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Abstract

Graph processing is a fundamental tool in many computational disciplines due to
the widespread availability of graph data. However, processing large graphs quickly
and cost-e�ectively is a major challenge, and existing approaches capable of processing
large graphs have high computational cost, only solve a limited set of problems, and
possess poor theoretical guarantees. Similarly, existing graph processing approaches
for dynamic or streaming graphs employ ad-hoc algorithms with unknown theoretical
costs and suboptimal performance. This thesis argues that shared-memory algorithms
can serve as the foundation for a graph processing toolkit for static and evolving
graphs that is cost-e�ective, has strong theoretical guarantees, and achieves state-of-
the-art performance.

The �rst part of this thesis studies static graph processing. We design a rich
interface for parallel graph processing which extends the Ligra interface with provably-
e�cient primitives. Using the interface, we design provably-e�cient shared-memory
implementations of over 20 fundamental graph problems. Our implementations,
which we have made publicly available as part of the Graph Based Benchmark Suite,
solve these problems on the largest publicly available graph, the WebDataCommons
hyperlink graph, with over 200 billion edges, in a matter of seconds to minutes using
a commodity multicore machine. We also adapt our algorithms for graphs stored
in non-volatile memory, thereby extending our results to graphs larger than main
memory. Compared to existing graph processing results, our results apply to a much
broader set of problems, use orders of magnitude fewer resources, and in many cases
run an order of magnitude faster.

The second part of this thesis studies graph processing in the batch-dynamic model,
which generalizes the classic dynamic algorithms model by allowing algorithms to
ingest batches of updates. We design work-e�cient parallel batch-dynamic algorithms
with polylogarithmic depth for the dynamic trees and dynamic connectivity problems.
We show that shared-memory parallel batch-dynamic algorithms can achieve strong
speedups and outperform the fastest sequential dynamic algorithm baselines.

The �nal part of this thesis studies streaming graph processing. We design
a compressed purely-functional tree data structure, called a C-tree, which admits
e�cient parallel batch updates and enables a dynamic graph representation based
on nested trees. Using this representation, we design a serializable graph-streaming
system called Aspen that can concurrently apply updates and queries. Compared
to existing work, Aspen achieves orders of magnitude higher update rates, while
using less memory. We show that Aspen can concurrently update and analyze the
WebDataCommons hyperlink graph on a single commodity multicore machine.
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1
Introduction

The goal of gaining a deeper understanding of computing through a
suitable mix of both theoretical understanding and well-designed
experiments should be a goal we all work toward together.

Michael Mitzenmacher
Theory Without Experiments: Have We Gone Too Far?

In recent years, a rapid growth in the availability of graph datasets has led to signi�cant
interest in algorithms and systems that can e�ciently represent and process graph data. As
a representative example of a real-world graph with many applications, consider the Web-
DataCommons hyperlink graph, the largest publicly available graph today, which contains
3.5 billion vertices representing Web pages, and 128 billion directed edges representing
hyperlinks from one page to another [241]. Understanding and analyzing the structure
and properties of this graph is of fundamental interest in many di�erent applications
and communities, including search engines, computer storage systems, and even web
anthropology. However, the sheer size of this graph poses a signi�cant computational
challenge, and to date, very few graph processing tools can analyze a graph of this scale.
It is likely that graphs in the near future will continue to grow in size1, and thus designing
a powerful graph processing toolkit that enables users to quickly process large graphs like
the WebDataCommons graph is a fundamental task.

Interest in real-time data analytics for graphs has led to interest in processing evolving
graphs in a batch setting, speci�cally for streaming and dynamic graph processing. The
goal of streaming graph-processing is to represent an evolving graph as it is updated, and
to make consistent snapshots of this graph available to graph-processing queries that
arrive concurrently with the updates. A dynamic graph algorithm ingests a sequence of
updates and queries to the graph and recompute analytics on the graph in response to the
changes to the graph. The batch setting, where updates and queries can arrive in arbitrary
sized unordered batches, is important in both of these tasks since the rate at which graphs
such as the Twitter social network change can be on the order of hundreds of thousands
of updates per second. For such rapid update rates, instead of updating the graph or
recomputing an analytic (for example, connectivity, or a clustering of the graph) after
every update, it is usually su�cient in practice to periodically apply the update every few
seconds, or minutes, depending on the latency requirements of the use-case. Unfortunately
existing solutions in the literature for both dynamic and graph-streaming systems su�er

1Note that there are already several private graph datasets at companies such as Google and Yahoo!
which contain several hundred billion vertices and 6–7 trillion edges [336, 209].
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Figure 1.1: Plot of the amount of hardware used (number of hyper-threads, and memory in
gigabytes) versus running time in seconds for existing systems that can solve connected components
on the WebDataCommons hyperlink graph. The green boxes correspond to an ideal system
which uses relatively little hardware and also achieves low running time. Note that Mosaic [225]
only reports running times for the 2014 WebDataCommons graph, with roughly half the edges.
GraFBoost [191] unfortunately does not report running times for connected components in their
paper, but we report their running time for Single Source Betwenness Centrality, which is the
fastest time they report on this graph.

from poor latency, struggle to scale to very large graphs such as the WebDataCommons
graph, and have unknown theoretical costs [130, 100, 139, 156, 226].

Even considering the well-studied situation in static graph processing, existing static
graph processing tools only solve a limited number of problems, and often produce approx-
imations or incomplete results on very large graphs due to di�culty of exactly computing
certain graph analytics. For example, a recent paper studied how to compute the coreness
values2 of the WebDataCommons graph [330]. Despite an impressive engineering e�ort,
and using a supercomputer with 256 machines, 8192 hyper-threads, and 16.3 terabytes of
memory, they were unable to compute the exact coreness values, and instead were able
to obtain an approximation of the values to the nearest power of two in 6 minutes using
this con�guration. The situation is similar for other problems, such as strongly connected
components (SCCs), where no existing parallel graph processing system can compute the
SCCs of the WebDataCommons graph. In general, very few algorithms have been applied
to this graph, and those that have often take hours to run [385, 225, 191], with the fastest
times requiring between 1–6 minutes using a supercomputer [333, 330].

Figure 1.1 illustrates the situation for existing external memory and distributed memory

2A k-core of a graph is the maximal subgraph such that every vertex in the subgraph has degree at least
k . The coreness value of a vertex is the maximum k such that it is contained in a k-core.



3

results that compute the connected components of the WebDataCommons hyperlink graph.
The two plots display the running time of the system, plotted against the number of
hyper-threads and the amount of DRAM, respectively. These plots show that existing
distributed-memory results can be fast, but have a high computational cost, frequently
using thousands of hyper-threads and terabytes of memory to achieve these results [333,
111, 336, 382]. Existing external-memory results have lower hardware cost in terms of
hyper-threads and memory used, but are signi�cantly slower compared to distributed-
memory results [385, 225, 191]. The cost of running these analytics in the cloud today
is dictated both by the total amount of hardware resources (cores and memory) used,
and the duration of time the resources are used, and thus both distributed-memory and
external-memory result in high cost. Furthermore, these solutions often have poor or
unknown theoretical bounds making it hard to predict how they will perform on other
types of graphs.

To summarize, today if one is a user interested in processing very large graphs, or
dynamic and streaming graphs, there are no reliable solutions that are scalable, possess
strong theoretical bounds, and are cost-e�cient. Motivated to improve upon these limita-
tions and the narrow applicability of existing graph processing tools, in this thesis, we
study the following question:

Can we design a graph-processing toolkit that enables users to easily and cost-e�ectively

solve a broad set of problems on massive static and evolving graphs?

Our Approach in this Thesis

In this thesis, we argue that a shared-memory approach to graph processing enables
the construction of a graph processing toolkit that is a�ordable, practical, scalable, and
provably-e�cient. Speci�cally, this thesis considers shared-memory multicore machines,
which are machines that contain multiple CPUs (processing cores) sharing a single shared
address space. Such machines are widely available today, and shared-memory machines
with dozens to hundreds of cores and terabytes of memory can be rented for tens of
dollars on the hour on web services like Amazon Web Services and Google Cloud Platform.
Indeed, today is is hard to �nd a mainstream processor, even those designed for phones,
that do not have multiple processing cores. With Moore’s law—the prediction that the
number of transistors on computer chips will double every two years—now ending, chip
manufacturers are embracing increasing core and shared-memory parallelism as a path
towards continued e�ciency gains [213].

There are a number of advantages of a shared-memory approach to graph processing.
First, despite the increasing sizes of real-world graphs today, even the WebDataCommons
hyperlink graph—the largest publicly available graph with 3.5 billion vertices, and 128
billion edges—can be represented in the main-memory of a relatively modest shared-
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memory machine. Thus, by designing e�cient graph algorithms for a shared-memory
setting, we can potentially solve a wide range of fundamental problems on the largest
graphs available today using in-memory processing techniques, which can be an order of
magnitude faster than using distributed graph processing techniques [238]. Furthermore,
by focusing on a shared-memory setting, we can take advantage of decades of research
on designing provably-e�cient, and ideally work-e�cient parallel graph algorithms (e.g.,
[316, 196, 224, 17, 346, 247, 284, 188, 104, 277, 246, 140, 57, 242]). In this thesis, we
analyze parallel algorithms based on their work and depth, which are the total number of
operations performed by the algorithm, and the longest chain of sequential dependencies
in the algorithm, respectively.3 In parallel algorithm design, the gold standard is to design
a work-e�cient parallel algorithms, which is an algorithm that performs asymptotically
the same amount of work as the fastest sequential algorithm for the task.

There are several reasons that algorithms with good theoretical guarantees are desirable.
For one, they are robust as even adversarial inputs will not cause them to perform extremely
poorly. Furthermore, they can be designed on pen-and-paper by exploiting properties of
the problem instead of tailoring solutions to the particular dataset at hand. Theoretical
guarantees also make it likely that the algorithm will continue to perform well even if the
underlying data changes. Finally, careful implementations of algorithms that are nearly
work-e�cient can perform much less work in practice than work-ine�cient algorithms.
This thesis shows that this reduction in work often translates to faster running times on
the same number of cores. We note that most running times that have been reported in the
literature on the Hyperlink Web graph use parallel algorithms that are not theoretically-
e�cient.

The remainder of the chapter further explores these topics:

• Section 1.1 describes this thesis’ contributions to shared-memory graph processing,
including new implementation techniques, parallel algorithms, a benchmark suite
of graph algorithms, and an extension of our approach to a non-volatile memory
setting.

• Section 1.2 introduces the batch-dynamic model of computation, and describes our
results on e�cient parallel graph algorithms in this model for the forest connectivity,
and general connectivity problems.

• Section 1.3 introduces the graph-streaming model, and introduces a purely-functional
compressed tree data structure called a C-tree which admits e�cient batch updates
and is well-suited for this setting. It then introduces Aspen, a low-latency graph-
streaming system build using C-trees.

3Chapter 2 provides a formal de�nition of work and depth in the parallel model of computation used in
this thesis.
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1.1 Shared-Memory Graph Processing

The �rst part of the thesis addresses how to cost-e�ectively solve a variety of fundamental
graph problems and analytics on very large graphs. This part of the thesis comprises
three chapters: Chapter 4, which presents a parallel bucketing data structure, and presents
state-of-the-art results for a set of ordered graph algorithms, Chapter 5, which presents a
benchmark suite of 20 fundamental graph problems, and presents theoretically-e�cient and
practical graph algorithms solving each of these problems, and Chapter 6, which considers
the problem of e�cient parallel graph analytics on larger-than-memory graphs stored on
NVRAMs, and presents e�cient techniques and algorithms that achieve state-of-the-art
results in this setting.

Graph Processing using Ligra and Ligra+

This thesis builds on the Ligra graph processing framework [319]. The Ligra framework
provides users with a graph data structure, a data structure for representing subsets of
vertices called a vertexSubset, and two primitives called edgeMap and vertexMap. The
vertexMap primitive lets users apply a user-de�ned function F to each vertex in an
input vertexSubset in parallel. At a high level, the edgeMap primitive lets users apply a
user-de�ned function F (returning a boolean) to each edge incident to a vertexSubset and
create a new vertexSubset containing all neighbors for which F returns true.4 These simple
primitives enable solving a variety of fundamental graph analytics, such as breadth-�rst
search, Bellman Ford, betweenness centrality, connected components, and PageRank.

In the years following the development of Ligra, many other graph processing systems
were built, which by-and-large solve the same problems as Ligra, and either directly adopt
Ligra’s implementation approach or re�nements of it. Consider, for example, Polymer [380],
Ligra+ [322], Gemini [389], Grazelle [159], and GraphIt [383]. The novelty in each of these
works is to improve the e�ciency of the Ligra interface by enabling NUMA-awareness [380],
enabling Ligra to process larger graphs using compression techniques [322], enabling
distributed-processing [389], providing more sophisticated scheduler and vectorzation
optimizations [159], and using compilation-based techniques to make it exceptionally easy
to implement parallel graph programs [383].

Limitations of Existing Work

Unfortunately, despite over a hundred papers written during the six years of subsequent
research on shared-memory graph processing, none of these works has signi�cantly
broadened the scope of graph problems considered, or applied their algorithms to very
large graphs such as the Hyperlink Web graph. Furthermore, much of the existing work on

4Detailed de�nitions of vertexMap, edgeMap and the Ligra API is given in Chapter 2.
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Graph Dataset Num. Vertices Num. Edges Uncompressed Compressed Savings

ClueWeb [81] 978,408,098 74,744,358,623 285GB 100GB 2.8x
Hyperlink2014 [241] 1,724,573,718 124,141,874,032 474GB 186GB 2.5x
Hyperlink2012 [241] 3,563,602,789 225,840,663,232 867GB 354GB 2.4x

Table 1.1: Large graph inputs studied in this thesis, including number of vertices, edges, memory
required to store the graph in an uncompressed CSR format, memory required to store the graph
in the parallel byte-compressed CSR format used in this thesis, and the savings obtained over the
uncompressed format by the compressed format.

shared-memory graph processing does not provide strong theoretical guarantees on the
parallel costs of the algorithms, making it hard to understand the algorithm’s performance
in practice, and also to predict whether the algorithm will achieve fast runtimes on a new
set of graph inputs.

For example, the problem of identifying the largest k-core containing each vertex—a
classic and fundamental data-mining task—is not supported by any existing graph pro-
cessing framework, and prior to this thesis, the only parallel algorithms available were
ParK [110], and a parallel local algorithm by Sariyuce et al. [299]. Both algorithms are
work-ine�cient, are not written within any graph framework, and thus require adoption
of a di�erent set of graph processing tools to use. A similar situation holds for many other
important graph problems, including ∆-stepping, which is a more work-e�cient version of
the Bellman-Ford algorithm for graphs with positive edge weights [243], parallel approxi-
mate set-cover [67, 68], strongly connected components [176, 332], biconnectivity [331],
and other problems. Finally, all of the aforementioned works also process only very small
graphs, with a few billion edges at the most.

The Need to Process Large Graphs

The sizes of graphs available to us today is rapidly increasing, along with the need to
quickly and e�ciently analyze these graphs. For example, the nervous system of the worm
C. Elegans was painstakingly assembled over a period of 8 years during the 1980s, and
contained just 302 vertices representing neurons connected by 3498 edges [369]. Building
this graph gave neuroscientists a new tool that could be used to generate hypotheses
about neuron functionality and to understand behavioral responses when ablating speci�c
neurons. Work is currently underway to sequence the connectome of small mammals
(containing roughly 20 million neurons and 200 billion edges), and the long term goal of
these e�orts is to construct the connectome of a human brain (containing roughly 86 billion
neurons and 250 trillion edges) [218]. A crucial aspect of using these brain networks in
scienti�c research will be software and algorithms that can e�ciently analyze and extract
meaningful information from them.

Similar increases in the sizes of graphs have occurred in many other areas, such as
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Figure 1.2: The total number of vertices and edges in di�erent types of real-world graphs (in
logarithmic scale) versus the year that the graph was reported in a publication. The data shows a
consistent trend in increasing graph sizes since the mid 1990s.

social networks, routing networks, protein-interaction networks, E-commerce graphs,
and graphs of the World Wide Web. Figure 1.2 plots the total number of vertices and
edges in various graphs versus the year that the graph was reported in a publication. The
�gure shows a consistent trend in increasing graph sizes from the mid 1990s onwards. The
reasons for this increase have come broadly from advancements in storage technology
(which make it possible to gather and store large amounts of data), increased usage of the
Internet, and data-driven approaches to scienti�c progress in many of these �elds.

How this Thesis Extends Ligra

One of the contributions of this thesis is to show that suitable extensions to the Ligra
graph processing interface enable solving a diverse set of fundamental graph analytics
that signi�cantly expands the set of problems solved by existing graph processing systems.
Furthermore, by equipping these interfaces with strong bounds on their parallel costs, we
can obtain strong provable guarantees on the costs of the resulting algorithms. Finally, by
enabling the extended interface to work in conjunction with compression techniques from
Ligra+, we can easily run any algorithm implemented using the interface on very large
compressed graphs, without any algorithmic modi�cations. Table 1.1 illustrates the space
savings obtained from using Ligra+ to store the three largest graph inputs studied in this
thesis; enabling compression provides a 2.56x reduction in space, on average.
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Algorithm Work Depth Parameters

k-core O ( |E | + |V |) O (ρ lg |V |) ρ: peeling complexity, see Chap-
ter 2.

wBFS O (rsrc + |E |) O (rsrc lg |V |) rsrc : eccentricity from the source
vertex src, see Chapter 2.

∆-stepping O (w∆) O (d∆ lg |V |) w∆, d∆: work and number of
rounds of the original ∆-stepping
algorithm.

Approximate Set Cover O (M ) O (lg3M ) M : sum of the sizes of the sets.

Table 1.2: Cost bounds for the ordered graph algorithms studied in this thesis. The work bounds
are in expectation and the depth bounds are with high probability.

Ordered Graph Algorithms

Chapter 4 presents a shared-memory graph processing framework called Julienne which
extends the Ligra framework with an interface for parallel bucketing. Each of the problems
that studied in this part of the thesis require maintaining a dynamic mapping between
vertices and a set of ordered bucket over the course of the algorithm’s execution. These
problems include non-negative integral-weight single-source shortest paths, approximate
set-cover, and k-core, amongst several others. Each of the e�cient algorithms for these
problems works as follows at a high level. In each round, the algorithm extracts the
vertices contained in the lowest (or highest) bucket and performs some computation on
these vertices. The algorithm then updates the buckets containing either the extracted
vertices or their neighbors. Finally, the algorithm terminates once there are no further
vertices remaining in the bucket structure.

To make this abstract algorithm template more concrete, consider the weighted breadth-
�rst search (wBFS) algorithm, which solves the single-source shortest path problem (SSSP)
with nonnegative, integral edge weights in parallel [125]. Like BFS, wBFS processes vertices
level by level, where level i contains all vertices at distance exactly i from src, the source
vertex. The i’th round relaxes the neighbors of vertices in level i and updates any distances
that change. Unlike a BFS, where the unvisited neighbors of the current level are in the
next level, the neighbors of a level in wBFS can be spread across multiple levels. Because of
this, wBFS maintains the levels in an ordered set of buckets. On round i , if a vertex v can
decrease the distance to a neighbor u it places u in bucket i + d (v,u). Finding the vertices
in a given level can then easily be done using the bucket structure. We can show that
the work of this algorithm is O (rsrc + |E |) and the depth is O (rsrc lg |V |) where rsrc is the
eccentricity from src.5 However, without bucketing, the algorithm has to scan all vertices

5The eccentricity of a vertex is upper-bounded by the diameter of the graph; Chapter 2 provides precise
de�nitions.
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Shortest Path Problems Breadth-First Search, Integral-Weight SSSP, General-Weight SSSP, Single-
Source Betweenness Centrality, Single-Source Widest Path, k-Spanner

Connnectivity Problems Low-Diameter Decomposition, Connected Components, Biconnected Com-
ponents, Strongly Connected Components, Spanning Forest, Minimum
Spanning Forest

Covering Problems Maximal Independent Set, Maximal Matching, Graph Coloring, Approxi-
mate Set Cover

Substructure Problems k-Core, Approximate Densest Subgraph, Triangle Counting
Eigenvector Problems PageRank

Table 1.3: 20 important graph problems considered in the Graph Based Benchmark Suite (GBBS),
covering a broad range of techniques and application areas.

in each round to compute the current level, which makes it perform O (rsrc |V | + |E |) work
and the same depth, which is not work-e�cient.

In this thesis, we study four bucketing-based graph algorithms—k-core6, ∆-stepping,
weighted breadth-�rst search (wBFS), and approximate set-cover.

To provide simple and theoretically-e�cient implementations of these algorithms, we
design and implement a work-e�cient interface for bucketing in the Ligra shared-memory
graph processing framework [319]. Our extended framework, which we call Julienne,
enables us to write short (under 100 lines of code) implementations of the algorithms that
are e�cient and achieve good parallel speedup (up to 43x on 72 cores with two-way hyper-
threading). Table 1.2 displays the work and depth bounds for the algorithms developed
using Julienne.

The Graph Based Benchmark Suite

Building on our study of ordered graph algorithms in Chapter 4, in Chapter 5 we study how
to design practical and theoretically-e�cient shared-memory parallel graph algorithms
for a broad set of fundamental graph problems, including some ordered graph problems.
Table 1.3 lists the problems that we consider in this part of the thesis. We consider
problems spanning a wide variety of domains, including di�erent types of shortest path
problems, connectivity problems such as undirected connectivity, minimum spanning
forest, biconnectivity, and strong connectivity, symmetry breaking problems like maximal
independent set, maximal matching, and graph coloring, amongst many other problems.

6The de�nitions of k-core and coreness (see Chapter 2) have been used interchangeably in the literature,
however they are not the same problem, as pointed out in [297]. In this thesis we use k-core to refer to the
coreness problem. Note that computing a particular k-core from the coreness numbers requires �nding the
largest induced subgraph among vertices with coreness at least k , which can be done e�ciently in parallel.
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Figure 1.3: Running times of our shared-memory graph algorithm implementations on the Hy-
perlink Web graph, on a 72-core, 2-way hyper-threaded machine equipped with 1TB of memory.
Times for 19 out of the 20 problems we consider are shown. We elide the running time for Triangle
Counting, which runs in 1168 seconds on this graph (the algorithm enumerates all 9.6 trillion
triangles in this graph).

We implement e�cient parallel graph algorithms for all of these problems using only simple
fork-join primitives, similar to those used in Cilk. We have made the contributions from
this part of the thesis have been made publicly available as the Graph Based Benchmark
Suite (GBBS ), a problem-based benchmark suite for graph problems.7

We present an experimental evaluation of all of our implementations on a relatively
modest multicore machine (72 cores, equipped with 1 TB of memory). We are able to apply
our algorithms to the largest publicly-available graph, the Hyperlink Web graph which
we discussed earlier in this introduction. Figure 1.3 shows the running times for 19 of the
problems that we study on the Hyperlink Web graph (triangle counting, which runs in
about 20 minutes, is excluded to make visualizing the results easier). For the remaining 19
problems, our parallel implementations all run in under 3.5 minutes on this graph, which
contains over 200 billion edges.

In almost all cases, the numbers we report are faster than any previous performance
numbers for any machines, even much larger supercomputers. In many cases, our results
are the �rst time these problems have been solved on this graph or a graph of this size
in the literature. Most importantly, our implementations are based on reasonably simple

7https://github.com/ldhulipala/gbbs

https://github.com/ldhulipala/gbbs
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Problem Speedup Alg. Work Depth

Breadth-First Search (BFS) 68 – O (m) O (diam(G ) lgn)
Integral-Weight SSSP (weighted BFS) 64 [115] O (m)∗ O (diam(G ) lgn)†
General-Weight SSSP (Bellman-Ford) 67 [108] O (diam(G )m) O (diam(G ) lgn)
Single-Source Widest Path (Bellman-Ford) 66 [108] O (diam(G )m) O (diam(G ) lgn)
Single-Source Betweenness Centrality (BC) 60 [84] O (m) O (diam(G ) lgn)
O (k )-Spanner 65 [248] O (m) O (k lgn)†
Low-Diameter Decomposition (LDD) 59 [246] O (m) O (lg2 n)†
Connectivity 65 [321] O (m)∗ O (lg3 n)†
Spanning Forest 67 [321] O (m)∗ O (lg3 n)†
Biconnectivity 59 [346] O (m)∗ O (diam(G ) lgn + lg3 n)†
Strongly Connected Components (SCC)* 43 [75] O (m lgn)∗ O (diam(G ) lgn)†
Minimum Spanning Forest (MSF) 50 [388] O (m lgn) O (lg2 n)
Maximal Independent Set (MIS) 68 [64] O (m)∗ O (lg2 n)†
Maximal Matching (MM) 66 [64] O (m)∗ O (lg2m)†

Graph Coloring 56 [169] O (m) O (lgn + L lg∆)
Approximate Set Cover 58 [67] O (m)∗ O (lg3 n)†
k-core 46 [115] O (m)∗ O (ρ lgn)†
Approximate Densest Subgraph 73 [38] O (m) O (lg2 n)
Triangle Counting (TC) — [323] O (m3/2) O (lgn)
PageRank Iteration 74 [85] O (n +m) O (lgn)

Table 1.4: Parallel speedup (SU) of our algorithms on the symmetrized Hyperlink2012 graph over
a single-threaded running time. Theoretical bounds for the algorithms on the TRAM are shown in
the last three columns. We mark times that did not �nish in 5 hours with —. *SCC was run on the
directed version of the graph. †We say that an algorithm has O ( f (n)) cost with high probability

(whp) if it has O (k · f (n)) cost with probability at least 1 − 1/nk . We assumem = Ω(n).

algorithms with strong bounds on their work and depth.

Parallel Semi-Asymmetric Graph Algorithms

In Chapter 6, we study how to design practical and theoretically-e�cient parallel graph
algorithms that operate on graphs stored in non-volatile memory. Non-volatile memories
are a new class of memory technologies emerging on the market today (e.g., Intel’s Optane
DC Peristent Memory). These devices are signi�cantly cheaper than DRAM on a per-
gigabyte basis, provide an order of magnitude greater memory capacity per DIMM than
traditional DRAM, and o�er byte-addressability and low idle power, thereby providing a
realistic and cost-e�cient way to equip a commodity multicore machine with multiple
terabytes of non-volatile RAM (NVRAM).

A signi�cant challenge in programming for NVRAMs is to design algorithms that
cope with an inherent asymmetry between reads and writes—write operations are more
expensive than reads both in terms of energy and throughput. This property requires
rethinking algorithm design and implementations to minimize the number of writes to
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Figure 1.4: Number of vertices (logscale) vs. average degree (m/n) on 42 real-world graphs with
n > 106 from the SNAP [215] and LAW [81] datasets. Over 90% of the graphs have average degree
larger than 10 (corresponding to the gray dashed line).

NVRAM [76, 53, 94, 358]. Additionally, the read-bandwidth of NVRAM DIMMs is between
3–4x lower than that of DRAM, which could become a signi�cant bottleneck for algorithms
which are memory bound.

Much of the prior work on e�cient NVRAM algorithms considered a setting where the
system was equipped with purely NVRAM, and a limited amount of DRAM that could be
used as a cache. In this thesis, we observe that in practice it is more likely that NVRAM will
be used in conjunction with a reasonable amount of DRAM. For example, the experiments
in this thesis are done on a 48 core machine that has 8x as much NVRAM as DRAM (and
we are aware of machines with 16x as much NVRAM as DRAM [152]), where combined
read throughput for all cores from the NVRAM is about 3x slower than reads from the
DRAM, and writes on the NVRAM are a further factor of about 4x slower [293, 186] (a
factor of 12 total). Thus, if the graph in question �ts on NVRAM, and the average degree
of the graph is a small constant (say larger than 16), then we can reasonably assume that
there is su�cient DRAM to store data proportional to the number of vertices.

An important property of most graphs used in practice is that they are sparse, but still
tend to have many more edges than vertices, often from one to two orders of magnitude
more. This is true for almost all social network graphs [215], but also for many graphs
that are derived from various simulations [113]. In Figure 6.1 we show that over 90%
of the large graphs (more than 1 million vertices) from the SNAP [215] and LAW [81]
datasets have at least 10 times as many edges as vertices. Given that very large graphs
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today can have over 100 billion edges (requiring around a terabyte of storage), but only a
few billion vertices, a popular and reasonable assumption both in theory and in practice is
that vertices, but not edges, �t in DRAM [1, 138, 204, 236, 239, 254, 274, 339, 385, 386].

The Parallel Semi-AsymmetricModel. We formalize this idea using a new model called
the Parallel Semi-Asymmetric Model (PSAM), which consists of a shared asymmetric large-
memory with unbounded size that can hold the entire graph, and a shared symmetric
small-memory withO (n) words of memory, where n is the number of vertices in the graph.
In a relaxed version of the model, we allow small-memory size of O (n +m/ lgn) words,
where m is the number of edges in the graph. The PSAM model permits writes to the
large-memory, which are ω > 1 times more costly than reads.

In this thesis, we obtain parallel graph algorithms in the PSAM with strong theoretical
bounds on their work and depth in the model. Speci�cally, most of our algorithms are
work-e�cient (performing asymptotically the same work as the best sequential algorithm
for the problem) and have poly-logarithmic depth (parallel time). An interesting aspect of
our approach is that we do not use writes to the large-memory, which makes the cost of our
algorithms independent of the underlying asymmetry,ω. Our theoretical guarantees ensure
that our algorithms perform reasonably well across graphs with di�erent characteristics,
machines with di�erent core counts, and NVRAMs with di�erent read-write asymmetries.

Parallel Semi-Asymmetric Graph Algorithms. Our main contribution is Sage, a par-
allel semi-asymmetric graph engine with which we implement provably-e�cient (and
often work-optimal) algorithms for over a dozen fundamental graph problems. The key
innovations are in ensuring that the updated state is associated with vertices and not edges,
which is particularly challenging (i) for certain edge-based parallel graph traversals and (ii)
for algorithms that “delete” edges as they go along in order to avoid revisiting them once
they are no longer needed. We provide general techniques to solve these two problems.
For the latter, used by four of our algorithms, we require relaxing the prescribed amount
of DRAM to be on the order of one bit per edge.

We show that Sage scales to the largest publicly-available graph, the Hyperlink2012
graph with over 3.5 billion vertices and 128 billion edges (and 225 billion edges for algo-
rithms running on the undirected/symmetrized graph). Compared with the state-of-the-art
DRAM codes from GBBS [117], automatically extended to use NVRAM using Memory-
Mode,8 Sage is 1.89x faster on average. Compared with the recently developed codes
from [152], which are the current state-of-the-art NVRAM codes available today, our codes
are faster on all �ve graph problems studied in [152], and achieve an average speedup of
1.94x.

8E�ectively using the DRAM as a cache—see Section 6.8.1.
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1.2 Parallel Batch-Dynamic Graph Algorithms

In the second part of this thesis, we design e�cient algorithms in the parallel batch-
dynamic setting. We start in Chapter 7 by studying Euler tour trees, which are classic
dynamic data structures that solve the dynamic trees problem, and show that a concurrent
version of this data structure can be used to solve a batch-dynamic version of the dynamic
trees problem. In Chapter 8 we study the batch-dynamic connectivity problem and show
that the classic dynamic connectivity data structure of Holm, de Lichtenbert, and Thorup
can be adapted to the parallel batch-dynamic setting, using parallel batch-dynamic Euler
tour trees as a crucial sub-routine. Next, we describe both of these results in more details.

Parallel Batch-Dynamic Trees

Chapter 7 studies the parallel batch-dynamic trees problem, and designs an e�cient
concurrent data structure based on the Euler tour tree structure that can be used as a
building block in other batch-dynamic data structures. In the dynamic trees problem, the
goal is to maintain a collection of vertex-disjoint trees under link and cut operations, which
respectively join two trees with a new edge, and break a single tree into two by deletion
of an edge. In the batch-dynamic version of the dynamic trees problem, the objective is
to maintain a forest that undergoes batches of link and cut operations. The queries can
include whether two vertices are connected in the same tree, and also to compute the sum
of an augmented value within a given subtree in the tree.

Although many sequential data structures exist to maintain dynamic trees [328, 19],
the only existing batch-dynamic data structure for this problem is a recent result by Acar
et al. [4]. Unfortunately, this solution requires transforming the input into a forest with
bounded-degree in order to perform contractions e�ciently. Obtaining a data structure
without this restriction is therefore of interest. Furthermore, it is of intellectual interest
whether the arguably simplest solution to the dynamic trees problem, Euler tour trees [173,
249], can be parallelized under batches of edge insertions and deletions.
Euler Tour Trees. An Euler Tour Tree (ETT) is a simple and intuitive dynamic data
structure for the dynamic trees problem. The core idea is to represent trees using their
Euler tours, which are sequences that intuitively “trace” the tree along its exterior face. The
ETT data structure represents the Euler tour of a tree using a balanced binary tree. Links
and cuts on the underlying forest can be mapped to a constant number of operations on the
tours, which can be easily implemented in O (lgn) time on the binary trees representing
the tours.
Parallel Batch-Dynamic Euler Tour Trees. In this chapter of the thesis, we show that
ETTs can be e�ciently parallelized by designing sequence data structures that can be
e�ciently batch split and batch joined. We show that adding and removing a batch of k
edges in our data structure can be done inO (k lg(1+n/k )) expected work andO (lgn) depth
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Algorithm

Single Update Batch of k Updates

Work Depth Work Depth

Holm et al. [175] O (lg2 n) O (m) O (lg2 n) O (m)

This thesis O (lg2 n)‡ O (lg3 n) whp O
(
lgn lg

(
1 + n

∆

))‡
O (lg3 n) whp

Table 1.5: Work and depth bounds of the parallel batch-dynamic connectivity algorithm studied
in this thesis compared to the bounds obtained by Holm et al. The depth bounds are shown for
the CRCW PRAM. ‡ indicates that the work bound is expected amortized per edge insertion or
deletion. ∆ is the average batch size of a deletion operation. The cost of connectivity queries in
the classic data structure is O (lgn) per query. Our structure answers k queries in O (k lg(1 + n/k ))
work and O (lgn) depth. Note that the depth for processing a batch of k insertions in our structure
is O (lgn) whp.

whp. Our work bounds match those of Acar et al. [4], and our depth bounds asymptotically
improve over their results. We experimentally evaluate our new data structures and show
that they achieve between 67–96 self-relative speedup on 72 cores with hyper-threading,
and scale to trees with billions of vertices and edges. Our new implementations also
outperform the fastest existing sequential dynamic trees data structures, such as link-cut
trees and other high-performance sequential implementations, empirically.

Parallel Batch-Dynamic Connectivity

In Chapter 8 we study the parallel batch-dynamic connectivity problem, and design
an e�cient data structure for this problem based on the seminal dynamic connectivity
data structure by Holm, de Lichtenberg, and Thorup [175]. Computing the connected
components of a graph is a fundamental problem that has been studied in many di�erent
models of computation [316, 290, 25, 175]. The dynamic connectivity problem is to
maintain a data structure over an n vertex undirected graph that supports insertions and
deletions of edges, as well as operations which query whether two vertices are currently
in the same connected component.

Our main contribution in this chapter is an e�cient parallel batch-dynamic algorithm
for maintaining graph connectivity. The result crucially uses the batch-dynamic ETT data
structure designed in Chapter 7. Our batch-dynamic algorithm runs in O (lg3 n) depth whp

and achieves an improved work bound that is asymptotically faster than the Holm, de
Lichtenberg, and Thorup algorithm for su�ciently large batch sizes, and is work-e�cient
otherwise. We note that our depth bounds hold even when processing the updates one a
time, ignoring batching. Our improved work bounds are derived by a novel analysis of the
work performed by the algorithm over all batches of deletions. The bounds we obtain are
summarized in Table 1.5.
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Our Approach. As in the sequential Holm, de Lichtenberg and Thorup (HDT) algorithm,
searching for replacement edges after deleting a batch of tree edges is the most interesting
part of our parallel algorithm. A natural idea for parallelizing the HDT algorithm is
to simply scan all non-tree edges incident on each disconnected component in parallel.
Although this approach has low depth per level, it may examine a huge number of candidate
edges, but only push down a few non-replacement edges. In general, it is unable to amortize
the work performed checking all candidate edges at a level to the edges that experience
level decreases.

To amortize the work properly while also searching the edges in parallel we must
perform a more careful exploration of the non-tree edges. Our approach is to use a doubling
technique, in which we geometrically increase the number of non-tree edges explored
as long as we have not yet found a replacement edge. We show that using the doubling
technique, the work performed (and number of non-tree edges explored) is dominated by
the work of the last phase, when we either �nd a replacement edge, or run out of non-tree
edges. Our amortized work-bounds follow by a per-edge charging argument, as in the
analysis of the HDT algorithm.

From this simple baseline parallel algorithm, we obtain an improved parallel algorithm
with lower depth (O (lg3 n) vs. O (lg4 n), both whp), and potentially better work. The main
observation is that the simple algorithm su�ers due to resetting the number of edges that
it considers after each step that searches for a replacement edge.

Instead, in the re�ned algorithm, we interleave a step that searches for replacement
edges in all currently active components with a step which contracts all replacement
edges found in the current search. This approach lets us keep geometrically doubling the
number of non-tree edges incident to active components that we consider. Arguing that
this shaves a log-factor in the depth is relatively straightforward. We provide a more subtle
analysis which shows that this approach can provide an asymptotic improvement over the
work performed by the HDT algorithm when the average batch size of edge deletions is
su�ciently large, which may be of independent interest.

1.3 Streaming Graph Processing

The �nal part of this thesis addresses the challenge of designing e�cient data structures
to dynamically represent graphs that evolve over time, while allowing users concurrently
analyzing the graph to be able to run parallel graph analytics and queries on snapshots of
the graph. This part of the thesis comprises two chapters. Chapter 9 describes the design
of an e�cient purely-functional tree structure called a C-tree which enables parallelism,
compression, lightweight snapshots, and good bounds for batch insertions and deletions.
We show that the structure can naturally be used to represent the adjacency information
of a graph. In Chapter 10 we present Aspen, a graph-streaming system that extends Ligra
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with support for inserting or deleting sets of edges or sets of vertices. This chapter also
presents an experimental evaluation of Aspen, including a comparison with existing graph-
streaming systems. We show that Aspen can scale to represent and update the entire
Hyperlink Web graph in the main memory of a single multicore machine.

Compressed Purely-Functional Trees

In Chapter 9 we present an e�cient way to represent graphs that admits lightweight
snapshots, compression, compression, and parallel batch updates. At the heart of our work
is the simple idea of representing graphs using purely-functional balanced search trees [2,
264]. Such a representation can use a search tree over the vertices (the vertex-tree), and
for each vertex store a search tree of its incident edges (an edge-tree). Because the trees
are purely-functional, acquiring an immutable snapshot is as simple as acquiring a pointer
to the root of the vertex-tree. Updates can then happen concurrently without a�ecting the
snapshot. In fact, any number of readers (queries) can concurrently acquire independent
snapshots without being a�ected by a writer. A writer can make an individual or bulk
update and then set the root to make the changes immediately and atomically visible to the
next reader without a�ecting current active readers. A single update costs O (lgn) work,
and because the trees are purely-functional it is relatively easy and safe to parallelize a
bulk update.
Challenges. However, there are several challenges that arise when comparing purely-
functional trees to compressed sparse row (CSR), the standard data structure for represent-
ing static graphs in shared-memory graph processing [295]. In CSR, the graph is stored as
an array of vertices and an array of edges, where each vertex points to the start of its edges
in the edge-array. Therefore, in the CSR format, accessing all edges incident to a vertex v
takesO (deд(v )) work, instead ofO (lgn+deд(v )) work for a graph represented using trees.
Furthermore, the format requires only one pointer (or index) per vertex and edge, instead
of a whole tree node, which has much higher overhead due to pointers for the left and
right children, as well as metadata needed to maintain balance information. Additionally,
as edges are stored contiguously, CSR has good cache locality when accessing the edges
incident to a vertex, while tree nodes could be spread across memory. Finally, each set of
edges can be compressed internally using graph compression techniques [322], allowing
massive graphs to be stored using just one or two bytes per edge [117]. This approach
cannot be used directly on trees. This would all seem to put a search tree representation
at a severe disadvantage.
Our Data Structure. We overcome these disadvantages of purely-functional trees by
designing a purely-functional tree data structure that supports structural compression.
Speci�cally, we propose a compressed purely-functional tree data structure that we call
a C-tree, which addresses the poor space usage and locality of purely-functional trees.
The C-tree data structure allows us to take advantage of graph compression techniques,
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Figure 1.5: A purely functional balanced search tree, and a C-tree on the same set of elements.

and thereby store very large graphs on a single machine. The key idea of a C-tree is to
chunk the elements represented by the tree and store each chunk contiguously in an array.
Because elements in a chunk are stored contiguously, the structure achieves good locality.
By ensuring that each chunk is large enough, we signi�cantly reduce the space used for
tree nodes. Although the idea of chunking is intuitive, designing a chunking scheme
which admits asymptotically-e�cient algorithms for batch-updates and also performs
well in practice is challenging. We note that our chunking scheme is independent of the
underlying balancing scheme used, and works for any type of element. In the context of
graphs, because each chunk in a C-tree stores a sorted set of integers, we can compress by
applying di�erence coding within each block and integer code the di�erences.

Aspen

In Chapter 10 we present Aspen, a multicore graph-streaming framework built using
C-trees that enables concurrent, low-latency processing of queries and updates, along
with several algorithms using the framework. The Aspen interface is an extension of the
graph processing interface presented in Chapter 3. It includes the full Ligra interface—
vertexSubsets, edgeMap, as well as other extensions of the interface described in Chapter 3.
Fundamentally, the interface extends the interface with a set of functions for updating the
graph—in particular, for inserting or deleting sets of edges or sets of vertices. All of the
functions for processing and updating the graph work on a �xed and immutable version

(snapshot) of the graph. The updates are functional, and therefore instead of mutating the
graph, return a handle to a new graph.

1.4 Research Presented in this Thesis

The results presented in this thesis are the result of collaborative research done over the
course of my graduate studies with my co-authors. These works are listed below:
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• Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. “Julienne: A Framework for
Parallel Graph Algorithms Using Work-e�cient Bucketing”. In: ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA). 2017, pp. 293–304 (Chapter 3 and
Chapter 4)

• Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. “Theoretically E�cient Parallel
Graph Algorithms Can Be Fast and Scalable”. In: ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). 2018, pp. 293–304 (Chapter 3 and Chapter 5)

• Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun. “The
Graph Based Benchmark Suite (GBBS)”. in: International Workshop on Graph Data

Management Experiences and Systems (GRADES) and Network Data Analytics (NDA).
2020, 11:1–11:8 (Chapter 3 and Chapter 5)

• Laxman Dhulipala, Charlie McGu�ey, Hongbo Kang, Yan Gu, Guy E Blelloch, Phillip
B Gibbons, and Julian Shun. “Sage: Parallel Semi-Asymmetric Graph Algorithms for
NVRAMs”. In: Proc. VLDB Endow. 13.9 (2020), pp. 1598–1613 (Chapter 6)

• Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. “Batch-Parallel Euler Tour
Trees”. In: Algorithm Engineering and Experiments (ALENEX) (2019), pp. 92–106
(Chapter 7)

• Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. “Par-
allel Batch-Dynamic Graph Connectivity”. In: ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). 2019, pp. 381–392 (Chapter 8)

• Laxman Dhulipala, Guy E Blelloch, and Julian Shun. “Low-Latency Graph Stream-
ing using Compressed Purely-Functional Trees”. In: ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). 2019, pp. 918–934
(Chapters 9 and 10)

Other Research. Several other papers written by the thesis author and collaborators
during graduate school are not included in this thesis [121], but re�ect on topics studied in
this thesis in interesting ways. For example [121] shows that the Euler tour tree structure
presented in Chapter 7 results in an e�cient O (1)-round batch-dynamic tree structure in
the Massively Parallel Computation (MPC) setting. This work also presents a di�erent
batch-dynamic connectivity algorithm for the MPC setting. Continuing the theme of
searching for powerful (and implementable) parallel models [47] studies a model called
the Adaptive Massively Parallel Computation model which augments the massively parallel
model with the ability to perform a limited amount of random reads from a read-only
shared memory within a round of computation. Algorithms for basic graph problems
in this model achieve exponential speedups over existing MPC algorithms for various
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problems. Finally, we have also developed a low round-complexity connectivity algorithm
in the standard MPC setting [48].

1.5 Broader Outlook and Thesis Statement

A fundamental goal of research in theoretical computer science is to design relatively
simple theoretical models of computation whose theoretical predictions can be reliably
applied in practice. The task is challenging since to be applicable in a broad set of situations,
the model must necessarily abstract away from many details of the hardware that it models.
One of the remarkable success stories of the �eld is how well, broadly speaking, theoretical
di�erences in the complexity of algorithms in di�erent models of computation (e.g., the
external-memory model [12], or cache-oblivious model [147]) translate into practical
di�erences in performance.

In the context of parallel algorithms, theoretical research in the early days (the late
1970s and 1980s) was done in an era where Moore’s law was still providing reliable speedups
in single-processor performance. This fact, coupled with a diversity of parallel machine
architectures at the time, led to a proliferation of theoretical models for parallel algorithms,
and also theoretical results that were sometimes tailored to speci�c aspects of these models.
Unfortunately, probably due to the relative di�culty of programming and performing
experiments on parallel machines at the time, most of the theoretical work on parallel
graph algorithms from these early years was not experimentally evaluated.

Today, we are living in a very di�erent era of parallel computing. Single-core per-
formance has plateaued with the end of Moore’s law, and chip designers have turned to
multicore parallelism for performance. This shift has placed a burden on algorithm design-
ers, since obtaining speedups today requires rethinking algorithms to take advantage of
parallelism. Furthermore, chips today only provide a modest number of general-purpose
cores, and there are signi�cant energy-e�ciency challenges in the way of obtaining chips
with 1000s of general-purpose cores [136].9 Fortunately, multicore machines today are
cheap and easy to obtain—it has never been easier to design, implement, and evaluate
shared-memory parallel algorithms.

But what parallel algorithms should we implement to observe good performance and
reliable speedups today, and in what kind of environments should these algorithms be im-
plemented to achieve good practical performance on massive datasets and low cost? As an
example of challenges faced by a practitioner trying to develop practical and cost-e�cient
algorithm implementations, consider a person trying to solve the connected components
problem. A quick search through the parallel computing literature for algorithms solving

9Note that GPUs can provide 1000s of lightweight cores, but are challenging to apply when solving
large-scale graph problems due to the small amount of memory that they can address, and the irregular
memory access patterns present in most graph algorithms.
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connected components reveals dozens of algorithms that have been proposed over the past
40 years, some of which are work-e�cient, and others which are slightly work-ine�cient.
Daunted, they may try looking at practical systems for graph processing to see what kind
of connected components algorithms these systems implement. However, these practical
frameworks for parallel graph processing, such as Giraph and Apache Spark, by and large
implement very simple algorithms for this problem, and implementing more complex
algorithms from the literature is challenging due to the limited set of algorithmic primitives
provided by these frameworks.

Our Study of Parallel Graph Algorithms

This thesis addresses this problem by presenting a comprehensive study of parallel graph
algorithms, covering a much broader set of problems and algorithms than any other
study of parallel graph algorithms in the literature. One of the main �ndings of this
thesis is that algorithms which are theoretically-e�cient (and often work-e�cient) in a
theoretical model called the binary-forking model are also practically e�cient. Our study
builds a set of parallel graph algorithms, many of which are based on classic results in the
parallel computing literature that are originally designed for PRAMs, which are practical
on modern shared-memory machines, and scale to the largest publicly available graphs
using only a reasonably modest multicore machine.

One advantage of performing a study like the one in this thesis, is that we can identify
similarities between di�erent algorithms, and extract these common idioms and techniques
into reusable, high-performance components. For example, at �rst glance, the peeling
algorithm for computing the coreness of every vertex (the largest non-empty k-core
containing a vertex), and the classic ∆-stepping algorithm for parallel shortest paths on
positive weight graphs would seem to have nothing in common, but a closer look reveals
that both algorithms rely on dynamically storing vertices in sets of buckets for e�ciency.
In k-core, the buckets represent the current upper-bound on the vertex’s coreness, whereas
in ∆-stepping, the buckets represent a tentative shortest-path distance between the source
vertex and a given vertex. By providing a high-level interface for bucketing (Chapter 4) we
are able to (i) design a reusable, high performance implementation of the interface and (ii)
apply the interface to implement other algorithms that can be expressed using bucketing,
such as parallel approximate set-cover [67].

Similarly, the study of parallel graph algorithms we present in Chapter 5, in addition
to showing the capabilities of shared-memory graph processing to quickly solve a very
broad set of fundamental problems on massive real-world graphs on a single machine, also
identi�es a general interface for shared-memory graph processing that the thesis author
believes may be useful in implementing other parallel graph algorithms in the future. For
example, many graph algorithms employ the following ‘reduction’ idiom: given a subset
of vertices U , for each vertex v neighboring U compute the number of edges incident to
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v where the other endpoint is contained in U . Similarly, some algorithms (e.g., certain
connectivity algorithms) contract a graph given a labeling of the vertices to obtain a new
graph, and others require �ltering a sets of edges from the graph either for correctness, or
to improve work-e�ciency.

Implementing algorithms using these idioms in existing frameworks and systems is
challenging because the frameworks have not been designed to enable the user to perform
these more complicated tasks. Thus, one of the important contributions of our study is
a much richer graph interface than interfaces in existing systems, which also has clear
parallel cost bounds on all of its primitives. Using the interface enables clear and relatively
concise expression of all of the algorithms studied in this thesis.

Parallel Batch-Dynamic Algorithms and Streaming Graph Processing

Both parallel batch-dynamic algorithms, and streaming graph processing are relatively
new areas of research that we study in this thesis (at least relative to the study of parallel
graph algorithms). Despite these areas still being in their infancy, there has been a large
amount of interest in both areas due to the enormous practical applicability of being able
to represent an up-to-date copy of a graph and analyze it in nearly real-time.

The second part of this thesis presents a study of parallel algorithms for two fundamen-
tal problems in the batch-dynamic setting: the dynamic trees problem, and the dynamic
connectivity problem. Both algorithms, for the batch-dynamic trees problem (Chapter 7)
and the batch-dynamic connectivity problem (Chapter 8) are work-e�cient relative to
their sequential dynamic algorithm counterparts. Our results provide positive evidence for
the possibility of designing theoretically-e�cient parallel batch-dynamic algorithms in a
shared-memory setting. Furthermore, our experimental results provide evidence that the
approach is practical and can scale to high update rates on a modest multicore machine.

Since the work presented in Chapters 7 and Chapter 8 appeared in their respective
venues, more work on parallel batch-dynamic algorithms has begun to emerge both in
shared-memory models, as well as more powerful models such as the Massively Parallel
Model [263] and the k-Machine Model [151]. Although these results in more powerful
models are of clear intellectual interest, their usefulness in practice still needs and deserves
to be experimentally studied. On the other hand, there is a clear path to implementing and
experimentally evaluating more shared-memory parallel batch-dynamic algorithms like
the algorithms evaluated in Chapter 7, and comparing these algorithms to strong static
shared-memory baselines like those in Chapters 4–6.

The �nal part of this thesis studies the graph-streaming setting and presents a new
purely-functional compressed tree structure called aC-tree, and a graph-streaming system
called Aspen based on this data structure. Central to our results in this part of the thesis
is the idea of using tree data structures that are carefully designed for parallelism in a
shared-memory setting [63, 341]. Our work builds on this prior work to show that carefully
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designed parallel batch update algorithms can achieve both strong theoretical bounds
on the update costs, as well as achieve update rates of hundreds of millions of edges per
second on a relatively modest multicore machine. Our results provide the �rst dynamic
graph representation that admits e�cient parallel batch updates, enjoys low memory usage
due to compression, and enables lightweight snapshots.

Based on these results, this thesis presents the following thesis statement.
Thesis Statement: This thesis contends that shared-memory algorithms can serve as the

foundation of a graph processing toolkit for static and evolving graphs that is a�ordable,

practical, scalable, and provably-e�cient.





2
Preliminaries and Notation

2.1 Notation

Graph Notation

We use the following notation to describe graphs, and related objects throughout this
thesis. We denote an unweighted graph by G (V ,E), where V is the set of vertices and E is
the set of edges in the graph. A weighted graph is denoted by G = (V ,E,w ), where w is
a function which maps an edge to a real value (its weight). The number of vertices in a
graph is n = |V |, and the number of edges ism = |E |. Vertices are assumed to be indexed
from 0 to n − 1. We call these unique integer identi�ers for vertices vertex IDs.

For undirected graphs we use N (v ) to denote the neighbors of vertex v and d (v )
to denote its degree. For directed graphs, we use N −(v ) and N +(v ) to denote the in-
neighbors and out-neighbors of a vertex v , and d−(v ) and d+(v ) to denote its in-neighbors
and out-degree, respectively. We assume that there are no self-edges or duplicate edges
in the graph. We refer to graphs stored as a list of edges as being stored in the edgelist

format and the compressed-sparse row formats as CSR format. In the edgelist format, we
are given an array of pairs (u,v ) corresponding to the endpoints of the edges. In CSR,
we are given two arrays, I and A, where the incident edges of a vertex v are stored in
{A[I [v]], . . . ,A[l[v + 1] − 1]}.1

Other Notation. We say that an algorithm has O ( f (n)) cost with high probability

(whp) if it has O (k · f (n)) cost with probability at least 1 − 1/nk .

Definitions used in Graph Algorithms

Diameter, Eccentricity. We use diam(G ) to refer to the diameter of the graph, or the
longest shortest path distance between any vertex s and any vertex v reachable from s . We
use rs to denote the eccentricity of a vertex s , or longest shortest path distance between a
vertex s and any vertex v reachable from s . Note that the diameter is simply the maximum
rs for any s ∈ V .
Density, k-Cores, and Coreness. Given an undirected graph G = (V ,E) the density of
a set S ⊆ V , or D (S ), is equal to |E (S ) |

|S | where E (S ) are the edges in the induced subgraph
on S . ∆ is used to denote the maximum degree of the graph. A k-core of an undirected
graph G is a maximal connected subgraph where every vertex has induced-degree at least

1We assume A[n] =m.
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k . The coreness of a vertex, v is the largest non-empty k-core containing the vertex. A
parallel algorithm to compute all k-cores of the graph works as follows. In each peeling

step, the algorithm removes all vertices with degree equal to the current minimum degree
in the graph. This process repeats until all vertices have been removed from the graph. We
de�ne ρ to be the peeling-complexity of a graph, which is the number of steps required
to peel the graph to an empty graph.
Betweenness Centrality and Dependency Values. De�ne σst to be the total number
of s–t shortest paths, σst (v ) to be the number of s–t shortest paths that pass throughv , and
δst (v ) =

σst (v )
σst

to be the pair-dependency of s and t on v . 2 The betweenness centrality

of a vertexv is equal to
∑

s,v,t∈V δst (v ), i.e. the sum of pair-dependencies of shortest-paths
passing through v . Brandes [84] proposes an algorithm to compute the betweenness
centrality values based on the following notion of ‘dependencies’: the dependency of a
vertex r on a vertex v is δr (v ) =

∑
t∈V δrt (v ). In this thesis, we consider the single-source

betweenness centrality, which is to compute the dependency values for each vertex from a
source vertex.

2.2 Atomic Operations

We use four common atomic primitives in our algorithms and implementations: te-
stAndSet (TS), compareAndSwap (CAS), fetchAndAdd (FA), and priorityWrite
(PW). A testAndSet(&x ) checks if x is false, and if so atomically sets it to true and
returns true; otherwise it returns false. A compareAndSwap(&x , oldV , newV ) takes
three arguments—a memory location x, an old value oldV and a new value newV. If the
value stored at x is equal to oldV, the compareAndSwap atomically updates the value
at x to be newV and returns true; otherwise the CAS returns false. compareAndSwap is
supported in almost all modern processors. A fetchAndAdd (&x ) atomically returns
the current value of x and then increments x . A priorityWrite(&x ,v,p) atomically
compares v with the current value of x using the priority function p, and if v has higher
priority than the value of x according to p it sets x to v and returns true; otherwise it
returns false.

2.3 Parallel Model and Cost

In the analysis of algorithms in this thesis we primarily use a work-depth model which
is closely related to the PRAM but better models current machines and programming
paradigms that are asynchronous and allows dynamic forking. We can simulate this model
on the CRCW PRAM equipped with the same operations with an additionalO (lg∗ n) factor

2Note that σst (v ) = 0 if v ∈ {s, t }.
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in the depth whp due to load-balancing [72]. Furthermore, a PRAM algorithm using P
processors and T time can be simulated in our model with PT work and T depth.

Model

The Binary-Forking Model [62, 72] consists of a set of threads that share an unbounded
memory. Each thread is basically equivalent to a Random Access Machine—it works
on a program stored in memory, has a constant number of registers, and has standard
RAM instructions (including an end to �nish the computation). The binary-forking model
extends the RAM with a fork instruction that forks 2 new child threads. Each child thread
receives a unique integer in the range [1, 2] in its �rst register and otherwise has the
identical state as the parent, which has a 0 in that register. They all start by running the
next instruction. When a thread performs a fork, it is suspended until both of its children
terminate (execute an end instruction). A computation starts with a single root thread
and �nishes when that root thread ends. Processes can perform reads and writes to the
shared memory, as well as the testAndSet instruction. This model supports what is
often referred to as nested parallelism. If the root thread never does a fork, it is a standard
sequential program.

Work and Depth

A computation can be viewed as a series-parallel DAG in which each instruction is a vertex,
sequential instructions are composed in series, and the forked threads are composed in
parallel. The work of a computation is the number of vertices and the depth is the length
of the longest path in the DAG. As is standard with the RAM model, we assume that the
memory locations and registers have at most O (lgM ) bits, where M is the total size of the
memory used.

Model Variants

In this thesis, we augment the binary-forking model described above with two atomic
instructions that are used by our algorithms: fetchAndAdd and priorityWrite and
discuss the model with these instruction as the FA-BF, and PW-BF variants of the binary-
forking model, respectively. We abbreviate the basic binary-forking model with only
the testAndSet instruction as the BFmodel. Note that the basic binary-forking model
includes a testAndSet, as this instruction is necessary to implement joining tasks in a
parallel schedulers (see for example [77, 26]), and since all modern multicore architectures
include the testAndSet instruction.



28 Preliminaries and Notation

2.4 Parallel Primitives

The following parallel procedures are used throughout this thesis. We �rst de�ne the
concept of a monoid, which is used in several primitives.

A monoid over a type E is an object consisting of an associative function ⊕ : E×E→ E,
and an identity element ⊥ : E. A monoid is speci�ed as a pair, (⊥, ⊕).

The scan operation takes as input an array A of length n, and a monoid (⊥, ⊕), and
returns the array (⊥,⊥ ⊕ A[0],⊥ ⊕ A[0] ⊕ A[1], . . . ,⊥ ⊕n−2i=0 A[i]) as well as the overall
sum, ⊥ ⊕n−1i=0 A[i]. Scan can be done in O (n) work and O (lgn) depth (assuming ⊕ takes
O (1) work) [188].

The reduce operation takes an array A and a monoid (⊥, ⊕) and returns the sum of
the elements in A with respect to ⊕. Reduce can be done in O (n) work and O (lgn) depth
(assuming ⊕ takes O (1) work)

A �lter takes an array A and a predicate f and returns a new array containing a ∈ A
for which f (a) is true, in the same order as in A. Filter can be done in O (n) work and
O (lgn) depth (assuming f takes O (1) work).

A semisort takes an input array of elements, where each element has an associated key
and reorders the elements so that elements with equal keys are contiguous, but elements
with di�erent keys are not necessarily ordered. The purpose is to collect equal keys
together, rather than sort them. Semisorting a sequence of length n can be performed in
O (n) expected work and O (lgn) depth whp assuming access to a uniformly random hash
function mapping keys to integers in the range

[
1,nO (1)

]
[288, 161].

A parallel dictionary data structure supports batch insertion, batch deletion, and
batch lookups of elements from some universe with hashing. Gil et al. describe a parallel
dictionary that uses linear space and achieves O (k ) work and O (lg∗ k ) depth whp for a
batch of k operations in the CRCW PRAM [150]. This hashing algorithm can be simulated
in the binary-forking model in the same work and O (lgk lg∗ k ) depth whp. Instead, in
the BF model, parallel hashing can be done in O (k ) expected work, and O (lgk ) depth
whp by inserting elements using linear-probing into an open-addressed table using the
testAndSet primitive provided by the model to atomically acquire a cell.

The pack operation takes an n-length sequence A and an n-length sequence B of
booleans as input. The output is a sequence A′ of all the elements a ∈ A such that the
corresponding entry in B is true. The elements of A′ appear in the same order that they
appear in A. Packing can be implemented in O (n) work and O (lgn) depth [188].

Finally, the PointerJump primitive takes an array P of parent pointers which represent
a directed rooted forest (i.e., P[v] is the parent of vertex v) and returns an array R where
R[v] is the root of the directed tree containing v . This primitive can be implemented in
O (n) work, and O (lgn) depth whp in the binary-forking model [72].
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2.5 Pseudocode Conventions

The pseudocode for many of the algorithms in this thesis make use of the graph processing
interface described in Chapter 3, as well as the atomic primitives compareAndSwap, tes-
tAndSet, fetchAndAdd, and priorityWrite (de�ned in Section 2.2). In our pseudocode,
we use _ as a wildcard to bind values that are not used. We use anonymous functions in the
pseudocode for consciseness, and adopt a syntax similar to how anonymous functions are
de�ned in the ML language. An anonymous function is introduced using the fn keyword.
For example,

fn (u,v,wuv ) : edge→ return Rank[v]

is an anonymous function taking a triple representing an edge, and returning the Rank of
the vertex v . We drop type annotations when the argument types are clear from context.
The option type, E option, provides a distinction between some value of type E (Some(e ))
and no value (None). We use the array initializer notation A[0, . . . , e ) = value to denote an
array consisting of e elements all initialized to value in parallel. We use standard functional
sequence primitives, such as map and filter on arrays. Assuming that the user-de�ned
map and �lter functions cost O (1) work to apply, these primitives cost O (n) work and
O (lgn) depth on a sequence of length n. We use the syntax ∀i ∈ [s, e ) as shorthand for a
parallel loop over the indices [s, . . . , e ). For example, ∀i ∈ [0, e ),A[i] = i ·A[i] updates the
i’th value of A[i] to i · A[i] in parallel for 0 ≤ i < e .

2.6 Ligra and Ligra+

We make use of the Ligra and Ligra+ frameworks for shared-memory graph processing in
this thesis and review components from these frameworks here [319, 322]. Ligra provides
data structures for representing a graphG = (V ,E), vertexSubsets (subsets of the vertices).
We make use of the edgeMap function provided by Ligra, which we use for mapping
over edges. edgeMap takes as input a graph G (V ,E), a vertexSubsetU , and two boolean
functions F and C . edgeMap applies F to (u,v ) ∈ E such that u ∈ U and C (v ) = true

(call this subset of edges Ea), and returns a vertexSubset U ′ where u ∈ U ′ if and only if
(u,v ) ∈ Ea and F (u,v ) = true. F can side-e�ect data structures associated with the vertices.
edgeMap runs in O (

∑
u∈U deg(u)) work and O (lgn) depth assuming F and C take O (1)

work. edgeMap either applies a sparse or dense method based on the number of edges
incident to the current frontier. Both methods run in O (

∑
u∈U deg(u)) work and O (lgn)

depth. We note that in our experiments we use an optimized version of the dense method
which examines in-edges sequentially and stops once C returns false. This optimization
lets us potentially examine signi�cantly fewer edges than the O (lgn) depth version, but at
the cost of O (in-deg(v )) depth.
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Graph Dataset Num. Vertices Num. Edges diam ρ kmax

LiveJournal 4,847,571 68,993,773 16 ∼ ∼

LiveJournal-Sym 4,847,571 85,702,474 20 3480 372
com-Orkut 3,072,627 234,370,166 9 5,667 253
Twitter 41,652,231 1,468,365,182 65* ∼ ∼

Twitter-Sym 41,652,231 2,405,026,092 23* 14,963 2488
3D-Torus 1,000,000,000 6,000,000,000 1500* 1 6
ClueWeb 978,408,098 42,574,107,469 821* ∼ ∼

ClueWeb-Sym 978,408,098 74,744,358,622 132* 106,819 4244
Hyperlink2014 1,724,573,718 64,422,807,961 793* ∼ ∼

Hyperlink2014-Sym 1,724,573,718 124,141,874,032 207* 58,711 4160
Hyperlink2012 3,563,602,789 128,736,914,167 5275* ∼ ∼

Hyperlink2012-Sym 3,563,602,789 225,840,663,232 331* 130,728 10565
Table 2.1: Graph inputs studied in this thesis, including vertices and edges. diam is the diameter
of the graph. For undirected graphs, ρ and kmax are the number of peeling rounds, and the largest
non-empty core (degeneracy). We mark diam values where we are unable to calculate the exact
diameter with * and report the e�ective diameter observed during our experiments, which is a
lower bound on the actual diameter.

2.7 Shared-Memory Experimental Setup

The shared-memory experiments reported in this thesis are run on a 72-core Dell Pow-
erEdge R930 (with two-way hyper-threading) with 4 × 2.4GHz Intel 18-core E7-8867 v4
Xeon processors (with a 4800MHz bus and 45MB L3 cache) and 1TB of main memory.
Our programs use simple parallel primitives such as fork, join, and a parallel for-loop,
parallel-for to express parallelism. Unless otherwise speci�ed, all of our programs are
compiled with the g++ compiler (version 7.3.0) with the -O3 �ag.

By using a work-stealing scheduler, like the one implemented in Cilk, we are able
obtain an expected running time ofW /P+O (D) for an algorithm withW work andD depth
on P processors [77]. We note that some of our programs use a work-stealing scheduler
that we implemented, based on the algorithm of Arora et al. [26]. In this thesis we will
always make it clear what parallel scheduler we use. For the parallel experiments, we use
the command numactl -i all to balance the memory allocations across the sockets. All
of the speedup numbers we report are the running times of our parallel implementation
on 72-cores with hyper-threading over the running time of the implementation on a single
thread.
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2.8 Graphs Studied in this Thesis

The experiments reported in this thesis are run on a broad set of real-world graphs, which
we describe in this section. Most of the graphs we study are Web graphs and social
networks—low diameter graphs that are frequently used in practice. To test some of our
algorithms on large diameter graphs, we also use road networks, and 3-dimensional tori
where each vertex is connected to its 2 neighbors in each dimension.
Unweighted Graphs. We list the graphs used in our experiments, along with their size,
approximate diameter, peeling complexity (ρ), and degeneracy (for undirected graphs) in
Table 2.1. LiveJournal is a directed graph of the social network obtained from a snapshot
in 2008 [81]. com-Orkut is an undirected graph of the Orkut social network. Twi�er
is a directed graph of the Twitter network, where edges represent the follower relation-
ship [208]. ClueWeb is a Web graph from the Lemur project at CMU [81]. Hyperlink2012
and Hyperlink2014 are directed hyperlink graphs obtained from the WebDataCommons
dataset where nodes represent web pages [241]. The Hyperlink2012 graph is the same as
the WebDataCommons hyperlink graph mentioned throughout this thesis. 3D-Torus is
a 3-dimensional torus with 1B vertices and 6B edges. We mark symmetric (undirected)
versions of the directed graphs with the su�x -Sym.
Weighted Graphs. Some of our algorithms require weighted graphs. Unfortunately there
are no realistic large-scale weighted networks available today, to the best of our knowledge.
Thus, we create weighted graphs for evaluating our algorithms by selecting edge weights
between [1, lgn) uniformly at random.

2.9 Problem De�nitions

In this section we describe I/O speci�cations of the graph problems considered in this
thesis.

2.9.1 Shortest Path Problems

Breadth-First Search (BFS).

Input: G = (V ,E), an unweighted graph, src ∈ V .
Output: D, a mapping containing the distance between src and vertex in V . Speci�cally,

• D[src] = 0,

• D[v] = ∞ if v is unreachable from src, and

• D[v] = distG (src,v ), i.e., the shortest path distance in G between src and v .
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Integral-Weight SSSP (weighted BFS).

Input: G = (V ,E,w ), a weighted graph with integral edge weights, src ∈ V .
Output: D, a mapping whereD[v] is the shortest path distance from src tov inG . D[v] = ∞
if v is unreachable.
General-Weight SSSP (Bellman-Ford).

Input: G = (V ,E,w ), a weighted graph, src ∈ V .
Output: D, a mapping whereD[v] is the shortest path distance from src tov inG . D[v] = ∞
if v is unreachable. If the graph contains any negative-weight cycles reachable from src,
the vertices of these negative-weight cycles and vertices reachable from them must have a
distance of −∞.
Single-Source Betweenness Centrality (BC).

Input: G = (V ,E), an undirected graph, src ∈ V .
Output: D, a mapping from each vertex v to the dependency value of this vertex with
respect to src.

Section 2.1 provides the de�nition of dependencies.
Widest Path.

Input: G = (V ,E,w ), a weighted graph with integral edge weights, src ∈ V .
Output: D, a mapping where D[v] is the maximum over all paths between src and v in G
of the minimum weight on the path. D[v] = ∞ if v is unreachable.
O (k )-Spanner.
Input: G = (V ,E), an undirected, unweighted graph, and an integer stretch factor, k .
Output: H ⊆ E, a set of edges such that for every u,v ∈ V connected in G, distH (u,v ) ≤
O (k ) · distG (u,v ).

2.9.2 Connectivity Problems

Low-Diameter Decomposition.

Input: G = (V ,E), a directed graph, 0 < β < 1.
Output: L, a mapping from each vertex to a cluster ID representing a (O (β ),O ((lgn)/β ))
decomposition. A (β ,d )-decomposition partitions V into C1, . . . ,Ck such that:

• The shortest path between two vertices in Ci using only vertices in Ci is at most d .

• The number of edges (u,v ) where u ∈ Ci ,v ∈ Cj , j , i is at most βm.

Connectivity.

Input: G = (V ,E), an undirected graph.
Output: L, a mapping from each vertex to a unique label for its connected component.
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Spanning Forest.

Input: G = (V ,E), an undirected graph.
Output: T , a set of edges representing a spanning forest of G.
Biconnectivity.

Input: G = (V ,E), an undirected graph.
Output: L, a mapping from each edge to the label of its biconnected component.
Minimum Spanning Forest.

Input: G = (V ,E,w ), a weighted graph.
Output: T , a set of edges representing a minimum spanning forest of G.
Strongly Connected Components.

Input: G (V ,E), a directed graph.
Output: L, a mapping from each vertex to the label of its strongly connected component.

2.9.3 Covering Problems

Maximal Independent Set.

Input: G = (V ,E), an undirected graph.
Output: U ⊆ V , a set of vertices such that no two vertices in U are neighbors and all
vertices in V \U have a neighbor in U .
Maximal Matching.

Input: G = (V ,E), an undirected graph.
Output: E′ ⊆ E, a set of edges such that no two edges in E′ share an endpoint and all edges
in E \ E′ share an endpoint with some edge in E′.
Graph Coloring.

Input: G = (V ,E), an undirected graph.
Output: C , a mapping from each vertex to a color such that for each edge (u,v ) ∈ E,
C (u) , C (v ), using at most ∆ + 1 colors.
Approximate Set Cover.

Input: G = (V = (S,E),A), an undirected bipartite graph representing an unweighted set
cover instance.
Output: S′ ⊆ S , a set of sets such that ∪s∈S ′N (s ) = E, and |S′| is an O (lgn)-approximation
to the optimal cover.

2.9.4 Substructure Problems

k-core.
Input: G = (V ,E), an undirected graph.
Output: D, a mapping from each vertex to its coreness value. Section 2.1 provides the
de�nition of a k-core and the coreness value of a vertex.
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Approximate Densest Subgraph.

Input: G = (V ,E), an undirected graph, and a parameter ϵ .
Output: U ⊆ V , a set of vertices such that the density of GU is a 2(1 + ϵ ) approximation of
the density of the densest subgraph of G . Section 2.1 provides the de�nition of the density
of a subset of vertices.
Triangle Counting.

Input: G = (V ,E), an undirected graph.
Output: TG , the total number of triangles in G. Each (u,v,w ) triangle is counted exactly
once.

2.9.5 Eigenvector Problems

PageRank.

Input: G = (V ,E), an undirected graph.
Output: P, a mapping from each vertex to its PageRank value after a single iteration of
PageRank.
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Shared-Memory Graph Processing
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Introduction

This part of the thesis introduces interfaces, techniques, and algorithms for e�ciently
solving a broad set of fundamental graph problems on very large real-world graphs. Chap-
ter 3 introduces a high-level graph processing interface that extends the Ligra framework.
The interface enables easily describing e�cient algorithms for a broad set of graph prob-
lems, many of which have not been implemented in existing parallel graph processing
frameworks. Chapter 4 studies e�cient algorithms for parallel bucketing, which is an
important part of the graph programming developed in this thesis. The bucketing inter-
face enables a class of bucketing-based graph algorithms which dynamically maintain a
mapping between vertices and a set of buckets, and iteratively process the buckets in a
certain order. Examples of bucketing-based algorithms include the work-e�cient parallel
set cover algorithm by Blelloch et al. [67], a work-e�cient k-core algorithm designed in the
chapter, and parallel algorithms for positive and integer-weight shortest paths. Chapter 5
demonstrates the e�ectiveness of the interface by describing parallel algorithms (which
are often work-e�cient) for 20 fundamental graph problems, ranging from connectivity
problems such as spanning forest, biconnectivity, and strongly connected components,
to substructure problems, such as triangle counting and approximate densest subgraph,
which have been open-sourced as part of a publicly-available benchmark suite called Graph

Based Benchmark Suite (GBBS). This chapter also presents an evaluation of the algorithm
implementations on a collection of large real-world graphs, including the WebDataCom-
mons hyperlink graph, the largest publicly available graph with over 200 billion edges. The
results show that a shared-memory approach signi�cantly outperforms existing results in
the literature for the WebDataCommons graph and other very large graphs both in terms
of running time, and in terms of cost. Chapter 6 extends the results in this part of the
thesis to the non-volatile memory setting. The chapter �rst introduces a parallel model
called the Parallel Semi-Asymmetric Model (PSAM), which extends the binary-forking
model to separately charge accesses to DRAM and NVRAM. It then presents Sage, a graph
processing system designed for the PSAM that incorporates new techniques for designing
e�cient parallel graph algorithms in this setting. The chapter experimentally evaluates
Sage algorithms on large graphs, including the WebDataCommons hyperlink graph and
�nds that Sage algorithms outperform existing state-of-the-art results in the non-volatile
memory setting, and achieve performance close to the fastest shared-memory results.

The results in this part of the thesis have appeared in the following publications:

• Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. “Julienne: A Framework for
Parallel Graph Algorithms Using Work-e�cient Bucketing”. In: ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA). 2017, pp. 293–304
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• Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. “Theoretically E�cient Parallel
Graph Algorithms Can Be Fast and Scalable”. In: ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). 2018, pp. 293–304

• Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun. “The
Graph Based Benchmark Suite (GBBS)”. in: International Workshop on Graph Data

Management Experiences and Systems (GRADES) and Network Data Analytics (NDA).
2020, 11:1–11:8

• Laxman Dhulipala, Charlie McGu�ey, Hongbo Kang, Yan Gu, Guy E Blelloch, Phillip
B Gibbons, and Julian Shun. “Sage: Parallel Semi-Asymmetric Graph Algorithms for
NVRAMs”. In: Proc. VLDB Endow. 13.9 (2020), pp. 1598–1613



3
An Interface for Graph Algorithms

So, the real work of any process of design lies in this task of making
up the language, from which you can later generate the one particular
design.

Christopher Alexander, The Timeless Way of Building

3.1 Introduction

In this chapter we describe a high-level graph processing interface that is used to design
and implement the algorithm implementations developed in this part of the thesis. The
interface extends the Ligra and Ligra+ frameworks with additional parallel primitives
that are required to e�ciently implement a broad set of parallel graph algorithms. For
example, we design an interface for parallel bucketing, which is necessary to conciscely and
e�ciently express certain algorithms that maintain dynamic mappings between vertices
and a set of buckets. Our interface also includes primitives that make it easy to implement
common tasks in graph algorithms, such as performing functional operations (maps,
reductions, extracting edges matching a certain predicate) over vertex neighborhoods,
performing histograms over the edges incident to a subset of vertices, and other tasks,
which are di�cult to express in existing graph processing frameworks and interfaces.

The primitives provided by the interface are all well-suited for parallelism, and admit
provable bounds on their work and depth. In this chapter, we also provide a high-level
description of how the interface can be implemented, and describes the overall system
architecture of the static parallel graph processing systems developed in this thesis. This
chapter serves as a prelude for the subsequent chapters, which provide a deeper investiga-
tion of how to implement parts of the interface, like the bucketing interface (Chapter 4).
Finally, Chapters 5 and 6 utilize the interface and experimentally evaluate the approach in
a shared-memory and non-volatile memory setting.

The remainder of this chapter describes the following content:

• The di�erent types of graph representations supported by the interface (Section 3.3).

• Interfaces for representing subsets of vertices (vertexSubset from the Ligra frame-
work) in Section 3.4, for parallel bucketing (Section 3.5), for vertices (Section 3.6),
and for graphs (Section 3.7).

39
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BucketingVertexSubset

Section 3.4 Section 3.5 Section 3.6 Section 3.7

GraphVertex

ParlayLib

Runtime parallel scheduler (e.g., Cilk, OpenMP, TBB, Homegrown)

parallel primitives and datatypes, e.g., sequences, map,
reduce, prefix-sum (scan), random shuffle, sorting, and others

represent subsets
of vertices

primitives on
incident edges,
e.g., map, reduce,
filter, intersect, ...

dynamic mapping
from IDs to set of
ordered buckets

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

Graph Formats

Section 3.3

low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Figure 3.1: System architecture of the graph processing interface used in this thesis. The core
interfaces are the vertexSubset (Section 3.4), bucketing (Section 3.5), vertex (Section 3.6), and graph

interfaces (Section 3.7). These interfaces utilize parallel primitives and routines from ParlayLib [61].
Parallelism is implemented using a parallel runtime system—Cilk, OpenMP, TBB, or a homegrown
scheduler based on the Arora-Blumofe-Plaxton deque [26] that we implemented ourselves—and
can be swapped using a command line argument. The vertex and graph interfaces use a com-
pression library that mediates access to the underlying graph, which can either be compressed or
uncompressed (see Section 3.3).

3.2 Interface Overview

The interface is built as a number of layers, which we illustrate in Figure 3.1.1 In the
interface, the graph can either be stored in shared-memory, or in non-volatile memory.
Chapters 4 and 5 store the graph in shared-memory, and Chapter 6 store the graph in
non-volatile memory, which we discuss later in that chapter.

The implementations developed in this thesis based on this interface exploit nested
parallelism using scheduler-agnostic parallel primitives, such as fork-join and parallel-
for loops. Thus, they can easily be compiled to use di�erent parallel runtimes such as
Cilk, OpenMP, TBB, and also a custom work-stealing scheduler implemented by the
authors. Theoretically, our algorithms are implemented and analyzed in the binary-forking
model [72], which we described in Section 2.3. Our interface makes use of several new
types which are de�ned in Table 3.1. We also de�ne these types when they are �rst used
in the text.

1A brief version of this interface was presented in [124].
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Type Name De�nition Found In

unit An empty tuple indicating a trivial value (similar to void in languages like C) —
E option Either a value of type E (Some(e : E)) or no value (None) —
E monoid A pair of an identity element, ⊥ : E, and an associative function, ⊕ : E × E→ E Section 2.4
E sequence A parallel sequence containing values of type E Section 2.4
A→ B A function with arguments of type A with results of type B —

vtxid A vertex ID (unique integer identi�ers for vertices) Section 2.1
vertexSubset Data type representing a subset of vertex IDs Section 3.4
E vertexSubset An augmented vertexSubset (each vertex ID has an associated value of type E) Section 3.4
vset Abbreviation for a vertexSubset Section 3.4

identifier A unique integer representing a bucketed object Section 3.5
bktid A unique integer for each bucket Section 3.5
bktorder The order to traverse buckets in (increasing or decreasing) Section 3.5
bktdest Type representing which bucket an identifier is moving to Section 3.5

edge A tuple representing an edge in the graph —
nghlist Data type representing the neighbors of a vertex Section 3.6
graph Data type representing a collection of vertices and edges Section 3.7

Table 3.1: Type names used in the interface, and their de�nitions. The third column provides a
reference to where the type is de�ned in the text (if applicable).

3.3 Graph Representations

We �rst cover the di�erent types of graph representations used in the library. The basic
graph format stores graphs in the compressed sparse row format (described below). To
e�ciently store very large graphs, we also utilize a compressed graph format which encodes
sorted neighbor lists using di�erence encoding that we describe below. Finally, our library
also supports arbitrary edge weights, and provides functionality for compressing integer
edge weights. As described in Section 2.1, in this thesis, we deal with graphs where vertices
are identi�ed by unique integers between 0 to n − 1. We use the vtxid type to refer to these
integer vertex IDs.

Compressed Graphs. Graphs are stored in the compressed sparse row (CSR) format.
CSR stores two arrays, I and A, where the vertices are in the range [0,n − 1] and incident
edges of a vertexv are stored in {A[I [v]], . . . ,A[I [v+1]−1]} (with a special case for vertex
n − 1). The uncompressed format is equivalent to the CSR format. The format assumes
that the edges incident to a vertex are sorted by the neighboring vertex ID. The interface
also supports the compressed graph formats from the Ligra+ framework [322]. Speci�cally,
we provide support for graphs where neighbor lists are encoded using byte codes and a
parallel generalization of byte codes, which we describe next.

In the byte format, we store a vertex’s neighbor list by di�erence encoding consecutive
vertex IDs, with the �rst di�erence encoded with respect to the source vertex ID. Decoding
is done by sequentially uncompressing each di�erence, and summing the di�erences into a



42 An Interface for Graph Algorithms

VertexSubset Interface

size : unit → int
vertexMap : (vtxid→ unit) → unit
vertexMapVal : (vtxid→ E) → E vset
vertexFilter : (vtxid→ bool) → vset
addToSubset : (vset ∗ vtxid sequence) → unit

Work Depth

}
amortized

Figure 3.2: The core primitives in the vertexSubset interface, including the type de�nition of each
primitive and the cost bounds. We use vset as an abbreviation for vertexSubset in the �gure. A
vertexSubset is a representation of a set of vertex IDs, which are unique integer identi�ers for
vertices. If the input vertexSubset is augmented, the user-de�ned functions supplied to vertexMap
and vertexFilter take a pair of the vertex ID and augmented value as input, and the addToSubset
primitive takes a sequence of vertexID and augmented value pairs.

running sum which gives the vertex ID of the next neighbor. As this process is sequential,
graph algorithms using the byte format that map over the neighbors of a vertex will have
poor depth bounds.

We enable parallelism using the parallel-byte format from Ligra+ [322]. This format
breaks the neighbors of a high-degree vertex into blocks, where each block contains a
constant number of neighbors. Each block is di�erence encoded with respect to the source,
and the format stores the blocks in a neighbor list in sorted order. As each block can
have a di�erent size, it also stores o�sets that point to the start of each block. Using the
parallel-byte format, the neighbor vertex IDs of a high-degree vertex can then be decoded
in parallel over the blocks. We refer the reader to Ligra+ [322] for a detailed discussion of
the idea. We provide many parallel primitives for processing neighbor lists compressed in
the parallel-byte format in Section 5.7.

Weighted Graphs. The graph and vertex data types in the interface are generic over
the weight type of the graph. Graphs with arbitrary edge weights can be represented
by simply changing a template argument to the vertex and graph data types. We treat
unweighted graphs as graphs weighted by an implicit null (0-byte) weight.

Both the byte and parallel-byte schemes above provide support for weighted graphs.
If the graph weight type is E, the encoder simply interleaves the weighted elements of
type E with the di�erences generated by the byte or parallel byte code. Additionally, the
interface supports compressing integer weights using variable-length coding, similar to
Ligra+ [322].
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Bucketing Interface

makeBuckets : int ∗ (identifier → bktid)
∗ bktorder → buckets

getBucket : (bktid ∗ bktid) → bktdest
nextBucket : buckets → (bktid, identifier sequence)
updateBuckets : buckets ∗ (identifier, bktdest) sequence

→ unit

Work Depth

} presented in
Theorem 4.1

Figure 3.3: The bucketing interface, including the type de�nition of each primitive and the cost
bounds. The bucketing structure represents a dynamic mapping between a set of identifiers to a
set of buckets. The total number of identifiers is denoted by n. † denotes that a bound holds in
expectation, and ‡ denotes that a bound holds whp. We de�ne the semantics of each operation in
the text below.

3.4 VertexSubset Interface

Data Types. One of the primary data types used in our interface is the vertexSubset

data type, which represents a subset of vertices in the graph. Conceptually, a vertexSubset
can either be sparse (represented as a collection of vertex IDs) or dense (represented as a
boolean array or bit-vector of length n). A T vertexSubset is a generic vertexSubset, where
each vertex is augmented with a value of type T.
Primitives. We use four primitives de�ned on vertexSubset, which we illustrate in Fig-
ure 3.2. vertexMap takes a vertexSubset and applies a user-de�ned function f over
each vertex. This primitive makes it easy to apply user-de�ned logic over vertices in a
subset in parallel without worrying about the state of the underlying vertexSubset (i.e.,
whether it is sparse or dense). We also provide a specialized version of the vertexMap
primitive, vertexMapVal through which the user can create an augmented vertexSubset.
vertexFilter takes a vertexSubset and a user-de�ned predicate P and keeps only vertices
satisfying P in the output vertexSubset. Finally, addToSubset takes a vertexSubset and a
sequence of unique vertex identi�ers not already contained in the subset, and adds these
vertices to the subset. Note that this function mutates the supplied vertexSubset. This
primitive is implemented in O (1) amortized work by representing a sparse vertexSubset
using a resizable array. The worst case depth of the primitive is O (lgn) since the primitive
scans at most O (n) vertex IDs in parallel.

3.5 Bucketing Interface

We use the bucketing interface and data structure from Julienne [115], which represents a
dynamic mapping from identi�ers to buckets. Each bucket is represented as a vertexSubset,
and the interface allows vertices to dynamically be moved through di�erent buckets



44 An Interface for Graph Algorithms

as priorities change. The interface enables priority-based graph algorithms, including
integral-weight shortest paths, k-core decomposition, and others [115]. Algorithms using
the interface iteratively extract the highest priority bucket, potentially update incident
vertex priorities, and repeat until all buckets are empty.

The interface is shown in Figure 3.3. The interface uses several types that we now
de�ne. An identifier is a unique integer representing a bucketed object. An identifier is
mapped to a bktid, a unique integer for each bucket. The order that buckets are traversed
in is given by the bktorder type. bktdest is an opaque type representing where an
identifier is moving inside of the structure. Once the structure is created, an object of type
buckets is returned to the user.

The structure is created by calling makeBuckets and providing n, the number of
identi�ers, D, a function which maps identifiers to bktids andO , a bktorder. Initially, some
identi�ers may not be mapped to a bucket, so we add nullbkt, a special bktid which lets
D indicate this. Buckets in the structure are accessed monotonically in the order speci�ed
by O . After the structure is created, the nextBucket primitive is used to access the next
non-empty bucket in non-decreasing (respectively, non-increasing) order. The getBucket
primitive is how users indicate that an identifier is moving buckets. It requires supplying
both the current bktid and next bktid for the identifier that is moving buckets, and returns
an element with the bktdest type. Lastly, the updateBuckets primitive updates the bktids
for multiple identifiers by supplying the bucket structure and a sequence of identi�er and
bktdest pairs.

The costs for using the bucket structure can be summarized by the following theorem
from [115]:

Theorem 1. When there are n identi�ers, T total buckets, K calls to updateBuckets, each

of which updates a set Si of identi�ers, and L calls to nextBucket, parallel bucketing takes

O (n +T +
∑K

i=0 |Si |) expected work and O ((K + L) lgn) depth whp.

Chapter 4 provides more details about the interface and its implementation.

3.6 Vertex Interface

The interface provides vertex data types for both symmetric and asymmetric vertices,
used for undirected and directed graphs, respectively. The vertex data type interface (see
Figure 3.4) provides functional primitives over vertex neighborhoods, such as map, reduce,
scan, count (a special case of reduce over the (0,+) monoid where the map function is a
boolean function), as well as primitives to extract a subset of the neighborhood satisfying a
predicate (filter) and an internal primitive to mutate the vertex neighborhood and delete
edges that do not satisfy a given predicate (pack). Since pack mutates the underlying
vertex neighborhood in the graph, which requires updating the number of edges remaining
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Vertex Interface

Vertex-Vertex
operators:

intersection : (nghlist ∗ nghlist) → int
union : (nghlist ∗ nghlist) → int
difference : (nghlist ∗ nghlist) → int

Neighborhood
operators:

map : (edge → unit) → unit
reduce : (edge → R) ∗ R monoid → R
scan : (edge → R) ∗ R monoid → R
count : (edge → bool) → int
filter : (edge → bool) → edge sequence
pack : (edge → bool) → unit
iterate : (edge → bool) → unit
i-th : int → edge
degree : unit → int
getNeighbors : unit → nghlist

}
}
}

Work Depth

Figure 3.4: The core vertex interface, including the type de�nition of each primitive and the cost
bounds for our implementations on uncompressed graphs. Note that for directed graphs, each of the
neighborhood operators has two versions, one for the in-neighbors and one for the out-neighbors
of the vertex. The cost bounds for the primitives on compressed graphs are identical assuming
the compression block size is O (lgn). The cost bounds shown here assume that the user-de�ned
functions supplied to map, reduce, scan, count, filter, pack, and iterate all cost O (1) work to
evaluate. dit is the number of times the function supplied to iterate returns true. nghlist is an
abstract type for the neighbors of a vertex, and is used by the vertex-vertex operators. The edge
type is a triple (u,v,wuv ) where the �rst two entries are the ids of the endpoints, and the last entry
is the weight of the edge. l and h are the degrees of the smaller and larger degree vertices supplied
to a vertex-vertex operator, respectively.

in the graph, we do not expose it to the user, and instead provide APIs to pack a graph
in-place using the packGraph and (ngh/src)Pack primitives described later. The interface
also provides a sequential iterator that takes as input a function f from edges to booleans,
and applies f to each successive neighbor, terminating once f returns false. Note that
for directed graphs, each of the neighborhood operators has two versions, one for the
in-neighbors and one for the out-neighbors of the vertex.

Finally, the interface provides vertex-vertex operators for computing the intersection,
union, or difference between the set of neighbors of two vertices. We also include natural
generalizations of each vertex-vertex operator that take a user-de�ned function f and
apply it to neighbor found in the intersection (union or di�erence). Note that the vertex-
vertex operators take the abstract nghlist type, which makes it easy to perform more
complex tasks such as intersecting the in-neighbors of one vertex and the out-neighbors
of a di�erent vertex.

The cost bounds for the interface are derived by applying known bounds for e�cient se-
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Graph Interface

VertexSubset
operators:

edgeMap : vset ∗ (edge → bool)
∗ (vtxid → bool) → vset

edgeMapVal : vset ∗ (edge → O option)
∗ (vtxid → bool) → O vset

srcReduce : vset ∗ (edge → O) ∗ O monoid
∗ (vtxid → bool) → O vset

srcCount : vset ∗ (edge → bool)
∗ (vtxid → bool) → int vset

srcPack : vset ∗ (edge → bool)
∗ (vtxid → bool) → int vset

nghReduce : vset ∗ (edge → R) ∗ R monoid
∗ (vtxid → bool)
∗ (R → O option) → O vset

nghCount : vset ∗ (edge → bool)
∗ (vtxid → bool)
∗ (int → O option) → O vset

Graph
operators:

numVertices : unit → int
numEdges : unit → int
getVertex : int → vertex
filterGraph : (edge → bool) → graph
packGraph : (edge → bool) → unit
extractEdges : (edge → bool)

→ edge sequence
contractGraph : int sequence → graph

Work Depth

}

}

}
}
}

Figure 3.5: The core graph interface, including the type de�nition of each primitive and the cost
bounds for our implementations on uncompressed graphs. vset is an abbreviation for vertexSubset
when providing a type de�nition. Note that for directed graphs, the interface provides two versions
of each vertexSubset operator, one for the in-neighbors and one for the out-neighbors of the vertex.
The edge type is a triple (u,v,wuv ) where the �rst two entries are the ids of the endpoints, and
the last entry is the weight of the edge. The vertexSubset operators can take both unaugmented
and augmented vertexSubsets as input, but ignore the augmented values in the input. U is the
vertexSubset supplied as input to a vertexSubset operator. For the src-based primitives, U ′ ⊆ U
is the set of vertices that are matched by the condition function (see the text below). The cost
bounds for the primitives on compressed graphs are identical assuming the compression block size
is O (lgn). The cost bounds shown here assume that the user-de�ned functions supplied to the
vertexSubset operators all cost O (1) work to evaluate. † denotes that a bound holds in expectation,
and ‡ denotes that a bound holds whp.

quence primitives (see Chapter 2). We provide additional details about the implementations
of our compressed implementations in Section 5.7.4.
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3.7 Graph Interface

The interface provides graph data types for both symmetric and asymmetric graphs. Dis-
tinguishing between these graph types is important for statically enforcing arguments
to problems and routines that require a symmetric input (for example, it does not make
sense to call connectivity, maximal independent set, or biconnectivity on a directed in-
put). Aside from standard functions to query the number of vertices and edges, the core
graph interface consists of two types of operators: (i) graph operators, which provide
information about a graph and enable users to perform graph-parallel operations, and (ii)
vertexSubset operators, which take as input a vertexSubset, apply user-de�ned functions
on edges incident to the vertexSubset in the graph in parallel and return vertexSubsets as
outputs.

3.7.1 Graph Operators

The graph operators, their types, and the cost bounds provided by our implementation
are shown in the top half of Figure 3.5. The interface provides primitives for querying
the number of vertices and edges in the graph (numVertices and numEdges), and for
fetching the vertex object for the i’th vertex (getVertex).
filterGraph. The filterGraph primitive takes as input a graphG (V ,E), and a boolean
function P over edges specifying edges to preserve. filterGraph removes all edges in
the graph where P (u,v,wuv ) = false, and returns a new graph containing only edges
where P (u,v,wuv ) = true. The filterGraph primitive is useful for our triangle counting
algorithm, which requires directing the edges of an undirected graph to reduce overall
work.
packGraph. The interface also provides a primitive over edges called packGraph which
operates similarly to filterGraph, but works in-place and mutates the underlying graph.
packGraph takes as input a graph G (V ,E), and a boolean function P over the edges
specifying edges to preserve. packGraph mutates the input graph to remove all edges that
do not satisfy the predicate. This primitive is used by the biconnectivity (Algorithm 12),
strongly connected components (Algorithm 14), maximal matching (Algorithm 16), and
minimum spanning forest (Algorithm 13) algorithms studied in this thesis.
extractEdges. The extractEdges primitive takes as input a graph G (V ,E), and a
boolean function P over edges which speci�es edges to extract, and returns an array
containing all edges where P (u,v,wuv ) = true. This primitive is useful in algorithms
studied in this thesis such as maximal matching (Algorithm 16) and minimum spanning
forest (Algorithm 13) where it is used to extract subsets of edges from a CSR representation
of the graph, which are then processed using an algorithm operating over edge arrays.
contractGraph. Lastly, the contractGraph primitive takes a graph and an integer
cluster labeling L, i.e., a mapping from vertices to cluster ids, and returns the graph
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G′ = (V ′,E′) where E′ = {(L(u),L(v ) | (u,v ) ∈ E}, with any duplicate edges or self-loops
removed. V ′ is V with all vertices with no incident edges in E′ removed. This primitive is
used by the connectivity (Algorithm 10) and spanning forest (Algorithm 11) algorithms
studied in this thesis. The primitive can naturally be generalized to weighted graphs by
specifying how to reweight parallel edges (e.g., by averaging, or taking a minimum or
maximum), although this generalization is not necessary for the algorithms studied in this
thesis.
Implementations and Cost Bounds. filterGraph, packGraph, and extractEdges
are implementd by invoking filter and pack on each vertex in the graph in parallel. The
overall work and depth comes from the fact that every edge is processed once by each
endpoint, and since all vertices are �ltered (packed) in parallel. contractGraph can be
implemented in O (n +m) expected work and O (lgn) depth whp in the binary-forking
model using semisorting [161, 72]. In practice, contractGraph is implemented using
parallel hashing [320], and we refer the reader to [321] for the implementation details.

3.7.2 VertexSubset Operators

The second part of the graph interface consists of a set of operators over vertexSubsets.
At a high level, each of these primitives take as input a vertexSubset, apply a given user-
de�ned function over the edges neighboring the vertexSubset, and output a vertexSubset.
The primitives include the edgeMap primitive from Ligra, as well as several extensions
and generalizations of the edgeMap primitive.
edgeMap. The edgeMap primitive takes as input a graphG (V ,E), a vertexSubsetU , and
two boolean functions F and C . edgeMap applies F to (u,v ) ∈ E such that u ∈ U and
C (v ) = true (call this subset of edges Ea), and returns a vertexSubset U ′ where u ∈ U ′ if
and only if (u,v ) ∈ Ea and F (u,v ) = true. Our interface de�nes the edgeMap primitive
identically to Ligra. This primitive is used in many of the algorithms studied in this thesis.
edgeMapData. The edgeMapData primitive works similarly to edgeMap, but re-
turns an augmented vertexSubset. Like edgeMap, it takes as input a graph G (V ,E), a
vertexSubsetU , a function F returning a value of type R option, and a boolean functionC .
edgeMapData applies F to (u,v ) ∈ E such that u ∈ U and C (v ) = true (call this subset
of edges Ea), and returns a R vertexSubsetU ′ where (u, r ) ∈ U ′ (r is the augmented value
associated with u) if and only if (u,v ) ∈ Ea and F (u,v ) = Some(r ).

The primitive is only used in the weighted breadth-�rst search algorithm in this thesis,
where the augmented value is used to store the distance to a vertex at the start of a
computation round (Algorithm 5).
srcReduce and srcCount. The srcReduce primitive takes as input a graph G (V ,E)
and a vertexSubsetU , a map function M over edges returning values of type R, a boolean
functionC , and a monoidA over values of type R, and returns a R vertexSubset. srcReduce
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Figure 3.6: Illustration of srcCount and nghCount primitives. The input is illustrated in Panel
(1), and consists of a graph and a vertexSubset, with vertices in the vertexSubset illustrated in
green. The green edges are edges for which the user-de�ned predicate, P , returns true. Panel
(2) and Panel (3) show the results of applying srcCount and nghCount, respectively. In Panel
(2), the cond function C returns true for both vertices in the input vertexSubset. In Panel (3), the
condition functionC only returns true for v2,v4, and v5, and false for v0,v1,v3, and v6. The output
is an augmented int vertexSubset, illustrated in red, where each source (neighbor) vertex v s.t.
C (v ) = true has an augmented value containing the number of incident edges where P returns
true.

applies M to each (u,v ) ∈ E s.t. u ∈ U and C (u) = true (let Mu be the set of values of type
R from applying M to edges incident to u), and returns a R vertexSubset U ′ containing
(u, r ) where r is the result of reducing all values in Mu using the monoid A.

The srcCount primitive is a specialization of srcReduce, where R = int, the monoid
A is (0,+), and the map function is specialized to a boolean (predicate) function P over
edges. This primitive is useful for building a vertexSubset where the augmented value for
each vertex is the number of incident edges satisfying some condition. srcCount is used
in our parallel approximate set cover algorithm (Algorithm 18).

srcPack. The srcPack primitive is de�ned similarly to srcCount, but also removes
edges that do not satsify the given predicate. Speci�cally, it takes as input a graph G (V ,E),
a vertexSubsetU , and two boolean functions, P , andC . For each u ∈ U whereC (u) = true,
the function applies P to all (u,v ) ∈ E and removes edges that do not satisfy P . The
function returns an augmented vertexSubset containing all sources (neighbors), v , where
C (v ) = true. Each of these vertices is augmented with an integer value storing the new
degree of the vertex after applying the pack.

nghReduce and nghCount. The nghReduce primitive is de�ned similarly to srcRe-
duce above, but aggregates the results for neighbors of the input vertexSubset. It takes as
input a graph G (V ,E), a vertexSubset U , a map function M over edges returning values
of type R, a boolean function C , a monoid A over values of type R, and lastly an update
function T from values of type R to O option. It returns a O vertexSubset. This function
performs the following logic: M is applies to each edge (u,v ) whereu ∈ U andC (v ) = true
in parallel (let the resulting values of type R be Mv ). Next, the mapped values for each
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such v are reduced in parallel using the monoid A to obtain a single value, Rv . Finally,
T is called on the pair (v,Rv ) and the vertex and augmented value pair (v,o) is emitted
to the output vertexSubset if and only if T returns Some(o). nghReduce is used in our
PageRank algorithm (Algorithm 21).

ThenghCount primitive is a specialization of nghReduce, where R = int, the monoid
A is (0,+), and the map function is specialized to a boolean (predicate) function P over
edges. nghCount is used in our k-core (Algorithm 1) and approximate densest subgraph
(Algorithm 19) algorithms.

Implementations and Cost Bounds. Our implementation of edgeMap in this thesis is
based on the edgeMapBlocked primitive introduced in Section 5.7.2. The same imple-
mentation is used to implement edgeMapData.

The src- primitives (srcReduce, srcCount, and srcPack) are relatively easy to imple-
ment. These implementations work by iterating over the vertices in the input vertexSubset
in parallel, applying the condition function C , and then applying a corresponding vertex
primitive on the incident edges. The work for source operators is O ( |U | +

∑
u∈U ′ d (u)),

where U ′ ⊆ U consists of all vertices u ∈ U where C (u) = true, and the depth is O (lgn)
assuming that the boolean functions and monoid cost O (1) work to apply.

The ngh- primitives require are somewhat trickier to implement compared to the
src- primitives, since these primitives require performing non-local reductions at the
neighboring endpoints of edges. Both nghReduce and nghCount can be implemented by
�rst writing out all neighbors of the input vertexSubset satisfying C to an array, A (along
with their augmented values). A has size at most O (

∑
u∈U d (u)). The next step applies a

work-e�cient semisort to store all pairs of neighbor and value keyed by the same neighbor
contiguously. The �nal step is to apply a pre�x sum over the array, combining values
keyed by the same neighbor using the reduction operation de�ned by the monoid, and
to use a pre�x sum and map to build the output vertexSubset, augmented with the �nal
value in the array for each neighbor. The overall work is proportional to semisorting and
applying pre�x-sums on arrays of |A| which isO (

∑
u∈U d (u)) in expectation, and the depth

is O (lgn) whp [161, 72]. In practice, our implementations use the work-e�cient histogram
technique described in Section 5.7.1 for both nghReduce and nghCount.

Optimizations. We observe that for ngh- operators there is a potential to achieve
speedups by applying the direction-optimization technique proposed by Beamer for the
BFS problem [44] and applied to other problems by Shun and Blelloch [319]. Recall that
this technique maps over all vertices v ∈ V , and for those where C (v ) = true, and scans
over the in-edges (v,u,wvu ) applying F to edges whereu is in the input vertexSubset, until
C (v ) is no longer true. We can apply the same technique for nghReduce and nghCount
by performing a reduction over the in-neighbors of all vertices satisfying C (v ). This opti-
mization can be applied whenever the number edges incident to the input vertexSubset
is a constant fraction of m. The advantage is that the direction-optimized version runs
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in O (n) space and performs inexpensive reads over the in-neighbors, whereas the more
costly semisort or histogram based approach runs in O (

∑
u∈U d (u)) space and requires

performing multiple writes per incident edge.





4
Work-E�cient Bucketing

4.1 Introduction

Both the size and availability of real-world graphs has increased dramatically over the past
decade. Due to the need to process this data quickly, many frameworks for processing mas-
sive graphs have been developed for both distributed-memory and shared-memory parallel
machines such as Pregel [229], GraphLab [223, 222], PowerGraph [154], and Ligra [319].
Implementing algorithms using frameworks instead of as one-o� programs enables users
to easily take advantage of optimizations already implemented by the framework, such as
direction-optimization, compression and parallelization over both the vertices and edges
of a set of vertices [44, 322].

The performance of algorithms in these frameworks is often determined by the total
amount of work performed. Unfortunately, the simplest algorithms to implement in
existing frameworks are often work-ine�cient, i.e., they perform asymptotically more
work than the most e�cient sequential algorithm. While work-ine�cient algorithms
can exhibit excellent self-relative speedup, their absolute performance can be an order of
magnitude worse than the running time of the baseline sequential algorithm, even on a
very large number of cores [238].

Many commonly implemented graph algorithms in existing frameworks are frontier-

based algorithms. Frontier-based algorithms proceed in rounds, where each round performs
some computation on vertices in the current frontier, and frontiers can change from round
to round. For example, in breadth-�rst search (BFS), the frontier on round i is the set of
vertices at distance i from the source of the search. In label propagation implementations
of graph connectivity [154, 319], the frontier on each round consists of vertices whose
labels changed in the previous round.
Bucketing-Based Graph Algorithms. However, several fundamental graph algorithms
cannot be expressed as frontier-based algorithms. These algorithms, which we call
bucketing-based algorithms, maintain vertices in a set of ordered buckets. In each round,
the algorithm extracts the vertices contained in the lowest (or highest) bucket and performs
some computation on these vertices. It can then update the buckets containing either
the extracted vertices or their neighbors. Frontier-based algorithms are a special case of
bucketing-based algorithms, speci�cally they are bucketing-based algorithms that only
use one bucket.

As an example, consider the weighted breadth-�rst search (wBFS) algorithm, which
solves the single-source shortest path problem (SSSP) with nonnegative, integral edge
weights in parallel [125]. Like BFS, wBFS processes vertices level by level, where level i

53
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Algorithm Work Depth Parameters

k-core O ( |E | + |V |) O (ρ lg |V |) ρ: peeling complexity, see Chap-
ter 2.

wBFS O (rsrc + |E |) O (rsrc lg |V |) rsrc : eccentricity from the source
vertex src, see Section 2.1.

∆-stepping O (w∆) O (d∆ lg |V |) w∆, d∆: work and number of
rounds of the original ∆-stepping
algorithm.

Approximate Set Cover O (M ) O (lg3M ) M : sum of the sizes of the sets.

Table 4.1: Cost bounds for the ordered graph algorithms studied in this thesis. The work bounds
are in expectation and the depth bounds are with high probability.

contains all vertices at distance exactly i from src, the source vertex. The i’th round relaxes
the neighbors of vertices in level i and updates any distances that change. Unlike a BFS,
where the unvisited neighbors of the current level are in the next level, the neighbors of a
level in wBFS can be spread across multiple levels. Because of this, wBFS maintains the
levels in an ordered set of buckets. On round i , if a vertex v can decrease the distance to a
neighbor u it places u in bucket i + d (v,u). Finding the vertices in a given level can then
easily be done using the bucket structure. We can show that the work of this algorithm is
O (rsrc + |E |) and the depth is O (rsrc lg |V |) where rsrc is the eccentricity from src (de�ned
in Section 2.1). However, without bucketing, the algorithm has to scan all vertices in each
round to compute the current level, which makes it perform O (rsrc |V | + |E |) work and the
same depth, which is not work-e�cient.
Our Results. In this chapter, we study four bucketing-based graph algorithms—k-core
(coreness), ∆-stepping, weighted breadth-�rst search (wBFS), and approximate set-cover.
To provide simple and theoretically-e�cient implementations of these algorithms, we
design and implement a work-e�cient interface for bucketing in the Ligra shared-memory
graph processing framework [319]. Our extended framework, which we call Julienne,
enables us to write short (under 100 lines of code) implementations of the algorithms
that are e�cient and achieve good parallel speedup (up to 43x on 72 cores with two-
way hyper-threading). Furthermore we are able to process the largest publicly-available
real-world graph containing over 225 billion edges in the memory of a single multicore
machine [241]. This graph must be compressed in order to be processed even on a machine
with 1TB of main memory. Because Julienne supports the compression features of Ligra+,
we were able to run our codes on this graph without extra modi�cations [322]. All of our
implementations either outperform or are competitive with hand-optimized codes for the
same problem. We summarize the cost bounds for the algorithms developed in this chapter
in Table 4.1.

Using our framework, we obtain the �rst work-e�cient algorithm for k-core with
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nontrivial parallelism. The sequential requires performs O (n +m) work [41], however the
best prior parallel algorithms [319, 275, 133, 252, 110] require at least O (kmaxn +m) work
where kmax is the largest core number in the graph—this is because these algorithms scan
all remaining vertices when computing vertices in a particular core. By using bucketing,
our algorithm only scans the edges of vertices with minimum degree, which makes it
work-e�cient. On a graph with 225B edges using 72 cores with two-way hyper-threading,
our work-e�cient implementation takes under 4 minutes to complete, whereas the work-
ine�cient implementation does not �nish even after 3 hours.
Contributions. The main contributions of this chapter are as follows.

1. A simple interface for dynamically maintaining sets of identi�ers in buckets.

2. A theoretically e�cient parallel algorithm that implements our bucketing interface,
and four applications implemented using the interface.

3. The �rst work-e�cient implementation of k-core with non-trivial parallelism.

4. Experimental results on the largest publicly available graphs, showing that our codes
achieve high performance while remaining simple. To the best of our knowledge,
the results in this chapter were the �rst time graphs at the scale of billions of vertices
and hundreds of billions of edges have been analyzed in minutes in the memory of a
single shared-memory server.

4.2 Motivation

The bucket structure maintains a dynamic mapping from identifiers to bktids. The purpose
of the structure is to provide e�cient access to the inverse map—given a bktid, b, retrieve
all identifiers currently mapped to b.
Motivation. As a motivating example, consider the weighted breadth-�rst search (wBFS)
algorithm, which solves the single-source shortest path problem (SSSP) with nonnegative,
integral edge weights in parallel [125]. Like BFS, wBFS processes vertices level by level,
where level i contains all vertices at distance exactly i from src, the source vertex. The i’th
round relaxes the neighbors of vertices in level i and updates any distances that change.
Unlike a BFS, where the unvisited neighbors of the current level are in the next level, the
neighbors of a level in wBFS can be spread across multiple levels. Because of this, wBFS
maintains the levels in an ordered set of buckets. On round i , if a vertex v can decrease the
distance to a neighbor u it places u in bucket i + d (v,u). Finding the vertices in a given
level can then easily be done using the bucket structure. We can show that the work of
this algorithm is O (rsrc + |E |) and the depth is O (rsrc lg |V |) where rsrc is the eccentricity
from src. However, without bucketing, the algorithm has to scan all vertices in each round
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to compute the current level, which makes it perform O (rsrc |V | + |E |) work and the same
depth, which is not work-e�cient.

4.3 Bucketing Interface

The bucket structure uses several types that we now de�ne. An identifier is a unique
integer representing a bucketed object. An identifier is mapped to a bktid, a unique
integer for each bucket. The order that buckets are traversed in is given by the bktord

type. bktdest is an opaque type representing where an identifier is moving inside of the
structure. Once the structure is created, an object of type buckets is returned to the user.

The structure is created by calling makeBuckets and providing n, the number of
identi�ers, D, a function which maps identifiers to bktids andO , a bktorder. Initially, some
identi�ers may not be mapped to a bucket, so we add nullbkt, a special bktid which lets
D indicate this. Buckets in the structure are accessed monotonically in the order speci�ed
by O . While the interface can easily be modi�ed to support random-access to buckets, we
do not know of any algorithms that require it. Although we currently only use identifiers
to represent vertices, our interface is not speci�c to storing and retrieving vertices, and
may have applications other than graph algorithms. Even in the context of graphs, we
envision algorithms where identifiers represent other objects such as edges, triangles, or
graph motifs.

After the structure is created, nextBucket can be used to access the next non-empty
bucket in non-decreasing (resp. non-increasing) order while updateBuckets updates the
bktids for multiple identifiers. To iterate through the buckets, the structure internally
maintains a variable cur which stores the value of the current bucket being processed.
Note that the cur bucket can potentially be returned more than once by nextBucket
if identifiers are inserted back into cur. The getBucket primitive is how users indicate
that an identifier is moving buckets. We added this primitive to allow implementations to
perform certain optimizations without extra involvement from the user. We describe these
optimizations and present the rationale for the getBucket primitive in Section 4.5.

The full list of functions is therefore:

• makeBuckets(n : int, D : identifier→ bktid, O : bktorder) : buckets
Creates a bucket structure containing n identifiers in the range [0,n) where the
bktid for identifier i is D (i ). The structure iterates over the buckets in orderO which
is either increasing or decreasing.

• nextBucket() : (bktid, identifiers)
Returns the bktid of the next non-empty bucket and the set of identifiers contained
in it. When no identifiers are left in the bucket structure, the pair (nullbkt, {}) is
returned.
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• getBucket(prev : bktid, next : bktid) : bktdest
Computes a bktdest for an identifier moving from bktid prev to next. Returns
nullbkt if the identifier does not need to be updated, or if next< cur.

• updateBuckets(F : int→ (identifier, bktdest), k : int) : unit
Updates k identifiers in the bucket structure. The i’th identifier and its bktdest are
given by F (i ).

4.4 Bucketing Algorithms

We �rst discuss a sequential algorithm implementing the interface and analyze its cost.
The sequential algorithm shares the same underlying ideas as the parallel algorithm, so we
go through it in some detail. Both algorithms in this section represent buckets exactly and
so the bktdest and bktid types are identical (in particular getBucket just returns next).

Sequential Bucketing. We represent each bucket using a dynamic array, and the set of
buckets using a dynamic array B (Bi is the dynamic array for bucket i). For simplicity,
we describe the algorithm in the case when buckets are processed in increasing order.
The structure is initialized by computing the initial number of buckets by iterating over D
and allocating a dynamic array of this size. Next, we iterate over the identi�ers, inserting
identi�er i into bucket BD (i ) if D (i ) is not nullbkt, resizing if necessary. Updates are
handled lazily. When updateBuckets is called, we leave the identi�er in Bprev and just
insert it into Bnext, opening new buckets if next is outside the current range of buckets.
As discussed in Section 4.3, buckets are extracted by maintaining a variable cur which is
initially the �rst bucket. When nextBucket is called, we check to see whether Bcur is
empty. If it is, we increment cur and repeat. Otherwise, we compact Bcur, only keeping
identi�ers i ∈ Bcur where D (i ) = cur, and return the resulting set of identi�ers if it is
nonempty, and repeat if it is empty.

We now discuss the total work done by the sequential algorithm. The work done by
initialization is O (n +T ) work where T is the largest bucket used by the structure, as T
is an upper bound on the number of buckets when the structure was initialized. Now,
suppose the structure receives K calls to updateBuckets after being initialized, each of
which updates a set Si of identi�ers where 0 ≤ i < K . By amortizing the cost of creating
new buckets against T , and noticing that each update that didn’t create a new bucket can
be done in O (1) work, the total work across all calls to updateBuckets is O (T +

∑K
i=0 |Si |).

We now argue that the total work done over all calls to nextBucket is also O (T +∑K
i=0 |Si |). If cur is empty, we increment it and repeat, which can happen at most T times.

Otherwise, there are some number of identi�ers i ∈ Acur. By charging each identi�er,
which can either be dead (D (i ) , cur) or live (D (i ) == cur), to the operation that inserted
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it into the current bucket, we obtain the bound. Summing the work for each primitive
gives the following lemma.

Lemma 1. The total work performed by sequential bucketing when there are n identi�ers, T
total buckets and K calls to updateBuckets each of which updates a set Si of identi�ers is
O (n +T +

∑K
i=0 |Si |).

As discussed in Section 4.3 a given bucket can be returned multiple times by nextBucket,
and the same identifiers can be reinserted into the structure multiple times using update-
Buckets, so the total work of the bucket structure can potentially be much larger than
O (n). Some of our applications have the property that

∑K
i=0 |Si | = O (m), while also bound-

ing T , the total number of buckets, as O (n). For these applications, the cost of using the
bucket-structure is O (m + n).
Parallel Bucketing. In this section we describe a work-e�cient parallel algorithm for
our interface. The algorithm performs initialization, K calls to updateBuckets, and L calls
to nextBucket in the same work as the sequential algorithm and O ((K + L) lgn) depth
whp. As before, we maintain a dynamic array B of buckets. We initialize the structure
by calculating the number of initial buckets in parallel using reduce in O (n) work and
O (lgn) depth and allocating a dynamic array containing the initial number of buckets.
Inserting identifiers into B can be done by then calling updateBuckets(D, n). nextBucket
performs a �lter to keep i ∈ Acur with D (i ) == cur in parallel which can be done in O (k )
work and O (lgk ) depth on a bucket containing k identifiers.

We now describe our parallel implementation of updateBuckets, which on a set of k
updates inserts the identifiers into their new buckets in O (k ) expected work and O (lgn)
depth whp. The key to achieving these bounds is a work-e�cient parallel semisort (as
described in Chapter 2).

Our algorithm �rst creates an array of (identifier, bktid) pairs and then calls the semisort
routine, using bktids as keys. The output of the semisort is an array of (identifier, bktid)
pairs where all pairs with the same bktid are contiguous. Next, we map an indicator
function over the semisorted pairs which outputs 1 if the index is the start of a distinct
bktid and 0 otherwise. We then pack this mapped array to produce an array of indices
corresponding to the start of each distinct bucket. Both steps can be done in O (k ) work
andO (lgk ) depth. Using the o�sets, we calculate the number of identi�ers moving to each
bucket and, in parallel, resize all buckets that have identi�ers moving to them. Because
all identi�ers moving to a particular bucket are stored contiguously in the output of the
semisort, we can simply copy them to the newly resized bucket in parallel.

Semisorting the pairs requires O (k ) expected work and O (lgn) depth whp. As in the
sequential algorithm, the expected work done by K calls to updateBuckets where the
i’th call updates a set Si of identi�ers is O (

∑K
i=0 |Si |). Finally, because each substep of

the routine requires at most O (lgn) depth, each call to updateBuckets runs in O (lgn)
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depth whp. As nextBucket also runs in O (lgn) depth, we have that a total of K calls to
updateBuckets, and L calls to nextBucket runs in O ((K + L) lgn) depth whp. This gives
the following lemma.

Lemma 2. When there are n identi�ers, T total buckets, K calls to updateBuckets, each
of which updates a set Si of identi�ers and L calls to nextBucket parallel bucketing takes

O (n +T +
∑K

i=0 |Si |) expected work and O ((K + L) lgn) depth whp.

4.5 Optimizations

In practice, while many of our applications initialize the bucket structure with a large
number of buckets (even O (n) buckets), they only process a small fraction of them. In
other applications like wBFS, the number of buckets needed by the algorithm is initially
unknown. However, as the eccentricity of Web graphs and social networks tends to be
small, few buckets are usually needed [356].

To make our code more e�cient in situations where few buckets are being accessed,
or identi�ers are moved many times, we let the user specify a parameter nB . We then only
represent a range of nB buckets (initially the �rst nB buckets), and store identi�ers in the
remaining buckets in an ‘over�ow’ bucket. We only move an identi�er that is logically
moving from its current bucket to a new bucket if its new bucket is in the current range,
or if it is not yet in any bucket. This optimization is enabled by the getBucket primitive,
which has the user supply both the current bktid and next bktid for the identifier. Once
the current range is �nished, we remove identi�ers in the over�ow bucket and insert them
back into the structure, where the nB buckets are now used to represent the next range of
nB buckets in the algorithm.

The main bene�t of this optimization is a potential reduction in the number of identi�ers
updateBuckets must move as a small value of nB can cause most of the movement to
occur in the over�ow bucket. We tried supporting this implementation strategy without
requiring the getBucket primitive by having the bucket structure maintain an extra
internal mapping from identifiers to bktids. However, we found that the cost of maintaining
this array of size O (n) was signi�cant (about 30% more expensive) in our applications, due
to the cost of an extra random-access read and write per identi�er in updateBuckets.

Additionally, while implementing updateBuckets using a semisort is theoretically
e�cient, we found that it was slow in practice due to the extra data movement that occurs
when shu�ing the updates. Instead, our implementation of updateBuckets directly
writes identi�ers to their destination buckets and avoids the shu�e phase. We �rst break
the array of updates into n/M blocks of length M (we set M to 2048 in our implementation).
Next, we count the number of identi�ers going to each bucket in each block and store these
per-block histograms in an array. We then scan the array with a stride of nB to compute
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Figure 4.1: Log-log plot of throughput (billions of identi�ers per second) vs. average number of
identi�ers processed per round.

the total number of identi�ers moving to each bucket and resize the buckets. Finally, we
iterate over each block again, compute a unique o�set into the target bucket using the
scanned value, and insert the identi�er into the target bucket at this location. The total
depth of this implementation of updateBuckets is O (M + lgn) as each block is processed
sequentially and the scan takes O (lgn). For small values of nB (our default value is 128),
we found that this implementation is much faster than a semisort.

4.6 Performance

In this section we study the performance of our parallel implementation of bucketing on a
synthetic workload designed to simulate how our applications use the bucket structure. We
describe the shared-memory environment used in these results in Section 2.7 of Chapter 2.
The only major di�erence is that our experiments use the g++ compiler (version 5.4.1) with
the -O3 �ag. All of our programs are run using the Cilk Plus scheduler.
Microbenchmark. The microbenchmark simulates the behavior of a bucketing-based
algorithm such as k-core and ∆-stepping. On each round, these applications extract a
bucket containing a set S of identi�ers (vertices), and update the buckets for identi�ers in
N (S ). The microbenchmark simulates this behavior on a degree-8 random graph. Given
two inputs, b, the number of initial buckets, and n, the number of identi�ers, it starts by
bucketing the identi�ers uniformly at random and iterating over the buckets in increasing
order. On each round, it extracts a set S of identi�ers and for each extracted identi�er,
it picks 8 randomly chosen neighbors {v0, . . . ,v7}, checks whether the bucket for vi is
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greater than cur, and if so updates its bucket to max(cur,D (vi )/2). If D (vi ) ≤ cur, it sets
vi ’s bucket to nullbkt which ensures that identi�ers extracted from the bucket structure
are never reinserted.

We pro�le the performance of the bucket structure while varying b, the number of
buckets. As our applications request at most about 1000 buckets, we run the microbench-
mark to see how it performs when b is in the range [128, 256, 512, 1024]. For a given
number of buckets, we vary the number of identi�ers to generate di�erent data points. The
throughput of the bucket structure is calculated as the total number of identi�ers extracted
by nextBucket, plus the number of identi�ers that move from their current bucket to a
new bucket. Because identi�ers moving to the nullbkt-bucket are inexpensively handled
by the bucket structure, (such requests are ignored by updateBuckets and do not incur
any random reads or writes) we exclude these requests from our total count.

We plot the throughput achieved by the structure vs. the average number of identi�ers
per round in Figure 5.1. The average number of identi�ers per round is the total number
of identi�ers that are extracted and updated, divided by the number of rounds required to
process all of the buckets. Using this data, we calculated the peak throughput supported by
the bucket structure, and the half-performance length1 which are approximately 1 billion
identi�ers per second, and an average of 500,000 identi�ers per round, respectively.
Applications. We also plot points corresponding to the throughput and average number
of identi�ers per round achieved by our applications when run on our graphs in Figure 5.1.
We observe that the benchmark throughput is a useful guideline for throughput achieved
by our applications. We note that the average number of identi�ers per round in k-core
is noticeably lower than our other applications—this is because of the large number of
rounds necessary to compute the coreness of each vertex using the peeling algorithm
in our graphs (up to about 130,000). We discuss more details about our algorithms in
Section 4.7 and their performance in Section 7.6.

4.7 Applications

In this section, we describe four bucketing-based algorithms and discuss how Julienne can
be used to produce theoretically e�cient implementations of them.

4.7.1 k-core and Coreness

A k-core of an undirected graph G is a maximal connected subgraph where every vertex
has induced-degree at least k . k-cores are widely studied in the context of data mining
and social network analysis because participation in a large k-core is indicative of the

1The number of identi�ers when the system achieves half of its peak performance.
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importance of a node in the graph. The coreness problem is to compute for each v ∈ V the
coreness of a vertex, or the maximum k-core v is in.
Related Work. The notion of a k-core was introduced independently by Seidman [305],
and by Matula and Beck [232] (who used the term k-linkage) and identi�es the subgraphs
of G that satisfy the induced degree property as the k-cores of G. Anderson and Mayr
showed that the decision problem for k-core can be solved in NC for k ≤ 2, but is P-
complete2 for k ≥ 3 [23]. Since being de�ned, k-cores and coreness values have found
many applications from graph mining, network visualization, fraud detection, and studying
biological networks [20, 317, 373].

Matula and Beck give the �rst algorithm which computes all coreness values. Their
algorithm bucket-sorts vertices by their degree, and then repeatedly deletes the minimum-
degree vertex. The a�ected neighbors are then moved to a new bucket corresponding to
their induced degree. The total work of their algorithm isO (m+n). Batagelj and Zaversnik
(BZ) give an implementation of the Matula-Beck algorithm that runs in the same time
bounds [41].
Parallel Peeling Algorithms. While the sequential algorithm requires O (m + n) work,
all existing parallel algorithms with non-trivial parallelism take at leastO (m+kmaxn) work
where kmax is the largest core number in the graph [319, 275, 133, 252, 110]. This is because
the implementations do not bucket the vertices and must scan all remaining vertices when
computing each core number. Our parallel algorithm as well as some existing parallel
algorithms are based on a peeling procedure, where on each iteration of the procedure,
vertices below a certain degree are removed from the graph. The peeling process on
random (hyper)graphs has been studied and it has been shown that O (lgn) rounds of
peeling su�ces [189, 10], although for arbitrary graphs the number of rounds could be
linear in the worst case. We note that computing a particular k-core from the coreness
numbers requires �nding the largest induced subgraph among vertices with coreness at
least k , which can be done e�ciently in parallel [104, 321].
Our Algorithm. The algorithm initializes the initial coreness value of each vertex to its
degree (Line 3), and inserts the vertices into a bucketing data-structure based on their degree
(Line 4). In each round, while all of the vertices have not yet been processed the algorithm
performs the following steps. It �rst removes (or peels) the vertices in the minimum bucket,
k (Line 7). Next, it computes the number of edges removed from each neighbor using the
nghCount primitive. The apply function supplied to the primitive (Lines 10–18) takes a
pair of a vertex, and the number of incident edges removed (v, edgesRemoved), updates the
current coreness of the vertex v and emits a vertex and bucket identi�er into the output
vertexSubset if and only if the vertex needs to move to a new bucket (the return value of
the getBucket primitive). The output is an augmented vertexSubset where each vertex is
augmented with the bucket (a value of type bktdest) that it moves to. The last step is to

2There is no polylogarithmic depth algorithm for this problem unless P = NC.
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Algorithm 1 k-core (Coreness)
1: Coreness[0, . . . ,n) B 0
2: procedure Coreness(G (V ,E))
3: vertexMap(V , fn v → Coreness[v] B d (vi )) . initialized to initial degrees
4: B B makeBuckets( |V |,Coreness, increasing) . buckets processed in increasing order
5: Finished B 0
6: while (Finished < |V |) do

7: (k , ids) B B.nextBucket() . current core number, and vertices peeled this step
8: Finished B Finished + |ids |

9: condFn B fn v → return true
10: applyFn B fn (v, edgesRemoved) →
11: inducedD B D[v]
12: if (inducedD > k) then
13: newD B max(inducedD − edgesRemoved,k )
14: Coreness[v] B newD

15: bkt B B.getBucket(inducedD, newD)
16: if (bkt , nullbkt) then
17: return Some(bkt)
18: return None
19: Moved B nghCount(G, ids, condFn, applyFn) . Moved is an bktdest vertexSubset
20: B.updateBuckets(Moved) . update the buckets of vertices in Moved

21: return Coreness

update the buckets of a�ected neighbors (Line 20). Once all buckets have been processed
(all cores have been peeled), the algorithm returns the array Coreness, which contains the
�nal coreness values of each vertex at the end of the algorithm.

We now analyze the complexity of our algorithm by plugging in quantities into
Lemma 2. We can bound

∑K
i=0 |Si | ≤ 2m, as in the worst case each removed edge will

cause an independent request to the bucket structure. Furthermore, the total number of
buckets, T is at most n, as vertices are initialized into a bucket corresponding to their
degree. Plugging these quantities into Lemma 2 gives us O (m + n) expected work, which
makes our algorithm work-e�cient.

To analyze the depth of our algorithm, we de�ne ρ to be the peeling-complexity

of a graph, or the number of steps needed to peel the graph completely. A step in the
peeling process removes all vertices with minimum degree, decrements the degrees of
all adjacent neighbors and repeats. On graphs with peeling-complexity ρ, our algorithm
runs in O (ρ lgn) depth whp, as each peeling-step potentially requires a call to the bucket
structure to update the buckets for a�ected neighbors. While ρ can be as large as n in the
worst-case, in practice ρ is signi�cantly smaller than n. Our algorithm is the �rst work-
e�cient algorithm for coreness with non-trivial parallelism. The bounds are summarized
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in the following theorem.

Theorem 2. Our algorithm for coreness requires O (m + n) expected work and O (ρ lgn)
depth with high probability, where ρ is the peeling-complexity of the graph.

Our serial implementation of coreness is based on an implementation of the BZ algo-
rithm written in Khaouid et al. [199]. We re-wrote their code in C++ and integrated it into
the Ligra+ framework [322], which lets us run our implementation on our largest graphs.

4.7.2 ∆-stepping and wBFS

The single-source shortest path (SSSP) problem takes as input a weighted graph G =
(V ,E,w (E)) and a source vertex src, and computes the shortest path distance from src

to each vertex in V , with unreachable vertices having distance∞. On graphs with non-
negative edge weights, the problem can be solved inO (m+n lgn) work by using Dijkstra’s
algorithm [126] with Fibonacci heaps [146]. While Dijkstra’s algorithm cannot be used on
graphs with negative edge-weights, the Bellman-Ford algorithm can, but at the cost of an
increased worst-case work-bound of O (mn) [108]. Bellman-Ford often performs very well
in parallel, but is work-ine�cient for graphs with only non-negative edge weights.

Both Dijkstra and Bellman-Ford work by relaxing vertices. We denote the shortest path
to each vertex by Distance. A relaxation occurs over a directed edge (u,v ) when vertex u
checks whether Distance(u) +w (u,v ) < Distance(v ), updating Distance(v ) to the smaller
value if this is the case. In Dijkstra’s algorithm, only the vertex, v , that is closest to the
source is relaxed—as the graph is assumed to have non-negative edge-weights, we are
guaranteed that Distance(v ) is correct, and so each vertex only relaxes its outgoing edges
once. In the simplest form of Bellman-Ford, all vertices relax their neighbors in each step,
and so each step costs O (m). The number of steps needed for Bellman-Ford to converge is
proportional to the largest number of hops in a shortest path from src to any v ∈ V , which
can be as large as O (n).
Weighted Breadth-First Search (wBFS). Weighed breadth-�rst search (wBFS) is a ver-
sion of Dijkstra’s algorithm that works well for small integer edge weights and low-
diameter graphs [125]. wBFS keeps a bucket for each possible distance and goes through
them one by one from the lowest. Each bucket acts like a frontier as in BFS, but when
we process a vertex v in a frontier i instead of placing its unvisited neighbors in the next
frontier i + 1 we place each neighbor u in the bucket i + d (v,u). wBFS turns out to be a
special case of ∆-stepping, and hence we return to it later.
∆-Stepping. The ∆-stepping algorithm provides a way to trade-o� between the work-
e�ciency of Dijkstra’s algorithm and the increased parallelism of Bellman-Ford [242].
In ∆-stepping, computation is broken up into a number of steps. On step i , vertices in
the annulus at distance [i∆, (i + 1)∆) are relaxed until no further distances change. The
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algorithm then proceeds to the next annulus, repeating until the shortest-path distances
for all reachable vertices are set. Note that when ∆ = ∞, this algorithm is equivalent to
Bellman-Ford.

While Bellman-Ford is easy to implement in parallel, previous work has identi�ed the
di�culty in producing a scalable implementation of bucketing [170], which is required
in the ∆-stepping algorithm [242]. Due to the di�culty of bucketing in parallel, many
implementations of SSSP in graph-processing frameworks use the Bellman-Ford algo-
rithm [319, 154]. Implementations of ∆-stepping do exist, but the algorithms are not easily
expressed in existing frameworks, so they are either provided as primitives in a graph
processing framework [259, 365] or are stand-alone implementations [227, 170, 112, 45,
228]. There are other parallel algorithms for SSSP, but for some of the algorithms, there is
low parallelism [270, 86], and for others no parallel implementations exist [203, 334, 312,
102, 73]. Note that there is currently no parallel algorithm for single-source shortest paths
with non-negative edge weights that matches the work of the sequential algorithm and has
polylogarithmic depth. Our bucketing interface allows us to give a simple implementation
of ∆-stepping with work matching that of the original algorithm [242].

Our Algorithm. The pseudocode for our implementation is shown in Algorithm 2.
Shortest-path distances are stored in an array Distance, which are initially all∞, except
for the source, src which has an entry of 0. We also maintain an array of �ags, Fl , which
are used by edgeMap to remove duplicates. The bucket structure is created by specifying
n, Distance, and the keyword increasing (line 20). The i’th bucket represents the annulus
of vertices between distance [i∆, (i + 1)∆) from the source. Each ∆-step processes the
closest un�nished annulus and so the buckets are processed in increasing order. On line 21
we extract the next bucket. The loop condition checks if it is nullbkt, and terminates
if so. Otherwise, we explore the outgoing edges of the set of vertices in the bucket
using edgeMapData. In the Update function passed to edgeMapData (lines 5–13), a
neighboring vertex, d , is visited over the edge (s,d,w ). s checks whether it relaxes d , i.e.,
Distance[s] +w < Distance[d]. If it can, it �rst uses a compareAndSwap to test whether
it is the unique neighbor of d that read its value before any modi�cations in this round
(line 10) setting this distance to be the return value (line 11) if the compareAndSwap
succeeds. s then uses an atomic priorityWrite operation to update the distance to d
(line 12). Unsuccessful visitors return None, which signals that they did not capture the
old value of d . The result of edgeMap is a int vertexSubset where the value stored for
each vertex is the distance before any modi�cations in this round.

Next, we call vertexMapVal (line 24), which calls the Reset function (lines 14–17)
on each visited neighbor, v , that had its distance updated. Reset �rst resets the �ag for
v (line 15) to enable v to be correctly visited again on a future round. It then calculates
the new bucket for v (line 17) and returns this value. The output is another vertexSubset
called NewBuckets containing the neighbors and their new buckets. Then, on line 25, we
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Algorithm 2 ∆-stepping
1: Distance[0, . . . ,n) B ∞ . initialized to all∞
2: Flags[0, . . . ,n) B 0 . initialized to all 0
3: procedure GetBucketNum(i) return bDistance[i]/∆c
4: procedure Cond(v) return true

5: procedure Update(s , d , w)
6: nDist B Distance[s] +w
7: oDist B Distance[d]
8: res B None
9: if (nDist < oDist) then

10: if (compareAndSwap(&Flags[d], 0, 1) then

11: res B Some() (oDist) . the distance at the start of this round
12: priorityWrite(&Distance[d], nDist, <)
13: return res

14: procedure Reset(v , oldDist)
15: Flags[v] B 0
16: newDist B Distance[d]
17: return B.get_bucket(boldDist/∆c, bnewDist/∆c)
18: procedure ∆-stepping(G, ∆, src)
19: Distance[r ] B 0
20: B B makeBuckets(G .n,GetBucketNum, increasing)
21: (id, ids) B B.nextBucket()
22: while id , nullbkt do

23: Moved B edgeMapData(G, ids,Update,Cond)
24: NewBuckets B vertexMapVal(Moved,Reset)
25: B.updateBuckets(NewBuckets, |NewBuckets |)
26: (id, ids) B B.nextBucket()
27: return Distance

update the buckets containing each neighbor that had its distance lowered, by calling
UpdateBuckets on the vertexSubset NewBuckets. Lastly, we extract the next bucket from
the bucket structure (line 26). We repeat these steps until the bucket structure is empty.
While we describe visitors from the current frontier compareAndSwap’ing values in a
separate array of �ags, Fl , our actual implementation uses the highest-bit of Distance
to represent Fl , as this reduces the number of random-memory accesses and improves
performance in practice.

The original description of ∆-stepping by Meyer and Sanders [242] separates edges into
light edges and heavy edges, where light edges are of length at most ∆. Inside each annulus,
light edges may be processed multiple times but heavy edges only need to be processed
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once, which reduces the amount of redundant work. We implemented this optimization
but did not �nd a signi�cant improvement in performance for our input graphs. Note that
this optimization can �t into our framework by creating two graphs, one containing just
the light edges and the other just the heavy edges. Light edges can be processed multiple
times until the bucket number changes, at which point we relax the heavy edges once for
the vertices in the bucket.

We will now argue that our implementation of ∆-stepping (with the light-heavy edge
optimization) does the same amount of work as the original algorithm. The original
algorithm takes at most (dc/∆)lmax rounds to �nish, where dc is the maximum distance
in the graph and lmax is the maximum number of light edges in a path with total weight
at most ∆. Our implementation takes the same number of rounds to �nish because we
are relaxing exactly the same vertices as the original algorithm on each round. Using our
work-e�cient bucketing implementation, by Lemma 2 the work per round is linear in
the number of vertices and outgoing edges processed, which matches that of the original
algorithm. The depth of our algorithm is O (lgn) times the number of rounds whp.
Extension to wBFS. When edge weights are integers, and ∆ = 1, ∆-stepping becomes
wBFS. This is because there can only be one round within each step. In this case we have
the following strong bound on work-e�ciency.

Theorem 3. Our algorithm for wBFS (equivalent to ∆-stepping with integral weights and

∆ = 1) when run on a graph withm edges and eccentricity rsrc from the source src, runs in

O (rsrc +m) expected work and O (rsrc lgn) depth whp.

Proof. The work follows directly from the fact we do no more work than the sequential
algorithm, charging only O (1) work per bucket insertion and removal, which is propor-
tional to the number of edges (every edge does at most one insertion and is later removed).
The depth comes from the number of rounds and the fact that each round takes O (lgn)
depth whp for the bucketing. �

4.7.3 Approximate Set Cover

The set cover problem takes as input a universe U of ground elements, F a collection
of sets of U s.t.

⋃
F = U and a cost function c : F → R+. The problem is to �nd

the cheapest collection of sets A ⊆ F that covers U , where the cost of a solution A is
c (A) =

∑
S∈A c (S ). This problem can be modeled as a bipartite graph where sets and

elements are vertices, with an edge connecting a set to an element if and only if the set
covers that element.
Related Work. Finding the cheapest collection of sets is an NP-complete problem, and
a sequential greedy algorithm [190] gives a Hn-approximation, where Hn =

∑n
k=1 1/k , in

O (m) work for unweighted sets andO (m lgm) work for weighted sets, wherem is the sum
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of the sizes of the sets, or equivalently the number of edges in the bipartite graph. Parallel
algorithms have been designed for approximating the set cover [283, 101, 54, 337, 67, 68,
207], and Blelloch et al. [67] present a work-e�cient parallel algorithm for the problem,
which takes O (m) work and O (lg3m) depth, and gives a (1 + ϵ )Hn-approximation to the
set cover problem. Blelloch et al. [68] later present a multicore implementation of the
parallel set cover algorithm. Their code, however, is special-purpose, not being part of
any general framework, and is not work-e�cient. In this section, we give a work-e�cient
implementation of their algorithm using our bucketing interface, and we compare the
performance of the codes in Section 7.6.

The Blelloch et al. algorithm works by �rst bucketing all sets based on their cost.
In the weighted case, the algorithm �rst ensures that the ratio between the costliest set
and cheapest set is polynomially bounded, so that the total number of buckets is kept
logarithmic (see Lemma 4.2 of [68]). It does this by discarding sets that are costlier than a
threshold, and including sets cheaper than another threshold in the cover. The remaining
sets are bucketed based on their normalized cost (the cost per element). In order to
guarantee polylogarithmic depth, only O (lgm) buckets are maintained, with a set having
costC going into bucket

⌊
lg1+ϵ C

⌋
. The main loop of the algorithm iterates over the buckets

from the least to most costly bucket. Each step invokes a subroutine to compute a maximal
nearly-independent set (MaNIS) of sets in the current bucket. MaNIS computes a subset of
the sets in the current bucket that are almost non-overlapping in the sense that each set
chosen by MaNIS covers many elements that are not covered by any other chosen set. For
sets not chosen by MaNIS, the number of uncovered elements they cover is shrunk by a
constant factor whp. We refer the reader to the original paper for proofs on both MaNIS
and the set cover algorithm. We now describe our algorithm for unweighted set cover, and
note that it can be easily modi�ed for the weighted case as well.

Our Julienne Implementation. The pseudocode for our implementation of the Blelloch
et al. algorithm is shown in Algorithm 3. We assume that the set cover instance is
represented as an undirected bipartite graph with sets and elements on opposite sides.
The array El contains the set each element is assigned to (Line 1). The array Fl speci�es
whether elements are covered (Line 2). Initially all elements are not covered. The array
D contains the number of remaining elements covered by each set (Line 3). As sets are
represented by vertices, each entry of D is initially just the degree of that vertex. b stores
the current bucket id (Line 4), which is updated when the algorithm extracts the next
bucket (Lines 24 and Line 35). The bucket structure is created by specifying n = |S |,
BucketNum, and the keyword decreasing (Line 23), as the algorithm processes sets in
decreasing order based on the number of uncovered elements they cover.

Each round of the algorithm starts by extracting the next non-empty bucket (Lines 24
and Line 35). The degrees of sets are updated lazily, so the �rst phase of the algorithm packs
out edges to covered elements and computes the sets that still cover enough elements
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Algorithm 3 Approximate Set Cover
1: El[0, . . . , |E |) B ∞
2: Fl[0, . . . , |E |) B uncovered
3: D[0, . . . , |S |) B {deg(s0), . . . , deg(sn−1)} . initialized to the initial degree of s ∈ S
4: b . current bucket number
5: procedure BucketNum(s) return blg1+ϵ D[s]c
6: procedure ElmUncovered(e) return Fl[e] = uncovered

7: procedure UpdateD(s , d) D[s] B d

8: procedure AboveThreshold(s , d) return d ≥ d(1 + ϵ )max(b,0)e

9: procedure WonElm(s , e) return s = El[e]
10: procedure InCover(s) return D[s] = ∞
11: procedure VisitElms(s , e) priorityWrite(&El[e], s, <)
12: procedure WonEnough(s , elmsWon)
13: threshold B d(1 + ϵ )max(b−1,0)e

14: if (elmsWon > threshold) then

15: D[s] B ∞ . place s in the set cover
16: procedure ResetElms(s , e)
17: if (El[e] = s) then

18: if (InCover(s )) then

19: Fl[e] B covered . e is covered by s
20: else

21: El[e] B ∞ . reset e
22: procedure SetCover(G = (S ∪ E,A))
23: B B makeBuckets( |S |,BucketNum,decreasing)
24: (b, Sets) B B.nextBucket()
25: while b , nullbkt do

26: SetsD B srcPack(G, Sets,ElmUncovered)
27: vertexMap(SetsD,UpdateD)
28: Active B vertexFilter(SetsD,AboveThreshold)
29: edgeMap(G,Active,VisitElms,ElmUncovered)
30: ActiveCts B srcCount(G,Active,WonElm)
31: vertexMap(ActiveCts,WonEnough)
32: edgeMap(G,Active,ResetElms)
33: Rebucket B{(s,B.get_bucket(b,BucketNum(s )) |

s ∈ Sets and not InCover(s )}
34: B.updateBuckets(Rebucket, |Rebucket |)
35: (b, Sets) B B.nextBucket()
36: return {i | InCover(i ) = true}
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to be active in this round. On Line 26, the algorithm calls srcPack with the function
ElmUncovered, which packs out any covered elements in the sets’ adjacency lists and
updates their degrees. The return value of srcPack is a int vertexSubset (SetsD), where the
associated value with each set is its new degree. Next, the algorithm applies vertexMap
over SetsD with the function UpdateD, which updates D with the new degrees (Line 27).
Finally, the algorithm calls vertexFilter with the function AboveThreshold to compute
the vertexSubset, Active, which is the subset of SetsD that still have su�cient degree
(Line 28).

The next phase of the algorithm implements one step of MaNIS. Note that instead of
implementing MaNIS as a separate subroutine, our implementation implicitly compute it
by fusing the loop that computes a MaNIS with the loop that iterates over the buckets. On
Line 29 active sets reserve uncovered elements using an edgeMap, breaking ties based
on their IDs using priorityWrite. edgeMap checks whether a neighboring element is
uncovered using ElmUncovered (Line 6), and if so calls VisitElms (Line 29), which uses
a priorityWrite to atomically update the parent of e . Next, the algorithm computes a
vertexSubset, ActiveCts, by calling srcCount with the function WonElm (Line 30). The
value associated with each set in ActiveCts is the number of elements successfully reserved
by it. We then apply vertexMap over ActiveCts (Line 31) with the function WonEnough
(Lines 12–15), which checks whether the number of elements reserved is above a threshold
(Line 14), and if so updates the set to be in the cover.

The last phase of the algorithm marks elements that are newly covered, resets elements
whose sets did not make it into the cover, and �nally reinserts sets that did not make it
into the cover back into the bucket structure. On Line 32, the algorithm calls edgeMap
with the supplied function ResetElms (Lines 16–21) which �rst checks that s is the set
which reserved e (Line 17). If s joined the cover, then the algorithm marks e as covered
(Line 19). Otherwise, it reset El[e] = ∞ (Line 21) so that e can be correctly visited on
future rounds. Finally, the algorithm computes Rebucket, a vertexSubset containing the
sets that did not join the cover in this round, where the value associated with each set is
its bktdest (Line 33). The bucket structure is updated with the sets in Rebucket on Line 34.
Finally, after all rounds are over, the algorithm returns the subset of sets whose ids are in
the cover (Line 36).

4.8 Experiments

All of our experiments are run on the same machine con�guration as in Section 4.6. We
list the graph inputs used in our experiments in this chapter in Table 4.2. All but one of
these inputs are described in Section 2.8. The remaining input, Hyperlink2012-Host, is
a directed hyperlink graph from the WebDataCommons dataset where nodes represent
a collection of web pages belonging to the same hostname [241]. Unless mentioned
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Input Graph Num. Vertices Num. Edges ρ

com-Orkut 3,072,627 234,370,166 5,667
Twitter 41,652,231 1,468,365,182 –

Twitter-Sym 41,652,231 2,405,026,092 14,963
Friendster 124,836,180 3,612,134,270 10,034

Hyperlink2012-Host 101,717,775 2,043,203,933 –
Hyperlink2012-Host-Sym 101,717,775 3,880,015,728 19,063

Hyperlink2012 3,563,602,789 128,736,914,167 –
Hyperlink2012-Sym 3,563,602,789 225,840,663,232 58,710

Hyperlink2014 1,724,573,718 64,422,807,961 –
Hyperlink2014-Sym 1,724,573,718 124,141,874,032 130,728

Table 4.2: Graph inputs used in the experimental evaluation in this chapter, including both vertices,
edges, and the peeling-complexity of the graph (ρ).

otherwise, the input graph is assumed to be directed, with the symmetrized version of the
graph denoted with the su�x Sym.

We create weighted graphs for evaluating wBFS by selecting edge weights between
[1, lgn) uniformly at random. These graphs are not suitable for testing ∆-stepping, as we
found that ∆ = 1 was always faster than a larger value of ∆. To understand the performance
of our ∆-stepping implementation, we generate another family of weighted graphs with
edge weights picked uniformly between [1, 105). We successfully added edge-weights
between [1, lgn) to the Hyperlink2014 graph. However, due to space limitations on our
machine, we were unable to store the Hyperlink2012 graph with edge-weights between
[1, lgn) and both the Hyperlink2012 and Hyperlink2014 graphs with edge-weights between
[1, 105). We use ‘in parallel’ to refer to running times using 144 hyper-threads.
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Figure 4.2: Running time of k-core in seconds on a 72-core machine (with hyper-threading). “72h”
refers to 144 hyper-threads.

k-core (coreness). Table 4.3 shows the running time of the work-e�cient implementation
of k-core from Julienne and the work-ine�cient implementation of k-core from Ligra.
Figure 4.2 shows the running time of both implementations as a function of thread count.
We see that our work-e�cient implementation achieves between 4-41x parallel speedup
over the implementation running on a single thread. Our speedups are smaller on graphs
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Application com-Orkut Twitter Friendster Hyperlink2012-Host Hyperlink2012 Hyperlink2014
(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

k-core (Julienne) 5.43 1.3 4.17 74.6 6.37 11.7 182 7.7 23.6 118 8.7 13.5 8515 206 41.3 2820 97.2 29.0
k-core (Ligra) 11.6 3.35 3.46 119 19.9 5.97 745 56 13.3 953 80.1 11.9 - - - - - -

wBFS (Julienne)
∗

2.01 0.093 21.6 22.8 0.987 23.1 73.9 2.29 32.2 37.9 1.39 27.2 - - - 392 9.02 43.4
Bellman-Ford (Ligra)∗ 4.02 0.175 22.9 37.9 1.19 31.8 190 6.08 31.2 84.2 2.17 38.8 - - - 2610 35.5 73.5

wBFS (GAP)∗ 2.35 0.083 28.3 25.9 0.919 28.1 88.1 2.14 41.1 40.4 1.26 32.0 - - - - - -
wBFS (Galois)∗ 3.46 0.319 10.8 31.9 1.59 20.06 87.6 4.49 19.5 45.5 2.85 15.9 - - - - - -

wBFS (DIMACS)∗ 3.488 - - 26.54 - - 78.19 - - 35.38 - - - - - - - -
∆-stepping (Julienne)

†
3.18 .167 19.0 36.3 2.01 18.0 112 3.45 32.4 49.0 2.09 23.4 - - - - - -

Bellman-Ford (Ligra)† 10.2 0.423 24.1 111 3.64 30.4 613 18.2 33.6 295 7.84 37.6 - - - - - -
∆-stepping (GAP)† 4.33 .294 14.7 67.6 2.39 28.2 175 4.23 41.3 57.9 2.33 24.8 - - - - - -
∆-stepping (Galois)† 5.1 .487 10.4 64.1 2.58 24.8 122 5.56 21.9 53.8 3.17 16.9 - - - - - -

∆-stepping (DIMACS)† 4.44 - - 35.7 - - 105 - - 55.5 - - - - - - - -
Set Cover (Julienne) 3.66 0.844 4.33 55.4 3.23 17.1 165 6.6 25.0 93.5 4.83 19.3 3720 104 35.7 1070 45.1 23.7

Set Cover (PBBS) 4.47 0.665 6.72 48.4 6.71 7.21 137 6.86 19.9 71.6 8.58 8.34 - - - - - -

Table 4.3: Running times in seconds of Julienne algorithms over various inputs on a 72-core
machine (with hyper-threading) where (1) is the single-thread time, (72h) is the 72 core time using
hyper-threading and (SU) is the speedup of the application (single-thread time divided by 72-core
time). Applications marked with ∗ and † use graphs with weights uniformly distributed in [1, lgn)
and [1, 105) respectively. We display the fastest sequential and parallel time for each problem in
each column in bold.

where ρ is large while n andm are relatively small, such as com-Orkut and Twitter-Sym.
We also ran the Batagelj and Zaversnik (BZ) algorithm described in Section 4.7.1 and found
that our single-thread times are always about 1.3x faster than that of the BZ algorithm.
This is because on each round we move a vertex to a new bucket just once, even if many
edges are deleted from it whereas the BZ algorithm will move that vertex many times.
As our algorithm on a single thread is always faster than the BZ algorithm, we report
self-relative speedup, which is a lower bound on speedup over the BZ algorithm.

Unfortunately, we were unable to obtain the code for the ParK algorithm [110], which
is to the best of our knowledge the fastest existing parallel implementation of k-core.
Instead, we used a similar work-ine�cient implementation of k-core available in Ligra.
In parallel, our work-e�cient implementation is between 2.6–9.2x faster than the work-
ine�cient implementation from Ligra. On Hyperlink2012-Sym and Hyperlink2014-Sym,
the work-ine�cient implementation did not terminate in a reasonable amount of time,
and so we only report times for our implementation in Julienne. A recent paper also
reported experimental results for a di�erent parallel algorithm for k-core that is not work-
e�cient [299]. On a similar con�guration to their machine our implementation is about
10x faster on com-Orkut, the largest graph they test on.
wBFS and ∆-stepping. Table 4.3 shows the running time of the ∆-stepping and wBFS
implementations from Julienne and the GAP benchmark suite, the priority-based Bellman-
Ford implementation from Galois, the Bellman-Ford implementation from Ligra and the
sequential solver from the DIMACS shortest path challenge [259, 45]. Figures 4.3 and 4.4
show the running time of the four parallel implementations as a function of thread count.
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Figure 4.3: Running time of wBFS in seconds on a 72-core machine (with hyper-threading). The
graphs have edge weights that are uniformly distributed in [1, lgn). “72h” refers to 144 hyper-
threads.
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Figure 4.4: Running time of ∆-stepping in seconds on a 72-core machine (with hyper-threading).
The graphs have edge weights that are uniformly distributed in [1, 105). “72h” refers to 144 hyper-
threads.

To the best of our knowledge, we are not aware of any existing parallel implementations
of wBFS, so we test wBFS against the same implementations as ∆-stepping, setting ∆ = 1.
We see that our work-e�cient implementation achieves between 22–43x parallel speedup
over the implementation running on a single thread for wBFS and between 18–32.4x
parallel speedup over our implementation running on a single thread for ∆-stepping. For
∆-stepping, we found that setting ∆ = 32768 performed best in our experiments.

Like our implementation, the SSSP implementation in GAP does not perform the
light/heavy optimization described in the original ∆-stepping paper [242]. Instead of
having shared buckets, it uses thread-local bins to represent buckets. The Galois algorithm
is a version of Bellman-Ford that schedules nodes based on their distance from the source
(closer vertices have higher priority). Because the Galois algorithm avoids synchronizing
after each annulus, it achieves good speedup on graphs with large diameter, but where
paths with few hops are also likely to be the shortest paths in the graph (such as road
networks). On such graphs our algorithm performs poorly due to a large amount of
synchronization.
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All implementations achieve good speedup with an increased number of threads. On
a single thread our implementation is usually faster than the single-thread times for
other implementations. This is likely because of an optimization we implemented in
our edgeMap routine, which allows traversals to only write to an amount of memory
proportional to the size of the output frontier. In parallel, while the GAP implementation
usually outperforms us by a small amount, we remain very competitive, being between
1.07-1.1x slower for wBFS, and between 1.1–1.7x faster for ∆-stepping. We are between
1.6–3.4x faster than the Galois implementation on wBFS and between 1.2–2.9x faster on
∆-stepping. Our implementation is between 1.2–3.9x faster for wBFS and 1.8–5.2x faster
for ∆-stepping compared to the Bellman-Ford implementation in Ligra [319]. We note
that there is recent work on another parallel algorithm for SSSP [228] and based on their
speedups over the ∆-stepping implementation in Galois, our Julienne implementation
seems competitive. We leave a detailed comparison for future work.
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Figure 4.5: Running time of set cover in seconds on a 72-core machine (with hyper-threading).
“72h” refers to 144 hyper-threads.

Approximate Set Cover. We generated bipartite graphs to use as set cover instances by
having vertices represent both the sets and the elements. Table 4.3 shows the running
time of the work-e�cient implementation of approximate set cover from Julienne and
the work-ine�cient implementation of approximate set cover from the PBBS benchmark
suite [324]. Figure 4.5 shows the running time of both implementations as a function of
thread count. We set ϵ to be 0.01 for both implementations. We see that our work-e�cient
implementation achieves between 4–35x parallel speedup over the implementation running
on a single thread. Both implementations achieve poor speedup on com-Orkut, due to
the relatively large number of rounds compared to the graph size. Our implementation
achieves between 17–35x parallel speedup on our other test graphs.

The PBBS implementation is from Blelloch et al. [68] and implements the same algo-
rithm as us [67]. Both implementations compute the same covers. We note that the PBBS
implementation is not work-e�cient. Instead of rebucketing the sets that are not chosen
in a given step by using a bucket structure, it carries them over to the next step. In parallel,
our times are between 1.2x slower to 2x faster compared to the PBBS implementation. On
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graphs like Twitter-Sym, the PBBS implementation carries a large number of unchosen
sets for many rounds. In these cases, our implementation achieves good speedup over the
PBBS implementation because it rebuckets these sets instead of inspecting them on each
round.

4.9 Discussion

In this chapter, we presented the Julienne framework for parallel graph algorithms, which
allows for simple and theoretically e�cient implementations of bucketing-based graph
algorithms. Julienne is built by extending the Ligra and Ligra+ frameworks with an
interface for parallel bucketing. We developed e�cient parallel algorithms for bucketing,
and showed that practical variants of these algorithms can achieve high performance on
both real-world and synthetic bucketing scenarios. Using Julienne, we obtained the �rst
work-e�cient k-core algorithm with non-trivial parallelism. Finally, we showed that our
implementations either outperform or are competitive with hand-optimized codes for the
same applications, and can process graphs with hundreds of billions of edges in the order
of minutes on a single multicore machine with one terabyte of main memory.





5
Theoretically-E�cient Parallel Graph

Algorithms

Chang Tzu tells us of a persevering man who after three laborious
years mastered the art of dragon-slaying. For the rest of his days, he
had not a single opportunity to test his skills.

Jorge Luis Borges, The Book of Imaginary Beings

5.1 Introduction

Today, the largest publicly-available graph, the WebDataCommons hyperlink graph (Hy-
perlink 2012), consists of over 3.5 billion vertices and 128 billion edges [241]. This graph
presents a signi�cant computational challenge for both distributed and shared memory
systems. Indeed, very few algorithms have been applied to this graph, and those that
have often take hours to run [385, 225, 191], with the fastest times requiring between 1–6
minutes using a supercomputer [333, 330]. In this chapter, we show that a wide range
of fundamental graph problems can be solved quickly on this graph, often in minutes,
on a single commodity shared-memory machine with a terabyte of RAM.1 For example,
our k-core implementation takes under 3.5 minutes on 72 cores, whereas Slota et al. [330]
report a running time of about 6 minutes for approximate k-core on a supercomputer
with over 8000 cores. They also report that they can identify the largest connected com-
ponent on this graph in 63 seconds, whereas we can identify all connected components
in 25 seconds. Another recent result by Stergiou et al. [336] solves connectivity on the
Hyperlink 2012 graph in 341 seconds on a 1000 node cluster with 12000 cores and 128TB
of RAM. Compared to this result, our implementation is 13.6x faster on a system with
128x less memory and 166x fewer cores. However, we note that they are able to process
a signi�cantly larger private graph that we would not be able to �t into our memory
footprint. A more complete comparison between our work and existing work, including
both distributed and disk-based systems [385, 225, 191, 111, 174], is given in Section 5.8.

Importantly, all of our implementations have strong theoretical bounds on their work
and depth. There are several reasons that algorithms with good theoretical guarantees are
desirable. For one, they are robust as even adversarially-chosen inputs will not cause them

1These machines are roughly the size of a workstation and can be easily rented in the cloud (e.g., on
Amazon EC2).

77
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Problem (1) (72h) (SU) Alg. Model Work Depth

Breadth-First Search (BFS) 576 8.44 68 – BF O (m) O (diam(G ) lgn)
Integral-Weight SSSP (weighted BFS) 3770 58.1 64 [115] PW-BF O (m)† O (diam(G ) lgn)‡
General-Weight SSSP (Bellman-Ford) 4010 59.4 67 [108] PW-BF O (diam(G )m) O (diam(G ) lgn)
Single-Source Widest Path (Bellman-Ford) 3210 48.4 66 [108] PW-BF O (diam(G )m) O (diam(G ) lgn)
Single-Source Betweenness Centrality (BC) 2260 37.1 60 [84] FA-BF O (m) O (diam(G ) lgn)
O (k )-Spanner 2390 36.5 65 [248] BF O (m) O (k lgn)‡
Low-Diameter Decomposition (LDD) 980 16.6 59 [246] BF O (m) O (lg2 n)‡
Connectivity 1640 25.0 65 [321] BF O (m)† O (lg3 n)‡
Spanning Forest 2420 35.8 67 [321] BF O (m)† O (lg3 n)‡
Biconnectivity 9860 165 59 [346] FA-BF O (m)† O (diam(G ) lgn + lg3 n)‡
Strongly Connected Components (SCC)* 8130 185 43 [75] PW-BF O (m lgn)† O (diam(G ) lgn)‡
Minimum Spanning Forest (MSF) 9520 187 50 [388] PW-BF O (m lgn) O (lg2 n)‡
Maximal Independent Set (MIS) 2190 32.2 68 [64] FA-BF O (m)† O (lg2 n)‡
Maximal Matching (MM) 7150 108 66 [64] PW-BF O (m)† O (lg2m)‡

Graph Coloring 8920 158 56 [169] FA-BF O (m) O (lgn + L lg∆)
Approximate Set Cover 5320 90.4 58 [67] PW-BF O (m)† O (lg3 n)‡
k-core 8515 184 46 [115] FA-BF O (m)† O (ρ lgn)‡
Approximate Densest Subgraph 3780 51.4 73 [38] FA-BF O (m) O (lg2 n)
Triangle Counting (TC) — 1168 — [323] BF O (m3/2) O (lgn)
PageRank Iteration 973 13.1 74 [85] FA-BF O (n +m) O (lgn)

Table 5.1: Running times (in seconds) of our algorithms on the symmetrized Hyperlink2012 graph
where (1) is the single-thread time, (72h) is the 72-core time using hyper-threading, and (SU) is
the parallel speedup. Theoretical bounds for the algorithms and the variant of the binary-forking
model used are shown in the last three columns. Section 2.3 provides more details about the
binary-forking model. We mark times that did not �nish in 5 hours with —. *SCC was run on the
directed version of the graph. † denotes that a bound holds in expectation, and ‡ denotes that a
bound holds with high probability (whp). We assumem = Ω(n).

to perform extremely poorly. Furthermore, they can be designed on pen-and-paper by
exploiting properties of the problem instead of tailoring solutions to the particular dataset
at hand. Theoretical guarantees also make it likely that the algorithm will continue to
perform well even if the underlying data changes. Finally, careful implementations of
algorithms that are nearly work-e�cient can perform much less work in practice than
work-ine�cient algorithms. This reduction in work often translates to faster running
times on the same number of cores (as shown in Chapter 4). We note that most running
times that have been reported in the literature on the WebDataCommons hyperlink graph
use parallel algorithms that are not theoretically-e�cient.

Our Contributions in this Chapter. In this chapter, we present implementations of par-
allel algorithms with strong theoretical bounds on their work and depth for connectivity,
biconnectivity, strongly connected components, low-diameter decomposition, graph span-
ners, maximal independent set, maximal matching, graph coloring, breadth-�rst search,
single-source shortest paths, widest (bottleneck) path, betweenness centrality, PageRank,
spanning forest, minimum spanning forest, k-core decomposition, approximate set cover,
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approximate densest subgraph, and triangle counting. We describe the techniques used
to achieve good performance on graphs with billions of vertices and hundreds of billions
of edges and share experimental results for the Hyperlink 2012 and Hyperlink 2014 Web
crawls, which are the largest and second largest publicly-available graphs, as well as several
smaller real-world graphs at various scales. Some of the algorithms we describe are based
on previous results from Ligra, Ligra+, and Julienne (see [319, 322] and Chapter 4), and
other papers on e�cient parallel graph algorithms [64, 169, 323]. However, most existing
implementations were changed signi�cantly in order to be more memory e�cient. Several
algorithm implementations for problems like strongly connected components, minimum
spanning forest, and biconnectivity are new, and required implementation techniques to
scale that we believe are of independent interest. We also had to extend the compressed
representation from Ligra+ [322] to ensure that our graph primitives for mapping, �ltering,
reducing and packing the neighbors of a vertex were theoretically-e�cient. We note that
using compression techniques is crucial for representing the symmetrized Hyperlink 2012
graph in 1TB of RAM, as storing this graph in an uncompressed format would require
over 900GB to store the edges alone, whereas the graph requires 330GB in our compressed
format (less than 1.5 bytes per edge). We show the running times of our algorithms
on the Hyperlink 2012 graph as well as their work and depth bounds in Table 5.1. To
make it easy to build upon or compare to our work in the future, we describe the Graph
Based Benchmark Suite (GBBS), a benchmark suite containing our problems with clear
I/O speci�cations, which we have made publicly-available.2

In this chapter, we present an experimental evaluation of all of our implementations,
and in almost all cases, the numbers we report are faster than any previous performance
numbers for any machines, even much larger supercomputers. We are also able to apply
our algorithms to the largest publicly-available graph, in many cases for the �rst time in
the literature, using a reasonably modest machine. Most importantly, our implementations
are based on reasonably simple algorithms with strong bounds on their work and depth.
We believe that our implementations are likely to scale to larger graphs and lead to e�cient
algorithms for related problems.

5.2 Shortest Path Problems

Although work-e�cient polylogarithmic-depth algorithms for single-source shortest paths
(SSSP) type problems are not known due to the transitive-closure bottleneck [195], work-
e�cient algorithms that run in depth proportional to the diameter of the graph are known
for the special cases considered in our benchmark. Several work-e�cient parallel breadth-
�rst search algorithms are known [36, 212, 70]. On weighted graphs with integral edge
weights, SSSP can be solved in O (m) work and O (diam(G ) lgn) depth [115]. Parallel

2https://github.com/ParAlg/gbbs

https://github.com/ParAlg/gbbs
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Algorithm 4 Breadth-First Search
1: Visited[0, . . . ,n) B false
2: Distance[0, . . . ,n) B ∞
3: curDistance B 0
4: procedure Update(s , d)
5: if testAndSet(&Visited[d]) then . to ensure d is only added once to the next frontier
6: Distance[d] B curDistance

7: return true
8: return false
9: procedure Cond(v) return !Visited[v]

10: procedure Init(v)
11: Distance[v] B 0
12: Visited[v] B true
13: procedure GeneralizedBFS(G (V ,E), F ) . F is a vertexSubset of seed vertices
14: vertexMap(F , Init) . set distances to the seed vertices to 0
15: while |F | > 0 do
16: F B edgeMap(G, F ,Update,Cond) . update F to contain all unvisited neighbors
17: curDistance B curDistance + 1
18: return Distance

19: procedure BFS(G (V ,E), src)
20: return GeneralizedBFS(G, vertexSubset({src}))

algorithms also exist for weighted graphs with positive edge weights [242, 243]. SSSP on
graphs with negative integer edge weights can be solved using Bellman-Ford [108], where
the number of iterations depends on the diameter of the graph. Betweenness centrality
from a single source can be computed using two breadth-�rst searches [84, 319]. We
note that very recently, a breakthrough result of Andoni et al. and Li [24, 216] show
that computing (1 + ϵ )-approximate SSSP can be done nearly work-e�ciently (up to
poly-logarithmic factors) in poly-logarithmic depth. An interesting question for future
work is to understand whether ideas from this line of work can result in practical parallel
approximation algorithms for SSSP.

In this paper, we present implementations of �ve SSSP problems that are based on
graph search. We also include an algorithm to construct anO (k )-spanner which is based on
computing low-diameter decompositions. Our implementations of BFS and Bellman-Ford
are based on the implementations in Ligra [319]. Our betweenness centrality implemen-
tation applies the same broad implementation strategy as the Ligra implementation, but
di�ers signi�cantly in the details, which we describe below. Our wBFS implementation is
based on our earlier work on Julienne [115].
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Breadth-First Search (BFS)

The BFS problem is to compute a mapping representing distances between the source
vertex, src and every other vertex. The distances to unreachable vertices should be set
to ∞. Algorithm 4 shows pseudocode for our BFS implementation. The BFS procedure
takes as input a graph and a source vertex src, and calls GeneralizedBFS with an initial
vertexSubset containing just the source vertex, src. The GeneralizedBFS procedure is
used later in our Bellman-Ford algorithm (Algorithm 6).

The GeneralizedBFS algorithm (Lines 13–18) computes the distances between vertices
in an input vertexSubset, F , and all vertices reachable from vertices in F . It �rst initializes
the Distance and Visited values for each vertex in F using a vertexMap (Line 14). Next,
while the frontier is not yet empty, the algorithm repeatedly applies the edgeMap operator
to generate the next frontier (Line 16). The condition function supplied to edgeMap
checks whether the neighbor has been visited (Line 9). The map function (Lines 4–8)
applies a testAndSet to try and visit the neighbor. If the testAndSet is successful, the
map function returns true, indicating that the neighbor should be emitted in the output
vertexSubset (Line 7), and otherwise returns false (Line 8). Finally, at the end of a round
the algorithm increments the value of the current distance on Line 17.

Both the GeneralizedBFS and BFS algorithms run inO (m) andO (diam(G ) lgn) depth
on the binary-forking model. We note that emitting a shortest-path tree from a subset
of vertices instead of distances can be done using nearly identical code, with the only
di�erences being that (i) the algorithm will store a Parents array instead of a Distances

array, and (ii) the Update function will set the parent of a vertex d to s upon a successful
testAndSet. The main change we made to this algorithm compared to the Ligra imple-
mentation was to improve the cache-e�ciency of the edgeMap implementation using
edgeMapBlocked, the block-based version of edgeMap described in Section 5.7.

Integral-Weight SSSP (wBFS)

The integral-weight SSSP problem is to compute the shortest path distances between a
source and all other vertices in a graph with positive integer edge weights. Our imple-
mentation implements the weighted breadth-�rst search (wBFS) algorithm, a version of
Dijkstra’s algorithm that is well suited for low-diameter graphs with small positive integer
edge weights. Our implementation uses the bucketing interface from Julienne described
in Section 4.3. The idea of our algorithm is to maintain a bucket for each possible distance,
and to process them in order of increasing distance. Each bucket is like a frontier in BFS,
but unlike BFS, when we process a neighbor u of a vertex v in the current bucket i , we
place u in bucket i +wuv .

Algorithm 5 shows pseudocode for our weighted BFS implementation from Juli-
enne [115]. Initially, the distances to all vertices are ∞ (Line 1), and the distance to
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Algorithm 5 wBFS
1: Distance[0, . . . ,n) B ∞
2: Relaxed[0, . . . ,n) B false
3: procedure GetBucketNum(v) return Distance[v]
4: procedure Cond(v) return true

5: procedure Update(s , d , ws,d )
6: newDist B Distance[s] +ws,d
7: oldDist B Distance[d]
8: res B None
9: if newDist < oldDist then

10: if testAndSet(&Relaxed[d]) then . �rst writer this round
11: res B Some(oldDist) . store and return the original distance
12: priorityWrite(&Distance[d], newDist, <)
13: return res

14: procedure Reset(v, oldDist)
15: Relaxed[v] B 0
16: newDist B Distance[d]
17: return B.getBucket(oldDist, newDist)
18: procedure wBFS(G (V ,E,W ), src)
19: Distance[src] B 0
20: B B makeBuckets( |V |,GetBucketNum, increasing)
21: (bktId, bktContents) B B.nextBucket()
22: while bktId , nullbkt do

23: Moved B edgeMapData(G, bktContents,Update,Cond)
24: NewBuckets B vertexMapVal(Moved,Reset)
25: B.updateBuckets(NewBuckets)
26: (bktId, bktContents) B B.nextBucket()
27: return Distance

the source vertex, src, is 0 (Line 19). Next, the algorithm buckets the vertices based on
their current distance (Line 20). We note that a distance of∞ places a vertex in a special
“unknown” bucket. While the bucketing structure contains vertices, the algorithm extracts
the next bucket (Lines 21 and 22) and applies the edgeMapData primitive (see Section 4.3)
on all edges incident to the bucket (Line 23). The map function computes the distance along
an edge (s,d,ws,d ), updating the distance to d using a priorityWrite if D[s]+ws,d < D[d]
(Lines 5–13). The function also checks if the source vertex relaxing this edge is the �rst
visitor to d during this round by performing a testAndSet on the Relaxed array, emitting
d , and the old distance to d in the output vertexSubset if so.

The next step in the round applies a vertexMapVal on the augmented vertexSubset
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Algorithm 6 Bellman-Ford
1: Relaxed[0, . . . ,n) B false
2: Distance[0, . . . ,n) B ∞
3: procedure Cond(v)
4: return true
5: procedure ResetFlags(v)
6: Relaxed[v] B false
7: procedure Update(s , d , ws,d )
8: newDist B Distance[s] +ws,d
9: if newDist < Distance[d] then

10: priorityWrite(&Distance[d], newDist, <)
11: if !Relaxed[d] then . to ensure d is only added once to the next frontier
12: return testAndSet(&Relaxed[d])
13: return false
14: procedure BellmanFord(G (V ,E,W ), src)
15: F B vertexSubset({src})
16: Distance[src] B 0
17: round B 0
18: while |F | > 0 do
19: if round = n then . only applied if a negative weight cycle is reachable from src

20: R B GeneralizedBFS(G, F ) . de�ned in Algorithm 4
21: In parallel, set Distance[u] B −∞ for u ∈ R s.t. R[u] , ∞
22: return Distance

23: F B edgeMap(G, F ,Update,Cond)
24: vertexMap(F ,ResetFlags)
25: round B round + 1
26: return Distance

Moved. The map function �rst resets the Relaxed �ag for each vertex (Line 15), and
then computes the new bucket each relaxed vertex should move to using the getBucket
primitive (Line 17). The output is an augmented vertexSubset NewBuckets, containing
vertices and their destination buckets (Line 24). The last step updates the buckets for
all vertices in NewBuckets (Line 25). The algorithm runs in O (m) work in expectation
and O (diam(G ) lgn) depth whp on the PW-BF-binary-forking model, as vertices use
priorityWrite to write the minimum distance to a neighboring vertex in each round.
The main change we made to this algorithm was to improve the cache-e�ciency of
edgeMapData using the block-based edgeMapBlocked algorithm described in Section 5.7.
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General-Weight SSSP

The General-Weight SSSP problem is to compute a mapping with the shortest path distance
between the source vertex and every reachable vertex on a graph with general (positive
and negative) edge weights. The mapping should return a distance of∞ for unreachable
vertices. Furthermore, if the graph contains a negative weight cycle, the mapping should
set the distance to all vertices in the cycle, and reachable from it to −∞.

Our implementation for this problem is the classic Bellman-Ford algorithm [108].
Algorithm 6 shows pseudocode for our frontier-based version of Bellman-Ford. The
algorithm runs over a number of rounds. The initial frontier, F , consists of just the source
vertex, src (Line 17). In each round, the algorithm applies edgeMap over F to produce a
new frontier of vertices that had their shortest path distance decrease, and updates F to be
this new frontier. The map function supplied to edgeMap (Line 7–13) tests whether the
distance to a neighbor can be decrased, and uses a priorityWrite to atomically lower the
distance (Line 10). Emitting a neighbor to the next frontier is done using a testAndSet
on Relaxed, an array of �ags indicating whether the vertex had its current shortest path
distance decrease (Line 12). Finally, at the end of a round the algorithm resets the �ags for
all vertices in F (Line 24). If the number of rounds in the algorithm reaches n, we call the
GeneralizedBFS algorithm to compute all vertices reachable from the current frontier
(Line 20) and set the distance to the vertices with distances that are not∞ (i.e., reachable
from the negative weight cycle) to −∞ (Line 21).

For inputs without negative-weight cycles, the algorithm runs in O (diam(G )m) work
and O (diam(G ) lgn) depth on the PW-BF-binary-forking model. If the graph contains
a negative-weight cycle, the algorithm runs in O (nm) work and O (n lgn) depth on the
PW-BF-binary-forking model. The main change we made to this algorithm compared
to the Ligra implementation was to add a GeneralizedBFS implementation and invoke
it in the case where the algorithm detects a negative weight cycle. We also improve its
cache-e�ciency by using the block-based version of edgeMap, edgeMapBlocked, which
we describe in Section 5.7.



Shortest Path Problems 85

Algorithm 7 Betweenness Centrality
1: Completed[0, . . . ,n) B false
2: NumPaths[0, . . . ,n) B 0 . stores the number of shortest paths from r to each vertex, initially

all 0
3: Dependencies[0, . . . ,n) B 0 . stores the dependency scores of each vertex
4: Visited[0, . . . ,n) B false
5: procedure Update(s , d)
6: if (!Visited[d] and testAndSet(&Visited[d])) then return true
7: return false
8: procedure Cond(v) return !Visited[v]
9: procedure AggregatePathContributions(G,v)

10: mapfn B fn (s,d ) → return if Completed[d] then NumPaths[d] else 0
11: NumPaths[v] B G .getVertex(v ).reduceInNgh(mapfn, (0,+))
12: procedure MarkFinishedForwards(v)
13: Completed[v] B true

14: procedure AggregateDependencies(G,v)
15: mapfn B fn (s,d ) → return if Completed[d] then Dependencies[d] else 0
16: Dependencies[v] B G .getVertex(v ).reduceOutNgh(mapfn, (0,+))
17: procedure MarkFinishedBackwards(v)
18: Completed[v] B true
19: Dependencies[v] B Dependencies[v] + (1/NumPaths[v])
20: procedure UpdateDependencies(v)
21: Dependencies[v] B (Dependencies[v] − (1/NumPaths[v])) · NumPaths[v]
22: procedure BC(G (V ,E), r )
23: F B vertexSubset({r })
24: round B 0
25: Levels[1, . . . ,n) B null
26: while |F | > 0 do
27: F B edgeMap(G, F ,Update,Cond) . generate the next frontier of unvisited

neighbors
28: vertexMap(G, F ,AggregatePathContributions) . reduce in-neighbor path

contributions
29: vertexMap(F ,MarkFinishedForwards)
30: Levels[round] B F . save frontier for the backwards pass
31: round B round + 1
32: In parallel ∀v ∈ V , set Completed[v] B false . reset Completed

33: while round > 0 do
34: F B Levels[round − 1] . use saved frontier
35: vertexMap(G, F ,AggregateDependencies) . reduce out-neighbor dependency

contributions
36: vertexMap(F ,MarkFinishedBackwards)
37: round B round − 1
38: vertexMap(V ,UpdateDependencies) . compute the �nal Dependencies scores
39: return Dependencies
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Single-Source Betweenness Centrality

Betweenness centrality is a classic tool in social network analysis for measuring the
importance of vertices in a network [258]. Before describing the benchmark and our
implementation, we introduce several de�nitions. De�ne σst to be the total number of
s–t shortest paths, σst (v ) to be the number of s–t shortest paths that pass through v , and
δst (v ) =

σst (v )
σst

to be the pair-dependency of s and t on v .3 The betweenness centrality

of a vertexv is equal to
∑

s,v,t∈V δst (v ), i.e. the sum of pair-dependencies of shortest-paths
passing through v . Brandes [84] proposes an algorithm to compute the betweenness
centrality values based on the following notion of ‘dependencies’: the dependency of a
vertex r on a vertex v is δr (v ) =

∑
t∈V δrt (v ). The single-source betweenness centrality

problem in this thesis is to compute the dependency values for each vertex given a source
vertex, r .

Our implementation is based on Brandes’ algorithm, and follows the approach from
Ligra [319], although our implementation achieves speedups over this implementation
by using contention-avoiding primitives from the GBBS interface. The algorithm works
in two phases, which both rely on the structure of a BFS tree rooted at r . The �rst phase
computes σrv , i.e., the number of shortest paths from the source, r , to each vertex v . In
more detail, let Pr (v ) be the parents of a vertex v on the previous level of the BFS tree.
The �rst phase computes σrv =

∑
u∈Pr (v ) σru by processing the BFS tree in level order and

summing the σru values for all parents of v in the previous level. Conceptually, the second
phase applies the equation δr (v ) =

∑
w :v∈Pr (w )

σrv
σrw
· (1+δr (w )) to compute the dependencies

for each vertex by processing the levels of the BFS tree in reverse order.
Instead of directly applying the update rule for the second phase above, which requires

per-neighbor random accesses to both the array storing the σr∗ values, and the array
storing δr (∗) values, the Ligra implementation performs an optimization which allows
accessing a single array (we note that this optimization was not described in the Ligra
paper, and thus we describe it here). The idea of the optimization is as follows. The second
phase computes an inverted dependency score, ζr (v ), for each vertex. These scores are
updated level-by-level using the update rule ζr (v ) = 1

σrv
+

∑
w :v∈Pr (w ) ζr (w ). At the end of

the second phase, a simple proof by induction shows that

ζr (v ) =
1
σrv
+

∑
w∈Dr (v )

σvw ·
1
σrw

where Dr (v ) is the set of all descendent vertices through v , i.e., w ∈ V where a shortest
path from r to w passes through v . These �nal scores can be converted to the dependency

3Note that σst (v ) = 0 if v ∈ {s, t }.
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scores by �rst subtracting 1
σrv

and then multiplying by σrv , since

∑
w∈Dr (v )

σrv ·
σvw
σrw
=

∑
w∈Dr (v )

σrw (v )

σrw

Next, we discuss the main di�erence between our implementation and that of Ligra.
The Ligra implementation is based on using edgeMap with an map function that uses
the fetchAndAdd primitive to update the number of shortest paths (σrv ) in the forward
phase, and to update the inverted dependencies (ζr (v )) in the reverse phase. The Ligra
implementation thus combines the generation of the next BFS frontier with aggregating
the number of shortest paths passing through a vertex in the �rst phase, or the inverted
dependency contribution of the vertex in the second phase by using the fetchAndAdd
primitive. In our implementation, we observed that for certain graphs, especially those
with skewed degree distribution, using a fetchAndAdd to sum up the contributions
incurs a large amount of contention, and signi�cant speedups (in our experiments, up
to 2x on the Hyperlink2012 graph) can be obtained by (i) separating the computation of
the next frontier from the computation of the σrv and δr (v ) values in the two phases and
(ii) computing the computation of σrv and δr (v ) using the pull-based approach described
below.

The pseudocode for our betweenness centrality implementation is shown in Algo-
rithm 7. The algorithm runs in two phases. The �rst phase (Lines 26–31) computes a
BFS tree rooted at the source vertex r using a nghMap using Update, and Cond de�ned
identically to the BFS algorithm in Algorithm 4. After computing the new BFS frontier, F ,
the algorithm maps over the vertices in it using a vertexMap (Line 28), and applies the
AggregatePathContributions procedure for each vertex. This procedure (Lines 9–11)
performs a reduction over all in-neighbors of the vertex to pull path-scores from vertices
that are completed, i.e. Completed[v] = true (Line 11). The algorithm then applies a second
vertexMap over F to mark these vertices as completed (Line 29). The frontier is then
saved for use in the second phase (Line 30). At the end of the second phase we reset the
Status values (Line 32).

The second phase (Lines 33–37) processes the saved frontiers level by level in reverse
order. It �rst extracts a saved frontier (Line 34). It then applies a vertexMap over the
frontier applying the AggregateDependencies procedure for each vertex (Line 35. This
procedure (Lines 14–16) performs a reduction over all out-neighbors of the vertex to pull
the inverted dependency scores over completed neighbors. Finally, the algorithm applies a
second vertexMap to mark the vertices in it as completed (Line 36). After all frontiers
have been processed, the algorithm �nalizes the dependency scores by �rst subtracting
the inverted NumPaths value, and then multiplying by the NumPaths value (Line 38).
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Algorithm 8 O (k )-Spanner
1: procedure Spanner(G (V ,E),k)
2: β B

lgn
2k

3: (Clusters, Parents) B LDD(G (V ,E), β ) . see Algorithm 9
4: ELDD B {(i, Parents[i]) | i ∈ [0,n) and Parents[i] , ∞} . tree edges used in the LDD
5: I B one inter-cluster edge for each pair of adjacent clusters in L.
6: return ELDD ∪ I

Widest Path (Bo�leneck Path)

The Widest Path, or Bottleneck Path benchmark in GBBS is to compute ∀v ∈ V the
maximum over all paths of the minimum weight edge on the path between a source vertex,
u, and v . The algorithm is an important primitive, used for example in the Ford-Fulkerson
maximum �ow algorithm [144, 108], as well as other �ow algorithms [39]. Sequentially, the
algorithm can be solved as quickly as SSSP using a modi�ed version of Dijkstra’s algorithm.
We note that faster algorithms are known sequentially for sparse graphs [128]. For positive
integer-weighted graphs, the problem can also be solved using the work-e�cient bucketing
data structure from Julienne [115]. The buckets represent the width classes. The buckets
are initialized with the out-neighbors of the source, u, and the buckets are traversed using
the decreasing order. This order speci�es that the buckets are traversed from the largest
bucket to the smallest bucket. Unlike the other applications in Julienne, using widest path
is interesting since the bucket containing a vertex can only increase. The problem can also
be solved using the Bellman-Ford approach described above, by performing computations
over the (max,min) semi-ring instead of the (min,+) semi-ring. Other than these changes,
the pseudocode for the problem is identical to that of Algorithms 5 and 6.

O (k )-Spanner

Computing graph spanners is a fundamental problem in combinatorial graph algorithms
and graph theory [276]. A graph H is a k-spanner of a graph G if ∀u,v ∈ V connected by
a path, distG (u,v ) ≤ distH (u,v ) ≤ k · distG (u,v ) (equivalently, such a subgraph is called
a spanner with stretch k). The spanner problem studied in this thesis is to compute an
O (k ) spanner for a given k .

Sequentially, classic results give elegant constructions of (2k − 1)-spanners using
O (n1+1/k ) edges, which are essentially the best possible assuming the girth conjecture [351].
In this chapter, we implement the recent spanner algorithm proposed by Miller, Peng, Xu,
and Vladu (MPXV) [248]. The construction results in an O (k )-spanner with expected size
O (n1+1/k ), and runs in O (m) work and O (k lgn) depth on the binary-forking model.

The MPXV spanner algorithm (Algorithm 8) uses the low-diameter decomposition
(LDD) algorithm, which will be described in Section 5.3. It takes as input a parameter
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k which controls the stretch of the spanner. The idea is to �rst compute an LDD with
β = lgn/(2k ) (Line 3). The stretch of each partition is O (k ) whp, and so the algorithm
includes all spanning tree edges generated by the LDD in the spanner (Line 4). Next,
the algorithm handles inter-cluster edges by taking a single inter-cluster edge between a
boundary vertex and its neighbors (Line 5). In our implementation, we use a parallel hash
table to select a single inter-cluster edge between two neighboring clusters.

We note that this procedure is slightly di�erent than the procedure in the MPXV
paper, which adds a single edge between every boundary vertex of a cluster and each
adjacent cluster. Our algorithm only adds a single edge between two clusters, while the
MPXV algorithm may add multiple parallel edges between two clusters. Their argument
bounding the stretch toO (k ) for an edge spanning two clusters is still valid for our modi�ed
algorithm, since the endpoints can be �rst routed to the cluster centers, and then to the
single edge that was selected between the two clusters.

5.3 Connectivity Problems

Low-Diameter Decomposition

A (β,d ) decomposition of a graph of a graph is a partition of the vertices into clusters
C1, . . . ,Ck such that (i) the shortest path distance between two vertices in Ci using only
vertices within Ci is at most d , and (ii) the number of edges with endpoints belonging to
di�erent clusters is at most βm. The low-diameter decomposition problem in this thesis is
to compute an (O (β ),O ((lgn)/β )) decomposition.

Low-diameter decompositions (LDD) were �rst introduced in the context of distributed
computing [30], and were later used in metric embedding, linear-system solvers, and
parallel algorithms. Awerbuch presents a simple sequential algorithm based on ball growing
that computes an (β,O ((lgn)/β ) decomposition [30]. Miller, Peng, and Xu (MPX) [246]
present a work-e�cient parallel algorithm that computes a (β,O ((lgn)/β ) decomposition.
For each v ∈ V , the algorithm draws a start time, δv , from an exponential distribution
with parameter β . The clustering is done by assigning each vertex u to the center v
which minimizes d (u,v ) − δv . This algorithm can be implemented by running a set of
parallel breadth-�rst searches where the initial breadth-�rst search starts at the vertex
with the largest start time, δmax, and starting breadth-�rst searches from other v ∈ V once
δmax − δv steps have elapsed. In this chapter, we present an implementation of the MPX
algorithm which computes an (2β,O (lgn/β )) decomposition in O (m) expected work and
O (lg2 n) depth whp on the binary-forking model. Our implementation is based on the
non-deterministic LDD implementation from Shun et al. [321]. The main changes in our
implementation are separating the LDD code from the connectivity implementation.

Algorithm 9 shows pseudocode for the modi�ed version of the Miller-Peng-Xu algo-
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Algorithm 9 Low Diameter Decomposition
1: Visited[0, . . . ,n) B false
2: Cluster[0, . . . ,n) B ∞
3: Parents[0, . . . ,n) B ∞
4: procedure Cond(v) return !Visited[v]
5: procedure Update(s , d)
6: if testAndSet(&Visited[d]) then

7: Cluster[d] B Clusters[s] . vertex d joins s’s cluster
8: Parents[d] B s . vertex d’s BFS parent in the LDD ball is s
9: return true

10: return false
11: procedure InitializeClusters(u)
12: Clusters[u] B u
13: Visited[u] B true
14: procedure Partition(V , β)
15: P B random permutation of [0, . . . , |V |)
16: B B array of arrays of consecutive elements in P , where |Bi | = bexp(i · β )c
17: return B . B partitions [0, . . . , |V |)
18: procedure LDD(G (V ,E), β)
19: B B Partition(V , β) . permute vertices, and group into O (lgn/β ) batches
20: F B vertexSubset({}) . an initially empty vertexSubset
21: for i ∈ [0, |B |) do
22: newClusters B vertexSubset({b ∈ B[i] | Cluster[v] = ∞}) . vertices not yet clustered

in B[i]
23: vertexMap(newClusters, InitializeClusters)
24: addToSubset(F , newClusters) . add new cluster centers to the current frontier
25: F ′ B edgeMap(G, F ,Update,Cond)
26: F B F . update the frontier for the next round
27: round B round + 1
28: return (Clusters, Parents)

rithm from [321], which computes a (2β,O (lgn/β )) decomposition in O (m) expected
work and O (lg2 n) depth whp on the binary-forking model. The algorithm allows ties
to be broken arbitrarily when two searches visit a vertex in the time-step, and one can
show that this only a�ects the number of cut edges by a constant factor [321]. The LDD
algorithm starts by �rst permuting the vertices into O (lgn/β ) batches, stored in an array
B (Line 19). This partitioning simulates sampling from the exponential distribution by
randomly permuting the vertices in parallel (Line 15) and dividing the vertices in the
permutation into O (lgn/β ) many batches (Line 16). After partitioning, the LDD algorithm
then performs a sequence of rounds, where in each round all vertices that are not already
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Algorithm 10 Connectivity
1: procedure Connectivity(G (V ,E), β)
2: (L, P ) B LDD(G (V ,E), β ) . see Algorithm 9
3: G ′(V ′,E ′) B contractGraph(G,L)
4: if |E ′ | = 0 then
5: return L

6: L
′ B Connectivity(G ′(V ′,E ′), β )

7: L
′′ B {v → L

′[L[v]] | v ∈ V } . implemented as a vertexMap over V
8: return L′′

clustered in the next batch are added as new cluster centers. Each cluster then tries to
acquire unclustered vertices adjacent to it (thus increasing its radius by 1). This procedure
is sometimes referred to as ball-growing in the literature [32, 246, 71].

The �rst step in the ball-growing loop extracts newClusters, which is a vertexSubset of
vertices in the i’th batch that are not yet clustered (Line 22). Next, the algorithm applies a
vertexMap to update the Clusters and Visited status of the new clusters (Line 23). The
new clusters are then added to the current LDD frontier using the addToSubset primitive
(Line 24). On Line 25, the algorithm uses edgeMap to traverse the out edges of the current
frontier and non-deterministically acquire unvisited neighboring vertices. The condition
and map functions supplied to edgeMap are de�ned similarly to the ones in BFS.

We note that the pseudocode show in Algorithm 9 actually returns both the LDD
clustering, Clusters, as well as a Parents array. The Parents array contains for each vertex
v that joins a di�erent vertex’s cluster (Clusters[v] , v) the parent in the BFS tree rooted
at Clusters[v]. Speci�cally, for a vertex d that is not in its own cluster, Parents[d] stores
the vertex s that succeeds at the testAndSet in Line 6. The Parents array is used by both
the O (k )-spanner and spanning forest algorithms in this chapter to extract the tree edges
used in the LDD.

Connectivity

The connectivity problem is to compute a connectivity labeling of an undirected graph,
i.e., a mapping from each vertex to a label such that two vertices have the same label
if and only if they are in the same component in the graph. Connectivity can easily
be solved sequentially in linear work using breadth-�rst or depth-�rst search. Parallel
algorithms for connectivity have a long history; we refer readers to [321] for a review of the
literature. Early work on parallel connectivity discovered many natural algorithms which
perform O (m lgn) work [316, 31, 287, 278]. A number of optimal parallel connectivity
algorithms were discovered in subsequent years [148, 104, 162, 163, 279, 277, 321], but
to the best of our knowledge the recent algorithm by Shun et al. is the only linear-work
polylogarithmic-depth parallel algorithm that has been studied experimentally [321].
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Algorithm 11 Spanning Forest
1: procedure SpanningForestHelper(G (V ,E),M, β)
2: (Clusters, Parents) B LDD(G (V ,E), β ) . see Algorithm 9
3: ELDD B {(i, Parents[i]) | i ∈ [0,n) and Parents[i] , ∞} . tree edges used in the LDD
4: EM B {M (e ) | e ∈ ELDD} . original graph edges corresponding to ELDD

5: G ′(V ′,E ′) B contractGraph(G,L)
6: if |E ′ | = 0 then
7: return EM

8: M ′ B mapping from e ′ ∈ E ′ to M (e ) where e ∈ E is some edge representing e ′

9: E
′′ B SpanningForestHelper(G ′(V ′,E ′),M ′, β )

10: return EM ∪ E
′′

11: procedure SpanningForest(G (V ,E), β)
12: return SpanningForestHelper(G, {e → e | e ∈ E}, β ))

In this chapter, we implement the connectivity algorithm from Shun et al. [321],
which runs in O (m) expected work and O (lg3 n) depth whp on the binary-forking model.
The implementation uses the work-e�cient algorithm for low-diameter decomposition
(LDD) [246] described above. One change we made to the implementation from [321] was
to separate the LDD and contraction steps from the connectivity algorithm. Refactoring
these sub-routines allowed us to express the main connectivity algorithm in about 50 lines
of code.

The connectivity algorithm from Shun et al. [321] (Algorithm 10) takes as input an
undirected graphG and a parameter 0 < β < 1. It �rst runs the LDD algorithm, Algorithm 9
(Line 2), which decomposes the graph into clusters each with diameter (lgn)/β , and βm
inter-cluster edges in expectation. Next, it builds G′ by contracting each cluster to a single
vertex and adding inter-cluster edges while removing duplicate edges, self-loops, and
isolated vertices (Line 3). It then checks if the contracted graph is empty (Line 4); if so,
the current clusters are the components, and it returns the mapping from vertices to
clusters (Line 5). Otherwise, it recurses on the contracted graph (Line 6) and returns the
connectivity labeling produced by assigning each vertex to the label assigned to its cluster
in the recursive call (Lines 7 and 8).

Spanning Forest

The spanning forest problem is to compute a subset of edges in the graph that represent a
spanning forest. Finding spanning forests in parallel has been studied largely in conjunction
with connectivity algorithms, since most parallel connectivity algorithms can naturally be
modi�ed to output a spanning forest (see [321] for a review of the literature).

Our spanning forest algorithm (Algorithm 11) is based on the connectivity algorithm
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from Shun et al. [321] which we described earlier. Our algorithm runs in runs in O (m)
expected work and O (lg3 n) depth whp on the binary-forking model. The main di�erence
in the spanning forest algorithm compared to the connectivity algorithm is to include all
LDD edges at each level of the recursion (Line 4). These LDD edges are extracted using the
Parents array returned by the LDD algorithm given in Algorithm 9. Recall that this array
has size proportional to the number of vertices, and all entries initialized to∞. The LDD
algorithm uses this array to store the BFS parent of each vertex v that joins a di�erent
vertex’s cluster (Clusters[v] , v). The LDD edges are retrieved by checking for each index
i ∈ [0,n) whether Parents[i] , ∞ and if so taking (i, Parents[i]) as an LDD edge.

Furthermore, observe that the LDD edges after the topmost level of recursion are
taken from a contracted graph, and need to be mapped back to some edge in the original
graph realizing the contracted edge. We decide which edges in G to add by maintaining a
mapping from the edges in the current graph at some level of recursion to the original
edge set. Initially this mapping, M , is an identity map (Line 12). To compute the mapping
to pass to the recursive call, we select any edge e in the input graph G that resulted in
e′ ∈ E′ and map e′ to M (e ) (Line 8). In our implementation, we use a parallel hash table to
select a single original edge per contracted edge.

Biconnectivity

A biconnected component of an undirected graph is a maximal subgraph s.t. the subgraph
remains connected under the deletion of any single vertex. Two closely related de�nitions
are articulation points and bridge. An articulation point is a vertex whose deletion
increases the number of connected components, and a bridge is an edge whose deletion
increases the number of connected components. Note that by de�nition an articulation
point must have degree greater than one. The biconnectivity problem is to emit a mapping
that maps each edge to the label of its biconnected component.

Sequentially, biconnectivity can be solved using the Hopcroft-Tarjan algorithm [178].
The algorithm uses depth-�rst search (DFS) to identify articulation points and requires
O (m +n) work to label all edges with their biconnectivity label. It is possible to parallelize
the sequential algorithm using a parallel DFS, however, the fastest parallel DFS algorithm
is not work-e�cient [11]. Tarjan and Vishkin present the �rst work-e�cient algorithm for
biconnectivity [346] (as stated in the paper the algorithm is not work-e�cient, but it can be
made so by using a work-e�cient connectivity algorithm). The same paper also introduces
the Euler-tour technique, which can be used to compute subtree functions on rooted
trees in parallel in O (n) work and O (lg2 n) depth on the binary-forking model. Another
approach relies on the fact that biconnected graphs admit open ear decompositions to
solve biconnectivity e�ciently [231, 285].

In this chapter, we implement the Tarjan-Vishkin algorithm for biconnectivity in O (m)
expected work and O (max(diam(G ) lgn, lg3 n)) depth on the FA-BF-binary-forking model.
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Algorithm 12 Biconnectivity
1: Parents[0, . . . ,n) . the parent of each vertex in a rooted spanning forest
2: Preorder[0, . . . ,n) . the preorder number of each vertex in a rooted spanning forest
3: Low[0, . . . ,n) . minimum preorder number for a non-tree edge in a vertex’s subtree
4: High[0, . . . ,n) . maximum preorder number for a non-tree edge in a vertex’s subtree
5: Size[0, . . . ,n) . the size of a vertex’s subtree
6: procedure IsArticulationPoint(u)
7: pu B Parents[u]
8: return Preorder[pu ] ≤ Low (u) and High[u] < Preorder[pu ] + Size[pu ]
9: procedure IsNonCriticalEdge(u,v)

10: condv B v = Parents[u] and IsArticulationPoint(v )
11: condu B u = Parents[v] and IsArticulationPoint(u)
12: critical B condu or condv . true if this edge is a bridge
13: return !critical
14: procedure Biconnectivity(G (V ,E))
15: F B SpanningForest(G )
16: Parents B root each tree in F at an arbitrary root
17: Preorder B compute a preorder numbering on each rooted tree in F
18: For each v ∈ V , compute Low (v ),High(v ), and Size(v ) . subtree functions de�ned in the

text
19: packGraph(G, IsNonCriticalEdge) . removes all critical edges from the graph
20: Labels B Connectivity(G )
21: return (Labels, Parents) . su�cient to answer biconnectivity queries

Our implementation �rst computes connectivity labels using our connectivity algorithm,
which runs in O (m) expected work and O (lg3 n) depth whp and picks an arbitrary source
vertex from each component. Next, we compute a spanning forest rooted at these sources
using breadth-�rst search, which runs in O (m) work and O (diam(G ) lgn) depth. We
compute Low, High, and Size for each vertex by running lea�x and root�x sums on the
spanning forests produced by BFS with fetchAndAdd, which requires O (n) work and
O (diam(G )) depth. Finally, we compute an implicit representation of the biconnectivity
labels for each edge, using an idea from [51]. This step computes per-vertex labels by
removing all critical edges and computing connectivity on the remaining graph. The
resulting vertex labels can be used to assign biconnectivity labels to edges by giving tree
edges the connectivity label of the vertex further from the root in the tree, and assigning
non-tree edges the label of either endpoint. Summing the cost of each step, the total work
of this algorithm is O (m) in expectation and the total depth is O (max(diam(G ) lgn, lg3 n))
whp.

Algorithm 12 shows the Tarjan-Vishkin biconnectivity algorithm. It �rst computes
a spanning forest of G using a connectivity algorithm, and roots the trees in this forest
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arbitrarily (Lines 15 and 16). Next, the algorithm computes a preorder numbering, Preorder ,
with respect to the roots (Line 17). It then computes for each v ∈ V Low (v ) and High(v ),
which are the minimum and maximum preorder numbers respectively of all non-tree
(u,w ) edges where u is a vertex in v’s subtree (Line 18). It also computes Size(v ), the
size of each vertex’s subtree. Observe that one can determine whether the parent of a
vertex u, pu is an articulation point by checking Preorder[pu] ≤ Low (u) and High(u) <
Preorder[pu] + Size[pu]. Following [51], we refer to this set of tree edges (u,pu ), where
pu is an articulation point, as critical edges (Line 9). The last step of the algorithm is
to compute a connectivity labeling of the graph with all critical edges removed. Our
algorithm removes the critical edges using the packGraph primitive (see Section 4.3).

Given this �nal connectivity labeling, the biconnectivity label of an edge (u,v ) is the
connectivity label of the vertex that is further from the root of the tree. The query data
structure can thus report biconnectivity labels of edges in O (1) time using 2n space; each
vertex just stores its connectivity label, and its parent in the rooted forest (for an edge
(u,v ) either one vertex is the parent of the other, which determines the vertex further
from the root, or neither is the parent of the other, which implies that both are the same
distance from the root). The same query structure can also report whether an edge is a
bridge in O (1) time, and refer the reader to [51] for more details. The low space usage of
this query structure is important for our implementations as storing a biconnectivity label
per-edge explicitly would require a prohibitive amount of memory for large graphs.

Finally, we discuss some details about our implemetation of the Tarjan-Vishkin algo-
rithm, and give the work and depth of our implementation. Note that the Preorder , Low,
High, and Size arrays can be computed either using the Euler tour technique, or by using
lea�x and root�x computations on the trees. We use the latter approach used in our
implementation. The most costly step in this algorithm is to compute spanning forest
and connectivity on the original graph, and so the theoretical algorithm runs in O (m)
work in expectation and O (lg3 n) depth whp Our implementation of the Tarjan-Vishkin
algorithm runs in the same work butO (max(diam(G ) lgn, lg3 n)) depth whp as it computes
a spanning tree using BFS and performs lea�x and root�x computations on this tree.

Minimum Spanning Forest

The minimum spanning forest problem is to compute a subset of edges in the graph
that represents a minimum spanning forest of the graph. Borůvka gave the �rst known
sequential and parallel algorithm for computing a minimum spanning forest (MSF) [83].
Signi�cant e�ort has gone into �nding linear-work MSF algorithms both in the sequential
and parallel settings [194, 104, 277]. Unfortunately, the linear-work parallel algorithms
are highly involved and do not seem to be practical. Signi�cant e�ort has also gone into
designing practical parallel algorithms for MSF; we discuss relevant experimental work in
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Algorithm 13 Minimum Spanning Forest
1: Parents[0, . . . ,n) B 0
2: procedure Borůvka(n,E)
3: Forest B {}

4: while |E | > 0 do
5: P[0, . . . ,n) B (∞,∞) . array of (weight , index) pairs for each vertex
6: for i ∈ [0, |E |) in parallel do

7: (u,v,w ) B E[i] . the i’th edge in E
8: priorityWrite(&P[u], (w, i ), <) . < lexicographically compares the (weight,

index) pairs
9: priorityWrite(&P[v], (w, i ), <)

10: for u ∈ [0,n) where P[u] , (∞,∞) in parallel do

11: (w, i ) B P[u] . the index and weight of the MSF edge incident to u
12: v B the neighbor of u along the E[i] edge
13: if v > u and P[v] = (w, i ) then . v also chose E[i] as its MSF edge; symmetry

break
14: Parents[u] B u . make u the root of a component
15: else

16: Parents[u] B v . otherwise v < u; join v’s component
17: Forest B Forest ∪ {edges that won on either endpoint in P } . add new MSF edges
18: PointerJump(Parents) . compress the parents array (see Chpater 2)
19: E B map(E, fn (u,v,w ) → return (Parents[u], Parents[v],w )) . relabel edges
20: E B filter(E, fn (u,v,w ) → return u , v ) . remove self-loops
21: return Forest

22: procedure MinimumSpanningForest(G (V ,E,w ))
23: Forest B {}

24: Rounds B 0
25: vertexMap(V , fn u → Parents[u] = u) . initially each vertex is in its own component
26: while G .numEdges() > 0 do
27: T B select min(3n/2,m)-th smallest edge weight in G
28: if Rounds = 5 then T B largest edge weight in G

29: EF B extractEdges(G, fn (u,v,wu,v ) → returnwu,v ≤ T )
30: Forest B Forest ∪ Borůvka( |V |,EF )
31: packGraph(G, fn (u,v,wu,v ) → return Parents[u] , Parents[v]) . remove self-loops
32: Rounds B Rounds + 1
33: return Forest

Section 5.8. Due to the simplicity of Borůvka, many parallel implementations of MSF use
variants of it.

In this chapter, we present an implementation of Borůvka’s algorithm that runs in
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O (m lgn) work and O (lg2 n) depth whp on the PW-BF-binary-forking model. Our im-
plementation is based on a recent implementation of Borůvka by Zhou that runs on the
edgelist format (graphs represented as a sequence of edges, see Chapter 2) [388]. We
made several changes to the algorithm which improve performance and allow us to solve
MSF on very large graphs stored in the CSR format (de�ned in Chapter 2). Storing an
integer-weighted graph in edgelist format would require well over 1TB of memory to
represent the edges in the WebDataCommons hyperlink graph alone.

Algorithm 13 shows pseudocode for our implementation of Borůvka’s algorithm based
on shortcutting using pointer-jumping instead of contraction. Our code uses an imple-
mentation of Borůvka (Lines 2–21) that works over an edgelist as a subroutine; to make
it e�cient in practice, we ensure that the size of the lists passed to it are much smaller
thanm. The main algorithm (Lines 22–33) maintains a Parents array that represents the
connected components that have been found by the algorithm so far. Initially, each vertex
is in its own component (Line 25). The main algorithm performs a constant number of
�ltering steps on a small number of the lowest-weight edges that are extracted from the
graph. Each �ltering step �rst solves an approximate k’th smallest problem in order to
determine a weight threshold, which is either the weight of approximately the 3n/2’th
lightest edge, or the max edge weight (if the maximum number of �ltering rounds are
reached) (Line 27). This step can be easily implemented using the vertex primitives in
Section 4.3 and binary search. Edges lighter than the threshold are then extracted using
the extractEdges primitive, de�ned in Section 4.3 (Line 29). The algorithm then runs
Borůvka on this subset of edges (Line 30), which we describe next. Borůvka returns edges
that are in the minimum spanning forest, and additionally compresses the Parents array
based on the new forst edges. Lastly, the main algorithm removes any edges that are now
contained in the same component using the packGraph primitive (Line 31).

The edgelist-based Borůvka implementation (Lines 2–21) takes as input the number of
vertices and a subset of lowest weight edges from the graph. The initial forest is empty
(Line 3). The algorithm runs over a series of rounds. Within a round, the algorithm �rst
initializes an array P of (weight, index) pairs for all vertices (Line 5). Next, it loops in
parallel over all edges in E and perform priorityWrites to P based on the weight on
both endpoints of the edge (Lines 8 and 9). This step writes the weight and index-id of a
minimum-weight edge incident to a vertex v into P[v]. Next, for each vertex u that found
an MSF edge incident to it, i.e., P[u] , (∞,∞) (Line 10), the algorithm determines v , the
neighbor of u along this MSF edge (Lines 11–12). If v also selected (u,v,w ) as its MSF
edge, the algorithm sets the vertex with lower id to be the root of a tree (Line 14), and the
vertex with higher id to point to lower one (Line 16). Lastly, the algorithm performs several
clean-up steps. First, it updates the forest with all newly identi�ed MSF edges (Line 17).
Next, it performs pointer-jumping (see [188]) to compress trees created in Parents (Line 18).
Note that the pointer-jumping step can be work-e�ciently implemented in O (lgn) depth
whp in the binary-forking model [72]. Finally, it relabels the edges array E based on the
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Algorithm 14 Strongly Connected Components
1: procedure SCC(G (V ,E))
2: B B Partition(V , 1) . permute and group vertices in O (lgn) batches of increasing size

(see Alg.9)
3: L[0, . . . ,n) B ∞
4: Done[0, . . . ,n) B false
5: for i ∈ [0, |B |) do
6: Centers B{v ∈ B[i] | !Done[i]} . vertices starting in the i’th batch that are not yet done
7: OutL B MarkReachable(G,Centers) . map with pairs (u, c ) indicating that c reaches

u in G
8: InL B MarkReachable(GT,Centers) . map with pairs (u, c ) indicating that c reaches

u in GT

9: for (u, c ) ∈ InL ∩ OutL in parallel do

10: Done[u] B true . mark this vertex as done
11: priorityWrite(&L[u], c, <) . u’s label is set to the minimum id center in u’s SCC
12: packGraph(G, fn (u,v ) → return . preserve edges within the same subproblem
13: |InL[u]| = |InL[v]| and |OutL[u]| = |OutL[v]|)
14: return L

new ids in Parents (Line 19) and then �lters E to remove any self-loops, i.e., edges within
the same component after this round (Line 20).

We note that our implementation uses indirection by maintaining a set of active vertices
and a using a set of integer edge-ids to represent E in the Borůvka procedure. Applying
indirection over the vertices helps in practice as the algorithm can allocate P (Line 5) to
have size proportional to the number of active vertices in each round, which may be much
smaller than n. Applying indirection over the edges allows the algorithm to perform a
�lter over just the ids of the edges, instead of triples containing the two endpoints and the
weight of each edge.

We point out that the �ltering idea used in our main algorithm is similar to the
theoretically-e�cient algorithm of Cole et al. [104], except that instead of randomly
sampling edges, our �ltering procedure selects a linear number of the lowest weight edges.
Each �ltering step costs O (m) work and O (lgm) depth, but as we only perform a constant
number of steps, they do not a�ect the work and depth asymptotically. In practice, most of
the edges are removed after 3–4 �ltering steps, and so the remaining edges can be copied
into an edgelist and solved in a single Borůvka step. We also note that as the edges are
initially represented in both directions, we can pack out the edges so that each undirected
edge is only inspected once (we noticed that earlier edgelist-based implementations stored
undirected edges in both directions).
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Strongly Connected Components

The strongly connected components problem is to compute a labeling L that maps each
vertex to a unique label for its strongly connected component (i.e., L[u] = L[v] i� there is
a directed path from u to v and from v to u). Tarjan’s algorithm is the textbook sequen-
tial algorithm for computing the strongly connected components (SCCs) of a directed
graph [108]. As it uses depth-�rst search, we currently do not know how to e�ciently
parallelize it [11]. The current theoretical state-of-the-art for parallel SCC algorithms with
polylogarithmic depth reduces the problem to computing the transitive closure of the graph.
This requires Õ (n3) work using combinatorial algorithms [149], which is signi�cantly
higher than the O (m + n) work done by sequential algorithms. As the transitive-closure
based approach performs a signi�cant amount of work even for moderately sized graphs,
subsequent research on parallel SCC algorithms has focused on improving the work while
potentially sacri�cing depth [142, 107, 303, 75]. Conceptually, these algorithms �rst pick a
random pivot and use a reachability-oracle to identify the SCC containing the pivot. They
then remove this SCC, which partitions the remaining graph into several disjoint pieces,
and recurse on the pieces.

In this chapter, we present the �rst implementation of the SCC algorithm from Blelloch
et al. [75], shown in Algorithm 14. We refer the reader to Section 6.2 of [75] for proofs of
correctness and its work and depth bounds. The algorithm is similar in spirit to randomized
quicksort. The algorithm �rst sets the initial label for all vertices as∞ and marks all vertices
as not done (Lines 3 and 4). Next, it randomly permutes the vertices and partitions them into
lgn batches whose sizes increase geometrically (Line 2). This pseudocode for Partition is
given in Algorithm 9. Speci�cally, B[i] contains all vertices that are part of the i’th batch.
It then processes the batches one at a time.

For each batch, it �rst computes Centers, which are the vertices in this batch that are
not yet done (Line 6). The next step calls MarkReachable from the centers on both G
and the transposed graph, GT (Lines 7–8). MarkReachable takes the set of centers and
uses a variant of a breadth-�rst search to compute the sets OutL (IntL), which for a center
c ∈ Centers includes all (v, c ) pairs for vertices v that c can reach through its out-edges (in-
edges). We describe this procedure in more detail below. Finally, the algorithm computes
all (u, c ) pairs in the intersection of InL and OutL in parallel (Line 9). For each pair, the
algorithm �rst marks the vertex as done (Line 10). It then performs a priorityWrite to
atomically try and update the label of the vertex to c (Line 11). After the parallel loop on
Line 9 �nishes, the label for a vertex u that had some vertex in its SCC appear as a center
in this batch will be set to the minimum vertex id over all such centers from its SCC.

The last step of the algorithm re�nes the subproblems in the graph by partitioning
it, i.e., deleting all edges which the algorithm identi�es as not being in the same SCC. In
our implementation, this step is implemented using the packGraph primitive (Line 12),
which considers every directed edge in the graph and only preserves edges (u,v ) where
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the number of centers reaching u and v in InL are equal (respectively the number of
centers reaching them in OutL). We note that the algorithm described in Blelloch et al. [75]
suggests that to partition the graph, each reachability search can check whether any edge
(u,v ) where one endpoint is reachable in the search, and the other is not, can be cut
(possibly cutting some edges multiple times). The bene�t of our approach is that we can
perform a single parallel scan over the edges in the graph and pack out a removed edge
exactly once. Our implementation runs in O (m lgn) expected work and O (diam(G ) lgn)
depth whp on the PW-BF-binary-forking model.

One of the challenges in implementing this SCC algorithm is how to compute reacha-
bility information from multiple vertices (the centers) simultaneously. Our implementation
explicitly materializes the forward and backward reachability sets for the set of centers that
are active in the current phase. The sets are represented as hash tables that store tuples of
vertices and center IDs, (u, ci ), representing a vertex u in the same subproblem as ci that
is visited by a directed path from ci . We explain how to make the hash table technique
practical in Section 5.7.3. The reachability sets are computed by running simultaneous
breadth-�rst searches from all active centers. In each round of the BFS, we apply edgeMap
to traverse all out-edges (or in-edges) of the current frontier. When we visit an edge (u,v )
we try to add u’s center IDs tov . If u succeeds in adding any IDs, it testAndSet’s a visited
�ag for v , and returns it in the next frontier if the testAndSet succeeded. Each BFS
requires at most O (diam(G )) rounds as each search adds the same labels in each round as
it would have had it run in isolation.

We also implement an optimized search for the �rst phase, which just runs two regular
BFSs over the in-edges and out-edges from a single pivot and stores the reachability
information in bit-vectors instead of hash-tables. It is well known that many directed real-
world graphs have a single massive strongly connected component, and so with reasonable
probability the �rst vertex in the permutation will �nd this giant component [87]. Our
implementation also supports a trimming optimization that is used by some papers in the
literature [237, 332], which eliminates trivial SCCs by removing any vertices that have zero
in- or out-degree. We implement a procedure that recursively trims until no zero in- or
out-degree vertices remain, or until a maximum number of rounds are reached, although
in practice we found that a single trimming step is su�cient to remove the majority of
trivial vertices on our graph inputs.

5.4 Covering Problems

Maximal Independent Set

The maximal independent set problem is to compute a subset of vertices U such that no
two vertices in U are neighbors, and all vertices in V \U have a neighbor in U . Maximal
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Algorithm 15 Maximal Independent Set
1: P B RandomPermutation([0, . . . ,n − 1])
2: Fl[0,n) B false
3: Priority[0,n) B 0
4: procedure NewlyCovered(s , d)
5: if testAndSet(&Fl[d]) then
6: return true
7: return false
8: procedure NewlyCoveredCond(v) return !Fl[v]
9: procedure DecrementPriority(s , d)

10: if P[s] < P[d] and fetchAndAdd(&Priority[d],−1) = 1 then
11: return true
12: return false
13: procedure DecrementPriorityCond(v) return Priority[v] > 0
14: procedure MIS(G (V ,E))
15: vertexMap(V , fn u → . initialize priority to the number of neighbors appearing before u

in P

16: Priority[u] B G .getVertex(u).countNghs(fn (u,v ) → return P[v] < P[u]))
17: Roots B vertexSubset({v ∈ V | Priority[v] = 0})
18: numFinished B 0
19: I B {}

20: while numFinished < n do

21: I B I ∪ Roots

22: Covered B edgeMap(G, Roots,NewlyCovered,NewlyCoveredCond)
23: vertexMap(Covered, fn v → Priority[v] = 0)
24: numFinished B numFinished + |Roots | + |Covered |

25: Roots B edgeMap(G,Covered,DecrementPriority,DecrementPriorityCond)
26: return I

independent set (MIS) and maximal matching (MM) are easily solved in linear work
sequentially using greedy algorithms. Many e�cient parallel maximal independent set
and matching algorithms have been developed over the years [196, 224, 17, 182, 64, 57].
Blelloch et al. show that when the vertices (or edges) are processed in a random order,
the sequential greedy algorithms for MIS and MM can be parallelized e�ciently and give
practical algorithms [64]. Recently, Fischer and Noever showed an improved depth bound
for these MIS and MM algorithms [141].

In this chapter, we implement the rootset-based algorithm for MIS from Blelloch et
al. [64] which runs in O (m) expected work and O (lg2 n) depth whp on the FA-BF-binary-
forking model (using the improved depth analysis of Fischer and Noever [141]). To the
best of our knowledge this is the �rst implementation of the rootset-based algorithm; the



102 Theoretically-E�cient Parallel Graph Algorithms

implementations from [64] are based on processing appropriately-sized pre�xes of an order
generated by a random permutation P . Our implementation of the rootset-based algorithm
works on a priority-DAG de�ned by directing edges in the graph from the higher-priority
endpoint to the lower-priority endpoint. In each round, we add all roots of the DAG into
the MIS, compute N (Roots), the neighbors of the rootset that are still active, and �nally
decrement the priorities of N (N (Roots)). As the vertices in N (Roots) are at arbitrary depths
in the priority-DAG, we only decrement the priority along an edge (u,v ), u ∈ N (Roots)
if P[u] < P[v]. The algorithm runs in O (m) work as we process each edge once; the
depth bound is O (lg2 n) as the priority-DAG has O (lgn) depth whp [141], and each round
takes O (lgn) depth. We were surprised that this implementation usually outperforms the
pre�x-based implementation from [64], while also being simple to implement.

Our implementation of the rootset-based MIS algorithm is shown in Algorithm 15.
The algorithm �rst randomly orders the vertices with a random permutation P (Line 1).
It then computes an array Priority where each vertex is associated with the count of its
number of neighbors that have higher priority than it with respect to the permutation
P . This computation is done using the countNghs primitive from Section 4.3 (Line 16).
Next, on Line 17 we compute the initial rootset, Roots, which is the set of all vertices that
initially have priority 0. In each round, the algorithm adds the roots to the independent
set (Line 21), and computes the set of covered (i.e., removed) vertices, which are neighbors
of the rootset that are still active (Priority[v] > 0). This step is done using edgeMap over
Roots, where the map and condition function are de�ned similarly to BFS, returning true
for a neighboring vertex if and only if it has not been visited before (the testAndSet to Fl

succeeds). The algorithm also sets the Priority values of these vertices to 0 (Line 23). Next,
the algorithm updates the number of �nished vertices (Line 24). Finally, the algorithm
computes the next set of roots using a second edgeMap. The map function (Lines 9–12)
decrements the priority of all neighbors v visited over an edge (u,v ) where u ∈ Covered
and P[u] < P[v] using a fetchAndAdd that returns true for a neighbor v if this edge
decrements its priority to 0.

Maximal Matching

The maximal matching problem is to compute a subset of edges E′ ⊆ E such that no two
edges in E′ share an endpoint, and all edges in E \E′ share an endpoint with some edge in E′.
Our maximal matching implementation is based on the pre�x-based algorithm from [64]
that takes O (m) expected work and O (lg2m) depth whp on the PW-BF-binary-forking
model (using the improved depth shown in [141]). We had to make several modi�cations to
run the algorithm on the large graphs in our experiments. The original code from [64] uses
an edgelist representation, but we cannot directly use this implementation as uncompress-
ing all edges would require a prohibitive amount of memory for large graphs. Instead, as in
our MSF implementation, we simulate the pre�x-based approach by performing a constant
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Algorithm 16 Maximal Matching
1: Matched[0, . . . ,n) B false
2: procedure ParallelGreedyMM(P )
3: M B {}

4: P B RandomPermutation(P ) . a random permutation of the edges in the pre�x
5: while |P | > 0 do
6: W B edges in P with no adjacent edges with higher rank
7: ∀(u,v ) ∈W , set Matched[u] B true and Matched[v] B true
8: P ←�lter edges incident to newly matched vertices from P

9: returnM

10: procedure MaximalMatching(G (V ,E))
11: Matching B {}

12: Rounds B 0

13: while G .numEdges() > 0 do
14: curM B G .numEdges()
15: toExtract B if Rounds ≤ 5 then min(3n/2, curM ) else curM
16: P B extractEdges(G, fn (e = (u,v )) →
17: inPre�x B e ∈ top toExtract highest-priority edges
18: return u < v and inPre�x) . u < v to emit an edge in the pre�x only once
19: W B ParallelGreedyMM(P )
20: packGraph(G, fn (e = (u,v )) → return !(e ∈W or e incident toW )) .

E B E \ (W ∪ N (W ))
21: Matching B Matching ∪W
22: Rounds B Rounds + 1
23: return Matching

number of �ltering steps. Each �lter step packs out 3n/2 of the highest priority edges,
randomly permutes them, and then runs the edgelist based algorithm on the pre�x. After
computing the new set of edges that are added to the matching, we �lter the remaining
graph and remove all edges that are incident to matched vertices. In practice, just 3–4
�ltering steps are su�cient to remove essentially all edges in the graph. The last step
uncompresses any remaining edges into an edgelist and runs the pre�x-based algorithm.
The �ltering steps can be done within the work and depth bounds of the original algorithm.

Our implementation of the pre�x-based maximal matching algorithm from Blelloch et
al. [64] is shown in Algorithm 16. The algorithm �rst creates the array matched, sets all
vertices to be unmatched, and initializes the matching to empty (Line 11). The algorithm
runs a constant number of �ltering rounds, as described above, where each round fetches
some number of highest priority edges that are still active (i.e., neither endpoint is incident
to a matched edge). First, it calculates the number of edges to extract (Line 15). It then
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extracts the highest priority edges using the packGraph primitive. The function supplied
to packGraph checks whether an edge e is one of the highest priority edges, and if so, emits
it in the output edge array, P and removes this edge from the graph. Our implementation
calculates edge priorities by hashing the edge pair. It selects whether an edge is in the
pre�x by comparing each edge’s priority with the priority of approximately the toExtract’th
smallest priority, computed using approximate median.

Next, the algorithm applies the parallel greedy maximal matching algorithm (Lines 2–9)
on it. The parallel greedy algorithm �rst randomly permutes the edges in the pre�x (Line 4).
It then repeatedly �nds the set of edges that have the lowest rank in the pre�x amongst
all other edges incident to either endpoint (Line 6), adds them to the matching (Line 7),
and �lters the edges based on the newly matched edges (Line 8). The edges matched by
the greedy algorithm are returned to the MaximalMatching procedure (Line 9). We refer
to [64, 141] for a detailed description of the pre�x-based algorithm that we implement,
and a proof of the work and depth of the ParallelGreedyMM algorithm.

The last steps within a round are to �lter the remaining edges in the graph based on
the newly matched edges using the packGraph primitive (Line 20). The supplied predicate
does not return any edges in the output edgearray, and packs out any edge incident to the
partial matching,W . Lastly, the algorithm adds the newly matched edges to the matching
Line 21. We note that applying a constant number of �ltering rounds before executing
ParallelGreedyMM does not a�ect the work and depth bounds.

Graph Coloring

The graph coloring problem is to compute a mapping from each v ∈ V to a color such that
for each edge (u,v ) ∈ E, C (u) , C (v ), using at most ∆ + 1 colors. As graph coloring is
NP-hard to solve optimally, algorithms like greedy coloring, which guarantees a (∆ + 1)-
coloring, are used instead in practice, and often use much fewer than (∆ + 1) colors on
real-world graphs [367, 169]. Jones and Plassmann (JP) parallelize the greedy algorithm
using linear work, but unfortunately adversarial inputs exist for the heuristics they consider
that may force the algorithm to run in O (n) depth. Hasenplaugh et al. introduce several
heuristics that produce high-quality colorings in practice and also achieve provably low-
depth regardless of the input graph. These include LLF (largest-log-degree-�rst), which
processes vertices ordered by the log of their degree and SLL (smallest-log-degree-last),
which processes vertices by removing all lowest log-degree vertices from the graph,
coloring the remaining graph, and �nally coloring the removed vertices. For LLF, they
show that it runs in O (m + n) work and O (L lg∆ + lgn) depth, where L = min{

√
m,∆} +

lg2 ∆ lgn/ lg lgn in expectation.
In this chapter, we implement a synchronous version of Jones-Plassmann using the LLF

heuristic, which runs in O (m + n) work and O (L lg∆ + lgn) depth on the FA-BF-binary-
forking model. The algorithm is implemented similarly to our rootset-based algorithm
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Algorithm 17 LLF Graph Coloring
1: P B RandomPermutation([0, . . . ,n − 1])
2: Color[0, . . . ,n) B ∞
3: D[0, . . . ,n) B 0
4: Priority[0,n) B 0
5: procedure AssignColors(u)
6: Color[u] B c , where c is the �rst unused color in N (u)

7: procedure DecrementPriority(s , d)
8: if fetchAndAdd(&Priority[d],−1) = 1 then return true

9: return false
10: procedure DecrementPriorityCond(v) return Priority[v] > 0
11: procedure LLF(G (V ,E))
12: vertexMap(V , fn u → D[u] B dlg(d (u))e)
13: countFn B fn (u,v ) → return D[v] > D[u] or (D[v] = D[u] and P[v] < P[u])
14: vertexMap(V , fn u → Priority[u] B G .getVertex(u).countNghs(countFn))
15: Roots B vertexSubset({v ∈ V | Priority[v] = 0})
16: Finished B 0
17: while Finished < n do

18: vertexMap(Roots,AssignColors)
19: Finished B Finished + |Roots |

20: Roots B edgeMap(G, Roots,DecrementPriority,DecrementPriorityCond)
21: return C

for MIS. In each round, after coloring the roots we use a fetchAndAdd to decrement a
count on our neighbors, and add the neighbor as a root on the next round if the count is
decremented to 0.

Algorithm 17 shows our synchronous implementation of the parallel LLF-Coloring
algorithm from [169]. The algorithm �rst computes priorities for each vertex in parallel
using the countNghs primitive (Line 14). This step computes the number of neighbors of
a vertex that must run before it by applying the countFn predicate (Line 13). This predicate
function returns true for a (u,v ) edge to a neighbor v if the log-degree of v is greater
than u, or, if the log-degrees are equal whether v has a lower-rank in a permutation
on the vertices (Line 1) than v . Next, the algorithm computes the vertexSubset Roots
(Line 15) which consists of all vertices that have no neighbors that are still uncolored that
must be run before them based on countFn. Note that Roots is an independent set. The
algorithm then loops while some vertex remains uncolored. Within the loop, it �rst assigns
colors to the roots in parallel (Line 18) by setting each root to the �rst unused color in
its neighborhood (Lines 5–6). Finally, it updates the number of �nished vertices by the
number of roots (Line 19) and computes the next rootset by applying edgeMap on the
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rootset with a map function that decrements the priority over all (u,v ) edges incident to
Roots where Priority[v] > 0. The map function returns true only if the priority decrement
decreases the priority of the neighboring vertex to 0 (Line 8).

Approximate Set Cover

The set cover problem can be modeled by a bipartite graph where sets and elements
are vertices, with an edge between a set and an element if and only if the set covers
that element. The approximate set cover problem is as follows: given a bipartite graph
G = (V = (S,E),A) representing an unweighted set cover instance, compute a subset
S′ ⊆ S such that ∪s∈S ′N (s ) = E and |S′| is an O (lgn)-approximation to the optimal cover.
Like graph coloring, the set cover problem is NP-hard to solve optimally, and a sequential
greedy algorithm computes an Hn-approximation in O (m) time for unweighted sets, and
O (m lgm) time for weighted sets, where Hn =

∑n
k=1 1/k and m is the sum of the sizes of

the sets (or the number of edges in the graph). There has been signi�cant work on �nding
work-e�cient parallel algorithms that achieves an Hn-approximation [54, 283, 67, 68, 207].

Algorithm 18 shows pseudocode for the Blelloch et al. algorithm [67] which runs in
O (m) work andO (lg3 n) depth on the PW-BF-binary-forking model. Our presentation here
is based on the bucketing-based implementation from Julienne [115], with one signi�cant
change regarding how sets acquire elements which we discuss below. The algorithm �rst
buckets the sets based on their degree, placing a set covering D elements into blg1+ϵ Dc’th
bucket (Line 24). It then processes the buckets in decreasing order (Lines 26–38). In
each round, the algorithm extracts the highest bucket (Sets) (Line 26) and packs out the
adjacency lists of vertices in this bucket to remove edges to neighbors that are covered in
prior rounds (Line 27). The output is an augmented vertexSubset, SetsD, containing each
set along with its new degree after packing out all dead edges. It then maps over SetsD,
updating the degree in D for each set with the new degree (Line 28). The algorithm then
�lters SetsD to build a vertexSubset Active, which contains sets that have su�ciently high
degree to continue in this round (Line 29).

The next few steps of the algorithm implement one step of MaNIS (Maximal Nearly-
Independent Set) [67], to compute a set of sets from Active that have little overlap. First,
the algorithm assigns a random priority to each currently active set using a random
permutation, storing the priorities in the array π (Lines 30–31). Next, it applies edgeMap
(Line 32) where the map function (Line 12) uses a priority-write on each (s, e ) edge to try
and acquire an element e using the priority of the visiting set, π [s]. It then computes the
number of elements each set successfully acquired using the srcCount primitive (Line 33)
with the predicate WonElm (Line 10) that checks whether the minimum value stored at
an element is the unique priority for the set. The �nal MaNIS step maps over the vertices
and the number of elements they successfully acquired (Line 34) with the map function
WonEnough (Lines 13–16) which adds sets that covered enough elements to the cover.
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Algorithm 18 Approximate Set Cover
1: El[0, . . . , |E |) B ∞
2: Fl[0, . . . , |E |) B uncovered
3: D[0, . . . , |S |) B {deg(s0), . . . , deg(sn−1)} . initialized to the initial degree of s ∈ S
4: π [0, |S |) B 0 . map from sets to priorities; entries are updated on each round for active sets
5: b . current bucket number
6: procedure BucketNum(s) return blg1+ϵ D[s]c
7: procedure ElmUncovered(s, e) return Fl[e] = uncovered

8: procedure UpdateD(s, d) D[s] B d

9: procedure AboveThreshold(s, d) return d ≥ d(1 + ϵ )max(b,0)e

10: procedure WonElm(s , e) return π [s] = El[e]
11: procedure InCover(s) return D[s] = ∞
12: procedure VisitElms(s , e) priorityWrite(&El[e],π [s], <)
13: procedure WonEnough(s , elmsWon)
14: threshold B d(1 + ϵ )max(b−1,0)e

15: if (elmsWon > threshold) then

16: D[s] B ∞ . places s in the set cover
17: procedure ResetElms(s , e)
18: if (El[e] = s) then

19: if (InCover(s )) then

20: Fl[e] B covered . e is covered by s
21: else

22: El[e] B ∞ . reset e
23: procedure SetCover(G B (S ∪ E,A))
24: B B makeBuckets( |S |,BucketNum,decreasing) . process from largest to smallest

log-degree
25: (b, Sets) B B.nextBucket()
26: while (b , nullbkt) do

27: SetsD B srcPack(G, Sets,ElmUncovered) . pack out edges to covered elements
28: vertexMap(SetsD,UpdateD) . update set degrees in D
29: Active B vertexFilter(SetsD,AboveThreshold) . extract sets with su�ciently

high degree
30: πA B RandomPermutation( |Active |)
31: ∀i ∈ [0, |Active |), set π [Active[i]] B πA[i] . assign each active set a random priority
32: edgeMap(G,Active,VisitElms,ElmUncovered) . active sets try to acquire incident

elements
33: ActiveCts B srcCount(G,Active,WonElm) . count number of neighbors won by

each set
34: vertexMap(ActiveCts,WonEnough) . place sets that won enough into the cover
35: edgeMap(G,Active,ResetElms) . update neighboring elements state based on set

status
36: Rebucket B{(s,B.getBucket(b,BucketNum(s )) | s ∈ Sets and !InCover(s )}
37: B.updateBuckets(Rebucket) . update buckets of sets that failed to join the cover
38: (b, Sets) B B.nextBucket()
39: return {s ∈ S | InCover(s ) = true}
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The �nal step in a round is to rebucket all sets which were not added to the cover to be
processed in a subsequent round (Lines 36–37). The rebucketed sets are those in Sets that
were not added to the cover, and the new bucket they are assigned to is calculated by using
the getBucket primitive with the current bucket, b, and a new bucket calculated based
on their updated degree (Line 6).

Our implementation of approximate set cover in this thesis is based on the implemen-
tation from Julienne in Chapter 4, and we refer the reader to this chapter for more details
about the bucketing-based implementation. The main change we made in this chapter
is to ensure that we correctly set random priorities for active sets in each round of the
algorithm. Both the implementation in Julienne as well as an earlier implementation of
the algorithm [68] use the original IDs of sets instead of picking random priorities for
all sets that are active on a given round. This approach can cause very few vertices to
be added in each round on meshes and other graphs with a large amount of symmetry.
Instead, in our implementation, for AS , the active sets on a round, we generate a random
permutation of [0, . . . , |AS | − 1] and write these values into a pre-allocated dense array
with size proportional to the number of sets (Lines 30—31). We give experimental details
regarding this change in Section 5.8.

5.5 Substructure Problems

k-core

A k-core of a graph is a maximal subgraph H where the degree of every vertex in H is ≥ k .
The defncoreness of a vertex is the maximum k-core a vertex participates in. The k-core
problem in this thesis is to compute a mapping from each vertex to its coreness value.
k-cores were de�ned independently by Seidman [305], and by Matula and Beck [232]
who also gave a linear-time algorithm for computing the coreness value of all vertices.
Anderson and Mayr showed that k-core (and therefore coreness) is in NC for k ≤ 2, but is
P-complete for k ≥ 3 [23]. The Matula and Beck algorithm is simple and practical—it �rst
bucket-sorts vertices by their degree, and then repeatedly deletes the minimum-degree
vertex. The a�ected neighbors are moved to a new bucket corresponding to their induced
degree. As each edge in each direction and vertex is processed exactly once, the algorithm
runs in O (m + n) work. In Chapter 4, we presented a parallel algorithm based on the
bucketing interface and data structure designed in that chapter that runs in runs inO (m+n)
expected work, and ρ lgn depth whp. ρ is the peeling-complexity of the graph, de�ned
as the number of rounds to peel the graph to an empty graph where each peeling step
removes all minimum degree vertices. The k-core algorithm studied in this chapter is the
same algorithm and implementation as presented in Chapter 4, and we avoid presenting it
redundantly here.
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Algorithm 19 Approximate Densest Subgraph
1: D[0, . . . ,n) B 0
2: procedure ApproximateDensestSubgraph(G (V ,E))
3: vertexMap(V , fn v → D[v] B d (v )) . induced degrees are initially original degrees
4: S B V
5: Smax B ∅

6: while S , ∅ do
7: R B vertexSubset({v ∈ S | D[v] < 2(1 + ϵ )D (S )}) . D (S ) B |E (G[S]) |

|S |
8: vertexMap(R, fn v → return A[v] B 0)
9: condFn B fn v → return true

10: applyFn B fn (v, edgesRemoved) →
11: D[v] B D[v] − edgesRemoved

12: return None
13: nghCount(G,R, condFn, applyFn)
14: S B S \ R
15: if D (S ) > D (Smax) then
16: Smax B S

17: return Smax

Approximate Densest Subgraph

The densest subgraph problem is to �nd a subset of vertices in an undirected graph with
the highest density. The density of a subset of vertices S is the number of edges in the
subgraph S divided by the number of vertices. The approximate densest problem is to
compute a subset U ⊆ V s.t. the density of U is a 2(1 + ϵ ) approximation of the density of
the densest subgraph of G.

The problem is a classic graph optimization problem that admits exact polynomial-time
solutions using either a reduction to �ow [153] or LP-rounding [96]. In his paper, Charikar
also gives a simple O (m + n) work 2-approximation algorithm based on computing a
degeneracy ordering of the graph, and taking the maximum density subgraph over all
su�xes of the degeneracy order.4 The problem has also received attention in parallel
models of computation [38, 37]. Bahmani et al. give a (2 + ϵ )-approximation running in
O (lg1+ϵ n) rounds of MapReduce [38]. Subsequently, Bahmani et al. [37] showed that a
(1+ϵ ) can be found inO (lgn/ϵ2) rounds of MapReduce by using the multiplicative-weights
approach on the dual of the natural LP for densest subgraph. To the best our knowledge,
it is open whether the densest subgraph problem can be exactly solved in NC.

In this chapter, we implement the elegant (2+ ϵ )-approximation algorithm of Bahmani

4We note that the 2-approximation can be work-e�ciently solved in the same depth as our k-core
algorithm by augmenting the k-core algorithm to return the order in which vertices are peeled. Computing
the maximum density subgraph over su�xes of the degeneracy order can be done using scan.
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et al. (Algorithm 19). Our implementation of the algorithm runs in O (m + n) work and
O (lg1+ϵ n lgn) depth. The algorithm starts with a candidate subgraph, S , consisting of all
vertices, and an empty approximate densest subgraph Smax (Lines4–5). It also maintains
an array with the induced degree of each vertex in the array D, which is initially just
its degree in G (Line 3). The main loop iteratively peels vertices with degree below the
density threshold in the current candidate subgraph (Lines 6–16). Speci�cally, it �rst �nds
all vertices with induced degree less than 2(1 + ϵ )D (S ) (Line 7). Next, it calls nghCount
(see Section 4.3), which computes for each neighbor of R the number of incident edges
removed by deleting vertices in R from the graph, and updates the neighbor’s degree in D
(Line 11). Finally, it removes vertices in R from S (Line 14). If the density of the updated
subgraph S is greater than the density of Smax, the algorithm updates Smax to be S .

Bahmani et al. show that this algorithm removes a constant factor of the vertices in
each round, but do not consider the work or total number of operations performed by
their algorithm. We brie�y sketch how the algorithm can be implemented in O (m + n)
work and O (lg1+ϵ n lgn) depth. Instead of computing the density of the current subgraph
by scanning all edges, we maintain it explicitly in an array, D (Line 3), and update it as
vertices are removed from S . Each round of the algorithm does work proportional to
vertices in S to compute R (Line 7) but since S decreases by a constant factor in each round
the work of these steps is O (n) over all rounds. Computing the new density can be done
by computing the number of edges between R and S , which only requires scanning edges
incident to vertices in R using nghCount (Line 13). Therefore, the edges incident to a
vertex are scanned exactly once, in the round when it is included in R, and so the algorithm
performs O (m + n) work. The depth is O (lg1+ϵ n lgn) since there are O (lg1+ϵ n) rounds
each of which perform a �lter and nghCount which both run in O (lgn) depth.

We note that an earlier implementation of our algorithm used the edgeMap primi-
tive combined with fetchAndAdd to decrement degrees of neighbors of R. We found
that since a large number of vertices are removed in each round, using fetchAndAdd
can cause contention, especially on graphs containing vertices with high degrees. Our
implementation uses a work-e�cient histogram procedure to implement nghCount (see
Section 5.7) which updates the degrees while incurring very little contention.

Triangle Counting

The triangle counting problem is to compute the global count of the number of triangles in
the graph. Triangle counting has received signi�cant recent attention due to its numerous
applications in Web and social network analysis. There have been dozens of papers on
sequential triangle counting [183, 16, 302, 301, 210, 265, 268]. The fastest algorithms rely
on matrix multiplication and run in either O (nω ) or O (m2ω/(1+ω) ) work, where ω is the
best matrix multiplication exponent [183, 16]. The fastest algorithm that does not rely
matrix multiplication requires O (m3/2) work [302, 301, 210], which also turns out to be
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Algorithm 20 Triangle Counting
1: procedure FilterEdge(u,v)
2: return d (u) > d (v ) or (d (u) = d (v ) and u > v )

3: procedure TriangleCounting(G (V ,E))
4: G ′ B filterGraph(G, FilterEdge) . orient edges from lower to higher degree
5: vertexCounts[0, . . . ,n) B 0
6: vertexMap(V , fn u → vertexCounts[u] B
7: G .getVertex(u).reduceOutNgh(fn (u,v ) →

return intersection(N + (u),N + (v )), (0,+)))
8: return reduce(vertexCounts, (0,+))

much more practical. Parallel algorithms with O (m3/2) work have been designed [323,
3, 223], with Shun and Tangwongsan [323] showing an algorithm that requires O (lgn)
depth on the binary-forking model.5 The implementation from [323] parallelizes Latapy’s
compact-forward algorithm, which creates a directed graph DG where an edge (u,v ) ∈ E
is kept in DG i� deg(u) < deg(v ). Although triangle counting can be done directly on the
undirected graph in the same work and depth asymptotically, directing the edges helps
reduce work, and ensures that every triangle is counted exactly once.

In this chapter we implement the triangle counting algorithm described in [323]
(Algorithm 20). The algorithm �rst uses the filterGraph primitive (Line 4) to direct the
edges in the graph from lower-degree to higher-degree, breaking ties lexicographically
(Line 2). It then maps over all vertices in the graph in parallel (Line 6), and for each vertex
performs a sum-reduction over its out-neighbors, where the value for each neighbor is the
intersection size between the directed neighborhoods N +(u) and N +(v ) (Line 7).

We note that we had to make several signi�cant changes to the implementation in
order to run e�ciently on large compressed graphs. First, we parallelized the creation of
the directed graph; this step creates a directed graph encoded in the parallel-byte format
in O (m) work and O (lgn) depth using the filterGraph primitive. We also parallelized
the merge-based intersection algorithm to make it work in the parallel-byte format. We
give more details on these techniques in Section 5.7.

5.6 Eigenvector Problems

PageRank

PageRank is a centrality algorithm �rst used at Google to rank webpages [85]. The
algorithm takes a graph G = (V ,E), a damping factor 0 ≤ γ ≤ 1 and a constant ϵ which

5The algorithm in [323] was described in the Parallel Cache Oblivious model, with a depth of O (lg3/2 n).
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Algorithm 21 PageRank
1: Pcurr[0, . . . ,n) B 1/n
2: Pnext[0, . . . ,n) B 0
3: di�s[0, . . . ,n) B 0
4: procedure PageRank(G)
5: Frontier B vertexSubset({0, . . . ,n − 1})
6: condFn B fn u → return true
7: mapFn B fn (u,v ) → return Pcurr[u]/d (u)
8: applyFn B fn (v, contribution) →
9: Pnext[v] B γ ∗ contribution +

1−γ
n

10: di�s[v] B |Pnext[v] − Pcurr[v]|
11: return None
12: error B ∞

13: while (error < ϵ) do

14: nghReduceApply(G, ids,mapFn, (0,+), condFn, applyFn)
15: error B reduce(di�s, (0,+))
16: swap(Pcurr , Pnext )
17: return Pcurr

controls convergence. Initially, the PageRank of each vertex is 1/n. In each iteration, the
algorithm updates the PageRanks of the vertices using the following equation:

Pv =
1 − γ
n
+ γ

∑
u∈N− (v )

Pu
deg
+(u)

The PageRank algorithm terminates once the l1 norm of the di�erences between
PageRank values between iterations is below ϵ . The algorithm implemented in this chapter
is an extension of the implementation of PageRank described in Ligra [319]. The main
changes are using a contention-avoiding reduction primitive, which we describe in more
detail below. Some PageRank implementations used in practice actually use an algorithm
called PageRank-Delta [222], which modi�es PageRank by only activating a vertex if its
PageRank value has changed su�ciently. However, the work and depth of this algorithm
are the same as that of PageRank in the worst case, and therefore we chose to implement
the classic algorithm.

We show pseudocode for our PageRank implementation in Algorithm 21. The initial
PageRank values are set to 1/n (Line 1). The algorithm initializes a frontier containing all
vertices (Line 5), and sets the error (the l1 norm between consecutive PageRank vectors)
to∞ (Line 12). The algorithm then iterates the PageRank update step while the error is
above the threshold ϵ (Lines 13–16). The update is implemented using the nghReduce
primitive (see Section 4.3 for details on the primitive). The condFn function (Line 6)
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speci�es that value should be aggregated for each vertex with non-zero in-degree. The
mapFn function pulls a PageRank contribution of Pcurr[u]/d (u) for each in-neighbor u in
the frontier (Line 7). Finally, after the contributions to each neighbor have been summed
up, the applyFn function is called on a pair of a neighboring vertex v , and its contribution
(Lines 8–11). The apply step updates the next PageRank value for the vertex using the
PageRank equation above (Line 9) and updates the di�erence in PageRank values for this
vertex in the di�s vector (Line 10). The last steps in the loop applies a parallel reduction
over the di�erences vector to update the current error (Line 15) and �nally swaps the
current and next PageRank vectors (Line 16).

The main modi�cation we made to the implementation from Ligra was to implement
the dense iterations of the algorithm using the reduction primitive nghReduce, which
can be carried out over the incoming neighbors of a vertex in parallel, without using a
fetchAndAdd instruction. Each iteration of our implementation requires O (m + n) work
and O (lgn) depth (note that the bounds hold deterministically since in each iteration we
can apply a dense, or pull-based implementation which performs a reduction over the
in-neighbors of each vertex). As the number of iterations required for PageRank to �nish
for a given ϵ depends on the structure of the input graph, our benchmark measures the
time for a single iteration of PageRank.

5.7 Implementations and Techniques

In this section, we introduce several general implementation techniques and optimizations
that we use in our algorithms. The techniques include a fast histogram implementation
useful for reducing contention in the k-core algorithm, a cache-friendly sparse edgeMap
implementation that we call edgeMapBlocked, and compression techniques used to
e�ciently parallelize algorithms on massive graphs.

5.7.1 A Work-e�icient Histogram Implementation

Our initial implementation of the peeling-based algorithm for k-core algorithm su�ered
from poor performance due to a large amount of contention incurred by fetchAndAdds
on high-degree vertices. This occurs as many social-networks and web-graphs have large
maximum degree, but relatively small degeneracy, or largest non-empty core (labeled kmax

in Table 2.1). For these graphs, we observed that many early rounds, which process vertices
with low coreness perform a large number of fetchAndAdds on memory locations
corresponding to high-degree vertices, resulting in high contention [326]. To reduce
contention, we designed a work-e�cient histogram implementation that can perform
this step while only incurring O (lgn) contention whp The Histogram primitive takes a
sequence of (K,T) pairs, and an associative and commutative operator R : T × T → T
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and computes a sequence of (K,T) pairs, where each key k only appears once, and its
associated value t is the sum of all values associated with keys k in the input, combined
with respect to R.

A useful example of histogram to consider is summing for each v ∈ N (F ) for a
vertexSubset F , the number of edges (u,v ) where u ∈ F (i.e., the number of incoming
neighbors from the frontier). This operation can be implemented by running histogram on
a sequence where each v ∈ N (F ) appears once per (u,v ) edge as a tuple (v, 1) using the
operator +. One theoretically e�cient implementation of histogram is to simply semisort
the pairs using the work-e�cient semisort algorithm from [161]. The semisort places pairs
from the sequence into a set of heavy and light buckets, where heavy buckets contain a
single key that appears many times in the input sequence, and light buckets contain at
most O (lg2 n) distinct keys (k,v ) keys, each of which appear at most O (lgn) times whp
(heavy and light keys are determined by sampling). We compute the reduced value for
heavy buckets using a standard parallel reduction. For each light bucket, we allocate a
hash table, and hash the keys in the bucket in parallel to the table, combining multiple
values for the same key using R. As each key appears at most O (lgn) times whp we incur
at most O (lgn) contention whp The output sequence can be computed by compacting the
light tables and heavy arrays.

While the semisort implementation is theoretically e�cient, it requires a likely cache
miss for each key when inserting into the appropriate hash table. To improve cache
performance in this step, we implemented a work-e�cient algorithm with O (nϵ ) depth
based on radix sort. Our implementation is based on the parallel radix sort from PBBS [324].
As in the semisort, we �rst sample keys from the sequence and determine the set of heavy-
keys. Instead of directly moving the elements into light and heavy buckets, we break up
the input sequence into O (n1−ϵ ) blocks, each of size O (nϵ ), and sequentially sort the keys
within a block into light and heavy buckets. Within the blocks, we reduce all heavy keys
into a single value and compute an array of size O (nϵ ) which holds the starting o�set of
each bucket within the block. Next, we perform a segmented-scan [60] over the arrays of
the O (n1−ϵ ) blocks to compute the sizes of the light buckets, and the reduced values for
the heavy-buckets, which only contain a single key. Finally, we allocate tables for the light
buckets, hash the light keys in parallel over the blocks and compact the light tables and
heavy keys into the output array. Each step runs inO (n) work andO (nϵ ) depth. Compared
to the original semisort implementation, this version incurs fewer cache misses because
the light keys per block are already sorted and consecutive keys likely go to the same hash
table, which �ts in cache. We compared our times in the histogram-based version of k-core
and the fetchAndAdd-based version of k-core and saw between a 1.1–3.1x improvement
from using the histogram.
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Algorithm 22 edgeMapBlocked
1: procedure edgeMapBlocked(G,U , F )
2: O B Pre�x sums of degrees of u ∈ U
3: dU B

∑
u ∈U deg(u)

4: nblocks B ddU /bsizee
5: B B Result of binary search for nblocks indices into O

6: I B Intermediate array of size
∑
u ∈U deg(u)

7: A B Intermediate array of size nblocks

8: parfor i ∈ B do

9: Process work in B[i] and pack live neighbors into I [ibsize]
10: A[i] B Number of live neighbors
11: R B Pre�x sum A and compact I
12: return R

5.7.2 edgeMapBlocked

One of the core primitives used by our algorithms is edgeMap (described in Chapter 2 and
Section 3.7). The push-based version of edgeMap, edgeMapSparse, takes a frontierU and
iterates over all (u,v ) edges incident to it. It applies an update function on each edge that
returns a boolean indicating whether or not the neighbor should be included in the next
frontier. The standard implementation of edgeMapSparse �rst computes pre�x-sums of
deg(u),u ∈ U to compute o�sets, allocates an array of size

∑
u∈U deg(u), and iterates over

all u ∈ U in parallel, writing the ID of the neighbor to the array if the update function F
returns true, and ⊥ otherwise. It then �lters out the ⊥ values in the array to produce the
output vertexSubset.

In real-world graphs, |N (U ) |, the number of unique neighbors incident to the current
frontier is often much smaller than

∑
u∈U deg(u). However, edgeMapSparse will always

perform
∑

u∈U deg(u) writes and incur a proportional number of cache misses, despite the
size of the output being at most |N (U ) |. More precisely, the size of the output is at most
LN (U ) ≤ |N (U ) |, where LN (U ) is the number of live neighbors ofU , where a live neighbor
is a neighbor of the current frontier for which F returns true. To reduce the number
of cache misses we incur in the push-based traversal, we implemented a new version
of edgeMapSparse that performs at most LN (U ) writes that we call edgeMapBlocked.
The idea behind edgeMapBlocked is to logically break the edges incident to the current
frontier up into a set of blocks, and iterate over the blocks sequentially, packing live
neighbors, compactly for each block. We then simply pre�x-sum the number of live
neighbors per-block, and compact the block outputs into the output array.

We now describe a theoretically e�cient implementation of edgeMapBlocked (Algo-
rithm 22). As in edgeMapSparse, we �rst compute an array of o�sets O (Line 1) by pre�x
summing the degrees of u ∈ U . We process the edges incident to this frontier in blocks
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of size bsize. As we cannot a�ord to explicitly write out the edges incident to the current
frontier to block them, we instead logically assign the edges to blocks. Each block searches
for a range of vertices to process with bsize edges; the i’th block binary searches the o�sets
array to �nd the vertex incident to the start of the (i · bsize)’th edge, storing the result into
B[i] (Lines 4–5). The vertices that block i must process are therefore between B[i] and
B[i + 1]. We note that multiple blocks can be assigned to process the edges incident to a
high-degree vertex. Next, we allocate an intermediate array I of size dU (Line 6), but do
not initialize the memory, and an array A that stores the number of live neighbors found
by each block (Line 7). Next, we process the blocks in parallel by sequentially applying F
to each edge in the block and compactly writing any live neighbors to I [i · bsize] (Line 9),
and write the number of live neighbors to A[i] (Line 10). Finally, we do a pre�x sum on A,
which gives o�sets into an array of size proportional to the number of live neighbors, and
copy the live neighbors in parallel to R, the output array (Line 11).

We found that this optimization helps the most in algorithms where there is a signi�cant
imbalance between the size of the output of each edgeMap, and

∑
u∈U deg(u). For example,

in weighted BFS, relatively few of the edges actually relax a neighboring vertex, and so
the size of the output, which contains vertices that should be moved to a new bucket,
is usually much smaller than the total number of edges incident to the frontier. In this
case, we observed as much as a 1.8x improvement in running time by switching from
edgeMapSparse to edgeMapBlocked.

5.7.3 Techniques for overlapping searches

In this section, we describe how we compute and update the reachability labels for vertices
that are visited in a phase of our SCC algorithm. Recall that each phase performs a graph
traversal from the set of active centers on this round, CA, and computes for each center
c , all vertices in the weakly-connected component for the subproblem of c that can be
reached by a directed path from it. We store this reachability information as a set of (u, ci )
pairs in a hash-table, which represent the fact that u can be reached by a directed path
from ci . A phase performs two graph traversals from the centers to compute RF and RB ,
the out-reachability set and in-reachability sets respectively. Each traversal allocates an
initial hash table and runs rounds of edgeMap until no new label information is added to
the table.

The main challenge in implementing one round in the traversal is (1) ensuring that the
table has su�cient space to store all pairs that will be added this round, and (2) e�ciently
iterating over all of the pairs associated with a vertex. We implement (1) by performing a
parallel reduce to sum over vertices u ∈ F , the current frontier, the number of neighbors v
in the same subproblem, multiplied by the number of distinct labels currently assigned
to u. This upper-bounds the number of distinct labels that could be added this round,
and although we may overestimate the number of actual additions, we will never run out
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of space in the table. We update the number of elements currently in the table during
concurrent insertions by storing a per-processor count which gets incremented whenever
the processor performs a successful insertion. The counts are then summed together at
the end of a round and used to update the count of the number of elements in the table.

One simple implementation of (2) is to simply allocate O (lgn) space for every vertex,
as the maximum number of centers that visit any vertex during a phase is at most O (lgn)
whp However, this will waste a signi�cant amount of space, as most vertices are visited
just a few times. Instead, our implementation stores (u, c ) pairs in the table for visited
vertices u, and computes hashes based only on the ID of u. As each vertex is only expected
to be visited a constant number of times during a phase, the expected probe length is still
a constant. Storing the pairs for a vertex in the same probe-sequence is helpful for two
reasons. First, we may incur fewer cache misses than if we had hashed the pairs based on
both entries, as multiple pairs for a vertex can �t in the same cache line. Second, storing
the pairs for a vertex along the same probe sequence makes it extremely easy to �nd
all pairs associated with a vertex u, as we simply perform linear-probing, reporting all
pairs that have u as their key until we hit an empty cell. Our experiments show that this
technique is practical, and we believe that it may have applications in similar algorithms,
such as computing least-element lists or FRT trees in parallel [75, 66].

5.7.4 Primitives on Compressed Graphs

Many of our algorithms are concisely expressed using fundamental primitives such as map,
map-reduce, �lter, pack, and intersection. To run our algorithms without any modi�cations
on compressed graphs, we wrote new implementations of these primitives using using the
parallel-byte format from Ligra+, some of which required some new techniques in order to
be theoretically e�cient. We �rst review the byte and parallel-byte formats from [322]. In
byte coding, we store a vertex’s neighbor list by di�erence encoding consecutive vertices,
with the �rst vertex di�erence encoded with respect to the source. Decoding is done by
sequentially uncompressing each di�erence, and summing the di�erences into a running
sum which gives the ID of the next neighbor. As this process is sequential, graph algorithms
using the byte format that map over the neighbors of a vertex will require Ω(∆) depth.
The parallel-byte format from Ligra+ breaks the neighbors of a high-degree vertex into
blocks, where each block contains a constant number of neighbors. Each block is di�erence
encoded with respect to the source. As each block can have a di�erent size, it also stores
o�sets that point to the start of each block. The format stores the blocks in a neighbor list
L in sorted order.

We now describe e�cient implementations of primitives used by our algorithms. All
descriptions are given for neighbor lists coded in the parallel-byte format. The Map

primitive takes as input neighbor list L, and a map function F , and applies F to each ID in
L. This can be implemented with a parallel-for loop across the blocks, where each iteration
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decodes its block sequentially. Our implementation of map runs inO ( |L|) work andO (lgn)
depth. Map-Reduce takes as input a neighbor list L, a map function F : vtx → T and a
binary associative function R and returns the sum of the mapped elements with respect to
R. We perform map-reduce similarly by �rst mapping over the blocks, then sequentially
reducing over the mapped values in each block. We store the accumulated value on the
stack or in an allocated array if the number of blocks is large enough. Finally, we reduce
the accumulated values using R to compute the output. Our implementation of map-reduce
runs in O ( |L|) work and O (lgn) depth.

Filter takes as input a neighbor list L, a predicate P , and an array T into which the
vertices satisfying P are written, in the same order as in L. Our implementation of �lter
also takes as input an array S , which is an array of size deg(v ) space for lists L larger than
a constant threshold, and null otherwise. In the case where L is large, we implement the
�lter by �rst decoding L into S in parallel; each block in L has an o�set into S as every
block except possibly the last block contains the same number of vertex IDs. We then �lter
S into the output array T . In the case where L is small we just run the �lter sequentially.
Our implementation of �lter runs in O ( |L|) work and O (lgn) depth. Pack takes as input
a neighbor list L and a predicate P function, and packs L, keeping only vertex IDs that
satis�ed P . Our implementation of pack takes as input an array S , which an array of size
2 ∗ deg(v ) for lists larger than a constant threshold, and null otherwise. In the case where
L is large, we �rst decode L in parallel into the �rst deg(v ) cells of S . Next, we �lter these
vertices into the second deg(v ) cells of S , and compute the new length of L. Finally, we
recompress the blocks in parallel by �rst computing the compressed size of each new
block. We pre�x-sum the sizes to calculate o�sets into the array and �nally compress the
new blocks by writing each block starting at its o�set. When L is small we just pack L
sequentially. We make use of the pack and �lter primitives in our implementations of
maximal matching, minimum spanning forest, and triangle counting. Our implementation
of pack runs in O ( |L|) work and O (lgn) depth.

The Intersection primitive takes as input two neighbor lists La and Lb and computes
the size of the intersection of La and Lb (|La | ≤ |Lb |). We implement an algorithm similar
to the optimal parallel intersection algorithm for sorted lists. As the blocks are compressed,
our implementation works on the �rst element of each block, which can be quickly decoded.
We refer to these elements as block starts. If the number of blocks in both lists sum to less
than a constant, we intersect them sequentially. Otherwise, we take the start vs of the
middle block in La , and binary search over the starts of Lb to �nd the �rst block whose
start is less than or equal to vs . Note that as the closest value less than or equal to vs could
be in the middle of the block, the subproblems we generate must consider elements in
the two adjoining blocks of each list, which adds an extra constant factor of work in the
base case. Our implementation of intersection runs in O ( |La | lg(1 + |Lb |/|La |)) work and
O (lgn) depth.
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Graph Dataset Num. Vertices Num. Edges diam ρ kmax

LiveJournal 4,847,571 68,993,773 16 ∼ ∼

LiveJournal-Sym 4,847,571 85,702,474 20 3480 372
com-Orkut 3,072,627 234,370,166 9 5,667 253
Twitter 41,652,231 1,468,365,182 65* ∼ ∼

Twitter-Sym 41,652,231 2,405,026,092 23* 14,963 2488
3D-Torus 1,000,000,000 6,000,000,000 1500* 1 6
ClueWeb 978,408,098 42,574,107,469 821* ∼ ∼

ClueWeb-Sym 978,408,098 74,744,358,622 132* 106,819 4244
Hyperlink2014 1,724,573,718 64,422,807,961 793* ∼ ∼

Hyperlink2014-Sym 1,724,573,718 124,141,874,032 207* 58,711 4160
Hyperlink2012 3,563,602,789 128,736,914,167 5275* ∼ ∼

Hyperlink2012-Sym 3,563,602,789 225,840,663,232 331* 130,728 10565
Table 5.2: Graph inputs, including vertices and edges. diam is the diameter of the graph. For
undirected graphs, ρ and kmax are the number of peeling rounds, and the largest non-empty core
(degeneracy). We mark diam values where we are unable to calculate the exact diameter with *
and report the e�ective diameter observed during our experiments, which is a lower bound on the
actual diameter.

5.8 Experiments

In this section, we describe our experimental results on a set of real-world graphs and also
discuss related experimental work. Tables 5.4 and 5.5 show the running times for our
implementations on our graph inputs. For compressed graphs, we use the compression
schemes from Ligra+ [322], which we extended to ensure theoretical e�ciency.

5.8.1 Experimental Setup and Graph Inputs

Experimental Setup. We ran all of our experiments on a 72-core Dell PowerEdge R930
(with two-way hyper-threading) with 4× 2.4GHz Intel 18-core E7-8867 v4 Xeon processors
(with a 4800MHz bus and 45MB L3 cache) and 1TB of main memory. Our programs use Cilk
Plus to express parallelism and are compiled with the g++ compiler (version 5.4.1) with the
-O3 �ag. By using Cilk’s work-stealing scheduler we are able obtain an expected running
time ofW /P +O (D) for an algorithm withW work and D depth on P processors [77]. For
the parallel experiments, we use the command numactl -i all to balance the memory
allocations across the sockets. All of the speedup numbers we report are the running times
of our parallel implementation on 72-cores with hyper-threading over the running time of
the implementation on a single thread.
Graph Data. To show how our algorithms perform on graphs at di�erent scales, we
selected a representative set of real-world graphs of varying sizes. Most of the graphs are
Web graphs and social networks—low diameter graphs that are frequently used in practice.
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Graph Dataset Uncompressed Compressed Savings

ClueWeb 324GB 115GB 2.81x
ClueWeb-Sym 285GB 100GB 2.85x
Hyperlink2014 492GB 214GB 2.29x
Hyperlink2014-Sym 474GB 184GB 2.57x
Hyperlink2012 985GB 446GB 2.21x
Hyperlink2012-Sym 867GB 351GB 2.47x

Table 5.3: Compressed graph inputs, including memory required to store the graph in an uncom-
pressed CSR format, memory required to store the graph in the parallel byte-compressed CSR
format, and the savings obtained over the uncompressed format by the compressed format. The
number of vertices and edges in these graphs are given in Table 5.2.

To test our algorithms on large diameter graphs, we also ran our implementations on
3-dimensional tori where each vertex is connected to its 2 neighbors in each dimension.

We list the graphs used in our experiments, along with their size, approximate diameter,
peeling complexity [115], and degeneracy (for undirected graphs) in Table 5.2. LiveJournal
is a directed graph of the social network obtained from a snapshot in 2008 [81]. com-Orkut

is an undirected graph of the Orkut social network. Twi�er is a directed graph of the
Twitter network, where edges represent the follower relationship [208]. ClueWeb is a
Web graph from the Lemur project at CMU [81]. Hyperlink2012 and Hyperlink2014

are directed hyperlink graphs obtained from the WebDataCommons dataset where nodes
represent web pages [241]. 3D-Torus is a 3-dimensional torus with 1B vertices and 6B
edges. We mark symmetric (undirected) versions of the directed graphs with the su�x
-Sym. We create weighted graphs for evaluating weighted BFS, Borůvka, widest path,
and Bellman-Ford by selecting edge weights between [1, lgn) uniformly at random. We
process LiveJournal, com-Orkut, Twitter, and 3D-Torus in the uncompressed format, and
ClueWeb, Hyperlink2014, and Hyperlink2012 in the compressed format.

Table 5.3 lists the size in gigabytes of the compressed graph inputs used in this chapter
both with and without compression, and reports the savings obtained by using compression.
Note that the largest graph studied in this chapter, the directed Hyperlink2012 graph, barely
�ts in the main memory of our machine in the uncompressed format, but would leave
hardly any memory to be used for an algorithm analyzing this graph. Using compression
signi�cantly reduces the memory required to represent each graph (between 2.21–2.85x,
and 2.53x on average). We converted the graphs listed in Table 5.3 directly from the
WebGraph format to the compressed format used in this chapter by modifying a sequential
iterator method from the WebGraph framework [81].
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Application LiveJournal-Sym com-Orkut Twitter-Sym 3D-Torus
(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

Breadth-First Search (BFS) 0.59 0.018 32.7 0.41 0.012 34.1 5.45 0.137 39.7 301 5.53 54.4
Integral-Weight SSSP (weighted BFS) 1.45 0.107 13.5 2.03 0.095 21.3 33.4 0.995 33.5 437 18.1 24.1
General-Weight SSSP (Bellman-Ford) 3.39 0.086 39.4 3.98 0.168 23.6 48.7 1.56 31.2 6280 133 47.2
Single-Source Widest Path (Bellman-Ford) 3.48 0.090 38.6 4.39 0.098 44.7 42.4 0.749 56.6 580 9.7 59.7
Single-Source Betweenness Centrality (BC) 1.66 0.049 33.8 2.52 0.057 44.2 26.3 0.937 28.0 496 12.5 39.6
O (k )-Spanner 1.31 0.041 31.9 2.34 0.046 50.8 41.5 0.768 54.0 380 11.7 32.4
Low-Diameter Decomposition (LDD) 0.54 0.027 20.0 0.33 0.019 17.3 8.48 0.186 45.5 275 7.55 36.4
Connectivity 1.01 0.029 34.8 1.36 0.031 43.8 34.6 0.585 59.1 300 8.71 34.4
Spanning Forest 1.11 0.035 31.7 1.84 0.047 39.1 43.2 0.818 52.8 334 10.1 33.0
Biconnectivity 5.36 0.261 20.5 7.31 0.292 25.0 146 4.86 30.0 1610 59.6 27.0
Strongly Connected Components (SCC)* 1.61 0.116 13.8 ∼ ∼ ∼ 13.3 0.495 26.8 ∼ ∼ ∼

Minimum Spanning Forest (MSF) 3.64 0.204 17.8 4.58 0.227 20.1 61.8 3.02 20.4 617 23.6 26.1
Maximal Independent Set (MIS) 1.18 0.034 34.7 2.23 0.052 42.8 34.4 0.759 45.3 236 4.44 53.1
Maximal Matching (MM) 2.42 0.095 25.4 4.65 0.183 25.4 46.7 1.42 32.8 403 11.4 35.3
Graph Coloring 4.69 0.392 11.9 9.05 0.789 11.4 148 6.91 21.4 350 11.3 30.9
Approximate Set Cover 4.65 0.613 7.58 4.51 0.786 5.73 66.4 3.31 20.0 1429 40.2 35.5
k-core 3.75 0.641 5.85 8.32 1.33 6.25 110 6.72 16.3 753 6.58 114.4
Approximate Densest Subgraph 2.89 0.052 55.5 4.71 0.081 58.1 76.0 1.14 66.6 95.4 1.59 60.0
Triangle Counting (TC) 13.5 0.342 39.4 78.1 1.19 65.6 1920 23.5 81.7 168 6.63 25.3
PageRank Iteration 0.861 0.012 71.7 1.28 0.018 71.1 24.16 0.453 53.3 107 2.25 47.5

Table 5.4: Running times (in seconds) of our algorithms over symmetric graph inputs on a 72-core
machine (with hyper-threading) where (1) is the single-thread time, (72h) is the 72 core time using
hyper-threading, and (SU) is the parallel speedup (single-thread time divided by 72-core time). We
mark experiments that are not applicable for a graph with ∼, and experiments that did not �nish
within 5 hours with —. *SCC was run on the directed versions of the input graphs.

5.8.2 SSSP Problems

Our BFS, weighted BFS, Bellman-Ford, and betweenness centrality implementations
achieve between a 13–67x speedup across all inputs. We ran all of our shortest path
experiments on the symmetrized versions of the graph. Our widest path implementation
achieves between 38–72x speedup across all inputs, and our spanner implementation
achieves between 31–65x speedup across all inputs. We ran our spanner code with k = 4.
Our experiments show that our weighted BFS and Bellman-Ford implementations perform
as well as or better than our prior implementations from Julienne [115]. Our running
times for BFS and betweenness centrality are the same as the times of the implementa-
tions in Ligra [319]. We note that our running times for weighted BFS on the Hyperlink
graphs are larger than the times reported in Julienne. This is because the shortest-path
experiments in Julienne were run on directed version of the graph, where the average
vertex can reach signi�cantly fewer vertices than on the symmetrized version. We set a
�ag for our weighted BFS experiments on the ClueWeb and Hyperlink graphs that lets
the algorithm switch to a dense edgeMap once the frontiers are su�ciently dense, which
lets the algorithm run within half of the RAM on our machine. Before this change, our
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Application ClueWeb-Sym Hyperlink2014-Sym Hyperlink2012-Sym
(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

Breadth-First Search (BFS) 106 2.29 46.2 250 4.50 55.5 576 8.44 68.2
Integral-Weight SSSP (weighted BFS) 736 14.4 51.1 1390 22.3 62.3 3770 58.1 64.8
General-Weight SSSP (Bellman-Ford) 1050 16.2 64.8 1460 22.9 63.7 4010 59.4 67.5
Single-Source Widest Path (Bellman-Ford) 849 11.8 71.9 1211 16.8 72.0 3210 48.4 66.3
Single-Source Betweenness Centrality (BC) 569 27.7 20.5 866 16.3 53.1 2260 37.1 60.9
O (k )-Spanner 613 9.79 62.6 906 14.3 63.3 2390 36.3 65.8
Low-Diameter Decomposition (LDD) 176 3.62 48.6 322 6.84 47.0 980 16.6 59.0
Connectivity 381 6.01 63.3 710 11.2 63.3 1640 25.0 65.6
Spanning Forest 936 18.2 51.4 1319 22.4 58.8 2420 35.8 67.5
Biconnectivity 2250 48.7 46.2 3520 71.5 49.2 9860 165 59.7
Strongly Connected Components (SCC)* 1240 38.1 32.5 2140 51.5 41.5 8130 185 43.9
Minimum Spanning Forest (MSF) 2490 45.6 54.6 3580 71.9 49.7 9520 187 50.9
Maximal Independent Set (MIS) 551 8.44 65.2 1020 14.5 70.3 2190 32.2 68.0
Maximal Matching (MM) 1760 31.8 55.3 2980 48.1 61.9 7150 108 66.2
Graph Coloring 2050 49.8 41.1 3310 63.1 52.4 8920 158 56.4
Approximate Set Cover 1490 28.1 53.0 2040 37.6 54.2 5320 90.4 58.8
k-core 2370 62.9 37.6 3480 83.2 41.8 8515 184 46.0
Approximate Densest Subgraph 1380 19.6 70.4 1721 24.3 70.8 4420 61.4 71.9
Triangle Counting (TC) 13997 204 68.6 — 480 — — 1168 —
PageRank Iteration 256.1 3.49 73.3 385 5.17 74.4 973 13.1 74.2

Table 5.5: Running times (in seconds) of our algorithms over symmetric graph inputs on a 72-core
machine (with hyper-threading) where (1) is the single-thread time, (72h) is the 72 core time using
hyper-threading, and (SU) is the parallel speedup (single-thread time divided by 72-core time). We
mark experiments that are not applicable for a graph with ∼, and experiments that did not �nish
within 5 hours with —. *SCC was run on the directed versions of the input graphs.

weighted BFS implementation would request a large amount of memory when processing
the largest frontiers which then caused the graph to become partly evicted from the page
cache. For widest path, the times we report are for the Bellman-Ford version of the algo-
rithm, which we were surprised to �nd is consistently 1.1–1.3x faster than our algorithm
based on bucketing. We observe that our spanner algorithm is only slightly more costly
than computing connectivity on the same input.

In an earlier paper [115], we compared the running time of our weighted BFS imple-
mentation to two existing parallel shortest path implementations from the GAP benchmark
suite [45] and Galois [228], as well as a fast sequential shortest path algorithm from the
DIMACS shortest path challenge, showing that our implementation is between 1.07–1.1x
slower than the ∆-stepping implementation from GAP, and 1.6–3.4x faster than the Galois
implementation. Our old version of Bellman-Ford was between 1.2–3.9x slower than
weighted BFS; we note that after changing it to use the edgeMapBlocked optimization, it
is now competitive with weighted BFS and is between 1.2x faster and 1.7x slower on our
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graphs with the exception of 3D-Torus, where it performs 7.3x slower than weighted BFS,
as it performs O (n4/3) work on this graph.

5.8.3 Connectivity Problems

Our low-diameter decomposition (LDD) implementation achieves between 17–59x speedup
across all inputs. We �xed β to 0.2 in all of the codes that use LDD. The running time of
LDD is comparable to the cost of a BFS that visits most of the vertices. We are not aware of
any prior experimental work that reports the running times for an LDD implementation.

Our work-e�cient implementation of connectivity and spanning forest achieve 25–57x
speedup and 31–67x speedup across all inputs, respectively. We note that our implemen-
tation does not assume that vertex IDs in the graph are randomly permuted and always
generates a random permutation, even on the �rst round, as adding vertices based on their
original IDs can result in poor performance (for example on 3D-Torus). There are several
existing implementations of fast parallel connectivity algorithms [273, 324, 321, 332], how-
ever, only the implementation from [321], which presents the connectivity algorithm that
we implement in this chapter, is theoretically-e�cient. The implementation from Shun et
al. was compared to both the Multistep [332] and Patwary et al. [273] implementations,
and shown to be competitive on a broad set of graphs. We compared our connectivity
implementation to the work-e�cient connectivity implementation from Shun et al. on our
uncompressed graphs and observed that our code is between 1.2–2.1x faster in parallel.
Our spanning forest implementation is slightly slower than connectivity due to having to
maintain a mapping between the current edge set and the original edge set.

Despite our biconnectivity implementation having O (diam(G )) depth, our implemen-
tation achieves between a 20–59x speedup across all inputs, as the diameter of most of our
graphs is extremely low. Our biconnectivity implementation is about 3–5 times slower
than running connectivity on the graph, which seems reasonable as our current imple-
mentation performs two calls to connectivity, and one breadth-�rst search. There are
a several existing implementations of biconnectivity. Cong and Bader [105] parallelize
the Tarjan-Vishkin algorithm and demonstrated speedup over the Hopcroft-Tarjan (HT)
algorithm. Edwards and Vishkin [131] also implement the Tarjan-Vishkin algorithm using
the XMT platform, and show that their algorithm achieves good speedups. Slota and
Madduri [331] present a BFS-based biconnectivity implementation which requires O (mn)
work in the worst-case, but behaves like a linear-work algorithm in practice. We ran the
Slota and Madduri implementation on 36 hyper-threads allocated from the same socket,
the con�guration on which we observed the best performance for their code, and found
that our implementation is between 1.4–2.1x faster than theirs. We used a DFS-ordered
subgraph corresponding to the largest connected component to test their code, which
produced the fastest times. Using the original order of the graph a�ects the running time
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of their implementation, causing it to run between 2–3x slower as the amount of work
performed by their algorithm depends on the order in which vertices are visited.

Our strongly connected components implementation achieves between a 13–43x
speedup across all inputs. Our implementation takes a parameter β , which is the base of
the exponential rate at which we grow the number of centers added. We set β between
1.1–2.0 for our experiments and note that using a larger value of β can improve the running
time on smaller graphs by up to a factor of 2x. Our SCC implementation is between 1.6x
faster to 4.8x slower than running connectivity on the graph. There are several existing
SCC implementations that have been evaluated on real-world directed graphs [176, 332,
237]. The Hong et al. algorithm [176] is a modi�ed version of the FWBW-Trim algorithm
from McLendon et al. [237], but neither algorithm has any theoretical bounds on work or
depth. Unfortunately [176] do not report running times, so we are unable to compare our
performance with them. The Multistep algorithm [332] has a worst-case running time of
O (n2), but the authors point-out that the algorithm behaves like a linear-time algorithm
on real-world graphs. We ran our implementation on 16 cores con�gured similarly to their
experiments and found that we are about 1.7x slower on LiveJournal, which easily �ts in
cache, and 1.2x faster on Twitter (scaled to account for a small di�erence in graph sizes).
While the multistep algorithm is slightly faster on some graphs, our SCC implementation
has the advantage of being theoretically-e�cient and performs a predictable amount of
work.

Our minimum spanning forest implementation achieves between 17–54x speedup over
the implementation running on a single thread across all of our inputs. Obtaining practical
parallel algorithms for MSF has been a longstanding goal in the �eld, and several existing
implementations exist [34, 262, 106, 324, 388]. We compared our implementation with
the union-�nd based MSF implementation from PBBS [324] and the implementation of
Borůvka from [388], which is one of the fastest implementations we are aware of. Our
MSF implementation is between 2.6–5.9x faster than the MSF implementation from PBBS.
Compared to the edgelist based implementation of Borůvka from [388] our implementation
is between 1.2–2.9x faster.

5.8.4 Covering Problems

Our MIS and maximal matching implementations achieve between 31–70x and 25–70x
speedup across all inputs. The implementations by Blelloch et al. [64] are the fastest
existing implementations of MIS and maximal matching that we are aware of, and are the
basis for our maximal matching implementation. They report that their implementations
are 3–8x faster than Luby’s algorithm on 32 threads, and outperform a sequential greedy
MIS implementation on more than 2 processors. We compared our rootset-based MIS
implementation to the pre�x-based implementation, and found that the rootset-based
approach is between 1.1–3.5x faster. Our maximal matching implementation is between 3–
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4.2x faster than the implementation from [64]. Our implementation of maximal matching
can avoid a signi�cant amount of work, as each of the �lter steps can extract and permute
just the 3n/2 highest priority edges, whereas the edgelist-based version in PBBS must
permute all edges. Our coloring implementation achieves between 11–56x speedup across
all inputs. We note that our implementation appears to be between 1.2–1.6x slower than
the asynchronous implementation of JP in [169], due to synchronizing on many rounds
which contain few vertices.

Our approximate set cover implementation achieves between 5–57x speedup across all
inputs. Our implementation is based on the implementation presented in Julienne [115];
the one major modi�cation was to regenerate random priorities for sets that are active
on the current round. We compared the running time of our implementation with the
parallel implementation from [68] which is available in the PBBS library. We ran both
implementations with ϵ = 0.01. Our implementation is between 1.2x slower to 1.5x faster
than the PBBS implementation on our graphs, with the exception of 3D-Torus. On 3D-
Torus, the implementation from [68] runs 56x slower than our implementation as it does
not regenerate priorities for active sets on each round causing worst-case behavior. Our
performance is also slow on this graph, as nearly all of the vertices stay active (in the
highest bucket) during each round, and using ϵ = 0.01 causes a large number of rounds to
be performed.

5.8.5 Substructure Problems

Our k-core implementation achieves between 5–46x speedup across all inputs, and 114x
speedup on the 3D-Torus graph as there is only one round of peeling in which all vertices are
removed. There are several recent papers that implement parallel algorithms fork-core [110,
115, 299, 192]. Both the ParK algorithm [110] and Kabir and Madduri algorithm [192]
implement the peeling algorithm in O (kmaxn +m) work, which is not work-e�cient. Our
implementation is between 3.8–4.6x faster than ParK on a similar machine con�guration.
Kabir and Madduri show that their implementation achieves an average speedup of 2.8x
over ParK. Our implementation is between 1.3–1.6x faster than theirs on a similar machine
con�guration.

Our approximate densest subgraph implementation achieves between 44–77x speedup
across all inputs. We ran our implementation with ϵ = 0.001, which in our experiments
produced subgraphs with density roughly equal to those produced by the 2-approximation
algorithm based on degeneracy ordering, or setting ϵ to 0. To the best of our knowledge,
there are no prior existing shared-memory parallel algorithms for this problem.

Our triangle counting (TC) implementation achieves between 39–81x speedup across all
inputs. Unfortunately, we are unable to report speedup numbers for TC on our larger graphs
as the single-threaded times took too long due to the algorithm performing O (m3/2) work.
There are a number of experimental papers that consider multicore triangle counting [308,
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Figure 5.1: Log-linear plot of normalized throughput vs. vertices for MIS, BFS, BC, and coloring
on the 3D-Torus graph family.

157, 202, 323, 3, 223]. We implement the algorithm from [323], and adapted it to work
on compressed graphs. We note that in our experiments we intersect directed adjacency
lists sequentially, as there was su�cient parallelism in the outer parallel-loop. There
was no signi�cant di�erence in running times between our implementation and the
implementation from [323]. We ran our implementation on 48 threads on the Twitter
graph to compare with the times reported by EmptyHeaded [3] and found that our times
are about the same.

5.8.6 Eigenvector Problems

Our PageRank (PR) implementation achieves between 47–74x speedup across all inputs.
We note that the running times we report are for a single iteration of PageRank. Our
implementation is based on the implementation from Ligra [319], and uses a damping
factor γ = 0.85. We note that the modi�cation made to carry out dense iterations using
a reduction over the in-neighbors of a vertex was important to decrease contention and
improve parallelism, and provided between 2–3x speedup over the Ligra implementation in
practice. Many graph processing systems implement PageRank. The optimizing compiler
used by GraphIt generates a highly-optimized implementation that is currently the fastest
shared-memory implementation known to us [383]. We note that our implementation is
about 1.8x slower than the implementation in GraphIt for LiveJournal and Twitter when
run on the same number of threads as in their experiments.
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5.8.7 Performance on 3D-Torus

We ran experiments on a family of 3D-Torus graphs with di�erent sizes to study how
our diameter-bounded algorithms scale relative to algorithms with polylogarithmic depth.
We were surprised to see that the running time of some of our polylogarithmic depth
algorithms on this graph, like LDD and connectivity, are 17–40x more expensive than their
running time on Twitter and Twitter-Sym, despite 3D-Torus only having 4x and 2.4x more
edges than Twitter and Twitter-Sym. One reason for our slightly worse scaling on this
graph (and the higher cost of algorithms relative to graphs with a similar number of edges)
is the very low average-degree of this graph (m/n = 6) compared with the Twitter graph
(m/n = 57.8). Many of the algorithms we study in this chapter process all edges incident
to a vertex whenever a vertex is considered (e.g., when a vertex is part of a frontier in
the LDD computation). Furthermore, each vertex is only processed a constant number
of times. Thus, each time such an algorithm processes a vertex in the 3D-Torus graph, it
only uses 24 bytes out of each 64-byte cache line (assuming each edge is stored in 4 bytes),
but it will utilize the entire cache line in the Twitter graph, on average. Another possible
reason is that we store the 3D-Torus graph ordered by dimension, instead of using a local
ordering. However, we did not study reordering this graph, since it was not the main focus
of this work.

In Figure 5.1 we show the normalized throughput of MIS, BFS, BC, and graph coloring
for 3-dimensional tori of di�erent sizes, where throughput is measured as the number
of edges processed per second. The throughput for each application becomes saturated
before our largest-scale graph for all applications except for BFS, which is saturated on a
graph with 2 billion vertices. The throughput curves show that the theoretical bounds are
useful in predicting how the half-lengths6 are distributed. The half-lengths are ordered as
follows: coloring, MIS, BFS, and BC. This is the same order as sorting these algorithms by
their depth with respect to this graph.

5.8.8 Locality

While our algorithms are e�cient on the TRAM, we do not analyze their cache complexity,
and in general they may not be e�cient in a model that takes caches into account. Despite
this, we observed that our algorithms have good cache performance on the graphs we
tested on. In this section we give some explanation for this fact by showing that our
primitives make good use of the caches. Our algorithms are also aided by the fact that
these graph datasets often come in highly local orders (e.g., see the Natural order in [120]).
Table 5.6 shows metrics for our experiments measured using Open Performance Counter
Monitor (PCM).

6The graph size when the system achieves half of its peak-performance.
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Algorithm Cycles Stalled LLC Hit Rate LLC Misses BW Time

k-core (histogram) 9 0.223 49 96 62.9
k-core (fetchAndAdd) 67 0.155 42 24 221
weighted BFS (blocked) 3.7 0.070 19 130 14.4
weighted BFS (unblocked) 5.6 0.047 29 152 25.2

Table 5.6: Cycles stalled while the memory subsystem has an outstanding load (trillions), LLC hit
rate and misses (billions), bandwidth in GB/s (bytes read and written from memory, divided by
running time), and running time in seconds. All experiments are run on the ClueWeb graph using
72 cores with hyper-threading.

We run our locality experiments on the ClueWeb graph. We found that using a work-
e�cient histogram is 3.5x faster than using fetchAndAdd in our k-core implementation,
which su�ers from high contention on this graph. Using a histogram reduces the number of
cycles stalled due to memory by more than 7x. We also ran our wBFS implementation with
and without the edgeMapBlocked optimization, which reduces the number of cache-lines
read from and written to when performing a sparse edgeMap. The blocked implementation
reads and writes 2.1x fewer bytes than the unoptimized version, which translates to a 1.7x
faster runtime. We disabled the dense optimization for this experiment to directly compare
the two implementations of a sparse edgeMap.

5.8.9 Processing Massive Web Graphs

In Tables 5.4 and 5.5, we show the running times of our implementations on the ClueWeb,
Hyperlink2014, and Hyperlink2012 graphs. To put our performance in context, we compare
our 72-core running times to running times reported by existing work. Table 5.7 summa-
rizes state-of-the-art existing results in the literature. Most results process the directed

versions of these graphs, which have about half as many edges as the symmetrized version.
Unless otherwise mentioned, all results from the literature use the directed versions of
these graphs. To make the comparison easier we show our running times for BFS, SSSP
(weighted BFS), BC and SCC on the directed graphs, and running times for Connectivity,
k-core and TC on the symmetrized graphs in Table 5.7.

FlashGraph [385] reports disk-based running times for the Hyperlink2012 graph on a
4-socket, 32-core machine with 512GB of memory and 15 SSDs. On 64 hyper-threads, they
solve BFS in 208s, BC in 595s, connected components in 461s, and triangle counting in 7818s.
Our BFS and BC implementations are 12x faster and 16x faster, and our triangle counting
and connectivity implementations are 5.3x faster and 18x faster than their implementations,
respectively. Mosaic [225] report in-memory running times on the Hyperlink2014 graph;
we note that the system is optimized for external memory execution. They solve BFS in
6.5s, connected components in 700s, and SSSP (Bellman-Ford) in 8.6s on a machine with
24 hyper-threads and 4 Xeon-Phis (244 cores with 4 threads each) for a total of 1000 hyper-
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Paper Problem Graph Memory Hyper-threads Nodes Time

Mosaic [225]
BFS* 2014 0.768 1000 1 6.55
Connectivity* 2014 0.768 1000 1 708
SSSP* 2014 0.768 1000 1 8.6

FlashGraph [385]

BFS* 2012 .512 64 1 208
BC* 2012 .512 64 1 595
Connectivity* 2012 .512 64 1 461
TC* 2012 .512 64 1 7818

GraFBoost [191] BFS* 2012 0.064 32 1 900
BC* 2012 0.064 32 1 800

Slota et al. [330]
Largest-CC* 2012 16.3 8192 256 63
Largest-SCC* 2012 16.3 8192 256 108
Approx k-core* 2012 16.3 8192 256 363

Stergiou et al. [336] Connectivity 2012 128 24000 1000 341

Gluon [111] BFS 2012 24 69632 256 380
Connectivity 2012 24 69632 256 75.3
PageRank 2012 24 69632 256 158.2
SSSP 2012 24 69632 256 574.9

This paper

BFS* 2014 1 144 1 5.71
SSSP* 2014 1 144 1 9.08
Connectivity 2014 1 144 1 11.2
BFS* 2012 1 144 1 16.7
BC* 2012 1 144 1 35.2
Connectivity 2012 1 144 1 25.0
SCC* 2012 1 144 1 185
SSSP 2012 1 144 1 58.1
k-core 2012 1 144 1 184
PageRank 2012 1 144 1 462
TC 2012 1 144 1 1168

Table 5.7: System con�gurations (memory in terabytes, hyper-threads, and nodes) and running
times (seconds) of existing results on the Hyperlink graphs. The last section shows our running
times. *These problems are run on directed versions of the graph.

threads, 768GB of RAM, and 6 NVMes. Our BFS and connectivity implementations are 1.1x
and 62x faster respectively, and our SSSP implementation is 1.05x slower. Both FlashGraph
and Mosaic compute weakly connected components, which is equivalent to connectivity.
GraFBoost [191] report disk-based running times for BFS and BC on the Hyperlink2012
graph on a 32-core machine. They solve BFS in 900s and BC in 800s. Our BFS and BC
implementations are 53x and 22x faster than their implementations, respectively.

Slota et al. [330] report running times for the Hyperlink2012 graph on 256 nodes on the
Blue Waters supercomputer. Each node contains two 16-core processors with one thread
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each, for a total of 8192 hyper-threads. They report they can �nd the largest connected
component and SCC from the graph in 63s and 108s respectively. Our implementations
�nd all connected components 2.5x faster than their largest connected component imple-
mentation, and �nd all strongly connected components 1.6x slower than their largest-SCC
implementation. Their largest-SCC implementation computes two BFSs from a randomly
chosen vertex—one on the in-edges and the other on the out-edges—and intersects the
reachable sets. We perform the same operation as one of the �rst steps of our SCC algo-
rithm and note that it requires about 30 seconds on our machine. They solve approximate
k-cores in 363s, where the approximate k-core of a vertex is the coreness of the vertex
rounded up to the nearest powers of 2. Our implementation computes the exact coreness
of each vertex in 184s, which is 1.9x faster than the approximate implementation while
using 113x fewer cores.

Recently, Dathathri et al. [111] have reported running times for the Hyperlink2012
graph using Gluon, a distributed graph processing system based on Galois. They process
this graph on a 256 node system, where each node is equipped with 68 4-way hyper-
threaded cores, and the hosts are connected by an Intel Omni-Path network with 100Gbps
peak bandwidth. They report times for BFS, connectivity, PageRank, and SSSP. Other than
their connectivity implementation, which uses pointer-jumping, their implementations are
based on data-driven asynchronous label-propagation. We are not aware of any theoretical
bounds on the work and depth of these implementations. Compared to their reported
times, our implementation of BFS is 22.7x faster, our implementation of connectivity is 3x
faster, and our implementation of SSSP is 9.8x faster. Our PageRank implementation is
2.9x slower (we ran it with ϵ , the variable that controls the convergence rate of PageRank,
set to 1e − 6). However, we note that the PageRank numbers they report are not for true
PageRank, but PageRank-Delta, and are thus in some sense incomparable.

Stergiou et al. [336] describe a connectivity algorithm that runs in O (lgn) rounds
in the BSP model and report running times for the symmetrized Hyperlink2012 graph.
They implement their algorithm using a proprietary in-memory/secondary-storage graph
processing system used at Yahoo!, and run experiments on a 1000 node cluster. Each
node contains two 6-core processors that are 2-way hyper-threaded and 128GB of RAM,
for a total of 24000 hyper-threads and 128TB of RAM. Their fastest running time on
the Hyperlink2012 graph is 341s on their 1000 node system. Our implementation solves
connectivity on this graph in 25s–13.6x faster on a system with 128x less memory and
166x fewer cores. They also report running times for solving connectivity on a private
Yahoo! webgraph with 272 billion vertices and 5.9 trillion edges, over 26 times the size of
our largest graph. While such a graph seems to currently be out of reach of our machine,
we are hopeful that techniques from theoretically-e�cient parallel algorithms can help
solve problems on graphs at this scale and beyond.
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5.9 Related Work

Parallel Graph Algorithms. Parallel graph algorithms have received signi�cant at-
tention since the start of parallel computing, and many elegant algorithms with good
theoretical bounds have been developed over the decades (e.g., [316, 196, 224, 17, 346, 247,
284, 188, 104, 277, 246, 140, 57, 242]). A major goal in parallel graph algorithm design is to
�nd work-e�cient algorithms with polylogarithmic depth. While many suspect that work-
e�cient algorithms may not exist for all parallelizable graph problems, as ine�ciency may
be inevitable for problems that depend on transitive closure, many problems that are of
practical importance do admit work-e�cient algorithms [195]. For these problems, which
include connectivity, biconnectivity, minimum spanning forest, maximal independent
set, maximal matching, and triangle counting, giving theoretically-e�cient implementa-
tions that are simple and practical is important, as the amount of parallelism available
on modern systems is still modest enough that reducing the amount of work done is
critical for achieving good performance. Aside from intellectual curiosity, investigating
whether theoretically-e�cient graph algorithms also perform well in practice is important,
as theoretically-e�cient algorithms are less vulnerable to adversarial inputs than ad-hoc
algorithms that happen to work well in practice.

Unfortunately, some problems that are not known to admit work-e�cient parallel
algorithms due to the transitive-closure bottleneck [195], such as strongly connected
components (SCC) and single-source shortest paths (SSSP) are still important in practice.
One method for circumventing the bottleneck is to give work-e�cient algorithms for
these problems that run in depth proportional to the diameter of the graph—as real-
world graphs have low diameter, and theoretical models of real-world graphs predict a
logarithmic diameter, these algorithms o�er theoretical guarantees in practice [303, 75].
Other problems, like k-core are P-complete [23], which rules out polylogarithmic-depth
algorithms for them unless P = NC [158]. However, even k-core admits an algorithm with
strong theoretical guarantees that is e�cient in practice [115].

Parallel Graph Processing Frameworks. Motivated by the need to process very large
graphs, there have been many graph processing frameworks developed in the literature
(e.g., [229, 154, 223, 259, 319] among many others). We refer the reader to [235, 377] for
surveys of existing frameworks. Several recent graph processing systems evaluate the
scalability of their implementations by solving problems on massive graphs [333, 385, 225,
115, 191, 336]. All of these systems report running times either on the Hyperlink 2012
graph or Hyperlink 2014 graphs, two web crawls released by the WebDataCommons that
are the largest and second largest publicly-available graphs respectively. We describe
these recent systems and give a detailed comparison of how our implementations perform
compare to their codes in Section 5.8.

Benchmarking Parallel Graph Algorithms. There are a surprising number of existing
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benchmarks of parallel graph algorithms. SSCA [35], an early graph processing benchmark,
speci�es four graph kernels, which include generating graphs in adjacency list format, sub-
graph extraction, and graph clustering. The Problem Based Benchmark Suite (PBBS) [324]
is a general benchmark of parallel algorithms that includes 6 problems on graphs: BFS,
spanning forest, minimum spanning forest, maximal independent set, maximal matching,
and graph separators. The PBBS benchmarks are problem-based in that they are de�ned
only in terms of the input and output without any speci�cation of the algorithm used to
solve the problem. We follow the style of PBBS in this chapter of de�ning the input and
output requirements for each problem. The Graph Algorithm Platform (GAP) Benchmark
Suite [45] speci�es 6 kernels: BFS, SSSP, PageRank, connectivity, betweenness centrality,
and triangle counting.

Several recent benchmarks characterize the architectural properties of parallel graph
algorithms. GraphBIG [255] describes 12 applications, including several problems that
we consider, like k-core and graph coloring (using the Jones-Plassmann algorithm), but
also problems like depth-�rst search, which are di�cult to parallelize, as well as dynamic
graph operations. CRONO [13] implements 10 graph algorithms, including all-pairs
shortest paths, exact betweenness centrality, traveling salesman, and depth-�rst search.
LDBC [181] is an industry-driven benchmark that selects 6 algorithms that are considered
representative of graph processing including BFS, and several algorithms based on label
propagation.

Unfortunately, all of the existing graph algorithm benchmarks we are aware of restrict
their evaluation to small graphs, often on the order of tens or hundreds of millions of edges,
with the largest graphs in the benchmarks having about two billion edges. As real-world
graphs are frequently several orders of magnitude larger than this, evaluation on such
small graphs makes it hard to judge whether the algorithms or results from a benchmark
scale to terabyte-scale graphs.

5.10 Discussion

In this chapter, we showed that we can process the largest publicly-available real-world
graph on a single shared-memory server with 1TB of memory using theoretically-e�cient
parallel algorithms. We outperform existing implementations on the largest real-world
graphs, and use many fewer resources than the distributed-memory solutions. On a
per-core basis, our numbers are signi�cantly better. Our results provide evidence that
theoretically-e�cient shared-memory graph algorithms can be e�cient and scalable in
practice.

There are many directions for future work stemming from this work. One is to continue
to extend GBBS with other graph problems that were not considered in this chapter. For
example, in our recent work we have extended GBBS with work-e�cient clique-counting



Discussion 133

algorithms and work-e�cient algorithms for low out-degree orientation [313]. It would be
interesting to study and implement parallel algorithms for other classic graph problems,
such as planarity testing and embedding, planar separator, higher connectivity, amongst
many others.

Another direction is to extend GBBS to fundamental application domains of graph algo-
rithms, such as graph clustering. Although clustering is quite di�erent from the problems
studied in this chapter since there is usually no single “correct” way to cluster a graph or
point set, we believe that our approach will be useful for building theoretically-e�cient and
scalable single-machine clustering algorithms, including density-based clustering [137],
single-linkage methods such as a�nity clustering [42], and agglomerative graph cluster-
ing [230].





6
Semi-Asymmetric Graph Algorithms

6.1 Introduction

Over the past decade, there has been a steady increase in the main-memory sizes of
commodity multicore machines, which has led to the development of fast single-machine
shared-memory graph algorithms for processing massive graphs with hundreds of billions
of edges on a single machine (see for example [319, 260, 322], and the work covered in
this thesis in Chapter 4 and Chapter 5). As shown in Chapters 4 and 5, single-machine
analytics by-and-large outperform their distributed memory counterparts, running up to
orders of magnitude faster using much fewer resources (see also [238, 319, 322]). These
analytics have become increasingly relevant due to a longterm trend of increasing memory
sizes, which continues today in the form of new non-volatile memory technologies that
are now emerging on the market (e.g., Intel’s Optane DC Persistent Memory). These devices
are signi�cantly cheaper on a per-gigabyte basis, provide an order of magnitude greater
memory capacity per DIMM than traditional DRAM, and o�er byte-addressability and
low idle power, thereby providing a realistic and cost-e�cient way to equip a commodity
multicore machine with multiple terabytes of non-volatile RAM (NVRAM).

Due to these advantages, NVRAMs are likely to be a key component of many future
memory hierarchies, likely in conjunction with a smaller amount of traditional DRAM.
However, a challenge of these technologies is to overcome an asymmetry between reads and
writes—write operations are more expensive than reads in terms of energy and throughput.
This property requires rethinking algorithm design and implementations to minimize the
number of writes to NVRAM [53, 76, 69, 94, 358]. As an example of the memory technology
and its tradeo�s, in this chapter we use a 48-core machine that has 8x as much NVRAM as
DRAM (we are aware of machines with 16x as much NVRAM as DRAM [152]), where the
combined read throughput for all cores from the NVRAM is about 3x slower than reads
from the DRAM, and writes on the NVRAM are a further factor of about 4x slower [186,
293] (a factor of 12 total). Under this asymmetric setting, algorithms performing a large
number of writes could see a signi�cant performance penalty if care is not taken to avoid
or eliminate writes.

An important property of most graphs used in practice is that they are sparse, but still
tend to have many more edges than vertices, often from one to two orders of magnitude
more. This is true for almost all social network graphs [215], but also for many graphs
that are derived from various simulations [113]. In Figure 6.1 we show that over 90%
of the large graphs (more than 1 million vertices) from the SNAP [215] and LAW [81]
datasets have at least 10 times as many edges as vertices. Given that very large graphs
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Figure 6.1: Number of vertices (logscale) vs. average degree (m/n) on 42 real-world graphs with
n > 106 from the SNAP [215] and LAW [81] datasets. Over 90% of the graphs have average degree
larger than 10 (corresponding to the gray dashed line).

today can have over 100 billion edges (requiring around a terabyte of storage), but only a
few billion vertices, a popular and reasonable assumption both in theory and in practice is
that vertices, but not edges, �t in DRAM [1, 138, 204, 236, 239, 254, 274, 339, 385, 386].

With these characteristics of NVRAM and real-world graphs in mind, we propose a
semi-asymmetric approach to parallel graph analytics, in which (i) the full graph is stored
in NVRAM and is accessed in read-only mode and (ii) the amount of DRAM is proportional
to the number of vertices. Although completely avoiding writes to the NVRAM may
seem overly restrictive, the approach has the following bene�ts: (i) algorithms avoid the
high cost of NVRAM writes, (ii) the algorithms do not contribute to NVRAM wear-out
or wear-leveling overheads, and (iii) algorithm design is independent of the actual cost
of NVRAM writes, which has been shown to vary based on access pattern and number
of cores [186, 293] and will likely change with innovations in NVRAM technology and
controllers. Moreover, it enables an important NUMA optimization in which a copy of the
graph is stored on each socket (Section 6.8), for fast read-only access without any cross-
socket coordination. Finally, with no graph mutations, there is no need to re-compress the
graph on-the-�y when processing compressed graphs [115, 117].

The key question, then, is the following:

Is the (restrictive) semi-asymmetric approach e�ective for designing fast graph algorithms?

In this chapter, we provide strong theoretical and experimental evidence of the ap-
proach’s e�ectiveness.
Our Contributions. Our main contribution in this chapter is Sage, a parallel semi-
asymmetric graph engine with which we implement provably-e�cient (and often work-
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optimal) algorithms for over a dozen fundamental graph problems (see Table 6.1). The
key innovations are in ensuring that the updated state is associated with vertices and
not edges, which is particularly challenging (i) for certain edge-based parallel graph
traversals and (ii) for algorithms that “delete” edges as they go along in order to avoid
revisiting them once they are no longer needed. We provide general techniques (Sections 6.4
and 6.5) to solve these two problems. For the latter, used by four of our algorithms, we
require relaxing the prescribed amount of DRAM to be on the order of one bit per edge.
Details of our algorithms are given in Section 6.7. Our codes extend the current state-
of-the-art DRAM-only codes from GBBS (described in Chapter 5), and can be found at
https://github.com/ParAlg/gbbs/tree/master/sage.

From a theoretical perspective, we propose a model for analyzing algorithms in the
semi-asymmetric setting (Section 6.2). The model, called the Parallel Semi-Asymmetric
Model (PSAM), consists of a shared asymmetric large-memory with unbounded size that
can hold the entire graph, and a shared symmetric small-memory with O (n) words of
memory, where n is the number of vertices in the graph. In a relaxed version of the model,
we allow small-memory size of O (n +m/ lgn) words, wherem is the number of edges in
the graph. Although we do not use writes to the large-memory in our algorithms, the
PSAM model permits writes to the large-memory, which are ω > 1 times more costly than
reads. We prove strong theoretical bounds in terms of PSAM work and depth for all of our
parallel algorithms in Sage, as shown in Table 6.1. Most of the algorithms are work-e�cient
(performing asymptotically the same work as the best sequential algorithm for the problem)
and have polylogarithmic depth (parallel time). These provable guarantees ensure that our
algorithms perform reasonably well across graphs with di�erent characteristics, machines
with di�erent core counts, and NVRAMs with di�erent read-write asymmetries.

We summarize the main contributions of this chapter below.
(1) A semi-asymmetric approach to parallel graph analytics that avoids writing to the

NVRAM and uses DRAM proportional to the number of vertices.
(2) Sage: a parallel semi-asymmetric graph engine with implementations of 18 fundamental

graph problems, and general techniques for semi-asymmetric parallel graph algorithms.
We have made all of our codes publicly-available.1

(3) A new theoretical model called the Parallel Semi-Asymmetric Model, and techniques
for designing e�cient, and often work-optimal parallel graph algorithms in the model.

(4) A comprehensive experimental evaluation of Sage on an NVRAM system showing
that Sage signi�cantly outperforms prior work and nearly matches state-of-the-art
DRAM-only performance.

Preliminaries. We refer to Chapter 2 for general preliminaries on notation and parallel
primitives used in this chapter. The work in this chapter builds on Ligra and Ligra+ (covered

1Our code can be found at https://github.com/ParAlg/gbbs/tree/master/sage, and an accompa-
nying website at https://paralg.github.io/gbbs/sage.

https://github.com/ParAlg/gbbs/tree/master/sage
https://github.com/ParAlg/gbbs/tree/master/sage
https://paralg.github.io/gbbs/sage
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Figure 6.2: The Parallel Semi-Asymmetric Model. Algorithms in the model perform accesses
to a symmetric small-memory (DRAM) and an asymmetric large-memory (NVRAM) at a word-
granularity. Reads from both memories are charged unit-cost, whereas writes to the asymmetric
memory are charged ω. In the regular model, algorithms have access to O (n) words of symmetric
memory, and in a relaxed variant have access to O (n +m/ lgn) words of symmetric memory.
Compared to existing two-level models, the main advantages of the PSAM are that it explicitly
models NVRAM read-write asymmetry and it provides su�cient symmetric memory to design
provably-e�cient and practical parallel graph algorithms.

in Chapter 2), Julienne (Chapter 4) and the GBBS algorithms described in Chapter 5. Our
algorithms work in a parallel model called the Parallel Semi-Asymmetric Model that we
introduce in Section 6.2. Section 6.2 also speci�es how the work and depth of an algorithm
are calculated in this model.

6.2 Parallel Semi-Asymmetric Model

6.2.1 Model Definition

The Parallel Semi-Asymmetric Model (PSAM) consists of an asymmetric large-memory
(NVRAM) with unbounded size, and a symmetric small-memory (DRAM) with O (n) words
of memory. In a relaxed version of the model, we allow small-memory size ofO (n+m/ lgn)
words. The relaxed version is intended to model a system where the ratio of NVRAM to
DRAM is close to the average degree of real-world graphs (see Figure 6.1 and Table 2.1).

The PSAM has a set of threads that share both the large-memory and small-memory.
The underlying mechanisms for parallelism are identical to the T-RAM or binary forking
model, which is discussed in detail in [62, 72, 117]. In the model, each thread acts like a
sequential RAM that also has a fork instruction. When a thread performs a fork, two
newly created child threads run starting at the next instruction, and the original thread is
suspended until all the children terminate. A computation starts with a single root thread
and �nishes when that root thread �nishes.
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Algorithm Cost. We analyze algorithms on the PSAM using the work-depth mea-

sure [188]. The work-depth measure is a fundamental tool in analyzing parallel algorithms,
e.g., see [63, 117, 161, 321, 342, 341, 366] for a sample of recent practical uses of this model.
Like other multi-level models (e.g., the ANP model [53]), we assume unit cost reads and
writes to the small-memory, and reads from the large-memory, all in the unit of a word.
A write to the large-memory has a cost of ω > 1, which is the cost of a write relative to
a read on NVRAMs. The overall workW of an algorithm is the sum of the costs for all
memory accesses by all threads. The depth D is the cost of the highest cost sequence
of dependent instructions in the computation. A work-stealing scheduler can execute a
computation inW /p +O (D) time with high probability on p processors [53, 78]. Figure 6.2
illustrates the PSAM model.

6.2.2 Discussion

It is helpful to �rst clarify why we chose to keep the modeling parameters simple, focusing
on NVRAM read-write asymmetry, when several other parameters are also available (as
discussed below). Our goal was to design a theoretical model that helps guide algorithm
design by capturing the most salient features of the new hardware.
Modeling Read and Write Costs. Although NVRAM reads are about 3x more costly
than accesses to DRAM [293], we charge both unit cost in the PSAM. When this cost gap
needs to be studied (especially for showing lower bounds), we can use an approach similar
to the asymmetric RAM (ARAM) model [69], and de�ne the I/O cost Q of an algorithm
without charging for instructions or DRAM accesses. All algorithms in this chapter have
asymptotically as many instructions as NVRAM reads, and therefore have the same I/O
cost Q as workW up to constant factors.
Writes to Large-memory. Although in the approach used in this chapter we do not
perform writes to the large-memory, the PSAM is designed to allow for analyzing alternate
approaches that do perform writes to large-memory. Furthermore, permitting writes to
the large-memory enables us to consider the cost of algorithms from previous work such
as GBBS [117] and observe that many prior algorithms with W work in the standard
work-depth model are Θ(ωW ) work in the PSAM. We emphasize that the objective of
this work is to evaluate whether the restrictive approach used in our algorithms—i.e.,
completely avoiding writes to the large-memory, thereby gaining the bene�ts discussed
in Section 6.1—is e�ective compared to existing approaches for programming NVRAM
graph algorithms. We note that algorithms designed with a small number of large-memory
writes could possibly be quite e�cient in practice.
Applicability. In this chapter, we provide evidence that the PSAM is broadly applicable
for many (18) fundamental graph problems. We believe that many other problems will
also �t in the PSAM. For example, counting and enumerating k-cliques, which were very
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recently studied in the in-memory setting [313], can be adapted to the PSAM using the
�ltering technique proposed in this chapter. Other fundamental subgraph problems, such
as subgraph matching [165, 343] and frequent subgraph mining [132, 364] could be solved
in the PSAM using a similar approach, but mining many large subgraphs may require
performing some writes to the NVRAM (as discussed below). Other problems, such as
local search problems including CoSimRank [294], personalized PageRank, and other local
clustering problems [325], naturally �t in the regular PSAM model.

We note that certain problems seem to require performing writes in the PSAM. For
example, in the k-truss problem, the output requires emitting the trussness value for each
edge, and thus storing the output requires Θ(m) words of memory, which requires Θ(ωm)
cost due to writes. Generalizations of k-truss, such as the (r , s )-nucleii problem appear to
have the same requirement for r ≥ 2 [300].

6.2.3 Relationship to Other Models

Asymmetric Models. The model considered in this chapter is related to the ARAM
model [69] and the asymmetric nested-parallel (ANP) model [53]. Compared to these more
general models, the PSAM is specially designed for graphs, with its small-memory being
either O (n) or O (n +m/ lgn) words (for n vertices andm edges).
External and Semi-External Memory Models. The External Memory model (also
known as the I/O or disk-access model) [12] is a classic two-level memory model containing
a bounded internal memory of size M and an unbounded external memory. I/Os to the
external memory are done in blocks of size B. The Semi-External Memory model [1] is a
relaxation of the External Memory model where there is a small-memory that can hold
the vertices but not the edges.

There are three major di�erences between the PSAM and the External Memory and
Semi-External Memory models. First, unlike the PSAM, neither the External Memory
nor the Semi-External Memory model account for accessing the small-memory (DRAM),
because the objective of these models is to focus on the cost of expensive I/Os to the
external memory. We believe that for existing systems with NVRAMs, the cost of DRAM
accesses is not negligible. Second, both the External Memory and Semi-External Memory
have a parameter B to model data movement in large chunks. NVRAMs support random
access, so for the ease of design and analysis we omit this parameter B. Third, the PSAM
explicitly models the asymmetry of writing to the large memory, whereas the External
Memory and Semi-External Memory models treat both reads and writes to the external
memory indistinguishably (both cost B). The asymmetry of these devices is signi�cant
for current devices (writes to NVRAM are 4x slower than reads from NVRAM, and 12x
slower than reads from DRAM [186, 293]), and could be even larger in future generations
of energy-e�cient NVRAMs. Explicitly modeling asymmetry is an important aspect of
our approach in the PSAM.
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Semi-Streaming Model. In the semi-streaming model [138, 254], there is a memory size
of O (n · polylog(n)) bits and algorithms can only read the graph in a sequential streaming
order (with possibly multiple passes). In contrast, the PSAM allows random access to the
input graph because NVRAMs intrinsically support random access. Furthermore the PSAM
allows expensive writes to the large-memory, which is read-only in the semi-streaming
model.

Table 6.1: Work and depth bounds of Sage algorithms in the PSAM. The GBBS Work column shows
the work of GBBS algorithms converted to use NVRAM without taking advantage of the small-
memory, and corresponds to the GBBS-NVRAM using libvmmalloc experiment (pink dashed-bars
in Figure 7). The theoretical performance for the GBBS-MemMode experiment (green dashed-
bars in Figure 1) lies in-between the GBBS Work and Sage Work. The vertical text in the �rst
column indicates the technique used to obtain the result in the PSAM: edgeMapChunked is the
semi-asymmetric traversal in Section 6.4 and Filter is the Graph Filtering method in Section 6.5. †
denotes that our algorithm usesO (n+m/ lgn) words of memory. ¶ denotes that our algorithm uses
O (n +m/ lgn) words of memory in practice, but requires only O (n) words of memory theoretically.
∗ denotes that a bound holds in expectation and ‡ denotes that a bound holds with high probability
or whp (O (k f (n)) cost with probability at least 1 − 1/nk ). dG is the diameter of the graph, ∆ is
the maximum degree, L = min (

√
m,∆) + lg2 ∆ lgn/ lg lgn, and Pit is the number of iterations of

PageRank until convergence. We assume thatm = Ω(n).
Problem GBBS Work Sage Work Sage Depth

ed
ge

M
ap

Ch
un

ke
d

Breadth-First Search O (ωm) O (m) O (dG lgn)
Weighted BFS O (ωm)∗ O (m)∗ O (dG lgn)‡
Bellman-Ford O (ωdGm) O (dGm) O (dG lgn)
Single-Source Widest Path O (ωdGm) O (dGm) O (dG lgn)
Single-Source Betweenness O (ωm) O (m) O (dG lgn)
O (k )-Spanner O (ωm)∗ O (m)∗ O (k lgn)‡
LDD O (ωm)∗ O (m)∗ O (lg2 n)‡
Connectivity O (ωm)∗ O (m)∗ O (lg3 n)‡
Spanning Forest O (ωm)∗ O (m)∗ O (lg3 n)‡
Graph Coloring O (ωm)∗ O (m)∗ O (lgn + L lg∆)∗
Maxmial Independent Set O (ωm)∗ O (m)∗ O (lg2 n)‡

Bo
th Biconnectivity¶ O (ωm)∗ O (m)∗ O (dG lgn + lg3 n)‡

Approximate Set Cover
† O (ωm)∗ O (m)∗ O (lg3 n)‡

Fi
lte

r

Triangle Counting
† O (ω (m + n) +m3/2) O (m3/2) O (lgn)

Maximal Matching
† O (ωm)∗ O (m)∗ O (lg3m)‡

PageRank Iteration O (m + ωn) O (m) O (lgn)
PageRank O (Pit(m + ωn)) O (Pitm) O (Pit lgn)
k-core O (ωm)∗ O (m)∗ O (ρ lgn)‡
Approximate Densest Subgraph O (ωm) O (m) O (lg2 n)
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6.3 Sage: A Semi-Asymmetric Graph Engine

Our main approach in Sage is to develop PSAM techniques that perform no writes to

the large-memory. Using these primitives lets us derive e�cient parallel algorithms (i)
whose cost is independent of ω, the asymmetry of the underlying NVRAM technology,
(ii) that do not contribute to NVRAM wearout or wear-leveling overheads, and (iii) that
do not require on-the-�y recompression for compressed graphs. The surprising result
of our experimental study is that this strict discipline—to entirely avoid writes to the
large-memory—achieves state-of-the-art results in practice. This discipline also enables
storage optimizations (discussed in Section 6.8), and perhaps most importantly lends itself
to designing provably-e�cient parallel algorithms that interact with the graph through
high-level primitives.
Semi-Asymmetric edgeMap. Our �rst contribution in Sage is a version of edgeMap
(de�ned in Chapter 2) that achieves improved e�ciency in the PSAM. The issue with the
implementation of edgeMap used in Ligra, and subsequent systems (Ligra+ and Julienne)
based on Ligra is that although it is work-e�cient, it may use signi�cantly more thanO (n)
space, violating the PSAM model. In this chapter, we design an improved implementation
of edgeMap which achieves superior performance in the PSAM model (described in
Section 6.4). Our result is summarized by the following theorem:

Theorem 4. There is a PSAM algorithm for edgeMap given a vertexSubsetU that runs in

O (
∑

u∈U d (u)) work,O (lgn) depth, and uses at mostO (n) words of memory in the worst case.

Semi-Asymmetric Graph Filtering. An important primitive used by many parallel
graph algorithms performs batch-deletions of edges incident to vertices over the course of
the algorithm. A batch-deletion operation is just a bulk remove operation that logically
deletes these edges from the graph. These deletions are done to reduce the number of
edges that must be examined in the future. For example, four of the algorithms studied
in this chapter—biconnectivity, approximate set cover, triangle counting, and maximal
matching—utilize this primitive.

In prior work in the shared-memory setting, deleted edges are handled by actually
removing them from the adjacency lists in the graph. In these algorithms, deleting edges
is important for two reasons. First, it reduces the amount of work done when edges
incident to the vertex are examined again, and second, removing the edges is important to
bound the theoretical e�ciency of the resulting implementations [115, 117]. In the PSAM,
however, deleting edges is expensive because it requires writes to the large-memory.

In our Sage algorithms, instead of directly modifying the underlying graph, we build
an auxiliary data structure, which we refer to as a graphFilter, that e�ciently supports
updating a graph with a sequence of deletions. The graphFilter data structure can be viewed
as a bit-packed representation of the original graph that supports mutation. Importantly,
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this data structure �ts into the small-memory of the relaxed version of the PSAM. We
formally de�ne our data structure and state our theoretical results in Section 6.5.
E�cient Semi-Asymmetric Graph Algorithms. We use our new semi-asymmetric
techniques to design e�cient semi-asymmetric graph algorithms for 18 fundamental
graph problems. In all but a few cases, the bounds are obtained by applying our new
semi-asymmetric techniques in conjunction with existing e�cient DRAM-only graph
algorithms from Dhulipala et al. [117]. We summarize the PSAM work and depth of the
new algorithms designed in this chapter in Table 6.1, and present the detailed results in
Section 6.7.

6.4 Semi-Asymmetric Graph Traversal

Our �rst technique is a cache-friendly and memory-e�cient sparse edgeMap primitive
designed for the PSAM. This technique is useful for obtaining PSAM algorithms for many
of the problems studied in this thesis. Graph traversals are a basic graph primitive, used
throughout many graph algorithms [108, 319]. A graph traversal starts with a frontier
(subset) of seed vertices. It then runs a number of iterations, where in each iteration, the
edges incident to the current frontier are explored, and vertices in this neighborhood are
added to the next frontier based on some user-de�ned conditions.

Existing Memory-Ine�cient Graph Traversal

Ligra implements the direction-optimization proposed by Beamer [44], which runs either a
sparse (push-based) or dense (pull-based) traversal, based on the number of edges incident
to the current frontier. The sparse traversal processes the out-edges of the current frontier
to generate the next frontier. The dense traversal processes the in-edges of all vertices,
and checks whether they have a neighbor in the current frontier. Ligra uses a threshold to
select a method, which by default is a constant fraction ofm to ensure work-e�ciency.

The dense method is memory-e�cient—theoretically, it only requiresO (n) bits to store
whether each output vertex is on the next frontier. However, the sparse method can be
memory-ine�cient because it allocates an array with size proportional to the number of
edges incident to the current frontier, which can be up to O (m). In the PSAM, an array of
this size can only be allocated in the large-memory, so the traversal is ine�cient. This is
also true for the real graphs and machines that we tested in this chapter.

The GBBS algorithms [117] use a blocked sparse traversal, referred to as edgeMap-
Blocked, that improves the cache-e�ciency of parallel graph traversals by only writing
to as many cache lines as the size of the newly generated frontier. This technique is not
memory-e�cient, as it allocates an intermediate array with size proportional to the number
of edges incident to the current frontier, which can be up to O (m) in the worst-case.
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Memory-E�cient Traversal: edgeMapChunked

In this chapter, we present a chunk-based approach that improves the memory-e�ciency of
the sparse (push-based) edgeMap. Our approach, which we refer to as edgeMapChunked,
achieves the same cache performance as the edgeMapBlocked implementation used in
GBBS [117], but signi�cantly improves the intermediate memory usage of the approach.

We provide pseudocode for our algorithm in Algorithm 23. The algorithm is based on
three types of chunking. First, the algorithm breaks up the edges incident to each vertex
into blocks based on the underlying graph’s block size. Second, the algorithm chunks
the outgoing edges to traverse, which it breaks up into groups. Each group consists of
some number of blocks. The blocks within a group will be processed sequentially, but
di�erent groups can be processed in parallel. Third, the algorithm performs chunking of
the output that is generated, writing out the neighbors that must be emitted in the output
vertexSubset into �xed-size chunks.

The algorithm �rst breaks each vertex up into units of work called blocks based on
a block size parameter, Gb_size (Line 11). This block size can be tuned arbitrarily for
uncompressed graphs, but must be set equal to the compression block size for compressed
graphs. Di�erent settings of the block size result in a tradeo� between the depth of the
algorithm and the amount of small-memory used in the PSAM model. We discuss this
tradeo�, and how to set this block size below. Next, the algorithm decides the number
of groups to create (Lines 13–18), where each group consists of a set of blocks. It then
processes the groups in parallel. For each group, it processes the blocks within the group
one at a time. When starting the next block, it calls the FetchChunk procedure (Lines 4–
9), which returns an output chunk for the current group, allocating a fresh chunk if the
current chunk is too full (Line 22). Each group stores the chunks allocated for it in a
per-group vector of output chunks (V from Line 19), which can be accessed safely without
any atomics, since each group is processed by a single thread. The chunk allocations
are done in our implementation using a pool-based thread-local allocator (Line 3). Next,
the algorithm processes the block and writes all neighbors that should be emitted in the
next vertexSubset into the chunk, and updates the block size (Line 23). Note that the
FetchChunk procedure ensures that the returned chunk has su�cient space to store all
neighbors in the block being processed (Line 6). The remaining steps aggregate the chunks
from the per-group vectors (Line 24), perform pre�x sum on the chunk sizes (Line 26), and
copy the data within the chunks into an array with size proportional to the number of
returned neighbors (Lines 28–30). After copying the data within a chunk, the algorithm
frees the chunk (Line 30). Finally, the algorithm returns the output vertexSubset (Line 31).
Memory Usage, Work, and Depth. First note that in the degenerate case where all

edges are processed using our implementation, the code can create up tom/Gb_size many
blocks, which can be Ω(n). Instead, we ensure that Gb_size = davg = dm/ne, or the average
degree. In this case, the maximum number of blocks used ism/Gb_size =m/davg = O (n). It
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Algorithm 23 edgeMapChunked
1: chunk_size = max(4096,davg)
2: min_group_size = max(4096,davg)
3: chunk_alloc B Initialize thread-local allocator with chunk_size
4: procedure FetchChunk(b_size, V )
5: chunk B Last chunk from V . V : vector of output chunks for this group
6: if chunk = null or chunk.size + b_size > chunk_size then
7: chunk B chunk_alloc.allocate()
8: Insert chunk into V
9: return chunk

10: procedure edgeMapChunked(G,U , F )
11: Gb_size B davg . underlying block size used in G
12: B B Output blocks corresponding to u ∈ U
13: O B Pre�x sums of block-degrees for blocks in B
14: dU B

∑
u ∈U deg(u)

15: group_size B max(ddU /8pe,min_group_size)
16: num_groups B ddU /group_sizee
17: idxs B {i · group_size | i ∈ [num_groups]}
18: O�s B O�sets into O resulting from a parallel merge of idxs and O
19: V B Array of vectors storing chunks of size num_groups
20: parfor i in [0, |O�s |) do . In parallel over the groups
21: for j in [O�s[i],O�s[i + 1]) do . ≤ Gb_size edges in block j
22: chunk B FetchChunk(Gb_size,Vi )
23: Process vertices in block j by applying F , and write vertices where F returns true into

chunk

24: C B All chunks extracted from V

25: output_o�sets B Array of length |C | where the i’th entry contains the size of the i’th chunk,
C[i]

26: output_size B Scan(output_o�sets,+)
27: output B Array of size output_size
28: parfor c ∈ C do

29: Copy elements in c to output starting at o�set in output_o�sets corresponding to c
30: chunk_alloc.release(c )
31: return output

is simple to check the remainder of the code and observe that the amount of intermediate
memory and the output size are bounded by O (n) words. The overall small-memory usage
of the procedure is therefore O (n) words. Note that for compressed graphs, the block size
is equal to the compression block size, and thus the compression block size must be set to
davg to ensure theoretical e�ciency in the PSAM. For uncompressed graphs the block size
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can be set arbitrarily.
To ensure that we do not create an unnecessarily large number of groups, we set the

number of groups to O (min(8p,
∑

u∈U deg(u)/min_group_size)) on p processors (Lines 14–
16 and Line 2). These parameters balance between providing enough parallel slackness
for work-stealing when there is a large amount of work to be done (the 8p term in the
min) while also ensuring that we do not over-provision parallelism in the case when the
number of edges incident to the frontier is small (the second term in the min).

The overall work of the procedure is O (
∑

u∈U deg(u)), and the overall depth is O (lgn +
group_size), since each group is processed sequentially by a single thread, and each call
to the procedure requires aggregating the per-group chunks, which can be done in par-
allel. Note that theoretically, group_size = O (davg) since the max on Line 15 includes
the ddU /8pe only to avoid creating excess groups when parallelism is abundant, and
min_group_size = O (davg) (Line 2). The work done for the chunk-aggregation is pro-
portional to the number of groups (and number of output chunks), both of which are
upper-bounded by O (

∑
u∈U deg(u)). davg is usually a small constant in real-world graphs

(see Table 6.2).

6.4.1 Case Study: Breadth-First Search

Algorithm. Figure 6.3 provides the full Sage code used for our implementation of BFS.
The algorithm outputs a BFS-tree, but can trivially be modi�ed to output shortest-path
distances from the source to all reachable vertices. The user �rst imports the Sage library
(Line 1). The de�nition of BFSFunc de�nes the user-de�ned function supplied to edgeMap
(Lines 3–20). The main algorithm, BFS, is templatized over a graph type (Line 21). The
BFS code �rst initializes the parent array P (Line 25), sets the parent of the source vertex
to itself (Line 26), and initializes the �rst frontier to contain just the parent (Line 27). It
then loops while the frontier is non-empty (Lines 28–31), and calls edgeMapChunked in
each iteration of the while loop (Line 30).

The function supplied to edgeMapChunked is BFSFunc (Lines 3–20), which contains
two implementations of update based on whether a sparse or dense traversal is applied
(update and updateAtomic respectively), and the function cond indicating whether a
neighbor should be visited. This logic is identical to the update function used in BFS
in Ligra, and we refer the interested reader to Shun and Blelloch [319] for a detailed
explanation.
PSAM: Work-Depth Analysis. The work is calculated as follows. First, the work of
initializing the parent array, and constructing the initial frontier is justO (n). The remaining
work is to apply edgeMap across all rounds. To bound this quantity, �rst observe that
each vertex, v , processes its out-edges at most once, in the round where it is contained in
Frontier (if other vertices try to visit v in subsequent rounds notice that the cond function
will return false). Let R be the set of all rounds run by the algorithm,WedgeMapChunked(r ) be
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1 #include "sage.h"
2 #include <limits>
3 template <class W, class Int>
4 struct BFSFunc {
5 sequence<Int>& P;
6 Int max_int;
7 BFSFunc(sequence<Int>& P) : P(P) {
8 max_int = std::numeric_limits<Int>::max();}
9 bool update(Int s, Int d, W w) {

10 if (P[d] == max_int) {
11 P[d] = s;
12 return 1;
13 }
14 return 0;
15 }
16 bool updateAtomic(Int s, Int d, W w) {
17 return (CAS(&P[d], max_int, s));
18 }
19 bool cond(Int d) { return (P[d] == max_int); }
20 };
21 template <class Graph, class Int>
22 sequence<Int> BFS(Graph& G, Int src) {
23 using W = typename Graph::weight_type;
24 Int max_int = std::numeric_limits<Int>::max();
25 auto P = sequence<Int>(G.n, max_int);
26 P[src] = src;
27 auto frontier = vertexSubset(G.n, src);
28 while (!frontier.isEmpty()) {
29 auto F = BFSFunc<W, Int>(P);
30 frontier = edgeMapChunked(G, frontier, F);
31 }
32 return P;
33 }

Figure 6.3: Code for Breadth-First Search in Sage.

the work of edgeMapChunked on the r -th round, andUr be the set of vertices in Frontier

in the r -th round. Then, the work is
∑

r∈RWedgeMapChunked(r ) =
∑

r∈R
∑

u∈Ur d (u) = O (m).
The depth to initialize the parents array is O (lgn), and the depth of each of the r

applications of edgeMapChunked is O (lgn) by Theorem 4. Thus, the overall depth is
O (r lgn) = O (dG lgn). The small-memory space used for the parent array is O (n) words,
and the maximum space used over all edgeMapChunked calls isO (n) words by Theorem 4.
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This proves the following theorem:

Theorem 5. There is a PSAM algorithm for breadth-�rst search that runs in O (m) work,
O (dG lgn) depth, and uses only O (n) words of small-memory.

6.5 Semi-Asymmetric Graph Filtering

Sage provides a high-level �ltering interface that captures both the current implementation
of �ltering in GBBS, as well as the new mutation-avoiding implementation described in
this chapter. The interface provides functions for creating a new graphFilter, �ltering edges
from a graph based on a user-de�ned predicate, and a function similar to edgeMap which
�lters edges incident to a subset of vertices based on a user-de�ned predicate. Since edges
incident to a vertex can be deleted over the course of the algorithm by using a graphFilter,
we call edges that are currently part of the graph represented by the graphFilter as active
edges.

We �rst discuss a semantic issue that arises when �ltering graphs. Suppose the user
builds a �lter G f over a symmetric graph G. If the �ltering predicate takes into account
the directionality of the edge, then the resulting graph �lter can become directed, which is
unlikely to be what the user intends. Therefore, we designed the constructor to have the
user explicitly specify this decision by indicating whether the user-de�ned predicate is
symmetric or asymmetric, which results in either a symmetric or asymmetric graph �lter.

The �ltering interface is de�ned as follows:
• makeFilter(G : Graph,

P : edge 7→ bool, S : bool) : graphFilter
Creates a graphFilter G f for the immutable graph G with respect to the user-de�ned
predicate P , and S , which indicates whether the �lter is symmetric or asymmetric.

• filterEdges(G f : graphFilter) : int
Filters all active edges in G f that do not satisfy the predicate P from G f . The function
mutates the supplied graphFilter, and returns the number of edges remaining in the
graphFilter.

• edgeMapPack(G f : graphFilter,
S : vertexSubset) : vertexSubset

Filters edges incident to v ∈ S that do not satisfy the predicate P from G f . Returns a
vertexSubset on the same vertex set as S , where each vertex is augmented with its new
degree in G f .
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Graph Filter Data Structure

For simplicity, we describe the symmetric version of the graph �lter data structure. The
asymmetric �lter follows naturally by using two copies of the data structure described
below, one for the in-edges and one for the out-edges.

We �rst review how edges are represented in Sage. In the (uncompressed) CSR format,
the neighbors of a vertex are stored contiguously in an array. If the graph is compressed
using one of the parallel compression methods from Ligra+ [322], the incident edges are
divided into a number of compression blocks, where each block is sequentially encoded using
a di�erence-encoding scheme with variable-length codes. Each block must be sequentially
decoded to retrieve the neighbor IDs within the block, but by choosing an appropriate
block size, the edges incident to a high-degree vertex can be traversed in parallel across
the blocks.

The graph �lter’s design mirrors the CSR representation described above. The design of
our structure is inspired by similar bit-packed structures, most notably the cuckoo-�lter
by Eppstein et al. [134]. Figure 6.4 illustrates the graph �lter for the following description.

De�nition. The graph data is stored in the compressed sparse row (CSR) format on
NVRAM, and is read-only. Each vertex’s incident edges are logically divided into blocks
of size FB , the �lter block size, which is the provided block size rounded up to the next
multiple of the number of bits in a machine word, inclusive (64 bits on modern architectures
and lgn bits in theory). In Figure 6.4, FB = 2. For compressed graphs, this block size is
always equal to the compression block size (and thus, both must be tuned together).

The �lter consists of blocks corresponding to a subset of the logical blocks in the edges
array, and is stored in DRAM. Each vertex stores a pointer to the start of its blocks, which
are stored contiguously. For each block, the �lter stores FB many bits, where the bits
correspond one-to-one to the edges in the block. Each block also stores two words of
metadata: (i) the original block-ID in the adjacency list that the block corresponds to, and
(ii) the o�set, which stores the number of active edges before this block. The original
block-IDs are necessary because over the course of the algorithm, only a subset of the
original blocks used for a vertex may be currently present in the graph �lter, and the data
structure must remember the original position of each block. The o�set is needed for
graph primitives which copy all active edges incident to a vertex into an array with size
proportional to the degree of the vertex.

The overall graph �lter structure thus consists of blocks of bitsets per vertex. It stores
the per-vertex blocks contiguously, and stores an o�set to the start of each vertex’s blocks.
It also stores each vertex’s current degree, as well as the number of blocks in the vertex
structure. Finally, the structure stores an additional n bits of memory which are used to
mark vertices as dirty.
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Figure 6.4: The graph data is stored in the compressed sparse row (CSR) format on NVRAM, and
is read-only. Each vertex’s incident edges are logically divided into blocks of size FB each (FB =
2 here). The �lter is structured similarly to the CSR format and is stored in DRAM. It consists
of blocks corresponding to a subset of the logical blocks in the edges array. Each vertex stores
a pointer to the start of its blocks, which are stored contiguously. Each �lter block stores bits
representing the status of the edges in the logical block it corresponds to. In the �gure, deleted
edges are marked with dotted lines, and correspond to bits set to 0 in the �lter. Each block also
stores an o�set storing the number of active edges (edges with bits set to 1) in all preceding blocks
for this vertex, as well as its original block-id, which are both used by our algorithms. When
an edge is deleted, its corresponding bit is set to 0, and the o�sets of the blocks for the vertex
are updated accordingly. The original graph data in stored in the CSR format and is stored on
NVRAM and is read-only. On DRAM, we maintain the �lter structure that consists of blocks. Each
block corresponds to FB many edges in a consecutive range, and stores FB many bits for these
edges. In addition it stores an o�set and the original block-id for each block, which are used by
our algorithms. When an edge is deleted, its corresponding bit is set to 0, and the o�sets of the
blocks for the vertex are updated accordingly. Once a constant fraction of blocks are empty (e.g.,
the gray block), we physically delete all the empty blocks from the �lter structure to guarantee
work-e�ciency. All writes are on DRAM.

Algorithms

MakeFilter. To create a graph �lter, the algorithm �rst computes the number of blocks
that each vertex requires, based on FB , and writes the space required per vertex into an
array. Next, it pre�x sums the array, and allocates the required O (m) bits of memory
contiguously. It then initializes the per-vertex blocks in parallel, setting all edges as active
(their corresponding bit is set to 1). Finally, it allocates an array of n per-vertex structures
storing the degree, o�set into the bitset structure corresponding to the start of the vertex’s
blocks, and the number of blocks for that vertex. Lastly, it initializes per-vertex dirty bits
to false (not dirty) in parallel.

The overall work to create the �lter is O (m) and the overall depth is O (lgn + FB ),
because a block is processed sequentially. If the user speci�es that the initially supplied
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predicate returns false for some edges, the implementation calls filterEdges (described
below), which runs within the same work and depth bounds.
PackVertex. Next, we describe an algorithm to pack out the edges incident to a vertex
given a predicate P . This algorithm is used to implement both filterEdges and edgeMap-
Pack. Note that the framework does not expose this primitive directly to users, since the
number of edges in the graph is not updated by this primitive.

The algorithm �rst maps over all blocks incident to the vertex in parallel. For each
block, it �nds all active bits in the block, reads the edge corresponding to the active bit
and applies the predicate P , unsetting the bit i� the predicate returns false. If the bit for
an edge (u,v ) is unset, the algorithm marks the dirty bit for v to true if needed. Note that
for uncompressed graphs, the edge corresponding to an active bit can be directly read,
whereas for a compressed graph, the entire block may have to be decoded to retrieve the
value of a particular edge.

The algorithm maintains a count of how many bits are still active while processing the
block, and stores the per-block counts in an array of size equal to the number of blocks.
Next, it performs a reduction over this array to compute the number of blocks with at least
one active edge. If this value is less than a constant fraction of the current number of blocks
incident to the vertex, the algorithm �lters out all of these blocks with no active elements,
and packs the remaining blocks contiguously in the same memory, using a parallel �lter
over the blocks. The algorithm then updates the o�sets for all blocks using a pre�x sum.
Finally, the algorithm updates the vertex degree and number of currently active blocks
incident to the vertex.

The overall work is O (A · (FB/ lgn) + dactive(v )) and the depth is O (lgn + FB ), where
A is the number of non-empty blocks corresponding to v and dactive(v ) is the number of
active edges incident to vertex v .
edgeMapPack. The edgeMapPack primitive is implemented by applying PackVertex
to each vertex in the vertexSubset in parallel. It then updates the number of active edges
by performing a reduction over the new vertex degrees in the vertexSubset. The overall
work is the sum of the work for packing out each vertex in the vertexSubset, S , which
is O (A · (FB/ lgn) +

∑
v∈S (1 + dactive(v ))), and the depth is O (lgn + FB ), where A is the

number of non-empty blocks corresponding to all v ∈ S .
filterEdges. The filterEdges primitive uses the edgeMapPack, providing a vertexSubset
containing all vertices. The work is O (n + A · (FB/ lgn) + |Eactive |), and the depth is
O (lgn + FB ), where A is the number of non-empty blocks in the graph and Eactive is the
set of active edges represented by the graph �lter.
Vertex Primitives. When calling vertex primitives on a graph �lter, such as accessing
the degree of the vertex, or mapping over its incident active edges, we �rst check whether
the vertex is marked dirty. If so, we pack it out using the algorithm described above before
performing the operation.
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Implementation

Optimizations. We use the widely available tzcnt and blsr x86 intrinsics to accelerate
block processing. Each block is logically divided into a number of machine words, so we
consider processing a single machine word. If the word is non-zero, we create a temporary
copy of the word, and loop while this copy is non-zero. In each iteration, we use tzcnt to
�nd the index of the next lowest bit, and clear the lowest bit using blsr. Doing so allows
us to process a block with q words and k non-zero bits in O (q + k ) instructions.

We also implemented intersection primitives, which are used in our triangle counting
algorithm based on the decoding implementation described above. For compressed graphs,
since we may have to decode an entire compressed block to fetch a single active edge,
we immediately decompress the entire block and store it locally in the iterator’s memory.
We then process the graph �lter’s bits word-by-word using the intrinsic-based algorithm
described above.

Finally, we avoid the use of dirty bits in the algorithms using the graph �ltering
structure studied in this chapter by supplying the framework’s primitives with a �ag
which informs the framework that the algorithm will not operate on vertices which are
not packed. By avoiding using the dirty bits, our algorithms avoid an extra random-write
of a neighbor’s dirty-bit when performing pack operations, an a random-read to check a
dirty-bit when performing operations on vertices.

Memory Usage. The overall memory requirement of a graphFilter is 3n words to store
the degrees, o�sets, and number of blocks, plus O (m) bits to store the bitset data and the
metadata. The metadata increases the memory usage by a constant factor, since FB is at
least the size of a machine word, and so the metadata stored per block can be amortized
against the bits stored in the block. The overall memory usage is therefore O (n +m/ lgn)
words of memory. For our uncompressed inputs, the size of the graph �lter is 4.6–8.1x
smaller than the size of the uncompressed graph. For our compressed inputs, the size of
the �lter is 2.7–2.9x smaller than the size of the compressed graph.

6.6 Semi-Asymmetric Bucketing

We now brie�y describe how to adapt the work-e�cient bucketing structure from Juli-
enne [115] to the PSAM. A bucketing structure maintains a dynamic mapping between a
set of elements and buckets, and is used in several important graph algorithms for work-
e�ciency: weighted breadth-�rst search, k-core, approximate densest subgraph, and
approximate set cover. The bucketing strategy in Julienne is based on lazy bucketing,
which avoids deleting the bucketed elements from buckets that they are moved out of. If
the elements that are bucketed are the vertices, and the total number of bucket updates is
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O (m), then the use of lazy bucketing will require the bucket structure to use O (m) words
of small-memory, violating the PSAM requirements.

We can address this issue by using semi-eager bucketing. In the semi-eager version,
each bucket maintains two counters, storing the number of live (not logically deleted)
elements currently in the bucket, and the number of dead (logically deleted) elements.
When moving a vertex out of a bucket, we increment the dead element count in that bucket.
When a bucket contains more than a constant factor of dead elements, we physically pack
them out. Since each vertex is contained in a single bucket, this approach only uses O (n)
words of small-memory for bucketing vertices.

In practice, we use the practical variant of the bucketing structure proposed in Juli-
enne [115], which is based on maintaining a constant number of active buckets with the
highest priority, and an over�ow bucket for all remaining vertices. This approach also
uses only O (n) words of small-memory for bucketing vertices.

6.7 Semi-Asymmetric Graph Algorithms

We now describe Sage’s e�cient parallel graph algorithms in the PSAM model. Our
results and theoretical bounds are summarized in Table 6.1. The bounds are obtained by
combining e�cient in-memory algorithms in our prior work from Chapter 5 with the new
semi-asymmetric techniques designed in Sections 6.4 and 6.5. We elide some of the details
of the theoretical results by describing how the results are obtained based on the results
presented in Chapter 5. Speci�cations of the graph problems can be found in Chapter 2.

Shortest Path Problems

Algorithms. We consider six shortest-path problems in this chapter: breadth-�rst

search (BFS), integral-weight SSSP (wBFS), general-weight SSSP (Bellman-Ford), single-
source betweenness centrality, single-source widest path, and O (k )-spanner. Our
BFS, Bellman-Ford, and betweenness centrality implementations are based on those in
Ligra [319], and our wBFS implementation is based on the one in Julienne (Chapter 4). We
provide two implementations of the single-source widest path algorithm, one based on
Bellman-Ford, and another based on the wBFS implementation from Julienne (Chapter 4).
An O (k )-spanner is a subgraph that preserves shortest-path distances within a factor of
O (k ). Our O (k )-spanner implementation is based on an algorithm by Miller et al. [248].
E�ciency in the PSAM. Our theoretical bounds for these problems in the PSAM are
obtained by using the edgeMapChunked primitive (Section 6.4) for performing sparse
graph traversals, because all of these algorithms can be expressed as iteratively performing
edgeMapChunked over subsets of vertices. The proofs are similar to the proof we provide
for BFS in Section 6.4.1 and rely on Theorem 4. Note that the bucketing data structure
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used in Julienne (Chapter 4) requires only O (n) words of space to bucket vertices, and
thus automatically �ts in the PSAM model. The Miller et al. construction builds an O (k )-
spanner with size O (n1+1/k ), and runs in O (m) expected work and O (k lgn) depth whp.
Our implementation in Sage runs our low-diameter decomposition algorithm, which is
e�cient in the PSAM as we describe below. We set k to be Θ(lgn), which results in a
spanner with size O (n).

Connectivity Problems

Algorithms. We consider four connectivity problems in this chapter: low-diameter

decomposition (LDD), connectivity, spanning forest, and biconnectivity. Our imple-
mentations are extensions of the implementations provided in GBBS [117].
E�ciency in the PSAM. First, we replace the calls to edgeMapBlocked in each algorithm
with calls to edgeMapChunked, which ensures that the graph traversal step uses O (n)
words of small-memory using Theorem 4. This modi�cation results in PSAM algorithms
for LDD. For the other connectivity-like algorithms that use LDD, namely connectivity,
spanning forest, biconnectivity, we use the improved analysis of LDD provided in [248] to
argue that the number of inter-cluster edges after applying LDD with β = O (1) is O (n)
in expectation. Speci�cally, we use Corollary 3.1 of [248], which we reproduce here for
completeness:

Lemma 3 (Corollary 3.1 of [248]). In an exponential start time decomposition with parameter

β =
lgn
2k , for any vertex v ∈ V the ball B (v, 1) = {u ∈ V | d (u,v ) ≤ 1} intersects O (n1/k )

clusters in expectation.

The number of clusters the radius-1 ball around a vertex intersects is exactly the
number of inter-cluster edges incident to the vertex. Applying Lemma 3 with k = c lgn,
we have that β = 1

2c , for a suitable constant c , and that the number of inter-cluster edges
incident to v is O (n1/c lgn ) = O (1) in expectation.

Thus, applying this lemma across all vertices, by linearity the number of inter-cluster
edges in G drops to O (n) in expectation after applying the LDD once, when β = 1

2c for
some constant c . At this point, the entire graph on n vertices, and all inter-cluster edges
can be built in the fast memory, and the previous algorithm of Shun et al. [321] can be run
in the fast memory on this new graph. By the analysis above, and the fact that the Shun
et al. [321] algorithm runs in O (m) expected work and O (lg3 n) depth whp, we have the
following result for connectivity in the PSAM.

Theorem 6. There is a parallel connectivity algorithm that performs O (m) expected work
and O (lg3 n) depth whp in the PSAM model with O (n) words of memory.
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An identical argument holds for spanning forest, and biconnectivity (which uses the
connectivity algorithm as a subroutine).

Corollary 1. There are algorithms for computing spanning forest and biconnectivity that

perform O (m) expected work each, and O (lg3 n) depth and O (dG lgn + lg3 n) depth whp in

the PSAM model with O (n) words of memory.

We note that our biconnectivity implementation utilizes the �ltering structure (Sec-
tion 6.5) to accelerate a call to connectivity that operates on a graph with most of the
edges removed, and thus our implementation runs in the relaxed PSAM model for practical
e�ciency.
Handling Restarts in Low-Diameter Decomposition-Based Algorithms. One issue
that arises when running in the PSAM is that algorithms which use O (n) words of small-
memory in expectation may need to be restarted if the space bound is violated. This
situation can occur for several of our algorithms which are based on running a low-
diameter decomposition, and contracting, or selecting inter-cluster edges based on the
decomposition. In what follows, we focus on the connectivity algorithm, since our spanning
forest, biconnectivity, and O (k )-spanner algorithm are also handled identically.

In our connectivity algorithm, we can ensure that the algorithm runs in O (n) words
of space by re-running the LDD algorithm until it succeeds. Checking whether an LDD
succeeds can be done in O (n) space and O (n +m) work by simply counting the number
of inter-cluster edges formed by the partition of vertices. Once the LDD succeeds, the
rest of the algorithm does not require restarts, since the recursive calls in the connectivity
algorithm always �t withinO (n) words of space [321]. We note that since the LDD succeeds
with constant probability, an expected constant number of iterations are needed for the
connectivity algorithm to succeed. Therefore, the work bounds obtained using restarting
are still O (m) in expectation. Furthermore, the depth bound is not a�ected by the restarts
since we only need to perform restarts at the �rst level of recursion in the algorithm.
Since we must perform at most O (lgn) restarts at this level to guarantee success whp, the
overall contribution to the depth of re-running an LDD at this step is O (lg2 n) whp, which
is subsumed by the algorithm’s overall depth.

Covering Problems

Algorithms. We consider four covering problems in this chapter: maximal independent

set (MIS), maximal matching, graph coloring, and approximate set cover. All of our
implementations are extensions of our previous work in GBBS [117].
E�ciency in the PSAM. For MIS and graph coloring, we derive PSAM algorithms by
applying our edgeMapChunked optimization because other than graph traversals, both
algorithms already use O (n) words of small-memory.
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Our maximal matching algorithm runs phases of the �ltering-based maximal matching
algorithm described in [117] on subsets of the edges such that they �t in small-memory.
The algorithm has access to O (n +m/ lgn) words of memory, so we can solve the problem
by extracting the next O (m/ lgn) unprocessed edges on each phase, and running the
random-priority based maximal matching algorithm on the subset of edges. The algorithm
will �nish after performing O (lgn) phases. This does not a�ect the overall work and
increases the depth by an O (lgn) factor. The depth of applying maximal matching within
a phase is O (lg2 n) whp using the analysis of Fischer and Noever [141], combined with
the implementation from Blelloch et al. [64]. Thus, the overall depth of the algorithm is
O (lg3 n) whp. In practice, we use a similar approach that is theoretically motivated and
makes use of our graph-�ltering structure. In each phase, we extract O (n) unmatched
edges, and process them using the random-priority based algorithm [64]. All unmatched
edges from this set are discarded, and the graph is �ltered using filterEdges to pack
out edges incident to matched vertices. Theoretically, we can switch to the previously
described version after a constant number of such phases. However, we observed that in
practice, a constant number of iterations of the �ltering procedure su�ces for all graphs
that we tested on.

Our approximate set cover implementation is similar to the implementation from [117],
with the exception that the underlying �ltering is done using a graph �lter, instead of
mutating the original graph. The bounds obtained for the graph �lter structure match the
bounds on �ltering used in the GBBS code, which mutates the underlying graph, and so
our implementation also computes a (1+ ϵ )-approximate set cover in O (m) expected work
and O (lg3 n) depth whp.

Substructure Problems

Algorithms. We consider three substructure-based problems in this chapter: k-core,
approximate densest subgraph and triangle counting. Substructure problems are
fundamental building blocks for community detection and network analysis (e.g., [82, 180,
217, 298, 300, 362]). Our k-core and triangle-counting implementations are based on the
implementation from GBBS [117].
E�ciency in the PSAM. For the k-core algorithm to use O (n) words of small-memory,
it should use the fetch-and-add based implementation of k-core, which performs atomic
accumulation in an array in order to update the degrees. However, the fetch-and-add based
implementation performs poorly in practice, where it incurs high contention to update
the degrees of vertices incident to many removed vertices [117]. Therefore, in practice we
use a histogram-based implementation, which always runs faster than the fetch-and-add
based implementation (the histogram primitive is fully described in [117]). In this chapter,
we implemented a dense version of the histogram routine, which performs reads for all
vertices in the case where the number of neighbors of the current frontier is higher than
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a threshold t . The work of the dense version is O (m). Using t = m/c for some constant
c ensures work-e�ciency, and results in low memory usage for sparse calls in practice.
Our approximate densest subgraph algorithm is similar to our k-core algorithm, and uses
a histogram to accelerate processing the removal of vertices. The code uses the dense
histogram optimization described above.

Our triangle counting code is based on the GBBS implementation, which is an imple-
mentation of the parallel triangle counting algorithm from Shun and Tangwongsan [323].
Our implementation uses the graph �lter structure to orient edges in the graph from
lower degree to higher degree. Since we only require outgoing edges, we supply a �ag
to the framework which permits it to only represent the outgoing edges of the directed
graph, halving the amount of internal memory required. Our implementation uses the
new iterator implemented over the graph �lter structure to perform intersections between
the outgoing edges of two vertices. We note that in our implementation, we perform
intersection sequentially, which theoretically guarantees a depth of O (

√
m). However, the

parallelism of this algorithm is O (m3/2/m1/2) = O (m) which in practice is su�ciently high
that reducing the depth using a parallel intersection routine is unnecessary, and can hurt
performance due to using a more complicated intersection algorithm.

Theoretically, the bounds for Triangle Counting in Table 6.1 can be obtained by using a
parallel intersection method on the �lter structure. The implementation of this idea for the
blocked adjacency lists in the �lter structure is identical to the O (lgn) depth intersection
method de�ned on compressed graphs in [117]. The idea is similar to the classic parallel
intersection, or merge algorithms on two sorted arrays [188, 62].

Eigenvector Problems

Algorithms. We consider the PageRank algorithm, designed to rank the importance of
vertices in a graph [85]. Our PageRank implementation is based on the implementation
from Ligra.

E�ciency in the PSAM. We optimized the Ligra implementation to improve the depth of
the algorithm. The implementation from Ligra runs dense iterations, where the aggregation
step for each vertex (reading its neighbor’s PageRank contributions) is done sequentially.
In Sage, we implemented a reduction-based method that reduces over these neighbors
using a parallel reduce. Therefore, each iteration of our implementation requires O (m)
work and O (lgn) depth. The overall work is O (Pit ·m) and depth is O (Pit lgn), where Pit
is the number of iterations required to run PageRank to convergence with a convergence
threshold of ϵ = 10−6.
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6.8 Experiments

Overview of Results. After describing the experimental setup (Section 6.8.1), we show
the following main experimental results:
• Section 6.8.2: Our NUMA-optimized graph storage approach outperforms naive (and

natural) approaches by 6.2x.
• Section 6.8.3: Sage achieves between 31–51x speedup for shortest path problems, 28–

53x speedup for connectivity problems, 16–49x speedup for covering problems, 9–63x
speedup for substructure problems and 42–56x speedup for eigenvector problems.

• Section 6.8.4: Compared to existing state-of-the-art DRAM-only graph analytics, Sage
run on NVRAM is 1.17x faster on average on our largest graph that �ts in DRAM. Sage
run on NVRAM is only 5% slower on average than when run entirely in DRAM.

• Section 6.8.5: We study how Sage compares to other NVRAM approaches for graphs
that are larger than DRAM. We �nd that Sage on NVRAM using App-Direct Mode is
1.94x faster on average than the recent state-of-the-art Galois codes [152] run using
Memory Mode. Compared to GBBS codes run using Memory Mode, Sage is 1.87x faster
on average across all 18 problems.

• Section 6.8.6: We compare Sage with existing state-of-the-art semi-external memory
graph processing systems, including FlashGraph, Mosaic, and GridGraph and �nd that
our times are 9.3x, 12x, and 8024x faster on average, respectively.

6.8.1 Experimental Setup

Machine Con�guration

We run our experiments on a 48-core, 2-socket machine (with two-way hyper-threading)
with 2 × 2.2Ghz Intel 24-core Cascade Lake processors (with 33MB L3 cache) and 375GB
of DRAM. The machine has 3.024TB of NVRAM spread across 12 252GB DIMMs (6 per
socket). All of our speedup numbers report running times on a single thread (T1) divided
by running times on 48-cores with hyper-threading (T96). Our programs are compiled
with the g++ compiler (version 7.3.0) with the -O3 �ag. We use the command numactl -i
all for our parallel experiments. Our programs use a work-stealing scheduler that we
implemented, implemented similarly to Cilk [79].

NVRAM Con�guration

NVRAMModes. The NVRAM we use (Optane DC Persistent Memory) can be con�gured
in two distinct modes. In Memory Mode, the DRAM acts like a direct-mapped cache
between L3 and the NVRAM for each socket. Memory Mode transparently provides access
to higher memory capacity without software modi�cation. In this mode, the read-write
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Table 6.2: Graph inputs, number of vertices, edges, and average degree (davg).
Graph Dataset Num. Vertices Num. Edges davg

LiveJournal [81] 4,847,571 85,702,474 17.6
com-Orkut [378] 3,072,627 234,370,166 76.2
Twitter [208] 41,652,231 2,405,026,092 57.7
ClueWeb [81] 978,408,098 74,744,358,622 76.3
Hyperlink2014 [241] 1,724,573,718 124,141,874,032 72.0
Hyperlink2012 [241] 3,563,602,789 225,840,663,232 63.3

asymmetry of NVRAM is obscured by the DRAM cache, and causes the DRAM hit rate to
dominate memory performance. In App-Direct Mode, NVRAM acts as byte-addressable
storage independent of DRAM, providing developers with direct access to the NVRAM.
Sage Con�guration. In Sage, we con�gure the NVRAM to use App-Direct Mode. The
devices are con�gured using the fsdax mode, which removes the page cache from the I/O
path for the device and allows mmap to directly map to the underlying memory.
Graph Storage. The approach we use in Sage is to store two separate copies of the graph,
one copy on the local NVRAM of each socket. Threads can determine which socket they
are running on by reading a thread-local variable, and access the socket-local copy of the
graph. We discuss the approach in detail in Section 6.8.2

Graph Data

To show how our algorithms perform on graphs at di�erent scales, we selected a represen-
tative set of real-world graphs of varying sizes. These graphs are Web graphs and social
networks, which are low-diameter graphs that are frequently used in practice. We list
the graphs used in our experiments in Table 6.2, which we symmetrized to obtain larger
graphs and so that all of the algorithms would work on them. Hyperlink 2012 is the largest
publicly-available real-world graph. We create weighted graphs for evaluating weighted
BFS, Bellman-Ford, and Widest Path by selecting edge weights in the range [1, lgn) uni-
formly at random. We process the ClueWeb, Hyperlink2014, and Hyperlink2012 graphs in
the parallel byte-encoded compression format from Ligra+ [322], and process LiveJournal,
com-Orkut, and Twitter in the uncompressed (CSR) format.

6.8.2 Graph Layout in NVRAM

While building Sage, we observed startingly poor performance of cross-socket reads to
graph data stored on NVRAM. We designed a simple micro-benchmark that illustrates this
behavior. The benchmark runs over all vertices in parallel. For the i-th vertex, it counts
the number of neighbors incident to it by reducing over all of its incident edges. It then
writes this value to an array location corresponding to the i-th vertex. The graph is stored
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in CSR format, and so the benchmark reads each vertex o�set exactly once, and reads the
edges incident to each vertex exactly once. Therefore the total number of reads from the
NVRAM is proportional to n +m, and the number of (in-memory) writes is proportional
to n.

For the ClueWeb graph, we observed that running the benchmark with the graph on
one socket using all 48 hyper-threads on the same socket results in a running time of 7.1
seconds. However, using numactl -i all, and running the benchmark on all threads
across both sockets results in a running time of 26.7 seconds, which is 3.7x worse, despite
using twice as many hyper-threads. While we are uncertain as to the underlying reason for
this slowdown, one possible reason could be the granularity size for the current generation
of NVRAM DIMMs, which have a larger e�ective cache line size of 256 bytes [186], and
a relatively small cache within the physical NVM device. Using too many threads could
cause thrashing, which is a possible explanation of the slowdowns we observed when
scaling up reads to a single NVRAM device by increasing the number of threads. To
the best of our knowledge, this signi�cant slowdown has not been observed before, and
understanding how to mitigate it is an interesting question for future work.

As described earlier, our approach in Sage is to store two separate copies of the graph,
one on the local NVRAM of each socket. Using this con�guration, our micro-benchmark
runs in 4.3 seconds using all 96 hyper-threads, which is 1.6x faster than the single-socket
experiment and 6.2x faster than using threads across both sockets to the graph stored
locally within a single socket.
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Figure 6.5: Speedup of Sage algorithms on large graph inputs on a 48-core machine (with 2-way
hyper-threading), measured relative to the algorithm’s single-thread time. All algorithms are run
using NVRAM in App-Direct Mode. Each bar is annotated with the parallel running time on top of
the bar.
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6.8.3 Scalability

Figure 6.5 shows the speedup obtained on our machine for Sage implementations on
our large graphs, annotating each bar with the parallel running time. In all of these
experiments, we store all of the graph data in NVRAM and use DRAM for all temporary
data.
Shortest Path Problems. Our BFS, weighted BFS, Bellman-Ford, and betweenness cen-
trality implementations achieve between parallel speedups of 31–51x across all inputs.
For O (k )-Spanner, we achieve 39–51x speedups across all inputs. All Sage codes use the
memory-e�cient sparse traversal (i.e., edgeMapChunked) designed in this chapter. We
note that the new weighted-SSSP implementations using edgeMapChunked are up to 2x
more memory-e�cient than the implementations from [117]. We ran our O (k )-Spanner
implementation with k set to dlg2 ne by default.
Connectivity Problems. Our low-diameter decomposition implementation achieves a
speedup of 28–42x across all inputs. Our connectivity and spanning forest implementations,
which use the new �ltering structure from Section 6.5, achieve speedups of 37–53x across
all inputs. Our biconnectivity implementation achieves a speed up of 38–46x across all
inputs. We found that setting β = 0.2 in the LDD-based algorithms (connectivity, spanning
forest, and biconnectivity) performs best in practice, and creates signi�cantly fewer than
mβ = m/5 inter-cluster edges predicted by the theoretical bound [246], due to many
duplicate edges that get removed.
Covering Problems. Our MIS, maximal matching, and graph coloring implementations
achieve speedups of 43–49x, 33–44x, and 16–39x, respectively. Our MIS implementation
is similar to the implementation from GBBS. Our maximal matching implementation
implements several new optimizations over the implementation from GBBS, such as using
a parallel hash table to aggregate edges that will be processed in a given round. These
optimizations result in our code (using the graph �lter) running faster than the original
code when run in DRAM-only, outperforming the 72-core DRAM-only times reported
in [117] for some graphs (we discuss the speedup of Sage over GBBS in Section 6.8.4).
Substructure Problems. Our k-core, approximate densest subgraph, and triangle count-
ing implementations achieve speedups of 9–38x, 43–48x, and 29–63x, respectively. Our
code achieves similar speedups and running times on NVRAM compared to the previ-
ous times reported in [117]. We ran the approximate densest subgraph implementation
with ϵ = 0.001, which produces subgraphs of similar density to the 2-approximation of
Charikar [96]. Lastly, the Sage triangle counting algorithm uses the iterator de�ned over
graph �lters to perform parallel intersection. The performance of our implementation is
a�ected by the number of edges that must be decoded for compressed graph inputs, and
we discuss this in detail in Section 6.8.
Eigenvector Problems. Our PageRank implementation achieves a parallel speedup of
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42–56x. Our implementation is based on the PageRank implementation from Ligra, and
improves the parallel scalability of the Ligra-based code by aggregating the neighbor’s
contributions for a given vertex in parallel. We ran our PageRank implementation with
ϵ = 10−6 and a damping factor of 0.85.
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Figure 6.6: Performance of Sage on the ClueWeb graph compared with existing state-of-the-art
in-memory graph processing systems in terms of slowdown relative to the fastest system (smaller
is better). GBBS refers to the DRAM-only codes developed in Chapter 5, and Sage refers to the
parallel semi-asymmetric codes developed in this chapter. Both codes are run in two con�gurations:
DRAM measures the running time when the graph is stored in memory, and NVRAM measures
the running time when the graph is stored in non-volatile memory, and accessed either using
the techniques developed in this chapter (Sage-NVRAM) or using libvmmalloc to automatically
convert the DRAM-only codes from GBBS to work using non-volatile memory (GBBS-NVRAM). We
truncate relative times slower than 3x and mark the tops of these bars with ∗. All bars are annotated
with the parallel running times of the codes on a 48-core system with 2-way hyper-threading.
Note that the ClueWeb graph is the largest graph dataset studied in this thesis that �ts in the main
memory of this machine.

6.8.4 NVRAM vs. DRAM Performance

In this section, we study how fast Sage is compared to state-of-the-art shared-memory
graph processing codes, when these codes are run entirely in DRAM. For these experiments,
we study the ClueWeb graph since it is the largest graph among our inputs where both
the graph and all intermediate algorithm-speci�c data fully resides in the DRAM of our
machine. We consider the following con�gurations:

(1) GBBS codes run entirely in DRAM
(2) GBBS codes converted to use NVRAM using libvmmalloc (a robust NVRAM memory

allocator)
(3) Sage codes run entirely in DRAM
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(4) Sage codes run using NVRAM in App-Direct Mode
Setting (2) is relevant since it captures the performance of a naive approach to obtaining
NVRAM-friendly code, which is to simply run existing shared-memory code using a
NVRAM memory allocator.

Figure 6.6 displays the results of these experiments. Comparing Sage to GBBS when
both systems are run in memory shows that our code is faster than the original GBBS
implementations by 1.17x on average (between 2.38x faster to 1.73x slower). The notable
exception is for triangle counting, where Sage is 1.73x slower than the GBBS code (both
run in memory). The reason for this di�erence is due to the input-ordering the graph
is provided in, and is explained in detail in the full version of the paper this chapter is
based on [122]. A number of Sage implementations, like connectivity and approximate
densest subgraph, are faster than the GBBS implementations due to optimizations in our
codes that are absent in GBBS, such as a faster implementation of graph contraction. Our
read-only codes when run using NVRAM are only about 5% slower on average than when
run using DRAM-only. This di�erence in performance is likely due to the higher cost of
NVRAM reads compared to DRAM reads. Finally, Sage is always faster than GBBS when
run on NVRAM using libvmmalloc, and is 6.69x faster on average.

These results show that for a wide range of parallel graph algorithms, Sage signi�cantly
outperforms a naive approach that converts DRAM codes to NVRAM ones, is often faster
than the fastest DRAM-only codes when run in DRAM, and is competitive with the fastest
DRAM-only running times when run in NVRAM.

6.8.5 Alternate NVRAM approaches

We now compare Sage to the fastest available NVRAM approaches when the input graph
is larger than the DRAM size of the machine. We focus on the Hyperlink2012 graph, which
is our only graph where both the graph and intermediate algorithm data are larger than
DRAM. We �rst compare Sage to the Galois-based implementations by Gill et al. [152],
which use NVRAM con�gured in Memory Mode. We then compare Sage to the unmodi�ed
shared-memory codes from GBBS modi�ed to use NVRAM con�gured in Memory Mode.
Comparison with Galois [152]. Gill et al. [152] study the performance of several state-
of-the-art graph processing systems, including Galois [260], GBBS [117], GraphIt [383],
and GAP [45] when run on NVRAM con�gured to use Memory Mode. Their experiments
are run on a nearly identical machine to ours, with the same amount of DRAM. However,
their machine has 6.144TB of NVRAM (12 NVRAM DIMMs with 512GB of capacity each).

Gill et al. [152] �nd that their Galois-based codes outperform GAP, GraphIt, and GBBS
by between 3.8x, 1.9x, and 1.6x on average, respectively, for three large graphs inputs,
including the Hyperlink2012 graph. In our experiments running GBBS on NVRAM using
MemoryMode, we �nd that the GBBS performance using MemoryMode is 1.3x slower
on average than Galois. There are several possible reasons for the small di�erence. First,
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Figure 6.7: Performance of Sage on the Hyperlink2012 graph compared with existing state-of-
the-art systems for processing larger-than-memory graphs using NVRAM measured relative to
the fastest system (smaller is better). Sage (NVRAM) are the new codes developed in this chapter,
GBBS-MemMode is the code developed in [117] run using MemoryMode, and Galois is the NVRAM
codes from [152]. The bars are annotated with the parallel running times (in seconds) of the codes
on a 48-core system with 2-way hyper-threading. Note that the Hyperlink2012 graph does not �t in

DRAM for the machine used in these experiments.

Gill et al. [152] use the directed version of the Hyperlink2012 graph, which has 1.75x
fewer edges than the symmetrized version (225.8B vs. 128.7B edges). The symmetrized
graph exhibits a massive connected component containing 94% of the vertices, which a
graph search algorithm must process for most source vertices. However, a search from the
largest SCC in the directed graph reaches about half the vertices [240]. Second, they do not
enable compression in GBBS, which is important for reducing the number of cache-misses
and NVRAM reads. Lastly, we found that transparent huge pages (THP) signi�cantly
improves performance, while they did not, which may be due to di�erences regarding
THP con�guration on the di�erent machines.

Figure 6.7 shows results for their Galois-based system on the directed Hyperlink2012
graph. Compared with their NVRAM codes, Sage is 1.04–3.08x faster than their fastest
reported times, and 1.94x faster on average. Their codes use the maximum degree vertex
in the directed graph as the source for BFS, SSSP, and betweenness centrality. We use the
maximum degree vertex in the symmetric graph, and note that running on the symmetric
graph is more challenging, since our codes must process more edges.

Despite the fact that our algorithm must perform more work, our running times for
BFS are 3.08x faster than the time reported for Galois, and our SSSP time is 1.43x faster.
For connectivity and PageRank, our times are 2.09x faster and 2.12x faster respectively.
For betweenness, our times are 1.04x faster. The authors also report running times for
an implementation of k-core that computes a single k-core, for a given value of k . This
requires signi�cantly fewer rounds than the k-core computation studied in this thesis,
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which computes the coreness number of every vertex, or the largest k such that the vertex
participates in the k-core. They report that their code requires 49.2 seconds to �nd the 100-
core of the Hyperlink2012 graph. Our code �nds all k-cores of this graph in 259 seconds,
which requires running 130,728 iterations of the peeling algorithm and also discovers the
value of the largest k-core supported by the graph (kmax = 10565).

In summary, we �nd that using Sage on NVRAM using App-Direct Mode is 1.94x faster
on average than the Galois codes run using Memory Mode.
Algorithms using Memory Mode. Next, we compare Sage to the unmodi�ed shared-
memory codes from GBBS modi�ed to use NVRAM con�gured in Memory Mode. We run
these Memory Mode experiments on the same machine with 3TB of NVRAM, where 1.5TB
is con�gured to be used in Memory Mode.

Figure 6.7 reports the parallel running times of both Sage codes using NVRAM, and
the GBBS codes using NVRAM con�gured in Memory Mode for the Hyperlink2012 graph.
The results show that in all but one case (triangle counting) our running times are faster
(between 1.15–2.92x). For triangle counting, the directed version of the Hyperlink2012
graph �ts in about 180GB of memory, which �ts within the DRAM of our machine and
will therefore reside in memory. We note that we also ran Memory Mode experiments on
the ClueWeb graph, which �ts in memory. The running times were only 5–10% slower
compared to the DRAM-only running times for the same GBBS codes reported in Figure 6.6,
indicating a small overhead due to Memory Mode when the data �ts in memory.

In summary, our results for this experiment show that the techniques developed in
this chapter produce meaningful improvements (1.87x speedup on average, across all
18 problems) over simply running unmodi�ed shared-memory graph algorithms using
Memory Mode to handle graph sizes that are larger than DRAM.

6.8.6 External and Semi-External Systems

In this section we place Sage’s performance in context by comparing it to existing state-
of-the-art semi-external memory graph processing systems. Table 6.3 shows the running
times and system con�gurations for state-of-the-art results on semi-external memory
graph processing systems. We report the published results presented by the authors of
these systems to give a high-level comparison due to the fact that (i) our machine does not
have parallel SSD devices that most of these systems require, and (ii) modifying them to
use NVRAM would be a serious research undertaking in its own right.
FlashGraph. FlashGraph [385] is a semi-external memory graph engine that stores vertex
data in memory and stores the edge lists in an array of SSDs. Their system is optimized for
I/Os at a �ash page granularity (4KB), and merges I/O requests to maximize throughput.
FlashGraph provides a vertex-centric API, and thus cannot implement some of the work-
optimal algorithms designed in Sage, like our connectivity, biconnectivity, or parallel set
cover algorithms.



166 Semi-Asymmetric Graph Algorithms

Table 6.3: System con�gurations (memory in terabytes and threads (hyper-threads)) and running
times (seconds) of existing semi-external memory results on the Hyperlink graphs. The last section
shows our running times (note that our system is also equipped with NVRAM DIMMs). *These
problems are run on directed versions of the graph.

Paper Problem Graph Mem Threads Time

FlashGraph [385]

BFS* 2012 .512 64 208
BC* 2012 .512 64 595
Connectivity* 2012 .512 64 461
PageRank* 2012 .512 64 2041
TC* 2012 .512 64 7818

Mosaic [225]

BFS* 2014 0.768 1000 6.55
Connectivity* 2014 0.768 1000 708
PageRank (1 iter.)* 2014 0.768 1000 21.6
SSSP* 2014 0.768 1000 8.6

Sage

BFS 2014 0.375 96 5.10
SSSP 2014 0.375 96 32.8
Connectivity 2014 0.375 96 15.8
PageRank (1 iter.) 2014 0.375 96 8.99
BFS 2012 0.375 96 11.4
BC 2012 0.375 96 53.9
Connectivity 2012 0.375 96 36.2
SSSP 2012 0.375 96 82.3
PageRank 2012 0.375 96 827
TC 2012 0.375 96 3529

We report running times for FlashGraph for Hyperlink2012 on a 32-core 2-way hyper-
threaded machine with 512GB of memory and 15 SSDs in Table 6.3). Compared to Flash-
Graph, the Sage times are 9.3x faster on average. Our BFS and BC times are 18.2x and 11x
faster, and our connectivity, PageRank and triangle counting implementations are 12.7x,
2.4x faster, and 2.2x faster, respectively. We note that our times are on the symmetric
version of the Hyperlink2012 graph which has twice the edges, where a BFS from a random
seed hits the massive component containing 95% of the vertices (BFSes on the directed
graph reach about 30% of the vertices).
Mosaic. Mosaic [225] is a hybrid engine supporting semi-external memory processing
based on a Hilbert-ordered data structure. Mosaic uses co-processors (Xeon Phis) to o�oad
edge-centric processing, allowing host processors to perform vertex-centric operations.
Giving a full description of their complex execution strategy is not possible in this space,
but at a high level, it is based on exploiting the fact that user-programs are written in a
vertex-centric model.

We report the running times for Mosaic run using 1000 hyper-threads, 768GB of RAM,
and 6 NVMes in Table 6.3. Compared with their times, Sage is 12x faster on average, solving
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BFS 1.2x faster, connectivity 44.8x faster, SSSP 3.8x slower, and 1-iteration of PageRank
2.4x faster. Given that both SSSP and PageRank are implemented using an SpMV like
algorithm in their system, we are not sure why their PageRank times are 2.5x slower than
the total time of an SSSP computation. In our experiments, the most costly iteration of
Bellman-Ford takes roughly the same amount of time as a single PageRank iteration since
both algorithms require similar memory accesses in this step. Sage solves a much broader
range of problems compared to Mosaic, and is often faster than it.
GridGraph. GridGraph is an out-of-core graph engine based on a 2-dimensional grid
representation of graphs. Their processing scheme ensures that only a subset of the
vertex-values accessed and written to are in memory at a given time. GridGraph also
o�ers a mechanism similar to edge �ltering which prevents streaming edges from disk if
they are inactive. Like FlashGraph, GridGraph is a vertex-centric system and thus cannot
implement algorithms that do not �t in this restricted computational model.

The authors consider signi�cantly smaller graphs than those used in our experiments
(the largest is a 6.64B edge WebGraph). However, they do solve the LiveJournal and Twitter
graphs that we use. For the Twitter graph, our BFS and Connectivity times are 15690x and
359x faster respectively than theirs (our speedups for LiveJournal are similar). GridGraph
does not use direction optimization, which is likely why their BFS times are much slower.

6.9 Related Work

A signi�cant amount of research has focused on reducing expensive writes to NVRAMs.
Early work has designed algorithms for database operators [98, 357, 358]. Blelloch et
al. [53, 76, 69] de�ne computational models to capture the asymmetric read-write cost
on NVRAMs, and many algorithms and lower bounds have been obtained based on the
models [51, 65, 74, 160, 187]. Other models and systems to reduce writes or memory
footprint on NVRAMs have also been described [28, 27, 90, 94, 97, 211, 221, 261, 266, 311,
292].

Persistence is a key property of NVRAMs due to their non-volatility. Many new
persistent data structures have been designed for NVRAMs [29, 50, 99, 103, 271, 318].
There has also been research on automatic recovery schemes and transactional memory for
NVRAMs [18, 109, 214, 220, 361, 381, 387]. There are several recent papers benchmarking
performance on NVRAMs [186, 219, 293].

Parallel graph processing frameworks have received signi�cant attention due to the
need to quickly analyze large graphs [296]. The only previous graph processing work
targeting NVRAMs is the concurrent work by Gill et al. [152], which we discuss in Sec-
tion 6.8.5. Dhulipala et al. [115, 117] design the Graph Based Benchmark Suite, and show
that the largest publicly-available graph, the Hyperlink2012 graph, can be e�ciently pro-
cessed on a single multicore machine. We compare with these algorithms in Section 6.8.



168 Semi-Asymmetric Graph Algorithms

Other multicore frameworks include Galois [260], Ligra [319, 322], Polymer [380], Gem-
ini [389], GraphGrind [338], Green-Marl [177], Grazelle [159], and GraphIt [383]. We refer
the reader to [21, 235, 315, 377] for excellent surveys of this growing literature.

6.10 Discussion

In this chapter, we introduced Sage, which takes a semi-asymmetric approach to designing
parallel graph algorithms that avoid writing to the NVRAM and uses DRAM proportional
to the number of vertices. We have designed a new model, the Parallel Semi-Asymmetric
Model, and have shown that all of our algorithms in Sage are provably e�cient, and often
work-optimal in the model. Our empirical study shows that Sage graph algorithms can
bridge the performance gap between NVRAM and DRAM. This enables NVRAMs, which
are more cost-e�cient and support larger capacities than traditional DRAM, to be used
for large-scale graph processing. Interesting directions for future work include studying
which �ltering algorithms can be made to use only O (n) words of DRAM, and to study
how Sage performs relative to existing NVRAM graph-processing approaches on synthetic
graphs with trillions of edges.
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Introduction

This part of the thesis develops e�cient parallel algorithms in the batch-dynamic setting.
Traditional (sequential) dynamic algorithms were motivated by applications where data
undergos small changes that can be adequately handled by updates of single elements.
Today, however, applications operate on increasingly large datasets that undergo rapid
changes over time: for example, millions of individuals can simultaneously interact with a
web site, make phone calls, send emails and so on. In the context of these applications,
traditional dynamic algorithms require serializing the changes made and processing them
one at a time, missing an opportunity to exploit the parallelism a�orded by processing
batches of changes.

Motivated by such applications, there has been recent interest in developing theoreti-
cally e�cient parallel batch-dynamic algorithms [9, 327, 4]. In the batch-dynamic setting,
instead of applying one update or query at a time, a whole batch is applied. A batch could
be of size lgn,

√
n, or n/ lgn for example. There are two advantages of applying operations

in batches.

1. Batching operations allows for more parallelism.

2. Batching operations can reduce the cost of each update.

In this part of the thesis we are interested in developing algorithms that enjoy both of
these advantages. We use the term parallel batch-dynamic to mean algorithms that process
batches of operations instead of single ones, and for which the algorithm itself is parallel.
The underlying parallel model used in this part is primarily the binary-forking (BF) model,
presented in Chapter 2, although in Chapter 8 we brie�y consider the CRCW PRAM, as one
of our algorithms achieves better depth in the CRCW PRAM compared to the BF model.

We start this part of the thesis by considering the classic dynamic trees problem,
introduced by Sleator and Tarjan [328]. In this problem, the objective is to maintain a
forest that dynamically undergoes changes in the form of edge insertions and deletions
(links and cuts). The objective is to process the updates and also answer queries that ask
whether two vertices are in the same tree in the forest. Chapter 7 designs a parallel batch-
dynamic algorithm for this problem based on the classic Euler tour tree data structure [173,
249]. Our new algorithm is based on an new concurrent skip-list data structure designed in
the BF model which is work-e�cient for single updates, but achieves asymptotically faster
batch bounds when processing multiple updates. We then apply this structure to design
an Euler tour tree data structure that supports parallel bulk updates. Chapter 8 then builds
upon this structure for representing dynamic forests to design a parallel batch-dynamic
data structure for connectivity on general graphs. Our data structure is based on the classic
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multilevel data structure of Holm, de Lichtenberg, and Thorup [175] (HDT) data structure.
Each level of our data structure uses a parallel batch-dynamic forest data structure, with
the top-level forest representing a spanning forest of the input graph. We also design
parallel procedures for the non-tree edge search procedure in the HDT structure, which
sequentially searches for an edge spanning the new cut induced by a deleted spanning
forest edge. Our main contribution is a parallel batch-dynamic connectivity data structure
that is work-e�cient with respect to the HDT data structure, and runs in polylogarithmic
worst-case depth. Finally, we also show that our algorithms perform asymptotically lower
amortized work than the HDT data structure for su�ciently large batches of deletions.

The results in this part of the thesis have appeared in the following publications:

• Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. “Batch-Parallel Euler Tour
Trees”. In: ALENEX. 2019

• Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. “Par-
allel Batch-Dynamic Graph Connectivity”. In: ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). 2019, pp. 381–392



7
Parallel Batch-Dynamic Forest Connectivity

7.1 Introduction

In the dynamic trees problem proposed by Sleator and Tarjan [328], the objective is to
maintain a forest that undergoes link and cut operations. A link operation adds an edge to
the forest, and a cut operation deletes an edge. Additionally, we want to maintain useful
information about the forest. Most commonly we are concerned with whether pairs of
vertices are connected (i.e., in the same tree), but we might also be interested in properties
like the size of each tree in the forest. Sleator and Tarjan �rst studied the dynamic trees
problem in order to develop fast network �ow algorithms [328]. Dynamic trees are also an
important component of many dynamic graph algorithms [328, 173, 175, 19, 193].

In the batch-dynamic version of the dynamic trees problem, the objective is to maintain
a forest that undergoes batches of link and cut operations. Though many sequential data
structures exist to maintain dynamic trees, the only parallel batch-dynamic data structure
is a recent result by Acar et al. [4]. Their data structure is based on parallelizing RC-trees,
which require transforming the represented forest to have bounded degree for the sake of
e�ciency [6]. Obtaining a data structure without this restriction is therefore of interest.
Furthermore, it is of intellectual interest whether the arguably simplest solution to the
dynamic trees problem, Euler tour trees (ETTs), can be parallelized.

In this chapter, we answer this question in the a�rmative and show that Euler tour
trees, a data structure introduced by Henzinger and King [173] and Miltersen et al. [249],
achieve asymptotically optimal work and optimal depth in the parallel batch-dynamic
setting. We also develop a parallel batch-dynamic skip list upon which we build our Euler
tour trees. Note that batching is not only useful for parallel applications but also for
single-threaded applications; our O (k lg(1 + n/k )) work bounds for k operations over n
elements on Euler tour trees and augmented skip lists beat the O (k lgn) bounds achieved
by performing each operation one at a time on standard sequential data structures.
Summary of Results. Our main contributions in this chapter are as follows:
Skip lists for simple, e�cient parallel joins and parallel splits. We show that we
can perform k joins or k splits over n skip list elements with O (k lg(1 + n/k )) expected
work and O (lgn) depth whp. To the best of our knowledge, we are the �rst to demonstrate
such e�ciency for batch joins and splits on a sequence data structure supporting fast
search. Our skip list data structure can also be augmented to support e�cient computation
over contiguous subsequences within the same e�ciency bounds.
A parallel Euler tour tree. We apply our skip lists to develop Euler tour trees that
support parallel bulk updates. Our Euler tour tree algorithms for adding and for removing
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a batch of k edges achieve O (k lg(1 + n/k )) expected work and O (lgn) depth whp. These
are the best known bounds for the batch-parallel dynamic trees problem.
Experimental evidence of good performance. Our skip list and Euler tour tree data
structures achieve good self-relative speedups, ranging from 67–96x for large batch sizes
on 72 cores with hyper-threading in our experiments. We also show that they signi�cantly
outperform the fastest existing sequential alternatives.

7.2 Sequences and Parallel Batch-Dynamic Skip Lists

We start by �rst specifying a high-level interface for batch-dynamic sequences. We then
describe our parallel batch-dynamic skip lists which implement the interface, and �nally,
end by discussing how our data structure can be extended to support augmentation.

7.2.1 Batch-Dynamic Sequence Interface

The goal of a batch-dynamic sequence data structure is to represent a collection of se-
quences under batches of operations that split and join the sequences. To join two sequences
is to concatenate them together. To split a sequence A at element x is to separate the
sequence into two subsequences, the �rst of which consists of all elements in A before and
including x , the second of which consists of all elements after x .
Sequences. We now give a formal description of the interface for sequences. The data
structure supports the following functions:

• BatchJoin(
{
(x1,y1), . . . , (xk ,yk )

}
) takes an array of tuples where the i-th tuple is

a pointer to the last element xi of one sequence and a pointer to the �rst element yi
of a second sequence. For each tuple, the �rst sequence is concatenated with the
second sequence. For any distinct tuples (xi ,yi ) and (xj ,yj ) in the input, we must
have xi , xj and yi , yj .

• BatchSplit({x1, . . . ,xk } takes an array of pointers to elements and, for each ele-
ment xi , breaks the sequence immediately after xi .

• BatchFindRep({x1, . . . ,xk } takes an array of pointers to elements. It returns an
array where the i-th entry is the representative of the sequence in which xi lives. The
representative is de�ned so that representative(u) = representative(v ) if and only
if u and v live in the same sequence. Representatives are invalidated after sequences
are modi�ed.

Augmented Sequences. To augment a sequence, we take an associative function f :
D2 → D where D is an arbitrary domain of values. A value from D is assigned to each
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Figure 7.1: An example skip list over a sequence of eight elements. On the bottom are all the
level-1 nodes.

element in the sequence, A. An augmented sequence data structure supports querying for
the value of f over contiguous subsequences ofA. Speci�cally, our interface for augmented
sequences extends the interface for unaugmented sequences with the following functions:

• BatchUpdateValue({(x1,a1), . . . , (xk ,ak )}) takes an array of tuples where the
i-th tuple contains a pointer to an element xi and a new value ai ∈ D for the element.
The value for xi is set to ai in the sequence.

• Batch�eryValue(
{
(x1,y1), . . . , (xk ,yk )

}
) takes an array of k tuples where the

i-th tuple contains pointers to elements xi and yi . The return value is an array where
the i-th entry holds the value of f applied over the subsequence between xi and yi
inclusive. For 1 ≤ i ≤ k , xi and yi must be elements in the same sequence, and yi
must appear after xi in the sequence.

7.2.2 Skip Lists

Skip lists are a simple randomized data structure that can be used to represent sequences [282].
To represent a sequence, skip lists assign a height to each element of the sequence, where
each height is drawn independently from a geometric distribution. The `-th level of a skip
list consists of a linked list over the subsequence formed by all elements of height at least
`. This structure allows e�cient search. Figure 7.1 shows an example skip list.

For an element x of height h, we allocate a node vi for every level i = 1, 2, . . . ,h.
Each node has four pointers left, right, up, and down. We set vi → up = vi+1 and
vi → down = vi−1 for each i to connect between levels. We set vi → right to the i-th
node of the next element of height at least i and similarly vi → left to the i-th node of
the previous element of height at least i .

Our skip lists support cyclicity, which is to say that our algorithms are valid even if we
link the tail and head of a skip list together. Though this is not conventionally done with
sequence data structures, we will �nd it useful for representing Euler tours of graphs in
Section 7.4 since Euler tours are naturally cyclic sequences. We cannot join upon cyclic
sequences, but splitting a cyclic sequence at element x corresponds to unraveling it into a
linear sequence with its last element being x . Figure 7.2 illustrates joining and splitting on
our skip lists.
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join twice
split twice

Figure 7.2: Joins and splits on skip lists.

De�nitions. We now introduce de�nitions that describe the relationship between nodes.
Say we have a node v that represents element x at some level i . We call v → right v’s
successor. Similarly, v → left is its predecessor. We call v → up its direct parent and
v → down its direct child. For example, in Figure 7.1, consider node a. Its predecessor is b,
its successor is c , its direct child is f , and it has no direct parent.

The left parent is the level-(i + 1) node of the latest element preceding and including
x that has height at least i + 1. The right parent is de�ned symmetrically. Under this
de�nition, if v has a direct parent, then its left and right parents are both its direct parent.
When we refer to v’s parent, we refer to its left parent. In Figure 7.1, a’s (left) parent is d ,
and a’s right parent is e . The (left) ancestors consist of v’s parent, v’s parent’s parent, and
so on, and similarly forv’s right ancestors. Thus the ancestors for both f and д in Figure 7.1
are a and d . A child is inverse to a parent, and a descendant is inverse to an ancestor.

The following de�nitions describe the relationship between the links connecting nodes.
The parent of a link between v and its successor is the link between v’s parent and its
successor. Similarly, the ancestors of the link are links between v’s ancestors and their
successors. The children of the link are the links between v’s children and their successors.

Joins, Splits, and Augmentation on Skip Lists. Recall that in an augmented sequence,
we take an associative function f : D2 → D for some domain D. Each element in the
sequence A is assigned some value from D. By storing these values in the bottom level of
our skip list and storing partial “sums” at higher levels, we can compute f over contiguous
subsequences of A in logarithmic time. For instance, in Figure 7.3, we assign the value 1 to
every element and choose f : N2 → N to be the sum function. For each node v , we store
the sum of the values of v’s children. By looking at O (lgn) nodes, we can then compute
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Figure 7.3: Each node in this skip list is augmented with a size value, summing all the values of its
children.

the size of the sequence. These augmented values are also easy to maintain as the skip list
undergoes joins and splits.

Our skip lists support batch joins, batch splits, batch point updates of augmented
values, and batch �nding representatives in O (k lg(1 + n/k )) work in expectation and
O (lgn) depth whp, where k is the batch size and n is the number of elements in the lists.
We analyze e�ciency in Section 7.3.

This improves on the Θ(k lgn) expected work bound achieved by conventional se-
quential joins and splits on augmented skip lists. Intuitively, the reason we can achieve
improved work-bounds is that if a node has many updated descendants, our algorithm
updates its augmented value only once rather than multiple times.

7.2.3 Parallel Batch-Dynamic Algorithms for Unaugmented Lists

Algorithm 24 Creates an element with height distributed according to Geometric(1 − p).
1: procedure CreateNode()
2: allocate node

3: With probability p:
4: node → up B CreateNode()
5: node → up→ down B node

6: return node

We begin by describing our algorithms for unaugmented skip lists. For creating
elements in our skip list, we �x a probability 0 < p < 1 representing the expected
proportion of nodes at a particular level that have a direct parent at the next level. We
generate heights of elements by allocating a node and giving each node a direct parent
with probability p independently, as seen in Algorithm 24. This technique is equivalent to
drawing heights from a Geometric(1 − p) distribution.

We give pseudocode for Join and Split over unaugmented lists in Algorithms 26 and 45
respectively. To perform a batch of joins in parallel, we simply call Join on each join
operation in the batch concurrently, and similarly for a batch of splits. We point out that
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Algorithm 25 Searches for the left parent of the input node. The mirror function
SearchRight is de�ned similarly.

1: procedure SearchLeft(v)
2: current B v

3: while current → up = null do

4: current Bcurrent → left
5: if current = null or current = v then

6: return null

7: return current → up

although batches of splits and joins must be run in separate phases, there is no requirement
that within a phase all operations are carried out in a single batch (they can be applied
concurrently). Thus, our data structure is actually phase-concurrent over joins and splits,
which is more general than being batch-parallel [320].

Both algorithms employ two simple helper procedures, SearchLeft and SearchRight,
for �nding the left and right parents of a node. We show SearchLeft in Algorithm 25, and
SearchRight is implemented symmetrically. Note that these procedures avoid looping
forever on cyclic skip lists.

Algorithm 26 Joins two lists together given their endpoints.
1: procedure Join(vL , vR )
2: if CAS(&vL → right, null, vR ) then
3: vR → left B vL
4: parentL BSearchLeft(vL)
5: parentR BSearchRight(vR )
6: if parentL , null and parentR , null then

7: Join(parentL, parentR )

Join. Recall that the de�nition of Join takes a pointer to the last element of one list and a
pointer to the �rst element of a second list and concatenates the �rst list with the second
list. Starting at the bottom level, our algorithm links the given nodes, searches upwards
to �nd parents to link at the next level, and repeats. We set the link with a CAS, and if
the CAS is lost, the algorithm quits. This permits only one thread to set a particular link,
preventing repeated work.

Theorem 7. Let B be a set of valid Join inputs. Then calling Join concurrently over the

inputs in B gives the same result as joining over the inputs in B sequentially.

Proof. (Proof sketch) We argue inductively level-by-level that all necessary links are added
and no unnecessary links are added. For the base case, at the bottom level, the links we
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add are exactly those given as input to the algorithm, which are the necessary links to add
at that level. For the inductive step, assume that the correct links will be added on level i .
Consider any link ` from nodes vL to vR on level i + 1 that should be added. In order for
this to be a link we need to add, there must be a rightward path from vL’s direct child to
vR’s direct child once all links on level i are added. Then consider the last execution of
join on level i to add a link on that path by �nishing line 3 of Algorithm 26. That execution
will have a complete path to �nd parents vL and vR when searching and thus will �nd `
as a link to add. Conversely, any level-(i + 1) link from nodes vL to vR found by a join
execution was found via a complete path (albeit perhaps temporarily missing some left
pointers due to some executions of join completing line 2 but not yet completing line 3)
between vL’s direct child and vR’s direct child, which indicates that this link should be
added. Unfortunately the formal proof of this result is somewhat technical, and so we
refer the interested reader to the Appendix C.1 of the full version of the paper that this
chapter is based on [354]. �

Algorithm 27 Separates the input node from its successor.
1: procedure Split(v)
2: ngh B v → right
3: if ngh , null and CAS(&v → right, ngh, null) then
4: ngh→ left B null

5: parent B SearchLeft(v )
6: if parent , null then

7: Split(parent)

Split. Split takes a pointer to an element and breaks the list right after that element.
Similar to join, it cuts the link at the bottom level and then loops in searching upwards to
�nd parent links to remove at higher levels. Like Join, this uses CAS to avoid duplicate
work.

Theorem 8. Let B be a set of elements. Then calling Split concurrently over the elements in

B gives the same result as splitting over the elements in B sequentially.

Proof. (Proof sketch) Like in the proof sketch of Theorem 7, we look at the links that are
removed inductively level-by-level. The argument is similar, except that in the inductive
step, to see that a link ` on level i + 1 from nodes vL to vR that should be removed will
indeed be removed by the phase of splits, we note that the leftmost split on the path from
vL → down to vR → down will be able to �nd parent vL in its SearchLeft call. Like
the correctness proof for joins, unfortunately the formal proof of this result is somewhat
technical, and so we refer the interested reader to the Appendix C.2 of the full version of
the paper that this chapter is based on [354]. �
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Finding representative nodes.

Algorithm 28 Finds a representative node of the list that the input node lives in.
1: procedure FindRep(v)
2: while SearchRight(v) , null do

3: v B SearchRight(v)
4: while SearchLeft(v) , null do

5: v B SearchLeft(v)
6: rep B v

7: while true do
8: if v → left = null then . list is acyclic
9: return v

10: v B v → left
11: if v = rep then . list is cyclic
12: return rep

13: if v < rep then

14: rep B v

A simple phase-concurrent implementation of FindRep that takes O (k lgn) expected
work for k concurrent calls is to start at the input node and walk to the top level of the list.
Then on the top level, for an acyclic list, we return the leftmost node, or for a cyclic list,
we return the node with the lowest memory address. This is shown in Algorithm 28.

However, if we are given a batch of k calls up front, we can in fact achieve O (k lg(1 +
n/k )) expected work and O (lgn) depth whp. The idea is that each call of FindRep takes
some path up the skip list to the top level, and calls whose paths intersect somewhere can
be combined at that point to avoid duplicate work. Then the return value gets propagated
back down to both original calls. The code would look similar to the code for batch
updating augmented values for augmented skip lists (Subsection 7.2.4) in Algorithm 30.
We omit the full details.

7.2.4 Parallel Batch-Dynamic Algorithms for Augmented Lists

We now describe how to augment our skip lists. In addition to its four pointers, each node
is given a value val from some domain D and a boolean needs_update. We provide an
associative function f : D2 → D and, for each element in the list, a value from D. We
assign values to val on nodes at the bottom level and then compute val at higher levels
by applying f over nodes’ children. The boolean needs_update is initialized to false and
is used to mark nodes whose values need updating.

We give the main algorithm BatchUpdateValues for batch augmented value update
in Algorithm 30. This takes a set of nodes at the bottom level along with values to give to
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Algorithm 29 Helper function for BatchUpdateValues that updates the augmented
value for v and all its descendants.

1: procedure UpdateTopDown(v)
2: v → needs_update B false

3: if v → down = null then . reached bottom level
4: return

5: current B v → down
6: do

7: if current → needs_update then

8: spawn UpdateTopDown(current )
9: current B current → right

10: while current , null and current → up = null

11: sync

12: sum B v → down→ val
13: current B v → down→ right
14: while current , null and current → up = null do

15: sum B f (sum, current → val)
16: current B current → right
17: v → val B sum

Algorithm 30 Takes a batch of (node, value) pairs, updates each node with its associated
value, and updates other a�ected augmented values stored throughout the list.

1: procedure BatchUpdateValues({(v1,a1), . . . , (vk ,ak )})
2: top B {null, null, . . . , null} . k-length array
3: for i ∈ {1, . . . ,k } do in parallel

4: vi → val B ai
5: current B vi
6: while CAS(&current → needs_update, false, true) do
7: parent B SearchLeft(current )
8: if parent = null then

9: top[i] B current
10: break

11: current B parent

12: for i ∈ {1, . . . ,k } do in parallel

13: if top[i] , null then

14: UpdateTopDown(top[i])
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the associated elements. For each node in the set, we start by updating its value (line 5).
Then each of its ancestors have values that need updating, so we walk up its ancestors,
CASing on each ancestor’s needs_update variable (line 6). If an execution loses a CAS,
then it may quit because some other execution will take care of all the node’s ancestors.

Now over all the input nodes that won all CASes on their ancestors, we know the union
of their topmost ancestors’ descendants contain all the input nodes. By calling the helper
function UpdateTopDown (Algorithm 29) on every such topmost ancestor in lines 12–14,
we traverse back down and update these descendants’ augmented values. Given a node,
this helper function calls itself recursively on all the node’s children c who need an update
as indicated by c → needs_update (lines 5–10). Then, after all the childrens’ values are
updated, we may update the original node’s value (lines 11–17).

Algorithm 31 Batch join for augmented skip lists.
1: procedure BatchJoin({(l1, r1), (l2, r2), . . . , (lk , rk )})
2: for i ∈ {1, . . . ,k } do in parallel

3: Join(li , ri )
4: BatchUpdateValues({(l1, l1 → val), . . . , (lk , lk → val)})

Algorithm 32 Batch split for augmented skip lists.
1: procedure BatchSplit({v1,v2, . . . ,vk })
2: for i ∈ {1, . . . ,k } do in parallel

3: Split(vi )
4: BatchUpdateValues({(v1,v1 → val), . . . , (vk ,vk → val)})

With this algorithm for batch augmented value update, batch joins (Algorithm 31) and
batch splits (Algorithm 32) are simple. We �rst perform all the joins or splits. Then we
batch update on the nodes we joined or split on. We keep all the values on the bottom
level the same, but the update �xes all the values on the higher levels that are changed by
adding or removing links.

A batch of k queries for the augmented values over contiguous subsequences of lists
can be processed in O (k lgn) expected work and O (lgn) depth whp by simply performing
each query with Algorithm 33 in parallel at O (lgn) expected work per query.

7.3 E�ciency

Recall that in our skip lists data structures, each node independently has a direct parent
with probability 0 < p < 1.
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Algorithm 33 Query for the augmented value over the subsequence between vL and vR
inclusive. Here we let f (none,x ) = x for all x ∈ D.

1: procedure �eryValue(vL , vR )
2: sumL B none

3: sumR B vR → val
4: while vL , vR do

5: while vL → up , null and vR → up , null do

6: vL B vL → up
7: vR B vR → up
8: if vL → up = null then

9: sumL B f (sumL,vL → val)
10: vL B vL → right
11: else

12: vR B vR → left
13: sumR B f (vR → val, sumR )

return f (sumL, sumR )

7.3.1 Work

We prove a work bound of O (k lg(1 + n/k )) in expectation over a set of k splits over n
elements for unaugmented skip lists. The same strategy proves the bound for joins and for
operations on augmented skip lists.

For a set ofk splits, we �rst show thatO (k lg(1+n/k )) links need to be cut in expectation.
Over the �rst h =

⌈
lg1/p (1 + n/k )

⌉
levels, each split needs to remove at most h links (one

at each level), so there are O (kh) pointers to remove over the �rst h levels. For each level
k > h, the number of links to remove is bounded by the number of nodes on the level. The
probability that a particular node has height at least ` is p`−1, so the expected number of
nodes reaching level ` is np`−1. Then the number of links summed across all levels ` > h
is at most

n
∞∑
`=h+1

p`−1 = nph
1

1 − p
≤ nplg1/p (1+n/k ) 1

1 − p

=
n

(1 − p) (1 + n/k )
≤

n

(1 − p) (n/k )
= O (k ).

Therefore, the expected number of links we need to cut in total isO (kh)+O (k ) = O (k lg(1+
n/k )).

For each link to remove, the amount of work to �nd that link from the previous child
link in a split is O (1) in expectation. To search for a link at level i + 1 that needs removal,
we call SearchLeft, which walks left from the previous place we removed a link on level
i until we see a direct parent. The amount of work is proportional to the number of nodes
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we touch when walking left. The probability a node has a direct parent is p independently,
so the number of nodes we must touch until we see a direct parent is distributed according
to Geometric(p) with expected value 1/(1 − p) = O (1). (If we quit early due to reaching
the beginning of a list or due to detecting a cycle, that only reduces the amount of work
we do.) Thus this traversal work to �nd parent links only a�ects the expected work by a
constant factor.

Moreover, no two split operations can both remove the same link because we remove
links with a CAS. Whoever CASes the link �rst successfully clears the link, and whoever
comes afterwards quits. The quitting execution only does O (1) expected extra work from
the extra traversal to �nd the already claimed link. Thus there is no signi�cant duplicate
work per split.

Therefore, the work overall for k splits is O (k lg(1 + n/k )).

7.3.2 Depth

For analyzing depth, we know that every search path (a path from the top level of a skip
list to a particular node on the bottom level, or the reverse) in an n-element skip list has
length O (lgn) whp (a proof is given in [114]). The main critical paths of our operations
consist of traversing search paths and doing up to a constant amount of extra work at each
step, so we get a depth bound of O (lgn) whp for any of our operations.

7.4 Parallel Batch-Dynamic Euler Tour Trees

In this section we present parallel batch-dynamic Euler tour trees, a solution to the parallel
batch-dynamic trees problem. In order to ease exposition, we �rst present a batch-dynamic
interface for the dynamic trees problem.
Batch-Dynamic Trees Interface. A solution to the batch-dynamic trees problem sup-
ports representing a forest as it undergoes batches of links, cuts, and connectivity queries.
Recall that a link links two trees in the forest, and a cut deletes an edge from the forest
and breaks one tree into two trees. Lastly, connectivity queries take two vertices in the
forest and return whether they are connected (that is, whether they are in the same tree).
We now give a formal description of the interface. The data structure maintains a graph
G = (E,V ), which is assumed to be a forest under the following operations:

• BatchLink({{u1,v1} , . . . , {uk ,vk }}) takes an array of edges and adds them to the
graph G. The input edges must not create a cycle in G.

• BatchCut({{u1,v1} , . . . , {uk ,vk }}) takes an array of edges and removes them from
the graph G.
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Figure 7.4: We take the tree on the left and transform it so that we get the following Euler tour of
edges: (a,b) (b,b) (b,a) (a, c ) (c,d ) (d,d ) (d, c ) (c, c ) (c,a) (a,a).

• BatchConnected({{u1,v1} , . . . , {uk ,vk }}) takes an array of tuples representing
queries. The output is an array where the i-th entry returns whether vertices ui and
vi are connected by a path in G.

It may also be desirable for the data structure to support augmenting the trees with
an associative and commutative function f : D2 → D with values from D assigned to
vertices and edges of the forest. The goal of augmentation is to compute f over subtrees
of the represented forest. Note that we assume that the function is commutative in order
to allow implementations to not maintain any speci�c order over each vertex’s children.
The interface supports batch updates over vertices and edges. The primitives are similar to
the batch updates of values for augmented skip lists, so we elide the details. The interface
for subtree queries is di�erent, and we present it below:

• BatchSubtree(
{
(u1,p1), . . . , (uk ,pk )

}
) takes an array of tuples, where the i-th

tuple contains a vertex ui and its parent pi in the tree. It returns an array where the
i-th entry contains the value of f summed over ui ’s subtree relative to its parent pi
in G. Note that because the represented trees are unrooted, we require providing
the parent pi in order to determine the intended subtree for ui .

Note that some dynamic trees data structures allow queries for augmented values
summed over paths rather than subtrees in the represented forest, but Euler tour trees do
not.
Euler Tour Trees. We focus on a variant of Euler tour trees presented by Tarjan [345]. To
represent a tree as an Euler tour tree, replace each edge {u,v}with two directed edges (u,v )
and (v,u) and add a loop (v,v ) to each vertex v , as shown in Figure 7.4. This construction
produces a connected graph in which each vertex has equal indegree and outdegree, and
therefore the graph admits an Euler tour. We represent the tree as any of its Euler tours.
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Linking two trees corresponds to splicing their Euler tours together, and cutting a
tree corresponds to cutting out part of its Euler tour. Each of these operations reduces
to a few joins and splits on the tours. We may also answer whether two vertices u and
v are connected by asking whether their loops, (u,u) and (v,v ), reside in the same tour.
Moreover, because a subtree appears as a contiguous section of an Euler tour, we can
e�ciently compute information about subtrees if we can e�ciently compute information
about contiguous sections of tours.

Traditionally, Euler tour trees store an Euler tour by breaking it into a sequence at an
arbitrary location and then placing the sequence in a balanced binary tree. We instead
store Euler tours as cycles using the skip lists designed in Section 7.2. Because skip lists
are easy to join and split in parallel, we can process batches of links and cuts on Euler tour
trees e�ciently.

We show that for a batch of k joins, k splits, or k connectivity queries over an n-vertex
forest, we can achieve O (k lg(1 + n/k )) expected work and O (lgn) depth whp. If we
build our Euler tour trees over augmented skip lists, we can also answer subtree queries
e�ciently.

7.4.1 Description

Our Euler tour trees crucially rely on our parallel skip lists to represent Euler tours. Since
a graph of n vertices has Euler tours whose lengths sum to O (n), the skip lists hold O (n)
elements. Thus a batch of k joins or splits on the Euler tours takesO (k lg(1+n/k )) expected
work and O (lgn) depth whp.
Construction. For clarity, we describe our Euler tour trees using the phase-concurrent
unaugmented skip lists given in Section 7.2. However, it is easy to organize the joins and
splits into batches so as to match the augmented skip list interface seen in Subsection 7.2.4.
We also treat our dictionary data structure as phase-concurrent for clarity, but again, this
is easy to circumvent.

We add �elds twin and mark to each skip list element. For an element representing a
directed edge (u,v ), twin is a pointer to the element representing the directed edge (v,u)
in the opposite direction. We initialize the �eld mark to false and use it during splitting to
mark elements that will be removed.

At initialization (Algorithm 34), the represented graph is an n-vertex forest with no
edges, and we assume the vertices are labeled with integers 1, 2, . . . ,n. We create an
n-length array verts such that verts[i] stores a pointer to the skip list element representing
the loop edge (i, i ). As such, in parallel, for i B 1, . . . ,n, we create a skip list element,
assign it to verts[i], and join it to itself to form a singleton cycle. These cycles are the
Euler tours in an empty graph. We also keep a dictionary edges that maps edges (u,v )
with u , v to corresponding skip list elements. Lastly, we create an array successors that
will be used as scratch space for batch linking.
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Algorithm 34 Euler tour tree data structure initialization.
1: procedure Initialize(n)
2: verts B {} . n-length array
3: for i ∈ {1, . . . ,n} do in parallel

4: verts[i] B CreateNode()
5: Join(verts[i], verts[i])
6: edges B dict() . empty dictionary
7: successors B {} . n-length array

Connectivity queries. To check whether two vertices are connected, we simply check
whether they live in the same Euler tour by comparing the representatives of their tours’
skip lists. The complexity of this can be made O (k lg(1 + n/k )) expected work and O (lgn)
depth whp using an e�cient BatchFindRep algorithm.
Batch Link. Algorithm 35 shows our algorithm for adding a batch of edges. The algorithm
takes an array of edges A to add as input. We assume that adding the input edges preserves
acyclity.

To add a single edge {u,v} sequentially, we can �nd locations where u and v appear
in their tours by looking up verts[u] and verts[v]. We split on those locations and join
the resulting cut up tours back together with new nodes representing (u,v ) and (v,u) in
between. If we want to add several edges in parallel, we need to be careful when inserting
edges that are incident to the same vertex and thus attempt to join on the same location.

With that in mind, we proceed to describe our algorithm. In lines 1-8, for each input
edge {u,v}, we allocate new list elements representing directed edges (u,v ) and (v,u).
Then, in lines 9-17, for each vertex u that appears in the input, we split u’s list at verts[u]
as a location to splice in other tours. We also save the successor of verts[u] in successors[u]
so that we can join everything back together at the end.

For each vertex u, say that the input tells us that we want to newly connect u to
vertices w1,w2, . . . ,wk . Then we join together the nodes representing (u,u) to (u,w1),
(wi ,u) to (u,wi+1) for 1 ≤ i < k , and (wk ,u) to what was the successor to (u,u) before
splitting. In our code, we arrange this in lines 18-29 by semisorting the input to collect
together all edges incident on a vertex. The ordering of w1,w2, . . . ,wk is unimportant,
only corresponding to the order in which they appear after u in the Euler tour.

As an example of the desired result from a batch link, consider the graph in Figure 7.5
on which we wish to perform a batch link with input {{a,b} , {b, c} , {c, e}}. Prior to the
batch link, the Euler tour may look like Figure 7.6, and after the batch link, the Euler tour
may look like Figure 7.7. Let us focus on what happens to the list containing vertex c .
After allocating the new nodes representing the new edges to add, we split node (c, c ) from
its successor (c,d ). We want to add edges connecting c to b and to e . As such, we perform
joins adding links from nodes (c, c ) to (c,b), (b, c ) to (c, e ), and (e, c ) to (c,d ). These new
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Algorithm 35 Add a batch of edges to Euler tour tree.
1: procedure BatchLink({{u1,v1} , {u2,v2} , . . . , {uk ,vk }})
2: for i ∈ {1, . . . ,k } do in parallel

3: uv B CreateNode()
4: vu B CreateNode()
5: uv → twin B vu

6: vu → twin B uv

7: edges[(ui ,vi )] B uv
8: edges[(vi ,ui )] B vu

9: . cut at locations at which we splice in other tours
10: for i ∈ {1, . . . ,k } do in parallel

11: forw ∈ {ui ,vi } do
12: w_node B verts[w]
13: w_succ B w_node → right
14: if w_succ , null then

15: . benign race; this assignment and split are idempotent
16: successors[w] B w_succ
17: Split(w_node)
18: sorted_edges B Semisort({(u1,v1), (v1,u1), . . . , (uk ,vk ), (vk ,uk )})
19: . join together tours with new edge nodes in between
20: for i ∈ {1, . . . , 2k } do in parallel

21: (u, v) B sorted_edges[i]
22: (u_prev, v_prev) B sorted_edges[i − 1]
23: (u_next, v_next) B sorted_edges[i + 1]
24: if i = 1 or u , u_prev then

25: Join((verts[u], edges[(u, v)]))
26: if i = 2k or u , u_next then
27: Join((edges[(v, u)], successors[u]))
28: else

29: Join((edges[(v, u)], edges[(u_next, v_next)]))
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c

d

b

a

e

Figure 7.5: An example graph for illustrating batch linking. The dashed edges {a,b} , {b, c} , {c, e}
are new edges to add in a batch, whereas the solid edge is an already existing edge.

(c c) (c d)

(d c) (d d)

(b b) (e e)

(a a)

Figure 7.6: We represent the graph from Figure 7.5 prior to adding the dashed edges with Euler
tours stored in cyclic linked lists.

links correspond to the blue links in �gure 7.7. Doing this over all vertices provides all the
joins needed to form an Euler tour over the whole graph.

Using our skip lists and an e�cient semisort [161], we see that the work is O (k lg(1 +
n/k )) in expectation, and the depth is O (lgn) whp.
Batch Cut. Algorithm 37 describes how to remove a batch of edges. Our algorithm
assumes that each edge exists in the forest and that there are no duplicates.

Cutting a single edge is simple. If we cut an edge {u,v}, we split before and after (u,v )
and (v,u) in the tour and join their neighbors together appropriately. However, as with
batch linking, the task gets more di�cult if we want to cut many edges out of a single
node, because those neighbors that we want to join together may themselves be split o�.

As an example, consider the graph in Figure 7.8 in which we remove four edges. If our
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(c c) (c d)

(d c) (d d)

(b b)

(a a)

(c b)

(b a)

(b c)

(a b)

(e e)

(c e) (c e)

Figure 7.7: After adding the dashed edges in �gure 7.5, the Euler tour stored in a linked list may
look like this. In this �gure, we color links in the list the same colors as the nodes “responsible” for
adding those links in through calls to Join.

Algorithm 36 Computes locations at which to join for batch cut.
1: procedure GetNextUnmarked(elements = {z1, z2, . . . , zk })
2: . input is a set of skip list elements
3: for i ∈ {1, . . . ,k } do in parallel

4: next B zi → twin→ right
5: if next → mark then

6: zi → next_edge B next

7: else

8: zi → next_edge B null

9: . Use list tail-�nding on the linked lists induced by next_edge pointers.
Get an array last_marked such that last_marked[i] points to the last
node in zi ’s linked list.

10: last_marked B ListTailFind(elements)
11: result B {} . k-length array
12: for i ∈ {1, . . . ,k } do in parallel

13: result[i] B last_marked[i]→ twin→ right
14: return result
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Algorithm 37 Remove a batch of edges from Euler tour tree.
1: procedure BatchCut({{u1,v1} , {u2,v2} , . . . , {uk ,vk }})
2: . input edges must be in graph and must have no duplicates
3: directed_edges B {} . 2k-length array
4: for i ∈ {1, . . . ,k } do in parallel

5: directed_edges[2i − 1] B edges[(ui ,vi )]
6: directed_edges[2i] B edges[(vi ,ui )]
7: for i ∈ {1, . . . ,k } do in parallel

8: edges → RemoveFromDict((ui ,vi ))
9: edges → RemoveFromDict((vi ,ui ))

10: join_le�s B {} . 2k-length array
11: for i ∈ {1, . . . , 2k } do in parallel

12: join_le�s[i] B directed_edges[i]→ left
13: directed_edges[i]→ mark B true

14: join_rights B GetNextUnmarked(directed_edges)
15: . Cut edges out of tour
16: for i ∈ {1, . . . , 2k } do in parallel

17: Split(directed_edges[i])
18: pred B directed_edges[i]→ Left
19: if pred , null then

20: Split(pred)
21: . Join tours back together
22: for i ∈ {1, . . . , 2k } do in parallel

23: if not join_le�s[i]→ mark then

24: Join(join_le�s[i], join_rights[i])
25: for i ∈ {1, . . . , 2k } do in parallel

26: DeleteNode(directed_edges[i])

ab d

c

f e

Figure 7.8: Batch cutting four edges. If we take an Euler tour counter-clockwise around this graph,
this batch cuts may require us to join ( f ,a) to (a, c ) in the tour.
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tour on the graph goes counter-clockwise around the diagram, then we may need to join
(c,a) to (a, e ) in the tour as a result of cutting {a,d } and join ( f ,a) all the way around to
(a, c ) as a result of the three contiguous cuts. How do we identify that we need to join
( f ,a) to (a, c )? We could mark edges that are going to be cut, then start from ( f ,a) and
walk along “adjacent” edges incident to a using the twin pointers until we reach an edge
that will not be cut. Then we would know to join ( f ,a) to that edge. However, the search
for an unmarked edge will have poor depth if lots of edges will be cut.

To achieve low depth in this step, we use list tail-�nding. Consider the linked lists
induced by having each edge point at its adjacent edge if it is marked. Note that each
linked list must terminate because traversing adjacent edges will eventually reach a loop
edge of the form (v,v ), which will certainly be unmarked. Then running list tail-�nding
on these linked lists �nds for every edge the next unmarked edge as desired.

In Algorithm 37, we �rst fetch all the skip list nodes corresponding to the edges in lines
2-6. Then we invoke Algorithm 36 on line 14, which performs the list tail-�nding described
above. We cut out all the input edges on lines 15-20 and rejoin all the tours together on
lines 21-24. In total these steps take O (k lg(1 + n/k )) expected work and O (lgn) depth
whp.
Augmentation. We build our augmented Euler tour trees over the concurrent augmented
skip lists from Subsection 7.2.4 and achieve the same e�ciency bounds. Recall that we
have an associative and commutative function f : D2 → D and assign values from D to
vertices and edges of the forest. The goal is to compute f over subtrees of the represented
forest.

Say we want to compute f over a vertex v’s subtree relative to v’s parent in the tree,
p. Then if we look up the skip list elements corresponding to (p,v ) and (v,p) in edges,
the value of f over v’s subtree is the result of applying f on the subsequence between
(p,v ) and (v,p). This may be done by calling Batch�eryValue with the elements
corresponding to (p,v ) and (v,p) in the underlying augmented skip list. The complexity
for k such queries is O (k lgn) expected work and O (lgn) depth whp.

7.4.2 Implementation

We provide details about our implementation of Euler tour trees in Section 7.5.2.

7.5 Algorithm Implementation

7.5.1 Skip Lists

In our implementation of our skip lists, instead of representing an element of height h as h
distinct nodes, we instead allocate an array holding h left and right pointers. This avoids
jumping around in memory when traversing up direct parents. In fact, we allocate an
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array whose size is h rounded up to the next power of two. This decreases the number of
distinct-sized arrays, which makes memory allocation easier when performing concurrent
allocation. We also cap the height at 32, again for easier allocation. We set the probability
of a node having a direct parent to be p = 1/2.

We also need to be careful about read-write reordering on architectures with relaxed
memory consistency. For Join (Algorithm 26), if the reads from the searches in lines 4 to 5
are reordered before the write on line 3, then we can fail to �nd a parent link that should
be added. Thus we disallow reads from being reordered before line 3.

For augmented skip lists, instead of keepingh needs_update booleans for each element,
we keep a single integer that saves the lowest level on which the element needs an update.
This works because if a node needs updating, then all its direct ancestors need updating as
well.

Another optimization saves a constant factor in the work for batch split. In BatchUp-
dateValues, we �rst walk up the skip list claiming nodes and then walk back down to
update all the augmented values. We perform these two passes because in order to update
a node’s value, we need to know all of its childrens’ values are already updated too, which
is easier to coordinate when walking top-down through the list. However, in a batch split,
after cutting up the list, no nodes on the bottom level share any ancestors. As a result, we
can update all augmented values in a single pass walking up the list without even using
CAS.

7.5.2 Euler Tour Trees

We implemented our parallel Euler tour tree algorithms, making several adjustments for
performance and for ease of implementation. For simplicity, we use the unaugmented skip
lists and do not support subtree queries.

To achieve good parallelism, we need to allocate and deallocate skip list nodes in
parallel. We use lock-free concurrent �xed-size allocators that rely on both global and
local pools. To reduce the number of �xed-size allocators used, we constrain the skip list
heights and arrays as described in Section 7.5.1.

For the dictionary edges, we use the deterministic hash table dictionary from the
Problem Based Benchmark Suite (PBBS) [324]. This hash table is based upon a phase-
concurrent hash table developed by Shun and Blelloch [320]. As an additional storage
optimization, for an edge {u,v} where u < v , we only store (u,v ) in our dictionary and
use the twin pointer to look up (v,u).

Instead of performing a semisort when batch joining, we found it faster to use the
parallel radix sort from PBBS.

For batch cut, we do not use list tail-�nding because e�cient list tail-�nding is chal-
lenging to implement. Instead, we opt for a recursive batch cut algorithm. Recall why we
used list tail-�nding in Algorithm 37: we do not want to spend too much time walking
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around adjacent edges to �nd one that is unmarked. In our recursive batch cut algorithm,
we resolve the issue by randomly selecting a constant fraction of the edges from the input
to ignore and not cut. Then if we walk around adjacent edges naively, the number of edges
we need to walk around until we see an unmarked edge is constant in expectation and
O (lgn) whp. Thus we can cut out the unignored edges quickly. Then we recurse on the
ignored edges. This increases the depth of the implementation by a factor of O (lgk ) but
does not asymptotically a�ect the work.

7.6 Experiments

We run our experiments on a 72-core Dell PowerEdge R930 (with two-way hyper-threading)
with 4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a 4800MHz bus and 45MB
L3 cache) and 1TB of main memory. Our programs use Cilk Plus to express parallelism
and are compiled with the g++ compiler (version 5.5.0). When running in parallel, we
use the command numactl -i all to evenly distribute the allocated memory among
the processors. On our �gures, a thread count of 72(h) denotes using all 72 cores with
hyper-threading, i.e. using 144 threads.

7.6.1 Unaugmented Skip Lists

We evaluate the performance of our skip lists (with the probability of a node having a
direct parent set to p = 1/2) by comparing them against other sequence data structures.
In particular, we compare against sequential skip lists, which are the same as our skip
lists except that they do not use CAS to set pointers. In addition, for an element of height
h, they allocate an array of exactly length h for holding pointers rather than an array of
length O (h) as our parallel skip list implementation does. We also implemented splay
trees [329] and treaps [304].

So that we can compare against another parallel data structure, we implement parallel
batch join and batch split operations on treaps. To batch join, we �rst ignore a constant
fraction of the joins. If we imagine each join from treap T to treap S as a pointer from
T to S , we get lists on the treaps. No list can be very long because of the ignored joins.
We get parallelism by processing each list independently. If we store extra information
on the treap nodes, we can walk along a list and perform its joins sequentially. Then we
recursively process the previously ignored joins. For batch split, we semisort the splits
keyed on the root of the treap to be split. This lets us �nd all splits that act on a particular
treap. We process each treap independently. When performing multiple splits on a treap,
we get parallelism by divide and conquer—we perform a random split and recursively
split the resulting two treaps in parallel. The randomized e�ciency bounds are O (k lgn)
work for batch join, O (k lgn lgk ) work for batch split, and O (lgn lgk ) depth for both. In
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Data structure Batch
size k Operation Number of threads

1 2 4 8 16 32 64 72 72(h)

Concurrent skip list
104 join .0301 .0165 .0101 .00632 .00298 .00166 .000937 .000839 .000530

split .0331 .0173 .0113 .00579 .00298 .00154 .000865 .000775 .000542

107 join 12.6 6.43 4.07 2.05 1.03 .528 .279 .267 .156
split 10.4 5.34 3.34 1.86 .869 .426 .228 .214 .122

Table 7.1: Running time (in seconds) of our concurrent skip lists with n = 108.
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Figure 7.9: Speedup of our concurrent skip lists with n = 108.

Data structure Operation Batch size k
102 103 104 105 106 107 108 − 1

Concurrent skip list (72(h)) join .0000629 .000122 .000595 .00461 .0347 .161 .684
split .0000629 .000132 .000660 .00363 .0254 .131 .559

Concurrent skip list (1) join .000300 .00260 .0295 .376 2.44 12.8 54.7
split .000383 .00355 .0325 .281 1.90 10.6 47.6

Sequential skip list join .000324 .00265 .0275 .362 2.26 11.7 44.9
split .000396 .00359 .0319 .272 1.80 9.87 45.0

Parallel treap (72(h)) join .000227 .000758 .00141 .00475 .0250 .112 .447
split .000335 .00186 .00521 .0277 .265 2.54 22.8

Sequential treap join .0000989 .00104 .00712 .183 1.23 6.86 25.2
split .000231 .00213 .0189 .168 1.30 7.69 33.5

Splay tree join .0000689 .000688 .00575 .106 1.09 7.79 32.1
split .000329 .00284 .0255 .215 1.63 9.21 36.3

Table 7.2: Running time (in seconds) of sequence data structures with n = 108 and varying batch
size.

the future, we would like to further compare our skip lists against other parallel data
structures, such as the (a,b)-trees of Akhremtsev and Sanders [15].

For an experiment, we take n = 108 elements and �x a batch size k . We set up a trial by
joining all the elements in a chain, and then we time how long it takes to split and rejoin
the sequence at k pseudorandomly sampled locations. We report the median time over
three trials. As an artifact of this setup, the splay tree has an advantage on joining small
batches after splitting due to how splay trees exploit locality.

Table 7.1 and Figure 7.9 illustrate that our skip list implementation running on 72
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Figure 7.10: Running time of sequence data structures operations with varying batch size.

Data structure Batch
size k Operation Number of threads

1 2 4 8 16 32 64 72 72(h)

Parallel skip list
104 join .0908 .0457 .0251 .0164 .00871 .00487 .00292 .00282 .00227

split .0546 .0283 .0195 .0134 .00561 .00306 .00177 .00164 .00113

107 join 24.9 12.7 9.39 4.41 2.10 1.09 .614 .61 .374
split 19.7 10.1 7.49 3.48 1.61 .810 .422 .398 .253

Table 7.3: Running time (in seconds) of our parallel augmented skip lists with n = 108.

cores with hyper-threading demonstrates over 80× speedup relative to the implementation
running on a single thread for k = 107 and over 55× speedup for k = 104. We compare
our skip list to our other sequence data structures in Table 7.2 and Figure 7.10 . Our
implementation of parallel batch join on treaps is 1.4× faster than our batch join on skip
lists on the largest batch sizes, but, as seen in Figure 7.10, the parallel batch split on treaps
is much slower due to lots of overhead work. Moreover, through parallelism, our data
structure is signi�cantly faster than all the sequential algorithms at all batch sizes. When
used sequentially, our data structure behaves similarly to a traditional sequential skip list,
suggesting that using CAS does not signi�cantly degrade the performance of a skip list.

7.6.2 Augmented Skip Lists

We compare the performance of our batch-parallel augmented skip lists against a sequential
augmented skip list. Besides not using CAS, the sequential skip list updates augmented val-
ues after every join and split. This achieves only an O (k lgn) work bound for k operations.
Our experiment is the same as in Subsection 7.6.1.

Table 7.3 and Figure 7.11 show that when running our augmented skip list with a
random batch of size k = 107 on 72 cores with hyper-threading, we see a speedup of 67×
for joins and 78× for splits. For k = 104, we found a speedup of 33× for joins and 48× for
splits. The running times are a factor of two worse than the times for the unaugmented
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Figure 7.11: Speedup of our parallel augmented skip lists with n = 108.

Data structure Operation Batch size k
102 103 104 105 106 107 108 − 1

Parallel skip list (72(h)) join .000301 .000559 .00205 .0131 .0825 .357 1.35
split .000152 .000312 .00117 .00727 .0450 .229 1.03

Parallel skip list (1) join .000823 .00697 .0893 1.04 5.73 25.5 102
split .00079 .00625 .0514 .557 3.74 20.2 83.7

Sequential skip list join .000716 .00575 .0764 .724 4.79 27.5 131
split .000712 .00647 .0583 .489 3.35 19.6 93.3

Table 7.4: Running time (in seconds) of augmented skip lists with n = 108 on random batches of
varying size.
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Figure 7.12: Running time of augmented sequence data structure operations with n = 108 on
random batches of varying size.
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Data structure Operation Batch size k
102 103 104 105 106 107 108 − 1

Parallel skip list (72(h)) split .000111 .000192 .000272 .000596 .00281 .0259 .252
Parallel skip list (1) split .0000350 .000148 .00119 .0115 .119 1.20 11.9
Sequential skip list split .000296 .00258 .0219 .210 2.11 21.5 205

Table 7.5: Running time (in seconds) of splitting augmented skip lists with n = 108 as batch size
varies with splits taking single elements o� the end of the list. This is a di�cult test case for
standard augmented skip lists.
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Figure 7.13: Running time of splitting augmented skip lists with n = 108 as batch size varies with
splits taking o� single elements o� the end of the list.

skip list of Subsection 7.6.1, which is expected due to the extra passes through the skip list
to update augmented values. Moreover, the batch-parallel skip list hugely outperforms
single-threaded skip lists on all tested batch sizes, as seen in Table 7.4 and Figure 7.12.

To more prominently display the work savings that batching provides, we try a di�erent
test case in which a batch of k splits, rather than being chosen at random, consists of
splitting at the last k elements of the sequence in right-to-left order. This is particularly
bad for the sequential skip list because after every split, it walks to the top of the skip list
to update augmented values. In comparison, when processing the splits as a batch, we
update the augmented values in only one pass. Table 7.5 and Figure 7.13 show that, as
expected, even on a single thread, our skip list is signi�cantly faster than the standard
sequential one in this adversarial experiment.

7.6.3 Euler Tour Trees

We compare against sequential dynamic trees data structures. Using the sequential skip
list and splay trees from Subsection 7.6.1, we build traditional Euler tour trees. We also
compare to ST-trees built on splay trees [328, 329]. They achieve O (lgn) amortized work
links and cuts. Though conceptually more complicated than Euler tour trees, ST-trees are
a more streamlined data structure that do not require allocation beyond initialization and
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Data structure Graph Batch
size k Operation Number of threads

1 2 4 8 16 32 64 72 72(h)

Parallel ETT

Path
graph

104 link .175 .109 .0559 .0172 .00988 .00595 .00374 .00345 .0029
cut .185 .129 .0641 .0270 .0139 .00743 .00417 .00378 .00267

106 link 7.25 5.10 2.53 1.10 .548 .279 .143 .131 .0813
cut 8.74 6.48 3.22 1.36 .672 .348 .177 .159 .0980

Random
recursive
tree

104 link .111 .0579 .0266 .0162 .00849 .00524 .00334 .00316 .00278
cut .149 .0759 .0358 .0192 .00962 .00525 .00301 .00275 .00199

106 link 8.77 6.31 3.20 1.34 .684 .344 .182 .161 .0972
cut 7.87 5.87 2.96 1.26 .628 .323 .171 .147 .0882

Star
graph

104 link .0154 .0147 .00693 .00533 .00344 .00249 .00203 .00191 .00198
cut .0170 .0112 .00733 .00442 .00247 .00136 .00102 .00102 .000922

106 link 3.49 2.05 1.01 .454 .237 .125 .0681 .0618 .0408
cut 2.60 1.56 .740 .339 .171 .0883 .0467 .0419 .0271

Table 7.6: Running time (in seconds) of our batch-parallel Euler tour tree on various graphs with
n = 107.

Data structure Graph

Static connectivity (72(h))
Path graph .576
Random recursive tree .174
Star graph .113

Table 7.7: Running time (in seconds) of static connectivity on various graphs with n = 107

do not require dictionary lookups. We wrote all of these implementations. In future work,
we would like to compare against parallel data structures such as that of Acar et al. [4]

Because one of the important uses of Euler tour trees is to answer connectivity queries,
we also compare with statically computing the connected components of the graph. We
use the work-e�cient parallel connectivity algorithm designed and implemented by Shun
et al. [321] (this implementation is an earlier version of the implementation presented in
Chapter 5). We optimistically measure the execution time of the implementation based
only on the execution time of the connectivity algorithm; we do not include the time
taken to maintain the graph itself, which is non-trivial because the adjacency array graph
representation used in their implementation does not support edge insertion or deletion
easily.

For our experiment, we �x a tree. We set up a trial by adding all the edges of the tree
in pseudorandom order to our data stucture. Then we time how long it takes to cut and
relink the forest at k pseudorandomly sampled edges. We report median times over three
trials. Again, note that our experimental setup may give the splay tree data structures an
advantage on linking small batches after cutting due to how splay trees exploit locality.
We experimented on three trees, all with n = 107 vertices: a path graph, a star graph, and a
random recursive tree. To form a random recursive tree over n vertices, for each 1 < i ≤ n,
draw j uniformly at random from {1, 2, . . . , i − 1} and add the edge {j, i}.

Table 7.6 and Figure 7.14 display the speedup of our parallel Euler tour tree algorithms
with a batch sizes of k = 104 and k = 106. When running on 72 cores with hyper-threading,
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Figure 7.14: Speedup of our parallel Euler tour trees on a various forests of size n = 107.

we get good speedup ranging from 82× to 96× for k = 106 across all tested graphs. For
k = 104, we found speedup ranging from 7.5× to 75× where the worst speedup was on the
star graph. On the star graph, the single-threaded running time is already fast for batch
size k = 104, so there is not as much room for speedup.

In Table 7.8 and Figure 7.15, we show the running times of our Euler tour tree along
with the times for sequential dynamic trees data structures. We also show in Table 7.7
the time to run the static connectivity algorithm on the full graphs for comparison. On
large batch sizes, parallelism beats all the sequential data structures, as expected. Though
ST-trees are faster than Euler tour trees sequentially and are unusually fast on the star
graph due to them performing well on graphs with small diameter, our parallel Euler tour
tree eventually outspeeds ST-trees on large batches even on the star graph. (As an artifact
of our testing setup, the splay-tree-based Euler tour tree performs poorly on the star graph.
The access pattern on the splay trees when constructing the graph leads to a very deep
splay tree, so the �rst few cut operations after the graph construction setup are expensive.)
In addition, the performance of our Euler tour tree running on a single thread is similar to
that of conventional sequential Euler tour trees. We also see that the time to update our
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Figure 7.15: Running time of dynamic trees data structure operations on trees of size n = 107 with
varying batch size.
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Graph Data structure Operation Batch size k
102 103 104 105 106 107 − 1

Path
graph

Parallel ETT (72(h)) link .000276 .000642 .00290 .0165 .0813 .305
cut .000297 .000714 .00267 .0169 .0980 .408

Parallel ETT (1) link .000950 .00784 .175 1.29 7.25 29.2
cut .00223 .0187 .185 1.40 8.74 37.6

Seq. skip list ETT link .000767 .00617 .131 1.04 6.77 33.4
cut .00148 .0144 .129 1.03 6.73 35.0

Splay ETT link .000408 .00345 .0631 .605 4.82 27.3
cut .00109 .0103 .0922 .484 5.51 31.7

ST-tree link .0000420 .000418 .00499 .0818 1.04 5.09
cut .000562 .00471 .0405 .310 1.88 7.27

Random
recursive
tree

Parallel ETT (72(h)) link .000208 .000584 .00279 .0153 .0972 .430
cut .000237 .000599 .00195 .013 .0882 .420

Parallel ETT (1) link .000674 .00560 .144 1.25 8.77 42.3
cut .00113 .0100 .137 1.12 7.82 37.9

Seq. skip list ETT link .000572 .00520 .107 1.06 9.17 45.5
cut .00110 .0106 .105 1.05 9.06 45.9

Splay ETT link .000326 .00311 .0461 .594 6.14 35.3
cut .000942 .00890 .0856 .839 7.20 39.4

ST-tree link .0000780 .000975 .0115 .171 1.79 9.17
cut .000298 .00284 .0263 .259 2.09 9.62

Star
graph

Parallel ETT (72(h)) link .000190 .000465 .00198 .00558 .0408 .359
cut .000221 .000475 .000922 .00323 .0271 .251

Parallel ETT (1) link .000182 .00170 .0154 .357 3.49 32.7
cut .000196 .00194 .0170 .289 2.60 23.1

Seq. skip list ETT link .000189 .00212 .0197 .293 2.97 29.4
cut .000323 .00317 .0303 .311 3.15 30.1

Splay ETT link .000151 .00124 .0131 .207 2.09 19.7
cut 2.85 2.85 2.86 3.07 5.09 25.9

ST-tree link .0000150 .000144 .00123 .0169 .257 2.56
cut .0000379 .000367 .00336 .0325 .323 3.24

Table 7.8: Running time (in seconds) of dynamic trees data structures on various graphs with
n = 107.

Euler tour tree is much less than the time to statically compute connectivity for all but the
largest batch sizes.

7.7 Discussion

We showed that skip lists are a simple, fast data structure for parallel joining and splitting
of sequences and that we can use these skip lists to build a batch-parallel Euler tour tree.
Both of these data structures achieve strong theoretical bounds on their work and depth
in the BF model and achieve good performance in practice.



8
Parallel Batch-Dynamic Connectivity

8.1 Introduction

Computing the connected components of a graph is a fundamental problem that has
been studied in many di�erent models of computation [347, 316, 290, 175, 14, 25]. The
connectivity problem takes as input an undirected graph G and assigns labels to vertices
so that two vertices have the same label if and only if they are in the same connected
component. The dynamic connectivity problem requires maintaining a data structure
over an n vertex undirected graph that supports operations which query whether two
vertices are in the same connected component, or inserts and deletions of edges. Despite
the large body of work on the dynamic connectivity problem over the past two decades [173,
135, 175, 349, 350, 172, 374, 193, 197, 179, 256, 375], little is known about batch-dynamic
connectivity algorithms that process batches of queries and updates, either sequentially or
in parallel.

Understanding the connectivity structure of graphs is of signi�cant practical interest,
for example, due to its use as a primitive for clustering the vertices of a graph [296]. Due to
the importance of connectivity there are several implementations of parallel batch-dynamic
connectivity algorithms [233, 184, 370, 185, 309, 359]. In the worst case, however, these
algorithms may recompute the connected components of the entire graph even for very
small batches. Since this requires O (m + n) work, it makes the worst-case performance
of the algorithms no better than running a static parallel algorithm. On the theoretical
side, existing batch-dynamic e�cient connectivity algorithms have only been designed for
restricted settings, e.g., in the incremental setting when all updates are edge insertions [327],
or when the underlying graph is a forest [289, 4, 353]. Therefore, two important questions
are:
1. Is there a batch-dynamic connectivity algorithm that is asymptotically faster than existing

dynamic connectivity algorithms for large enough batches of insertions, deletions and

queries?

2. Can the batch-dynamic connectivity algorithm be parallelized to achieve low worst-case

depth?

This chapter presents an algorithm that answers both of these questions a�rmatively.
To simplify exposition and present the main ideas, this chapter �rst gives a less e�cient
version of the algorithm that runs in O (lg4 n) depth whp and performs O (lg2 n) expected
amortized work per update, making it work-e�cient with respect to the classic HDT
algorithm. Next, we describe the improved algorithm which achieves an improved work

203
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bound that is asymptotically faster than the HDT algorithm for su�ciently large batch
sizes, and runs inO (lg3 n) depth whp on the CRCW PRAM.1 We note that our depth bounds
hold even when processing the updates one a time, ignoring batching. Our improved work
bounds are derived by a novel analysis of the work performed by the algorithm over all
batches of deletions.

Our main contribution in this chapter is summarized by the following theorem:

Theorem 9. There is a parallel batch-dynamic data structure which, given batches of edge

insertions, deletions, and connectivity queries processes all updates in O
(
lgn lg

(
1 + n

∆

))
expected amortized work per edge insertion or deletion where ∆ is the average batch size of

deletion. The cost of connectivity queries isO (k lg(1+n/k )) expected work andO (lgn) depth
whp for a batch of k queries. The depth to process a batch of edge insertions and deletions

is O (lgn + DSF) whp and O (lg2 n(lgn + DSF)) whp respectively, where DSF is the depth of a

linear expected work spanning forest algorithm in either the CRCW PRAM or the BF model.

8.2 Preliminaries

Model and Depth Analysis. In this chapter we consider our algorithms in both the
binary-forking (BF) model and the CRCW PRAM model. The work bounds of our algo-
rithms are identical in both models, but the depth in the BF model can be an O (lgn) factor
higher than the CRCW PRAM depth, and so we explicitly distinguish between the two.
The primary reason for the di�erence is due to the depth of computing the spanning forest
of a graph: the best depth for this problem in the CRCW PRAM is O (lgn) using Gazit’s
algorithm [148], but this algorithm (and to the best of our knowledge, all other spanning
forest algorithms) require O (lg2 n) in the BF model.2 Therefore, whenever the depth can
vary due to the use of spanning forest, we parametrize the depth of the algorithm by DSF
which is the best depth of a linear expected work connectivity algorithm in the chosen
model.

8.2.1 Lemmas

We start with a few simple lemmas that help analyze the work of the dynamic algorithms
presented in this chapter.

1The depth bound of this algorithm on the BF model depends on the depth of a spanning forest algorithm;
to the best of our knowledge, all existing spanning forest algorithms in the BF model run in O (lg2 n) depth.

2Designing an optimal Θ(lgn) depth connectivity or spanning forest algorithm in the BF is an interesting
open problem, even if we allow for work-ine�cient algorithms.
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Lemma 4. Let n1,n2, ...,nc and k1,k2, ...,kc be sequences of non-negative integers such that∑
ki = k , and

∑
ni = n. Then

c∑
i=1

ki lg
(
1 +

ni
ki

)
≤ k lg

(
1 +

n

k

)
. (8.1)

Lemma 5. For any non-negative integers n and r ,

r∑
w=0

2w lg
(
1 +

n

2w
)
= O

(
2r lg

(
1 +

n

2r
))
. (8.2)

Lemma 6. For any n ≥ 1, the function x lg
(
1 + n

x

)
is strictly increasing with respect to x

for x ≥ 1.

The proofs of these lemmas are elementary, and can be found in the full version of the
paper that this chapter is based on [8].

8.2.2 Data Structures

Next, we describe a simple adjacency-list like data structure that e�ciently supports
insertion and deletion of arbitrary edges, and quickly fetching a batch of l edges. This is
the data structure that we use to store adjacency lists of vertices at each level. Note that
we actually store two adjacency lists, one for tree edges, and one for non-tree edges. The
adjacency list data structure supports the following operations:

• InsertEdges({e1, . . . , el }): Insert a batch of edges adjacent to this vertex.

• DeleteEdges({e1, . . . , el }): Delete a batch of edges adjacent to this vertex.

• FetchEdges(l ): Return a set of l arbitrary edges adjacent to this vertex.

We now show how to implement a data structure that gives us the following bounds:

Lemma 7. InsertEdges, DeleteEdges, and FetchEdges can be implemented in O (1)
amortized work per edge and in O (lgn) depth.

Proof. For a given vertex, the data structure stores a list of pointers to each adjacent edge
in a resizable array. Each edge correspondingly stores its positions in the adjacency arrays
of its two endpoints. Since each vertex can have at most O (n) edges adjacent to it, the
adjacency arrays are of size at most O (n).
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Insertions are easily handled by inserting the batch onto the end of the array, and
resizing if necessary. This costs O (1) amortized work per edge and O (lgn) depth. To fetch
l elements, we simply return the �rst l elements of the array, which takes O (1) work per
edge and O (lgn) depth.

To delete a batch of l edges, the algorithm �rst determines which of the edges to be
deleted are contained within the �nal l elements of the array. It then compacts the �nal
l elements of the array, removing those edges. Compaction costs O (l ) work and O (lgn)
depth. The algorithm then considers the remaining l′ edges to be deleted, and in parallel,
swaps these elements with the �nal l′ elements of the array. The �nal l′ elements in the
array can then be safely removed. Note that any operation that moves an element in the
array also updates the corresponding position value stored in the edge. Swapping and
deleting can be implemented in O (l′) work and (lgn) depth, and hence all operations cost
O (1) amortized work per edge and O (lgn) depth. �

8.2.3 Tree Operations

We use the following results from Chapter 7:

Theorem 10. A batch of k links, k cuts, k connectivity queries, or k representative queries

over an n-vertex forest can be processed in O (k lg(1 + n/k )) expected work and O (lgn) depth
with high probability.

We also make use of additional tree operations that are needed to e�ciently implement
the batch-dynamic algorithms in this chapter, which we discuss next.
Retrieving and Pushing Down Edges. The batch-parallel ET-trees used in this chapter
augment each node in the tree with two values indicating the number of tree and non-tree
edges whose level is equal to the level of the forest currently stored in that subtree. The
augmentation is necessary for e�ciently fetching the tree edges that need to be pushed
down before searching the data structure, and for fetching a subset of non-tree edges in a
tree.

We extend the batch-dynamic trees interface described earlier with operations which
enable e�ciently retrieving, removing and pushing down batches of tree or non-tree edges.

These primitives are all similar and can be implemented as follows. We �rst describe
the primitives which fetch and remove a set of l tree (or non-tree) edges. The algorithm
starts by �nding a set of vertices containing l edges. To do this we perform a binary
search on the skip-list in order to �nd the �rst node that has augmented value greater
than l . The idea is to sequentially walk at the highest level, summing the augmented
values of nodes we encounter and marking them, until the �rst node that we hit whose
augmented value makes the counter larger than l , or we return to v . In the former case,
we descend a level using this node’s downwards pointer, and repeat, until we reach a level
0 node. We also keep a counter, ctr , indicating the number of tree (non-tree) edges to take
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from the rightmost marked node at level 0. Otherwise, all nodes at the topmost level are
marked. The last step of the algorithm is to �nd all descendants of marked nodes that have
a non-zero number of tree (non-tree) edges, and return all tree (non-tree) edges incident
on them. The only exception is the rightmost marked node, from which we only take ctr
many tree (non-tree) edges

Insertions are handled by �rst inserting the edges into the adjacency list data structure.
We then update the augmented values in the ET-tree using the primitive from Tseng et
al. [353].

We now argue that these implementations achieves good work and depth bounds.

Lemma 8. Given some vertex, v in a batch-parallel ET-tree, we can fetch the �rst l tree

(or non-tree) edges referenced by the augmented values in the tree in O
(
l lg

(
1 + nc

l

))
work

and O (lgn) depth whp where nc is the number of vertices in the ET-tree at the current level.

Furthermore, removing the edges can be done in the same bounds.

Proof. Standard proofs about skip-lists shows that the number of nodes traversed in the
binary search is O (lgn) whp (see Chapter 7). We can fetch l edges from each vertex’s
adjacency list data structure in O (l ) amortized work and O (lgn) depth by Lemma 7. The
total work is therefore O

(
l lg

(
1 + nc

l

))
in expectation, and the depth is O (lgn) whp since

the depth of the adjacency list access is an additive increase of O (lgn). Observe that
removing the edges can be done in the same bounds since updating the augmented values
after deleting the edges costs O

(
l lg

(
1 + nc

l

))
expected work. �

Lemma 9. Decreasing the level of l tree (or non-tree) edges in a batch-parallel ET-tree can be

performed in O
(
l lg

(
1 + nc

l

))
expected work and O (lgn) depth whp where nc is the number

of nodes in the ET-tree at the current level.

Proof. The proof is identical to the proof of Lemma 8. The only di�erence is that the
augmented values of the nodes that receive an edge must be updated after insertion which
costs at most O

(
l lg

(
1 + nc

l

))
in expectation. Note that since the forest on the lower level

is a subgraph of the tree at the current level, it has size at most nc , proving the bounds. �

8.3 The Holm, de Lichtenberg, and Thorup Algorithm

Our parallel algorithm is based on the sequential algorithm of Holm, de Lichtenberg, and
Thorup [175], which we refer to as the HDT algorithm. The HDT algorithm assigns to
each edge in the graph, an integer level from 1 to lgn. The levels correspond to sequence
of subgraphsG1 ⊂ G2 ⊂ ... ⊂ Glgn = G , such thatGi contains all edges with level at most i .
The algorithm also maintains a spanning forest Fi of eachGi such that Fi ⊂ F2 ⊂ ... ⊂ Flgn.
Each forest is maintained using a set of augmented ET-trees which we describe shortly.
Throughout the algorithm, the following invariants are maintained.
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Invariant 1. ∀i = 1... lgn, the connected components of Gi have size at most 2i .

Invariant 2. Flgn is a minimum spanning forest where the weight of each edge is its level.

Connectivity Queries. To perform a connectivity query in G, it su�ces to query Flgn,
which takes O (lgn) time by querying for the root of each Euler tour tree and returning
whether the roots are equal. We note that in [175], a query time of O (lgn/ lg lgn) is
achieved by storing the Euler tour of Flgn in a B-tree with branching factor lgn.

Inserting an Edge. An edge insertion is handled by assigning the edge to level lgn. If
the edge connects two currently disconnected components, then it is added to Flgn.

Deleting an Edge. Deletion is the most interesting part of the algorithm. If the deleted
edge is not in the spanning forest Flgn, the algorithm removes the edge and does nothing
to Flgn as the connectivity structure of the graph is unchanged. Otherwise, the component
containing the edge is split into two. The goal is to �nd a replacement edge, that is, an
edge crossing the split component.

If the deleted edge had level i , then the smaller of the two resulting components is
searched starting at level i in order to locate a replacement edge. Before searching this
component, all tree edges whose level is equal to i have their level decremented by one. As
the smaller of the split components at level i has size ≤ 2i−1, pushing the entire component
to level i − 1 does not violate Invariant 1. Next, the non-tree edges at level i are considered
one at a time as possible replacement edges. Each time the algorithm examines an edge
that is not a replacement edge, it decreases the level of the edge by one. If no replacement
is found, it moves up to the next level and repeats. Note that because the algorithm �rst
pushes all tree edges to level i − 1, any subsequent non-tree edges that may be pushed
from level i to level i − 1 will not violate Invariant 2.

Implementation and Cost. To e�ciently search for replacement edges, the ET-trees
are augmented with two additional pieces of information. The �rst augmentation is to
maintain the number of non-tree edges whose level equals the level of the tree. The second
augmentation maintains the number of tree-edges whose level is equal to the level of the
tree.

Using these augmentations, each successive non-tree edge (or tree edge) whose level is
equal to the level of the tree can be found in O (lgn) time. Furthermore, checking whether
the edge is a replacement edge can be done in O (lgn) time. Lastly, the cost of pushing an
edge that is not a replacement edge to the lower level is O (lgn), since it corresponds to
inserting the edge into an adjacency structure and updating the augmented values. Since
each edge can be processed at most once per level, paying a cost of O (lgn), and there are
lgn levels, the overall amortized cost per edge is O (lg2 n).



A Simple Parallel Batch-Dynamic Algorithm 209

8.4 A Simple Parallel Batch-Dynamic Algorithm

In this section, we give a simple parallel batch-dynamic connectivity algorithm based on
the HDT algorithm. The underlying invariants maintained by our parallel algorithm are
identical to the sequential HDT algorithm: we maintain lgn levels of spanning forests
subject to Invariants 1 and 2. The main challenge, and where our algorithm departs
from the HDT algorithm is in how we search for replacement edges in parallel, and how
we search multiple components in parallel. We show by a charging argument that this
parallel algorithm is work-e�cient with respect to the HDT algorithm—it performsO (lg2 n)
amortized work per edge insertion or deletion. Furthermore, we show that the depth of
this algorithm is O (lg4 n). Although these bounds are subsumed by the improved parallel
algorithm we describe in Section 8.5, the parallel algorithm in this section is useful to
illustrate the main ideas in this chapter.
Data Structures. Each spanning forest, Fi , is represented using a set of parallel batch-
dynamic ETTs (see Chapter 7). We represent the edges of the graph in a parallel dictionary
ED for convenience (see Chapter 2), which can be done within the required work and depth
bounds. We also store an adjacency array, Ai[u], at each level i , and for each vertex u to
store the tree and non-tree edges incident on u with level i . Note that tree and non-tree
edges are stored separately so that they can be accessed separately.

8.4.1 Connectivity �eries

As in the sequential algorithm, a connectivity query can be answered by simply performing
a query on Flgn. Algorithm 38 gives pseudocode for the batch connectivity algorithm. The
bound we achieve follows from the batch bounds on batch-parallel ET-trees.

Algorithm 38 The batch query algorithm
1: procedure Batch�ery({(u1,v1), (u2,v2), ..., (uk ,vk )})
2: return Flgn.Batch�ery({(u1,v1), (u2,v2), ..., (uk ,vk )})

Theorem 11. A batch of k connectivity queries can be processed inO
(
k lg

(
1 + n

k

))
expected

work and O (lgn) depth whp.

Proof. Follows from the bounds for connectivity queries over ETTs obtained in Chapter 7.
�

8.4.2 Inserting Batches of Edges

To perform a batch insertion, we �rst determine a set of edges in the batch that increase
the connectivity of the graph. To do so, we treat each current connected component of
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the graph as a vertex, and build a spanning forest of the edges being inserted over this
contracted graph. The edges in the resulting spanning forest are then inserted into the
topmost level in parallel.

Algorithm 39 The batch insertion algorithm
1: procedure BatchInsert( U = {(u1,v1), . . . , (uk ,vk )} )
2: For all ei ∈ U , set l (ei ) B lgn in parallel
3: Update Algn[u] for edges incident on u
4: R B {(Flgn .FindRepr(u), Flgn .FindRepr(u)) | (u,v ) ∈ U }
5: T ′ B SpanningForest(R)
6: T B edges in U corresponding to T ′
7: Promote edges in T to tree edges
8: Flgn.BatchInsert(T)

Algorithm 39 gives pseudocode for the batch insertion algorithm. We assume that the
edges given as input in U are not present in the graph. Each vertex u that receives an
updated edge inserts its edges into Algn[u] (Line 3). This step can be implemented by �rst
running a semisort to collect all edges incident on u.

The last step is to insert edges that increase the connectivity of the graph as tree
edges (Lines 4–8). The algorithm starts by computing the representatives for each edge
(Line 4). The output is an array of edges, R, which maps each original (u,v ) edge in U to
(FindRepr(u), FindRepr(v )) (note that these calls can be batched using BatchFindRepr).
Next, it computes a spanning forest over the tree edges (Line 5). Finally, the algorithm
promotes the corresponding edges in U to tree edges. This step is done by updating the
appropriate adjacency lists and inserting them into Flgn (Lines 7–8).

Theorem 12. A batch of k edge insertions can be processed in O
(
k lg

(
1 + n

k

))
expected

work and O (lgn + DSF) depth whp.

Proof. Lines 2–3 cost O (k ) work and O (lgk ) depth whp using our bounds for updating
A (see Lemma 7). The �nd representative queries (Line 4) can be implemented using a
BatchFindRepr call, which costs O

(
k lg

(
1 + n

k

))
expected work and O (lgn) depth whp

by Theorem 10. Computing a spanning forest (Line 5) can be done in the CRCW PRAM
in O (k ) expected work and O (lgk ) depth whp using Gazit’s connectivity algorithm [148],
and in the same work but O (lg2 k ) depth in the BF model. We summarize the model-
dependent depth of this step as DSF. Finally, updating the adjacency lists and inserting the
spanning forest edges into Flgn costs O

(
k lg

(
1 + n

k

))
expected work and O (lgn) depth

whp (Lines 7–8). �
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8.4.3 Deleting Batches of Edges

As in the sequential HDT algorithm, searching for replacement edges after deleting a
batch of tree edges is the most interesting part of our parallel algorithm. A natural idea
for parallelizing the HDT algorithm is to simply scan all non-tree edges incident on each
disconnected component in parallel. Although this approach has low depth per level, it may
examine a huge number of candidate edges, but only push down a few non-replacement
edges. In general, it is unable to amortize the work performed checking all canidates edges
at a level to the edges that experience level decreases. To amortize the work properly while
also searching the edges in parallel we must perform a more careful exploration of the non-
tree edges. Our approach is to use a doubling technique, in which we geometrically increase
the number of non-tree edges explored as long as we have not yet found a replacement
edge. We show using the doubling technique, the work performed (and number of non-
tree edges explored) is dominated by the work of the last phase, when we either �nd a
replacement edge, or run out of non-tree edges. Our amortized work-bounds follow by a
per-edge charging argument, as in the analysis of the HDT algorithm.
The Deletion Algorithm. Algorithm 40 shows the pseudocode for our parallel batch
deletion algorithm. As with the batch insertion algorithm, we assume that each edge is
present inU in both directions. Given a batch of k edge deletions, the algorithm �rst deletes
the given edges from their respective adjacency lists in parallel (Line 2). It then �lters out
the tree edges (Line 3) and deletes each tree edge e from Fi . . . , Flgn, where i is the level of
e (Line 4). Next, it computes C , a set of components (representatives) from the deleted tree
edges (Line 5). For each deleted tree edge, e , the algorithm includes the representatives
of both endpoints in the forest at l (e ), which must be in di�erent components as e is
a deleted tree edge. Finally, the algorithm loops over the levels, starting at the lowest
level where a tree edge was deleted (Line 7), and calls ParallelLevelSearch at each
level. Each call to ParallelLevelSearch takes i , the level to search, C , the current set
of disconnected components, and S , an initially empty set of replacement edges that the
algorithm discovers over the course of the searches (Line 8)

Algorithm 40 The batch deletion algorithm
1: procedure BatchDeletion(U = {e1, . . . , ek })
2: Delete e ∈ U from A0, . . . ,Algn
3: T B {e ∈ U | e ∈ Flgn } . tree edges to delete
4: Delete e ∈ T from F0, . . . , Flgn
5: C B ∪e=(u,v )∈T (Fl (e ) .FindRepr(u), Fl (e ) .FindRepr(v ))
6: S B ∅
7: for i ∈ [minl B mine ∈T , lgn] do
8: (C, S ) B ParallelLevelSearch(i,C, S)
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Algorithm 41 The parallel level search algorithm
1: procedure ComponentSearch(i, c)
2: w B 1
3: wmax B c .NumNonTreeEdges
4: whilew ≤ wmax do

5: w B min(w,wmax)
6: Ec B First w non-tree edges in c
7: Push all non-replacement edges in Ec to level i − 1
8: if Ec contains a replacement edge then

9: return {r }, where r is any replacement edge in Ec

10: w B 2w
11: return ∅

12: procedure ParallelLevelSearch(i , L = {c1, c2, . . .}, S)
13: Fi .BatchInsert(S)
14: C B c ∈ L with size ≤ 2i−1
15: D B c ∈ L with size > 2i−1
16: while |C | > 0 do
17: Push level i tree edges of components in C to level i − 1
18: R B ∪c ∈C ComponentSearch(i, c ) . in parallel
19: R′ B {(Fi .FindRepr(u), Fi .FindRepr(v )) | (u,v ) ∈ R}
20: T ′ B SpanningForest(R′)
21: T B Edges in R corresponding to edges in T ′

22: Promote edges in T to tree edges
23: Fi .BatchInsert(T)
24: S B S ∪T
25: C B {Fi .Repr(c ) | c ∈ C}
26: Q B {c ∈ C with no non-tree edges, or size > 2i−1}
27: D B D ∪Q
28: C B C \Q

29: return (D, S )

The bulk of the work done by the deletion algorithm is performed by Algorithm 41,
which implements a subroutine that searches the disconnected components at a given
level of the data structure in parallel. The input to ParallelLevelSearch is an integer i ,
the level to search, a set of representatives of the disconnected components, L, and the
set of replacement spanning forest edges that were found in levels lower than i , S . The
output of ParallelLevelSearch is the set of components that are still disconnected after
considering the non-tree edges at this level, and the set of replacement spanning forest
edges found so far.

ParallelLevelSearch starts by inserting the new spanning forest edges in S into Fi
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(Line 13). Next, it computesC and D, which are the components that are active and inactive
at this level, respectively (Lines 14–15). The main loop of the algorithm (Lines 16–28)
operates in a number of rounds. Each round �rst pushes down all tree edges at level i of
every active component. It then �nds a single replacement edge incident to each active
component, searching the active components in parallel, pushing any non-replacement
edge to level i − 1. It then promotes a maximal acyclic subset of the replacement edges
found in this round to tree edges, and proceeds to the next round. The rounds terminate
once all components at this level are deactivated by either becoming too large to search at
this level, or because the algorithm �nished examining all non-tree edges incident to the
component at this level.

The main loop (Lines 16–28) works as follows. The algorithm �rst pushes any level
i tree edges in an active component down to level i − 1. The active components in C
have size at most 2i−1, meaning that any tree edges they have at level i can be pushed
to level i − 1 (Line 17) without violating Invariant 1. Next, the algorithm searches each
active component for a replacement edge in parallel by calling the ComponentSearch
procedure in parallel over all components (Line 18). This procedure either returns an
empty set if there are no replacement edges incident to the component, or a set containing
a single replacement edge. Next, the algorithm maps the replacement edge endpoints to
their current component’s representatives by calling FindRepr on each endpoint (Line 19).
It then computes a spanning forest over these replacement edges (Line 20) and maps
the edges included in the spanning forest back to their original endpoints ids (Line 21).
Observe that the edges in T constitute a maximal acyclic subset of replacement edges of R
in Fi . The algorithm therefore promotes the edges in T to tree edges (Lines 22– 23). Note
that the new tree edges are not immediately inserted into all higher level spanning trees.
Instead, the edges are bu�ered by adding them to S (Line 24) so that they will be inserted
when the higher level is reached in the search. Finally, the algorithm updates the set of
components by computing their representatives on the updated Fi (Line 25), and �ltering
out any components which have no remaining non-tree edges, or become larger than 2i−1
(i.e., become unsearchable at this level) into D (Lines 30–28).

We now describe the ComponentSearch procedure (Lines 1–11). The search consists
of a number of phases, where the i’th phase searches the �rst 2i non-tree edges, or all
of the non-tree edges if 2i is larger than the number of non-tree edges in c . The search
terminates either once a replacement edge incident to c is found (Line 8), or once the
algorithm unsuccessfuly examines all non-tree edges incident to c (Line 4). Initially w , the
search size, is set to 1 (Line 5). On each phase, the algorithm retrieves the �rst w many
non-tree edges, Ec (Line 6). It pushes all non-tree edges that are not replacements to level
i − 1 (Line 7). It then checks whether any of the edges in Ec are a replacement edge, and if
so, returns one of the replacement edges in Ec (Line 9). Note that checking whether an
edge is a replacement edge is done using BatchFindRepr. Otherwise, if no replacement
edge was found it doubles w (Line 10) and continues.
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Cost Bounds. We now prove that our parallel algorithm has low depth, and is work-
e�cient with respect to the sequential HDT algorithm. For simplicity, we assume that we
start with no edges in a graph on n vertices.

Theorem 13. A batch of k edge deletions can be processed in O (lg4 n) depth whp.

Proof. The algorithm doubles the number of edges searched in each phase. Therefore, after
lgm = O (lgn) phases, all non-tree edges incident on the component will be searched.

In every round, each active component is either deactivated, or has a replacement edge
found. In the worst case, the edges found for each active component pair the components
o�, leaving us with half as many active components in the subsequent round. As we lose a
constant fraction of the active components per round, the algorithm takes O (lgn) rounds.

A given level can therefore perform at most O (lg2 n) phases. Each phase consists of
fetching, examining, and pushing down non-tree edges, and hence can be implemented in
O (lgn) depth whp by Lemma 8, Theorem 10, and Lemma 9. Therefore, the overall depth
for a given level is O (lg3 n) whp. As all lgn levels will be processed in the worst case, the
overall depth of the algorithm is O (lg4 n). Note that the depth of the spanning forest call
within a round is subsumed by the depth of the ComponentSearch procedure, regardless
of whether we are working in the BF or CRCW PRAM model. �

We now analyze the work performed by the batch deletion algorithm.

Lemma10. Thework performed by BatchDeletion excluding the calls to ParallelLevelSearch

is

O
(
k lgn lg

(
1 +

n

k

))
, (8.3)

in expectation.

Proof. The edge deletions performed by Line 2 cost O (k ) work by Lemma 7. Filtering
the tree edges (Line 3) can be done in O (k ) work. Deleting the tree edges costs at most
O (k lg (1 + n/k )) work by Lemma 6 (Line 4).

Line 5 perform a FindRepr call for each endpoint of each deleted tree edge. These calls
can be implemented as a single BatchFindRepr call which costs O (k lg (1 + n/k )) work
in expectation by Theorem 10. Since in the worst case each tree edge must be deleted from
lgn levels, the overall cost of this step is O (k lgn lg (1 + n/k )) in expectation. Summing
up the costs for each level proves the lemma. �

Theorem 14. The expected amortized cost per edge insertion or deletion is O (lg2 n).

Proof. Algorithm 40 takes as input a batch of k edge deletions. By Lemma 10, the expected
work performed by BatchDeletion excluding the calls to ParallelLevelSearch is

O
(
k lgn lg

(
1 +

n

k

))
, (8.4)
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which is at most O (k lg2 n) in expectation. We now consider the cost of the calls to
ParallelLevelSearch. Speci�cally, we show that the work performed during the calls to
ParallelLevelSearch can either be charged to level decreases on edges, or is at most
O (k lgn) per call in expectation. Since the total number of calls to ParallelLevelSearch
is at most lgn, the bounds follow.

First, observe that the number of spanning forest edges we discover, |S |, is at most k ,
since at most k tree edges were deleted initially. Therefore, the batch insertion on Line 13
costs O (k lgn) in expectation by Theorem 10. Similarly, L, the number of components that
are supplied to ParallelLevelSearch, is at most k . Therefore, the cost of �ltering the
components in L based on their size, and checking whether their representative exists in
Fi is at most O (k lgn) in expectation (Lines 14–15).

To fetch, examine, and push down l tree or non-tree edges costs

O
(
l lg

(
1 +

n

l

))
, (8.5)

work in expectation, by Lemma 8, Theorem 10, and Lemma 9. Note that this is at most
O (lgn) per edge. In particular, the cost of retrieving and pushing the tree edges of active
components to level i − 1 (Line 7) is therefore at most O (lgn) per edge in expectation,
which we charge to the corresponding level decreases.

We now show that all work done while searching for replacement edges (Lines 16–28)
can be charged to level decreases. Consider an active component, c in some round. Suppose
the algorithm performs q > 0 phases before either the component is exhausted (all incident
non-tree edges have been checked), or a replacement edge is found. First consider the case
where it �nds a replacement edge. If q = 1, only a single edge was inspected, so then we
charge the lgn work for the round to the edge, which will become a tree edge. Otherwise,
it performs q − 1 phases which do not produce any replacement edge.

Since phase w inspects 2w edges, it costs O (2w lgn) work. The total work over all q
phases is therefore

q∑
w=0

2w lgn = O (2q lgn) (8.6)

in expectation. However, since no replacement was found during the �rst q − 1 phases,
there are at least 2q−1 = O (2q ) edges that will be pushed down, so we can charge O (lgn)
work to each such edge to pay for this. In the other case, q phases run without �nding
a replacement edge. In this case, all edges inspected are pushed down, and hence each
assumes a cost of O (lgn) in expectation.

Now, we argue that the work done while processing the replacement edges is O (k lgn)
in expectation over all rounds. Since k edges were deleted, the algorithm discovers at most
k replacement edges. We charge the work in these steps to the replacement edges that
we �nd. Let k′ be the number of replacement edges that we �nd. Filtering the edges, and
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computing a spanning forest all costs O (k′) expected work. Promoting the edges to tree
edges (inserting them into Fi and updating the adjacency lists) costs O (k′ lgn) work in
expectation. Finally, updating the components costs O (k′ lgn) work in expectation, which
we can charge to either the component, if it is removed from C in this round, or to the
replacement edge that it �nds, which is promoted to a tree edge. Since the algorithm can
�nd at most k replacement edges, the cost per level is O (k lgn) in expectation for these
steps as necessary.

In total, on each level the algorithm performs O (k lgn) expected work that is not
charged to a level decrease. Summing over lgn levels, this yields an amortized cost of
O (lg2 n) expected work per edge deletion. Finally, since the level of an edge can decrease
at most lgn times, and an edge is charged O (lgn) expected work each time its level is
decreased, the expected amortized cost per edge insertion is O (lg2 n). �

8.5 An Improved Algorithm

In this section we design a improved version of the parallel algorithm that performs less
work than our algorithm from Section 8.4. Furthermore, the improved algorithm runs in
O (lg3 n) depth whp in the CRCW PRAM, improving on the O (lg4 n) depth whp obtained
by using Algorithm 41.

8.5.1 The Interleaved Deletion Algorithm

Overview. Algorithm 42 is based on interleaving the phases of doubling that search for
replacement edges with the spanning forest computation performed on the replacement
edges. Recall that in Algorithm 41, the number of edges examined in each round is reset,
and the doubling algorithm must therefore start with an initial search size of 1 on the next
round. Because the doubling resets from round to round, the number of phases per round
can be O (lgn) in the worst case, making the total number of phases per level O (lg2 n), and
the depth per level O (lg3 n). Instead, the interleaved algorithm avoids resetting the search
size by maintaining a single, geometrically increasing search size over all rounds of the
search.

The second important di�erence in Algorithm 42 compared with Algorithm 41 is that
it defers inserting tree edges found on this level until the end of the search. Instead, it
continues to search for replacement edges from the initial components until the component
is deactivated. This property is important to show that the work done for a component
across all rounds is dominated by the cost of the last round, since the number of vertices
in the component is �xed, but the number of non-tree edges examined doubles in each
round. For the same reason, it also defers inserting the pushed edges onto level i − 1. We
crucially use this property to obtain improved batch work bounds (Section 8.6).
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Algorithm 42 The interleaved level search algorithm
1: procedure ComponentSearch(i, c, s)
2: wmax B c .NumNonTreeEdges
3: w B min(s,wmax)
4: Ec B First w non-tree edges in c
5: return {All replacement edges in Ec }

6: procedure PushEdges(i, c, s,M)
7: wmax B c .NumNonTreeEdges
8: w B min(s,wmax)
9: Ec B {First w non-tree edges in c}

10: if M[c].size ≤ 2i−1 andw < wmax then

11: Remove edges in Ec from level i
12: return Ec
13: return ∅

14: procedure InterleavedLevelSearch(i , L = {c1, c2, . . .}, S)
15: Fi .BatchInsert(S)
16: C B c ∈ L with size ≤ 2i−1
17: D B c ∈ L with size > 2i−1
18: Push level i tree edges of all components in C to level i − 1
19: r B 0, T B ∅, EP B ∅
20: M B {c → c | c ∈ C}
21: while |C | > 0 do
22: w B 2r
23: R B ∪c ∈C ComponentSearch(i, c,w ) . in parallel
24: R′ B {(Fi .FindRepr(u), Fi .FindRepr(v )) | (u,v ) ∈ R}
25: T ′r B SpanningForest(R′)
26: Tr B Edges in R corresponding to edges in T ′r
27: T B T ∪Tr
28: Update M , the map of supercomponents and their sizes
29: EP B EP ∪c ∈C PushEdges(i, c,w,M ) . in parallel
30: Dr B {c ∈ C with no non-tree edges, or size > 2i−1}
31: D B D ∪ Dr
32: C B C \ Dr
33: r B r + 1
34: Promote edges in T not in Ep to tree edges at level i
35: Fi .BatchInsert(T )
36: Insert non-tree and tree edges in EP to level i − 1
37: return (D, S ∪T )
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Another di�erence in the modi�ed algorithm is that if a component is still active after
adding the replacement edges found in this round (i.e., the component on level i still
has size at most 2i−1), then all of the edges found in this round can be pushed to level
i − 1 without violating Invariant 1. Notice now that when pushing down edges, both the
tree and non-tree edges that are found in this round are pushed. Pushing down all edges
ensures that the algorithm performs enough level decreases to which to charge the work
performed during the next round. The component deactivates either once it runs out of
incident non-tree edges, or when it becomes too large. Since the algorithm defers adding
the new tree edges found until the end of the level, it also maintains an auxiliary data
structure that dynamically tracks the size of the resulting components as new edges are
found.

The Deletion Algorithm. We brie�y describe the main di�erences between Inter-
leavedLevelSearch, the new level search procedure, and ParallelLevelSearch. The
algorithm consists of a number of rounds (Lines 21–33). We use r to track the round
numbers, and we use EP to store the set of both tree and non-tree edges that will be pushed
to level i − 1 at the end of the search at this level (Line 19). T stores the set of tree edges
that have been selected, which will be added to the spanning forest at the end of the level.
Lastly, we use M to maintain a dynamic mapping from all the components in L to a unique
representative for their contracted supercomponent (initially itself), and the size of the
contracted supercomponent.

In round r , the algorithm �rst retrieves the �rst 2r (or fewer) edges of each the active
components in parallel, and �nds replacement edges. All replacement edges are added to
the set R (line 23).

The algorithm then computes a spanning forest over the edges in R, and computes Tr ,
which are the original replacement edges in R that were selected as spanning forest edges
(lines 25–27). The spanning forest computation returns, in addition to the tree edges, a
mapping from the vertices in R′ to their connectivity label (line 25), which can be used on
line 28 to e�ciently update the representatives of all a�ected components and the sizes of
the supercomponents.

The next step maps over the components in parallel again, calling PushEdges on each
active component, and checks whether the edges searched in this round can be (lazily)
pushed to level i − 1 (Line 29).3 If a component is still active (its new size is small enough
to still be searched, and the component still has some non-tree edges remaining) (line 10),
all of the searched edges are removed from the adjacency lists at level i (line 11) and
are added to the set of edges that will be pushed to level i − 1 at the end of the level
(Lines 12 and 29). Note that this set of edges contains both replacement tree edges we

3 Note that the set of edges retrieved by PushEdges in Line 9 is assumed to be the same as the one in
Line 4. This assumption is satis�ed by using our FetchEdges primitive on a batch-parallel ET-tree, and can
be satis�ed in general by associating the edges retrieved in ComponentSearch to be used in PushEdges.
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discovered, and non-tree edges. The tree-edges can be pushed down to level i − 1 because
the component with the tree edges added has size ≤ 2i−1.

The end of the round (lines 30–33) handles updating the set of components and incre-
menting the round number, as in Algorithm 41.

Finally, once all components are inactive, the tree edges found at this level that are not
contained in Ep are promoted (the tree edges added to Ep have their level decreased to i −1)
and inserted into Fi (Lines 34–35), and all edges added to EP in Line 29 are pushed down
to level i − 1 (Line 36). Note that any tree-edges found in this set are promoted in level
i − 1 and added to Fi−1. The procedure returns the set of components and all replacement
edges found at this level and levels below it (Line 37).

8.5.2 Cost Bounds

We start by showing that the depth of Algorithm 42 is O (lg3 n).

Lemma 11. The number of rounds performed by Algorithm 42 is O (lgn) and the depth of

each round is O (lgn + DSF) whp. The depth of the InterleavedLevelSearch is therefore

O (lg(lgn + DSF)) whp.

Proof. Each round of the algorithm increases the search size of a component by a factor of
2. Therefore, after O (lgn) rounds, every non-tree edge incident on a component will be
considered and the algorithm will terminate.

To argue the depth bound, we consider the main steps performed during a round.
Fetching, examining and removing the edges from level i takes O (lgn) depth whp by
Lemma 8, Theorem 10, and Lemma 9. Computing a spanning forest on the replacement
edges and �ltering the components (at most k replacement edges, or components) can be
done in O (DSF) depth. The depth per round is therefore O (lgn + DSF) whp and the depth
of InterleavedLevelSearch is O (lgn(lgn + DSF)) whp �

Combining Lemma 11 with the fact that there are lgn levels gives the following theorem.

Theorem 15. A batch of k edge deletions can be processed in O (lg2 n(lgn + DSF)) depth
whp.

We have the following corollary on the CRCW PRAM, applying the bounds for Gazit’s
algorithm [148].

Corollary 2. A batch of k edge deletions can be processed in O (lg3 n) depth whp on the

CRCW PRAM.

We now consider the work performed by the algorithm. We start with a lemma showing
that the search-size for a component increases geometrically until the round where the
component is deactivated.
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Lemma 12. Consider a component, c , that is active at the end of round r − 1. If c is not
removed from C , then it examines ≥ 2r−1 edges that are pushed down to level i − 1 at the end
of the search.

Proof. We prove the contrapositive. Suppose that < 2r−1 edges are pushed down in total
by c in the last round. Then, we will show that c cannot be active in the next round (i.e., it
is removed from C in round r − 1).

Notice that c must be active at the start of round r − 1. Consider the check on Line 10,
which checks whether w ≤ 2r−1 and w < wmax on this round. Suppose for the same of
contradiction that both conditions are true. Then, by the fact that w < wmax, it must be
the case that w = 2r−1 by Line 8. If the condition is true, then on Line 11 the algorithm
adds 2r−1 edges to be pushed to level i − 1, contradicting our assumption that < 2r−1 edges
are pushed.

Therefore the check on Line 10 must be false, giving that either w > 2i−1, or w = wmax.
This means that c will be marked as inactive on Line 30, and then become deactivated on
line 32. Therefore, if < 2r−1 edges are pushed down by c in round r − 1, c is deactivated at
the end of the round, concluding the proof.

�

Lemma13. Consider the work done by some component c over the course of InterleavedLevelSearch
at a given level. Let R be the total number rounds that c is active. Then, c pushes down

pc = 2R − 1 edges in total. Furthermore, the total cost of searching for and pushing down

replacement edges performed by c is

O

(
pc lg

(
1 +

nc
pc

))
(8.7)

in expectation, where nc is the number of vertices in c .

Proof. By Lemma 12, for each round r < R, c adds 2r edges to be pushed down. Summing
over all rounds shows that the total number of edges added to be pushed down is 2R − 1.
The cost of pushing down these edges at the end of the search at this level is exactly

O

(
pc lg

(
1 +

nc
pc

))
. (8.8)

by Lemma 9, since the size of the tree that is a�ected is nc .
We now consider the cost of fetching and examining the edges over all rounds. The

cost of fetching and examining 2r edges is

O
(
2r lg

(
1 +

nc
2r

))
, (8.9)
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in expectation by Theorem 10 and Lemma 8. Summing over all rounds r < R, the work is

R−1∑
r=1

O
(
2r lg

(
1 +

nc
2r

))
(8.10)

in expectation to fetch and examine edges in the �rst R − 1 rounds, which is equal to

O
(
2R lg

(
1 +

nc
2R

))
, (8.11)

by Lemma 5. Since on round R, the algorithm searches at most 2R edges, the total cost of
searching for replacement edges over all rounds is at most

O
(
2R lg

(
1 +

nc
2R

))
= O

(
pc lg

(
1 +

nc
pc

))
. (8.12)

�

Lemma 14. The cost of InterleavedLevelSearch is at most

O

(
k lg

(
1 +

n

k

)
+ p lg

(
1 +

n

p

))
(8.13)

in expectation where p is the total number of edges pushed down.

Proof. First consider lines 2–5. Since we are deleting a batch of k edges, we can �nd at
most k replacement edges to reconnect these components. Therefore line 2 performs
O

(
k lg

(
1 + n

k

))
expected work by Theorem 10. Pushing t spanning tree edges to the next

level (line 5) can be done in O
(
t lg

(
n
t + 1

))
) expected work by Lemmas 8, 9, and 4, and

Theorem 10. Hence in total, lines 2–5 perform at most O
(
k lg

(
1 + n

k

)
+ t lg

(
1 + n

t

))
work

in expectation.
Now, consider the cost of the steps which scan or update the components that are

active in each round. On the �rst round, this cost is O (k ). In every subsequent round, r ,
by Lemma 12 each currently active component must have added 2r−1 edges to be pushed
down on the previous round. Therefore, we can charge the O (1) work per component
performed in this round to these edge pushes.

Next, we analyze the work done while searching for and pushing replacement edges.
Consider some component c ∈ C that is searched on this level. By Lemma 13, the cost of
searching for and pushing down the replacement edges incident on this component is

O

(
pc lg

(
1 +

nc
pc

))
(8.14)
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in expectation, where nc is the number of vertices in c and pc is the total number of edges
pushed down by c .

The total work done over all components to search for replacement edges and push
down both the original tree edges, and the edges in each round is therefore

O *
,
t lg

(
1 +

n

t

)
+

∑
c∈C

pc lg
(
1 +

nc
pc

)
+
-
. (8.15)

in expectation. Since
∑
nc = n, by Lemma 4 this costs

O

(
p lg

(
1 +

2n
p

))
= O

(
p lg

(
1 +

n

p

))
(8.16)

work in expectation, where p = t +
∑
pc is the total number of edges pushed, including

tree and non-tree edges. Therefore, the total cost is

O

(
k lg

(
1 +

n

k

)
+ p lg

(
1 +

n

p

))
(8.17)

in expectation. �

Theorem 16. The expected amortized cost per edge insertion or deletion is O (lg2 n).

Proof. The proof follows from the same argument as Theorem 14, by using Lemma 14. �

8.6 Improved Work Analysis

We now show that by a more careful analysis, we can obtain a tighter bound on the amount
of work performed by the interleaved algorithm. In particular, we show in this section
that the algorithm performs

O
(
lgn lg

(
1 +

n

∆

))
(8.18)

amortized work per edge in expectation, where ∆ is the average batch size of all batches
of deletions. Therefore, if we process batches of deletions of size O (n/polylog(n)) on
average, our algorithm performs O (lgn lg lgn) expected amortized work per edge, rather
than O (lg2 n). Furthermore, if we have batches of size O (n), the cost is just O (lgn) per
edge.

At a high level, our proof formalizes the intuition that in the worst case, all edges are
pushed down at every level, and that performing fewer deletion operations results in larger
batches of pushes which take advantage of work bounds of the ET-tree. Our proof crucially
relies on the fact that although the deletion algorithm at a level can perform O (lgn)
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ET-tree operations per component, since the batch sizes are geometrically increasing,
these operations have the cost of a single ET-tree operation per component. Furthermore,
Lemma 14 shows that the costs per component can be combined so that the total cost
is equivalent to the cost of a single ET-tree operation on all the vertices. Therefore, the
number of deletion operations can be exactly related to the e�ective number of ET-tree
operations at a level. We relate the number of deletions to the average batch size, which
lets us obtain a single uni�ed bound for both insertions and deletions.

Theorem 17. Using the interleaved deletion algorithm, the amortized work performed by

BatchDeletion and BatchInsertion on a batch of k edges is

O
(
k lgn lg

(
1 +

n

∆

))
, (8.19)

in expectation where ∆ is the average batch size of all batch deletions.

Proof. Batch insertions perform only O
(
k lg

(
1 + n

k

))
work by Theorem 12, so we focus

on the cost of deletion since it dominates. Consider the total amount of work performed
by all batch deletion operations at any given point in the lifetime of the data structure. We
will denote by kb , the size of batch b, and by pb,i , the number of edges pushed down on
level i during batch b. Combining Lemmas 10, and 14, the total work is bounded above by

O *
,

∑
batch b

∑
level i

kb lg
(
1 +

n

kb

)
+ pb,i lg

(
1 +

n

pb,i

)
+
-
. (8.20)

We begin by analyzing the �rst term, which is paid for by the deletion algorithm. Let

K =
∑

batch b

kb (8.21)

denote the total number of deleted edges. Applying Lemma 4, and using the fact that there
are lgn levels, we have

O *
,

∑
batch b

∑
level i

kb lg
(
1 +

n

kb

)
+
-
= O

(
K lgn lg

(
1 +

n · d

K

))
, (8.22)

where d is the number of batches of deletions. Since K/d = ∆, this is equal to

O
(
K lgn lg

(
1 +

n

∆

))
, (8.23)

work in expectation. Each batch can therefore be charged a cost of lgn lg (1 + n/∆) per
edge, and hence the amortized cost of batch deletion is

O
(
k lgn lg

(
1 +

n

∆

))
(8.24)
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in expectation.
The remainder of the cost, which comes entirely from searching for replacement edges,

is charged to the insertions. Consider this cost and let

P =
∑

batch b

∑
level i

pb,i (8.25)

denote the total such number of edge pushes. Since the total number of terms in the double
sum is d lgn, Lemma 4 allows us to bound the total work of all pushes by∑

batch b

∑
level i

pb,i lg
(
1 +

n

pb,i

)
= O

(
P lg

(
1 +

nd lgn
P

))
. (8.26)

in expectation. Since every edge can only be pushed down once per level, we have

P ≤ m lgn, (8.27)

where m is the total number of edges ever inserted. Therefore by Lemma 6, the total work
is at most

O

(
m lgn lg

(
1 +

nd lgn
m lgn

))
= O

(
m lgn lg

(
1 +

nd

m

))
(8.28)

in expectation. Since d = K/∆, this is equal to

O
(
m lgn lg

(
1 +

nK

m∆

))
(8.29)

in expectation. Since each edge can be deleted only once, we have K ≤ m, and hence we
obtain that the total work to push all tree edges down is at most

O
(
m lgn lg

(
1 +

n

∆

))
. (8.30)

in expectation. We can therefore charge O (lgn lg(1 + n/k )) per edge to each batch inser-
tion. Since this dominates the cost of the insertion algorithm itself, the amortized cost of
batch insertion is therefore

O
(
k lgn lg

(
1 +

n

∆

))
, (8.31)

in expectation as desired, concluding the proof. �

8.7 Discussion

In this chapter, we presented a novel batch-dynamic algorithm for the connectivity problem.
Our algorithm is always work-e�cient with respect to the Holm, de Lichtenberg and
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Thorup dynamic connectivity algorithm, and is asymptotically faster than their algorithm
when the average batch size is su�ciently large. A parallel implementation of our algorithm
achievesO (lg3 n) depthwhp, and is, to the best of our knowledge, the �rst parallel algorithm
for the dynamic connectivity problem performing O (T polylog(n)) total expected work,
where T is the total number of edge operations.

There are several natural questions to address in future work. First, can the depth
of our algorithm be improved to O (lg2 n) without increasing the work? Investigating
lower bounds in the batch setting would also be very interesting—are there non-trivial
lower-bounds for batch-dynamic connectivity? Lastly, in this chapter we show expected
amortized bounds. One approach to strengthen these bounds is to show that our tree
operations hold whp and argue that our amortized bounds hold whp. Another is to design
a deterministic batch-dynamic forest connectivity data structure with the same asymptotic
complexity as the batch-parallel ET-tree, which would make the randomized bounds in
this chapter deterministic.

Two additional questions are whether we can extend our results to give parallel work-
e�cient batch-dynamic MST, 2-edge connectivity and biconnectivity algorithms. MST
seems solvable using the techniques presented in this chapter, although our dynamic
tree structure would need to be extended with additional primitives. Existing sequential
2-edge connectivity and biconnectivity algorithms require a dynamic tree data structure
supporting path queries which are not supported by ET-trees. However, RC-trees [4] can
be extended to support path queries, which makes them a possible candidate for this line
of work. Finally, it seems likely that ideas from our work can be extended to give a parallel
batch-dynamic Monte-Carlo connectivity algorithm based on the Kapron-King-Mountjoy
algorithm [193].





Part III

Streaming Graph Processing

227





Introduction

In recent years, there has been growing interest in programming frameworks for processing
streaming graphs due to the fact that many real-world graphs change in real-time (e.g., [130,
139, 156, 100, 226, 379]). These graph-streaming systems receive a stream of queries and a
stream of updates (e.g., edge and vertex insertions and deletions, as well as edge weight
updates) and must process both updates and queries with low latency, both in terms of
query processing time and the time it takes for updates to be re�ected in new queries. There
are several existing graph-streaming frameworks, such as STINGER, based on maintaining
a single mutable copy of the graph in memory [130, 139, 156]. Unfortunately, these
frameworks require either blocking queries or updates so that they are not concurrent, or
giving up serializability [379]. Another approach is to use snapshots [100, 226]. Existing
snapshot-based systems, however, are either very space-ine�cient, or su�er from high
latency on updates. Therefore, an important question is whether we can design a data
structure that supports lightweight snapshots which can be used to concurrently process
queries and updates, while ensuring that the data structure is safe for parallelism and
achieves good asymptotic and empirical performance.

In principle, representing graphs using purely-functional balanced search trees [2, 264]
can satisfy both criteria. Such a representation can use a search tree over the vertices (the
vertex-tree), and for each vertex store a search tree of its incident edges (an edge-tree).
Because the trees are purely-functional, acquiring an immutable snapshot is as simple as
acquiring a pointer to the root of the vertex-tree. Updates can then happen concurrently
without a�ecting the snapshot. In fact, any number of readers (queries) can concurrently
acquire independent snapshots without being a�ected by a writer. A writer can make
an individual or bulk update and then set the root to make the changes immediately and
atomically visible to the next reader without a�ecting current active readers. A single
update costs O (lgn) work, and because the trees are purely-functional it is relatively easy
and safe to parallelize a bulk update.

However, there are several challenges that arise when comparing purely-functional
trees to compressed sparse row (CSR), the standard data structure for representing static
graphs in shared-memory graph processing [295]. In CSR, the graph is stored as an array
of vertices and an array of edges, where each vertex points to the start of its edges in
the edge-array. Therefore, in the CSR format, accessing all edges incident to a vertex v
takes O (deд(v )) work, instead of O (lgn + deд(v )) work for a graph represented using
trees. Furthermore, the format requires only one pointer (or index) per vertex and edge,
instead of a whole tree node. Additionally, as edges are stored contiguously, CSR has good
cache locality when accessing the edges incident to a vertex, while tree nodes could be
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spread across memory. Finally, each set of edges can be compressed internally using graph
compression techniques [322], allowing massive graphs to be stored using just a few bytes
per edge [117]. This approach cannot be used directly on trees. This would all seem to put
a search tree representation at a severe disadvantage.
Outline. This part of the thesis �rst presents C-trees, a compressed purely-functional
search tree data structure that signi�cantly improves on the space usage and locality of
purely-functional trees. The key idea is to use a chunking technique over trees in order
to store multiple entries per tree-node. We design theoretically-e�cient and practical
algorithms for performing batch updates to C-trees. Our presentation of C-trees can be
found in Chapter 9.

Chapter 10 then shows how to apply C-trees to build an e�cient graph-streaming
system. We will show that we can use C-trees to store massive dynamic real-world graphs
using only a few bytes per edge, thereby achieving space usage close to that of the best
static graph processing frameworks. To study the e�ciency and applicability of our data
structure, we designed Aspen, a graph-streaming framework that extends the interface of
Ligra with operations for updating graphs. We show that Aspen is faster than two state-of-
the-art graph-streaming systems, STINGER and LLAMA, while requiring less memory, and
is competitive in performance with the state-of-the-art static graph frameworks, Galois,
GAP, and Ligra+. With Aspen, we are able to e�ciently process the largest publicly-
available graph with over two hundred billion edges in the graph-streaming setting using
a single commodity multicore server with 1TB of memory.

The results in this part of the thesis have appeared in the following publication:

Laxman Dhulipala, Guy E Blelloch, and Julian Shun. “Low-Latency Graph Streaming
using Compressed Purely-Functional Trees”. In: ACMSIGPLANConference on Programming

Language Design and Implementation (PLDI). 2019, pp. 918–934



9
Compressed Purely-Functional Trees

This chapter of the thesis presentsC-trees, a compressed purely-functional search tree data
structure that signi�cantly improves on the space usage and locality of purely-functional
trees. The key idea is to use a chunking technique over trees in order to store multi-
ple entries per tree-node. We design theoretically-e�cient and practical algorithms for
performing batch updates to C-trees, and also show that we can store massive dynamic
real-world graphs using only a few bytes per edge, thereby achieving space usage close to
that of the best static graph processing frameworks.

9.1 Preliminaries

We assume that we have access to a family of uniformly (purely) random hash functions
which we can draw from in O (1) work [108, 267]. In functions from such a family, each
key is mapped to an element in the range with equal probability, independent of the values
that other keys hash to, and the function can be evaluated for a given key in O (1) work.

Purely-Functional Trees. Purely-functional (mutation-free) data structures preserve
previous versions of themselves when modi�ed and yield a new structure re�ecting the
update [264]. The trees studied in this chapter are binary search trees, which represent a
set of ordered elements. In a purely-functional tree, each element is used as a key, and is
stored in a separate tree node. The elements can be optionally associated with a value,
which is stored in the node along with the key. Trees can also be augmented with an
associative function f (e.g., +), allowing the sum with respect to f in a range of the tree
be queried in O (lgn) work and depth, where n is the number of elements in the tree.

9.2 Compressed Purely-Functional Trees

In this section, we describe a compressed purely-functional search tree data structure
which we refer to as a C-tree. After describing the data structure in Section 9.2.1, we
argue that our design improves locality and reduces space-usage relative to ordinary
purely-functional trees (Section 9.2.2). Finally, we compare the C-tree data structure to
other possible design choices, such as B-trees (Section 9.2.3).
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Figure 9.1: This �gure gives the de�nition of the C-tree data structure in an ML-like language
(sub�gure (a)) and illustrates the di�erence between a purely-functional tree and a C-tree when
representing a set of integers, S . Sub�gure (b) shows a purely-functional tree where each element
in S is stored in a separate tree node. We color the elements in S that are sampled as heads yellow,
and color the non-head elements gray. Sub�gure (c) illustrates how the C-tree stores S , given the
heads. Notice that the C-tree has a chunk (the pre�x) which contains non-head elements that are
not associated with any head, and that each head stores a chunk (its tail) containing all non-head
elements that follow it until the next head.

9.2.1 C-tree Definition

The main idea of C-trees is to apply a chunking scheme over the tree to store multiple
elements per tree-node. The chunking scheme takes the ordered set of elements to be
represented and “promotes” certain elements to be heads, which are stored in a tree. The
remaining elements are stored in tails associated with each tree node. To ensure that
the same keys are promoted in di�erent trees, a hash function is used to choose which
elements are promoted. An important goal for C-trees is to maintain similar asymptotic
cost bounds as for the uncompressed trees while improving space and cache performance,
and to this end we describe theoretically e�cient implementations of tree primitives in
Section 9.3.
More formally. For an element type K , �x a hash function, h : K → {1, . . .N }, drawn
from a uniformly random family of hash functions (N is some su�ciently large range).
Let b be a chunking parameter, a constant which controls the granularity of the chunks.
Given a set E of n elements, we �rst compute the set of heads H (E) = {e ∈ E | h(e )
mod b = 0}. For each e ∈ H (E) let its tail be t (e ) = {x ∈ E | e < x < next (H (E), e )},
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where next (H (e ), e ) returns the next element in H (E) greater than e . We then construct a
purely-functional tree with keys e ∈ H (E) and associated values t (e ).

Thus far, we have described the construction of a tree over the head elements, and
their tails. However, there may be a “tail” at the beginning of E that has no associated head,
and is therefore not part of the tree. We refer to this chunk of elements as the pre�x. We
refer to either a tail or pre�x as a chunk. We represent each chunk as a (variable-length)
array of elements. As described later, when the elements are integers we can use di�erence
encoding to compress each of the chunks. The overall C-tree data structure consists of
the tree over head keys and tail values, and a single (possibly empty) pre�x. Figure 9.1
illustrates the C-tree data structure over a set of integer elements.
Properties of C-trees. The expected size of chunks in a C-tree is b as each element is
independently selected as a head under h with probability 1/b. Furthermore, the chunks
are unlikely to be much larger than b—in particular, a simple calculation shows that the
chunks have size at most O (b lgn) whp, where n is the number of elements in the tree.
Notice that an element chosen to be a head will be a head in any C-trees containing it, a
property that simpli�es the implementation of primitives on C-trees.

Our chunking scheme has the following bounds:

Lemma 15. The number of heads (keys) in a C-tree over a set E of n elements is O (n/b)
whp. Furthermore, the maximum size of a tail (the non-head nodes associated with a head)

or pre�x is O (b lgn) whp.

Proof. Each element is selected as a head with probability 1/b, and so by linearity of
expectations, the expected number of heads is n/b. De�neXi to be the independent random
variable that is 1 if Ei is a head and 0 otherwise. Let X be their sum, and E[X ] = n/b.
Applying a Cherno� bound proves that the number of heads is O (n/b) whp.

We now show that each tail is not too large whp. Consider a subsequence of length
t = b · (c lnn) for a constant c > 1. The probability that none of the t elements in
the subsequence are selected as a head is (1 − 1/b)t ≤ (1/e )c lnn = 1/nc . Therefore, a
subsequence of E of length t has a head whp. We complete the proof by applying a union
bound over all length t subsequences of E. �

We also obtain the following corollary.

Corollary 3. When using a balanced binary tree for the heads (one with O (lgn) height for
n keys), the height of a C-tree over a sequence E of n elements is O (lg(n/b)) whp.

9.2.2 C-tree Compression

In this section, we �rst discuss the improved space usage of C-trees relative to purely-
functional trees without any assumption on the underlying type of elements. We then
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discuss how we can further reduce the space usage of the data structure in the case where
the elements are integers.
Space Usage and Locality. Consider the layout of a C-tree compared to a purely-
functional tree. By Lemma 15, the expected number of heads is O (n/b). Therefore, com-
pared to a purely-functional tree, which allocates n tree nodes, we reduce the number of
tree nodes allocated by a factor ofb. As each tree node is quite large (in our implementation,
each tree node is at least 32 bytes), reducing the number of nodes by a factor of b can
signi�cantly reduce the size of the tree. Experimental results are given in Section 10.4.1.

In a purely-functional tree, in the worst case, accessing each element will incur a cache
miss, even in the case where elements are smaller than the size of a cache line. In a C-tree,
however, by choosing b, the chunking parameter, to be slightly larger than the cache
line size (≈ 128), we can store multiple elements contiguously within a single chunk and
amortize the cost of a cache miss across all elements read from the chunk. Furthermore,
note that the data structure can provide locality bene�ts even in the case when the size of
an element is larger than the cache line size, as a modest value of b will ensure that reading
all but the heads, which constitute an O (1/b) fraction of the elements, will be contiguous
loads from the chunks.
IntegerC-trees. In the case where the elements are integers, theC-tree data structure can
exploit the fact that elements are stored in sorted order in the chunks to further compress
the data structure. We apply a di�erence encoding scheme to each chunk. Given a chunk
containing d integers, {I1, . . . , Id }, we compute the di�erences {I1, I2 − I1, . . . , Id − Id−1}.
The di�erences are then encoded using a byte-code [322, 372]. We applied byte-codes due
to the fact that they are fast to decode while achieving most of the memory savings that
are possible using a shorter code [59, 372].

Note that in the common case when b is a constant, the size of each chunk is small
(O (lgn) whp). Therefore, despite the fact that each chunk must be processed sequentially,
the cost of the sequential decoding does not a�ect the overall work or depth of parallel
tree methods. For example, mapping over all elements in theC-tree, or �nding a particular
element have the same asymptotic work as purely-functional trees and optimal (O (lgn))
depth. To make the data structure dynamic, chunks must also be recompressed when
updating aC-tree, which has a similar cost to decompressing the chunks. In the context of
graph processing, the fact that methods over a C-tree are easily parallelizable and have
low depth lets us avoid designing and implementing a more complex parallel decoding
scheme, like the parallel byte-code in Ligra+ [322].

9.2.3 Other Approaches

Our data structure is loosely based on a previous sequential approach to chunking [58].
That approach was designed to be a generic addition to any existing balanced tree scheme
for a dictionary and has overheads due to this goal.
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Figure 9.2: This �gure shows the di�erence between performing a single update in a B-Tree versus
an update in a C-tree. The data marked in green is newly allocated in the update. Observe that
updating single element in aC-tree in the worst-case requires copying a path of nodes, and copying
a single chunk if the element is not a head. Updating an element in a B-tree requires copying B
pointers (potentially thousands of bytes) per level of the tree, which adds signi�cant overhead in
terms of memory and running time.

Another option is to use B-trees [43]. However, the objective of a B-tree is to reduce the
height of a search tree to accelerate searching a tree in external memory, whereas our goal
is to build a data structure that stores many contiguous segments in a single node to make
compression possible. The problem with B-trees in our purely-functional setting is that we
require path copying during functional updates, as illustrated in Figure 9.2. In our trees,
this only requires copying a single binary node (32 or 40 bytes in our implementation) per
level of the tree. For a B-tree, it would require copying B pointers (potentially thousands of
bytes) per level of the tree, adding signi�cant overhead in terms of memory and running
time.

There is also work on chunking of functional trees for representing strings or (un-
ordered) sequences [5, 143, 80, 55]. The motivation is similar (decrease space and increase
locality), but the fact they are sequences rather than search trees makes the tradeo�s
di�erent. None of this work uses the idea of hashing or e�ciently searching the trees.
Using a hash function to select the heads has an important advantage in simplifying much
of the code, and proving asymptotic bounds. Keeping the elements with internal nodes
and using a pre�x allows us to access the �rst b elements (or so) in constant work.

9.3 Operations on C-trees

In this section, we show how to support various tree operations over C-trees, such as
building, searching and performing batch-updates to the data structure. These are opera-
tions that we will need for e�ciently processing and updating graphs. We argue that the
primitives are theoretically e�cient by showing bounds on the work and depth of each
operation. We also describe how to support augmentation in the data structure using an
underlying augmented purely-functional tree. We note that theC-tree interfaces de�ned in
this section operate over element-value pairs, whereas the C-trees de�ned in Section 9.2.1
only stored a set of elements for the sake of illustration. The algorithm descriptions elide
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the values associated with each element for the sake of clarity. We use operations on an
underlying purely-functional tree data structure in our description, and state the bounds
for operations on these trees as necessary (e.g., the trees described in Blelloch et al. [63]
and Sun et al. [340]). The primitives in this section for a C-tree containing elements of
type E and values of type V are de�ned as follows.

• Build(S, fV ) takes a sequence of element-value pairs and returns aC-tree containing
the elements in S with duplicate values combined using a function fV : V ×V → V .

• Find(T , e ) takes a C-tree T and an element e and returns the entry of the largest
element e′ ≤ e .

• Map(T , f ) takes aC-treeT and a function f : V → () and applies f to each element
in T .

• MultiInsert(T , f , S) and MultiDelete(T , S) take a C-tree T , (possibly) a function
f : V ×V → V that speci�es how to combine values, and a sequence S of element-
value pairs, and returns a C-tree containing the union or di�erence of T and S .

Building. Building (Build(S, fV )) the data structure can be done in O (n lgn) work and
O (b lgn) depth whp for a sequence of length n. Given an unsorted sequence of elements,
we �rst sort the sequence using a comparison sort which costs O (n lgn) work and O (lgn)
depth [188]. Duplicate values in S can now be combined by applying a scan with fV ,
propagating the sum with respect to fV rightward, and keeping only the rightmost value
in the resulting sequence using a �lter.

Next, we hash each element to compute the set of heads and their indices, which can
be done using a parallel map and �lter in O (n) work and O (lgn) depth. Constructing the
tails for each head can be done in O (n) work and O (b lgn) depth whp by mapping over
all heads in parallel and sequentially scanning for the tail, and applying Lemma 15. The
pre�x is generated similarly. Finally, we build a purely-functional tree over the sequence
of head and tail pairs, with the heads as the keys, and the tails as the values, which takes
O (n) work and O (lgn) depth.

Note that the cost is dominated by the cost of sorting, and that the building algorithm
only requires O (n) work if the input is sorted.
Searching. Searching (Find(T , e )) for a given element e can be implemented in O (b lgn)
work and depth whp and O (b + lgn) work and depth in expectation. The idea is to simply
search the keys in the C-tree for the �rst head ≤ e . If the head e′ that we �nd is equal
to e we return true, otherwise we check whether e lies in the tail associated with e′

sequentially and return true if and only if e is in the tail. The depth of the tree is O (lgn)
and the size of the tail is O (b lgn) whp (O (b) in expectation) by Lemma 15, giving the
bounds.
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Figure 9.3: This �gure illustrates how the Union algorithm computes the union of twoC-trees, T1
and T2. The text at the top of each �gure (in green) denotes the sub-routine that is called, and the
bottom portion of the �gure illustrates the output of the call.

Mapping. Mapping (Map(T , f )) over aC-tree containing n elements with a constant-work
function f can be done in O (n) work and O (b lgn) depth whp. We simply apply a parallel
map over the underlying purely-functional tree, which runs in O (n) work and O (lgn)
depth [340]. The map operation for each node in the tree simply calls f on the key (a
head), and then sequentially processes the tail, applying f to each element in it. We then
apply f to each element in the pre�x. The work is O (n) as each element is processed once.
As each chunk has size O (b lgn) whp by Lemma 15, the overall depth is O (b lgn) whp.

9.4 Algorithms for Batch Insertions and Deletions

Our MultiInsert and MultiDelete algorithms are based on more fundamental algorithms
for Union, Intersection, and Difference on C-trees. Since we can simply build a tree
over the input sequence to MultiInsert and call Union (or Difference for MultiDelete),
we focus only on the set operations. Furthermore, because the algorithms for Intersection
and Difference are conceptually very similar to the algorithm for Union, we only describe
in detail the Union algorithm, and Split, an important primitive used to implement Union.
Union. Our Union algorithm (Algorithm 43) is based on the recursive algorithm for
Union given by Blelloch et al. [63]. The main di�erences between the implementations
are how to split a C-tree by a given element, and how to handle elements in the tails
and pre�xes. The algorithm takes as input two C-trees, C1 and C2, and returns a C-tree
C containing the elements in the union of C1 and C2. Figure 9.3 provides an illustration
of how our Union algorithm computes the union of two C-trees. The algorithms use
the following operations de�ned on C-trees and chunks. The Expose operation takes as
input a tree and returns the left subtree, the element and pre�x at the root of the tree, and
the right subtree. The Split operation takes as input a C-tree B and an element k , and
returns two C-trees B1 and B2, where B1 (resp. B2) are a C-tree containing all elements
less than (resp. greater than) k . It can also optionally return a boolean indicating whether
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Algorithm 43 Union
1: function Union(C1,C2)
2: case (C1,C2) of
3: ((null, _), _) → UnionBC(C1,C2)
4: (_, (null, _)) → UnionBC(C2,C1)
5: ((T1, P1), (T2, P2)) →
6: let

7: val (L2,k2,v2,R2) = Expose(T2)
8: val (B1, (BT2,BP2)) = Split(C1,k2)
9: val (vL,vR ) = SplitChunk(v2, Smallest(BT2))

10: val (PL, PR ) = SplitChunk(BP2, Smallest(R2))
11: val v ′2 = UnionChunk(vL, PL )
12: val (CL,CR ) = Union(B1, (L2, P2)) | |

Union((BT2, PR ), (R2,vR ))
13: in

14: ctree(Join(CL .Tree,CR .Tree,k2,v ′2),CL .Prefix)
15: end

k was found in B, which is used when implementing Difference and Intersection.
The Smallest operation returns the smallest head in a tree. The UnionBC algorithm
merges a C-tree consisting of a pre�x and empty tree, and another C-tree. We also use the
SplitChunk and UnionChunk operations, which are de�ned similarly to Split and
Union for chunks.

The idea of the algorithm is to call Expose on the tree of one of the two C-trees (C2),
and split the otherC-tree (C1) based on the element exposed at the root ofC2’s tree (Line 7).
The split on C1 returns the trees B1 and B2 (Line 8). The algorithm then recursively calls
Union on the C-trees constructed from L2 and R2, the left and right subtrees exposed in
C2’s tree with the C-trees returned by Split, B1, and B2.

However, some care must be taken, since elements in k2’s tail, v2, may come after
some heads in B2. Similarly, elements in B2’s pre�x may come after some heads of R2. In
both cases, we should merge these elements with their corresponding heads’ tails. We
handle these cases by splitting v2 by the leftmost element of B2 (producing vL and vR),
and splitting B2’s pre�x by the leftmost element of R2 (producing PL and PR). The left
recursive call to Union just takes theC-trees B1 and (L2, P2). The right recursive call takes
theC-trees (B2.Tree, PR ), and (R2,vR ). Note that all elements in the pre�xes PR and vR are
larger than the smallest head in B2 and R2. Therefore, the C-tree returned from the right
recursive call has an empty pre�x. The output of Union is the C-tree formed by joining
the left and right trees from the recursive calls, k2, and the tail v′2 formed by unioning vL
and PL, with the pre�x from CL.
UnionBC. Algorithm 44 implements UnionBC, the base-case of Union, which computes
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Algorithm 44 UnionBC
1: function UnionBC(C1,C2)
2: case (C1,C2) of
3: ((null, null), _) → C2
4: | ((_, P1), (T2, P2)) →
5: let

6: val (PL, PR ) = SplitChunk(P1, Smallest(T2))
7: val keys = map(λe .(FindHead(T2, e ), e ), PR )
8: val ranges = UniqeKeyRanges(keys)
9: val updates = map(λ(k, s, e ).UnionRange(T2,k, s, e ), ranges)

10: val T ′2 = MultiInsert(updates,T2)
11: in

12: ctree(T ′2 ,UnionLists(PL, P2))
13: end

the union of a pre�x and a C-tree. If P1 is null, we return C2 (Line 3). Otherwise, P1 is
non-empty, and some of its elements may need to be unioned with P2, while others may
belong in tails in T2. We split P1 by the �rst key in T2 (Line 6), returning the keys in
P1 less than (PL) and greater than (PR) the �rst key in T2. We �rst deal with PR , which
contains elements that should be sent to T2. First, we �nd the head for each element in
PR in parallel by applying a map over the elements e ∈ PR (Line 7). Next, we compute the
unique ranges for each key by calling UniqeKeyRanges, which packs out the keys into a
sequence of key, start index, and end index triples containing the index of the �rst and
last element that found the key. This step can be implemented by a map followed by a
scan operation to propagate the indices of boundary elements, and a pack (Line 8). Next,
in parallel for each unique key, we call UnionRange, which unions the elements sent to k
with its current tail in T2 and constructs updates, a sequence of head-tail pairs that are to
be updated inT2 (Line 9). Finally, we call MultiInsert withT2 and updates, which returns
the tree that we will output (Line 10). Note that the MultiInsert call here operates on the
underlying purely-functional tree. We return a C-tree containing this tree, and the union
of PL and P2 (Line 12). Using the fact that the expected size of P1 is b, the overall work of
UnionBC is O (b lg |C2 | + b · b) = O (b2 + b lg |C2 |) in expectation to perform the �nds and
merge the elements in P1 with a corresponding tail. The depth is O (lgb lg |C2 |) due to the
MultiInsert.

Split. The Split algorithm (Algorithm 45) takes a C-tree (C) and a split element (k), and
returns a pair of C-trees where the �rst contains all elements less than the split element,
and the second contains all elements larger than it. The pseudocode is given in an ML-like
syntax using pattern matching constructs that enable a simpler description of the algorithm.
It �rst checks to see if C is empty, and returns two empty C-trees if so (Line 3).
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Algorithm 45 Split
1: function Split(C,k)
2: case C of

3: (null, null) → (empty, false, empty)
4: | (T , null) →
5: let

6: val (L,h,v,R) = Expose(T )
7: in

8: case compare(k,h) of
9: EQ → (ctree(L, null), ctree(R,v ))

10: | LT→
11: let

12: val (LL, (LTR ,LPR )) = Split((L, null),k )
13: in

14: (LL, ctree(Join(LTR ,R,h,v ),LPR ))
15: end

16: | GT→
17: if (k ≤ Largest(v )) then
18: let

19: val (vL,vR ) = SplitList(v,k )
20: in

21: (ctree(Join(L, null,h,vL ), ctree(R,vR )))
22: end

23: else

24: let

25: val ((RTL,RPL ),RR ) = Split((R, null),k )
26: in

27: (ctree(Join(L,RTL,h,v ),RPL )
28: end

29: end

30: | (T , P ) →
31: let

32: val (el , er ) = (Smallest(P ), Largest(P ))
33: in

34: if k ≤ er then
35: let

36: val (PL, PR ) = SplitChunk(P ,k )
37: in

38: (ctree(null, PL ), (T , PR ))
39: end

40: else

41: let

42: val ((TL, _),CR ) = Split(T , null)
43: in

44: (ctree(TL, P ),CR )
45: end

46: end

47: end
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Otherwise, if C has a tree but not a pre�x (Line 4), the algorithm proceeds into the
recursive case which splits a tree. It �rst exposes T (Line 6), binding h to the head at the
root of the tree, v to the head’s tail, and L and R to its left and right subtrees, respectively.
The algorithm then compares k to the head, h. There are three cases. If k is equal to h (the
EQ case on Line 9), the algorithm returns a C-tree constructed from L and a null pre�x
as the left C-tree, and (R,v ) as the right C-tree, since all elements in v are strictly greater
than h. Otherwise, if k is less than h (the LT case on Line 10), the algorithm recursively
splits the C-tree formed by the left tree with a null pre�x, binding LL as the left C-tree
from the recursive call, and (LTR,LTP ) as the right tree and pre�x from the recursive call.
It returns LL as the left C-tree. The right C-tree is formed by joining LTR with the right
subtree (R), with h and v as the head and pre�x, and taking the pre�x as LTP . The last
case, when k is greater than h (the GT case on Line 16) is more complicated since k can
split v , h’s tail. The algorithm checks if k splits v (the case k ≤ Largest(v ) on Line 17),
and if so calls SplitList on v based on k (Line 19) to produce vL and vR . The algorithm
returns a C-tree constructed from L joined with h, and vL as h’s tail as the left C-tree, and
a C-tree containing R and vR as the pre�x as the right C-tree. Finally, if k > Largest(v ),
the algorithm recursively splits R, which is handled similarly to the case where it splits L.

The last case is ifC has a non-null pre�x, P . In this case, the algorithm tries to split the
pre�x, and recurses on the tree if the pre�x was unsuccessfully split. The algorithm �rst
binds el and er to the smallest and largest elements in P . It then checks whether k ≤ er . If
so, then it splits P based on k to produce PL and PR , which contain elements less than and
greater than k , respectively. It then returns a C-tree containing an empty tree and PL as
the left C-tree, and T and PR as the right C-tree. Otherwise, P is not split, but the tree, T
may be, and so the algorithm recursively splitsT by supplying theC-tree (T , null) to Split.
Since T has an empty pre�x, splitting T cannot output a left C-tree with a non-empty
pre�x. We return the recursive result, with P included as the left C-tree’s pre�x.

9.5 Parallel Cost Bounds

Building. Building (Build(S, fV )) a C-tree can be done in O (n lgn) work and O (b lgn)
depth whp for a sequence of length n. Building a C-tree can be done in O (n) work and
O (b lgn) depth whp for a sorted sequence of length n.
Searching. Searching (Find(T , e )) for an element e in a C-tree can be implemented in
O (b lgn) work and depth whp, and O (b + lgn) work and depth in expectation.
Mapping. Mapping (Map(T , f )) over aC-tree containing n elements with a constant-work
function f can be done in O (n) work and O (b lgn) depth whp.
Batch Updates. Batch updates (MultiInsert(T , f , S) and MultiDelete(T , S)) can be
performed in O (b2(k lg((n/k ) + 1))) expected work and O (b lgk lgn) depth whp, where



242 Compressed Purely-Functional Trees

k = min( |T |, |S |) and n = max( |T |, |S |).

Theorem 18. Split(T ,k ) performs O (b lgn) work and depth whp for a C-tree T with n
elements. The result holds for all balancing schemes described in [63].

Proof Sketch. As Split is a sequential algorithm, the depth is equal to the work. We
observe that the Split algorithm performs O (1) work at each internal node except in a
case where the recursion stops due to the split element, k , lying between Leftmost(P )
and Rightmost(P ) (line 6), or before Rightmost(v ) (line 15). Naively checking whether
k lies before Rightmost(v ) for each tail, v , on a root-to-leaf path could make us perform
ω (b lgn) work, but recall that we can store Rightmost(P ) at the start of P to make the
check run in O (1) work. Therefore, the algorithm performs O (1) work for each internal
node.

If the C-tree is represented using a weight-balanced tree, AVL tree, red-black tree, or
treap then its height will be O (lgn) (whp for a treap). In the worst-case, the algorithm
must recurse until a leaf, and split the tail at the leaf, which has size O (b lgn) whp by
Lemma 15. Therefore the work and depth of Split is O (b lgn) whp. The correctness proof
follows by induction and case analysis. �

Theorem 19. For two C-trees T1 and T2, the Union algorithm runs in O (b2(k lg((n/k ) +
1))) work in expectation and O (b lgk lgn) depth whp, where k = min( |T1 |, |T2 |) and n =
max( |T1 |, |T2 |).

Proof sketch. The extra work performed in our algorithm is due to splitting and unioning
tails at each recursive call, and the work performed in UnionBC. Using the fact that the
expected size of each tail is O (b) we can modify the proof of the work of Union given in
Theorem 6 in [63] to bound our work. In particular, we perform O (b) work in expectation
for each node with non-zero splitting cost which pays at least 1 unit of cost in the proof
in [63]. To account for the work of the UnionBC, observe that the dominant cost in
the algorithm are the calls to Find on Line 6. Also notice that calls operate on a tree, T ,
generated by a Split from the parent of this call, and the work of this step isO (b (b+ lg |T |))
in expectation. We can therefore bound this work by charging each call to UnionBC to
the Split call that generated it and applying linearity of expectations over all calls to
UnionBC. As we already pay O (b lg |T |) for the call to Split in the proof from [63] the
overall work is a�ected by an extra factor b2, resulting in the stated work bound. Note
that for b = O (1) the work is a�ected by a constant factor in expectation.

To bound the depth, observe that the depth of the call-tree (including the depth of splits)
can be bounded as O (b lgn lgk ) using the recurrence as Theorem 8 in [63]. Furthermore,
the depth due to splitting tails in recursive calls of Union is O (b lgn) whp per level, which
is the same as the depth due to a call to Split, and does not therefore increase the depth.
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Finally, although UnionBC can potentially have O ((lgb + lg lgn) lgk ) depth due to the
MultiInsert, UnionBC only appears as a leaf in the call-tree, and so its contribution to
the depth is additive. Thus the overall depth is O (b lgn lgk ) whp. �

Intersection and Di�erence. Lastly, for Intersection and Difference, we note that
the main di�erence between Union and Intersection and Difference is that they may
require removing the split key (which is always maintained and joined with using Join in
Union). The only extra work is an implementation of Join2 over C-trees which is similar
to Join except it does not take a key in the middle (see [63] for details on Join2).

9.6 Discussion

In this chapter, we have presented a compressed purely-functional balanced tree data
structure called a C-tree, and designed e�cient parallel batch update algorithms the
structure. We have also compared the structure to existing tree data structures, and
provided some intuition explaining our design. For future work, it would be interesting
to understand whether the dependence on b in the bounds for the data structure can be
improved, and also whether one can show lower bounds for batch updates to compressed
purely-functional trees in a realistic machine model such as the pointer-machine [49].
Finally, it would be interesting to design a similar data structure that provides deterministic
bounds on its operations.
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Aspen: A Graph-Streaming Framework

This chapter of the thesis presents Aspen, a low-latency graph-streaming framework
extending the Ligra interface with operations for updating graphs. In Section 10.1, we
�rst introduce a new purely-functional graph representation based on nested purely-
functional trees or C-trees, and discuss how various update operations can be e�ciently
supported using this representation. In Section 10.2, we then describe several optimizations
that enable fast parallel graph processing over graphs stored in this format. Finally, in
Sectionsec:aspen we present the Aspen graph processing framework. We end the chapter
with a detailed performance evaluation of our implementation, as well as a discussion
of how the C-tree based representation enables lower memory usage, showing that we
can represent massive real-world graphs in this format using only a few bytes per edge
(Section 10.4).

10.1 Representing Graphs as Trees

An undirected graph can be represented using purely functional tree-based data structures
by representing the set of vertices as a tree, which we call the vertex-tree. Each vertex
in the vertex-tree represents its adjacency information by storing a tree of identi�ers of
its adjacent neighbors, which we call the edge-tree. Directed graphs can be represented
in the same way by simply storing two edge-trees per vertex, one for the out-neighbors,
and one for the in-neighbors. The resulting graph data structure is a tree-of-trees that has
O (lgn) overall depth using any balanced tree implementation (whp using a treap).

Figure 10.1 illustrates the vertex-tree and the edge-trees for an example graph (sub�gure
(a)). Sub�gure (b) illustrates how the graph is represented using simple trees for both the
vertex-tree and edge-tree. Sub�gure (c) illustrates using a simple tree for the vertex-tree
and a C-tree for the edge-tree.

We augment the vertex-tree to store the number of edges contained in its subtrees,
which is needed to compute the total number of edges in the graph inO (1) work. Weighted
graphs can be represented using the same structure, with the only di�erence being that
the elements in the edge-trees are modi�ed to store an associated edge weight. Note
that computing associative functions over the weights (e.g., aggregating the sum of all
edge-weights) could be easily done by augmenting the edge and vertex-trees. We also note
that the vertex-tree could also be compressed using a C-tree but defer evaluating this idea
for future work.
Basic Graph Operations. We can compute the number of vertices and number of edges
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Figure 10.1: We illustrate how the graph (shown in sub�gure (a)) is represented as a simple tree
of trees (sub�gure (b)) and as a tree of C-trees (sub�gure (c)). As in Figure 9.1, we color elements
(in this case vertex IDs) that are sampled as heads yellow. The pre�x and tree in each C-tree are
drawn as a tuple, following the datatype de�nition in Figure 9.1.

in the graph by querying the size (number of keys) in the vertex-tree and the augmented
value of the vertex-tree respectively, which can both be done in O (1) work. Finding a
particular vertex just searches the vertex-tree, which takes O (lgn) work and depth.
edgeMap. We implement edgeMap (de�ned in Chapter 2) by mapping over the vertices
in the input vertexSubsetU in parallel and for each vertex u ∈ U searching the vertex-tree
for its edge-tree, and then mapping over u’s incident neighbors, again in parallel. For each
of u’s neighbors v , we apply the map function F (u,v ) if the �lter function C (v ) returns
true. Other than �nding vertices in the input vertexSubset in G and traversing edges via
the tree instead of an array, the implementation is e�ectively the same as in Ligra [319].
The direction optimization [44, 319] can also be implemented, and we describe more details
later in this section. Assuming the functions F and C take constant work, EdgeMap takes
O (

∑
u∈U deg(u) + |U | lgn) work and O (lgn) depth.

Batch Updates. Inserting and deleting edges are de�ned similarly, and so we only provide
details for InsertEdges. Note that updates (e.g., to the weight) of existing edges can be
done within this interface. Let A be the sequence (batch) of edge updates and let k = |A|.

We �rst sort the batch of edge pairs using a comparison sort. Next, we compute an
array of source vertex IDs that are being updated and for each ID, in parallel, build a
tree over its updated edges. We can combine duplicate updates in the batch by using
the duplicate-combining function provided by the C-tree constructor. As the sequence
is sorted, the build costs O (k ) work and O (lgk ) depth. Next, in the update step, we call
MultiInsert over the vertex-tree with each (source, tree ) pair in the previous sequence.
The combine function for MultiInsert combines existing values (edge-trees) with the
new edge-trees by calling Union on the old edge-tree and new edge-tree.
Simple Work Analysis. We �rst give a simple worst-case analysis of the batch update
algorithm and show that the algorithm performs O (k lgn) expected work overall, and has
O (lg3 n) depth whp. All steps before the MultiInsert cost O (k lgk ) work, and O (lgk )
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depth in total, as they sort and apply parallel sequence operations to sequences of length
k [188]. As the depth of both the vertex-tree and edge-tree is O (lgn), the overall work
of updating both the vertex-tree and each a�ected edge-tree can be upper bounded by
O (k lgn). The depth of MultiInsert isO (lgn(lgm+DUnion)), where DUnion) is the depth
of union. This quantity simpli�es to O (lg3 n) by upper-bounding DUnion on any two trees
as O (lg2 n).

Improved Work Analysis. Here, we provide a more careful analysis showing that the
batch update algorithm described above runs in O (k lg(1 +max(m,n)/k )) expected work
and O (lg3 n) depth whp for k edge updates. First, assume that the k updates are sorted
(otherwise, they can be sorted within the required bounds using a parallel radix sort). The
cost to perform a MultiInsert to update and insert vertices in the vertex-tree depends
on the number of distinct vertices being updated by the k updates, which can range
anywhere between [1,min(k,n)]. Let the number of vertices updated be k′. The cost of
this MultiInsert is O (k′ lg(1+n/k )), which is maximized for k′ = k since this function is
strictly increasing (see Lemma 6 from Section 8.2).

Next, we must bound the cost of applying the updates to each edge-tree. Without loss
of generality, the updates are insertions. Constructing C-trees for the new updates to each
updated vertex can be done in O (k ) work and O (lgk ) depth overall. The remaining cost
comes from applying Union over the old trees and the newly constructed trees. The cost
of this step depends again on how the updates are distributed, and the sizes of the trees
the updates are being applied to. Notice that the total size of the trees being updated is m.
Speci�cally, we are distributing k updates into a set of k′ trees that contain a total of m
elements. If the i’th tree has sizeTi and receives ki elements, the overall cost of this step is:

k ′∑
i=1

ki lg(1 + Si/ki )

where
∑k ′

i=1 Si ≤ m and
∑k ′

i=1 ki = k . By Lemma 4 from Section 8.2, the total cost of this
step is O (k lg(1+m/k )). ForC-trees this bound holds in expectation, but note that it holds
deterministically for deterministic purely-functional trees such as weight-balanced trees,
at the expense of losing compression. The depth analysis is identical to the simple analysis
shown above. Thus, for any constant b, we have the following theorem.

Theorem 20. Our nested purely-functional graph representation based on C-trees supports
k insertions or deletions of edges in O (k lg(1 + max(m,n)/k )) expected work and O (lg3 n)
depth whp.
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10.2 E�ciently Implementing Graph Algorithms

We now address how to e�ciently implement graph algorithms using a tree of C-trees,
mitigating the increase in access times due to using trees. We �rst describe a technique for
handling the asymptotic increase in work for global graph algorithms due to using trees.
We then consider local algorithms, and argue that for many local algorithms, the extra
cost of searching the vertex-tree can be amortized. Finally, we describe how direction
optimization [44] can be easily implemented over the C-tree data structure.
Flat Snapshots. Notice that algorithms in our framework that use edgeMap incur an
extra O (K lgn) factor in their work, where K is the total number of vertices accessed by
edgeMap over the course of the algorithm. For an algorithm like breadth-�rst search,
which runs in O (m + n) work and O (D lgn) depth for a graph with diameter D using a
static-graph processing framework [117], a naive implementation using our framework
will require performing O (m + n lgn) work (the depth is the same, assuming that b is a
constant).

Instead, for global graph algorithms, which we loosely de�ne as performing Ω(n) work,
we can a�ord to take a �at snapshot of the graph, which reduces the O (K lgn) term to
O (K ). The idea of a �at snapshot is very simple—instead of accessing vertices through
the vertex-tree, and calling Find for each v supplied to edgeMap, we just precompute
the pointers to the edge-trees for all v ∈ V and store them in an array of size n. This can
be done in linear work and O (lgn) depth by traversing the vertex-tree once to fetch the
pointers. By providing this array, which we call a flat snapshot to each call to edgeMap,
we can directly access the edges tree in O (1) work and reduce the work of edgeMap on a
vertexSubset,U , to O (

∑
u∈U deg(u) + |U |). In practice, using a �at snapshot speeds up BFS

queries on our input graphs by an average of 1.26x (see Table 10.7).
Local Algorithms. In the case of local graph algorithms, we often cannot a�ord to create
a �at snapshot without a signi�cant increase in the work. We observe, however, that after
retrieving a vertex many local algorithms will process all edges incident to it. Because
the average degree in real-world graphs is often in the same range or larger than lgn
(see Table 10.1), the logarithmic overhead of accessing a vertex in the vertex-tree in these
graphs can be amortized against the cost of processing the edges incident to the vertex, on
average.
DirectionOptimization. Direction optimization is a technique �rst described for breadth-
�rst search in Beamer et al. [44], and later generalized as part of Ligra in its edgeMap
implementation [319]. It combines a sparse traversal, which applies the F function in
edgeMap to the outgoing neighbors of the input vertexSubsetU , with a dense traversal,
which applies F to the incoming neighborsu of all verticesv in the graph whereC (v ) = true

andu ∈ U . The dense traversal improves locality for large input vertexSubsets, and reduces
edge traversals in some algorithms, such as breadth-�rst search. The traversal mode on
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each iteration is selected based on the size of U and its out-degrees. We implemented the
optimization by implementing a sparse traversal and a dense traversal that traverses the
underlying C-trees.

10.3 Aspen Graph-Streaming Framework

Interface Overview. In this section, we outline the Aspen interface and implementation
for processing streaming graphs. The Aspen interface is an extension of Ligra’s interface. It
includes the full Ligra interface—vertexSubsets, edgeMap, and various other functionality
on a �xed graph. On top of Ligra, we add a set of functions for updating the graph—in
particular, for inserting or deleting sets of edges or sets of vertices. We also add a �at-
snapshot function. Aspen currently does not support weighted edges, but we plan to add
this functionality using a similar compression scheme for weights as used in Ligra+ in
the future. All of the functions for processing and updating the graph work on a �xed

and immutable version (snapshot) of the graph. The updates are functional, and therefore
instead of mutating the version, return a handle to a new graph. The implementation of
these operations follow the description given in the previous sections.

The Aspen interface supports three functions, acqire, set, and release, for acquiring
the current version of a graph, setting a new version, and releasing a the version. The
interface is based on the recently de�ned version maintenance problem and implemented
with the corresponding lock-free algorithm to solve it [52]. release returns whether it is
the last copy on that version, and if so we garbage collect it. The three functions each act
atomically. The framework allows any number of concurrent readers (i.e., transactions
that acqire and release but do not set) and a single writer (acqires, sets, and then
releases). Multiple concurrent readers can acquire the same version, or di�erent versions
depending on how the writer is interleaved with them. The implementation of this interface
is non-trivial due to race conditions between the three operations. Importantly, however,
no reader or writer is ever blocked or delayed by other readers or writers. The Aspen
implementation guarantees strict serializability, which means that the state of the graph
and outputs of queries are consistent with some serial execution of the updates and queries
corresponding to real time.

10.3.1 Aspen Interface

We start by de�ning a few types used by the interface. A versioned_graph is a data type
that represents multiple snapshots of an evolving graph. A version is a purely-functional
snapshot of a versioned_graph. A T seq is a sequence of values of type T. Finally, a vertex

is a purely-functional vertex contained in some version.
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Building and Update Primitives. The main functions in our interface are a method
to construct the initial graph, methods to acquire and release versions, and methods to
modify a graph. The remaining functions in the interface are for traversing and analyzing
versions and are similar to the Ligra interface. Aspen’s functions are listed below:
BuildGraph(n : int,m : int,

S : int seq seq) : versioned_graph
Creates a versioned graph containing n vertices andm edges. The edges incident to the
i’th vertex are given by S[i].
acqire() : (VG : versioned_graph) : version
Returns a valid version of a versioned_graph VG. Note that this version will be persisted
until the user calls release.
release() : (VG : versioned_graph, G : version)
Releases a version of a versioned_graph VG.
InsertEdges() : (VG : versioned_graph, E′: int × int seq)
Updates the latest version of the graph, G = (V ,E), by inserting the edges in E′ into G.
Makes a new version of the graph equal to G[E ∪ E′] visible to readers.
DeleteEdges() : (VG : versioned_graph, E′: int × int seq)
Updates the latest version of the graph, G = (V ,E), by deleting the edges in E′ from G.
Singleton vertices (those with degree 0 in the new version of the graph) can be optionally
removed. Makes a new version of the graph equal to G[E \ E′] visible to readers.
InsertVertices() : (VG : versioned_graph, V ′: int seq)
Updates the latest version of the graph, G = (V ,E), by inserting the vertices in V ′ into G.
Makes a new version of the graph equal to G[V ∪V ′] visible to readers.
DeleteVertices() : (VG : versioned_graph, V ′: int seq)
Updates the latest version of the graph, G = (V ,E), by deleting the vertices in V ′ from G.
Makes a new version of the graph equal to G[V \V ′] visible to readers.

Our framework also supports similarly-de�ned primitives for updating values asso-
ciated with edges (e.g., edge weights) and updating values associated with vertices (e.g.,
vertex weights). The interface is similar to the basic primitives for updating edges and
vertices.
Access Primitives. The functions for accessing a graph are de�ned similarly to Ligra.
For completeness, we list them below. We also provide primitives over the vertex object,
such as Degree, Map, and Intersection.
NumVertices (NumEdges)() : (G : version) : int
Returns the number of vertices (edges) in the graph.
FindVertex() : (G : version, v : int) : {vertex ∪ �}
Returns either the vertex corresponding to the vertex identi�er v , or � if v is not present
in G.
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Graph Num. Vertices Num. Edges Avg. Deg.

LiveJournal 4,847,571 85,702,474 17.8
com-Orkut 3,072,627 234,370,166 76.2
Twitter 41,652,231 2,405,026,092 57.7
ClueWeb 978,408,098 74,744,358,622 76.4
Hyperlink2014 1,724,573,718 124,141,874,032 72.0
Hyperlink2012 3,563,602,789 225,840,663,232 63.3

Table 10.1: Statistics about our input graphs.

edgeMap() : (G : version, U : vertexSubset, F : int × int → bool, C: int → bool) :
vertexSubset
Given a vertexSubset U , returns a vertexSubset U ′ containing all v such that (u,v ) ∈ E
for u ∈ U and C (v ) = true and F (u,v ) = true.

10.3.2 Implementation

Aspen is implemented in C++ and uses PAM [340] as the underlying purely-functional
tree data structure for storing the heads. Our C-tree implementation requires about 1400
lines of C++, most of which are for implementing Union, Difference, and Intersect.
Our graph data structure uses an augmented purely-functional tree from PAM to store the
vertex-tree. Each node in the vertex tree stores an integerC-tree storing the edges incident
to each vertex as its value. We note that the vertex-tree could also be compressed using
a C-tree, but we did not explore this direction in the present work. To handle memory
management, our implementations use a parallel reference counting garbage collector
along with a custom pool-based memory allocator. The pool-allocation is critical for
achieving good performance due to the large number of small memory allocations in the
the functional setting. Although C++ might seem like an odd choice for implementing
a functional interface, it allows us to easily integrate with PAM and Ligra. We also note
that although our graph interface is purely-functional (immutable), our global and local
graph algorithms are not. They can mutate local state within their transaction, but can
only access the shared graph through an immutable interface.

10.4 Experiments

Algorithms. We implemented �ve algorithms in Aspen, consisting of three global algo-
rithms and two local algorithms. Our global algorithms are breadth-�rst search (BFS),
single-source betweenness centrality (BC), and maximal independent set (MIS). Our BC
implementation computes the contributions to betweenness scores for shortest paths
emanating from a single vertex. The algorithms are similar to the algorithms in [117] and
required only minor changes to acquire a �at snapshot and include it as an argument to
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Graph Flat Snap. Aspen Uncomp. Aspen (No DE) Aspen (DE) Savings

LiveJournal 0.0722 2.77 0.748 0.582 4.75x
com-Orkut 0.0457 7.12 1.47 0.893 7.98x
Twitter 0.620 73.5 15.6 9.42 7.80x
ClueWeb 14.5 2271 468 200 11.3x
Hyperlink2014 25.6 3776 782 363 10.4x
Hyperlink2012 53.1 6889 1449 702 9.81x

Table 10.2: Statistics about the memory usage using di�erent formats in Aspen. Flat Snap. shows
the amount of memory in GBs required to represent a �at snapshot of the graph. Aspen Uncomp.,
Aspen (No DE), and Aspen (DE) show the amount of memory in GBs required to represent the
graph using uncompressed trees, Aspen without di�erence encoding of chunks, and Aspen with
di�erence encoding of chunks, respectively. Savings shows the factor of memory saved by using
Aspen (DE) over the uncompressed representation.

edgeMap. As argued in Section 10.2, the cost of creating the snapshot does not asymp-
totically a�ect the work or depth of our implementations. The work and depth of our
implementations of BFS, BC, and MIS are identical to the implementations in [117]. Our
local algorithms are 2-hop and Local-Cluster. 2-hop computes the set of vertices that are
at most 2 hops away from the vertex using edgeMap. The worst-case work isO (m+n lgn)
and the depth is O (lgn). Local-Cluster is a sequential implementation of the Nibble-Serial
graph clustering algorithm (see [325, 335]), run using ϵ = 10−6 and T = 10.

In our experiments, we run the global queries one at a time due to their large memory
usage and signi�cant internal parallelism, and run the local queries concurrently (many at
the same time).
Experimental Setup. Our experiments are performed on a 72-core Dell PowerEdge R930
(with two-way hyper-threading) with 4× 2.4GHz Intel 18-core E7-8867 v4 Xeon processors
(with a 4800MHz bus and 45MB L3 cache) and 1TB of main memory. Our programs use a
work-stealing scheduler that we implemented. The scheduler is implemented similarly
to Cilk for parallelism. Our programs are compiled with the g++ compiler (version 7.3.0)
with the -O3 �ag. All experiments involving balanced-binary trees use weight-balanced
trees as the underlying balanced tree implementation [63, 340]. We use Aspen to refer to
the system usingC-trees and di�erence encoding within each chunk and explicitly specify
other con�gurations of the system if necessary.
Graph Data. Table 10.1 lists the graphs we use. LiveJournal is a directed graph of the
LiveJournal social network [81]. com-Orkut is an undirected graph of the Orkut social
network. Twi�er is a directed graph of the Twitter network, where edges represent the
follower relationship [208]. ClueWeb is a Web graph from the Lemur project at CMU [81].
Hyperlink2012 and Hyperlink2014 are directed hyperlink graphs obtained from the
WebDataCommons dataset where nodes represent web pages [241]. Hyperlink2012 is the
largest publicly-available graph, and we show that Aspen is able to process it on a single
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Application LiveJournal com-Orkut Twitter
(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

BFS 0.981 0.021 46.7 0.690 0.015 46.0 7.26 0.138 52.6
BC 4.66 0.075 62.1 4.58 0.078 58.7 81.2 1.18 68.8
MIS 3.38 0.054 62.5 4.19 0.069 60.7 71.5 0.99 72.2

2-hop 4.36e-3 1.06e-4 41.1 2.95e-3 6.82e-5 43.2 0.036 8.70e-4 41.3
Local-Cluster 0.075 1.64e-3 45.7 0.122 2.50e-3 48.8 0.127 2.59e-3 49.0

Table 10.3: Running times (in seconds) of algorithms in Aspen for symmetric graph inputs where
(1) is the single threaded time (72h) is the 72-core time (with hyper-threading, i.e., 144 threads),
and (SU) is the self-relative speedup.

multicore machine. We symmetrized the graphs in our experiments, as the running times
for queries like BFS and BC are more consistent on undirected graphs due to the majority
of vertices being in a single large component.
Overview of Results. We show the following experimental results in this section.
• The most memory-e�cient representation of C-trees saves between 4–11x memory over

using uncompressed trees, and improves performance by 2.5–2.8x compared to using
uncompressed trees (Section 10.4.1).

• Algorithms implemented using Aspen are scalable, achieving between 32–78x speedup
across inputs (Section 10.4.2).

• Updates and queries can be run concurrently in Aspen with only a slight increase in
latency (Section 10.4.3).

• Parallel batch updates in Aspen are e�cient, achieving between 105–442M updates/sec
for large batches (Section 10.4.4).

• Aspen outperforms Stinger by 1.8–10.2x while using 8.5–11.4x less memory (Section 10.4.5).
• Aspen outperforms LLAMA by 2.8–7.8x while using 1.9–3.5x less memory (Section 10.4.6).
• Aspen is competitive with state-of-the-art static graph processing systems, ranging from

being 1.4x slower to 30x faster (Section 10.4.7).

10.4.1 Chunking and Compression in Aspen

Memory Usage. Table 10.2 shows the amount of memory required to represent real-
world graphs in Aspen without compression, using C-trees, and �nally using C-trees with
di�erence encoding. In the uncompressed representation, the size of a vertex-tree node is
48 bytes, and the size of an edge-tree node is 32 bytes. On the other hand, in the compressed
representation, the size of a vertex-tree node is 56 bytes (due to padding and extra pointers
for the pre�x) and the size of an edge-tree node is 48 bytes. We calculated the memory
footprint of graphs that require more than 1TB of memory in the uncompressed format by
hand, using the sizes of nodes in the uncompressed format.
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Application ClueWeb Hyperlink2014 Hyperlink2012
(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

BFS 186 3.69 50.4 362 6.19 58.4 1001 14.1 70.9
BC 1111 21.8 50.9 1725 24.5 70.4 4581 58.1 78.8
MIS 955 12.1 78.9 1622 22.2 73.0 3923 50.8 77.2

2-hop 0.883 0.021 42.0 1.61 0.038 42.3 3.24 0.0755 42.9
Local-Cluster 0.016 4.45e-4 35.9 0.022 6.75e-4 32.5 0.028 6.82e-4 41.0

Table 10.4: Running times (in seconds) of our algorithms over symmetric graph inputs where (1)

is the single threaded time (72h) is the 72-core time (with hyper-threading, i.e., 144 threads), and
(SU) is the self-relative speedup.

We observe that by usingC-trees and di�erence encoding to represent the edge trees, we
reduce the memory footprint of the dynamic graph representation by 4.7–11.3x compared to
the uncompressed format. Using di�erence encoding provides between 1.2–2.3x reduction
in memory usage compared to storing the chunks in an uncompressed format. We observe
that both using C-trees and compressing within the chunks is crucial for storing and
processing our largest graphs in a reasonable amount of memory.

Application Graph Aspen Uncomp. Aspen (S)

BFS
LiveJournal 0.055 0.021 2.6x
com-Orkut 0.042 0.015 2.8x
Twitter 0.348 0.138 2.5x

Table 10.5: Aspen Uncomp. is the parallel time using Aspen with uncompressed trees, and
Aspen is the parallel time of Aspen with C-trees and di�erence encoding. (S) is the speedup
obtained by Aspen over the uncompressed format. All times are measured on 72 cores using
hyper-threading.

Comparisonwith Uncompressed Trees. Next, we study the performance improvement
gained by the improved locality of theC-tree data structure. Due to the memory overheads
of representing large graphs using the uncompressed format (see Table 10.2), we are only
able to report results for our three smallest graphs, LiveJournal, com-Orkut, and Twitter,
as we cannot store the larger graphs even with 1TB of RAM in the uncompressed format.
We ran BFS on both the uncompressed andC-tree formats (using di�erence encoding) and
show the results in Table 10.5. The results show that using the compressed representation
improves the running times of these applications from between 2.5–2.8x across these
graphs.
Choice of Chunk Size. Next, we consider how Aspen performs as a function of the
expected chunk size, b. Table 10.6 reports the amount of memory used, and the BFS, BC,
and MIS running times as a function of b. In the rest of the paper, we �xed b = 28, which
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b (Exp. Chunk Size) Memory BFS (72h) BC (72h) MIS (72h)

21 68.83 0.309 2.72 2.17
22 41.72 0.245 2.09 1.71
23 26.0 0.217 1.68 1.41
24 17.7 0.172 1.45 1.24
25 13.3 0.162 1.32 1.14
26 11.1 0.152 1.25 1.07
27 9.97 0.142 1.22 1.01
28 9.42 0.138 1.18 0.99
29 9.17 0.141 1.20 0.99
210 9.03 0.152 1.19 0.98
211 8.96 0.163 1.20 0.98
212 8.89 0.170 1.21 0.98

Table 10.6: Memory usage (gigabytes) and performance (seconds) for the Twitter graph as a
function of the (expected) chunk size. All times are measured on 72 cores using hyper-threading.
Bold-text marks the best value in each column. We use 28 in the other experiments.

.

we found gave the best tradeo� between the amount of memory consumed (it requires
5% more memory than the most memory-e�cient con�guration) while enabling good
parallelism across di�erent applications.

10.4.2 Parallel Scalability of Aspen

Algorithm Performance. Tables 10.3 and 10.4 report experimental results including the
single-threaded time and 72-core time (with hyper-threading) for Aspen using compressed
C-trees. For BFS, we achieve between 46–70x speedup across all inputs. For BC, our
implementations achieve between 50–78x speedup across all inputs. Finally, for MIS,
our implementations achieve between 60x–78x speedup across all inputs. We observe
that the experiments in [117] report similar speedups for the same graphs. For local
algorithms, we report the average running time for performing 2048 queries sequentially
and in parallel. We achieve between 41–43x speedup for 2-hop, and between 35–49x
speedup for Local-Cluster.

Flat Snapshots. Table 10.7 shows the running times of BFS with and without the use of a
�at snapshot. Our BFS implementation is between 1.12–1.34x faster using a �at snapshot,
including the time to compute a �at snapshot. The table also reports the time to acquire
a �at snapshot, which is between 15–24% of the overall BFS time across all graphs. We
observe that acquiring a �at snapshot is already an improvement for a single run of an
algorithm, and quickly becomes more pro�table as multiple algorithms are run over a
single snapshot of the graph (e.g., multiple BFS’s or betweenness centrality computations).
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Graph Without FS With FS Speedup FS Time

LiveJournal 0.028 0.021 1.33 3.8e-3
com-Orkut 0.018 0.015 1.12 2.3e-3
Twitter 0.184 0.138 1.33 0.034
ClueWeb 4.98 3.69 1.34 0.779
Hyperlink2014 7.51 6.19 1.21 1.45
Hyperlink2012 18.3 14.1 1.29 3.03

Table 10.7: 72-core with hyper-threading running times (in seconds) comparing the performance
of BFS without �at snapshots (Without FS) and with �at snapshots (With FS), as well as the
running time for computing the �at snapshot (FS Time).

Graph Update Query (BFS)

Edges/sec Latency Latency (C) Latency (I)

LiveJournal 7.86e4 1.27e-5 0.0190 0.0185
com-Orkut 6.02e4 1.66e-5 0.0179 0.0176
Twitter 4.44e4 1.73e-5 0.155 0.155
ClueWeb 2.06e4 4.83e-5 4.83 4.82
Hyperlink2014 1.42e4 7.04e-5 6.17 6.15
Hyperlink2012 1.16e4 8.57e-5 15.8 15.5

Table 10.8: Throughput and average latency achieved by Aspen when concurrently processing a
sequential stream of edge updates along with a sequential stream of breadth-�rst search queries
(each BFS is internally parallel). Latency (C) reports the average latency of the query when running
the updates and queries concurrently, while Latency (I) reports the average latency when running
queries in isolation on the modi�ed graph.

10.4.3 Simultaneous Updates and �eries

In this sub-section, we experimentally verify that Aspen can support low-latency queries
and updates running concurrently. In these experiments, we generate an update stream by
randomly sampling 2 million edges from the input graph to use as updates. We sub-sample
90% of the sample to use as edge insertions, and immediately delete them from the input
graph. The remaining 10% are kept in the graph, as we will delete them over the course
of the update stream. The update stream is a random permutation of these insertions
and deletions. We believe that sampling edges from the input graph better preserves
the properties of the graph and ensures that edge deletions perform non-trivial work,
compared to using random edge updates.

After constructing the update stream, we spawn two parallel jobs, one which performs
the updates sequentially and one which performs global queries. We maintain the undi-
rectedness of the graph by inserting each edge as two directed edge updates, within a
single batch. For global queries, we run a stream of BFS’s from random sources one after
the other and measure the average latency. We note that for the BFS queries, as our inputs
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are symmetrized, a random vertex is likely to fall in the giant connected component which
exists in all of our input graphs. The global queries therefore process nearly all of the
vertices and edges.

Table 10.8 shows the throughput in terms of directed edge updates per second, the
average latency to make an undirected edge visible, and the latency of global queries
both when running concurrently with updates and when running in isolation. We note
that when running global queries in isolation, we use all of the threads in the system
(72-cores with hyper-threading). We observe that our data structure achieves between
22–157 thousand directed edge updates per second, which is achieved while concurrently
running a parallel query on all remaining threads. We obtain higher update rates on
smaller graphs, where the small size of the graph enables it to utilize the caches better. In
all cases, the average latency for making an edge visible is at most 86 microseconds, and is
as low as 12.7 microseconds on the smallest graph.

The last two columns in Table 10.8 show the average latency of BFS queries from
random sources when running queries concurrently with updates, and when running
queries in isolation. We see that the performance impact of running updates concurrently
with queries is less than 3%, which could be due to having one fewer thread. We ran a
similar experiment, where we ran updates on 1 core and ran multiple concurrent local
queries (Local-Cluster) on the remaining cores, and found that the di�erence in average
query times is even lower than for BFS.

10.4.4 Performance of Batch Updates

In this sub-section, we show that the batch versions of our primitives achieve high
throughput when updating the graph, even on very large graphs and for very large
batches. As there are insu�cient edges on our smaller graphs for applying the method-
ology from Section 10.4.3, we sample directed edges from an rMAT generator [95] with
a = 0.5,b = c = 0.1,d = 0.3 to perform the updates. To evaluate our performance on a
batch of size B, we generate B directed edge updates from the stream (note that there can
be duplicates), repeatedly call InsertEdges and DeleteEdges on the batch, and report
the median of three such trials. The costs that we report include the time to sort the batch
and combine duplicates.

Table 10.9 shows the throughput (the number of edges processed per second) of
performing batch edge insertions in parallel on varying batch sizes. The throughput
for edge deletions are within 10% of the edge insertion times, and are usually faster
(see Figure 10.2). The running time can be calculated by dividing the batch size by the
throughput. We illustrate the throughput obtained for both insertions and deletions in
Figure 10.2 for the largest and smallest graph, and note that the lines for other graphs
are sandwiched between these two lines. The only exception of com-Orkut, where batch
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Graph Batch Size

10 103 105 107 109 2 · 109

LiveJournal 8.26e4 2.88e6 2.29e7 1.56e8 4.13e8 4.31e8
com-Orkut 7.14e4 2.79e6 2.22e7 1.51e8 4.21e8 4.42e8
Twitter 6.32e4 2.63e6 1.23e7 5.68e7 3.04e8 3.15e8
ClueWeb 6.57e4 2.38e6 7.19e6 2.64e7 1.33e8 1.69e8
Hyperlink2014 6.17e4 2.12e6 6.66e6 2.28e7 9.90e7 1.39e8
Hyperlink2012 6.45e4 2.04e6 4.97e6 1.84e7 8.26e7 1.05e8

Table 10.9: Throughput (directed edges/second) obtained when performing parallel batch edge
insertions on di�erent graphs with varying batch sizes, where inserted edges are sampled from
an rMAT graph generator. We note that the times for batch deletions are similar to the time for
insertions. All times are on 72 cores with hyper-threading.
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Figure 10.2: Throughput (edges/sec) when performing batches of insertions (I) and deletions (D)
with varying batch sizes on Hyperlink2012 and LiveJournal in a log-log scale. All times are on 72
cores with hyper-threading.

insertions achieve about 2% higher throughput than soc-LiveJournal at the two largest
batch sizes.

We observe that Aspen’s throughput seems to vary depending on the graph size.
We achieve a maximum throughput of 442M updates per second on com-Orkut when
processing batches of 2B updates. On the other hand, on the Hyperlink2012 graph, the
largest graph that we tested on, we achieve 105M updates per second for this batch size.
We believe that the primary reason that small graphs achieve much better throughput at
the largest batch size is that nearly all of the vertices in the tree are updated for the small
graphs. In this case, due to the asymptotic work bound for the update algorithm, the work
for our updates become essentially linear in the tree size.
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Graph ST LL Ligra+ Aspen ST/Asp. LL/Asp. L+/Asp.

LiveJournal 4.98 1.12 0.246 0.582 8.55x 1.92x 0.422x
com-Orkut 10.2 3.13 0.497 0.893 11.4x 3.5x 0.55x
Twitter 81.8 31.4 5.1 9.42 8.6x 3.3x 0.54x
ClueWeb – – 100 200 – – 0.50x
Hyperlink2014 – – 184 363 – – 0.50x
Hyperlink2012 – – 351 702 – – 0.50x

Table 10.10: The �rst four columns show the memory in gigabytes required to represent the graph
using Stinger (ST), LLAMA (LL), Ligra+, and Aspen respectively. ST/A, LL/A, and L+/A is the
amount of memory used by Stinger, LLAMA, and Ligra+ divided by the memory used by Aspen
respectively. Stinger and LLAMA do not support compression and were not able to store the largest
graphs used in our experiments.

10.4.5 Comparison with Stinger

In this sub-section, we compare Aspen to Stinger [130], a state-of-the-art graph-streaming
system.
Stinger Design. Stinger’s data structure for processing streaming graphs is based on
adapting the CSR format to support dynamic updates. Instead of storing all edges of
a vertex contiguously, it chunks the edges into a number of blocks, which are chained
together as a linked list. Updates traverse the list to �nd an empty slot for a new edge, or
to determine whether an edge exists. Therefore, updates take O (deд(v )) work and depth
for a vertex v that is updated. Furthermore, updates use �ne-grained locking to perform
edge insertions, which may result in contention when updating very high degree vertices.
As Stinger does not support compressed graph inputs, we were unable to run the system
on our input graphs that are larger than Twitter.
Memory Usage. We list the sizes of the three graphs that Stinger was able to process
in Table 10.10. The Stinger interface supports a function which returns the size of its
in-memory representation in bytes, which is what we use to report the numbers in this
chapter.

We found that Stinger has a high memory usage, even in the memory-e�cient set-
tings used in our experiments. The memory usage we observed appears to be consistent
with [130], which reports that the system requires 313GB of memory to store a scale-free
(RMAT) graph with 268 million vertices and 2.15 billion edges, making the cost 145 bytes
per edge. This number is on the same order of magnitude as the numbers we report
in Table 10.10. We found that Aspen is between 8.5–11.4x more memory e�cient than
Stinger.
Batch Update Performance. We measure the batch update performance of Stinger by
using an rMAT generator provided in Stinger to generate the directed updates. We set
n = 230 for updates in the stream. The largest batch size supported by Stinger is 2M
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Batch Size Stinger Updates/sec Aspen Updates/sec

10 0.0232 431 9.74e-5 102,669
102 0.0262 3,816 2.49e-4 401,606
103 0.0363 27,548 6.98e-4 1.43M
104 0.171 58,479 2.01e-3 4.97M
105 0.497 201,207 9.53e-3 10.4M
106 3.31 302,114 0.0226 44.2M

2 · 106 6.27 318,979 0.0279 71.6M

Table 10.11: Running times and update rates (directed edges/second) for Stinger and Aspen when
performing batch edge updates on an empty graph with varying batch sizes. Inserted edges are
sampled from the RMAT graph generator. All times are on 72 cores with hyper-threading.

directed updates. The update times for Stinger were fastest when inserting into nearly-
empty graphs. For each batch size, we insert 10 batches of edges of that size into the graph,
and report the median time.

The results in Table 10.11 show the update rates for inserting directed edge updates in
Stinger and Aspen. We observe that the running time for Stinger is reasonably high, even
on very small batches, and grows linearly with the size of the batch. The Aspen update
times also grow linearly, but are very fast for small batches. Perhaps surprisingly, our
update time on a batch of 1M updates is faster than the update time of Stinger on a batch
of 10 edges.

Algorithm Performance. Lastly, we show the performance of graph algorithms imple-
mented using the Stinger data structures. We use the BFS implementation for Stinger
developed in McColl et al. [234]. We used a BC implementation that is available in the
Stinger code base. Unfortunately, this implementation is entirely sequential, and so we
compare Stinger’s BC time to our single-threaded time. Neither of the Stinger imple-
mentations perform direction-optimization, so to perform a fair comparison, we used an
implementation of BFS and BC in Aspen that disables direction-optimization. Table 10.12
shows the parallel running times of of Stinger and Aspen for these problems. For BFS,
which is run in parallel, we achieve between 6.7–10.2x speedup over Stinger. For BC,
which is run sequentially, we achieve between 1.8–4.2x speedup over Stinger. A likely
reason that Aspen’s BFS is signi�cantly faster than Stinger’s is that it can process edges
incident to high-degree vertices in parallel, whereas traversing a vertex’s neighbors in
Stinger requires sequentially traversing a linked list of blocks.

10.4.6 Comparison with LLAMA

In this sub-section, we compare Aspen to LLAMA [226], another state-of-the-art graph-
streaming system.
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App. Graph ST LL A A(1) A
†

ST/A LL/A

BFS
LiveJournal 0.478 0.161 0.047 – 0.021 10.2 3.42
com-Orkut 0.548 0.192 0.067 – 0.015 8.18 2.86
Twitter 6.99 8.09 1.03 – 0.138 6.79 7.85

BC
LiveJournal 18.7 0.408 0.105 5.45 0.075 3.43 3.88
com-Orkut 32.8 1.32 0.160 7.74 0.078 4.23 8.25
Twitter 223 53.1 3.52 122 1.18 1.82 15.1

Table 10.12: Running times (in seconds) comparing the performance of algorithms implemented
in Stinger (ST), LLAMA (LL), and Aspen. A is the parallel time using Aspen without direction-

optimization. (A(1)) is the one-thread time of Aspen, which is only relevant for comparing with
Stinger’s BC implementation. A

† is the parallel time using Aspen with direction-optimization.
(ST/A) is Aspen’s speedup over Stinger and (LL/A) is Aspen’s speedup over LLAMA.

LLAMA Design. Like Stinger, LLAMA’s streaming graph data structure is motivated by
the CSR format. However, like Aspen, LLAMA is designed for batch-processing in the
single-writer multi-reader setting and can provide serializable snapshots. In LLAMA, a
batch of size k generates a new snapshot which uses O (n) space to store a vertex array,
and O (k ) space to store edge updates in a dynamic CSR structure. The structure creates a
linked list over the edges incident to a vertex that is linked over multiple snapshots. This
design can cause the depth of iterating over the neighbors of a vertex to be large if the
edges are spread over multiple snapshots.

Unfortunately, the publicly-available code for LLAMA does not provide support for
evaluating streaming graph algorithms or batch updates. However, we we were able to
load static graphs and run several implementations of algorithms in LLAMA for which we
report times in this section. As LLAMA does not support compressed graph inputs, we
were unable to run the system on our input graphs that are larger than Twitter.
Memory Usage. Unfortunately, we were not able to get LLAMA’s internal allocator to
report correct memory usage statistics for its internal allocations. Instead, we measured
the lifetime memory usage of the process and use this as an estimate for the size of the
in-memory data structure built by LLAMA. The memory usage in bytes for the three
graphs that LLAMA was able to process is shown in Table 10.10. The cost in terms of
bytes/edge for LLAMA appears to be consistent, which matches the fact that the internal
representation is a �at CSR, since there is a single snapshot. Overall, Aspen is between
1.9–3.5x more memory e�cient than LLAMA.
AlgorithmPerformance. We measured the performance of a parallel breadth-�rst search
(BFS) and single-source betweenness centrality (BC) algorithms in LLAMA. The same
source is used for both LLAMA and Aspen for both BFS and BC. BFS and BC in LLAMA do
not use direction-optimization, and so we report our times for these algorithms without
using direction-optimization to ensure a fair comparison.
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Application LiveJournal com-Orkut Twitter
L A

A
L L A

A
L L A

A
L

BFS 0.015 0.021 1.40x 0.012 0.015 1.25x 0.081 0.138 1.70x
BC 0.052 0.075 1.44x 0.062 0.078 1.25x 0.937 1.18 1.25x
MIS 0.032 0.054 1.68x 0.044 0.069 1.56x 0.704 0.99 1.40x

2-hop 3.06e-4 3.45e-4 1.13x 2.12e-4 2.52e-4 1.18x 2.79e-3 7.79e-3 2.79x
Local-Cluster 0.031 0.058 1.87x 0.046 0.097 2.10x 0.037 0.094 2.54x

Table 10.13: Running times (in seconds) of algorithms over small symmetric graph inputs on a
72-core machine (with hyper-threading) where L is the parallel time using Ligra+, A is the parallel
time using Aspen, and A

L is the slowdown incurred by Aspen. All times are measured using 72
cores using hyper-threading.

Application ClueWeb Hyperlink2014 Hyperlink2012
textbfL A

A
L L A

A
L L A

A
L

BFS 1.68 3.69 2.19x 3.44 6.19 1.79x 8.48 14.1 1.66x
BC 14.7 21.8 1.48x 17.8 24.5 1.37x 37.1 58.1 1.56x
MIS 8.14 12.1 1.48x 14.2 22.2 1.56x 32.2 50.8 1.57x

2-hop 0.024 0.028 1.16x 0.036 0.038 1.05x 0.072 0.075 1.04x
Local-Cluster 0.013 0.020 1.53x 0.013 0.021 1.61x 0.016 0.024 1.50x

Table 10.14: Running times (in seconds) of our algorithms over large symmetric graph inputs on a
72-core machine (with hyper-threading) where L is the parallel time using Ligra+, A is the parallel
time using Aspen, and A

L is the slowdown incurred by Aspen. All times are measured using 72
cores using hyper-threading.

Table 10.12 shows the running times for BFS and BC. We achieve between 2.8–7.8x
speedup over LLAMA for BFS and between 3.8–15.1x speedup over LLAMA for BC.
LLAMA’s poor performance on these graphs, especially Twitter, is likely due to sequen-
tially exploring the out-edges of a vertex in the search, which is slow on graphs with high
degrees.

10.4.7 Static Graph Processing Systems

We compared Aspen to Ligra+, a state-of-the-art shared-memory graph processing system,
GAP, a state-of-the-art graph processing benchmark [45], and Galois, a shared-memory
parallel programming library for C++ [259].
Ligra+. Table 10.15 the parallel running times of our three global algorithms expressed
using Aspen and Ligra+. The results show that Ligra is 1.43x faster than Aspen for
global algorithms on our small inputs. We also performed a more extensive experimental
comparison between Aspen and Ligra+, comparing the parallel running times of all of
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App. Graph GAP Galois Ligra+ Aspen
GAP
A

GAL
A

L+
A

BFS
LiveJ 0.0238 0.0761 0.015 0.021 1.1x 3.6x 0.71x
Orkut 0.0180 0.0661 0.012 0.015 1.2x 4.4x 0.80x
Twitter 0.139 0.461 0.081 0.138 1.0x 3.3x 0.58x

BC
LiveJ 0.0930 – 0.052 0.075 1.24x – 0.69x
Orkut 0.107 – 0.062 0.078 1.72x – 0.79x
Twitter 2.62 – 0.937 1.18 2.22x – 0.79x

MIS
LiveJ – 1.65 0.032 0.054 – 30x 0.59x
Orkut – 1.52 0.044 0.069 – 22x 0.63x
Twitter – 8.92 0.704 0.99 – 9.0x 0.71x

Table 10.15: Running times (in seconds) comparing the performance of algorithms implemented
in GAP, Galois, Ligra+, and Aspen. GAP

A , GAL
A , and L+

A are Aspen’s speedups over GAP, Galois, and
Ligra+ respectively.

our algorithms on all of our inputs (Tables 10.13 and 10.14). Compared to Ligra+, across
all inputs, algorithms in Aspen are 1.51x slower on average (between 1.2x–1.7x) for the
global algorithms, and 1.45x slower on average (between 1.0–2.1x) for the local algorithms.
We report the local times in Tables 10.13 and 10.14. The local algorithms have a modest
slowdown compared to their Ligra+ counterparts, due to logarithmic work vertex accesses
being amortized against the relative high average degrees (see Table 10.1).

GAP. Table 10.15 shows the parallel running times of the BFS and BC implementations from
GAP. On average, our implementations in Aspen are 1.4x faster than the implementations
from GAP over all problems and graphs. We note that the code in GAP has been hand-
optimized using OpenMP scheduling primitives. As a result, the GAP code is signi�cantly
more complex than our code, which only uses the high-level primitives de�ned by Ligra+.

Galois. Table 10.15 shows the running times of using Galois, a shared-memory parallel
programming library that provides support for graph processing [259]. Galois’ algorithms
(e.g., for BFS and MIS) come with several versions. In our experiments, we tried all versions
of their algorithms, and report times for the fastest one. On average, our implementations
in Aspen are 12x faster than Galois. For BFS, Aspen is between 3.3–4.4x faster than Galois.
We note that the Galois BFS implementation is synchronous, and does not appear to use
Beamer’s direction-optimization. We omit BC as we were not able to obtain reasonable
numbers on our inputs using their publicly-available code (the numbers we obtained were
much worse than the ones reported in [259]). For MIS, our implementations are between
9–30x faster than Galois.
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10.5 Related Work

We have mentioned some other schemes for chunking in Section 9.2.3. Although we use
functional trees to support snapshots, many other systems for supporting persistence and
snapshots use version lists [46, 286, 127]. The idea is for each mutable value or pointer to
keep a timestamped list of versions, and reading a structure to go through the list to �nd
the right one (typically the most current is kept �rst). LLAMA [226] uses a variation of
this idea. However, it seems challenging to achieve the low space that we achieve using
such systems since the space for such a list is large.

10.5.1 Graph Processing Frameworks

Many processing frameworks have been designed to process static graphs (e.g. [111, 281,
269, 363, 229, 154, 223, 259, 319], among many others). We refer the reader to [235, 377]
for surveys of existing frameworks. Similar to Ligra+ [322], Log(Graph) [56] supports
running parallel algorithms on compressed graphs. Their experiments show that they have
a moderate performance slowdown on real-world graphs, but sometimes get improved
performance on synthetic graphs [56].

Existing dynamic graph streaming frameworks can be divided into two categories
based on their approach to ingesting updates. The �rst category processes updates and
queries in phases, i.e., updates wait for queries to �nish before updating the graph, and
queries wait for updates to �nish before viewing the graph. Most existing systems take
this approach, as it allows updates to mutate the underlying graph without worrying about
the consistency of queries [130, 139, 156, 371, 22, 309, 307, 306, 253, 91, 359, 344, 314, 89].
Hornet [89], one of the most recent systems in this category, reports a throughput of up
to 800 million edges per second on a GPU with 3,840 cores (about twice our throughput
using 72 CPU cores for similarly-sized graphs); however the graphs used in Hornet are
much smaller that what Aspen can handle due to memory limitations of GPUs. The second
category enables queries and updates to run concurrently by isolating queries to run on
snapshots and periodically have updates generate new snapshots [100, 226, 185, 184].

GraphOne [206] is a system developed concurrently with our work that can handle
queries running on the most recent version of the graph while updates are running
concurrently by using a combination of an adjacency list and an edge list. They report an
update rate of about 66.4 million edges per second on a Twitter graph with 2B edges using
28 cores; Aspen is able to ingest 94.5 million edges per second on a larger Twitter graph
using 28 cores. However, GraphOne also backs up the update data to disk for durability.

There are also many systems that have been built for analyzing graphs over time [200,
164, 201, 244, 245, 168, 145, 291, 348, 360]. These systems are similar to processing dynamic
graph streams in that updates to the graph must become visible to new queries, but are
di�erent in that queries can performed on the graph as it appeared at any point in time.
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Although we do not explore historical queries in this thesis, functional data structures are
particularly well-suited for this scenario since it is easy to keep any number of persistent
versions simply by keeping their roots.

10.5.2 Graph Databases

There has been signi�cant research on graph databases (e.g., [88, 198, 310, 280, 205,
129, 257]). The main di�erence between processing dynamic graph-streams and graph
databases is that graph databases support transactions, i.e., multi-writer concurrency. A
graph database running with snapshot isolation could be used to solve the same problem we
solve. However, due to their need to support transactions, graph databases have signi�cant
overhead even for graph analytic queries such as PageRank and shortest paths. McColl
et al. [234] show that Stinger is orders of magnitude faster than state-of-the-art graph
databases.

10.6 Discussion

We have presented a compressed fully-functional tree data structured called theC-tree that
has theoretically-e�cient operations, low space usage, and good cache locality. We use
C-trees to represent graphs, and design a graph-streaming framework called Aspen that is
able to support concurrent queries and updates to the graph with low latency. Experiments
show that Aspen outperforms state-of-the-art graph-streaming frameworks, STINGER and
LLAMA, and only incurs a modest overhead over state-of-the-art static graph processing
frameworks. Future work includes designing incremental graph algorithms and historical
queries using Aspen, and using C-trees in other applications.

Although our original motivation for designing C-trees was for representing com-
pressed graphs, we believe that they are of independent interest and can be used in appli-
cations where ordered sets of integers are dynamically maintained, such as compressed
inverted indices in search engines.
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11
Conclusion and Future Work

11.1 Conclusion

The use of graphs and graph algorithms to model and reason about data has seen a huge
investment of e�ort from both theoretical and practical communities over the past decade.
This thesis contributes to this research e�ort in Chapters 3,4, and 5 by developing graph
processing tools and algorithms that enable users to easily, quickly, and cost-e�ectively
process massive real-world graphs using multicore machines. Our results include a number
of new practical and theoretically-e�cient graph algorithms for a broad set of fundamental
graph problems, ranging from shortest path problems, connectivity problems, covering
problems, and substructure problems. All of the parallel graph algorithm implementations
developed in this thesis have been made publicly available as part of the Graph Based
Benchmark Suite (GBBS). Then, in Chapter 6, we discussed how to extend our approach
to graphs stored on non-volatile memory, and designed a new graph processing system
called Sage for this setting. Taken together, these results have illustrated the power of
using theoretically-e�cient shared-memory algorithms by showing that both our shared-
memory and non-volatile memory implementations can solve a broad class of problems
on the largest publicly-available graph, the WebDataCommons hyperlink graph, with over
200 billion edges, in just seconds to minutes.

This thesis also developed some of the �rst provably-e�cient results for parallel graph
processing on evolving graphs which change over time. Speci�cally, we have designed
e�cient parallel algorithms for dynamic settings which take advantage of batching. In
Chapter 7, we designed theoretically and practically e�cient parallel batch-dynamic
algorithm for the fundamental forest connectivity problem by adapting the classic Euler
tour tree data structure to the batch-dynamic setting. Our Euler tour tree structure was
based on using a new phase-concurrent data structure for batch-dynamic sequences based
on skip-lists which may be of independent interest. Finally, in Chapter 8, we designed
the �rst theoretically-e�cient parallel batch-dynamic algorithm for connectivity. Our
algorithm adapts a classic dynamic graph algorithm by Holm, de Lichtenberg, and Thorup,
and utilizes our batch-dynamic algorithm for forest connectivity as a crucial sub-routine.

Finally, in this thesis we have designed new provably-e�cient data structures and
the Aspen graph-streaming system for representing and processing evolving graphs.
In Chapter 9, we �rst presented an approach to streaming graph processing based on
representing graphs using purely-functional trees. To address the space-ine�ciency and
cache-ine�ciencies of simply using nested purely-functional trees, we designed theC-tree
data structure, which is a new type of compressed purely-functional tree. We showed how

269



270 Conclusion and Future Work

to implement a broad set of useful primitives onC-trees, and designed parallel batch-update
algorithms for C-trees that have strong provable bounds on their work and depth and are
also fast in practice. Then, in Chapter 10 we introduced the using Aspen graph-streaming
system, which uses a nested purely-functional graph data structure based on C-trees. We
studied the cost of parallel batch-updates to this graph representation and showed that our
update algorithms achieve good bounds in theory and achieve update rates of up to several
hundred million edges per second in practice. Using Aspen, we showed that we can update
massive evolving graphs, including the WebDataCommons hyperlink graph with over
200 billion edges in the main memory of a single multicore machine while concurrently
running graph analytics on the graph.

11.2 Future Work

There are many interesting directions for future work stemming from the work in this
thesis.
Compilation-Based andOptimizingGraph Processing Frameworks. An interesting
direction stemming from this work is to integrate algorithms and techniques designed in
this thesis into compilation-based frameworks such as GraphIt [383], and to also to explore
the parameter space of algorithm design decisions for these algorithms in optimizing

frameworks. For example, since the publication of our work on Julienne, we showed
how to implement ordered graph algorithms such as k-core, ∆-stepping and parallel
approximate set-cover using a compilation-based approach in the GraphIt system [384].
Implementing the remaining algorithms developed in this thesis in GraphIt would enable
these implementations to take advantage of the NUMA optimizations and scheduling
optimizations implemented by GraphIt.

In terms of optimizing frameworks, in recent work we have designed a system called
ConnectIt which allows users to explore the space of design decisions for parallel algo-
rithms for the connected components problem and related problems [118]. Exploring this
space enabled us to obtain a parallel connectivity algorithm which processes the WebDat-
aCommons hyperlink graph in under 10 seconds, improving the previous state-of-the-art
result (from this thesis) by 3.1x. In future work, it could be interesting to design similar
frameworks for other problems studied in this thesis.
Graph Clustering. One important application area of graph algorithms is graph clus-
tering. Graph clustering algorithms take as input a graph where the vertices represent
objects to be clustered and group vertices that are deemed similar based on properties
of the graph together into the same cluster. Example algorithms include the Louvain
and Leiden algorithms which maximize modularity [352], correlation clustering [40, 272],
many variants of hierarchical agglomerative clustering (HAC) [230], among many other
graph clustering algorithms [376, 368, 33].



Future Work 271

Despite signi�cant real-world interest in this area, existing implementations of par-
allel graph clustering algorithms su�er from the same kinds of problems faced by graph
algorithm implementations described in this work, namely they do not scale well to large
datasets with billions of vertices and hundreds of billions of edges and they usually do not
have good provable bounds on their theoretical costs.

Therefore, an interesting direction is to study parallel clustering algorithms both in
theory and in practice. Certain agglomerative methods in this area seem inherently di�cult
to parallelize (and many papers have informally stated that this is the case). It would be
interesting to study these problems to determine their parallel complexity, and in cases
where they are P-complete (or fall into a similar class outside of NC), derive practical
approximation algorithms for these problems with low work and depth.

Optimal Graph Algorithms in the Binary-Forking Model. The binary-forking (BF)
model [72, 62], was being developed at CMU during the time this thesis was being written,
and all of the algorithms in this thesis are primarily analyzed in this model. Although this
thesis has developed a large body of practical work-e�cient parallel algorithms in the BF
model, there are still many interesting open questions that remain for future work.

First, although many optimal graph algorithms have been developed for di�erent PRAM
models, perhaps most notably for the connectivity problem [148, 162, 163], these algorithms
all require O (lg2 n) depth in the BF model. Thus, a natural question is whether we can
design work-e�cientO (lgn) depth BF algorithms for graph problems such as connectivity
and spanning forest. Even ignoring work-e�ciency, this is an interesting question, since
nearly every parallel connectivity algorithm seems to require super-constant (usually
O (lgn)) rounds of synchronization which leads to super-logarithmic depth in the BF
model. Can we solve the approximate densest subgraph problem, which uses O (lgn)
rounds of peeling in Algorithm 19 from Chapter 5 in O (lgn) depth in the BF model? Can
we develop a theory that explains when synchronization may be necessary?

Second, can we prove work-depth tradeo�s for problems su�ering from the transitive
closure bottleneck such as directed reachability and shortest path problems in the BF model,
or in a space-restricted version of the model? This is a longstanding open problem in
parallel algorithms, but recently there has been a �urry of progress on nearly-work e�cient
algorithms for both reachability [140, 92, 93] and approximate SSSP problems [24, 216,
93]. Yet, the depth bounds for exact solutions to these problems in NC are all highly work-
ine�cient. Can we develop hardness results (even conditional ones) that rule out exact
nearly-linear work, poly-logarithmic depth reachability and shortest path algorithms?

Implementing Parallel Batch-Dynamic Algorithms. Another important next step
stemming from this work is to implement and experimentally evaluate parallel batch-
dynamic algorithms for problems. A signi�cant issue in this setting is the lack of high
quality dynamic graph datasets, at least compared to the relative abundance of medium
and large-sized static graph datasets (e.g., see the SNAP [215] and LAW datasets [81]).
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There is a historic dearth of good experimental results on dynamic graph algorithms with
most of the work in the area focusing primarily in theoretical results, although in recent
years some groups have been making inspiring progress on the experimental front [171,
166, 167].

In terms of future directions, it would be interesting to understand whether the parallel
batch-dynamic connectivity algorithm from Chapter 8 is practical. If this algorithm is
impractical, one approach may be to show that existing heuristics for dynamic connec-
tivity like that of McColl et al. [233] are actually theoretically-e�cient for certain input
distributions (e.g., graphs whose update sequences follow a power-law distribution), or
to design practical algorithms that are speci�cally designed for graphs with power-law
distributions, or which admit good clustering structure. This approach would yield beyond
worst-case analyses of dynamic graph connectivity, which would be interesting even in
the sequential setting without considering parallelism or batching.

Finally, it would be interesting to study parallel batch-dynamic algorithms for other
problems, including triangle counting, k-clique counting1, maximal independent set, maxi-
mal matching. It would also be interesting to study practically-motivated problems, such
as batch-dynamic graph clustering and understand whether agglomerative clustering, or
some suitable approximation of agglomerative clustering can be e�ciently maintained
under dynamic updates.
Graph Streaming Systems and Databases. There are several important next steps that
stem from our work on graph-streaming systems. Firstly, can we obtains bounds similar to
those we showed for updates toC-trees for deterministic update algorithms? Since aC-tree
is randomized by design, such an approach would require rethinking how compression
is done to obtain deterministic bounds. Secondly, can we improve the constant factors
in the bounds? Currently our results have a quadratic dependence on the chunking
parameter, b, but only a linear dependence seems necessary. It would be interesting to
both show this upper-bound, and prove a matching lower-bound in a reasonable model of
computation, such as a pointer-machine [49]. Thirdly, outside of faster update algorithms,
we should extend Aspen to support a broad set of features, including arbitrary edge
and node attributes. Although these features may seem like bells-and-whistles that only
complicate the implementation, building this kind of functionality is important for the
system to be useful to a broader set of users, hobbyists, and also industrial applications.

Looking forwards, developing features such as arbitrary attributes would be the �rst
step towards developing a graph database based on Aspen. An important challenge facing
this work will be to e�ciently support transactions. Although this problem been very
well studied in the database literature [155, 250, 251], there may be new opportunities in
the context of graphs: for example, there is an intriguing prospect of designing e�cient
transaction-processing algorithms specially designed for graph update streams. A hopeful

1Some of our ongoing work [119] makes progress for triangle and k-clique counting.
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vision in this direction is a hybrid transaction and analytics graph database system that can
e�ciently apply graph algorithms on read-only snapshots, while enabling fast (potentially
batched) transactions, all with strong provable-bounds on their costs. I believe that the
algorithms and systems developed in this thesis are a promising �rst step toward building
such a system.
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