
Identification of Software Failures in
Complex Systems Using Low-Level

Execution Data
Deborah Stephanie Surden Katz

CMU-CS-20-129
September 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Claire Le Goues (Chair)

Philip Koopman
Eric Schulte (GrammaTech, Inc.)

Daniel Siewiorek

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Deborah Stephanie Surden Katz

This research was sponsored in part by U.S. Army Contracting Command award number: W900KK16C0006 and in
part by the Test Resource Management Center (TRMC) Test & Evaluation / Science & Technology (T&E/S&T) Pro-
gram through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI)
under Contract No. W900KK-16-C-0006, “Robustness Inside-Out Testing (RIOT).” DISTRIBUTION STATE-
MENT A — Approved for public release; distribution is unlimited. NAVAIR Case #2019-615.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Software quality; Software testing; Autonomous systems; Robotics; Oracle
problem

Abstract
Autonomous and robotics systems (ARSs) – systems that are designed to react independently

and without human supervision to environmental stimuli – are complex and difficult to supervise
but are an increasingly large portion of the systems currently being developed and in use. Quality
assurance for these systems is complex, and the software for these systems contains many faults.

My key insight is that typical program behavior is a basis for determining whether a program
is operating within its normal parameters. To leverage this, I record summaries of program
execution behavior using low-level monitoring to characterize each execution. By aggregating
low-level execution data over many executions, I create a picture of typical program behavior;
different behavior may indicate unintended behavior. My techniques use the data as input to
machine learning algorithms which build models of expected behavior. These models analyze
individual program executions to predict whether the given execution represents typical behavior.

My core thesis is: Low-level execution signals, recorded over multiple executions of a
robotics program or portion thereof, can be used to create machine learning models that, in
turn, can be used to predict whether signals from previously-unseen executions represent usual
or unusual behavior. The combination of low-level instrumentation and models can provide pre-
dictions with reasonable trade-offs between prediction accuracy, instrumentation intrusiveness,
and calculation efficiency.

To support this thesis I demonstrate the efficacy of these techniques to detect software failures
on small programs and in simulation on the ARDUPILOT autonomous vehicle and on other ARSs
based on the Robot Operating System (ROS).

I observe that ARSs are well-suited to low-level monitoring because they are cyber-physical.
Although in other situations such monitoring may create intolerable overhead, these distributed
systems that interact with the real world have time or cycles that would otherwise be spent wait-
ing for real world events. As such, ARSs are well-situated to absorb overhead that monitoring
generates. However, ARSs often do have timing-sensitive components, for example, deadlines
and timeouts that, if missed, cause the system to abort. To this end, I measure the extent to which
ARSs can absorb artificially-inserted timing delays.

iii

iv

Acknowledgements
I thank my advisor, Claire Le Goues. Finding Claire as an advisor was the best thing that

could have happened for my graduate school career. She is always one hundred percent on my
side. She has taught me how to be a researcher and helped me learn in so many ways. Whenever
things get tough, I know I can count on her to help me find a way forward.

I would also like to thank my committee for their guidance, input, and support of my research:
Phil Koopman, Eric Schulte, and Dan Siewiorek.

I thank my undergraduate thesis advisor, Scott F. Kaplan, for helping me to discover that I
enjoy computer science research and helping me get started.

I thank my research colleagues and collaborators for their encouragement, their contributions
to this work, their willingness to lend a hand, and our brainstorming sessions. In no particular
order and in a necessarily incomplete list: my SquaresLab colleagues: Zack, Mau, Afsoon, Chris,
Rijnard, Cody, Jeremy, Leo, Zhen, and Sophia; and my ASTAA and RIOT team colleagues at
NREC: Cas, Milda, Dave, Eric, Pat, Bill, Trent, Adi, and Matt.

There have been many others in the computer science community at CMU who have con-
tributed to my success. I especially want to recognize Deb Cavlovich who seems to be the center
of the CSD Ph.D. program and who always knows how to help whenever there is an issue.

I have had the great good fortune to be surrounded by many wonderful people through the
various stages of my life. They have supported me in ways both practical and intangible and
have provided good advice and companionship.

I thank my family for their constant love and support, especially my parents and grandparents
to whom education was and is so very important. I cannot thank my parents enough. Esther
Surden and Harvey Katz set excellent examples and showed me unwavering support as I pursued
graduate degrees in two widely separated fields. Dad taught me the rudiments of programming
when I was very young, and Mom taught me about the female pioneers of programming and told
me stories about her experiences covering the “minicomputer” industry in the 1970s.

I am extremely fortunate to have so many family members who I can always count on. In
another necessarily incomplete list: my brothers Greg and Josh and sisters-in-law Paige and
Kiara; Lauren, who is as close as a sister, and my brother-in-law Adam; Molly, who rescued me
when I was ill; and my aunts, uncles, cousins, nieces, and grandparents. And of course, I have to
thank my exceptional cat Penelope, who joined me near the beginning of grad school and who
has been my COVID stay-at-home companion.

I want to specifically acknowledge my recently deceased grandmother, Sara Katz-Zaroff,
who valued education so very highly. Long ago, she told her children, in all seriousness, that
they would be allowed to leave school only after they had earned their Ph.D.s. She would have
been very proud to see this document and would have displayed it on her coffee table.

I have been beyond fortunate to have friends who I value like family. In no particular order
and in another necessarily incomplete list: Lisa, Katie, Rikita, Kristin, Chris, Kerri, Maryna,
Josh, Kristy, João, and Anna. Thank you.

I also want to thank my grad school friends and the groups in which I found camaraderie
during graduate school: Yarnivores, the SCS Grad Musical, and Planworld.

There have been so many others who have touched my life in a positive way and made this
possible. I am very fortunate to have each of you. Thank you.

v

vi

Contents

1 Introduction 1
1.1 Illustrative Example . 2
1.2 Insights and Thesis Statement . 4

1.2.1 Thesis Statement . 5
1.3 Approach . 5
1.4 Contributions . 6
1.5 Evaluation and Metrics . 7

2 Review of Literature and Background 8
2.1 Related Work . 8
2.2 Background . 13

2.2.1 Dynamic Binary Instrumentation (DBI) 13
2.2.2 Machine Learning Models . 14

3 Dynamic Binary Analysis to Detect Errors in Small Programs 17
3.1 Motivating Example . 17
3.2 Approach . 18

3.2.1 Dynamic execution signals . 19
3.2.2 Model generation . 20

3.3 Experimental Design . 21
3.4 Results . 23

3.4.1 Supervised Learning . 23
3.4.2 Unsupervised Outlier Detection . 24

3.5 Limitations Suggestive of Future Directions . 25
3.6 Conclusions . 25

4 Dynamic Binary Instrumentation to Detect Errors in Robotics Programs – ARDUPI-
LOT 26
4.1 The ARDUPILOT System . 26
4.2 ArduPilot Approach . 27
4.3 Experimental Setup . 28

4.3.1 Supervised Machine Learning . 28
4.3.2 Collecting Signals with Dynamic Binary Instrumentation 29

4.4 Results . 30

vii

4.4.1 RQ1: Supervised Learning on a Single Defective Version of ARDUPILOT 30
4.4.2 RQ2: Supervised Learning on a Defective Version of ARDUPILOT and

Its Repaired Counterpart . 30
4.4.3 RQ3: Prediction Accuracy on Varied Amounts of Data 31

4.5 Conclusions . 31

5 Novelty Detection on Varied Robotics Programs 34
5.1 Method . 35

5.1.1 System Characterization Techniques . 35
5.1.2 Detecting Anomalies in System Execution 37
5.1.3 Dynamic Time Warping . 38

5.2 Experiment Setup . 38
5.2.1 Systems Under Test (SUTs) . 39
5.2.2 Test Inputs . 39
5.2.3 Metrics . 40
5.2.4 Invariants . 40

5.3 Experiment Results . 41
5.3.1 Results . 41
5.3.2 Experiment Discussion . 42

5.4 Discussion . 42
5.4.1 Monitoring Techniques Can Be Used Together 42
5.4.2 Manually-Written Invariants are an Imperfect Proxy for Real-World Sys-

tem Safety . 43
5.4.3 Case Study — A ‘False Positive” Reveals An Actual Fault 43
5.4.4 Use in Debugging Techniques . 43
5.4.5 Clustering to Find Modes of Behavior 44
5.4.6 Threats to Validity . 44

5.5 Conclusions . 45

6 Overhead Timing Effects on Autonomous and Robotics Systems 46
6.1 Introduction . 46
6.2 Experimental Methodology . 46

6.2.1 Nominal Baseline Executions . 47
6.2.2 Experimental Executions . 47
6.2.3 Method of Inserting Delays . 48
6.2.4 Subject Systems . 49

6.3 Evaluation . 50
6.3.1 Metrics . 50
6.3.2 Effects on Observable Behavior . 51
6.3.3 Different Effects on Different Components 51
6.3.4 When Delays Cause Software Crashes 51

6.4 Discussion . 54
6.4.1 Threats to Validity . 55
6.4.2 Future Directions . 55

viii

6.4.3 Discussion of Timing Amounts . 57
6.5 Conclusions . 57

7 Discussion and Conclusion 59
7.1 Limitations . 59

7.1.1 Assumption that Unusual Behavior is Bad Behavior 59
7.1.2 Limitations on Inputs . 59
7.1.3 Execution in Simulation . 60
7.1.4 Limitation to Software Faults . 60

7.2 Future Directions . 60
7.3 General Discussion . 62

7.3.1 The Impact of Data Scope on Experimental Approach and Accuracy . . . 62
7.3.2 Applicability of These Techniques within the Development and Deploy-

ment Process . 64
7.3.3 Testing in Simulation is Very Useful — Untapped Potential 65
7.3.4 Separating Intended but Unusual Behavior from Unintended Behavior . . 66
7.3.5 Clustering with Nondeterminism in Nominal Data 67

Bibliography 69

ix

x

1 Introduction

It is increasingly important to understand Autonomous and Robotics Systems (ARSs) and guard
against unintended behavior. ARSs interact with various stimuli in their environments. They are
often designed to react independently and without human supervision. These systems can be big
and are often complex, which makes it difficult for humans to fully understand their operation
and understand when and whether they are behaving as intended. The difficulty of understanding
their behavior is compounded because these systems are often used in situations that can make
it difficult to observe and deliver commands to them, such as in systems deployed in space or
otherwise operating autonomously. At the same time, these systems are an increasingly large
portion of the systems being developed and in use [38].

While the properties of ARSs make it difficult to ensure correct operation, it is extremely
important that they operate safely. These systems are being deployed in safety-critical situations,
such as large vehicles with autonomous components operating the the presence of pedestrians [9,
38]. They are also being deployed in situations that make their failures expensive. One example
is the ExoMars Mars Lander, which crashed on the surface of Mars. The consequences of the
crash included $350 million in lost equipment and time. The inaccessibility of the Martian
environment limited opportunities to detect and repair the failure as it was happening, before the
catastrophic consequences occurred. The problem was likely due to an implementation mistake
that failed to account for timing inconsistencies between sensors [3, 56].

Detecting faults in complex systems that interact with the environment is complicated by sev-
eral additional factors. Systems designed to behave autonomously present a particular challenge
in determining whether they are behaving safely or as intended [39, 67]. These systems grow
extremely complex because they are intended to react to all possible scenarios, including ones
that the humans designing the systems could not have anticipated [66]. But while these systems
should anticipate all possible scenarios, such anticipation is not always possible. Often, their
goals and operating parameters are poorly-defined at all but the most basic of levels. For exam-
ple, one failure mode in an autonomous vehicle may be defined as a collision with a pedestrian;
but the details of what constitutes a collision with a pedestrian in terms of the vehicle’s internal
parameters may not be well defined. In fact, if the vehicle fails to detect the pedestrian at all, a
collision may occur, but there may be no internally-observable failure with respect to that failure
mode, as defined by the system’s original quality parameters [66]. Similarly, a failure to detect a
pedestrian may not result in an externally-observable failure if the vehicle, coincidentally, travels
a path that does not cause a collision with the pedestrian.

Because ARS systems pose such difficulties in Quality Assurance (QA), various QA tech-
niques can contribute productively and substantially to improving their quality. The techniques

1

Figure 1.1: Simplified Robot Architecture

presented here are focused on one aspect of software quality – locating unusual program be-
havior. They are intended to be used in conjunction with other QA techniques to improve ARS
software.

In many of these systems, early knowledge of a fault – along with tools that enable inter-
vention – would allow costly and safety-critical failures to be avoided [115]. It is, therefore,
important to figure out if there is a failure in the software execution as soon as possible. It is pos-
sible for a software failure to occur long before the result causes a problem or can be observed by
traditional means. Alternatively, it is possible to detect faults in simulation, before deployment.
Detecting software faults in ARS before they occur has the potential to save catastrophic damage
and lives.

1.1 Illustrative Example
The following example is based on a real robotics framework — Robot Operating System (ROS)
— and a real bug that my colleagues and I found in a system based on that framework. This
example illustrates how the nature of the system architecture lends itself to certain kinds of bugs
and also makes the systems amenable to error detection by low-level monitoring of values at the
instruction level.

Consider the simplified program architecture outlined in Figure 1.1. The master node acti-
vates and registers various specialized nodes that handle various functions of the robot. These
nodes communicate with each other by passing messages. In this example, the master node has
activated three additional nodes: a perception node, a motion planning node, and a mapping
node. In this example, the perception node interprets data from sensors such as cameras and

2

Figure 1.2: A Simplified Crash Sequence

3

calculates the locations of obstacles. The mapping node requests data from the perception node.
On receiving this data, the mapping node converts the information about obstacles into a map of
the robot’s surroundings. The motion planning node requests this map, and the mapping node
sends it. The motion planning node uses the map to calculate the intended path for the robot to
take. The perception node updates with new information, and the other nodes periodically repeat
their functions to keep their information current.

This example is inspired by a real bug found in a robotics system that uses such an architec-
ture. A program unit may do something undesirable, such as storing a value that is not a number
(“NaN”) instead of a value that the rest of the program can interpret, as in Figure 1.2. In this
example sequence, a robot’s perception node wrongly computes the Y-component of the location
of an obstacle to be a NaN. At a later time, Time B, the mapping node requests the location of
this obstacle. The perception node sends a message with the stored location values at Time C.
The mapping node then tries to use the location values to compute a map at Time D and suffers
a crash. Storage of this NaN occurred long before the program failure, and the program failure
happened in a different program unit than the initial incorrect storage.

In a real world situation, the resulting program failure might be benign or it may result in
a chain of failures that causes catastrophic consequences, such as a vehicle crash or a collision
with a pedestrian. If the unusual and undesired storage of the NaN can be detected before it
causes a problem in other program units, it may be possible to take corrective action before the
possibly-catastrophic result of the failure. Low-level signals, individually or in combination, can
be used to detect errors at multiple points in execution, which in turn, can aid in fault diagno-
sis. Alternatively, low-level monitoring can detect these behaviors in simulation, allowing the
problem to be fixed before deployment. While it may be easy to monitor specifically for NaNs
in many circumstances, the example extends by analogy to other behaviors that are unusual in
context and can be detected by monitoring behavior at the instruction level.

1.2 Insights and Thesis Statement
Although there are many techniques for detecting software failures, some of which have been
applied to Cyber-Physical Systems (CPSs) and ARS, these techniques have limitations when
applied to ARS. I discuss these techniques and their limitations in more detail in Section 2.1.

My key insights are:
• I can look to typical program behavior as a basis for determining whether a program is

operating within its normal parameters. To do this, I can record summaries of program
behavior using low-level execution data to characterize each execution. By aggregating
low-level execution data over many executions, I can create a picture of typical program
behavior and suggest that a program behaving differently may be exhibiting unintended
behavior. My techniques use the collected data as input to machine learning algorithms
which build models of expected program behavior. I use these models to analyze individual
program executions and make a prediction about whether the given execution represents
typical behavior.

• ARSs are well-suited to low-level monitoring because much of the overhead can be hidden
in time that would have otherwise been spent waiting.

4

1.2.1 Thesis Statement
My core thesis is: Low-level execution signals recorded over multiple executions of a robotics
program or portion thereof can be used to create machine learning models that, in turn, can
be used to predict whether signals from previously-unseen executions represent usual or unusual
behavior. The combination of low-level instrumentation and models can provide predictions with
reasonable trade-offs between prediction accuracy, instrumentation intrusiveness, and calculation
efficiency, while hiding monitoring overhead in normal system behavior.

1.3 Approach
For an intuitive understanding of this approach, recall the example presented in Figure 1.2 and
the accompanying text. Monitoring low-level signals in a given node, such as the values stored to
memory in the perception node, provides the opportunity to detect that the NaN stored represents
an unusual behavior.

I propose a family of techniques to address some of the major and important challenges
hindering effective testing of ARS. In summary, the techniques address the following challenges:
• It is difficult to analyze correct behavior on systems without source code.
• It is difficult to analyze correct behavior when expected system behavior is complex – pos-

sibly undefined or poorly-defined – and not fully-captured by test cases or specifications.
To address these challenges, I propose techniques that build a picture of expected execution

behavior from observation of trends in execution behavior. I do this at a low level, which means
observing behavior at the level of machine instructions and memory operations. While it may
be possible to make useful observations at many levels of program behavior, such as interactions
between program units or externally-observable output or behavior, low-level data provides sev-
eral advantages. Notably, by monitoring various low-level signals, there is no need to choose
which semantically-meaningful behaviors to observe. This property is useful because, in com-
plex robotics and autonomous software, one cannot assume knowledge of which behaviors are
semantically meaningful. In addition, observing low-level behavior offers the opportunity to
detect unusual behavior before it manifests in externally-observable consequences.

I combine data from several low-level signals as input to the machine learning models. This
approach reflects the observation that no one signal captures every unusual behavior. In fact,
some behavioral deviations may be characterized by two or more signals deviating from their
normal patterns at the same time.

ARS are better adapted than other systems to the use of low-level monitoring. In many
situations such monitoring is considered intrusive and creates overhead at intolerable levels[80,
85]. However, distributed systems that interact with the real world, such as ARS, are well-
situated to absorb some of the overhead that such techniques can generate. The components
of these systems spend time waiting for events to happen, either events in the real world or
messages sent from other components. They are, thus, often not as sensitive to the overhead
that monitoring techniques can add, as they can absorb the delays in time that otherwise would
have been spent waiting. However, these systems often do have timing-sensitive components, for
example, deadlines and timeouts in startup that, if missed, cause the system to abort, so additional

5

overhead must be handled carefully.
Faults in ARS software are well-adapted to being detected by observation of low-level sig-

nals. As described above, ARS software has particular challenges that make quality assurance
difficult. These challenges include a potential partial or total lack of source code (these systems
are often “black boxes”); a lack of specificity in specifications, allowing for many ways in which
systems can behave correctly and making it difficult to distinguish failure modes from correct
behavior (the systems are “noisy”); a potential to not notice failure modes when they are masked
by other behaviors in a complex system; and testing these systems can incur a high cost in time
and equipment (the systems are “costly”)[56].

Solutions based on deriving patterns from observed low-level behavior are well-adapted to
meet these challenges for the following reasons. They do not require source code, allowing for
these systems to be treated as black boxes. They can derive patterns and models over any number
of usual behavior modes, providing the basis to detect when a system deviates from those usual
behavior modes, making these techniques well-adapted to noisy systems. The techniques can be
run on robotics software in simulation, detecting potential errors before deployment on real hard-
ware, where they could do damage to the hardware and the real world [56].1 These techniques
can focus on individual components of a complex system at a time, allowing for potential errors
to be found in each component; they are also applicable to larger parts of systems and entire
systems. Testing on several different levels can reduce the likelihood that a bug is masked by
behavior in another system. In addition, the ability to run in simulation makes these techniques
far less costly, both in time and equipment, than running on real robotics hardware. Simulations
only need compute time on standard computing equipment, as opposed to the specialized robot
hardware. These techniques do not require access to system source code, as long as a working
system installation can be run and monitored. As such, they can apply when source code is un-
available in whole or in part, as is the case in many situations where one might test an ARS or its
components.

Because (a) these low-level monitoring techniques can reveal valuable insights about these
systems, and (b) these systems are well-positioned to absorb overhead from these techniques,
but (c) there are situations in which overhead is not tolerable, I studied the amount of overhead
tolerable to robotics systems and under what circumstances overhead deforms execution. This
work is detailed in Chapter 6.

1.4 Contributions
The key contributions of this thesis are:

• I set out a family of techniques that detect unusual or incorrect behavior in software by
monitoring low-level execution behavior and use the recorded data to generate machine
learning models.

• I demonstrate that these techniques work to detect unusual behavior and errors on small
programs, on the ARDUPILOT autonomous software for quadcopters, and on several other

1An example of an error detected in simulation that can cause physical damage can be found here: https:
//www.youtube.com/watch?v=kK6iKwjKA54

6

https://www.youtube.com/watch?v=kK6iKwjKA54
https://www.youtube.com/watch?v=kK6iKwjKA54

ARSs.
• I demonstrate that the effects of timing delays on simulated robotics systems can often be

absorbed and explore the degree to which and the circumstances under which these systems
can absorb the delays. This shows that simulated robotics systems are well-adapted to
absorb overhead from low-level monitoring.

1.5 Evaluation and Metrics
By “low-level execution signals,” I mean data about program execution as recorded by dynamic
binary instrumentation. Such signals include information collected after individual machine in-
structions and do not require source code to collect. I elaborate on these signals and the methods
by which I collect them in Section 2.2.1.

By, “useful,” and, “reasonable,” I mean that the accuracy, intrusiveness, and efficiency — as
measured as defined below — fall within acceptable boundaries as suggested by the literature.

As an overall metric, “accuracy,” measures whether something is correct. I construct ma-
chine learning models and procedures that predict whether particular executions correspond to
either unusual (anomalous) or usual (nominal) behavior. Applied to this situation, “accuracy,”
refers to the extent to which the models and algorithms correctly determine whether particular
executions correspond to either unusual or usual behavior. There are several accepted ways to
measure accuracy. I evaluate these experiments by the accuracy metrics defined in Section 2.2.2,
with particular reference to precision, recall, and F-measure. Precision is an appropriate metric
because it measures the extent to which the executions that the techniques flag as unusual ac-
tually exhibit abnormal behavior. Put another way, a precise algorithm does not identify many
false positives, relative to the total number of executions it identifies as unusual. False positives
would reduce the usefulness of the algorithm for any human or automated repair technique that
consumes its output. Recall is an appropriate metric because it measures the extent to which the
technique identifies all abnormal behavior and does not miss any. In other words, an algorithm
with high recall does not fail to flag many instances of unusual behavior, relative to the total
number of instances in the data set. Without high recall, the usefulness of the algorithm would
be reduced because the algorithm could not be counted on to detect most of the behavior it is
supposed to detect. F-measure balances precision and recall, so that neither metric is trivially
maximized at the expense of the other.

By, “intrusiveness,” I mean the degree to which the instrumentation that I use to collect
execution perturbs program execution. “Efficiency,” refers to the degree to which instrumentation
adds additional time to program executions; the less time added, the higher the efficiency. To
measure these factors, I evaluate the experiments with respect to the effect that instrumentation
has on program execution. To study intrusiveness, I examine the externally-observable behavior
of ARS with and without artificially-injected timing delays. This metric is appropriate because
monitoring techniques are most useful when they do not heavily alter the system’s behavior by
adding overhead.

7

2 Review of Literature and Background

The following sections give an overview of related work and background concepts that inform
the work in this document.

2.1 Related Work
Dynamic Binary Analysis There are several reasons for developing analysis techniques that
do not depend on access to source code or debugging information. Techniques that do not re-
quire access to source code are more widely applicable. They can be used with proprietary
implementations for which source code is not available, implementations written in different
languages, and machine code for different architectures [15]. Robotics and autonomous systems
often incorporate components from multiple suppliers, and source code is not always available
for the components [38]. When source code or debugging information is not available, many
analysis and debugging techniques, such as those that use abstract syntax trees, are not easily
available [96].

Several other dynamic techniques do not require source code. For example, Clearview ex-
tends the invariant inference and violation work described below to Windows x86 binaries, with-
out the need for source code or debugging information [89].

Eisenberg et al. [33] introduce using dynamic analysis to trace program functionality to its
location in binary or source code. However, as with many dynamic analysis tools, the implemen-
tation is limited to Java.

Observation-based testing is a name given to testing techniques that involve “taking an ex-
isting set of program inputs (possibly quite large); executing an instrumented version of the
software under test on those inputs to produce execution profiles characterizing the executions;
analyzing the resulting profiles, with automated help; and finally selecting and evaluating a subset
of the original executions [29].” This approach makes use of dynamic analysis through instru-
mentation [73].

There exist general-purpose frameworks for writing and using instrumentation tools for dy-
namic binary analysis. These tools are discussed in Section 2.2.1.

Anomaly, Novelty, and Outlier Detection Anomaly, novelty, and outlier detection refer to a
collection of techniques that identify data points that are in some way unusual or appear to deviate
markedly from or be inconsistent with the patterns created by the rest of the data [11, 54, 92].

Approaches to anomaly detection can be separated into three basic groups. In one group,
anomalies are detected with no prior knowledge of the data. The second group of techniques

8

models both the nominal data and the abnormal data, in an approach similar to supervised classi-
fication in Machine Learning (ML). The third group of techniques creates a model from normal
(nominal) data and identifies whether new data fits within that model [54].

This third group of approaches is common and is analogous to a one-class classification
problem in the context of ML. In a one-class classification problem, one set of data is treated
as the normal or positive data. The task is to distinguish the normal data from all other data,
The other data are the anomalies — the data that does not fit into the nominal class. One-class
algorithms usually assume that the underlying data set contains many more nominal data points
than data points corresponding to any anomalous classes [31, 92].

Some work builds models of unusual software executions by inferring invariants and iden-
tifying executions that violate these invariants. While authors sometimes use the term anomaly
detection for that approach, I will address that work separately below as automated invariant
detection and specification mining [37].

Many anomaly, novelty, and outlier detection approaches, as described above, make use of
clustering algorithms, which arrange similar data points into groups [42]. Clustering approaches
for anomaly detection include: (1) an algorithm for organizing data into clusters, and (2) a metric
for determining whether new data fits into the existing clusters or is an anomaly [6].

Application of Clustering Algorithms to Software Failure Detection Work has applied clus-
tering to identification of software failures [30, 52, 79, 83]. Haran et al. set out a general frame-
work for using execution data as a basis for classifying whether program outcomes are suc-
cessful [51, 52], including the use of clustering. Dickinson et al. focus on using clustering for
identifying executions worthy of further study [29, 30]. Mao and Lu [83] propose using more
complex clustering based in Markov models to identify which failure executions typify failure
modes. Note that in Mao and Lu’s approach, clustering is used to find executions that are typical,
not those that are anomalies or outliers.

The techniques presented here use off-the-shelf clustering algorithms [42] and modifications
of existing clustering algorithms [6], which create the models on which I build anomaly detec-
tion.

Intrusion Detection Work on intrusion detection, especially host-based intrusion detection,
looks at techniques for determining whether an adversarial attacker has gained access to the host
system [27, 106]. It is a subset of dynamic analysis and is strongly related to anomaly detec-
tion. At a high level, an Intrusion Detection System (IDS) monitors the events when applications
interact with the operating system, particularly in system calls. These intrusion detection tech-
niques can make use of anomaly detection. Initial IDSs were based in the idea of creating a
database of usual patterns in system call traces and identifying any other patterns as anomalies.
Advances on these approaches have included formalizing the system models, reducing overhead,
and incorporating timing as a factor in patterns [79].

IDSs have evolved towards modeling normal system behavior, but attackers have gotten good
at mimicry attacks, in which they mask their attacks as events within the bounds of normal system
behavior [106]. This adversarial behavior can lead to something of a stalemate. To this end,
companies have begun applying machine learning and artificial intelligence techniques in their

9

threat-detection approaches [57, 58].
Yu et al. use information gathered from hardware performance counters to detect control

flow hijacking attacks [109]. Using this low-level information reduces overhead. They establish
distinct patterns that occur in particular hardware counters when control flow hijacking attempts
occur.

Systems that interact with the real world — CPSs — are subject to temporal constraints.
Several approaches have used deviations in the timing properties of CPSs as the basis for an
IDS [48, 93].

Statistical Fault Identification Liblit et al. propose a collection of techniques that identify pro-
gram faults using statistical techniques [76, 77, 110, 111]. The techniques require source code
and semantic knowledge of the program. They look at isolating deterministic and nondetermin-
istic bugs by using statistical techniques to correlate faults with program predicates — true/false
assessments about variable values that are assessed at many instrumentation points throughout
the program. These techniques include approaches for leveraging a large number of user execu-
tions of programs, distributing the overhead burden of instrumentation among users [76]. Sub-
sequent refinements to the techniques included uniting approaches for deterministic and nonde-
terministic bugs [110]; increasing the usefulness of the program predicates identified [111]; and
separately identifying the effects of different bugs [77].

Automated Invariant Detection and Specification Mining A body of work focuses on au-
tomatically detecting invariants — properties that hold true over all correct executions of a pro-
gram — and identifying bugs by identifying executions for which those invariants are violated.
Automated invariant detection relies on automatically generating inferences about a program’s
semantics [35].

One of the pioneers in this area is DAIKON [36, 37]. It detects invariants across a range of
languages and types of invariants. However, it is limited in application to programs with source
code, it is limited by the program points at which it can make inferences, and it has limited
scalability. The ability to analyze software without needing software is desirable because many
complex ARSs do not have source code available for all or part of the system at the time when
the system is tested.

Other approaches such as DIDUCE [49, 50] are limited to particular languages, require
source code, fail to scale, or have other limitations which reduces their usefulness in complex
autonomous systems.

One invariant detection approach that does not require source code is CLEARVIEW [89].
However, CLEARVIEW is primarily a technique for repairing errors once they are detected, and
it is limited to the particular types of attacks it is designed to work with. To detect any other
type of error or attack, a separate technique would have to be used. In this way, tools such as
CLEARVIEW could be used in conjunction with techniques such as those described in this work.

Automated invariant detection is closely related to specification mining, which also includes
techniques for creating formal models from properties inferred from observation of program
execution [70]. Specification mining techniques have grown to include various other approaches,
such as the incorporation of machine learning and deep learning techniques [71].

10

These techniques have also been applied to ARSs [60]. Jiang et al. automatically derive spe-
cific invariants from messages passed in robotics systems and develop specific system monitors
to correspond to these invariants. This is in contrast to a more general approach, building models
that can encompass many kinds of deviations.

The Oracle Problem This work builds on earlier work in software testing, which addresses the
problem of trying to figure out whether a program is behaving as intended, which is known as the
oracle problem. Several works provide a useful summary of oracle problem research [10, 90].

The oracle problem is a barrier to automated software testing because, even when a test en-
counters a software defect, an imperfect oracle may not detect that a defect was encountered.
The oracle problem has been studied in a variety of contexts [24, 41, 86, 87, 90, 97, 99, 107].
Techniques described in Chapters 3, 4, and 5 can be thought of as using dynamic binary instru-
mentation in combination with machine learning to provide a pseudo-oracle. This pseudo-oracle
provides a basis to believe whether a program behaves as intended or exhibits a defect. It can
also be used in conjunction with other oracle-estimation techniques. As such, it enhances the
usefulness of automated testing techniques by providing another tool for understanding whether
any automatically- generated tests reveal defects.

Kanewala and Bieman [61] survey existing program testing techniques that attempt to sub-
stitute for an oracle. They highlight several approaches in the domain of computer graphics that
make use of machine learning [20, 43]. While one might expect these approaches to be similar
to those described in this work, this category of techniques focuses on using machine learning
to validate the output of a program, rather than ensuring its correct operation at all times. The
distinction is key when applied to situations where properties such as safety must be maintained
at all times, such as in CPSs which interact with the real world. If a CPS exhibits unsafe behavior
at any point in operation, it could cause damage to property or life.

Verification and Formal Methods Much work has gone into formal verification of CPSs in
order to avoid software faults. However, as Zheng et al. point out in their survey of litera-
ture and interviews with practitioners on verification and validation for CPSs, there are many
gaps between the verification work and practical application to entire real systems. Some of the
challenges identified are that developers do not understand software verification and validation;
existing formal techniques do not meet developers’ needs, such as needing to model physics in
addition to computation; and developers revert to an approach based in trial-and-error because of
the inapplicability of formal tools [113, 114].

Additional challenges include that formal models of systems often include assumptions that
do not necessarily hold true in the real world. Any proofs done by humans or by human-designed
proof assistants are susceptible to human error. Continuous elements of the systems may not be
adequately modeled [95].

One of the most significant drawbacks of formal verification is the time and effort required to
achieve anything nearing a complete formal model of a real system. An example of the extraor-
dinary costs is the verification of the kernel of a secure CPS application which was proved, using
a state-of-the-art theorem prover but required 20-person-years’ worth of effort [64, 65, 113].

11

Testing Autonomous and Robotics Systems (ARSs) Testing ARSs presents problems unique
to those domains. Beschastnikh et al. outline some of the challenges and drawbacks to exist-
ing approaches to debugging distributed systems, such as ARS [14]. Several approaches have
addressed aspects of the problems in testing these systems. Sotiropoulos et al. motivate test-
ing robotics in simulation and demonstrate the approach’s effectiveness in some domains [98].
Tuncali et al. define a robustness function for determining how far an ARS is from violating
its parameters [105]. Notably, this approach relies on well-defined system requirements, which
are absent in many systems. Timperley et al. attempt to categorize real bugs reported in the
ARDUPILOT autonomous vehicle software as to whether they can be reproduced and/or detected
in simulation [103]. Various companies attempting to build self-driving cars or their constituent
algorithms have created extensive simulation environments, in an attempt to capture all rele-
vant real-world scenarios [23, 82]. However, as shown in our survey of developers, there are
significant challenges in using simulation for systematic testing of ARS [5].

Recent work in simulation for ARS has looked at a range of issues, including: accurately
simulating the human experience of being in a self-driving car [108]; accurately simulating the
vehicle hardware and its interaction with the environment [21, 32]; and automatically generating
test scenarios for the vehicles in simulation [4, 44, 45].

Fraade-Blanar et al. establish that there is no uniform definition of safety as it applies to
autonomous vehicles and, therefore, there is no established way to measure that such vehicles are
behaving safely. The authors propose ways to more systematically evaluate whether such systems
are behaving safely and, use those evaluations to improve the safety of those vehicles [39].

Koopman and Wagner highlight the significant challenges involved in creating an end-to-end
process that ensures that autonomous vehicles are designed and deployed in such a manner as to
take account of all of the myriad concerns that contribute to the vehicles’ ultimate safety [66].
They also advocate consciously disentangling the testing of different components of the systems
and testing for different goals to ensure that testing results are well-understood and can be used
effectively [67]. Hutchison et al. outline a framework for robustness testing of robotics and
autonomous systems, highlighting the differences from traditional software [56, 63]. Forrest
and Weimer further highlight challenges in detecting and repairing faults in certain classes of
autonomous systems, such as the potential inaccessibility of the system, limited computing and
power resources, and use of off-the-shelf components [38].

Theissler presents work using anomaly detection on data gathered in an automotive con-
text [101]. While Theissler’s work focuses on detecting faults injected in analog vehicle signals,
it looks at anomaly detection on portions of a distributed system with many unpredictable envi-
ronmental factors. The approaches can inform simulation testing of ARS.

Additional work focuses on testing sub-systems of ARS, especially those that depend on ma-
chine learning and deep learning [91, 102]. While much of this work focuses exclusively on the
perception systems, this subsystem has some typical properties, such as noise and nondetermin-
ism, that exemplify the difficulties in testing other parts of ARS.

Timing in Cyber-Physical Systems (CPSs) Systems that interact with the real world — CPSs
— are subject to temporal constraints, which limits the techniques that can be applied in analysis
at execution time [22, 48, 112]. These constraints inspire the testing of these systems in simu-

12

lation to the extent possible. However, as I demonstrate in Chapter 6, some of these systems’
overhead can be absorbed while the components are waiting for real world events.

Fault Classes and Categorization While, in general, I have used terms such as, “bug,” “fault,”
“error,” “failure,” and, “off-nominal,” to refer to any software behavior that is unusual or unin-
tended, other work has broken down the nature of unintended software behavior into a more
precise taxonomy and dealt with the classification of these types of behaviors [7, 8, 25, 34, 46,
53, 75, 78, 94, 100]. Notably, Avizienis et al. set out distinctions among a service failure, which
occurs when a service deviates from its functional specification, either because the service fails
to comply or because the functional specification is inadequate; an error, an observed state of the
system that differs from the correct state; a fault, which is the actual or posited cause of an error;
and a vulnerability, which is an internal fault that enables harm to the system [8]. They further
establish eight fault dimensions based on features such as objective and persistence.

2.2 Background
In this section, I will introduce several tools and concepts that I use extensively and to which I
refer elsewhere in this document.

2.2.1 Dynamic Binary Instrumentation (DBI)
Dynamic Binary Instrumentation (DBI) works by analyzing a subject program while it executes.
The tool performing the analysis inserts code that analyzes the subject program, to be run while
the subject program runs. The act of inserting the code is known as instrumentation. DBI op-
erates on the level of object code (pre-linking) or executable code (post-linking). DBI does its
work at runtime, allowing it to encompass any code called by the subject program, whether it be
within the original program, in a library, or elsewhere [80, 84].

PIN My initial experiments use PIN version 2.13, to instrument the subject programs and col-
lect the data for model construction. PIN is a DBI tool [80] distributed by Intel and available
online.1 PIN constructs a virtual machine in which the program under examination is run. PIN

allows automated data collection at the machine instruction level and can observe a program’s
low-level behavior while being transparent to the instrumented program. PIN has a robust API
that enables the creation of tools that measure many things about program execution.2 However,
instrumentation can be heavyweight and add significant overhead.

VALGRIND As a DBI framework, VALGRIND3 allows tools based on the platform to record
data about low-level events that take place during a program’s execution. While tools based on
VALGRIND can have significant overhead, there are optimizations that enable reduced overhead.

1https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
2https://software.intel.com/sites/landingpage/pintool/docs/97619/Pin/html/

group__API__REF.html
3http://valgrind.org/

13

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/sites/landingpage/pintool/docs/97619/Pin/html/group__API__REF.html
https://software.intel.com/sites/landingpage/pintool/docs/97619/Pin/html/group__API__REF.html
http://valgrind.org/

PIN and VALGRIND both have the capabilities to measure many of the low-level of signals of
interest. However, their APIs and operations mean that different signals are easier to measure
on each framework and that different operations take different amounts of time and add different
amounts of overhead.

2.2.2 Machine Learning Models
The experiments described in this document use various machine learning algorithms They often
use the publicly available algorithms included in the Scikit-Learn4 package for many functions
related to machine learning, including data processing, model generation, and evaluation [88].
The version of Scikit Learn is indicated with each individual experiment. In some cases, the ex-
periments use custom algorithms or customized versions of existing algorithms. The algorithms
used are noted in each instance.

Supervised Models

Supervised learning takes a set of training examples with given labels (e.g., each data point is
labeled “true” or “false”), and produces a predictive model. The model then generates predic-
tions of labels for new data. Support vector machines, stochastic gradient descent, decision
trees, perceptrons, artificial neural networks, and statistical learning algorithms are examples of
supervised machine learning algorithms [69]. I use support vector machines and decision trees
especially in this work.

A support vector machine maps training data as points in multidimensional space by kernel
functions. It then attempts to construct a hyperplane that divides the data points between labels,
such that the gap between the two sets of points is as wide as possible. The predictive model uses
this hyperplane to assign predicted labels. Each new point is mapped into the multidimensional
space; the predicted label is dictated by which side of the hyperplane it is mapped to [26].

For the supervised learning experiments that use a decision tree classifier, I use the one avail-
able out-of-the-box from Scikit Learn. This decision tree classifier provides results similar to
or better than the results using other classifiers available from Scikit Learn across a wide range
of different programs and collected data. In addition, the decision tree algorithm provides the
ability to generate explanations of the decision processes in a human-understandable form, to a
much greater extent than many other algorithms [1].

I assess supervised learning models using the accuracy metrics explained later in this section.

Unsupervised and Clustering-based Models

Unsupervised and clustering-based algorithms take a somewhat different approach to classifica-
tion than the supervised algorithms do.

Some of the clustering-based models can be used in the same way as supervised modes –
trained on a set of training data with known labels and tested on unknown data – while other
uses involve simultaneously creating a model and making predictions on the data points used to
create the model.

4http://scikit-learn.org/

14

http://scikit-learn.org/

Several existing algorithms include: One-class SVM 5, LOF 6, and LDCOF [6].
For some of the preliminary work, I use a customized algorithm for novelty detection that

makes use of domain knowledge. This customized algorithm is explained in Section 3.2.2.
Similarly, for the work on varied robotics programs, I use a more sophisticated distance met-

ric in conjunction with a one-class clustering algorithm. This metric is inspired by the LDCOF
algorithm [6]. This algorithm is described in Section 5.1.

Data Pre-Processing

In machine learning contexts, it is common to pre-process data into forms that are more amenable
as input to the algorithms. Some common forms of data pre-processing are:
• Scaling data: Transforming the data for each feature such that each feature is in the same

range (e.g., ranging from -1 to 1). This transformation can prevent features whose values
are large from overwhelming features whose values are small, which is a pitfall with certain
algorithms.

• Balancing data: Transforming training data such that there are equal numbers of data
points of each class (e.g., equal numbers of data points representing passing data and fail-
ing data). This transformation is useful to get a supervised algorithm to produce a model
that is not weighted towards the more frequent data class. The transformation is accom-
plished either by duplicating data points from the class or classes with fewer data points or
removing data points from the class or classes with more data points.

• Signal reduction: Evaluating and choosing which signals are most predictive and restrict-
ing algorithms to running on those. This approach can help to reduce overfitting.

• Dimensionality Reduction: Projecting feature vectors (data points) into a lower dimen-
sional space. A feature vector can frequently consist of many features, making it difficult
for humans to visualize. Dimensionality reduction creates a representation of each data
point within the data set that can be visualized and analyzed at lower dimensions.

Assessing Machine Learning Models

I use the following measurements to assess the accuracy of machine learning models. These
measurements apply to models that make predictions that I can compare against known ground
truth.
• True Positives (TP) correct predictions of errors
• True Negatives (TN) correct predictions of no errors
• False Positives (FP) incorrect predictions of errors
• False Negatives (FN) incorrect predictions of no errors
• Accuracy (Acc) The portion of samples predicted correctly

5http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.
html

6http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
LocalOutlierFactor.html

15

http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html

• Precision (Prec) The ratio of returned labels that are correct: TP/(TP + FP).
• False Detection Rate (FDR) FDR is related to precision in that FDR equals one minus

precision. I assign the positive label to errors, so the FDR represents the portion of detected
errors that are not true errors.

• Recall (Rec) The ratio of true labels that are returned: TP/(TP + FN). Recall is also
known as sensitivity.

• F-Measure (FM) The harmonic mean of precision and recall.

16

3 Dynamic Binary Analysis to Detect
Errors in Small Programs

To validate initial insights that low-level information about the behavior of an executing program
gives a picture of the characteristics of that execution, I collected low-level information about
many executions of several individual small programs. I created models of program behavior
from the data collected from the executions of each program. I used those models to predict
whether each new execution fit into the range of expected program behaviors or whether it rep-
resented an unexpected or unintended behavior. While not all rare behaviors are unintended,
unintended behaviors are more likely to be rare [35]. To build the models, I made use of both
supervised machine learning techniques and unsupervised anomaly detection techniques.

3.1 Motivating Example

The following example casts light on the insight behind my proposed techniques. Although
these techniques operate at the level of binary machine code, I present a small source code
example, which is easier for humans to follow (Figure 3.11), to illustrate the underlying insight.
On December 31, 2008, all Microsoft Zune players of a particular model froze [2]. The cause
was a software error that resulted in an infinite loop in the date calculation function on the last
day of a leap year.

Consider the (correct) program behavior when called with a value that does not correspond to
the last day of a leap year, such as days = 1828 (January 1, 19852). With this input, (days >
365) is true, entering the while loop. The condition in if (isLeapYear(year)) is false,
causing the program to enter the else clause. days is adjusted to 1463; year is incremented.
This loop and condition check repeats three more times, at which point year=1984 and days
=368. At this point, isLeapYear(year) and days > 366 both evaluate to true, and days
becomes 2 while year becomes 1985. The while condition is now false, and the program
correctly prints the year, 1985.

Consider instead what happens if days = 366, corresponding to the last day of 1980, a
leap year. Again the program enters the while loop, and if (isLeapYear(year)) is true.
However, days > 366 is false, and days remains unchanged (indefinitely) on return to the
while condition.

1Adapted from code originally downloaded from http://pastie.org/349916
2Date computation begins with the first day of 1980.

17

http://pastie.org/349916

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 } else {
10 days -= 365;
11 year += 1;
12 }
13 }
14 printf("current year is %d\n", year);
15 }

Figure 3.1: Code listing for the Microsoft Zune date bug.

This example is simple in the sense that the defective behavior can be described by high-
level desired program properties (such as “the function should return within 5 minutes.”), and
infinite loops are specifically targeted by other techniques [17, 19]. However, it still illustrates
the insight that runtime program characteristics can detect aberrant program behavior, because
there are numerous, intermediate behaviors that provide clues distinguishing between correct
and incorrect behavior. For example most simply, in the aberrant case, the number of source
code instructions executed is abnormally high. Similarly, when the program executes the error,
the program never reaches portions of the source code corresponding to normal exit behavior
(measured by program counter).

While no single runtime signal perfectly captures incorrect behavior, I hypothesize that com-
bining signals can be used to characterize and distinguish between correct and incorrect behavior
for programs.

3.2 Approach

This section outlines my approach for predicting whether a program passes or fails on new test
inputs. In broad summary, I collect dynamic execution signals from programs executing on
test inputs. Each execution results in a list of numbers (a vector of values) corresponding to
the values of the dynamic execution signals for that execution. Each of these vectors of values
becomes a single data point, representing the given execution of the corresponding program with
the corresponding input. I used off-the-shelf machine learning classifiers and a labeled training
data (in the supervised case) to construct models that predict whether observed program behavior
on new inputs corresponds to correct or incorrect behavior.

18

3.2.1 Dynamic execution signals

My goal is to construct models that automatically distinguish correct from incorrect program
behavior. I use machine learning to construct these predictive models. Recall that machine
learning receives data in the form of feature sets that describe individual data points. In this
work, I compose feature vectors of dynamic binary runtime signals.

I collect all runtime data for the work in this chapter using PIN, a dynamic binary instrumenta-
tion tool discussed in Section 2.2.1. PIN provides an interface that allows for the straightforward
collection of all signals described below.

I measure and include the following dynamic signals in my model:
• Machine Instructions Executed. This is simply a count of all the instructions executed

in the program. A program exhibiting unintended behavior may have an abnormally high
or low number of instructions executed. For example, in the infinite loop example in
Section 3.1, the unintended behavior corresponded to an abnormally high number of in-
structions executed.

• Maximum Program Counter Value. The program counter, also known as the instruction
pointer, tracks which machine instructions a program executes within that program’s ma-
chine code. The maximum value of the program counter therefore indicates how far into
its code a program has progressed, which may indicate that the program is executing un-
expected code (or failing to execute expected code) on some input. I limited the collection
of program counter values to those that occur within the program code itself, excluding
program counter values corresponding to libraries and other external code.

• Minimum Program Counter Value. The minimum value of the program counter indi-
cates the earliest location within the program code that the program executes. It there-
fore may capture unexpected behavior similar to that captured by the maximum program
counter value.

• Number of Memory Reads This signal corresponds to the number of times a program
transfers data from memory to a register; I hypothesize that memory read or write behavior
may follow patterns that vary between normal and abnormal executions. PIN instruments
all instructions that have memory reads to collect this signal, and if a single instruction has
more than one such read, that instruction is instrumented a corresponding number of times.

• Number of Memory Writes This signal corresponds to the number of times a program
transfers data from a register to memory; I collect it for the same reason and in much the
same way as memory reads.

• Minimum Stack Pointer Value The stack pointer indicates the boundary between avail-
able memory and program data stored in the program’s stack. In x86 machines, the stack
grows downwards, such that the higher the value of the stack pointer, the less memory
used, and vice versa. The stack pointer is also a rough proxy for the depth of the call
stack traversed, as the stack pointer is usually adjusted downwards each time a routine is
called [16]. The minimum stack pointer value can provide a rough idea of the maximum
depth of the stack trace, which can also be a proxy for recursion exhibited in the program.

• Maximum Stack Pointer Value The maximum value of the stack pointer usually corre-

19

sponds to the value of the stack pointer at the program’s initiation. However, a deviation
from this behavior could indicate wildly incorrect behavior.

• Call Taken Count At every call instruction the program encounters, the call may be taken
or not taken. Whether calls are taken or not taken is a rough proxy for the shape of the
program’s execution.

• Call Not Taken Count Similarly to the call taken count, this signal measures when call
instructions are not taken. Along with the call taken signal, call not taken signal is a proxy
for the shape of a program’s call graph.

• Branch Taken Count When a program reaches a branch instruction the program may
jump to non-consecutive code, in which case one says that the branch is taken. The number
of branches taken serves as a proxy for the dynamic program control flow. The number of
branches taken captures behavior within a routine, while the number of calls taken captures
the behavior across routines.

• Branch Not Taken Count Similar to the branch taken count, the branch not taken count
measures when a branch instruction is reached, but the code falls through to consecutive
code.

• Count of Routines Entered This signal measures the number of routines within the pro-
gram that actually execute. This can be a proxy for control flow behavior across func-
tions within the program. This measure is different from call taken count because call
taken count also includes calls to library functions, while this count is restricted to routines
within the program.

I chose these signals for both their predictive power and the ability to collect them without
ruinous overhead. I have tried and rejected some other signals, such as keeping histograms of
various values, because of their higher overhead of calculation and memory usage at runtime. I
use the chosen signals to construct predictive models, as described next.

3.2.2 Model generation

This section describes my approach for generating a predictive correctness model from the fea-
tures described in the previous subsection (Section 3.2.1).

I built both supervised and unsupervised models to investigate the trade-offs inherent in the
two types of techniques. As discussed in 2.2.2, supervised learning requires labeled training
data. As a result, this model construction technique is applicable to situations in which a pro-
gram already has a set of test inputs and known outputs (a longstanding set of regression tests,
for example) that might be augmented by a test generation technique. On the other hand, my
approach to unsupervised learning requires domain-specific assumptions. In this case, I used
unsupervised outlier detection to group data points into two sets: typical behavior and outliers.
However, to give meaning to the groupings, I assumed that the typical behavior corresponded
to the program’s intended behavior. This assumption was rooted in experimental observation,
but the requirement of sufficient knowledge of the data to make this kind of assumption is a
limitation of unsupervised learning.

Given a set of benchmark programs and test cases with known outputs, I gathered the signals

20

described in Section 3.2.1 for each test execution into a single data point. For the training of
the supervised machine learning model, I associated each data point with a label corresponding
to whether the test case passed or failed. I also investigated a labeling in which execution data
points were labeled with “working” or “broken”, depending on whether the associated program
failed any of its test cases (this label is an approximation, since testing is known to be unsound).
I used two sets of labels because I wanted to study how to best characterize the intended and
unintended program behavior.

I also used this labeled data to evaluate the accuracy of the unsupervised learning approach
(though not as training data, by definition). This outlier detection method starts by separating
the data for each program by test case. That is, for every program, I considered the data for each
test case across all known versions of the program. Separating the data in this way provided
insight into the differences among versions for a single test case. If I predict that a given version
fails a given test case, I can predict that the version is broken. Aggregating the predicted broken
versions across all test cases gives an overall list of predicted broken versions.

Within the single test case data, I used a simple outlier detection technique on each feature.
It identifies those data points that are more than two standard deviations from the mean of that
feature. If, for a single test case, any given version is identified as a potential outlier for more
than one feature, I identified that version as potentially failing for that test case. I then aggregated
a list of all versions that are potentially failing for any test cases and predicted a label of “broken”
for all of the versions in this list. This unsupervised outlier detection, or clustering, technique
differs from other outlier detection technique in that it separates the data by test case and treats
each feature individually.

The approach to outlier detection is predicated on the assumption that any given test case will
pass on more versions than those on which it fails. Although this assumption can be limiting,
this assumption has validity in certain domains. For example, observations in the search-based
automated program repair domain indicate that individual test cases do pass on more program
variants than those on which they fail [72]. This approach could therefore also apply in a setting
where multiple mutants of the program under consideration could be created automatically for
the purposes of creating the outlier model, in the absence of the labeled data required for the
supervised learning technique.

3.3 Experimental Design

For each small program, I had several test inputs, including at least one that corresponded to
failing or unintended behavior and at least one that corresponded to passing or intended behavior.
I also included executions of multiple versions of each program under test. I used the collected
signals to build models of behavior.

For the purposes of these experiments, I used PIN3, a dynamic binary instrumentation toolkit
distributed by Intel, to create tools to collect the low-level signals on running programs. For each
execution, I collected 165 low-level signals, later using feature extraction to choose 15 that were
the most broadly relevant.

3https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

21

For supervised machine learning, I gave a portion of the data points, along with labels in-
dicating if each data point represented a correct or incorrect execution, to a supervised learning
algorithm, which built a predictive model.4 I then tested the predictive model on the remaining
held-out data, by giving the model unlabeled data points and collecting the predictions of whether
each data point corresponded to a correct or incorrect execution. I repeated the procedure using
a standard 10-fold cross-validation technique.

For unsupervised machine learning, I built models without using any labels. These models
use simple outlier-detection techniques to predict whether data points represent executions out-
side the realm of what a program usually does. My unsupervised learning technique is built on
outlier detection [54]. I start by separating the data for each program by test case. That is, for
every program, I consider the data points for each test case across all available versions of the
program. Separating the data in this way provides insight into the differences among versions
for a single test case.

Within the data relating to a single test case, I use a simple outlier detection technique on each
feature. It identifies data points more than two standard deviations from the mean of each feature.
If, for a single test case, any given version is identified as a potential outlier for more than one
feature, I identify that version as failing for that test case. This unsupervised outlier detection, or
clustering, technique differs from other outlier detection techniques in that it separates the data
by test case and treats each feature individually.

This approach to outlier detection requires several versions of a program and is predicated on
the assumption that any given test case will pass on more versions than those on which it fails.
However, techniques such as mutation testing can generate multiple versions of a program [59],
and although the assumption can be limiting, it has validity in certain domains. For example, the
search-based automated program repair domain indicates that individual test cases do pass on
more program variants than those on which they fail [72]; analyses in fault localization support
a similar conclusion [18]. This approach could therefore also apply in a setting where multiple
mutants of the program under consideration could be created automatically for the purposes of
creating the outlier model, in the absence of the labeled data required for the supervised learning
technique.

I used several suites of small benchmark programs common in testing research to validate the
insights in this work. Here I present results from the Software-artifact Infrastructure Repository
(SIR) Siemens objects.5 Table 3.1 lists the lines of code, numbers of test cases, and number of
variants for each program.

22

Table 3.1: Benchmark programs, from the Siemens SIR data set. Lines of code is the number of
lines of code in a correct variant; number of variants is the number of unique versions of each
program; and number of test cases is the number of separate test cases for each.

Lines of Number of
Program Code Variants Test Cases

SIR artifacts

printtokens 475 8 4130
printtokens2 401 10 4115
replace 514 33 5542
schedule 292 10 2650
schedule2 297 11 2710
tcas 135 42 1608
totinfo 346 24 1052

Table 3.2: Left side: results of decision tree model using 165-feature set. Center: results of
decision tree model using 15-feature set. Right side: results of SVM model using the 15-feature
set.

Full feature set (DT) Core feature set (DT) Core feature set (SVM)
program Acc Prec Rec FM Acc Prec Rec FM Acc Prec Rec FM

printtokens 0.79 1.00 0.79 0.88 0.76 0.99 0.77 0.87 0.80 1.00 0.81 0.89
printtokens2 0.83 0.99 0.83 0.90 0.80 0.99 0.81 0.89 0.80 0.99 0.80 0.88
replace 0.85 1.00 0.85 0.92 0.85 1.00 0.85 0.92 0.67 0.99 0.67 0.80
schedule 0.76 0.99 0.76 0.86 0.74 0.99 0.74 0.85 0.56 0.99 0.55 0.71
schedule2 0.86 1.00 0.86 0.92 0.81 1.00 0.81 0.90 0.57 1.00 0.57 0.72
tcas 0.83 1.00 0.83 0.90 0.80 1.00 0.80 0.89 0.66 0.99 0.66 0.79
totinfo 0.90 0.99 0.90 0.94 0.91 0.99 0.91 0.95 0.77 0.98 0.77 0.86

3.4 Results

3.4.1 Supervised Learning
Table 3.2 shows results for supervised learning on the data collected from executions of these
programs, using standard machine learning assessment metrics.

The results are fairly comparable between the 15 feature set and the full 165 feature set,
with the full feature set performing slightly better for many programs. The right side of Table 3.2
shows the outcomes on the fifteen reduced signals with a support vector machine classifier instead
of a decision tree. The classifier is Scikit Learn’s SVC classifier with cache size 1000 and all

4I conducted experiments both with the raw data set – which contained many more passing executions than
failing executions – and an artificially balanced data set – built by leaving out data points in the set of passing
executions. While I achieved comparable results for both techniques, I report the balanced results here.

5http://sir.unl.edu/portal/index.php

23

True True False False
Program Pos Neg Pos Neg Acc Prec Rec FM

printtokens 28620 405 79 3936 0.88 1.00 0.88 0.93
printtokens2 39516 1275 962 3512 0.90 0.98 0.92 0.95
replace 165394 2313 965 14214 0.92 0.99 0.92 0.96
schedule 22925 406 383 2786 0.88 0.98 0.89 0.94
schedule2 24963 96 199 4552 0.84 0.99 0.85 0.91
tcas 62854 1155 424 3103 0.95 0.99 0.95 0.97
totinfo 21905 1190 765 1388 0.91 0.97 0.94 0.95

Table 3.3: Outlier Detection. Left: Number of executions correctly predicted as passing, cor-
rectly predicted as failing, incorrectly predicted as passing, and incorrectly predicted as failing.
Right: accuracy metrics for the same data.

other parameters set to their defaults.6 As one can see by comparing the right side of Table 3.2 to
the center, the decision tree classifier outperforms the support vector machine classifier for most
programs.

3.4.2 Unsupervised Outlier Detection

I conduct unsupervised learning experiments to discover whether these experiments can deter-
mine whether a program behaves correctly without using any ground truth labels to train a classi-
fier, such as in a situation in which a developer is creating new test suites from scratch and lacks
existing cases to inform a supervised technique.

Table 3.3 reports the performance of the outlier detection method in predicting passing and
failing test case behavior in terms of both raw counts (for context, because there are significantly
more passing data points than failing data points) and accuracy metrics. I do not balance these
datasets, because the discrepancy between numbers of passing and failing test cases is inherent to
the assumption underlying this technique (and is consistent with observations of testing behavior
in the field [18] and the context of potential clients of my technique, such as program repair [72]).

These results show high accuracy across all metrics for the SIR Siemens artifacts. The gen-
erally high accuracy of these results supports my hypothesis that correct and incorrect behavior
can be identified at the level of binary execution signals and linked to test case passing/failing
behavior.

6The analyses in this chapter use Scikit Learn version 0.15.2.

24

3.5 Limitations Suggestive of Future Directions
This work shows that the techniques I propose are broadly able to detect various program behav-
iors that deviate from expected or usual behavior. However, this work suggests certain limitations
in the techniques as applied.
• One of the limitations is the limited set of programs on which I tested the techniques.
• One limitation is that the supervised learning techniques limit application to situations in

which there is labeled data: data for which it is known whether the executions were typical
or anomalous.

• One of the limitations is that the instrumentation used in my techniques can perturb pro-
gram execution or incur unacceptable overhead.

• An additional limitation is that larger trends in program behavior can obscure smaller fluc-
tuations.

3.6 Conclusions
The preliminary work on detecting unintended behaviors in these small programs shows that
the basic technique works — the technique of using profiles collected with dynamic binary in-
strumentation to build machine learning models that predict whether errors occur in profiles of
new executions. However, the techniques as presented in this chapter are limited to the small,
simple programs. In the following chapters, I demonstrate how to expand these techniques for
applicability to more complex systems, specifically to ARS.

25

4 Dynamic Binary Instrumentation to
Detect Errors in Robotics Programs –
ARDUPILOT

The previous chapter establishes that the combination of dynamic binary instrumentation and
techniques based in machine learning can be useful to detect unusual behavior (or unintended
behavior) in software.

This chapter describes the expansion of these techniques to detect errors in the ARDUPILOT

system. While the previous chapter proves the concept on small programs, the technique expan-
sion is interesting because ARDUPILOT is real software that is in use and of interest to many real
users. The ARDUPILOT software is also vastly more complex than the small programs at issue in
Chapter 3. Experiments on ARDUPILOT demonstrate the technique’s applicability to programs
that are larger and more complex. To build the models for these experiments, I used supervised
machine learning.

4.1 The ARDUPILOT System

I conducted this set of experiments on the ARDUPILOT system.1 This system is an open-source
project, written in C++, with autopilot systems that can be used with various types of autonomous
vehicles. It is very popular with hobbyists, professionals, educators, and researchers. It runs
a control loop architecture. It has approximately 580,000 lines of code and has over 30,000
commits in its GitHub repository.2

ARDUPILOT provides a rich ground on which to test robotics systems. It is sufficiently
complex to be useful in the real-world. There is a wealth of information about bugs encountered
in real world usage, both in the version-control history and in the academic literature [103].

The system uses ARDUPILOT in simulation, with the included software-in-the-loop simula-
tor. I use a customized test harness that enables coordinated control over simulations, including
simulation of attempts to hack the vehicle remotely.

1http://ardupilot.org
2https://github.com/ArduPilot/ardupilot

26

http://ardupilot.org
https://github.com/ArduPilot/ardupilot

4.2 ArduPilot Approach

For each set of tests, I use pairs of versions of the ARDUPILOT software. Each of these pairs
anchors a scenario. The pair consists of a version of the ARDUPILOT software that contains a
known defect along with a corresponding version in which that defect is repaired. Each scenario
also contains inputs and environmental constraints under which the defect will be activated:

• SCENARIO A contains a buffer overflow seeded in APMROVER2/COMMANDS LOGIC.CPP.
The invalid buffer is prepared when one command identifier is used in ROVER::START COMMAND

but does not cause a crash until the same method is called with a different command iden-
tifier. I execute SCENARIO A a total of 4000 times with dynamic binary execution, 1000
times for each of the categories enumerated in Section 4.2.

• SCENARIO B contains an infinite loop, seeded in the MAV CMD DO CHANGE SPEED com-
mand case of APMROVER2/COMMANDS LOGIC.CPP. The seeded defect calls a function
that loops. Normal execution of the software requires correct behavior in this function,
i.e., without the seeded defect. I execute SCENARIO B (and each following scenario) a
total of 2000 times with dynamic binary execution, 500 times for each of the categories
enumerated in Section 4.2.

• SCENARIO C seeds a malicious arc-injection attack, injecting a jump to code that ARDUPI-
LOT should not execute at that time.

• SCENARIO D seeds a double-free situation, in which allocated memory is freed more than
once.

• SCENARIO E seeds an attempt to access a global variable that should be protected.

There are several refinements to the general approach for identifying anomalous behavior
using models built over low-level dynamic signals for ARDUPILOT. This approach takes as
input multiple pairs of versions of the ARDUPILOT system. Each pair of versions corresponds
to a known bug fix, that is, (a) a version of the software that contains a known defect and (b) a
version in which that defect is repaired. Additionally, I assume the provision of inputs or test
cases for each version, with at least one that activates the defect, and at least one that does not.
Given these inputs, I execute each program version on each input several times under dynamic
binary instrumentation. This results in data on:

1. executions of a version that contains a particular defect that exercise that defect;

2. executions of a version that contains a particular defect that do not exercise the defect;

3. executions of a repaired version corresponding to the defect-containing version, running
with inputs that would have exercised the defect; and

4. executions of a repaired version corresponding to the defect-containing version, running
with inputs that would not have exercised the defect.

I use the data collected for a variety of experiments that use machine learning models to
identify whether a particular execution exhibits a defect. These experiments approximate various
real-world situations.

27

4.3 Experimental Setup

In this section I provide details relating to how I implement the process described in Section 4.2.
I begin by outlining the questions I seek to answer. In Section 4.3.1, I go on to give details on
supervised machine learning and how I use it. I have already presented the main program under
test and the experimental scenarios I use on it in Section 4.2. I present the experimental setup to
evaluate the following research questions:

• RQ1: Given multiple executions of a version of ARDUPILOT with a defect in it, some of
which activate the defect and others of which do not, how well does supervised learning
identify the executions that activate the defect?

• RQ2: Given multiple executions of a version of ARDUPILOT with a defect in it and a ver-
sion of ARDUPILOT in which the defect was repaired, running with an input that activates
the defect, how well does supervised learning detect executions of the version that contains
the defect?

• RQ3: For each of the above, how does the number of executions affect the accuracy of the
predictions?

I run the experiments pertaining to ARDUPILOT SCENARIO A on a 64-bit machine running
Ubuntu 14.04.5, with 8 virtual (4 actual) cores, and 8 GB of RAM. Each experiment is run within
a Docker container running the same operating system.

I run the experiments pertaining to ARDUPILOT SCENARIO B, SCENARIO C, SCENARIO D,
and SCENARIO E in an Ubuntu 16.04 virtual machine with 768 MB of RAM and one virtual
core, hosted on the same machine used to run SCENARIO A.

4.3.1 Supervised Machine Learning

I use out-of-the box machine learning algorithms from Scikit Learn.3 Specifically, for supervised
learning, I use the Decision Tree classifier available from Scikit Learn. Before selecting this
classifier, I did an informal survey, analyzing the data with several of the options available from
Scikit Learn. I found that Decision Tree provides results similar to or better than the results using
other classifiers across a wide range of different programs and collected data. In addition, the
Decision Tree algorithm provides the ability to generate explanations of the decision processes
in a human-understandable form, to a much greater extent than many other algorithms. After an
informal parameter sweep, I decided to use the default parameters of the algorithm.

For all supervised machine learning experiments, I use K-fold cross-validation, with K=10
for all sample sizes greater than or equal to 100 and smaller values of K for smaller sample sizes,
to ensure at least 10 points in each test sample. I report the arithmetic mean across all folds.

I balance all data by duplication of pseudo-randomly chosen data points in the minority class.
I choose to balance by duplication because it does not reduce the size of the data set; the prelimi-
nary experiments show comparable results with balancing by deletion, when the data set is large
enough. I also use a fixed random seed for reproducibility.

3http://scikit-learn.org/ The analyses in this chapter use Scikit Learn version 0.18.2.

28

http://scikit-learn.org/

4.3.2 Collecting Signals with Dynamic Binary Instrumentation

I use dynamic binary instrumentation to collect low-level information about the processes that
execute when I run software. I count events that occur during execution and keep track of min-
ima and maxima for certain values. For example, I count the number of machine instructions
executed, the number of memory stores, and the minimum and maximum memory addresses
associated with each. These counts result in a summary of each execution, consisting of a list
of numbers, corresponding to each measurement. I collect the same measurements for each ex-
ecution, so the summary of each execution can be treated as a feature vector, suitable for input
into machine learning algorithms. I aggregate the feature vectors into two-dimensional matrices,
representing the overall data set.

I use a customized tool based on the VALGRIND framework, version 3.14, to record low-level
information about program executions.

For these experiments, I collected a set of data for each execution, making use of information
that is easy to track with low overhead within VALGRIND’S framework. These data include, but
are not limited to, values for:

• Minimum and maximum instruction address
• Number of instructions executed
• Minimum and maximum address of memory loads
• Number of memory loads

One key difficulty in using a dynamic binary instrumentation approach with a timing-sensitive
system, such as ARDUPILOT or virtually any other robotics software, is that the overhead of col-
lecting the information changes the timing in the program execution. These timing changes can
change the program’s control flow by, for example, causing various timeouts to trigger or caus-
ing events to happen in an order that the program does not expect. I took several approaches to
reducing the effects that instrumentation has on timing sensitive executions. Wherever possible,
I relaxed timeout parameters in the software. In addition, I worked to reduce the overhead of my
instrumentation.

VALGRIND is a powerful tool, able to measure many events at the low level. However, I
restrict the events I measure to those that can be measured with a minimum of added overhead.
The selection is largely inspired by the structure of VALGRIND’S instrumentation, collecting that
information that comes nearly, “for free,” when instrumenting a given instruction and collecting
those pieces of information efficiently. For example, although I could collect data about whether
branches are taken and whether they correspond to what VALGRIND considers inverted condi-
tions, I do not collect those data because collecting them would involve more calculations and
calls into VALGRIND’S API at runtime.

29

Table 4.1: Accuracy Metrics for Supervised Learning on a Single Defective Program Version
with an Input that Activates the Defect and One That Does Not.

Scenario Mean Mean Mean Mean
Acc. Prec. Rec. F-Score

Scenario A 0.9835 0.9793 0.9883 0.9836
Scenario B 0.9991 0.9982 1.0000 0.9991
Scenario C 0.9990 1.0000 0.9980 0.9990
Scenario D 0.9963 0.9964 0.9963 0.9963
Scenario E 0.9963 0.9983 0.9944 0.9963

4.4 Results

4.4.1 RQ1: Supervised Learning on a Single Defective Version of ARDUPI-
LOT

Recall that my overall goal is to determine whether an approach that combines dynamic-binary-
instrumentation with machine-learning analysis is useful in detecting behavior that exhibits de-
fects in software. This question evaluates the subgoal of determining whether I can use super-
vised machine learning to identify program executions that exhibit a defect, as opposed to exe-
cutions of the same defect-containing program version that do not exhibit the defect. To evaluate
this question, I return to my main program under test: ARDUPILOT.

Results can be found in Table 4.1. Note that my technique can virtually always tell the
difference between executions with the input that activates the defect and executions that do
not. All accuracy metrics are very high, showing a lack of bias towards false positives or false
negatives. The lowest score, a precision of 0.9793 in SCENARIO A, should be acceptable to users
in nearly all circumstances.

These very accurate results suggest that this problem, as posed, may be a problem that is
particularly well-adapted to the supervised learning approach. In this task, the algorithm is telling
the difference between executions that do and do not exhibit a particular defect, when the data set
is restricted to similar executions that do and do not exhibit that same defect. The extremely high
accuracy suggests that the technique may be amenable to handling more difficult and complex
scenarios.

4.4.2 RQ2: Supervised Learning on a Defective Version of ARDUPILOT
and Its Repaired Counterpart

This question evaluates the subgoal of determining whether I can use supervised machine learn-
ing to identify program executions of a defective program version as opposed to executions of
its repaired counterpart. I execute the defective program version and the repaired counterpart
500 times each with the same input, which is an input that activates the defect. Table 4.2 shows
results. Note that supervised learning can nearly always determine whether an execution with
the defect-activating input is on the defective version or the repaired version. Although these

30

Table 4.2: Accuracy Metrics for Supervised Learning on a Defective Version and its Repaired
Counterpart.

Scenario Mean Mean Mean Mean
Acc. Prec. Rec. F-Score

Scenario A 0.9817 0.9837 0.9798 0.9817
Scenario B 0.9961 0.9944 0.9980 0.9962
Scenario C 1.0000 1.0000 1.0000 1.0000
Scenario D 0.9990 1.0000 0.9980 0.9990

results come from a constrained experimental setup, their high accuracy metrics suggest that the
approach might extend to setups with more noise.

For control, I run supervised learning on SCENARIO A with an input that does not activate
the defect. In these experiments, the supervised learning cannot tell the difference between
the defective version and the repaired version, achieving an accuracy of 0.5125 and F-Score of
0.4936, which is nearly even chance. This shows that, on SCENARIO A the differences detected
are due to the difference in execution when the defect exhibits as opposed to not.

4.4.3 RQ3: Prediction Accuracy on Varied Amounts of Data

This question evaluates the subgoal of determining how much data is necessary to make use-
ful predictions. To answer this question, I compute the analyses used to evaluate RQ1 in Sec-
tion 4.4.1 with varying amounts of data on SCENARIO A, which is described in Section 4.2. I
show results for all accuracy metrics in Table 4.3 and graph results for the F-Score metric in
Figure 4.1 As mentioned earlier, the F-Score is a harmonic mean of precision and recall, and
represents a measure of the ability of the technique to detect all executions that exhibit the defect
without flagging executions as defective when they are not. Higher is better. The X-axis rep-
resents the total number of samples included in K-fold validation for supervised learning. Note
that the Y-axis starts at the value of 0.84 and that the lowest F-Score I observe is 0.8452 for
the value of 50 samples. The F-Score remains above 0.96 for all sample sizes greater than or
equal to 500. These data show that even with a comparatively small sample size of 50 samples,
I get reasonably accurate data and that, although accuracy generally increases with additional
samples, returns diminish after 500 samples.

4.5 Conclusions
The constrained experiments evaluated in this chapter result in extremely high accuracy, for
all accuracy metrics. This suggests that the technique presented here is very well-adapted to
detecting execution defects under these constrained circumstances. While these circumstances
are artificially constrained (e.g., including training data that exhibits the defect of interest), it
may be possible to create data sets in real circumstances that exhibit some of the elements that
contribute to the success of these experiments.

31

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F-
Sc

or
e

Total Number of Samples

Figure 4.1: Supervised Learning on a Single Defective Version with Varied Amounts of Data

Because these techniques are so highly successful in these limited circumstances, the next
step is to apply the techniques to situations in which the input space is more varied.

32

Table 4.3: Accuracy Metrics and Approximate Training Time for Supervised Learning on a
Single Defective Version With Varying Numbers of Samples.

Num. Mean Mean Mean Mean Train
Samples Acc. Prec. Rec. F-Score Time (min)

50 0.80 0.83 0.80 0.81 83.2
60 0.87 0.90 0.82 0.86 99.9
70 0.87 0.89 0.85 0.87 116.5
80 0.91 0.92 0.94 0.92 133.2
90 0.92 0.93 0.92 0.92 149.8

100 0.89 0.91 0.86 0.87 166.5
200 0.90 0.90 0.91 0.90 333.0
300 0.93 0.92 0.94 0.93 499.5
400 0.94 0.94 0.95 0.95 666.0
500 0.97 0.96 0.97 0.97 832.5
600 0.97 0.97 0.97 0.97 999.0
700 0.97 0.98 0.97 0.97 1165.5
800 0.98 0.98 0.98 0.98 1332.0
900 0.98 0.98 0.98 0.98 1498.5

1000 0.98 0.98 0.98 0.98 1665.0
1100 0.97 0.97 0.98 0.97 1831.5
1200 0.98 0.98 0.98 0.98 1998.0
1300 0.98 0.98 0.98 0.98 2164.5
1400 0.98 0.98 0.97 0.98 2331.0
1500 0.98 0.97 0.98 0.98 2497.5
1600 0.98 0.98 0.98 0.98 2664.0
1700 0.98 0.98 0.98 0.98 2830.5
1800 0.98 0.99 0.98 0.98 2997.0
1900 0.98 0.98 0.98 0.98 3163.5
2000 0.98 0.98 0.99 0.98 3330.0

33

5 Novelty Detection on Varied Robotics
Programs

The work in previous chapters demonstrated the viability of dynamic binary instrumentation,
used as described, to detect errors in small programs and in the ARDUPILOT robotics system. To
determine whether this insight extends to other robotics systems, I performed similar experiments
on additional systems. This chapter describes this work, portions of which were also published
in Katz et al. [62].

While the previous chapters used unsupervised and supervised machine learning models, the
work in this chapter uses a semi-supervised machine learning approach based on clustering data
points representing nominal executions. Because this semi-supervised — one class — model
uses only the data from nominal executions, the resulting model serves as a representation of
nominal behavior. I use techniques based in anomaly detection to determine whether new (un-
known) data points fall within the model (and therefore represent nominal behavior) or outside
the model (and therefore represent unexpected behavior). Like the work in earlier chapters, this
work is based in the assumption that unusual behavior is more likely to exhibit errors than typi-
cal behavior and, therefore, that unusual behavior might represent unsafe behavior [35]. In other
words, the resulting model serves as a test oracle for data points representing additional unknown
executions.

The approach detects a significant portion of faults on two simulated robotics systems. I
present initial experiments on these systems in simulation, demonstrating the use and effective-
ness of this technique.

This chapter also introduces the idea of using the technique as an oracle for system robust-
ness and safety [10, 13]. Robustness testing involves tests to ensure that a system functions
correctly when given invalid or unexpected inputs, stressful environmental conditions, or other
conditions [56]. For ARSs, it is vital to ensure that the system operates safely at all points of
execution, as they are CPSs that interact with their environment. This chapter demonstrates using
the technique to detect potentially unsafe behavior in ARSs during robustness testing.

The success of the work in this chapter provides further support for the idea that systems that
interact with the real world are well-suited to execution monitoring because most of the overhead
can be absorbed into time the system would have otherwise spent waiting. The absorption of
delays in ARS is analyzed in more depth in Chapter 6.

Section 5.1 outlines the method, combining low-level system characterization techniques,
clustering, and anomaly detection. Section 5.2 discuses the evaluation of my technique, includ-
ing the Systems Under Test (SUTs) and test inputs. Section 5.3 discuses experiment results.

34

Section 5.4 fits this technique into context and explores implications.

5.1 Method

Figure 5.1 illustrates the technique used in this chapter for using anomaly detection to find un-
expected behaviors in robotics systems in simulation. This techniques assumes an SUT — a
robotics system that can be executed with a system characterization technique, either on real
hardware or in simulation [98, 103]. It also assumes at least one nominal system input — an
input not known to cause any safety violations or unintended behavior. Given this input, the
approach is comprised of two steps: setup and testing.

Setup involves running an instrumented system on nominal inputs and collecting summaries
of system execution (Section 5.1.1). These summaries are — or are parsable to — a collection
of values (either fixed-length or time series). I use the affinity propagation algorithm [42] to
automatically cluster these representations, with clusters each corresponding to common modes
of nominal operation. Affinity propagation works especially well when the number of modes is
not known a priori. The nominal data set used in setup is relatively small, so this step does not
impact overall performance significantly.

In testing, the technique detects anomalies by comparing instrumentation-produced execu-
tion summaries of previously unseen inputs against the clusters of nominal behaviors. The com-
parison uses Local Density Cluster-Based Outlier Factor (LDCOF), a clustering-based anomaly
detection technique (Section 5.1.2). LDCOF produces an outlier score for a new input, repre-
senting how far the new execution is from the closest cluster of nominal operation. A higher
outlier score signifies that a given execution may be indicative of unsafe system behavior.

5.1.1 System Characterization Techniques

This technique uses three system profiling tools: two off-the-shelf tools and one custom VAL-
GRIND tool.

PS Utility

The PYTHON package PSUTIL1 collects information on running processes by interacting with
underlying system services. The resulting data include: User time — the amount of CPU time
the system has spent in the process, not the kernel; System time — the amount of time spent
in kernel mode; Resident set size — the amount of RAM allocated to the process; and Virtual
memory size — the amount of virtual memory the process has access to. I collect this data
at a fixed frequency, resulting in a time series describing system behavior over the course of
execution.

1https://pypi.org/project/psutil/

35

https://pypi.org/project/psutil/

Figure 5.1: The architecture diagram for this testing approach, outlining the setup and testing
phases.

36

Valgrind Memcheck

A popular program profiling method is VALGRIND,2 an instrumentation framework for develop-
ing dynamic analysis tools. VALGRIND’s default tool, MEMCHECK, tracks a program’s memory
accesses, such as memory initialization and freeing resources. It wraps most instructions with
instrumentation. I parse MEMCHECK’s log file to extract values that summarize the system be-
havior.

Customized Valgrind Tool: SignalSeer

I designed a custom dynamic binary instrumentation tool on the VALGRIND framework, to col-
lect a broader set of low-level data about the executions of an SUT. I call this tool SIGNALSEER.
It counts execution events and keeps track of minima and maxima for certain values, such as:
number of machine instructions executed, number of memory stores, and minimum and maxi-
mum memory addresses for each. The tool is designed to have low overhead. As such, the choice
of what to count is inspired by VALGRIND’s instrumentation structure. I add an instrumentation
point to each instruction and, at each of these points, only collect data that can be gathered effi-
ciently. The tool minimizes calls to libraries and VALGRIND’s API at runtime. This tool provides
a summary of execution behavior that is ready to use for the analysis.

5.1.2 Detecting Anomalies in System Execution

To detect execution anomalies, I need a way of measuring how anomalous a given execution
is. I use Local Density Cluster-Based Outlier Factor, an anomaly detection algorithm that uses
clustering to find outliers [6]. LDCOF works by applying a clustering algorithm to the data,
separating the clusters into large and small clusters, then for each data point calculating an outlier
score as follows:

LDCOF (p) = min
Ci∈large clusters

d(p, Ci)

avg dist(Ci)

where d(p, Ci) is the distance between a point p and the center of cluster Ci, and

avg dist(Ci) =

∑
p∈Ci

d(p, Ci)

|Ci|
.

In this use case, there are separate training and target data sets. Thus, I adapt the LDCOF
algorithm to consider all clusters of the nominal data to be “large clusters”. This ensures that the
outlier score is calculated against every mode of nominal operation.

LDCOF suits this use case well because it accounts for variance in operating modes. With
LDCOF, a data point that is X distance away from a cluster with a lot of variance would be
considered less anomalous than one that is the same distance away from a cluster with little
variance. This behavior analogizes well to modes of system operation.

2http://valgrind.org

37

http://valgrind.org

I use the estimate from LDCOF (p) of how much of an outlier a given data point p (and its
corresponding execution) is, as an oracle. Any execution with an LDCOF (p) greater than some
threshold is sufficiently far away that it is likely to represent an anomalous execution. For these
experiments, I set the threshold equal to one.

5.1.3 Dynamic Time Warping
For system characterization techniques — such as PSUTIL — that produce time series data, I
adjust the clustering algorithm to compare these data using Dynamic Time Warping (DTW) [12]
instead of Euclidean distance. DTW calculates the disparity between two sequences under warp-
ing of the time axis by finding a sequence of index pairs (i, j) that minimizes

end∑
k=1

|seqa[ik]− seqb[ik]|

subject to the following constraints

(i1, j1) = (1, 1)

(ik+1, jj+1) ∈ {(ik + 1, jk), (ik, jk + 1), (ik + 1, jk + 1)}
(iend, jend) = (len(seqa), len(seqb))

In prose: it calculates the shortest distance between elements of two sequences, allowing
adjustment of the relative ordering of elements between the sequences, as long as the ordering of
elements within each sequence remains fixed. DTW is not an actual distance function but instead
a distance-like function, which means that one cannot calculate the center point of a cluster using
DTW. Instead, I approximate the distance d(p, C) as:

d(p, C) = avg
q∈Ci,q 6=p

d(p, q)

5.2 Experiment Setup
Each experiment centers on one SUT (Section 5.2.1). In the setup phase, the SUT is repeatedly
executed in simulation with a nominal input under the chosen system characterization technique.3

For the testing phase, I generate test inputs by using mutational fuzzing on the nominal input. In
these experiments, the nominal input is an input file provided with the SUT. I run the SUT under
the system characterization technique with each test input to generate a profiling result and clas-
sify the profiling result using my LDCOF-based anomaly detection method. I compare detected
anomalies against violations detected by using a set of manually written system invariants, which
is a proxy (approximate stand-in) for true safety. Here, an invariant is a rule that must hold over
the entire execution, covering any property, such as message transmission frequency or speed
limit. Test and invariant construction is described in more detail in Sections 5.2.2 and 5.2.4.

3All simulations described in this chapter are run on machines with the following configuration: Intel R©CoreTM2
Duo CPU (E8500) 2 Cores @ 3.17GHz, 4 GB RAM.

38

5.2.1 Systems Under Test (SUTs)
These experiments use two SUTs: a research system that includes common robotics libraries and
a commercial system. I chose these systems for insight into real-world factory robotics systems
and the behavior of some of the underlying libraries that are common in robotics development.

I drew nominal inputs from simulations provided with the robots, as demonstrations of in-
tended system behavior. The inputs take the form of ROSBAGS, files that contain a series of
messages of different types that are sent among components of a ROS system during execution.
To exercise the system multiple times with the same input, I replay the ROSBAGS on different
executions.

I use the GAZEBO simulator for system execution, following the instructions in the SUT doc-
umentation. This gives a consistent environment in which to exercise the SUTs while applying
the nominal and test inputs.

BenchMark Bot (BMB)

BMB is an artificial system designed by my collaborators at the National Robotics Engineering
Center (NREC) for research on the Robot Operating System, common libraries, and interactions.
It is a lightweight wrapper for key ROS functionalities, including path planning and switching
between sources of control. The robot is designed to compute a path based on waypoints and
what it senses in its environment. Because BMB is modular, it can be configured to use any of
several planning algorithms.

I tested BMB using a recording of a simple exploration scenario. To do this, I ran one node
rather than the entire system. The node I tested was GLOBAL PLANNER, which takes in a point
and outputs a likely path.

Fetch Robotics’ Fetch

Fetch robots are commercially available “autonomous mobile robots that operate safely in com-
mercial and industrial environments shared by people.”4 They pick up and transport heavy pay-
loads, such as items in a warehouse environment. They have a mobile base and an arm for
manipulation. The robots are built on ROS. Fetch Robotics provided simulation and the DISCO

DANCE scenario, which I tested. Disco dance demonstrates the movement planners, taking the
robot through a range of arm motions, with dummy “collision objects” for the arm to avoid.

5.2.2 Test Inputs
I use mutational fuzzing to create test inputs likely to induce safety failures. Changing values
in inputs to exceptional values that are, nevertheless, sometimes seen in real systems (such as
MAX INT, NAN, or −1), has been shown to effectively induce robotics systems failures [56,
68]. Specifically, for each selected message type in a nominal input file, I inject roughly ten
exceptional values using a randomized value injection technique. I generate at least six test
inputs per message type.

4http://fetchrobotics.com/automated-material-transport-v3/

39

http://fetchrobotics.com/automated-material-transport-v3/

1 if "torso_lift_joint" in joint:
2 if abs(joint_vel) > 0.1:
3 return True
4 if abs(joint_effort) > 450:
5 return True
6 if joint_pos < 0 or joint_pos > 0.4:
7 return True

Figure 5.2: Code listing for sample FETCH invariants.

These test inputs give a variety of input patterns, some of which are known to cause safety
violations, which provides a data set against which to measure false positives and negatives. I
determined whether each input contained faults by using it with the robot in simulation with no
instrumentation and evaluating whether the simulation violated any invariants.

5.2.3 Metrics

To evaluate the effectiveness of the anomaly detection based oracle, I find the FDR and sensitivity
(a.k.a. recall). FDR is related to precision in that FDR equals one minus precision. I assign the
positive label to safety violations, so the FDR represents the portion of detected anomalies that
are not safety violations. Lower is better because false discovery results in unnecessary testing
effort.

Sensitivity represents the proportion of test cases containing safety violations that were cor-
rectly detected. Ideally, this should be one, catching every safety-violating test input. Sensitivity
is not influenced by the populations of safety violations in the test inputs, reducing the impact of
the choice of testing method and parameters.

While there is no absolute ground truth for safety violations, I evaluate anomaly detection
performance by calculating FDR and sensitivity against a proxy for ground truth: a set of in-
variants, as described in Section 5.2.4. To provide context, I also evaluate a reference oracle
detection of crashes via core dump.

5.2.4 Invariants

The evaluation uses an explicitly-written set of invariants as a proxy for ground truth. Invariants
are rules which must hold true over the execution of the program. Here, the invariants represent
safety constraints: a violation means that the system has become unsafe.

Specifically, the invariants in this experiment are PYTHON functions, human coded from
portions of the system documentation. These functions are evaluated over the output log from
a test input to determine if the rules were violated. An example of a subset of the invariants in
FETCH is in Figure 5.2. This subset of invariants represents restrictions on the allowable values
for properties of the TORSO LIFT JOINT.

Invariants provide a more in-depth analysis of system behavior and can help find faults be-
yond those that cause core dumps [56]. Invariants can closely approximate the real world safety

40

Table 5.1: False Detection Rate (“FDR”) and Sensitivity (“Sens.”) vs. manually-written invariants using
process monitoring (“PS”), MEMCHECK, and SIGNALSEER. (Core dumps are also evaluated against
invariants, for context. Core dumps FDR is zero by definition.)

PS MEMCHECK SIGNALSEER Core
System Scenario FDR Sens. FDR Sens. FDR Sens. FDR* Sens.

BMB Global 0.00 0.44 0.45 0.66 0.00 1.00 0.00 0.44
FETCH Disco 0.50 0.11 0.25 0.35 0.25 0.50 0.00 0.06

of the system, but they require substantial effort and expertise to create a comprehensive set.

Core Dumps

For additional context, I evaluate a simple core dumps oracle — whether or not an execution
crashes and produces a core dump. This very basic restriction on system behavior (that it should
not crash) provides a bare minimum of fault detection in testing scenarios. Crash rate is often
used as a simple oracle for system safety in robustness testing [28, 47].

5.3 Experiment Results

For evaluation, I compare the technique’s detected violations against the ground truth proxy. A
positive label indicates a safety violation (detected behavioral anomaly or invariant violation). A
negative label means no violation is found (no anomaly is detected or invariant violated, respec-
tively). I calculate accuracy metrics by comparing labels from the technique against the ground
truth proxy.

5.3.1 Results

Experiment results are in Table 5.1. Each row represents one of the SUTs. For each system, the
table gives FDR and Sensitivity against manually written invariants for each system character-
ization technique. The table also reports FDR and Sensitivity of core dumps against manually
written invariants. The FDR of core dumps against manually written invariants is zero by defini-
tion because a check for core dumps is included in the manually written invariants.

False Detection Rate FDR highlights the number of test inputs identified as anomalies that
were not actual safety violations. These false alarms can consume testing budgets because they
lead to investigation of test inputs that are not actual faults. The false detection rate varied
from 0.00 to 0.50, over two systems and three system characterization techniques: up to half of
detected anomalies were not safety violations. SIGNALSEER performed best, with a maximum
FDR of 0.25, meaning that 1 in 4 detection is incorrect.

41

Sensitivity The sensitivity metric captures the proportion of safety violations that were de-
tected as anomalies. Sensitivity was high, reaching 100% when analyzing the behavior of BMB
with SIGNALSEER. For Fetch, a commercially available test system, the worst case sensitivity
of the anomaly detection oracles (PSMON: 0.11) is double that of the reference oracle (0.06). In
the best case, SIGNALSEER gives a nearly 6 fold improvement.

5.3.2 Experiment Discussion
The anomaly detection oracles achieved sensitivity that was as good as or, more often, better
than that of the reference oracle. The reference oracle only detects system crashes, but there are
many other kinds of potential safety violations, such as the example invariant for Fetch discussed
in Section 5.2.4. The higher sensitivity represents the ability to detect safety violations beyond
system crashes. However, sensitivity is also far from perfect, never reaching above 50% on
Fetch. I believe that one reason is that I used monitoring tools that do not track data values, only
execution behavior. It cannot detect a safety violation that only manifests in data, such as a speed
limit violation. Given that limitation, I think the results are quite promising. Likewise, I consider
that 0.50 and below to be excellent results for FDR given that this technique is highly automated.
It does not require the domain-specific knowledge, such as that needed to write invariants.

The effect of using a proxy for system safety Invariants are an imperfect proxy for ground
truth system safety. The expressiveness of the invariant checker is limited, and there can be
human error in encoding. A larger issue is that it is difficult to ensure a set of invariants is com-
plete. Human operators are very bad at writing accurate and complete invariants, as teams I have
worked with have observed in our experience with testing robots and as is noted in the litera-
ture [81]. For this reason, I expect the invariants to incorrectly label some executions negative
(in which there is a safety violation not found by the invariants).

Because these experiments use invariants as a proxy for real-world safety, it is possible that
some False Detections — in which anomaly detection finds an issue not found by the invariants
— are actually valid real-world safety violations, in which case the real-world FDR of these
oracles would be lower. It is much more difficult to reason about the effect of this uncertain
proxy for ground truth on the sensitivity results. It is not known which trials the proxy mislabels,
so it is difficult to be sure sure whether they were detected as anomalous. False positives from
the proxy translate to uncertainty in sensitivity.

5.4 Discussion
In this section, I discuss several interesting features of the approach and outline threats to the
validity of this study.

5.4.1 Monitoring Techniques Can Be Used Together
I suspect that designing a different custom monitoring tool or combining the outputs of different
monitoring tools may allow the technique to detect violations the current setup misses. In these

42

experiments, I observed that a portion of the execution anomalies were detected when using one
monitoring approach and not others — that is, different techniques detected different bugs. Be-
cause the overall technique is general, it is possible to create composite inputs to the anomaly
detection algorithm that incorporate the outputs (profiling results) from more than one monitor-
ing technique. Such an approach may lead to improved detection. I also suspect that adding
additional low-level elements to be tracked by the customized tool — such as elements that cap-
ture data values — may result in finding additional anomalies. For administrative and practical
reasons, I am unable to provide further detail here about which specific bugs were detected by
which technique.

5.4.2 Manually-Written Invariants are an Imperfect Proxy for Real-World
System Safety

While I use explicit invariants taken from system documentation as ground truth, these invariants
are far from perfect. In fact, they were even sometimes violated by normal system behavior.
For example, one of the designer-provided invariants for BMB specified a minimum transmit
frequency of 5Hz, while the code (and associated comments) set the target transmit frequency at
1Hz. In such cases, I chose to modify the invariants because labeling the nominal behavior of
the system as faulty would make further analysis difficult.

These conflicts between documented and implemented behavior are not uncommon [81] and
are one of the difficulties of creating explicit testing oracles.

5.4.3 Case Study — A ‘False Positive” Reveals An Actual Fault

Because invariants represent an imperfect ground truth, it is possible for the technique to detect
an anomaly that my analysis erroneously evaluates as a false positive, when the invariants are
incapable of identifying the anomaly.

In fact, I found such a case, in BMB, for executions for which anomaly detection with MEM-
CHECK identified anomalies but there were no invariant violations. By manually examining
the mutated inputs corresponding to these executions, I found that each perturbed the /PER-
CEPTION/MAP field. Manual inspection revealed that improper values in this field may lead to
memory corruption, even when they do not cause a core dump. The invariants only detected a
problem when there was a core dump. The anomalies detected using the technique with MEM-
CHECK are genuine faults not found by invariants, even though the analysis labels them as false
positives.

5.4.4 Use in Debugging Techniques

One primary area of application for this work is in use with other software testing and debugging
tools. Anomaly detection techniques, such as those described here, can serve as an automated
oracle for these tools. Automated testing and debugging tools can provide important information
to the developer, but they typically require an oracle that describes if a system behaved correctly

43

or not during a test. Using the approach described here increases the amount of automation
provided by these tools by removing the need for users to write oracles.

For highly automated tool chains such as RIOT [63] — a testing framework for the robotics
and autonomous systems robustness domain — where many testing features are already auto-
mated, an automated oracle drastically reduces the amount of user involvement and expertise
required.

5.4.5 Clustering to Find Modes of Behavior

This technique to find clusters of nominal behavior relies on affinity propagation, which does not
require that you know ahead of time how many modes of behavior there are. As such, it captures
all the modes of nominal behavior as nodes in the model. Other models may be more appropriate
when the modes of normal behavior are known beforehand. The size and density of these nodes
indicate the strength of the cluster. When a new data point is provided, the determination of
whether it is an outlier relies not only on how far it is to the nearest cluster but also on the density
of that cluster.

Clusters can form on different scales. If you have a program that executes vastly different
modes, such as a helicopter mode and a submarine mode, the differences between clusters rep-
resenting the submarine and the clusters representing the helicopter may obscure any differences
of behavior within each of the modes. This speaks to the need for judicious construction of the
applicable data set.

5.4.6 Threats to Validity

Certain anomalies may occur in simulation that would not occur on actual robotics system hard-
ware and vice versa. However, testing in simulation is a valid approach to discovering real bugs
in autonomy systems [98, 103]. Additionally, the faults detected typically trace to code defects
that exist regardless of platform, such as memory faults due to lack of bounds checking or CPU
spikes due to busy loops.

In addition, the technique may not generalize beyond the systems I tested, or beyond the
context of mutational input testing; the oracles are thus specific to this context and less general
than, e.g., explicit invariants. However, the math behind the approach does not depend on this
setup and could work with input data generated in different ways, without any requirement for
labeling which executions exhibit correct behavior. I also evaluate on more than one system to
provide evidence of potential generalizability.

Another threat is that system monitoring may introduce errors, such as timing errors, due to
overhead; this would be exacerbated for testing on hardware, as real-world robotics processors
have limited capacity. I advocate that the oracles created using this technique be used primar-
ily in testing, rather than deployment. This threat is partially mitigated because I measure core
dumps and explicit invariants on uninstrumented systems; thus, any problem in the SUT behav-
ior detected by those techniques cannot be due to instrumentation, and instrumentation-induced
failures will manifest as false positives. Finally, I observe that distributed systems that operate in
real time, such as the target systems, spend a lot of time waiting. In practice, I have observed that

44

much of the monitoring overhead can often be absorbed into this wait time, with little observable
overhead.

5.5 Conclusions
This chapter presented a method that uses anomaly detection to detect potentially unsafe behavior
in ARSs, as applied to two robotics systems in simulation. The algorithm uses system monitor-
ing techniques to obtain profiles of executions. It uses a clustering algorithm to create clusters
of those executions, representing modes of nominal execution. A distance metric (LDCOF) de-
termines whether additional execution profiles belong to the existing nominal clusters or should
be considered anomalies. The method is suitable for identifying faults in robotics and autonomy
systems.

Future extensions of this work would involve evaluating the technique on situations in which
the initial training data is derived from more diverse executions. These evaluations in this chapter
were based on data derived from executions not known to have errors — in this case, data for
which no core dumps or invariant violations are detected. In theory and with small modifications,
this technique could derive a model from executions that are not all nominal, without necessarily
needing labels identifying nominal executions. I would like to try the approach on this kind of
data. I would also like to extend the approach to situations in which the input data is derived
from more varied execution behavior.

45

6 Overhead Timing Effects on
Autonomous and Robotics Systems

6.1 Introduction

As demonstrated in Chapters 4, and 5, Autonomous and Robotics Systems (ARSs) are amenable
to detection of faults by the use of low-level program monitoring. As discussed in those chapters,
one primary concern about using these types of monitoring techniques is that the techniques can
cause high overhead. CPSs such as ARSs can be sensitive to overhead that interferes with the
timing of events — a missed deadline or a sequence of messages received in an unexpected order
can cause the system to fail. However, at the same time, these systems are particularly prone
to variability in operating conditions because of their interaction with the real world and the
unpredictable conditions therein. There are many situations in which the architectures of CPSs
can absorb timing delays, when they take place during times when the system would otherwise
be spent waiting for physical events or communication from other parts of the system.

I hypothesize that the same properties that allow ARSs and CPSs to absorb timing delays that
occur due to real-world unpredictability also allow these systems to absorb some of the delays
that would be caused by program monitoring.

I conduct a series of experiments to gain a more precise understanding of the amount and
nature of delays that these systems can absorb. To do so, I run experiments in simulation. The
nominal executions examine the behavior of an unmodified simulated ARS while the executions
with artificial delays examine the behavior of the same systems when message passing is delayed
for various topics.

6.2 Experimental Methodology

This section sets out the approach to the experiments in determining the extent to which timing
delays interfere with the behavior of ARS. To evaluate the extent to which timing delays deform
the observable execution of an ARS, I insert artificial timing delays in a controlled manner in the
following experiments:

For a given robot, I establish a set of commands, called a mission. For the purposes of these
experiments, each mission is represented as a series of destinations in three dimensional space
(two dimensional space for robots that move in only two dimensions), with the final destination
being a return to the first destination. I create a series of missions within a simulation environ-

46

ment for each robot.
The experiments consist of running two types of executions: nominal baseline executions in

which the system is run without modifications and experimental executions in which the system
is run with artificially-inserted timing delays. These two categories of executions are explained
in the following subsections.

6.2.1 Nominal Baseline Executions

To establish a nominal baseline — a baseline for how a robot behaves under normal conditions,
without any artificially-inserted delays — I run each unmodified ARS repeatedly on each of its
missions.

The executions to establish a nominal baseline serve several purposes in these experiments.
First, the nominal executions establish a baseline for how often the unmodified ARS fails. ARSs
often behave in a nondeterministic manner, even in simulation. Factors that can affect the non-
determinism are variations in the order in which messages are received, sensor noise, perception
systems’ interpretation of the sensor data, autopilot systems, and obstacles in the environment.
There can be nominal (unmodified) executions that fail in significant ways, such as failing to
reach one or more waypoints; getting “stuck” and discontinuing attempts to follow the mission
(e.g., when the perception system cannot determine the robot’s location); software crashes; or
liveness failures (e.g., hitting a timeout). Because there are failures in the nominal, unmodified
system, I cannot simply measure the failure rate of the artificially-modified system. For a re-
alistic measurement of the effect of the modifications, I must measure the extent to which the
modified system fails as compared to the extent to which the unmodified nominal system fails.
As an approximate metric of these failures, I measure the percent of executions in which the
robot never reaches the final waypoint. This metric allows comparison between the failure rate
in nominal executions and the failure rate in the modified system.

Second, the nominal executions establish a representative trajectory and other execution char-
acteristics against which the characteristics of modified executions can be compared. Other po-
tential characteristics of interest include the time taken for completion of the mission and the rate
at which messages are sent on various topics.

Third, the nominal executions establish the range of variation in nominal trajectories and
other execution characteristics. As mentioned above, there is significant nondeterminism in the
observed behavior of simulated robots, even when unmodified. Establishing the range in the
nominal executions provides a basis to tell when the modified, experimental executions are within
the range of nominal behavior or outside of it.

6.2.2 Experimental Executions

For the experimental executions, I add controlled artificial delays to the execution of the ARS
code. The points within the program at which these delays are inserted, number, and length of
these delays are experimental parameters. The method of inserting delays is set out below.

Experimental executions are evaluated against the nominal baseline and against the set of
waypoints that they are supposed to reach.

47

6.2.3 Method of Inserting Delays
This subsection explains how I insert artificial delays for the experimental executions.

ARDUCOPTER

For the ARDUCOPTER experiments, the artificial delays are introduced by modifying source
code in C++. I insert a sleep statement before a return statement in the code. To do so, I
identified the program point immediately before each return statement in all .CPP files in the
ARDUPILOT/ARDUCOPTER source code directory. For each of these program points, there
was the possibility of inserting an artificial delay. The choice of whether to insert a delay was
determined probabilistically, with a weighted coin flip. Different modified versions of the code
were created, 1 each of which had (a) a fixed coin flip weight and (b) fixed delay amount added
at each delay location. The weights for the weighted coin flip ranged from 0.1 to 1.0, with 1.0
meaning a delay was inserted before every return statement, and the length of each delay ranged
from 0.001953125 seconds to 8 seconds, with delay lengths chosen as powers of 2.

ROS-based Systems

For the ROS experiments, the artificial delays are introduced at communications barriers on ROS
topics, taking advantage of the architecture of ROS-based systems.

To give a simplified overview of the architecture of ROS-based systems, these systems consist
of various nodes which communicate with each other by sending messages over a bus, as shown
in Figure 6.1.

A publish-subscribe system determines which nodes receive which messages. A node can
publish messages to a topic. To receive those messages, another node subscribes to the same
topic. Generally, each topic only accepts messages of one type. ROS makes it easy to query
a running system to find out information such as (a) the topics in that system; (b) the type of
messages published to each topic; (c) the node or nodes that publish to a particular topic; and (d)
the node or nodes that subscribe to the particular topic. This information makes it easy to infer
certain properties about the relationships among nodes and the purposes of particular messages. I
use this information to choose the topics to which I add artificial delays. For example, in HUSKY,
I run experiments that delay each topic published by or subscribed to by the /MOVE BASE/ navi-
gation node. I do this because navigation is a vital function, and I expect disruptions in navigation
to have an effect on robot behavior. Conversely, I do not conduct experiments in which I delay
the topics related to displaying logging messages, as these are unlikely to affect anything other
than the logging messages displayed.

Once I set a TOPIC or TOPICS to delay on a particular ROS system for a particular set of
experiments, I insert delays on these topics by intercepting messages using topic renaming. ROS
allows configuration of nodes such that topics can be renamed. For example, if Node A is
originally designed to publish a topic named /A VERY GOOD TOPIC, I can change the system’s
configuration so that when published, the topic is known in the namespace as something else,
such as /A VERY GOOD TOPIC INTERCEPTED. Because the topic now has a different name

1I used the tool COMBY for these program transformations. https://comby.dev/

48

https://comby.dev/

Figure 6.1: Simplified ROS Architecture

than the system expects, the node or nodes that would have originally subscribed to the topic
will not receive the messages published on the new topic. However, I wrote an extra node to
be included with the ROS system. This node reads each message on a given topic, in this case
/A VERY GOOD TOPIC INTERCEPTED. It then waits for the designated amount of time and then
republishes the same message on the topic that was originally expected: /A VERY GOOD TOPIC.
The nodes that originally expected the messages on this topic from Node A now receive the same
messages from the delay node.

Delays ranged in length from 0.00390625 seconds to 1 second and were inserted for every
message in a topic. This range was chosen after a parameter sweep revealed that they result in a
representative range of behaviors.

6.2.4 Subject Systems
I evaluate the experiments on the following systems.

• ARDUPILOT: The open-source ARDUPILOT project, written in C++, uses a common
framework and collection of libraries to implement a set of general-purpose autopilot sys-
tems for use with a variety of vehicles, including, submarines, helicopters, multirotors,
and airplanes. ARDUPILOT is extremely popular with hobbyists and professionals. It
is installed in over one million vehicles worldwide and used by organizations including
NASA, Intel, and Boeing, as well as many institutions of higher-education [103]. These
experiments focus on the ARDUCOPTER software, designed for helicopter and multi-rotor
aircraft.2

2https://ardupilot.org/copter/

49

https://ardupilot.org/copter/

• HUSKY: The HUSKY unmanned ground vehicle by Clearpath Robotics3 is a real world
robot with an extensive simulation infrastructure. It is rugged, designed to be deployed in
uneven terrain, and it is capable of carrying and integrating with a variety of input sources
(sensors) and actuators. Husky is popular among researchers for its straightforward design
and real world usage history.

6.3 Evaluation
I evaluate the following research questions.
RQ1: To what extent do the presence of timing delays in robot systems have an effect on ob-

servable behavior as defined by a set of performance metrics?

RQ2: Are certain kinds of robotics components more robust or resilient to timing delays?

RQ3: Under what circumstances do timing delays lead to system crashes?

6.3.1 Metrics
To evaluate the research questions, I use the following metrics.

Metrics Based on Euclidean Distances These metrics are based on comparing the position in
3-dimensional space between the robot in the deformed execution versus the waypoints to which
the robot was instructed to go. Specifically, these include:
• The Euclidean distance between the final position of the robot in the deformed execution

and the final waypoint or home point
• The sum of closest distances from each waypoint
• The average of the closest distances from each waypoint
• The greatest closest distance from each waypoint

Completeness metrics These metrics are based on whether the robot completes its mission.
They are closely related to RQ3, as discussed in Section 6.3.4.
• Whether the execution navigates to each waypoint and returns home.
• Whether there is a system crash before the route is executed.
• Whether a timeout occurs.

Timeliness metrics
• The amount of time before completion of the execution (either successfully or unsuccess-

fully)
• Total amount of time taken to reach each waypoint (‘reach’ defined as when the system

issues the instruction to go to the next waypoint)
3https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

50

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

6.3.2 Effects on Observable Behavior
RQ1: To what extent do the presence of timing delays in robot systems have an effect on ob-
servable behavior as defined by a set of performance metrics?

To evaluate RQ1, I look at the metrics enumerated in Section 6.3.1.
The clearest and most obvious effects on observable execution are crashes, both software

crashes and crashes in physical space. I evaluate these deviations separately in RQ3 (Sec-
tion 6.3.4).

HUSKY

Table 6.1 shows, for the nominal and artificially-deformed HUSKY executions, how much their
Euclidean distance deviates from the waypoints the robot had been instructed to visit. Data for
each mission is listed on its own line. For the purposes of this chart, I look at the trajectories of all
experimental runs that reach all of the waypoints for a given mission. I take the robot’s minimum
distance from each waypoint for each of these experimental executions. I then take the mean,
over all of these experimental executions, of the minimum distance for each waypoint. The same
information is provided for the nominal executions for comparison. Note that the experimental
executions include varying amounts of delay and delays on different ROSTOPICS. I will explore
the effects of different delay amounts and delays on different topics in Table 6.3.

Note that in Table 6.1, the mean closest distance to the waypoint is always smaller in the nom-
inal group (which is taken from unmodified executions) than in the experimental group (which
is taken from executions with delays). While the closest distance from the destination waypoint
usually increases over subsequent waypoints, that is not always the case.

6.3.3 Different Effects on Different Components
RQ2: To evaluate RQ2, are certain kinds of robotics components more robust or resilient to
timing delays, I conduct separate experiments in which I insert delays that affect different com-
ponents. For example, on ROS systems, different experiments have delays on different ROS-
TOPICS. A ROSTOPIC conveys messages to the nodes that subscribe to it. When I delay the
messages on a particular ROSTOPIC, those delays affect the nodes that subscribe to that topic. By
delaying different topics separately, I can evaluate the different effects on the subscriber nodes.
In ARDUPILOT, I achieve a similar effect by conducting several separate experiments involv-
ing modifying only one source code file at a time. This file conceptually corresponds to the
component being tested.

Results

Table 6.4 shows the effect of delays on different topics in Husky.

6.3.4 When Delays Cause Software Crashes
RQ3: Under what circumstances do timing delays lead to system crashes?

51

Table 6.1: Husky: Mean Minimum Euclidean Distance from Waypoints in Meters for Nominal
Executions and Experimental Executions

Mission Distance from Waypoint WP WP
W1 W2 W3 W4 W5 Final Total Mean

Nominal
M1 0.23 0.66 1.65 1.47 2.01 1.10 7.13 1.19
M2 0.08 0.18 0.25 0.15 0.30 0.41 1.37 0.23
M3 0.22 0.38 0.54 0.58 2.85 1.45 6.02 1.00
M4 0.52 1.91 1.78 2.28 1.02 1.92 9.44 1.57
M5 0.39 1.01 1.12 0.57 2.09 2.67 7.86 1.31
M6 0.25 0.31 0.70 0.27 0.76 1.44 3.71 0.62
M7 0.31 0.27 0.28 0.35 0.42 0.55 2.18 0.36
M8 0.28 0.45 0.23 0.98 0.68 0.95 3.57 0.60
M9 0.80 0.53 0.75 0.59 0.83 3.43 6.93 1.16

M10 0.07 0.07 0.08 0.66 1.09 1.91 3.89 0.65

Experimental
M1 1.00 1.20 3.56 2.92 3.61 1.89 14.19 2.37
M2 0.89 0.52 1.67 1.00 1.40 1.12 6.60 1.10
M3 1.85 2.38 2.25 2.34 5.04 3.48 17.34 2.89
M4 1.42 2.83 3.26 3.06 2.03 2.34 14.94 2.49
M5 1.86 2.01 2.48 1.72 3.56 3.73 15.36 2.56
M6 1.03 1.34 2.67 0.79 2.96 2.05 10.83 1.80
M7 1.61 0.86 1.15 1.73 2.21 1.69 9.24 1.54
M8 1.21 2.85 1.87 3.85 2.70 1.93 14.42 2.40
M9 1.41 0.87 1.32 1.07 1.25 3.10 9.02 1.50

M10 2.57 1.73 0.34 2.39 2.68 4.12 13.82 2.30

To evaluate RQ3, I look at several indicators of software crashes that can be observed from
experiments. It is interesting to find out when timing causes a system crash because system
crashes have different practical implications for recovery techniques than other failures, such as
incorrect trajectories or delays. System crashes can lead to, for example, losing contact with
the system or damage to the hardware. Under some circumstances, a system that has crashed
without hardware damage can simply be restarted. It is important to separate system crashes
from other successful executions so that I can exclude any trajectories and timing data that are
invalid because of system crashes.

I establish a baseline of software crashes that occur in the nominal data set. Robotics systems
are often nondeterministic and difficult to simulate and, therefore, even nominal executions can
experience software crashes. I compare the rate of software crashes in nominal executions against
the rate of software crashes under the experimental conditions.

The presence of a core dump file — such as would be produced when a segmentation fault
occurs — indicates a system crash The absence of logs that would have normally been produced

52

Table 6.2: ARDUCOPTER: Mean Minimum Euclidean Distance from Waypoints in Meters for
Nominal Executions and Experimental Executions

Mission Distance from Waypoint WP WP
W1 W2 W3 W4 W5 Final Total Mean

Nominal
M1 52.37 52.37 52.37 52.36 52.36 52.37 314.20 52.37
M2 176.79 176.79 176.78 176.78 176.78 176.78 1060.70 176.78
M3 81.98 81.98 81.98 81.98 81.98 81.98 491.86 81.98
M4 60.56 60.56 60.57 60.57 60.57 60.56 363.39 60.56
M5 63.32 63.32 63.32 63.32 63.32 63.31 379.91 63.32
M6 94.99 94.99 94.99 94.99 94.99 94.99 569.93 94.99
M7 172.64 172.64 172.65 172.65 172.64 172.64 1035.86 172.64
M8 88.61 88.61 88.61 88.61 88.61 88.60 531.64 88.61
M9 51.51 51.51 51.51 51.51 51.51 51.52 309.08 51.51

M10 105.83 105.83 105.83 105.83 105.83 105.83 634.98 105.83

Experimental
M1 52.37 52.37 52.37 52.36 52.36 52.37 314.20 52.37
M2 176.79 176.79 176.78 176.78 176.78 176.78 1060.70 176.78
M3 81.98 81.98 81.98 81.98 81.98 81.98 491.86 81.98
M4 60.56 60.56 60.57 60.57 60.57 60.56 363.39 60.56
M5 63.32 63.32 63.32 63.32 63.32 63.31 379.91 63.32
M6 94.99 94.99 94.99 94.99 94.99 94.99 569.93 94.99
M7 172.64 172.64 172.65 172.65 172.64 172.64 1035.86 172.64
M8 88.61 88.61 88.61 88.61 88.61 88.60 531.64 88.61
M9 51.51 51.51 51.51 51.51 51.51 51.52 309.08 51.51

M10 105.83 105.83 105.83 105.83 105.83 105.83 634.98 105.83

53

Table 6.3: Husky: Mean Minimum Euclidean Distance (in Meters) from Waypoints for Varied
Delays on Mission 1, Topic /HUSKY VELOCITY CONTROLLER/ODOM

Delay Distance from Waypoint WP WP
(s) W1 W2 W3 W4 W5 Final Total Mean

Mean
0.0 0.23 0.66 1.65 1.47 2.01 1.10 7.13 1.19
0.00390625 4.45 3.59 10.63 8.84 8.70 4.50 40.71 6.79
0.015625 4.44 3.58 10.61 8.83 8.75 4.51 40.72 6.79
0.0625 4.42 3.57 10.55 8.81 8.66 4.47 40.48 6.75
0.25 4.43 3.59 10.57 8.81 8.65 4.44 40.49 6.75
1.0 4.45 3.60 10.65 8.87 8.73 4.47 40.77 6.80

Standard Deviation
0.0 0.41 1.13 2.62 2.89 3.49 1.80 12.35 2.06
0.00390625 0.86 0.64 1.87 1.65 1.56 0.81 7.39 1.23
0.015625 0.90 0.67 1.88 1.61 1.39 0.77 7.21 1.20
0.0625 0.93 0.71 2.08 1.70 1.67 0.81 7.89 1.32
0.25 0.91 0.66 2.02 1.73 1.68 0.85 7.84 1.31
1.0 0.86 0.63 1.79 1.54 1.47 0.80 7.09 1.18

during a proper execution indicates a system crash. If the test harness exits abnormally, I classify
that execution as a system crash.

Results

Table 6.5 shows the percent of HUSKY executions that either crash or do not reach the end goal
(within a tolerance of one meter). For the purposes of these results, I group all executions that do
not reach the final goal within the established tolerance for any reason. Here, failure to reach the
end goal within the established tolerance is a proxy for the execution having crashed. It is based
on the assumption that a system crash will occur before the end of the designated mission and
prevent the robot from reaching its goal. There is also an assumption that, if the robot has gone
so badly wrong that it does not reach its goal within the established tolerance, it is functionally
equivalent to crashing.

6.4 Discussion

This section discusses threats to validity, future directions, and implications of these experiments.
While ARS systems are largely able to absorb overhead timing, the effect varies based on the
amount of delay and the location of the injected delay.

54

Table 6.4: Husky: Mean Minimum Euclidean Distance from Waypoints for Varied Topics on
Mission 1, Delay 0.25 Seconds
Topic Distance from Waypoint WP WP

W1 W2 W3 W4 W5 Final Total Mean
Mean
/gazebo/link states 4.34 3.51 10.34 8.63 8.54 4.37 39.72 6.62
/husky velocity controller/cmd vel 4.41 3.54 10.45 8.71 8.54 4.42 40.06 6.68
/husky velocity controller/odom 4.48 3.68 10.80 9.06 8.84 4.48 41.34 6.89
/imu/data 4.44 3.57 10.54 8.78 8.61 4.46 40.41 6.74
/imu/data/bias 4.48 3.61 10.74 8.86 8.69 4.48 40.84 6.81
/navsat/fix 4.44 3.60 10.57 8.82 8.69 4.45 40.58 6.76

Standard Deviation
/gazebo/link states 1.09 0.83 2.50 2.14 1.94 1.00 9.51 1.59
/husky velocity controller/cmd vel 0.97 0.76 2.39 1.97 1.94 0.91 8.93 1.49
/husky velocity controller/odom 0.80 0.33 1.07 0.86 1.12 0.78 4.96 0.83
/imu/data 0.88 0.69 2.19 1.82 1.79 0.78 8.15 1.36
/imu/data/bias 0.81 0.60 1.51 1.63 1.60 0.78 6.93 1.15
/navsat/fix 0.88 0.60 2.06 1.68 1.59 0.82 7.64 1.27

6.4.1 Threats to Validity
Simulation I run these experiments in simulation. While it is possible to gain many insights
about robotics in simulation [98, 103], simulation may not accurately reflect the influence of
overhead on timing in real hardware. For example, real robotics hardware often has distributed
computing resources which may not be accurately reflected in the centralized computing power
available in simulation. A component with less computing power may encounter bottlenecks that
are not seen in simulation. Simulation also has imperfect fidelity to real world situations [5].

However, this threat is mitigated by the fact that much of the monitoring and bug detection
can also take place in simulation.

Limited Input Data These experiments are limited to the input data provided, which includes
relatively simple simulated environments and missions. More complex behaviors may not have
been tested.

Limitation to Observed 3-Dimensional Position These experiments did not test effects other
than deviations in the observed three-dimensional position of the robot. It is possible that delays
can affect other properties. However, this threat is mitigated by the idea that any major failures
in robot execution are likely to affect three-dimensional position.

6.4.2 Future Directions
There are several questions that arise directly from the work presented here.

55

Table 6.5: Husky: Percent of Executions That Crash or Do Not Reach all Waypoints on Mission
1, With a Tolerance of One meter
Topic Percent Failure by Delay Amount

0.0 0.00390625 0.015625 0.0625 0.25 1.00

/gazebo/link states 60.08 2.50 0.83 2.50 5.00 2.50
/husky velocity controller/cmd vel 60.08 3.33 2.50 1.67 4.17 4.17
/husky velocity controller/odom 60.08 2.50 0.83 4.17 0.00 4.17
/imu/data 60.08 0.00 2.50 3.33 3.33 2.50
/imu/data/bias 60.08 1.67 1.67 3.33 1.67 0.83
/navsat/fix 60.08 3.33 1.67 3.33 3.33 0.00

Table 6.6: Husky: Mean Time Taken (seconds) for Executions That Reach (P) and Do Not Reach
(F) the Final Waypoint on Mission 1, With a Tolerance of One Meter
Topic Delays (Seconds)
(abbreviated) 0.00390625 0.015625 0.0625 0.25 1.0

P F P F P F P F P F

/gazebo/link states 27.45 33.81 28.14 33.62 26.97 33.84 27.91 33.67 27.13 33.69
/husky.../cmd vel 27.03 33.77 27.82 33.72 27.74 33.58 27.39 33.76 27.35 33.71
/husky.../odom 27.36 33.77 26.49 33.59 27.42 33.65 n/a 33.61 27.23 33.88
/imu/data n/a 33.67 27.59 33.70 27.60 33.69 27.32 33.85 27.06 33.70
/imu/data/bias 28.07 33.86 27.58 33.66 27.69 33.76 27.63 33.68 28.44 33.58
/navsat/fix 27.11 33.68 28.21 33.63 28.01 33.75 27.67 33.80 n/a 33.70

Violations of Other Desired Properties The work presented here looks at the extent to which
artificial timing delays deform execution in robotics programs in simulation by looking at whether
the software crashes and physically-observable properties, such as how far the robot is from the
expected position in physical space and how long the robot takes to reach waypoints. However,
there are other desired properties in robotics execution. For example, there are safety properties
that robots should maintain during execution, such as that they should not crash into an obstacle
or that they should not violate speed limits. In addition, robots should maintain liveness — they
should not time out. It would be interesting to investigate the extent to which timing delays cause
these properties to be violated.

Error Handling and Desired Corner Case Behavior It would be further interesting to inves-
tigate to what extent timing delays cause robotics systems to enter into error-handling behavior.
For example, many systems are designed with fail safe behavior, in which the robot is designed
to shut down in a non-damaging state when the system encounters an unrecoverable error. Er-
ror handling for less severe faults may cause the robot to execute a recovery behavior, such as
clearing its position and using its sensors to attempt to identify where it is with respect to its
environment. Such a recovery behavior can occur even in nominal execution and is a normal part

56

of providing resiliency and accounting for nondeterminism in normal robotics executions. How-
ever, timing delays may cause these behaviors to be more frequent (because the timing delays
may cause errors).

Examination of Variation in Nominal Behavior ARSs are noisy. There is considerable vari-
ation in their nominal behavior, especially when a perception system, an autopilot system, and
obstacles are involved. This leads to considerable variation in paths taken by an unmodified
system. The unmodified system sometimes fails to reach all waypoints or simply gets stuck.
Additional work should examine the expected amount of variation in unmodified systems and
the causes of that variation.

Varied Amounts of Timing Delays The strategy for inserting timing delays in these experi-
ments is relatively simple — a constant delay amount added to every message in the ROS exper-
iments and a constant delay amount added before probabilistically selected return statements in
the ARDUPILOT experiments. More targeted delay injections may reveal more precisely the cir-
cumstances under which overhead is absorbed versus produces observable behavior deviations.

6.4.3 Discussion of Timing Amounts
Amount of Timing Delays as Compared to Expected Event Frequencies When systems
expect events to occur at a given frequency, such as when there is a control loop, a timing de-
lay greater than the given frequency will almost certainly cause unintended behavior. This is
reflected in these experiments, as the timing delays were chosen without regard to the various
control loop and other expected frequencies in the underlying systems. A portion of the delays
are smaller than the various expected frequencies, while a portion of them are larger. Smaller
delays, when incurred multiple times in the same program region, can translate into larger delays.
There is, however, redundancy and fault tolerance built into many ARSs. A delay greater than
an expected event frequency may appear to be absorbed when the redundancy behaviors mask it.

Amount of Timing Delays as Compared to Instrumentation Delays These timing delays are
intended to mimic delays caused by instrumentation and monitoring. While the timing delays
inserted are not chosen by exact measurement to make them congruent with monitoring delays,
they mimic those delays in other ways. The timing delays caused by monitoring are very small
and occur very frequently — at every machine instruction. The timing delays inserted in these
experiments are generally larger, but they occur less frequently. They are intended as a rough ap-
proximation to explain the principle behind why monitoring delays can be absorbed. Extensions
of these experiments could be used to designate practical tolerance levels for monitoring and
translate those tolerance levels into actual monitoring tools that work within those boundaries.

6.5 Conclusions
As this chapter has demonstrated, timing delays can be absorbed into simulated robotics systems
in varying amounts. These experiments support the observations in earlier chapters that over-

57

head caused by dynamic binary instrumentation does not cause as much runtime extension as
expected. In addition, because of inherent nondeterminism in the underlying SUTs, the changes
in behavior caused by delays are often within expected ranges of behavior under nominal cir-
cumstances. If instrumentation can be calibrated to avoid interfering with critical points in the
software, it is a suitable tool for analyzing ARSs.

58

7 Discussion and Conclusion

In summary, I have provided empirical evidence to substantiate the insights of my thesis. I have
presented techniques to use low-level execution information collected through dynamic binary
instrumentation to build machine learning models to be used to determine whether program exe-
cutions represent intended (usual) behavior. I have demonstrated the efficacy of these techniques
on small programs, on the ARDUPILOT drone autopilot system, and on several ARSs based
on the Robot Operating System and have presented analysis of the prediction accuracy, instru-
mentation intrusiveness, and calculation efficiency. I have also demonstrated that the overhead
generated by the monitoring techniques can be absorbed into system time, under certain circum-
stances that are likely to occur with ARSs. I have further demonstrated this principle by injecting
artificial timing delays into simulated ARSs and observing the effects on the systems.

7.1 Limitations
This section outlines various limitations of the work presented in this document.

7.1.1 Assumption that Unusual Behavior is Bad Behavior
The techniques in this work are based on the assumption that unusual behavior in software is
unwanted behavior. While this assumption is well-supported in the literature [35], there are
additional reasons why unusual behavior might occur, such as in error-handling cases or cases
that handle unusual inputs. Unusual inputs can be anything that is not well-represented in the test
input space. Inputs that are unlike test inputs are likely in ARS, given their varied and potentially
infinite input space. There are many potential approaches to mitigating this threat, some of which
I discuss more extensively in Section 7.3.4.

7.1.2 Limitations on Inputs
The potential input space for CPSs and ARSs is infinite. Any testing-based approach to assur-
ing software quality in these systems is naturally limited to the inputs tested. The techniques
presented here can be applied to the systems running on any inputs or environmental conditions.
However, the conclusions from the experiments presented here are limited by the range of inputs
and environmental conditions represented in the experiments. This is a limitation common to
much QA work on systems with large input spaces. However, because there are such dramatic
gaps in QA in ARSs, even limited improvements on QA techniques can improve software quality

59

significantly. Companies that are developing autonomous vehicles and other ARSs often make a
point of generating as much and as varied input data as they can for their testing processes [82].
A further discussion of the implications of the input space on the quality of the results is in
Section 7.3.1.

7.1.3 Execution in Simulation
I run these experiments in simulation. While it is possible to gain many insights about robotics in
simulation [98, 103], simulation may not accurately reflect the ARS’s behavior in real hardware.
For example, real robotics hardware often has distributed computing resources which may not
be accurately reflected in the centralized computing power available in simulation. A component
with less computing power may encounter bottlenecks that are not seen in simulation. Simulation
also has imperfect fidelity to real world situations [5].

However, this threat is mitigated by the fact that much of the monitoring and bug detec-
tion can also take place in simulation. A further discussion of the implications of use of these
techniques at various points in the development and deployment process can be found in Sec-
tion 7.3.2.

7.1.4 Limitation to Software Faults
These techniques are limited to software faults. Many faults in ARS can be characterized as
faults in requirements or in the interaction of hardware and software [74]. These faults will only
be detected by the techniques presented here if they show up in unusual software behavior.

7.2 Future Directions
There are many possible ways in which to build off the work included in this dissertation.

Intrusiveness Reduction One possible future direction is work to reduce the intrusiveness of
instrumentation to monitor program behavior. Recall that intrusiveness refers to the extent to
which execution is perturbed by instrumentation.

In Chapters 3, 4, and 5, I demonstrated the benefits of instrumentation for detecting un-
expected behavior in various programs, including ARSs. In Chapter 6, I demonstrated that
autonomous and robotics systems, in particular, can absorb many of the kinds of delays that
instrumentation overhead may cause. Further investigation may reveal techniques for tailoring
instrumentation to incur overhead only in situations in which it can be readily absorbed.

Analysis of Smaller Units in Robotics Software An additional technique for intrusiveness
reduction is analysis of smaller units in robotics software. Most software in ARSs is large and
complex. There are several distinct disadvantages to measuring the behavior of these programs
over an entire system at once. One disadvantage is that instrumenting the entire system is imprac-
tical because it can incur overhead in portions of the program that are most sensitive to timing.

60

My work in Chapter 6 shows that, in timing sensitive robotics systems, overhead from instru-
mentation can deform execution significantly enough that important portions of the programs are
not reached. An additional disadvantage is that the distributed nature of many of these systems
makes it difficult to keep an accurate count over all components without interfering with the
systems’ internal memory or communications.

Furthermore, an overall count is not the most precise measurement possible. It may lack the
precision to be informative if, for example, one portion of the program exhibits unusual behavior,
which can be seen in a comparatively-small perturbation of the values of particular low-level
signals over the course of running that portion of the program. If, in the normal variation of
program executions, the values of those signals vary by more than the perturbation, the larger
program behavior can obscure the behavior in the portion of the program. When I take summary
data over the entire system, larger trends in system behavior may hide the smaller variations in
the one node.

In addition, a focus on smaller program units may facilitate data analysis to occur while the
overall program is still running, allowing for flaw detection in an active program. One possible
drawback of restricting focus to a smaller program unit is that it may miss systematic behavior.
However, this risk is similar for any decision about which data to measure and analyze — there
is always a risk that the phenomena of interest will not be included.

A sub-problem of this approach is an attempt to identify units in robotics software in a black-
box manner, from the binary machine code associated with the software. This would present
several challenges but would have the benefit of being a realistic technique to apply to systems
for which source code is lacking.

Strategic Selection of Which Data to Collect to Maximize Hiding Overhead An additional
approach to reducing intrusiveness could involve a more strategic approach to the choice of data
to collect. My experiments in using dynamic binary instrumentation to collect information about
programs have focused on data collection approaches that add the least overhead to programs.
This has influenced the selection of which data to collect, such as which signals to monitor and to
take summaries rather than keep more detailed traces. However, as I analyze in Chapter 6, certain
robotics and cyber-physical systems can absorb overhead in certain circumstances. It would be
useful to determine if collecting different data can provide additional information and to evaluate
which data can be collected while staying within the bounds of the overhead that the system can
absorb. An approach to evaluate this may include a set of controlled experiments to determine
which data can be collected without deforming execution performance to an unacceptable degree.
These data can be used in experiments involving information gain to assess their usefulness in
determining whether programs are behaving in an unexpected manner.

Sampling Another approach to reducing intrusiveness could involve sampling. The instrumen-
tation approaches discussed in Chapters 3, 4, and 5 involve keeping count of all occurrences of
each of the kinds of program events they are tracking. An alternate approach could decrease
overhead by taking measurements at fewer instrumentation points. The approach to choosing
these instrumentation points may be combined with the work in Chapter 6 on determining when
adding overhead deforms observable execution. Work on this approach would involve evaluating

61

the trade offs between accuracy of predictions and reducing intrusiveness by sampling.

Diversity of Input Data Future extensions of the techniques in this work could involve evalu-
ating the techniques on situations in which the data is derived from more diverse executions. The
possible input space for ARS is potentially-infinite. More creativity could be applied to gener-
ating interesting inputs for these systems, potentially building on work taking place extensively
in the community that is developing autonomous vehicles for use as driverless cars. The use of
more diverse inputs could lead to more nuanced fault identification.

7.3 General Discussion
This section draws out some of the implications of the techniques and results presented in the
previous chapters.

7.3.1 The Impact of Data Scope on Experimental Approach and Accuracy

For each set of experiments in Chapters 3, 4, and 5, I used a set of data that was appropriate
to the nature of the programs under test and the test infrastructure available for those programs,
building off of others’ use of those programs as Systems Under Test (SUTs). I will compare and
contrast the data and approaches used in each set of experiments for the purposes of highlighting
the differences in the experiments, especially where the differences impact the accuracy of the
experiments.

All of these experiments relied on the same underlying techniques: collecting information
about individual executions and using that information to build models based in ML techniques.
The models, in turn, provide predictions — determinations about whether individual executions
are behaving as intended. However, the specific instantiations of these components varied in the
three sets of experiments.

Small Programs In Chapter 3, the proof of concept experiments involved small programs —
the SIR Siemens data set that have been commonly used in testing research [55]. There are
seven base programs, drawn from real software. Engineers seeded bugs into each of these base
programs, creating various buggy versions, each with one bug. They also created a set of test
cases with the goal of maximizing coverage. The test cases for each program are numerous and
have much duplicate coverage and functionality. The large set of test cases led to an unbalanced
data set – many more executions result in intended behavior than unintended behavior. There
was a small, finite, and known number of errors in each program. Each version of each pro-
gram only had one error. This created a data set in which supervised learning was primed to do
very well well. Even after balancing the data so that the supervised algorithm would not triv-
ially choose the more common class (intended behavior), there were many examples of intended
functionality. Even better, each error was distinct and was likely to be represented in the training
set, despite using standard 10-fold cross validation techniques. Because each type of error was
usually represented in the training set, the system could benefit from overfitting to its data set.

62

However, it may be possible to construct a data set whose characteristics mimic some of
the characteristics that made this data set so amenable to the application of supervised learning.
Doing so would involve applying any domain knowledge known about the underlying system
to generate a test suite that is rich in data representing nominal behaviors. The more extensive
the representations of as many nominal behaviors as possible in the test set, the more likely the
model created will correctly identify those nominal behaviors. If using supervised learning, the
models will likely be best at identifying unintended behavior modes that are similar to those
represented in the data set as examples of unintended behavior. Therefore, the test designers
should use whatever domain knowledge they have about the system to represent all known error
modes of interest in the training data. The system is designed to detect unknown error modes,
but it will be best at those that resemble those error modes in the training set.

For unsupervised learning on the SIR programs, I used domain knowledge to tailor the unsu-
pervised learning algorithm. While the techniques are generally black-box, it is advisable to use
domain knowledge to advantage when it is available.

ARDUPILOT In Chapter 4, the ARDUPILOT experiments focused on a set of scenarios exer-
cised in ARDUCOPTER. In each scenario, there was a single known defect. The experiments
focused on whether the given defect was activated in the given scenario. The models created
relied on the knowledge of which experiments belonged to which scenario. Because each model
was constrained to a single scenario with a single defect, the accuracy of the models was ex-
tremely high. Each model may have simply looked for whether the markers of that particular
defect were activated. This reflects the fact that, if you can constrain the domain of your model
to a comparatively small world, you may be able to increase accuracy.

Varied ROS Systems In Chapter 5, the techniques extended to other ROS systems, I created
the data corpus in a different manner. I established a set of nominal data modes by exercising
the system with inputs not known to activate faults. I created a one-class model from these
nominal executions. This one-class model allows for many different modes of behavior in the
nominal data, which is a different approach from the experiments in the previous two chapters.
However, it is similar to the experiments in the ARDUPILOT chapter because all of the nominal
data did derive from the same basic set of instructions. The experiments in Chapter 5 are broader
in potential applicability, though. They detect not one form of defect but many. Not a finite
set of known defects but a set of potentially unknown defects. They allow for many different
modes of behavior in the nominal data and can detect many different modes of deviance in the
off-nominal data. As such, this is a harder problem, and the accuracy rates are lower than in
the previous chapters. However, it requires less domain knowledge to be incorporated into the
data set construction and setup. It is applicable to situations in which domain knowledge is not
available and is highly automatable.

The contrasts among these sets of experiments suggest factors to consider when applying the
techniques presented in this dissertation to a new system or situation. If the test designer has
domain knowledge, it might be desirable to encode it into the setup, leveraging it to increase
accuracy, reduce the amount of training data needed, increase model efficiency, or improve other

63

desired properties. This might be doable without significant human effort — translating a small
amount of human effort into a drastically more accurate or otherwise better system. However,
one must be careful when using domain knowledge. It is easy to encode the tester’s biases (e.g.,
about which types of failures are possible in a given system) into any use of domain knowledge.
Another factor to consider is the scope of failures you would like to catch and the diversity of
the nominal behavior. It is easiest to create a model to catch one kind of failure from homoge-
neous data. With increasing complexity comes increasing difficulty. Models derived from these
techniques are expected to perform best in the most constrained situations. They still apply to
situations in which data is diverse, but there are tradeoffs in reduced accuracy.

7.3.2 Applicability of These Techniques within the Development and De-
ployment Process

While these techniques can be broadly applied to systems in any phase of development or de-
ployment, they are particularly well-adapted to early phases of system development and when
systems are tested in simulation. Systems should be tested early and often. Errors that are discov-
ered and fixed when the software is still under development in simulation are errors that do not
need to be discovered later, when the system is operating on real hardware that is more difficult
to repair.

When robotics software runs on real hardware in mass deployment, the system has often
been engineered to have no more capacity than is strictly necessary to run the system’s basic
functions. Although there may still be excess capacity in the deployed robots’ components,
especially during non-critical points, the components will have been designed for less “waste”
capacity. Therefore, in deployment, there may be fewer opportunities for hiding monitoring
overhead in excess capacity, and there may be more timing-critical points in which overhead
from monitoring can deform execution.

Nonetheless, because of the nature of the workloads in robotics systems, components do not
face constant and consistent workloads. The variations in the workload will often provide some
measure of excess capacity, even when the system is optimized.

However, the techniques presented in Chapters 3, 4, and 5 are particularly well-adapted to
being run in simulation. These techniques rely on repeated executions of robotics software under
somewhat controlled circumstances. (E.g., by log replay; by holding an environment constant; by
providing the same set of waypoint instructions; by providing inputs that have been modified in a
particular way.) These data are particularly well-adapted to collection in simulation. Simulation
makes it easy to repeatedly run controlled experiments.

While there is nondeterminism in many of the popular simulators used for testing robotics
systems, which limits the strict control and reproducibility in simulated testing, the nondetermin-
ism does not prevent simulation from being a useful tool for testing. Repeated executions with
the same or similar inputs can cover a range of behaviors. Furthermore, this nondeterminism
mirrors some of the nondeterminism found in behaviors of real robotics systems, causing the
simulation to be analogous to the real systems in these ways.

There is untapped potential in testing in simulation, as further detailed in Section 7.3.3. It
can be used to find software errors before deployment. Robotics systems have several sources

64

of error. One way to characterize these sources is (a) errors that exist exclusively in the software
(e.g., using the wrong inequality operator in an IF statement condition); (b) errors that come
from the interaction of the software with the hardware or other real world components (e.g.,
improperly representing the amount of friction in a given environment); and (c) errors that exist
solely in the hardware (e.g, a flat tire). Each of these categories is quite large and encompasses
many possible problems. Simulation has the potential to find many of the errors that fall into
categories a and b [103].

In addition to the applications in simulation, it should also be possible to apply these tech-
niques to systems in the early stages of deployment — before the systems have been optimized
to remove excess capacity.

Before deploying monitoring techniques on real hardware, whether in development or in
deployment, I would suggest undertaking an analysis of the amount of overhead the system can
absorb, starting with the kinds of analysis presented in Chapter 6. The basic principle would be to
determine how much overhead the system can tolerate (and where it can tolerate that overhead).
Then you can develop a custom monitoring tool that stays roughly within these capacity limits.
(Such development may involve trial and error as to targeting the monitoring and controlling the
amount of overhead.)

7.3.3 Testing in Simulation is Very Useful — Untapped Potential
Testing robotics systems in simulations has many advantages, but there are also many practical
drawbacks that hinder its wider use [5]. Advantages of simulation involve:
• Lack of opportunity to damage any real robotics hardware
• Ability to simulate situations that are impractical to create in real life
• Ability to simulate the same situations repeatedly
• Ability to generate training data from repeated simulations
• Ability to run more executions than would be practical to run in real life

However, the drawbacks include:
• Reality gap — an inability to adequately represent the reality of the robot or its environ-

ment
• Complexity — it takes too much time and resources to set up an adequate simulation
• Automation features — the simulator is not designed to be used for automated and repeated

testing
As discussed in the previous subsection, the approaches presented here for detecting unusual

behavior in robotics systems are perhaps best used in simulation. Because these techniques are
specifically directed at finding problems in the software, the reality gap should matter less than
it might in other circumstances. It is, however, still important that the simulated robot operate in
a setting that reasonably simulates the environments in which it will be operating — it otherwise
might not activate the relevant code paths and behaviors.

For all these reasons, I advocate for the improvement of ARS simulation technology so that
it can be readily used to achieve reasonable simulations of these systems before deployment.
Specifically, I advocate for the development of sufficient simulation technology to analyze the

65

software and its failures. Accurate and accessible simulation, while difficult to achieve, would
be of significant use in developing accurate, efficient, and safe software for ARS. Even when
simulation is imperfect, a reasonably accurate simulation can serve as a starting point for an
iterative process involving simulation and real-world testing. Given a sufficiently feature-rich
simulation platform, simulations can be improved based on observation of the ARS’s behavior
in the real world. This would, in turn, allow more nuanced fault detection in simulation.

7.3.4 Separating Intended but Unusual Behavior from Unintended Behav-
ior

This work relies on the assumption that intended behaviors are more common than unintended
behaviors, so that unusual behaviors can be identified as bugs. While this assumption is well-
supported in the literature [35], it does not cover every case. Even in simple software, there is
often code that handles unusual inputs. For example, a major bug in Microsoft’s Zune music
players occurred in code that was intended to handle unusual but expected situations — leap
days. In a simplistic sampling of all program behaviors, the mere fact that the code entered this
unusual code path could cause the code to be flagged as an unusual situation and potentially an
error. However, the error was not in the mere fact that the player executed unusual code — the
error was in a computation in that code path that caused an infinite loop [2]. In many complex
systems, there are even more edge and corner cases that might activate intended but unusual
behaviors, and this handling behavior might be very complex. So, merely identifying all unusual
behaviors will result in false positives.

There are several possible approaches to separate unusual but intended behavior from unin-
tended behavior. Each approach involves trade-offs.

In the worst case, one could rely on humans to tell the difference between intended unusual
behavior and unintended behavior. For example, every time the system detects an unusual behav-
ior, the system shows the corresponding execution information to a human and asks the human
if it represents a real problem.

This human-reliant approach has several drawbacks. One is that human time and expertise is
expensive. It may require a great deal of time for the human to learn enough about the system
to be able to tell the difference between defects and false alarms. Another drawback is that
humans can get it wrong. Humans tend to find these kinds of tasks difficult. By analogy, I saw
in my experiments that humans erred in writing invariants to represent the correct behavior of
a system (see Section 5.4). And, in fact, it is well-documented that it is difficult for humans to
write invariants [81]. A human asked to figure out if an alert represents a real bug may very
well suffer from similar difficulties. Another issue is that the system will have to generate all
the relevant information for the human to interpret this problem. The information that a human
would find most relevant to determining whether there is a problem may not be easily accessible.
For example, the techniques described in this dissertation are applicable to software that does
not include source code, but humans may want source code access to determine whether an alert
corresponds to an actual bug. Also, humans are likely to think that such a task is a waste of their
time and fail to see value in the underlying tool that requires such supervision.

Alternatives to humans each involve different tradeoffs. Many of these possible alternatives

66

involve shaping the data used to create the relevant models.
One data-driven approach involves using coverage metrics to generate inputs that explore all

code paths in the underlying software. (Or, for black box techniques without source code, this
is more properly stated as exploring all paths and portions of the machine code.) The inputs
can be used to generate executions that will populate the machine learning models. The idea is
that this approach is more likely to capture the intended edge and corner case behavior as input
data and, therefore, is less likely to flag it as unintended behavior, However, a drawback is that
this approach is that it can inflate the perceived frequency of unusual code paths and diminish
the perceived frequency of usual ones. This can make an unintended code path seem artificially
more frequent and, therefore, intended. Another drawback is that it pushes the responsibility to
the test suite designer. Test suite design is known to be a difficult problem [40]. Although there
has been much research into designing good test suites, it is possible that a lot of effort will go
into creating a test suite, with a comparatively small corresponding benefit.

Using data in a different way, it would be possible to use the inputs that generate unusual
behavior as starting points to generate other inputs. Observation of the behaviors of the program
in the input spaces near the inputs that produced the unusual behavior can allow more sophis-
ticated conclusions about what factors influence the unusual behavior. As an example, I can
use a technique analogous to that presented in my work on Robustness Inside Out Testing [63].
In that work, we use a four step process to expand an input associated with a single detected
(unit-level) error. As a part of that process, we use optimization techniques to build a set of user-
understandable rules that describes the input space that triggers the error. I could use a similar
kind of drilling down on inputs identified as unusual to create explainable rules about the cir-
cumstances under which similar executions arise. These rules can, for example, be presented to
humans as a more understandable input space for them to determine whether or not it represents
unintended behavior. Or this can be used as an input to other computational techniques.

7.3.5 Clustering with Nondeterminism in Nominal Data
I have mentioned several times that behaviors in robotics systems are nondeterministic. This
means that certain input scenarios will result in anomalies sometimes and not other times. The
approaches to anomaly detection presented in this dissertation focus on individual executions, so
they identify the anomalies in a particular run with a given input. For example, it might say that
the 5th, 28th, and 37th time that the system ran with a given input, it encountered an anomaly.
I can find anomalies in executions run with so-called nominal inputs because I know that robots
do not always behave as intended even with inputs that should not (and do not usually) cause
them trouble.

One implication of nondeterminism is in how the techniques establish nominal data clusters.
I have spoken about establishing nominal data clusters by running the system with nominal inputs
which are not known to activate any defects. However, if nominal inputs can sometimes activate
defects, the nominal models may incorporate those defects. This means that these techniques
will not necessarily identify the faulty behavior in these executions as faulty — the technique
establishes them as part of the nominal model.

I could take several approaches to mitigating this potential problem of incorporating the non-
deterministic errors of the nominal experiments into the model. The first is already built into the

67

clustering approach. The nondeterministic errors are less frequent compared to the actual nomi-
nal behavior when running with the nominal inputs. They will likely represent a smaller cluster
or clusters of behavior, making it less likely that many other (test) behaviors will be considered
as close enough to belong to that cluster, because the distance metric for belonging to a cluster
includes adjustment for size and density of the cluster. Second, I could try to filter out data points
that represent errors from the initial data set, before I use it to build a model. This is a common
technique and involves running outlier detection on the original nominal data set before using
it as nominal data to create a model [54]. However, this approach has some tradeoffs as well.
The data points identified as outliers may actually represent recovery behavior or other desired
behavioral modes that I would want to incorporate into the models. This approach relies on the
principle that desired behaviors occur more frequently than undesired behaviors and that occur-
rences of undesired behaviors differ from each other, so that they will not create large clusters.
(By analogy to the principle of “All happy families resemble one another; every unhappy family
is unhappy in its own way” [104].)

68

Bibliography

[1] Decision trees. http://scikit-learn.org/stable/modules/tree.html.
2.2.2

[2] Microsoft Zune affected by ‘bug’. December 2008. URL http://news.bbc.co.
uk/2/hi/technology/7806683.stm. 3.1, 7.3.4

[3] Schiaparelli landing investigation makes progress, 2016. URL http://www.
esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_
landing_investigation_makes_progress. Accessed Mar. 1, 2018. 1

[4] Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek. Generating adversar-
ial driving scenarios in high-fidelity simulators. In International Conference on Robotics
and Automation, ICRA ’19, pages 8271–8277, 2019. 2.1

[5] Afsoon Afzal, Deborah S. Katz, Claire Le Goues, and Christopher S. Timperley.
A study on the challenges of using robotics simulators for testing. arXiv preprint
arXiv:2004.07368, 2020. 2.1, 6.4.1, 7.1.3, 7.3.3

[6] Mennatallah Amer and Markus Goldstein. Nearest-neighbor and clustering based anomaly
detection algorithms for RapidMiner. In RapidMiner Community Meeting and Confer-
ence, RCOMM ’12, pages 1–12, 2012. 2.1, 2.1, 2.2.2, 5.1.2

[7] Sara Abbaspour Asadollah, Hans Hansson, Daniel Sundmark, and Sigrid Eldh. Towards
classification of concurrency bugs based on observable properties. In Complex Faults and
Failures in Large Software Systems, COUFLESS ’15, pages 41–47, 2015. 2.1

[8] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE Transactions on Depend-
able and Secure Computing, 1(1):11–33, Jan 2004. 2.1

[9] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer. Hands off the wheel
in autonomous vehicles?: A systems perspective on over a million miles of field data. In
Dependable Systems and Networks, DSN ’18, pages 586–597, 2018. 1

[10] Earl T. Barr, Mark Harman, Phil Mcminn, Muzammil Shahbaz, and Shin Yoo. The oracle
problem in software testing : A survey. IEEE Transactions on Software Engineering, 41
(5):507–525, 2015. 2.1, 5

[11] Irad Ben-Gal. Outlier detection. In Data mining and knowledge discovery handbook,
pages 117–130. Springer, 2010. 2.1

[12] Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in time

69

http://scikit-learn.org/stable/modules/tree.html
http://news.bbc.co.uk/2/hi/technology/7806683.stm
http://news.bbc.co.uk/2/hi/technology/7806683.stm
http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress
http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress
http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress

series. In Knowledge Discovery and Data Mining Workshop, KDD Workshop ’94, pages
359–370, 1994. 5.1.3

[13] Antonia Bertolino. Software testing research and practice. In Abstract State Machines,
ASM ’03, pages 1–21, 2003. 5

[14] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. Debugging distributed
systems. Queue, 14(2):91–110, 2016. 2.1

[15] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn Song. To-
wards automatic discovery of deviations in binary implementations with applications to
error detection and fingerprint generation. In USENIX Security Symposium, SS ’07, pages
15:1–15:16, 2007. 2.1

[16] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Programmer’s Perspec-
tive. Addison-Wesley Publishing Company, USA, 2nd edition, 2010. ISBN 0136108040,
9780136108047. 3.2.1

[17] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen. Looper: Lightweight
detection of infinite loops at runtime. In Automated Software Engineering, ASE ’09, pages
161–169, 2009. 3.1

[18] José Campos, Rui Abreu, Gordon Fraser, and Marcelo d’Amorim. Entropy-based test
generation for improved fault localization. In Automated Software Engineering, ASE ’13,
pages 257–267, 2013. 3.3, 3.4.2

[19] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard. Detecting and es-
caping infinite loops with Jolt. In European Conference on Object Oriented Programming,
pages 609–633, 2011. 3.1

[20] W.K. Chan, S.C. Cheung, Jeffrey C.F. Ho, and T.H. Tse. PAT: A pattern classification
approach to automatic reference oracles for the testing of mesh simplification programs.
Journal of Systems and Software, 82(3):422–434, 2009. 2.1

[21] Shitao Chen, Yu Chen, Songyi Zhang, and Nanning Zheng. A novel integrated simulation
and testing platform for self-driving cars with hardware in the loop. IEEE Transactions
on Intelligent Vehicles, 4(3):425–436, 2019. 2.1

[22] Matthew Clark, Xenofon Koutsoukos, Ratnesh Kumar, Insup Lee, George Pappas, Lee
Pike, Joseph Porter, and Oleg Sokolsky. Study on run time assurance for complex cyber
physical systems. Technical Report ADA585474, Air Force Research Lab, April 2013.
Available at https://leepike.github.io/pubs/RTA-CPS.pdf. 2.1

[23] E. Coelingh, J. Nilsson, and J. Buffum. Driving tests for self-driving cars. IEEE Spectrum,
55(3):40–45, 2018. 2.1

[24] D. Coppit and J.M. Haddox-Schatz. On the use of specification-based assertions as test
oracles. In Software Engineering Workshop, 2005. 29th Annual IEEE/NASA, SEW ’05,
pages 305–314, 2005. 2.1

[25] Domenico Cotroneo, Michael Grottke, Roberto Natella, Roberto Pietrantuono, and
Kishor S. Trivedi. Fault triggers in open-source software: An experience report. In In-
ternational Symposium on Software Reliability Engineering, ISSRE ’13, pages 178–187,

70

https://leepike.github.io/pubs/RTA-CPS.pdf

2013. 2.1

[26] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines:
And Other Kernel-based Learning Methods. 2000. ISBN 0-521-78019-5. 2.2.2

[27] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on Software En-
gineering, 13(2):222–232, 1987. 2.1

[28] John DeVale and Philip J. Koopman. Robust software – no more excuses. In Dependable
Systems and Networks, DSN ’02, pages 145–154, 2002. 5.2.4

[29] William Dickinson, David Leon, and Andy Podgurski. Pursuing failure: The distribution
of program failures in a profile space. In Joint Meeting of the European Software En-
gineering Conference and the Symposium on The Foundations of Software Engineering,
ESEC/FSE ’01, pages 246–255, 2001. 2.1, 2.1

[30] William Dickinson, David Leon, and Andy Podgurski. Finding failures by cluster analysis
of execution profiles. In International Conference on Software Engineering, ICSE ’01,
pages 339–348, 2001. 2.1

[31] Rémi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane Zouaoui. A com-
parative evaluation of outlier detection algorithms: Experiments and analyses. Pattern
Recognition, 74:406–421, 2018. 2.1

[32] Tong Duy Son, Ajinkya Bhave, and Herman Van der Auweraer. Simulation-based testing
framework for autonomous driving development. In International Conference on Mecha-
tronics (ICM), ICM ’19, pages 576–583, 2019. 2.1

[33] Andrew David Eisenberg and Kris De Volder. Dynamic feature traces: Finding features in
unfamiliar code. In International Conference on Software Maintenance, ICSM ’05, pages
337–346, 2005. 2.1

[34] Khaled El Emam and Isabella Wieczorek. The repeatability of code defect classifications.
In International Symposium on Software Reliability Engineering, ISSRE ’98, pages 322–
333, 1998. 2.1

[35] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems code. In Symposium
on Operating Systems Principles, SOSP ’01, pages 57–72, 2001. 2.1, 3, 5, 7.1.1, 7.3.4

[36] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2):99–123, 2001. 2.1

[37] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, NguyenNumericalInvariants2017, Ernst-
Daikon2001, LorenzoliBehavioral2008, HangalIodine2005, BeschastnikhTemporal2011,
RatcliffInvariants2011, ErnstDaikon200569:35–45, 2007. 2.1, 2.1

[38] Stephanie Forrest and Westley Weimer. The challenges of sensing and repairing soft-
ware defects in autonomous systems. Technical report, Regents of the University of New
Mexico, 2014. 1, 2.1, 2.1

71

[39] Laura Fraade-Blanar, Marjory S. Blumenthal, James M. Anderson, and Nidhi Kalra. Mea-
suring automated vehicle safety: Forging a framework. Technical report, RAND Cor-
poration, 2018. URL https://www.rand.org/pubs/research_reports/
RR2662.html. 1, 2.1

[40] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions on
Software Engineering, 39(2):276–291, 2013. 7.3.4

[41] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit tests and oracles.
Transactions on Software Engineering, 38(2):278–292, 2012. 2.1

[42] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points.
Science, 315(5814):972–976, 2007. 2.1, 2.1, 5.1

[43] Kambiz Frounchi, Lionel C. Briand, Leo Grady, Yvan Labiche, and Rajesh Subramanyan.
Automating image segmentation verification and validation by learning test oracles. In-
formation and Software Technology, 53(12):1337–1348, 2011. 2.1

[44] Alessio Gambi, Tri Huynh, and Gordon Fraser. Generating effective test cases for self-
driving cars from police reports. In Joint Meeting of the European Software Engineering
Conference and the Symposium on The Foundations of Software Engineering, ESEC/FSE
’19, pages 257–267, 2019. 2.1

[45] Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically testing self-driving cars
with search-based procedural content generation. In International Symposium on Software
Testing and Analysis, ISSTA ’19, pages 318–328, 2019. 2.1

[46] Michael Grottke, Allen P. Nikora, and Kishor S. Trivedi. An empirical investigation of
fault types in space mission system software. In Dependable Systems Networks, DSN ’10,
pages 447–456, 2010. 2.1

[47] Weining Gu, Zbigniew Kalbarczyk, Ravishankar K. Iyer, and Zhenyu Yang. Characteri-
zation of Linux kernel behavior under errors. In Dependable Systems and Networks, DSN
’03, pages 459–468, 2003. 5.2.4

[48] Mohammad Hamad, Zain A. H. Hammadeh, Selma Saidi, Vassilis Prevelakis, and Rolf
Ernst. Prediction of abnormal temporal behavior in real-time systems. In Symposium on
Applied Computing, SAC 18, pages 359–367, 2018. 2.1, 2.1

[49] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using automatic
anomaly detection. In International Conference on Software Engineering, ICSE ’02,
pages 291–301, 2002. 2.1

[50] Sudheendra Hangal, Naveen Chandra, Sridhar Narayanan, and Sandeep Chakravorty. IO-
DINE: A tool to automatically infer dynamic invariants for hardware designs. In Design
Automation Conference, DAC ’05, pages 775–778, 2005. 2.1

[51] Murali Haran, Alan Karr, Alessandro Orso, Adam Porter, and Ashish Sanil. Applying
classification techniques to remotely-collected program execution data. SIGSOFT Soft-
ware Engineering Notes, 30(5):146–155, 2005. ISSN 0163-5948. 2.1

[52] Murali Haran, Alan Karr, Michael Last, Alessandro Orso, Adam A. Porter, Ashish Sanil,
and Sandro Fouche. Techniques for classifying executions of deployed software to support

72

https://www.rand.org/pubs/research_reports/RR2662.html
https://www.rand.org/pubs/research_reports/RR2662.html

software engineering tasks. IEEE Transactions on Software Engineering, 33(5):287–304,
2007. 2.1

[53] Kennet Henningsson and Claes Wohlin. Assuring fault classification agreement - an em-
pirical evaluation. In International Symposium on Empirical Software Engineering, ISESE
’04, pages 95–104, 2004. 2.1

[54] Victoria J. Hodge and Jim Austin. A survey of outlier detection methodologies. Artificial
Intelligence Review, 22(2):85–126, 2004. 2.1, 3.3, 7.3.5

[55] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In International
Conference on Software Engineering, ICSE ’94, pages 191–200, 1994. 7.3.1

[56] Casidhe Hutchison, Milda Zizyte, Patrick E. Lanigan, David Guttendorf, Michael Wagner,
Claire Le Goues, and Philip Koopman. Robustness testing of autonomy software. In
International Conference on Software Engineering - Software Engineering in Practice,
ICSE-SEIP ’18, pages 276–285, 2018. 1, 1.3, 2.1, 5, 5.2.2, 5.2.4

[57] Cylance Inc. Cylance delivers first AI driven endpoint detection and re-
sponse solution with introduction of cylanceoptics, . URL https://www.
cylance.com/en-us/company/news-and-press/press-releases/
cylance-delivers-first-ai-driven-endpoint-detection-and-response-solution-with-introduction-of-cylanceoptics.
html. 2.1

[58] Cylance Inc. Cylance(R) prevention-first security with CylancePROTECT(R) and
CylanceOPTICS(TM), . URL https://s7d2.scene7.com/is/content/
cylance/prod/cylance-web/en-us/resources/knowledge-center/
resource-library/briefs/CylanceOPTICS_Solution_Brief.pdf. 2.1

[59] Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing.
Transactions on Software Engineering, 37(5):649–678, 2011. 3.3

[60] Hengle Jiang, Sebastian Elbaum, and Carrick Detweiler. Inferring and monitoring invari-
ants in robotic systems. Autonomous Robots, 41(4):1027–1046, 2017. 2.1

[61] Upulee Kanewala and James M. Bieman. Techniques for testing scientific programs with-
out an oracle. In Software Engineering for Computational Science and Engineering, SE-
CSE ’13, pages 48–57, 2013. 2.1

[62] Deborah S. Katz, Casidhe Hutchison, Milda Zizyte, and Claire Le Goues. Detecting
execution anomalies as an oracle for autonomy software robustness. In International
Conference on Robotics and Automation, ICRA ’20, pages 9367–9373, 2020. 5

[63] Deborah S. Katz, Milda Zizyte, Casidhe Hutchison, David Guttendorf, Patrick E. Lanigan,
Eric Sample, Philip Koopman, Michael Wagner, and Claire Le Goues. Robustness inside
out testing. In Dependable Systems and Networks – Industry Track, DSN-I, page to appear,
2020. 2.1, 5.4.4, 7.3.4

[64] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification of an operating-

73

https://www.cylance.com/en-us/company/news-and-press/press-releases/cylance-delivers-first-ai-driven-endpoint-detection-and-response-solution-with-introduction-of-cylanceoptics.html
https://www.cylance.com/en-us/company/news-and-press/press-releases/cylance-delivers-first-ai-driven-endpoint-detection-and-response-solution-with-introduction-of-cylanceoptics.html
https://www.cylance.com/en-us/company/news-and-press/press-releases/cylance-delivers-first-ai-driven-endpoint-detection-and-response-solution-with-introduction-of-cylanceoptics.html
https://www.cylance.com/en-us/company/news-and-press/press-releases/cylance-delivers-first-ai-driven-endpoint-detection-and-response-solution-with-introduction-of-cylanceoptics.html
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/resources/knowledge-center/resource-library/briefs/CylanceOPTICS_Solution_Brief.pdf
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/resources/knowledge-center/resource-library/briefs/CylanceOPTICS_Solution_Brief.pdf
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/resources/knowledge-center/resource-library/briefs/CylanceOPTICS_Solution_Brief.pdf

system kernel. Communications of the ACM, 53(6):107–115, Jun 2010. 2.1

[65] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an os microkernel.
ACM Transactions on Computer Systems, 32(1):2:1–2:70, Feb 2014. 2.1

[66] Philip Koopman and Michael Wagner. Autonomous vehicle safety: An interdisciplinary
challenge. IEEE Intelligent Transportation Systems Magazine, 9(1):90–96, 2017. 1, 2.1

[67] Philip Koopman and Michael Wagner. Toward a framework for highly automated vehicle
safety validation. In WCX World Congress Experience, WCX ’18. SAE International,
2018. URL https://doi.org/10.4271/2018-01-1071. 1, 2.1

[68] Philip Koopman, Kobey Devale, and John Devale. Interface Robustness Testing: Expe-
rience and Lessons Learned from the Ballista Project, chapter 11, pages 201–226. 2008.
5.2.2

[69] Sotiris B. Kotsiantis, I. Zaharakis, and P. Pintelas. Supervised machine learning: A review
of classification techniques. In Emerging Artificial Intelligence Applications in Computer
Engineering, pages 3–24, 2007. 2.2.2

[70] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. Automatic mining of specifications from
invocation traces and method invariants. In Foundations of Software Engineering, FSE
’14, pages 178–189, 2014. 2.1

[71] Tien-Duy B. Le and David Lo. Deep specification mining. In International Symposium
on Software Testing and Analysis, ISSTA ’18, pages 106–117, 2018. 2.1

[72] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A sys-
tematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In
International Conference on Software Engineering, ICSE ’12, pages 3–13, 2012. 3.2.2,
3.3, 3.4.2

[73] David Leon, Andy Podgurski, and Lee J. White. Multivariate visualization in observation-
based testing. In International Conference on Software Engineering, ICSE ’00, pages
116–125, 2000. 2.1

[74] Nancy Leveson. Engineering a Safer World: Systems Thinking Applied to Safety.
Engineering Systems. MIT Press, 2011. ISBN 9780262016629. URL https://
mitpress.mit.edu/books/engineering-safer-world. 7.1.4

[75] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai.
Have things changed now?: An empirical study of bug characteristics in modern open
source software. In Architectural and System Support for Improving Software Depend-
ability, ASID ’06, pages 25–33, 2006. 2.1

[76] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via remote
program sampling. In Programming Language Design and Implementation, PLDI ’03,
pages 141–154, 2003. 2.1

[77] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scalable
statistical bug isolation. In Programming Language Design and Implementation, PLDI
’05, pages 15–26, 2005. 2.1

74

https://doi.org/10.4271/2018-01-1071
https://mitpress.mit.edu/books/engineering-safer-world
https://mitpress.mit.edu/books/engineering-safer-world

[78] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics. In Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’08, pages 329–339,
2008. 2.1

[79] Sixing Lu and Roman Lysecky. Analysis of control flow events for timing-based runtime
anomaly detection. In Workshop on Embedded Systems Security, WESS ’15, pages 3:1–
3:8, 2015. 2.1, 2.1

[80] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Programming Language Design
and Implementation, PLDI ’05, pages 190–200, 2005. 1.3, 2.2.1, 2.2.1

[81] Robyn R. Lutz. Analyzing software requirements errors in safety-critical, embedded sys-
tems. In Requirements Engineering, RE ’93, pages 126–133, 1993. 5.3.2, 5.4.2, 7.3.4

[82] Alexis C. Madrigal. Inside Waymo’s secret world for training self-driving cars. The
Atlantic, August 2017. 2.1, 7.1.2

[83] Chengying Mao and Yansheng Lu. Extracting the representative failure executions via
clustering analysis based on Markov profile model. In Advanced Data Mining and Appli-
cations, ADMA ’05, pages 217–224, 2005. 2.1

[84] Nicholas Nethercote. Dynamic binary analysis and instrumentation. Technical Re-
port UCAM-CL-TR-606, University of Cambridge, Computer Laboratory, 2004. URL
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf. 2.2.1

[85] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In Programming Language Design and Implementation, PLDI
’07, pages 89–100, 2007. 1.3

[86] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and classification
of test inputs. In European Converence on Object-Oriented Programming, ECOOP ’05,
pages 504–527, 2005. 2.1

[87] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In International Conference on Software Engineering,
ICSE ’07, pages 75–84, 2007. 2.1

[88] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12(Oct):2825–2830, 2011. 2.2.2

[89] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, and Greg Sullivan.
Automatically patching errors in deployed software. In Symposium on Operating Systems
Principles, SOSP ’09, pages 87–102, 2009. 2.1, 2.1

[90] Mauro Pezze and Cheng Zhang. Automated test oracles: A survey. Advances in Comput-

75

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf

ers, 95:1–48, 2014. 2.1

[91] Zachary Pezzementi, Trenton Tabor, Samuel Yim, Jonathan K. Chang, Bill Drozd, David
Guttendorf, Michael Wagner, and Philip Koopman. Putting image manipulations in con-
text: Robustness testing for safe perception. In Safety, Security, and Rescue Robotics
(SSRR), pages 1–8, 2018. 2.1

[92] Marco A. F. Pimentel, David A. Clifton, Lei Clifton, and Lionel Tarassenko. A review of
novelty detection. Signal Processing, 99:215–249, 2014. 2.1

[93] Aakarsh Rao, Nadir Carreón, Roman Lysecky, and Jerzy Rozenblit. Probabilistic threat
detection for risk management in cyber-physical medical systems. IEEE Software, 35(1):
38–43, 2018. 2.1

[94] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical study of reported
bugs in server software with implications for automated bug diagnosis. In International
Conference on Software Engineering, ICSE ’10, pages 485–494, 2010. 2.1

[95] Muhammad Usman Sanwal and Osman Hasan. Formal verification of cyber-physical sys-
tems: Coping with continuous elements. In Computational Science and Its Applications,
ICCSA ’13, pages 358–371, 2013. 2.1

[96] Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest. Automated
repair of binary and assembly programs for cooperating embedded devices. In Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’13, pages
317–328, 2013. 2.1

[97] K. Shrestha and M.J. Rutherford. An empirical evaluation of assertions as oracles. In
Software Testing, Verification and Validation, ICST ’11, pages 110–119, 2011. 2.1

[98] Thierry Sotiropoulos, Hélène Waeselynck, and Jérémie Guiochet. Can robot navigation
bugs be found in simulation? an exploratory study. In Software Quality, Reliability and
Security, QRS ’17, pages 150–159, 2017. 2.1, 5.1, 5.4.6, 6.4.1, 7.1.3

[99] Matt Staats, Gregory Gay, and Mats P. E. Heimdahl. Automated oracle creation support,
or: How i learned to stop worrying about fault propagation and love mutation testing. In
International Conference on Software Engineering, ICSE ’12, pages 870–880, 2012. 2.1

[100] Gerald Steinbauer. A survey about faults of robots used in robocup. In Xiaoping Chen,
Peter Stone, Luis Enrique Sucar, and Tijn van der Zant, editors, RoboCup 2012: Robot
Soccer World Cup XVI, pages 344–355. Berlin, Heidelberg, 2013. 2.1

[101] Andreas Theissler. Detecting known and unknown faults in automotive systems using
ensemble-based anomaly detection. Knowledge-Based Systems, 123:163–173, 2017. 2.1

[102] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. In International Conference on Software
Engineering, ICSE ’18, pages 303–314, 2018. 2.1

[103] Christopher Steven Timperley, Afsoon Afzal, Deborah S. Katz, Jam Marcos Hernandez,
and Claire Le Goues. Crashing simulated planes is cheap: Can simulation detect robotics
bugs early? In International Conference on Software Testing, Validation, and Verification,
ICST ’18, pages 331–342, 2018. 2.1, 4.1, 5.1, 5.4.6, 6.2.4, 6.4.1, 7.1.3, 7.3.2

76

[104] Leo Tolstoy. Anna Karenina. T. Crowell & Company, 1899. 7.3.5

[105] C. E. Tuncali, T. P. Pavlic, and G. Fainekos. Utilizing S-TaLiRo as an automatic test
generation framework for autonomous vehicles. In Intelligent Transportation Systems,
ITSC ’16, pages 1470–1475, 2016. 2.1

[106] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection systems.
In Conference on Computer and Communications Security, CCS ’02, pages 255–264,
2002. 2.1

[107] Tao Xie. Augmenting automatically generated unit-test suites with regression oracle
checking. In European Conference on Object-Oriented Programming, ECOOP ’06, pages
380–403, 2006. 2.1

[108] Dohyeon Yeo, Gwangbin Kim, and Seungjun Kim. Toward immersive self-driving simu-
lations: Reports from a user study across six platforms. In Conference on Human Factors
in Computing Systems, CHI 20, pages 1–12, 2020. 2.1

[109] Miao Yu, Basel Halak, and Mark Zwolinski. Using hardware performance counters to de-
tect control hijacking attacks. In International Verification and Security Workshop, IVSW
’19, pages 1–6, 2019. 2.1

[110] Alice X. Zheng, Michael I. Jordan, Ben Liblit, and Alex Aiken. Statistical debugging of
sampled programs. In Neural Information Processing Systems, NIPS ’04, pages 603–610,
2004. 2.1

[111] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken. Statistical
debugging: Simultaneous identification of multiple bugs. In International Conference on
Machine Learning, ICML ’06, pages 1105–1112, 2006. 2.1

[112] X. Zheng, C. Julien, R. Podorozhny, F. Cassez, and T. Rakotoarivelo. Efficient and scal-
able runtime monitoring for cyberphysical system. IEEE Systems Journal, 12(2):1667–
1678, 2018. 2.1

[113] Xi Zheng and Christine Julien. Verification and validation in cyber physical systems: Re-
search challenges and a way forward. In Software Engineering for Smart Cyber-Physical
Systems, pages 15–18, 2015. 2.1

[114] Xi Zheng, Christine Julien, Miryung Kim, and Sarfraz Khurshid. Perceptions on the state
of the art in verification and validation in cyber-physical systems. IEEE Systems Journal,
11(4):2614–2627, Dec 2017. 2.1

[115] Michael Zhivich and Robert K. Cunningham. The real cost of software errors. IEEE
Security and Privacy, 7(2):87–90, 2009. 1

77

	1 Introduction
	1.1 Illustrative Example
	1.2 Insights and Thesis Statement
	1.2.1 Thesis Statement

	1.3 Approach
	1.4 Contributions
	1.5 Evaluation and Metrics

	2 Review of Literature and Background
	2.1 Related Work
	2.2 Background
	2.2.1 Dynamic Binary Instrumentation (DBI)
	2.2.2 Machine Learning Models

	3 Dynamic Binary Analysis to Detect Errors in Small Programs
	3.1 Motivating Example
	3.2 Approach
	3.2.1 Dynamic execution signals
	3.2.2 Model generation

	3.3 Experimental Design
	3.4 Results
	3.4.1 Supervised Learning
	3.4.2 Unsupervised Outlier Detection

	3.5 Limitations Suggestive of Future Directions
	3.6 Conclusions

	4 Dynamic Binary Instrumentation to Detect Errors in Robotics Programs – ArduPilot
	4.1 The ArduPilot System
	4.2 ArduPilot Approach
	4.3 Experimental Setup
	4.3.1 Supervised Machine Learning
	4.3.2 Collecting Signals with Dynamic Binary Instrumentation

	4.4 Results
	4.4.1 RQ1: Supervised Learning on a Single Defective Version of ArduPilot
	4.4.2 RQ2: Supervised Learning on a Defective Version of ArduPilot and Its Repaired Counterpart
	4.4.3 RQ3: Prediction Accuracy on Varied Amounts of Data

	4.5 Conclusions

	5 Novelty Detection on Varied Robotics Programs
	5.1 Method
	5.1.1 System Characterization Techniques
	5.1.2 Detecting Anomalies in System Execution
	5.1.3 Dynamic Time Warping

	5.2 Experiment Setup
	5.2.1 Systems Under Test (SUTs)
	5.2.2 Test Inputs
	5.2.3 Metrics
	5.2.4 Invariants

	5.3 Experiment Results
	5.3.1 Results
	5.3.2 Experiment Discussion

	5.4 Discussion
	5.4.1 Monitoring Techniques Can Be Used Together
	5.4.2 Manually-Written Invariants are an Imperfect Proxy for Real-World System Safety
	5.4.3 Case Study — A `False Positive'' Reveals An Actual Fault
	5.4.4 Use in Debugging Techniques
	5.4.5 Clustering to Find Modes of Behavior
	5.4.6 Threats to Validity

	5.5 Conclusions

	6 Overhead Timing Effects on Autonomous and Robotics Systems
	6.1 Introduction
	6.2 Experimental Methodology
	6.2.1 Nominal Baseline Executions
	6.2.2 Experimental Executions
	6.2.3 Method of Inserting Delays
	6.2.4 Subject Systems

	6.3 Evaluation
	6.3.1 Metrics
	6.3.2 Effects on Observable Behavior
	6.3.3 Different Effects on Different Components
	6.3.4 When Delays Cause Software Crashes

	6.4 Discussion
	6.4.1 Threats to Validity
	6.4.2 Future Directions
	6.4.3 Discussion of Timing Amounts

	6.5 Conclusions

	7 Discussion and Conclusion
	7.1 Limitations
	7.1.1 Assumption that Unusual Behavior is Bad Behavior
	7.1.2 Limitations on Inputs
	7.1.3 Execution in Simulation
	7.1.4 Limitation to Software Faults

	7.2 Future Directions
	7.3 General Discussion
	7.3.1 The Impact of Data Scope on Experimental Approach and Accuracy
	7.3.2 Applicability of These Techniques within the Development and Deployment Process
	7.3.3 Testing in Simulation is Very Useful — Untapped Potential
	7.3.4 Separating Intended but Unusual Behavior from Unintended Behavior
	7.3.5 Clustering with Nondeterminism in Nominal Data

	Bibliography

