
Securing Internet-of-Things via Fine-grained
Network Detection and Prevention

Tianlong Yu

CMU-CS-20-120

August, 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Vyas Sekar (Co-Chair)

Srinivasan Seshan (Co-Chair)
Yuvraj Agarwal
Virginia Smith

Susanta Nanda (Symantec Research Labs)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Tianlong Yu

This research was sponsored by the National Science Foundation award number CNS1440056; by the SEI Directors
Office award number FA8702-15-D-0002; by the Semiconductor Research Group award number 2018JU2779; and
by a fellowship from Symantec. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Keywords: Internet-of-Things, Network Security, Distributed Machine Learning

Abstract
The Internet-of-Things (IoT) has quickly moved from the realm of hype to real-

ity with estimates of over 25 billion devices deployed by 2020. While IoT has huge
potential for societal impact, it comes with several key security challenges—IoT de-
vices can become the entry points into critical infrastructures and can be exploited
to leak sensitive information. Traditional host-centric security solutions in today’s
IT ecosystems (e.g., antivirus, software patches) are fundamentally at odds with the
realities of IoT (e.g., poor vendor security practices and constrained hardware). We
argue that the network will have to play a critical role in securing IoT deployments.
However, the scale, diversity, cyber-physical coupling, and cross-device use cases
inherent to IoT require us to rethink network security along three key dimensions.
First, current enforcement architecture cannot enforce context-based and agile secu-
rity postures needed to protect IoT devices. Second, current detection mechanisms
cannot learn the network-side behaviors for a single IoT device. Third, there is no
mechanism to learn the complex environment-device or cross-device interactions for
IoT devices.

To tackle these problems, we build a fine-grained network detection and pre-
vention system for IoT devices. The workflow of the system is as follows. In the
first step, the system can learn single-device behaviors as well as cross-device in-
teractions from historical records. Then, the system can convert the single-device
behavioral models and interactions models into regulating security policies, and en-
force such security policies in a context-based and agile manner to protect the IoT
devices.

However, there are several key challenges. To learn single-device behaviors, the
main challenges are the lack of single-device behavioral models and how to address
the data pollution issue in a realistic setting. For learning complex interactions, it
is hard to define a model to capture the environment-device interactions and cross-
device interactions. Besides, learning such an interaction model for IoT devices
faces the challenge of insufficient data and privacy issues. For the enforcement part,
it is hard to design an expressive context-based and agile policy abstraction that can
capture security postures needed for IoT devices. Also, it is hard to design a scalable
and responsive controller to orchestrate the enforcement architecture.

Next, we briefly describe our solutions to address these challenges. To model the
network behaviors of an IoT device, we design a robust behavioral model inference
mechanism called RADIO to build benign behavioral models from potentially pol-
luted network traces. To learn the complex IoT interactions, we build a distributed
learning mechanism called LoFTI to learn the IoT interaction model across multiple
smart homes. To provide context-based and agile enforcement, we build a new en-
forcement architecture called PSI (Precise Security Instrumentation). Leveraging re-
cent advances in SDN (Software-Defined Networking) and NFV (Network Function
Virtualization), PSI protects each IoT device with dedicated software middleboxes
enforcing context-based and agile policies.

iv

Acknowledgments
I would like to express my sincere gratitude to my advisors Vyas and Srini for

their support of my Ph. D study and research, for their knowledge, patience and
insightful guidance.

I would like to thank Yuvraj and Ginger for their immense suggestions and help
in building this thesis.

I would like to thank Susanta for his long-term support and help since I interned
in Symantec Research Labs.

I would like to thank my family for their understanding and support over my phd
years.

I am truly grateful to all those who helped me during all these years in CMU.
Thank you all for your kind support and help.

vi

Contents

1 Introduction 1
1.1 Security issues for IoT devices . 1

1.1.1 Single-device vulnerabilities . 1
1.1.2 Privacy leakage and physical hazard that caused by environment-device

and cross-device interactions . 2
1.2 Limitations of Current Approaches . 3
1.3 Fine-grained Detection and Prevention System for IoT devices 5

1.3.1 RADIO: Robust Behavioral Anomaly Detection for IoT devices 5
1.3.2 LoFTI: Learning Context-based Security Policies via Federated Multi-

Task Learning . 5
1.3.3 PSI: Precise Security Instrumentation 5

1.4 Summary of Results . 6
1.5 Organization . 7

2 Motivation 9
2.1 Motivating example 1: HackingTeam incidence 9

2.1.1 Broken network enforcement . 9
2.2 Motivating example 2: Physical break-in against smart homes 11

2.2.1 Complex interactions are hard to capture 11
2.3 Summary . 11

3 System Overview 13
3.1 High-level vision . 13

3.1.1 RADIO module . 15
3.1.2 LoFTI module . 15
3.1.3 PSI module . 15

3.2 Challenges . 16
3.2.1 Learning single-device behaviors . 16
3.2.2 Learning complex interactions . 17
3.2.3 Enforcement architecture . 17

3.3 Our insights . 17
3.3.1 A single IoT device has a limited set of behaviors 18
3.3.2 Federated Multi-Task learning can address the insufficient data issue and

privacy issue for IoT devices . 18

vii

3.3.3 SDN and NFV can enable the context-based and agile enforcement for
IoT devices . 19

3.4 Making Fine-grained Detection and Prevention System Practical 20
3.4.1 Practical Challenges for RADIO . 20
3.4.2 Practical Challenges for LoFTI . 20
3.4.3 Practical Challenges for PSI . 21

3.5 Summary . 22

4 Learning Single-device Behaviors 23
4.1 Network Behavioral Model for IoTs . 23

4.1.1 Capturing key network characteristics for IoT devices 23
4.1.2 Expressiveness to capture IoT behaviors contained in a wide range of

network protocols . 25
4.1.3 Handling diverse IoT protocols . 26
4.1.4 Handling encrypted traffic . 27

4.2 Learning IoT Behavioral Model . 28
4.2.1 RADIO’s idea . 28
4.2.2 RPNI Modification . 29
4.2.3 RANSAC Modification . 30
4.2.4 Putting it together . 33

4.3 Results . 34
4.3.1 Setup . 34
4.3.2 Accuracy . 35
4.3.3 Robustness against pollution . 36
4.3.4 Performance analysis . 37
4.3.5 Handling encrypted traffic . 38
4.3.6 Aggregated behavior model for coverage and scalability 38
4.3.7 Sensitivity to parameters . 39
4.3.8 Diagnostic Utility . 40

5 Learning Complex IoT Interactions 43
5.1 Defining key features for contextual IoT access 43
5.2 Building a model with high accuracy and low computation/communication cost . 44
5.3 Addressing unbalanced contextual IoT access records 47
5.4 Evaluation . 49

5.4.1 Dataset . 49
5.4.2 Accuracy . 50
5.4.3 Comparison with manually generated policies 51
5.4.4 Effectiveness of LoFTI’s key features 52
5.4.5 Effectiveness of LoFTI’s simple SVM-based model with temporal structure 53
5.4.6 Effectiveness of LoFTI’s data augmentation 54
5.4.7 LoFTI’s capability of handling new attacks 55
5.4.8 Masking sensitive parameters . 55

viii

6 Enforcement 57
6.1 PSI Policy Abstraction . 57

6.1.1 Requirements . 57
6.1.2 High-Level Ideas . 58
6.1.3 Illustrative Example . 59

6.2 PSI Controller . 60
6.2.1 Conceptual View and Challenges . 60
6.2.2 Key Ideas in PSI . 61

6.3 Results . 63

7 Integrating RADIO, LoFTI and PSI 65
7.1 Integrating RADIO and PSI: IoT autopatch . 65
7.2 Integrating LoFTI and PSI: Context-based and dynamic policy enforcement for

smart homes . 66

8 Related Works 69
8.1 Related works for RADIO . 69
8.2 Related works for LoFTI . 70
8.3 Related works for PSI . 71

9 Contributions, Limitations and Future Works 73
9.1 Summary of Contributions . 73

9.1.1 Current security ecosystem for IoT devices 73
9.1.2 RADIO Contributions . 74
9.1.3 LoFTI Contributions . 74
9.1.4 PSI Contributions . 75

9.2 Limitations . 75
9.3 Discussions and Future Works . 76

9.3.1 RADIO . 76
9.3.2 LoFTI . 76
9.3.3 PSI . 76

9.4 Final Remark . 77

Bibliography 79

ix

x

List of Figures

1.1 Different vulnerabilities for commonly used enterprise IoT devices from 1999 to
2018 from NVD [29]. 2

1.2 What is unique about IoT devices and challenges for IoT security. 3

2.1 Attackers intrude the enterprise via IoT devices. 10
2.2 Benign/malicious smart window scenarios. 10
2.3 Complex interactions across smart windows, AC units and the environment. . . . 11

3.1 High-level vision of the thesis. 14
3.2 RADIO’s vision. 14
3.3 LoFTI’s vision. 15
3.4 PSI’s vision. 16
3.5 The limited benign behaviors of a camera and the attack behaviors (Mirai Malware[40])

against it. 18
3.6 Federated Multi-Task learning workflow. 19

4.1 A camera’s authentication behavior. 24
4.2 Cisco router’s behaviors captured by RADIO’s FSM model. 25
4.3 Protocol specification of the modbus protocol. 26
4.4 A sequence of packets of the smart light and their frame size. 27
4.5 Basic RPNI algorithm and our extension. 30
4.6 Basic RANSAC and three iterations generating different models (lines 1 - 3 in

the images below). 31
4.7 Comparison of benign/malicious model. 32
4.8 RADIO’s learning mechanism. 33
4.9 We measure the FP and FN of five different approaches over routers, switches,

NASes, cameras, DVRs, smart lights, fire alarms, sensor gateways and smart
speakers. 10% of the traces for each device classes are attack samples. 35

4.10 RADIO is able to generate a precise FSM representation (F-Score>0.9) in an
acceptable amount of time (< 248s) for polluted sample set with attacks ranging
from 1% to 15% (left figure), and for different devices (right figure) when the
sample sets are heavily polluted (15%). 36

4.11 Number of instances needed for aggregated models. 39
4.12 F-Scores for aggregated behavior model. 39

xi

4.13 The average F-Score for different combination of parameters. The top and mid-
dle figure are measured on Cisco router and the bottom figure is measured on
different devices. 40

4.14 How RADIO’s benign behavior model can help to identify a code injection attack
(CVE 2017-3881). 41

5.1 Comparing the structures of different machine learning models. 45
5.2 LoFTI model. 47
5.3 LoFTI’s temporal structure. 48
5.4 Comparing single-home learning, all-home learning and LoFTI. 50
5.5 Comparing user policy from survey and LoFTI. 52
5.6 Effectiveness of LoFTI’s key features. 52
5.7 ROC curve for SVM, LSTM and LoFTI. 53
5.8 Estimated communication/computation cost. 54
5.9 Different dataset construction mechanisms. 55
5.10 FNR/FPR on unknown/known IoT attacks. 56

6.1 Express context-based intent with ψDAG . 58
6.2 PSI agile intent evolution. 59
6.3 A dynamic scrutiny policy expressed via PSI. 60
6.4 Detailed results about coverage for insider threats and APT in each enterprise

network. 64

7.1 The workflow of integrating RADIO and PSI. 65
7.2 The workflow of integrating RADIO and PSI. 66
7.3 The design of integrating RADIO and PSI. 67

xii

List of Tables

1.1 Recently reported IoT breaches. Attackers are using IoT devices to cause privacy
leakage or physical hazards. 3

4.1 The ADUs that are correctly clustered and not correctly clustered. 38

5.1 Exemplar contextual IoT access patterns that can be captured by LoFTI’s con-
textual norms. 44

5.2 Test cases for malicious IoT access based on reported IoT breaches. 49
5.3 Overall. 50
5.4 Detailed analysis for the test cases. 50
5.5 Contextual policies from user study[70] . 51
5.6 New IoT attacks for testing. 55
5.7 FNR/FPR before/after masking. 56

6.1 Coverage over stealthy attacks. 63

8.1 Overview of the state-of-the-art approaches focusing on network anomaly detec-
tion. 70

xiii

xiv

Chapter 1

Introduction

The Internet-of-Things (IoT) has quickly moved from hype to reality; Gartner, Inc. estimates that
the number of deployed IoT devices will grow from 5 Billion in 2015 to 25 Billion in 2020[3].
Like other disruptive technologies, such as smartphones and cloud computing, IoT holds the
potential for societal scale impact by transforming many industries as well as our daily lives.

While IoT has huge potential, it also comes with its share of challenges. Most vendors only
deal with parts of the IoT ecosystem and, typically, their priorities have been providing novel
functionality, getting their products to market soon, and making them easy to use. Unfortunately,
security and privacy risks have not received as much attention. Since IoT devices will typically
be embedded deep inside networks, they are attractive targets and may become the “weakest
point” for breaking into enterprises or smart homes[5], or for leaking sensitive information about
users and their behaviors as well as causing physical hazards[4]. These are not hypothetical
concerns as several actual attacks have already been reported. For example, IoT devices were
used as bots to launch DDoS or spam[2], smart meters were hacked to lower utility bills[1], and
handheld scanners were compromised to enter logistics firms[6].

1.1 Security issues for IoT devices

To understand the challenges that come with IoT devices, we first look at the security issues
faced by IoT devices. From the single-device perspective, the IoT devices are threatened by
anomalous behaviors including code injection and authentication bypass. Then from the device-
interactions perspective, the IoT devices are threatened by malicious device interactions that can
cause physical hazards and privacy leakage.

1.1.1 Single-device vulnerabilities

As shown by previous work on firmware analysis [49, 54, 55, 109] and by reports of security
incidents [10, 11, 23], existing IoT devices are threatened by single-device vulnerabilities:

• IoT devices often have flaws when processing commands/arguments, which allows the
attacker to inject code via the flawed commands or arguments [10, 11, 49, 54, 55].

1

• Many IoT devices contain flawed authentication routines (backdoors) [109], which allow
the attacker to bypass authentication.

• Since the IoT devices are deployed inside the enterprise networks, they often have un-
restricted access to other IoT devices or computers, which allows the attacker to use the
compromised IoT devices as stepping stone for more advanced attacks [23].

DoS Code Injection Authentication Bypass Memory Corruption Cross-Site Request Forgery Directory Traversal File Inclusion
Cisco IOS 342 85 35 6 1 0 0
FreeNAS 0 2 1 0 1 0 0
D-Link Camera 2 6 2 0 0 0 0
HiSilicon DVR 1 3 1 0 0 1 1
Philips Hue Smart Light 0 9 5 0 0 0 0
OpenWRT Fire Alarm 1 3 1 0 0 0 0
LoRA Sensor Gateway 0 0 2 0 0 0 0
Alexa Echo Dot2 0 1 0 0 0 0 0
Google Mini 0 0 1 0 0 0 0
Total 346 109 48 6 2 1 1

Code Injection Authentication BypassMemory Corruption Cross-Site Request ForgeryDirectory Traversal File Inclusion
Number of Vulnerabilities 125 58 6 2 2 2

Figure 1.1: Different vulnerabilities for commonly used enterprise IoT devices from 1999 to
2018 from NVD [29].

To identify the possible existence of the above vulnerabilities in IoT deployments, we select
a few devices to represent each IoT device class and analyzed their vulnerabilities. Figure 1.1
shows the number of different types of vulnerabilities reported between 1999 to 2018 in the
National Vulnerability Database [29] for Cisco IOS router/switch, FreeNAS, D-Link camera,
HiSilicion DVR, Philips Hue smart light, OpenWRT fire alarm, LoRA sensor gateway, Alexa
Echo Dot2 and Google Mini smart speakers. Code injection and authentication bypass are the
primary sources of vulnerabilities. We also consider the unrestricted outbound access, which is
commonly seen in incidents after the IoT devices are compromised [23].

1.1.2 Privacy leakage and physical hazard that caused by environment-
device and cross-device interactions

Another important part of the IoT security issue is that: attackers can leverage environment-
device and cross-device interactions to cause privacy leakage and physical hazard. Table 1.1
shows a list of recently reported IoT breaches. A number of breaches are related to privacy leak-
age. For Nest cameras, the attacker can steal the private video/image. For Samsung smart TVs,
the attacker can remotely turn on the audio recording (via backdoor access) for eavesdropping.
Other breaches can cause physical hazards in smart homes. For example, the attacker can open
smart doors or smart windows to break into the house. Besides, the attacker can control heaters
to overheat the bedroom, or control the stove to cause fire, or remotely control smart toilets to
cause water overflow, especially dangerous for families with babies, people with disabilities and

2

Device IoT Breach Attack Type
Nest Camera Attacker steal private video/image and demand subscribe[14] Privacy leakage
Multiple Smart Doors Attacker open smart door to break into the house[16] Physical hazards
Multiple Smart Heaters Attacker can control the heater to overheat the bedroom [15] Physical hazards
Samsung Smart TV Attacker can remotely turn on audio recording for eavesdropping[22] Privacy leakage
Multiple Smart Stoves Attacker can control the stove to cause fire[20] Physical hazards
Multiple Smart Window Attacker can open the smart window to break into the house[19] Physical hazards
Philips Hue Smart Light Attacker can use drone to turn off smart light to cause a blackout[17] Physical hazards
Multiple Smart Toilets Attack can remotely control smart toilet to cause water overflow[21] Physical hazards

Table 1.1: Recently reported IoT breaches. Attackers are using IoT devices to cause privacy
leakage or physical hazards.

the elderly. An interesting case shows that the attacker can even use a drone to turn off smart light
to cause a blackout of a house. From these breaches, we can see that a wide range of IoT devices
is being used to cause privacy leakage or physical hazard. This is because the IoT devices can
interact with the physical environment around them.

For such attacks that cause privacy leakage or physical hazards, the behaviors of a single IoT
device appear to be normal, but the environment-device or cross-device interaction patterns will
deviate from normal environment-device or cross-device interaction patterns. For example, the
behavior of opening the smart window may appear to be normal. However, when the temperature
is low, such behavior of opening the smart window is likely to be a malicious attack to cause
physical hazards.How is IoT security different from IT security?

1	

#2	Diversity	#1	Unfixable	Flaws	

1000$	

5$	

Client-Server		

#3	Complex	Interac=ons	

	
	
	
	
	

Internet	Intranet	

humidity	 window	 camera	

Figure 1.2: What is unique about IoT devices and challenges for IoT security.

1.2 Limitations of Current Approaches
Today’s IT security ecosystem, which relies on a combination of static perimeter network de-
fenses (e.g., firewalls and intrusion detection/prevention systems), the ubiquitous use of end-host

3

based defenses (e.g, antivirus), and software patches from vendors, is fundamentally ill-equipped
to handle IoT security issues (Figure 1.2). Specifically, the scale, heterogeneity, use cases, and
device and vendor constraints of IoT devices means that traditional approaches fall short along
three key dimensions:

• Learning single-device behaviors: To protect an IoT device, the security administrators or
users need to learn and distinguish its benign behaviors (e.g., a camera’s zoom-in behavior)
and malicious behaviors (e.g., a camera being code injected). The current approaches rely
on security administrators or users to manually learn these behaviors and configure ACLs
(access control lists) to restrict the behaviors of a single IoT device. However, the scale
and diversity of IoT devices make it hard to manually learn single-device behaviors in a
correct and efficient manner, e.g., an ACL rule to prevent camera code injection may block
legitimate accesses as well. Also, zero-day attacks are common in IoT attacks, making it
even harder to manually learn and distinguish benign/malicious IoT behaviors when the
historical records are polluted.

• Learning complex interactions: The complexity of the environment-device interactions
and cross-device interactions makes it hard to use permission mechanisms (e.g., role-based
access control) to protect IoT devices from privacy leakage or physical hazard. A model
that can capture such complex interactions is needed. Moreover, even if such a model is
available, there are several issues for learning the model. First, for a particular smart home
or an IoT device instance, there may not be sufficient historical data to learn the interaction
model, which will result in high FPs and FNs. For example, if a user just deployed the
camera and there will be no historical data to build the interaction model. To obtain more
data, a natural way is to collect the usage data in a centralized place (e.g., cloud back-end)
and learn a global model from all the data. However, in this case, the raw data on IoT
devices will flow out of the smart home, which will raise privacy concerns from the users.

• Enforcement architecture: Even if there are mechanisms to learn the single-device be-
haviors and complex interactions and convert into IoT security policies, the current se-
curity enforcement architecture based on host-centric defense and perimeter-centric de-
fense is too coarse-grained to enforce IoT security policies correctly and efficiently. IoT
devices typically do not run full-fledged operating systems, require low-power consump-
tion, and are resource-constrained. Moreover, the longevity of these devices means that
vulnerable devices (e.g., default passwords, unpatched bugs) remain deployed long after
vendors cease to produce or support them. Also, since IoT devices operate deep inside
the network, traditional perimeter defenses are ineffective. Thus, traditional host-centric
or device-centric mechanisms (e.g., antivirus, patches) are impractical to expect in an IoT
world. Finally, given that the environment and device behaviors can change rapidly, we
need to rapidly reassess and update the security posture. Unfortunately, today’s security
enforcement schemes stem from a static mindset and cannot handle such dynamics.

4

1.3 Fine-grained Detection and Prevention System for IoT de-
vices

To address the fundamental challenges of current approaches, we propose to build a fine-grained
detection and prevention system for IoT devices. Our system can learn single-device behaviors
as well as complex IoT interactions, generating regulating security policies, and enforce such
security postures in a context-based and agile manner.

More specifically, our solution has three main pieces as listed below.

1.3.1 RADIO: Robust Behavioral Anomaly Detection for IoT devices
RADIO is a robust learning mechanism to learn single-device behavioral models for IoT devices.
Designing a mechanism to learn single-device behaviors is challenging on two fronts. First, we
need a behavior model tailored towards IoT devices to abstract the key characteristics of the
device behaviors (e.g., commands or arguments used) from network traffic. Second, in practical
settings, the network traces for learning normal behavior models are unlabeled and potentially
polluted (e.g., with zero-day attacks). We address these challenges in designing RADIO. We
design a novel learning mechanism that can build benign behavior models (finite-state-machines)
for IoT devices, from unlabeled and potentially polluted network traces. To handle pollution,
RADIO integrates an outlier detection mechanism with the FSM inference algorithm to generate
multiple candidate models, and leverages IoT-specific heuristics to filter out polluted models and
selects the best benign model.

1.3.2 LoFTI: Learning Context-based Security Policies via Federated Multi-
Task Learning

LoFTI is a distributed learning mechanism to learn complex IoT interactions in a privacy-preserving
manner. Designing such a learning framework is challenging on two fronts. First, the accuracy
is constrained by insufficient data in some smart homes and the diversity of IoT access patterns
across different smart homes. Second, since we rely on usage patterns of IoT devices, users will
have privacy concerns. We address these challenges in designing LoFTI. Based on prior user
studies, we identify six general types of features (e.g., environment variables such as temper-
ature or humidity) to capture contextual access patterns. We build a simple machine learning
model with a temporal structure to achieve a good trade-off between accuracy and communica-
tion/computation cost. We design a custom data augmentation mechanism to address the issue
of unbalanced data in learning.

1.3.3 PSI: Precise Security Instrumentation
PSI is a new enforcement architecture that can enforce the context-based and agile security poli-
cies needed to secure the IoT devices. Designing such an enforcement architecture is difficult on
two fronts. The first issue is how to redesign the data plane and control plane of network enforce-
ment to support the context-based and agile policies needed to secure IoT devices. To address

5

this, PSI protects each IoT device with dedicated software middleboxes enforcing context-based,
agile policies, leveraging recent advances in SDN and NFV, The second issue is how to address
the scalability and responsiveness issue caused by supporting more fine-grained policies (i.e.,
context-based and agile policies). To address this issue, PSI provides a scalable and respon-
sive controller for orchestration using proactive forwarding, horizontal scaling, and prefetching
techniques.

Next, we will discuss how to evaluate our designs and summarise the results.

1.4 Summary of Results

In evaluating the proposed solutions, we focus on answering the following questions:

• How accurate is RADIO against single-device IoT attacks (e.g., code injection), and how
robust is RADIO against polluted network traffic? In Section 4, we evaluate RADIO and
show that RADIO achieves low FPs and FNs (FPR < 1% and FNR < 0.01%) comparing
with prior anomaly detections [35, 39, 53, 88, 95] (FPR > 5% and FNR > 57%). In
Section 4, we also show that RADIO is robust against polluted traces (FPR< 1% and FNR
< 0.01% when the percentage of polluted traffic ranges from 1% to 15%), and RADIO’s
performance is robust across a range of configuration settings (FPR < 1% and FNR <
0.01%) and does not require fine-grained tuning.

• How accurate is LoFTI against IoT interaction attacks (e.g., open the smart window
to break-in), and how good is LoFTI’s trade-off between accurancy and communica-
tion/computation cost?
In Section 5, we evaluate LoFTI and show that: LoFTI achieves high detection accuracy
and low FPs and FNs when compared with single-home learning and all-home learning,
reducing FNR by 24.2% and FPR by 49.5%; LoFTI achieves high coverage over the con-
textual policies needed when compared with the current approach to manually generating
contextual policies; LoFTI’s key features are effective for detecting malicious IoT access
causing physical hazards or privacy leakage. In Section 5, we also show that: LoFTI’s
simple SVM-based model with temporal structure can achieve a good trade-off between
accuracy and communication/computation cost.

• How effective is PSI’s enforcement, and how scalable is PSI for supporting fine-grained
enforcement? In Section 6, we demonstrate the security benefits by showing that: when
working against stealthy attacks, PSI identifies and mitigates 35% more attacks than a dis-
tributed Firewall/IPS solution. In Section 6, we also demonstrate the scalability, respon-
siveness and resilience of PSI by showing that: proactive context-based forwarding reduces
the end-to-end latency of enforcement by at least 10X over the baseline performance. PSI’s
DAG prefetching mechanism reduces security downtime during FSM transitions from sec-
onds scale to zero. With the optimizations, a single PSI controller can support a network
with 100K devices, and can support complex policies with up to 10 states with a size-10
DAG for each state. Our scale-out scheme cuts the enforcement response time down from
seconds to 10ms even in the presence of an adversary.

6

1.5 Organization
The rest of the thesis is organized as follows.

Chapter 2 discusses two motivating examples to demonstrate the uniqueness of IoT security
and highlight the limitations of current security approaches.

Chapter 3 presents an overview of the fine-grained network detection and prevention system.
It first describes the high-level vision of the system. Then it lists out the challenges to realize the
vision. After that, it shows our insight to address the challenges. Next, it describes the practical
techniques designed based on our insight.

Chapter 4, 5 and 6 describes the three key contributions of this thesis: 1) Robust Behavioral
Anomaly Detection for IoT devices (RADIO) - a robust learning mechanism to learn single-
device behavioral models for IoT devices; 2) Learning Context-based Security Policies via Fed-
erated Multi-Task Learning (LoFTI) - a distributed learning mechanism to learn complex IoT
interactions in a privacy-preserving manner; 3) Precise Security Instrumentation (PSI) - a new
enforcement architecture that can enforce the context-based and agile security policies needed to
secure the IoT devices.

Chapter 7 shows how to integrate RADIO, LoFTI and PSI as an end-to-end system, and
demonstrates two use cases for the integration.

Chapter 8 discusses the related works of RADIO, LoFTI and PSI.
Chapter 9 summaries the contribution of this thesis, discuss the limitations and future works.

7

8

Chapter 2

Motivation

To highlight the security challenges for IoT devices, we use several motivating examples to show
why existing mechanisms are ineffective for securing IoT devices.

2.1 Motivating example 1: HackingTeam incidence
We describe a realistic attack scenario to highlight the above security issues and why existing
security mechanisms, including host-based detection [25, 28], signature-based detection [94,
100], ACLs and network-based anomaly detection [42, 45, 68, 72, 76, 95, 113], are impractical to
protect enterprise IoTs. Figure 2.1 depicts a real-world security incident (an IoT-based intrusion
against the HackingTeam - a famous hacker organization[23]). In step 1, the attacker found a
zero-day flaw and compromised the router using code injection. In step 2, after compromising
the router, the attacker obtained access to the NAS via a backdoor (authentication bypass). In
step 3, he used the NAS to remotely login to the Blackberry Server and exfiltrated valuable data.

2.1.1 Broken network enforcement

Current enforcement architecture, including host-based enforcement [25, 28] and hardware mid-
dleboxes are impractical to enforce the context-based and agile security postures needed to secure
the IoT devices. Host-based enforcement [25, 28] is impractical because IoT devices have lim-
ited resources to support any host-based detection. Therefore, in step 1, the attacker chose to
attack the router rather than the webserver. Hardware middleboxes use static IP-based rules, and
cannot enforce context-based and agile policies needed. For example, a hardware middlebox
cannot enforce a policy to prevent NAS’s remote access to the server in step 3, under the context
that the NAS has been accessed by the router.

Lack of behavioral model for IoT devices

Current detection mechanisms are unable to accurately infer and restrict the behaviors for IoT
devices. Signature-based network detection [94, 100] is ineffective because zero-day attacks are
very common for IoT devices. For example, in step 1, attacker easily found a zero-day code

9

��

	
	
	
	
	

Internet	

Web	Server	
(Joomla)	

DMZ	 Intranet	1	 Intranet	2	

Enterprise	Network	

DB	Server	
(Mongo	DB)	

Router	

Server	
(Blackberry)	

NAS	
(Synology)	

Step1:		
code	injec5on	

(0-day)	

Step2:		
backdoor	
(0-day)	

Step3:		
remote	login	

(stepping	stone)	

Computers	

IoT	Devices	

Figure 2.1: Attackers intrude the enterprise via IoT devices.

injection vulnerability within two weeks and evaded the signature-based detection between the
Internet and the DMZ zone. Network-layer access control (ACLs) fails because of the scale and
diversity of the enterprise IoT devices. In step 2, the administrators cannot simply block the
access from the DMZ to the NAS because the NAS was used to backup some servers in DMZ.
Current network anomaly detection is easy to evade because they either focus on low-level traffic
statistics [68] or only model certain types of attack behaviors with specific patterns (e.g., malware
C&C or port scanning) [42, 45, 72, 76, 95, 113]. In step 3, the attacker performs remote login
at a low frequency to avoid causing flow-statistics anomalies. Also, the remote login behavior
is a legitimate computer behavior (although it is abnormal for a NAS), so the anomaly detection
specialized for computer activities[42, 45, 72, 76, 95, 113] will not raise any alert.

1

Smart Window

“High”

Benign

Attack

Temperature

“Low”

“Open”

“Open”

Figure 2.2: Benign/malicious smart window scenarios.

10

2.2 Motivating example 2: Physical break-in against smart
homes

To prevent privacy leakage and physical hazards, current approaches[43, 48, 70, 78, 102] rely
on access control policies with contextual information to decide if an action of an IoT device
should be allowed or blocked. In Figure 2.2, we present a motivating example to show how
contextual policy can prevent physical hazards or privacy leakage. A user will access and open
the smart window when the temperature is high. The attacker, however, will not follow such
benign context -“temperature is high” and will open the window to break into the house even
when the temperature is low. Therefore, if there is a contextual policy that only allows access to
open the window when the temperature is high, this policy is able to prevent the attack.

1

Smart WindowTemperature Humidity AC ON/OFFCO2 Density

Figure 2.3: Complex interactions across smart windows, AC units and the environment.

2.2.1 Complex interactions are hard to capture
There are two approaches to generate contextual policies. The first approach is to preinstall con-
textual policies specified by developers or users [70, 102]. The second approach is to use runtime
prompts with contextual information to let the user make the allow/block decision [65, 70, 78].
Both approaches heavily rely on the knowledge and effort of the developers/users to anticipate
malicious behaviors. Thus is easy to misconfigure and have poor coverage over all contextual
policies needed, causing high FPs/FNs. For example, in Figure 2.3, whether the smart win-
dow will be opened depends on multiple factors including temperature, humidity, CO2 density
and whether AC is on/off, and such context can be different between smart homes. Suppose a
handcrafted policy is preinstalled to block the access to the smart window when the tempera-
ture is above preconfigured thresholds, such thresholds can be easily misconfigured and result
in high FPs/FNs. Then, suppose there are runtime prompts with temperature, humidity, CO2

density and whether AC is on/off, such context can be different every time the smart window is
accessed. Considering the number of IoT devices in a smart home, there could be hundreds of
prompts per day and cause the user to be unable or unwilling to handle all the prompts.

2.3 Summary
In this chapter, we walked through two motivating examples. The first example shows the broken
network enforcement and the lack of single-device behavior models for IoT devices. The second

11

example shows that the complex interactions of IoT device are hard to capture. We will show
how to address the IoT security issues in the next chapter.

12

Chapter 3

System Overview

In this chapter, we first introduce the high-level vision for our fine-grained detection and preven-
tion system for IoT devices. Then we discuss the challenges to realize this vision. After that, we
share our insight to address these challenges. Next, we show the practical technical design based
on our insights.

3.1 High-level vision

Figure 3.1 shows a high-level vision of the fine-grained detection and prevention system for IoT
devices. There are three key components - RADIO, LoFTI and PSI. The RADIO module learns
the single-device behavioral models from single-device historical records. The LoFTI module
learns the environment-device and cross-device interaction models from interaction historical
records. Then the PSI module converts the single-device behavioral models and the interaction
models into concrete IoT security policies and enforce such policies to protect IoT devices. In
PSI, a logically centralized control plane monitors the contexts of different devices and the op-
erating environment and generates a global view for the policy enforcement, and customized
micro middleboxes (micro network-security functions) are acting as security gateways for each
IoT device. To enable immediate deployment, we assume the enterprise has a well-provisioned
on-premise cluster with a pool of commodity server machines. In a home scenario, we envision
an upgraded version of an IoT router (e.g., Google OnHub) with computing capabilities. Each
IoT device’s first-hop edge router or wireless access point (AP) is configured to tunnel packets
to/from the device to the cluster or an IoT router.

Next, we describe the workflow of the fine-grained detection and prevention system. Ini-
tially, PSI instantiates and configures individual micro middleboxes and the necessary forward-
ing mechanisms to route packets of the IoT devices to these micro middleboxes. Then, from the
events from the devices and micro middleboxes, the RADIO module will infer a single-device
behavioral model for each IoT device, and the LoFTI module will learn the environment-device
interaction and cross-device interaction patterns for each smart home/enterprise. Then single-
device behavioral model inferred by RADIO and the environment-device interaction and cross-
device interaction pattern learned by LoFTI are converted into context-based and agile security
postures.

13

My research: fine-grained network detection
and prevention for IoT

1	

PSI	Controller	

	
	
	
	
	

#1	fine-grained	
network		

enforcement	

security	policies	

RADIO	
single-device	

behavioral	model	

history	of		
single-device	
behaviors	

#2	learn		
single-device	
behaviors	

interac@on	model	
•  environment-device	
•  cross-device	

LoFTI	
history	of	interac@ons	
•  environment-device	
•  cross-device	

#3	learn	
complex	

interac=ons	

backdoor	patch	

soEware	middleboxes	

Figure 3.1: High-level vision of the thesis.

Finally, PSI enforce such postures to protect the IoT devices from code injection, authentica-
tion bypass, privacy leakage or physical hazard.

Next, we will walk through our vision of the three key components - RADIO, LoFTI and
PSI.

RADIO’s overview�

Model	
Learning	

Anomaly	
Detec3on	

History	of		
IoT	traffic	

Benign	
behavior	model	

Alerts	

��

Real-3me		
IoT	traffic	

•  Login	
•  Video	recording	
•  Audio	recording	
•  Zoom	X2/X4/X8	

•  Turn	on	debug	mode	

Figure 3.2: RADIO’s vision.

14

3.1.1 RADIO module
RADIO’s goal is to build a behavioral anomaly detection mechanism by learning single-device
behaviors for IoT devices. As shown in Figure 3.2, RADIO will observe the history of IoT traffic.
Then, RADIO will provide a model learning module to learn the benign behavior model for IoT
devices based on history. For example, RADIO will use the model to capture the login, video
recording, audio recording and zoom behaviors of the camera. At runtime, RADIO will observe
the real-time IoT traffic and compare it with the benign behavior model and raise an alert on
any anomaly. For example, the malicious behavior to turn on the debug mode for the camera
will deviate from the benign behavior model and RADIO will raise an alert on this malicious
behavior.

3.1.2 LoFTI module
In LoFTI, we aim at learning contextual access control policies from the historical records in
smart homes. Suppose the history of IoT accesses with the corresponding context and action is
given (e.g., temperature, humidity, the state of the AC and the actions performed on the smart
window in Figure 3.3). The learning mechanism will learn a function F , so that the F can
decide to allow or block an access in the future based on the corresponding context and action.
For example, in Figure 3.3, the history shows that the user will open the window when the
temperature and humidity are high (i.e., feels hot), and the attack will open the window even
when the temperature and humidity are relatively low. Then our goal is to learn function F to
decide to block/allow the access to open the window based on the temperature and humidity in
the future.

Learning framework

F(Context, Action) → Block/Allow

Temperature Humidity AC Smart Window Label
32℃ 60% off open benign
16℃ 20% on open malicious

…

History

Context Action

Figure 3.3: LoFTI’s vision.

3.1.3 PSI module
The goal of PSI is to enable context-based and agile enforcement to protect IoT devices. Fig-
ure 3.4 shows a high-level vision of PSI. PSI envisions customized micro-middleboxes that act
as security gateways for each IoT device. A logically centralized PSI controller monitors the
contexts of different IoT devices and the operating environment and generates a global view for
policy enforcement. Based on this view, it instantiates and configures individual middleboxes

15

and the necessary forwarding mechanisms to route packets to these middleboxes. This vision is
quite general and can naturally support a range of IoT management models; e.g., directly con-
nected devices vs. IoT hubs vs. smartphone-controlled. To enable immediate deployment, we
assume the enterprise has a well-provisioned on-premise cluster with a pool of commodity server
machines. In a home scenario, we envision an upgraded version of an IoT router with computing
capabilities. Each IoT device’s first-hop edge router or wireless access point (AP) is configured
to tunnel packets to/from the device to the cluster or an IoT router.PSI architecture overview

1	

	
	
	
	
	

tunneling	

PSI	Controller	

events	 launch/configure	Control	Plane�

Data	Plane�

Enterprise	Network	

NAS	

Scan		
Detector	 DPI	

Backdoor	
Patch	

Camera	

“For	NAS,	if	a	suspicious	scan	is	detected,	
enforce	DPI	to	prevent	SambaCry	aFack”	

Figure 3.4: PSI’s vision.

3.2 Challenges
There are several challenges to realize the above high-level vision and each component.

3.2.1 Learning single-device behaviors
For RADIO, it is hard to learn single-device behaviors via existing security solutions. First,
manually learning and crafting attack signatures, such as in existing IDS or IPS systems (e.g.,
Bro IDS [94], Snort [100] and Suricata [35]), is not effective since zero-day exploits are com-
monly utilized for attacks against IoT devices. Second, statistical flow-based detections and
learning [42, 45, 68, 72, 76, 95, 113] often work well with attacks that exhibit statistical pat-
terns (e.g., port scanning, C&C), but attacks against IoT devices in enterprise networks are often

16

stealthy. This is evident in the HackingTeam infiltration where the attackers mention that they
specifically targeted one vulnerable IoT device with low attack frequency to avoid raising any
alerts from statistical anomaly detection methods. Third, the scale and diversity of enterprise IoT
deployments render manually learn and configure access control to be ineffective.

3.2.2 Learning complex interactions

Our goal in LoFTI is to build a machine learning framework to automate and simplify the process
of generating contextual access control policies for IoT devices. The machine learning frame-
work will learn the contextual policies from the historical records of contextual IoT access, and
use the learned contextual policies to decide to allow or block a particular IoT access in the
future.

However, there are two goals that are hard to simultaneously achieve in designing such a ma-
chine learning framework: accuracy and privacy. To see why, consider two strawman solutions.
On one extreme, if each home relies on its own historical records (single-home learning), some
smart homes may have insufficient data to learn an accurate contextual access control model. On
the other extreme, to avoid this insufficient data issue, we could collect all the historical records
of all smart homes in a centralized place (e.g., AWS/Azure/Google cloud) and learn one model
(all-home learning). However, such all-home learning may not be accurate since different smart
homes can have diverse contextual access patterns. Also, this all-home learning mechanism re-
quires the historical data of a smart home to be transferred out of the smart home (e.g., to the
cloud), and will raise users’ privacy concerns.

3.2.3 Enforcement architecture

There are several challenges to realize the vision of PSI based on current security enforcement ar-
chitecture with hardware appliances and static routing. First, in terms of deployment complexity,
we need a dedicated hardware appliance attached to every device. Even ignoring the complexity
of rewiring the network, this is an uphill task given the number of wireless, mobile, and virtual-
ized devices. The second issue is cost; adding as many physical hardware appliances as there are
devices is a non-starter for medium-to-large scale enterprise networks with tens of thousands of
devices. Third, such an omnipotent device that can dynamically reconfigure its traffic processing
does not exist today. While future solutions (e.g., [104]) may offer such a consolidated appliance,
we have to embrace the practical concern that security functions are fragmented across different
vendors with diverse capabilities. Finally, even if we had the appliances, the policy abstractions
offered by current frameworks are not expressive enough to capture agile security postures.

3.3 Our insights

To address the above challenges, we rely on several insights about IoT devices.

17

Initial State
GET "/user"

Logged in
POST

"/recording"

Sound
recording

GET
"/view/zoom/x4"

Enable
streaming

POST
"/setSystemStream"

Zoom in
X4

Initial State
GET "/user"

Logged in

POST
"/setDebugLevel"

Debug
mode

Benign Camera Behaviors Mirai Malware Behaviors

Figure 3.5: The limited benign behaviors of a camera and the attack behaviors (Mirai
Malware[40]) against it.

3.3.1 A single IoT device has a limited set of behaviors

Our key insight of RADIO is that each IoT device is typically used for a limited number of
specialized use cases. Therefore, each device has a limited set of behaviors. To perform attacks,
attackers are likely to deviate from the specialized use cases, so attacks will be logically different
from the limited device behaviors. Note that both the benign behaviors and malicious behaviors
can be supported by the network protocols employed by the IoT device. Therefore, modeling the
network protocol of the IoT device is not sufficient to distinguish benign/malicious behaviors.
For example, Figure 3.5 shows the difference between the benign behaviors of a camera and the
Mirai malware[40] against it. The benign behaviors include logging in, recording sound, enable
streaming and zoom in. The attack behavior, however, includes sending a HTTP POST message
with URI “/setDebugLevel” to force the camera to debug mode (so the attacker can change
the camera’s firmware). Thus, detecting behavioral anomalies can help us identify IoT-related
malicious activities.

3.3.2 Federated Multi-Task learning can address the insufficient data issue
and privacy issue for IoT devices

Our insight for LoFTI is that we can apply Federated Multi-Task learning[110] to address the
issues of insufficient data, privacy and diversity. The high-level process of Federated Multi-Task
learning is shown in Figure 3.6. In step 0, the cloud backend will initiate the model F and task
correlation Ω. In step 1, the cloud backend will send the model parameter wi to each smart home
i. In step 2, the edge node in smart home i will calculate the local model parameter update
∆wi based on local data Xi and model parameter wi. In step 3, the edge node in smart home
i will send the model parameter update ∆wi back to the cloud backend. In step 4, the cloud
backend will update the task correlation Ω and the model F based on updates from all smart
homes {∆wi}. Then step 1, 2, 3 and 4 will be executed for multiple iterations until the model F

18

converges.

Edge
Gateway

Edge
Gateway

Step 0: Initiate model ! and task correlation Ω

Step 1: Send model
parameter wi to node i

Step 2: Calculate�wi based on
local data Xi and received parameter wi

Step 3: Send �wi to backend

Step 4: Update Ω and F based on update from all nodes {�wi }

…

k
iterations

Figure 3.6: Federated Multi-Task learning workflow.

Federated Multi-Task learning can address insufficient data issue because the model F is
learned from the data {Xi} from each smart home in a distributed manner. The diversity issue
is addressed as each smart home is considered as an individual learning task, and the task corre-
lation Ω can capture the diverse correlations (e.g., distinguishing common part and unique part)
and allow each task to be customized. There will be fewer privacy concerns for the user as the
raw data Xi for smart home i is kept locally within each smart home, only model parameters
{∆wi} is transmitted to the cloud backend. Note that highly skilled attackers may still be able
to infer private information from the model parameters (with higher cost). However, it is possi-
ble to combine Federated Multi-Task learning with masking or differential privacy techniques to
further protect the private information in the model parameters.

3.3.3 SDN and NFV can enable the context-based and agile enforcement
for IoT devices

In PSI, our insight is that SDN and NFV can enable the context-based and agile enforcement for
IoT devices. More specifically, PSI can decouple the deployment of security appliances from
topological constraints by tunneling a device’s traffic to a server cluster. This cluster can provide
an appropriate appliance for any traffic, on demand. To address the cost issue, PSI leverages NFV
to build “tiny” virtualized appliances to share commodity hardware and reduce cost. Note that
one commodity server can support up to hundreds of such appliances[86]. To address the lack of
dynamic omnipotent appliances, PSI uses SDN capabilities to compose existing appliances (e.g.,
Snort or Bro) to dynamically steer the traffic within the cluster.

19

3.4 Making Fine-grained Detection and Prevention System Prac-
tical

3.4.1 Practical Challenges for RADIO

To learn the network behaviors of a single IoT device, the main challenges are the lack of network
behavior models for IoT devices and how to address the data pollution issue in realistic setting:

• Abstraction for modeling IoT behaviors: It is obvious that the limited set of high-level
IoT behaviors are concealed in complex network traffic patterns. It is hard to decide how
to abstract the key characteristics of the complex network traffic patterns to represent the
high-level IoT behaviors. Also, the abstraction needs to be expressive enough to capture
IoT behaviors contained in a wide range of network protocols.

• Learning IoT behavior model from unlabeled behavior samples: It is difficult to obtain
clean and labeled samples in practical setting [111]. It is difficult if not impossible to obtain
a comprehensive set of attack behavior samples since zero-day attacks are common for
enterprise IoT devices. Benign behavior samples are also difficult to enumerate since the
management cost to generate all possible benign samples in a dedicated clean environment
is high considering the scale and diversity of IoT devices. Passive monitoring over real
deployment is the most practical solution but it is prone to pollution. Therefore, RADIO
has to provide a robust learning mechanism that can learn benign behavior models from
unlabeled, potentially polluted behavior samples.

RADIO tackles these issues and detects behavior anomalies based on benign behavior models
learned from unlabeled, potentially polluted network traffic. To provide a precise abstraction for
modeling the network behaviors of IoT devices, we identified three key network characteristics
of IoT behaviors, and carefully define the states and transitions of the FSM model to abstract
these key characteristics in Section 4. Then to learn the FSM model from IoT traffic, the main
issue is to learn IoT behavior model from unlabeled network traces. There are two subproblems.
The first subproblem is that it is hard to infer the FSM states with unlabeled behavior samples.
Existing FSM inference algorithms either rely on both positive and negative samples [57, 93]
or rely on extra structural information (e.g., while loop structure of program) [103] to infer the
FSM states. However, considering IoT traffic, it is hard to obtain labeled positive samples (attack
samples) or extra structural information (no program structure). To address this issue, RADIO
provides a modified FSM inference algorithm to leverage the internal correlation inside the IoT
traffic to infer the FSM states. The second subproblem is that the samples can be polluted, and
malicious behaviors will be included in the benign behavior models learned. To handle pollution,
RADIO novelly integrates an outlier detection mechanism with the FSM inference algorithm to
generate multiple candidate models, and leverages IoT heuristics to filter out polluted models
and selects the best benign model.

3.4.2 Practical Challenges for LoFTI

There are several challenges in making LoFTI practical:

20

• Defining key features to extract contextual IoT access patterns: Given the wide range
of information in smart homes, it is hard to define a set of key features that are expressive
enough to extract various contextual IoT access patterns. For example, a naive solution
may use MAC/IP address of the IoT devices as a key feature, which are not effective and
similarity in IP address can even be noise to the learning framework.

• Building model with high accuracy and low computation/communication cost: More
complex ML models (CNN, RNN, LSTM) often have higher accuracy as they can encode
more information than less complex models (Naive Bayes, SVM). However, complex ma-
chine learning models also result high computation/communication cost, especially in a
distributed learning framework like LoFTI. It is hard to achieve a good trade-off between
accuracy and cost.

• Addressing unbalanced contextual IoT access records: In reality, the historical records
for privacy leakage/physical hazards are much fewer comparing with benign IoT access
records. For example, there can be more than 10000 records in 100 smart homes about
user opening the smart window in the historical records, with less than 100 records about
attacker opening the smart window. As a result of such unbalanced datasets, the decision
boundary will be pushed towards the attack space and result in high FNs.

To address these issues, we explore the design space of LoFTI in terms of feature extraction,
model building and dataset construction and address the challenges above. We generalize 6 types
of key features to capture the contextual IoT access patterns and demonstrate their effectiveness
in distinguishing benign/malicious IoT access. We build a simple SVM-based model with ex-
tra temporal structures to achieve high detection accuracy and low communication/computation
cost. We provide a specialized data augmentation mechanism to balance the contextual access
historical record dataset.

3.4.3 Practical Challenges for PSI

For building the enforcement architecture, it is hard to design an expressive policy abstraction
to allow the admins to express context-based and agile policies. Also, it is hard to design a
scalable and responsive controller for the enforcement architecture. More specifically, there are
two subchallenges:

• Expressive policy abstractions Traditional policy abstractions (e.g., in firewall, IDS, ACL)
that rely on a simple if-match-then-action paradigm are not sufficient for the agile and
context-aware defenses we envision. To this end, we develop an expressive policy abstrac-
tion based on an intuitive combination of finite state machines to capture the security state
and directed acyclic graphs to capture context-based security actions. We design a Pol-
icy Engine that interprets the policy abstraction and computes the real-time security intent
updates for each IoT device based on the current context.

• Scalable and responsive orchestration Naive orchestration schemes to realize PSI would
cause several scalability and responsiveness problems. For instance, naively sending the
first packet of every context change to a central controller introduces new control plane
attacks [107]. Naive scheme to launch new middlebox instances at every context change

21

wastes time and resources (CPU/memory). Finally, if the orchestration cannot scale out,
the attacker can easily overload the system of PSI To address these issues, we develop a
scalable orchestration platform using a combination of proactive orchestration, pre-fetched
installation of middleboxes, and horizontal scaling.

To address these issues, PSI makes the following contributions. To address the policy ab-
straction issue, we design a PSI policy abstraction that can express agile and contextual traffic
processing. This allows us to express rich multi-stage security-relevant processing mapped to
a security-relevant state for each device; e.g., a host in a normal state is subject to simple IDS-
followed-by-firewall but in “suspicious” state may be subject to additional on-demand exfiltra-
tion detection modules. We also provide mechanisms to incorporate legacy policies that need to
be applied to a group of devices. To address the scalability and responsiveness issue, PSI ap-
plies the SDN/NFV mechanisms. However, naively applying SDN/NFV mechanisms in security
context is problematic and can introduce new avenues for DoS attacks. We develop a scalable
orchestration platform by synthesizing three key ideas: (a) proactive forwarding schemes based
on logical tags that do not need to involve the controller; (b) effective techniques for horizontally
scaling the controller infrastructure; and (c) prefetching future enforcement states to improve
responsiveness.

3.5 Summary
In this chapter, we first show the high-level vision of the fine-grained detection and prevention
system. Then, we discuss the challenges to realize this vision. After that, we present our insights
about how to address the challenges and our design to make the system and its key components
practical. Next, in Chapter 4, 5 and 5, we will discuss the detailed technical pieces to realize our
vision.

22

Chapter 4

Learning Single-device Behaviors

In Chapter 3, we have seen the vision of RADIO to learn the single-device behavioral model for
IoT devices, and shown that the key questions to make RADIO practical are:
• How to create an expressive abstraction for modeling IoT behaviors?
• How to learn such IoT behavior model from unlabeled behavior samples?
In this chapter, we will answer these two questions with detailed design of RADIO’s net-

work behavioral model and robust learning mechanism. After that, we will present the result of
evaluating RADIO for its accuracy and robustness.

4.1 Network Behavioral Model for IoTs
Given the historical network traces, we need an abstraction for modeling IoT-specific behaviors.
The abstraction needs to satisfy two requirements. First, the abstraction needs to be able to
capture the key network characteristics of IoT device behaviors. Second, the abstraction needs to
be expressive enough to capture IoT behaviors contained in a wide range of network protocols.

4.1.1 Capturing key network characteristics for IoT devices
We start with an example to show what are the key network characteristics for IoT devices and
how to capture them. Figure 4.1 illustrates a camera’s authentication behavior. The HTTP au-
thentication behavior includes 4 ADUs (Application Data Units). In ADU1, the user is trying to
access the camera with the request method GET and URI /user. Then in ADU2, the camera
notifies the user to continue authentication by sending back status code 401. Then user authen-
ticates using ADU3. The camera notifies the user that the authentication is successful with status
code 200 in ADU4. From this example, there are three key aspects of the behavior: 1) the com-
mands and arguments included in each ADU (e.g., the request method, URI and status code);
2) the direction of each ADU, i.e., whether the ADU is sent to or from the IoT device; 3) the
sequence of the ADUs, e.g., the sequence of ADU1 to ADU4 indicates the authentication routine
of the camera.

Now, we can think of some strawman solutions for modeling the IoT behaviors. One natural
starting point is to use the coarse-grained flow statistics such as packet counts [68]. However,

23

GET /user - to

- - 401 from

ADU1

ADU2

GET /user - toADU3

- - 200 fromADU4

Request Method URI Status Code Direction

The HTTP authentication behavior of a D-Link Camera
1. Commands and arguments 2. ADU direction

3. ADU
sequence

Figure 4.1: A camera’s authentication behavior.

the flow statistics do not capture IoT’s commands and arguments at application-level (e.g., URI).
Alternatively, we can try to build a bag-of-words model that counts the appearance of different
ADU field values. However, the bag-of-words model cannot capture the directionality or sequen-
tial semantics (e.g., status code 401 appears before status code 200, otherwise authentication is
bypassed).

To overcome the limitations of the strawman solutions, we suggest the following network
behavior model. Instead of flow-level statistics, we choose to abstract application-level ADU
fields 1 that contain the device-function-specific commands and arguments for enterprise IoTs
2. To capture the directional semantics, we explicitly include the direction of the ADU (from
device or to device) to model the interaction between the user and the device (e.g., HTTP GET
from admin to router). Finally, to capture the sequential semantics of a session, we define a FSM
model (Finite State Machine) to abstract the sequential pattern from the ADU series.

To capture both ADU fields and ADU direction, we define an abstracted ADU m as the
combination of a set of ADU fields {f1 , ..., fv} and an ADU direction dm . The ADU direc-
tion dm captures whether the ADU is sent from the device or to the device. For example, the
abstracted ADU for ADU 1 in Figure 4.1 is {GET, /user,−, to}.

To represent the sequence of ADUs in a compact way, we abstract the sequence of ADUs
using a FSM model. We define the FSM model as a Mealy Machine 3. A Mealy Machine FSM is
a six tuple< S, s0,ΣI ,ΣO, δ, λ >, where S is a finite non-empty set of states, s0 ∈ S is the initial
state, ΣI is a finite set of input symbols,ΣO is a finite set of output symbols, δ : S×ΣI → S is the

1An ADU field is defined as a sequence of lines of characters with special syntax defined by the protocol format.
2Existing protocol reverse engineering mechanisms[56] can identify the ADU fields.
3Another alternative is Moore Machine. We did not choose Moore Machine as it has “rejecting” states that relies

on attack samples (as counter examples) to generate.

24

transition relation, λ : S×ΣI → ΣO is the output relation. To define the transition relation δ and
output relation λ, we leverage the causality between a request ADU and a response ADU, i.e., at
a given state of the FSM (e.g. S0), a specific request ADU (e.g. GET) will result in a specific
response ADU (e.g. 401). Therefore, we define the transition relation as δ : S×{mrequest} → S
and the output relation λ : S × {mrequest} → {mresponse}, where m is the abstracted ADU. For
example, for the camera’s HTTP authentication behaviors in Figure 4.1, the transition relation at
S0 is {S0} × {GET} → {S1} and the output relation at S0 is {S0} × {GET} → {401}, which
means at given state S0, input GET will yield output 401.

Abstracted	CMP	Messages	
	
ID�

Subset	{ma}� Subset	{mb}�
Direc7on+Command� Subcommand�

1� from	+	Will� Echo�
2� from	+	Do� Suppress	Go	Ahead�
3� to	+	Subop7on� Terminal	Type�
4� to	+	Do� Nego7ate	About�
5� to	+	Will� Environment	Op7on�
6� from	+	Subop7on� Remote	FlowControl�
7� Linemode�
8� New	Environment	Op7on�
9� Status�
10� End�

Figure 4.2: Cisco router’s behaviors captured by RADIO’s FSM model.

4.1.2 Expressiveness to capture IoT behaviors contained in a wide range
of network protocols

However, the above definition cannot handle general protocols that may not have request and
response ADU pairs (e.g., Telnet). This is because the above definition relies on the causality
between request and response (i.e., a certain request result in a certain response). To abstract
protocols without request and response ADU pairs, our idea is to also leverage the causality
between the ADU fields inside each ADU, i.e., the occurrence of some ADU fields result in
the occurrence of some other ADU fields in an ADU. Figure 4.2 demonstrates the end-to-end

25

example for Cisco Cluster Management Protocol (CMP), a typical protocol without request and
response ADU pairs. In Figure 4.2, the occurrence of some ADU fields (such as Suboption
command) will result in the occurrence of some other ADU fields (such as Terminal Type
and Remote FlowControl). Based on this idea, an abstracted ADU m can be split into two
subsets of ADU fields ma = {fa} and mb = {fb}, e.g. {fa} is the command and {fb} are
the combination of its arguments. At a given state of the FSM, a subset of ADU fields {fa}
will result in a specific subset of ADU fields {fb}. Therefore, for such protocols, we define the
transition relation as δ : S × {ma} → S and the output relation λ : S × {ma} → {mb}. After
the extension, RADIO’s abstraction for modeling IoT behaviors is expressive enough to capture
IoT behaviors contained in a wide range of network protocols, including Telnet, HTTP, FTP,
SNMP, SMB, DNS and vendor-specific protocols such as CMP.

4.1.3 Handling diverse IoT protocols

Now, we discuss how to extend the above behavior model to handle diverse IoT protocols. The
key issue here is how to construct the L7 ADUs from the network packets of an IoT protocol. In
this part, we start with unencrypted traffic, and will extend to handle encrypted traffic in the next
part.

In general, the task of constructing the L7 ADUs from the packets relies on protocol speci-
fications and protocol parsers. For common network protocols (e.g., http, telnet and snmp), we
can rely on protocol parsers in IDSes and IPSes. For example, Suricata [35] offers a http parser
called the htp.lib to construct ADUs (e.g., GET /user) from http packets.

Figure 4.3: Protocol specification of the modbus protocol.

Then, for IoT-specific protocols, we can leverage the protocol specifications. For example,
Figure 4.3 shows part of the protocol specifications of the modbus protocol (IoT protocol widely
used industry control systems). In the protocol specification, an ADU can be identified by three
elements: 1) certain signature in the packet payload (denoted as content); 2) the starting position
of the signature (denoted as offset); 3) the length of the signature (denote as the depth). For
example, in Figure 4.3, the ReadRegister ADU can be identified by the signature pattern of
00 00 04, the offset 7 and the depth 3.

Such protocol specifications can be obtained from the design documentation of the IoT pro-
tocol or from previous works that can learn protocol specifications from network traces[56].

26

4.1.4 Handling encrypted traffic
Next, we discuss about the possibility to extend the above behavior model to handle encrypted
IoT traffic. The key obstacle here is that the above behavior model is based on L7 ADUs, but for
encrypted IoT traffic, we only have visibility to information below L4.

Fortunately, previous works [41, 50] demonstrated the possibility to side channel L7 behav-
iors from encrypted traffic (e.g., web application behaviors over https). Therefore, in this paper,
we demonstrate it is possible to apply the key below-L4 features from previous side channel-
ing works (e.g., packet direction, frame timestamp and frame length) and developed a clustering
mechanism to identify L7 ADUs based on the below-L4 information of the encrypted IoT traffic.

The input for our mechanism is a sequence of packets with L4 information 4. The output of
our mechanism is a segmented and typed sequence of ADUs. There are two major steps in our
approach:

The first step is to segment the sequence of packets into subsequences of packets, where each
subsequence of packets is an ADU. To achieve this, our insight is that the time stamp of the
packets in the same ADU (or same pair of ADUs) are much closer to each other than the time
stamp of the packets in different ADUs. For example, Figure 4.4 demonstrates a sequence of
packets of the smart light and their frame size. It is clear that packets of the same pair of ADUs
are close to each other in terms of their time stamps, and the packets of different pairs of ADUs
are distanced by a few seconds to each other. Here each pair of ADUs is an ON or OFF operation
of the smart light. Figure 4.4 shows that the user turned on or off the smart light every few
seconds in the experiment setting. Based on this insight, we can perform a clustering (e.g., X-
means) to segment sequence of packets into subsequences of packets based on their timestamps.
For protocols without request and response ADU pairs, each sequence of packets is an ADU.
For protocols with request and response ADU pairs, we can use the packet direction to further
segment the subsequence into two subsequences for request and response ADUs.

Packets	of	the	same	pair	of	ADUs	 Packets	of	different	pairs	of	ADUs	

Figure 4.4: A sequence of packets of the smart light and their frame size.

Once we have segmented the sequence of packets into subsequences, the second step is to

4We assume single threaded communication which is common for IoT devices.

27

identify the type of ADU for each subsequence. To achieve this, our idea is to perform an-
other clustering on all subsequences to cluster them into different types of ADUs based on key
features (e.g., frame length) of the packets shown by previous side-channeling works [41, 50].
The key issue here is how to calculate the similarity of different subsequences as the number
of packets can be different in different subsequences. In this paper, we use a standard signal
processing technique called Dynamic Time Warping to calculate the similarity between different
subsequences.

After the above two steps, we are able to convert a sequence of packets with L4 information
into a segmented and typed sequence of ADUs for RADIO to build the L7 behavior models.
Note that we use clustering so no label is required.

4.2 Learning IoT Behavioral Model
Given the unlabeled and potentially polluted historical traces from a set of aggregated IoT de-
vices, RADIO needs to learn a FSM model to represent benign behaviors. We already know that
a historical trace can be considered as a sequence of messages (ADUs). To learn a FSM model
from a set of such sequences (set of historical traces), there are two issues.

The first issue is how to infer the FSM states. It is well-known that classic FSM inference
algorithms requires a positive set of sequences (sequences that would appear in the FSM) and a
negative set of sequences (sequences that would never appear in the FSM) to determine the states
of the FSM and build a non-trivial FSM (proved by Gold et al. [67]). For example, if there is
only a set of positive sequence {a, b} and {a, c}, then the classic FSM inference algorithms will
build a FSM with one state and three self-transitions a, b and c. Thus any sequence composed
by a, b or c is included in the FSM, even if {b, c} is a malicious sequence. Previous FSM-based
system-call anomaly detection approaches [103], however, avoid this issue by assuming that the
states can be determined by program structure (e.g., while loops). However, in the context of IoT
historical traces, there is only one unlabeled set of sequences, and there is no program structure
information that can determine the states to build a non-trivial FSM.

The second issue is pollution. Even if we can build a non-trivial FSM from only one set of
sequences, this does not address the pollution issue. If the one set of sequences for the algorithm
is polluted, then the FSM model will contain malicious behaviors, thus the FNs will be high.

4.2.1 RADIO’s idea
Now we present our ideas to address these two issues. We start by considering a classic FSM
inference algorithm called RPNI5 (Regular Positive and Negative Inference) [93]. However, the
FSM inference algorithms (including RPNI) are supervised algorithms, requiring both labeled
benign samples and labeled attack samples (Gold et al. [67]), which are hard to obtain in prac-
tical enterprise settings. To address this issue, our first step is to modify the supervised RPNI

5The state-of-the art FSM inference algorithms include RPNI, Biermann & Feldman’s algorithm[44], and
DeLeTe2[57]. Biermann & Feldman’s algorithm and DeLeTe2 generate non-deterministic FSM, while RPNI gen-
erates deterministic FSM. Nondeterministic means it can transition to, and be in, multiple states at once, which is
contradicting the deterministic behaviors of enterprise IoT devices.

28

algorithm into a semi-supervised algorithm that can work with benign samples alone. For this, we
leverage the causality in the IoT traffic (e.g., a login request resulting in a login status response)
to determine the FSM states.

However, modifying the RPNI algorithm alone does not address the pollution issue. If the
benign samples for the semi-supervised algorithm is polluted, then the FSM model will contain
malicious behaviors, thus the FNs will be high. To address this issue, our idea is to design an un-
supervised algorithm by novelly integrating the semi-supervised RPNI algorithm with an outlier
detection algorithm called RANSAC[66]6. The unsupervised algorithm will generate multiple
candidate FSM models using the semi-supervised RPNI algorithm, and leverage RANSAC algo-
rithm to filter out models with malicious behaviors (outliers), and select the best benign model
from the candidate models.

4.2.2 RPNI Modification

Basic RPNI The basic supervised RPNI algorithm is shown in Figure 4.5. In Step 1, benign or
“positive” samples are used to build a tree where each sample is a path from root to leaf. In Step
2, basic RPNI merges nodes to compact the tree into FSM model, and ensure that the labeled
attack or “negative” samples is not included in the FSM model. For example, in the bottom left
figure of Figure 4.5, in Step 2, if S0 and S2 are merged, then the counterexample GET, 200
(indicating an authentication bypass) will be included. When there are no attack samples, all the
nodes will be merged, and result in a single-state FSM with all malicious behaviors included,
and the FNs will be high.

RADIO’s modification for RPNI We modify the RPNI algorithm to a semi-supervised algo-
rithm without requiring attack samples. We achieve this by replacing the traditional merge with
two causality heuristics: (1) at any state, same request ADU yields same response ADU, and
(2) at any state, same ADU fields subset ma yields same message fields subset mb. Our obser-
vation is that the protocols used by the enterprise IoTs either have strong correlations between
their request and response ADUs (e.g. the request method and the status code of HTTP) or have
strong correlations between the commands and arguments inside an ADU (e.g. the command and
subcommand of Telnet). For any protocol we have considered in this paper, at least one heuristic
can be applied. Therefore, we believe that the two heuristics are general for all network proto-
cols. More specifically, for any protocol, consider a network session composed by a sequence of
ADUs. If the protocol is composed of request and response pairs (e.g., HTTP, SMB and SNMP),
the occurrence of a response highly depends on the previous request. If the protocol is not com-
posed of request and response pairs (e.g. Telnet, DNS and MQTT), then the occurrence of some
ADU fields highly depends on some other ADU fields. For example, for Telnet, the ADU field
subcommand highly depends the ADU field command.

To extend RPNI, we first need to adapt basic RPNI to Mealy Machine, so we add a Step 0 to
pair abstract message and build a Mealy Machine tree in Figure 4.5. Then we modify Step 2 to
use the causality heuristics, e.g., in the bottom right figure in Figure 4.5, in Step 2, our causality

6In particular, two popular state-of-the-art outlier detection algorithms are RANSAC[66] and Hough
Transformation[61]. The latter is designed for image structures (e.g., pixels) and is not applicable for IoT mod-
els.

29

Basic RPNI

Inputs:
1) example sequences
2) counterexample sequences

Step 1:
build a tree from example
sequences, each sequence is a
path from root to leaf.

Step 2:
merge the tree nodes, if a
merge generates a path for a
counterexample sequences, skip
the merge.

RPNI Extension

Inputs:
1) example sequences
2) counterexample sequences

Step 0:
pair abstract message

Step 1:
build a tree from example
sequences, each sequence is a
path from root to leaf.

Step 2:
merge the tree nodes by
causality heuristics:
a) at any state, same request

ADU yields same response ADU;
b) at any state, same ADU fields

subset ma yields same ADU
fields subset mb.

S0�

S2�

S0�

S1�

S2�

S5�

S6�

S3�

S4�

Examples
{Al}1: GET,401,GET,200
{Al}2: GET,401,POST,200

Counterexamples
{Al}3: GET,200

GET	

Step 1:Build Tree

S0�

S1�

401	

GET	

200	

POST	

200	

Step 0 + Step 1Step 2: Merge by
counterexamples

S0�

S1�

S3�S2�

GET/401	

GET/200	 POST/200	
GET/401	

GET/200	 POST/200	
GET	

POST	

401	

200	

GET	

Step 2: Merge by
heuristics

Examples
{Al}1: GET,401,GET,200
{Al}2: GET,401,POST,200

Basic RPNI RPNI Extension

Counterexamples
{Al}3: GET,200

Figure 4.5: Basic RPNI algorithm and our extension.

heuristics will prevent S0 and S1 from being merged, otherwise a GET input in S0 will result in
two outputs - 200 and 401, which breaks the deterministic nature of Mealy machine.

4.2.3 RANSAC Modification

Basic RANSAC

The basic idea in RANSAC (Random Sampling and Consensus) is to randomly sample data
from a polluted training set, build a model using the sampled data, and then evaluate how well
this model fits the inliers (benign behaviors) in the dataset. RANSAC will repeat this process for
a number of iterations to generate a set of candidate models, then pick the model that best fits the
inliers (benign behaviors).

More specifically, as shown in Figure 4.6, for a set of samples, the algorithm first selects a
random subset of size r (e.g., 10% of the data set size) and builds a model from the subset (Line

30

1 Input: D - a set of data points
2 for iterations ← 1 to k
3 Diter ← SampleRand(D , r)
4 . build a base model from r samples
5 Model iter ← Learn(Diter)
6 Dadd ← {}
7 Dtest ← D −Diter

8 for each d ∈ Dtest

9 . check if the rest of the data fits the model.
10 if DataFit(d ,Model iter) < dt
11 Dadd ← Dadd

⋃
d

12 . check if a good model is found
13 if Dadd > n
14 . Update the model with all “inliers”
15 Model iter ← Learn(Diter

⋃
Dadd)

16 . evaluate the loss on “inliers”
17 loss = ModelLoss(Model iter ,Dadd)
18 return the Model iter with the smallest loss in k iterations
Sampling 1 Sampling 2 Sampling 3

line 1 line 2 line 3

Figure 4.6: Basic RANSAC and three iterations generating different models (lines 1 - 3 in the
images below).

numbers 3 - 5). For example, in Figure 4.6, it builds a line from a subset of points. The algorithm
tests all other items against the model based on a DataFit function and if the mismatch is less
than a threshold dt , then the item is said to fit the model well, and it adds the item to the subset
(Lines 8 - 11). For example, in Figure 4.6, the DataFit function can be defined as the Euclidean
distance from a point to the line. Eventually, if the subset size is greater than a size n, the model
is considered to be reasonably good. It then evaluates the model with a ModelLoss function and
computes the loss (Lines 13 - 17). For example, in Figure 4.6, the ModelLoss function can be
defined as the sum of Euclidean distance from all the points to the line. It repeats this process
for k iterations and selects the model with the minimum loss as the best model. In this process,
models with malicious behaviors (outliers) will yield relatively greater model loss and will be
filtered out.

RADIO extension for RANSAC

However, RANSAC is not directly applicable for the FSM model generated by the semi-supervised
RPNI algorithm. There are two modules in RANSAC that are hard to define for the FSM model
of IoT behaviors. First, we need to define a DataFit function to find whether an ADU series fits

31

��

FSM	generated	from	all	
benign	behaviors	

FSM’	generated	by	adding	one	more	
malicious	behavior	(code	injec;on)	

Figure 4.7: Comparison of benign/malicious model.

an FSM model. More importantly, we need a ModelLoss function to evaluate how well a model
can represent all benign behaviors.

First, we show how we define the DataFit function by taking advantage of the structural
differences of the FSM models. The input of a DataFit function is a ADU series A and a model
ψFSM , and the output is whether this ADU series A fits the model ψFSM . First, we convert
each ADU series A to a sequence of transitions δ1, ..., δA. A strawman solution to define the
DataFit function is to match δ1, ..., δA with ψFSM starting from the initial state s0, and count
the number of unmatched transitions. However, the problem with this definition is that the tran-
sitions generated by some attack behaviors A′ may deviate only slightly from the benign model
ψFSM , resulting in a very small mismatch. To address this issue, our idea is to amplify the mis-
match between ψFSM andA′ by computing the structural difference between the original model
ψFSM and a model ψFSM ′ including attack behaviorsA′. Here ψFSM is learned from the orig-
inal subset of benign ADU series set, say {Al}origin, and ψFSM ′ is learned from {Al}origin∪A′.
The structural difference is defined as the Levenshtein distance between two FSM models. If one
transition δ′ is different between A′ and ψFSM , this transition will impact multiple transitions
for ψFSM ′ in RPNI’s merge process, magnifying the difference between ψFSM and ψFSM ′.
For example, Figure 4.7 shows the ψFSM generated from all benign behaviors, and the ψFSM ′

generated by adding one more malicious behavior (code injection) to the subset. We can observe
that the small difference (2 transitions) in Figure 4.2 is amplified to a huge structural difference
between ψFSM and ψFSM ′ in Figure 4.7 (8 transitions). Based on this idea, we define the data
fit function DataFit as follows:

DataFit(ψFSM ,A) = lev(ψFSM , ψFSM ′), (4.1)

where ψFSM
′

= RPNIExtension(ψFSM ,A′) and lev is the Levenshtein distance be-
tween two FSMs, defined as:

32

1 Input: {Al} - a set of ADU series
2 for iterations ← 1 to k
3 {Al}iter ← SampleRand({Al}, r)
4 . build a base model from r samples
5 ψFSM iter ← RPNIExtension({Al}iter)
6 {Al}add ← {}
7 {Al}test ← {Al} − {Al}iter
8 for each A ∈ {Al}test
9 . check if the rest of the ADU fits the FSM .

10 if DataFit(A, ψFSM iter) < dt
11 {Al}add ← {Al}add

⋃
A

12 . check if a good model is found
13 if {Al}add > n
14 . Update the model with all “inliers”
15 ψFSM iter ← RPNIExtension({Al}iter

⋃
{Al}add)

16 . evaluate the loss on “inliers”
17 loss = ModelLoss(ψFSM iter , {Al}add)
18 return the ψFSM iter with the smallest loss in k iterations

Figure 4.8: RADIO’s learning mechanism.

lev(ψFSM 1, ψFSM 2) = (|{λ1}|+ |{λ2}| − 2 ∗ |{λ1} ∩ {λ2}|)
+(|{δ1}|+ |{δ2}| − 2 ∗ |{δ1} ∩ {δ2}|),

(4.2)

where {λ1} and {λ2} are the set of states for ψFSM 1 and ψFSM 2, and {δ1} and {δ2} are the set
of transitions for ψFSM 1 and ψFSM 2.

Next, we show how to define the ModelLoss function. The ModelLoss function is used to
evaluate how likely an FSM model is a good benign behavior model. We posit that an attacker
will need to use extra states and/or state transitions beyond what the benign model has for the
limited set of IoT behaviors to launch an attack. Based on this idea, we define the ModelLoss
function as follows:

ModelLoss(ψFSM , {Al}) = ωλ ∗ |{λ}|+ ωδ ∗ |{δ}|, (4.3)

where ωλ∗|{λ}| represents the loss caused by using extra transitions and ωδ ∗|{δ}| represents
the loss caused by using extra states. Together they capture how much the attacker’s behavior
deviates from the limited enterprise IoT behaviors.

4.2.4 Putting it together

Now we put the RPNI extension and RANSAC extension together. The pseudo code is given
in Figure 4.8. Comparing with basic RANSAC, the input is changed to a set of ADU series.
We replaced the model learning with our RPNI extension and applied RADIO’s DataFit and
ModelLoss function.

33

4.3 Results

In this section, we evaluate RADIO and show that

• RADIO achieves low FPs and FNs (FPR < 1% and FNR < 0.01%) comparing with prior
anomaly detections [35, 39, 53, 88, 95] (FPR > 5% and FNR > 57%).

• RADIO is robust against pollution (FPR < 1% and FNR < 0.01% when the percentage of
polluted traffic ranges from 1% to 15%),

• RADIO’s behavior model can be aggregated across device instances for behavior coverage
and scalability,

• RADIO’s performance is robust across a range of configuration settings (FPR < 1% and
FNR < 0.01%) and does not require fine-grained tuning.

4.3.1 Setup

We evaluate RADIO by considering the common enterprise IoT devices, i.e., routers, switches,
NAS, cameras, DVRs, smart lights, smart plugs, fire alarms, sensor gateways and smart speakers
(e.g., Amazon Alexa). We setup a sandbox IoT environment in an organization with the above 9
classes of IoT devices deployed.

One challenge for evaluating RADIO is that there are few benign or attack traces available
for IoTs in enterprise setting. To address this challenge, we conducted an IRB-approved study to
build a network traffic dataset for 9 types of IoT devices (Figure 14). The dataset contains 371.6
MB of pcaps with >700K packets, including >10,000 benign traces and >1000 attack traces.
Each trace contains all the packets of a benign or malicious session. To collect benign traces,
we invite 10 human users to operate on the IoT devices and record the network traffic as benign
traces. We provide the official user interfaces of the IoT devices (webpage, terminal or mobile
apps) to the users. The users are free to use any operation provided by the user interfaces. For
example, D-Link camera is controlled by a webpage with audio on/off button, streaming on/off
button and zoom-in X2, X4, X8 buttons. The users are free to click these buttons. To collect
attack traces, we build an IoT attack bundle, including several recent IoT exploits, such as the
Mirai malware[40] (against Camera), DNS rebinding[38] (against smart speakers, smart lights,
routers and switches), Alexa eaves-dropping attack[36] (against smart speakers), SambaCry[33]
(against NAS) and CMP/SNMP exploits[9] (CIA Vault 7 Exploits against routers and switches).
Each attack trace includes a unique sequence of real-world exploits (e.g., different code injec-
tions) and after-exploit operations (e.g., exfiltrate video/voice or modify credentials) that are
commonly seen in enterprises. In total, we used 24 exploits (2-3 exploits per device type) and
92 after-exploit operations (8-10 per device type) to build the attack traces. Then to build an
unlabeled trace set for evaluation, we randomly mix the attack traces and benign user traces by
percentage (e.g., mix 100 attack traces and 900 benign traces for a trace set with 10% of polluted
traces.).

34

Router

0
0.5

1

Ac
cu

ra
cy

Switch

0
0.5

1
NAS

0
0.5

1
Camera

0
0.5

1
DVR

0
0.5

1
Smart Light

0
0.5

1
Fire Alarm

0
0.5

1
Sensor Gateway

0
0.5

1
Smart Speaker

0
0.5

1

0
0.5

1

FP
R

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

FN
R

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

F-
Sc

or
e

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

Xmeans Single Hierachy Prospex Suricata Kitsune RADIO

Figure 4.9: We measure the FP and FN of five different approaches over routers, switches,
NASes, cameras, DVRs, smart lights, fire alarms, sensor gateways and smart speakers. 10% of
the traces for each device classes are attack samples.

4.3.2 Accuracy

Figure 4.9 compares RADIO with several candidate solutions on False Positive Rate (FPR), False
Negative Rate (FNR), accuracy, and F-score. The Accuracy is defined as Accuracy = TP+TN

Pos+Neg
.

The FPR describes the occurrence of False Positives, defined as FPR = FP
FP+TN

. The FNR
describes the occurrence of False Negatives, defined as FNR = FN

FN+TP
. The F-Score reflects

the detection performance combing FP and FN, defined as FScore = 2∗Precision∗Recall
Precision+Recall

, where
Precision = TP

TP+FP
and Recall = TP

TP+FN
. These measurements are taken over the unlabeled

traces sets for 9 classes of enterprise IoT devices. Each unlabeled traces set contains 1000 traces
and 10% of them are attack traces.

We compare RADIO with other anomaly detection approaches: two clustering-based anomaly
detection (Ngram + Xmeans by Antonakakis [39] and Editing Distance + Single Hierarchy by
Perdisci [95]), two FSM-based approaches (Prospex[53] and the commercial Suricata IDS[35]),
and a flow-statistics-based approach (Kitsune[88]). To apply the approach by Antonakakis [39],
we extract Ngrams from the ADU series of each session, and use Xmeans to cluster the sessions.
To apply the approach by Perdisci [95], we calculate the Editing Distance among the ADU series
of each session, and use the Editing Distance vector of each session to cluster the sessions. To ap-
ply the approach by Prospex[53], we implemented the FSM inference mechanism in Prospex[53]
to infer the FSM model. We evaluate the performance of other approaches by selecting the best
result yield by different parameter combinations7 while using a fixed set of parameters for RA-
DIO (sampling size r = 4% of all samples, model assertion threshold n = 20% of all samples and
iteration k = 10000 times).

The first row shows that RADIO achieves the highest accuracy. The second and third row
shows that RADIO achieves both low False Positive Rate and low False Negative Rate (aver-
age FPR < 1% and average FNR < 0.01%). The clustering approaches often have a high False
Positive Rate (average FPR > 44% and average FNR > 57%) because benign traces are often

7For Xmeans, we adjust the number of seeds from 2 to 20 and maximum number of clusters from 2 to 20.
For Single Hierarchy Clustering, we adjust the number of clusters from 2 to 20 and try three different distance
functions Euclidean Distance, Manhattan Distance and Chebyshev Distance. For FSM-based approaches, there are
no parameters to adjust.

35

1% 5% 10% 15% 20% 30% 40% 50%
Percentage of attack traces

0

0.5

1

Av
er

ag
e

F-
Sc

or
e (a) Cisco Router, 200s

0.2s 1s 2s 10s 20s 100s 200s 300s
Time used

0

0.5

1

Av
er

ag
e

F-
Sc

or
e

(c) Cisco Router, 1%-15% attacks

1% attacks
5% attacks
10% attacks
15% attacks

0

100

200

300

Ti
m

e
us

ed
 (s

)

(d) 15% attacks, F-Score>0.9

Router
Switch NAS

Camera DVR

Smart L
ight

Fire Alarm

 Sensor G
ateway

Smart S
peaker

(0.2,0.2,0.2,0.2,0.2)

(0.3,0.2,0.3,0.1,0.1)

(0.1,0.1,0.3,0.2,0.3)

(1.0,0.0,0.0,0.0,0.0)

(0.0,1.0,0.0,0.0,0.0)

(0.0,0.0,1.0,0.0,0.0)

(0.0,0.0,0.0,1.0,0.0)

(0.0,0.0,0.0,0.0,1.0)

Different attack distributions

0

0.5

1

Av
er

ag
e

F-
Sc

or
e (b) Cisco Router, 15% attacks

Figure 4.10: RADIO is able to generate a precise FSM representation (F-Score>0.9) in an ac-
ceptable amount of time (< 248s) for polluted sample set with attacks ranging from 1% to 15%
(left figure), and for different devices (right figure) when the sample sets are heavily polluted
(15%).

grouped into different clusters and only one cluster is considered as normal by their mecha-
nism. The FSM-based approaches often have a high False Negative Rate (average FNR > 99%),
because their mechanism cannot filter out the polluted data in the historical traces, so the be-
havior models they generate contain malicious behaviors. The flow-statistics-based approach
Kitsune[88] (FPR > 5% and FNR > 79%) is only effective for statistical anomalies (Mirai C&C
for camera and DNS rebinding for smart speakers), but not effective for more stealthy attacks
including code injection and authentication bypass. The last row shows that RADIO’s detection
performance combining FP and FN outperforms the comparison approaches and achieves a F-
Score close to 1. In summary, even with a fixed (default) parameter, RADIO outperforms the
best results of other approaches under optimal parameters by 4X.

4.3.3 Robustness against pollution
Next, we show that RADIO is robust to unlabeled, potentially polluted sample sets from diverse
enterprise IoTs. There are four factors that may impact the detection accuracy of RADIO: the
fraction of attack samples; the diversity of attack types in the attack samples; the time (number
of iterations) used by RADIO to build the model; and the diverse classes of IoT devices. We
evaluate the robustness of RADIO against the impact of these four factors (by default, we set
the fraction of attack samples to 15%; the attack types to be evenly distributed; the time used to

36

200s; and the device class to be Cisco routers).
First, we change the fraction of attack samples in the sample sets and measure the accuracy

of RADIO, as shown in Figure 4.10(a). We generate 8 polluted trace sets (each with 1000 traces)
for Cisco router with the fraction of attack traces ranging from 1% to 50%8. We measure the
average F-Score (with min-max error) in 100 runs. We can see that, when the fraction of attack
traces is less than 15%, RADIO is accurate (F-Score>0.9). Note that if the fraction of attack
traces is higher than 15%, then the attack is “noisy” and should be easy for the administrators to
identify (e.g., by flow statistics).

Next, we evaluate the impact of the distribution of different types of attacks in the sample sets,
as shown in Figure 4.10(b). We use 5 different types of attacks (including four code injections
and the DNS rebinding attack) to build the attack traces set (of 150 attack traces) for Cisco
router. We change the distribution of the 5 types of attacks and measure RADIO’s average F-
Scores (with min-max error bar) in 100 runs. For example, in Figure 4.10(b), the distribution
“(0.2, 0.2, 0.2, 0.2, 0.2)” in the X axis means that each type of attack occupies 20% of the attack
traces. We can see that the variation of the F-Score is small under different distributions. This is
because RADIO magnifies the structural changes to the FSM behavior model caused by attacks,
thus is robust against the distribution changes of different types of attacks.

Then we change the time (number of iterations) used by RADIO to build the model to see if
RADIO can generate a precise FSM model (F-Score close to 1) in a reasonable amount of time.
In Figure 4.10(c), we change the iteration number k in the RANSAC component to control the
time used to generate the FSM model and measure the F-Score for traces sets with fraction of
attack traces ranging from 1% to 15% (for Cisco routers). We can see that, when the fraction of
attack traces changes from 1% to 15%, RADIO can always generate a precise FSM model within
200 seconds (F-Score is 0.935).

We also show that RADIO is able to generate a precise FSM model for different classes of
IoT devices. Figure 4.10(d) shows the time used by RADIO to generate a precise FSM model
(F-Score>0.9) for 9 different classes of enterprise IoTs. We can see that, even when 15% of the
traces are polluted, RADIO can generate a precise FSM model for different IoT devices within
248 seconds (the smart speaker case). Since building the model is one-time effort in the offline
stage, the time cost of 248s is acceptable.

4.3.4 Performance analysis

In this part, we analyze the performance of RADIO in the offline stage and online stage. In offline
stage, the main performance index is the training time (i.e., the time used to process the historical
traces and learn the benign model for an IoT device). We ran the offline learning process for 9
classes of IoT devices on a MacBook Pro machine, with 2.2 GHz Intel Core i7 and 16GB of
RAM. As shown in Figure 4.10 (d), the training time for every class of IoT devices is less than
300s, which is acceptable because the learning stage only needs to be performed once.

In the online stage, the main performance indexes are the network throughput and latency
when RADIO’s detection is in place. We measured the average network throughput and latency
when RADIO’s detection is deployed (i.e., customized Bro scripts that implements RADIO’s

8By theory, the RANSAC module will not work when the fraction surpasses 50%[66].

37

Device Correctly Clustered Not Correctly Clustered

smart light
PUT {”on” : true}
PUT {”on” : false}

200 OK

camera

GET \user
POST \recording

POST \setSystemStream
GET \view\zoom\X2
POST \setDebugLevel

401
200 OK

GET \view\zoom\X4
GET \view\zoom\X8

Table 4.1: The ADUs that are correctly clustered and not correctly clustered.

FSM model). The average network throughput is 6.21Gbps and latency is 4.3 ms. The above
throughput is sufficient for IoT devices as the throughput needed by an IoT device is low. Cal-
culated from our dataset, the average throughput needed by an IoT device is less than 0.1 Mbps.
Also, the latency has trivial impact on the performance of IoT devices. Such latency is not sur-
prising since IDSes such as Bro are tapped to a switch and are not in the critical path of the
network packet (use mirrored packet rather than the original packet).

4.3.5 Handling encrypted traffic
In this part, we demonstrate the possibility for RADIO to handle encrypted traffic using the
side channeling and clustering technique. To evaluate, we ask human user to perform a known
sequence of actions (e.g., turn on the smart light) on smart light and camera via https and record
the sequence of packets for these actions. Then we apply the side channeling and clustering
technique to segment the sequence of packets and generate a sequence of typed ADUs. We
convert the known sequence of actions into the ground truth of sequence of ADUs and compare
the sequence of typed ADUs with the ground truth from known actions.

We show the correctly and incorrectly distinguished ADUs in Table 4.1. The side chan-
neling and clustering technique successfully clustered most of the ADUs for smart light and
camera. The only exception is that GET \view\zoom\X2, GET \view\zoom\X4 and GET
\view\zoom\X8 are clustered into one cluster rather then three clusters, as the key features
(e.g., frame length) are quite close. However, this cluster is still different from the cluster of the
malicious ADU (i.e., POST \setDebugLevel), thus will not impact the detection accuracy of
RADIO. This experiment demonstrates that it is possible to extend RADIO to handle encrypted
IoT traffic, based on our side channeling and clustering technique.

4.3.6 Aggregated behavior model for coverage and scalability
In this part, we show that, by building aggregated behavior model from only a few device in-
stances, RADIO can provide good behavior coverage and scalability. We focus on aggregated
behavior model across IoT device instances of the same device type (e.g., all Cisco 3640 routers),
or of the same class & vendor (e.g., all Cisco routers) in an enterprise. We leave the aggregated
model for IoT device instances of different vendors (e.g. all Cisco and Juniper routers) or de-
ployed in different enterprises for future work.

In the first experiment, we evaluate how many device instances are needed to generate a

38

1 2 3 4 5 6 7 8 9 10
Number of instances

0

0.5

1

Av
er

ag
e

F-
Sc

or
e

Number of instances used for aggregated model

Router
Switch
NAS

Camera
DVR
Smart Light

Fire Alarm
Sensor Gateway
Smart Speaker

Router Switch NAS Camera DVR Smart
Light

Fire
Alarm

 Sensor
Gateway

Smart
Speaker

0

5

10

N
um

be
r o

f i
ns

ta
nc

es Number of instances needed to ensure FScore > 0.9

Figure 4.11: Number of instances needed for aggregated models.

good model (F-Score > 0.9) to cover the benign behaviors for one type of devices (as shown
in Figure 4.11). We can see that all the device type need at most 8 instances to provide a good
coverage (F-Score>0.9). And while Camera, DVR, Smart light, Fire Alarm and Sensor Gateway
only need one instance to ensure F-Score is greater than 0.9, routers, switches, NASes and smart
speakers need more instances. This is because the behavior options for the routers, switches,
NASes and smart speakers are more diverse than the cameras, DVR, smart lights, fire alarms and
sensor gateways. For example, the NASes provides 36 operations while the smart lights only
provide two operations (on and off).

Next, we explore the aggregated behavior model across device instances of the same class
& vendor (e.g., Cisco 3640 routers and Cisco 7200 routers). In Figure 4.12, we generate the
behavior model from a few router instances (5 instances) of one type (Cisco 3640) in the offline
stage, then apply the model to a few other instances (5 instances) of a different type (e.g. Cisco
7200) for detection. Then we measure the F-Score to see if the model is suitable for sharing.
Figure 4.12 shows the heatmap of the F-Scores We can see that the F-Score varies little across
the instances of the same class & vendor (Cisco routers), which means it is possible to share the
behavior model across device instances of the same class & vendor.

Cisco 3640 Cisco 3660 Cisco 3725 Cisco 7200
Apply model to

Cisco 3640

Cisco 3660

Cisco 3725

Cisco 7200

Bu
ild

 m
od

el
 fr

om

Different types (same vendor)
0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.982

0.976

0.976

0.976

0.982
0

0.5

1

Figure 4.12: F-Scores for aggregated behavior model.

4.3.7 Sensitivity to parameters
Next, we show that RADIO does not require parameter tuning to maximize its detection rate
by measuring the average F-Score of RADIO in 100 runs under different parameters. There are
three parameters for RADIO: the threshold of the DataFit function that judge if a sample fits a

39

Sampling size r 1%-8%

2 4 6 8
DataFit Threshold dt

0

0.5

1

Av
er

ag
e

F-
Sc

or
e r=1%, n=20%

r=2%, n=20%
r=4%, n=20%
r=8%, n=20%

Model assertion threshold n 10%-40%

2 4 6 8
DataFit Threshold dt

0

0.5

1
Av

er
ag

e
F-

Sc
or

e r=4%, n=10%
r=4%, n=20%
r=4%, n=30%
r=4%, n=40%

Average F-Score for different devices (r=4%, n=20%)

2 4 6 8
DataFit Threshold dt

0

0.5

1

Av
er

ag
e

F-
Sc

or
e

Figure 4.13: The average F-Score for different combination of parameters. The top and middle
figure are measured on Cisco router and the bottom figure is measured on different devices.

FSM model; the sampling size r ; and the assertion size n that describes the number of samples
to assert a FSM is good. Here we set the number of iterations k to a fixed value (10000 times) as
RANSAC does not have a constraint on the number of iterations. Figure 4.13 shows the results
for different combination of parameters. The X axis is the threshold of the DataFit function
and the Y axis is the average F-Score (in 100 runs). In the top figure, we change the sampling
size r from 1% to 8% (of all samples) and observed that F-Score does not change much across
different sampling size, even though r of 4% yields slightly higher F-Score. In the middle figure,
the F-Score stays the same when the assertion size n is greater than 10%. Then the bottom figure
shows the F-Score when r is 4% and n is 10%, and together with top and middle figures, it shows
that the detection performance is good when threshold of the DataFit function is less than or
equal to 4. This is because when the threshold of the DataFit function is too large, attacks will
also be included in the FSM representation and the FN will be high. The above measurements
suggest that RADIO is not sensitive to the configuration of parameters.

4.3.8 Diagnostic Utility

Finally, we show that the FSM behavior model of RADIO is useful for enterprise security admin-
istrators to diagnose the attacks against enterprise IoT devices (e.g. which command/argument

40

S16	 S17	

Remote	code	injec,on	
(CVE	2017-3881)		

1/1	
1/2	
2/3	
2/4	
3/5	
3/10	

3/5	 3/10	

Abstracted	CMP	Messages	

	IoT	Anomaly	
Detected	

	ID� Subset	{ma}� Subset	{mb}�
DirecCon+Command� Subcommand�

1� from	+	Will� Echo�
2� from	+	Do� Suppress	Go	Ahead�
3� to	+	SubopCon� Terminal	Type�
4� to	+	Do� NegoCate	About�
5� to	+	Will� Environment	OpCon�
6� from	+	SubopCon� Remote	FlowControl�
7� Linemode�
8� New	Environment	OpCon�
9� Status�
10� End�

Figure 4.14: How RADIO’s benign behavior model can help to identify a code injection attack
(CVE 2017-3881).

is flawed and used by attacker). As shown in Figure 4.14, RADIO can automatically identify the
mismatches between the benign behavior model and the ADU series of the attack, and will raise
an alert containing the mismatched states and transitions. Using the alerts we obtained from the
detection of RADIO, we were able to obtain the information about several flaws the IoT attack
exploits, which are not available from NVD[29]. This shows that the FSM behavior model of
RADIO can help the admin quickly identify the flaws of the IoT devices and better respond to
the security issues of the enterprise IoT devices.

41

42

Chapter 5

Learning Complex IoT Interactions

In Chapter 3, we presented LoFTI’s vision to learn context-based policies for IoT devices. We
have also seen that the key issues to make LoFTI practical are:

• How to define key features to extract contextual IoT access patterns?
• How to build model with high accuracy and low computation/communication cost?
• How to address unbalanced contextual IoT access records?

In this chapter, we will answer these questions with detailed design of LoFTI’s learning
mechanism. After that, we will present the result of evaluating LoFTI for its accuracy and com-
munication/computation cost.

5.1 Defining key features for contextual IoT access

LoFTI framework extracts a set of key features from the historical record dataset to capture the
contextual IoT access patterns. Given a wide range of information we can collect from IoT
devices, it is challenging to identify the salient features.

To address this challenge, we leverage the concept of contextual integrity (CI)[92], which
claims that appropriate information flows (i.e. IoT accesses, in our case) are the ones that con-
form with the contextual norms. Here contextual norms refer to five independent parameters:
data subject, sender, recipient, information type, and transmission principle. Now the issue is
how to define the contextual norms that should regulate IoT accesses.

Previous efforts[43, 48, 60, 65, 78, 102, 116] have manually crafted different sets of con-
textual norms and have shown that they are closely related with IoT accesses; however, their
definitions have not been very consistent. In this paper, we summarize and generalize these
contextual norms into six types:

User: The user context norm is defined as the role of the person who is accessing the IoT
device. Roles can be parent, child, household employee (e.g. a babysitter), or visitor. The user
context norm corresponds to the sender in the CI, capturing who initiated an IoT access.

Device: The device context norm is a combination of device type and device instance iden-
tifier. Device type is a combination of device class (e.g., camera), device vendor (e.g., D-Link)

43

and device SKU (Stock Keeping Unit, e.g., DCS-932L). The device context norm corresponds to
the recipient in CI, capturing which device is being accessed.

Time of the day: The time of the day context norm is a combination of hour of the day,
minute of the hour and second of the minute. This context norm corresponds to the transmission
principle in CI, capturing the time condition under which the IoT access should be allowed.

Environment variables: The environment variables context norm is a list of variables de-
scribing the physical environment of a smart home, such as temperature, humidity, CO2 density,
etc. This context norm corresponds to the transmission principle in CI, capturing the environ-
mental conditions under which the IoT access should be allowed.

Device states: The device states context norm is a list of variables describing the states of
the IoT devices. Examples of such states include smart window opened, camera turned on, and
smart oven turned off. This context norm also corresponds to the transmission principle in CI,
capturing the conditions of device states under which the IoT access should be allowed.

Action: The action context norm is an operation to be performed by the IoT device by the
access, such as open the smart window and turn on the camera. This context norm corresponds
to the data subject in the CI, capturing the subject of the IoT access.

Let’s denote the user as u, the device as d, the time as t, the environment variables as {e}, the
devices’ states as {s} and the action as a. Then the context norms for LoFTI can be expressed
as (u, d, t, {e}, {s}, a).

Next, we demonstrate the expressiveness of LoFTI’s contextual norms by showing a list of
contextual IoT access patterns LoFTI can capture, as shown in Table 5.1. In the first scenario,
a visitor watches a video recorded on the camera (privacy leakage). In this case, the three key
features – the user’s role as a visitor, the device camera, and the action of playing the recorded
video – are captured. In the second scenario, a family member takes shower at night, and the
key feature time is captured. Similarly, in the third scenario – opening a window when it is hot
– the key features temperature and humidity are captured. The fourth scenario covers a cooking
activity and the key features – the states of microwave oven and fridge – are captured.

Pattern u d t {e} {s} a
Visitor watch camera video record visitor camera play video record
Take shower at night family shower 21:35:24 turn on shower
Open window when feeling hot family window ... temperature=35◦C ... open window
Use stove when cooking family stove microwave on turn on stove

Table 5.1: Exemplar contextual IoT access patterns that can be captured by LoFTI’s contextual
norms.

5.2 Building a model with high accuracy and low computa-
tion/communication cost

Considering the distributed learning nature of federated multi-task learning, building a machine
learning model for contextual IoT access raises challenging trade-offs between model accuracy
and computation/communication cost.

To understand these trade-offs, we start by exploring the design space for building a machine
learning model. At a high level, the machine learning model can be considered as a function F

44

that takes the contextual norms (u, d, t, {e}, {s}, a) as input x and outputs a binary decision, i.e.,
whether to block or allow the action a given the context norms.

There are several options to build such a function F , ranging from a simple SVM model
to more complex CNN (Convolutional Neural Network) and LSTM (Long Short-Term Mem-
ory) models. We discuss how these models perform in terms of model accuracy and computa-
tion/communication cost in detail below.

ht

xt

lt

yt

wx+b

SVM

ht

xt

lt

yt

CNN

F(wx+b)

ht-1

lt-1

yt-1

F(wx+b)

ht

xt

lt

yt

RNN

F(wx+b)

ht-1xt-1ht-1

ht-k

lt-k

yt-k

F(wx+b)

ht-1

xt

lt-1

yt-1

LSTM

F(wx+b)

ht-1xt-kht-k

ht

xt

lt

yt

F(wx+b)

gt-1

Forget
Gate

…

Input

Prediction

Label

Loss

Figure 5.1: Comparing the structures of different machine learning models.

To understand the trade-off, it is useful to look into the structures of different machine learn-
ing models, as shown in Figure 5.1. Given input xt at time t, a (linear) SVM model makes a
prediction ht with a simple function F as wx+ b. The model then minimizes the loss lt between
the predictions {ht} and labels {yt} by adjusting the parameters w and b in the learning stage
to train an accurate function F . CNN models also follow this process, except that they adopt a
more complex function F = f(...f(wx + b)), where F is a composition of multiple (possibly)
non-linear functions (e.g., a sigmoid function). The issue with SVM and CNN is that they have
no “memory”, i.e. the prediction ht completely depends on input xt at the current time t, and
cannot encode patterns in history. In contrast, RNN models use previous prediction ht−1 as an
input (along with other input xt) to compute the current prediction ht, thus capturing the sequen-
tial patterns in history. However, this model “forgets” very fast as the impact of prior predictions
decrease exponentially [73] with each iteration. LSTM addresses this issue by adding a forget
gate to encode a wide range of predictions ht−k to ht−1. The forget gate can learn to determine
how much impact a previous prediction ht−i should have on the current prediction ht.

Accuracy: Complex models such as LSTM are relatively more accurate as they are able to
encode more information than simpler models such as SVM; and more generally, as the models
get more complex, their accuracy gets better. However, it is not clear how much information
needs to be encoded for contextual IoT access patterns to achieve a satisfying level of accuracy.

Computation/communication cost: Since federated multi-task learning works in a dis-
tributed manner, different machine learning models will have different impact on the computation
and communication cost. The computation cost includes the CPU and memory consumption on
each edge computing node and on the cloud back-end server. The communication cost includes

45

the bandwidth consumption and latency introduced when transmitting the model parameters be-
tween the edge computing nodes and the cloud back-end server.

To achieve high accuracy and low communication/computation cost, we can build a sim-
ple model with an additional structure that captures the key contextual IoT access patterns. A
simple model helps reduce communication/computation cost and a carefully designed additional
structure to capture the key contextual IoT access patterns, cuts down the accuracy gap.

More specifically, from Figure 5.1, we observed that the main difference between a simple
model (SVM) and a complex model (RNN and LSTM) is how the temporal information (long-
term memory and short-term memory) is captured. The key question here is how much temporal
information is needed for capturing contextual IoT access patterns. To answer this question, we
make two domain-specific observations:

Short-term correlation is needed to capture contextual IoT access patterns: We observe
that all the device states and some discrete environment variables at a given time t are highly
correlated with the corresponding device states and discrete environment variables at a time
t − 1. For example, if a camera state transits from off to on, this short-term correlation from
time t − 1 to time t is needed. The intuition behind this observation is that all the device states
and some discrete environment variables are internally following certain state machines, and in
a state machine, the next state is highly dependent on its previous state.

Long-term correlation can be aggregated: For environment variables and device states,
capturing the specific long-term sequence in history is not necessary. The aggregated environ-
ment variables and device states can be as effective. For example, considering the contextual
access pattern that “a user feels hot in the last hour and opens the smart window”. Here, the
action of open the smart window is only related with the average temperature and humidity in
the last hour, not specific temperature or humidity sequence.

Based on the two observations above, our idea is to add an extra temporal structure on top of
simple SVM model, as shown in Figure 5.2. The extra temporal structure captures the short-term
correlation and long-term aggregation. The detailed pseudo code of the temporal structure is
given in Figure 5.3. To capture the short-term correlation, we apply word2vector processing on
device states and discrete environment variables from time t−h to time t, and generate vectors of
2-grams to capture the short-term correlation between two adjacent times (Line 10 in Figure 5.3).
To capture the long-term correlation, we aggregate the continuous environment variables from
time t − h to time t by its average value (Line 13 in Figure 5.3), and we aggregate the discrete
device states and environment variables from time t − h to time t by the appearance number of
2-grams (Line 10 in Figure 5.3). In this way, LoFTI’s temporal structure captures the short-term
correlation and aggregated long-term correlation.

Next, we compare LoFTI and LSTM in terms of computation cost and communication cost.
In distributed machine learning, the computation cost is measured by the number of CPU FLOPS,
and the communication cost is measured by the number of model parameters transmitted in each
iteration.

We start with LSTM’s computation cost. In LSTM, there are 8 matrix-matrix multiplications
per layer per time-step. Suppose N is the number of features, M is the hidden unit size, L is the
minibatch size. Each matrix-matrix multiplication is A×B, where A is a matrix of size M ×N
and B is a matrix of size N × L. The matrix-matrix multiplication A × B uses ML(2N − 1)
CPU FLOPS. Suppose r is the number of layers and h is the number of timesteps. Then, the total

46

ht

xt

lt

yt

wx+b

SVM

ht-k

lt-k

yt-k

wx+b

ht-1

xt-1

lt-1

yt-1

LoFTI

wx+b

xt-k

ht

xt

lt

yt

wx+b

gt-1

…

Input

Prediction

Label

Loss

Short-term
correlation

Long-term
aggregation

Temporal structure

Figure 5.2: LoFTI model.

FLOPS for LSTM is r ∗ h ∗ 8 ∗ML(2N − 1).
Next we calculate the FLOPS for LoFTI. We know that the total FLOPS for a linear SVM

is proportional to the number of parameters. Suppose N is the number of features and h is
the number of timesteps for long-term aggregation for LoFTI (we set it equal to the LSTM’s
timesteps). In LoFTI’s model, it takes N ∗h FLOPS to calculate the temporal structure and 2∗N
FLOPS to calculate the model parameters. Therefore, the total FLOPS for LoFTI is 2∗N+N ∗h.
It is obvious that LoFTI’s computation cost is much less than LSTM.

Next, we compare the communication cost of LoFTI and LSTM. Since FMTL only transmit
parameters, the communication cost is propotional to the number of model parameters. The
number of model parameters of LSTM is given by: 4∗ (N ∗M +M2), where N is the number of
features andM is the number of hidden unit. The number of model parameters of LSTM is given
by: 2 ∗ N , where N is the number of features. Therefore, it is obvious that the communication
cost of LoFTI is lower than LSTM.

In summary, LoFTI reduces the computation cost by applying a simple model with a concise
temporal structure.

5.3 Addressing unbalanced contextual IoT access records

A straightforward approach to construct the dataset is to collect the benign and malicious con-
textual IoT access records as it is. However, while benign users are frequently accessing the IoT

47

1 Input: {xt−h, ..., xt−1, xt} is the sequence of features
2 t is current time, h is history time window
3 m is the number of key features
4 {env} is the environment variable set
5 {state} is the environment variable set
6 Output: gt is the temporal aggregation
7 for i← 1 to m
8 if xt,i ∈ {env} or xt,i ∈ {state}
9 if xt,i is discrete

10 gt,i = word2vector({xt−h,i, ..., xt−1,i})
11 end
12 if xt,i is continuous
13 gt,i = mean({xt−h,i, ..., xt−1,i})
14 end
15 end
16 end

Figure 5.3: LoFTI’s temporal structure.

devices, attackers only need a few accesses to cause privacy leakage or physical hazards. This
means that the number of benign IoT accesses will be much larger than the number of malicious
IoT accesses, i.e., the dataset is unbalanced. Therefore, the decision boundary will be pushed
towards the attack samples and causing high FNs. A strawman solution to balance the dataset
would be to copy the attack samples and construct a repetitive dataset. However, the repetitive
attack samples cannot capture the variation of attacks and fails to provide coverage. A general
approach in machine learning to address unbalanced data is called data augmentation[120]. The
idea is to introduce variance in the samples to balance out data and improve coverage. However,
common data augmentation mechanisms, including cropping, rotation and flipping are closely
tied to image representation (as it has originated from computer vision community), and are not
applicable for processing the contextual access abstraction for IoT devices.

Therefore, we designed a customized data augmentation approach for processing the contex-
tual access abstraction for IoT devices. Specifically, we provide two mechanisms:

Context random sampling: The context random sampling mechanism is inspired by the
cropping of an image. But instead of selecting a region of the image (considering locality), our
mechanism selects a subset of the environment variables and device states with a fixed ratio r
(commonly set to 10% to 20% in sampling papers[66]). The idea is to perform random sam-
pling on the environment variables and device states to narrow down the correlation between
environment variables/device states and IoT access with certain action.

Adding contextual noise: The second mechanism is adding noise to the context. This is
similar to adding noise to an image, but instead of adding noise to pixels, LoFTI adds noise to the
environment variables of the attack sample. The idea is to increase the coverage of environment
variables in attack samples. However, deciding how much noise to add can be a challenge. If too
much noise is added, the attack sample may deviate to the benign space and cause FNs. If too
little noise is added, the coverage will be low. To address this issue, we provide a mechanism
to automatically decide the amount of noise being added. The first step is to estimate a rough
decision boundary L. Then, for each attack sample, we calculate the distance metric d to the

48

Cases Device Attack Type
1 Camera Private video leakage[14] privacy leakage
2 Smart Door Break-in when user is asleep[16] physical hazards
3 Heater Bedroom overheating[15] physical hazards
4 Smart TV Eavesdropping[22] privacy leakage
5 Stove Fire hazards[20] physical hazards
6 Smart Window Break-in[19] physical hazards
7 Smart Light Blackout[17] physical hazards
8 Smart Toilets Water overflow[21] physical hazards

Table 5.2: Test cases for malicious IoT access based on reported IoT breaches.

rough boundary. LoFTI ensures that the noise added to the attack sample does not exceed εd,
where ε is a constant within (0, 1) range. In this way, LoFTI provides a heuristic-based method
to ensure that the noise is bounded and can increase the coverage without increasing the FNs.

5.4 Evaluation

In this section, we evaluate LoFTI and show that:

• LoFTI achieves high detection accuracy and low FPs and FNs when compared with single-
home learning and all-home learning, reducing FNR by 24.2% and FPR by 49.5%.

• LoFTI achieves high coverage over the contextual policies needed when compared with
current approach to manually generating contextual policies.

• LoFTI’s key features are effective for detecting malicious IoT access causing physical
hazards or privacy leakage.

• LoFTI’s simple SVM-based model with temporal structure can achieve a good trade off
between accuracy and communication/computation cost.

• LoFTI’s data augmentation effectively addresses the unbalanced data issue.
• LoFTI can detect new attacks not in the dataset, if there are historical records about the

IoT device being attacked.

5.4.1 Dataset

To evaluate LoFTI, we use a large public IoT historical records dataset - CASAS [7] with real
IoT deployment in more than 400 smart homes in cities including Kyoto, Paris, Milan, etc. The
type of IoT devices in the dataset includes smart TV/DVD, smart oven/fridge/microwave, smart
door/sofa/bed/cupboard, motion/power/temperature sensors, etc. The CASAS dataset includes
historical records about how normal human users are interacting with these IoT devices in typical
smart home setting. To test how well LoFTI can detect physical hazards and privacy leakage, we
constructed a list of physical hazards and privacy leakage cases based on IoT breaches in news
reports [14, 15, 16, 17, 18, 19, 20, 21, 22], as shown in Figure 5.4. We add these cases randomly
to each of the 400 smart homes.

49

Case1

0

0.5

1

FN
R

Case2

0

0.5

1
Case3

0

0.5

1
Case4

0

0.5

1
Case5

0

0.5

1
Case6

0

0.5

1
Case7

0

0.5

1
Case8

0

0.5

1
Single-home
All-home
LoFTI

0

0.5

1

FP
R

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

F-
Sc
or
e

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 5.4: Comparing single-home learning, all-home learning and LoFTI.

5.4.2 Accuracy
In this part, we measure the accuracy of LoFTI, and compare LoFTI with the state-of-the-art
single-home learning approach and all-home learning approach.

The accuracy is evaluated by the FNR (False Negative Rate), FPR (False Positive Rate)
and F-Score. The FPR describes the occurrence of False Positives, defined as FPR = FP

FP+TN
.

The FNR describes the occurrence of False Negatives, defined as FNR = FN
FN+TP

. The F-Score
reflects the detection performance combing FP and FN, defined as FScore = 2∗Precision∗Recall

Precision+Recall
,

where Precision = TP
TP+FP

and Recall = TP
TP+FN

.

Approach FNR FPR F-Score
Single-home 0.0832 0.1697 0.8867
All-home 0.0318 0.3409 0.8534
LoFTI 0.0241 0.0857 0.9378

Table 5.3: Overall.

Table 5.3 shows the overall FNR, FPR and F-Score comparing single-home learning, all-
home learning and LoFTI. The overall result shows that LoFTI achieves low FNR/FPR and high
F-Score, reducing FNR by 24.2% and FPR by 49.5% when compared with the best results from
single-home learning and all-home learning approaches.

Next, we compare single-home learning, all-home learning and LoFTI case by case. Fig-
ure 5.4 shows the FNR, FPR and F-Score for each case in Table 5.2 for single-home learning,
all-home learning and LoFTI. The first row depicts the FNR, the second row depicts the FPR for
different cases. The last row depicts the F-Score combining the impact of FP and FN. From the
result, we can see that single-home learning result in high FNR in case 1, 3 and 6. All-home
learning result in high FPR in case 1, 3, 4, 5, 6, 7 and 8. From Figure 5.4, we can see that
single-home learning and all-home learning either result in high FNR or high FPR, and LoFTI
achieves low FPs and FNs across all the test cases.

Case 1 2 3 4 5 6 7 8
LoFTI>All>Single 3 3 3

LoFTI>Single>All 3 3 3 3 3

Table 5.4: Detailed analysis for the test cases.

50

Table 5.4 shows the detailed analysis for the test cases. We rank single-home learning, all-
home learning and LoFTI by the F-Scores they achieve in each case. For case 1,2 and 3, LoFTI
achieves higher accuracy (F-Score) than all-home learning than single-home learning. This is
because the insufficient data issue has a major impact in these cases. To confirm this, we counted
the number of IoT access records relevant for distinguishing malicious/benign access in each
home (e.g., if malicious access is turn on Camera, we count all the access to Camera). We
found that, in case 1,2 and 3, the average relevant IoT access records in each smart home is less
than 200, and some smart home have less than 50 relevant IoT access records. This explains
the insufficient data issue in case 1,2 and 3. For case 5 to 8, LoFTI achieves higher accuracy
(F-Score) than single-home learning than all-home learning. This is because the diversity issue
has a major impact in these cases. For example, in case 6, different users in different smart
homes will open their window under different temperature/humidity; in case 5, different users
in different smart homes have different interaction patterns with their smart fridge/microwave
oven/cupboards before they turn on the oven. In summary, LoFTI achieves low FPs and FNs
comparing with single-home learning and all-home learning.

Device Policy
Camera If user is at home, block the access to turn on the cam-

era
Smart Door When user is asleep, block the access to open the

smart door
Smart Heater When temperature > 16◦C, block access to turn on

heater
Smart TV No policy found
Smart Stove No policy found
Smart Win-
dow

No policy found

Smart Light From 6pm to 8am, smart light can be turned on
Smart Toilets No policy found

Table 5.5: Contextual policies from user study[70]

5.4.3 Comparison with manually generated policies
In this part, we compare LoFTI with the current approach to manually generate contextual poli-
cies. We compare with an user survey[70] that asks 425 users to allow/block IoT accesses (e.g.,
turn on the camera) based on context norms (e.g., time of the day, whether user is at home or
not).

To compare with this approach, we collect all the policies (user made allow/block decisions)
in the user study[70] that are related with the IoT devices listed in our dataset, as shown in
Table 5.5. We then convert the user generated policies into context-based rules and carefully
maps the context from the user study to the corresponding context in our dataset. For example,
we map the context that “user is asleep” in the user study to the context that “smart bed is
occupied” in our dataset. We then apply the converted context-based rules on our testing dataset
and measure the FNR and FPR. We provide no comparison for smart TV, smart window, smart
stove and smart toilet, as we cannot find user generated policies for them in the user study.

For the rest 4 types of IoT devices - camera, smart door, smart heater and smart light, Fig-
ure 5.5 shows the FNR and FPR comparing user policy generated from survey and LoFTI. In

51

Case1

0

0.5

1

FN
R

Case2

0

0.5

1
Case3

0

0.5

1
Case7

0

0.5

1
Policy from User
LoFTI

0

0.5

1
FP

R

0

0.5

1

0

0.5

1

0

0.5

1

Figure 5.5: Comparing user policy from survey and LoFTI.

case 1 and case 2, the FNR and FPR for user policy generated from survey and LoFTI are simi-
lar. This is because the scenario is relatively simple. In case 3, the FNR and FPR for user policy
are higher for two reasons. First, user policy generated from survey would set a fixed value for
temperature, which is not precise and not customized for different smart homes. Second, user
policy generated from survey fails to cover other environment variables that also impact the ac-
cess of smart heater, e.g., humidity. In case 3, the FNR and FPR for user policy are much higher
because it captures the wrong context. The user policy from survey depend on time as context to
guide the access of smart light. However, in CASAS dataset, we observed that it is the movement
of human sensed by motion sensors that guides the access of smart light. This is a typical case
of misconfiguration by manually generated contextual policies.

1 2 3 4 5 6 7
0

0.5

1

FN
R

Lo
FTI

No U
se

r

No D
ev

ice

No T
im

e

No E
nv

iro
nm

en
t

No D
ev

ice
 Stat

es

No A
ctio

n
0

0.5

1

FP
R

Figure 5.6: Effectiveness of LoFTI’s key features.

5.4.4 Effectiveness of LoFTI’s key features
In this part, we evaluate how effective the key features generalized by LoFTI in terms of distin-
guishing benign and malicious contextual IoT access. To do so, we set the value fields of each

52

key features to default value and measure how much the FNR and FPR will increase, as shown
in Figure 5.6. The result shows that if any of the 6 types of key features defined by LoFTI is
set to default, the FNR and FPR will increase. Therefore all 6 types of key features are effective
in distinguishing benign and malicious contextual IoT access. We can also see that environment
variables and device states cause the highest increase in FNR and FPR. This is not surprising
as environment variables and device states are critical features to capture the context. Here the
“user” feature is not causing a high increase in FNR and FPR. This is because of the CASAS
dataset, where there are not many homes recorded with multiple users.

5.4.5 Effectiveness of LoFTI’s simple SVM-based model with temporal
structure

In this part, we will show that LoFTI’s simple SVM-based model with temporal structure can
achieve a good trade off between accuracy and communication/computation cost.

0 0.2 0.4 0.6 0.8 1
FPR

0

0.2

0.4

0.6

0.8

1

TP
R

SVM
LSTM
LoFTI

Figure 5.7: ROC curve for SVM, LSTM and LoFTI.

Accuracy: We compare LoFTI with the most simple machine learning model - SVM and
most complex machine learning model - LSTM, from common machine learning models con-
sidered (including SVM, CNN, RNN, LSTM). As shown in Figure 5.7, we evaluate their de-
tection capability by plotting the ROC (Receiver Operating Characteristic) curve. The x axis is
the TPR (True Positive Rate) defined as TPR = TP

TP+FN
, and the y axis is the FPR defined as

FPR = FP
FP+TN

. If the curve is more close to the (0, 1) point, the corresponding approach has
a stronger detection capability. To generate the curves, we adjust the regularization parameter c
for SVM; we adjust the regularization parameter c and the window size of the temporal structure
for LoFTI; we adjust the number of layers r, timesteps h and hidden units M for LSTM. From
Figure 5.7, we can see that LoFTI can achieve a detection capability close to LSTM, stronger
than SVM. This shows that LoFTI using simple model with temporal structure can achieve a
good accuracy.
Computation cost: In this part, we compare LoFTI and LSTM in terms of computation cost
and communication cost. We measure the RMSE (Root Mean Square Error) in each iteration for

53

104 106 108 1010

Estimated computation cost (FLOPS)

0

0.5

1

R
M

SE
LSTM
LoFTI

102 103 104 105 106 107 108

Estimated communication cost (transmitted parameters)

0

0.5

1

R
M

SE

LSTM
LoFTI

Figure 5.8: Estimated communication/computation cost.

LoFTI and LSTM. Then we estimate the computation cost and communication cost for LoFTI
and LSTM in each iteration. Therefore, we can estimate how much computation cost and com-
munication cost are needed to reduce RMSE (Root Mean Square Error) close to 0 (training
complete).

We estimate the computation cost (CPU FLOPS) for LSTM as r ∗h∗8∗M ∗L∗ (2∗N −1),
where r is the number of layers, h is the number of timesteps, N is the number of features, M
is the hidden unit size, L is the minibatch size. We estimate the computation cost (CPU FLOPS)
for LoFTI as 2 ∗N + N ∗ h, where N is the number of features and h is the time window span
(we set it equal to the LSTM’s timesteps).

We estimate the communication cost (transmitted parameters) for LSTM as 4 ∗ (N ∗M +
M2), where N is the number of features and M is the number of hidden unit. We estimate the
communication cost (transmitted parameters) for LoFTI as 2 ∗ N , where N is the number of
features.

Figure 5.8 shows the result. We can observe that the computation cost of LSTM is 4 mag-
nitudes higher than LoFTI; while the communitation cost of LSTM is 2 magnitudes higher than
LoFTI. This result is as expected considering the complexity of neural network layers and gate
structures used by models such as LSTM.

In summary, LoFTI can achieve a good trade-off between accuracy and computation/communication
cost.

5.4.6 Effectiveness of LoFTI’s data augmentation
In this part, we evaluate the effectiveness of LoFTI’s data augmentation to address the unbal-
anced data issue. As shown in Figure 5.9, we compare the FNR and FPR with different dataset
construction mechanisms including unchanged, repetitive and LoFTI’s data augmentation. From

54

Figure 5.9 we can see that the unchanged dataset result in high FNR. This is because the large
number of benign samples are pushing the decision boundary towards the attack samples (to
avoid FPs), and result in high FNR. The repetitive mechanisms cannot fully address this issue
because it still has a poor coverage over attack samples, so the FNR is still high. LoFTI’s data
augmentation mechanism successfully reduces the FNR while keep FPR almost at the same level.

Original Repetitive LoFTI
0

0.1

0.2

0.3
FNR
FPR

Figure 5.9: Different dataset construction mechanisms.

5.4.7 LoFTI’s capability of handling new attacks
Since LoFTI is a supervised learning approach. One interesting question to ask is whether LoFTI
is able to detect new attacks that have never appeared in the training dataset before. To test this,
we use 3 types of new attacks and test them against the model learned from dataset without
samples of these attacks, as shown in Table 5.6.

New case Device Attack Type
A Camera Eavesdropping privacy leakage
B Smart Door Break-in when nobody at home physical hazards
C Smart TV Copy watching records privacy leakage

Table 5.6: New IoT attacks for testing.

Figure 5.10 shows the FNR and FPR for the 3 types of unknown IoT attacks and their corre-
sponding known attacks. For case A and case C, LoFTI still can achieve low FNR and FNR. For
case B, the FNR and FNR on unknown IoT attacks are significantly higher. This is because for
case A and case C, the context during the new attack is different from the context of the benign
access. For case B, the context during the new attack is close to the context of the benign access.

In summary, LoFTI can detect unknown IoT attacks if the context during the new attack is
different from the context of the benign access. We also note that LoFTI cannot detect unknown
IoT attacks against an IoT device that has no historical record of benign and malicious access in
all smart homes. In such case, it is understandable as LoFTI is constrained by the dataset it can
learn from.

5.4.8 Masking sensitive parameters
The federated learning guarantees that the attacker is not able to see the raw data. However, a
strong attacker who can observe the parameters of the model (e.g., via compromising the cloud
backend or MITM attack) may be able to infer certain private information about the smart homes.

55

CaseA-Case1

0
0.5

1

FN
R

CaseB-Case2

0
0.5

1
CaseC-Case4

0
0.5

1
Unknown attack
Known attack

0
0.5

1
FP

R

0
0.5

1

0
0.5

1

Figure 5.10: FNR/FPR on unknown/known IoT attacks.

In this part, we perform a test to see if we can mask some sensitive environment variables in
the learning process to prevent the observation from attackers, without significant decrease the
detection accuracy. In this test, we mask a number of sensitive information from previous sensi-
tive information tracking literature[43, 48, 115], including device location, device manufacturer,
firmware version, device IP address, open ports, zip code and contact list. Then we measure the
FNR, FPR and F-Score before and after the mask operation.

From Table 5.7, we can see that the FNR and FPR before and after masking are the same.
It shows that some of the sensitive information, including device location, device manufacturer,
firmware version, device IP address, open ports, zip code and contact list, can be masked without
significantly decreasing the detection accuracy. In the next step, we plan to explore other strate-
gies such as differential privacy to see if we can mask a wider range of sensitivity information
without significantly decreasing detection accuracy.

Approach FNR FPR F-Score
Before mask 0.0241 0.0857 0.9378
After mask 0.0241 0.0857 0.9378

Table 5.7: FNR/FPR before/after masking.

56

Chapter 6

Enforcement

In Chapter 3, we presented PSI’s vision to provide context-based and agile enforcement for IoT
devices. We have also seen that the key issues to make PSI practical are:

• How to provide expressive policy abstraction?
• How to provide scalable and responsive orchestration?

In this chapter, we will answer these questions with detailed design of PSI’s enforcement
architecture. After that, we will present the result of evaluating PSI for its enforcement benefits.

6.1 PSI Policy Abstraction

In this section, we identify key expressiveness requirements that PSI policies should satisfy and
then describe our solution.

6.1.1 Requirements

We begin by highlighting three key requirements that the PSI policy abstraction should meet
to help the administrator to express intents that govern how the devices’ traffic should be pro-
cessed/forwarded.:

• Context-based forwarding & processing: The administrator should be allowed to define a
set of context for each device, and express forwarding & processing based on the context.
For example, if a host is sending oversized DNS packets (detected by header checker),
the administrator should be allowed to define a context to note that a host is suspicious
for data exfiltration (DNS-based), and specifies that the oversized DNS packets should be
forwarded to a DPI for payload check to prevent potential data exfiltration.

• Agile intent evolution: The administrator’s intent over a device’s traffic may evolve over
time as the context changes. For instance, if a IoT device initiated a HTTP connection to
a suspicious website, the context is changed from device is normal to device is suspicious,
and the inbound traffic to this device should be put under deeper scrutiny (, DPI) to stop
malicious downloads.

57

NF1:	
processing1	

Context1	

Context2	 Context3	

Ingress	 Egress	

NF3:	
processing3	

NF2:	
processing2	

Figure 6.1: Express context-based intent with ψDAG .

A natural question then is whether prior policy abstractions can satisfy the requirements.
We evaluated a number of existing approaches including distributed Firewall/IPS configurations
(Cisco’s PIX[31],Bro[94]) and more recent SDN policy languages (Kinetic [81], Merlin [114],
Group-based Policies (GBP) [30], PGA [96]), and found that they cannot meet the two require-
ments. For distributed Firewall/IPS configurations, the context and agility that can be expressed
is limited to one type of tools, , a firewall cannot tell a oversized packet to be forwarded to a
IPS for DPI. We qualitatively evaluated distributed Firewall/IPS configurations in the coverage
test, and the result shows that the context-based and agile policies prevented 35% more poten-
tial attacks than distributed Firewall/IPS configurations. Similarly, SDN policy languages are
largely limited to switch contexts (packet header attributes), and their agility is limited to static
forwarding capabilities.

Our goal in designing the PSI policy abstraction is not to claim a novel theoretical or pro-
gramming language contribution (, [52, 98]). Rather, it is a practical abstraction for capturing
context-dependent and agile processing.

6.1.2 High-Level Ideas
Context-based processing

To enable administrator to express traffic forwarding and processing based on context, PSI uses
a Directed Acyclic Graph called ψDAG , as shown in Figure 6.1. Formally, this is a two tuple
ψDAG = 〈NFInstances ,NextHops〉. Each vertex in ψDAG represents a processing function
(, IPS) denoted as NFInstance that can: (1) tag the traffic based on the processing outcome (,
tag packet with “oversized” as context); (2) apply custom process based on the tags (, check the
payload for packet with “oversized” context). The edge relation NextHops specifies the intended
sequence of traversal through processing tools with respect to context; , packet with “oversized”
context is forwarded to a IPS (to check payload).

Supporting intent evolution with ψFSM

While the ψDAG abstraction captures context-dependent processing, it does not capture the
evolution of security intent. For instance, the operator may have an inkling of future “states”

58

of the host (contexts at different time) and may want to proactively express the intent for these
subsequent likely states as well. Similarly, the intent may evolve as new information arrives;
, new vulnerabilities or new alerts from external sources. To capture such intent evolution,
we introduce the ψFSM abstraction. Formally, the ψFSM is a Moore machine ψFSM :=
〈S , sstart , E ,F ,T ,O〉 that maps the traffic’s state to a specific ψDAG via the output function O
(S → F). In the simplest case, we have a single global state for a specific class with a single
ψDAG . More generally, we can define state transitions based on different events Ej ∈ E and the
ψDAG will depend on the current state.

Note that from Section 3, our policy is isolated at a per device/traffic granularity. Therefore,
each device/traffic is assigned with a ψFSM and a ψDAG ; the ψFSM captures current state and
future state evolution; and the ψDAG captures the current intent with respect to the current state.

state1	

state2	

event	ψFSM	

ψDAG1	

ψDAG2	

state
evolution

intent
evolution

Figure 6.2: PSI agile intent evolution.

6.1.3 Illustrative Example

Let’s consider an end-to-end example to put the ideas together and see how PSI policy abstraction
enables us to express effective security postures. Figure 6.3 illustrates a dynamic policy that can
protect a NAS device. There are two key structures for the dynamic policy in this example.
The first structure is the FSM structure. Each state in the FSM captures the security state of the
NAS. The second structure is DAG (Directed Acyclic Graph) structure. Each DAG specifies the
security enforcement for a given security state of the NAS. The NAS is vulnerable to the code
injection attack called SambaCry. Initially the NAS is at a normal state. The policy will enforce
a scan detector for the NAS at the normal state. When the NAS is being scanned, it will transfer
to scanned state. Then, a deep packet inspection will be enforced to prevent the code injunction
against the NAS. Note that this policy abstraction is context-based because the enforcement is
based on the security state of the device. And this policy abstraction is agile because it can evolve
from one enforcement to another over the time.

Once we have the abstract policy, the PSI Policy Engine will interpret the abstract policy and
compute the real-time security intent (ψDAG) for each device’s traffic based on current context.

59

Normal	

Suspicious	

Malicious	

sip:10.2.0.1	
sMAC:any	
…�

…�

…�

ψFSMs	 ψDAGs	Predicates	

Packet:	
10.2.0.1	
…�

Event:	
Unknown	IP�

Context	 Egress	L-IPS	

normal	

Ingress	
header	

L-IPS	
unknownIP	

Ingress	 Egress	H-IPS	
header	 payload	

normal	

L-IPS	
unknownIP	

Ingress	 H-IPS	

Drop	
exploit	

header	 payload	

Unknown	IP�

exploit	

Figure 6.3: A dynamic scrutiny policy expressed via PSI.

6.2 PSI Controller

In this section, we describe the PSI controller’s orchestration mechanisms to translate the high-
level intents into a concrete realization. To highlight the key scalability and responsiveness
challenges, we begin with a simple reactive design. Then, we discuss our ideas to address these
challenges: proactive tag-based forwarding, elastic controller scaling, and ψDAG prefetching.

6.2.1 Conceptual View and Challenges

The input to the PSI orchestration module is the policy intent (ψDAG) for each device. The goal
of the controller is to translate these into a concrete realization; , launch ψmbox instances and
set up forwarding rules. Recall that PSI intents capture dynamic packet processing at two levels.
First, the forwarding path may depend on flow-specific context information from upstream nodes
in the ψDAG .

A seemingly natural solution to implement these intents is to adopt a reactive mechanism,
which configures forwarding rules and deployψmboxes on-demand whenever the context changes.

Per-packet processing

Suppose a packet belonging to class i arrives at a network interface (either at a ψmbox or a
switch). By default, this node will not have any forwarding rule. Thus it buffers the packet and
sends an PKTIN event to the controller with the packet’s header and any relevant processing
context. On receiving the PKTIN event, the controller retrieves the current state si

current corre-
sponding to this packet’s class and uses it to get ψDAGcurrent . Based on the current context and
the node that generated the packet, the controller decides the next hop for this packet and sets up
forwarding rules to ensure that the packet will traverse the intended path.

60

Event processing

The previous discussion handles the case for a given state s . Other types of events (, IDS alerts)
may trigger a state transition in the ψFSM i , e.g., transition from normal state to suspicious state
in Figure 6.3. This in turn may require a new ψDAG to be instantiated. In this case, the controller
retrieves the ψFSM i corresponding to the event,1 looks up the si

current and identifies the si
next .

The controller then identifies the new ψDAGnext corresponding to the new state s , deactivates
the current ψDAG , and launches new ψmbox instances to implement ψDAGnext , and updates
internal data structures to indicate a state change.

Challenges

While this above workflow is conceptually correct, we identify two key challenges:

• Scalability with adversarial workloads: First, handling every packet presents a fundamen-
tal scaling challenge - a single controller has to process a control message for every packet
in the network. Second, even if we do not interpose the controller on every packet at every
hop, the controller needs to deal with a large number of events in any reasonable-sized
network that will induce ψDAG updates.2 Thus, an adversary can easily saturate the CPU,
memory, or the control channel bandwidth with this naive approach.

• Security downtime: Transitioning from the ψDAGcurrent to the ψDAGnext will need new
VMs to be launched and other forwarding rules to be setup. Even with fast VM bootup
techniques, there will be a non-trivial latency. Thus, adversaries can exploit these delays in
setting up ψDAGnext to achieve their goals for the types of multi-stage attacks described
earlier.

6.2.2 Key Ideas in PSI

Next, we describe how address each of these challenges.

Proactive context-based forwarding

The reactive controller does not scale as it interposes on every packet at every logical forwarding
between two ψmboxes .

To avoid this, our goal is to keep packets in the data plane as much as possible [63]. We
achieve this with a proactive forwarding approach extending prior work [63]. Each ψmbox
tags outgoing packets specifying the relevant context needed for forwarding along the ψDAG .
For example, all packets are initially under “normal” tag and the tag changes to “suspicious”.
The forwarding logic of the network switches will incorporate these tags as part of their packet
processing actions. For example, if the packet is tagged as “normal”, it is forwarded to port
1, and if the packet is tagged as ”suspicious” it is forwarded to port 2. Note that because the

1We assume that events are annotated with the class value (i).
2Even if the likelihood of updates for a single device is low, at any given time there are likely to be several

devices that need updates.

61

controller has a logically global view it can proactively install these per-tag forwarding rules for
each class class without waiting for a PKTIN event.

Now, there might be two potential deployment concerns. First, we need sufficient space in
the packet header to add these tags. This is not an issue as new standards for virtual network
forwarding and network service chaining headers explicitly include additional header space for
metadata [82, 118]. With software switching (, OpenvSwitch) and new switch pipelines [46],
it is possible to add flexible header matching rules based on these tag bits. Furthermore, these
header tags are only needed inside the ψcluster , where we are not constrained by legacy net-
working. Second, the ψmboxes have to explicitly expose these tags. Prior work shows that the
modifications required to commodity middleboxes to add the tagging logic is less than 50 lines
of code [63].

Scale-out controller

While proactive forwarding addresses the scaling problem in dealing with PKTIN arrivals, it does
not address the issue of an adversary sending crafted data to generate a large event/alert volume
to overload the controller. Note, however, that it may be hard to distinguish events triggered
by adversary actions vs. legitimate users. Rather than introduce ad hoc anomaly detection algo-
rithms to try and differentiate legitimate vs. adversary-induced events, we exploit the fact that the
PSI design allows us to logically partition the event handling across different traffic classes. That
is, we can simply horizontally scale the PSI controller and add more instances as needed depend-
ing on the offered load [59, 84]. This is especially easy because the different traffic classes are
independent and do not introduce any synchronization bottlenecks at the controller.

We design a scale-out mechanism similar to elastic scaling solutions in cloud deployments [13,
59]. While the elastic scaling solutions only migrates switches states, PSI’s scale-out mechanism
migrates device attributes, security states and policy specifications within the predicates, ψFSM
and ψDAG structures. A simple runtime monitor inspects the response time for each controller
instance. If the response time is starting to increase more than a preset threshold, it invokes an
elastic scaling routine that adds an extra control instance and splits the traffic classes currently
handled by the overloaded instance across the added instances, and migrate the corresponding
structures.

ψDAG prefetching

The combination of proactive context-based forwarding, partitioning, and elastic scaling effec-
tively addresses the scalability bottleneck. However, the problem of security downtime during
ψFSM transitions still remains.

To address this, we use the following idea. Since the controller has the entire ψFSM de-
scribed by the policy intent, it can look ahead and predict the next k possible states for each class
class. Then, it proactively installs the ψmboxes corresponding to the ψDAGs for these next k
possible states, in order to mask the latency involved when these might be needed in the future.

One concern might be that this needlessly increases the resources used by the ψcluster as
ψDAG instances may never be exercised. While this is theoretically valid, in practice, we can
address it as follows. First, the controller installs the future ψDAGs for the same class to be

62

multiplexed on the same hardware as the current ψDAG for that class. Since there is only
one active ψDAG for a given traffic class at a given time, this incurs no additional hardware
resources. Second, we implement some simple optimizations to do an incremental launch; , if
there are common ψmbox instances across the future ψDAGs then we can reuse these instead of
cloning them. This last optimization also indirectly helps to reduce the downtime by reducing
the number of new VMs we need to launch.

6.3 Results
We now evaluate PSI’s ability to deal with attacks launched from deep inside the smart home/enterprise
network (stealthy attacks). To do so, we conduct an attack graph analysis against two example
stealthy attacks: an example insider threat attack and an example APT. We compare distributed
Firewall/IPS’s and PSI’s ability to detect and mitigate both attacks over three different network
topologies. Through this analysis, we show that PSI is capable of identifying and mitigating
35% more potential stealthy attacks than a distributed Firewall/IPS approach, as demonstrated in
Table 4.1. These results are due to topological blind spots that PSI is designed to address, and
which are common on live enterprise networks.

Attack graph analysis[105] evaluates defensive systems via graph coverage. Each attack is
expanded to a graph showing the potential routes the attacker can use to achieve their goals, and
defenses are evaluated by comparing the number of paths each defense cuts off from the attack.
We chose attack graph analysis because it integrates the structural impact of the network’s design
on the attack’s effectiveness, and enables us to identify the cause of defensive failure. Our attack
graphs consist of a tree,G, where each node is a device on the network, and each edge is an attack
step. In G, an attack is a path from the root device (the source of the attack) to the leaf (target),
e.g., an malware exploit from a laptop to a server through a local switch. An attack is prevented
if one step of the attack is detected and prevented by the defense system, e.g., a IPS connected
to the switch detects and blocks the malware traffic. This yields a coverage metric of the form:
coverage = num. of prevented attacks

num. of all possible attacks
. This coverage metric evaluates how many potential attacks

are prevented in a given network topology.

Topology distributed Firewall/IPS Coverage PSI Coverage
mini-stanford [80] 52% 92%
apt-mcafee [32] 59% 91%
pix-cisco [34] 56% 89%
all 56% 91%

Table 6.1: Coverage over stealthy attacks.

In our evaluation, we instantiate the three enterprise networks in our testbed and install dis-
tributed Firewall/IPS and PSI respectively. For distributed Firewall/IPS, we assume there are no
resource constraints and deploy a distributed instance at every switch in the topology. To setup
insider threats in each enterprise network, each time a device is set as an insider and it exfiltrate
data from all other devices using ftp-based exfiltration or DNS-based exfiltration[12]. For APT,
we setup a device in external network as an attacker, and assume it can always break-in with a
zero-day attack. We, then, use two pcap traces (Angler EK and Magnitude EK[24]) to emulate

63

the following port-scanning and exploits phases of the APT attack and see if the exploit traffic
can reach another device (if yes, the APT attack on the device is valid).

mini-stanford apt-macafee pix-cisco

M
iti

ga
te

d
Pa

th
 N

um
.

0

50

100

150
Distributed Firewall/IPS
PSI
Total Path Num.

APT

Insider Insider APT

Insider

APT

Figure 6.4: Detailed results about coverage for insider threats and APT in each enterprise net-
work.

The detailed evaluation results are presented in Figure 6.4 and Table 6.1. In summary, out of
428 potential attack paths, distributed Firewall/IPS mitigates 240 paths (56% coverage), while
PSI mitigates 392 potential paths (91% coverage). We analyzed the 152 paths that PSI miti-
gated but distributed Firewall/IPS did not—all of them are caused by one or more fundamental
topology constraints that distributed Firewall/IPS cannot address. Specifically, 103 paths involve
NAT/DHCP; 75 paths involve devices connected to multiple switches (, For high bandwidth or
failure tolerance [27]); and 54 paths involve dumb, unmanaged switches. PSI cannot provide
perfect coverage because first step, a zero-day attack, is undetectable. In summary, PSI improves
the coverage for stealthy attacks by 35%.

64

Chapter 7

Integrating RADIO, LoFTI and PSI

In this part, we show how to integrate RADIO, LoFTI and PSI as the end-to-end system, by
walking through two usecases.RADIO + PSI: Automated Patching for IoT�

1	

RADIO	

history	network	traces	

PSI	

current	network	traffic	

Model2Policy	

Block	“/WriteCoils”	protocol	spec	

behavioral	
model	

customized	
middlebox	

configuraKons	

Figure 7.1: The workflow of integrating RADIO and PSI.

7.1 Integrating RADIO and PSI: IoT autopatch
The first usecase is automatically patching the IoT devices. As we know, one key issue for IoT
devices is that host-based patching is hard. This is because of several reasons. First, the IoT
devices are running firmware that is harder to patch than computer software. The longevity of
IoT devices means that the IoT device may be used long after its vendor cease operations. Also,
the bad IT practice in IoT devices is causing the patches to be error-prone. The patching process
is easy to misconfigure.

To address this issue, our idea is to combine RADIO and PSI. RADIO can learn the benign
behavioral model for IoT devices. PSI can enforce the security policies that only allows the

65

benign behaviors of IoT devices. Combining RADIO and PSI, the system can patch the IoT
devices on the network by allowing all the benign behaviors and blocking anything else.

Figure 7.1 presents the high-level workflow of integrating RADIO and PSI. In the first step,
given the protocol specifications, RADIO learns the single-device behavioral model from the his-
torical network traces. For example, the behavioral model in Figure 7.1 is a FSM containing the
QueryReadRegister,QueryReadCoils and the QueryReadDiscreteInputs behav-
iors. Then, the Model2Policy module convert the behavioral model into customized middlebox
configurations in PSI. Finally, PSI will deploy the customized middlebox on the current network
traffic and block any traffic that mismatches the benign behavioral model. For example, the code
injection attack to use WriteCoils will be dropped. In this way, the IoT device is patched and
protected.PSI + LoFTI: context-based privacy leakage prevention �

1	

LoFTI	

When	temperature	and	humidity	is	high,	
user	open	the	smart	window.	

PSI	 Block	malicious	
access	to	window	

LoFTI	

AAacker	turns	on	the	smart	window	
when	temperature	is	low	(e.g.,	at	night)	

Figure 7.2: The workflow of integrating RADIO and PSI.

7.2 Integrating LoFTI and PSI: Context-based and dynamic
policy enforcement for smart homes

The second usecase is the context-based and dynamic policy enforcement for smart homes. We
know that context-based and dynamic policy enforcement are needed to protect the smart homes.
For example, opening the window should be allowed or blocked based on the temperature and
humidity (context). Also, the relation between the temperature and humidity and whether open-
ing the window should be allowed or blocked may envolve over time (dynamic).

To achieve such context-based and dynamic policy enforcement, our idea is to use LoFTI to
learn and update the context-based policy periodically. Then, we can use PSI to enforce such
context-based policy.

Figure 7.2 presents the high-level workflow of integrating RADIO and LoFTI. In the first
step, LoFTI will learn the context-based policy from multiple smart homes from the historical
records of context and IoT access. The context-based policy is in the form of a machine learning
prediction function F , with context and access as input and whether to allow or block the access

66

as output. For example, the function F will take in the temperature and humidity and decide
that when the temperature and humidity is high (as a numeric relation), user can open the smart
window. Then, in the runtime, LoFTI will monitor the context and access. Next, PSI will use the
context and access in runtime and the context-based policy F to decide if an IoT access should
be allow or blocked. For example, if an attacker is trying to open the window at night when
temperature is low for breaking-in, the malicious access will be blocked.

However, there are two issues to realize this workflow:
• Supporting machine learning Policies: PSI only supports explicit human-input policies

(i.e., FSM with human specified states and transitions), need to extend to support ma-
chine learning generated policies (i.e., F (context, action)− > block/allow) with model
parameters.

• Granularity differences: PSI’s policy is at a per-device granularity, while LoFTI is at a
per-device-per-action granularity. We need to extend PSI to support a finer-grained policy.

To address these issues, we adopt two design points, as shown in Figure 7.3. First, we add the
classifier as part of PSI’s policy abstraction to support machine learning generated policies. The
classifier acts as the function F , takes contexts and actions as input, and output whether an IoT
access should be allowed or blocked. Then, we add a tree-like structure to support enforcement
at per-action granularity. For example, if the classifier predicts that the action to open the smart
window should be blocked, then the tree structure will output DAGOpenBlock as the enforcement
to block the open-window action.

Figure 7.3: The design of integrating RADIO and PSI.

Next, we will explain how to modify PSI’s policy abstraction to support LoFTI policies. The
key is to replace the ψFSM structure of PSI with the classifier and the tree structure, to support
ML-based policy at per-action granularity. The ψDAG structure remains the same to support
context-based enforcement.

67

68

Chapter 8

Related Works

8.1 Related works for RADIO

Firmware based analysis: Firmware analysis approaches[49, 54, 55, 109] expose the vulner-
abilities inside the device’s firmware. However, firmware may not always be available to en-
terprises for analysis. Other attestation approaches[85] detect unauthorized modification of IoT
firmware, but they are limited to detecting firmware modification attacks.
Anomaly detection approaches: The closest work is a rich body of previous anomaly detec-
tion approaches[42, 51, 53, 68, 76, 79, 88, 90, 95, 113, 119] that use statistical or behavioral
anomalies to alert on attacks. As shown in Table 8.1, Previous network anomaly detection ap-
proaches include (1) classification[42, 88, 113], (2) clustering & outlier detection[68, 76, 95],
and (3) FSM-based detection [51, 53, 79, 119].

Flow-statistics-based approaches including Kitsune[88] and Botminer[68] are useful for de-
tecting data exfiltration (by flow data bytes), botnets (by connection statistics) or scans, but can-
not detect more stealthy IoT attacks including code injection or authentication bypass. Classification-
based approaches [42, 90, 113] need labeled attack and benign samples to train the classifier and
cannot apply to unlabeled samples. Clustering-based approaches can apply to unlabeled sam-
ples, but none of the previous work provide a precise model to capture IoT behaviors. Nazca[76]
focuses on graphic representation to detect malware distribution, and Ho [72] focuses on email
representation to detect spearphishing. Of all the clustering approaches we mentioned, we found
two of them that can be adapted to detect IoT attacks. We can use Ngram method, as described
by Antonakakis [39], to calculate similarity between message series followed by the Xmeans
method to cluster them. Likewise, we can use editing distance method, as described in Perdisci
[95], to calculate similarity between message series and then use single hierarchical clustering
to cluster them. Such approaches, however, yield high FP and FN rates because it is hard to
exhaustively cover all the benign message series. FSM-based approaches including Prospex[53]
and Suricata[35], can be adapted to detect IoT-specific anomalies. However, they cannot differ-
entiate attack samples from benign ones in an unlabeled sample set in the FSM inference process
and may generate states and transitions representing attack behaviors. As a result, they result in
high FNs.
Other IoT security work: Several other related works [64, 87] also studied the IoT security

69

Approach Class Method Input Target Precise Model Pollution
Bartos [42] Classification SVM Proxy logs Malware 7 7

Webwitness[90] Classification Statistic classifier Proxy logs Malware downloads 7 7

Soska [113] Classification Ensemble of decision trees Webpage Infected website 7 7

Antonakakis [39] Clustering Ngram + Xmeans DNS messages Dga malware 7 3

Nazca[76] Clustering Graph clustering packets Malware distribution 7 3

Ho [72] Outlier detection Anomaly scoring Emails Spearphishing attacks 7 3

Botminer[68] Clustering X-means Flow statistics Botnet 7 3

Perdisci [95] Clustering & Outlier Hierarchical Clustering HTTP packets HTTP-based Malware 7 3

Cho [51] FSM-based L Star Packets Botnet 3 7

Mace[53] FSM-based L Star Packets Protocol anomalies 3 7

Prospex[53] FSM-based Prefix tree Packets Protocol anomalies 3 7

Suricata[35] FSM-based Handcrafted protocol FSM Packets Protocol anomalies 3 7

RADIO FSM + Outlier RPNI + RANSAC ADU series IoT anomalies 3 3

Table 8.1: Overview of the state-of-the-art approaches focusing on network anomaly detection.

problem. FlowFence[64] provides data protection for IoT applications. IoT Sentinel[87] tries
to identify the device types in a smart home setting. Both of these complement our work by
focusing on other aspects of IoT security.

8.2 Related works for LoFTI

Federated Multi-Task Learning: MOCHA[110] is a novel learning mechanism that combines
federated learning and multi-task learning. We build LoFTI based on MOCHA[110].

Manually generating contextual IoT policies: A rich body of previous works are focusing on
manually generating contextual policies for IoT devices [65, 70, 78]. He et. al.[70] provide a user
study to identify the critical contextual information that should guide IoT access in smart homes.
FlowFence[65] and ContexIoT[78] build user-prompt frameworks to prompt detailed contextual
information to let users make better IoT access control decisions. FlowFence focuses on data
flow and ContexIoT focuses on control flow. The issue with manually generating contextual
policies is that it is easy to misconfigure and hard to cover all the contextual policies needed.

Sensitive information tracking: Another group of related works [43, 48, 58, 115] propose to
prevent privacy leakage by tracking the sensitive information in mobile applications for IoT de-
vices. However, this approach requires the source code of the mobile applications which is
often not available. Also, since the tracking is based on mobile apps, it can only detect ma-
licious/flawed mobile applications, and cannot handle malicious IoT access directly from the
network (via weak authentication or backdoor).

Other IoT access control works: SmartAuth[116] provide an NLP-based approach to check the
consistency between the IoT application description and IoT application source code. SmartAuth[116]
cannot detect malicious access when there is no consistency issue. ESOs[102] is an integration
platform that enables cross-platform enforcement for contextual IoT policies. This related work
can be combined with LoFTI to address a broader scope of problems.

70

8.3 Related works for PSI
Firewalls and IDSes Middleboxes such as firewalls and IDS/IPS [94, 99] are the “workhorses”
of network security mechanisms today. Unfortunately, these have well-documented concerns
with respect to (a) performance (, 30% of administrator disable useful security features such as
DPI and anti spoofing [26]); (b) misconfigurations (, [91]); (c) lack of expressiveness to tackle
novel threats; and (d) undesirable tradeoffs between stronger security postures vs. user back-
lash [26]. By design, PSI addresses these pain points. PSI’s vision shares conceptual similarity
with classical work on distributed firewalls [77]. Other work addresses orthogonal problems
related to scalability and alert correlation (, [101]).
SDN, NFV, and Security Prior work has aimed to take advantage of SDN and NFV to make
network security enforcement more flexible. Ethante [47] uses a centralized controller controls
switches at critical points to authorized traffic. FlowGuard[75] resolves interfering ACL poli-
cies from firewalls in SDN network. However, Ethane or FlowGuard does not support security
policies beyond ACLs and do not allow more advanced security policies captured by ψDAGs
and ψFSM s. Flowtags [63] and Simple [97] are two other related works close to PSI. Flow-
tags provides interfaces between middleboxes and the SDN controller to enable the enforcement
of “fixed” ψDAG . Simple provides simplified traffic steering over a set of statically deployed
middleboxes. FlowTags or Simple supports neither dynamically changing ψDAGs (which are
accommodated in PSI using ψFSM s) nor guarantees policy isolation.

FRESCO [106] implements detection and mitigation modules in the SDN controller. How-
ever, the controller becomes a critical bottleneck for scalability and requires reimplementing
functionality that is commonly available in security middleboxes. OFX [112] and Kinetic [81]
focuses on networks composed of switches. PBS [74] shares some our motivation in addressing
security challenges induced by BYOD. In contrast to PSI, PBS: (a) only focuses on BYOD mo-
bile apps; (b) involves a reactive controller; and (c) needs end-point instrumentation on Android.
Other work focuses on exploiting SDN/NFV to provide elastic scaling of security functions [62];
such elastic scaling is orthogonal to the focus of PSI. That said, the PSI ψcluster can leverage
these elastic scaling capabilities if needed.

Controller scaling, either via horizontal scaling (, [59, 83]) or proactive orchestration (e.g.,
[62, 63]) are active areas of work in SDN/NFV. PSI synthesizes and extends these efforts through
a combination of proactive tag-based forwarding and elastic scaling.
Policy languages There has been renewed interest in programming abstractions for networks [81,
89]. Kinetic provides a domain specific language and an SDN controller to dynamically change
OpenFlow switch actions [81]. However, Kinetic is constrained and cannot express richer poli-
cies that involve stateful middleboxes [69]. PGA [96] provides support for composing for-
warding policies across aggregates and detecting conflicts. PSI provides a richer abstraction that
subsumes these prior efforts.
Industry efforts Google’s BeyondCorp initiative [37] focuses on authentication and user trust,
and can conceivably be defeated by evading the authentication system (, a malicious insider).
PSI’s focus on traffic behavior is intended to be robust to insider threat and other attacks by
avoiding a single point of trust. VMWare’s NSX and microsegmentation tackles datacenter se-
curity by pushing firewalling functionality into hypervisors to tackle “east-west” traffic, which is
not protected by perimeter firewalls [118]. However, the security mechanisms and abstractions

71

are restricted to simple firewalling rules. In contrast, PSI targets a much richer set of policies
that can involve multiple security middleboxes and does not rely on every device to run atop a
hypervisor. Finally, the vision of SDN/NFV is gaining a lot of traction in industry; , Cisco’s
Evolved services platform [8] describes a high-level architecture similar to PSI. Based on public
documentation, however, it does not specifically tackle the kinds of security, policy, and scala-
bility challenges we describe here. These trends further corroborate our arguments that the PSI
architecture is viable, and likely the inevitable culmination in response to today’s security woes.

72

Chapter 9

Contributions, Limitations and Future
Works

In this chapter, we first summarise our contributions to designing the fine-grained network de-
tection and prevention system. Then, we discuss the limitations of the system. We conclude the
thesis with potential future works to further secure the IoT devices.

9.1 Summary of Contributions

9.1.1 Current security ecosystem for IoT devices

Today’s security ecosystem, which relies on a combination of static perimeter network defenses
(e.g., firewalls and intrusion detection/prevention systems), the ubiquitous use of end-host based
defenses (e.g, antivirus), and software patches from vendors (e.g., Patch Tuesday), is fundamen-
tally ill-equipped to handle IoT deployments. Specifically, the scale, heterogeneity, use cases,
and device and vendor constraints of IoT means that traditional approaches fall short along three
key dimensions.

The first dimension is learning signatures and anomalous behaviors for a single IoT device.
The diversity of IoT devices and vendors inevitably means that traditional approaches of discov-
ering attack signatures (e.g., honeypots) will be insufficient and/or non-scalable. Also, traditional
flow-statistic-based anomaly detection cannot be directly applied to capture the application-level
behaviors of IoT devices (e.g., recording behavior of a camera).

The second dimension is learning the interactions of IoT devices. IoT devices can interact
with other devices via explicit channels (e.g. a single app may use multiple IoT devices) or
implicitly by affecting the physical world around them (e.g., an IoT light bulb may trigger an IoT
light sensor). Thus, IoT devices can affect both applications that use them explicitly as well as
applications with implicit or indirect cross-device dependencies. The result is that the security for
an IoT deployment is likely to be complex and dynamic since they depend on both physical (e.g.
environmental parameters) and computational (e.g., the state of other related devices) contexts.

The third dimension is the enforcement mechanisms. Since IoT devices operate deep in-
side the network, traditional perimeter defenses are ineffective. At the same time, IoT devices

73

typically do not run full-fledged operating systems, require low-power consumption and are
resource-constrained. Moreover, the longevity of these devices means that vulnerable devices
(e.g., default passwords, unpatched bugs) remain deployed long after vendors cease to produce
or support them. Thus, traditional host- or device-centric mechanisms (e.g., antivirus, patches)
are impractical to expect in an IoT world. Finally, given that the environment and device behav-
iors can change rapidly, we need to rapidly reassess and update the system’s security posture.
Unfortunately, today’s security enforcement schemes stem from a static mindset and cannot han-
dle such dynamics.

Rather than chase the hopeless goal of IoT devices that are secure-by-construction, we need
pragmatic “bolt-on” solutions for securing IoT that acknowledge the realities of the marketplace
(e.g., existing devices, poor software practices, patch unavailability) and the practical challenges
associated with IoT (e.g., resource or software constraints). Unlike traditional IT ecosystems
where host-based detection and prevention are prevalent, we believe that the device and ecosys-
tem limitations of IoT will need the network to (re)emerge as the key vantage point for enforcing
security policies.

9.1.2 RADIO Contributions
In this thesis, we present RADIO (Robust behavioral Anomaly Detection for enterprise IoT de-
vices), which detects behavior anomalies based on benign behavior models learned from unla-
beled, potentially polluted network traffic. To provide precise abstraction for modeling the net-
work behaviors of IoT devices, we identified three key network characteristics of IoT behaviors,
and carefully define the states and transitions of the FSM model to abstract these key character-
istics. Then to learn the FSM model from IoT traffic, the main challenge is to learn IoT behavior
model from unlabeled network traces. There are two issues. The first issue is that it is hard
to infer the FSM states with unlabeled behavior samples. Existing FSM inference algorithms
either rely on both positive and negative samples [57, 93] or rely on extra structural information
(e.g., while loop structure of program) [103] to infer the FSM states. However, considering IoT
traffic, it is hard to obtain labeled positive samples (attack samples) or extra structural informa-
tion (no program structure). To address this issue, RADIO provides a modified FSM inference
algorithm to leverage the internal correlation inside the IoT traffic to infer the FSM states. The
second issue is that the samples can be polluted, and malicious behaviors will be included in
the benign behavior models learned. To handle pollution, RADIO novelly integrates an outlier
detection mechanism with the FSM inference algorithm to generate multiple candidate models,
and leverages IoT heuristics to filter out polluted models and selects the best benign model.

9.1.3 LoFTI Contributions
In LoFTI, we explore the design space in terms of feature extraction, model building and dataset
construction and address the challenges above. We generalize 6 types of key features to cap-
ture the contextual IoT access patterns and demonstrate their effectiveness in distinguishing be-
nign/malicious IoT access. We build a simple SVM-based model with extra temporal structures
to achieve high detection accuracy and low communication/computation cost. We provide a spe-
cialized data augmentation mechanism to balance the contextual access historical record dataset.

74

We show that LoFTI framework can achieve high accuracy (FNR is 0.024 and FPR is 0.086)
while addressing user’s privacy concerns by guaranteeing that raw IoT data will be stored locally
within each smart home.

9.1.4 PSI Contributions

We make several contributions in designing PSI. We design a PSI policy abstraction that can ex-
press agile and contextual traffic processing. This allows us to express rich multi-stage security-
relevant processing mapped to a security-relevant state for each device; , a host in normal state is
subject to simple IDS-followed-by-firewall but in “suspicious” state may be subject to additional
on-demand exfiltration detection modules. We also provide mechanisms to incorporate legacy
policies that need to be applied to a group of devices.

We provide a scalable and responsive control plane. Naively applying SDN/NFV mecha-
nisms in security context is problematic and can introduce new avenues for DoS attacks [108].
We develop a scalable orchestration platform by synthesizing three key ideas: (a) proactive for-
warding schemes based on logical tags that do not need to involve the controller; (b) effective
techniques for horizontally scaling the controller infrastructure; and (c) prefetching future en-
forcement states to improve responsiveness.

9.2 Limitations

In this part, we discuss the limitations of the fine-grained detection and prevention system for
IoT devices.
Need for protocol specifications in RADIO: One concern, however, is there may be propri-
etary and/or non-standard protocols in use in some environments. In this case, we need manually
crafted protocol specifications or need additional reverse engineering to understand these proto-
cols. Fortunately, related works[56] have demonstrated that it is possible to automatically reverse
engineering non-standard network protocols to solve this issue.
Need labels for learning IoT interactions in LoFTI: We designed a supervised learning mech-
anism to combine with federated multitask learning mechanism, which means labeled data are
needed in LoFTI. However, labeling the attacks of physical hazards or privacy leakage requires
non-trivial efforts. It is an open question if an unsupervised learning mechanism can be designed
to combine with federated multitask learning mechanism. This is because it is unclear whether
the optimization form of federated multitask learning is solvable or not in unsupervised setting.
We hope that further works in machine learning area can help to address this issue.
Covert channels in PSI: As with any system, PSI might be vulnerable to covert channels used
by attackers; , malware via encrypted cloud storage. We conjecture that dynamic, customized,
and isolated enforcement that PSI offers, can be an enabler for detecting such advanced threats;
, a specialized MITM only applied for suspected users or using advanced behavioral detection
techniques that would otherwise result in high false positives.

75

9.3 Discussions and Future Works
In this part, we will present discussions on the three pieces of the system and present future
works.

9.3.1 RADIO

Attack evasion: Any behavioral anomaly detection is subject to evasion attacks that follow
legitimate behaviors and RADIO is no different. However, many of the core attack behaviors that
grant the attackers higher privilege or sensitive information intrinsically violates the legitimate
patterns and RADIO would be effective. It can be an interesting future work to measure how
good RADIO is against attack evasion and how to improve RADIO’s robustness on that frontier.
Non-enterprise IoT: We hypothesize that the insight on behavior being restricted is more broadly
true for IoT deployments beyond enterprises. Some of the enterprise IoT devices (e.g. NAS, cam-
era or smart speaker) also widely exist in smart home environment or industry IoT environment.
An interesting direction for future work is to deploy RADIO in smart home environment and
industry IoT environment and evaluate its effectiveness.

9.3.2 LoFTI

Beyond smart home: In this thesis, we validate LoFTI using smart home datasets. However,
as a distributed learning framework to learn contextual security policies, we envision that LoFTI
can be applied in other areas beyond smart home settings, such as industry control systems.
Diverse deployment: In this thesis, we assume that the deployment of IoT devices in the smart
homes are similar or there is a mapping mechanism to mapping different IoT devices and their
states (e.g., bedroom camera in home A can be mapped to bedroom camera in home B). In
CASAS dataset, the deployment of IoT devices in the smart homes are similar as many of the
smart homes are government supported homes for elder people. We will explore the mapping
mechanism for diverse deployment in the future.
Model privacy: In this thesis, we provide the guarantee that the attacker is not able to see
the raw data in the smart home. A strong attacker who can see the parameters of the model
(e.g., via compromising the cloud backend or MITM attack) may be able to infer certain private
information about the smart homes. However, this put a high bar on the attackers. We envision
LoFTI may combine that other techniques such as differential privacy to solve this issue.
Grouping smart homes: In LoFTI, we assign a learning task to each smart home. An interesting
direction to explore is to see if we can group the smart homes to share learning task to further
improve the accuracy and reduce communication/computation cost.

9.3.3 PSI

Attacks against PSI: Like other SDN-based systems, PSI’s control plane is a valid target for
attackers. For instance, a commonly perceived attack against centralized control is the control
channel or switch rule space exhaustion [107]. Note, however, that by using proactive tag-based

76

orchestration PSI is resilient to such attacks. The use of virtual appliances also creates the poten-
tial for resource exhaustion attacks [117]. Note, however, that this problem is not unique to PSI.
In fact, NFV offers new opportunities to elastically scale deployments depending on the offered
load, unlike traditional hardware, to mitigate such attacks [62, 71]. One interesting future work
would be to explore mechanisms to detect and mitigate such attacks against the control plane.

9.4 Final Remark
While IoT devices are benefiting many aspects of our everyday lifes, they are emerging threats
to enterprises and smart homes from the cyber security perspective. We argue that traditional
security approaches are fundamentally at odds with the IoT ecosystem (e.g., perimeter defense,
antivirus, patching) and inadequate to provide the single-device protection, IoT interactions pro-
tection, and context-based and agile enforcement needed for securing IoT devices. This thesis
explores the design space of learning single-device behaviors and cross-device interactions, as
well as providing context-based and agile enforcement to protect the IoT devices. We build RA-
DIO for robust learning for single-device behaviors. We build LoFTI for distributed learning
for complex IoT interactions. We also build PSI for context-based and agile enforcement. In
evaluation, we show that RADIO is accurate and robust to pollution, LoFTI can achieve high ac-
curacy and low computation/communication cost, and PSI overcomes topological constrains and
provide better enforcement coverage. By integrating RADIO, LoFTI and PSI, we show that our
fine-grained network detection and prevention system has the potential of enabling practical IoT
security use cases, including automated patching for IoT devices and context-based and dynamic
policy enforcement for smart homes. We believe our system can be combined with the trending
edge-cloud infrastructure to enhance the security of IoT devices.

77

78

Bibliography

[1] Smart meters can be hacked to cut power bills. http://www.bbc.com/news/
technology-29643276, . 1

[2] Fridge sends spam emails as attack hits smart gadgets. http://www.bbc.com/
news/technology-25780908, . 1

[3] Gartner Says 4.9 Billion Connected ”Things” Will Be in Use in 2015. http://www.
gartner.com/newsroom/id/2905717. 1

[4] Will giving the internet eyes and ears mean the end of privacy?
http://www.theguardian.com/technology/2013/may/16/
internet-of-things-privacy-google, . 1

[5] The Internet of Things Is Wildly Insecure - And Often Unpatchable. http://www.
wired.com/2014/01/theres-no-good-way-to-patch
-the-internet-of-things-and-thats-a-huge-problem/, . 1

[6] Hackers attack shipping and logistics firms using malware laden
handheld scanners. http://www.securityweek.com/
hackers-attack-shipping-and-logistics-firms-using-malware
-laden-handheld-scanners. 1

[7] Casas datasets. http://casas.wsu.edu/datasets/. 5.4.1

[8] Cisco Evolved Services Platform. http://www.cisco.com/
c/en/us/solutions/collateral/service-provider/
service-provider-strategy/brochure-c02-731348.html. 8.3

[9] Cve-2017-3881 how to mitigate cia vault 7 exploits on
your cisco switches. http://info.stack8.com/blog/
how-to-mitigate-cia-vault-7-exploits-cve-2017-3881
-on-your-cisco-switches. 4.3.1

[10] Cve-2017-3881 detail. https://nvd.nist.gov/vuln/detail/
CVE-2017-3881, . 1.1.1

[11] Cve-2017-6744 detail. https://nvd.nist.gov/vuln/detail/
CVE-2017-6744, . 1.1.1

[12] 13 signs that bad guys are using dns exfiltration to steal your data.
https://theworldsoldestintern.wordpress.com/2012/11/30/
dns-exfiltration-udp-53-indicators-of-exfiltration-udp53ioe/.

79

http://www.bbc.com/news/technology-29643276
http://www.bbc.com/news/technology-29643276
http://www.bbc.com/news/technology-25780908
http://www.bbc.com/news/technology-25780908
http://www.gartner.com/newsroom/id/2905717
http://www.gartner.com/newsroom/id/2905717
http://www.theguardian.com/technology/2013/may/16/internet-of-things-privacy-google
http://www.theguardian.com/technology/2013/may/16/internet-of-things-privacy-google
http://www.wired.com/2014/01/theres-no-good-way-to-patch
http://www.wired.com/2014/01/theres-no-good-way-to-patch
-the-internet-of-things -and-thats-a-huge-problem/
http://www.securityweek.com/hackers-attack-shipping-and-logistics-firms-using-malware
http://www.securityweek.com/hackers-attack-shipping-and-logistics-firms-using-malware
-laden-handheld-scanners
http://casas.wsu.edu/datasets/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/service-provider-strategy/brochure-c02-731348.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/service-provider-strategy/brochure-c02-731348.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/service-provider-strategy/brochure-c02-731348.html
http://info.stack8.com/blog/how-to-mitigate-cia-vault-7-exploits-cve-2017-3881
http://info.stack8.com/blog/how-to-mitigate-cia-vault-7-exploits-cve-2017-3881
-on-your-cisco-switches
https://nvd.nist.gov/vuln/detail/CVE-2017-3881
https://nvd.nist.gov/vuln/detail/CVE-2017-3881
https://nvd.nist.gov/vuln/detail/CVE-2017-6744
https://nvd.nist.gov/vuln/detail/CVE-2017-6744
https://theworldsoldestintern.wordpress.com/2012/11/30/dns-exfiltration-udp-53-indicators-of-exfiltration-udp53ioe/
https://theworldsoldestintern.wordpress.com/2012/11/30/dns-exfiltration-udp-53-indicators-of-exfiltration-udp53ioe/

6.3

[13] Amazon web service: Elastic load balancing. http://aws.amazon.com/
elasticloadbalancing/. 6.2.2

[14] Watch a hacker access nest cameras and demand people subscribe to
pewdiepie. https://www.vice.com/en_us/article/xwb8j7/
watch-a-hacker-access-nest-cameras
-and-demand-people-subscribe-to-pewdiepie, . 1.1.2, 5.4, 5.4.1

[15] Target attack shows danger of remotely accessible hvac sys-
tems. https://www.computerworld.com/article/2487452/
target-attack-shows-danger-of-remotely-accessible-hvac-systems.
html, . 1.1.2, 5.4, 5.4.1

[16] Have a smart lock? yeah, it can probably be hacked. https://www.cnet.com/
news/have-a-smart-lock-yeah-it-can-probably-be-hacked/, .
1.1.2, 5.4, 5.4.1

[17] Researchers hack philips hue lights via a drone; iot worm could cause city
blackout. https://www.computerworld.com/article/3139860/
researchers-hack-philips-hue-lights
-via-a-drone-iot-worm-could-cause-city-blackout.html, . 1.1.2,
5.4, 5.4.1

[18] Alexa has been eavesdropping on you this whole time. https:
//www.washingtonpost.com/technology/2019/05/06/
alexa-has-been-eavesdropping-you-this-whole-time/
?noredirect=on, . 5.4.1

[19] Sustainability hacks: Automatic window control. https://hackaday.com/2011/
09/29/sustainability-hacks-automatic-window-control/, . 1.1.2,
5.4, 5.4.1

[20] Half baked iot stove could be used as a remote controlled
arson device. https://hackaday.com/2017/04/20/
half-baked-iot-stove-could-be-used-as-
a-remote-controlled-arson-device/, . 1.1.2, 5.4, 5.4.1

[21] The ultimate nightmare: Researchers learn how to hack connected smart-home toilets.
https://bgr.com/2014/06/12/smart-home-toilets-hacked/, . 1.1.2,
5.4, 5.4.1

[22] How cia mi5 hacked your smart tv to spy on you. https://www.zdnet.com/
article/how-cia-mi5-hacked-your-smart-tv-to-spy-on-you/, .
1.1.2, 5.4, 5.4.1

[23] Hacking team hack. https://gist.github.com/Sjord/
ac8dfff3a3ac3180c065f370f24b30a8, . 1.1.1, 1.1.1, 2.1

[24] malware-traffic-analysis.net. http://malware-traffic-analysis.net/. 6.3

[25] Mcafee. https://www.mcafee.com/us/index.html, . 2.1, 2.1.1

80

http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
https://www.vice.com/en_us/article/xwb8j7/watch-a-hacker-access-nest-cameras
https://www.vice.com/en_us/article/xwb8j7/watch-a-hacker-access-nest-cameras
-and-demand-people-subscribe-to-pewdiepie
https://www.computerworld.com/article/2487452/target-attack-shows-danger-of-remotely-accessible-hvac-systems.html
https://www.computerworld.com/article/2487452/target-attack-shows-danger-of-remotely-accessible-hvac-systems.html
https://www.computerworld.com/article/2487452/target-attack-shows-danger-of-remotely-accessible-hvac-systems.html
https://www.cnet.com/news/have-a-smart-lock-yeah-it-can-probably-be-hacked/
https://www.cnet.com/news/have-a-smart-lock-yeah-it-can-probably-be-hacked/
https://www.computerworld.com/article/3139860/researchers-hack-philips-hue-lights
https://www.computerworld.com/article/3139860/researchers-hack-philips-hue-lights
-via-a-drone-iot-worm-could-cause-city-blackout.html
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/?noredirect=on
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/?noredirect=on
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/?noredirect=on
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/?noredirect=on
https://hackaday.com/2011/09/29/sustainability-hacks-automatic-window-control/
https://hackaday.com/2011/09/29/sustainability-hacks-automatic-window-control/
https://hackaday.com/2017/04/20/half-baked-iot-stove-could-be-used-as-
https://hackaday.com/2017/04/20/half-baked-iot-stove-could-be-used-as-
a-remote-controlled-arson-device/
https://bgr.com/2014/06/12/smart-home-toilets-hacked/
https://www.zdnet.com/article/how-cia-mi5-hacked-your-smart-tv-to-spy-on-you/
https://www.zdnet.com/article/how-cia-mi5-hacked-your-smart-tv-to-spy-on-you/
https://gist.github.com/Sjord/ac8dfff3a3ac3180c065f370f24b30a8
https://gist.github.com/Sjord/ac8dfff3a3ac3180c065f370f24b30a8
http://malware-traffic-analysis.net/
https://www.mcafee.com/us/index.html

[26] McAfee Report Reveals Organizations Choose Network Performance Over Advanced
Security Features. http://www.mcafee.com/us/about/news/2014/q4/
20141028-01.aspx, . 8.3

[27] Server nic teaming to multiple switches. http://itknowledgeexchange.
techtarget.com/network-engineering-journey/
server-nic-teaming-to-multiple-switches/. 6.3

[28] Norton by symantec. https://us.norton.com/. 2.1, 2.1.1

[29] Nvd. https://nvd.nist.gov/. (document), 1.1, 1.1.1, 4.3.8

[30] Opendaylight,group based policy. https://wiki.opendaylight.org/view/
Group_Based_Policy_(GBP). 6.1.1

[31] Cisco pix 500 series security appliances. http://www.cisco.com/c/en/us/
products/security/pix-500-series-security-appliances/index.
html. 6.1.1

[32] Diary of a rat. http://www.provision.ro/
threat-management/data-security/content-aware-and-dlp/
diary-of-a-rat-remote-access-tool. 6.3

[33] Sambacry, the seven year old samba vulnerability, is the next big threat. https://www.
guardicore.com/2017/05/samba/. 4.3.1

[34] springbok. https://github.com/conix-security/springbok. 6.3

[35] Suricata ids/ips. https://suricata-ids.org/. 1.4, 3.2.1, 4.1.3, 4.3, 4.3.2, 8.1, 8

[36] Eavesdropping with amazon alexa. https://www.checkmarx.com/2018/04/
25/eavesdropping-with-amazon-alexa/, 2018. 4.3.1

[37] Google beyondcorp. https://beyondcorp.com/, 2018. 8.3

[38] Iot security flaw leaves 496 million devices vulnerable at businesses: Re-
port. https://crn.com/news/internet-of-things/300106806/
iot-security-flaw-leaves-496-million-devices-vulnerable
-at-businesses-report.html, 2018. 4.3.1

[39] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed Abu-
Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots: Detecting the
rise of dga-based malware. In USENIX security symposium, volume 12, 2012. 1.4, 4.3,
4.3.2, 8.1, 8

[40] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al.
Understanding the mirai botnet. In USENIX Security Symposium, 2017. (document), 3.5,
3.3.1, 4.3.1

[41] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A smart home is no castle: Privacy
vulnerabilities of encrypted iot traffic. arXiv preprint arXiv:1705.06805, 2017. 4.1.4,
4.1.4

[42] Karel Bartos, Michal Sofka, and Vojtech Franc. Optimized invariant representation of

81

http://www.mcafee.com/us/about/news/2014/q4/20141028-01.aspx
http://www.mcafee.com/us/about/news/2014/q4/20141028-01.aspx
http://itknowledgeexchange.techtarget.com/network-engineering-journey/server-nic-teaming-to-multiple-switches/
http://itknowledgeexchange.techtarget.com/network-engineering-journey/server-nic-teaming-to-multiple-switches/
http://itknowledgeexchange.techtarget.com/network-engineering-journey/server-nic-teaming-to-multiple-switches/
https://us.norton.com/
https://nvd.nist.gov/
https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)
https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP)
http://www.cisco.com/c/en/us/products/security/pix-500-series-security-appliances/index.html
http://www.cisco.com/c/en/us/products/security/pix-500-series-security-appliances/index.html
http://www.cisco.com/c/en/us/products/security/pix-500-series-security-appliances/index.html
http://www.provision.ro/threat-management/data-security/content-aware-and-dlp/diary-of-a-rat-remote-access-tool
http://www.provision.ro/threat-management/data-security/content-aware-and-dlp/diary-of-a-rat-remote-access-tool
http://www.provision.ro/threat-management/data-security/content-aware-and-dlp/diary-of-a-rat-remote-access-tool
https://www.guardicore.com/2017/05/samba/
https://www.guardicore.com/2017/05/samba/
https://github.com/conix-security/springbok
https://suricata-ids.org/
https://www.checkmarx.com/2018/04/25/eavesdropping-with-amazon-alexa/
https://www.checkmarx.com/2018/04/25/eavesdropping-with-amazon-alexa/
https://beyondcorp.com/
https://crn.com/news/internet-of-things/300106806/iot-security-flaw-leaves-496-million-devices-vulnerable
https://crn.com/news/internet-of-things/300106806/iot-security-flaw-leaves-496-million-devices-vulnerable
-at-businesses-report.html

network traffic for detecting unseen malware variants. In USENIX Security Symposium,
pages 807–822, 2016. 2.1, 2.1.1, 3.2.1, 8.1, 8

[43] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If this then what?: Controlling flows
in iot apps. In CCS, 2018. 2.2, 5.1, 5.4.8, 8.2

[44] Alan W Biermann and Jerome A Feldman. On the synthesis of finite-state machines from
samples of their behavior. IEEE transactions on Computers, 100(6):592–597, 1972. 5

[45] Riccardo Bortolameotti, Thijs van Ede, Marco Caselli, Maarten H Everts, Pieter Hartel,
Rick Hofstede, Willem Jonker, and Andreas Peter. Decanter: Detection of anomalous
outbound http traffic by passive application fingerprinting. In Proceedings of the 33rd
Annual Computer Security Applications Conference, pages 373–386. ACM, 2017. 2.1,
2.1.1, 3.2.1

[46] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming
protocol-independent packet processors. ACM SIGCOMM Computer Communication Re-
view, 44(3):87–95, 2014. 6.2.2

[47] Martı́n Casado et al. Ethane: Taking control of the enterprise. In Proc. SIGCOMM, 2007.
8.3

[48] Z Berkay Celik, Leonardo Babun, Amit K Sikder, Hidayet Aksu, Gang Tan, Patrick Mc-
Daniel, and A Selcuk Uluagac. Sensitive information tracking in commodity iot. Usenix
Security, 2018. 2.2, 5.1, 5.4.8, 8.2

[49] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. Towards automated
dynamic analysis for linux-based embedded firmware. In NDSS, 2016. 1.1.1, 8.1

[50] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel leaks in web
applications: A reality today, a challenge tomorrow. In 2010 IEEE Symposium on Security
and Privacy, pages 191–206. IEEE, 2010. 4.1.4, 4.1.4

[51] Chia Yuan Cho, Eui Chul Richard Shin, Dawn Song, et al. Inference and analysis of
formal models of botnet command and control protocols. In Proceedings of the 17th ACM
conference on Computer and communications security, pages 426–439. ACM, 2010. 8.1,
8

[52] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pi-
store, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An open-
source tool for symbolic model checking. In Computer Aided Verification, pages 359–364.
Springer, 2002. 6.1.1

[53] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda.
Prospex: Protocol specification extraction. In Security and Privacy, 2009 30th IEEE Sym-
posium on, pages 110–125. IEEE, 2009. 1.4, 4.3, 4.3.2, 8.1, 8

[54] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, pages 437–448.
ACM, 2016. 1.1.1, 8.1

82

[55] Ang Cui, Michael Costello, and Salvatore J Stolfo. When firmware modifications attack:
A case study of embedded exploitation. In NDSS, 2013. 1.1.1, 8.1

[56] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. Discoverer: Automatic protocol
reverse engineering from network traces. In USENIX Security Symposium, pages 1–14,
2007. 2, 4.1.3, 9.2

[57] François Denis, Aurélien Lemay, and Alain Terlutte. Learning regular languages using
rfsas. Theoretical computer science, 313(2):267–294, 2004. 3.4.1, 5, 9.1.2

[58] Wenbo Ding and Hongxin Hu. On the safety of iot device physical interaction control. In
CCS, 2018. 8.2

[59] Advait Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ramana Kompella. To-
wards an elastic distributed sdn controller. In Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking, pages 7–12. ACM, 2013. 6.2.2,
8.3

[60] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin Lee, Stefan Saroiu,
and Paramvir Bahl. An operating system for the home. In NSDI, 2012. 5.1

[61] Richard O Duda and Peter E Hart. Use of the hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972. 6

[62] Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Flexible and elastic
ddos defense using bohatei. In USENIX Security Symposium, 2015. 8.3, 9.3.3

[63] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul.
Enforcing network-wide policies in the presence of dynamic middlebox actions using
FlowTags. In Proc. NSDI, 2014. 6.2.2, 8.3

[64] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and
Atul Prakash. Flowfence: Practical data protection for emerging iot application frame-
works. In USENIX Security Symposium, pages 531–548, 2016. 8.1

[65] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and
Atul Prakash. Flowfence: Practical data protection for emerging iot application frame-
works. In Usenix Security, 2016. 2.2.1, 5.1, 8.2

[66] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 4.2.1, 6, 8, 5.3

[67] E Mark Gold. Language identification in the limit. Information and control, 10(5):447–
474, 1967. 4.2, 4.2.1

[68] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet detection. In
USENIX security symposium, volume 5, pages 139–154, 2008. 2.1, 2.1.1, 3.2.1, 4.1.1,
8.1, 8

[69] Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion detection: Eva-
sion, traffic normalization, and end-to-end protocol semantics. In USENIX Security Sym-
posium, pages 115–131, 2001. 8.3

83

[70] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence Fer-
nandes, and Blase Ur. Rethinking access control and authentication for the home internet
of things (iot). In Usenix Security, 2018. (document), 2.2, 2.2.1, 5.5, 5.4.3, 8.2

[71] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar. New opportunities for load balanc-
ing in network-wide intrusion detection systems. In Proc. CoNEXT, 2012. 9.3.3

[72] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson, and David Wagner. Detecting
credential spearphishing in enterprise settings. 2017. 2.1, 2.1.1, 3.2.1, 8.1, 8

[73] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 5.2

[74] Sungmin Hong, Robert Baykov, Lei Xu, Srinath Nadimpalli, and Guofei Gu. Towards
sdn-defined programmable byod (bring your own device) security. In NDSS, 2016. 8.3

[75] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. Flowguard: building robust
firewalls for software-defined networks. In Proceedings of the third workshop on Hot
topics in software defined networking, pages 97–102. ACM, 2014. 8.3

[76] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christopher Kruegel, Sabyasachi
Saha, Giovanni Vigna, Sung-Ju Lee, and Marco Mellia. Nazca: Detecting malware distri-
bution in large-scale networks. In NDSS, volume 14, pages 23–26, 2014. 2.1, 2.1.1, 3.2.1,
8.1, 8

[77] Sotiris Ioannidis, Angelos D Keromytis, Steve M Bellovin, and Jonathan M Smith. Im-
plementing a distributed firewall. In Proceedings of the 7th ACM conference on Computer
and communications security, pages 190–199. ACM, 2000. 8.3

[78] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes, Zhuo-
qing Morley Mao, Atul Prakash, and Shanghai JiaoTong Unviersity. Contexlot: Towards
providing contextual integrity to appified iot platforms. In NDSS, 2017. 2.2, 2.2.1, 5.1,
8.2

[79] Jayanthkumar Kannan, Jaeyeon Jung, Vern Paxson, and Can Emre Koksal. Semi-
automated discovery of application session structure. In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, pages 119–132. ACM, 2006. 8.1

[80] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static checking for
networks. In Proc. NSDI, 2012. 6.3

[81] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feam-
ster, and Russ Clark. Kinetic: Verifiable dynamic network control. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15), pages 59–72, Oakland, CA, May 2015. USENIX Association. ISBN 978-
1-931971-218. URL http://blogs.usenix.org/conference/nsdi15/
technical-sessions/presentation/kim. 6.1.1, 8.3

[82] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda, Bryan
Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew Lambeth, Ro-
main Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ra-
manathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan Wend-

84

http://blogs.usenix.org/conference/nsdi15/technical-sessions/presentation/kim
http://blogs.usenix.org/conference/nsdi15/technical-sessions/presentation/kim

landt, Alexander Yip, and Ronghua Zhang. Network virtualization in multi-tenant dat-
acenters. In 11th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 203–216, Seattle, WA, April 2014. USENIX Association. ISBN
978-1-931971-09-6. URL https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/koponen. 6.2.2

[83] Teemu Koponen et al. Onix: A Distributed Control Platform for Large-scale Production
Network. In Proc. OSDI, 2010. 8.3

[84] Anand Krishnamurthy, Shoban P Chandrabose, and Aaron Gember-Jacobson.
Pratyaastha: an efficient elastic distributed sdn control plane. In Proceedings of the third
workshop on Hot topics in software defined networking, pages 133–138. ACM, 2014. 6.2.2

[85] Yanlin Li, Jonathan M McCune, and Adrian Perrig. Viper: verifying the integrity of
peripherals’ firmware. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 3–16. ACM, 2011. 8.1

[86] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. Clickos and the art of network function virtualiza-
tion. In Proc. USENIX NSDI, pages 459–473, 2014. 3.3.3

[87] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, Tommaso Frassetto, N Asokan,
Ahmad-Reza Sadeghi, and Sasu Tarkoma. Iot sentinel demo: Automated device-type
identification for security enforcement in iot. In Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on, pages 2511–2514. IEEE, 2017. 8.1

[88] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an ensemble
of autoencoders for online network intrusion detection. 2018. 1.4, 4.3, 4.3.2, 8.1

[89] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.
Composing software-defined networks. In Proc. NSDI, 2013. 8.3

[90] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad. Webwitness:
Investigating, categorizing, and mitigating malware download paths. In USENIX Security
Symposium, pages 1025–1040, 2015. 8.1, 8

[91] Timothy Nelson, Christopher Barratt, Daniel J Dougherty, Kathi Fisler, and Shriram Kr-
ishnamurthi. The margrave tool for firewall analysis. In LISA, 2010. 8.3

[92] Helen Nissenbaum. Privacy in context: Technology, policy, and the integrity of social life.
Stanford University Press, 2009. 5.1

[93] José Oncina and Pedro Garcia. Inferring regular languages in polynomial update time.
1992. 3.4.1, 4.2.1, 9.1.2

[94] Vern Paxson. Bro: A system for detecting network intruders in real-time. In Computer
Networks, pages 2435–2463, 1999. 2.1, 2.1.1, 3.2.1, 6.1.1, 8.3

[95] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering of http-based
malware and signature generation using malicious network traces. In NSDI, volume 10,
page 14, 2010. 1.4, 2.1, 2.1.1, 3.2.1, 4.3, 4.3.2, 8.1, 8

[96] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya Akella, Su-
jata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. Pga: Using

85

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen

graphs to express and automatically reconcile network policies. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, pages 29–42.
ACM, 2015. 6.1.1, 8.3

[97] Zafar Qazi, Cheng Tu, Luis Chiang, Rui Miao, and Minlan Yu. SIMPLE-fying middlebox
policy enforcement using sdn. In Proc. SIGCOMM, 2013. 8.3

[98] Markus N. Rabe, Peter Lammich, and Andrei Popescu. A shallow embedding of hyper-
ctl*. Archive of Formal Proofs, April 2014. ISSN 2150-914x. http://afp.sf.net/
entries/HyperCTL.shtml, Formal proof development. 6.1.1

[99] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA, vol-
ume 99, pages 229–238, 1999. 8.3

[100] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA, vol-
ume 99, pages 229–238, 1999. 2.1, 2.1.1, 3.2.1

[101] Sebastian Roschke, Feng Cheng, and Christoph Meinel. A flexible and efficient alert
correlation platform for distributed ids. In Network and System Security (NSS), 2010 4th
international conference on, pages 24–31. IEEE, 2010. 8.3

[102] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Situational access control in the inter-
net of things. In CCS, 2018. 2.2, 2.2.1, 5.1, 8.2

[103] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast automaton-
based method for detecting anomalous program behaviors. In Proceedings 2001 IEEE
Symposium on Security and Privacy. S&P 2001. IEEE, 2000. 3.4.1, 4.2, 9.1.2

[104] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi. Design
and Implementation of a Consolidated Middlebox Architecture. In Proc. NSDI, 2012.
3.2.3

[105] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M Wing.
Automated generation and analysis of attack graphs. In Security and privacy, 2002. Pro-
ceedings. 2002 IEEE Symposium on, pages 273–284. IEEE, 2002. 6.3

[106] Seungwon Shin, Phillip Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu, and Mabry
Tyson. FRESCO: Modular composable security services for software-defined networks.
In Proc. NDSS, 2013. 8.3

[107] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-guard: Scal-
able and vigilant switch flow management in software-defined networks. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security, pages
413–424. ACM, 2013. 3.4.3, 9.3.3

[108] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip
Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang. Rosemary: A
robust, secure, and high-performance network operating system. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pages 78–
89. ACM, 2014. 9.1.4

[109] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. Firmalice-automatic detection of authentication bypass vulnerabilities in binary

86

http://afp.sf.net/entries/HyperCTL.shtml
http://afp.sf.net/entries/HyperCTL.shtml

firmware. In NDSS, 2015. 1.1.1, 8.1

[110] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated
multi-task learning. In Advances in Neural Information Processing Systems, pages 4424–
4434, 2017. 3.3.2, 8.2

[111] Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning
for network intrusion detection. In Security and Privacy (SP), 2010 IEEE Symposium on,
pages 305–316. IEEE, 2010. 3.4.1

[112] John Sonchack, Jonathan M Smith, Adam J Aviv, and Eric Keller. Enabling practical
software-defined networking security applications with ofx. In NDSS, 2016. 8.3

[113] Kyle Soska and Nicolas Christin. Automatically detecting vulnerable websites before they
turn malicious. In USENIX Security Symposium, pages 625–640, 2014. 2.1, 2.1.1, 3.2.1,
8.1, 8

[114] Robert Soulé, Shrutarshi Basu, Robert Kleinberg, Emin Gün Sirer, and Nate Foster. Man-
aging the network with merlin. In Proc. HotNets, 2013. 6.1.1

[115] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin Jia. Some
recipes can do more than spoil your appetite: Analyzing the security and privacy risks
of ifttt recipes. In Proceedings of the 26th International Conference on World Wide Web,
pages 1501–1510. International World Wide Web Conferences Steering Committee, 2017.
5.4.8, 8.2

[116] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, XianZheng Guo,
and Patrick Tague. Smartauth: User-centered authorization for the internet of things. In
USENIX Security Symposium, 2017. 5.1, 8.2

[117] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and Brian Tier-
ney. The nids cluster: Scalable, stateful network intrusion detection on commodity hard-
ware. In Recent Advances in Intrusion Detection, pages 107–126. Springer, 2007. 9.3.3

[118] Vmware. Next generation security with vmware nsx and palo alto networks vm-series. In
White Paper, pages 1–25, 2013. 6.2.2, 8.3

[119] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin Zhu.
Homonit: Monitoring smart home apps from encrypted traffic. In CCS, 2018. 8.1

[120] Amy Zhao, Guha Balakrishnan, Fredo Durand, John V Guttag, and Adrian V Dalca. Data
augmentation using learned transformations for one-shot medical image segmentation. In
CVPR, 2019. 5.3

87

	1 Introduction
	1.1 Security issues for IoT devices
	1.1.1 Single-device vulnerabilities
	1.1.2 Privacy leakage and physical hazard that caused by environment-device and cross-device interactions

	1.2 Limitations of Current Approaches
	1.3 Fine-grained Detection and Prevention System for IoT devices
	1.3.1 RADIO: Robust Behavioral Anomaly Detection for IoT devices
	1.3.2 LoFTI: Learning Context-based Security Policies via Federated Multi-Task Learning
	1.3.3 PSI: Precise Security Instrumentation

	1.4 Summary of Results
	1.5 Organization

	2 Motivation
	2.1 Motivating example 1: HackingTeam incidence
	2.1.1 Broken network enforcement

	2.2 Motivating example 2: Physical break-in against smart homes
	2.2.1 Complex interactions are hard to capture

	2.3 Summary

	3 System Overview
	3.1 High-level vision
	3.1.1 RADIO module
	3.1.2 LoFTI module
	3.1.3 PSI module

	3.2 Challenges
	3.2.1 Learning single-device behaviors
	3.2.2 Learning complex interactions
	3.2.3 Enforcement architecture

	3.3 Our insights
	3.3.1 A single IoT device has a limited set of behaviors
	3.3.2 Federated Multi-Task learning can address the insufficient data issue and privacy issue for IoT devices
	3.3.3 SDN and NFV can enable the context-based and agile enforcement for IoT devices

	3.4 Making Fine-grained Detection and Prevention System Practical
	3.4.1 Practical Challenges for RADIO
	3.4.2 Practical Challenges for LoFTI
	3.4.3 Practical Challenges for PSI

	3.5 Summary

	4 Learning Single-device Behaviors
	4.1 Network Behavioral Model for IoTs
	4.1.1 Capturing key network characteristics for IoT devices
	4.1.2 Expressiveness to capture IoT behaviors contained in a wide range of network protocols
	4.1.3 Handling diverse IoT protocols
	4.1.4 Handling encrypted traffic

	4.2 Learning IoT Behavioral Model
	4.2.1 RADIO's idea
	4.2.2 RPNI Modification
	4.2.3 RANSAC Modification
	4.2.4 Putting it together

	4.3 Results
	4.3.1 Setup
	4.3.2 Accuracy
	4.3.3 Robustness against pollution
	4.3.4 Performance analysis
	4.3.5 Handling encrypted traffic
	4.3.6 Aggregated behavior model for coverage and scalability
	4.3.7 Sensitivity to parameters
	4.3.8 Diagnostic Utility

	5 Learning Complex IoT Interactions
	5.1 Defining key features for contextual IoT access
	5.2 Building a model with high accuracy and low computation/communication cost
	5.3 Addressing unbalanced contextual IoT access records
	5.4 Evaluation
	5.4.1 Dataset
	5.4.2 Accuracy
	5.4.3 Comparison with manually generated policies
	5.4.4 Effectiveness of LoFTI's key features
	5.4.5 Effectiveness of LoFTI's simple SVM-based model with temporal structure
	5.4.6 Effectiveness of LoFTI's data augmentation
	5.4.7 LoFTI's capability of handling new attacks
	5.4.8 Masking sensitive parameters

	6 Enforcement
	6.1 PSI Policy Abstraction
	6.1.1 Requirements
	6.1.2 High-Level Ideas
	6.1.3 Illustrative Example

	6.2 PSI Controller
	6.2.1 Conceptual View and Challenges
	6.2.2 Key Ideas in PSI

	6.3 Results

	7 Integrating RADIO, LoFTI and PSI
	7.1 Integrating RADIO and PSI: IoT autopatch
	7.2 Integrating LoFTI and PSI: Context-based and dynamic policy enforcement for smart homes

	8 Related Works
	8.1 Related works for RADIO
	8.2 Related works for LoFTI
	8.3 Related works for PSI

	9 Contributions, Limitations and Future Works
	9.1 Summary of Contributions
	9.1.1 Current security ecosystem for IoT devices
	9.1.2 RADIO Contributions
	9.1.3 LoFTI Contributions
	9.1.4 PSI Contributions

	9.2 Limitations
	9.3 Discussions and Future Works
	9.3.1 RADIO
	9.3.2 LoFTI
	9.3.3 PSI

	9.4 Final Remark

	Bibliography

