordered conjunction. Under
the resource interpretation, 1 is therefore an empty resource package that
contains no resources.

· ` 1 1r
Ω′
𝐿
Ω′
𝑅
` 𝐶

Ω′
𝐿
1Ω′

𝑅
` 𝐶 1l

The sequents 1 •𝐴 a` 𝐴 a` 𝐴 • 1 are all derivable10, so 1 is indeed •’s unit.10𝐴 a` 𝐵 stands for the sequents 𝐴 ` 𝐵 and
𝐵 ` 𝐴. In addition to 𝐴 • 𝐵, the proposition 𝐴 ◦ 𝐵, read “𝐴 twist 𝐵”, is included.

Under the resource interpretation, 𝐴 ◦ 𝐵 is the side-by-side pair of resources
𝐵 and 𝐴, packaged as a single ordered resource. If we gave sequent calculus
inference rules for 𝐴 ◦ 𝐵, the sequents 𝐵 •𝐴 a` 𝐴 ◦ 𝐵 and 1 ◦𝐴 a` 𝐴 a` 𝐴 ◦ 1
would all be derivable. Therefore, instead of taking 𝐴 ◦ 𝐵 as a primitive and
explicitly giving it inference rules, we choose to treat it as merely a notational
denition for the ordered conjunction 𝐵 •𝐴.

disjunction and its unit Disjunction is the proposition 𝐴 � 𝐵, read “𝐴
plus 𝐵”.11 Under the resource interpretation,𝐴�𝐵 is a package that contains11This connective is also known as additive dis-

junction, in contrast with the multiplicative
disjunction of classical linear logic; being in-
tuitionistic, ordered logic does not have a
purely multiplicative disjunction. See Chang
et al. (2003).

one of the resources 𝐴 or 𝐵 (but not both).

Ω ` 𝐴
Ω ` 𝐴 � 𝐵

�r1 Ω ` 𝐵
Ω ` 𝐴 � 𝐵

�r2
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶 Ω′

𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 � 𝐵) Ω′

𝑅
` 𝐶 �l

The right rules,�r1 and�r2, say that a resource𝐴�𝐵may be produced from
the resources Ω by producing either 𝐴 or 𝐵 and then wrapping that resource
up as an𝐴�𝐵 package. The left rule, �l, shows how to use a resource𝐴�𝐵:
unwrap the package and use whatever it contains – whether an 𝐴 or a 𝐵.

ordered logic 35

Falsehood, 0, can be viewed as the nullary analogue of disjunction:

(no 0r rule) Ω′
𝐿
0Ω′

𝑅
` 𝐶 0l

The sequents 0 �𝐴 a` 𝐴 a` 𝐴 � 0 are all derivable, so 0 is indeed �’s unit.

alternative conjunction and its unit Alternative conjunction12 is 12Also known as additive conjunction.

the proposition 𝐴 N 𝐵, read “𝐴 with 𝐵”; it is dual to disjunction. Under the
resource interpretation, 𝐴 N 𝐵 is the resource that can be transformed – irre-
versibly – into either a resource𝐴 or a resource 𝐵, whichever the user chooses.

Ω ` 𝐴 Ω ` 𝐵
Ω ` 𝐴 N 𝐵

Nr
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 N 𝐵) Ω′

𝑅
` 𝐶 Nl1

Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 N 𝐵) Ω′

𝑅
` 𝐶 Nl2

The left rules, Nl1 and Nl2, show how to use a resource 𝐴 N 𝐵: transform it
into either an 𝐴 or a 𝐵 and then use that resource. The right rule, Nr, says
that to produce a resource 𝐴 N 𝐵 the producer must be prepared to produce
either 𝐴 or 𝐵 – whichever the user eventually chooses.

Additive truth, >, can be viewed as the nullary analogue of alternative
conjunction:

Ω ` > >r (no >l rule)

Once again, the sequents>N𝐴 a` 𝐴 a` 𝐴N> are all derivable, so> is indeed
the unit of N.

left- and right-handed implications Left-handed implication is the
proposition𝐴\𝐵, read “𝐴 under 𝐵” or “𝐴 left-implies 𝐵”. When interpreted as
a resource, 𝐴 \𝐵 is the resource that can transform a left-adjacent resource 𝐴
into the resource 𝐵.

𝐴 Ω ` 𝐵
Ω ` 𝐴 \ 𝐵 \r

Ω ` 𝐴 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω (𝐴 \ 𝐵) Ω′

𝑅
` 𝐶 \l

The left rule, \l, shows how to use a resource 𝐴 \ 𝐵: rst produce 𝐴 from the
left-adjacent resources Ω, then transform the left-adjacent𝐴 into the resource
𝐵, and nally use that 𝐵. The right rule, \r, says that resources Ω can produce
𝐴 \ 𝐵 if the same resources prexed with 𝐴 – that is, 𝐴 Ω – can produce 𝐵.

Right-handed implication, 𝐵 /𝐴 (read “𝐵 over𝐴” or “𝐴 right-implies 𝐵”), is
symmetric to left-handed implication: 𝐵/𝐴 is the resource that can transform
a right-adjacent resource 𝐴 into the resource 𝐵.

Ω𝐴 ` 𝐵
Ω ` 𝐵 /𝐴 /r

Ω ` 𝐴 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐵 /𝐴) Ω Ω′

𝑅
` 𝐶 /l

The two forms of implication each enjoy their own currying laws: the
sequents𝐴 \ (𝐵 \𝐶) a` (𝐴 ◦𝐵) \𝐶 and (𝐶 /𝐵) /𝐴 a` 𝐶 / (𝐴 •𝐵) are derivable.

36

Table 3.1: A resource interpretation of the or-
dered logical connectives Ordered logical connective Resource interpretation

Ordered conjunction 𝐴 • 𝐵 A side-by-side pair of resources 𝐴 and 𝐵
Multiplicative truth 1 The unit of ordered conjunction
Twisted conjunction 𝐴 ◦ 𝐵 A side-by-side pair of resources 𝐵 and 𝐴

(Additive) disjunction 𝐴 � 𝐵 A package containing 𝐴 or 𝐵 (not both)
(Additive) falsehood 0 A package containing no resources

Alternative conjunction 𝐴 N 𝐵 A resource that transforms into 𝐴 or 𝐵
Additive truth > An immutable resource

Left-handed implication 𝐴 \ 𝐵 Transforms a left-adjacent 𝐴 into 𝐵
Right-handed implication 𝐵 /𝐴 Transforms a right-adjacent 𝐴 into 𝐵

Figure 3.2: A summary of ordered logic’s se-
quent calculus, as presented in section 3.1

propositions 𝐴, 𝐵,𝐶 F 𝑎 | 𝐴 • 𝐵 | 1 | 𝐴 ◦ 𝐵 | 𝐴 � 𝐵 | 0
| 𝐴 N 𝐵 | > | 𝐴 \ 𝐵 | 𝐵 /𝐴

contexts Ω,Δ F Ω1 Ω2 | · | 𝐴

Ω ` 𝐴 Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 cut𝐴

𝐴 ` 𝐴 id𝐴

Ω1 ` 𝐴 Ω2 ` 𝐵
Ω1 Ω2 ` 𝐴 • 𝐵

•r
Ω′
𝐿
𝐴𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 • 𝐵) Ω′

𝑅
` 𝐶 •l

· ` 1 1r
Ω′
𝐿
Ω′
𝑅
` 𝐶

Ω′
𝐿
1Ω′

𝑅
` 𝐶 1l

𝐴 ◦ 𝐵 def
= 𝐵 •𝐴

Ω ` 𝐴
Ω ` 𝐴 � 𝐵

�r1 Ω ` 𝐵
Ω ` 𝐴 � 𝐵

�r2
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶 Ω′

𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 � 𝐵) Ω′

𝑅
` 𝐶 �l

(no 0r rule) Ω′
𝐿
0Ω′

𝑅
` 𝐶 0l

Ω ` 𝐴 Ω ` 𝐵
Ω ` 𝐴 N 𝐵

Nr
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 N 𝐵) Ω′

𝑅
` 𝐶 Nl1

Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 N 𝐵) Ω′

𝑅
` 𝐶 Nl2

Ω ` > >r (no >l rule)

𝐴 Ω ` 𝐵
Ω ` 𝐴 \ 𝐵 \r

Ω ` 𝐴 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω (𝐴 \ 𝐵) Ω′

𝑅
` 𝐶 \l

Ω𝐴 ` 𝐵
Ω ` 𝐵 /𝐴 /r

Ω ` 𝐴 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐵 /𝐴) Ω Ω′

𝑅
` 𝐶 /l

ordered logic 37

3.2 A vericationist meaning-theory of the ordered sequent calculus

The previous section presented a collection of inference rules that have an
apparently sensible resource interpretation. But how can we be sure that the
rules constitute a well-dened logic?

In the tradition of Gentzen, Dummett, and Martin-Löf, a logic is well-
dened if it rests on the solid foundation of a vericationistmeaning-theory.13 13Gentzen 1935; Dummett 1976; Martin-Löf

1983.In Martin-Löf’s words, “The meaning of a proposition is determined by [. . .]
what counts as a verication of it.” And a verication is a proof that decom-
poses that proposition into its subformulas, without dragging in other, unre-
lated propositions. In this way, the meaning of a proposition is compositional.

For the ordered sequent calculus, a verication is thus a proof that relies
only on the right and left inference rules (and the id𝑎 rule for propositional
atoms) – the cut rule drags in an unrelated proposition as its cut formula;
and, when 𝐴 is a compound proposition, the id𝐴 rule fails to decompose 𝐴
to its subformulas. A proof is cut-free if it does not contain any instances of
the cut rule; similarly, a proof is identity-long if all instances of the id rule
occur at propositional atoms. Verications are thus exactly those proofs that
are both cut-free and identity-long.

Because meaning is based on verications, every proof must have a cor-
responding verication if proofs are to be meaningful. That is, we need to
describe a procedure for normalizing arbitrary proofs to verications. The
characterization of verications as cut-free, identity-long proofs suggests a
two-step strategy for proof normalization:

1. Eliminate all instances of cut.
2. Without introducing new instances of cut, eliminate all remaining in-

stances of id that occur at non-atomic propositions.

The end result will be a cut-free, identity-long proof – a verication.
This normalization procedure is described by the constructive content of

the following theorems; their proofs amount to dening functions on proofs.

Theorem 3.2 (Cut elimination). If a proof of Ω ` 𝐴 exists, then there exists a
cut-free proof of Ω ` 𝐴.

Theorem 3.4 (Identity elimination). If a proof of Ω ` 𝐴 exists, then an identity-
long proof of Ω ` 𝐴 exists. Moreover, if the given proof is cut-free, so is the
identity-long proof.

Corollary 3.5 (Proof normalization). If a proof of Ω ` 𝐴 exists, then a veri-
cation (i.e., a cut-free, identity-long proof) of Ω ` 𝐴 exists.

We will now prove these theorems.

3.2.1 Cut elimination

To prove the cut elimination theorem stated above, we will eventually use a
straightforward induction on the structure of the given proof. But rst, we

38

need to establish a cut principle for cut-free proofs:

Lemma 3.1 (Admissibility of cut). If cut-free proofs of Ω ` 𝐴 and Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

exist, then there exists a cut-free proof of Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 .

Before proceeding to this lemma’s proof, it is worth emphasizing a subtle
distinction between the sequent calculus’s primitive cut rule and the admis-
sible cut principle that this lemma establishes. To be completely formal, we
ought to treat cut-freeness as an extrinsic, Curry-style property of proofs and
indicate that property by decorating the turnstile: a proof of Ω `cf 𝐴 is a cut-
free proof of Ω ` 𝐴. The admissible cut principle stated in lemma 3.1 could
then be expressed as the rule

Ω `cf 𝐴 Ω′
𝐿
𝐴 Ω′

𝑅
`cf 𝐶

Ω′
𝐿
Ω Ω′

𝑅
`cf 𝐶

a-cut𝐴

with the dotted line indicating that this is an admissible, not primitive, rule.
Writing it in this way emphasizes that the proof of lemma 3.1 will amount
to dening a meta-level function that takes cut-free proofs of Ω ` 𝐴 and
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶 and produces a cut-free proof of Ω′

𝐿
Ω Ω′

𝑅
` 𝐶 . Contrast this

with the primitive cut rule of the ordered sequent calculus, which forms a
(cut-full) proof of Ω′

𝐿
Ω Ω′

𝑅
` 𝐶 from (potentially cut-full) proofs of Ω ` 𝐴 and

Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶 .

From here on, we won’t bother to be quite so pedantic, instead often omit-
ting the turnstile decoration on cut-free proofs, with the understanding that
any proofs to which the admissible a-cut rule is applied are necessarily cut-
free.1414The distinction will become somewhat more

important in chapter 8 when we introduce a
“semi-axiomatic sequent calculus” for single-
ton logic. With that clarication out of the way, we may proceed to proving the pre-

viously stated lemma and theorem.

Lemma 3.1 (Admissibility of cut). If cut-free proofs of Ω ` 𝐴 and Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

exist, then there exists a cut-free proof of Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 .

Proof. This lemmawas proved in a similar setting by Polakow and Pfenning1515 Polakow and Pfenning 1999b.

using a standard technique for proving the admissibility of a cut principle16 –16 Pfenning 1995.

a lexicographic structural induction, rst on the structure of the cut formula,
𝐴, and then on the structures of the given proofs. We review their proof here.

As usual, the various cases can be classied into three categories: identity
cases, principal cases, and commutative cases.

Identity cases In the cases where one of the two proofs is an instance of the
id rule, the admissible cut can be reduced to the other proof alone. For
example:

𝐴 ` 𝐴 id𝐴 E
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶 a-cut𝐴

=
E

Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

ordered logic 39

That the cut and identity principles are inverses is reected in these iden-
tity cases.

Principal cases In another class of cases, both proofs end by introducing the
cut formula – on the right in the left-hand proof with a right rule, and on
the left in the right-hand proof with a left rule. These cases are resolved
by reducing the admissible cut to several instances of the admissible cut
principle at proper subformulas of the cut formula.

For example, the principal cut reduction for 𝐴1 \ 𝐴2 yields cuts at the
proper subformulas 𝐴1 and 𝐴2:

D1
𝐴1 Ω ` 𝐴2
Ω ` 𝐴1 \𝐴2

\r

E1
Ω′1 ` 𝐴1

E2
Ω′
𝐿
𝐴2 Ω

′
𝑅
` 𝐶

Ω′
𝐿
Ω′1 (𝐴1 \𝐴2) Ω′𝑅 ` 𝐶

\l

Ω′
𝐿
Ω′1 Ω Ω′

𝑅
` 𝐶 a-cut𝐴1\𝐴2

=

D1
Ω′1 ` 𝐴1

E1
𝐴1 Ω ` 𝐴2

Ω′1 Ω ` 𝐴2
a-cut𝐴1 E2

Ω′
𝐿
𝐴2 Ω

′
𝑅
` 𝐶

Ω′
𝐿
Ω′1 Ω Ω′

𝑅
` 𝐶 a-cut𝐴2

Commutative cases In the remaining cases, at least one of the two proofs ends
by introducing a side formula, i.e., a formula other than the cut formula.
To reduce the admissible cut, it is permuted with the nal inference in
that proof; the reduced instance of the admissible cut is smaller because it
occurs with the same cut formula but smaller proofs.

Commutative cases are subcategorized as left- or right-commutative cut
reductions according to the branch into which the admissible cut is per-
muted. For example, one right-commutative case involves a right-hand
proof that ends by introducing the consequent with the \r rule:

D
Ω ` 𝐴

E1
𝐶1 Ω

′
𝐿
𝐴 Ω′

𝑅
` 𝐶2

Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶1 \𝐶2

\r

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶1 \𝐶2

a-cut𝐴
=

D
Ω ` 𝐴

E1
𝐶1 Ω

′
𝐿
𝐴 Ω′

𝑅
` 𝐶2

𝐶1 Ω
′
𝐿
Ω Ω′

𝑅
` 𝐶2

a-cut𝐴

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶1 \𝐶2

\r

Among the other right-commutative cases are several involving a right-
hand proof that ends by using a left rule, such as the \l rule, to introduce
a side formula. This contrasts with the left-commutative cases: the left-
hand proof can never use a right rule to introduce a side formula because
its only consequent is the cut formula. �

With the admissibility of a cut principle for cut-free proofs established, we
may nally prove a cut elimination result.

Theorem 3.2 (Cut elimination). If a proof of Ω ` 𝐴 exists, then there exists a
cut-free proof of Ω ` 𝐴.

40

Proof. We follow the proof sketched by Polakow and Pfenning.17 The proof is17 Polakow and Pfenning 1999b.

by structural induction on the proof ofΩ ` 𝐴, with appeals to the admissibility
of cut (lemma 3.1) whenever a cut rule is encountered.

Like the admissibility of cut lemma, this theorem may be rendered as an
admissible rule:

Ω ` 𝐴
Ω `cf 𝐴

ce

Writing the theorem in this way serves to emphasize that its proof amounts
to the denition of a meta-level function for normalizing proofs to cut-free
form.

The crucial case is then resolved as follows:
Ω ` 𝐴 Ω′

𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 cut𝐴

Ω′
𝐿
Ω Ω′

𝑅
`cf 𝐶

ce
=

Ω ` 𝐴
Ω `cf 𝐴

ce
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
𝐴 Ω′

𝑅
`cf 𝐶

ce

Ω′
𝐿
Ω Ω′

𝑅
`cf 𝐶

a-cut𝐴

All other cases are resolved compositionally. �

3.2.2 Identity elimination

By this cut elimination theorem, an arbitrary proof may be put into cut-free
form. Recall from earlier in this section that the next step toward proof nor-
malization is to eliminate all remaining instances of the id rule that occur at
non-atomic propositions 𝐴. Before proving identity elimination, we need to
prove that an identity principle is admissible for identity-long proofs.

Lemma 3.3 (Admissibility of identity). For all propositions𝐴, an identity-long
proof of 𝐴 ` 𝐴 exists. Moreover, this proof is cut-free.

Proof. As usual, by induction on the structure of the proposition𝐴. As before,
we may represent this lemma as an admissible rule:

𝐴 `il 𝐴
a-id𝐴

to suggest that this proof amounts to dening a meta-level function on propo-
sitions 𝐴.

In the base case of propositional atoms 𝑎, the instance of the id rule at 𝑎 is
itself already identity-long:

𝑎 `il 𝑎
a-id𝑎

= 𝑎 `il 𝑎
id𝑎

For non-atomic propositions, the identity-long proof of 𝐴 ` 𝐴 is con-
structed from right and left rules, together with calls to the admissible a-id
rule at subformulas of 𝐴. For example, the identity expansion at 𝐴1 \𝐴2 is:

𝐴1 \𝐴2 `il 𝐴1 \𝐴2
a-id𝐴1\𝐴2

=

𝐴1 `il 𝐴1
a-id𝐴1

𝐴2 `il 𝐴2
a-id𝐴2

𝐴1 (𝐴1 \𝐴2) `il 𝐴2
\l

𝐴1 \𝐴2 `il 𝐴1 \𝐴2
\r

The remaining cases are similarly compositional. �

ordered logic 41

Theorem 3.4 (Identity elimination). If a proof of Ω ` 𝐴 exists, then an identity-
long proof of Ω ` 𝐴 exists. Moreover, if the given proof is cut-free, so is the
identity-long proof.

Proof. As usual, by structural induction on the proof of Ω ` 𝐴. Once again,
we may represent this theorem as an admissible rule:

Ω ` 𝐴
Ω `il 𝐴

ie

The crucial case in the denition of this admissible rule comes when the
given proof is instance of the id rule. An appeal to the admissible a-id
rule (lemma 3.3) then yields an identity-long proof of Ω ` 𝐴:

𝐴 ` 𝐴 id𝐴

𝐴 `il 𝐴
ie

= 𝐴 `il 𝐴
a-id𝐴

As part of lemma 3.3, we know that this proof is also cut-free.
The remaining cases are resolved compositionally. For example:

D1
𝐴1 Ω ` 𝐴2
Ω ` 𝐴1 \𝐴2

\r

Ω `il 𝐴1 \𝐴2
ie

=

D1
𝐴1 Ω ` 𝐴2

𝐴1 Ω `il 𝐴2
ie

Ω `il 𝐴1 \𝐴2
\r

Notice that no case introduces any instances of the cut beyond those that
were already present in the given proof. Thus, identity elimination preserves
cut-freeness. �

3.2.3 Proof normalization

With the cut and identity elimination results (theorems 3.2 and 3.4) in hand,
normalization of proofs to verication is a straightforward corollary:

Corollary 3.5 (Proof normalization). If a proof of Ω ` 𝐴 exists, then a veri-
cation (i.e., a cut-free, identity-long proof) of Ω ` 𝐴 exists.

Proof. Given a proof of Ω ` 𝐴, applying cut elimination (theorem 3.2) and
identity elimination (theorem 3.4) in sequence yields a proof that is both cut-
free and long – in other words, a verication Ω `cf,il 𝐴. Using an admissible
rule, this corollary may be represented as

D
Ω ` 𝐴

Ω `cf,il 𝐴
norm

=

D
Ω ` 𝐴
Ω `cf 𝐴

ce

Ω `cf,il 𝐴
ie

�

By establishing that every proof has a corresponding verication, we are
now assured that the ordered sequent calculus presented in g. 3.2 indeed
constitutes a well-dened logic with a vericationist meaning-theory.

42

3.3 Circular propositions and proofs

By rejecting weakening and especially contraction, ordered logic as formu-
lated above is bounded: there is exactly one of each antecedent, with no
means of producing unbounded resources. The antecedent 𝐴 \ 𝐴 • 𝐴 will
indeed transform a left-adjacent resource 𝐴 into a pair of resources, 𝐴𝐴, ef-
fectively copying the initial 𝐴. But because the antecedent 𝐴 \ 𝐴 • 𝐴 is itself
a use-once resource, that is not enough to produce unbounded copies of 𝐴.

Linear logic traditionally introduces unboundedness with its ‘of course’
exponential, !𝐴. The proposition !𝐴 is viewed as an unbounded number of
copies of resource 𝐴 – as many, or as few, copies of 𝐴 as desired.18 Ordered18Girard 1987.

logic can be extended with a related persistence modality,19 so that !𝐴 is an19Abrusci 1990; Polakow and Pfenning 1999a,b.

unbounded number of resources𝐴, and similarly !(𝐴\𝐵) is a means for trans-
forming, an unbounded number of times, a left-adjacent 𝐴 into a 𝐵. As the
notation suggests, the modality !𝐴 is not unrelated to process replication, !𝑃 ,
in the 𝜋-calculus.20 A replication !𝑃 represents an unbounded number of pro-20Milner 1999.

cesses 𝑃 in parallel composition, 𝑃 | 𝑃 | · · · , in much the same way as !𝐴
represents an unbounded number of resources 𝐴.

But the modality !𝐴 is not the only way to introduce unbounded behavior
in ordered logic. As in the 𝜋-calculus,21 recursive denitions are another path21Milner, Parrow, et al. 1992a,b.

to unboundedness. Recursive denitions have been studied extensively,22 but22Hallnäs 1991; Eriksson 1991; Schroeder-
Heister 1993; McDowell andMiller 2000; Tiu
and Momigliano 2012.

have not, to the best of our knowledge, been previously used in the context of
ordered logic. We conjecture that persistence is strictly more expressive than
recursive denitions

In ordered logic, the dierence between the exponential and recursive de-
nitions is essentially one of mobility. The persistent resource 𝑝\𝐴 that derives
from !(𝑝 \ 𝐴) can be copied anywhere into the ordered context. By making
the exponential a rst-class logical connective, this mobility can be exploited.
For example, the proposition !(𝑝 \ 𝑎 • !𝑝) would allow 𝑝 to move anywhere
within the ordered context. Kanovich et al.23 show that cut elimination fails23Kanovich et al. 2019.

for classical non-commutative linear logic when contractions is strictly local.
In contrast, recursive denitions decouple unbounded behavior from mo-

bility and are not rst-class. The denition 𝑝 , 𝑎 • 𝑝 is the nearest we can
get to !(𝑝 \ 𝑎 • !𝑝), and this denition does not imply mobility. As we will
see in chapter 9, recursive denitions will therefore prove to be a good match
for recursive processes, which ought not to be able to move around within a
conguration just because they have unbounded behavior.

Fortier and Santocanale24 have used recursive denitions togetherwith cir-24 Fortier and Santocanale 2013.

cular derivations25 in a fragment of the linear sequent calculus, establishing25A circular derivation is a partial proof in
which the unlled premises at the leaves
point recursively back to the root of the
proof or other circular derivations.

a sound condition under which these denitions constitute least and greatest
xed points and these derivations constitute valid inductive and coinductive
proofs. Extending their work, Derakhshan and Pfenning26 have presented a26Derakhshan and Pfenning 2020.

related, locally decidable condition on circular derivations in rst-order intu-
itionistic multiplicative and additive linear logic that ensures cut elimination

ordered logic 43

is productive. We know of no work on applying these ideas to ordered logic,
but we expect that similar results ought to hold. In any case, in the remainder
of this document we are concerned only with general recursive denitions,
not inductive or coinductive denitions.

3.4 Other extensions

Ordered logic can also be extended in other directions that we briey describe
here: rst-order universal and existential quantiers, multiplicative falsehood
and disjunction, a mobility modality, the aforementioned persistence modal-
ity, and subexponentials, and adjunctions from adjoint logic. These exten-
sions are not crucial to the remainder of this dissertation, but are mentioned
for the sake of completeness.

Adding rst-order universal and existential quantiers, ∀𝑥 :𝜏 .𝐴 and ∃𝑥 :𝜏 .𝐴,
to the ordered sequent calculus is completely standard. Sequents are extended
with a separate context of well-sorted term variables, 𝑥 :𝜏 ; this new context is
structural, admitting weakening, contraction, and exchange properties.

Multiplicative falsehood can be introduced into the ordered sequent calcu-
lus, as in the intuitionistic linear sequent calculus: by generalizing sequents
to allow an empty consequent, Ω ` (·).27 With this new judgment form, the 27Chang et al. 2003.

cut principle and left rules must be revised to allow the empty consequent.
Multiplicative falsehood, ⊥, internalizes this judgment as a proposition and
is, as its name suggests, dual to multiplicative truth, 1. Multiplicative disjunc-
tion, 𝐴 � 𝐵, can also be introduced like in the intuitionistic linear sequent
calculus; it requires multiple-conclusion sequents.28 28Chang et al. 2003.

In addition to the aforementioned persistence modality, !𝐴, it is possible
to introduce a mobility modality, ¡𝐴.29 Just as persistence is subject to all of 29 Polakow and Pfenning 1999b.

the structural properties, ¡𝐴 is subject to exchange (but neither weakening
nor contraction). In this way, ¡𝐴 represents a mobile resource that may per-
mute with other resources. Related to these modalities are subexponentials30 30Nigam and Miller 2009; Kanovich et al. 2019.

and adjunctions from adjoint logic.31 Both subexponentials and adjunctions 31Benton 1995; Pruiksma et al. 2018.

allow ordered logic to include multiple distinct layers, each with its own set
of structural properties (that must, however, meet certain conditions for cut
elimination).

Part II

Concurrency as
proof construction

4
String rewriting for concurrent speci-
cations

In this chapter, we consider abstract rewriting as a framework for specifying
the dynamics of concurrent systems. This is not, of course, a new idea. Mul-
tiset rewriting1 has previously been put forward as a state-transformation 1Meseguer 1992; Cervesato and Scedrov 2009.

model of concurrency, and has been used to describe security protocols,2 for 2Cervesato, Durgin, et al. 1999; Durgin et al.
2004.example. Unlike in multiset rewriting, we are particularly interested in con-

current systemswhose components are arranged in a chain topology and have
a monoidal structure. Given that nite strings over an alphabet Σ form a free
monoid, string rewriting, rather than multiset rewriting, is a good match for
the structure we are interested in.

For a broad sketch of string rewriting, consider the nite strings over the
alphabet {𝑎, 𝑏}, and let −→ be the least compatible binary relation over those
strings that satises the axioms

𝑎𝑏 −→ 𝑏 and 𝑏 −→ 𝜖 . (4.1)

This relation can be seen as a rewriting relation on strings. For instance, be-
cause 𝑎𝑏𝑏 −→ 𝑏𝑏, we would say that 𝑎𝑏𝑏 may be rewritten to 𝑏𝑏.

More generally, under the rewriting axioms of eq. (4.1), a string 𝑤 ends
with 𝑏 if, and only if, there exists a way to rewrite 𝑤 to the empty string3 – 3Though other rewritings that do not lead to

the empty string may also exist; see below.that is,𝑤 −→ · · · −→ 𝜖 . For example, the string 𝑎𝑏𝑏 ends with 𝑏, and 𝑎𝑏𝑏 can
indeed be rewritten to the empty string:

𝑎𝑏𝑏 −→ 𝑏𝑏 −→ 𝑏 −→ 𝜖 .

In this way, the rewriting axioms of eq. (4.1) constitute a specication of a
system that identies those strings over the alphabet {𝑎, 𝑏} that end with 𝑏.

However, the usual operational semantics for string rewriting employs
committed-choice nondeterminism, which can lead to stuck, or otherwise un-
desirable, states. For example, although 𝑎𝑏𝑏 certainly ends with 𝑏, the string
𝑎𝑏𝑏 can be rewritten to 𝑎, a stuck state, if incorrect choices about which ax-
ioms to apply are made:

𝑎𝑏𝑏 −→ 𝑎𝑏 −→ 𝑎 X−→ .

48

No backtracking is performed to reconsider these choices.
Disjoint segments of a stringmay be rewritten independently. For example,

the substring 𝑎𝑏 can be rewritten to 𝑏, and the nal 𝑏 of 𝑎𝑏𝑏 can be rewritten
to the empty string. Being independent, these rewritings can occur in either
order, as shown in the adjacent figure. Concurrency arises when the various

𝑏𝑏

𝑎𝑏𝑏 𝑏

𝑎𝑏

←→←→

←→ ←→

Figure 4.1: The interleavings of two indepen-
dent rewritings interleavings of independent rewritings are treated indistinguishably.

The remainder of this chapter describes a string rewriting framework
in more detail (section 4.1) and examines its properties, most importantly con-
current rewritings. Then we present two extended examples of how string
rewriting may be used to specify concurrent systems: nondeterministic nite
automata (section 4.2) and binary representations of natural numbers (sec-
tion 4.3). These will serve as recurring examples throughout the remainder
of this document.

4.1 A string rewriting framework

In this section, we present a string rewriting framework and examine some
of its basic properties.

4.1.1 Symbols and strings

String rewriting presupposes an alphabet, Σ, of symbols 𝑎 from which nite
strings are constructed. This alphabet is usually, but need not be, nite.

Strings, 𝑤 , are then nite lists of symbols: 𝑤 = 𝑎1𝑎2 · · ·𝑎𝑛 . Algebraically,
strings form a free (noncommutative) monoid over symbols 𝑎 ∈ Σ and may
be described syntactically by the grammar

𝑤 F 𝑤1𝑤2 | 𝜖 | 𝑎 ,

where the monoid operation is string concatenation, denoted by 𝑤1𝑤2, and
the unit element is the empty string, denoted by 𝜖 .4

4 Strings are isomorphic to the nite words
used by automata (chapter 2), but the two
serve dierent conceptual roles in this doc-
ument.

As a monoid, strings are equivalent up to associativity and unit laws (see
adjacent gure). We choose to keep this equivalence implicit, however, treat-

(𝑤1𝑤2)𝑤3 = 𝑤1 (𝑤2𝑤3)
𝜖 𝑤 = 𝑤 = 𝑤𝜖

Figure 4.2: Monoid laws for strings

ing equivalent strings as syntactically indistinguishable. As usual for a free
monoid, the alternative grammar 𝑤 F 𝜖 | 𝑎𝑤 can be used to describe the
same strings.

4.1.2 A rewriting relation

At the heart of string rewriting is a binary relation, −→, over strings. When
𝑤 −→ 𝑤 ′, we say that𝑤 can be rewritten to𝑤 ′. This relation is dened as the
least compatible relation satisfying a collection of rewriting axioms, chosen
on a per-application basis, such as the axioms

𝑎𝑏 −→ 𝑏 and 𝑏 −→ 𝜖

string rewriting for concurrent specifications 49

shown earlier. More generally, an axiom is any pair of concrete, nite strings,
𝑤 −→ 𝑤 ′, although axioms of the form 𝜖 −→ 𝑤 ′ are expressly forbidden.

To be more formal, these axioms are collected into a signature, Θ, that
indexes the rewriting relation:

ΘF · | Θ,𝑤 −→ 𝑤 ′ (𝑤 ≠ 𝜖)

The axioms of this signature may then be used via a −→ax rule,
𝑤 −→ 𝑤 ′ ∈ Θ
𝑤 −→Θ 𝑤 ′

−→ax
.

Aside from this rule, all of the other rules for the rewriting relation simply
pass on the signature Θ untouched; for this reason, we nearly always elide
the signature index on the rewriting relation, writing −→ instead of −→Θ. As
an example signature, the axioms of our running example can be packaged as

Σ = {𝑎, 𝑏}
Θ = (𝑎𝑏 −→ 𝑏) , (𝑏 −→ 𝜖) .

(4.2)

In addition to the application-specic axioms contained within a signature,
rewriting is always permitted within substrings, so we adopt the rule

𝑤0 −→ 𝑤 ′0
𝑤1𝑤0𝑤2 −→ 𝑤1𝑤

′
0𝑤2

−→c

to ensure that the rewriting relation is compatiblewith themonoidal structure
of strings.

The −→ relation thus describes the rewritings that are possible in a single
step: exactly one axiom, perhaps embellished by the compatibility rules. (We
will also write𝑤 X−→ if there does not exist a string𝑤 ′ such that𝑤 −→ 𝑤 ′.) In
addition to the single-step rewritings, it will frequently be useful to describe
the rewritings that are possible in some nite number of steps. For this, we
construct a multi-step rewriting relation, =⇒, from the reexive, transitive
closure of −→.5 5Usually written as −→∗, we instead choose

=⇒ for the reexive, transitive closure be-
cause of its similarity with standard process
calculus notation for weak transitions, 𝛼

=⇒.
Our reasons for this choice of notation will
become clearer in subsequent chapters.

Consistent with its monoidal structure, there are two equivalent formula-
tions of this reexive, transitive closure: each rewriting sequence 𝑤 =⇒ 𝑤 ′

can be viewed as either a list or tree of individual rewriting steps. We prefer
the list-based formulation,

𝑤 =⇒ 𝑤
=⇒r and

𝑤 −→ 𝑤 ′ 𝑤 ′ =⇒ 𝑤 ′′

𝑤 =⇒ 𝑤 ′′
=⇒t

,

because it tends to streamline proofs by structural induction. However, on the
basis of the following lemma, we allow ourselves to freely switch between the
two formulations as needed.

Lemma 4.1 (Transitivity of =⇒). If𝑤 =⇒ 𝑤 ′ and𝑤 ′ =⇒ 𝑤 ′′, then𝑤 =⇒ 𝑤 ′′.

Proof. By structural induction over the rst of the given rewriting sequences,
𝑤 =⇒ 𝑤 ′. �

A summary of string rewriting is shown in g. 4.3.

50

Figure 4.3: A string rewriting framework strings 𝑤 F 𝑤1𝑤2 | 𝜖 | 𝑎

signatures ΘF · | Θ,𝑤 −→ 𝑤 ′ (𝑤 ≠ 𝜖)

(𝑤1𝑤2)𝑤3 = 𝑤1 (𝑤2𝑤3)
𝜖𝑤 = 𝑤 = 𝑤 𝜖

𝑤 −→ 𝑤 ′ ∈ Θ
𝑤 −→Θ 𝑤 ′

−→ax
𝑤0 −→ 𝑤 ′0

𝑤1𝑤0𝑤2 −→ 𝑤1𝑤
′
0𝑤2

−→c

𝑤 =⇒ 𝑤
=⇒r

𝑤 −→ 𝑤 ′ 𝑤 ′ =⇒ 𝑤 ′′

𝑤 =⇒ 𝑤 ′′
=⇒t

4.1.3 Properties of the string rewriting framework

As an abstract rewriting system, the above string rewriting framework can be
evaluated for several properties: conuence, termination, and, of particular
interest to us, concurrency.

concurrency As an example multi-step rewriting sequence, observe that
𝑎𝑏𝑏 =⇒ 𝜖 , under the axioms of our running example (eq. (4.2)). In fact, as
shown in the adjacent figure, multiple sequences witness this rewriting. The

𝑏𝑏

𝑎𝑏𝑏 𝑏 −→ 𝜖

𝑎𝑏

←
→← →

←

→

⇐ ⇒

← →

Figure 4.4: An example of concurrent string
rewriting

initial 𝑎𝑏 can rst be rewritten to 𝑏 and then the terminal 𝑏 can be rewritten
to 𝜖 (upper half of figure); or vice versa: the terminal𝑏 can rst be rewritten to
𝜖 and then the initial 𝑎𝑏 can be rewritten to 𝑏 (lower half of figure). In either
case, the remaining 𝑏 (which is the leftmost of the original 𝑏s) can nally be
rewritten to 𝜖 .

Notice that these two sequences dier only in how non-overlapping, and
therefore independent, rewritings of the string’s two segments are interleaved.
Consequently, the two sequences can be – and indeed should be – considered
essentially equivalent. The details of how the individual, small steps are in-
terleaved are irrelevant, so that – conceptually at least – only the big-step
sequence from 𝑎𝑏𝑏 to 𝑏 (and ultimately 𝜖) remains (middle of gure).

In contrast, a third rewriting sequence does not admit this reordering: the
leftmost 𝑏 is rewritten rst to 𝜖 and then the resulting 𝑎𝑏 is rewritten to 𝑏

(and ultimately 𝜖). This sequence’s two rewriting steps are not independent
because the 𝑏 that participates in the rewriting of 𝑎𝑏 is not adjacent to the
𝑎 until after the rst rewriting step occurs. This is captured in the adjacent
figure by distinguishing the two 𝑏s with subscripts.

𝑏1𝑏2 𝑏2

𝑎𝑏1𝑏2 𝑏1 𝜖

𝑎𝑏1 𝑎 X−→

𝑎𝑏2

←

→

←→

←

→← →

←

→

⇐ ⇒

←

→

←→

← →

←→

← →←

→

Figure 4.5: When multiple occurrences of 𝑏
are properly distinguished, a complete trace
diagram can be given. More generally, this idea that the interleaving of independent actions is

irrelevant is known as concurrent equality,6 and it forms the basis of con-6Watkins et al. 2002.

currency. With the partial commutativity endowed by concurrent equality,

string rewriting for concurrent specifications 51

the free monoid formed by rewriting sequences is, more specically, a trace
monoid. As such, we will frequently refer to rewriting sequences as traces.

non-confluence We may also evaluate string rewriting for conuence.
Conuence requires that all strings with a common ancestor be joinable, i.e.,
that𝑤 ′1 ⇐==⇒ 𝑤 ′2 implies𝑤 ′1 =⇒⇐= 𝑤 ′2, for all strings𝑤 ′1 and𝑤 ′2.

String rewriting is an asymmetric, committed-choice relation, so some non-
deterministic choices are irreversible. For example, under the axioms of our
running example (eq. (4.2)), 𝑎𝑏 can be nondeterministically rewritten into ei-
ther 𝑎 or 𝜖 , as shown in g. 4.5. However, neither 𝑎 nor 𝜖 can be rewritten, so
conuence fails to hold for string rewriting in general.

non-termination In our running example, rewriting always terminates:
each possible rewriting step removes exactly one symbol, and each string
contains only nitely many symbols.

In general, string rewriting does not terminate even though strings are
nite. For a simple example, consider rewriting of strings over the alphabet
{𝑎, 𝑏} with axioms 𝑎 −→ 𝑏 and 𝑏 −→ 𝑎. Every nite trace from a nonempty
string can always be extended by applying one of these axioms, so string
rewriting in this example never terminates.

4.2 Example: Nondeterministic nite automata

As an extended example of string rewriting, we will specify how an NFA pro-
cesses its input. Beginning with this specication, NFAs will serve as a recur-
ring example throughout the remainder of this document.

Given an NFA A = (𝑄,Δ, 𝐹) over an input alphabet Σ, the idea is to intro-
duce a string rewriting axiom for each transition that the NFA can make:

𝑎𝑞 −→ 𝑞′𝑎 for each transition 𝑞 𝑎−→ 𝑞′𝑎 .

In addition, the NFA’s acceptance criteria is captured by introducing a distin-
guished symbol $ to act as an end-of-word marker, along with axioms

$𝑞 −→ 𝐹 (𝑞) for each state 𝑞, where 𝐹 (𝑞) =
{
y if 𝑞 ∈ 𝐹
n if 𝑞 ∉ 𝐹 .

These axioms imply that rewriting occurs over the nite strings from {$} ×
Σ∗ ×𝑄 ∪ {y, n}. Expressed as a string rewriting signature, the NFA A is

Θ = {𝑎𝑞 −→ 𝑞′𝑎 | 𝑞
𝑎−→ 𝑞′𝑎} ∪ {$𝑞 −→ 𝐹 (𝑞) | 𝑞 ∈ 𝑄} ,

where 𝐹 (𝑞) is dened as above.
For a concrete instance of this encoding, recall from chapter 2 the NFA

(repeated in the adjacent figure) that accepts exactly those words, over the

A1 = 𝑞0

a,b

𝑞1
b

𝑞2
a,b

a,b

Figure 4.6: An NFA that accepts, from state
𝑞0, exactly those words that end with 𝑏. (Re-
peated from g. 2.1.)

52

alphabet Σ = {𝑎, 𝑏}, that end with 𝑏; that NFA is specied by the following
string rewriting axioms:

ΘA1 = (𝑎𝑞0 −→ 𝑞0) , (𝑏𝑞0 −→ 𝑞0) , (𝑏𝑞0 −→ 𝑞1) , ($𝑞0 −→ n) ,
(𝑎𝑞1 −→ 𝑞2) , (𝑏𝑞1 −→ 𝑞2) , ($𝑞1 −→ y) ,
(𝑎𝑞2 −→ 𝑞2) , (𝑏𝑞2 −→ 𝑞2) , ($𝑞2 −→ n) .

Indeed, just as the NFA A1 accepts the input word 𝑎𝑏𝑏, its rewriting speci-
cation admits a trace

$𝑏𝑏𝑎𝑞0 −→ $𝑏𝑏𝑞0 −→ $𝑏𝑞0 −→ $𝑞1 −→ y .

More generally, this string rewriting specication of NFAs adequately de-
scribes their operational semantics, in the sense that it simulates all NFA tran-
sitions. Given the reversal7 (anti-)homomorphism for nite words dened in

7At this point in the narrative, it would
probably make more sense to specify NFAs
without reversing the input word, writing
the state 𝑞𝑖 at the string’s left end. But
we choose this specication instead because
it will align more conveniently with the
most natural process chain implementation
of DFAs and transducers (section 9.3.2).

the adjacent gure, we can prove the following adequacy result.

(𝑤1𝑤2)R = 𝑤R
2 𝑤

R
1

𝜖R = 𝜖

𝑎R = 𝑎

Figure 4.7: An (anti-)homomorphism for re-
versal of nite words

Theorem 4.2 (Adequacy of NFA specication). Let A = (𝑄,Δ, 𝐹) be an NFA
over the input alphabet Σ.
• 𝑞

𝑎−→ 𝑞′𝑎 if, and only if, 𝑎 𝑞 −→ 𝑞′𝑎 , for all input symbols 𝑎 ∈ Σ.
• 𝑞 ∈ 𝐹 if, and only if, $𝑞 −→ y.
• 𝑞

𝑤−→ 𝑞′ if, and only if,𝑤R 𝑞 =⇒ 𝑞′, for all nite words𝑤 ∈ Σ∗.

Proof. The rst two parts follow immediately from the NFA’s string rewriting
specication; the third part follows by induction over the structure of the
input word𝑤 . �

This adequacy theorem is relatively straightforward to state and prove be-
cause string rewriting is a good match for labeled transition systems, like the
one that denes an NFA’s operational semantics. On the other hand, when
a system is not so clearly based on a labeled transition system, stating and
proving the adequacy of its string rewriting specication becomes a bit more
involved. This is the case for the next example, binary representations of
natural numbers.

4.3 Example: Binary representations of natural numbers

For a second recurring example, we will use binary representations of natu-
ral numbers equipped with increment and decrement operations. Here we
present a string rewriting specication of these binary counters.

4.3.1 Binary representations

In this setting, we represent a natural number in binary by a string that con-
sists of a big-endian sequence of symbols 𝑏0 and 𝑏1, prexed by the symbol
𝑒; leading 𝑏0s are permitted. For example, both 𝑤 = 𝑒 𝑏1 and 𝑤 ′ = 𝑒 𝑏0 𝑏1 are
valid binary representations of the natural number 1.

string rewriting for concurrent specifications 53

To be more precise, we inductively dene a relation, ≈v, that assigns to
each binary representation a unique natural number denotation. If 𝑤 ≈v 𝑛,
we say that𝑤 denotes, or represents, natural number 𝑛 in binary.

𝑒 ≈v 0 𝑒-v
𝑤 ≈v 𝑛

𝑤 𝑏0 ≈v 2𝑛 𝑏0-v
𝑤 ≈v 𝑛

𝑤 𝑏1 ≈v 2𝑛 + 1 𝑏1-v

Besides providing a denotational semantics of binary numbers, the≈v relation
also serves to implicitly characterize thewell-formed binary numbers as those
strings𝑤 that form the relation’s domain of denition.8 8Alternatively, the well-formed binary num-

bers could be described more explicitly by
the grammar

𝑤 F 𝑒 | 𝑤𝑏0 | 𝑤𝑏1 ,

and then their denotations could be ex-
pressed in a more functional manner:

È𝑒Év = 0
È𝑤𝑏0Év = 2È𝑤Év
È𝑤𝑏1Év = 2È𝑤Év + 1 .

We prefer the purely relational formulation,
however.

The adequacy of the ≈v relation is proved as the following theorem.

Theorem 4.3 (Adequacy of binary representations). Binary representations
and their ≈v relation are:

Functional For each binary number𝑤 , there exists a unique natural number
𝑛 such that𝑤 ≈v 𝑛.

Surjective For each natural number 𝑛, there exists a binary number𝑤 such
that𝑤 ≈v 𝑛.

Latent If𝑤 ≈v 𝑛, then𝑤 X−→.

Proof. The three claims may be proved by induction over the structure of 𝑤 ,
and by induction on 𝑛, respectively. �

Notice that the above 𝑒-v and 𝑏0-v rules overlap when the denotation is 0,
giving rise to the leading 𝑏0s that make the ≈v relation non-injective: for ex-
ample, both 𝑒 𝑏1 ≈v 1 and 𝑒 𝑏0 𝑏1 ≈v 1 hold. However, if the 𝑏0-v is restricted
to nonzero even numbers, then each natural number has a unique, canonical
representation that is free of leading 𝑏0s.9

9A restriction of the 𝑏0 rule to nonzero even
numbers is:

𝑤 ≈v 𝑛 (𝑛 > 0)
𝑤𝑏0 ≈v 2𝑛 .

The leading-𝑏0-free representations could al-
ternatively be seen as the canonical repre-
sentatives of the equivalence classes induced
by the relation among binary numbers that
have the same denotation: 𝑤 ≡ 𝑤′ if𝑤 ≈v 𝑛
and 𝑤′ ≈v 𝑛 for some 𝑛.

4.3.2 An increment operation

To use string rewriting to describe an increment operation on binary repre-
sentations, we introduce a new symbol, 𝑖 , that will serve as an increment
instruction.

Given a binary number𝑤 that represents𝑛, wemay append 𝑖 to form an ac-
tive10, computational string,𝑤 𝑖 . For 𝑖 to adequately represent the increment 10The ‘active’, ‘latent’, and ‘passive’ terminol-

ogy is borrowed from Pfenning and Sim-
mons (2009). Active strings are immediately
rewritable, but latent strings are rewritable
only when combined with other, passive
strings. The blurry line between latent and
passive strings is exploited in chapter 6when
we discuss choreographies.

operation, the string𝑤 𝑖 must meet two conditions, captured by the following
global desiderata:

• 𝑤 𝑖 =⇒≈v 𝑛 + 1 – that is, some rewriting sequence results in a binary
representation of 𝑛 + 1; and

• 𝑤 𝑖 =⇒ 𝑤 ′ implies 𝑤 ′ =⇒≈v 𝑛 + 1 – that is, any rewriting sequence from
𝑤 𝑖 can result in a binary representation of 𝑛 + 1.

For example, because 𝑒 𝑏1 denotes 1, a computation 𝑒 𝑏1 𝑖 =⇒≈v 2 must exist;
moreover, every computation 𝑒 𝑏1 𝑖 =⇒≈v 𝑛′ must satisfy 𝑛′ = 2.

54

To achieve these global desiderata, we introduce three string rewriting
axioms that describe how the symbols 𝑒 , 𝑏0, and 𝑏1 may be rewritten when
they encounter 𝑖 , the increment instruction:

𝑒 𝑖 −→ 𝑒 𝑏1 𝑏0 𝑖 −→ 𝑏1 and 𝑏1 𝑖 −→ 𝑖 𝑏0 .

These three axioms can be read as follows:

• To increment 𝑒 , replace 𝑒 (and 𝑖) with 𝑒 𝑏1.

• To increment a binary number ending in 𝑏0, ip that bit to 𝑏1.

• To increment a binary number ending in 𝑏1, ip that bit to 𝑏0 and carry the
increment over to the more signicant bits.

Comfortingly, 1 + 1 = 2: a trace 𝑒 𝑏1 𝑖 −→ 𝑒 𝑖 𝑏0 −→ 𝑒 𝑏1 𝑏0 indeed exists.
Owing to the notion of concurrent equality that string rewriting admits,

increments may even be performed concurrently. For example, there are two
rewriting sequences that witness 𝑒 𝑏1 𝑖 𝑖 =⇒ 𝑒 𝑏1 𝑏1:

𝑒 𝑏1 𝑏0 𝑖

𝑒 𝑏1 𝑖 𝑖 −→ 𝑒 𝑖 𝑏0 𝑖 𝑒 𝑏1 𝑏1
𝑒 𝑖 𝑏1

←→←→⇐ ⇒←→ ←→

In other words, once the left most increment is carried past the least signi-
cant bit, the two increments can be interleaved, with no observable dierence
in the outcome.

These increment axioms introduce strings that occur as intermediate com-
putational states within traces, such as 𝑒 𝑖 𝑏0 𝑖 and 𝑒 𝑖 𝑏1 in the above diagram.
To characterize the valid intermediate strings, we dene a binary relation, ≈i,
that assigns a natural number denotation to each such intermediate string,
not only to the terminal values, as ≈v did.1111 Like the ≈v relation does for values, the ≈i

relation also serves to implicitly character-
ize the valid intermediate states as those con-
texts that form the relation’s domain of def-
inition. As with values, the valid interme-
diate states could also be enumerated more
explicitly and syntactically with a grammar
and denotation function:

𝑤 F 𝑒 | 𝑤𝑏0 | 𝑤𝑏1 | 𝑤 𝑖

È𝑒Éi = 0
È𝑤𝑏0Éi = 2È𝑤Éi
È𝑤𝑏1Éi = 2È𝑤Éi + 1
È𝑤 𝑖Éi = È𝑤Éi + 1

However, we once again prefer the purely re-
lational form.

𝑒 ≈i 0
𝑒-i

𝑤 ≈i 𝑛
𝑤 𝑏0 ≈i 2𝑛

𝑏0-i
𝑤 ≈i 𝑛

𝑤 𝑏1 ≈i 2𝑛 + 1
𝑏1-i

𝑤 ≈i 𝑛
𝑤 𝑖 ≈i 𝑛 + 1 𝑖-i

Binary values should themselves be valid, terminal computational states, so
the rst three rules are carried over from the ≈v relation. The 𝑖-i rule allows
multiple increment instructions to be interspersed throughout the state.

With this ≈i relation in hand, we can now prove a stronger, small-step ade-
quacy theorem. This small-step theorem then implies the big-step desiderata
from above.

Theorem 4.4 (Small-step adequacy of increments).
Value soundness If𝑤 ≈v 𝑛, then𝑤 ≈i 𝑛 and𝑤 X−→.
Preservation If𝑤 ≈i 𝑛 and𝑤 −→ 𝑤 ′, then𝑤 ′ ≈i 𝑛.
Progress If𝑤 ≈i 𝑛, then either: 𝑤 −→ 𝑤 ′ for some𝑤 ′; or𝑤 ≈v 𝑛.
Termination If𝑤 ≈i 𝑛, then every rewriting sequence from𝑤 is nite.

string rewriting for concurrent specifications 55

Proof. Each part is proved separately.

Value soundness can be proved by structural induction on the derivation of
𝑤 ≈v 𝑛.

Preservation and progress can likewise be proved by structural induction on
the derivation of𝑤 ≈i 𝑛.

Termination can be proved using an explicit termination measure, |−|i, that
is strictly decreasing across each rewriting,𝑤 −→ 𝑤 ′. Specically, we use
a measure (see the adjacent figure), adapted from the standard amortized

|𝑒 |i = 0
|𝑤𝑏0 |i = |𝑤 |i
|𝑤𝑏1 |i = |𝑤 |i + 1
|𝑤 𝑖 |i = |𝑤 |i + 2

Figure 4.8: A termination measure, adapted
from the standard amortized work analysis
of increment for binary counters

constant work analysis of increment for binary counters.12 The measure

12Cormen et al. 2009.

|−|i is such that 𝑤 −→ 𝑤 ′ implies |𝑤 |i > |𝑤 ′ |i; because the measure is
always nonnegative, only nitely many such rewritings can occur.

As an example case, consider the intermediate state𝑤 𝑏1 𝑖 and its rewrit-
ing𝑤 𝑏1 𝑖 −→ 𝑤 𝑖 𝑏0. Indeed, |𝑤 𝑏1 𝑖 |i = |𝑤 |i + 3 > |𝑤 |i + 2 = |𝑤 𝑖 𝑏0 |i. �

Corollary 4.5 (Big-step adequacy of increments).
Evaluation If𝑤 ≈i 𝑛, then𝑤 =⇒≈v 𝑛. In particular, if𝑤 ≈v 𝑛, then𝑤 𝑖 =⇒≈v

𝑛 + 1.
Preservation If 𝑤 ≈i 𝑛 and 𝑤 =⇒ 𝑤 ′, then 𝑤 ′ ≈i 𝑛. In particular, if 𝑤 ≈v 𝑛

and𝑤 𝑖 =⇒ 𝑤 ′, then𝑤 ′ =⇒≈v 𝑛 + 1.

Proof. The two parts are proved separately.

Evaluation can be proved by repeatedly appealing to the progress and preser-
vation results (theorem 4.4). By the accompanying termination result, a
binary value must eventually be reached.

Preservation can be proved by structural induction on the given trace. �

4.3.3 A decrement operation

Binary counters may also be equipped with a decrement operation. Instead
of examining decrements per se, we will describe a very closely related op-
eration: the normalization of binary representations to what might be called
head-unary form. (We will frequently abuse terminology, using ‘head-unary
normalization’ and ‘decrement operation’ interchangeably.)

The possible head-unary forms are 𝑧 and𝑤 ′ 𝑠 , where𝑤 ′ is a binary number.
The symbols 𝑧 and 𝑠 were chosen to suggest the zero and successor construc-
tors for unary representations of natural numbers. In this way, 𝑧 is the unique
head-unary form of every binary number𝑤 that denotes 0, and𝑤 ′ 𝑠 is a head-
unary form of binary number𝑤 , if𝑤 denotes 𝑛 > 0 and𝑤 ′ denotes 𝑛 − 1. For
example, 𝑒 𝑏0 has head-unary form 𝑧, and 𝑒 𝑏1 𝑏0 has 𝑒 𝑏0 𝑏1 𝑠 as a head-unary
form13. 13 Leading 𝑏0s could also be added or removed

to this head-unary formJust as appending the symbol 𝑖 to a counter 𝑤 initiates an increment, ap-
pending a symbol𝑑 will cause the counter to begin normalizing to head-unary
form. In other words,𝑤 𝑑 will rewrite to either 𝑧 (representing the head-unary

56

form of the number 0) or𝑤 ′ 𝑠 (representing a head-unary normal form of the
number 𝑛 > 0, where𝑤 ′ denotes 𝑛 − 1).

For 𝑑 to adequately represent this operation, the string 𝑤 𝑑 must satisfy
the following global desiderata when𝑤 ≈d 𝑛:

• 𝑤 𝑑 =⇒ 𝑧 if, and only if, 𝑛 = 0;

• 𝑤 𝑑 =⇒ 𝑤 ′ 𝑠 for some𝑤 ′ such that𝑤 ′ ≈v 𝑛 − 1, if 𝑛 > 0; and

• 𝑤 𝑑 =⇒ 𝑤 ′ 𝑠 only if 𝑛 > 0 and𝑤 ′ ≈v 𝑛 − 1.

Notice that these last two desiderata function as converses. For example, be-
cause 𝑒 𝑏1 denotes 1, there must exist a trace 𝑒 𝑏1 𝑑 =⇒ 𝑤 ′ 𝑠 for some𝑤 ′ ≈v 0.
Conversely, because 𝑒 denotes 0, there must not exist a trace 𝑒 𝑑 =⇒ 𝑤 ′ 𝑠 for
any𝑤 ′.

To achieve these global desiderata, we introduce three additional axioms
that describe how the symbols 𝑒 , 𝑏0, and 𝑏1 may be rewritten when they en-
counter𝑑 , the decrement instruction; also, an intermediate symbol𝑏 ′0 and two
more axioms are introduced:

𝑒 𝑑 −→ 𝑧 𝑏1 𝑑 −→ 𝑏0 𝑠 𝑏0 𝑑 −→ 𝑑 𝑏 ′0

𝑧 𝑏 ′0 −→ 𝑧 and 𝑠 𝑏 ′0 −→ 𝑏1 𝑠 .

These ve axioms can be read as follows:

• Because 𝑒 denotes 0, its head-unary form is simply 𝑧.

• Because𝑤 𝑏1 denotes 2𝑛+1 if𝑤 denotes 𝑛, its head-unary form,𝑤 𝑏0 𝑠 , can
be constructed by ipping the least signicant bit to 𝑏0 and appending 𝑠 .

• Because 𝑤 𝑏0 denotes 2𝑛 if 𝑤 denotes 𝑛, its head-unary form can be con-
structed by recursively putting the more signicant bits, 𝑤 , into head-
unary form and appending 𝑏 ′0 to process that result.

– If 𝑤 has head-unary form 𝑧 and therefore denotes 0, then 𝑤 𝑏0 also de-
notes 0 and has head-unary form 𝑧.

– Otherwise, if𝑤 has head-unary form𝑤 ′ 𝑠 and thus denotes 𝑛 > 0, then
𝑤 𝑏0 denotes 2𝑛 > 0 and has head-unary form 𝑤 ′𝑏1 𝑠 , which can be
constructed by replacing 𝑠 with 𝑏1 𝑠 .

Comfortingly, (1 + 1) − 1 = 1: the head-unary form of 𝑒 𝑏1 𝑖 is 𝑒 𝑏0 𝑏1 𝑠:

𝑒 𝑏1 𝑏0 𝑑
𝑒 𝑏1 𝑖 𝑑 −→ 𝑒 𝑖 𝑏0 𝑑 𝑒 𝑏1 𝑑 𝑏

′
0 −→ 𝑒 𝑏0 𝑠 𝑏

′
0 −→ 𝑒 𝑏0 𝑏1 𝑠

𝑒 𝑖 𝑑 𝑏 ′0

←→←→⇐ ⇒←→ ←→
.

Note the concurrency that derives from the independence of the increment
and decrement after the initial step of rewriting.

string rewriting for concurrent specifications 57

These decrement axioms introduce more strings that may occur as inter-
mediate computational states. As before, we dene a new binary relation, ≈d,
that assigns a natural number denotation to each string that may appear as
an intermediate state during a decrement.

𝑤 ≈i 𝑛
𝑤 𝑑 ≈d 𝑛 𝑑-d

𝑤 ≈d 𝑛
𝑤 𝑏 ′0 ≈d 2𝑛

𝑏 ′0-d 𝑧 ≈d 0 𝑧-d 𝑤 ≈i 𝑛
𝑤 𝑠 ≈d 𝑛 + 1

𝑠-d

At rst glance, the 𝑑-d rule may look a bit odd: Why is the denotation un-
changed by a decrement,𝑤 𝑑? Because the operation is more accurately char-
acterized as head-unary normalization, it makes sense that the denotation re-
mains unchanged. The operation described by 𝑑 does not change the binary
counter’s value – it only expresses that same value in a dierent form.14

14Once again, the valid intermediate states
could also be enumerated more explicitly
and syntactically with a grammar and deno-
tation function:

𝑤 F 𝑒 | 𝑤𝑏0 | 𝑤𝑏1 | 𝑤 𝑖

𝑤ℎ F 𝑤𝑑 | 𝑤ℎ 𝑏′0 | 𝑧 | 𝑤 𝑠

È𝑤𝑑Éd = È𝑤Éi
È𝑤ℎ 𝑏′0Éd = 2È𝑤ℎÉd
È𝑧Éd = 0
È𝑤 𝑠Éd = È𝑤Éi + 1Also, notice that the premises of the 𝑑-d and 𝑠-d rules use the increment-

only denotation relation, ≈i, not the decrement relation, ≈d. These choices
ensure that each counter has at most one 𝑑 and may not have any 𝑖 or 𝑠 sym-
bols to the right of that𝑑 . But the premise of the 𝑏 ′0-d does use the ≈d relation,
so 𝑑 may have 𝑏 ′0 symbols to its right.

With this ≈d relation in hand, we can now prove a small-step adequacy
theorem. This small-step theorem then implies the big-step desiderata from
above.

Theorem 4.6 (Small-step adequacy of decrements).
Preservation If𝑤 ≈d 𝑛 and𝑤 −→ 𝑤 ′, then𝑤 ′ ≈d 𝑛.
Progress If𝑤 ≈d 𝑛, then either:
• 𝑤 −→ 𝑤 ′, for some𝑤 ′;
• 𝑛 = 0 and𝑤 = 𝑧; or
• 𝑛 > 0 and𝑤 = 𝑤 ′ 𝑠 , for some𝑤 ′ such that𝑤 ′ ≈i 𝑛 − 1.
Termination If𝑤 ≈d 𝑛, then every rewriting sequence from𝑤 is nite.

Proof. Each part is proved separately.

Preservation and progress are proved, as before, by structural induction on the
given derivation of𝑤 ≈d 𝑛.

Termination is proved by exhibiting a measure, |−|d, given in the adjacent g-
ure, that is strictly decreasing across each rewriting. Unlike the amortized

|𝑤𝑑 |d = |𝑤 |i + 3 |𝑤 |
|𝑤𝑏′0 |d = |𝑤 |d + 2
|𝑧 |d = 0
|𝑤 𝑠 |d = |𝑤 |i

Figure 4.9: A termination measure for decre-
ments, where |𝑤 | denotes the length of
string 𝑤

constant work increments (see proof of theorem 4.4), this measure assigns
a linear amount of potential to the decrement instruction.15

15Actually, because the increment and decre-
ment operations are dened only for bi-
nary representations, not head-unary forms,
there can be at most one𝑑 . Therefore, it is ac-
tually possible to assign a constant amount
of potential to each 𝑑 . However, doing so
would rely on a somewhat involved lexico-
graphic measure that isn’t particularly rele-
vant to our aims in this dissertation, so we
use the simpler linear potential.

This measure is strictly decreasing across each rewriting: 𝑤 −→ 𝑤 ′

only if |𝑤 |d > |𝑤 ′ |d. As an example case, consider the intermediate state
𝑤 𝑏0 𝑑 and its rewriting𝑤 𝑏0 𝑑 −→ 𝑤 𝑑 𝑏 ′0. Indeed,

|𝑤 𝑏0 𝑑 |d = |𝑤 |i + 3|𝑤 | + 3 > |𝑤 |i + 3|𝑤 | + 2 = |𝑤 𝑑 𝑏 ′0 |d . �

Corollary 4.7 (Big-step adequacy of decrements). If𝑤 ≈d 𝑛, then:
• 𝑤 =⇒ 𝑧 if, and only if, 𝑛 = 0;
• 𝑤 =⇒ 𝑤 ′ 𝑠 for some𝑤 ′ such that𝑤 ′ ≈i 𝑛 − 1, if 𝑛 > 0; and

58

• 𝑤 =⇒ 𝑤 ′ 𝑠 only if 𝑛 > 0 and𝑤 ′ ≈i 𝑛 − 1.

Proof. From the small-step preservation result of theorem 4.6, it is possible to
prove, using a structural induction on the given trace, a big-step preservation
result: namely, that 𝑤 ≈d 𝑛 and 𝑤 =⇒ 𝑤 ′ only if 𝑤 ′ ≈d 𝑛. Each of the
above claims then follows from either progress and termination (theorem 4.6)
or big-step preservation together with inversion. �

5
Ordered rewriting

The previous chapter reviewed a string rewriting framework for specifying
the dynamics of concurrent systems that have chain topologies. As seen in
section 4.1.3, string rewriting is indeed a model of concurrency. But it does
not have obvious connections to proof construction.

In this chapter, we therefore turn our attention to developing a rewriting
interpretation of the ordered sequent calculus shown in chapter 3. Ordered
rewriting increases the expressive power of string rewriting by enriching the
rather spartan free monoidal structure to one based on free residuated lat-
tices, in accordance with the (full) Lambek calculus.1 Like the string rewriting 1 Lambek 1958, 1961; Abrusci 1990; Kanazawa

1992; Polakow and Pfenning 1999b.framework that it generalizes, ordered rewriting will serve as a framework for
specifying concurrent systems that have chain topologies. But unlike string
rewriting, ordered rewriting, being derived from the ordered sequent calcu-
lus, will have the advantage of constituting a proof-construction explanation
of concurrency. In addition to grounding concurrency in logic, ordered rewrit-
ing provides the logical connectives, which function as a richer, more conve-
nient set of primitives for describing concurrent systems.

Section 5.1 begins by observing that many of the ordered sequent calcu-
lus’s left rules share a large amount of boilerplate, with only very little of
each left rule being devoted to the primary task of decomposing the prin-
cipal proposition. By introducing a new judgment, Ω −→ Ω′, for decom-
posing principal propositions, it is possible to refactor the ordered sequent
calculus in such a way that boilerplate is almost exclusively conned to a cut
principle for the decomposition judgment (section 5.1.1). Ordered rewriting
is then obtained as exactly the decomposition-centric fragment of the refac-
tored sequent calculus (section 5.1.2). To the best of our knowledge, this kind
of refactoring appears to be a new way of deriving a rewriting framework
from existing proof theory.

Like its string rewriting cousin, the ordered rewriting framework allows
disjoint segments of an ordered context to be rewritten independently; con-
currency arises within ordered rewriting when the various interleavings of
independent rewritings are treated indistinguishably (section 5.1.3).

60

Unfortunately, this ordered rewriting framework is based on very ne-
grained decomposition, which can lead to rewriting sequences that may get
stuck in undesirable and unintended ways. So section 5.2 extends ordered
rewriting with ideas from focusing,2 specically the higher-order formula-2Andreoli 1992.

tion of focusing,3 to allow for coarser-grained steps of decomposition. These3Zeilberger 2008; Simmons 2012.

coarser decompositions will be better suited to specifying the dynamics of
concurrent systems – rewriting can still get stuck, but no longer in articial
ways.

Moreover, in moving to focused ordered rewriting, no expressive power is
lost. With careful placement of shifts, it is possible to control the behavior
of focused rewriting, as section 5.3 shows. In particular, unfocused ordered
rewriting can be recovered in an operationally faithful way within this fo-
cused framework (section 5.3.1), and even an intermediate, weakly focused
form of ordered rewriting can be embedded (section 5.3.2).

5.1 Ordered resource decomposition as rewriting

5.1.1 Most left rules decompose ordered resources

Recall two of the ordered sequent calculus’s left rules, the •l and Nl1 rules
shown in the margin. Both rules decompose the principal resource: in the •lΩ′

𝐿
𝐴𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 • 𝐵) Ω′

𝑅
` 𝐶

•l

and
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴N 𝐵) Ω′

𝑅
` 𝐶

Nl1

rule, 𝐴 • 𝐵 into the separate resources 𝐴𝐵; and, in the Nl1 rule, 𝐴N 𝐵 into 𝐴.
However, in both cases, the resource decomposition is somewhat obscured by
boilerplate. The framed contexts Ω′

𝐿
and Ω′

𝑅
and goal 𝐶 serve to enable the

rules to be applied anywhere in the list of resources, without restriction; these
concerns are not specic to the •l and Nl1 rules, but are general boilerplate
that arguably should be factored out. Let us develop a variant of the sequent
calculus that factors out this boilerplate.

To decouple the resource decomposition from the surrounding boilerplate,
we will introduce a new judgment, Ω −→ Ω′, meaning “Resources Ω may be
decomposed into resources Ω′.” The choice of notation for this judgment is
not coincidental: resource decomposition is, in some dimensions, a general-
ization of the string rewriting shown in chapter 4.

With this new decomposition judgment comes a cut principle, cut−→, into
which all of the boilerplate is factored:

Ω −→ Ω′ Ω′
𝐿
Ω′ Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 cut−→

.

Using this cut principle, the standard left rules can then be recovered from
resource decomposition rules. For example, the decomposition of 𝐴 • 𝐵 into
𝐴𝐵 is captured by

𝐴 • 𝐵 −→ 𝐴𝐵
•d

,

and the standard •l rule can then be recovered as shown in the adjacent figure.

Ω′
𝐿
𝐴𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 • 𝐵) Ω′

𝑅
` 𝐶

•l

!

𝐴 • 𝐵 −→ 𝐴𝐵
•d

Ω′
𝐿
𝐴𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 • 𝐵) Ω′

𝑅
` 𝐶

cut−→

Figure 5.1: Refactoring the •l rule in terms
of resource decomposition The left rules for 1 and 𝐴 N 𝐵 can be similarly refactored into the resource

ordered rewriting 61

decomposition rules

1 −→ · 1d 𝐴 N 𝐵 −→ 𝐴
Nd1 and 𝐴 N 𝐵 −→ 𝐵

Nd2
.

Even the left rules for left- and right-handed implications can be refactored
in this way, despite the additional, minor premises that those rules carry. To
keep the correspondence between resource decomposition rules and left rules
as close as possible, we could introduce the decomposition rules

Ω ` 𝐴
Ω (𝐴 \ 𝐵) −→ 𝐵

\d′ and
Ω ` 𝐴

(𝐵 /𝐴) Ω −→ 𝐵
/d′

. (5.1)

Just as for ordered conjunction, the left rules for left- and right-handed impli-
cation would then be recoverable via the cut−→ rule (see adjacent gure).

Ω ` 𝐴 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω (𝐴 \ 𝐵) Ω′

𝑅
` 𝐶

\l

!

Ω ` 𝐴
Ω (𝐴 \ 𝐵) −→ 𝐵

\d′
Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω (𝐴 \ 𝐵) Ω′

𝑅
` 𝐶

cut−→

Figure 5.2: A possible refactoring of the \l
rule in terms of resource decomposition

Although these rules keep the correspondence between resource decom-
position rules and left rules close, they dier from the other decomposition
rules in two signicant ways. First, the above \d′ and /d′ rules have premises,
and those premises create a dependence of the decomposition judgment upon
general provability. Second, the above \d′ and /d′ rules do not decompose the
principal proposition into immediate subformulas since Ω is involved. This
contrasts with, for example, the •d rule that decomposes 𝐴 • 𝐵 into the im-
mediate subformulas 𝐴𝐵.

For these reasons, the above \d′ and /d′ rules are somewhat undesirable.
Fortunately, there is an alternative. Filling in the Ω ` 𝐴 premises with the
id𝐴 rule, we arrive at the derivable modus ponens-like rules

𝐴 (𝐴 \ 𝐵) −→ 𝐵
\d and (𝐵 /𝐴)𝐴 −→ 𝐵

/d
, (5.2)

which we adopt as decomposition rules in place of those in eq. (5.1). The
standard \l and /l rules can still be recovered from these more specic de-
composition rules, thanks to cut (see adjacent gure). These revised, nullary

Ω ` 𝐴 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω (𝐴 \ 𝐵) Ω′

𝑅
` 𝐶

\l

!

Ω ` 𝐴
𝐴 (𝐴 \ 𝐵) −→ 𝐵

\d
Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
𝐴 (𝐴 \ 𝐵) Ω′

𝑅
` 𝐶

cut−→

Ω′
𝐿
Ω (𝐴 \ 𝐵) Ω′

𝑅
` 𝐶

cut𝐴

Figure 5.3: Refactoring the \l rule in terms of
resource decomposition, via \d and cut−→

decomposition rules correct the earlier drawbacks: like the other decomposi-
tion rules, they now have no premises and only refer to immediate subformu-
las. Moreover, these rules have the advantage of matching two of the axioms
from Lambek’s original article.4 4 Lambek 1958.

For most ordered logical connectives, this approach works perfectly.
Unfortunately, the left rules for additive disjunction,𝐴�𝐵, and its unit, 0, are
resistant to this kind of refactoring. The diculty with additive disjunction
isn’t that its left rule, �l, doesn’t decompose the resource 𝐴 � 𝐵. The �l Ω′

𝐿
𝐴 Ω′

𝑅
` 𝐶 Ω′

𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴� 𝐵) Ω′

𝑅
` 𝐶

�l
rule certainly does decompose 𝐴 � 𝐵, but it does so by branching on the two
possible futures: unwrapping the 𝐴 � 𝐵 package will result in either 𝐴 or 𝐵.
Just as 𝐴 � 𝐵 has two futures, 0, as its nullary analogue, has no future.

The straight-line nature of the Ω −→ Ω′ judgment seems incompatible
with this branching behavior, so we choose to retain the standard �l and 0l
rules.5

5 It might be possible to introduce a branching
judgment, something like Ω −→ Ω′1 | Ω′2,
but we will not pursue that here.

62

Figure 5.4: A refactoring of the ordered se-
quent calculus to emphasize that most left
rules amount to resource decomposition

Ω ` 𝐴 Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 cut𝐴

𝐴 ` 𝐴 id𝐴

Ω −→ Ω′ Ω′
𝐿
Ω′ Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 cut−→

Ω1 ` 𝐴 Ω2 ` 𝐵
Ω1 Ω2 ` 𝐴 • 𝐵

•r
𝐴 • 𝐵 −→ 𝐴𝐵

•d

· ` 1 1r 1 −→ · 1d

Ω ` 𝐴 Ω ` 𝐵
Ω ` 𝐴 N 𝐵

Nr
𝐴 N 𝐵 −→ 𝐴

Nd1
𝐴 N 𝐵 −→ 𝐵

Nd2

Ω ` > >r (no >d rule)

𝐴 Ω ` 𝐵
Ω ` 𝐴 \ 𝐵 \r 𝐴 (𝐴 \ 𝐵) −→ 𝐵

\d

Ω𝐴 ` 𝐵
Ω ` 𝐵 /𝐴 /r (𝐵 /𝐴)𝐴 −→ 𝐵

/d

Ω ` 𝐴
Ω ` 𝐴 � 𝐵

�r1 Ω ` 𝐵
Ω ` 𝐴 � 𝐵

�r2
Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶 Ω′

𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 � 𝐵) Ω′

𝑅
` 𝐶 �l

(no 0r rule) Ω′
𝐿
0Ω′

𝑅
` 𝐶 0l

ordered rewriting 63

𝐴 • 𝐵 −→ 𝐴𝐵
•d

1 −→ · 1d

𝐴 N 𝐵 −→ 𝐴
Nd1

𝐴 N 𝐵 −→ 𝐵
Nd2 (no >d rule)

𝐴 (𝐴 \ 𝐵) −→ 𝐵
\d (𝐵 /𝐴)𝐴 −→ 𝐵

/d (no �d and 0d rules)

Ω −→ Ω′

Ω𝐿 Ω Ω𝑅 −→ Ω𝐿 Ω
′ Ω𝑅

−→c

Ω =⇒ Ω
=⇒r Ω −→ Ω′ Ω′ =⇒ Ω′′

Ω =⇒ Ω′′
=⇒t

Figure 5.5: The rewriting fragment of or-
dered logic, based on resource decomposi-
tion

Figure 5.4 presents the refactored sequent calculus for ordered logic in
its entirety. This calculus is sound and complete with respect to the ordered
sequent calculus (g. 3.2).

Theorem 5.1 (Soundness and completeness). Ω ` 𝐴 is derivable in the refac-
tored calculus of g. 5.4 if, and only if Ω ` 𝐴 is derivable in the usual ordered
sequent calculus (g. 3.2).

Proof. Soundness, the right-to-left direction, can be proved by structural in-
duction on the given derivation. The key lemma is the admissibility of cut−→

in the usual ordered sequent calculus:

If Ω −→ Ω′ and Ω′
𝐿
Ω′ Ω′

𝑅
` 𝐶 , then Ω′

𝐿
Ω Ω′

𝑅
` 𝐶 .

This lemma can be proved by case analysis of the decomposition Ω −→ Ω′,
reconstituting the corresponding left rule along the lines of the sketches from
gs. 5.1 and 5.3.

Completeness, the left-to-right direction, can be proved by structural in-
duction on the given derivation. The critical cases are the left rules; they are
resolved along the lines of the sketches shown in gs. 5.1 and 5.3. �

5.1.2 An ordered rewriting framework

Thus far, we have used the decomposition judgment, Ω −→ Ω′, and its rules
as the basis for a recongured sequent-like calculus for ordered logic. Alter-
natively, we can view decomposition as the foundation of a rewriting system
grounded in ordered logic. For example, the decomposition of resource 𝐴 • 𝐵
into 𝐴𝐵 by the •d rule can also be seen as rewriting 𝐴 • 𝐵 into 𝐴𝐵. More
generally, the decomposition judgment Ω −→ Ω′ can be read as “Ω rewrites
to Ω′”, where contexts Ω are states that are subject to rewriting.

Figure 5.5 summarizes the ordered rewriting system that we obtain from
the refactored sequent-like calculus of g. 5.4. Essentially, the ordered rewrit-

64

ing framework is obtained by discarding all rules except for the decompo-
sition rules. However, if only the decomposition rules are used, rewritings
cannot occur within a larger context. For example, the \d decomposition
rule derives 𝐴 (𝐴 \ 𝐵) −→ 𝐵, but Ω′

𝐿
𝐴 (𝐴 \ 𝐵) Ω′

𝑅
−→ Ω′

𝐿
𝐵 Ω′

𝑅
would not be

derivable in general. In the refactored calculus of g. 5.4, this kind of fram-
ing is taken care of by the cut principle for decomposition, cut−→. To express
framing at the level of the Ω −→ Ω′ judgment itself, we ensure that rewriting
is compatible with concatenation of ordered contexts:

Ω −→ Ω′

Ω𝐿 Ω Ω𝑅 −→ Ω𝐿 Ω
′ Ω𝑅

−→c
.

This is analogous to the compatibility rule for string rewriting within sub-
strings.

Also like in string rewriting, we can form the reexive, transitive closure of
−→, as a multi-step rewriting relation; we again choose to write the reexive,
transitive closure as =⇒. We prefer the list-like formulation of =⇒ shown
in g. 5.5 because it tends to streamline proofs by structural induction, but,
on the basis of the following lemma, we allow ourselves to freely switch to a
tree-like formulation as needed.

Lemma 5.2 (Transitivity of =⇒). If Ω =⇒ Ω′ and Ω′ =⇒ Ω′′, then Ω =⇒ Ω′′.

Proof. By induction on the structure of the rst trace, Ω =⇒ Ω′. �

A few remarks about these rewriting relations are in order. First, interpret-
ing the resource decomposition rules as rewriting only conrms our prefer-
ence for the nullary \d and /d rules (eq. 5.2). The \d′ and /d′ rules (eq. 5.1),
with their Ω ` 𝐴 premises, would be problematic as rewriting rules because
they would introduce a dependence of rewriting upon general provability and
the accompanying proof search would take ordered rewriting too far aeld
from traditional, syntactic notions of string and multiset rewriting.66 For similar reasons, the 𝜔 rewriting system

proposed by Cervesato and Scedrov (2009)
restricts the linear implication rule to have
no minor premise.

Second, multi-step rewriting, =⇒, is incomplete with respect to the usual
ordered sequent calculus (g. 3.2) because all right rules have been discarded.

False claim 5.3 (Completeness). If Ω ` 𝐴, then Ω =⇒ 𝐴.

Counterexample. The sequent 𝐴 \ (𝐶 / 𝐵) ` (𝐴 \ 𝐶) / 𝐵 is provable, and yet
𝐴\ (𝐶 /𝐵) Y=⇒ (𝐴\𝐶) /𝐵 (even though𝐴 (𝐴\ (𝐶 /𝐵)) 𝐵 =⇒ 𝐶 does hold). �

As expected from the way in which it was developed, ordered rewriting is,
however, sound. To state and prove soundness, we must rst dene an oper-
ation •Ω that reies an ordered context as a single proposition (see adjacent
gure).This operation creates a proposition that can be “attened” intoΩ. The

•(Ω1 Ω2) = (•Ω1) • (•Ω2)
•(·) = 1

•𝐴 = 𝐴

Figure 5.6: From ordered contexts to propo-
sitions

proposition •Ω is equivalent to Ω in the following sense:

Lemma 5.4. For all Ω and 𝐶 , if Ω ` 𝐶 , then •Ω ` 𝐶 . Also, Ω ` •Ω for all Ω.

Proof. By induction on the structure of the given context, Ω. �

ordered rewriting 65

Theorem 5.5 (Soundness). If Ω −→ Ω′, then Ω ` •Ω′. Also, if Ω =⇒ Ω′,
then Ω ` •Ω′.

Proof. By induction on the structure of the given step or trace. �

5.1.3 Properties of the ordered rewriting framework

As we did for the string rewriting framework, we can evaluate the above
ordered rewriting framework for conuence, termination, and, most impor-
tantly, concurrency.

concurrency Like string rewriting, ordered rewriting admits concurrency.
As an example of concurrent ordered rewriting, observe that, as shown in the
adjacent gure, two sequences witness 𝑎 (𝑎 \ 𝑏) (𝑐 / 𝑎) 𝑎 =⇒ 𝑏 𝑐: either the

𝑎 (𝑎 \ 𝑏) (𝑐 / 𝑎) 𝑎

𝑏 (𝑐 / 𝑎) 𝑎 𝑎 (𝑎 \ 𝑏) 𝑐

𝑏 𝑐

←

→

←

→

⇐

⇒

←

→

←

→

Figure 5.7: An example of concurrency in or-
dered rewriting

initial state’s left half, 𝑎 (𝑎 \ 𝑏), is rst rewritten to 𝑏 and then its right half,
(𝑐 /𝑎) 𝑎, is rewritten to 𝑐; or vice versa, the right half is rst rewritten to 𝑐 and
then the left half is rewritten to 𝑏.

These two sequences dier only in how non-overlapping, and therefore
independent, rewritings of the initial state’s two halves are interleaved. And
so, just as in string rewriting, the two sequences can be – and indeed should be
– considered essentially equivalent. The details of how the small-step rewrites
are interleaved are irrelevant, so that conceptually, at least, only the big-step
trace from 𝑎 (𝑎 \ 𝑏) (𝑐 / 𝑎) 𝑎 to 𝑏 𝑐 remains.

non-confluence Although it admits concurrency, ordered rewriting is
not conuent. Recall from chapter 4 that conuence requires all states with
a common ancestor, i.e., states Ω′1 and Ω′2 such that Ω′1 ⇐==⇒ Ω′2, to be
joinable, i.e., Ω′1 =⇒⇐= Ω′2.

False claim 5.6 (Conuence). If Ω′1 ⇐==⇒ Ω′2, then Ω′1 =⇒⇐= Ω′2.

Counterexamples. Consider 𝑎N𝑏. By the rewriting rules for additive conjunc-
tion, 𝑎 ←− 𝑎 N 𝑏 −→ 𝑏, and hence 𝑎 ⇐= 𝑎 N 𝑏 =⇒ 𝑏. However, being atoms,
neither 𝑎 nor 𝑏 reduces. And 𝑎 ≠ 𝑏, so 𝑎 =⇒⇐= 𝑏 does not hold. Even in the
N-free fragment, ordered rewriting is not conuent: for example,

X←− 𝑐 (𝑎 \ 𝑏) ⇐= (𝑐 / 𝑎) 𝑎 (𝑎 \ 𝑏) =⇒ (𝑐 / 𝑎) 𝑏 X−→ . �

termination Notice that every rewriting step, Ω −→ Ω′, strictly decreases
the number of logical connectives that occur in the ordered context. More for-
mally, let |Ω |★ be a measure of the number of logical connectives that occur in
Ω, as dened in the adjacent gure. We may then prove the following lemma.

|Ω1 Ω2 |★ = |Ω1 |★ + |Ω2 |★
| · |★ = 0

|𝐴★𝐵 |★ = 1 + |𝐴 |★ + |𝐵 |★
if★ = •, N, \, /, or �

|𝐴 |★ = 1 if 𝐴 = 𝑎, 1, >, or 0

Figure 5.8: A measure of the number of logi-
cal connectives within an ordered context

Lemma 5.7. If Ω −→ Ω′, then |Ω |★ > |Ω′ |★. If Ω =⇒ Ω′, then |Ω |★ ≥ |Ω′ |★.

Proof. By induction on the structure of the rewriting step. �

66

On the basis of this lemma, we will frequently refer to the rewriting relation,
−→, as the reduction relation. We may use this lemma to prove that ordered
rewriting is terminating.

Theorem 5.8 (Termination). For all ordered contexts Ω, every rewriting se-
quence from Ω is nite.

Proof. Let Ω be an arbitrary ordered context. Beginning from state Ω0 = Ω,
some state Ω𝑖 will eventually be reached such that either: Ω𝑖 X−→; or |Ω𝑖 |★ = 0
and Ω𝑖 −→ Ω𝑖+1. In the latter case, lemma 5.7 establishes |Ω𝑖+1 |★ < 0, which
is impossible because |−|★ is a measure of the number of logical connectives
in a context and is hence nonnegative. �

5.2 A focused ordered rewriting framework

The above ordered rewriting framework is based upon decomposition rules
that are very ne-grained. Each step of rewriting decomposes a proposition
into only its immediate subformulas, and no further, such as in the very ne-
grained step 𝑎

(
(𝑎 \𝑐 •𝑎)N (𝑏 \1)

)
−→ 𝑎 (𝑎 \𝑐 •𝑎). It is not possible to rewrite

𝑎
(
(𝑎 \ 𝑐 • 𝑎) N (𝑏 \ 1)

)
into 𝑐 𝑎 (or even 𝑐 • 𝑎) in a single step, although it is

possible in several steps:

𝑎
(
(𝑎 \ 𝑐 • 𝑎) N (𝑏 \ 1)

)
−→ 𝑎 (𝑎 \ 𝑐 • 𝑎) −→ 𝑐 • 𝑎 −→ 𝑐 𝑎 .

The decomposition rules are so ne-grained that rewriting may even get
stuck in undesirable and unintended ways. For instance, in the previous ex-
ample, we might have instead nondeterministically committed to rewriting
𝑎

(
(𝑎 \𝑐 •𝑎)N (𝑏 \1)

)
into 𝑎 (𝑏 \1) as the rst step, and then 𝑎 (𝑏 \1) is stuck,

with no further rewritings possible:

𝑎
(
(𝑎 \ 𝑐 • 𝑎) N (𝑏 \ 1)

)
−→ 𝑎 (𝑏 \ 1) X−→ .

Instead, we would rather have a coarser notion of decomposition so that
𝑎

(
(𝑎 \ 𝑐 • 𝑎) N (𝑏 \ 1)

)
−→ 𝑐 𝑎 is a single step7 and, conversely, so that7Or so that 𝑎

(
(𝑎 \ 𝑐 • 𝑎) N (𝑏 \ 1)

)
−→ 𝑐 • 𝑎,

at least, is a single step. 𝑎
(
(𝑎 \ 𝑐 • 𝑎) N (𝑏 \ 1)

)
−→ Ω′ only if Ω′ = 𝑐 𝑎.

Focusing, as developed byAndreoli,8 provides just the right coarse-grained8Andreoli 1992.

decomposition through its complementary inversion and chaining strategies
for proof search. An inversion phase groups together successive invertible
rules, and a chaining phase groups together successive noninvertible rules
that are applied to a single in-focus proposition; together, a chaining phase
followed by an inversion phase constitutes a bipole. Rather than having each
of these rules give rise to a separate step, we can treat the entire bipole as an
atomic step of rewriting.

The rewriting framework described above might be termed unfocused or-
dered rewriting; wewill now describe a focused ordered rewriting framework.

ordered rewriting 67

This idea of using focusing to increase the granularity of rewriting steps
dates back to, at least, the Concurrent Logical Framework (CLF)9 and was 9Watkins et al. 2002.

later streamlined in linear logic by Cervesato and Scedrov.10 Simmons11 has 10Cervesato and Scedrov 2009.
11 Simmons 2012.studied a focused ordered rewriting framework, though in a somewhat dif-

ferent formulation than the one we present here – Simmons uses small-step
focusing rules rather than Zeilberger.12 12Zeilberger 2008.

The ordered propositions are now polarized into positive and negative
classes, or polarities,13 according to the invertibility of their sequent calculus 13Andreoli 1992.

rules; two ‘shift’ operators, ↓ and ↑, mediate between the two classes.

𝐴+ F 𝑎+ | 𝐴+ • 𝐵+ | 1 | ↓𝐴−

𝐴− F 𝐴+ \ 𝐵− | 𝐵− /𝐴+ | 𝐴− N 𝐵− | > | ↑𝐴+

The positive propositions, 𝐴+, are those propositions that have invertible left
rules, such as ordered conjunction; the negative propositions, 𝐴−, are those
that have invertible right rules, such as the left- and right-handed implications.
For reasons that will become clear in chapter 6, we choose to assign a positive
polarity to all atomic propositions, 𝑎+.

To streamline the syntax, we will often make two elisions. Because all
atomic propositions have positive polarity, we will often write 𝑎 instead of
𝑎+. We will also often elide any ↓ and ↑ shifts that are necessitated by the
polarities of the remaining connectives; we call such shifts the minimal shifts.
For example, we might write 𝑎 • (𝑏 \ 1) in place of the more verbose, implied
𝑎+ • ↓(𝑏+ \ ↑1).

Ordered contexts are formed as the freemonoid over negative propositions
and positive atoms:

Ω,Δ F Ω1 Ω2 | · | 𝐴− | 𝑎+ .

As usual, we do not distinguish those ordered contexts that are equivalent
up to the monoid laws. Notice that we use the same metavariables for these
polarized ordered contexts as we did for the unpolarized contexts of the pre-
ceding (unfocused) ordered rewriting framework – the intended form, either
polarized or not, will always be clear from context.

Wemay also reify an ordered contextΩ as a positive proposition, •Ω, using
the operation dened in the neighboring gure. This operation is the polar-

•(Ω1 Ω2) = (•Ω1) • (•Ω2)
•(·) = 1

•𝐴− = ↓𝐴−

•𝑎+ = 𝑎+

Figure 5.9: Reifying an ordered context as a
positive propositionized analogue of the operation shown in g. 5.6. The positive proposition •Ω

can be “attened” into Ω. The ↓ shifts are needed to incorporate negative
propositions 𝐴− within the positive structure of •Ω.

Each class of propositions is then equipped with its own focusing judg-
ment: a left-focus judgment, Ω𝐿 [𝐴−] Ω𝑅
 𝐶+, that focuses on a negative
proposition, 𝐴−, that occurs to the left of the turnstile; and a right-focus judg-
ment, [𝐴+]
Ω, that focuses on a positive proposition, 𝐴+, that occurs to the
right of the turnstile.14

14We choose a left-facing turnstile for the
right-focus judgment to emphasize its in-
put/output mode; see the next paragraph.

68

Following Zeilberger,15 each of these judgments can be read as a function15Zeilberger 2008.

that provides a form of extended decomposition – the in-focus proposition
is decomposed beyond its immediate subformulas, until subformulas of the
opposite polarity are reached. The two focusing judgments are dened induc-
tively on the structure of the in-focus proposition, with the left-focus judg-
ment depending on the right-focus judgment (though not vice versa).

The right-focus judgment, [𝐴+]
Ω, decomposes 𝐴+ into the ordered
context Ω of its nearest negative subformulas, treating 𝐴+ as input and Ω as
output. The judgment is given by the following rules.

[𝐴+]
Ω1 [𝐵+]
Ω2
[𝐴+ • 𝐵+]
Ω1 Ω2

•r [1]
· 1r

[𝑎+]
𝑎+ id𝑎+ [↓𝐴−]
𝐴− ↓r

Ordered conjunctions 𝐴+ • 𝐵+ are decomposed into Ω1 Ω2 by inductively de-
composing 𝐴+ and 𝐵+ into Ω1 and Ω2, respectively, and 1 is decomposed into
the empty context. Atoms 𝑎+ are not decomposed further16, and ↓𝐴− is de-16Alternatively, following Simmons (2012),

atoms 𝑎+ could be decomposed to suspen-
sions 〈𝑎+ 〉, but we choose not to do that here.

composed into its immediate subformula of negative polarity, 𝐴−.
This right-focus judgment is a left inverse of the •(−) operation:

Lemma 5.9. [•Ω]
Ω′ if, and only if, Ω = Ω′.

Proof. Each direction is separately proved by structural induction on the con-
text Ω. �

The left-focus judgment, Ω𝐿 [𝐴−] Ω𝑅
 𝐶+, decomposes 𝐴− into the or-
dered contexts Ω𝐿 and Ω𝑅 and positive subformula 𝐶+, treating 𝐴− as input
and Ω𝐿 , Ω𝑅 , and𝐶+ as outputs. The judgment is given by the following rules.

[𝐴+]
Ω𝐴 Ω𝐿 [𝐵−] Ω𝑅
 𝐶+
Ω𝐿 Ω𝐴 [𝐴+ \ 𝐵−] Ω𝑅
 𝐶+

\l [𝐴+]
Ω𝐴 Ω𝐿 [𝐵−] Ω𝑅
 𝐶+
Ω𝐿 [𝐵− /𝐴+] Ω𝐴 Ω𝑅
 𝐶

+ /l

Ω𝐿 [𝐴−] Ω𝑅
 𝐶+
Ω𝐿 [𝐴− N 𝐵−] Ω𝑅
 𝐶+

Nl1
Ω𝐿 [𝐵−] Ω𝑅
 𝐶+

Ω𝐿 [𝐴− N 𝐵−] Ω𝑅
 𝐶+
Nl2 (no >l rule)

[↑𝐴+]
 𝐴+ ↑l

The left-focus judgment’s rules parallel the usual sequent calculus rules, but
maintain focus on the immediate subformulas – left focus for subformulas of
negative polarity and right focus for subformulas of positive polarity. The ↑l
rule ends left focus by decomposing an ↑𝐴+ antecedent into an𝐴+ consequent.

Unlike the right-focus judgment, the left-focus judgment describes a re-
lation (or nondeterministic function), owing to the two rules, Nl1 and Nl2,
that may apply to alternative conjunctions. For example, the following are
derivable.

𝑎+ [(𝑎+ \ ↑(𝑐+ • 𝑎+)) N (𝑏+ \ ↑1)]
 𝑐+ • 𝑎+

𝑏+ [(𝑎+ \ ↑(𝑐+ • 𝑎+)) N (𝑏+ \ ↑1)]
 1

ordered rewriting 69

A focused rewriting step ariseswhen a negative proposition,𝐴−, is put
into focus and the resulting consequent,𝐶+, is subsequently decomposed into
the ordered context.17 In addition, the compatibility rule −→c is retained. 17Writing [𝐵+]
Ω′ for the right-focus judg-

ment gives this rule the avor of a cut prin-
ciple.Ω𝐿 [𝐴−] Ω𝑅
 𝐶+ [𝐶+]
Ω′

Ω𝐿 𝐴
− Ω𝑅 −→ Ω′

−→i Ω −→ Ω′

Ω𝐿 Ω Ω𝑅 −→ Ω𝐿 Ω
′ Ω𝑅

−→c

With this −→i rule, it is indeed possible to rewrite

𝑎+
(
(𝑎+ \ ↑(𝑐+ • 𝑎+)) N (𝑏+ \ ↑1)

)
−→ 𝑐+ 𝑎+

in a single, atomic step because both 𝑎+ [(𝑎+ \↑(𝑐+ •𝑎+))N (𝑏+ \↑1)]
 𝑐+ •𝑎+
and [𝑐+ • 𝑎+]
𝑐+ 𝑎+ are derivable. Moreover, the larger granularity aorded
by the left- and right-focus judgments precludes the small steps that led to
unintended stuck states. For example:

𝑎+
(
(𝑎+ \ ↑(𝑐+ • 𝑎+)) N (𝑏+ \ ↑1)

)
−→ Ω′ only if Ω′ = 𝑐+ 𝑎+ .

and so
𝑎+

(
(𝑎+ \ ↑(𝑐+ • 𝑎+)) N (𝑏+ \ ↑1)

)
X−→ 𝑎+ (𝑏+ \ ↑1) .

5.3 Using shifts to control focusing

With careful placement of shifts, it is possible to control the behavior of fo-
cused rewriting. It is even possible to embed the unfocused ordered rewriting
framework of section 5.1.2 and a weakly focused ordered rewriting framework
within focused ordered rewriting in an operationally faithful way, as we now
show.

Our goal in presenting this is twofold. First, these embeddings demon-
strate the expressive power of focusing when shifts are present. In particu-
lar, by embedding the unfocused ordered rewriting framework in the focused
framework, we can see that the focused framework is more expressive than
the unfocused one. Second, we will make use of the embedding of weakly
focused ordered rewriting in chapter 10 to arrive at a stronger theorem than
we would otherwise get.

5.3.1 Embedding unfocused ordered rewriting

With careful placement of additional, non-minimal shifts, it is possible to em-
bed unfocused ordered rewriting within the focused ordered rewriting frame-
work in a operationally faithful way. Specically, we can dene a mapping,
(−) , from contexts of unpolarized propositions to contexts of negative propo-
sitions and positive atoms in a way that strongly respects the operational be-
havior of unfocused ordered rewriting:

• Ω −→ Ω′ implies Ω −→ Ω′ ; and
• Ω −→ Δ′ implies Ω −→ Ω′, for some Ω′ such that Δ′ = Ω′ .

70

Figure 5.10: A framework for focused or-
dered rewriting positive props. 𝐴+ F 𝐴+ • 𝐵+ | 1 | 𝑎+ | ↓𝐴−

negative props. 𝐴− F 𝐴+ \ 𝐵− | 𝐵− /𝐴+ | 𝐴− N 𝐵− | > | 𝑝− | ↑𝐴+

contexts Ω F Ω1 Ω2 | · | 𝐴− | 𝑎+

[𝐴+]
Ω1 [𝐵+]
Ω2
[𝐴+ • 𝐵+]
Ω1 Ω2

•r [1]
· 1r

[𝑎+]
𝑎+ id𝑎+ [↓𝐴−]
𝐴− ↓r

[𝐴+]
Ω𝐴 Ω𝐿 [𝐵−] Ω𝑅
 𝐶+
Ω𝐿 Ω𝐴 [𝐴+ \ 𝐵−] Ω𝑅
 𝐶+

\l [𝐴+]
Ω𝐴 Ω𝐿 [𝐵−] Ω𝑅
 𝐶+
Ω𝐿 [𝐵− /𝐴+] Ω𝐴 Ω𝑅
 𝐶

+ /l

Ω𝐿 [𝐴−] Ω𝑅
 𝐶+
Ω𝐿 [𝐴− N 𝐵−] Ω𝑅
 𝐶+

Nl1
Ω𝐿 [𝐵−] Ω𝑅
 𝐶+

Ω𝐿 [𝐴− N 𝐵−] Ω𝑅
 𝐶+
Nl2 (no >l rule)

[↑𝐴+]
 𝐴+ ↑l

Ω𝐿 [𝐴−] Ω𝑅
 𝐶+ [𝐶+]
Ω′
Ω𝐿 𝐴

− Ω𝑅 −→ Ω′
−→i Ω −→ Ω′

Ω𝐿 Ω Ω𝑅 −→ Ω𝐿 Ω
′ Ω𝑅

−→c

Ω =⇒ Ω
=⇒r Ω −→ Ω′ Ω′ =⇒ Ω′′

Ω =⇒ Ω′′
=⇒t

ordered rewriting 71

Because (−) is a total function, these properties thus establish it as a strong
reduction bisimulation.18 18 Sangiorgi and Walker 2003.

Essentially, this embedding inserts a double shift, ↓↑, in front of each proper,
nonatomic subformula. These double shifts cause chaining and inversion to
be interrupted after each step, forcing the focused rewriting to mimic the
small-step behavior of unfocused rewriting.

More specically,𝐴 prepends an ↑ shift whenever the top-level connective
of𝐴 has positive polarity. Consequently,𝐴 is either: a positive atom, exactly
when 𝐴 is atomic; or otherwise a negative proposition. Also, the mapping
(−) relies on the • operation on contexts – thus, •𝐴 inserts a ↓ shift in
front of 𝐴 exactly when 𝐴 and hence 𝐴 are nonatomic. Together, these
features serve to insert a double shift, ↓↑, in front of each proper, nonatomic
subformula of 𝐴.

(Ω1 Ω2) = Ω1 Ω2
(·) = ·
𝑎 = 𝑎+

(𝐴 • 𝐵) = ↑((•𝐴) • (•𝐵))
1 = ↑1

(𝐴 \ 𝐵) = (•𝐴) \ ↑(•𝐵)
(𝐵 /𝐴) = ↑(•𝐵) / (•𝐴)
(𝐴N 𝐵) = ↑(•𝐴) N ↑(•𝐵)

> = >

Figure 5.11: An embedding of unfocused
ordered rewriting within focused ordered
rewriting

Theorem 5.10. The embedding (−) satises the following properties.
• If Ω −→ Ω′, then Ω −→ Ω′ .
• If Ω = Δ −→ Δ′, then Ω −→ Ω′ for some Ω′ such that Δ′ = Ω′ .

Proof. The proofs of these properties require a straightforward lemma: for
all unpolarized propositions 𝐴,

[•𝐴]
Δ if, and only if, Δ = 𝐴 .

The rst property is then proved by induction over the structure of the
given rewriting step, Ω −→ Ω′. As an example, consider the case in which
Ω = 𝐴 (𝐴 \ 𝐵) −→ 𝐵 = Ω′. By denition, Ω = 𝐴 ((•𝐴) \ ↑(•𝐵)) and
Ω′ = 𝐵 ; we can indeed derive 𝐴 [(•𝐴) \ ↑(•𝐵)]
 •𝐵 and [•𝐵]
𝐵 . So,
as required, Ω = 𝐴 ((•𝐴) \ ↑(•𝐵)) −→ 𝐵 = Ω′ .

The second property is also proved by induction over the structure of the
given rewriting step, this time Ω = Δ −→ Δ′. As an example, consider the
case in which Ω

𝐿
[(•𝐴) \ ↑(•𝐵)] Ω

𝑅

 𝐶+ and [𝐶+]
Δ′, for some Ω𝐿 , 𝐴, 𝐵,

Ω𝑅 , and𝐶+ such that Ω = Ω𝐿 (𝐴\𝐵) Ω𝑅 . By inversion and the aforementioned
lemma, we have Ω𝐿 = 𝐴, Ω𝑅 = (·),𝐶+ = •𝐵 , and Δ′ = 𝐵 . Indeed, as required,
Ω = 𝐴 (𝐴 \ 𝐵) −→ 𝐵 = Ω′ and Δ′ = Ω′ . �

5.3.2 Embedding weakly focused ordered rewriting

It is similarly possible to embedweakly focused ordered rewriting, a rewriting
discipline based on weak focusing19 in which the granularity of steps lies be- 19 Laurent 2002; Simmons and Pfenning 2011c.

tween that of the unfocused and (strongly20) focused ordered rewriting frame- 20Commonly known as fully focused.

works. More specically, weak focusing diers from (strong) focusing in that
it retains chaining but abandons eager inversion. For example, with weakly
focused rewriting,

𝑎+ ↓
(
(𝑎+ \ ↑(𝑐+ • 𝑎+)) N (𝑏+ \ ↑1)

)
−→ 𝑐+ • 𝑎+ −→ 𝑐+ 𝑎+ ,

where the inversion of 𝑐+ • 𝑎+ is now an atomic step of its own.

72

Figure 5.12: A framework for weakly focused
ordered rewriting

contexts Ω+ F Ω+1 Ω
+
2 | · | 𝐴+

Ω+
𝐿
[𝐵−] Ω+

𝑅

 𝐶+

Ω+
𝐿
𝑎+ [𝑎+ \ 𝐵−] Ω+

𝑅

 𝐶+

\l
Ω+
𝐿
[𝐵−] Ω+

𝑅

 𝐶+

Ω+
𝐿
[𝐵− / 𝑎+] 𝑎+ Ω+

𝑅

 𝐶+

/l

Ω+
𝐿
[𝐴−] Ω+

𝑅

 𝐶+

Ω+
𝐿
[𝐴− N 𝐵−] Ω+

𝑅

 𝐶+

Nl1
Ω+
𝐿
[𝐵−] Ω+

𝑅

 𝐶+

Ω+
𝐿
[𝐴− N 𝐵−] Ω+

𝑅

 𝐶+

Nl2 (no >l rule)

[↑𝐴+]
 𝐴+ ↑l

Ω+
𝐿
[𝐴−] Ω+

𝑅

 𝐶+

Ω+
𝐿
↓𝐴− Ω+

𝑅
−→ 𝐶+

↓d
𝐴+ • 𝐵+ −→ 𝐴+ 𝐵+

•d
1 −→ · 1d

Ω+ −→ Ω′+

Ω+
𝐿
Ω+ Ω+

𝑅
−→ Ω+

𝐿
Ω′+ Ω+

𝑅

−→c

This weakly focused rewriting discipline could be achieved as an indepen-
dent system with the rules shown in g. 5.12. Notice that weakly focused
rewriting restricts the left- and right-handed implications to have only atomic
premises. Although weak focusing is well-dened for arbitrary implications,
it is not clear how to give a rewriting interpretation of weak focusing unless
this restriction is made.

In fact, there is a better approach than usingweakly focused ordered rewrit-
ing as yet another independent rewriting system. Instead of using weakly fo-
cused rewriting directly, we can embed it within (strongly) focused ordered
rewriting by inserting shifts at specic locations and then use that embedding.
From here on, we will exclusively use this embedding when weakly focused
ordered rewriting is needed (which is only in chapter 10).

(Ω+1 Ω+2)� = (Ω+1)� (Ω+2)�

(·)� = ·
(𝐴+)� = (𝐴+)�

(𝑎+)� = 𝑎+

(𝐴+ • 𝐵+)� = ↑((•(𝐴+)�) • (•(𝐵+)�))
1� = ↑1

(↓𝐴−)� = (𝐴−)�

(𝑎+ \ 𝐵−)� = 𝑎+ \ (𝐵−)�

(𝐵− / 𝑎+)� = (𝐵−)� / 𝑎+

(𝐴− N 𝐵−)� = (𝐴−)� N (𝐵−)�

>� = >
(↑𝐴+)� = ↑(•(𝐴+)�)

Figure 5.13: An embedding ofweakly focused
ordered rewriting within (strongly) focused
ordered rewriting

The (𝐴+)� translation turns a (weakly focused) positive proposition 𝐴+

into either an atomic proposition or a negative proposition by judiciously in-
serting or removing shifts. The (𝐴−)� translation turns a (weakly focused)
negative proposition 𝐴− into a (strongly focused) negative proposition com-
positionally.

Theorem 5.11. The embedding (−)� satises the following properties.
• If Ω+ −→ Ω′+, then (Ω+)� −→ (Ω′+)�.
• If (Ω+)� −→ Δ′, then Ω+ −→ Ω′+ for some Ω′+ such that Δ′ = (Ω′+)�.

Proof. The proofs of these properties require two relatively straightforward
lemmas: for all polarized propositions 𝐴+ and 𝐴−,

• [•(𝐴+)�]
Δ if, and only if, Δ = (𝐴+)�; and

• Δ𝐿 [(𝐴−)�] Δ𝑅
 𝐵+ if, and only if, Ω+
𝐿
[𝐴−] Ω+

𝑅

 𝐶+ and Δ𝐿 = (Ω+

𝐿
)�,

Δ𝑅 = (Ω+
𝑅
)�, and 𝐵+ = •(𝐶+)�.

ordered rewriting 73

Both lemmas are proved by structural induction on the polarized proposition,
𝐴+ and 𝐴−, respectively.

The rst of the above properties is then proved by induction over the struc-
ture of the given weakly focused rewriting step, Ω+ −→ Ω′+. As an example,
consider the case in which Ω+

𝐿
↓𝐴− Ω+

𝑅
−→ 𝐶+ because Ω+

𝐿
[𝐴−] Ω+

𝑅

 𝐶+. By

the above lemmas, (Ω+
𝐿
)� [(𝐴−)�] (Ω+

𝑅
)�
 •(𝐶+)� and [•(𝐶+)�]
(𝐶+)�

hold in the fully focused calculus. And so, (Ω+
𝐿
)� (↓𝐴−)� (Ω+

𝑅
)� −→ (𝐶+)�.

The second property is also proved by induction over the structure of the
given rewriting step, this time the fully focused (Ω+)� −→ Δ′. As an example,
consider the case in which Δ𝐿 [𝑎+1 \ (𝐴−2)�] Δ𝑅
 𝐵+ and [𝐵+]
Δ′. Inversion
yields Δ′

𝐿
[(𝐴−2)�] Δ𝑅
 𝐵+ for some Δ′

𝐿
such that Δ𝐿 = Δ′

𝐿
𝑎+1 . Then, by the

above lemma, Ω+
𝐿
[𝐴−2] Ω+𝑅
 𝐶+ holds in the weakly focused calculus, with

Δ′
𝐿
= (Ω+

𝐿
)�, Δ𝑅 = (Ω+

𝑅
)�, and 𝐵+ = •(𝐶+)�. Appending the \l rule, it follows

that Ω+
𝐿
𝑎+1 [𝑎+1 \𝐴−2] Ω+𝑅
 𝐶+, and so Ω+

𝐿
𝑎+1 ↓(𝑎+1 \𝐴−2) Ω+𝑅 −→ 𝐶+. Also notice

that Δ𝐿 = (Ω+
𝐿
𝑎+1)� and Δ′ = (𝐶+)�, as required. �

6
Choreographies: A formula-as-process
interpretation of ordered rewriting

In chapter 4, we saw that string rewriting can be used to specify the dynamics
of concurrent systems, but that those specications are quite abstract. Even
the operational semantics is left completely abstract: String rewriting is a
state-transformation model of concurrency, with axioms 𝑤 −→ 𝑤 ′ stating
merely that a substring of the form 𝑤 may be replaced, en masse, with 𝑤 ′.
Nothing is said about how this replacement is achieved – permitted rewrit-
ings just happen, as if a central, meta-level actor schedules and otherwise
coordinates rewriting, with substrings and their constituent symbols as mere
passive accessories.

In the previous chapter, we presented a dierent rewriting framework, de-
rived from the (focused) ordered sequent calculus and closely related to the
Lambek calculus.1 Ordered rewriting, in both its unfocused and focused vari- 1 Lambek 1958.

ants, continues to leave the operational semantics abstract, as if a central,
meta-level actor governs rewriting.

The string rewriting and (strongly) focused ordered rewriting frameworks
are both expressive enough to specify the dynamics of concurrent systems
that have chain topologies2, and the ordered rewriting framework’s logical 2 See sections 4.1.3 and 5.1.3.

foundations make it a proof-construction approach to concurrency. But with-
out a concrete operational semantics neither framework is yet suitable for our
ultimate goal – to establish the relationship between proof-construction and
proof-reduction descriptions of concurrency. In other words, string rewriting
and focused ordered rewriting frameworks are well-suited to specication but
not to programming.

This chapter takes three signicant steps away from pure specication and
toward programming, using the focused ordered rewriting framework of the
previous chapter as a stepping stone.

• In section 6.1, we rene the focused ordered rewriting framework of the
previous chapter into one that can be given a formula-as-process interpre-
tation3 in which rewriting faithfully represents message-passing commu-

3This interpretation is very closely related to
the process-as-formula view of concurrency
put forth by Miller (1992) and Cervesato and
Scedrov (2009). For us, however, the log-
ical aspects, and propositions in particular,
are conceptually prior to any notion of pro-
cess, hence our use of the reversed formula-
as-process terminology.

76

nication among concurrent processes that are arranged in a linear topol-
ogy. In this way, the formula-as-process interpretation assigns a concrete
operational semantics to ordered rewriting, nudging it away from a state-
transformation model of concurrency and toward a process-based model.

Specically, we show that atomic propositions may be interpreted as
messages; the other, non-atomic propositions, as processes; contexts, as
congurations comprised of those messages and processes; and rewriting,
as message-passing communication among a conguration’s constituent
processes. Perhaps surprisingly, only three small tweaks to the structure
of propositions are needed to make this formula-as-process interpretation
viable.

• With this new formula-as-process perspective and its accompanying mes-
sage-passing semantics, (focused) ordered rewriting can be understood in
terms of local interactions alone. By analogy with the 𝜋-calculus’s opera-
tional semantics, the existing rewriting relation, −→, serves as a reduction
semantics, but now an equivalent, labeled transition semantics can also be
given (section 6.2).

The labeled transition semantics describes how ordered contexts, now
understood as process congurations, interact with neighboring contexts.
It thus goes hand-in-hand with the formula-as-process interpretation in
establishing a concrete, local operational semantics for ordered rewriting.

• Having established a formula-as-process renement of the focused ordered
rewriting framework that permits only local, message-passing interactions,
we then revisit string rewriting specications.

In section 6.3, we describe, rst informally and then formally, a method
for operationalizing, or choreographing, the string rewriting specications
within the formula-as-process ordered rewriting framework. Symbols in
the specication’s alphabet are uniquely mapped to propositions, thereby
casting each symbol in one of two roles – either a message role or a process
role.

Not all such role assignments give rise to well-formed choreographies,
however. But, for those that do, the resulting choreography adequately
embeds the string rewriting specication: the specication’s axioms are
in one-to-one correspondence with the choreography’s derivable ordered
rewritings, as we prove in corollary 6.11. Stated dierently, the string
rewriting specication and choreography will be (strongly) bisimilar, with
the role assignment being a bisimulation that witnesses their bisimilarity.

Even though this chapter introduces a notion of process, it should be noted
that computation is still driven by derivability and proof construction, not by
proof reduction. Only in part III will we begin to examine a proof-reduction
account of concurrency.

choreographies: a formula-as-process interpretation of ordered rewriting 77

6.1 Rening ordered rewriting: A formula-as-process interpretation

In this section, we present the formula-as-process interpretation of focused
ordered rewriting sketched above.

More specically, (positive) atoms, 𝑎+, may be viewed as messages, and
negative propositions, 𝐴−, as processes that receive and react to those mes-
sages. Intuitively, processes have a negative polarity because they wait for an
external signal to begin computation. Messages have a positive polarity be-
cause they exist without external input. This kind of external/internal duality
is typical of negative and positive propositions.4 4Zeilberger 2009.

Ordered contexts, Ω, which consist of negative propositions and (positive)
atoms, are then chain-topology run-time congurations of processes andmes-
sages. And positive propositions, 𝐴+, which reify ordered contexts as propo-
sitions, are process expressions that reify congurations. Lastly, but most
importantly, the rewriting relation, −→, is viewed as a reduction semantics
for message-passing communication among the processes in a conguration.

®
𝑎+ left-directed message

®
𝑎+ right-directed message
𝐴− message-passing process
Ω run-time process conguration
𝐴+ conguration reied as an expression

Table 6.1: A formula-as-process interpreta-
tion of polarized ordered propositions and
contexts

Perhaps surprisingly, only three small tweaks to the structure of proposi-
tions are needed to make this formula-as-process reading viable.

• The (positive) atoms are now partitioned into two classes, left- and right-
directed atoms, to allow us to identify the direction in which a message is
owing.

• The left- and right-handed implications are now restricted to have atomic
premiseswith a complementary direction , so that theymay then be cleanly
interpreted as input processes that receive individual incoming messages.

• The negative propositions are extended with coinductively dened propo-
sitions, 𝑝− , 𝐴−, that will correspond to recursive processes.

Together, the rst two of these tweaks serve to provide a modicum of static
typing for the otherwise untyped processes, aswewill discuss in further detail
in section 6.1.2.

Positive atoms, as mentioned previously, are now partitioned into two
classes, left- and right-directed atoms, to allow us to identify the direction
in which a message is owing. Using a partition, we ensure that each atom
has a unique direction that is consistently used across all instances of that
atom.

These directions are denoted by an arrow placed below the atom: Left-
directed atoms,

®
𝑎+, are messages that are being sent to the left; right-directed

atoms,
®
𝑎+, are messages that are being sent to the right. We will often elide

the polarity annotation, writing
®

𝑎 and
®
𝑎 in place of

®
𝑎+ and

®
𝑎+.

Negative propositions, 𝐴−, are processes that receive and react to mes-
sages.

𝐴−, 𝐵− F
®
𝑎+ \ 𝐵− | 𝐵− /

®
𝑎+ | 𝐴− N 𝐵− | > | ↑𝐴+ | 𝑝−

78

Instead of the more general𝐴+ \𝐵− and 𝐵− /𝐴+, left- and right-handed impli-
®
𝑎+ \ 𝐵− receive message

®
𝑎+ from the left

𝐵− /
®
𝑎+ receive message

®
𝑎+ from the right

𝐴− N 𝐵− nondeterministic branching
> stuck process
↑𝐴+ quoted conguration
𝑝− call a recursively dened process

Table 6.2: A formula-as-process interpreta-
tion of negative propositions

cations are now restricted to be only
®
𝑎+ \ 𝐵− and 𝐵− /

®
𝑎+. These propositions

are then interpreted as input processes:
®
𝑎+ \ 𝐵− is a process that waits to re-

ceive a message,
®
𝑎+, from its left-hand neighbor and then continues as 𝐵−;

symmetrically, 𝐵− /
®

𝑎+ is a process that awaits message
®

𝑎+ from its right-hand
neighbor. Because implications are restricted to atoms with complementary
direction, processes cannot re-capture messages that they just sent to other
processes.55 See section 6.1.2 for more discussion.

The proposition𝐴−N𝐵− is interpreted as a process that branches nondeter-
ministically, continuing as either 𝐴− or 𝐵−. And >, as the nullary form of N,
is a stuck process that cannot continue. The proposition ↑𝐴+ is interpreted as
a process that holds a suspended, or quoted, conguration: when the process
↑𝐴+ is executed, it unfolds to that conguration. Lastly, 𝑝− is a coinductively
dened negative proposition that is interpreted as a recursive process, which
we discuss in more detail in section 6.1.3.

Ordered contexts, Ω, are interpreted as chain-topology run-time cong-
urations of processes and the messages that pass between them.

Ω,Δ F Ω1 Ω2 | · | 𝜔
𝜔 F 𝐴− |

®
𝑎+ |
®
𝑎+

Just as ordered contexts form a monoid over negative propositions and posi-
tive atoms, their formula-as-process interpretation forms a monoid over pro-
cesses and messages. The monoid operation is now parallel, end-to-end com-

Ω1 Ω2 parallel composition of congurations
(·) empty conguration
𝐴− single-process conguration

®
𝑎+ left-directed message

®
𝑎+ right-directed message

Table 6.3: A formula-as-process interpreta-
tion of contexts

position of process congurations: Ω1 Ω2 composes the congurations Ω1
and Ω2 so that they may interact along their mutual interface. The empty
context, (·), is now the empty conguration.

As usual, we do not distinguish congurations that are equivalent up to
the monoid’s associativity and unit laws. This equivalence acts as an implicit
structural congruence, of the sort found more explicitly in the 𝜋-calculus.

With the introduction of atom directions, it will often be useful to describe
message contexts, contexts that contain only atoms of one direction or the
other. We will use the metavariables

®
Ω and

®
Ω for those contexts that contain

only left- and right-directed atoms, respectively. More precisely, these are
generated by the grammars

®
Ω,
®

Δ F
®

Ω1
®

Ω2 | · |
®

𝑎+ and
®
Ω,
®
Δ F

®
Ω1
®
Ω2 | · |

®
𝑎+ .

Positive propositions, 𝐴+, are process expressions that reify run-time
congurations Ω as static objects.

𝐴+, 𝐵+ F
®

𝑎+ |
®
𝑎+ | 𝐴+ • 𝐵+ | 1 | ↓𝐴−

This reication is expressed as •Ω = 𝐴+, as dened in the adjacent figure.
This operation is the same as the one dened in g. 5.9, except that atom

•
®
𝑎+ =

®
𝑎+

•
®
𝑎+ =

®
𝑎+

•(Ω1 Ω2) = (•Ω1) • (•Ω2)
•(·) = 1

•𝐴− = ↓𝐴−

Figure 6.1: Reifying a conguration as a pro-
cess

choreographies: a formula-as-process interpretation of ordered rewriting 79

directions are preserved.
The propositions

®
𝑎+ and

®
𝑎+ are the expressions for left- and right-directed

messages. The proposition 𝐴+ • 𝐵+ reies parallel, end-to-end composition
of congurations: 𝐴+ • 𝐵+ is now interpreted as the expression for a process
that spawns a new process,𝐴+, and then continues as 𝐵+. And 1 is interpreted
as the expression for a process that immediately terminates, thereby reifying
the empty conguration, (·). Lastly, the proposition ↓𝐴− is interpreted as the
expression for a quoted process: executing that expression will result in the
running process 𝐴−.

®
𝑎+ left-directed message

®
𝑎+ right-directed message

𝐴+ • 𝐵+ parallel composition of 𝐴+ and 𝐵+

1 terminating process
↓𝐴− quoted process

Table 6.4: A formula-as-process interpreta-
tion of positive propositions

Notice that there is no propositional connective that corresponds to a send
operation. Sending a message is instead accomplished by spawning a process
that is itself only amessage:

®
𝑎+•𝐵+, 𝐵+•

®
𝑎+,
®
𝑎+•𝐵+, and 𝐵+•

®
𝑎+ – sending to the

left, sending to the right, self-sending at the left, and self-sending at the right,
respectively – are all possible but built from other propositional forms. This
is analogous to the way that the asynchronous 𝜋-calculus sends a message
by parallel composition, as in 𝑥 〈𝑦〉 | 𝑃 . Treating send operations this way
makes the formula-as-process ordered rewriting framework an asynchronous
calculus.

6.1.1 Focused ordered rewriting as message-passing communication

The three tweaks introduced by the formula-as-process interpretation to the
structure of propositions – especially atom directions and atomic premises
for implications – trickle down through the right- and left-focus judgments
used to dene rewriting:

• First, because each positive atom is now marked with a direction, the id𝑎+

rule that was previously part of the right-focus judgment’s denition is [𝑎+]
𝑎+
id𝑎+

replaced by two similar rules – one for each direction:

[
®

𝑎+]

®

𝑎+
id ®
𝑎+

and [
®
𝑎+]

®
𝑎+

id®𝑎
+

.

The other right-focusing rules remain unchanged.

• Second, because
®
𝑎+ \ 𝐵+ and 𝐵− /

®
𝑎+ are now the only valid forms of im-

plications, the left-focus judgment and its rules may be rened. Instead
of Ω𝐿 [𝐴−] Ω𝑅
 𝐶+, which has arbitrary contexts to the left and right of
𝐴−, the judgment is now

®
Ω𝐿 [𝐴−]

®
Ω𝑅
 𝐶

+ – the left-hand context consists
only of right-directed atoms, hence

®
Ω𝐿 ; symmetrically, the right-hand con-

text consists only of left-directed atoms, hence
®

Ω𝑅 . The left-focus rules for
the left- and right-handed implications are also revised to

®
Ω𝐿 [𝐵−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿
®
𝑎+ [
®
𝑎+ \ 𝐵−]

®
Ω𝑅
 𝐶

+ \l′ and ®
Ω𝐿 [𝐵−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿 [𝐵− /

®
𝑎+]

®
𝑎+
®

Ω𝑅
 𝐶
+ /l′ ,

which are the derivable from the earlier \l and /l rules, as shown in the
adjacent figure.

[
®
𝑎+]

®
𝑎+

id®
𝑎+

®
Ω𝐿 [𝐵−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿
®
𝑎+ [
®
𝑎+ \ 𝐵−]

®
Ω𝑅
 𝐶

+ \l

®
Ω𝐿 [𝐵−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿
®
𝑎+ [
®
𝑎+ \ 𝐵−]

®
Ω𝑅
 𝐶

+ \l
′

Figure 6.2: Deriving the \l′ left focus rule

80

Figure 6.3: A formula-as-process ordered
rewriting framework positive props. 𝐴+, 𝐵+ F

®
𝑎+ |
®
𝑎+ | 𝐴+ • 𝐵+ | 1 | ↓𝐴−

negative props. 𝐴−, 𝐵− F
®
𝑎+ \ 𝐵− | 𝐵− /

®
𝑎+ | 𝐴− N 𝐵− | > | ↑𝐴+ | 𝑝−

contexts Ω,Δ F Ω1 Ω2 | · | 𝐴− |
®

𝑎+ |
®
𝑎+

signatures ΦF · | Φ, 𝑝− , 𝐴−

[𝐴+]
Ω1 [𝐵+]
Ω2
[𝐴+ • 𝐵+]
Ω1 Ω2

•r [1]
· 1r

[
®

𝑎+]

®

𝑎+
id ®
𝑎+

[
®
𝑎+]

®
𝑎+

id®𝑎
+

[↓𝐴−]
𝐴− ↓r

®
Ω𝐿 [𝐵−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿
®
𝑎+ [
®
𝑎+ \ 𝐵−]

®
Ω𝑅
 𝐶

+ \l′ ®
Ω𝐿 [𝐵−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿 [𝐵− /

®
𝑎+]

®
Ω𝑅
 𝐶

+ /l′

®
Ω𝐿 [𝐴−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿 [𝐴− N 𝐵−]

®
Ω𝑅
 𝐶

+ Nl1 ®
Ω𝐿 [𝐵−]

®
Ω𝑅
 𝐶

+

®
Ω𝐿 [𝐴− N 𝐵−]

®
Ω𝑅
 𝐶

+ Nl2 (no >l rule)

[↑𝐴+]
 𝐴+ ↑l

®
Ω𝐿 [𝐴−]

®
Ω𝑅
 𝐶

+ [𝐶+]
Ω′

®
Ω𝐿 𝐴

−
®

Ω𝑅 −→ Ω′
−→i Ω −→ Ω′

Ω𝐿 Ω Ω𝑅 −→ Ω𝐿 Ω
′ Ω𝑅

−→c

Ω =⇒ Ω
=⇒r Ω −→ Ω′ Ω′ =⇒ Ω′′

Ω =⇒ Ω′′
=⇒t

The other rules for the left-focus judgment remain fundamentally un-
changed, save for the fact that the left- and right-hand contexts now con-
tain only atoms of the complementary direction.66That the left- and right-hand contexts now

contain only atoms might seem like a harsh
restriction, but these judgments are for fo-
cusing. The rewriting judgment will allow
other negative propositions to appear via its
compatibility rule.

Having rened the left-focus judgment to use message contexts, we may sim-
ilarly rene the principal reduction rule, −→i:

®
Ω𝐿 [𝐴−]

®
Ω𝑅
 𝐵

+ [𝐵+]
Ω′

®
Ω𝐿 𝐴

−
®

Ω𝑅 −→ Ω′
−→i

.

The compatibility rule, −→c, remains unchanged. Figure 6.3 summarizes the
revised rules for the formula-as-process ordered rewriting framework.

6.1.2 Comments

Now we are in a position to understand how the two principal syntactic
changes – atom directions and atomic premises for implications – combine to
endow the otherwise untyped processes with a modicum of static typing.

choreographies: a formula-as-process interpretation of ordered rewriting 81

In the expression ↓𝐴−•
®
𝑎+, the atom

®
𝑎+ is an outgoingmessage, owing to its

direction away from the (quoted) process𝐴−. If the premises of left- and right-
handed implications were not restricted to atoms of complementary direction,
then𝐴−might possibly be the input process ↑↓𝐵−/

®
𝑎+, which could incorrectly

(re-)capture the outgoing message,
®
𝑎+, that it just sent:

(↑↓𝐵− /
®
𝑎+) •

®
𝑎+ −→ (↑↓𝐵− /

®
𝑎+)
®
𝑎+ −→ 𝐵− .

However, because the premises of left- and right-handed implications are in-
deed restricted to atoms of complementary direction, this scenario is impos-
sible – ↑↓𝐵− /

®
𝑎+ is not even a well-formed proposition!

Formally, this property that outgoing messages cannot be recaptured is
established the following theorem.

Theorem 6.1. If Ω =
®

Ω𝐿 Ω0
®
Ω𝑅 =⇒ Ω′, then Ω′ =

®
Ω𝐿 Ω

′
0 ®
Ω𝑅 for some context

Ω′0 such that Ω0 =⇒ Ω′0.

Proof. By induction on the structure of the given rewriting sequence, using
inversion on the individual rewriting steps. �

In addition, this theorem shows that no interactions among
®

Ω𝐿 , nor among

®
Ω𝑅 , are possible. This is because

®
Ω𝐿 and

®
Ω𝑅 consist only of messages, which

are passive and only trigger computation when delivered to processes.
As a related consequence of these syntactic restrictions, there is no con-

tention for messages. Without these restrictions, the above trace could be
adapted to one in which a race could arise between two processes contending
for the same message:

𝐵−

(↑↓𝐵− /
®
𝑎+)
®
𝑎+ (
®
𝑎+ \ ↑↓𝐶−)

𝐶−

←

→←→

However, with these restrictions in place, there is no such message – neither

®
𝑎+ nor

®
𝑎+ – that can cause contention between ↑𝐵− /

®
𝑎+ and

®
𝑎+ \ ↑𝐶− because

®
𝑎+ ≠

®
𝑎+, that is, there is no one atom that may have both directions.

Even with the restriction of left- and right-handed implication premises to
atoms of complementary direction, it is nevertheless possible for a process to
send itself a message, as in

(↑↓𝐵− /
®

𝑎+) •
®

𝑎+ −→ (↑↓𝐵− /
®

𝑎+)
®

𝑎+ −→ 𝐵− .

But this is not troubling because the intended recipient – the process itself –
does indeed receive the message.

Ordered conjunctions are dual to the left- and right-handed implications.
So one might think that ordered conjunctions ought to be restricted to those
of the form

®
𝑎+ • 𝐵+ and 𝐵+ •

®
𝑎+, as a kind of dual restriction to those placed

82

on implications. Just as the implications are restricted to receive only incom-
ing messages, these ordered conjunctions would restrict processes to sending
only outgoing messages.

Although certainly possible, such restrictions would limit the expressive-
ness of formula-as-process ordered rewriting by precluding a process from
sending itself a message – (↑↓𝐵− /

®
𝑎+) •

®
𝑎+ would not be well-formed, for

example. Moreover, in chapter 10, we will present a correspondence between
ordered propositions and the not-yet-introduced singleton proofs (chapters 8
and 9), which will turn out to be more direct if we retain the general 𝐴+ • 𝐵+
form for ordered conjunctions. And nally, the general 𝐴+ • 𝐵+ form is more
in line with the asynchronous nature of ordered rewriting. For all of these
reasons, we choose not to impose any restrictions on ordered conjunctions.

6.1.3 Coinductively dened negative propositions

Recall from chapter 5 that ordered rewriting is terminating: for all ordered
contexts Ω, every rewriting sequence from Ω is nite (theorem 5.8). Although
a seemingly pleasant property, termination signicantly limits the expressive-
ness of focused ordered rewriting. For example, without unbounded rewrit-
ing, we cannot even describe producer–consumer systems or nite automata.

As the proof of termination shows, rewriting is bounded precisely because
contexts consist of nitely many nite propositions. In multiset and ordered
rewriting, unbounded behavior is traditionally introduced by way of persis-
tent propositions that may be replicated as much as needed.7 This is related7 Polakow 2001; Watkins et al. 2002; Simmons

2012. to Milner’s use of replication, !𝑃 , in the 𝜋-calculus.8 (See section 3.3 for a
8Milner 1999.

more detailed discussion of replication.)
However, another option – and the one that we pursue here – is to permit

circular negative propositions in the form of mutually coinductive denitions,
𝑝− , 𝐴−, where the grammar of negative propositions is extended to include
these coinductively dened propositions:

𝐴−, 𝐵− F
®
𝑎+ \ 𝐵− | 𝐵− /

®
𝑎+ | 𝐴− N 𝐵− | > | 𝑝− .

Sequent calculi with recursive denitions of this kind have been studied pre-
viously,9 but, to the best of our knowledge, the use of coinductive denitions9Hallnäs 1991; Eriksson 1991; Schroeder-

Heister 1993; McDowell andMiller 2000; Tiu
and Momigliano 2012.

in the context of logically motivated rewriting systems is new.
That the denitions 𝑝− , 𝐴− are indeed coinductive is guaranteed by im-

posing the requirement that along every cycle among dened propositions
there is a logical connective.10 For example, the denition 𝑝− ,

®
𝑎+ \ 𝑝− or10This generalizes the local contractivity con-

dition described by Gay and Hole (2005). even the denitions 𝑝− , 𝑞− and 𝑞− ,
®
𝑎+ \𝑝− are acceptable because (

®
𝑎+ \−)

occurs along the cycle from 𝑝− to itself; but the denitions 𝑝− , 𝑞− and
𝑞− , 𝑝− are forbidden because no logical connective occurs along the cycle.

To clarify, these denitions are coinductive in only a syntactic sense; when
interpreted as processes, they are not (necessarily) behaviorally coinductive.
For example, the proposition 𝑝− given by 𝑝− ,

®
𝑎 \
®
𝑎 •𝑝− does not correspond

choreographies: a formula-as-process interpretation of ordered rewriting 83

to a productive process when viewed from the formula-as-process perspec-
tive – after receiving an initial message

®
𝑎, the process 𝑝− diverges without

sending or receiving any further messages. Therefore, our coinductively de-
ned propositions are not greatest xed points (or coinductive proofs) in the
sense of Fortier and Santocanale.11 11 Fortier and Santocanale 2013.

Coinductive denitions are collected into a signature, Φ, that indexes the
rewriting relations: −→Φ and=⇒Φ.12 Syntactically, these signatures are given

12We often elide the index, as it is usually clear
from context.

by the grammar
ΦF · | Φ, (𝑝− , 𝐴−) .

A signatureΦ is well-formed if every 𝑝− that occurs in the body of a denition
itself has a denition in Φ.

By analogy with recursive types from functional programming13, wemust 13 See Pierce (2002), for example.

then decide whether to treat the coinductive denitions 𝑝− , 𝐴− isorecursive-
ly or equirecursively. Under an equirecursive treatment, denitions may be
silently unrolled or rolled at will; in other words, 𝑝− is literally equal to its
unrolling: 𝑝− = 𝐴−. In contrast, under an isorecursive treatment, unrolling
a coinductively dened proposition would count only as an explicit rule for
the left-focus judgment: 𝑝− ≠ 𝐴− but the adjacent ,l rule would be present. ((𝑝− , 𝐴−) ∈ Φ)

®
Ω𝐿 [𝐴−]

®
Ω𝑅
Φ 𝐶

+

®
Ω𝐿 [𝑝−]

®
Ω𝑅
Φ 𝐶

+ ,l
Because our coinductively dened propositions are not generative14, there

14Generative type abstraction, such as that of
ML modules, would ensure that an abstract
type is distinguished from its representation
– isomorphic types are not equal.

is not much dierence between their equirecursive and isorecursive treat-
ments.15 We choose an equirecursive treatment of denitions simply because

15Amadio and Cardelli 1993.

the accompanying generous notion of equality helps to minimize the concep-
tual overhead of coinductively dened propositions.

How do these coinductively dened negative propositions interact with
the left-focus judgment, which is dened inductively? The answer is that not
all coinductively dened propositions can be successfully put into focus. As
previously mentioned, the proposition 𝑝− given by 𝑝− ,

®
𝑎+ \ 𝑝− is certainly

a well-dened coinductive proposition, owing to the existence of (
®
𝑎+ \ −)

along the cycle. Yet it cannot be successfully put into left focus – there are no
contexts

®
Ω𝐿 and

®
Ω𝑅 and positive consequent 𝐶+ for which

®
Ω𝐿 [𝑝−]

®
Ω𝑅
 𝐶

+

is derivable. To derive a left-focus judgment on 𝑝−, the nite context
®
Ω𝐿

would need to hold an innite stream of
®
𝑎+ atoms – an impossible feat for

the inductively dened, and hence nite, contexts like
®
Ω𝐿 that we consider

here.16 16Baelde and Miller (2007) present a focusing
system for least and greatest xed points in
linear logic that allows focus on xed points
such as 𝑝− ,

®
𝑎+ \ 𝑝− to either continue

or blur. We do not pursue that generaliza-
tion, nor a generalization to circular focus-
ing phases (which would necessitate innite
contexts).

However, by inserting ↑↓ as a double shift to blur focus – in a way similar
to how double shifts were used in the embedding of unfocused rewriting (sec-
tion 5.3.1) – the denition can be revised to one that admits a left-focus judg-
ment. Specically, if 𝑝− is instead given by 𝑝− ,

®
𝑎+\↑↓𝑝−, then

®
𝑎+ [𝑝−]
 ↓𝑝−

is derivable, and so
®
𝑎+ 𝑝− −→ 𝑝−. More generally, any coinductively dened

proposition that has an ↑ shift along some cycle can be successfully put into
focus.

One might consider elevating the ↑-shift property to a requirement on

84

coinductively dened propositions – i.e., demanding that every coinductively
proposition have an ↑ shift along some cycle. This would forbid any deni-
tions that cannot be put into left focus, such as 𝑝− ,

®
𝑎+\𝑝−. Although perhaps

well-intentioned, such a requirement seems somewhat under-motivated after
observing that even the proposition > cannot be successfully put into focus.

6.2 A local interaction semantics

For the formula-as-process interpretation, we have thus far examined the
rewriting judgment, Ω −→ Ω′, and suggested that it represents a kind of
reduction semantics for the underlying processes.

But a reduction semantics is not the only way to describe the operational
semantics of a process calculus. For example, in the 𝜋-calculus, labeled tran-
sition systems are frequently used as an alternative to a reduction semantics,
particularly when an understanding of how processes interact with their sur-
roundings is needed.

For the formula-as-process ordered rewriting framework, we can similarly
conceive of a local interaction semantics of this sort. All communication oc-
curs through message passing, so there are just two ways a process congu-
ration can interact with its surrounding environment – either send messages
or receive them; either make an output transition or make an input transition.
A process conguration can also forgo interacting with its environment and
make a silent, internal transition as the conguration’s components interact
with each other.

Traditionally, these three forms of transition – internal, output, and input
– are expressed with a unied labeled transition judgment in which the labels
distinguish among the three forms of transition. Here we instead prefer to
use distinct syntax for each form of transition.

internal transitions In labeled transition systems for process calculi,
internal 𝜏-transitions express interaction of a process conguration, not with
its environment, but within itself among its constituent processes. In the 𝜋-
calculus, these internal transitions coincide with the notion of reduction but
are dened as 𝜏−→ in such a way that the explicit and sometimes cumbersome
structural congruence is not needed, thereby simplifying proofs.

In our setting, however, we have no explicit structural congruence; the
implicit monoid laws do not complicate proofs, so we can get away without
dening a distinct notion of internal 𝜏-transition. Whenever we want to de-
scribe an internal transition, the −→ reduction relation can be used instead.

In the 𝜋-calculus, there is also a notion of weak internal 𝜏-transition,
𝜏

=⇒,
which is the reexive, transitive closure of 𝜏−→. Just as we use the −→ re-
duction relation whenever we want to describe an internal transition, we will
use its reexive, transitive closure, =⇒, whenever we want to describe a weak
internal transition.

choreographies: a formula-as-process interpretation of ordered rewriting 85

output transitions Similar to our treatment of internal transitions, we
do not adopt an explicit judgment for output interactions but insteadmake use
of context equality. We say that the context Ω outputs messages

®
Ω𝐿 to the left

and messages
®
Ω𝑅 to the right exactly when Ω =

®
Ω𝐿 Ω

′
®
Ω𝑅 for some context

Ω′. This equality expresses an immediate, or strong, output of messages
®

Ω′
𝐿

and
®
Ω′
𝑅
from the context Ω.17 We will sometimes refer to the context Ω′ here

17 It is roughly analogous to
𝑥 〈𝑦〉
−→ , the 𝜋-

calculus’s output transition relation.as the continuation context because it represents the context that remains after
the output of

®
Ω𝐿 and

®
Ω𝑅 occurs.

As examples, both
®

𝑎
®

𝑏 𝐶− and
®

𝑎𝐶−
®

𝑏 immediately output
®

𝑎 to the left (and
nothing to the right). More precisely, the former immediately outputs

®
𝑎
®

𝑏,
whereas the latter does not immediately output

®
𝑏 at all.

In addition to immediate, or strong, output transitions, it is also typical in a
labeled transition semantics to express eventual, or weak, output transitions.
A weak output transition consists of nitely many internal transitions, fol-
lowed by a single strong output transition, along with nitely many internal
transitions on the continuation.

In the 𝜋-calculus, the weak output transition relation is
𝑥 〈𝑦 〉
=⇒ =

𝜏
=⇒𝑥 〈𝑦 〉−→ 𝜏

=⇒.
In the formula-as-process ordered rewriting framework, a weak output tran-
sition could be expressed by Ω =⇒

®
Ω′
𝐿
Ω′0 ®

Ω′
𝑅
and Ω′0 =⇒ Ω′ together – the

context Ω eventually outputs
®

Ω′
𝐿
and
®
Ω′
𝑅
and eventually arrives at the contin-

uation context Ω′. Based on theorem 6.1, we can more concisely express the
same weak output transition as Ω =⇒

®
Ω′
𝐿
Ω′
®
Ω′
𝑅
. This is the form in which

we will usually express weak output transitions.
For example, as we saw above,

®
𝑎 (
®

𝑏 /
®

𝑏)
®

𝑏 does not immediately output
®

𝑎
®

𝑏.
But

®
𝑎 (
®

𝑏 /
®

𝑏)
®

𝑏 doesweakly output
®

𝑎
®

𝑏, by virtue of the rewriting
®

𝑎 (
®

𝑏 /
®

𝑏)
®

𝑏 −→

®
𝑎
®

𝑏.

input transitions Unlike internal and output transitions, we use an ex-
plicit judgment for input interactions. The judgment

®
Ω𝐿 [Ω]

®
Ω𝑅 −→ Ω′ indi-

cates that, upon receiving messages
®
Ω𝐿 from the left and

®
Ω𝑅 from the right,

the context Ω may evolve to Ω′ in a single step.18 In other words, for each
18 It is roughly analogous to

𝑥 (𝑦)
−→ , the 𝜋-

calculus’s input transition relation.such judgment there should be a corresponding reduction:

Theorem 6.2 (Soundness). If
®
Ω𝐿 [Ω]

®
Ω𝑅 −→ Ω′, then

®
Ω𝐿 Ω

®
Ω𝑅 −→ Ω′.

In terms of a functional reading of the judgment, this judgment is a func-
tion on contexts Ω that returns the contexts

®
Ω𝐿 ,

®
Ω𝑅 , and Ω′.19 Thus, the input 19 Stated in terms of an input/outputmode, Ω is

the input to the judgment, whereas the input
contexts

®
Ω𝐿 and

®
Ω𝑅 and the context Ω′ are

outputs of the judgment.

transition judgment answers the question “What input messages suce for
Ω to make a reduction?”

As the notation is intended to suggest, each input transition at its heart
derives from focusing on a single negative proposition,𝐴−, as captured by the
[]−→i rule:20

20Notice that it is quite possible in this rule
for both

®
Ω𝐿 and

®
Ω𝑅 to be empty and for

the judgment to express the input of no mes-
sages at all. But that happens only if 𝐴− has
an ↑ shift as its top-level connective.

®
Ω𝐿 [𝐴−]

®
Ω𝑅
 𝐶

+ [𝐶+]
Ω′

®
Ω𝐿 [𝐴−]

®
Ω𝑅 −→ Ω′

[]−→i
.

86

Figure 6.4: An input transition judgment
®
Ω𝐿 [𝐴−]

®
Ω𝑅
 𝐶

+ [𝐶+]
Ω′

®
Ω𝐿 [𝐴−]

®
Ω𝑅 −→ Ω′

[]−→c

®
Ω𝐿
®
𝑎 [Ω]

®
Ω𝑅 −→ Ω′ (

®
Ω𝐿 ≠ (·) or

®
Ω𝑅 ≠ (·))

®
Ω𝐿 [
®
𝑎 Ω]

®
Ω𝑅 −→ Ω′

[
®
𝑎]c

®
Ω𝐿 [Ω]

®
𝑎
®

Ω𝑅 −→ Ω′ (
®
Ω𝐿 ≠ (·) or

®
Ω𝑅 ≠ (·))

®
Ω𝐿 [Ω

®
𝑎]
®

Ω𝑅 −→ Ω′
[
®

𝑎]c

[Ω]
®

Ω𝑅 −→ Ω′

[𝜔 Ω]
®

Ω𝑅 −→ 𝜔 Ω′
[𝜔]c1 ®

Ω𝐿 [Ω] −→ Ω′

®
Ω𝐿 [Ω𝜔] −→ Ω′𝜔

[𝜔]c2

Aside from the change of judgment in the rule’s conclusion, this []−→i rule
is identical to the core −→i rule for reduction. How can we claim that the
input transition judgment is distinct from the reduction judgment?

The dierence is that, unlike the reduction judgment, the input transition
judgment is enriched with several other rules.21 In addition to the core input21Another dierence is the input/output mode

of this input transition, as compared to that
of a reduction. In a reduction

®
Ω𝐿 𝐴

−
®

Ω𝑅 −→
Ω′, the entire

®
Ω𝐿 𝐴

−
®

Ω𝑅 context is treated as
an input to the reduction judgment, and Ω′

is treated as an outputmade by the judgment.
In the input transition

®
Ω𝐿 [𝐴−]

®
Ω𝑅 −→ Ω′,

on the other hand, only the proposition 𝐴−
is treated as an input to the judgment, and
the contexts

®
Ω𝐿 ,

®
Ω𝑅 , and Ω′ are all treated

as outputs made by the input transition judg-
ment.

transition rule, []−→i, other compatibility rules exist.
Two of these rules allow the external inputs expected by an input transition

to be (partially) satised internally by the context itself.

®
Ω𝐿
®
𝑎 [Ω]

®
Ω𝑅 −→ Ω′ (

®
Ω𝐿 ≠ (·) or

®
Ω𝑅 ≠ (·))

®
Ω𝐿 [
®
𝑎 Ω]

®
Ω𝑅 −→ Ω′

[
®
𝑎]c

®
Ω𝐿 [Ω]

®
𝑎
®

Ω𝑅 −→ Ω′ (
®
Ω𝐿 ≠ (·) or

®
Ω𝑅 ≠ (·))

®
Ω𝐿 [Ω

®
𝑎]
®

Ω𝑅 −→ Ω′
[
®

𝑎]c

For example, the [
®
𝑎]c rule: if Ω can reduce to Ω′ upon input of surrounding

®
Ω𝐿
®
𝑎 and

®
Ω𝑅 , then

®
𝑎 Ω can reduce to Ω′ upon input of surrounding

®
Ω𝐿 and

®
Ω𝑅 . In other words, in the context

®
𝑎 Ω, the atom

®
𝑎 already, internally satises

Ω’s demand for
®
𝑎.22 The [

®
𝑎]c rule is symmetric, involving

®
𝑎 on the right.22The side conditions in these rules serve to

ensure that the last input atom cannot be ab-
sorbed into the context. This way, each input
transition that derives from an implication
cannot degenerate to a reduction. (Input ten-
sions that derive from propositions ↑𝐵+ will
require no inputs, however.)

Algebraically, these two rules express a form of associativity.
Read top-down, these [

®
𝑎]c and [

®
𝑎]c rules allow an input message to be

absorbed by an input transition. In addition, the input transition judgment
is equipped with several (limited) compatibility rules. Instead of absorbing
a message like the [

®
𝑎]c and [

®
𝑎]c rules do, these compatibility rules frame a

message or process 𝜔 onto an input transition, passing 𝜔 through.2323Recall from section 6.1 that 𝜔 F
®
𝑎 |
®
𝑎 | 𝐴−.

[Ω]
®

Ω𝑅 −→ Ω′

[𝜔 Ω]
®

Ω𝑅 −→ 𝜔 Ω′
[𝜔]c1 ®

Ω𝐿 [Ω] −→ Ω′

®
Ω𝐿 [Ω𝜔] −→ Ω′𝜔

[𝜔]c2

Notice that these rules apply only to one-sided input transitions: Ω must re-
quire no inputs at the side at which𝜔 is added. This is because these rules pass
𝜔 through the input transition unaected, and so 𝜔 serves as an interaction
barrier at the end at which it appears.

The full complement of input transition rules is summarized in g. 6.4.

choreographies: a formula-as-process interpretation of ordered rewriting 87

Now we may nally prove the previously stated claim of soundness for input
transitions – that each input transition has a corresponding reduction.

Theorem 6.3 (Soundness). If
®
Ω𝐿 [Ω]

®
Ω𝑅 −→ Ω′, then

®
Ω𝐿 Ω

®
Ω𝑅 −→ Ω′.

Proof. By induction on the structure of the given input transition. �

Also, output and input transitions are together complete, in the sense that
each reduction can be broken down into an input transition with complemen-
tary output transitions:

Theorem 6.4 (Completeness). If Ω −→ Ω′, then there exist contexts Ω′
𝐿
,
®
Ω𝐿 ,

Ω0,
®

Ω𝑅 , Ω′𝑅 , and Ω′0 such that: Ω = (Ω′
𝐿 ®
Ω𝐿) Ω0 (

®
Ω𝑅 Ω

′
𝑅
) and

®
Ω𝐿 [Ω0]

®
Ω𝑅 −→

Ω′0 and Ω′ = Ω′
𝐿
Ω′0 Ω

′
𝑅
.

Proof. By induction on the structure of the given reduction. �

Together, these soundness and completeness results may also be thought
of as establishing the admissibility and invertibility of the following rule.

Ω = Ω𝐿 Δ Ω𝑅 Ω𝐿 = Ω′
𝐿 ®
Δ𝐿

®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′

®
Δ𝑅 Ω

′
𝑅
= Ω𝑅 Ω′

𝐿
Δ′ Ω′

𝑅
= Ω′

Ω −→ Ω′

The following lemma will also prove useful later.

Lemma 6.5. If
®
Δ𝐿 [
®
𝑎 Δ]

®
Δ𝑅 −→ Δ′, then either:

®
Δ𝐿
®
𝑎 [Δ]

®
Δ𝑅 −→ Δ′; or

®
Δ𝐿

is empty and Δ′ =
®
𝑎 Δ′0 and [Δ]

®
Δ𝑅 −→ Δ′0, for some Δ′0. Symmetrically, if

®
Δ𝐿 [Δ

®
𝑎]
®

Δ𝑅 −→ Δ′, then either:
®
Δ𝐿 [Δ]

®
𝑎
®

Δ𝑅 −→ Δ′; or
®

Δ𝑅 is empty, Δ′ = Δ′0 ®
𝑎,

and
®
Δ𝐿 [Δ] −→ Δ′0, for some Δ′0.

Proof. By induction on the structure of the given derivation. �

We could also consider a notion of eventual, or weak, input transition, akin
to the 𝜋-calculus’s

𝑥 (𝑦)
=⇒ relation. There is not an especially concise way to ex-

press weak input transitions using our notation for strong input transitions,
and weak input transitions in and of themselves will not prove to be particu-
larly useful to us, so we do not pursue them here.

6.3 Choreographing string rewriting specications

So far in this chapter, we have presented a formula-as-process renement of
the focused ordered rewriting framework and given it a local interaction se-
mantics based on an implicit labeled transition system for output and input
transitions. With this local interaction semantics in hand, we can return to our
goal of assigning a concrete operational semantics to string rewriting speci-
cations. We will show how to operationalize, or choreograph, these speci-
cations by embedding them within the formula-as-process ordered rewriting
framework.

88

To choreograph a string rewriting specication (Σ,Θ), we would like to
map each symbol 𝑎 ∈ Σ to a proposition such that the string rewriting ax-
iomsΘ are mapped to derivable rewritings in our formula-as-process ordered
rewriting framework. In other words, to choreograph (Σ,Θ), we would like
to nd a map 𝜃 from symbols to propositions and a signature Φ of coinductive
denitions such that 𝜃 is a witness to the (strong) bisimilarity of string rewrit-
ing under the axioms Θ and formula-as-process ordered rewriting under the
denitions Φ. That is, we would like to nd a pair (𝜃,Φ) for which we can
complete the diagrams

𝑤 𝑤 ′

Ω Ω′

←→Θ

←←𝜃 ←← 𝜃

←→ Φ

and
𝑤 𝑤 ′

Ω Ω′ ,

←→Θ

←←𝜃 ←← 𝜃

←→ Φ

where𝑤 Ω

←←𝜃 holds exactly when Ω = 𝜃 (𝑤). Only if the pair (𝜃,Φ) satises
these diagrams does it constitute a choreography of the specication (Σ,Θ).2424An arbitrary pair (𝜃,Φ) might be called a pre-

choreography. Because ordered rewriting in our formula-as-process framework permits
only sensibly local interactions, we can be sure that the choreography (𝜃,Φ)
explains the how, not just the what, of the concurrent system’s dynamics. The
map 𝜃 is key to the how. It serves as a role assignment for the string rewriting
symbols, casting each symbol 𝑎 ∈ Σ in the role of either a message,

®
𝑎 or
®
𝑎, or

a coinductively dened process, 𝑎. (More formally, we will require that role
assignments be injective monoid homomorphisms with this property.)

For a given specication, there will often be several role assignments that
give rise to distinct choreographies, each one implying a dierent message-
passing operationalization of the specication. Without applying other, ex-
ternal criteria, no one choreography has more desirable lower-level behavior
than another – only the programmer is in a position to choose among chore-
ographies.

Most of the 3 |Σ | role assignments for a specication’s alphabet do not lead
to adequate choreographies. Sometimes none of the possible role assignments
produce a choreography.

6.3.1 Choreographies by example

Recall from chapter 4 the string rewriting specication (Σ,Θ) of a system that
can rewrite strings over Σ = {𝑎, 𝑏} into the empty string if the initial string
ends in 𝑏.

Σ = {𝑎, 𝑏}
Θ = (𝑎𝑏 −→ 𝑏) , (𝑏 −→ 𝜖)

Let 𝜃 be the injective monoid homomorphism generated by mapping 𝑎

to the right-directed message
®
𝑎 and 𝑏 to the coinductively dened process

𝑏. The map 𝜃 is indeed a role assignment, but does it yield a meaningful𝜃 = {𝑎 ↦→
®
𝑎,𝑏 ↦→ 𝑏 }

choreography for the specication (Σ,Θ)?

choreographies: a formula-as-process interpretation of ordered rewriting 89

We must determine if 𝑏 can be given a denition Φ = (𝑏 , 𝐵−) such
that the above, strong bisimulation diagrams can be completed. Because 𝜃
is injective, those diagrams are equivalent to the following ones: In the rst
diagram, the right-hand edge 𝑤 ′ Ω′←←𝜃 can be replaced with 𝑤 ′ 𝜃 (𝑤 ′)←←𝜃 ,
but we cannot make a similar replacement for the second diagram because 𝜃
is not bijective, only injective.

𝑤 𝑤 ′

𝜃 (𝑤) 𝜃 (𝑤 ′)

← →Θ

←←𝜃 ←← 𝜃

←→ Φ

and
𝑤 𝑤 ′

𝜃 (𝑤) Ω′ .

←→Θ

←←𝜃 ←← 𝜃

←→ Φ

The rst diagram gives us a way forward to a choreography: for each ax-
iom (𝑤 −→ 𝑤 ′) ∈ Θ, the rewriting 𝜃 (𝑤) −→Φ 𝜃 (𝑤 ′) must be derivable
under the denitions Φ. In other words, these rewritings serve as constraints
upon the denitions Φ that must be fullled if (𝜃,Φ) is to be a meaningful
choreography for the specication (Σ,Θ).

In this example, the axioms 𝑎𝑏 −→ 𝑏 and 𝑏 −→ 𝜖 induce the constraints

®
𝑎 𝑏 𝑏

←→ Φ and 𝑏 (·)←→ Φ .

Well, a denition 𝑏 ,
®
𝑎 \ ↑↓𝑏 would satisfy the rst constraint but not the

𝑎𝑏 𝑏

𝜃 (𝑎𝑏) =
®
𝑎𝑏 𝑏 = 𝜃 (𝑏)

← →Θ

←←𝜃 ←← 𝜃

←→ Φ

𝑏 𝜖

𝜃 (𝑏) = 𝑏 (·) = 𝜃 (𝜖)

← →Θ

←←𝜃 ←← 𝜃

←→ Φ

Figure 6.5: Axioms induce rewritings as con-
straints on a choreography

second, because
®
𝑎 𝑏 =

®
𝑎 (
®
𝑎 \ ↑↓𝑏) −→Φ 𝑏. And a denition 𝑏 , ↑1 would

satisfy the second constraint but not the rst, because 𝑏 = ↑1 −→Φ (·). Fortu-
nately, we can form a kind of greatest lower bound of these denitions using
alternative conjunction25: the denition 𝑏 , (

®
𝑎 \ ↑↓𝑏) N ↑1 satises both 25This is possible because the left-focus rule

for alternative conjunction preserves focus.constraints,

®
𝑎 𝑏 =

®
𝑎 ((
®
𝑎 \ ↑↓𝑏) N ↑1) −→Φ 𝑏 and 𝑏 = (

®
𝑎 \ ↑↓𝑏) N ↑1 −→Φ (·) .

And the second diagram holds because of the universal properties of the log-
ical connectives.

Not all role assignments yield meaningful choreographies, however.
This happens when there is no solution to the constraints on Φ induced by the
axioms and chosen role assignment. For a set of constraints to be satisable,
three conditions must hold.

• Each induced rewriting must have at least one process in its premise. In the
above example, for instance, role assignments 𝜃 ′ such that either 𝑏 ↦→

®
𝑏 or

𝑏 ↦→
®
𝑏 do not yield meaningful choreographies. Under such assignments,

the axiom𝑏 −→Θ 𝜖 induces either
®

𝑏 (·)←→Φ′ or
®
𝑏 (·)←→Φ′ as constraints.

There are, however, no denitions that satisfy either constraint because the
formula-as-process framework has no rules that permit an atom alone to
be rewritten: messages are passive objects.

• Each induced rewriting must have at most one process in its premise. In the
above example, for instance, the role assignment 𝜃 ′ such that 𝑎 ↦→ 𝑎 and

90

𝑏 ↦→ 𝑏 does not yield a meaningful choreography. The axiom 𝑎𝑏 −→ 𝑏

induces the constraint 𝑎 𝑏 𝑏

←→Φ′ . There are, however, no denitions for
𝑎 and 𝑏 that satisfy this constraint because the formula-as-process frame-
work proscribes implications from having non-atomic premises: a process
can input only messages, not other processes.

• Each message in a premise must be directed inward, toward the premise’s pro-
cess. In the above example, for instance, the role assignment 𝜃 ′ such that
𝑎 ↦→

®
𝑎 and 𝑏 ↦→ 𝑏 does not yield a meaningful choreography. The axiom

𝑎𝑏 −→ 𝑏 induces the constraint
®

𝑎 𝑏 𝑏

←→Φ′ . There is, however, no def-
inition for 𝑏 that satises this constraint because the formula-as-process
framework requires that implications have atomic premises of complemen-
tary direction: a process can only receive messages intended for itself.

As an example, these observations show that a string rewriting axiom
𝑎𝑎 −→ 𝑤 ′ has no valid choreography – if 𝑎 takes a process role, then 𝑎 𝑎 −→
𝜃 (𝑤 ′) violates the second observation; if 𝑎 takes a message role, then

®
𝑎
®

𝑎 −→
𝜃 (𝑤 ′) or

®
𝑎
®
𝑎 −→ 𝜃 (𝑤 ′) violates the rst observation.

More generally, these observations suggest that only constraints of the
form

®
Ω𝐿 𝑎

®
Ω𝑅 Ω′←→ Φ are satisable, and that these constraints are induced

by axioms of the form 𝑤1𝑎𝑤2 −→ 𝑤 ′. In the following section, we leverage
these ideas to present a more formal description of the above procedure for
choreographing string rewriting specications within the formula-as-process
ordered rewriting framework.

6.3.2 A formal description of choreographing specications

To give a formal description of choreographing specications, we dene a
judgment26 𝜃 `Σ Θ Φ that, when given a string rewriting specication26We will frequently omit the string rewrit-

ing alphabet Σ from this judgment, as the in-
tended alphabet is always clear from context.

(Σ,Θ) and a role assignment 𝜃 , yields formula-as-process denitions Φ that
make string rewriting under Θ and formula-as-process ordered rewriting un-
der Φ bisimilar, if such denitions exist:

𝜃 ` Θ Φ only if
𝑤 𝑤 ′

𝜃 (𝑤) 𝜃 (𝑤 ′)

← →Θ

←←𝜃 ←← 𝜃

←→ Φ

and
𝑤 𝑤 ′

𝜃 (𝑤) Ω′ .

←→Θ

←←𝜃 ←← 𝜃

←→ Φ

Stated dierently, the judgment will be such that the following adequacy re-
sult will hold: “If 𝜃 ` Θ Φ, then 𝜃 (𝑤) −→Φ Ω′ if, and only if, there exists
a string𝑤 ′ such that𝑤 −→Θ 𝑤 ′ and 𝜃 (𝑤 ′) = Ω′.”

This principal judgment also relies on an auxiliary elaboration judgment,

®
Ω𝐿 \ ↑𝐴+ /

®
Ω𝑅 𝐵−, which we describe rst.

The auxiliary judgment
®
Ω𝐿 \↑𝐴+ /

®
Ω𝑅 𝐵− elaborates the quasi-propo-

sition
®
Ω𝐿\↑𝐴+/

®
Ω𝑅 into a well-formed proposition 𝐵− by nondeterministically

abstracting one-by-one from either the left or right contexts.27 This proposi-

27This procedure could be made deterministic
by preferring one side over the other, but we
refrain from doing so because the choice of
side to prefer is completely arbitrary.

choreographies: a formula-as-process interpretation of ordered rewriting 91

tion 𝐵− is semantically equivalent to the quasi-proposition
®
Ω𝐿 \ ↑𝐴+ /

®
Ω𝑅 in

the sense that the two intuitively satisfy the “same” left-focus judgments: We
would expect the quasi-proposition to satisfy

®
Ω𝐿 [
®
Ω𝐿 \ ↑𝐴+ /

®
Ω𝑅]

®
Ω𝑅
 𝐴+,

and indeed, when
®
Ω𝐿 \↑𝐴+ /

®
Ω𝑅 𝐵−, we have

®
Δ𝐿 [𝐵−]

®
Δ𝑅
 𝐶

+ if, and only
if,
®
Δ𝐿 =

®
Ω𝐿 and

®
Δ𝑅 =

®
Ω𝑅 and 𝐶+ = 𝐴+. This is proved below as lemma 6.6.

This auxiliary judgment is dened inductively by the following rules.

(·) \ ↑𝐴+ / (·) ↑𝐴+ ↑el

®
Ω𝐿 \ ↑𝐴+ /

®
Ω𝑅 𝐵−

(
®
Ω𝐿
®
𝑎) \ ↑𝐴+ /

®
Ω𝑅

®
𝑎 \ 𝐵− \el ®

Ω𝐿 \ ↑𝐴+ /
®

Ω𝑅 𝐵−

®
Ω𝐿 \ ↑𝐴+ / (

®
𝑎
®

Ω𝑅) 𝐵− /
®

𝑎
/el

The \el rule states that the quasi-proposition (
®
Ω𝐿
®
𝑎) \ ↑𝐴+ /

®
Ω𝑅 is equivalent

to
®
𝑎 \𝐵− if

®
Ω𝐿 \↑𝐴+ /

®
Ω𝑅 is equivalent to 𝐵−. Notice that the \el rule moves

®
𝑎

from the right of
®
Ω𝐿 to the left of 𝐵−; this is admittedly counterintuitive, but it

is closely related to the equally counterintuitive currying law for left-handed
implication in ordered logic: (𝐵 • 𝐴) \ 𝐶 a` 𝐴 \ (𝐵 \ 𝐶). Symmetrically, the
/el rule is closely related to the currying law for right-handed implication:
𝐶 / (𝐴 • 𝐵) a` (𝐶 / 𝐵) /𝐴.

This intuition is captured in the proof of the following lemma.

Lemma 6.6. If
®
Ω𝐿 \ ↑𝐴+ /

®
Ω𝑅 𝐵−, then

®
Δ𝐿 [𝐵−]

®
Δ𝑅
 𝐶+ if, and only if,

®
Δ𝐿 =

®
Ω𝐿 and

®
Δ𝑅 =

®
Ω𝑅 and 𝐶+ = 𝐴+.

Proof. By induction over the structure of the given elaboration.
As an example case, consider

®
Ω𝐿 \ ↑𝐴+ /

®
Ω𝑅 𝐵−

(
®
Ω𝐿
®
𝑎+) \ ↑𝐴+ /

®
Ω𝑅

®
𝑎+ \ 𝐵− \el .

We must show that
®
Δ𝐿 [
®
𝑎+ \ 𝐵−]

®
Δ𝑅
 𝐶+ if, and only if,

®
Δ𝐿 =

®
Ω𝐿
®
𝑎+ and

®
Δ𝑅 =

®
Ω𝑅 and 𝐶+ = 𝐴+. Indeed, the \l rule is the unique rule for left-focusing

on the proposition
®
𝑎+ \ 𝐵−, so

®
Δ𝐿 [
®
𝑎+ \ 𝐵−]

®
Δ𝑅
 𝐶

+ if, and only if,
®
Δ𝐿 =

®
Δ′
𝐿 ®
𝑎+

and
®
Δ′
𝐿
[𝐵−]

®
Δ𝑅
 𝐶+ for some

®
Δ′
𝐿
. By the inductive hypothesis, we have

®
Δ′
𝐿
[𝐵−]

®
Δ𝑅
 𝐶

+ if, and only if,
®
Δ′
𝐿
=
®
Ω𝐿 and

®
Δ𝑅 =

®
Ω𝑅 and 𝐶+ = 𝐴+. Putting

everything together,
®
Δ𝐿 [
®
𝑎+ \ 𝐵−]

®
Δ𝑅
 𝐶+ if, and only if,

®
Δ𝐿 =

®
Ω𝐿
®
𝑎+ and

®
Δ𝑅 =

®
Ω𝑅 and 𝐶+ = 𝐴+, as required. �

The principal judgment is 𝜃 `Σ Θ Φ.28 Given a string rewriting 28Because the alphabet Σ never changeswithin
a derivation, we nearly always elide it.specication (Σ,Θ) and a role assignment 𝜃 , this judgment produces formula-

as-process denitions Φ that, together with 𝜃 , constitute a choreography of
(Σ,Θ). In other words, when 𝜃 `Σ Θ Φ holds, the denitions Φ are a
solution to the constraints induced by axioms Θ under the role assignment
𝜃 , such that 𝜃 is a (strong) bisimulation between −→Θ and −→Φ. If there is

𝜃 ` Θ Φ
only if

𝑤 𝑤′

𝜃 (𝑤) 𝜃 (𝑤′)

← →Θ

←←𝜃 ←← 𝜃

←→ Φ

and
𝑤 𝑤′

𝜃 (𝑤) Ω′

←→Θ

←←𝜃 ←← 𝜃

←→ Φ

no Φ for which 𝜃 `Σ Θ Φ holds, then the role assignment 𝜃 yields no
choreography of the specication (Σ,Θ).

92

This principal choreographing judgment is dened by just two rules:

𝜃 ` · ·

(𝜃 (𝑎) = 𝑎) 𝜃 ` Θ0 Φ0 (𝑎 ∉ domΦ0)
∀𝑖 ∈ I :

(
𝜃 (𝑤𝐿

𝑖) = ®
Ω𝐿𝑖

) (
𝜃 (𝑤𝑅

𝑖) = ®
Ω𝑅𝑖

)
®
Ω𝐿𝑖 \ ↑•𝜃 (𝑤 ′𝑖) / ®

Ω𝑅𝑖 𝐴−𝑖

𝜃 ` Θ0,
(
𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖

)
𝑖∈I Φ0,

(
𝑎 , N𝑖∈I 𝐴

−
𝑖

)
The rst of these rules is straightforward: an empty set of string rewriting
axioms choreographs as an empty set of coinductive formula-as-process def-
initions. The second rule is quite a lot to parse and needs to be broken down
step by step:

1. Choose a symbol 𝑎 that is mapped by 𝜃 to a coinductively dened proposi-
tion, 𝑎. Then reorganize the axioms Θ, collecting together all axioms in Θ

that have an 𝑎 in their premises. Let
(
𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖

)
𝑖∈I be those axioms,

so that Θ = Θ0,
(
𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖

)
𝑖∈I for some Θ0.

2. Inductively construct denitions Φ0 from Θ0 and 𝜃 , using the judgment
𝜃 ` Θ0 Φ0. Check that Φ0 gives no denition for 𝑎, otherwise there is
some axiom in Θ0 that contains 𝑎 in its premise and

(
𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖

)
𝑖∈I

does not correctly constitute all such axioms.

3. Check, using the side condition 𝜃 (𝑤𝐿
𝑖) = ®

Ω𝐿𝑖 , that each 𝑤𝐿
𝑖 contains only

those symbols that map to right-directed atoms. Symmetrically, check, us-
ing the side condition 𝜃 (𝑤𝑅

𝑖) = ®
Ω𝑅𝑖 , that each 𝑤𝑅

𝑖 contains only symbols
that map to left-directed atoms.

4. Elaborate each quasi-proposition
®
Ω𝐿𝑖 \ ↑•𝜃 (𝑤 ′𝑖) / ®

Ω𝑅𝑖 into a semantically
equivalent proposition 𝐴−𝑖 . Based on lemma 6.6, the left-focus judgment
𝜃 (𝑤𝐿

𝑖) [𝐴−𝑖] 𝜃 (𝑤𝑅
𝑖)
 •𝜃 (𝑤 ′𝑖) holds, and so this proposition acts as the im-

age of the axiom 𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖 under the role assignment 𝜃 – that is,

𝜃 (𝑤𝐿
𝑖)𝐴−𝑖 𝜃 (𝑤𝑅

𝑖) −→ 𝜃 (𝑤 ′𝑖).

5. Collect the 𝐴−𝑖 s into a single denition, 𝑎 , N𝑖∈I 𝐴
−
𝑖 , which, based on

steps 2, 3, and 4, describes all of the axioms from Θ that contain 𝑎 in their
premises – that is, 𝜃 (𝑤𝐿

𝑖) 𝑎 𝜃 (𝑤𝑅
𝑖) −→{𝑎,N𝑖∈I𝐴

−
𝑖
} 𝜃 (𝑤 ′𝑖).

We shall now prove that this judgment produces denitions Φ that consti-
tute a formula-as-process choreography (𝜃,Φ) of the string rewriting speci-
cation (Σ,Θ) – that is, that 𝜃 ` Θ Φ implies that 𝜃 is a (strong) bisimulation
between −→Θ and −→Φ. As previously mentioned, because 𝜃 is injective, this
amounts to proving that

𝜃 ` Θ Φ only if
𝑤 𝑤 ′

𝜃 (𝑤) 𝜃 (𝑤 ′)

← →Θ

←←𝜃 ←← 𝜃

←→ Φ

and
𝑤 𝑤 ′

𝜃 (𝑤) Ω′ .

←→Θ

←←𝜃 ←← 𝜃

←→ Φ

We prove the rst diagram as the following completeness theorem and then
prove a stronger soundness theorem that implies the second diagram.

choreographies: a formula-as-process interpretation of ordered rewriting 93

Lemma 6.7 (Denition weakening). If Ω −→Φ Ω′ and domΦ ∩ domΦ′ = ∅,
then Ω −→Φ,Φ′ Ω

′.

Proof. By induction over the structure of the given rewriting step. �

Theorem 6.8. If 𝜃 ` Θ Φ, then𝑤 −→Θ 𝑤 ′ implies 𝜃 (𝑤) −→Φ 𝜃 (𝑤 ′). 𝜃 ` Θ Φ
only if

𝑤 𝑤′

𝜃 (𝑤) 𝜃 (𝑤′)

← →Θ

←←𝜃 ←← 𝜃

←→ Φ

Proof. By simultaneous structural induction on the given choreographing
derivation, 𝜃 ` Θ Φ, and ordered rewriting step,𝑤 −→Θ 𝑤 ′.

• Consider the case in which

𝜃 ` Θ Φ and 𝑤 =

𝑤0 −→Θ 𝑤 ′0
𝑤1𝑤0𝑤2 −→Θ 𝑤1𝑤

′
0𝑤2

−→c
= 𝑤 ′ .

By the inductive hypothesis, 𝜃 (𝑤0) −→Φ 𝜃 (𝑤 ′0). It follows from ordered
rewriting’s −→c rule that

𝜃 (𝑤) = 𝜃 (𝑤1) 𝜃 (𝑤0) 𝜃 (𝑤2) −→Φ 𝜃 (𝑤1) 𝜃 (𝑤 ′0) 𝜃 (𝑤2) = 𝜃 (𝑤 ′) .

• Consider the case in which

(𝜃 (𝑎) = 𝑎) 𝜃 ` Θ0 Φ0 (𝑎 ∉ domΦ0)
∀𝑖 ∈ I :

(
𝜃 (𝑤𝐿

𝑖) = ®
Ω𝐿𝑖

) (
𝜃 (𝑤𝑅

𝑖) = ®
Ω𝑅𝑖

)
®
Ω𝐿𝑖 \ ↑•𝜃 (𝑤 ′𝑖) / ®

Ω𝑅𝑖 𝐴−𝑖

𝜃 ` Θ0,
(
𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖

)
𝑖∈I Φ0,

(
𝑎 , N𝑖∈I 𝐴

−
𝑖

)
and

𝑤 =

(𝑤𝐿
𝑘
𝑎𝑤𝑅

𝑘
−→ 𝑤 ′

𝑘
) ∈ Θ

𝑤𝐿
𝑘
𝑎𝑤𝑅

𝑘
−→Θ 𝑤 ′

𝑘

−→ax
= 𝑤 ′

for some 𝑘 ∈ I, where the axioms are Θ = Θ0, (𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖)𝑖∈I , and

the denitions are Φ = Φ0, (N𝑖∈I 𝐴
−
𝑖).

By lemma 6.6, 𝜃 (𝑤𝐿
𝑘
) [𝐴−

𝑘
] 𝜃 (𝑤𝑅

𝑘
)
 •𝜃 (𝑤 ′

𝑘
) holds. Appending aNl rule,

we have 𝜃 (𝑤𝐿
𝑘
) [N𝑖∈I 𝐴

−
𝑖] 𝜃 (𝑤𝑅

𝑘
)
 •𝜃 (𝑤 ′

𝑘
). Because [•𝜃 (𝑤 ′

𝑘
)]
𝜃 (𝑤 ′

𝑘
), it

follows by the −→i rule that 𝜃 (𝑤𝐿
𝑘
)
(
N𝑖∈I 𝐴

−
𝑖

)
𝜃 (𝑤𝑅

𝑘
) −→Φ 𝜃 (𝑤 ′

𝑘
), and so

𝜃 (𝑤) = 𝜃 (𝑤𝐿
𝑘
) 𝑎 𝜃 (𝑤𝑅

𝑘
) −→Φ 𝜃 (𝑤 ′

𝑘
) = 𝜃 (𝑤 ′).

• Consider the case in which

(𝜃 (𝑎) = 𝑎) 𝜃 ` Θ0 Φ0 (𝑎 ∉ domΦ0)
∀𝑖 ∈ I :

(
𝜃 (𝑣𝐿𝑖) = ®

Ω𝐿𝑖
) (

𝜃 (𝑣𝑅𝑖) = ®
Ω𝑅𝑖

)
®
Ω𝐿𝑖 \ ↑•𝜃 (𝑣 ′𝑖) / ®

Ω𝑅𝑖 𝐴−𝑖

𝜃 ` Θ0,
(
𝑣𝐿𝑖 𝑎𝑣

𝑅
𝑖 −→ 𝑣 ′𝑖

)
𝑖∈I Φ0,

(
𝑎 , N𝑖∈I 𝐴

−
𝑖

)
and

(𝑤 −→ 𝑤 ′) ∈ Θ0
𝑤 −→Θ 𝑤 ′

−→ax

where (𝑤 −→ 𝑤 ′) ∈ Θ0; the axioms are Θ = Θ0, (𝑣𝐿𝑖 𝑎𝑣𝑅𝑖 −→ 𝑣 ′𝑖)𝑖∈I ; and
the denitions are Φ = Φ0, (N𝑖∈I 𝐴

−
𝑖).

By the inductive hypothesis, 𝜃 (𝑤) −→Φ0 𝜃 (𝑤 ′). It follows from weak-
ening (lemma 6.7) that 𝜃 (𝑤) −→Φ 𝜃 (𝑤 ′).

94

• The case in which

𝜃 ` · · and
(𝑤 −→ 𝑤 ′) ∈ Θ
𝑤 −→Θ 𝑤 ′

−→ax

where Θ = · and Φ = · is vacuous. �

Lemma 6.9. If 𝜃 ` Θ Φ and
®
Ω𝐿 [𝑎]

®
Ω𝑅
Φ 𝐶+, then there exists an axiom

(𝑤1 𝑎𝑤2 −→ 𝑤 ′) ∈ Θ such that
®
Ω𝐿 = 𝜃 (𝑤1),

®
Ω𝑅 = 𝜃 (𝑤2), and 𝐶+ = •𝜃 (𝑤 ′).

Proof. By induction over the structure of the given choreographing deriva-
tion, 𝜃 ` Θ Φ.

• Consider the case in which

𝜃 ` Θ0 Φ0 (𝜃 (𝑎) = 𝑎) (𝑎 ∉ domΦ0)
∀𝑖 ∈ I :

(
𝜃 (𝑤𝐿

𝑖) = ®
Δ𝐿𝑖

) (
𝜃 (𝑤𝑅

𝑖) = ®
Δ𝑅𝑖

)
®
Δ𝐿𝑖 \ ↑•𝜃 (𝑤 ′𝑖) / ®

Δ𝑅𝑖 𝐴−𝑖

𝜃 ` Θ0,
(
𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖

)
𝑖∈I Φ0,

(
𝑎 , N𝑖∈I 𝐴

−
𝑖

)
and

®
Ω𝐿 [𝑎 = N𝑖∈I 𝐴

−
𝑖] ®

Ω𝑅
Φ 𝐶+

where Θ = Θ0,
(
𝑤𝐿
𝑖 𝑎𝑤

𝑅
𝑖 −→ 𝑤 ′𝑖

)
𝑖∈I and Φ = Φ0,

(
𝑎 , N𝑖∈I 𝐴

−
𝑖

)
.

By inversion on the left-focus derivation, either:
®
Ω𝐿 [𝐴−𝑘] ®

Ω𝑅
 𝐶+ for
some 𝑘 ∈ I; or I is empty.

– If
®
Ω𝐿 [𝐴−𝑘] ®

Ω𝑅
 𝐶
+ for some 𝑘 ∈ I, then lemma 6.6 allows us to con-

clude that
®
Ω𝐿 =

®
Δ𝐿
𝑘
= 𝜃 (𝑤𝐿

𝑘
) and

®
Ω𝑅 =

®
Δ𝑅
𝑘
= 𝜃 (𝑤𝑅

𝑘
) and 𝐶+ = •𝜃 (𝑤 ′

𝑘
).

Also, the axiom𝑤𝐿
𝑘
𝑎𝑤𝑅

𝑘
−→ 𝑤 ′

𝑘
is contained in Θ.

– Otherwise, if I is empty, then N𝑖∈I 𝐴
−
𝑖 = >. There is no >l rule to

derive
®
Ω𝐿 [𝑎 = >]

®
Ω𝑅
Φ 𝐶+, so this case is vacuous.

• Consider the case in which

𝜃 ` Θ0 Φ0 (𝜃 (𝑏) = 𝑏) (𝑏 ∉ domΦ0)
∀𝑖 ∈ I :

(
𝜃 (𝑣𝐿𝑖) = ®

Δ𝐿𝑖
) (

𝜃 (𝑣𝑅𝑖) = ®
Δ𝑅𝑖

)
®
Δ𝐿𝑖 \ ↑•𝜃 (𝑣 ′𝑖) / ®

Δ𝑅𝑖 𝐵−𝑖

𝜃 ` Θ0,
(
𝑣𝐿𝑖 𝑏 𝑣

𝑅
𝑖 −→ 𝑣 ′𝑖

)
𝑖∈I Φ0,

(
𝑏 , N𝑖∈I 𝐵

−
𝑖

)
and

®
Ω𝐿 [𝑎]

®
Ω𝑅
Φ 𝐶+

where 𝑎 ≠ 𝑏 and Θ = Θ0,
(
𝑣𝐿𝑖 𝑏 𝑣

𝑅
𝑖 −→ 𝑣 ′𝑖

)
𝑖∈I and Φ = Φ0,

(
𝑏 , N𝑖∈I 𝐵

−
𝑖

)
.

By the inductive hypothesis, there exists a string rewriting axiom (𝑤1𝑎𝑤2 −→
𝑤 ′) ∈ Θ0 such that

®
Ω𝐿 = 𝜃 (𝑤1) and

®
Ω𝑅 = 𝜃 (𝑤2) and 𝐶+ = •𝜃 (𝑤 ′). The

same axiom is contained in the signature Θ.

• The case in which

𝜃 ` · · and
®
Ω𝐿 [𝑎]

®
Ω𝑅
Φ 𝐶+

where Θ = · and Φ = · is vacuous because there is no denition for 𝑎 in the
signature Φ. �

choreographies: a formula-as-process interpretation of ordered rewriting 95

Theorem 6.10. If 𝜃 ` Θ Φ and 𝜃 (𝑎) = 𝑎 and Ω𝐿 𝑎 Ω𝑅 −→Φ Ω′, then either:

• Ω𝐿 = Ω′
𝐿
𝜃 (𝑤1) and Ω𝑅 = 𝜃 (𝑤2) Ω′𝑅 and Ω′ = Ω′

𝐿
𝜃 (𝑤 ′) Ω′

𝑅
for some con-

texts Ω′
𝐿
and Ω′

𝑅
and strings𝑤1,𝑤2, and𝑤 ′ such that (𝑤1𝑎𝑤2 −→ 𝑤 ′) ∈ Θ

and 𝜃 (𝑤1) [𝑎] 𝜃 (𝑤2)
 •𝜃 (𝑤 ′);

• Ω𝐿 −→Φ Ω′
𝐿
for some context Ω′

𝐿
such that Ω′ = Ω′

𝐿
𝑎 Ω𝑅 ; or

• Ω𝑅 −→Φ Ω′
𝑅
for some context Ω′

𝑅
such that Ω′ = Ω𝐿 𝑎 Ω

′
𝑅
.

Proof. As a negative proposition, 𝑎 serves as a barrier for interactions be-
tween Ω𝐿 and Ω𝑅 – in process-as-formula focused ordered rewriting, implica-
tions cannot consume negative propositions. Thus, any reduction on Ω𝐿 𝑎 Ω𝑅
must occur within either Ω𝐿 or Ω𝑅 alone or must arise from 𝑎.

If the reduction on Ω𝐿 𝑎 Ω𝑅 arises from 𝑎, then it arises from a bipole that
begins by focusing on 𝑎. In other words, Ω𝐿 = Ω′

𝐿 ®
Δ𝐿 and Ω𝑅 =

®
Δ𝑅 Ω

′
𝑅
and

Ω′ = Ω′
𝐿
Δ′ Ω′

𝑅
for some contexts

®
Δ𝐿 ,

®
Δ𝑅 , and Δ′ and positive proposition 𝐶+

such that
®
Δ𝐿 [𝑎]

®
Δ𝑅
 𝐶

+ and [𝐶+]
Δ′. By lemma 6.9, there exists an axiom
(𝑤1𝑎𝑤2 −→ 𝑤 ′) ∈ Θ such that

®
Δ𝐿 = 𝜃 (𝑤1) and

®
Δ𝑅 = 𝜃 (𝑤2) and𝐶+ = •𝜃 (𝑤 ′).

It follows that Δ′ = 𝜃 (𝑤 ′). �

Corollary 6.11 (Choreography adequacy). If 𝜃 ` Θ Φ, then 𝜃 (𝑤) −→Φ

Ω′ if, and only if, there exists𝑤 ′ such that𝑤 −→Φ 𝑤 ′ and 𝜃 (𝑤 ′) = Ω′.

6.4 Example: Choreographing binary counters

In this section, we revisit binary counters, i.e., binary representations of nat-
ural numbers equipped with increment and decrement operations. Here we
use them as an extended example of choreographing string rewriting speci-
cations.

Recall from section 4.3 a string rewriting specication (Σ,Θ) of binary
counters where the alphabet Σ and the axioms Θ are:

Σ = {𝑒, 𝑏0, 𝑏1, 𝑖, 𝑑, 𝑧, 𝑠, 𝑏 ′0}
Θ = (𝑒 𝑖 −→ 𝑒𝑏1) , (𝑏0 𝑖 −→ 𝑏1) , (𝑏1 𝑖 −→ 𝑖 𝑏0) ,
(𝑒𝑑 −→ 𝑧) , (𝑏0𝑑 −→ 𝑏 ′0) , (𝑏1𝑑 −→ 𝑏0 𝑠) ,
(𝑧𝑏 ′0 −→ 𝑧) , (𝑠 𝑏 ′0 −→ 𝑏1 𝑠)

Wewill present several distinct choreographies of this specication, including
an object-oriented choreography that treats the increment and decrement op-
erations as messages, and a functional choreography that instead treats those
operations as processes.

6.4.1 An object-oriented choreography

Let 𝜃 be the role assignment that maps the bits 𝑒 , 𝑏0, and 𝑏1 to coinductively
𝜃 = {𝑒 ↦→ 𝑒,𝑏0 ↦→ 𝑏0, 𝑏1 ↦→ 𝑏1,

𝑖 ↦→
®
𝑖, 𝑑 ↦→

®
𝑑,

𝑧 ↦→
®
𝑧, 𝑠 ↦→

®
𝑠,𝑏′0 ↦→ 𝑏′0 }dened processes 𝑒 , 𝑏0, and 𝑏1; increments 𝑖 and decrements 𝑑 to left-directed

96

Axioms, Θ Rewriting constraints on Φ Solution, Φ

𝑒 𝑖 −→ 𝑒𝑏1 and 𝑒𝑑 −→ 𝑧 𝑒
®
𝑖 𝑒 𝑏1

←→ Φ and 𝑒
®

𝑑
®
𝑧

←→ Φ 𝑒 , (𝑒 • 𝑏1 /
®
𝑖) N (

®
𝑧 /
®

𝑑)
𝑏0 𝑖 −→ 𝑏1 and 𝑏0𝑑 −→ 𝑑𝑏 ′0 𝑏0

®
𝑖 𝑏1

←→ Φ and 𝑏0
®

𝑑
®

𝑑 𝑏 ′0

←→ Φ 𝑏0 , (↑↓𝑏1 /
®
𝑖) N (

®
𝑑 • 𝑏 ′0 / ®

𝑑)
𝑏1 𝑖 −→ 𝑖 𝑏0 and 𝑏1𝑑 −→ 𝑏0 𝑠 𝑏1

®
𝑖

®
𝑖 𝑏0

←→ Φ and 𝑏1
®

𝑑 𝑏0
®
𝑠

←→ Φ 𝑏1 , (
®
𝑖 • 𝑏0 /

®
𝑖) N (𝑏0 •

®
𝑠 /
®

𝑑)
𝑧𝑏 ′0 −→ 𝑧 and 𝑠 𝑏 ′0 −→ 𝑏1 𝑠

®
𝑧 𝑏 ′0 ®

𝑧

←→ Φ and
®
𝑠 𝑏 ′0 𝑏1

®
𝑠

←→ Φ 𝑏 ′0 , (®
𝑧 \
®
𝑧) N (

®
𝑠 \ 𝑏1 •

®
𝑠)

Table 6.5: Deriving an object-oriented chore-
ography of binary counters

messages
®
𝑖 and

®
𝑑 ; unary constructors 𝑧 and 𝑠 to right-directed messages

®
𝑧 and

®
𝑠; and 𝑏 ′0 to coinductively dened process 𝑏 ′0.

Two axioms in Θ mention 𝑒 in their premises: 𝑒 𝑖 −→ 𝑒𝑏1 and 𝑒𝑑 −→ 𝑧.
Under the role assignment 𝜃 , these axioms induce the rewritings

𝑒
®
𝑖 𝑒 𝑏1

←→ Φ and 𝑒
®

𝑑
®
𝑧

←→ Φ

as constraints on Φ that must be satised if (𝜃,Φ) is to be a meaningful chore-
ography of the binary counter specication. Solving these for 𝑒 , we obtain
the denition

𝑒 , (𝑒 • 𝑏1 /
®
𝑖) N (

®
𝑧 /
®

𝑑) .

Similar reasoning allows us to construct coinductive denitions for𝑏0, 𝑏1, and
𝑏 ′0 as the solutions of the other constraints induced from the axioms Θ by 𝜃 .
(See table 6.5 for a sketch.) In full, the solution to these constraints is the
denitions Φ:

Φ =
(
𝑒 , (𝑒 • 𝑏1 /

®
𝑖) N (

®
𝑧 /
®

𝑑)
)
,(

𝑏0 , (↑↓𝑏1 /
®
𝑖) N (

®
𝑑 • 𝑏 ′0 / ®

𝑑)
)
,(

𝑏1 , (
®
𝑖 • 𝑏0 /

®
𝑖) N (𝑏0 •

®
𝑠 /
®

𝑑)
)
,(

𝑏 ′0 , (®
𝑧 \
®
𝑧) N (

®
𝑠 \ 𝑏1 •

®
𝑠)

)
.

In other words, under the role assignment 𝜃 , the string rewriting axioms
for the binary counter are choreographed to the coinductive propositions de-
ned inΦ. It is easy, if tedious, to verify that the formal construction described
in section generates the same denitions, Φ:

Proposition 6.12. For the above string rewriting specication (Σ,Θ) and role
assignment 𝜃 , the judgment 𝜃 ` Θ Φ holds.

This choreography might be called object-oriented for its similarity to the
eponymous programming paradigm. In that paradigm, computation is cen-
tered around message exchange between stateful objects – data are stored
by objects, and those data are manipulated by exchanging messages with the
relevant objects.

This choreography of the binary counter specication behaves similarly:2929 For a study of the relationship between
(session-typed) processes and objects, see
Balzer and Pfenning (2015).

its data – the bits 𝑒 , 𝑏0, and 𝑏1 – are represented as processes, and its oper-
ations – the increments 𝑖 and decrements 𝑑 – are represented as messages
that the processes dispatch on. For example, 𝑒 is the coinductively dened

choreographies: a formula-as-process interpretation of ordered rewriting 97

process that waits to receive either the increment message
®
𝑖 or the decrement

message
®

𝑑 from its right-hand neighbor. If
®
𝑖 is received, then 𝑒 spawns a new

process, 𝑏1, to its right and then continues recursively as 𝑒 . Otherwise, if
®

𝑑 is
received, then 𝑒 sends the message

®
𝑧 as a response.

Recall from section 4.3 that string rewriting specications of binary
counters were assigned natural number denotations according to the relations
≈v, ≈i, and ≈d. Based on the role assignment that underlies this choreogra-
phy, we can lift these denotations to choreographed counters: For instance, Ω
is an increment context that denotes 𝑛 exactly when 𝜃−1 (Ω) ≈i 𝑛; and so 𝑒

®
𝑖 𝑏1

denotes 3 because 𝜃−1 (𝑒
®
𝑖 𝑏1) = 𝑒 𝑖 𝑏1 ≈i 3. We could even assign denotations

directly to choreographed contexts by dening new ≈v, ≈i, and ≈d relations
on choreographed contexts.

𝑒 ≈v 0 𝑒-v
Ω ≈v 𝑛

Ω 𝑏0 ≈v 2𝑛
𝑏0-v

Ω ≈v 𝑛
Ω 𝑏1 ≈v 2𝑛 + 1

𝑏1-v

𝑒 ≈i 0 𝑒-i
Ω ≈i 𝑛

Ω 𝑏0 ≈i 2𝑛
𝑏0-i

Ω ≈i 𝑛
Ω 𝑏1 ≈i 2𝑛 + 1

𝑏1-i Ω ≈i 𝑛
Ω
®
𝑖 ≈i 𝑛 + 1 ®

𝑖-i

Ω ≈i 𝑛
Ω
®

𝑑 ≈d 𝑛 ®
𝑑-d

®
𝑧 ≈d 0 ®

𝑧-d Ω ≈i 𝑛
Ω
®
𝑠 ≈d 𝑛 + 1 ®

𝑠-d
Ω ≈d 𝑛

Ω 𝑏 ′0 ≈d 2𝑛
𝑏 ′0-d

We will say that a context Ω is an increment counter or increment context if
Ω ≈i 𝑛 for some natural number 𝑛; likewise, we will say that a context Ω is
an decrement counter or decrement context if Ω ≈d 𝑛 for some 𝑛.

Theorem 6.13. The following hold for all Ω and 𝑛.
• Ω ≈v 𝑛 if, and only if, Ω = 𝜃 (𝑤) for some𝑤 such that𝑤 ≈v 𝑛.
• Ω ≈i 𝑛 if, and only if, Ω = 𝜃 (𝑤) for some𝑤 such that𝑤 ≈i 𝑛.
• Ω ≈d 𝑛 if, and only if, Ω = 𝜃 (𝑤) for some𝑤 such that𝑤 ≈d 𝑛.

Proof. In each direction, by structural induction on the derivation of the de-
notation. �

Just as we proved the string rewriting specication of binary counters to
be adequate with respect to the natural number denotation, we can also show
this object-oriented choreography to be adequate. What is interesting is that
the adequacy of this choreography comes for nearly free – it can be estab-
lished by composing the string rewriting specication’s adequacy theorem
with the theorems that show an arbitrary choreography to be sound and com-
plete with respect to its underlying string rewriting specication.

Recall from section 4.3 that the string rewriting specication adequately
describes increments and decrements:

Theorem 4.4 (Small-step adequacy of increments).
Value soundness If𝑤 ≈v 𝑛, then𝑤 ≈i 𝑛 and𝑤 X−→.
Preservation If𝑤 ≈i 𝑛 and𝑤 −→ 𝑤 ′, then𝑤 ′ ≈i 𝑛.

98

Progress If𝑤 ≈i 𝑛, then either: 𝑤 −→ 𝑤 ′ for some𝑤 ′; or𝑤 ≈v 𝑛.
Termination If𝑤 ≈i 𝑛, then every rewriting sequence from𝑤 is nite.

Theorem 4.6 (Small-step adequacy of decrements).
Preservation If𝑤 ≈d 𝑛 and𝑤 −→ 𝑤 ′, then𝑤 ′ ≈d 𝑛.
Progress If𝑤 ≈d 𝑛, then either:
• 𝑤 −→ 𝑤 ′, for some𝑤 ′;
• 𝑛 = 0 and𝑤 = 𝑧; or
• 𝑛 > 0 and𝑤 = 𝑤 ′ 𝑠 , for some𝑤 ′ such that𝑤 ′ ≈i 𝑛 − 1.
Termination If𝑤 ≈d 𝑛, then every rewriting sequence from𝑤 is nite.

Corollary 4.7 (Big-step adequacy of decrements). If𝑤 ≈d 𝑛, then:
• 𝑤 =⇒ 𝑧 if, and only if, 𝑛 = 0;
• 𝑤 =⇒ 𝑤 ′ 𝑠 for some𝑤 ′ such that𝑤 ′ ≈i 𝑛 − 1, if 𝑛 > 0; and
• 𝑤 =⇒ 𝑤 ′ 𝑠 only if 𝑛 > 0 and𝑤 ′ ≈i 𝑛 − 1.

Combining these theoremswith theorem 6.8, we have the immediate corol-
lary:

Corollary 6.14 (Adequacy of object-oriented choreography). The following
hold.

Preservation If Ω ≈i 𝑛 and Ω −→Φ Ω′, then Ω′ ≈i 𝑛. If Ω ≈d 𝑛 and
Ω −→Φ Ω′, then Ω′ ≈d 𝑛.

Big-step If Ω ≈d 𝑛, then:
• Ω =⇒Φ

®
𝑧 if, and only if, 𝑛 = 0;

• Ω =⇒Φ Ω′
®
𝑠 for some Ω′ such that Ω′ ≈i 𝑛 − 1, if 𝑛 > 0; and

• Ω =⇒Φ Ω′
®
𝑠 only if 𝑛 > 0 and Ω′ ≈i 𝑛 − 1.

6.4.2 A functional choreography

The object-oriented choreography is not the only choreography possible for
the binary counter specication, however.

Let 𝜃 ′ be a role assignment that is (roughly) dual to 𝜃 – that is, let 𝜃 ′ map𝜃 ′ = {𝑒 ↦→
®
𝑒,𝑏0 ↦→

®
𝑏0, 𝑏1 ↦→

®
𝑏1,

𝑖 ↦→ 𝚤, 𝑑 ↦→ 𝑑,

𝑧 ↦→
®
𝑧, 𝑠 ↦→

®
𝑠,𝑏′0 ↦→ 𝑏′0 }

the bits 𝑒 , 𝑏0, and 𝑏1 to right-directed messages
®
𝑒 ,
®
𝑏0, and

®
𝑏1; increments 𝑖 and

decrements 𝑑 to coinductively dened processes 𝚤 and 𝑑 ; unary constructors
𝑧 and 𝑠 to right-directed messages

®
𝑧 and

®
𝑠; and 𝑏 ′0 to the coinductively dened

process 𝑏 ′0.
Once again, we can construct a choreography from the string rewriting

axiomsΘ by solving constraints in the form of rewritings. Three axioms from
Θmention 𝑖 in their premises: 𝑒 𝑖 −→ 𝑒𝑏1, 𝑏0 𝑖 −→ 𝑏1, and 𝑏1 𝑖 −→ 𝑖 𝑏0. Under
the role assignment 𝜃 ′, these axioms induce the rewritings

®
𝑒 𝚤

®
𝑒
®
𝑏1

←→Φ′ and
®
𝑏0 𝚤

®
𝑏1

←→Φ′ and
®
𝑏1 𝚤 𝚤

®
𝑏0

←→Φ′

as constraints on Φ′ that must be satised if (𝜃 ′,Φ′) is to be a choreography
of the binary counter specication. Solving these constraints for 𝚤, we obtain
the denition

𝚤 , (
®
𝑒 \
®
𝑒 •
®
𝑏1) N (

®
𝑏0 \
®
𝑏1) N (

®
𝑏1 \ 𝚤 •

®
𝑏0) .

choreographies: a formula-as-process interpretation of ordered rewriting 99

Axioms, Θ Rewriting constraints on Φ′ Solution, Φ′

𝑒 𝑖 −→ 𝑒𝑏1 and 𝑏0 𝑖 −→ 𝑏1
®
𝑒 𝚤

®
𝑒
®
𝑏1

←→Φ′ and
®
𝑏0 𝚤

®
𝑏1

←→Φ′ 𝚤 , (
®
𝑒 \
®
𝑒 •
®
𝑏1) N (

®
𝑏0 \
®
𝑏1)

and 𝑏1 𝑖 −→ 𝑖 𝑏0 and
®
𝑏1 𝚤 𝚤

®
𝑏0

←→Φ′ N (
®
𝑏1 \ 𝚤 •

®
𝑏0)

𝑒𝑑 −→ 𝑧 and 𝑏0𝑑 −→ 𝑑𝑏 ′0 ®
𝑒 𝑑

®
𝑧

←→Φ′ and
®
𝑏0 𝑑 𝑑 𝑏 ′0

←→Φ′ 𝑑 , (
®
𝑒 \
®
𝑧) N (

®
𝑏0 \ 𝑑 • 𝑏 ′0)

and 𝑏1𝑑 −→ 𝑏0 𝑠 and
®
𝑏1 𝑑

®
𝑏0
®
𝑠

←→Φ′ N (
®
𝑏1 \
®
𝑏0 •
®
𝑠)

𝑧𝑏 ′0 −→ 𝑧 and 𝑠 𝑏 ′0 −→ 𝑏1 𝑠
®
𝑧 𝑏 ′0 ®

𝑧

←→Φ′ and
®
𝑠 𝑏 ′0 𝑏1

®
𝑠

←→Φ′ 𝑏 ′0 , (®
𝑧 \
®
𝑧) N (

®
𝑠 \
®
𝑏1 •
®
𝑠)

Table 6.6: Deriving a functional choreogra-
phy of binary counters

Upon solving the remaining constraints for the other coinductively dened
propositions, 𝑑 and 𝑏 ′0 (table 6.6),we arrive at the denitions

Φ′ =
(
𝚤 , (
®
𝑒 \
®
𝑒 •
®
𝑏1) N (

®
𝑏0 \
®
𝑏1) N (

®
𝑏1 \ 𝚤 •

®
𝑏0)

)
,(

𝑑 , (
®
𝑒 \
®
𝑧) N (

®
𝑏0 \ 𝑑 • 𝑏 ′0) N (®

𝑏1 \
®
𝑏0 •
®
𝑠)

)
,(

𝑏 ′0 , (®
𝑧 \
®
𝑧) N (

®
𝑠 \ 𝑏1 •

®
𝑠)

)
.

Again, it is easy to verify that these denitions are exactly those that are
constructed by the formal description of the choreographing algorithm:

Proposition 6.15. For the above string rewriting specication (Σ,Θ) and role
assignment 𝜃 ′, the judgment 𝜃 ′ ` Θ Φ′ holds.

In contrast with the previous, object-oriented choreography, this choreog-
raphy treats its data – the bits 𝑒 , 𝑏0, and 𝑏1 – as messages that are manipulated
by processes that represent the operations – increments 𝑖 and decrements 𝑑 .
For this reason, the choreography (𝜃 ′,Φ′) might be called functional for its
similarity to functional programming.

6.4.3 Duality and other choreographies

These two (roughly) dual object-oriented and functional choreographies hint
at a fundamental duality between the object-oriented and functional program-
ming paradigms.

It is briey tempting to think that a general duality theorem for choreogra-
phies might exist. Perhaps if (𝜃,Φ) is a choreography of the specication
(Σ,Θ), there exists a dual choreography (𝜃⊥,Φ⊥) in which 𝜃⊥ maps a symbol
𝑎 to a message exactly when 𝜃 mapped it to a process?

Such a theorem does not exist. As a counterexample, recall the string
rewriting specication (Σ,Θ) and choreography (𝜃,Φ) given by

Σ = {𝑎, 𝑏}
Θ = (𝑎𝑏 −→ 𝑏) , (𝑏 −→ 𝜖)

and
𝜃 = {𝑎 ↦→

®
𝑎, 𝑏 ↦→ 𝑏}

Φ =
(
𝑏 , (

®
𝑎 \ ↑↓𝑏) N ↑1

)
.

For this choreography, the dual role assignment, 𝜃⊥, would map 𝑏 to a mes-
sage, either

®
𝑏 or

®
𝑏. And, the axiom 𝑏 −→ 𝜖 would, under 𝜃⊥, induce ei-

ther
®

𝑏 (·)←→Φ⊥ or
®
𝑏 (·)←→Φ⊥ as a constraint. Neither of these possible con-

straints is satisable in the formula-as-process ordered rewriting framework

100

because the premises contain only messages, which are passive and have no
denitions.

Onemight also ask if a theorem is possible if some additional conditions are
imposed on the specication. For instance, at rst glance, a duality theorem
might seem possible for those specications in which all axioms’ premises
contain exactly two symbols. Unfortunately, this is not the case. Consider, as
a counterexample, the string rewriting specication (Σ,Θ) and the choreog-
raphy (𝜃,Φ) given by

Σ = {𝑎, 𝑏, 𝑐}
Θ = (𝑎𝑏 −→ 𝑏) , (𝑏𝑐 −→ 𝑏)

and
𝜃 = {𝑎 ↦→

®
𝑎, 𝑏 ↦→ 𝑏, 𝑐 ↦→

®
𝑐}

Φ =
(
𝑏 , (

®
𝑎 \ ↑↓𝑏) N (↑↓𝑏 /

®
𝑐)

)
.

For this choreography, the dual role assignment, 𝜃⊥, would map 𝑏 to a mes-
sage, either

®
𝑏 or
®
𝑏. But either choice leads to unsatisable constraints. De-

pending on whether 𝜃⊥ maps 𝑏 to
®

𝑏 or
®
𝑏, the induced constraints are either:

𝑎
®

𝑏
®

𝑏

←→Φ⊥ and
®

𝑏 𝑐
®

𝑏

←→Φ⊥ or 𝑎
®
𝑏

®
𝑏

←→Φ⊥ and
®
𝑏 𝑐

®
𝑏

←→Φ⊥ ,

respectively. In either case, the constraints are unsatisable because one
premise in each group involves a message directed outward, away from the
premise’s process.3030 See section 6.1.2.

Besides these object-oriented and functional choreographies, the binary
counter specication has two other, related choreographies. The two alterna-
tives are broadly similar to the object-oriented and functional choreographies,
with two exceptions: the unary constructors 𝑧 and 𝑠 are treated as processes,
not messages; and 𝑏 ′0 is treated as a message, not a process. Instead of re-
sponding to a decrement with either a

®
𝑧 or
®
𝑠 message, these choreographies

transform the binary counter into head-unary form where the head is a pro-
cess – either 𝑧 or 𝑠 .

One problemwith these alternative choreographies, however, is that, with-
out a

®
𝑧 or
®
𝑠 response message, there is no way to observe the counter’s state.

Under these choreographies, all counters are, in some sense, equivalent be-
cause they can’t be distinguished by any of the nonexistent observations. We
will return to the idea of observational equivalence in the following chapter.

6.5 Example: Choreographing nondeterministic nite automata

Recall from section 4.2 our string rewriting specication of how an NFA pro-
cesses its input. Given an NFA A = (𝑄,Δ, 𝐹) over an input alphabet Σ, the
NFA’s operational semantics is adequately captured by the string rewriting
specication (Σ] {$, y, n},Θ), where the axioms Θ are given by

Θ = {𝑎𝑞 −→ 𝑞′𝑎 | (𝑞′𝑎 ∈ Δ(𝑞, 𝑎))}
∪ {$𝑞 −→ 𝐹 (𝑞) | 𝑞 ∈ 𝑄}

where 𝐹 (𝑞) =
{
y if 𝑞 ∈ 𝐹
n if 𝑞 ∉ 𝐹 .

choreographies: a formula-as-process interpretation of ordered rewriting 101

Object-oriented–like alternative Functional-like alternative

𝜃 ∗ = 𝜃 [𝑧 ↦→ 𝑧, 𝑠 ↦→ 𝑠, 𝑏 ′0 ↦→ ®
𝑏 ′0]

Φ∗ =
(
𝑒 , (𝑒 • 𝑏1 /

®
𝑖) N (↑↓𝑧 /

®
𝑑)

)
,(

𝑏0 , (↑↓𝑏1 /
®
𝑖) N (

®
𝑑 •
®

𝑏 ′0 / ®
𝑑)

)
,(

𝑏1 , (
®
𝑖 • 𝑏0 /

®
𝑖) N (𝑏0 • 𝑠 /

®
𝑑)

)
,(

𝑧 , ↑↓𝑧 /
®

𝑏 ′0
)
,(

𝑠 , 𝑏1 • 𝑠 /
®

𝑏 ′0
)

𝜃† = 𝜃 ′[𝑧 ↦→ 𝑧, 𝑠 ↦→ 𝑠, 𝑏 ′0 ↦→ ®
𝑏 ′0]

Φ† =
(
𝚤 , (
®
𝑒 \
®
𝑒 •
®
𝑏1) N (

®
𝑏0 \
®
𝑏1) N (

®
𝑏1 \ 𝚤 •

®
𝑏0)

)
,(

𝑑 , (
®
𝑒 \ ↑↓𝑧) N (

®
𝑏0 \ 𝑑 •

®
𝑏 ′0) N (®

𝑏1 \
®
𝑏0 • 𝑠)

)
,(

𝑧 , ↑↓𝑧 /
®

𝑏 ′0
)
,(

𝑠 ,
®
𝑏1 • 𝑠 /

®
𝑏 ′0

)
Table 6.7: Two other choreographies for the
binary counter specication

As a second extended example of a choreography, we would now like to
choreograph this specication in the formula-as-process ordered rewriting
framework. As with the binary counter specication, there are, in fact, two
distinct choreographies for this string rewriting specication of NFAs – one
functional and one object-oriented.

6.5.1 A functional choreography

Let 𝜃 be the role assignment that maps each input symbol 𝑎 ∈ Σ to a right- 𝜃 = {𝑎 ↦→
®
𝑎 | 𝑎 ∈ Σ} ∪ {$ ↦→

®
$}

∪ {𝑞 ↦→ 𝑞 | 𝑞 ∈ 𝑄 }
∪ {y ↦→

®
y, n ↦→

®
n}

directed message,
®
𝑎; the end-of-word marker, $, to a right-directed message,

®
$;

each state 𝑞 ∈ 𝑄 to a coinductively dened proposition, 𝑞; and the acceptance
and rejection symbols, y and n, to right-directed messages,

®
y and

®
n. In other

words, the input word is transmitted as a sequence of messages to a process
𝑞 that tracks the NFA’s current state.

Choose an arbitrary state 𝑞 ∈ 𝑄 . Under the role assignment 𝜃 , the axioms
in Θ that mention 𝑞 in their premises induce the rewritings

{
®
$𝑞

®
𝐹 (𝑞)←→ Φ }

∪⋃
𝑎∈Σ{®

𝑎 𝑞 𝑞′𝑎

←→ Φ | 𝑞′𝑎 ∈ Δ(𝑞, 𝑎)}
where

®
𝐹 (𝑞) =

{
®
y if 𝑞 ∈ 𝐹

®
n if 𝑞 ∉ 𝐹

as constraints on Φ that must be satised if (𝜃,Φ) is to be a meaningful chore-
ography of the NFA specication (Σ] {$, y, n},Θ). Solving these constraints
for 𝑞, we obtain the denition

𝑞 , (
®
$ \ ↑
®
𝐹 (𝑞)) N N

𝑎∈Σ

(
®
𝑎 \ (N𝑞′𝑎 ∈Δ(𝑞,𝑎) ↑↓𝑞

′
𝑎)

)
,

and therefore the full choreographing signature is

Φ =

(
𝑞 , (

®
$ \ ↑
®
𝐹 (𝑞)) N N

𝑎∈Σ

(
®
𝑎 \ (N𝑞′𝑎 ∈Δ(𝑞,𝑎) ↑↓𝑞

′
𝑎)

))
𝑞∈𝑄

As a concrete example, the adjacent figure recalls from g. 2.1 an NFA that

𝑞0

a,b

𝑞1
b

𝑞2
a,b

a,b

Φ =
(
𝑞0 , (

®
𝑎 \ ↑↓𝑞0) N (

®
𝑏 \ (↑↓𝑞0 N ↑↓𝑞1))

N (
®
$ \ ↑
®
n)

)
,(

𝑞1 , (
®
𝑎 \ ↑↓𝑞2) N (

®
𝑏 \ ↑↓𝑞2) N (

®
$ \ ↑
®
y)

)
,(

𝑞2 , (
®
𝑎 \ ↑↓𝑞2) N (

®
𝑏 \ ↑↓𝑞2) N (

®
$ \ ↑
®
n)

)
Figure 6.6: An NFA that accepts exactly
those words, over the alphabet Σ = {𝑎,𝑏 },
that end with 𝑏; and a choreography

accepts those words, over the alphabet Σ = {𝑎, 𝑏}, that end with 𝑏, and also
gives a choreographing signature for that NFA.

Similarly to one of the binary counter’s choreographies, this choreography
might be called ‘functional’ because the data, an input string, are represented

102

by messages that are acted on in a function-like way by the current state’s
process, 𝑞.

Proposition 6.16. For the above string rewriting specication (Σ]{$, y, n},Θ)
and role assignment 𝜃 , the judgment 𝜃 ` Θ Φ holds (up to focusing equiva-
lence).

Recall from section 4.2 the adequacy theorem for the string rewriting spec-
ication of NFAs.

Theorem 4.2 (Adequacy of NFA specication). Let A = (𝑄,Δ, 𝐹) be an NFA
over the input alphabet Σ.
• 𝑞

𝑎−→ 𝑞′𝑎 if, and only if, 𝑎 𝑞 −→ 𝑞′𝑎 , for all input symbols 𝑎 ∈ Σ.
• 𝑞 ∈ 𝐹 if, and only if, $𝑞 −→ y.
• 𝑞

𝑤−→ 𝑞′ if, and only if,𝑤R 𝑞 =⇒ 𝑞′, for all nite words𝑤 ∈ Σ∗.

What we would like now is a theorem that relates an NFA not to a string
rewriting specication but to the above functional choreography. In the spe-
cic instance of this functional choreography of the NFA, corollary 6.11, the
adequacy of the choreographing procedure, can be reduced to the following
corollary – a result that relates the string rewriting specication to the chore-
ography.

Corollary 6.17. For the above string rewriting specication (Σ] {$, y, n},Θ)
and choreography (𝜃,Φ), the choreography is adequate with respect to the spec-
ication:
• 𝑎𝑞 −→Θ 𝑞′𝑎 only if

®
𝑎 𝑞 −→Φ 𝑞′𝑎 . Moreover, if

®
𝑎 𝑞 −→Φ Ω′, then 𝑎𝑞 −→Θ 𝑞′𝑎

for some state 𝑞′𝑎 such that Ω′ = 𝑞′𝑎 .
• $𝑞 −→Θ 𝐹 (𝑞) if, and only if,

®
$𝑞 −→Φ

®
𝐹 (𝑞).

• 𝑤R𝑞 −→Θ 𝑞′ only if
®
𝑎R 𝑞 −→Φ 𝑞′. Moreover, if

®
𝑤R 𝑞 −→Φ Ω′, then

𝑤R𝑞 −→Θ 𝑞′ for some state 𝑞′ such that Ω′ = 𝑞′.

By composing this with theorem 4.2, the adequacy of the NFA string rewriting
specication, we arrive at:

®
𝑤R =

{
(·) if 𝑤 = 𝜖

®
𝑤R
0 ®
𝑎 if 𝑤 = 𝑎𝑤0

Figure 6.7: An anti-homomorphism from
input words to sequences of right-directed
messages. Notice that

®
𝑤R = 𝜃 (𝑤R) , where R

is dened in g. 4.7.
Corollary 6.18 (Adequacy of the functional NFA choreography). Let A =

(𝑄,Δ, 𝐹) be an NFA over the input alphabet Σ, with choreography (𝜃,Φ) as
described above. The following hold.
• 𝑞

𝑎−→ 𝑞′𝑎 only if
®
𝑎 𝑞 −→Φ 𝑞′𝑎 . Also, if ®

𝑎 𝑞 −→Φ Ω′, then 𝑞
𝑎−→ 𝑞′𝑎 for some

state 𝑞′𝑎 such that Ω′ = 𝑞′𝑎 .
• 𝑞 ∈ 𝐹 if, and only if,

®
$𝑞 −→Φ (·).

• 𝑞
𝑤−→ 𝑞′ only if

®
𝑤R 𝑞 =⇒Φ 𝑞′. Also, if

®
𝑤R 𝑞 =⇒Φ Ω′, then 𝑞

𝑤−→ 𝑞′ for some
state 𝑞′ such that Ω′ = 𝑞′.

This corollary gives – nearly for free – an end-to-end adequacy result for
the functional NFA choreography with respect to the mathematical model
of NFAs. Examining the rst part, its rst clause captures the completeness
of the choreography: each NFA transition is simulated by a corresponding
rewriting in the choreography. The second clause captures the soundness of
the choreography: each rewriting simulates some NFA transition.

choreographies: a formula-as-process interpretation of ordered rewriting 103

6.5.2 An object-oriented choreography

Once again, the functional choreography is not the only choreography pos-
sible for the NFA specication. As for the binary counter, there is an ‘object-
oriented’ choreography that treats the states as messages that eect a re-
sponse from processes that represent symbols of an input word. In this way,
we may use a role assignment that is roughly dual to the assignment used in
the preceding functional choreography.

Specically, let 𝜃 ′ be the role assignment that maps each input symbol 𝜃 ′ = {𝑎 ↦→ 𝑎 | 𝑎 ∈ Σ} ∪ {$ ↦→ $̂}
∪ {𝑞 ↦→

®
𝑞 | 𝑞 ∈ 𝑄 }

∪ {y ↦→
®
y, n ↦→

®
n}

𝑎 ∈ Σ and the end-of-word marker, $, to coinductively dened propositions,
𝑎 and $̂, respectively; each state 𝑞 ∈ 𝑄 to a left-directed message,

®
𝑞; and the

acceptance and rejection symbols, y and n, to right-directed messages,
®
y and

®
n.

Under the role assignment 𝜃 ′, the axioms inΘ that mention 𝑎 and $ in their
premises induce the rewritings⋃

𝑞∈𝑄 {𝑎
®

𝑞

®
𝑞′𝑎

←→Φ′ | 𝑞′𝑎 ∈ Δ(𝑞, 𝑎)} and
⋃
𝑞∈𝑄 {$̂

®
𝑞

®
𝐹 (𝑞)←→Φ′ } ,

respectively, as constraints on Φ′ that must be satised if (𝜃 ′,Φ′) is to be a
meaningful choreography of the NFA specication. Solving these constraints
for 𝑎 and $̂, respectively, we obtain the denitions

𝑎 , N
𝑞∈𝑄

(
N𝑞′𝑎 ∈Δ(𝑞,𝑎) (

®
𝑞′𝑎 /

®
𝑞)

)
and $̂ , N

𝑞∈𝑄

(
↑
®
𝐹 (𝑞) /

®
𝑞
)
.

In full, the choreographing signature Φ′ is therefore

Φ′ =
(
$̂ , N𝑞∈𝑄 (↑®

𝐹 (𝑞) /
®

𝑞)
)
,

(
𝑎 , N

𝑞∈𝑄

(
N𝑞′𝑎 ∈Δ(𝑞,𝑎) (

®
𝑞′𝑎 /

®
𝑞)

))
𝑎∈Σ

Indeed, this is the same choreographing signature that is produced by the
formal procedure:

Proposition 6.19. For the string rewriting specication (Σ] {$, y, n},Θ) and
role assignment 𝜃 ′, the judgment 𝜃 ′ ` Θ Φ′ holds.

As for the functional choreography, we may then establish a shortcut ad-
equacy theorem for this object-oriented choreography as a corollary of ear-
lier results. Composing this proposition with theorem 4.2, the adequacy of
formula-as-process choreographies with respect to their underlying string
rewriting specications, we arrive at:

Corollary 6.20. LetA = (𝑄,Δ, 𝐹) be an NFA over the input alphabet Σ, with
choreography (𝜃 ′,Φ′) as described above. The following hold.
• 𝑞

𝑎−→ 𝑞′𝑎 only if 𝑎
®

𝑞 −→Φ′

®
𝑞′𝑎 . Also, if 𝑎

®
𝑞 −→Φ′ Ω

′, then 𝑞
𝑎−→ 𝑞′𝑎 for some

state 𝑞′𝑎 such that Ω′ =
®

𝑞′𝑎 .
• 𝑞 ∈ 𝐹 if, and only if, $̂

®
𝑞 −→Φ′ (·).

• 𝑞
𝑤−→ 𝑞′ only if �̂�R

®
𝑞 =⇒Φ′

®
𝑞′. Also, if �̂�R

®
𝑞 =⇒Φ′ Ω

′, then 𝑞
𝑤−→ 𝑞′ for

some state 𝑞′ such that Ω′ =
®

𝑞′.

104

Once again, this gives the adequacy of the object-oriented choreography of
NFAs nearly for free.

However, there is one slight blemish to the soundness clauses. Its premise,
“If 𝑎

®
𝑞 −→Φ′ Ω

′ [. . .]” deals only with ideas from the choreography and or-
dered rewriting. Its conclusion, however, entangles ideas from the mathemat-
ical model of the NFA (“then 𝑞

𝑎−→ 𝑞′𝑎 for some state 𝑞′𝑎 [. . .]”) with ideas
from the choreography (“[. . .] such that Ω′ =

®
𝑞′𝑎 .”). In a way, the soundness

clause violates a kind of meta-level stratication. Soundness should relate
one model, on the one hand, to another model, on the other hand, but that is
not what happens here.

Fortunately, it is not dicult to rephrase the soundness clause in a way
that adheres to the desired meta-level stratication. Upon examining the def-
inition of 𝑎, a rewriting 𝑎

®
𝑞 −→Φ′ Ω

′ exists if and, most importantly, only if
Ω′ =

®
𝑞′ for some state 𝑞′. The statement of soundness is thus equivalent to:

• If 𝑎
®

𝑞 −→Φ′

®
𝑞′, then 𝑞 𝑎−→ 𝑞′𝑎 for some state 𝑞′𝑎 such that

®
𝑞′ =

®
𝑞′𝑎 .

But because there is a unique atom for each state, equality of state atoms
coincides with equality of the states themselves. Therefore, we can simplify
the statement further and combine it with completeness:

Corollary 6.21 (Adequacy of the object-oriented NFA choreography). Let
A = (𝑄,Δ, 𝐹) be an NFA over the input alphabet Σ, with choreography (𝜃 ′,Φ′)
as described above. The following hold.
• 𝑞

𝑎−→ 𝑞′ if, and only if, 𝑎
®

𝑞 −→Φ′

®
𝑞′.

• 𝑞 ∈ 𝐹 if, and only if, $̂
®

𝑞 −→Φ′ (·).
• 𝑞

𝑤−→ 𝑞′ if, and only if, �̂�R

®
𝑞 =⇒Φ′

®
𝑞′.

6.5.3 Incorporating NFA bisimilarity

Recall from corollary 6.18 the nearly free adequacy result for the functional
choreography of NFAs.

Corollary 6.18 (Adequacy of the functional NFA choreography). Let A =

(𝑄,Δ, 𝐹) be an NFA over the input alphabet Σ, with choreography (𝜃,Φ) as
described above. The following hold.
• 𝑞

𝑎−→ 𝑞′𝑎 only if
®
𝑎 𝑞 −→Φ 𝑞′𝑎 . Also, if ®

𝑎 𝑞 −→Φ Ω′, then 𝑞
𝑎−→ 𝑞′𝑎 for some

state 𝑞′𝑎 such that Ω′ = 𝑞′𝑎 .
• 𝑞 ∈ 𝐹 if, and only if,

®
$𝑞 −→Φ (·).

• 𝑞
𝑤−→ 𝑞′ only if

®
𝑤R 𝑞 =⇒Φ 𝑞′. Also, if

®
𝑤R 𝑞 =⇒Φ Ω′, then 𝑞

𝑤−→ 𝑞′ for some
state 𝑞′ such that Ω′ = 𝑞′.

The soundness clause has the same blemish as the object-oriented chore-
ography’s soundness clause had: its conclusion violates a kind of meta-level
stratication, mixing ideas from the mathematical model (“then 𝑞

𝑎−→ 𝑞′𝑎
for some state 𝑞′𝑎 [. . .]”) with ideas from the choreography (“[. . .] such that

choreographies: a formula-as-process interpretation of ordered rewriting 105

Ω′ = 𝑞′𝑎 .”). It would be much nicer if we could rephrase soundness in a strati-
ed way.

As for the object-oriented choreography, we can begin by noticing that a
rewriting

®
𝑎 𝑞 −→Φ Ω′ exists if, and only if, Ω′ = 𝑞′ for some state 𝑞′. The

statement of soundness is thus equivalent to:

• If
®
𝑎 𝑞 −→Φ 𝑞′, then 𝑞 𝑎−→ 𝑞′𝑎 for some state 𝑞′𝑎 such that 𝑞′ = 𝑞′𝑎 .

This is still not quite satisfactory because the conclusion brings in choreo-
graphic ideas, namely 𝑞′ = 𝑞′𝑎 . Is it possible to characterize this relationship
between 𝑞′ and 𝑞′𝑎 natively in terms of the NFA’s mathematical model?

Unfortunately, this is not nearly as easy as it was for the object-oriented
choreography. Unlike there, equality of state encodings does not coincide
with equality of the states themselves, i.e., 𝑞′ = 𝑞′𝑎 does not imply 𝑞′ = 𝑞′𝑎 . The
equirecursive treatment of coinductively dened propositions leads to a quite
generous notion of equality on propositions, which in turn makes equality of
state encodings a coarser equivalence than equality of the states themselves.
As a concrete counterexample, consider the NFA and encoding shown in the

A′2 = 𝑞0

a,b

𝑞1
b

𝑞2
a,b

a,b

𝑠1

a,b

Φ =
(
𝑞0 , (

®
𝑎 \ ↑↓𝑞0) N (

®
𝑏 \ (↑↓𝑞0 N ↑↓𝑞1))

N (
®
$ \ ↑
®
n)

)
,(

𝑞1 , (
®
𝑎 \ ↑↓𝑞2) N (

®
𝑏 \ ↑↓𝑞2) N (

®
$ \ ↑
®
y)

)
,(

𝑞2 , (
®
𝑎 \ ↑↓𝑞2) N (

®
𝑏 \ ↑↓𝑞2) N (

®
$ \ ↑
®
n)

)
,(

𝑠1 , (
®
𝑎 \ ↑↓𝑞2) N (

®
𝑏 \ ↑↓𝑞2) N (

®
$ \ ↑
®
y)

)
Figure 6.8: A slightly modied version of the
NFA from g. 6.6; and a choreography

adjacent figure; it is the same NFA as shown in g. 6.6, but with one added
state, 𝑠1, that is unreachable from the others. In this counterexample, as a
coinductive consequence of the equirecursive treatment of denitions, 𝑞1 = 𝑠1
but 𝑞1 ≠ 𝑠1.

One possible remedy for this lack of injectivity might be to revise the en-
coding to have a stronger nominal character. By tagging each state’s encoding
with an atom that is unique to that state, we canmake the encodingmanifestly
injective. For instance, given the pairwise distinct atoms {

®
𝑞 | 𝑞 ∈ 𝐹 } and {

®
𝑞 |

𝑞 ∈ 𝑄 − 𝐹 } to tag nal and non-nal states, respectively, we could dene an
alternative encoding, 𝑞:

𝑞 , (
®
$ \ ↑
®
𝐹 (𝑞)) N N

𝑎∈Σ

(
®
𝑎 \N𝑞′𝑎 ∈Δ(𝑞,𝑎) ↑↓𝑞

′
𝑎

)
where

®
𝐹 (𝑞) =

{
®
𝑞 if 𝑞 ∈ 𝐹

®
𝑞 if 𝑞 ∉ 𝐹 .

Under this alternative encoding, the states 𝑞1 and 𝑠1 of g. 6.8 are no longer
a counterexample to injectivity: Because 𝑞1 and 𝑠1 are distinct states, they
correspond to distinct tags, and so 𝑞1 ≠ 𝑠1.

Although such a solution is certainly possible, it seems unsatisfyingly ad
hoc. A closer examination of the preceding counterexample reveals that the
states 𝑞1 and 𝑠1, while not equal, are in fact bisimilar (section 2.3.1). In other
words, although the choreographing of states is not, strictly speaking, injec-
tive, it is injective up to bisimilarity: 𝑞 = 𝑠 implies 𝑞 ∼ 𝑠 .

Theorem 6.22. LetA = (𝑄,Δ, 𝐹) be an NFA over the input alphabet Σ. For all
states 𝑞 and 𝑠 , if 𝑞 = 𝑠 , then 𝑞 ∼ 𝑠 .

Proof. We will show that the relation R = {(𝑞, 𝑠) | 𝑞 = 𝑠} is a bisimulation
and is therefore included in NFA bisimilarity.

106

Input bisimilarity We must show that, for all input symbols 𝑎 ∈ Σ, all R-
related states have R-related 𝑎-successors.

Let 𝑞 and 𝑠 be R-related states, which, being R-related, have equal en-
codings, i.e., 𝑞 = 𝑠 . Because denitions are treated equirecursively, their
unrollings are also equal. For each state 𝑞′𝑎 that 𝑎-succeeds 𝑞, there must
therefore exist a state 𝑠 ′𝑎 such that𝑞′𝑎 = 𝑠 ′𝑎 . In other words, each 𝑎-successor
of state 𝑞 is R-related to an 𝑎-successor of state 𝑠 .

Finality We must show that all R-related states have matching nalities, i.e.,
that 𝑞 R 𝑠 implies 𝑞 ∈ 𝐹 if, and only if, 𝑠 ∈ 𝐹 .

Let 𝑞 and 𝑠 be R-related states, with 𝑞 a nal state. Being R-related,
the states 𝑞 and 𝑠 have equal encodings, i.e., 𝑞 = 𝑠 . Because denitions
are treated equirecursively, their unrollings are also equal. It follows that

®
𝐹 (𝑞) =

®
𝐹 (𝑠), and so 𝑠 is also a nal state. �

Unfortunately, the converse is not true: bisimilar NFA states do not, in
general, have equal encodings. As a concrete counterexample, consider the
NFA and choreography depicted in the adjacent figure. It is straightforward

𝑞0

a

𝑞1
a

a

𝑞0 , (
®
𝑎 \ ↑↓𝑞0 N ↑↓𝑞1) N (

®
$ \ ↑
®
y)

𝑞1 , (
®
𝑎 \ ↑↓𝑞1) N (

®
$ \ ↑
®
y)

Figure 6.9: An NFA that accepts all nite
words over the alphabet Σ = {𝑎}

to verify that 𝑞0 and 𝑞1 are bisimilar states. But their encodings are not equal.
Unrolling denitions, we have

𝑞0 = (
®
𝑎 \ ↑↓𝑞0 N ↑↓𝑞1) N (

®
$ \ ↑1) ≠ (

®
𝑎 \ ↑↓𝑞1) N (

®
$ \ ↑1) = 𝑞1 .

These propositions are not equal because the former has a rst clause with
shape (

®
𝑎 \↑↓−N↑↓−), whereas the latter’s rst clause has shape (

®
𝑎 \↑↓−). In

other words, the encodings of states 𝑞0 and 𝑞1 are not equal precisely because
the two states have dierent numbers of 𝑎-successors.

In some sense, the generous equality induced by the equirecursive treat-
ment of denitions has outpaced the remaining aspects of propositional equal-
ity. Because equality of state encodings does not coincide with bisimilarity of
NFA states, we cannot easily complete our program of simplifying the state-
ment of NFA soundness.

However, all is not lost. First, although for NFAs bisimilar states do not
always have equal encodings, for deterministic nite automata bisimilar states
do indeed have equal encodings.

Theorem 6.23. Let A = (𝑄, 𝛿, 𝐹) be a DFA over an input alphabet Σ. For all
states 𝑞 and 𝑠 , if 𝑞 ∼ 𝑠 , then 𝑞 = 𝑠 .

Proof. BecauseA is deterministic, the states𝑞 and 𝑠 have unique 𝑎-successors
for each input symbol 𝑎 ∈ Σ. Because 𝑞 and 𝑠 are bisimilar, so are their 𝑎-
successors. By the coinductive hypothesis, the unique 𝑎-successors of 𝑞 and
𝑠 have equal encodings: 𝑞′𝑎 = 𝑠 ′𝑎 �

Thus, for DFAs only, we have
®
𝑎 𝑞 −→Φ 𝑞′ if, and only if, 𝑞 𝑎−→∼ 𝑞′, which is

properly stratied.

choreographies: a formula-as-process interpretation of ordered rewriting 107

Second, in the following chapter, we will develop a richer notion of propo-
sitional equivalence, ordered rewriting bisimilarity. In applying it to the func-
tional choreography of NFAs (section 6.5.1), we will see that NFA states that
are NFA-bisimilar have state encodings that, while not necessarily equal, are
always rewriting-bisimilar; the converse will also hold. This will allow us to
rephrase soundness (and completeness) of the NFA choreography to a form
that is properly stratied:

®
𝑎 𝑞 −→Φ� 𝑞′ if, and only if, 𝑞 𝑎−→∼ 𝑞′.

7
Bisimilarity for ordered rewriting

With the shift from the global, state-transformation view of ordered rewrit-
ing put forth in chapter 5 to the local, formula-as-process view developed in
the preceding chapter, we are now in a position to examine how individual
propositions and, more generally, contexts behave and interact. And, in line
with other, process calculi descriptions of concurrency, it is then natural to
ask when two contexts have the same behavior.

We will consider two contexts to have the same behavior only if there is
no experiment by an external observer that will eventually yield an observ-
able distinction. But then what is observable? According to the formula-as-
process view, each proposition has its own local thread of control. This local-
ity, together with the output transitions dened in section 6.2, suggests what
may be observed: A proposition’s structure is opaque; only outward-directed
atomic propositions that are located at the edge of an ordered context are
observable.

Intuitively, for example, the contexts
®
𝑎 (
®
𝑎 \
®
𝑏) and

®
𝑏 ought to be considered

behaviorally equivalent: there is no circumstance underwhich anything other
than
®
𝑏 can be observed from

®
𝑎 (
®
𝑎 \
®
𝑏). In particular, the atom

®
𝑎 at the left edge

of the context
®
𝑎 (
®
𝑎 \
®
𝑏) cannot be observed because it is directed inward and

therefore acting as an input to, not an output from, (
®
𝑎 \
®
𝑏).

As another example,
®
𝑎 \ (
®
𝑐 /

®
𝑏) and (

®
𝑎 \
®
𝑐) /

®
𝑏 ought to be considered

behaviorally equivalent, intuitively because they are logically equivalent1. 1That is,
®
𝑎 \ (
®
𝑐 /
®
𝑏) a` (

®
𝑎 \
®
𝑐) /

®
𝑏.

Following the vast literature on various forms of bisimilarity, this
chapter therefore develops a notion of ordered rewriting bisimilarity in which
atoms are observable. Section 7.1 begins by dening rewriting bisimilarity
(along with a few auxiliary notions) and then presents a few examples of con-
texts that are not bisimilar under this denition.

However, because rewriting bisimilarity’s denition imposes very strong
requirements, it will prove to be cumbersome to use the denition alone to es-
tablish that two contexts are bisimilar, a problem that is familiar from process
calculi bisimilarities. Therefore, in section 7.1.1, we present labeled bisimilar-
ity, a sound proof technique for rewriting bisimilarity – ordered contexts that

110

are labeled bisimilar will also be rewriting bisimilar. Unlike the 𝜋-calculus’s la-
beled bisimilarity, our labeled bisimilarity is, surprisingly, complete for rewrit-
ing bisimilarity – contexts that are rewriting bisimilar will also be labeled
bisimilar.

This chapter concludeswith several applications of ordered rewriting bisim-
ilarity to our now-familiar running examples, binary counters and nondeter-
ministic nite automata. Section 7.2 proves that NFA-bisimilar states have
rewriting-bisimilar encodings under the functional choreography described
in section 6.5.1, which allows us to nally rephrase the choreography’s ade-
quacy in a clean and stratied form. And section 7.3 proves that binary coun-
ters under the object-oriented choreography of section 6.4.1 are rewriting-
bisimilar if, and only if, they have the same denotation.

7.1 Ordered rewriting bisimilarity

As mentioned above, we will take atoms to be observable, consistent with the
local interaction semantics and output transitions dened in section 6.2. It is
worth reiterating that an atom’s direction and location within a larger context
are crucial to its observability – only outward-directed atoms located at the
edges of a context are (immediately) observable. For example, in

®
𝑎 Ω and Ω

®
𝑏,

the atoms
®

𝑎 and
®
𝑏, respectively, are observable because they are in position to

be immediately received by an observer. The observer (↑𝐴+ /
®

𝑎) can receive

®
𝑎 from

®
𝑎 Ω, and the observer (

®
𝑏 \ ↑𝐵+) can receive

®
𝑏 from Ω

®
𝑏:

(↑𝐴+ /
®

𝑎) (
®

𝑎 Ω) −→ 𝐴+ Ω and (Ω
®
𝑏) (
®
𝑏 \ ↑𝐵+) −→ Ω 𝐵+ .

But these same atoms cannot be observed in Ω
®

𝑎 and
®
𝑏 Ωwhen Ω is nonempty,

precisely because their new locations do not complement their directions.
Given the syntactic restriction imposed on left- and right-hand implications,
no implication placed to the right of

®
𝑎 will be able to consume

®
𝑎; likewise for

implications placed to the left of
®
𝑏. In other words, the observable atoms are

exactly those atoms that are immediately outgoing.
Ordered rewriting is asynchronous: (↑𝐴+ /

®
𝑎) (
®

𝑎 • 𝐵+) =⇒ 𝐴+ 𝐵+ is not
possible in a single, synchronous step. We should therefore expect our notion
of rewriting bisimilarity to have some analogy to the kinds of bisimilarities
developed for the asynchronous 𝜋-calculus2 and asynchronous ccs.3 In par-2Amadio, Castellani, et al. 1998.

3Boreale et al. 2002. ticular, that means that input processes or, in our case, implications ought not
to be directly observable.

Instead, the asynchronous nature of rewriting leads us to the type of exper-
iment that external observers may perform: provide two contexts with some
incoming messages (or none at all) and observe what outgoing messages, if
any, are eventually produced. If the two contexts eventually produce dier-
ent outgoing messages, then those contexts are observably distinguishable
and cannot be considered behaviorally equivalent.

Lastly, we will not consider the time or number of computational steps to

bisimilarity for ordered rewriting 111

be observable4 – all that matters is whether, given the same inputs, the same 4Nor do we consider divergence to be observ-
able, so we do not pursue testing equiva-
lence, only bisimilarity.

outputs are eventually produced. The resulting bisimilarity will therefore be
a weak bisimilarity.

So, to summarize, our ordered rewriting bisimilarity will be an asynchro-
nous, weak bisimilarity with two conditions: output bisimulation and input
bisimulation.5 This combination of asynchronous weak bisimilarity with ob- 5We could combine the two conditions into a

monolithic one, but that becomes rather un-
wieldy.

servable atoms means that our denition of ordered rewriting bisimilarity
will be similar to Deng et al.’s contextual preorder for linear logic.6 Besides

6Deng et al. 2016.
the obvious dierence in structural properties (ordered and linear) and type
of relation (bisimulation and simulation; equivalence and preorder), the par-
ticulars of our denition will be dierent.

We are nearly ready to dene ordered rewriting bisimilarity, but we rst
must dene a few auxiliary relations on contexts.

Definition 7.1 (Framed binary relations). Let R be a binary relation on or-
dered contexts. Given ordered contexts Δ𝐿 and Δ𝑅 , let (Δ𝐿RΔ𝑅) be the least
binary relation such that:

(Ω = Δ𝐿 Ω0 Δ𝑅) Ω0 R Ω′0 (Δ𝐿 Ω′0 Δ𝑅 = Ω′)
Ω (Δ𝐿RΔ𝑅) Ω′

In other words, (Δ𝐿RΔ𝑅) relates contexts consisting ofR-relatedmiddles that
are each surrounded by Δ𝐿 and Δ𝑅 . For example,

®
𝑎 𝐵− Ω

®
𝑐 ((
®
𝑎 𝐵−)R

®
𝑐)
®
𝑎 𝐵− Δ

®
𝑐

and
®
𝑎 Ω (

®
𝑎R)
®
𝑎 Δ both hold if Ω R Δ. Moreover, Δ𝐿 Ω Δ𝑅 (Δ𝐿RΔ𝑅) Δ𝐿 Δ𝑅

holds if Ω R (·).
Furthermore, let [R] be the input contextual closure of R – that is, [R] is

the least binary relation such that:

Ω R Δ
Ω [R] Δ

Ω [R] Δ

®
𝑎 Ω [R]

®
𝑎 Δ

Ω [R] Δ
Ω
®

𝑎 [R] Δ
®

𝑎

Equivalently, Ω [R] Δ if, and only if, there exist input contexts
®
Δ𝐿 and

®
Δ𝑅

such that Ω (
®
Δ𝐿R

®
Δ𝑅) Δ.

With these auxiliary relations in hand, we can now turn to dening ordered
rewriting bisimilarity. We will state its denition rst and then justify that
denition on the basis of indistinguishability of observations.7

7 It is helpful to recall from chapter 2 that
we use juxtaposition of binary relations to
denote their composition. For instance,
Ω R=⇒ Ω′′ holds exactly when there ex-
ists a context Ω′ such that Ω R Ω′ and
Ω′ =⇒ Ω′′.

Definition 7.2. A rewriting bisimulation, R, is a symmetric binary relation
among contexts that satises the following conditions.

Output bisimulation If Ω R=⇒
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
, then Ω =⇒(

®
Δ′
𝐿
R
®
Δ′
𝑅
)
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
.

Input bisimulation If
®
Δ𝐿 Ω

®
Δ𝑅 (
®
Δ𝐿R

®
Δ𝑅)=⇒ Δ′, then

®
Δ𝐿 Ω

®
Δ𝑅 =⇒R Δ′.

Ω Δ

®
Δ′
𝐿
Ω′
®
Δ′
𝑅 ®

Δ′
𝐿
Δ′
®
Δ′
𝑅

← ←R

⇐⇒ ⇐⇒

← ←
(
®

Δ′
𝐿
R
®
Δ′
𝑅
)

Output bisimulation

®
Δ𝐿 Ω

®
Δ𝑅

®
Δ𝐿 Δ

®
Δ𝑅

Ω′ Δ′

← ←(
®
Δ𝐿R ®

Δ𝑅)

⇐⇒ ⇐⇒

← ←R

Input bisimulation

Figure 7.1: Rewriting bisimulation condi-
tions, in diagrams

Then rewriting bisimilarity, �, is the largest rewriting bisimulation.

Notice that a third, reduction bisimulation property is a trivial instance of
the output and input bisimulation conditions – namely when the output and
input contexts,

®
Δ′
𝐿
and
®
Δ′
𝑅
and
®
Δ𝐿 and

®
Δ𝑅 , respectively, are empty:

112

Theorem 7.1. If R is a rewriting bisimulation, then R satises
Reduction bisimulation If Ω R=⇒ Δ′, then Ω =⇒R Δ′.

The clauses of denition 7.2 could do with some explanation. Let’s begin
with the output bisimulation condition.

Expanding slightly, we are given that there exists a context Δ such that
Ω R Δ =⇒

®
Δ′
𝐿
Δ′
®
Δ′
𝑅
. Based on the local interaction semantics (section 6.2),

this means (i) that Δ can eventually output
®

Δ′
𝐿
and
®
Δ′
𝑅
and then continue as

Δ′; and (ii) that Ω is R-related to Δ. For R to be a rewriting bisimulation,
the context Ω ought to be able to simulate Δ’s eventual output of

®
Δ′
𝐿
and

®
Δ′
𝑅
, otherwise the R-related contexts Ω and Δ could be distinguished based

on their (eventual) output behavior. Moreover, the continuations ought to
be R-related as well. Formally, we ought to have Ω =⇒

®
Δ′
𝐿
Ω′
®
Δ′
𝑅
(i.e., Ω

eventually outputs
®

Δ′
𝐿
and
®
Δ′
𝑅
) and Ω′ R Δ′, for some context Ω′, which is all

neatly packaged up as Ω =⇒(
®

Δ′
𝐿
R
®
Δ′
𝑅
)
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
.

Input bisimulation is dual to output bisimulation. For input bisimulation,
we are given that

®
Δ𝐿 Ω

®
Δ𝑅 (
®
Δ𝐿R

®
Δ𝑅)=⇒ Δ′. Expanding slightly, there exists a

contextΔ such thatΩ R Δ and
®
Δ𝐿 Δ

®
Δ𝑅 =⇒ Δ′. In otherwords, once provided

with the incoming messages
®
Δ𝐿 and

®
Δ𝑅 , the context Δ can eventually evolve

to Δ′. Being R-related to Δ, the context Ω, when provided with the same
incoming messages, must be able to evolve to a context that is R-related to
Δ′, otherwise Ω and Δ could be distinguished by how they react to

®
Δ𝐿 and

®
Δ𝑅 . That is, we must have

®
Δ𝐿 Ω

®
Δ𝑅 =⇒ Ω′ R Δ′ for some Ω′, which is neatly

packaged as
®
Δ𝐿 Ω

®
Δ𝑅 =⇒R Δ′.

The other way to understand rewriting bisimilarity is by analogy with the
asynchronous ccs’s notion of weak bisimilarity.8 There, a weak bisimulation8Amadio, Castellani, et al. 1998; Boreale et al.

2002. can be described as a symmetric relation R on processes that satises three
conditions:99The premises of these conditions are usually

stated with strong transitions, but we prefer
this phrasing for its similarity to rewriting
bisimilarity.

• If 𝑃 R 𝑐
=⇒ 𝑄 ′, then 𝑃

𝑐
=⇒R 𝑄 ′.

• If 𝑃 R 𝜏
=⇒ 𝑄 ′, then 𝑃

𝜏
=⇒R 𝑄 ′.

• If 𝑃 R 𝑐
=⇒ 𝑄 ′, then either 𝑃

𝑐
=⇒R 𝑄 ′ or there exists a process 𝑃 ′ such that

𝑃
𝜏

=⇒ 𝑃 ′ and 𝑐 | 𝑃 ′ R 𝑄 ′.

where
𝑐

=⇒,
𝜏

=⇒, and
𝑐

=⇒ are the weak output, internal, and input transitions
of the asynchronous ccs. Weak bisimilarity for the asynchronous ccs is then
the largest such bisimulation.

The rst of these three conditions corresponds to rewriting bisimilarity’s
output bisimulation condition with nonempty output contexts

®
Δ′
𝐿
and
®
Δ′
𝑅
. As

mentioned in section 6.2, Δ =⇒
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
functions as an implicit weak output

transition from Δ to Δ′, with outputs
®

Δ′
𝐿
and
®
Δ′
𝑅
. Similarly, Ω =⇒(

®
Δ′
𝐿
R
®
Δ′
𝑅
)

®
Δ′
𝐿
Δ′
®
Δ′
𝑅
is analogous to 𝑃

𝑐
=⇒R 𝑄 ′.

The second of the three conditions imposed by asynchronous ccs weak
bisimilarity corresponds to our rewriting bisimilarity’s reduction bisimula-

bisimilarity for ordered rewriting 113

tion property (theorem 7.1), which is really just either output or input bisim-
ulation with empty output contexts

®
Δ′
𝐿
and
®
Δ′
𝑅
or input contexts

®
Δ𝐿 and

®
Δ𝑅 .

The third of the three conditions imposed by asynchronous ccsweak bisim-
ilarity corresponds to rewriting bisimilarity’s input bisimulation condition.
The ccs condition is equivalent to “If 𝑃 R 𝑐−→ 𝑄 ′, then 𝑐 | 𝑃 𝜏

=⇒R 𝑄 ′.”
(In fact, it is typical to use this phrasing in the denition of asynchronous
ccs bisimilarity.) Because asynchronous ccs weak bisimilarity is a congru-
ence, that condition can be rephrased as “If 𝑃 R 𝑄 and 𝑐 | 𝑄 𝜏−→ 𝑄 ′, then
𝑐 | 𝑃 𝜏

=⇒R 𝑄 ′” without aecting the resulting bisimilarity. And, in that form,
the correspondencewith rewriting bisimilarity’s input bisimulation condition
becomes apparent.

Rewriting bisimilarity imposes very strong conditions upon bisimilar
contexts, quantifying over all traces and all output and input contexts. Com-
bined with the coinductive nature of bisimilarity, this results in a rather ne-
grained equivalence. Some contexts that might, at rst glance, seem like they
ought to be equivalent are, in fact, not bisimilar.

• The contexts
®

𝑎 /
®

𝑎 and (·) are not bisimilar. Suppose, for the sake of
contradiction, that they are bisimilar. Framing

®
𝑏 onto the right, we have

(
®

𝑎 /
®

𝑎)
®

𝑏 (�
®

𝑏)
®

𝑏. Composing the input and output bisimulation conditions,
(
®

𝑎 /
®

𝑎)
®

𝑏 =⇒(
®

𝑏�)
®

𝑏 must follow. However, this is impossible: (
®

𝑎 /
®

𝑎)
®

𝑏 is
irreducible and does not expose

®
𝑏 at its left end. Therefore,

®
𝑎 /
®

𝑎 and (·)
cannot be bisimilar.

• The contexts
®
𝑎 and

®
𝑎 N
®
𝑏 are not bisimilar. The context

®
𝑎 N
®
𝑏 can output

®
𝑏 at its right end:

®
𝑎 N
®
𝑏 −→

®
𝑏. But

®
𝑎 cannot simulate that output – the

output bisimulation condition demands
®
𝑎 =⇒(�

®
𝑏)
®
𝑏, which is impossible.

• If we were working in an unfocused framework, the contexts
®
𝑎 and

®
𝑎 N>

would not be bisimilar. The context
®
𝑎N>would reduce (i.e.,

®
𝑎N> −→ >),

and so the input bisimulation condition and the irreducibility of
®
𝑎 would

imply
®
𝑎 � >. The output bisimulation condition would then demand that

> expose
®

𝑎 at its left end, which is impossible. As we will see later,
®
𝑎 and

®
𝑎 N > are bisimilar in a focused framework.

Now we would like to conrm our earlier intuition about the equivalence
of
®
𝑎 (
®
𝑎 /
®
𝑏) and

®
𝑏 by proving that

®
𝑎 (
®
𝑎 /
®
𝑏) �

®
𝑏. Unfortunately, the denition

of rewriting bisimilarity is not immediately suitable for establishing that two
contexts are bisimilar. The output and input bisimulation conditions are so
strong that they become dicult to prove directly. For instance, to establish

®
𝑎 (
®
𝑎 \
®
𝑏) �

®
𝑏, we would need to prove that:

Input bisimulation
®
Δ𝐿
®
𝑎 (
®
𝑎 \
®
𝑏)
®

Δ𝑅 =⇒ Δ′ implies
®
Δ𝐿
®
𝑏
®

Δ𝑅 � Δ′; and symmet-
rically,

®
Δ𝐿
®
𝑏
®

Δ𝑅 =⇒ Δ′ implies
®
Δ𝐿
®
𝑎 (
®
𝑎 \
®
𝑏)
®

Δ𝑅 � Δ′;

Output bisimulation
®
𝑎 (
®
𝑎 \
®
𝑏) =⇒

®
Δ′
𝐿
Δ′
®
Δ′
𝑅
implies

®
𝑏 =⇒(

®
Δ′
𝐿
�
®
Δ′
𝑅
)
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
;

and symmetrically,
®
𝑏 =⇒

®
Δ′
𝐿
Δ′
®
Δ′
𝑅
implies

®
𝑎 (
®
𝑎 \
®
𝑏) =⇒(

®
Δ′
𝐿
�
®
Δ′
𝑅
)
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
.

114

In this small example, it is possible to imagine tediously proving these state-
ments – after all, there are not that many traces involving

®
𝑎 (
®
𝑎 \
®
𝑏). However,

in general, a proof technique for rewriting bisimilarity is sorely needed.

7.1.1 A labeled proof technique for rewriting bisimilarity

In ccs and the 𝜋-calculus, bisimilarity is similarly too strong to be used di-
rectly in proving the equivalence of processes. There, a sound proof technique
for bisimilarity is built around a labeled transition system and a notion of
labeled bisimulation.10 Because the labeled transition system is image-nite,10 Sangiorgi and Walker 2003.

proving that two processes are labeled bisimilar is more tractable than directly
proving them to be bisimilar.

In this section, we follow that strategy and develop labeled bisimilarity
as a sound – and, surprisingly, also complete – proof technique for rewrit-
ing bisimilarity. Like its ccs and 𝜋-calculus analogues, labeled bisimilarity
is more tractable than rewriting bisimilarity because it uses individual input
transitions in place of full rewriting sequences.

Instead of dening labeled bisimulations directly, we use a refactorization,
standard in the study of up-to techniques,11 in which we rst dene a notion11 Pous and Sangiorgi 2011.

of progression and then characterize labeled bisimulations in terms of progres-
sion.

Definition 7.3. Abinary relationR on contexts progresses to binary relation
S if R is symmetric and the two relations satisfy the following conditions.

Immediate output bisim. If Ω R Δ =
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
, then Ω =⇒(

®
Δ′
𝐿
S
®
Δ′
𝑅
) Δ.

Immediate input bisimulation If Ω R Δ and
®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′, then

®
Δ𝐿 Ω

®
Δ𝑅 =⇒S Δ′.

Reduction bisimulation If Ω R−→ Δ′, then Ω =⇒S Δ′.
Emptiness bisimulation If Ω R (·), then:

®
Δ Ω =⇒(S

®
Δ)
®
Δ for all

®
Δ; and

Ω
®

Δ =⇒(
®

ΔS)
®

Δ for all
®

Δ.
A labeled bisimulation is a relation that progresses to itself, and labeled bisim-
ilarity is the largest labeled bisimulation.

Ω Δ =
®

Δ′
𝐿
Δ′
®
Δ′
𝑅

®
Δ′
𝐿
Ω′
®
Δ′
𝑅

← ←R

⇐

⇒ ←

←

(®Δ
′
𝐿
S ®
Δ
′
𝑅
)

Immediate output bisimulation

®
Δ𝐿 Ω

®
Δ𝑅

®
Δ𝐿 Δ

®
Δ𝑅

®
Δ𝐿 [Δ]

®
Δ𝑅

Ω′ Δ′

← ←(
®
Δ𝐿R ®

Δ𝑅)

⇐

⇒ ←→

← ←S

Immediate input bisimulation

Ω Δ

Ω′ Δ′

← ←R

⇐⇒ ←→

← ←S
Reduction bisimulation

®
Δ Ω

®
Δ

Ω′
®
Δ

← ←(
®
ΔR)

⇐⇒ ←

←

(S ®Δ
)

Ω
®

Δ
®

Δ

®
Δ Ω′

← ←(R
®

Δ)

⇐⇒ ←

←

(®ΔS
)

Emptiness bisimulation

Figure 7.2: Labeled bisimulation conditions,
in diagrams

The immediate output, immediate input, and reduction bisimulation con-
ditions are all single-step forms of rewriting bisimilarity’s output and input
bisimulation conditions (denition 7.2) and reduction bisimulation property
(theorem 7.1). The emptiness bisimulation condition, on the other hand, is
necessary for labeled bisimilarity to be complete.12 Emptiness bisimulation

12A similar condition appears in the contextual
preorder of Deng et al. (2016).

is equivalent to requiring that Ω R (·) implies both Ω =⇒ (·) and (·) S (·).
(See theorem A.1 for a proof sketch.) In this way, it can be seen that being
R-related to (·) is possible only if Ω is morally equivalent to (·), in the sense
that Ω must be able to spontaneously evolve to (·).

It is relatively straightforward to show that labeled bisimilarity is com-
plete with respect to rewriting bisimilarity: every rewriting bisimulation is
itself a labeled bisimulation.

bisimilarity for ordered rewriting 115

Theorem 7.2 (Completeness of labeled bisimilarity). Every rewriting bisimu-
lation is also a labeled bisimulation, and labeled bisimilarity consequently con-
tains rewriting bisimilarity.

Proof. Let R be a rewriting bisimulation. The immediate output, immediate
input, and reduction bisimulation conditions are trivial instances of the out-
put and input bisimulation conditions. For instance, to prove that R is an im-
mediate input bisimulation, assume that Ω R Δ and

®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′; then

®
Δ𝐿 Ω

®
Δ𝑅 (
®
Δ𝐿R

®
Δ𝑅)−→ Δ′. Because R is a rewriting bisimulation, it follows

from the input bisimulation property that
®
Δ𝐿 Ω

®
Δ𝑅 =⇒R Δ′.

The emptiness bisimulation condition follows from the composition of the
input bisimulation property with the output bisimulation property. �

®
Δ Ω

®
Δ

Ω′

Ω′′
®
Δ

←←(®ΔR)

⇐⇒

⇐
⇒

← ←R

⇐⇒ ←

←
(R ®
Δ
)

Ω
®

Δ
®

Δ

Ω′

®
Δ Ω′′

←←(R ®Δ)

⇐⇒

⇐
⇒

← ←R

⇐⇒ ←

←
(®Δ
R)

Figure 7.3: Emptiness bisimulation property
as a consequence of input and output bisim-
ulation properties

Unfortunately, the direct converse is not true: a labeled bisimulation is not
necessarily itself a rewriting bisimulation. For example, consider the least
symmetric binary relation R such that

®
𝑎 \ (
®
𝑐 /
®

𝑏) R (
®
𝑎 \
®
𝑐) /

®
𝑏 and

®
𝑐 R
®
𝑐 and (·) R (·) .

The relation R is a labeled bisimulation, but it does not qualify as a rewriting
bisimulation because it does not satisfy the more general input bisimulation
condition: for instance,

®
𝑎 (
®
𝑎 \ (
®
𝑐 /
®

𝑏)) (
®
𝑎R)

®
𝑎 ((
®
𝑎 \
®
𝑐) /

®
𝑏) does not imply

®
𝑎 (
®
𝑎 \ (
®
𝑐 /
®

𝑏)) =⇒R
®
𝑎 ((
®
𝑎 \
®
𝑐) /
®
𝑏). That would be possible only if

®
𝑎 (
®
𝑎 \ (
®
𝑐 /
®

𝑏))
and
®
𝑎 ((
®
𝑎 \
®
𝑐) /
®
𝑏) were R-related.

Even though a labeled bisimulation itself is not a rewriting bisimulation,
a slightly weaker statement is nevertheless true: each labeled bisimulation is
contained within some rewriting bisimulation. Specically, if R is a labeled
bisimulation, then its input contextual closure, [R], as described in deni-
tion 7.1 is such a rewriting bisimulation. Fortunately, this will be enough to
prove that labeled bisimilarity is sound.

The proof of soundness is clean, but it does wind through a few lemmas.
The rst of these describes a condition under which the union of two relations
is a labeled bisimulation.

Lemma 7.3. Let S be a labeled bisimulation. If R progresses to R ∪ S, then
R ∪ S is also a labeled bisimulation.

Proof. When S is a labeled bisimulation and R progresses to R ∪ S, then
the relation R ∪ S progresses to itself, i.e., R ∪ S is a labeled bisimulation.
If Ω (R ∪ S) Δ because Ω and Δ are R-related, then the conditions for pro-
gressing to R ∪ S are satised by R progressing to R ∪ S. If, on the other
hand, Ω (R ∪ S) Δ because Ω and Δ are S-related, then the conditions for
progressing to R ∪ S are satised by the fact that S is a labeled bisimula-
tion. �

Next, we use this result to prove that framing a single input atom onto a
labeled bisimulation results in a binary relation that does not stray too far
from a labeled bisimulation.

116

Lemma 7.4. If R is a labeled bisimulation, then so are (
®
𝑎R) ∪ R and (R

®
𝑎) ∪ R,

for all
®
𝑎 and

®
𝑎, respectively.

Proof. Let R be a labeled bisimulation. We shall prove that (
®
𝑎R) ∪ R is a

labeled bisimulation; the proof for (R
®

𝑎) ∪ R is symmetric.
According to lemma 7.3, because R is a labeled bisimulation, it suces to

show that (
®
𝑎R) progresses to (

®
𝑎R) ∪ R. We prove each property in turn.

Immediate output bisimulation Assume that Ω (
®
𝑎R) Δ =

®
Δ′
𝐿
Δ′
®
Δ′
𝑅
; we must

show that Ω =⇒
(
®

Δ′
𝐿
((
®
𝑎R) ∪ R)

®
Δ′
𝑅

)
Δ. Because the input atom

®
𝑎 cannot

be unied with the output atoms
®

Δ′
𝐿
, the context

®
Δ′
𝐿
must be empty. We

distinguish cases on the size of Δ′.

• Consider the case inwhichΔ′ is nonempty. BecauseR is a labeled bisim-
ulation, we may appeal to its immediate output bisimulation property
after framing o

®
𝑎 and deduce that Ω

(
®
𝑎(=⇒(R

®
Δ′
𝑅
))

)
Δ. Reduction is

closed under framing, so we conclude that Ω =⇒((
®
𝑎R)
®
Δ′
𝑅
) Δ, as re-

quired.

Ω =
®
𝑎 Ω0

®
𝑎 Δ′0 ®

Δ′
𝑅
= Δ

®
𝑎 Ω′0

←←(®𝑎R)

⇐⇒ ← ←
((®
𝑎R
) ®
Δ
′
𝑅
)

• Consider the case in which Δ′ is empty – that is, the case in which
Ω (
®
𝑎R) Δ =

®
Δ′
𝑅
=
®
𝑎
®
Δ′′
𝑅
for some

®
Δ′′
𝑅
. Because R is a labeled bisim-

ulation, we may appeal to its immediate output bisimulation property
after framing o

®
𝑎 and deduce that Ω (

®
𝑎(=⇒(R

®
Δ′′
𝑅
)))
®
Δ′
𝑅
. Reduction

is closed under framing, so Ω =⇒((
®
𝑎R)
®
Δ′′
𝑅
)
®
Δ′
𝑅
. After framing o

®
Δ′′
𝑅
,

we may subsequently appeal to the emptiness bisimulation property of
R and deduce that Ω =⇒((=⇒(R

®
𝑎))
®
Δ′′
𝑅
)
®
Δ′
𝑅
. Once again, reduction is

closed under framing, so we conclude that Ω =⇒(R
®
Δ′
𝑅
) Δ, as required.

Ω =
®
𝑎 Ω0

®
𝑎
®
Δ′′
𝑅
=
®
Δ′
𝑅
= Δ

®
𝑎 Ω′0

Ω′′0 ®
𝑎

←←(®𝑎R)

⇐⇒ ← ←

((®𝑎
R) ®
Δ
′′
𝑅
)

⇐⇒ ←

←
((
R ®𝑎
) ®Δ
′′

𝑅
)

Immediate input bisimulation Assume that Ω (
®
𝑎R) Δ and

®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′;

we must show that
®
Δ𝐿 Ω

®
Δ𝑅 =⇒((

®
𝑎R) ∪ R) Δ′. According to lemma 6.5,

there are two cases: either
®
𝑎 satises an input demand, or it does not par-

ticipate in the given input transition.

• Consider the case in which
®
𝑎 does participate in the input transition –

that is, the case in which Ω (
®
𝑎R)
®
𝑎 Δ0 = Δ and

®
Δ𝐿
®
𝑎 [Δ0]

®
Δ𝑅 −→ Δ′,

for some Δ0. Because R is a labeled bisimulation, we may appeal to its
immediate input bisimulation property and deduce

®
Δ𝐿 Ω

®
Δ𝑅 =⇒R Δ′,

as required.

®
Δ𝐿 Ω

®
Δ𝑅

®
Δ𝐿 Δ

®
Δ𝑅

®
Δ𝐿
®
𝑎 Ω0

®
Δ𝑅

®
Δ𝐿
®
𝑎 Δ0

®
Δ𝑅

®
Δ𝐿
®
𝑎 [Δ0]

®
Δ𝑅

Ω′ Δ′

= =← ←((
®
Δ𝐿 ®

𝑎)R
®

Δ𝑅)

⇐

⇒ ←→

← ←R

• Consider the case in which
®
𝑎 does not participate in the input transi-

tion – that is, the case in which
®
Δ𝐿 is empty and Ω (

®
𝑎R)
®
𝑎 Δ0 = Δ and

[Δ0]
®

Δ𝑅 −→ Δ′0 and Δ′ =
®
𝑎 Δ′0, for some Δ0 and Δ′0. Because R is a la-

beled bisimulation, we may appeal to its immediate input bisimulation
property after framing o

®
𝑎 and deduce that Ω

®
Δ𝑅 (
®
𝑎(=⇒R)) Δ′. Re-

duction is closed under framing, so we conclude that Ω
®

Δ𝑅 =⇒(
®
𝑎R) Δ′,

as required.

Ω
®

Δ𝑅 =
®
𝑎 Ω0

®
Δ𝑅

®
𝑎 Δ0

®
Δ𝑅 = Δ

®
Δ𝑅

[Δ0]
®

Δ𝑅

Δ′0

®
𝑎 Ω′0 ®

𝑎 Δ′0 = Δ′

← ←(
®
𝑎 (R

®
Δ𝑅))

⇐

⇒

←→

← ←(
®
𝑎R)

Reduction bisimulation Assume that Ω (
®
𝑎R)−→ Δ′ holds; wemust show that

bisimilarity for ordered rewriting 117

Ω =⇒((
®
𝑎R) ∪ R) Δ′. We distinguish cases on the origin of the given

reduction.

• Consider the case in which the reduction arises from the R-related com-
ponent alone – that is, the case in which Ω (

®
𝑎(R−→)) Δ′. Because R

is a labeled bisimulation, we may appeal to its reduction bisimulation
property after framing o

®
𝑎 and deduce that Ω (

®
𝑎(=⇒R)) Δ′. Reduc-

tion is closed under framing, so we conclude that Ω =⇒(
®
𝑎R) Δ′, as

required.

Ω =
®
𝑎 Ω0

®
𝑎 Δ0

®
𝑎 Ω′0 ®

𝑎 Δ′0 = Δ′

←←(®𝑎R)

⇐⇒ ←→

←←(
®
𝑎R)

• Consider the case in which the reduction arises from an input transition
on the R-related component – that is, the case in which Ω (

®
𝑎R)
®
𝑎 Δ0 =

Δ and
®
𝑎 [Δ0] −→ Δ′, for some Δ0. Because R is a labeled bisimulation,

wemay appeal to its immediate input bisimulation property and deduce
that Ω =⇒R Δ′, as required.

Ω =
®
𝑎 Ω0

®
𝑎 Δ0 = Δ

®
𝑎 [Δ0]

Ω′ Δ′

←←(®𝑎R)

⇐

⇒ ←→

← ←R

Emptiness bisimulation Assume that Ω (
®
𝑎R) (·). This is, in fact, impossible

because the empty context does not contain
®
𝑎. �

Having proved the preceding lemma about framing a single input atom,
we can apply it inductively to prove that framing input contexts preserves
labeled bisimulations.

Lemma 7.5. If R is a labeled bisimulation, then so is [R].

Proof. Let (S𝑛)𝑛∈ℕ be the indexed family of relations given by

S0 = R

S𝑛+1 =
(⋃
®
𝑎 (®

𝑎S𝑛)
)
∪

(⋃
®

𝑎 (S𝑛 ®
𝑎)

)
∪ 𝑆𝑛 .

It is easy to prove by structural induction that each [R]-related pair of con-
texts is also S𝑛-related for some natural number 𝑛; and so [R] is contained
within

⋃∞
𝑛=0 S𝑛 . Conversely, using lemma 7.4, it is equally easy to prove by

induction on 𝑛 that each S𝑛 is contained within [R] and, moreover, that each
S𝑛 is a labeled bisimulation.

Because each S𝑛 is a labeled bisimulation, so is their least upper bound,
namely

⋃∞
𝑛=0 S𝑛 = [R]. �

Now we use this lemma to prove that [R] is a rewriting bisimulation if R
is a labeled bisimulation.

Theorem 7.6. If R is a labeled bisimulation, then rewriting bisimilarity con-
tains R.

Proof. Let R be a labeled bisimulation. By lemma 7.5, so is [R]. The relation
[R] is also a rewriting bisimulation, as wewill show by proving each property
in turn. (Notice, too, that [R] is symmetric because R is.)

118

Output bisimulation Assume that Ω [R]=⇒
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
; we must show that

Ω =⇒(
®

Δ′
𝐿
[R]
®
Δ′
𝑅
)
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
.

As a labeled bisimulation, [R] satises the reduction bisimulation prop-
erty, so we deduce that Ω =⇒[R]

®
Δ′
𝐿
Δ′
®
Δ′
𝑅
. The relation [R] also sat-

ises the immediate output bisimulation property, so we conclude that
Ω =⇒(

®
Δ′
𝐿
[R]
®
Δ′
𝑅
)
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
, as required.

Ω Δ

Ω′
®

Δ′
𝐿
Δ′
®
Δ′
𝑅

Ω′′

← ←[R]

⇐⇒ ⇐⇒

←←[R]

⇐⇒ ← ←

(®Δ
′
𝐿
[R] ®

Δ
′
𝑅
)

Input bisimulation Assume that
®
Δ𝐿 Ω

®
Δ𝑅 (
®
Δ𝐿 [R]

®
Δ𝑅)=⇒ Δ′; we must show

that
®
Δ𝐿 Ω

®
Δ𝑅 =⇒[R] Δ′.

Because [R] is input contextual, we deduce that
®
Δ𝐿 Ω

®
Δ𝑅 [R]=⇒ Δ′. As

a labeled bisimulation, [R] satises the reduction bisimulation property, so
we conclude that

®
Δ𝐿 Ω

®
Δ𝑅 =⇒[R] Δ′, as required. �

®
Δ𝐿 Ω

®
Δ𝑅

®
Δ𝐿 Δ

®
Δ𝑅

Ω′ Δ′

← ←(
®
Δ𝐿 [R] ®

Δ𝑅)

← ←
[R]⇐⇒ ⇐⇒

← ←[R]

Rewriting bisimilarity therefore contains every labeled bisimulation and,
in particular, the largest labeled bisimulation, namely labeled bisimilarity.

Corollary 7.7. Labeled bisimilarity is sound and complete with respect to
rewriting bisimilarity.

As a simple example of this labeled bisimilarity proof technique for rewrit-
ing bisimilarity, we shall now establish that

®
𝑎 (
®
𝑎 \
®
𝑏) and

®
𝑏 are rewriting-

bisimilar contexts. Let R be the least symmetric binary relation for which

®
𝑎 (
®
𝑎 \
®
𝑏) R

®
𝑏 and

®
𝑏 R

®
𝑏 and (·) R (·) hold. The relation R is a labeled

bisimulation:

• The immediate output bisimulation condition holds because
®
𝑎 (
®
𝑎 \
®
𝑏) can

simulate
®
𝑏’s output of

®
𝑏 (with

®
𝑎 (
®
𝑎 \
®
𝑏) −→(R

®
𝑏)
®
𝑏) and the former makes

no immediate outputs of its own. Moreover,
®
𝑏 and

®
𝑏 can simulate each

other’s output of
®
𝑏.

• The immediate input bisimulation condition holds vacuously for the rela-
tion R because neither

®
𝑎 (
®
𝑎 \
®
𝑏) nor

®
𝑏 accept any inputs on either side.

• The reduction bisimulation condition holds because
®
𝑏 can simulate the re-

duction
®
𝑎 (
®
𝑎 \
®
𝑏) −→

®
𝑏 trivially (with

®
𝑏 =⇒R

®
𝑏).

• The emptiness bisimulation condition holds trivially:
®
Δ =⇒(R

®
Δ)
®
Δ for all

®
Δ because (·) R (·), and symmetrically for all

®
Δ.

We may conclude from the above proof technique (theorem 7.6) that R is
contained within rewriting bisimilarity and that

®
𝑎 (
®
𝑎 \
®
𝑏) and

®
𝑏 are indeed

bisimilar.
We can similarly prove that

®
𝑎 \ (
®
𝑐 /
®

𝑏) and (
®
𝑎 \
®
𝑐) /

®
𝑏 are rewriting-bisimilar

by showing that the least symmetric relation R such that
®
𝑎\ (
®
𝑐 /
®

𝑏) R (
®
𝑎\
®
𝑐) /
®

𝑏

and
®
𝑐 R
®
𝑐 and (·) R (·) is a labeled bisimulation.

Somewhat surprisingly, even
®
𝑎 \ ↑↓(

®
𝑐 /
®

𝑏) and ↑↓(
®
𝑎 \
®
𝑐) /

®
𝑏 are bisimilar.

This one is rather surprising because the ↑↓ shift is placed in two dierent
locations: over − /

®
𝑏 in the former, and over

®
𝑎 \ − in the latter. One might

bisimilarity for ordered rewriting 119

expect that the placement of ↑↓ and the dierent intermediate contexts that
it induces would make it possible to distinguish

®
𝑎 \ ↑↓(

®
𝑐 /
®

𝑏)from ↑↓(
®
𝑎 \
®
𝑐) /

®
𝑏.

But by using least symmetric relation R such that
®
𝑎\↑↓(

®
𝑐 /
®

𝑏) R ↑↓(
®
𝑎\
®
𝑐) /
®

𝑏

and
®
𝑐 /
®

𝑏 R
®
𝑎

(
↑↓(
®
𝑎 \
®
𝑐) /

®
𝑏
)
and

(
®
𝑎 \↑↓(

®
𝑐 /
®

𝑏)
)
®

𝑏 R
®
𝑎 \
®
𝑐 and

®
𝑐 R
®
𝑐 and (·) R (·),

we can prove that the two propositions are indistinguishable. The labeled
bisimulation R shows how the inputs protected by the ↑↓ double shifts are
treated lazily in establishing the equivalence: the proposition

®
𝑐 /
®

𝑏 isR-related
to the context

®
𝑎

(
↑↓(
®
𝑎 \
®
𝑐) /

®
𝑏
)
, for example.

7.1.2 A simple up-to proof technique: Reexivity

As a slight enhancement of the above proof technique, we can consider a
simple up-to technique: bisimilarity up to reexivity. Let us call a relation R
a labeled bisimulation up to reexivity if R progresses to its reexive closure,
which we write as R=.

Theorem 7.8. If R is a labeled bisimulation up to reexivity, then rewriting
bisimilarity contains R.

Proof. Let R be a labeled bisimulation up to reexivity. First, notice that
the identity relation is a labeled bisimulation – each of the labeled bisimu-
lation conditions is trivially true of the identity relation. Then, it follows
from lemma 7.3 that R=, the reexive closure of R, is a labeled bisimulation.
By theorem 7.6, we may conclude that rewriting bisimilarity contains R= and
hence R. �

7.1.3 Other properties of rewriting bisimilarity

In addition to soundness and completeness of labeled bisimilarity with re-
spect to rewriting bisimilarity, we also expect rewriting bisimilarity to be a
(monoidal) congruence relation.

Rewriting bisimilarity is, indeed, an equivalence relation.

Theorem 7.9. Rewriting bisimilarity is reexive, symmetric, and transitive.

Proof. The identity relation on contexts can be shown to be a bisimulation,
so rewriting bisimilarity is reexive. Rewriting bisimilarity is symmetric by
denition. The relation �� can be shown to be a bisimulation, so rewriting
bisimilarity is also transitive. �

At this point, we would like to prove, as a lemma, that (Δ𝐿R) is contained
in some labeled bisimulation, for all contexts Δ𝐿 and all labeled bisimulations
R. Ideally, the proof that proceeds by induction (or possibly coinduction),
decomposing the context Δ𝐿 and framing each antecedent of Δ𝐿 onto the re-
lation, one at a time. This would allow lemma 7.4 to be reused, and would
also streamline other cases.

Unfortunately, such a proof has been elusive so far. So, instead, we will
prove the following lemma by handling the context Δ𝐿 all at once. The proof

120

rehashes cases from lemma 7.4 and is not particularly enlightening beyond
what was already presented there. For that reason, the proof is elided.

Lemma 7.10. If R is a labeled bisimulation, then, for each context Δ𝐿 , there
exists a labeled bisimulation that contains (Δ𝐿R).

Theorem 7.11. If Ω1 � Δ1 and Ω2 � Δ2, then Ω1 Ω2 � Δ1 Δ2.

Proof. Assume that Ω1 � Δ1 and Ω2 � Δ2. Notice that Ω1 Ω2 (Ω1�) Ω1 Δ2
and that Ω1 Δ2 (�Δ2) Δ1 Δ2.

Rewriting bisimilarity is a labeled bisimulation (theorem 7.2). According
to lemma 7.10, there exists a labeled bisimulation that contains (Ω1�). By the-
orem 7.6, rewriting bisimilarity therefore contains (Ω1�). Using symmetric
reasoning, rewriting bisimilarity must also contain (�Δ2).

Applying these to the previous observation, Ω1 Ω2 � Ω1 Δ2 � Δ1 Δ2.
Because rewriting bisimilarity is transitive (theorem 7.9), we conclude that
Ω1 Ω2 � Δ1 Δ2. �

Corollary 7.12. Rewriting bisimilarity is a congruence.

7.2 Example: Rewriting bisimilarity and NFAs

Recall from section 6.5.3 the conjecture that bisimilar NFA states have bisim-
ilar encodings and vice versa. As outlined there, establishing this result will
allow us to rephrase soundness and completeness of the NFA choreography
in a properly stratied way:

®
𝑎 𝑞 −→Φ� 𝑞′ if, and only if, 𝑞 𝑎−→∼ 𝑞′. More

precisely, we will prove the following theorem.

Theorem 7.14. Let A = (𝑄,Δ, 𝐹) be an NFA over the input alphabet Σ. Then
𝑞 ∼ 𝑠 if, and only if, 𝑞 � 𝑠 for all states 𝑞 and 𝑠 .

Before proving this statement, we need a few lemmas.
These results hold only because the formula-as-process ordered rewriting

framework is focused; under an unfocused rewriting framework, 𝑞 would ad-
mit rewritings, such as 𝑞 =⇒

®
$ \
®
𝐹 (𝑞), and

®
𝑎 𝑞 would admit rewritings to

contexts other than encodings of 𝑎-successors.

Lemma 7.13. Let A = (𝑄,Δ, 𝐹) be an NFA over the alphabet Σ. Then:
• 𝑞 X−→ for all states 𝑞.
• If
®
𝑎 𝑞 =⇒� 𝑞′, then 𝑞′𝑎 � 𝑞′ for some state 𝑞′𝑎 that 𝑎-succeeds 𝑞.

• If
®
$𝑞 =⇒�

®
𝐹 (𝑠), then 𝑞 ∈ 𝐹 if, and only if, 𝑠 ∈ 𝐹 .

Proof. The rst part can be proved by examining the encoding of an arbitrary
state 𝑞.

To prove the second part, assume that
®
𝑎 𝑞 =⇒� 𝑞′. By inversion on the

given trace, there are two cases: either (i)
®
𝑎 𝑞 � 𝑞′ or (ii)

®
𝑎 𝑞 −→ 𝑞′𝑎 =⇒� 𝑞′

for some state 𝑞′𝑎 that 𝑎-succeeds 𝑞.

bisimilarity for ordered rewriting 121

• Consider the case in which
®
𝑎 𝑞 � 𝑞′. Because the underlying NFA is well-

formed (denition 2.1), 𝑞 has at least one 𝑎-successor; let 𝑞′𝑎 be one such
successor. By denition of the encoding,

®
𝑎 𝑞 −→ 𝑞′𝑎 . Because rewriting

bisimilarity is reduction-closed (theorem 7.1), 𝑞′𝑎 �⇐= 𝑞′. The rst part
of this lemma shows that states are encoded by propositions that do not
reduce, and so we may conclude that, in fact, 𝑞′𝑎 � 𝑞′.

• Consider the case in which
®
𝑎 𝑞 −→ 𝑞′𝑎 =⇒� 𝑞′ for some state 𝑞′𝑎 that 𝑎-

succeeds 𝑞. Because states are encoded by propositions that do not reduce,
𝑞′𝑎 � 𝑞′ for some state 𝑞′𝑎 that 𝑎-succeeds 𝑞, as required.

To prove the third part, we reason as in the preceding part and deduce that

®
𝐹 (𝑞) �

®
𝐹 (𝑠); we conclude that 𝑞 ∈ 𝐹 if, and only if, 𝑠 ∈ 𝐹 . �

Theorem 7.14. Let A = (𝑄,Δ, 𝐹) be an NFA over the input alphabet Σ. Then
𝑞 ∼ 𝑠 if, and only if, 𝑞 � 𝑠 for all states 𝑞 and 𝑠 .

Proof. We shall show that NFA bisimilarity coincides with rewriting bisimi-
larity of encodings, proving each direction separately.

• To prove that bisimilar NFA states have bisimilar encodings – i.e., that𝑞 ∼ 𝑠
implies 𝑞 � 𝑠 – we shall now show that the relation R = {(𝑞, 𝑠) | 𝑞 ∼ 𝑠} is
a labeled bisimulation up to reexivity and, by theorem 7.8, is included in
rewriting bisimilarity. Notice that R is, by denition, symmetric because
NFA bisimilarity is symmetric (theorem 7.9).

Immediate output bisimulation Assume that 𝑞 R 𝑠 =
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
; we must

show that 𝑞 =⇒(
®

Δ′
𝐿
R=

®
Δ′
𝑅
) 𝑠 . By denition of the encoding, 𝑠 is a nega-

tive proposition and does not expose outputs. Therefore,
®

Δ′
𝐿
and
®
Δ′
𝑅
are

empty and Δ′ is 𝑠 . The required 𝑞 =⇒(
®

Δ′
𝐿
R=

®
Δ′
𝑅
) 𝑠 follows trivially.

Immediate input bisimulation Assume that 𝑞 R 𝑠 and
®
Δ𝐿 [𝑠]

®
Δ𝑅 −→ Δ′;

we must show that
®
Δ𝐿 𝑞

®
Δ𝑅 =⇒R= Δ′. Inversion of the input transition

yields two cases.

– Consider the case in which the input transition is
®
𝑎 [𝑠] −→ 𝑠 ′𝑎 , where

state 𝑠 is 𝑎-succeeded by 𝑠 ′𝑎 . Because 𝑞 and 𝑠 are bisimilar, there must
exist an 𝑎-successor of 𝑞, say 𝑞′𝑎 , that is bisimilar to 𝑠 ′𝑎 . By denition
of the encoding, we thus have

®
𝑎 𝑞 −→ 𝑞′𝑎 . So indeed, because 𝑞′𝑎 and

𝑠 ′𝑎 are bisimilar states,
®
𝑎 𝑞 =⇒R= 𝑠 ′𝑎 , as required.

– Consider the case in which the input transition is
®
$ [𝑠] −→

®
𝐹 (𝑠).

Because 𝑞 and 𝑠 are bisimilar states,
®
𝐹 (𝑞) =

®
𝐹 (𝑠). By denition of the

encoding,
®
$𝑞 −→

®
𝐹 (𝑞), and so, indeed,

®
$𝑞 =⇒R=

®
𝐹 (𝑠), as required.

Reduction bisimulation Assume that 𝑞 R 𝑠 −→ Δ′. The reduction bisimu-
lation property holds vacuously because states are encoded as proposi-
tions that do not reduce (lemma 7.13) – there is no Δ′ such that 𝑠 −→ Δ′.

122

Emptiness bisimulation Assume that 𝑞 R 𝑠 = (·). The emptiness bisimula-
tion property also holds vacuously because states are encoded as propo-
sitions, not empty contexts.

• To prove the converse – that states with bisimilar encodings are them-
selves bisimilar – we shall now show that the relation R = {(𝑞, 𝑠) | 𝑞 � 𝑠},
which relates states if they have rewriting-bisimilar encodings, is an NFA
bisimulation and is therefore included in NFA bisimilarity.

Because rewriting bisimilarity is symmetric (theorem 7.9), so too is the
relationR. Wemust also prove thatR satises the conditions of NFA bisim-
ilarity.
Input bisimulation Let 𝑞 and 𝑠 be states with bisimilar encodings, and let

𝑞′𝑎 be an 𝑎-successor of 𝑞; we must exhibit a state 𝑠 ′𝑎 that 𝑎-succeeds 𝑠
and has an encoding that is bisimilar to that of 𝑞′𝑎 .

By denition of the encoding,
®
𝑎 𝑞 −→ 𝑞′𝑎 . Because𝑞 and 𝑠 have bisim-

ilar encodings, the input bisimulation property allows us to deduce that

®
𝑎 𝑠 =⇒� 𝑞′𝑎 . An appeal to lemma 7.13 provides exactly what is needed:
a state 𝑠 ′𝑎 that 𝑎-succeeds 𝑠 and has an encoding bisimilar to that of 𝑞′𝑎 .

Finality bisimulation Let 𝑞 and 𝑠 be states with bisimilar encodings, and
assume that 𝑞 is a nal state; we must show that 𝑠 is also a nal state.

By denition of the encoding,
®
$𝑞 −→

®
𝐹 (𝑞) =

®
y. Because𝑞 and 𝑠 have

bisimilar encodings, it follows from the input bisimulation property that

®
$ 𝑠 =⇒�

®
𝐹 (𝑞). An appeal to lemma 7.13 allows us to conclude that 𝑠 , like

𝑞, is a nal state. �

7.3 Example: Rewriting bisimilarity and binary counters

For a further application of rewriting bisimilarity, we can revisit the binary
counter. Recall from section 6.4.1 its object-oriented choreography:

Φ = 𝑒 , (𝑒 • 𝑏1 /
®
𝑖) N (

®
𝑧 /
®

𝑑)
𝑏0 , (↑↓𝑏1 /

®
𝑖) N (

®
𝑑 • 𝑏 ′0 / ®

𝑑)
𝑏1 , (

®
𝑖 • 𝑏0 /

®
𝑖) N (𝑏0 •

®
𝑠 /
®

𝑑)
𝑏 ′0 , (®

𝑧 \
®
𝑧) N (

®
𝑠 \ 𝑏1 •

®
𝑠)

Also, recall that denotations were assigned directly to choreographed coun-
ters using the Ω ≈v 𝑛, Ω ≈i 𝑛, and Ω ≈d 𝑛 judgments.

Intuitively, any two counters that have the same denotation ought to be
indistinguishable. After all, the only two operations that we have on coun-
ters are increment and head-unary normalization (also known as decrement),
and both of these are reected in the denotation. For instance, both 𝑒

®
𝑖 𝑏1

and 𝑒 𝑏1 𝑏0
®
𝑖 denote the natural number 3, so any sequence of increments and

decrements that we apply to these counters ought not to distinguish them.
We can state and prove that counters with equal denotations are bisimilar,

and conversely, that bisimilar counters have equal denotations.

bisimilarity for ordered rewriting 123

Theorem 7.16. If either (i) Ω ≈i 𝑛 and Δ ≈i 𝑛′ or (ii) Ω ≈d 𝑛 and Δ ≈d 𝑛′,
then Ω � Δ if, and only if, 𝑛 = 𝑛′.

Before proving this theorem, recall the big-step adequacy of decrements
for the choreography.

Corollary 6.14 (Adequacy of object-oriented choreography). The following
hold.

Preservation If Ω ≈i 𝑛 and Ω −→Φ Ω′, then Ω′ ≈i 𝑛. If Ω ≈d 𝑛 and
Ω −→Φ Ω′, then Ω′ ≈d 𝑛.

Big-step If Ω ≈d 𝑛, then:
• Ω =⇒Φ

®
𝑧 if, and only if, 𝑛 = 0;

• Ω =⇒Φ Ω′
®
𝑠 for some Ω′ such that Ω′ ≈i 𝑛 − 1, if 𝑛 > 0; and

• Ω =⇒Φ Ω′
®
𝑠 only if 𝑛 > 0 and Ω′ ≈i 𝑛 − 1.

We also need to prove an easy lemma that characterizes the output and
input transitions possible from binary counters.

Lemma 7.15.
• If Δ ≈i 𝑛, then:

– Δ =
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
only if

®
Δ′
𝐿
and
®
Δ′
𝑅
are empty; and

–
®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′ only if

®
Δ𝐿 is empty and either

®
Δ𝑅 =

®
𝑖 or

®
Δ𝑅 =

®
𝑑 .

• If Δ ≈d 𝑛, then:
– Δ =

®
Δ′
𝐿
Δ′
®
Δ′
𝑅
only if

®
Δ′
𝐿
is empty and either:

∗ 𝑛 = 0 and
®
Δ′
𝑅
=
®
𝑧 and Δ′ is empty;

∗ 𝑛 > 0 and
®
Δ′
𝑅
=
®
𝑠 and Δ′ ≈i 𝑛 − 1; or

∗
®
Δ′
𝑅
is empty; and

–
®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′ is impossible.

Proof. By structural induction on the derivation of the given denotation. The
second part relies on the rst part in one case. �

Using this lemma, we may prove the correspondence between denotation
and bisimilarity. It is especially interesting that the proof of this theorem is
quite modular, relying heavily on the choreography’s adequacy. We conjec-
ture that this proof pattern will be useful in proving theorems about bisimi-
larities for other choreographies.

Theorem 7.16. If either (i) Ω ≈i 𝑛 and Δ ≈i 𝑛′ or (ii) Ω ≈d 𝑛 and Δ ≈d 𝑛′,
then Ω � Δ if, and only if, 𝑛 = 𝑛′.

Proof. We prove each direction separately.

• To prove that states with equal denotations are bisimilar, consider the re-
lation R given by

R = {(Ω,Δ) | ∃𝑛 ∈ ℕ. (Ω ≈i 𝑛) ∧ (Δ ≈i 𝑛)}
∪ {(Ω,Δ) | ∃𝑛 ∈ ℕ. (Ω ≈d 𝑛) ∧ (Δ ≈d 𝑛)} .

We shall show that R progresses to its reexive closure and then conclude,
by theorem 7.8, that R is contained within rewriting bisimilarity.

124

Immediate output bisimulation Assume that Ω R Δ =
®

Δ′
𝐿
Δ′
®
Δ′
𝑅
; we must

show that Ω =⇒(
®

Δ′
𝐿
R=

®
Δ′
𝑅
) Δ. Because Ω and Δ are R-related, either:

Ω ≈i 𝑛 and Δ ≈i 𝑛 for some natural number 𝑛; or Ω ≈d 𝑛 and Δ ≈d 𝑛

for some natural number 𝑛.
– Consider the case in which Ω ≈i 𝑛 and Δ ≈i 𝑛. Lemma 7.15 shows

that
®

Δ′
𝐿
and
®
Δ′
𝑅
must both be empty. The requiredΩ =⇒(

®
Δ′
𝐿
R=

®
Δ′
𝑅
) Δ

is then trivial.
– Consider the case in which Ω ≈d 𝑛 and Δ ≈d 𝑛. According to

lemma 7.15, there are three cases. In all cases,
®

Δ′
𝐿
is empty.

∗ Consider the case in which
®
Δ′
𝑅
is empty. Then Ω =⇒(

®
Δ′
𝐿
R=

®
Δ′
𝑅
) Δ

is trivial.
∗ Consider the case in which 𝑛 = 0 and Δ =

®
Δ′
𝑅
=
®
𝑧. According

to the big-step adequacy of decrements for the object-oriented
choreography (corollary 6.14), Ω =⇒

®
𝑧. It follows immediately

that Ω =⇒(
®

Δ′
𝐿
R=

®
Δ′
𝑅
)
®
𝑧 = Δ, as required.

∗ Consider the case inwhich𝑛 > 0 andΔ = Δ′
®
𝑠 withΔ′ ≈i 𝑛−1. Ac-

cording to the big-step adequacy of decrements for the choreogra-
phy (corollary 6.14), Ω =⇒ Ω′

®
𝑠 for some Ω′ such that Ω′ ≈i 𝑛− 1.

Therefore, Ω′ R Δ′. The required Ω =⇒(
®

Δ′
𝐿
R=

®
Δ′
𝑅
) Δ′
®
𝑠 = Δ

follows.
Immediate input bisimulation Assume that Ω R Δ and

®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′.

There are several cases.
– Consider the case in which Ω ≈i 𝑛 and Δ ≈i 𝑛, for some natural

number 𝑛. According to lemma 7.15, the input transition is either
[Δ]
®
𝑖 −→ Δ′ or [Δ]

®
𝑑 −→ Δ′.

∗ If the input transition
®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′ is [Δ]

®
𝑖 −→ Δ′, then

apply the
®
𝑖-i rule to deduce that Ω

®
𝑖 ≈i 𝑛 + 1 and Δ

®
𝑖 ≈i 𝑛 + 1. Be-

cause Δ
®
𝑖 −→ Δ′, it follows from ≈i-preservation (corollary 6.14)

that Δ′ ≈i 𝑛 + 1. We conclude that Ω
®
𝑖 =⇒R Δ′, as required.

∗ If the input transition
®
Δ𝐿 [Δ]

®
Δ𝑅 −→ Δ′ is [Δ]

®
𝑑 −→ Δ′, then

similar reasoning applies.
– Consider the case in which Ω ≈d 𝑛 and Δ ≈d 𝑛, for some 𝑛. By

lemma 7.15, this input transition is impossible.
Reduction bisimulation Assume that Ω R Δ −→ Δ′. If Ω ≈i 𝑛 and Δ ≈i 𝑛

for some natural number 𝑛, then ≈i-preservation (corollary 6.14) yields
Δ′ ≈i 𝑛; it immediately follows that Ω =⇒R Δ′. Otherwise, if Ω ≈d 𝑛

and Δ ≈d 𝑛 for some natural number 𝑛, then ≈d-preservation similarly
allows us to conclude that Ω =⇒R Δ′.

Emptiness bisimulation This is vacuously true because (·) has no denota-
tion under ≈i and ≈d.

• To prove the converse, that bisimilar counters have equal denotations, we
shall prove that

bisimilarity for ordered rewriting 125

1. If Ω ≈d 𝑛 and Δ ≈d 𝑛′ and Ω � Δ, then 𝑛 = 𝑛′.
2. If Ω ≈i 𝑛 and Δ ≈i 𝑛′ and Ω � Δ, then 𝑛 = 𝑛′.

using a lexicographic induction, rst on the denotation 𝑛 and then on the
inductive hypothesis used, with 1 < 2.

1. Assume that Ω ≈d 𝑛 and Δ ≈d 𝑛′ and Ω � Δ.
– Consider the case in which 𝑛 = 0. By big-step adequacy of decre-

ments (corollary 6.14), Ω =⇒
®
𝑧. Because Ω and Δ are bisimilar,

Δ =⇒(�
®
𝑧)
®
𝑧. According to big-step adequacy of decrements again

(corollary 6.14), Δ eventually emits
®
𝑧 only if its denotation is 𝑛′ = 0,

and so 𝑛 = 0 = 𝑛′.
– Consider the case in which 𝑛 > 0. By big-step adequacy of decre-

ments (corollary 6.14), Ω =⇒ Ω′
®
𝑠 for some Ω′ such that Ω′ ≈i 𝑛 − 1.

Because Ω and Δ are bisimilar, Δ =⇒(�
®
𝑠) Ω′

®
𝑠; in other words,

Δ =⇒ Δ′
®
𝑠 for some Δ′ such that Ω′ � Δ′. According to big-step

adequacy of decrements again (corollary 6.14), Δ eventually emits
®
𝑠

only if𝑛′ > 0 and Δ′ ≈i 𝑛′−1. By the inductive hypothesis, it follows
that 𝑛 − 1 = 𝑛′ − 1, and so 𝑛 = 𝑛′ as required.

2. Assume that Ω ≈i 𝑛 and Δ ≈i 𝑛′ and Ω � Δ. By applying the
®

𝑑-d
rule, we may deduce that Ω

®
𝑑 ≈d 𝑛 and Δ

®
𝑑 ≈d 𝑛′. Moreover, because

rewriting bisimilarity is a congruence (corollary 7.12), Ω
®

𝑑 � Δ
®

𝑑 . By
part 1 of the inductive hypothesis, we conclude that 𝑛 = 𝑛′, as required.

�

7.3.1 A comment on atom directions and bisimilarity

This theorem gives us the opportunity to remark on the interplay between
atoms’ directionality and rewriting bisimilarity.

Suppose that the formula-as-process ordered rewriting framework was de-
signed without assigning direction to atoms. Instead of the directed atoms

®
𝑎

and
®
𝑎, the framework would have only undirected atoms ¯𝑎. The denition of

rewriting bisimilarity would also be ever so slightly revised to use the undi-
rected atoms. Rewriting bisimilarity would be the largest symmetric relation
R to satisfy:

Output bisimulation If Ω R=⇒ ¯Δ
′
𝐿
Δ′ ¯Δ

′
𝑅
, then Ω =⇒(¯Δ

′
𝐿
R ¯Δ
′
𝑅
) ¯Δ
′
𝐿
Δ′ ¯Δ

′
𝑅
.

Input bisimulation If ¯Δ𝐿 Ω ¯Δ𝑅 (¯Δ𝐿R ¯Δ𝑅)=⇒ Δ′, then ¯Δ𝐿 Ω ¯Δ𝑅 =⇒R Δ′.

Unfortunately, this undirected notion of bisimilarity would be too ne.
Without atom directions to distinguish messages intended as inputs from
those intended as outputs, input messages could be incorrectly observed as
outputs. In practice, this means that bisimilarity would rule out desirable
equivalences.

Consider, for example, 𝑒 and 𝑒 𝑏0. These two counters have the same deno-
tation – both represent 0. Nevertheless, in opposition to theorem 7.16 for di-
rected atoms, 𝑒 and 𝑒 𝑏0 would not be bisimilar when using undirected atoms.

126

To see why, suppose, for the sake of deriving a contradiction, that 𝑒 � 𝑒 𝑏0.
Because 𝑒 𝑏0 ¯𝑑 =⇒

¯
𝑧 𝑏 ′0, it follows from the input bisimulation property that

𝑒 ¯𝑑 =⇒�
¯
𝑧 𝑏 ′0. There are only two contexts that can arise from 𝑒 ¯𝑑 , so either

𝑒 ¯𝑑 � ¯
𝑧 𝑏 ′0 or ¯

𝑧 �
¯
𝑧 𝑏 ′0.

• The former is impossible because
¯
𝑧 𝑏 ′0 cannot produce ¯𝑑 on the right (nor

on the left) and so violates output bisimilarity.

• The latter is also impossible. It has an output of
¯
𝑧 on the left of

¯
𝑧 𝑏 ′0, from

which the output bisimulation property yields (·) � 𝑏 ′0. From the input
bisimulation property, ¯𝑎 � 𝑏 ′0 ¯𝑎 follows, for any atom ¯𝑎. And that violates
output bisimulation because𝑏 ′0 ¯𝑎, which does not reduce, cannot match the
left output that ¯𝑎 makes.

The key feature of this counterexample is that atoms’ lack of direction
means that the output bisimilarity condition also applies to atoms intended
to act as inputs (¯𝑑 and ¯𝑎, for instance). Just as atom directions were shown in
section 6.1.2 to prevent a process from capturing a message it just sent, so do
atom directions prevent input messages from being observed.

Part III

Concurrency as
proof reduction

8
Singleton logic

Intuitionistic sequents are typically asymmetric: in an intuitionistic sequent
Γ ` 𝐴, there are nitely many antecedents, all collected into the context Γ,
yet there is only a single consequent, 𝐴.1 We might naturally wonder if a 1Or, at most one consequent if multiplicative

falsehood is included (see, for example, sec-
tion 3.4).

greater degree of symmetry can be brought to sequents. Of course, classical
sequents in calculi such as Gentzen’s LK2 are symmetric, but does there exist

2Gentzen 1935.
an intuitionistic logic whose sequent calculus presentation enjoys a similarly
pleasant symmetry?

One approachmight be to permit nitelymany consequents, as inmultiple-
conclusion sequent calculi for intuitionistic logic,3 but Steinberger4 raises 3Maehara 1954; Kleene 1952.

4 Steinberger 2011.troubling concerns about the validity of meaning-theoretic explanations of
such calculi, primarily that the meanings of the logical connectives are not
properly independent but inextricably linked with the meaning of disjunc-
tion.

So, in this chapter, we will instead follow a dual path to symmetry and
examine a restriction in which sequents have exactly one antecedent – no
more and no less. We call this requirement the single-antecedent restriction;
the sequent calculus to which it leads, the singleton sequent calculus; and the
underlying logic, singleton logic. That such a severe restriction on the struc-
ture of sequents yields a well-dened, computationally useful logic is quite
surprising.

Aside from motivations of symmetry, the single-antecedent restriction is
sensible within each branch of the computational trinity5 – proof theory, cat- 5Harper 2011.

egory theory, and type theory – as we sketch in section 8.1. This chapter will
thereafter focus on the proof-theoretic consequences of the single-antecedent
restriction.

After we motivate the single-antecedent restriction, we then proceed to
section 8.2 where we derive the singleton sequent calculus by systematically
applying the restriction to the intuitionistic ordered sequent calculus of chap-
ter 3.6 (Not all of the ordered logical connectives will be able to survive the

6After the single-antecedent restriction is en-
forced, nothing ordered remains – a single
antecedent is trivially ordered. So we could
equally well derive singleton sequent calcu-
lus from the linear sequent calculus.

restriction, however. As we will explain, it is precisely the multiplicative con-
nectives that are absent from singleton logic.)

130

To ensure that the resulting calculus properly denes the meaning of each
connective by its inference rules, section 8.2.1 establishes the calculus’s basic
metatheory. Together, the cut elimination and identity elimination metatheo-
rems identify the cut-free, identity-long proofs as verications that form the
foundation by exhibiting a subformula property.

Yet there are certainly other presentations of logics besides sequent calculi,
so, in section 8.3, we develop a Hilbert-style axiomatization of singleton logic.
This Hilbert system can also be viewed as a variant of the sequent calculus,
so we dub it the semi-axiomatic sequent calculus.7 An analysis of its basic7DeYoung, Pfenning, and Pruiksma 2020.

metatheory (section 8.3.2) begins to suggest the basis of a Curry–Howard in-
terpretation of semi-axiomatic sequent proofs as chains of well-typed, asyn-
chronously communicating processes. Chapter 9 will be devoted to develop-
ing that observation more fully.

Finally, section 8.4 briey overviews several possible extensions to sin-
gleton logic, including a subsingleton extension that relaxes the single-an-
tecedent restriction and permits an empty context.

8.1 The single-antecedent restriction

As sketched above, the single-antecedent restriction demands that each se-
quent contain exactly one antecedent, so that sequents are 𝐴 ` 𝐵 instead
of Γ ` 𝐵.

In addition to providing sequents with an elegant symmetry between an-
tecedents and consequents, the single-antecedent restriction is a worthwhile
object of investigation when viewed from the perspective of each branch of
the computational trinity8 – proof theory, category theory, and type theory:8Harper 2011.

Proof theory In sequent calculi, antecedents are subject, either implicitly or
explicitly, to structural properties, such as weakening, contraction, and ex-
change. For instance, antecedents in linear logic are subject to exchange,
but neither weakening nor contraction; linear contexts thus form a com-
mutative monoid over antecedents. Ordered logic goes further and rejects
exchange; ordered contexts thus form a noncommutative monoid.

Singleton logic is a natural object of investigation, precisely because it
takes the idea of rejecting structural properties to its extreme. In adopting
the single-antecedent restriction, singleton logic rejects the very idea that
contexts have any structure whatsoever; there can be no binary operation
to join contexts.

Category theory Each morphism in a category, 𝑓 : 𝑋 → 𝑌 , has exactly one
object – no more and no less – as its domain. Because sequents represent
a kind of function, single antecedents are just as natural as single-object
domains.

More specically, in categorical semantics of sequent calculi, proofs are
represented by the morphisms of a monoidal category, and so contexts of

singleton logic 131

several antecedents are packaged into a single domain object using the
monoidal product:

pD :: (𝐴1, 𝐴2, . . . , 𝐴𝑛 ` 𝐵)q : p𝐴1q � p𝐴2q � · · ·� p𝐴𝑛q → p𝐵q

Because working in a monoidal category complicates matters, it is worth-
while to investigate whether there exists a sequent calculus whose categor-
ical semantics uses no monoidal product. The single-antecedent restric-
tion is exactly what results from these considerations, and the singleton
sequent calculus will have a cleaner, more direct categorical semantics be-
cause of it.

Type theory In Caires, Pfenning, and Toninho’s Sill type theory9 based on 9Caires and Pfenning 2010; Caires, Pfen-
ning, and Toninho 2012; Toninho et al. 2013;
Caires, Pfenning, and Toninho 2016.

intuitionistic linear logic, eachwell-typed process 𝑃 acts as a client ofmulti-
ple services (𝐴𝑖)𝑛𝑖=1 along channels (𝑥𝑖)𝑛𝑖=1, while simultaneously oering a
service𝐴 of its own along a single channel 𝑥 . Thus, networks of well-typed
processes have a tree topology, as depicted in the neighboring display. 𝑃

←

←
𝑥1 :𝐴1
.
.
. ←𝑥 :𝐴

← ←
𝑥𝑛

:𝐴𝑛

𝑃

←←𝐴 ←𝐶

In data pipelines, the computational processes are arranged in a chain
topology, with each process having exactly one upstream provider – no
more and no less. To study pipelines, a “single-provider restriction” is
needed – a type-theoretic analogue of the single-antecedent restriction.

8.2 A sequent calculus for propositional singleton logic

Having sketched proof-theoretic, category-theoretic, and type-theoretic rea-
sons to investigate the single-antecedent restriction, we now turn to identify-
ing a sequent calculus that satises that restriction.

One approach to constructing a singleton sequent calculus is to take the in-
tuitionistic ordered sequent calculus of chapter 3, apply the single-antecedent
restriction to each rule’s sequents, and solve the constraints that that restric-
tion imposes.

For instance, consider the ordered cut rule (see neighboring display). For Ω ` 𝐵 Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
Ω Ω′

𝑅
` 𝐶 cut𝐵

𝐴 ` 𝐵 𝐵 ` 𝐶
𝐴 ` 𝐶 cut𝐵

Figure 8.1: Deriving the singleton sequent
calculus’s cut rule from the corresponding
ordered sequent calculus rule

the rst premise to satisfy the single-antecedent restriction, the nitary con-
text Ω must be exactly a single antecedent, 𝐴. Because the second premise
already contains the antecedent𝐵, the contextsΩ′

𝐿
andΩ′

𝑅
must also be empty.

After these revisions, the rule contains only well-formed singleton sequents
and is a candidate for inclusion in the singleton sequent calculus.10

10 In its singleton form, the cut rule is even
more clearly related to transitivity of prov-
ability than it is in the ordered sequent cal-
culus.

We could equally well justify this new cut rule by rst principles, as it ex-
presses the composition of two well-formed singleton proofs. But the above
method of considering the constraints imposed by the single-antecedent re-
striction is a straightforward, mechanical way ahead for the other inference
rules. For example, singleton sequent calculus rules for additive disjunction
may also be constructed in this way (see g. 8.2). Rules for the other additive
connectives (N, >, and 0) can be constructed, too, but we will momentarily
postpone displaying them.

132

Ordered sequent calculus Singleton sequent calculus
Ω ` 𝐵1

Ω ` 𝐵1 � 𝐵2
�r1

Ω ` 𝐵2
Ω ` 𝐵1 � 𝐵2

�r2

Ω′
𝐿
𝐵1 Ω

′
𝑅
` 𝐶 Ω′

𝐿
𝐵2 Ω

′
𝑅
` 𝐶

Ω′
𝐿
(𝐵1 � 𝐵2) Ω′𝑅 ` 𝐶

�l

𝐴 ` 𝐵1
𝐴 ` 𝐵1 � 𝐵2

�r1
𝐴 ` 𝐵2

𝐴 ` 𝐵1 � 𝐵2
�r2

𝐵1 ` 𝐶 𝐵2 ` 𝐶
𝐵1 � 𝐵2 ` 𝐶

�l

Figure 8.2: Deriving the singleton sequent
calculus rules for additive disjunction from
the corresponding ordered sequent calculus
rules

However, not all ordered logical connectives fare as well under the single-
antecedent restriction as the additive connectives do. In particular, the multi-
plicative connectives do not have analogues in singleton logic. Consider, for

𝐵1 Ω ` 𝐵2
Ω ` 𝐵1 \ 𝐵2

\r

𝐵1𝐴 ` 𝐵2
𝐴 ` 𝐵1 \ 𝐵2

\r?

𝐵1 •𝐴 ` 𝐵2
𝐴 ` 𝐵1 \ 𝐵2

\r?

Figure 8.3: A failed attempt at constructing a
right rule for left-handed implication

example, left-handed implication and its right rule (see neighboring gure).
The nitary context Ω must be replaced with a single antecedent, 𝐴, if the
rule’s conclusion is to be a well-formed singleton sequent. Now the revised
rule’s conclusion is well-formed, but its premise is not.

From a category-theoretic perspective, it would be quite natural to rewrite
the premise using ordered conjunction so that the two antecedents are pack-
aged together as one. However, from a proof-theoretic perspective, this rule is
not suitable – with this rule, the meaning of left-handed implication depends
on the meaning of another connective, namely multiplicative conjunction. As
a practical consequence, the usual subformula property and related cut elim-
ination theorem would fail to hold if the singleton sequent calculus adopted
this rule.11

11 It might be possible to recover these results
by using a weight induction that considers
multiplicative conjunction to be smaller than
left-handed implication. Still, themeaning of
implication would depend on the meaning of
conjunction. This seems a bit unsatisfying,
so we do not pursue this idea further.

In attempting to construct singleton sequent calculus rules for left-handed
implication, the fundamental problem is that the \r rule introduces an addi-
tional antecedent to a context that is, and must remain, a singleton. Changing
the size of the context by introducing, or sometimes removing, antecedents
is an essential characteristic of multiplicative connectives, and so the multi-
plicative connectives, by their very nature, cannot appear in singleton logic.

Figure 8.4 presents the complete set of rules for propositional singleton
logic’s sequent calculus.

Although the propositions of singleton logic are exactly the additive propo-
sitions of ordered logic, singleton logic is not the additive fragment of ordered
logic. For instance, the sequent 𝐴𝐵 ` > is provable in the additive fragment
of ordered logic, but it is not even a well-formed sequent in the singleton
sequent calculus, for the simple reason that it violates the single-antecedent
restriction.

That said, singleton logic only diers from the additive fragment of or-
dered logic in its treatment of 0 and > – the 0,>-free fragment of singleton
logic coincides exactly with the 0,>-free, additive fragment (that is, the �,N-
fragment) of ordered logic. A simple structural induction proves this:

Theorem 8.1. If Ω ` 𝐵 in the �,N-fragment of the ordered sequent calculus,
then there exists a proposition𝐴 such thatΩ = 𝐴 and𝐴 ` 𝐵 in the�,N-fragment
of the singleton sequent calculus.

In substructural logics and systems built upon them, the logical constants

singleton logic 133

propositions 𝐴, 𝐵,𝐶 F 𝑎 | 𝐴 � 𝐵 | 0 | 𝐴 N 𝐵 | >

𝐴 ` 𝐵 𝐵 ` 𝐶
𝐴 ` 𝐶 cut𝐵

𝐴 ` 𝐴 id𝐴

𝐴 ` 𝐵1
𝐴 ` 𝐵1 � 𝐵2

�r1
𝐴 ` 𝐵2

𝐴 ` 𝐵1 � 𝐵2
�r2

𝐵1 ` 𝐶 𝐵2 ` 𝐶
𝐵1 � 𝐵2 ` 𝐶

�l

(no 0r rule) 0 ` 𝐶 0l

𝐴 ` 𝐵1 𝐴 ` 𝐵2
𝐴 ` 𝐵1 N 𝐵2

Nr 𝐵1 ` 𝐶
𝐵1 N 𝐵2 ` 𝐶

Nl1
𝐵2 ` 𝐶

𝐵1 N 𝐵2 ` 𝐶
Nl2

𝐴 ` > >r (no >l rule)

Figure 8.4: A sequent calculus for proposi-
tional singleton logic

0 and > are often problematic because they indiscriminately consume any
and all resources placed in front of them.12 Interestingly, because the single- 12Cervesato, Hodas, et al. 2000; Schack-

Nielsen and Schürmann 2008.antecedent restriction exactly constrains the resources that those logical con-
stantsmay consume, working in singleton logic is one possible way to sanitize
0 and >.

Symmetry was one of the motivations behind examining the single-ante-
cedent restriction and the singleton logic that results from it. With a sequent
calculus for singleton logic, we can now make that symmetry precise. For
instance, the Nr rule can be exactly obtained from the �l rule – and vice
versa – by replacing the � connective with N and reversing the turnstiles so
that the antecedent and consequent exchange places:

𝐴1 ` 𝐵 𝐴2 ` 𝐵
𝐴1 �𝐴2 ` 𝐵

�l !
𝐴1 a 𝐵 𝐴2 a 𝐵
𝐴1 N𝐴2 a 𝐵

Nr

Applying this transformation to the other rules results in similar symmetric
pairs. The cut even maps to itself.

𝐴 ` 𝐵 𝐵 ` 𝐶
𝐴 ` 𝐶 cut𝐵 !

𝐴 a 𝐵 𝐵 a 𝐶
𝐴 a 𝐶 cut𝐵

To make this automorphism formal, we dene an involution, (−)⊥, on
propositions (see the adjacent gure), presuming that the involution of an

(𝑎)⊥ = 𝑎⊥ (𝑎⊥)⊥ = 𝑎

(𝐴� 𝐵)⊥ = 𝐴⊥ N 𝐵⊥

(0)⊥ = >
(𝐴N 𝐵)⊥ = 𝐴⊥ � 𝐵⊥

(>)⊥ = 0

Figure 8.5: An involution on propositions
atom is again an atom. With this involution, it is relatively straightforward
to state and prove symmetry:

Theorem 8.2. 𝐴 ` 𝐵 if and only if 𝐵⊥ ` 𝐴⊥.

Proof. The left-to-right direction can be proved by structural induction on
the derivation of 𝐴 ` 𝐵. The converse follows immediately, because (−)⊥ is
an involution. �

134

Notice that the (−)⊥ involution is the additive fragment of the involution
commonly used in one-sided sequent calculi for classical linear logic. In this
sense, singleton logic exhibits the same symmetries as classical logic, but in
an intuitionistic setting.

8.2.1 Metatheory: Cut elimination and identity expansion

The rules shown in g. 8.4 certainly have the appearance of sequent calcu-
lus rules, but do they truly constitute a well-dened sequent calculus? Most
peculiarly, the singleton sequent calculus has no implication connective that
internalizes the underlying hypothetical judgment. Can such a calculus pos-
sibly be well-dened?

Because it coincides exactly with a fragment of the ordered sequent calcu-
lus (theorem 8.1), the singleton sequent calculus is indeed well-dened. How-
ever, for our subsequent development, it will prove useful to examine the
singleton sequent calculus’s metatheory, especially cut elimination, natively.

In the tradition of Gentzen, Dummett, and Martin-Löf,13 a sequent cal-13Gentzen 1935; Dummett 1976; Martin-Löf
1983. culus is well-dened if it rests on the solid foundation of a vericationist

meaning-explanation. That is, the meaning of each logical connective must
be given entirely by its right (and left) inference rules, and those rules must
exist in harmony with the left rules.

A verication, then, is a proof that relies only on the right and left infer-
ence rules and the id𝑝 rule for propositional variables 𝑝 – stated dierently,
verications may not contain instances of the cut or general id𝐴 rules.

If every proof has a corresponding verication, then we can be sure that
neither the cut nor id rules play any role in dening the logical connectives.

For this program to succeed, we need to be sure that for every proof there is
a corresponding verication – in this sense, the usual cut eliminationmetathe-
orem states a weak normalization result.

Theorem 8.4 (Cut elimination). If a proof of 𝐴 ` 𝐶 exists, then there exists a
cut-free proof of 𝐴 ` 𝐶 .

As usual, the cut elimination theorem may be proved by a straightforward
induction on the structure of the given proof, provided that a cut principle for
cut-free proofs is admissible:

Lemma 8.3 (Admissibility of cut). If cut-free proofs of 𝐴 ` 𝐵 and 𝐵 ` 𝐶 exist,
then there exists a cut-free proof of 𝐴 ` 𝐶 .

Before proceeding to this lemma’s proof, it is worth emphasizing a subtle
distinction between the singleton sequent calculus’s primitive cut rule and
the admissible cut principle that this lemma establishes.

To be completely formal, we could treat cut-freeness as an extrinsic, Curry-
style property of proofs14 and indicate cut-freeness by decorating the turn-

14Contrast this with a separate, intrinsically
cut-free sequent calculus in the style of
Church (Pfenning 2008).

singleton logic 135

stile, so that 𝐴 `cf 𝐶 denotes a cut-free proof of 𝐴 ` 𝐶 . The admissible cut
principle stated in lemma 8.3 could then be expressed as the rule

𝐴 `cf 𝐵 𝐵 `cf 𝐶
𝐴 `cf 𝐶

a-cut𝐵
,

with the dotted line indicating that it is an admissible, not primitive, rule.
Writing it in this way emphasizes that proving lemma 8.3 amounts to dening
a meta-level function that takes cut-free proofs of 𝐴 ` 𝐵 and 𝐵 ` 𝐶 and
produces a cut-free proof of 𝐴 ` 𝐶 . Contrast this with the primitive cut rule
of the singleton sequent calculus, which forms a (cut-full) proof of𝐴 ` 𝐶 from

𝐴 ` 𝐵 𝐵 ` 𝐶
𝐴 ` 𝐶 cut𝐵

(potentially cut-full) proofs of 𝐴 ` 𝐵 and 𝐵 ` 𝐶 .
From here on, however, we won’t bother to be quite so pedantic, instead

often omitting the turnstile decoration on cut-free proofswith the understand-
ing that the admissible a-cut rule may only be applied to cut-free proofs.

With that clarification out of the way, we are nally ready to prove
the admissibility of cut lemma.

Lemma 8.3 (Admissibility of cut). If cut-free proofs of 𝐴 ` 𝐵 and 𝐵 ` 𝐶 exist,
then there exists a cut-free proof of 𝐴 ` 𝐶 .

Proof. Just as in the proof of admissibility of cut for the ordered sequent cal-
culus (lemma 3.1), we use a standard lexicographic structural induction, rst
on the structure of the cut formula, and then on the structures of the given
proofs.

As usual, the cases can be classied into three categories: principal cases,
identity cases, and commutative cases.

Principal cases As usual, the principal cases pair a proof ending in a right
rule together with a proof ending in a corresponding left rule. One such
principal case is:

D1
𝐴 ` 𝐵1

𝐴 ` 𝐵1 � 𝐵2
�r1

E1
𝐵1 ` 𝐶

E2
𝐵2 ` 𝐶

𝐵1 � 𝐵2 ` 𝐶
�l

𝐴 ` 𝐶 a-cut𝐵1�𝐵2

=

D1
𝐴 ` 𝐵1

E1
𝐵1 ` 𝐶

𝐴 ` 𝐶 a-cut𝐵1

Notice that the interaction between proofs here is synchronous – the case
is resolved by appealing to the inductive hypothesis at a smaller cut for-
mula but also smaller proofs.

Identity cases In the identity cases, one of the proofs is the id rule alone. For
example:

𝐴 ` 𝐴 id𝐴 E
𝐴 ` 𝐶

𝐴 ` 𝐶 a-cut𝐴
=

E
𝐴 ` 𝐶 .

136

Commutative cases As in the proof of ordered logic’s admissible cut princi-
ple (lemma 3.1), the commutative cases are those in which one of the proofs
ends by introducing a side formula.

As an example, one right-commutative case pairs a proof of 𝐴 ` 𝐵 with
a proof of 𝐵 ` 𝐶1 �𝐶2 ending in the �r1 rule:

D
𝐴 ` 𝐵

E1
𝐵 ` 𝐶1

𝐵 ` 𝐶1 �𝐶2
�r1

𝐴 ` 𝐶1 �𝐶2
a-cut𝐵

=

D
𝐴 ` 𝐵

E1
𝐵 ` 𝐶1

𝐴 ` 𝐶1
a-cut𝐵

𝐴 ` 𝐶1 �𝐶2
�r1

Unlike in ordered logic, there can be no right-commutative cases involving
left rules because the cut formula is the only antecedent in the sequent
𝐵 ` 𝐶 . In this way, the symmetry of singleton sequents is manifest even in
proving the admissibility of cut. �

With the admissibility of cut established, we can nally prove cut elim-
ination for the singleton sequent calculus.

Theorem 8.4 (Cut elimination). If a proof of 𝐴 ` 𝐶 exists, then there exists a
cut-free proof of 𝐴 ` 𝐶 .

Proof. By structural induction on the proof of 𝐴 ` 𝐶 , appealing to the admis-
sibility of cut (lemma 8.3) when encountering a cut rule.

If we display the inductive hypothesis as an admissible rule, then the cru-
cial case in the proof of cut elimination is resolved as follows.

D1
𝐴 ` 𝐵

D2
𝐵 ` 𝐶

𝐴 ` 𝐶 cut𝐵

𝐴 `cf 𝐶
ce

=

D1
𝐴 ` 𝐵
𝐴 `cf 𝐵

ce
D2

𝐵 ` 𝐶
𝐵 `cf 𝐶

ce

𝐴 `cf 𝐶
a-cut𝐵

All other cases are handled compositionally.
This cut elimination proof amounts to dening a meta-level function for

normalizing proofs to cut-free form. �

In addition to cut elimination, we can also prove identity elimination. An
identity-long proof is one in which all applications of the id occur at propo-
sitional variables. Identity elimination transforms a proof into an identity-
long proof of the same sequent by replacing instances of the id𝐴 rule with an
identity-long proof of 𝐴 ` 𝐴.1515 Identity elimination is a slight misnomer be-

cause instances of the id rule at proposi-
tional variables will remain. Lemma 8.5 (Admissibility of identity). For all propositions 𝐴, an identity-long

proof of 𝐴 ` 𝐴 exists. Moreover, this proof is cut-free.

Proof. As usual, by induction on the structure of the proposition 𝐴. �

Theorem 8.6 (Identity elimination). If a proof of𝐴 ` 𝐶 exists, then there exists
an identity-long proof of𝐴 ` 𝐶 . Moreover, if the given proof is cut-free, so is the
identity-long proof.

Proof. As usual, by structural induction on the proof of 𝐴 ` 𝐶 . �

singleton logic 137

8.3 A semi-axiomatic sequent calculus for singleton logic

Sequent calculi are not the only way to present logics, so in this section we
also consider a Hilbert-style axiomatization of singleton logic, which can be
viewed as a sequent calculus variant that we dub the semi-axiomatic sequent
calculus.16 Our interest in a semi-axiomatic sequent calculus for singleton 16DeYoung, Pfenning, and Pruiksma 2020.

logic is not taxonomic, however. Rather, over the course of the next chap-
ter and a half, we shall see that normalization of semi-axiomatic sequent
proofs serves as the basis of a Curry–Howard isomorphism with chains of
asynchronously communicating processes.

In a sequent calculus, the meaning of a connective is given by its right
and left inference rules. Hilbert-style axiomatizations, on the other hand,
strive to use as few rules of inference as possible, with the meaning of a con-
nective instead given by a small collection of axiom schemas.

The term ‘axiom schema’ is often interpreted narrowly to mean only cat-
egorical judgments like ` 𝐴 ⊃ 𝐵 ⊃ 𝐴 ∧ 𝐵, not hypothetical judgments like
Γ, 𝐴, 𝐵 ` 𝐴 ∧ 𝐵 adopted as zero-premise rules of inference. Consequently,
Hilbert-style axiomatizations usually rely heavily on implication and amodus
ponens rule to eect the meanings of the logical connectives.

` 𝐴 ⊃ 𝐵 ` 𝐴
` 𝐵 mp

Figure 8.6: Modus ponens for a Hilbert-style
axiomatization of intuitionistic logicHowever, as explained in section 8.2, singleton logic does not enjoy the

luxury of an implication connective. So a true Hilbert-style axiomatization
that relies on a modus ponens rule as its only inference rule is not possible.
Instead, for a semi-axiomatic sequent calculus of singleton logic, we must
content ourselves with a broad interpretation of the term ‘axiom schema’ that
encompasses zero-premise rules that derive hypothetical judgments.

To construct a semi-axiomatic sequent calculus for singleton logic, wewill
ask, in turn, whether each sequent calculus rule can be reduced to a schema.

First, consider the judgmental rules, id and cut, for the identity and cut
principles (see neighboring display). With zero premises, the id rule itself 𝐴 ` 𝐴 id𝐴

𝐴 ` 𝐵 𝐵 ` 𝐶
𝐴 ` 𝐶 cut𝐵is already an axiom schema and can be adopted directly in singleton logic’s

semi-axiomatic sequent calculus.
The cut rule is not so accommodating. As a rule for composing proofs,

the cut rule serves a similar purpose to the traditional modus ponens rule.
Just as modus ponens cannot be reduced to an axiom schema, so must cut
remain a rule of inference. Moreover, because singleton logic has no implica-
tion connective, the rule’s hypothetical judgments cannot even be simplied
to categorical judgments. Therefore, the cut rule is adopted wholesale in the
semi-axiomatic sequent calculus.

Next, consider the sequent calculus’s �r1 inference rule. Using the id
axiom schema, we can obtain a zero-premise derived rule from �r1:

𝐴1 ` 𝐴1
id

𝐴1 ` 𝐴1 �𝐴2
�r1 ! 𝐴1 ` 𝐴1 �𝐴2

�r′1

138

Figure 8.8: A semi-axiomatic sequent calcu-
lus for singleton logic

propositions 𝐴, 𝐵,𝐶 F 𝑎 | 𝐴 � 𝐵 | 0 | 𝐴 N 𝐵 | >

𝐴 ` 𝐵 𝐵 ` 𝐶
𝐴 ` 𝐶 cut𝐵

𝐴 ` 𝐴 id𝐴

𝐴1 ` 𝐴1 �𝐴2
�r′1 𝐴2 ` 𝐴1 �𝐴2

�r′2
𝐴1 ` 𝐶 𝐴2 ` 𝐶
𝐴1 �𝐴2 ` 𝐶

�l

(no 0r rule) 0 ` 𝐶 0l

𝐴 ` 𝐶1 𝐴 ` 𝐶2
𝐴 ` 𝐶1 N𝐶2

Nr
𝐶1 N𝐶2 ` 𝐶1

Nl′1 𝐶1 N𝐶2 ` 𝐶2
Nl′2

𝐴 ` > >r (no >l rule)

Moreover, by combining this new �r′1 axiom schema with cut, we can re-
cover the original �r1 rule as a derived rule:

𝐴 ` 𝐵1 𝐵1 ` 𝐵1 � 𝐵2
�r′1

𝐴 ` 𝐵1 � 𝐵2
cut

!
𝐴 ` 𝐵1

𝐴 ` 𝐵1 � 𝐵2
�r1

Together, these two observations suggest that �r′1 be adopted as an axiom
schema in the semi-axiomatic sequent calculus for singleton logic. A sym-
metric �r′2 axiom schema should be adopted, too.

What about the sequent calculus’s �l rule (see neighboring display)? Can𝐵1 ` 𝐶 𝐵2 ` 𝐶
𝐵1 � 𝐵2 ` 𝐶

�l
it also be reduced to an axiom schema? Once again, singleton logic’s lack of
an implication connective prevents us from even simplifying the �l rule’s
hypothetical judgments to categorical judgments. Like cut, the sequent cal-
culus’s �l rule is thus adopted wholesale in singleton logic’s semi-axiomatic
sequent calculus. Including the additive �l rule as a primitive rule of infer-
ence is perhaps not unexpected. It is consistent with Hilbert-style axiomati-
zations of linear logic,17 which include an adjunction rule – essentially the17Avron 1988.

linear sequent calculus’s Nr rule – to eect the additive behavior that linear
implication and its multiplicative modus ponens rule cannot.

The treatment of additive conjunction is dual to that of 𝐴1 � 𝐴2: The se-
quent calculus’s Nr rule will be adopted wholesale, and Nl′1 and Nl′2 axiom
schemas will be derived from the sequent calculus’s Nl1, Nl2, and id rules.
And nally, 0 and> are treated as the nullary analogues of those of the binary

𝐴 ` 𝐶1 𝐴 ` 𝐶2
𝐴 ` 𝐶1 N𝐶2

Nr

𝐶1 N𝐶2 ` 𝐶1
Nl′1 𝐶1 N𝐶2 ` 𝐶2

Nl′2

Figure 8.7: Semi-axiomatic sequent calculus
rules for additive conjunction from singleton
logic

� and N connectives, respectively.
Figure 8.8 summarizes this semi-axiomatic sequent calculus for singleton

logic.

The semi-axiomatic sequent calculus of g. 8.8 shares many rules with
the singleton sequent calculus (g. 8.4). In fact, it is a variant in which each
connective’s non-invertible rules have been replaced with zero-premise rules.

singleton logic 139

propositions 𝐴 F 𝑎 | �ℓ∈𝐿{ℓ : 𝐴ℓ } | Nℓ∈𝐿{ℓ : 𝐴ℓ }

proof terms 𝑃 F 𝑃1 � 𝑃2 |] |
®
𝑘 | caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)
| caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) |

®
𝑘

𝐴 ` 𝑃1 : 𝐵 𝐵 ` 𝑃2 : 𝐶
𝐴 ` 𝑃1 � 𝑃2 : 𝐶 cut𝐵

𝐴 `] : 𝐴 id𝐴

(𝑘 ∈ 𝐿)
𝐴𝑘 `

®
𝑘 : �ℓ∈𝐿{ℓ : 𝐴ℓ }

�r′
∀ℓ ∈ 𝐿 : 𝐴ℓ ` 𝑃ℓ : 𝐶

�ℓ∈𝐿{ℓ : 𝐴ℓ } ` caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) : 𝐶
�l

∀ℓ ∈ 𝐿 : 𝐴 ` 𝑃ℓ : 𝐶ℓ
𝐴 ` caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) : Nℓ∈𝐿{ℓ : 𝐶ℓ }

Nr (𝑘 ∈ 𝐿)
Nℓ∈𝐿{ℓ : 𝐶ℓ } ` ®

𝑘 : 𝐶𝑘
Nl′

Figure 8.9: Proof terms for a labeled, 𝑛-ary
variant of the semi-axiomatic sequent calcu-
lus of g. 8.8

From this observation, we conjecture that every intuitionistic sequent calcu-
lus has a corresponding semi-axiomatic sequent calculus. But, in this docu-
ment, we are only interested in the semi-axiomatic sequent calculus for sin-
gleton logic, so we do not pursue this conjecture further.

This semi-axiomatic variant being so closely related to the sequent calcu-
lus, we should seek to prove that it enjoys the usual sequent calculus metathe-
orems – cut elimination and identity expansion. Strictly speaking, however,
cut elimination does not hold for the semi-axiomatic sequent calculus. As a
concrete counterexample, there is no cut-free semi-axiomatic proof of the se-
quent 𝑎2 ` 𝑎1 � (𝑎2 � 𝑎3), even though the same sequent is provable using
cut:

𝑎2 ` 𝑎2 � 𝑎3
�r′1 𝑎2 � 𝑎3 ` 𝑎1 � (𝑎2 � 𝑎3)

�r′2

𝑎2 ` 𝑎1 � (𝑎2 � 𝑎3)
cut

Although cut elimination does not hold, normal forms nevertheless exist. Nor-
mal semi-axiomatic proofs will contain cuts, but those cuts will have a par-
ticular, analytic form. In other words, although full cut elimination does not
hold, elimination of non-analytic cuts does.

8.3.1 A proof term assignment for the semi-axiomatic sequent calculus

Before presenting a proof of non-analytic cut elimination, we will take a mo-
ment to introduce a proof term assignment for the semi-axiomatic sequent cal-
culus. These proof terms will be a convenient, succinct notation with which
to describe the elimination procedure. To keep the proof terms compact, we
will also take this opportunity to introduce labeled, 𝑛-ary forms of additive
disjunction and conjunction.

Figure 8.9 presents a labeled, 𝑛-ary generalization of singleton logic’s semi-
axiomatic sequent calculus, equipped with proof terms. Individual labels ℓ
and 𝑘 are drawn from an unspecied universe of labels, and the metavariable
𝐿 is used for index sets of labels. The labeled, 𝑛-ary proposition �ℓ∈𝐿{ℓ : 𝐴ℓ }

140

generalizes binary additive disjunction, 𝐴 � 𝐵, and, because the label set
𝐿 may even be empty, it also generalizes additive falsehood, 0. Likewise,
Nℓ∈𝐿{ℓ : 𝐴ℓ } generalizes both 𝐴 N 𝐵 and >.

Because the cut rule serves to compose two proofs of compatible sequents,
the proof term 𝑃1 � 𝑃2 was chosen for its suggestion of function composition,
𝑓2 ◦ 𝑓1.18 The proof term] is used for the id rule. Because of their sim-18Notice that the order of composition in the

𝑃1 � 𝑃2 term matches the order of premises
in the cut rule, but is opposite the order tra-
ditionally used for function composition.

ilar structure, the �r′ and Nl′ rules are assigned the similar proof terms

®
𝑘 and

®
𝑘 ; the direction of the underlying arrow distinguishes them. Simi-

larly, the �l and Nr rules are assigned the proof terms caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)
and caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ). All of these terms serve as variable-free combinators.

8.3.2 Non-analytic cut elimination for the semi-axiomatic sequent calculus

With proof terms in hand, we can now return to our goal of establishing a non-
analytic cut elimination theorem for singleton logic’s semi-axiomatic sequent
calculus.

The cut elimination procedure will normalize a semi-axiomatic proof so
that any remaining cuts are analytic, specically of the forms

®
𝑘 � 𝑃 or 𝑃 �

®
𝑘 .

As shown in the neighboring display, cuts of these forms are analytic because

(𝑘 ∈ 𝐿)
Nℓ∈𝐿 {ℓ : 𝐴ℓ } `

®
𝑘 : 𝐴𝑘

Nl′
𝐴𝑘 ` 𝑃 : 𝐶

Nℓ∈𝐿 {ℓ : 𝐴ℓ } `
®
𝑘 � 𝑃 : 𝐶

cut𝐴𝑘

and

𝐴 ` 𝑃 : 𝐶𝑘

(𝑘 ∈ 𝐿)
𝐶𝑘 ` ®

𝑘 : �ℓ∈𝐿 {ℓ : 𝐶ℓ }
�r′

𝐴 ` 𝑃 �
®
𝑘 : �ℓ∈𝐿 {ℓ : 𝐶ℓ }

cut𝐶𝑘

the cut formula is a subformula of the conclusion sequent.
We say that a term is normal if it contains only cuts of these analytic forms;

the normal terms are generated by the following grammar.

𝑁,𝑀 F] | 𝑁 �
®
𝑘 |
®

𝑘 �𝑁
|
®
𝑘 | caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ)
| caseRℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) |

®
𝑘

In other words, normality is an extrinsic property of terms that is judged by
membership in the above grammar.

Non-analytic cut elimination then amounts to proof term normalization:

Theorem 8.8 (Non-analytic cut elimination). If 𝐴 ` 𝑃 : 𝐶 , then 𝐴 ` 𝑁 : 𝐶 for
some normal term 𝑁 .

Just like the sequent calculus’s cut elimination result (theorem 8.4), this
theorem can be proved by a straightforward structural induction, this time on
the given term, 𝑃 . First, however, we need the admissibility of non-analytic
cut as a lemma:

Lemma 8.7 (Admissibility of non-analytic cut). If 𝐴 ` 𝑁 : 𝐵 and 𝐵 ` 𝑀 : 𝐶 ,
then 𝐴 ` 𝑁 ′ : 𝐶 for some normal term 𝑁 ′.

Proof. As with lemma 8.3 for the sequent calculus, this lemma states the ad-
missibility of a cut principle, and its proof amounts to the denition of a meta-
level function on proofs. However, with proof terms, we can now make that
function denition more apparent.

singleton logic 141

𝐴 ` 𝑁0 : 𝐵𝑘

(𝑘 ∈ 𝐿)
𝐵𝑘 `
®
𝑘 : �ℓ∈𝐿{ℓ : 𝐵ℓ }

�r′

𝐴 ` 𝑁0 �
®
𝑘 : �ℓ∈𝐿{ℓ : 𝐵ℓ }

cut𝐵𝑘
�ℓ∈𝐿{ℓ : 𝐵ℓ } ` 𝑀 : 𝐶

𝐴 ` (𝑁0 �
®
𝑘) ˛ 𝑀 : 𝐶 a-cut𝐵

=

𝐴 ` 𝑁0 : 𝐵𝑘

(𝑘 ∈ 𝐿)
𝐵𝑘 `
®
𝑘 : �ℓ∈𝐿{ℓ : 𝐵ℓ }

�r′
�ℓ∈𝐿{ℓ : 𝐵ℓ } ` 𝑀 : 𝐶

𝐵𝑘 `
®
𝑘 ˛ 𝑀 : 𝐶 a-cut𝐵

𝐴 ` 𝑁0 ˛ (
®
𝑘 ˛ 𝑀) : 𝐶 a-cut𝐵𝑘

Figure 8.10: One of the associative cases
in the proof of non-analytic cut admissibil-
ity (lemma 8.7)

Let ˛ be a nondeterministic binary function on normal terms 𝑁 and 𝑀 of
compatible types such that 𝑁 ˛𝑀 is a normal term of the corresponding type:

𝐴 ` 𝑁 : 𝐵 𝐵 ` 𝑀 : 𝐶
𝐴 ` 𝑁 ˛ 𝑀 : 𝐶 a-cut𝐵

.

Once again, we will prove the cut principle by a lexicographic induction,
rst on the cut formula, 𝐵, and then on the structures of the given terms, 𝑁
and𝑀 . However, because the semi-axiomatic formulation uses dierent rules
than the sequent calculus, the proof’s cases are organized a bit dierently. In
addition to the usual classes of principal, identity, and commutative cases, a
new class of associative cases is introduced.

Associative cases Consider, for example, the case (𝑁0 �
®
𝑘) ˛ 𝑀 . Because the

term
®
𝑘 is itself normal, the above term can be reassociated, suggesting that

we adopt
(𝑁0 �

®
𝑘) ˛ 𝑀 = 𝑁0 ˛ (

®
𝑘 ˛ 𝑀)

as a clause in the denition of ˛. But is this clause terminating?
Yes, indeed it is. In 𝑁0 ˛ (

®
𝑘 ˛ 𝑀), the inner

®
𝑘 ˛ 𝑀 terminates because

the terms have together become smaller –
®
𝑘 is a proper subterm of 𝑁0 �

®
𝑘

– while the cut formula remains unchanged. The outer 𝑁0 ˛ (
®
𝑘 ˛ 𝑀) also

terminates, despite
®
𝑘 ˛𝑀 possibly being larger than𝑀 , because the cut for-

mula has become smaller. To aid the reader in tracking the types, g. 8.10
shows the full typing derivations.

The symmetric case, 𝑁 ˛ (
®

𝑘 �𝑀0), is also an associative case and is
handled similarly. The complete set of associative clauses is therefore:

(𝑁0 �
®
𝑘) ˛ 𝑀 = 𝑁0 ˛ (

®
𝑘 ˛ 𝑀)

𝑁 ˛ (
®

𝑘 �𝑀0) = (𝑁 ˛
®

𝑘) ˛ 𝑀0 .

Both of these associative cases detach a label and group it together with
the neighboring term, thereby enabling interactions between the label and
term.

142

Principal cases Because the above associative cases decompose the analytic
cuts 𝑁0 �

®
𝑘 and

®
𝑘 �𝑀0, the principal cases need only cover those pairings

of the �r′ rule with a proof ending in the �l rule and the symmetric
pairings involving the Nr and Nl′ rules:

®
𝑘 ˛ caseLℓ∈𝐿 (ℓ ⇒ 𝑀ℓ) = 𝑀𝑘

caseRℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛
®

𝑘 = 𝑁𝑘

If
®
𝑘 and

®
𝑘 are viewed as directed messages, then these principal clauses

in ˛’s denition look much like rules for asynchronous message-passing
communication. This observation is at the heart of the Curry–Howard
interpretation of singleton logic’s semi-axiomatic sequent calculus that we
develop in the following chapter.

Identity cases As in the proof of admissibility of cut for the sequent calcu-
lus (lemma 8.3), the identity cases cover pairings involving the id rule and
yield the following clauses.

] ˛ 𝑀 = 𝑀

𝑁 ˛] = 𝑁

Commutative cases In the remaining cases, one of the two terms has a top-
level constructor that introduces a side formula. For instance, in the cut
caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛ 𝑀 , the constructor caseLℓ∈𝐿 (ℓ ⇒ −) introduces the
side formula �ℓ∈𝐿{ℓ : 𝐴ℓ }. The left-commutative cases yield the following
clauses for the denition of ˛.

(
®

𝑘 �𝑁0) ˛ 𝑀 =
®

𝑘 � (𝑁0 ˛ 𝑀)

®
𝑘 ˛ 𝑀 =

®
𝑘 �𝑀

caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛ 𝑀 = caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ ˛ 𝑀)

In all of these clauses, the ˛ is permuted with a normal term’s top-level
constructor. The rst clause reassociates cuts, but it has a much dierent
avor than the above associative cases because

®
𝑘 is directed outward here.

There are also several right-commutative cases that are symmetric to
the preceding left-commutative cases:

𝑁 ˛ (𝑀0 �
®
𝑘) = (𝑁 ˛ 𝑀0) �

®
𝑘

𝑁 ˛
®
𝑘 = 𝑁 �

®
𝑘

𝑁 ˛ caseRℓ∈𝐿 (ℓ ⇒ 𝑀ℓ) = caseRℓ∈𝐿 (ℓ ⇒ 𝑁 ˛ 𝑀ℓ) . �

Notice that the function ˛ dened by this lemma is, in fact, nondetermin-
istic. Many nontrivial critical pairs exist, due to overlapping clauses in the
function’s denition. For instance, both

caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛ caseR𝑘∈𝐾 (𝑘 ⇒ 𝑀𝑘)
= caseLℓ∈𝐿 (ℓ ⇒ caseR𝑘∈𝐾 (𝑘 ⇒ 𝑁ℓ ˛ 𝑀𝑘))

singleton logic 143

and
caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛ caseR𝑘∈𝐾 (𝑘 ⇒ 𝑀𝑘)

= caseR𝑘∈𝐾 (𝑘 ⇒ caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ ˛ 𝑀𝑘))

hold. We conjecture that ˛ is deterministic up to commuting conversions, but
will not attempt to prove that result here.

Of course, with the addition of enough side conditions, the function ˛ could
be rened into one that is also deterministic at a purely syntactic level. But
many of the choices that would be made in breaking ties, such as between
the above two terms, seem rather arbitrary, so we prefer to have ˛ remain
nondeterministic.

With this lemma in hand, we may nally proceed to proving non-analytic
cut elimination.

Theorem 8.8 (Non-analytic cut elimination). If 𝐴 ` 𝑃 : 𝐶 , then 𝐴 ` 𝑁 : 𝐶 for
some normal term 𝑁 .

Proof. By structural induction on the proof term 𝑃 .
This theorem can be phrased as the following admissible rule.

𝐴 ` 𝑃 : 𝐶
𝐴 ` ce(𝑃) : 𝐶 ce

The principal case in proving the admissibility of this rule is:

𝐴 ` 𝑃1 : 𝐵 𝐵 ` 𝑃2 : 𝐶
𝐴 ` 𝑃1 � 𝑃2 : 𝐶 cut𝐵

𝐴 ` ce(𝑃1 � 𝑃2) : 𝐶
ce

=

𝐴 ` 𝑃1 : 𝐵
𝐴 ` ce(𝑃1) : 𝐵

ce 𝐵 ` 𝑃2 : 𝐶
𝐵 ` ce(𝑃2) : 𝐶

ce

𝐴 ` ce(𝑃1) ˛ ce(𝑃2) : 𝐶 a-cut𝐵

In this case, a cut is replaced with an appeal to the admissibility of cut. The
remaining cases are handled compositionally:

ce(𝑃1 � 𝑃2) = ce(𝑃1) ˛ ce(𝑃2)
ce(]) =]

ce(
®
𝑘) =

®
𝑘

ce(caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)) = caseLℓ∈𝐿 (ℓ ⇒ ce(𝑃ℓ))
ce(caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)) = caseRℓ∈𝐿 (ℓ ⇒ ce(𝑃ℓ))
ce(
®

𝑘) =
®

𝑘 �

8.4 Extensions of singleton logic

The usual and semi-axiomatic sequent calculi for singleton logic support var-
ious extensions. One simple but useful extension would be to introduce rst-
order universal and existential quantiers,∀𝑥 :𝜏 .𝐴 and∃𝑥 :𝜏 .𝐴, overwell-sorted
data. Variable typing assumptions, 𝑥 :𝜏 , would not be subject to the single-
antecedent restriction – the usualweakening, contraction, and exchange prop-
erties apply to variable typing assumptions.

144

Another direction for extension is to slightly relax the single-antecedent
restriction. Instead of demanding that sequents have exactly one antecedent
and exactly one consequent, we could allow each sequent to have zero or one
antecedents and zero or one consequents. With this relaxation, we arrive at
subsingleton logic, which now includes the multiplicative units 1 and ⊥.

It is even possible to modify subsingleton logic to include the ‘of course’
modality, !𝐴, from linear logic. To make this work, singleton sequents are
extended with a structural zone. Both the right and left rules for !𝐴 require
that the context be allowed to be empty, so !𝐴 is not possible for singleton
logic, only subsingleton logic.

Interestingly, the proposition 𝐴 !� 𝐵 with right and left rules

Γ; · ` 𝐵1 Γ;𝐴 ` 𝐵2
Γ;𝐴 ` 𝐵1 !� 𝐵2

!�r Γ, 𝐵1;𝐵2 ` 𝐶
Γ;𝐵1 !� 𝐵2 ` 𝐶

!�l

would, strictly speaking, not be possible for singleton logic’s sequent calculus:
the !�r rule uses an empty context. But, interestingly, such a proposition
would be possible in singleton logic’s semi-axiomatic sequent calculus: the
right rule would be replaced by

Γ, 𝐴1;𝐴2 ` 𝐴1 !�𝐴2
!�r

,

which does not violate the single-antecedent restriction.

8.5 Other related work

The singleton sequent calculus (in its innitary variant) appears indepen-
dently in work by Fortier and Santocanale on cut elimination for circular
proofs of inductive and coinductive types.19 They seem to have arrived at19 Santocanale 2002; Fortier and Santocanale

2013. the single-antecedent restriction from category-theoretic semantic consider-
ations. Fortier and Santocanale do not develop a semi-axiomatic sequent cal-
culus for singleton logic; that is a contribution of this work.

8.5.1 Connections to Basic Logic

Sambin et al. (2000) propose a system called Basic Logic in which connectives
are dened by a single denitional equation. If we apply their ideas to ordered
logic, for example, the denitional equation for alternative conjunctionwould
be

Ω ` 𝐴 Ω ` 𝐵
Ω ` 𝐴 N 𝐵

N

Read top-down, the rule is a formation rule; read bottom-up, the rule is two
implicit reection rules:

Ω ` 𝐴 Ω ` 𝐵
Ω ` 𝐴 N 𝐵

Nf Ω ` 𝐴 N 𝐵

Ω ` 𝐴 Nir1 Ω ` 𝐴 N 𝐵

Ω ` 𝐵 Nir2

singleton logic 145

The formation rule for alternative conjunction is the same as its usual sequent
calculus right rule, and the implicit reection rules correspond to natural de-
duction elimination rules for N.

To arrive at the usual sequent calculus left rules for alternative conjunction,
Sambin et al. proceed by way of what they call axioms of reection. They
obtain these axioms by trivializing the implicit reection rules:

𝐴 N 𝐵 ` 𝐴 Na1
𝐴 N 𝐵 ` 𝐵 Na2

Combining these axioms with cut, they arrive at explicit reection rules:
𝐴N 𝐵 ` 𝐴 Na1

Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴N 𝐵) Ω′

𝑅
` 𝐶 cut𝐴

Ω′
𝐿
𝐴 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 N 𝐵) Ω′

𝑅
` 𝐶 Ner1

Ω′
𝐿
𝐵 Ω′

𝑅
` 𝐶

Ω′
𝐿
(𝐴 N 𝐵) Ω′

𝑅
` 𝐶 Ner2

Alternatively, the implicit reection rules could be obtained from the explicit
reection rules by trivializing the explicit rules and then combining the re-
sulting axioms with cut. So, in fact, the implicit and explicit reection rules

Ω ` 𝐴N 𝐵 𝐴N 𝐵 ` 𝐴 Na1

Ω ` 𝐴 cut𝐴N𝐵

and axioms are all equivalent in the presence of cut.
These axioms of reection are exactly the axioms that we use in our semi-

axiomatic sequent calculus in place of the usual left rules. (They are also the
same as the decomposition rules for N from the refactored ordered sequent
calculus (g. 5.4) of chapter 5.) Their process of obtaining the explicit reec-
tion rules by combining the axioms of reection with cut matches the way
that we derive the usual left rules in our semi-axiomatic sequent calculus.
However, Sambin et al. appear to have considered the axioms of reection
only as the means to an end, and do not appear to have considered a calculus
with these axioms as primitive rules, nor a cut elimination procedure involv-
ing the axioms.

8.5.2 KeYmaera X

The semi-axiomatic sequent calculus is characterized by a mixture of sequent
calculus rules andHilbert-style axioms, with “short” cuts inwhich one premise
is an axiom. In the semi-axiomatic sequent calculus, these features are used to
express asynchronous cut reductions that correspond to asynchronous com-
munication, as we will see in chapter 9.

The proof system underlying KeYmaera X uses a related mixture of se-
quent calculus rules and Hilbert system axioms in the context of dierential
dynamic logic.20 This gives KeYmaera X a similar avor to the semi-axiomatic 20 Platzer 2017; Fulton et al. 2015.

sequent calculus. The goal is dierent, however; instead of targeting asyn-
chronous communication, KeYmaera X uses the mixture to balance the conve-
nient reasoning of a sequent calculus with the minimality of a Hilbert system.
The dience in goal accounts for the specic dierences between KeYmaera X
and the semi-axiomatic sequent calculus.

First, the KeYmaera X proof system is a purely Hilbert-like system, and
does not adopt any of sequent calculus rules as primitives. This diers from

146

the semi-axiomatic sequent calculus presented here: the semi-axiomatic cal-
culus does retain the usual sequent calculus �l and Nr rules as primitives.

The KeYmaera X tool does include sequent calculus rules as tactics that
behave like dened shorthands, not primitive rules. This feeds into a second
dierence between KeYmaera X and the semi-axiomatic sequent calculus –
one of provability vs. proofs. Having sequent calculus rules as dened short-
hands is suitable for KeYmaera X as a verication tool in which determining
provability is the goal. On the other hand, the goal of the semi-axiomatic se-
quent calculus is to provide a proof-theoretic underpinning for asynchronous
communication. In this computational setting, the particulars of the proofs
themselves, not just provability alone, are important.

Lastly, the KeYmaera X proof system uses uniform substitution to reduce
the usual axiom schemata of Hilbert systems to axioms about particular con-
crete propositions. In the semi-axiomatic sequent calculus, no notion of uni-
form substitution is used, and we content ourselves to axiom schemata.

9
Semi-axiomatic singleton sequent
proofs as session-typed process chains

In the previous chapter, we took a purely proof-theoretic view of singleton
logic and its semi-axiomatic sequent calculus. The proof terms assigned to
semi-axiomatic sequent proofs were simply syntactic objects, and the proof
of non-analytic cut elimination (theorem 8.8) described a meta-level function
for normalizing these syntactic objects.

Even in a purely proof-theoretic setting, however, the computational sug-
gestions of these syntactic manipulations were much too strong to ignore: We
saw that the principal cases in the proof of admissibility of non-analytic cuts
(lemma 8.7) are reminiscent of asynchronous message-passing communica-

®
𝑘 ˛ caseLℓ∈𝐿 (ℓ ⇒ 𝑀ℓ) = 𝑀𝑘

caseRℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛
®
𝑘 = 𝑁𝑘

tion. Following the rich tradition of Curry–Howard isomorphisms between
logics and computational systems, this chapter therefore pursues a concur-
rent computational interpretation of the semi-axiomatic sequent calculus for
singleton logic.

In particular, we will see that singleton propositions can be interpreted
as session types that describe patterns of interprocess communication (sec-
tion 9.1.2); semi-axiomatic sequent proofs can be interpreted as chains of
session-typed processes (section 9.1.3); and cut reduction can be interpreted as
asynchronous message-passing communication (section 9.1.4). For instance, a
proof of �ℓ∈𝐿{ℓ : 𝐴ℓ } corresponds to a process that sends a message carrying
some label 𝑘 ∈ 𝐿 and then continues communicating according to pattern𝐴𝑘 .

This roughly parallels a recent line of research into a Curry–Howard iso-
morphism, dubbed Sill, between the intuitionistic linear sequent calculus
and session-typed concurrent computation1 – with two key dierences. First, 1Caires, Pfenning, and Toninho 2016, 2012.

unlike Sill, we use singleton logic, not intuitionistic linear logic. This re-
stricts the process topology to chains,2 rather than the tree topology that 2Dezani-Ciancaglini et al. (2014) also consider

chains of session-typed processes with un-
named left- and right-hand channels, but
not from the logical perspective of a Curry–
Howard correspondence.

Sill permits. But this restriction should not be seen as a weakness; by lever-
aging this restriction, computation pipelines can be expressed as a logically
motivated fragment.

Second and most importantly, we use the semi-axiomatic sequent calcu-
lus, rather than a standard sequent calculus like Sill does. The use of semi-

148

axiomatic sequent proofs enables a clean and direct interpretation of cut re-
ductions as asynchronous communication, unlike the cut-reductions-as-syn-
chronous-communication view espoused by Sill.33 It is possible to give a rather ad hoc treat-

ment of asynchronous communication us-
ing Sill’s sequent proofs (DeYoung, Caires,
et al. 2012), but, in our view, the treatment
of asynchronous communication using semi-
axiomatic sequent proofs is far more elegant.

We begin, in section 9.1.1, by introducing process chains in their untyped
form as nite sequences of processes arranged in a chain topology. Then,
in section 9.1.2, we describe the structure of well-typed process expressions
that may be used in these chains, and show that the session-typing rules for
process expressions correspond to the rules of the semi-axiomatic sequent cal-
culus; section 9.1.3 presents session-typing rules for the process chains them-
selves. In section 9.1.4, we assign an operational semantics to process chains;
this operational semantics arises naturally from the semi-axiomatic proof nor-
malization procedure given in the previous chapter. Lastly, section 9.2 de-
scribes coinductively dened type and process denitions.

9.1 Process chains and process expressions

9.1.1 Untyped process chains

We envision a process chain, C, as a (possibly empty) nite sequence of pro-
cesses (𝑃𝑖)𝑛𝑖=1, each with its own independent thread of control and arranged
in a chain topology. As depicted in the adjacent gure, each process 𝑃𝑖 shares𝑃1 𝑃𝑖 𝑃𝑛

←← ← ←· · · ← ←· · · ←←

C

Figure 9.1: A prototypical process chain, C unique channels with its left- and right-hand neighbors. Along these chan-
nels, neighboring processes may interact and react, changing their own in-
ternal state. Because process chains always maintain a chain topology, the
channels need not be named – they can instead be referred to as simply the
left- and right-hand channels of 𝑃𝑖 .

A chain C does not compute in isolation, however. The left-hand channel
of 𝑃1 and the right-hand channel of 𝑃𝑛 enable the chain to interact with its
surroundings. Because these two channels are the only ones exposed to the
external environment, they may be referred to as the left- and right-hand
channels of C.

Chains may even be composed end to end by conjoining the right-hand
channel of one chain with the left-hand channel of another.

As nite sequences of processes 𝑃𝑖 , chains form a free monoid:

C,D F (C1 ‖ C2) | (·) | 𝑃 ,

where ‖ denotes left-to-right, end-to-end composition of chains4 and (·) de-4 Specically, the right endpoint of C1 will be
attached to the left endpoint of C2, with the
left endpoint of C1 and right endpoint of C2
becoming the respective left and right end-
points of C1 ‖ C2.

notes the empty chain. As a monoid, chains are subject to associativity and
unit laws (see adjacent gure). We do not distinguish chains that are equiv-

(C1 ‖ C2) ‖ C3 = C1 ‖ (C2 ‖ C3)
(·) ‖ C = C = C ‖ (·)

Figure 9.2: Monoid laws for process chains

alent up to these laws, instead treating such chains as syntactically identical.
The notation for a composition C1 ‖ C2 is intended to recall parallel com-

position of 𝜋-calculus processes, 𝑃1 | 𝑃2. However, unlike 𝜋-calculus composi-
tion, parallel composition of chains is not commutative because the sequential
order of processes within a chain matters.

semi-axiomatic singleton sequent proofs as session-typed process chains 149

Judgmental rules

𝑃1 � 𝑃2 Spawn new, neighboring threads of control for 𝑃1 and
𝑃2, then terminate the current thread of control

] Terminate the current thread of control

Internal choice, �ℓ∈𝐿{ℓ : 𝐴ℓ }

®
𝑘 , with 𝑘 ∈ 𝐿 A message to the right-hand client, carrying label 𝑘
caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) Await a message

®
𝑘 from the left-hand provider,

then continue as 𝑃𝑘

External choice, Nℓ∈𝐿{ℓ : 𝐴ℓ }
caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) Await a message

®
𝑘 from the right-hand client,

then continue as 𝑃𝑘

®
𝑘 , with 𝑘 ∈ 𝐿 A message to the left-hand provider, carrying label 𝑘

Table 9.1: Singleton session types

9.1.2 Session-typed process expressions

Thus far, we have examined the overall structure of (untyped) process chains
without detailing the internal structure of individual processes. We now turn
to the specics of well-typed processes.

As previously alluded, each of a chain’s processes constitutes its own, inde-
pendent thread of control dedicated to executing the instructions described by
a process expression 𝑃 . Processes are thus dynamic realizations of the static
process expressions, in the same way that executables run source code.5 5 It is occasionally convenient to blur this dis-

tinction, so we sometimes abuse terminol-
ogy and refer to a process expression 𝑃 as
a “process”.Reinterpreting the proof-term judgment of singleton logic’s semi-

axiomatic sequent calculus, we arrive at a session-typing judgment for pro-
cess expressions. The judgment

𝐴 ` 𝑃 : 𝐵

now means that 𝑃 is the expression for a process that oers, along its right-
hand channel, the service described by the session type 𝐵, while concurrently
using, along its left-hand channel, the service described by the type𝐴. In other
words, the right-hand neighbor acts as a client of service 𝐵 from 𝑃 , while the
left-hand neighbor of process 𝑃 acts as a provider of service 𝐴 to 𝑃 .

Session types describe the patterns by which a process is permitted to com-
municate with its left- and right-hand neighbors.

Under this reinterpretation of the basic judgment, the proof rules of the
singleton Hilbert system become session-typing rules for process expressions.
Specically, the right rules dene what it means for a provider to oer a par-
ticular service, while the left rules show how a client may use that service.

As an example, consider additive disjunction and its proof rules. From
a computational perspective, an additive disjunction �ℓ∈𝐿{ℓ : 𝐴ℓ } is inter-

150

preted as an internal choice, the type of a process that sends some label 𝑘 ∈ 𝐿
to its right-hand client and then behaves like𝐴𝑘 . Recall the �r′ and �l rules:

(𝑘 ∈ 𝐿)
𝐴𝑘 `

®
𝑘 : �ℓ∈𝐿{ℓ : 𝐴ℓ }

�r′
∀ℓ ∈ 𝐿 : 𝐴ℓ ` 𝑃ℓ : 𝐶

�ℓ∈𝐿{ℓ : 𝐴ℓ } ` caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) : 𝐶
�l

The proof term
®
𝑘 is now reinterpreted as the expression for a message, sent

to the right-hand client (as the arrow suggests), that carries the label 𝑘 as its
payload. The proof term caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) is reinterpreted as the expression
for a client process that awaits a message

®
𝑘 from its left-hand provider and

then continues the thread of control with the corresponding branch, 𝑃𝑘 .
Additive conjunction,Nℓ∈𝐿{ℓ : 𝐴ℓ }, is interpreted dually as external choice,

the type of a process that awaits a label 𝑘 ∈ 𝐿 from its client and then behaves
like 𝐴𝑘 .

∀ℓ ∈ 𝐿 : 𝐴 ` 𝑃ℓ : 𝐶ℓ
𝐴 ` caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) : Nℓ∈𝐿{ℓ : 𝐶ℓ }

Nr (𝑘 ∈ 𝐿)
Nℓ∈𝐿{ℓ : 𝐶ℓ } ` ®

𝑘 : 𝐶𝑘
Nl′

Asmight be expected, the proof terms caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) and
®

𝑘 are interpreted
symmetrically to internal choice’s

®
𝑘 and caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) expressions:

®
𝑘 is a

message to the left-hand provider, and caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) is an input process
that awaits a message from the right-hand client.

The proof term 𝑃1 � 𝑃2 for composition of proofs is now reinterpreted as
the expression for a process that will spawn new, neighboring threads of con-
trol for 𝑃1 and 𝑃2 and then terminate the original thread of control. In eect,
𝑃1 � 𝑃2 now composes process expressions.

𝐴 ` 𝑃1 : 𝐵 𝐵 ` 𝑃2 : 𝐶
𝐴 ` 𝑃1 � 𝑃2 : 𝐶 cut𝐵

For 𝑃1 � 𝑃2 to be a well-typed composition, 𝑃1 must oer the same service that
𝑃2 uses.

Proof-theoretically, the identity and cut rules are inverses, so we should
expect their process interpretations to be similarly inverse. The process ex-
pression 𝑃1 � 𝑃2 spawns threads of control, so], as its inverse, terminates
the thread of control.

𝐴 `] : 𝐴 id𝐴

9.1.3 Session-typed process chains

With the session-typing system for process expressions in hand, session types
can be assigned to process chains, too. We use a session-typing judgment

𝐴
 C : 𝐵 ,

meaning that the chain C oers, along its right-hand channel, the service 𝐵,

𝐴 · · · 𝐵

C

Figure 9.3: A well-typed process chain that
uses service 𝐴 to oer service 𝐵

while concurrently using, along its left-hand channel, the service𝐴. Similar to

semi-axiomatic singleton sequent proofs as session-typed process chains 151

individual processes, a chain C thus enjoys client and provider relationships
with its left- and right-hand environments, respectively.

The simplest session-typing rule for chains is the one that types a chain
consisting of a single running process 𝑃 :

𝐴 ` 𝑃 : 𝐵
𝐴
 𝑃 : 𝐵 c-proc

In other words, a running process has the same type as its underlying process

𝑃
𝐴 𝐵

Figure 9.4: A chain made of one well-typed
process that uses service𝐴 to oer service 𝐵

expression.
The session-typing rule for the empty chain, (·), is also fairly direct. The

empty chain oers a service 𝐴 to its right-hand client by using the service of
its left-hand provider:

𝐴
 · : 𝐴 c-id𝐴

Save for the contrasting
 turnstile and the empty chain in place of a for-
𝐴 𝐴

Figure 9.5: A well-typed empty chain that
uses service 𝐴 to oer service 𝐴warding process expression, this mirrors the id𝐴, the identity rule for process

expressions. We will see shortly that this is not a coincidence.
Finally, a parallel composition of chains, C1 ‖ C2, is well-typed only if C1

oers the same service that C2 uses, otherwise communication between C1
and C2 would be mismatched. In other words, because the right-hand end
of C1 connects to the left-hand end of C2, the two chains must use the same
protocol at those ends. This condition is reected in a cut principle for the
session-typing judgment:

𝐴
 C1 : 𝐵 𝐵
 C2 : 𝐶
𝐴
 C1 ‖ C2 : 𝐶

c-cut𝐵

(The left-hand end of C1 and the right-hand end of C2 communicate with their

C1
𝐴 C2

𝐵 𝐶

C1 ‖ C2

Figure 9.6: A well-typed process chain that
uses service 𝐴 to oer service 𝐵

respective surroundings, so those types are unrelated.)
Once again, there are strong similarities to a process expression – 𝑃1 � 𝑃2

and its cut𝐵 session-typing rule, in this case. We can make these similarities
explicit by dening a homomorphism, (−)�, from chains to process expres-
sions: This homomorphism is type-preserving:

(C1 ‖ C2)� = C�1 � C�2
(·)� =]

𝑃� = 𝑃

Figure 9.7: A homomorphism from chains to
process expressionsTheorem 9.1. If 𝐴
 C : 𝐵, then 𝐴 ` C� : 𝐵.

Proof. By structural induction on the session-typing derivation. �

At rst, the distinction between oering and using a service may seem a
bit odd, given that we placed so much emphasis on the symmetry of single-
ton sequents 𝐴 ` 𝐵. Singleton sequents are indeed symmetric, as theorem 8.2
showed. But imposing a provider–client, oer–use distinction is useful for
placing our process chains and expressions within existing conceptual frame-
works for session-typed concurrency. In particular, the distinction helps to
relate this process interpretation of singleton logic back to the Sill interpre-
tation of linear logic.6 6Caires and Pfenning 2010; Caires, Pfenning,

and Toninho 2012, 2016; Toninho et al. 2013.

152

Figure 9.8: Well-typed process expressions
and process chains

session types 𝐴, 𝐵,𝐶 F 𝛼 | �ℓ∈𝐿{ℓ : 𝐴ℓ } | Nℓ∈𝐿{ℓ : 𝐴ℓ }

process chains C,D F (C1 ‖ C2) | · | 𝑃

(C1 ‖ C2) ‖ C3 = C1 ‖ (C2 ‖ C3)
(·) ‖ C = C = C ‖ (·)

𝐴
 C1 : 𝐵 𝐵
 C2 : 𝐶
𝐴
 C1 ‖ C2 : 𝐶

c-cut𝐵
𝐴 ` · : 𝐴 c-id𝐴 𝐴 ` 𝑃 : 𝐵

𝐴
 𝑃 : 𝐵 c-proc

process expressions 𝑃,𝑄 F 𝑃1 � 𝑃2 |] |
®
𝑘 | caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)
| caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) |

®
𝑘

𝐴 ` 𝑃1 : 𝐵 𝐵 ` 𝑃2 : 𝐶
𝐴 ` 𝑃1 � 𝑃2 : 𝐶

cut𝐵
𝐴 `] : 𝐴 id𝐴

(𝑘 ∈ 𝐿)
𝐴𝑘 `

®
𝑘 : �ℓ∈𝐿{ℓ : 𝐴ℓ }

�r′
∀ℓ ∈ 𝐿 : 𝐴ℓ ` 𝑃ℓ : 𝐶

�ℓ∈𝐿{ℓ : 𝐴ℓ } ` caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) : 𝐶
�l

∀ℓ ∈ 𝐿 : 𝐴 ` 𝑃ℓ : 𝐶ℓ
𝐴 ` caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) : Nℓ∈𝐿{ℓ : 𝐶ℓ }

Nr (𝑘 ∈ 𝐿)
Nℓ∈𝐿{ℓ : 𝐶ℓ } ` ®

𝑘 : 𝐶𝑘
Nl′

semi-axiomatic singleton sequent proofs as session-typed process chains 153

9.1.4 From admissibility of non-analytic cuts to an operational semantics

In the previous chapter, we presented a procedure for normalizing semi-axio-
matic sequent proofs in singleton logic. Proof normalization was important
to establish that the singleton logic has a well-dened meaning-theoretic ex-
planation.

In this chapter, however, our perspective has shifted from proof theory
to concurrent computation, from proofs to processes. And so normalization
is no longer appropriate – we now want to expose the concurrent compu-
tational behavior, not just normal forms. The situation is analogous to that
of intuitionistic natural deduction and simply-typed functional computation:
there, proof normalization occurs in the premise of the implication introduc-
tion rule but the usual operational semantics for functional computation does
not reduce under function abstractions.

In fact, the dierence is even starker here because, once recursive process
denitions are introduced (section 9.2), many useful processes will be nonter-
minating. Thus, there is no clear notion of value, as exists in functional com-
putation. Nevertheless, in good Curry–Howard fashion, the principal cases of
semi-axiomatic proof normalization will still directly inform the operational
semantics of processes.

In the previous section, the description of how proof terms are rein-
terpreted as process expressions already hinted at a computational strategy.
Here we present that operational semantics in its full detail.

The operational semantics for process chains is centered around reduction,
a binary relation on chains which we write as −→; we will use =⇒ for the
reexive, transitive closure of reduction. Reductions may occur among any
of the chain’s processes, and thus the relation is compatible with the monoid
operation, ‖:

C1 −→ C′1
C1 ‖ C2 −→ C′1 ‖ C2

C2 −→ C′2
C1 ‖ C2 −→ C1 ‖ C′2

At the heart of reduction are two symmetric rules that describe how mes-
sages are received:

(𝑘 ∈ 𝐿)

®
𝑘 ‖ caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) −→ 𝑃𝑘

(𝑘 ∈ 𝐿)
caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) ‖

®
𝑘 −→ 𝑃𝑘

As suggested earlier, when a process caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) receives a message
from its left-hand provider, it continues the thread of control with the indi-
cated branch, 𝑃𝑘 ; the rule involving caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) is symmetric. These
two reduction rules mimic the principal proof normalization steps for single-
ton logic’s semi-axiomatic sequent proofs:

®
𝑘 ˛ caseLℓ∈𝐿 (ℓ ⇒ 𝑀ℓ) = 𝑀𝑘 and

caseRℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛
®

𝑘 = 𝑁𝑘 .
As suggested earlier, a process 𝑃1 � 𝑃2 spawns, in place, new neighboring

threads of control for 𝑃1 and 𝑃2, respectively, while the original thread of

154

control terminates; and a process] terminates its thread of control. The op-
erational semantics formalizes these notions in rules that decompose 𝑃1 � 𝑃2
and]:

𝑃1 � 𝑃2 −→ 𝑃1 ‖ 𝑃2] −→ (·)

Because process chains are always considered up to associativity and unit
laws, these reduction rules (alongwith the above ‖-compatibility rules) reect
the associative and identity normalization steps in the proof of admissibility
of non-analytic cuts (lemma 8.7). For example, just as

(𝑁0 �
®
𝑘) ˛ 𝑀 = 𝑁0 ˛ (

®
𝑘 ˛ 𝑀)

is an associative normalization step,

(𝑃0 �
®
𝑘) ‖ 𝑃1 −→= 𝑃0 ‖ (

®
𝑘 ‖ 𝑃1)

is a reduction. Similarly,] ‖ 𝑃 −→= 𝑃 is a reduction that reects the nor-
malization step] ˛ 𝑀 = 𝑀 .

These rules witness the close connection between proof normalization and
the operational semantics of processes, but one class of normalization steps
does not have a direct analogue in the operational semantics: the class of
commutative normalization steps. As a prototypical example, recall the step
involving caseL():

caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ) ˛ 𝑀 = caseLℓ∈𝐿 (ℓ ⇒ 𝑁ℓ ˛ 𝑀) .

As part of proof normalization, this step is quite natural because it progresses
toward a normal form by pushing the admissible cut, represented by the ˛ con-
structor, further in and pulling the caseLℓ∈𝐿 (ℓ ⇒ −) construction out. In the
operational semantics, however, it would be wrong to have the corresponding

caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) ‖ C −→ caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ ‖ C)

as a reduction – it inappropriately mixes dynamic and static objects by bring-
ing the chain C within the process expression caseLℓ∈𝐿 (ℓ ⇒ −).

The session-typing rules and operational semantics enjoy preservation and
progress theorems.

Theorem 9.2 (Preservation). If 𝐴
 C : 𝐵 and C −→ C′, then 𝐴
 C′ : 𝐵.

Proof. By structural induction on the given reduction, C −→ C′. �

Theorem 9.3 (Progress). If 𝐴
 C : 𝐵, then either:
• chain C can reduce, that is, C −→ C′;
• chain C is waiting to interact with its right-hand client, that is, C = C′ ‖

®
𝑘

or C = C′ ‖ caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ);
• chain C is waiting to interact with its left-hand provider, that is, C =

®
𝑘 ‖ C′

or C = caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) ‖ C′; or
• chain C is empty, that is, C = (·).

Proof. By structural induction on the typing derivation, 𝐴
 C : 𝐵. �

semi-axiomatic singleton sequent proofs as session-typed process chains 155

9.2 Coinductively dened types and process expressions

Unfortunately, there are many relatively simple computational behaviors that
cannot be described by the nitary session types thus far. For instance, a
transducer process that receives, one-by-one, a stream of input symbols and
forms an output stream by replacing each 𝑏 with an 𝑎 cannot be represented.

The solution is to introduce coinductively dened types, in a manner rem-
iniscent of the coinductively dened propositions, 𝑝− , 𝐴−, seen in sec-
tion 6.1.3. We will often write coinductively dened types with Greek letters,
such as 𝛼 , 𝐴. Coinductively dened types are not particularly useful if pro-
cess expressions remain nitary, so we also introduce mutually coinductively
dened process expressions: 𝐴 ` 𝑝 : 𝐶 , 𝑃 .

That these denitions are coinductive is guaranteed by requiring that along
every cycle among dened types and processes there is a type constructor or
process expression constructor.7 This justies an equirecursive treatment of 7This generalizes the local contractivity con-

dition described by Gay and Hole (2005).types in which type denitions may be silently unfolded (or re-folded) at will.
These mutually coinductive denitions are collected into signatures Ξ. To

verify that the denitions are well-formed, we use a judgment `Ξ′ Ξ, where
the denitions Ξ are judged according to the denitions Ξ′. The mutually
coinductive knot can be tied by using `Ξ Ξ at the top level: Ξ is well-formed
if `Ξ Ξ holds with a nite, non-circular proof.

`Ξ′ (·)
`Ξ′ Ξ 𝐴 `Ξ′ 𝑃 : 𝐶
`Ξ′ Ξ, (𝐴 ` 𝑝 : 𝐶 , 𝑃)

All of the process expression typing judgments are indexed by a well-
formed signature Ξ. A call to 𝑝 has type 𝐴 ` 𝐶 if 𝐴 ` 𝑝 : 𝐶 , 𝑃 is listed
in Ξ:

(𝐴 ` 𝑝 : 𝐶 , 𝑃) ∈ Ξ
𝐴 `Ξ 𝑝 : 𝐶

As with coinductively dened propositions, these type and process expres-
sion denitions are coinductive in only a syntactic sense. In particular, the
coinductively dened process expressions are not necessarily behaviorally
coinductive, i.e., productive. For example, 𝑝 , caseL(𝑎 ⇒

®
𝑎 � 𝑝) is not a

productive process – after receiving an initial message
®
𝑎, 𝑝 diverges without

sending or receiving any further messages.
Once coinductively dened types and process expressions are added, there

is, strictly speaking, no longer a Curry–Howard isomorphism between session-
typed process chains and the semi-axiomatic proofs of singleton logic. Im-
portantly, however, the core system remains unchanged and still enjoys the
isomorphism because the unbounded behavior is added modularly. The sit-
uation is once again analogous to the Curry–Howard isomorphism between
intuitionistic natural deduction and the simply-typed 𝜆-calculus: When the
𝜆-calculus is extended with recursive types and functions, the meaning of
the type constructor for simple function types remains unchanged and still
isomorphic with intuitionistic implication.

156

Just as a Curry–Howard isomorphism can be recovered in the 𝜆-calculus
when general recursive types are restricted to inductive and coinductive types,
work by Derakhshan and Pfenning8 and Somayyajula and Pfenning9 shows8Derakhshan and Pfenning 2020.

9 Somayyajula and Pfenning 2020. that a Curry–Howard isomorphism between session-typed process chains
and (sub-)singleton sequent calculus proofs can be recovered if types are in-
ductive or behaviorally coinductive.

9.3 Examples

9.3.1 Binary counter

We can once again revisit binary counters, this time as an example of session-
typed process chains.

session types A natural number in binary will be represented by a process
chain of type 𝜖
 𝜅, where 𝜅 is a session type that describes the service that a
counter oers and 𝜖 is a type parameter that represents a terminated counter.

The type 𝜅 of counters is given by

𝜅 , N{𝑖 : 𝜅,𝑑 : �{𝑧 : 𝜖, 𝑠 : 𝜅}}

and describes a service that oers the client a choice between incrementing
(𝑖 branch) and decrementing (𝑑 branch) the counter:

• If the client chooses to increment the counter, then the incremented counter
again oers the same service, 𝜅, to the client.

• Otherwise, if the client chooses to decrement the counter, then the provider
replies with either

®
𝑧 or
®
𝑠 depending on the counter’s value.

– If the counter’s value is 0, it cannot be decremented further and so it
emits

®
𝑧 and then terminates at type 𝜖 .

– If the counter’s value is some strictly positive natural number 𝑛, then
the provider signals that by emitting

®
𝑠 and then continues as a counter

of value 𝑛 − 1 that oers service 𝜅.

As a shorthand, we can introduce a type 𝜌 of decrement responses:

𝜅 , N{𝑖 : 𝜅,𝑑 : 𝜌}
𝜌 , �{𝑧 : 𝜖, 𝑠 : 𝜅} .

process expressions A counter will be a big-endian chain of processes
𝑏0 and 𝑏1, prexed by a process 𝑒 . For example, the chain 𝑒 ‖ 𝑏1 ‖ 𝑏0 would
represent a counter of value 2. For these chains to have type 𝜖
 𝜅, the process
expressions 𝑏0 and 𝑏1 must have type 𝜅 ` 𝜅, while 𝑒 must have type 𝜖 ` 𝜅. In
addition, to implement decrements involving 𝑏0, it is also convenient to have
a coinductively dened process expression 𝑏 ′0 of type 𝜌 ` 𝜌 .

semi-axiomatic singleton sequent proofs as session-typed process chains 157

These process expressions are dened by

𝜖 ` 𝑒 : 𝜅 , caseR(𝑖 ⇒ 𝑒 �𝑏1 | 𝑑 ⇒
®
𝑧)

𝜅 ` 𝑏0 : 𝜅 , caseR(𝑖 ⇒ 𝑏1 | 𝑑 ⇒
®

𝑑 �𝑏 ′0)
𝜅 ` 𝑏1 : 𝜅 , caseR(𝑖 ⇒

®
𝑖 �𝑏0 | 𝑑 ⇒ 𝑏0 �

®
𝑠)

𝜌 ` 𝑏 ′0 : 𝜌 , caseL(𝑧 ⇒
®
𝑧 | 𝑠 ⇒ 𝑏1 �

®
𝑠)

For instance, a 𝑏1 process that receives the
®
𝑖 increment message will spawn,

in place, neighboring threads of control for
®
𝑖 and 𝑏0 and then terminate the

original thread of control. In eect, this sends the
®
𝑖 increment message to the

more signicant bits as a carry and ips this bit to 𝑏1.
As a second example, a 𝑏0 process that receives the

®
𝑑 decrement message

should decrement the counter formed by the more signicant bits and then
analyze the response with a 𝑏 ′0 process.

• If that 𝑏 ′0 process receives a response of
®
𝑧, then the more signicant bits

had value 0 and so must the counter as a whole. According to the type 𝜌 ,
the current thread of control must produce a response of type 𝜖 ` 𝜌 , which
is easily done by sending

®
𝑧.

• Otherwise, if the 𝑏 ′0 process receives a response of ®
𝑠 , then the more signi-

cant bits had value 𝑛 + 1, for some 𝑛 ≥ 0, and the counter as a whole must
have value 2𝑛 + 1 after the decrement. This is accomplished by emitting

®
𝑠

and replacing 𝑏 ′0 with a recursive call to 𝑏1.

As an example of these processes in action, observe that 𝑒 ‖ 𝑏1 ‖
®
𝑖 ‖
®

𝑑 has
the following trace, among others.

𝑒 ‖ 𝑏1 ‖
®
𝑖 ‖
®

𝑑

−→ 𝑒 ‖ (
®
𝑖 �𝑏0) ‖

®
𝑑 −→ 𝑒 ‖

®
𝑖 ‖ 𝑏0 ‖

®
𝑑

−→ 𝑒 ‖
®
𝑖 ‖ (

®
𝑑 �𝑏 ′0) −→ 𝑒 ‖

®
𝑖 ‖
®

𝑑 ‖ 𝑏 ′0
−→ (𝑒 �𝑏1) ‖

®
𝑑 ‖ 𝑏 ′0 −→ 𝑒 ‖ 𝑏1 ‖

®
𝑑 ‖ 𝑏 ′0

−→ 𝑒 ‖ (𝑏0 �
®
𝑠) ‖ 𝑏 ′0 −→ 𝑒 ‖ 𝑏0 ‖

®
𝑠 ‖ 𝑏 ′0

−→ 𝑒 ‖ 𝑏0 ‖ (𝑏1 �
®
𝑠) −→ 𝑒 ‖ 𝑏0 ‖ 𝑏1 ‖

®
𝑠

Alternatively, we can give process denitions for 𝑖 and 𝑑 and treat 𝑒 , 𝑏0,
and 𝑏1 as messages. This is the analogue of the functional choreography from
section 6.4.2, as we will discuss more in chapter 10.

𝚤 , caseL(𝑒 ⇒
®
𝑒 �
®
𝑏1 | 𝑏0 ⇒

®
𝑏1 | 𝑏1 ⇒ 𝚤 �

®
𝑏0)

𝑑 , caseL(𝑒 ⇒
®
𝑧 | 𝑏0 ⇒ 𝑑 �𝑏 ′0 | 𝑏1 ⇒ ®

𝑏0 �
®
𝑠)

𝑏 ′0 , caseL(𝑧 ⇒
®
𝑧 | 𝑠 ⇒ 𝑑 �𝑏 ′0)

158

9.3.2 Sequential transducers

By this point in this document, the reader will likely expect either DFAs or
NFAs as our next example of session-typed process chains. Instead, we will
use sequential transducers, as introduced in chapter 2.

session types We should rst construct a type that describes the words
over an alphabet Σ, respectively. However, because the language formulated
in this chapter does not have inductive types, we cannot describe the nite
words Σ∗ alone. With the inductive session types studied by Derakhshan and
Pfenning10 and Somayyajula and Pfenning,11 that would be possible, but we10Derakhshan and Pfenning 2020.

11 Somayyajula and Pfenning 2020. do not pursue that extension here.
Instead, we will construct a type that describes the innite words over

alphabet Σ:
Σ𝜔 , �𝑎∈Σ{𝑎 : Σ𝜔 } .

A process that oers type Σ𝜔 is one that emits a sequence of messages that
correspond to an innite word over Σ. For instance, when given by the fol-
lowing denition, 𝜖 ` �̂� : Σ𝜔 is a process that corresponds to the innite
word𝑤 = 𝑎𝑏𝑏𝑎𝑏𝑏 · · · :

𝜖 ` �̂� : Σ𝜔 , �̂� � (
®
𝑏 �
®
𝑏 �
®
𝑎) .

Notice that the type parameter 𝜖 is never used directly and could be replaced
with any type 𝐴.

Using this type, we can now implement innite-word sequential transduc-
ers with well-typed process expressions.

process expressions Let T = (𝑄, 𝛿, 𝜎) be an innite-word sequential
transducer over the input and output alphabets Σ and Γ, respectively. Each
state 𝑞 ∈ 𝑄 maps words from Σ𝜔 to Γ𝜔 , and therefore ought to correspond to
a process expression 𝑞 of type Σ𝜔 ` Γ𝜔 :

Σ𝜔 ` 𝑞 : Γ𝜔 , caseL𝑎∈Σ (𝑎 ⇒ 𝑞′ �
®
𝑤R) where 𝛿 (𝑞, 𝑎) = 𝑞′ and 𝜎 (𝑞, 𝑎) = 𝑤 .

(The anti-homomorphism
®
𝑤R is dened in the adjacent gure. It is notation-

ally identical to, but formally distinct from, the anti-homomorphism from
words to contexts of right-directed atoms (g. 6.7). However, as we will see
in chapter 10, the two anti-homomorphisms are conceptually related.)

®
𝑤R =

{
] if 𝑤 = 𝜖

®
𝑤R
0 � ®

𝑎 if 𝑤 = 𝑎𝑤0

Figure 9.9: An anti-homomorphism from Γ∗

to processes of type Γ𝜔 ` Γ𝜔

For a concrete example, recall from chapter 2 the innite-word sequen-
tial transducer over Σ = Γ = {𝑎, 𝑏} (repeated in the adjacent gure) that
compresses each run of 𝑏s within the input word into a single 𝑏. BecauseT = 𝑞0

𝑎 | 𝑎

𝑞1

𝑏 | 𝑏
𝑏 | 𝜖

𝑎 | 𝑎
Figure 9.10: An innite-word sequential
transducer that compresses runs of consec-
utive 𝑏s. (Repeated from g. 2.4.)

Σ = Γ = {𝑎, 𝑏}, the types for input and output words are dened as:

Σ𝜔 , �{𝑎 : Σ𝜔 , 𝑏 : Σ𝜔 }
Γ𝜔 , �{𝑎 : Γ𝜔 , 𝑏 : Γ𝜔 } .

semi-axiomatic singleton sequent proofs as session-typed process chains 159

Following the encoding laid out above, the states 𝑞0 and 𝑞1 become process
expressions 𝑞0 and 𝑞1 of type Σ𝜔 ` Γ𝜔 dened by:

Σ𝜔 ` 𝑞0 : Γ𝜔 , caseL(𝑎 ⇒ 𝑞0 �
®
𝑎 | 𝑏 ⇒ 𝑞1 �

®
𝑏)

Σ𝜔 ` 𝑞1 : Γ𝜔 , caseL(𝑎 ⇒ 𝑞0 �
®
𝑎 | 𝑏 ⇒ 𝑞1 �]) .

Sequential transducers are closed under composition. To represent the
composition of two innite-word sequential transducers T1 and T2 as a well-
typed process, we could simply construct their composition, T = T2 ◦ T1, as
a sequential transducer in its own right and then represent the transducer T
as a well-typed process.

Even easier, however, is to directly compose the processes that represent
the transducers T1 and T2. If T1 and T2 are in states 𝑞 and 𝑠 , respectively, then
the processes Σ𝜔 ` 𝑞 : Γ𝜔 and Γ𝜔 ` 𝑠 : Δ𝜔 are well-typed and the process
Σ𝜔 ` 𝑞 � 𝑠 : Δ𝜔 describes the current state of the composition, T = T2 ◦ T1.
In fact, DeYoung and Pfenning12 prove – in a very closely related, if slightly 12DeYoung and Pfenning 2016.

dierent, framework – that cut elimination actually constructs a normal-form
process for the transducer T .

9.3.3 Turing machines

two-way infinite tape turing machine Let M = (𝑄, 𝛿) be a two-
way innite tape Turing machine over alphabet Σ. We imagine the two-way
innite tape as divided into two one-way innite halves with the machine’s
nite control, or head, sitting between them. Each of these halves will be
represented as a stream of symbols from Σ, directed inward towardM’s head.
As such, these two one-way innite halves are described by the following dual
types:13 13The involution (−)⊥ was dened in g. 8.5,

but not for coinductively dened proposi-
tions. Here we use (Σ𝜔)⊥ merely as the
name of a coinductively dened type, though
the choice of name is intended to evoke the
duality with the type Σ𝜔 .

Σ𝜔 , �𝑎∈Σ{𝑎 : Σ𝜔 }
(Σ𝜔)⊥ , N𝑎∈Σ{𝑎 : (Σ𝜔)⊥} .

That is, a process of type 𝐴 ` Σ𝜔 , for some 𝐴, acts as the left-hand one-way
innite half of the tape, whereas a process of the dual type, (Σ𝜔)⊥ ` 𝐵 for
some 𝐵, acts as the right-hand one-way innite half of the tape.

Because the machine’s head sits between these two halves of the two-way
innite tape, it ought to correspond to a process of type Σ𝜔 ` (Σ𝜔)⊥. Indeed,
for each state 𝑞 ∈ 𝑄 , we will dene two process expressions, Σ𝜔 ` ⊳𝑞 : (Σ𝜔)⊥
and Σ𝜔 ` 𝑞⊲ : (Σ𝜔)⊥, for the two heads possible in state 𝑞:

Σ𝜔 ` ⊳𝑞 : (Σ𝜔)⊥ , caseL𝑎∈Σ

(
𝑎 ⇒

{
⊳𝑞′ �

®
𝑏 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)

®
𝑏 �𝑞′⊲ if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

)
Σ𝜔 ` 𝑞⊲ : (Σ𝜔)⊥ , caseR𝑎∈Σ

(
𝑎 ⇒

{
⊳𝑞′ �

®
𝑏 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)

®
𝑏 �𝑞′⊲ if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

)
That is, a left-facing head begins by reading a symbol from its left. Depending
on the symbol that is read, the machine writes a new symbol in its place and

160

then either advances the head to the left or otherwise turns the head to face
the right. Writing a new symbol is accomplished by spawning a message
directed toward the head. Right-facing heads are symmetric.

Notice that the tape in this process implementation is truly two-way in-
nite. This is consistent with the model presented in chapter 2, but diers from
the traditional model of a Turing machine. In the traditional model, the tape
might more accurately be described as two-way unbounded – at any given
moment, the tape is nite, but can be extended. If we wanted to prove the
adequacy of our process implementation adequate with respect to traditional
Turing machines, we would have to prove adequacy for innite tapes that
behave as merely unbounded, using a distinguished blank symbol.

one-way infinite tape turing machine Because the head of a two-
way innite tape machine corresponds to a process of type Σ𝜔 ` (Σ𝜔)⊥, it is
not possible to easily compose two such machines using cut, as we had done
for sequential transducers. The types simply do not match:

Σ𝜔 ` ⊳𝑞 : (Σ𝜔)⊥ ≠ Σ𝜔 ` 𝑠⊲ : (Σ𝜔)⊥ .

However, if we use one-way innite tape Turing machines, composition of
machines is possible.

We will use the following types. The type Σ𝜔 is the same as above, but we
introduce a type (Σ∗)⊥ that will be used in describing the one-way innite
tape’s nite end.

Σ𝜔 , �𝑎∈Σ{𝑎 : Σ𝜔 }
(Σ∗)⊥ , N𝑎∈Σ{𝑎 : (Σ∗)⊥, $: Σ𝜔 }

In particular, the label $ will be used to mark the tape’s nite end.
The type name (Σ∗)⊥ was chosen to suggest a left-directed nite string,

but should not be taken too literally – as previously mentioned, the language
presented in this chapter does not have the inductive types that would be
necessary to enforce niteness. Notice, too, that any process that oers the
type (Σ∗)⊥ continues by oering Σ𝜔 when

®
$ is received, which will be crucial

in composing machines (although not exactly what would be expected of a
strict dual of Σ∗).

The machine’s head ought to correspond to a process of type Σ𝜔 ` (Σ∗)⊥.
For each state 𝑞 ∈ 𝑄 , we will dene a process Σ𝜔 ` ⊳𝑞 : (Σ∗)⊥ just like we did
for the two-way innite tape machines:

Σ𝜔 ` ⊳𝑞 : (Σ∗)⊥ , caseL𝑎∈Σ

(
𝑎 ⇒

{
⊳𝑞′ �

®
𝑏 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)

®
𝑏 �𝑞′⊲ if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

)
For each state 𝑞 ∈ 𝑄 , we will also dene a process Σ𝜔 ` 𝑞⊲ : (Σ∗)⊥ for the

right-facing head in state 𝑞. This process is mainly like the process denition
for a right-facing head in the two-way innite tape Turing machine. The

semi-axiomatic singleton sequent proofs as session-typed process chains 161

dierence is that here we have a $ branch, owing to the presence of label $ in
the type (Σ∗)⊥:

Σ𝜔 ` 𝑞⊲ : (Σ∗)⊥ , caseR𝑎∈Σ

©­­­­­­«
𝑎 ⇒

{
⊳𝑞′ �

®
𝑏 if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏, L)

®
𝑏 �𝑞′⊲ if 𝛿 (𝑞, 𝑎) = (𝑞′, 𝑏,R)

| $⇒
{
] if 𝑞 ∈ 𝐹
⊳𝑞 �

®
$ otherwise

ª®®®®®®¬
Just like the mathematical model of a one-way innite tape Turing machine,
the behavior of a right-facing head that reaches the nite end of the tape
depends on whether the current state is nal. If it is nal, then the forwarding
process causes the machine’s head to terminate, leaving the tape. Otherwise,
if the state is not nal, then the head is turned to the left using ⊳𝑞 �

®
$, where

the message
®

$ is recreated to preserve our marking of the tape’s end.
Thus, to start a machine, we would use the process

Σ𝜔 ` ⊳𝑞 �
®

$: Σ𝜔 .

Notice that this type can be readily composed. States 𝑞 and 𝑠 from dierent
machines could be easily composed with cut:

Σ𝜔 ` (⊳𝑞 �
®

$) � (⊳𝑠 �
®

$) : Σ𝜔 .

This form of composition is sequential, not parallel, because the left-facing
head ⊳𝑠 must block until the preceding machine terminates and forwards its
tape on to ⊳𝑠 .

Part IV

Relationship between
proof construction
and proof reduction

10
From processes to rewriting, and back

In the previous chapters, we have presented two dierent proof-theoretic
characterizations of concurrency: concurrency as proof construction and con-
currency as proof reduction. In this chapter, we describe the relationship be-
tween these two by identifying fragments of each that can be put into bijective
correspondence.

Section 10.1 makes the formula-as-process view of ordered rewriting (chap-
ter 6) formal by embedding session-typed processes (chapter 9) into ordered
rewriting. This embedding is execution-preserving, serving as a bisimulation
between the proof-reduction and proof-construction approaches to concur-
rency.

The embedding is quite natural. Process constructors elegantly map to
ordered logical connectives, most notably with process composition, �, em-
bedding as ordered conjunction, •.

(In fact, instead of a single embedding, there are three closely related em-
beddings – a weakly focused, strongly bisimilar embedding (section 10.1.1); a
strongly focused, strongly bisimilar embedding (section 10.1.2); and a strongly
focused, weakly bisimilar embedding (section 10.1.3) – that trade o the char-
acter of focusing discipline (strong vs. weak) and character of the bisimulation
(strong vs. weak) against how directly this correspondence between process
constructors and logical connectives is exposed.)

Section 10.1.4 examines the embeddings in the context of the binary coun-
ters. Pleasingly, when the example process expressions of section 9.3 are em-
bedded in ordered rewriting, we arrive at exactly the same coinductively de-
ned propositions as used in the choreographies of sections 6.4 and 6.5.

Lastly, and arguably most interestingly, the embedding is, syntactically
speaking, an injective mapping, and its left inverse can be leveraged to ex-
tract process expressions from (a large subset of) ordered propositions. In
section 10.2, we use this idea to reverse-engineer a session-type system for
formula-as-process ordered rewriting. Well-typed process expressions embed
to propositions that are well-typed under this new system, and vice versa.

This allows us to write global, ordered rewriting specications of concur-
rent systems and then extract local, process implementations from them, pro-

166

vided that those specications are well-typed. We can have all of the advan-
tages of global specications, together with all of the advantages of local im-
plementations. At least for the well-typed fragment, proof construction and
proof reduction are two sides of the same concurrent coin.

10.1 Embedding process congurations in formula-as-process ordered
rewriting

Here we give an embedding, È−É, of process congurations into ordered con-
texts from the formula-as-process rewriting framework of chapter 6. For the
embedding to be adequate, it must preserve the dynamics of processes – the
embedding È−Émust serve as a bisimulation between the reduction semantics
for process congurations and the formula-as-process rewriting semantics for
ordered contexts.11Because they relate process conguration re-

ductions to ordered rewritings, these bisimu-
lations are not rewriting bisimulations of the
kind introduced in chapter 7. Instead, they
are ordinary, unlabeled “reduction bisimula-
tions”, using the terminology of Sangiorgi
and Walker (2003).

Ideally, the embedding È−Éwill be a strong bisimulation, so that the corre-
spondence is lockstep. Because the embedding will be a total function, it will
be a strong bisimulation if the diagrams

C C′

ÈCÉ ÈC′É

← →

←←È−É ←← È−É

←→

and
C C′

ÈCÉ Ω′

←→

←←È−É ←← È−É

←→

hold. But strong bisimulations are often elusive, so we will be satised to
settle for a weak bisimulation if necessary.

In addition, the embedding È−É ought to be a monoid homomorphism
from process congurations to ordered contexts, so we dene

ÈC1 ‖ C2É = ÈC1É ÈC2É
È·É = (·)
È𝑃É =

with a clause for È𝑃É that remains to be lled in.
By varying how that È𝑃É clause is lled in and whether we are working

with weak focusing or full focusing (hereafter strong focusing), we will ar-
rive at three closely related embeddings: a weakly focused, strongly bisimi-
lar embedding (section 10.1.1); a strongly focused, strongly bisimilar embed-
ding (section 10.1.2); and a strongly focused, weakly bisimilar embedding (sec-
tion 10.1.3). Of these three embeddings, we prefer the rst and last because
they most directly expose an appealing correspondence between process con-
structors and logical connectives.

10.1.1 A weakly focused, strongly bisimilar embedding

For the rst embedding, we will ll in the È𝑃É clause as

È𝑃É = [𝑃]

from processes to rewriting, and back 167

Process reduction Formula-as-process rewriting constraint

𝑃 �𝑄 −→ 𝑃 ‖ 𝑄 [𝑃 �𝑄] ←→ [𝑃] [𝑄]
] −→ (·) []] ←→ (·)

®
𝑘 ‖ caseLℓ∈𝐿 (ℓ ⇒ 𝑄ℓ) −→ 𝑄𝑘 [

®
𝑘] [caseLℓ∈𝐿 (ℓ ⇒ 𝑄ℓ)] ←→ [𝑄𝑘] (𝑘 ∈ 𝐿)

caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) ‖
®

𝑘 −→ 𝑃𝑘 [caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] [
®

𝑘] ←→ [𝑃𝑘] (𝑘 ∈ 𝐿)

Table 10.1: Constraints on [−] that must be
satised if È−É is to be a strong bisimulation

where [−] is an auxiliary function that embeds process expressions. (For the
moment, we will ignore coinductively dened process expressions because
they introduce a few complications.)

With this denition for È−É in hand, we can then run each process reduc-
tion axiom through the rst bisimulation diagram to generate constraints on
[−] that must be satised if È−É is to be a strong bisimulation. These axioms
and induced constraints are summarized in table 10.1.

For example, the process reduction axiom 𝑃 �𝑄 −→ 𝑃 ‖ 𝑄 induces the
constraint [𝑃 �𝑄] ←→ [𝑃] [𝑄]. In other words, [𝑃 �𝑄] ought to decompose
compositionally in a single step.

We usually presume that the formula-as-process ordered rewriting frame-
work is strongly focused, as described in chapter 6. But suppose that we in-
stead move to a weakly focused framework, as sketched in section 5.3.2. Then
we can dene

[𝑃 �𝑄] = [𝑃] • [𝑄] which satises [𝑃 �𝑄] ←→ [𝑃] [𝑄]

because the weak focusing discipline does not invert positive propositions
eagerly. We can also dene []] = 1 which similarly satises []] ←→ (·).

𝑃 �𝑄 𝑃 ‖ 𝑄

È𝑃 �𝑄É È𝑃 ‖ 𝑄É

[𝑃] • [𝑄] [𝑃] [𝑄]

← →

←←È−É ←← È−É

= =

←→

Notice that there is a clean and direct correspondence between the process
constructor � and the logical connective • here; moreover, just as] is the
unit of �, so is its embedding the unit of the embedding of �.

The constraints on [caseLℓ∈𝐿 (ℓ ⇒ 𝑄ℓ)] can be satised by dening

[caseLℓ∈𝐿 (ℓ ⇒ 𝑄ℓ)] = N
ℓ∈𝐿

(
[
®
ℓ] \ ↑[𝑄ℓ]

)
.

Of course, because the formula-as-process framework restricts left- and right-
handed implications to have atomic premises of complementary direction
(section 6.1), this suggests that we also dene

[
®
𝑘] =

®
𝑘 ,

for otherwise the above left-handed implication will not be a well-formed
proposition. Symmetrically, we also dene

[caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] = N
ℓ∈𝐿

(
↑[𝑃ℓ] /

®
ℓ
)

[
®

𝑘] =
®

𝑘 .

168

Coinductively defined processes require a bit of extra care. As de-
scribed in section 5.3.2, the weakly focused ordered rewriting framework did
not include coinductively dened propositions. Here we assume that coin-
ductively dened negative propositions, like those of the strongly focused
formula-as-process ordered rewriting framework (section 6.1.3), also exist for
the weakly focused framework.22An argument can be made that the weakly

focused framework should include coinduc-
tively dened propositions that are only pos-
itive, not negative, in keeping with its par-
tiality toward positive propositions in stable
contexts. That is, however, at odds with the
formula-as-process interpretation of coin-
ductively dened propositions as coinduc-
tively dened processes, so we choose to
have only negative dened propositions.
Perhaps this small wrinkle could be ironed
out if denitions were treated isorecursively,
rather than equirecursively, but we choose
not to pursue that here.

To embed a process call, 𝑝 , in the weakly focused formula-as-process or-
dered rewriting framework, we will translate that process’s denition to the
denition of a coinductively dened negative proposition, 𝑝−. Then the pro-
cess call is simply embedded as

[𝑝] = ↓𝑝− .

But how should process denitions be translated?
A rst, natural attempt would be to map each process denition 𝑝 , 𝑃

to a negative proposition denition 𝑝− , ↑[𝑃]. Unfortunately, this doesn’t
quite work. It introduces a stutter in the unfolding and rewriting of dened
processes like 𝑝 , caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ). On the process side, we have the single-
step

®
𝑘 ‖ 𝑝 =

®
𝑘 ‖ caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) −→ 𝑃𝑘 .

But on the ordered rewriting side, it would take two steps to reach the same
point:

È
®
𝑘 ‖ 𝑝É =

®
𝑘 ↓𝑝− =

®
𝑘 ↓↑↓Nℓ∈𝐿 (®

ℓ \ ↑[𝑃𝑘]) −→
®
𝑘 ↓Nℓ∈𝐿 (®

ℓ \ ↑[𝑃𝑘]) −→ [𝑃𝑘] ,

for all 𝑘 ∈ 𝐿. The extra step is caused by the ↑↓ double shift, with the ↑ shift
arising from the way we are trying to translate denitions, and with the ↓
shift arising from [caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)].

Fortunately, this stuttering can be eliminated with a more careful transla-
tion of process denitions. Instead of blindly inserting an ↑ shift in front of
[𝑃], let’s construct a negative proposition by stripping o the outermost ↓
shift if [𝑃] has the form ↓𝐴−, and otherwise inserting an ↑ shift:

ÈΞ, (𝑝 , 𝑃)É = ÈΞÉ,
(
𝑝− ,

{
𝐴− if [𝑃] = ↓𝐴−

↑[𝑃] otherwise

)
È·É = (·)

Now a dened process like 𝑝 , caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) is translated as

È𝑝 , caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)É =
(
𝑝− , Nℓ∈𝐿 (®

ℓ \ ↑[𝑃ℓ])
)
,

which does not induce the stutter:

È
®
𝑘 ‖ 𝑝É =

®
𝑘 ↓𝑝− =

®
𝑘 ↓Nℓ∈𝐿 (®

ℓ \ ↑[𝑃𝑘]) −→ [𝑃𝑘] ,

for all 𝑘 ∈ 𝐿.

from processes to rewriting, and back 169

In total, the embedding of process congurations and process expres-
sions into a weakly focused formula-as-process ordered rewriting framework
is summarized in g. 10.1.

ÈC1 ‖ C2É = ÈC1É ÈC2É

È·É = (·)

È𝑃É = [𝑃]
and
ÈΞ, (𝑝 , 𝑃)É

= ÈΞÉ,
(
𝑝− ,

{
𝐴− if [𝑃] = ↓𝐴−

↑[𝑃] otherwise

)
È·É = (·)

where
[𝑃1 � 𝑃2] = [𝑃1] • [𝑃2]

[]] = 1

[
®
𝑘] =

®
𝑘

[caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] = ↓Nℓ∈𝐿 (®
ℓ \ ↑[𝑃ℓ])

[caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] = ↓Nℓ∈𝐿 (↑[𝑃ℓ] / ®
ℓ)

[
®
𝑘] =

®
𝑘

[𝑝] = ↓𝑝−

Figure 10.1: A strongly bisimilar embedding
of process congurations within aweakly fo-
cused formula-as-process ordered rewriting
framework

Notice that, with the exception of a small wrinkle in the translation of pro-
cess denitions, this embedding is quite clean and direct. Especially appealing
is the close correspondence between process constructors and logical connec-
tives noted previously. Moreover, the embedding is a strong bisimulation:

Theorem 10.1 (Adequacy of È−É). Under the weakly focused formula-as-pro-
cess ordered rewriting framework, È−É constitutes a strong bisimulation. That
is:
• If C −→ C′, then ÈCÉ −→ ÈC′É.
• If ÈCÉ −→ Ω′+, then there exists a conguration C′ such that C −→ C′
and ÈC′É = Ω′+.

Proof. The rst part is by induction on the process conguration reduction,
C −→ C′; the second part is by induction on the weakly focused formula-as-
process ordered rewriting, ÈCÉ −→ Ω′+. �

10.1.2 A strongly focused, strongly bisimilar embedding

One might object to the preceding embedding’s reliance on weak focusing to
achieve strong bisimilarity. Needing to switch from strong focusing to the
more exotic weak focusing is admittedly a blemish, but one that is hidden by
the appealing correspondence of the process constructors with logical con-
nectives.

If one insists upon strong focusing, there is nevertheless a way forward.
Recall from section 5.3.2 that weak focusing can be embedded within strong
focusing by the careful addition of shifts. The (−)� embedding described there
could be composed with the [−] embedding of processes described above. For
example, the composed embedding of 𝑃1 � 𝑃2 would be

[𝑃1 � 𝑃2]� = ↑
(
•([𝑃1]�) • •([𝑃2]�)

)
,

which satises [𝑃1 � 𝑃2]� −→ [𝑃1]� [𝑃2]� in the strong focusing framework.
Using such a composition via È𝑃É = [𝑃]� would turn È−É into a strongly
bisimilar embedding of process congurations within the strongly focused
formula-as-process ordered rewriting framework. (For a denition of the em-
bedding for process denitions, see g. 10.2.)

ÈC1 ‖ C2É = ÈC1É ÈC2É

È·É = (·)

È𝑃É = [𝑃]�

and
ÈΞ, (𝑝 , 𝑃)É

= ÈΞÉ, ©­«𝑝− ,

[𝑃]� if 𝑃 ≠

®
𝑘,
®
𝑘

↑[𝑃]� otherwise
ª®¬

È·É = (·)

where [𝑃] is dened exactly as in g. 10.1:

[𝑃1 � 𝑃2] = [𝑃1] • [𝑃2]

[]] = 1

[
®
𝑘] =

®
𝑘

[caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] = ↓Nℓ∈𝐿 (®
ℓ \ ↑[𝑃ℓ])

[caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] = ↓Nℓ∈𝐿 (↑[𝑃ℓ] / ®
ℓ)

[
®
𝑘] =

®
𝑘

[𝑝] = ↓𝑝−

Figure 10.2: A strongly bisimilar embedding
of process congurations within the strongly
focused formula-as-process ordered rewrit-
ing framework

Explicit weak focusing is not needed, as long as we are satised with a
somewhat more complex embedding that obscures the correspondence be-
tween process constructors and logical connectives. However, we do not
dwell further on this embedding, instead viewing it as of secondary value
because we do prefer the more direct correspondence. Moreover, as we will
now show, strong focusing does not exclude a more direct correspondence.

170

10.1.3 A strongly focused, weakly bisimilar embedding

If we abandon our desire for a strong bisimulation and content ourselves with
a weak bisimulation that operates on the strongly focused rewriting frame-
work, then we can, in fact, retain the direct and appealing correspondence
with logical connectives. Without changing the denition of [−] at all, let us
dene È−É by

ÈC1 ‖ C2É = ÈC1É ÈC2É
È·É = (·)
È𝑃É = Ω where [[𝑃]]
Ω .

Notice that Ω is unique, based on properties of the right focus judgment (see
chapter 6). Decomposing the process expression 𝑃 �𝑄 now takes no time at

ÈC1 ‖ C2É = ÈC1É ÈC2É

È·É = (·)

È𝑃É = Ω where [[𝑃]]
Ω

and where ÈΞÉ and [𝑃] are dened exactly
as in g. 10.1:

ÈΞ, (𝑝 , 𝑃)É

= ÈΞÉ,
(
𝑝− ,

{
𝐴− if [𝑃] = ↓𝐴−
↑[𝑃] otherwise

)
È·É = (·)

and
[𝑃1 � 𝑃2] = [𝑃1] • [𝑃2]
[]] = 1

[
®
𝑘] =

®
𝑘

[caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] = ↓Nℓ∈𝐿 (®
ℓ \ ↑[𝑃ℓ])

[caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)] = ↓Nℓ∈𝐿 (↑[𝑃ℓ] / ®
ℓ)

[
®
𝑘] =

®
𝑘

[𝑝] = ↓𝑝−

Figure 10.3: A weakly bisimilar embedding
of process congurations within the strongly
focused formula-as-process ordered rewrit-
ing framework

all in its embedded form:

𝑃 �𝑄 𝑃 ‖ 𝑄

and yet

È𝑃 �𝑄É È𝑃É È𝑄É È𝑃 ‖ 𝑄É .

← →

= =

It is this mismatch that makes this version of È−É a weak, not strong, bisim-
ulation.

Theorem 10.2. Under the strongly focused formula-as-process ordered rewrit-
ing framework, È−É constitutes only a weak bisimulation. That is:
• If C −→ C′, then either ÈCÉ −→ ÈC′É or ÈCÉ = ÈC′É. More speci-
cally, if C −→ C′ arises from the receipt of a message, then ÈCÉ −→ ÈC′É;
otherwise, ÈCÉ = ÈC′É.

• If ÈCÉ −→ Ω′, then there exists a conguration C′ such that C −→+ C′
and ÈC′É = Ω′.

Proof. The rst part is by induction on the process conguration reduction,
C −→ C′; the second part is by induction on the strongly focused formula-
as-process ordered rewriting, ÈCÉ −→ Ω′. �

By using the [−] function unchanged and only substituting the clause
È𝑃É = [𝑃] with È𝑃É = Ω where [[𝑃]]
Ω, it is clear that this new version
of the È−É bisimulation is weak only because positive propositions are now
eagerly inverted. That is to say, the weakness of the bisimulation is a purely
administrative artifact that is unrelated to the main computational aspects.

10.1.4 Examples and other comments

In summary, we have three distinct embeddings of process expressions and
congurations within focused formula-as-process ordered rewriting. Focus-
ing, be it weak or strong, is essential to these embeddings. If the unfocused

from processes to rewriting, and back 171

Focusing Bisimilarity Key clause

weakly focused strongly bisimilar È𝑃É = [𝑃]
strongly focused strongly bisimilar È𝑃É = [𝑃]�
strongly focused weakly bisimilar È𝑃É = Ω where [[𝑃]]
Ω

Table 10.2: A summary of the process embed-
dings

form of ordered rewriting were used, no bisimulation along these lines ap-
pears to be possible, not even a weak one. For instance, in a hypothetical
unfocused embedding, we would likely have

ÈcaseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ)É = Nℓ∈𝐿 (®
ℓ \ [𝑃ℓ]) −→

®
𝑘 \ [𝑃𝑘]

if 𝑘 ∈ 𝐿, but there is no conguration C′ such that caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) =⇒ C′
and ÈC′É =

®
𝑘 \ [𝑃𝑘].

As examples of the preceding embeddings, let us revisit our two running
examples: binary counters and DFAs.

Recall from section 9.3.1 that a binary counter can be implemented by the
coinductively dened processes

Ξ =
(
𝑒 , caseR(𝑖 ⇒ 𝑒 �𝑏1 | 𝑑 ⇒

®
𝑧)

)
,(

𝑏0 , caseR(𝑖 ⇒ 𝑏1 | 𝑑 ⇒
®

𝑑 �𝑏 ′0)
)
,(

𝑏1 , caseR(𝑖 ⇒
®
𝑖 �𝑏0 | 𝑑 ⇒ 𝑏0 �

®
𝑠)

)
,(

𝑏 ′0 , caseL(𝑧 ⇒
®
𝑧 | 𝑠 ⇒ 𝑏1 �

®
𝑠)

)
What coinductively dened propositions arise from embedding these process
denitions?

Under the strongly focused, weakly bisimilar embedding, the process de-
nition for 𝑏0 becomes the coinductively dened proposition given by

È𝑏0 , caseR(𝑖 ⇒ 𝑏1 | 𝑑 ⇒
®

𝑑 �𝑏 ′0)É =
(
𝑏−0 , (↑↓𝑏−1 / ®

𝑖) N (↑(
®

𝑑 • ↓𝑏 ′0−) / ®
𝑑)

)
.

This dened proposition is exactly the same as the one produced in section 6.4.1
as the object-oriented choreography of the counter’s initial string rewriting
specication. (Here, for completeness, we have included even the minimally
necessary shifts that we would usually elide.) Even the ↑↓ double shift in front
of 𝑏−1 is correctly produced for free by the embedding.

The same is true of the other process denitions: embedding them yields
exactly the same coinductively dened propositions as in the binary counter’s
object-oriented choreography shown in section 6.4.1.

ÈΞÉ = Φ =
(
𝑒− , (↑(↓𝑒− • ↓𝑏−1) / ®

𝑖) N (↑
®
𝑧 /
®

𝑑)
)
,(

𝑏−0 , (↑↓𝑏−1 / ®
𝑖) N (↑(

®
𝑑 • ↓𝑏 ′0−) / ®

𝑑)
)
,(

𝑏−1 , (↑(®
𝑖 • ↓𝑏−0) / ®

𝑖) N (↑(↓𝑏−0 •®
𝑠) /

®
𝑑)

)
,(

𝑏 ′0
− , (

®
𝑧 \ ↑
®
𝑧) N (

®
𝑠 \ ↑(↓𝑏−1 •®

𝑠))
)

172

(Actually, the same denitions arise when using the weakly focused, strongly
bisimilar embedding because it treats process denitions in the same way as
the strongly focused, weakly bisimilar embedding does.)

Similarly, recall from section 6.4.2 the functional-style process denitions
for the binary counter:

Ξ′ =
(
𝑖 , caseL(𝑒 ⇒

®
𝑒 �
®
𝑏1 | 𝑏0 ⇒

®
𝑏1 | 𝑏1 ⇒ 𝑖 �

®
𝑏0)

)
,(

𝑑 , caseL(𝑒 ⇒
®
𝑧 | 𝑏0 ⇒ 𝑑 �𝑏 ′0 | 𝑏1 ⇒ ®

𝑏0 �
®
𝑠)

)
,(

𝑏 ′0 , caseL(𝑧 ⇒
®
𝑧 | 𝑠 ⇒

®
𝑏1 �
®
𝑠)

)
.

By embedding denitions, we arrive at exactly the same coinductively dened
propositions as in the functional choreography of the binary counter shown
in section 6.4.2:

ÈΞ′É = Φ′ =
(
𝚤− , (

®
𝑒 \ ↑(

®
𝑒 •
®
𝑏1)) N (

®
𝑏0 \ ↑

®
𝑏1) N (

®
𝑏1 \ ↑(↓𝚤− •

®
𝑏0)) ,(

𝑑− , (
®
𝑒 \ ↑
®
𝑧) N (

®
𝑏0 \ ↑(↓𝑑− • ↓𝑏−0)) N (®

𝑏1 \ ↑(
®
𝑏0 •
®
𝑠)) ,(

𝑏 ′0
− , (

®
𝑧 \ ↑
®
𝑧) N (

®
𝑠 \ ↑(

®
𝑏1 •
®
𝑠))

)
.

(Once again, the same denitions arise from the weakly focused, strongly
bisimilar embedding.)

Although we do not show the details here, the same holds true for DFAs,
innite-word sequential transducers, and even Turing machines: Embedding
the process denitions from section 9.3 yields the same coinductively dened
propositions as the choreographies from sections 6.5.1 and 6.5.2, in the case
of DFAs, or the choreographies that we would have naturally written, in the
case of transducers and Turing machines.

10.2 A session type system for ordered rewriting

The preceding embeddings describe bisimulations between process expres-
sions and certain ordered propositions; process congurations and certain
ordered contexts. Because the formula-as-process ordered rewriting frame-
works are untyped, these embeddings discard type information when trans-
lating process expressions and congurations. But is that really necessary?
Can the bisimilarity witnessed by these embeddings be leveraged to engineer
a session type system for formula-as-process ordered rewriting from the ses-
sion type system for processes?

Consider, for example, the process expression
®
𝑘1 �

®
𝑘2. Although syntacti-

cally well-formed, this process expression is not typable: to be typable, the
type at the interface between

®
𝑘1 and

®
𝑘2 would be faced with the impossible

task of simultaneously being both an internal and external choice. Yet even
this untypable process expression can be embedded:

[
®
𝑘1 �

®
𝑘2] =

®
𝑘1 •

®
𝑘2 .

But the question is, can the image of well-typed process expressions under
this embedding be characterized?

from processes to rewriting, and back 173

The idea is to engineer a session type system for ordered propositions, based
on a judgment 𝐴 ` 𝐴+ : 𝐵, such that the following theorem will hold.

Theorem 10.3. 𝐴 `Φ 𝐴+1 : 𝐵 if, and only if, there exist process denitions Ξ and
a process expression 𝑃 such that 𝐴 `Ξ 𝑃 : 𝐵 and ÈΞÉ = Φ and [𝑃] = 𝐴+1 .

In the judgment𝐴 ` 𝐴+1 : 𝐵 and this theorem, 𝐴 and 𝐵 are (Curry–Howard in-
terpretations of) singleton propositions that function as session types, where-
as 𝐴+1 is a formula-as-process positive ordered proposition that functions as
an embedded process expression.

To construct such a type system, we can simply apply the embedding to
session typing rules for process expressions. For instance, take the session
typing rule for a process expression 𝑃 �𝑄 . If we apply the embedding to that
rule, we arrive at:[

𝐴 ` 𝑃 : 𝐵 𝐵 ` 𝑄 : 𝐶
𝐴 ` 𝑃 �𝑄 : 𝐶 cut𝐵

]

𝐴 ` [𝑃] : 𝐵 𝐵 ` [𝑄] : 𝐶
𝐴 ` [𝑃 �𝑄]

=

[𝑃] • [𝑄]

: 𝐶

This embedded rule suggests that ordered conjunctions𝐴+1 •𝐴+2 be typed with
a cut-like rule:

𝐴 ` [𝑃] : 𝐵 𝐵 ` [𝑄] : 𝐶
𝐴 ` [𝑃 �𝑄]

=

[𝑃] • [𝑄]

: 𝐶

𝐴 ` 𝐴+1 : 𝐵 𝐵 ` 𝐴+2 : 𝐶
𝐴 ` 𝐴+1 •𝐴+2 : 𝐶 cut𝐵

By this procedure, we can also reverse-engineer session-typing rules for the
other polarized positive propositions from the session-typing rules for pro-
cess expressions. We arrive at:

𝐴 ` 𝐴+1 : 𝐵 𝐵 ` 𝐴+2 : 𝐶
𝐴 ` 𝐴+1 •𝐴+2 : 𝐶 cut𝐵

𝐴 ` 1 : 𝐴 id𝐴

(𝑘 ∈ 𝐿)
𝐴𝑘 `

®
𝑘 : �ℓ∈𝐿{ℓ : 𝐴ℓ }

�r′
∀ℓ ∈ 𝐿 : 𝐴ℓ ` 𝐴+ℓ : 𝐶

�ℓ∈𝐿{ℓ : 𝐴ℓ } ` ↓Nℓ∈𝐿 (®
ℓ \ ↑𝐴+ℓ) : 𝐶

�l

∀ℓ ∈ 𝐿 : 𝐴 ` 𝐴+ℓ : 𝐵ℓ
𝐴 ` ↓Nℓ∈𝐿 (↑𝐴+ℓ / ®

ℓ) : Nℓ∈𝐿{ℓ : 𝐵ℓ }
Nr

(𝑘 ∈ 𝐿)
Nℓ∈𝐿{ℓ : 𝐵ℓ } ` ®

𝑘 : 𝐵𝑘
Nl′

((𝐴 ` 𝑝− , 𝐴−0 : 𝐵) ∈ Φ)
𝐴 `Φ ↓𝑝− : 𝐵

At rst, these rules may be a bit startling. It’s especially surprising to see
the proposition 𝐴+1 • 𝐴+2 typed without splitting the context and the proposi-
tion 1 typed with a nonempty context to its left. But once viewed from the
formula-as-process perspective, these rules become quite natural: 𝐴+1 •𝐴+2 is a
composition of process expressions and cut-as-composition is familiar; and 1

174

is a forwarding process, so using the identity rule is not that surprising after
all. Moreover, just as identity serves as the unit of cut, so does 1 serve as the
unit of •.

Now we can prove the adequacy of these typing rules for positive propo-
sitions.

Theorem 10.3. 𝐴 `Φ 𝐴+1 : 𝐵 if, and only if, there exist process denitions Ξ and
a process expression 𝑃 such that 𝐴 `Ξ 𝑃 : 𝐵 and ÈΞÉ = Φ and [𝑃] = 𝐴+1 .

Proof. From left to right, by structural induction on the typing derivation
of 𝐴 `Φ 𝐴+1 : 𝐵; from right to left, by structural induction on the typing
derivation of 𝐴 `Ξ 𝑃 : 𝐵. �

This would be an extremely strong theorem if not for the specicity of the
�l and Nr rules above. These rules do not assign a type to general neg-
ative propositions like 𝐴− N 𝐵−. Instead, only the restricted propositions
↓Nℓ∈𝐿 (↑𝐴+ℓ / ®

ℓ) and ↓Nℓ∈𝐿 (®
ℓ \ ↑𝐴+ℓ) are typable. This is because we want

these reverse-engineered typing rules to correspond to the image of the pro-
cess expression typing rules. In general,𝐴−N𝐵− describes a nondeterministic
choice, something that is not present in the syntax of session-typed process
expressions.3 Even so, the theorem is quite strong.3This suggests the possibility of introducing a

well-typed form of nondeterministic choice.
We discuss this idea further in section 11.1.

As a nal remark, we would like to point out that the 0-ary forms of the
above �l and Nr rules need careful consideration. Because we identify a 0-
ary alternative conjunction with >, the 0-ary forms of these rules can lead
to a system in which two dierent typings of > are possible: 0 ` > : 𝐶
and 𝐴 ` > : >. For this reason, we disallow 0-ary alternative conjunctions
and require that the label set 𝐿 is nonempty. Disallowing 0-ary alternative
conjunctions is not a signicant sacrice, for empty label sets 𝐿 are extremely
unusual in practice.

Coinductively defined propositions can also be given session-typing
rules. These take the form of rules verifying that a collection of mutually
coinductive denitions is well-typed. The judgment is `Φ′ Φ, where the def-
initions Φ are judged according to the denitions Φ′. The standard trick of
tying the mutually recursive knot by using `Φ Φ at the top level is used: Φ is
well-typed if `Φ Φ holds.

`Φ′ (·)
(𝐴−0 ≠ ↑𝐵+0) `Φ′ Φ 𝐴 `Φ′ ↓𝐴−0 : 𝐵

`Φ′ Φ, (𝐴 ` 𝑝− , 𝐴−0 : 𝐵)
`Φ′ Φ 𝐴 `Φ′ 𝐴+0 : 𝐵

`Φ′ Φ, (𝐴 ` 𝑝− , ↑𝐴+0 : 𝐵)

These rules can be derived by the same kind of reasoning as used for the above
proposition typing rules. In particular, the peculiarities of the embedding ÈΞÉ
for process denitions explains why the above two rules distinguish cases on
whether or not the denition’s body begins with an ↑ shift.

We may prove the following theorem.

Theorem 10.4. `Φ′ Φ if, and only if, there exist process denitions Ξ and Ξ′

such that `Ξ′ Ξ and ÈΞÉ = Φ and ÈΞ′É = Φ′.

from processes to rewriting, and back 175

Proof. From left to right, by structural induction on the typing derivation of
`Φ′ Φ; from right to left, by structural induction on `Ξ′ Ξ. �

Ordered contexts can be given session-typing rules, too. Once again, we
can derive these rules by applying the embeddings to the conguration typ-
ing rules of section 9.1.3. However, the particulars of ordered contexts dier
between the weakly focused and strongly focused frameworks: weakly fo-
cused contexts are built from positive propositions, whereas strongly focused
contexts are built from negative propositions and positive atoms. So we will
actually have two sets of session-typing rules for ordered contexts, using the
one that matches the style of focusing in eect.

For the weakly focused framework, the judgment will be 𝐴
Φ Ω+ : 𝐵,
where the denitions Φ are typically elided because they are passed from
conclusion to premises unchanged. In the weakly focused framework, the
strongly bisimilar embedding yields the following three session-typing rules
for ordered contexts.

𝐴
 Ω+1 : 𝐵 𝐵
 Ω+2 : 𝐶
𝐴
 Ω+1 Ω

+
2 : 𝐶 c-cut𝐵

𝐴
 · : 𝐴 c-id𝐴

𝐴 ` 𝐴+1 : 𝐵
𝐴
 𝐴+1 : 𝐵 c-proc

In particular, the nal rule can be understood as arising from the weakly fo-
cused, strongly bisimilar embedding’s clause È𝑃É = [𝑃].

Theorem 10.5. 𝐴
Φ Ω+ : 𝐵 if, and only if, there exists a conguration C such
that 𝐴
Ξ C : 𝐵 and ÈΞÉ = Φ and ÈCÉ = Ω+.

Proof. From left to right, by structural induction on the typing derivation
of 𝐴
Φ Ω+ : 𝐵; from right to left, by structural induction on the typing
derivation of 𝐴
Ξ C : 𝐵. �

If the strongly focused framework is instead being used, then we will use a
dierent set of session-typing rules for ordered contexts, owing to the fact that
ordered contexts are now based on negative propositions and positive atoms,
not positive propositions. The strongly focused, weakly bisimilar embedding
uses the clause È𝑃É = Ω where [[𝑃]]
Ω. Consequently, the following
c-proc rule makes use of the right focus pattern judgment to invert a positive
proposition to an ordered context.

𝐴
 Ω1 : 𝐵 𝐵
 Ω2 : 𝐶
𝐴
 Ω1 Ω2 : 𝐶

c-cut𝐵
𝐴
 · : 𝐴 c-id𝐴

[𝐴+]
Ω 𝐴 ` 𝐴+ : 𝐵
𝐴
 Ω : 𝐵 c-proc

With these rules, we can prove a result of the now familiar form.

176

Theorem 10.6. 𝐴
Φ Ω : 𝐵 if, and only if, there exists a conguration C such
that 𝐴
Ξ C : 𝐵 and ÈΞÉ = Φ and ÈCÉ = Ω.

Proof. From left to right, by structural induction on the typing derivation of
𝐴
Φ Ω : 𝐵; from right to left, by structural induction on 𝐴
Ξ C : 𝐵. �

11
Conclusion

In this document, we have explored two proof-theoretic characterizations of
concurrency – proof construction and proof reduction – in the context of
concurrent systems that have chain topologies.

On the proof-construction side, we have shown a new way of systemati-
cally deriving a rewriting framework from the ordered sequent calculus (chap-
ter 5), and identied a message-passing fragment of that framework (chap-
ter 6). We have shown how to take string rewriting specications of concur-
rent systems (chapter 4) and choreograph them into message-passing ordered
rewriting (chapter 6).

On the proof-reduction side, we have uncovered a semi-axiomatic sequent
calculus for singleton logic, a logic that restricts sequents to have exactly one
antecedent (chapter 8). We have demonstrated that the semi-axiomatic nature
of this calculus gives rise to a clean correspondence between proof normal-
ization and asynchronous message-passing communication (chapter 9).

Lastly, we have shown that the asynchronous processes that arise from the
semi-axiomatic sequent calculus for singleton logic can be faithfully embed-
ded within the message-passing ordered rewriting framework (chapter 10).
This has provided a relationship between the proof-construction and proof-
reduction characterizations of concurrency.

This document now closes by discussing a few avenues for future work.

11.1 Potential avenues for future work

11.1.1 From ordered rewriting to multiset rewriting, singleton processes to linear
processes

One obvious avenue for future work is to extend the ideas in this document to
linear logic. We conjecture that the string rewriting specications of chapter 4
would be replaced with multiset rewriting specications;1 the formula-as- 1Meseguer 1992.

process ordered rewriting of chapter 6, with formula-as-process linear rewrit-
ing based on the focused linear sequent calculus;2 and the singleton processes 2Miller 1992; Cervesato and Scedrov 2009.

of chapter 9, with Sill processes.3 3Caires, Pfenning, and Toninho 2016.

178

For instance, in the formula-as-process ordered rewriting choreography of
the binary counter (section 6.4.1), we used the coinductively dened proposi-
tion 𝑏0 given by

𝑏0 , (↑↓𝑏1 /
®
𝑖) N (↑(

®
𝑑 • ↓𝑏 ′0) / ®

𝑑) ,

where here all of the shifts have been made explicit. With a move to rewrit-
ing based on linear logic, rather than ordered logic, we would likely use the
coinductively dened proposition 𝑏0 (𝑥, 𝑦) given by

𝑏0 (𝑥, 𝑦) ,
(
∀𝑦 ′. 𝑖 (𝑦, 𝑦 ′) (↑↓𝑏1 (𝑥, 𝑦 ′)

)
N

(
∀𝑦 ′. 𝑑 (𝑦, 𝑦 ′) (↑∃𝑥 ′. 𝑑 (𝑥, 𝑥 ′) � ↓𝑏 ′0 (𝑥 ′, 𝑦 ′)

)
,

togetherwith similar dened linear propositions 𝑒 (𝑥, 𝑦),𝑏1 (𝑥, 𝑦), and𝑏 ′0 (𝑥, 𝑦).
Here the rst-order parameters 𝑥 and 𝑦 thread together propositions in the
context in a way that maintains the binary counter’s essential structure. In
line with work by Simmons and Pfenning (2011b), 𝑏0 (𝑥, 𝑦) is the destination-
passing embedding of 𝑏0. In a formula-as-process interpretation, the destina-
tions 𝑥 and 𝑦 can be viewed as channels that connect processes.

This example, however, does not fully exploit the expressive power of rst-
order linearity because the binary counter still has a chain topology. Because
Sill processes admit tree topologies, dened propositions that use destina-
tions in a tree topology should be allowed. But a judgment for checking
that destinations do not form cycles would likely be needed, for otherwise
a destinations-as-channels interpretation would lead to ill-formed Sill pro-
cesses.

We would also need to characterize a general procedure for choreograph-
ing multiset rewriting specications, in the vein of what was presented in
chapter 6 for string rewriting specications.

11.1.2 First-order extension

Another avenue for future work would be to extend the results contained in
this document to rst-order, not propositional, ordered rewriting and rst-
order polymorphic session-typed processes. For example, we might embed
sending and receiving processes by

[𝑎 � recvR; 𝑃] = ↓∀𝑎. (↑[𝑃] /
®

tm(𝑎))
[sendL 𝑡] =

®
tm(𝑡) ,

and similarly for sendR and recvL. It would be nice if the extralogical
®

tm
and

®
tm predicates could be done away with, but that appears to be impossi-

ble. It seems that, even in an asynchronous calculus, the
®

tm and
®
tm atoms

provide the small but necessary amount of synchronization to ensure that
the intended term 𝑡 is used to instantiate the receiving proposition’s univer-
sal quantier. However, it does seem plausible that terms could be packaged
with the transmission of other labels, such as

®
𝑘 (𝑡), which would hide

®
tm and

®
tm.

conclusion 179

It would also be interesting to consider how session-typed processes with
second-order polymorphism4would be embedded in the rewriting framework. 4Caires, Pérez, et al. 2013.

Aconjecture is that second-order polymorphismwould be needed in the rewrit-
ing framework so that the embedding could be something like

[𝛼 � recvR; 𝑃] = ↓∀𝛼. (↑[𝑃] /
®

pr(𝛼))

[sendL 𝑃] =
®

pr([𝑃]) .

11.1.3 Session-typed nondeterministic choice

In section 10.2, we leveraged the bisimilarity of process expressions and their
embedding within formula-as-process ordered rewriting to reverse-engineer
a session type system for ordered rewriting. In particular, from the session-
typing rules for caseLℓ∈𝐿 (ℓ ⇒ 𝑃ℓ) and caseRℓ∈𝐿 (ℓ ⇒ 𝑃ℓ), we arrived at rules
for typing deterministic choices:

∀ℓ ∈ 𝐿 : 𝐵ℓ ` 𝐴+ℓ : 𝐶
�ℓ∈𝐿{ℓ : 𝐵ℓ } ` ↓Nℓ∈𝐿 (®

ℓ \ ↑𝐴+ℓ) : 𝐶
�l

and
∀ℓ ∈ 𝐿 : 𝐴 ` 𝐴+ℓ : 𝐵ℓ

𝐴 ` ↓Nℓ∈𝐿 (↑𝐴+ℓ / ®
ℓ) : Nℓ∈𝐿{ℓ : 𝐵ℓ }

Nr

Focusing in combination with the left- or right-handed implication ensures
that the choices embodied by the alternative conjunction here are determin-
istic, not nondeterministic, choices.

However, in terms of the ordered propositions alone, it would seem more
natural to have a typing rule for 𝐴−1 N𝐴−2 – that is, a rule something like

...

𝐴 ` 𝐴−1 N𝐴−2 : 𝐶 .

Finding such a rule for the ordered proposition 𝐴−1 N 𝐴−2 might then allow
us, by leveraging the ideas behind the bisimilar embedding of chapter 10, to
reverse-engineer a process expression for some form of well-behaved, well-
typed nondeterministic choice.

Stock5 has begun to look into incorporating nondeterministic choice into 5 Stock 2020.

session-typed processes, emphasizing the operational considerations. It would
be interesting to consider whether his ideas can be adapted to the formula-as-
process ordered rewriting framework.

11.1.4 Induction, coinduction, termination, and productivity

Derakhshan and Pfenning6 have developed an innitary calculus in which 6Derakhshan and Pfenning 2020.

inductive and coinductive session types can be used to guarantee the termi-
nation and productivity of well-typed processes in a Curry–Howard interpre-
tation of singleton logic. Leveraging types, their validity condition on circular

180

proofs is locally and eectively decidable. Somayyajula and Pfenning7 have7 Somayyajula and Pfenning 2020.

done something similar with sized types. An interesting question is whether
their ideas might be applied to (formula-as-process) ordered rewriting.

Productivity is about observable progress and even untyped ordered rewrit-
ing has a notion of observation, as embodied in ordered bisimilarity (chap-
ter 7). So it seems likely that productive ordered rewriting systems can be
characterized.

What is unclear is whether there is a locally and eectively decidable con-
dition on ordered propositions that can guarantee productivity. The local de-
cidability of condition on circular proofs introduced by Derakhshan and Pfen-
ning very much relies on the unrolling of inductive and coinductive types.
But ordered rewriting is untyped, at least natively, so whether productiv-
ity can be characterized in a locally decidable way is unclear. Also, unlike
proofs, rewriting traces are constructed from open-ended derivations. Does
that open-endedness in any way aect the existence or shape of the produc-
tivity condition?

11.1.5 Generative invariants and session types

Simmons8 describes generative invariants as a way to express invariants of8 Simmons 2012.

ordered logical specications. These generative invariants generalize context-
free grammars, as well as regular worlds from lf. A generative invariant for
a binary counter specication in his framework has similarities to the session
type for binary counters given in section 9.3.1:

ctr , 𝑒 N (ctr • 𝑏0) N (ctr • 𝑏1) N (ctr • 𝑖)
ctr′ , 𝑧 N (ctr • 𝑠) N (ctr • 𝑑) N (ctr′ • 𝑏 ′0)

𝜅 , N{𝑖 : 𝜅,𝑑 : �{𝑧 : 𝜖, 𝑠 : 𝜅}}

It would be interesting to investigate whether these similarities can be extrap-
olated to a correspondence between generative invariants and session types.
If so, generative invariants might serve as a form of session typing for ordered
rewriting that is more native than the system presented in section 10.2.

A
Appendix

Theorem A.1. The following are equivalent.

• If Ω R (·), then:
®
Δ Ω =⇒(S

®
Δ)
®
Δ for all

®
Δ; and

®
Δ Ω =⇒(

®
ΔS)

®
Δ for all

®
Δ.

• If Ω R (·), then Ω =⇒ (·) S (·).

Proof. Because the premises of the two statements are the same, it suces
to prove that their conclusions are equivalent. We prove each direction sepa-
rately.

• Assume that
®
Δ Ω =⇒(S

®
Δ)
®
Δ for all

®
Δ and

®
Δ Ω =⇒(

®
ΔS)

®
Δ for all

®
Δ.

Choose an atomic proposition
®
𝑎 that does not appear in Ω; instantiating

the emptiness bisimulation condition with
®
Δ =
®
𝑎, we have

®
𝑎 Ω =⇒(S

®
𝑎)
®
𝑎.

We can prove by induction on the reduction sequence that Ω =⇒ (·) S (·).

– Consider the case in which the reduction sequence is trivial, i.e., the
case in which

®
𝑎 Ω (S

®
𝑎)
®
𝑎. Because

®
𝑎 does not appear in Ω, this holds

only if Ω = (·) S (·).

– Consider the case in which
®
𝑎 Ω −→=⇒(S

®
𝑎)
®
𝑎. Because

®
𝑎 does not

appear in Ω, it cannot participate in the initial reduction, so Ω −→ Ω′

and
®
𝑎 Ω′ =⇒(S

®
𝑎)
®
𝑎, for some context Ω′. Moreover, because it arises

from Ω, the context Ω′ does not contain any occurrences of
®
𝑎. From

the inductive hypothesis it therefore follows that Ω′ =⇒ (·) S (·);
prepending the reduction from Ω, we conclude that Ω =⇒ (·) S (·).

• Assume that Ω =⇒ (·) S (·). Because reduction is closed under framing,

®
Δ Ω =⇒

®
Δ. Also,

®
Δ (S

®
Δ)
®
Δ. It follows that

®
Δ Ω =⇒(S

®
Δ)
®
Δ for all

®
Δ; and,

by symmetric reasoning, that Ω
®

Δ =⇒(
®

ΔS)
®

Δ for all
®

Δ. �

B
List of notation

𝑞
𝑎−→ 𝑞′ NFA transition Chapter 2

𝑞 ∼ 𝑞′ NFA bisimilarity Chapter 2
Ω ` 𝐴 Ordered sequent Chapter 3
𝑤 −→ 𝑤 ′ String rewriting Chapter 4
Ω −→ Ω′ Ordered rewriting Chapter 5
[𝐴+]
Ω Right focus Chapters 5 and 6
Ω𝐿 [𝐴−] Ω𝑅
 𝐶+ Left focus Chapters 5 and 6

®
Ω𝐿 [Ω]

®
Ω𝑅 −→ Ω′ Input transition Chapter 6

𝜃 `Σ Θ Φ Choreography Chapter 6

®
Ω𝐿 \ ↑𝐴+ /

®
Ω𝑅 𝐵− Quasi-implication Chapter 6

Ω � Δ Ordered rewriting bisimilarity Chapter 7
𝐴 ` 𝐵 Singleton sequent Chapter 8
C −→ C′ Process conguration reduction Chapter 9
𝐴 ` 𝑃 : 𝐵 Process expression typing Chapter 9
𝐴
 C : 𝐵 Process conguration typing Chapter 9
𝐴 ` 𝐴+ : 𝐵 Proposition typing Chapter 10
𝐴
 Ω : 𝐵 Ordered context typing Chapter 10

Bibliography

Abramsky, Samson (1993)
Computational Interpretations of Linear Logic. In: Theoretical Computer
Science 111.1–2, pp. 3–57 (cit. on p. 13).

Abrusci, Vito Michele (1990)
Non-Commutative Intuitionistic Linear Logic. In:Mathematical Logic Quar-
terly 36.4, pp. 297–318 (cit. on pp. 15, 16, 31, 42, 59).

Amadio, Roberto M. and Luca Cardelli (1993)
Subtyping Recursive Types. In: ACM Transactions on Programming Lan-
guages and Systems 15.4, pp. 575–631 (cit. on p. 83).

Amadio, Roberto M., Ilaria Castellani, and Davide Sangiorgi (1998)
On Bisimulations for the Asynchronous pi-Calculus. In: Theoretical Com-
puter Science 195.2, pp. 291–324 (cit. on pp. 110, 112).

Andreoli, Jean-Marc (1992)
Logic Programming with Focusing Proofs in Linear Logic. In: Journal of
Logic and Computation 2.3 (June 1, 1992), pp. 297–347 (cit. on pp. 13, 16, 60,
66, 67).

Avron, Arnon (1988)
The Semantics and Proof Theory of Linear Logic. In: Theoretical Computer
Science 57.2–3. Ed. by Maurice Nivat, pp. 161–184 (cit. on p. 138).

Baelde, David and Dale Miller (2007)
Least and Greatest Fixed Points in Linear Logic. In: Proceedings of the 14th
International Conference on Logic for Programming, Articial Intelligence,
and Reasoning (Yerevan, Armenia, Oct. 15–19, 2007). Ed. by Nachum Der-
showitz and Andrei Voronkov. Vol. 4790. Springer, pp. 92–106 (cit. on p. 83).

Balzer, Stephanie and Frank Pfenning (2015)
Objects as Session-Typed Processes. In: Proceedings of the 5th International
Workshop on Programming Based on Actors, Agents, and Decentralized Con-
trol (Pittsburgh, PA, USA, Oct. 26, 2015). Ed. by Elisa Gonzalez Boix, Philipp
Haller, Alessandro Ricci, and Carlos Varela. New York: ACM, pp. 13–24 (cit.
on p. 96).

http://dx.doi.org/10.1002/malq.19900360405
http://dx.doi.org/10.1145/155183.155231
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1145/2824815.2824817

186

Béal, Marie-Pierre and Olivier Carton (2002)
Determinization of Transducers over Finite and Innite Words. In: Theo-
retical Computer Science 289.1, pp. 225–251 (cit. on p. 28).

Bellin, Gianluigi and Philip J. Scott (1994)
On the pi-Calculus and Linear Logic. In: Theoretical Computer Science 135.1,
pp. 11–65 (cit. on p. 13).

Benton, P. Nick (1995)
A Mixed Linear and Non-Linear Logic. Proofs, Terms and Models. In: Se-
lected Papers from the 8th InternationalWorkshop on Computer Science Logic
(Kazimierz, Poland, Sept. 25–30, 1994). Ed. by Leszek Pacholski and Tiuryn
Jerzy. Vol. 933. Lecture Notes in Computer Science. Springer, pp. 121–135
(cit. on p. 43).

Boreale, Michele, Rocco De Nicola, and Rosario Pugliese (2002)
Trace and Testing Equivalence onAsynchronous Processes. In: Information
and Computation 172.2, pp. 139–164 (cit. on pp. 110, 112).

Caires, Luís, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho (2013)
Behavioral Polymorphism and Parametricity in Session-Based Communi-
cation. In: Proceedings of the 22nd European Symposium on Programming
(Rome, Italy, Mar. 16–24, 2013). Ed. byMatthias Felleisen and Philippa Gard-
ner. Vol. 7792. Lecture Notes in Computer Science. Springer, pp. 330–349
(cit. on p. 179).

Caires, Luís and Frank Pfenning (2010)
Session Types as Intuitionistic Linear Propositions. In: CONCUR 2010 -
Concurrency Theory, 21st International Conference (Paris, France, Aug. 31–
Sept. 3, 2010). Ed. by Paul Gastin and François Laroussinie. Vol. 6269. Lec-
ture Notes in Computer Science. Springer (cit. on pp. 13, 20, 131, 151).

Caires, Luís, Frank Pfenning, and Bernardo Toninho (2012)
Towards Concurrent Type Theory. In: Proceedings of the 8th ACM SIGPLAN
Workshop on Types in Languages Design and Implementation (Philadelphia,
Pennsylvania, USA, Jan. 28, 2012). Ed. by Benjamin C. Pierce. TLDI ’12. New
York: ACM, pp. 1–12 (cit. on pp. 13, 20, 131, 147, 151).

Caires, Luís, Frank Pfenning, and Bernardo Toninho (2016)
Linear Logic Propositions as Session Types. In:Mathematical Structures in
Computer Science 26.3: Special Issue. Behavioral Types, Part 2. Ed. by Simon
J. Gay and António Ravara, pp. 367–423 (cit. on pp. 13–15, 20, 131, 147, 151,
177).

Cervesato, Iliano, Nancy Durgin, Patrick D. Lincoln, John C. Mitchell, and An-
dre Scedrov (1999)
A Meta-Notation for Protocol Analysis. In: Proceedings of the 12th IEEE

http://dx.doi.org/10.1006/inco.2001.3080
http://dx.doi.org/10.1145/2103786.2103788
http://dx.doi.org/10.1109/CSFW.1999.779762

BIBLIOGRAPHY 187

Computer Security FoundationsWorkshop (Mordano, Italy, June 28–30, 1999).
IEEE Computer Society Press, pp. 55–69 (cit. on p. 47).

Cervesato, Iliano, Joshua S. Hodas, and Frank Pfenning (2000)
Ecient Resource Management for Linear Logic Proof Search. In: Theoreti-
cal Computer Science 232.1–2 (Feb. 2000): Special Issue. Proof-search in Type-
theoretic Languages. Ed. by Didier Galmiche and David J. Pym, pp. 133–163
(cit. on p. 133).

Cervesato, Iliano and Andre Scedrov (2009)
Relating State-Based and Process-BasedConcurrency through Linear Logic.
In: Information andComputation 207.10 (Oct. 2009): Special Issue. 13thWork-
shop on Logic, Language, Information and Computation (WoLLIC 2006). Ed.
by Grigori Mints, Valéria de Paiva, and Ruy de Queiroz, pp. 1044–1077 (cit.
on pp. 14, 17, 47, 64, 67, 75, 177).

Chang, Bor-Yuh Evan, Kaustuv Chaudhuri, and Frank Pfenning (2003)
A Judgmental Analysis of Linear Logic. Tech. rep. CMU-CS-03-131R. Carnegie
Mellon University, Computer Science Department, Dec. 2003 (cit. on pp. 34,
43).

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Cliord Stein
(2009)
Introduction to Algorithms. 3rd ed. The MIT Press (cit. on p. 55).

Curry, Haskell B. (1934)
Functionality in Combinatory Logic. In: Proceedings of the National Academy
of Sciences of the United States of America 20.11 (Nov. 1934), pp. 584–590 (cit.
on p. 13).

Deng, Yuxin, Robert J. Simmons, and Iliano Cervesato (2016)
Relating Reasoning Methodologies in Linear Logic and Process Algebra.
In: Mathematical Structures in Computer Science 26.5, pp. 868–906 (cit. on
pp. 18, 111, 114).

Derakhshan, Farzaneh and Frank Pfenning (2020)
Circular Proofs as Session-Typed Processes. A Local Validity Condition. In:
Logical Methods in Computer Science (Aug. 12, 2020). arXiv: 1908.01909.
Submitted (cit. on pp. 14, 20, 21, 42, 156, 158, 179, 180).

DeYoung, Henry, Luís Caires, Frank Pfenning, and Bernardo Toninho (2012)
Cut Reduction in Linear Logic as Asynchronous Session-Typed Communi-
cation. In: Proceedings of the 21st Annual Conference of the EACSL on Com-
puter Science Logic (Fontainebleau, France, Sept. 3–6, 2012). Ed. by Patrick
Cégielski and Arnaud Durand. Vol. 16. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zent-
rum für Informatik, pp. 228–242 (cit. on pp. 20, 148).

http://dx.doi.org/10.1016/j.ic.2008.11.006
http://dx.doi.org/10.1073/pnas.20.11.584
https://arxiv.org/abs/1908.01909
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228

188

DeYoung, Henry and Frank Pfenning (2016)
Substructural Proofs as Automata. In: Proceedings of the 14th Asian Sympo-
sium on Programming Languages and Systems (Hanoi, Vietnam, Nov. 21–
23, 2016). Ed. by Atsushi Igarashi. Vol. 10017. Lecture Notes in Computer
Science. Invited talk. Springer, Nov. 2016, pp. 3–22 (cit. on p. 159).

DeYoung, Henry, Frank Pfenning, and Klaas Pruiksma (2020)
Semi-Axiomatic Sequent Calculus. In: 5th International Conference on For-
mal Structures for Computation andDeduction (Paris, France, June 29–July 6,
2020). Ed. by Zena M. Ariola. Vol. 167. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zent-
rum für Informatik, 29:1–29:22 (cit. on pp. 19, 130, 137).

Dezani-Ciancaglini, Mariangiola, Luca Padovani, and Jovanka Pantovic (2014)
Session Type Isomorphisms. In: Proceedings of the 7th Workshop on Pro-
gramming LanguageApproaches to Concurrency and Communication-cEntric
Software (Grenoble, France, Apr. 12, 2014). Ed. by Alastair F. Donaldson and
Vasco T. Vasconcelos. Vol. 155. EPTCS, pp. 61–71 (cit. on pp. 20, 147).

Dummett, Michael (1976)
The William James Lectures. Later published as: Michael Dummett (1991)
The Logical Basis of Metaphysics. Cambridge, Massachusetts: Harvard Uni-
versity Press (cit. on pp. 31, 37, 134).

Durgin, Nancy, Patrick Lincoln, John C. Mitchell, and Andre Scedrov (2004)
Multiset Rewriting and the Complexity of Bounded Security Protocols. In:
Journal of Computer Security 12.2 (Feb. 1, 2004), pp. 247–311 (cit. on p. 47).

Eriksson, Lars-Henrik (1991)
A Finitary Version of the Calculus of Partial Inductive Denitions. In: Pro-
ceedings of the Second International Workshop on Extensions of Logic Pro-
gramming (Stockholm, Sweden, Jan. 27–29, 1991). Ed. by Lars-Henrik Eriks-
son, Lars Hallnäs, and Peter Schroeder-Heister. Vol. 596. Lecture Notes in
Computer Science. Springer, pp. 89–134 (cit. on pp. 42, 82).

Felleisen, Matthias and Philippa Gardner, eds. (2013)
Proceedings of the 22nd European Symposium on Programming (Rome, Italy,
Mar. 16–24, 2013). Vol. 7792. Lecture Notes in Computer Science. Springer.

Fortier, Jérôme and Luigi Santocanale (2013)
Cuts for Circular Proofs: Semantics and Cut-Elimination. In: Proceedings of
the 22nd Annual Conference of the EACSL on Computer Science Logic. Ed. by
Simona Ronchi Della Rocca. Vol. 23. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zent-
rum für Informatik, pp. 248–262 (cit. on pp. 15, 18, 42, 83, 144).

Fulton, Nathan, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer (2015)

http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.29
http://dx.doi.org/10.4204/EPTCS.155.9
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.248

BIBLIOGRAPHY 189

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems.
In: Proceedings of the 25th International Conference on Automated Deduction
(Berlin, Germany, Aug. 1–7, 2015). Ed. byAmy P. Felty andAartMiddeldorp.
Vol. 9195. Lecture Notes in Computer Science. Springer, pp. 527–538 (cit. on
p. 145).

Gay, Simon J. and Malcolm Hole (2005)
Subtyping for Session Types in the Pi Calculus. In: Acta Informatica 42.2–3,
pp. 191–225 (cit. on pp. 82, 155).

Gentzen, Gerhard (1935)
Untersuchungen über das logische Schließen. In:Mathematische Zeitschrift
39, pp. 176–210, 405–431. English translation in: M. E. Szabo, ed. (1969)
The Collected Papers of Gerhard Gentzen. North-Holland, pp. 68–131 (cit. on
pp. 31, 37, 129, 134).

Ginsburg, Seymour and Gene F. Rose (1966)
A Characterization of Machine Mappings. In: Canadian Journal of Mathe-
matics 18, pp. 381–388 (cit. on p. 28).

Girard, Jean-Yves (1987)
Linear Logic. In: Theoretical Computer Science 50.1, pp. 1–101 (cit. on pp. 13,
31, 32, 42).

Grith, Dennis E. (2016)
Polarized Substructural Session Types. PhD thesis. University of Illinois at
Urbana-Champaign (cit. on p. 14).

Hallnäs, Lars (1991)
Partial Inductive Denitions. In: Theoretical Computer Science 87.1, pp. 115–
142 (cit. on pp. 42, 82).

Harper, Robert (2011)
The Holy Trinity. Published in the Existential Type weblog. Mar. 27, 2011
(cit. on pp. 129, 130).

Honda, Kohei (1993)
Types for Dyadic Interaction. In: Proceedings of the 4th International Con-
ference on Concurrency Theory (Hildesheim, Germany, Aug. 23–26, 1993).
Ed. by Eike Best. Vol. 715. Lecture Notes in Computer Science. Springer,
pp. 509–523 (cit. on p. 13).

Honda, Kohei, Nobuko Yoshida, and Marco Carbone (2008)
Multiparty Asynchronous Session Types. In: Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Francisco, California, Jan. 7–12, 2008). Ed. by George C. Necula and Philip
Wadler. New York: ACM, pp. 273–284 (cit. on p. 21).

http://dx.doi.org/10.1145/1328438.1328472

190

Hopcroft, John E., Rajeev Motwani, and Jerey D. Ullman (2006)
Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pear-
son (cit. on pp. 25, 29).

Howard, William A. (1969)
The Formulae-as-Types Notion of Construction. Unpublished note. An an-
notated version appeared in: J. Roger Hindley and Jonathan P. Seldin, eds.
(1980)
To H. B. Curry. Essays on Combinatory Logic, Lambda Calculus, and Formal-
ism. Academic Press (cit. on p. 13).

Kanazawa, Makoto (1992)
The Lambek Calculus Enriched with Additional Connectives. In: Journal
of Logic, Language, and Information 1.2 (June 1, 1992), pp. 141–171 (cit. on
pp. 15, 16, 31, 59).

Kanovich, Max, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov (2019)
Subexponentials inNon-Commutative Linear Logic. In:Mathematical Struc-
tures in Computer Science 29.8, pp. 1217–1249 (cit. on pp. 42, 43).

Kleene, Stephen C. (1952)
Introduction to Metamathematics. North-Holland (cit. on p. 129).

Lambek, Joachim (1958)
The Mathematics of Sentence Structure. In: The American Mathematical
Monthly 65.3, pp. 154–170 (cit. on pp. 15, 16, 31, 59, 61, 75).

Lambek, Joachim (1961)
On the Calculus of Syntactic Types. In: Structure of Language and Its Math-
ematical Aspects. Ed. by R. Jakobson, pp. 166–178 (cit. on pp. 15, 16, 31, 59).

Laurent, Olivier (2002)
Étude de la polarisation en logique. French. PhD thesis. Université Aix-
Marseille II, Mar. 2002 (cit. on p. 71).

Maehara, Shôji (1954)
EineDarstellung der intuitionistischen Logik in der klassischen. In:Nagoya
Mathematical Journal 7, pp. 45–64 (cit. on p. 129).

Martin-Löf, Per (1982)
Constructive Mathematics and Computer Programming. In: Logic, Method-
ology and Philosophy of Science VI. Ed. by L. Jonathan Cohen, Jerzy Łoś,
Helmut Pfeier, and Klaus-Peter Podewski. Vol. 104. Studies in Logic and
the Foundations of Mathematics. Elsevier, pp. 153–175 (cit. on p. 13).

Martin-Löf, Per (1983)
Siena Lectures. Transcript later published as: Per Martin-Löf (1996)
On the Meanings of the Logical Constants and the Justications of the

BIBLIOGRAPHY 191

Logical Laws. In:Nordic Journal of Philosophical Logic 1.1, pp. 11–60. Apr. 6–
9, 1983 (cit. on pp. 31, 37, 134).

McDowell, Raymond and Dale Miller (2000)
Cut-elimination for a Logic with Denitions and Induction. In: Theoretical
Computer Science 232.1–2, pp. 91–119 (cit. on pp. 42, 82).

Mendler, Nax P. (1987)
Recursive Types and Type Constraints in Second-Order Lambda Calculus.
In: Proceedings of the Second Annual IEEE Symposium on Logic in Computer
Science (Ithaca, NY, USA, June 22–25, 1987). IEEE Computer Society Press,
pp. 30–36 (cit. on p. 14).

Meseguer, José (1992)
Conditional Rewriting Logic as a Unied Model of Concurrency. In: Theo-
retical Computer Science 96.1, pp. 73–155 (cit. on pp. 16, 47, 177).

Miller, Dale (1992)
The pi-Calculus as a Theory in Linear Logic. Preliminary Results. In: Pro-
ceedings of the Third InternationalWorkshop on Extensions of Logic Program-
ming (Bologna, Italy, Feb. 26–28, 1992). Ed. by Evelina Lamma and Paola
Mello. Vol. 660. Lecture Notes in Computer Science. Springer, pp. 242–264
(cit. on pp. 14, 17, 75, 177).

Miller, Dale, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov (1991)
Uniform Proofs as a Foundation for Logic Programming. In: Annals of Pure
and Applied Logic 51.1–2 (Mar. 14, 1991), pp. 125–157 (cit. on p. 13).

Milner, Robin (1999)
Communicating andMobile Systems. The Pi-Calculus. 1st ed. Cambridge Uni-
versity Press, May 20, 1999 (cit. on pp. 42, 82).

Milner, Robin, Joachim Parrow, and David Walker (1992a)
A Calculus of Mobile Processes, I. In: Information and Computation 100.1,
pp. 1–40 (cit. on p. 42).

Milner, Robin, Joachim Parrow, and David Walker (1992b)
A Calculus of Mobile Processes, II. In: Information and Computation 100.1,
pp. 41–77 (cit. on p. 42).

Necula, George C. and Philip Wadler, eds. (2008)
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Francisco, California, Jan. 7–12, 2008). New
York: ACM.

Nigam, Vivek and Dale Miller (2009)
Algorithmic Specications in Linear Logic with Subexponentials. In: Pro-
ceedings of the 11th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (Coimbra, Portugal, Sept. 7–9, 2009).

http://dx.doi.org/10.1145/1599410.1599427

192

Ed. by António Porto and Francisco Javier López-Fraguas. New York: ACM,
pp. 129–140 (cit. on p. 43).

Pfenning, Frank (1995)
Structural Cut Elimination. In: Proceedings of the 10th Annual IEEE Sym-
posium on Logic in Computer Science (San Diego, California, June 26–29,
1995). Ed. by Dexter Kozen. IEEE Computer Society Press, pp. 156–166 (cit.
on p. 38).

Pfenning, Frank (2008)
Church and Curry. Combining Intrinsic and Extrinsic Typing. In: Reason-
ing in Simple Type Theory. Festschrift in Honor of Peter B. Andrews on His
70th Birthday. Ed. by Christoph Benzmüller, Chad Brown, Jörg. Siekmann,
and Richard Statman. Vol. 17. Studies in Logic. College Publications, pp. 303–
338 (cit. on p. 134).

Pfenning, Frank (2016)
Lecture Notes from 15-816: Substructural Logics. Carnegie Mellon University,
Computer Science Department, Aug. 30–Dec. 8, 2016 (cit. on p. 31).

Pfenning, Frank and Robert J. Simmons (2009)
Substructural Operational Semantics as Ordered Logic Programming. In:
Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Sci-
ence (Los Angeles, CA, Aug. 11–14, 2009). IEEE Computer Society Press,
pp. 101–110 (cit. on p. 53).

Pierce, Benjamin C. (2002)
Types and Programming Languages. MIT Press (cit. on p. 83).

Platzer, André (2017)
A Complete Uniform Substitution Calculus for Dierential Dynamic Logic.
In: Journal of Automated Reasoning 59.2, pp. 219–265 (cit. on p. 145).

Polakow, Je (2001)
Ordered Linear Logic and Applications. PhD thesis. Carnegie Mellon Uni-
versity (cit. on pp. 16, 17, 82).

Polakow, Je and Frank Pfenning (1999a)
Natural Deduction for Intuitionistic Non-Commutative Linear Logic. In:
Proceedings of the 4th International Conference on Typed Lambda Calculi
and Applications (L’Aquila, Italy, Apr. 7–9, 1999). Ed. by Jean-Yves Girard.
Vol. 1581. Lecture Notes in Computer Science. Springer, pp. 295–309 (cit. on
p. 42).

Polakow, Je and Frank Pfenning (1999b)
Relating Natural Deduction and Sequent Calculus for Intuitionistic Non-
Commutative Linear Logic. In: 15th Conference on Mathematical Founda-
tions of Progamming Semantics (New Orleans, LA, USA, Apr. 28–May 1,

http://dx.doi.org/10.1109/LICS.1995.523253
http://dx.doi.org/10.1109/LICS.2009.8

BIBLIOGRAPHY 193

1999). Ed. by Stephen D. Brookes, Achim Jung, Michael W. Mislove, and
Andre Scedrov. Vol. 20. Electronic Notes in Theoretical Computer Science.
Elsevier, pp. 449–466 (cit. on pp. 15, 16, 31, 38, 40, 42, 43, 59).

Pous, Damien and Davide Sangiorgi (2011)
Enhancements of the Bisimulation Proof Method. In: Advanced Topics in
Bisimulation andCoinduction. Ed. byDavide Sangiorgi and Jan Rutten. Cam-
bridge Tracts in Theoretical Computer Science. CambridgeUniversity Press,
pp. 233–289 (cit. on p. 114).

Pruiksma, Klaas, William Chargin, Frank Pfenning, and Jason Reed (2018)
Adjoint Logic. Unpublished manuscript. Apr. 2018 (cit. on p. 43).

Sambin, Giovanni, Giulia Battilotti, and Claudia Faggian (2000)
Basic Logic: Reection, Symmetry, Visibility. In: Journal of Symbolic Logic
65.3, pp. 979–1013 (cit. on pp. 144, 145).

Sangiorgi, Davide and David Walker (2003)
The Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press,
Oct. 16, 2003 (cit. on pp. 18, 71, 114, 166).

Santocanale, Luigi (2002)
A Calculus of Circular Proofs and Its Categorical Semantics. In: Proceedings
of the 5th International Conference on Foundations of Software Science and
Computation Structures (Grenoble, France, Apr. 8–12, 2002). Ed. by Mogens
Nielsen and Ue Engberg. Vol. 2303. Lecture Notes in Computer Science.
Springer, pp. 357–371 (cit. on pp. 15, 18, 144).

Schack-Nielsen, Anders and Carsten Schürmann (2008)
Celf. A Logical Framework for Deductive and Concurrent Systems (System
Description). In: Proceedings of the 4th International Joint Conference on Au-
tomated Reasoning (Sydney, Australia, Aug. 12–15, 2008). Ed. by Alessandro
Armando, Peter Baumgartner, and Gilles Dowek. Vol. 5195. Lecture Notes
in Computer Science. Springer, pp. 320–326 (cit. on p. 133).

Schroeder-Heister, Peter (1993)
Rules of Denitional Reection. In: Proceedings of the Eighth Annual IEEE
Symposium on Logic in Computer Science (Montreal, Canada, June 19–23,
1993). IEEE Computer Society Press, pp. 222–232 (cit. on pp. 42, 82).

Schützenberger, Marcel-Paul (1977)
Sur une variante des fonctions séquentielles. French. In: Theoretical Com-
puter Science 4.1, pp. 47–57 (cit. on p. 28).

Simmons, Robert J. (2012)
Substructural Logical Specications. PhD thesis. Carnegie Mellon Univer-
sity, Computer Science Department, Nov. 2012 (cit. on pp. 16, 21, 60, 67, 68,
82, 180).

http://dx.doi.org/10.1017/CBO9780511792588.007
http://dx.doi.org/10.1109/LICS.1993.287585

194

Simmons, Robert J. and Frank Pfenning (2011a)
Logical Approximation for Program Analysis. In: Higher Order Symbolic
Computation 24.1–2, pp. 41–80 (cit. on p. 15).

Simmons, Robert J. and Frank Pfenning (2011b)
Logical Approximation for Program Analysis. In: Higher Order Symbolic
Computation 24.1–2, pp. 41–80 (cit. on p. 178).

Simmons, Robert J. and Frank Pfenning (2011c)
Weak Focusing for Ordered Linear Logic. Tech. rep. CMU-CS-10-147. Carnegie
Mellon University, Computer Science Department, Apr. 2011 (cit. on p. 71).

Somayyajula, Siva and Frank Pfenning (2020). Personal communication (cit.
on pp. 14, 20, 21, 156, 158, 180).

Steinberger, Florian (2011)
Why Conclusions Should Remain Single. In: Journal of Philosophical Logic
40.3 (June 2011), pp. 333–355 (cit. on p. 129).

Stock, Benedikt (2020)
General Pattern Matching for Session-Typed Concurrent Programs. Bach-
elor thesis. Jacobs University Bremen, May 15, 2020 (cit. on p. 179).

Tiu, Alwen and Alberto Momigliano (2012)
Cut Elimination for a Logic with Induction and Co-induction. In: Journal
of Applied Logic 10.4, pp. 330–367 (cit. on pp. 42, 82).

Toninho, Bernardo (2015)
A Logical Foundation for Session-Based Concurrent Computation. PhD
thesis. Universidade Nova de Lisboa, May 2015 (cit. on p. 13).

Toninho, Bernardo, Luís Caires, and Frank Pfenning (2013)
Higher-Order Processes, Functions, and Sessions. A Monadic Integration.
In: Proceedings of the 22nd European Symposium on Programming (Rome,
Italy, Mar. 16–24, 2013). Ed. by Matthias Felleisen and Philippa Gardner.
Vol. 7792. Lecture Notes in Computer Science. Springer, pp. 350–369 (cit.
on pp. 14, 131, 151).

Watkins, Kevin, Iliano Cervesato, Frank Pfenning, and David Walker (2002)
A Concurrent Logical Framework I. Judgments and Properties. Tech. rep.
CMU-CS-02-101. Department of Computer Science, Carnegie Mellon Uni-
versity. Revised May 2003 (cit. on pp. 16, 17, 50, 67, 82).

Zeilberger, Noam (2008)
Focusing and Higher-Order Abstract Syntax. In: Proceedings of the 35th
ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Francisco, California, Jan. 7–12, 2008). Ed. by George C. Necula and
Philip Wadler. New York: ACM, pp. 359–369 (cit. on pp. 16, 60, 67, 68).

http://dx.doi.org/10.1016/j.jal.2012.07.007
http://dx.doi.org/10.1145/1328438.1328482

BIBLIOGRAPHY 195

Zeilberger, Noam (2009)
The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis.
Carnegie Mellon University, Computer Science Department, Apr. 2009 (cit.
on p. 77).

	Introduction
	Overview

	I Preliminaries
	Binary relations and automata
	Binary relations
	Alphabets, words, and languages
	Nondeterministic and deterministic finite automata
	Infinite-word sequential transducers
	Turing machines

	Ordered logic
	A sequent calculus presentation of ordered logic
	A verificationist meaning-theory of the ordered sequent calculus
	Circular propositions and proofs
	Other extensions

	II Concurrency as proof construction
	String rewriting for concurrent specifications
	A string rewriting framework
	Example: Nondeterministic finite automata
	Example: Binary representations of natural numbers

	Ordered rewriting
	Ordered resource decomposition as rewriting
	A focused ordered rewriting framework
	Using shifts to control focusing

	Choreographies: A formula-as-process interpretation of ordered rewriting
	Refining ordered rewriting: A formula-as-process interpretation
	A local interaction semantics
	Choreographing string rewriting specifications
	Example: Choreographing binary counters
	Example: Choreographing nondeterministic finite automata

	Bisimilarity for ordered rewriting
	Ordered rewriting bisimilarity
	Example: Rewriting bisimilarity and NFAs
	Example: Rewriting bisimilarity and binary counters

	III Concurrency as proof reduction
	Singleton logic
	The single-antecedent restriction
	A sequent calculus for propositional singleton logic
	A semi-axiomatic sequent calculus for singleton logic
	Extensions of singleton logic
	Other related work

	Semi-axiomatic singleton sequent proofs as session-typed process chains
	Process chains and process expressions
	Coinductively defined types and process expressions
	Examples

	IV Relationship between proof construction and reduction
	From processes to rewriting, and back
	Embedding process configurations in formula-as-process ordered rewriting
	A session type system for ordered rewriting

	Conclusion
	Potential avenues for future work

	Appendix
	List of notation

