
Mining Anomalies using Static and

Dynamic Graphs

Dhivya Eswaran

May 2020

CMU-CS-20-108

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Christos Faloutsos, Chair

Aarti Singh

Zico Kolter

Nina Mishra, Amazon

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2020 Dhivya Eswaran

This research was sponsored by the National Science Foundation under grant numbers IIS1247489 and IIS1408924,

the Space and Naval Warfare Systems Center under grant number N6600112C2008, the Army under grant num-

ber W911NF0920053, Boeing under grant number A0192142015002U, and the PNC Center for Financial Services

Innovation. The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the o�cial policies, either expressed or implied, of any sponsoring institution, the U.S.

government or any other entity.

Keywords: anomaly detection, graphs, time-series, unsupervised algorithms, semi-supervised

algorithms, streaming algorithms

To my mother, and grandparents, who have always been there for me. I love you all.

iv

Abstract

Detection of anomalies, i.e. rare or unusual patterns, is a pressing problem in a

number of contexts such as security, health care, �nance and the web. Anomalies

such as review fraud and network intrusion attacks encode suspicious, fraudulent

or malicious behavior and do not just in�uence people into making sub-optimal

decisions but also steadily erode their trust in businesses. As such, algorithms to

detect ongoing anomalies and warn against upcoming anomalies have high impact

for businesses and end-users alike.

This thesis considers the problem of anomaly detection by developing princi-

pled, scalable algorithms that detect unusual behavior or events by leveraging con-

nectivity and temporal information. These approaches are useful for large dynamic

complex datasets having strong relational and temporal characteristics, with mul-

tiple entities interacting with each other and also evolving over time. Such datasets

are generated in a multitude of diverse contexts today, with examples ranging from

e-commerce logs to online social networks to the internet-of-things.

The �rst half of the thesis focuses on anomaly detection in graphs where only

static connectivity information is known. Given a graph, and a few labeled vertices,

how can we infer the labels for the remaining vertices? For example, how can we

spot all fake user accounts on Amazon or Facebook from a small set of manually

labeled honest and fake accounts? Compared to existing literature, our work lever-

ages three key properties of real-world graphs, namely, heterogeneity in vertex and

edge types, skewed degree distributions, and higher-order structures, to yield more

accurate vertex labeling. The proposed algorithms have closed-form solutions, rig-

orous convergence guarantees, can be e�ciently implemented using sparse matrix

operations, and scale linearly with graph size.

The second half of the thesis focuses on mining anomalies from data where

the connectivity structure evolves over time. In many settings, especially those

relating to security and health care, the value of a newfound or anticipated anomaly

lies in the moment, and not later. Thus, given a time-evolving graph (explicit or

implicit), how can we detect anomalies or events in near real-time, or perhaps even

early warn before their occurrence? Our algorithms can detect anomalous graph

footprints such as sudden appearance or disappearance of dense subgraphs and

bridge edges in near real-time, by only storing a small synopsis of the graph seen

so far and requiring no supervision. We also show how to infer state-transition

graph from time series data in an online manner and use that to early warn against

user-labeled anomalies such as adverse medical conditions.

Throughout the thesis, a strong emphasis is placed on algorithms which are not

only (a) e�ective in practice, but are also (b) e�cient, processing millions of edges in

under a few seconds on a stock laptop, and are (c) principled, can be reasoned about

rigorously, yielding theoretical guarantees for inference, detection, or leveraging

data-related insights. We demonstrate the e�cacy of our algorithms in a range of

applications from social networks and e-commerce to security and health care.

vi

Acknowledgments

To my mother, my life-long mentor and cheerleader, the bravest and the most

independent woman I’ve ever known. My biggest thank you to her for encouraging

me to pursue science, to strive for and achieve greater and greater heights.

To my grandparents, for their unconditional love and support, and their con�-

dence in me. It was their kind words, laughter, and stories every morning that kept

me going when nothing else did. I will always be their chellam.

To my advisor Christos Faloutsos, for his never-ending words of encourage-

ment, for his infectious enthusiasm and positivity, for his approachability and hu-

mility, for always taking the time and e�ort to meet with me, whenever I needed. I

will always cherish the many pictionaries, charades and pizzas we shared.

To Nina Mishra and Paul Bennett, for their invaluable mentorship and guidance.

My life and career would not have been the same if not for my many interactions

with them. They inspire me and challenge me at every turn, instill in me the thirst

for knowledge and drive my pursuit of rigorous, practical, and impactful science.

To Neil Shah, Vagelis Papalexakis, Danai Koutra and Alex Beutel for their ad-

vice, encouragement, and for calling me their little sister. To Leman Akoglu, Stephan

Guennemann, Bryan Hooi, Srijan Kumar, Reihaneh Rabbany, and Kijung Shin, from

whom I have learned a lot through collaborations. To Hyun Ah Song, Hemank

Lamba, Shubhranshu Shekhar, Namyong Park, Minji Yoon, and Catalina Vajiac for

the many experiences and conversations we shared. To Deborah Cavlovich, Alison

Day, Tony Mareino, Ann Stetser, and Marilyn Walgora for their excellent adminis-

trative skills and for the way they simpli�ed my life.

Finally, to my support circle of dearest friends. To Rajarshi Sengupta and Vish-

wanath Saragadam, for being my go-to pillars of support during these intense and

transformational years. Thank you for encouraging me, actively checking on my

progress, cheering me up, cooking for me, and most of all, just being there for me,

near or far. To Kartik Gupta for always keeping me on my toes, and for the clarity

our conversations bring into my life. To Abhinav Garlapati, Aishwarya Padmaku-

mar, and Aarati Kakaraparthy whom I can always count on for support. To Arun

Kannawadi and Lekha Mohan, for ma�a nights, travels, and unexpected friend-

ships that blossomed and persisted despite all odds. To Arun Suggala and Deepoo

Kumar, for the many runs we undertook together; their patience and perseverance

never ceases to amaze me. To Bhavya Balu, Travis Dick, Varun Gangal, Qin Gu,

Saurabh Kadekodi, Adithya Phillip, Jagannath Saragadam, Anchit Sood, Deepak

Thipeswamy and the many more people I interacted with through Indian Gradu-

ate Student Association, summer internships at Facebook, Amazon and Microsoft

Research, as well as other avenues at Carnegie Mellon University.

Thank you all for keeping me sane, and adding incredible experiences, meaning,

richness, fun and excitement to the past �ve years of my life.

viii

Contents

I Introduction 1

1 Introduction 3

1.1 Problem . 3

1.2 Organization . 4

1.3 Overview of Part II: Static Graphs . 4

1.4 Overview of Part III: Dynamic Graphs . 6

II Static Graphs 9

2 ZooBP: Leveraging Heterogeneity 13

2.1 Introduction . 13

2.2 Related Work . 15

2.3 Preliminaries . 17

2.4 Proposed Method . 20

2.4.1 Notation and Problem Description . 20

2.4.2 Key Insights . 21

2.4.3 ZooBP . 23

2.4.4 Derivation of ZooBP . 28

2.4.5 Iterative Updates and Convergence . 31

2.4.6 Time and Space Complexity . 33

2.4.7 Case Study - Product-Rating Network 34

2.5 Experiments . 35

2.5.1 Data Description and Experimental Setup 37

2.5.2 Q1. Accuracy . 38

2.5.3 Q2. (In-)Sensitivity to Interaction Strength 38

2.5.4 Q3. Speed & Scalability . 39

2.6 Conclusion . 40

3 NetConf: Leveraging Con�dence 41

3.1 Introduction . 41

3.2 Background . 43

3.3 Axioms . 43

ix

3.4 Proposed Method . 45

3.4.1 Dirichlet Beliefs . 46

3.4.2 Multinomial Messages . 47

3.4.3 Network E�ects . 48

3.4.4 Putting Things Together: NetConf . 49

3.4.5 Closed-Form Solution and Convergence 51

3.5 Experiments . 52

3.5.1 Synthetic Data . 52

3.5.2 Real-World Data . 53

3.6 Related Work . 55

3.7 Conclusion . 55

4 HOLS: Leveraging Higher-Order Structures 57

4.1 Introduction . 57

4.2 Related Work . 60

4.3 Higher-Order Label Consistency . 61

4.3.1 Notation . 62

4.3.2 Quantifying Label Consistency . 62

4.3.3 Label Consistency in Real-World Networks 65

4.4 Higher-Order Label Spreading . 69

4.4.1 Generalized Loss Function . 69

4.4.2 Closed-Form and Iterative Solutions . 70

4.4.3 Time and Space Complexity . 73

4.5 Experiments . 74

4.5.1 Experimental Setup . 75

4.5.2 Q1. Accuracy Comparison of HOLS . 75

4.5.3 Q2. Variation of Accuracy with Higher-Order Structures 76

4.5.4 Q3. Runtime Performance of HOLS . 77

4.5.5 Q4. Variation of Accuracy with Label Consistency 77

4.5.6 Q5. Variation of Accuracy with Vertex Label Consistency 77

4.6 Conclusion . 80

III Dynamic Graphs 81

5 SpotLight: Anomalous Dense-Subgraph Detection 85

5.1 Introduction . 85

5.2 Related Work . 87

5.3 Preliminaries . 88

5.4 Proposed Method . 89

5.4.1 SpotLight Graph Sketching . 89

5.4.2 Anomaly Detection in the SpotLight Space 91

5.5 Theoretical Analysis . 91

5.5.1 Guarantees for SpotLight Sketches . 91

x

5.5.2 Time and Space Complexity . 96

5.6 Experiments . 97

5.6.1 Datasets . 97

5.6.2 Experimental Setup . 98

5.6.3 Q1. Accuracy . 99

5.6.4 Q2. Scalability . 101

5.6.5 Q3. Discoveries . 101

5.6.6 Discussion . 105

5.7 Conclusion . 105

6 SedanSpot: Anomalous Edge Detection 107

6.1 Introduction . 107

6.2 Background and Related Work . 110

6.2.1 Anomaly Detection in Graphs . 110

6.2.2 Random Walk with Restart (RWR) . 111

6.2.3 Sampling in Streams . 112

6.3 Problem Framework . 112

6.3.1 Subproblems . 112

6.4 Proposed Method . 113

6.4.1 Edge Sampling using SedanSampler . 113

6.4.2 Anomaly Scoring via SedanScorer . 115

6.4.3 Extensions . 117

6.5 Theoretical Analysis . 118

6.5.1 Algorithmic Analysis . 118

6.5.2 Time and Space Complexity . 120

6.6 Experiments . 121

6.6.1 Datasets . 121

6.6.2 Experimental Setup . 122

6.6.3 Q1. Accuracy . 123

6.6.4 Q2. Scalability . 124

6.6.5 Q3. Discoveries . 125

6.7 Conclusion . 128

7 SmokeAlarm: Early Warning of User-Input Anomalies 131

7.1 Introduction . 131

7.2 Related Work . 134

7.3 Preliminaries and Principles . 135

7.3.1 Principles of an Ideal Early Warning System 136

7.3.2 Prior Works Violate Principles . 137

7.3.3 Problem . 138

7.4 Proposed Approach . 138

7.4.1 Intervention-Aware Modeling . 139

7.4.2 Early Warning Scoring . 141

7.4.3 Theoretical Analysis . 142

xi

7.5 Experiments . 144

7.5.1 Experimental Setup . 144

7.5.2 Synthetic Data . 145

7.5.3 Real-World Data . 148

7.6 Conclusion . 151

IV Conclusion 153

8 Conclusion and Future Work 155

8.1 Summary . 155

8.2 Vision and Future Work . 156

Bibliography 159

xii

Part I

Introduction

1

Chapter 1

Introduction

Large-scale data mining has become a focal point of research in computer sciences and social

sciences in recent years. Statistics
1

show that over 2.5 quintillion bytes of new data is gen-

erated worldwide every day from commercial transactions, social networks, system log data,

electronic sensors and more. Much of this data has strong relational and temporal characteris-

tics, capturing multiple entities interacting with each other and also evolving over time. Thus,

it can be naturally modeled as a graph. Our thesis provides e�ective and scalable algorithms to

analyze and garner insights from graph data, and speci�cally, detect anomalies or deviations

from typical patterns.

1.1 Problem

Anomaly detection is a pressing problem for various critical tasks such as security, �nance and

the web. Anomalies–such as review or rating fraud–encode suspicious, fraudulent or malicious

behavior and do not just in�uence people into making sub-optimal decisions but also steadily

erode their trust in businesses. As such, algorithms to detect ongoing anomalies and warn

against upcoming anomalies have high impact for businesses and end-users alike.

An immediate challenge in detecting anomalies lies in de�ning what anomalies or outliers

are. One of the earliest de�nitions dates back to 1980, when Hawkins [Haw80] observes: “An

outlier is an observation that di�ers so much from other observations as to arouse suspicion that

it was generated by a di�erent mechanism”. The decided vagueness of this de�nition makes

anomaly mining a challenging and open-ended problem. A more useful and meaningful de�ni-

tion of anomaly is possible only under a given context or application. Anomalies in our work

are motivated by online social networks, e-commerce, communication, transportation and the

internet-of-things, to name a few.

1https://leftronic.com/big-data-statistics/

3

https://leftronic.com/big-data-statistics/

1.2 Organization

This thesis is organized in two parts. In the �rst part, we focus on the case where only static

connectivity information is known, and the goal is to infer a particular discrete characteristic

of vertices, e.g., whether a user is honest or fraudulent, when given access to limited labeled

data. In the second part, we mine anomalies from data where the connectivity evolves over

time. Our primary focus here is on real-time detection and early warning so as to enable timely

corrective or preventive measures against anomalies.

Table 1.1 provides an overview of this thesis.

Static Graphs

(Part II)

[S1] Leveraging Heterogeneity (Chapter 2) [EGF
+

17b] [PDF]

[S2] Leveraging Con�dence (Chapter 3) [EGF17a] [PDF]

[S3] Leveraging Higher-Order Structures (Chapter 4)

[EKF20][PDF]

Dynamic Graphs

(Part III)

[D1] Anomalous Dense-Subgraph Detection (Chapter 5)

[EFGM18] [PDF]

[D2] Anomalous Edge Detection (Chapter 6) [EF18] [PDF]

[D3] Early Warning of User-Input Anomalies (Chapter 7)

[EFMN19] [PDF]

Table 1.1: Overview of completed, ongoing and proposed work.

1.3 Overview of Part II: Static Graphs

Static graphs, which contain only connectivity information, are a common data representation

used in practice when temporal information is not present. In this part, we consider how to

conduct transductive learning or semi-supervised learning on static graphs. This is natural way

to cast the problem of fraud detection in online platforms like social networks and e-commerce,

when a few manually labeled honest and fraudulent accounts are provided, and we want to

exploit this information via the graph structure to identify more fraudulent accounts. Our work

builds upon existing literature by leveraging three key characteristics of real-world graphs: (a)

heterogeneity in vertex and edge types (ZooBP, Chapter 2), (b) skewed degree distribution

to incorporate con�dence (NetConf, Chapter 3), (c) higher-order network structures (HOLS,

Chapter 4), as detailed below.

Leveraging Heterogeneity

“Given a heterogeneous network, with vertices of di�erent types – e.g., products, users and sellers

from an online recommendation site like Amazon – and labels for a few vertices (‘honest’,

‘suspicious’, etc), can we �nd a closed formula for Belief Propagation (BP), exact or approximate?

Can we say whether it will converge?”

4

http://www.cs.cmu.edu/~deswaran/papers/vldb17-zoobp.pdf
http://www.cs.cmu.edu/~deswaran/papers/sdm17-netconf.pdf
http://www.cs.cmu.edu/~deswaran/papers/www20-hols.pdf
https://www.cs.cmu.edu/~deswaran/papers/kdd18-spotlight.pdf
https://www.cs.cmu.edu/~deswaran/papers/icdm2018-sedanspot.pdf
https://www.cs.cmu.edu/~deswaran/papers/icdm2019-smokealarm.pdf

BP, traditionally an inference algorithm for graphical models, exploits so-called “network

e�ects” to perform graph classi�cation tasks when labels for a subset of vertices are provided;

and it has been successful in numerous settings like fraudulent entity detection in online retail-

ers and classi�cation in social networks. However, it does not have a closed-form nor does it

provide convergence guarantees in general – leading to non-exact solutions on graphs which

contain loops. Our goal in this work to derive a fast and accurate approximation of belief prop-

agation for heterogeneous graphs.

Contributions

• Generality: ZooBP works on heterogeneous graphs with multiple types of nodes and

edges.

• Closed-Form Solution: ZooBP gives a closed-form solution as well as convergence guar-

antees.

• Scalability: ZooBP is linear on the graph size and is up to 600× faster than BP, running

on graphs with 3.3 million edges in a few seconds.

• Practice: Applied on real data (a Flipkart e-commerce network with users, products and

sellers), ZooBP identi�es fraudulent users with a near-perfect precision of 92.3% over the

top 300 results.

Leveraging Con�dence

“Given a friendship network, how certain are we that a vertex has a particular label? How can we

propagate these certainties through the network?”

Traditional semi-supervised methods which propagate labels or beliefs su�er from a major

limitation that they do not take uncertainty in the labels or beliefs into account. Consequently,

while propagating information, these methods treat vertices with certain and uncertain beliefs

with equal weight, resulting in counter-intuitive responses. In this work, we formulate a degree-

based notion of con�dence (or uncertainty) in beliefs and show how iterative passing of beliefs

along with their con�dences can lead to better vertex labeling.

Contributions

• Axioms: We state axioms that any node classi�cation algorithm should satisfy.

• Theory: NetConf is grounded in a Bayesian-theoretic framework to model uncertainties,

has a closed-form solution and comes with precise convergence guarantees.

• Practice: NetConf is easy to implement and scales linearly with the number of edges in

the graph. On experiments using real world data, NetConf always matches or outper-

forms BP while taking less processing time.

5

Leveraging Higher-Order Structures

“Do higher-order network structures aid graph semi-supervised learning? How can we leverage

them in a principled and e�cient manner within an algorithmic framework?”

Traditional graph SSL algorithms tend to be limited by the fact that all the neighbors of a ver-

tex are not equal. A typical user in a friendship network has many acquaintances, but only a few

close friends who belong to a small tightly-knit circle. In fact, prior research has shown that ver-

tices with a strong connection participate in several higher-order structures, such as dense sub-

graphs and cliques. Thus, we hypothesize that leveraging the higher-order structure between

vertices is crucial to accurately label the vertices. In this work, we develop an information-

theoretic metric to rigorously test the hypothesis on data, and develop Higher-Order Label

Spreading (HOLS) algorithm to incorporate the signal present in higher-order structures.

Contributions

• Metric: We create an information-theoretic metric to quantify the homogeneity of labels

in higher-order structures in graphs. We show that across four diverse real-world net-

works, higher-order structures exhibit more homogeneity of labels compared to edges.

• Algorithm: We create an algorithm, HOLS, for label spreading using higher-order struc-

tures. HOLS has strong theoretical guarantees and reduces to standard label spreading in

the base case.

• Practice: We show that higher-order label spreading using triangles in addition to edges

(HOLS-3) is up to 4.7% better than label spreading using edges alone, and outperforms all

baselines leading to statistically signi�cantly higher accuracy in all-but-one cases. HOLS-

3 is also fast and scalable to large graphs, running under 2 minutes in graphs with over

21 million edges.

1.4 Overview of Part III: Dynamic Graphs

In this part, we focus on near real-time detection and early warning of anomalies, as the connec-

tivity structure evolves over time. In Chapter 5 [EFGM18], we propose a randomized sketching-

based approach to detect anomalous dense subgraphs in near real-time by only storing a small

synopsis of the graph seen so far. Our work in Chapter 6 [EF18] considers a similar setting, but

detects anomalous edges using a novel sampling technique. In Chapter 7 [EFMN19], we show

how to learn an interpretable graph representation from time-series data and use it to early

warn against user-input anomalies in the presence of interventions. These are detailed below.

Anomalous Dense-Subgraph Detection

“Given a sequence of weighted, directed or bipartite graphs, each summarizing a snapshot of

activity in a time window, how can we spot anomalous graphs containing the sudden appearance

or disappearance of large dense subgraphs (e.g. near bicliques) in near real-time using sublinear

memory?”

6

This problem has several important applications: detecting attacks such as port scan and

denial of service in network communication logs, identifying interesting or fraudulent behavior

which create spikes of activity in user-user communication logs (e.g. scammers who operate

fast and in bulk), discerning important events such as holidays or large delays which create

abnormal tra�c in/out �ow to certain locations, to name a few. Our goal in these settings is to

devise an algorithm which can detect dense subgraph anomalies in near real-time using limited

memory and has provable guarantees for detection.

Contributions

• Theoretical Guarantee: SpotLight randomized graph sketching guarantees that an anoma-

lous graph is mapped ‘far’ away from ‘normal’ instances in the sketch space with high

probability for appropriate choice of parameters.

• E�ciency: SpotLight supports fast updates and scoring and hence can be e�ciently

maintained over stream; further, it can detect the sudden appearance or disappearance of

anomalous dense subgraphs in sublinear space and constant time per edge.

• Practice: Experiments show that SpotLight improves accuracy by at least 8.4% compared

to prior approaches, while processing millions of edges within a few minutes.

Anomalous Edge Detection

“Given a stream of edges from a time-evolving (un)weighted (un)directed graph, how can we

detect anomalous edges in near real-time using sublinear memory?”

The goal here is to detect whether an edge is anomalous or not immediately after it appears,

unlike SpotLight which waits for all edges in a single graph snapshot to arrive before �agging

anomalies. Naturally, the requirement of per-edge decision limits the anomalies that can be

detected, e.g., dense subgraphs can be spotted more easily at the graph level than on a per-edge

basis. However, the advantage of such an edge streaming model is that the �agged anomalies

can be used right away to curtail the impact of malicious activities and kick-start recovery

processes in a timely-manner, e.g., terminating a scam phone call when it is still ongoing.

Contributions

• Burst Resistance: SedanSpot provably downsamples edges from bursty periods of net-

work tra�c, leading to lower sample corruption in the face of lockstep behavior of anoma-

lies.

• Holistic Scoring: SedanSpot takes into account the whole (sampled) graph while scoring

the anomalousness of an edge, giving diminishing importance to far-away neighbors.

• E�ciency: SedanSpot supports fast updates and scoring and hence can be e�ciently

maintained over stream; further, it can detect anomalous edges in sublinear space and

constant time per edge.

• Practice: Experiments show that SedanSpot is fast and accurate, and outperforms the

state-of-the-art by 270% in terms of AUC while taking 3× less time.

7

Early Warning of User-Input Anomalies

“How can we early warn against user-input anomalies such an denial of service attack or an

adverse health condition in near real-time? More challengingly, how do we learn to early warn

from data containing confounding interventions (e.g. medicines) while remaining interpretable to

the human decision maker?”

Our SpotLight and SedanSpot algorithms can detect anomalies that have already oc-

curred. While this is a useful primitive to have, ideally, we want to be alerted in advance of

upcoming anomalies so that preventive actions–e.g., safeguarding against expected network

attacks, pulling over to the side of the road before a seizure–may be taken. Here, we develop

SmokeAlarm to infer state-transition graph from time series data in an online manner and use

that to early warn against user-labeled anomalies such as adverse medical conditions.

Contributions

• Principles: We lay out three characteristics of an ideal early warning system, namely,

dominance, precedence and intervention-awareness.

• Algorithm: In line with these, we propose SmokeAlarm which learns from past labeled

data containing interventions o�ine and can produce early warnings online.

• Interpretability: SmokeAlarm learns state-based progression models in the presence and

absence of interventions, which are “bi-inspectable” by the human decision maker.

• Practice: Extensive experiments on synthetic and real-world data show that SmokeAlarm

outperforms baselines (by 16 − 38% in terms of AUC, with an average lead time of 6.1

hours before the onset of septic shock), while scaling linearly with data size and also

leading to intuitive, interesting discoveries in practice.

8

Part II

Static Graphs

9

Overview: Static Graphs

Given a large static graph and labels for a few vertices,

how can we infer the most likely labels for all remaining vertices?

Static graphs, which contain only connectivity information, are a common data represen-

tation used in practice when temporal information is not present. In this part, we consider

how to conduct transductive learning or semi-supervised learning on static graphs. This is a

natural way to cast the problem of fraud detection in online platforms like social networks and

e-commerce, when a few manually labeled honest and fraudulent accounts are provided, and we

want to exploit this information via the graph structure to identify more fraudulent accounts.

While our work is motivated primarily by anomaly detection, it is important to note that graph

semi-supervised is general problem setting which has applications well beyond those that we

consider, for example, in recommendation [YBZ
+

17] and bioinformatics [VFMV03]. Our work

builds upon existing literature by leveraging three key characteristics of real-world graphs: (a)

heterogeneity in vertex and edge types (ZooBP, Chapter 2), (b) skewed degree distributions

(NetConf, Chapter 3), (c) higher-order network structures (HOLS, Chapter 4). The proposed

algorithms have closed-form solutions, rigorous convergence guarantees, can be e�ciently im-

plemented using sparse matrix operations, and scale linearly with graph size.

11

12

Chapter 2

ZooBP: Leveraging Heterogeneity

Chapter based on work that appeared at VLDB 2017 [EGF
+

17b] [PDF].

Given a heterogeneous network, with nodes of di�erent types – e.g., products, users and

sellers from an online recommendation site like Amazon – and labels for a few nodes (‘hon-

est’, ‘suspicious’, etc), can we �nd a closed formula for Belief Propagation (BP), exact or

approximate? Can we say whether it will converge?

BP, traditionally an inference algorithm for graphical models, exploits so-called “net-

work e�ects” to perform graph classi�cation tasks when labels for a subset of nodes are

provided; and it has been successful in numerous settings like fraudulent entity detection

in online retailers and classi�cation in social networks. However, it does not have a closed-

form nor does it provide convergence guarantees in general. In this chapter, we derive

ZooBP, a method to perform fast BP on undirected heterogeneous graphs with provable

convergence guarantees. ZooBP has the following advantages: (1) Generality: It works

on heterogeneous graphs with multiple types of nodes and edges; (2) Closed-Form Solu-

tion: ZooBP gives a closed-form solution as well as convergence guarantees; (3) Scalability:

ZooBP is linear on the graph size and is up to 600× faster than BP, running on graphs with

3.3 million edges in a few seconds. (4) E�ectiveness: Applied on real-world data (a Flipkart

e-commerce network with users, products and sellers), ZooBP identi�es fraudulent users

with a near-perfect precision of 92.3 % over the top 300 results.

2.1 Introduction

Suppose we are given users, software products, reviews (‘likes’) and manufacturers; and that we

know there are two types of users (honest, dishonest), three types of products (high-quality-

safe, low-quality-safe, malware), and two types of sellers (malware, non-malware). Suppose

that we also know that user ‘Smith’ is ‘honest’, while seller ‘evil-dev’ sells malware. Given

this information, the BP algorithm allows us to infer the types of all other nodes – but will it

converge? Can we have a closed formula for the beliefs of all nodes in the above setting?

13

http://www.cs.cmu.edu/~deswaran/papers/vldb17-zoobp.pdf

Figure 2.1: ZooBP can handle any undirected, weighted, heterogeneous multi graph

The generic problem for BP is informally given by:

Informal Problem 2.1: General BP

Given

• a large heterogeneous graph (as, e.g., in Figure 2.1),

• for each node type, a set of classes (labels) (e.g. honest/dishonest for user nodes)

• the compatibility matrices for each edge-type, indicating the a�nity between the

nodes’ classes (labels)

• initial beliefs about a node’s class (label) for a few nodes in the graph

Find the most probable class (label) for each node.

This problem is found in many other scenarios besides the above mentioned one: in a health-

insurance fraud setting, for example, we could have patients (honest or accomplices), doctors

(honest or corrupt) and insurance claims (low or expensive or bogus). The textbook solution to

this problem is loopy Belief Propagation (BP, in short) – an iterative message-passing algorithm,

which, in general, o�ers no convergence guarantees.

Informal Problem 2.2: BP- Closed-Form Solution

Given a setting like the general BP. Find an accurate, closed-form solution for the �nal

beliefs.

14

Number of edges
103 104 105 106 107

R
un

ni
ng

 ti
m

e
(s

)

10-4

10-3

10-2

10-1

100

101

102

103

600X

BP

CAMLP

ZooBP

slope 1

slope 1

k most suspicious users
0 100 200 300 400 500

P
re

ci
si

on
 a

t k

0

0.2

0.4

0.6

0.8

1
Ideal

BP = ZooBP

CAMLP

(a) (b) (c)

Figure 2.2: ZooBP is (a-b) fast up to 600 times depending on platform; (c) e�ective for
fraud detection on Flipkart-(3,5) data with 3 node types and 5 edge types. Competi-

tors such as CAMLP are not applicable to this scenario.

Here, we show how to derive a closed-form solution (Theorem 2.1) that almost perfectly

approximates the result of loopy BP, using well-understood highly optimized matrix operations

and with provable convergence properties. The contributions of our work are:

• Generality: ZooBP works on any undirected weighted heterogeneous graph with mul-

tiple edge types. Moreover, it trivially includes previous results – FaBP [KKK
+

11] and

LinBP [GGKF15] – as special cases.

• Closed-Form Solution: Thanks to our closed-form solution (Theorem 2.1), we know

when our method will converge (Theorem 2.2).

• Scalability: ZooBP is linear on the input size and it matches or outperforms BP with

up to 600× speed-up (Figure 2.2(a)), requiring a few seconds on a stock machine, for

million-scale graphs.

• E�ectiveness: On real-world data (product and seller reviews from Flipkart), ZooBP

achieved precision of 92.3 % in the top 300 most suspicious users (Figure 2.2(c)).

It is worth pointing out that the dramatic 600× savings due to the closed formula: Matlab

is very ine�cient in handling loops, but there is no other choice with the traditional BP equa-

tions (Equation (2.3)). With ZooBP, however, we can replace the loops with a matrix equation

(Theorem 2.1) and this allows the use of all the highly optimized matrix algorithms resulting

in dramatic speed-ups. Comparisons of C++ implementations (Figure 2.2(b)) show that ZooBP

never loses to BP; and it usually wins by a factor of 2× to 3×, depending on the relative speed

of additions, multiplications, and function calls (logarithms) for the given machine.

2.2 Related Work

In this section, we review related works on belief propagation and summarize prior attempts

on linearization.

15

Propagation in Networks: Exploiting network e�ects improves accuracy in numerous clas-

si�cation tasks [JNG04, NJ00]. Such methods include random walk with restarts [TFP06], semi-

supervised learning [CSZ
+

06b], label propagation [Zhu05] and belief propagation [Pea82]. Un-

like BP, most of the proposed techniques operate on simple unipartite networks only (even

though more complex graphs are omnipresent [BGHS12]) or they do not extend to scenarios of

heterophily; hence we mainly focus on BP in this work.

Belief Propagation: Belief Propagation [Pea82] is an e�cient inference algorithm in graph-

ical models, which works by iteratively propagating network e�ects. However, there is no

closed formula for its solution and it is not guaranteed to converge unless the graph has no

loops [Pea14] or on a few other special cases [MK07]. Nevertheless, loopy BP works well in

practice [MWJ99] and it has been successfully applied to numerous settings such as error-

correcting codes [FK96, FMI], stereo matching in computer vision [SZS03, FH06], fraud de-

tection [PCWF07, ACF13] and interactive graph exploration [CKHF11]. The success of BP has

increased the interest to approximate BP and to �nd closed-form solutions in specialized set-

tings.

Approximation Attempts: Koutra et. al. [KKK
+

11] provide a linearized approximation

of BP for unipartite graphs with two classes. and Gatterbauer et. al. [GGKF15] extended it

to multiple classes. Gatterbauer [Gat15] attempted to extend this even further to |T |-partite
networks. None of the above can handle a general heterogeneous graph with multiple types of

nodes and edges. Even the most general formulation above [Gat15] is limited to single edge type

between two node types and hence cannot handle real world scenarios where edges naturally

have a polarity (e.g., product-rating networks). In addition, edges between nodes of the same

type cannot be handled(e.g., friendship edges). Furthermore, [Gat15] neither provides a scalable

implementation
1

nor easy-to-compute convergence conditions. Independently, Yamaguchi et

al [YFK16] used the degree of a node as a measure the con�dence of belief to linearize BP in a

completely new way. However, this also assumes a case of unipartite graphs with a single edge

type.

Finally, we note that our notion of the term residual di�ers from that of Residual Belief

Propagation (RBP) [EMK06]. RBP calculates residuals based on the di�erence in messages in the

successive iterations while our residual beliefs and messages are deviations from their centered

values (as we will demonstrate shortly). Our goals are also di�erent: RBP uses residuals to

derive an e�cient asynchronous BP schedule whereas our interest is in linearizing BP in a

heterogeneous setting and providing precise convergence guarantees.

In summary, as shown in Table 2.1, none of competitors satisfy all properties that ZooBP

satis�es.

1
This is non-trivial – naively solving for beliefs directly from Theorem 2.1 leads to an algorithm

quadratic in graph size as (I−P + Q)−1
is a dense matrix.

16

Table 2.1: Contrasting ZooBP against previous methods

Property

BP [YFW03], FaBP LinBP CAMLP

[Gat15] ZooBP

RBP [EMK06] [KKK
+

11] [GGKF15] [YFK16]

> 2 classes 3 3 3 3 3

Node heterogeneity 3 3 3

Unrestricted edge types 3 3

Closed-form solution 3 3 3 3 3

Convergence guarantees 3 3 3 3 3

Scalable implementation 3 3 3 3 3

Table 2.2: Notation

Entity/Operator Notation

Scalar small or capital, italics; e.g., S, ks
Vector bold, small; e.g., bu,muv

Matrix bold, capital; e.g., Bs,Q
Vectorization vec(.)
Set/Multiset calligraphic, capital; e.g., S
Kronecker product ⊗
Direct sum of matrices

⊕
Vector/matrix entry Not bold; e.g., bu(i), H(i, j)
Spectral radius ρ(.)

2.3 Preliminaries

We will �rst provide mathematical de�nitions and results that we will use in our derivation and

then introduce the basic framework of Belief Propagation. We will follow the notation given in

Table 2.2.

De�nition 2.1: Constant-Margin Matrix

A p × q matrix is said to be constant-margin of scale α if each row sums to qα and each

column sums to pα.

17

De�nition 2.2: Matrix Vectorization [HS81]

Vectorization of an m× n matrix converts it into a mn× 1 vector given by:

vec(X) = [xT1 . . .x
T
n]T

where xi denotes the ith column vector of matrix X.

De�nition 2.3: Kronecker Product [HS81]

The Kronecker product of two matrices Xm×n and Yp×q is the mp× nq matrix given by:

X⊗Y =


X(1, 1)Y X(1, 2)Y . . . X(1, n)Y
X(2, 1)Y X(2, 2)Y . . . X(2, n)Y

.

.

.

.

.

.

.
.
.

.

.

.

X(m, 1)Y X(m, 2)Y . . . X(m,n)Y



De�nition 2.4: Centered Matrix/Vector

A matrix or a vector is said to be c-centered if the average of all its elements is c and the

maximal deviation from c is small in magnitude when compared to c.

De�nition 2.5: Residual Vector/Matrix

A 0-centered vector/matrix is termed as residual. The residual of a c-centered vector or

matrix is obtained by subtracting c from each of its elements.

Example 2.1

X =

[
2.8 3 3.2
3.2 3 2.8

]
is a constant-margin matrix of scale 3. It is also a 3-centered matrix,

as the maximal deviation 0.2 is small compared to the overall matrix average 3. Its residual

is

[
−0.2 0 0.2
0.2 0 −0.2

]
.

18

Lemma 2.1: Roth’s Column Lemma [HS81]

For any three matrices X,Y and Z,

vec(XYZ) = (ZT ⊗X)vec(Y) (2.1)

De�nition 2.6: Matrix Direct Sum [Ayr62]

The matrix direct sum of n square matrices A1, . . . ,An is the block diagonal matrix given

by

⊕n
i=1 Ai = diag(A1, . . . ,An).

Belief Propagation: Belief propagation, also known as sum-product message passing, is a

technique to perform approximate inference in graphical models. The algorithm starts with

prior beliefs for a certain subset of nodes in a graph (e.g.,
◦
eu; prior knowledge about u’s class)

and then sequentially propagates from one node (say, u) to another (v) a message (
◦
muv) which

represents u’s belief about v’s class. This process is carried out until a steady state is reached

(assuming convergence). After the sequential update process, the �nal beliefs about a node’s

class (e.g.,

◦
bu; the inferred information about the class of u) are recovered from the messages

that a node receives.

Equation (2.2) and Equation (2.3) give the precise updates of the BP algorithm as given by

Yedidia [YFW03].

◦
bu(i) ←

1

Zu

◦
eu(i)

∏
v∈N (u)

◦
mvu(i) (2.2)

◦
mvu(i) ←

1

Zvu

∑
j

φ(i, j)
◦
ev(j)

∏
w∈N (v)\u

◦
mwv(j) (2.3)

In every step of BP, the message that a node sends to another (Equation (2.3)) is computed

as the product of the messages it has received from all its neighbors except the recipient itself

(echo-cancellation
2
), modulated by the discrete potential function φ(i, j). We let φ(i, j) be the

conditional probability P(i|j) of class i on node u given class j on node v to facilitate probabilis-

tic interpretation. This value is computed using an edge compatibility matrix or edge-potential

matrix

◦
H as: P(i|j) =

◦
H(i, j)/

∑
g

◦
H(g, j). The edge compatibility matrix captures the a�n-

ity of classes, i.e., the higher or more positive the value of

◦
H(i, j) relative to other entries, the

2
This term prevents sending the same message that was received in the previous iteration along the

same edge. It helps prevent two (or more) nodes mutually reinforcing each others’ beliefs.

19

Table 2.3: Edge Compatibility Matrix for Example 2.2.

↓ People/ Articles→ Conservative Progressive Neutral

Republican 0.367 0.300 0.333

Democrat 0.300 0.367 0.333

more probable that a node with class i in�uences its neighbor to have class j, and vice versa. A

numerical example to understand compatibility matrix follows.

Example 2.2

We have a graph on readers and news articles with edges indicating “who reads what”. The

edge compatibility matrix is given by Table 2.3. Due to the higher value of

◦
H(Republican,

Conservative), a Republican reader is likely to pass the message that the news articles

he reads are conservative. Observe that our compatibility matrix is neither square nor

doubly stochastic but is constant-margin. This is intentional – we would only be dealing

with constant-margin compatibility matrices in our work.

Finally, the normalization constants Zvu and Zu in Equation (2.2) and Equation (2.3) respec-

tively ensure that the beliefs and messages sum up to a constant (typically 1) at any iteration.

2.4 Proposed Method

The goal of our work is to provide a closed-form solution to BP in arbitrary heterogeneous

graphs using an intuitive principle for approximating the beliefs of nodes. The core idea is

to derive a system of linear equations for beliefs which can be solved using matrix algebra to

�nally calculate all node beliefs in a single step of matrix operations. To do this, ZooBP borrows

the basic framework of using residual compatibility matrix, beliefs and messages (H,bu,mvu)

instead of their non-residual counterparts (

◦
H,

◦
bu,

◦
mvu) as in Equation (2.2) and Equation (2.3)

from [KKK
+

11, GGKF15].

We now describe our problem setting more formally before stating our main (and most

generic) results.

2.4.1 Notation and Problem Description

Let G = (V , E) be an undirected heterogeneous graph on a collection of node types S and edge

types T such that

V =
⋃
s∈S

Vs ; E =
⋃
t∈T

Et

where Vs denotes the set of nodes of type s and Et the multiset of edges of type t (i.e., paral-

lel/multiple edges are allowed). Each node (edge) has a single node (edge) type. A node’s type

20

determines the set of classes it can belong to. Let us use ks to denote the number of classes a

type-s node can belong to.

Without loss of generality, we assume that an edge type can only connect a particular pair

of node types (possibly a self pair, e.g., friendship edge). For example, in Figure 2.1, we have

separate types of edges, one for “user likes product” and another for “user likes seller”, instead

of having a single edge type called “like” which connects users with both products and sellers.

Observe that this is not a restrictive assumption, as we could always partition a complex edge

type (“like”) into simpler edge types obeying this condition.

Also, note the subtle generality in our notation – we have used a separate identi�er Et
for edges of type t, instead of referring to it through the pair of node types it connects, Tss′ .
This allows us to have multiple types of edges connecting the same pair of node types – in

Figure 2.1, we have both “user likes product" and “user dislikes product" edges connecting users

and products; and possibly we can have multiple types of edges connecting the same pair of

nodes as well (for example, a user initially likes a product but later dislikes it).

Let

◦
Ht and At denote the compatibility matrix and adjacency matrix for an edge type t ∈ T .

If t connects nodes of type s to type s′, then At is a ns×ns′ matrix where each row corresponds

to a node of type s and each column corresponds to a node of type s′. Similarly,

◦
Ht is a ks× ks′

matrix with rows denoting classes of type-s nodes and columns denoting classes of type-s′

nodes.

Further, let Tss′ denote the set of edge types connecting node types s and s′ and Tuv denote

the multiset of edge types (to account for parallel/multiple edges of the same type) connecting

nodes u and v. (see Table 2.4).

The problem then is to conduct transductive inference [CSZ06a] on this graph, i.e., given

initial beliefs for a subset of the nodes, to infer the most probably class for every node in the

graph.

2.4.2 Key Insights

2.4.2.1 Residual Compatibility Matrices

In the case of undirected unipartite graphs, the compatibility matrix

◦
Ht turns out to be square

and symmetrical; by further assuming that it was doubly stochastic, BP was successfully lin-

earized [GGKF15]. However, in the general case, the compatibility matrices may not be square,

let alone doubly stochastic. One core question is: What kind of compatibility matrices allow a

linearization of BP in this general setting?

We �rst note that due to the normalization constants in Equation (2.2) and Equation (2.3),

the overall scale of the compatibility matrices has no e�ect on the belief updates. Thus, w.l.o.g.,

we can �x the scale to be 1 – or using the notion from above, we can focus on 1-centered

matrices. Thus, each compatibility matrix can be expressed as

◦
Ht = 1 + εtHt (2.4)

where 1 is a matrix having the same dimension as

◦
Ht with all of its entries as 1 and Ht is the

residual compatibility matrix. Here, εt can be viewed as the absolute strength of interaction

21

Table 2.4: Nomenclature

Symbol Meaning

S set of node types

S |S|, the number of node types

s, s′ a type of node; an element in S
Vs set of nodes belonging to type s
ns |Vs|, the number of type-s nodes

ks the number of classes (labels) for a type-s node

ps nsks, the number of personas for all type-s nodes

Es,Bs ns × ks prior and �nal beliefs (resp.) for all type-s nodes

P
∑

s∈S ps, the total number of personas for all nodes

T set of edge types

T |T |, the number of edge types

Tss′ set of edge types connecting node typess and s′

Tuv multiset of edge types connecting nodes u and v
t, t′ a type of edge; an element in T
At if t ∈ Tss′ , this is the ks × ks′ adjacency matrix for edge-type t
εt interaction strength for edge-type t
◦
Ht,Ht compatibility matrix for edge-type t - given and residual (resp.)

◦
eu, eu prior belief vector of u - given and residual (resp.)

◦
bu,bu �nal belief vector of u - given and residual (resp.)

◦
mvu,mvu message vector from v to u - given and residual (resp.)

Dst ns × ns diagonal matrix of type-t degrees of type-s nodes

P P × P persona-in�uence matrix

Q P × P echo-cancellation matrix

u, v, w nodes

i, j, g node classes (labels)

through an edge of type t whereas Ht indicates the relative a�nities of a pair of labels on

either side of a type-t edge. Operating with the residual matrix allows us later on to derive an

approximation of the BP equations.

The key insight for our result is to focus on compatibility matrices

◦
Ht that are constant-

margin. Using this property, it follows that the residual Ht ful�lls:∑
i

Ht(i, j) =
∑
j

Ht(i, j) = 0 ∀ t, i, j (2.5)

Although the constant-margin constraint decreases the number of free parameters for a

p × q compatibility matrix from pq − 1 (excluding scale) to pq − p − q + 1 (constraining row

and column sums to be equal), we note that the set of constant-margin compatibility matrices

is su�ciently expressive to model numerous real-world scenarios e.g., fraud detection in e-

commerce networks [ACF13], blog/citation networks and social networks [YFK16].

22

To illustrate this, we derive the residual H for

◦
H (after re-scaling) given in Table 2.3.

◦
H =

[
1.1 0.9 1
0.9 1.1 1

]
= 1 +

ε︷︸︸︷
0.2

H︷ ︸︸ ︷[
0.5 −0.5 0
−0.5 0.5 0

]
In the above example (and in the rest of our work), we �x the scale of the residual H by holding

its largest singular value at 1. This allows us to determine a unique (εt,Ht) pair for a given

constant-margin compatibility matrix.

2.4.2.2 Residual Beliefs and Messages

Similar to the original (non-residual) compatibility matrix

◦
Ht and its residual counterpart Ht,

we also introduce the notions for residuals of beliefs and messages. Let
◦
eu,

◦
bu,

◦
mvu denote the

original (non-residual) prior beliefs, �nal beliefs, and messages; we denote with eu,bu,mvu

their residual counterparts (see Table 2.4).

Note that the prior and �nal beliefs of a node sum to 1, i.e. each belief vector bu is centered

around 1/ks where s denotes the type of node u. Similarly, w.l.o.g., messages can be assumed to

be centered around 1 (by selecting an appropriate Zuv). Therefore, the residual beliefs and mes-

sages are obtained by subtracting their respective center value (1/ks or 1) from their respective

initial values. For a node u of type s, these would be:

eu(i) =
◦
eu(i)−

1

ks
; bu(i) =

◦
bu(i)−

1

ks
; mvu(i) =

◦
mvu(i)− 1

The normalization constraints on the original values
◦
eu,

◦
bu and

◦
mvu thus translate to∑

i

eu(i) =
∑
i

bu(i) =
∑
i

mvu(i) = 0 ∀ u, v

for the residual values.

The overall motivation behind this procedure is to rewrite BP updates in terms of the resid-

uals. Approximating these residuals �nally enables us to derive the linearized BP update equa-

tions.

2.4.3 ZooBP

Before we proceed to give our main theorem , we introduce some notation that would enable

us to solve for the combined beliefs of all nodes via a single equation system. Following this,

we provide an example illustrating the de�nitions.

23

De�nition 2.7: Persona

We use the term “persona” to denote a particular class label of a particular node. For ex-

ample, if Smith is a node who can be a “democrat” or a “republican”, we have the following

personas: Smith-democrat, Smith-republican. In general, if there are ns nodes of type s and

each can belong to any of the ks classes, we have ps = nsks personas in total, for all type-s
nodes.

Let us denote the prior residual beliefs of all nodes of type s via the matrix Es (see Table 2.4).

Here, each row represents the prior residual information about each node, i.e. eu. If no prior

information is given, the row is zero. Similarly, denote with Bs the �nal residual beliefs of all

nodes of type s after the convergence of belief propagation.

Further, instead of representing the beliefs for each node type individually, we use a joint

representation based on the following de�nition:

De�nition 2.8: Vectorized Residual Beliefs e,b

Based on the type-s residual prior and �nal belief matrices Es and Bs (s ∈ S) the vector-

ized residual prior and �nal beliefs are constructed as:

e =
[
vec(E1)T . . . vec(ES)T

]T
(2.6)

b =
[
vec(B1)T . . . vec(BS)T

]T
(2.7)

We now ask: How can we describe the net in�uence that personas of type s exert on per-

sonas of type s′? We de�ne a matrix Pss′ which captures exactly this (Equation (2.8)). By

concatenating these matrices suitably, we also de�ne the persona-in�uence matrix P, which

consolidates information about how each of the P personas in our graph a�ects another. Here,

we provide equations to derive P from the graph structure At and the network e�ects Ht, εt
for each t ∈ T ; and later in Section 2.4.4, we will see how this term naturally emerges from our

derivation.

24

De�nition 2.9: Persona-In�uence Matrix P

From the type-t interaction strength, adjacency and residual compatibility matrices εt, At

and Ht, the persona-in�uence matrix, which summarizes the net e�ect a class (label) on a

node (i.e., a persona) has on another, is constructed as:

P =

P11 . . . P1S
.
.
.

.
.
.

.

.

.

PS1 . . . PSS

 ; Pss′ =
∑
t∈Tss′

εt
ks

(Ht ⊗At) (2.8)

where Tss′ is the set of edge types that connect node types s and s′.

Let us use the term type-t degree to denote the count of type-t edges incident on a node. If

t ∈ Tss′ and u /∈ Vs ∪ Vs′ , then its type-t degree is de�ned as zero. Stacking type-t degrees of

all s-type nodes diagonally in a ns × ns matrix, we obtain the type-t degree matrix of s-type

nodes, Dst.

Analogous to the question we asked before we constructed P, we now ask: what is the net

in�uence that a persona exerts on itself through its neighbors? It is important to account for

this echo-in�uence and deduct it from the persona-in�uence matrix before solving for node

beliefs. We calculate this quantity, called echo-cancellation matrix from the degree matrices

Dst and the network e�ects At and εt for t ∈ T . Again, we provide the equations here and

postpone the derivation until Section 2.4.4.

De�nition 2.10: Echo-Cancellation Matrix Q

From the diagonal degree matrices Dst and residual compatibility matrices Ht and inter-

action strengths εt for t ∈ T , the echo-cancellation matrix may be constructed as:

Q =
S⊕
i=1

Qs where, Qs =
∑
s′∈S

∑
t∈Tss′

ε2t
ksks′

(HtH
T
t ⊗Dst) (2.9)

for the usual meaning of Tss′ . Here,

⊕
denotes the direct sum (De�nition 2.6).

Observe that our persona-in�uence and echo-cancellation matrices are extremely sparse

due to the Kronecker product with the adjacency and diagonal degree matrices, respectively;

and hence can be e�ciently stored in 4GB main memory for even million scale graphs!

The following example illustrates the above de�nitions.

25

Example 2.3

Continuing our previous example of a bipartite graph on readers and news articles with

“who reads what” edges, let our graph now have 2 readers - R1,R2 and 2 news articles - A,

B with adjacency matrix and hence, diagonal degree matrices given by:

A =

[
1 0
0 1

]
; DR = DN =

[
1 0
0 1

]
Suppose also, the nodes’ residual prior belief matrices are initialized as

ER =

[
−0.03 0.03

0 0

]
EN =

[
0 0 0

−0.03 0.02 0.01

]
stating that R1 is likely to be a Republican and article B is likely to be about democracy.

Then, the vectorized residual prior belief vector would be:

e =
[
−3 3 0 0 0 0 0 −3 2 1

]T × 10−2

Thus, using ε and H calculated earlier, the persona-in�uence and the echo-cancellation

matrices can be derived as:

P =

[
0 ε

2
H⊗A

ε
3
HT ⊗AT 0

]
; Q =

[
ε2

6
HHT ⊗DR 0

0 ε2

6
HTH⊗DN

]
Now, we are ready to state our main theorem.

Theorem 2.1: ZooBP

If b, e,P,Q are constructed as described above, the linear equation system approximating

the �nal node beliefs given by BP is:

b = e + (P−Q)b (ZooBP) (2.10)

Proof. In order to bring Bs and Bs′ out of the matrix product in Equation (2.16), we vectorize

Equation (2.16) and then use Roth’s column lemma (Equation (2.1)).

vec(Bs) = vec(Es) +
∑
s′∈S

∑
t∈Tss′

εt
ks

(Ht ⊗At)vec(Bs′)

− ε2t
ksks′

(HtH
T
t ⊗Dst)vec(Bs)

26

Rewriting the above equation using Pss′ and Qs de�ned in Equation (2.8) and Equation (2.9)

leads to:

(I + Qs)vec(Bs) = vec(Es) +
∑
t∈Tss′

Pss′vec(Bs′) (2.11)

Equation (2.11) gives the update equation for beliefs of nodes of type s. Here I is an identity

matrix of appropriate dimensions. Stacking S such matrix equations together and rewriting

using e,b,P and Q (de�ned in Section 2.4.3) gives the equation in Theorem 2.1. �

Lemma 2.2: ZooBP *

Further, if echo cancellation can be ignored, the linear equation system simpli�es to:

b = e + Pb (ZooBP *) (2.12)

Note that our method can also easily handle weighted edges, by appropriately modifying

the adjacency matrices to re�ect the weights on the edges. Furthermore, ZooBP contains two

existing works as special cases:

Lemma 2.3: LinBP and FaBP are Special Cases of ZooBP

For a single node-type connected by a single edge type, our formulation reduces to that of

LinBP. In addition, if we constrain the nodes to belong to only two classes, our formulation

reduces to that of FaBP.

Proof. Assuming a single node-type and a single edge-type, the persona-in�uence and echo-

cancellation matrices reduce to:

P =
ε

k
H⊗A and, Q =

ε2

k2
H2 ⊗D

Using this together with the relationship between the residual compatibility matrix in both

methods (Ĥ = ε
k
H), our theorem becomes

b = e + (I + Ĥ⊗A + Ĥ2 ⊗D)b

which is exactly LinBP. Thus, LinBP is a special case of ZooBP. As FaBP is a special case of

LinBP, it follows that ZooBP subsumes FaBP as well. �

27

2.4.4 Derivation of ZooBP

Lemma 2.4: Residual BP

For a pair of nodes u ∈ Vs and v ∈ Vs′ , BP update assignments can be approximated in

terms of residual messages and beliefs as:

bu(i) ← eu(i) +
1

ks

∑
v∈Nu

∑
t∈Tuv

m(t)
vu(i)

m(t)
vu(i) ← εt

ks′

∑
j

Ht(i, j)

(
ks′bv(j)−m(t)

uv(j)

)

where m
(t)
vu indicates the message vector that v passes to u through an edge of type t,Nu is

the set of neighbors of u and Tuv is the multiset of edge types corresponding to the edges

connecting u and v.

Proof. The proof makes use of the following two approximations for small residuals:

ln(1 + bu(i)) ≈ bu(i)
1
ks′

+ bv(j)

1 +m
(t)
uv(j)

≈ 1

ks′
+ bv(j)−

m
(t)
uv(j)

ks′

The assumption of “small residuals” is reasonable because the magnitude of residual beliefs

has a linear dependence on ε and for a given nature of network e�ects (homophily/heterophi-

ly/mixed), decreasing the interaction strength does not a�ect the accuracy of ZooBP compared

to BP as we demonstrate empirically.

We start by rewriting Yedidia’s belief update assignment (Equation (2.2)) for a node u be-

longing to type s ∈ S , in terms of residual beliefs and messages.

1

ks
+ bu(i)←

1

Zu

(
1

ks
+ eu(i)

) ∏
v∈N (u)
t∈Tuv

(
1 +m(t)

vu(i)
)

Now, we take logarithms and assume the residual beliefs are small compared to 1 to use the

approximation ln(1 + x) ≈ x. We obtain:

bu(i) ← − 1

ks
lnZu + eu(i) +

1

ks

∑
v∈N (u)
t∈Tuv

m(t)
vu(i) (2.13)

ks
∑
i

bu(i)︸ ︷︷ ︸
=0

← −
∑
i

lnZu + ks
∑
i

eu(i)︸ ︷︷ ︸
=0

+
∑

v∈N (u)
t∈Tuv

∑
i

m(t)
vu(i)︸ ︷︷ ︸

=0

28

In the last step above, we sum both sides over to estimateZu = 1, which turns out to be constant

for all nodes. Substituting this back into Equation (2.13) proves the �rst part of lemma.

To prove the second part of the lemma, we �rst write Yedidia’s update assignment for the

message that a node v of type s′ passes to a node u of type s through an edge of type t, i.e.,
◦
m

(t)
vu:

◦
m(t)
vu(i) ← Zv

Z
(t)
vu

∑
j

◦
Ht(i, j)∑
i′

◦
Ht(i′, j)

◦
bv(j)
◦
m

(t)
uv(j)

1 +m(t)
vu(i) ← Zv

Z
(t)
vu

∑
j

1 + εtHt(i, j)∑
i′ 1 + εtHt(i′, j)

1
ks′

+ bv(j)

1 +m
(t)
uv(j)

We now use the following approximation (for small residuals):

1
ks′

+ bv(j)

1 +m
(t)
uv(j)

≈ 1

ks′
+ bv(j)−

m
(t)
uv(j)

ks′

along with Zv = 1 and normalization constraints on residuals simplify the LHS of the above

assignment update:

1

Z
(t)
vu

∑
j

1 + εtHt(i, j)

ks

(
1

ks′
+ bv(j)−

m
(t)
uv(j)

ks′

)

=
1

Z
(t)
vuks

(
1 +

∑
j

bv(j)︸ ︷︷ ︸
=0

− 1

ks′

∑
j

m(t)
uv(j)︸ ︷︷ ︸

=0

+
εt
ks′

∑
j

Ht(i, j)︸ ︷︷ ︸
=0

+εt
∑
j

Ht(i, j)bv(j)−
εt
ks′

∑
j

Ht(i, j)m
(t)
uv(j)

)
Thus, we obtain:

1 +m(t)
vu(i)←

1 +
∑
j

εtHt(i, j)

(
bv(j)− m

(t)
uv(j)
ks′

)
Z

(t)
vuks

(2.14)

To calculate Z
(t)
vu , we sum Equation (2.14) over i and use

∑
iHt(i, j) =

∑
i

m
(t)
vu(i) = 0. This

leads to Z
(t)
vu = 1

ks
. Substituting this in Equation (2.14) proves the second part of the lemma. �

29

Lemma 2.5: Steady State Messages

For small residuals and after convergence of belief propagation, message propagation from

a node v ∈ Vs′ to node u ∈ Vs through an edge of type t ∈ T can be expressed in terms

of the residual compatibility matrices and steady beliefs approximately as:

m(t)
vu = εtHtbv −

ε2t
ks′

HtH
T
t bu (2.15)

Proof. Rewriting the message update assignment from Lemma 2.4 after expanding the message

sent in the opposite direction (i.e., m
(t)
uv(j)) we have:

m(t)
vu(i) ←

∑
j

εtHt(i, j)

ks′

(
ks′bv(j)−

∑
g

εtHt(g, j)

ks

(
ksbu(g)−m(t)

vu(g)
))

At convergence, m
(t)
vu on both sides need to be identical. So, we replace the update sign with an

equality and group similar terms together as follows:

m(t)
vu(i)− ε2t

ksks′

∑
j

Ht(i, j)
∑
g

Ht(g, j)m
(t)
vu(g) =

εt
∑
j

Ht(i, j)bv(j)−
ε2t
ks′

∑
j

Ht(i, j)
∑
g

Ht(g, j)bu(g)

This equation can then be written in matrix-vector notation as:

(
Iks −

ε2t
ksks′

HtH
T
t︸ ︷︷ ︸

X

)
m(t)

vu = εtHtbv −
ε2t
ks′

HtH
T
t bu

The entries of X << 1
ks

, and thus inverse of (Iks −X) always exists and is, further, approxi-

mately Iks as X is composed of second order terms of the (low) interaction strength. This leads

to Lemma 2.5. �

30

Lemma 2.6: Type-s ZooBP

Using type-s prior and �nal residual beliefs, Es and Bs, type-t adjacency and residual com-

patibility matrices At and Ht and diagonal degree matrices Dst, the �nal belief assignment

of type-s nodes from belief propagation can be approximated by the equation system:

Bs = Es +
∑
s′∈S

∑
t∈Tss′

εt
ks

AtBs′H
T
t −

ε2t
ksks′

DstBsHtH
T
t

Proof. Using Lemma 2.4, the residual belief of a node u ∈ Vs can be written in vector notation

as:

bu ← eu +
1

ks

∑
v∈N (u)

∑
t∈Tuv

m(t)
vu

Substituting the steady state value of m
(t)
vu from Lemma 2.5, the �nal belief of u at convergence

is:

bu = eu +
1

ks

∑
v∈N (u)

∑
t∈Tuv

(
εtHtbv −

ε2t
ks′

HtH
T
t bu

)

= eu +
∑

v∈N (u)

∑
t∈Tuv

εt
ks

Htbv −
ε2td

(t)
u

ksks′
HtH

T
t bu

where d
(t)
u is the type-t degree of u, i.e., the number of type-t edges incident on u. Rewriting the

above equation in matrix form using type-t adjacency matrices At for t ∈ T , prior and �nal

residual type-s belief matrices Bs for s ∈ S and diagonal degree matrices Dst summarizing

type-t degree of type-s nodes, yields Lemma 2.6:

Bs = Es +
∑
s′∈S

∑
t∈Tss′

εt
ks

AtBs′H
T
t −

ε2t
ksks′

DstBsHtH
T
t

�

2.4.5 Iterative Updates and Convergence

Using Theorem 2.1, the closed form solution for node beliefs is:

b = (I + Q−P)−1 e (2.16)

However, in practice, computation of the inverse of a large matrix such as (I + Q − P) is

very expensive and is done iteratively. Hence, we propose to do iterative updates of the form:

b ← e + (P−Q)b (2.17)

31

Theorem 2.2 gives precise theoretical guarantees for the convergence of these iterative up-

dates.

Theorem 2.2: Exact Guarantees for Convergence of ZooBP

The necessary and su�cient condition for convergence of iterative updates in Equation

(2.17) in terms of the persona-in�uence matrix P and echo-cancellation matrix Q is:

ZooBP converges ⇐⇒ ρ(P−Q) < 1 (2.18)

Proof. From the Jacobi method for solving linear equations [Saa03], we know that the update in

Equation (2.17) converges for any arbitrary initialization of b if and only if the spectral radius

of P−Q is strictly less than 1. �

The implicit convergence criterion poses di�culties in choosing appropriate εt to a prac-

titioner. Thus, for practitioners’ bene�t, we tie all interaction strengths as εt = ε ∀t, use the

fact that the spectral norm of a matrix is bounded above by any matrix norm ||·|| to provide an

easier-to-use su�cient condition for convergence. This is stated in Theorem 2.3.

Theorem 2.3: Su�cient Guarantees for Convergence of ZooBP

Let P′ and Q′ be the persona-in�uence and echo-cancellation matrices obtained from

Equation (2.8) and Equation (2.9) by temporarily setting εt = 1 ∀t. If the overall interaction

strength ε is chosen such that,

ε ≤
− ||P′||+

√
||P′||2 + 4 ||Q′||2

2 ||Q′||

then, ZooBP is guaranteed to converge. Here, ||P′|| and ||Q′|| can be chosen as any (pos-

sibly di�erent) matrix norms.

Proof. By tying interaction strengths across all edges, the exact convergence criterion can be

restated in terms of P′ and Q′ as:

ρ(εP′ − ε2Q′) < 1

Using triangle inequality, ρ(εP′− ε2Q′) ≤ ερ(P′)+ ε2ρ(Q′). Also, as any matrix norm is larger

than the spectral norm, this quantity is further bounded above by ε ||P′|| + ε2 ||Q′||. Thus, to

ensure convergence, it is su�cient to solve for ε using:

ε ||P′||+ ε2 ||Q′|| − 1 < 0

This completes the proof. We are free to choose the matrix norms (possibly di�erent norms for

P′ and Q′) that would give the tightest bound on the spectral radii of these matrices. �

32

2.4.6 Time and Space Complexity

Lemma 2.7: Time and Space Complexity

The space and per-iteration time complexity of ZooBP is linear in the total number of

nodes and edges, i.e., O(|V|+ |E|) and is given by

O

∑
s∈S

ksns +
∑
s′∈S

∑
t∈Tss′

ks(ks + ks′)NNZ(At)

 (2.19)

where ns = |Vs| is the number of s-type nodes, ks is the corresponding number of classes

and NNZ(At) = |Et| is the number of non-zero elements in At (i.e., edges of type-t).

Proof. We begin by computing an upper limit on the number of non-zeros of P and Q:

NNZ(P) =
∑
s∈S

∑
s′∈S

NNZ(Pss′)

≤
∑
s∈S

∑
s′∈S

∑
t∈Tss′

ksks′NNZ(At)

NNZ(Q) =
∑
s∈S

NNZ(Qs)

≤
∑
s∈S

∑
s′∈S

∑
t∈Tss′

k2
sNNZ(At)

where we have used NNZ(X⊗Y) = NNZ(X) · NNZ(Y). Using the above, we can bound the

non-zeros of P−Q as:

NNZ(P−Q) ≤
∑
s∈S

∑
s′∈S

∑
t∈Tss′

ks(ks + ks′)NNZ(At) (2.20)

Space Complexity can be computed as the space required to store the sparse matrix P−Q and

the dense

∑
s∈S ksns-dimensional prior and belief vectors. Per-iteration Time Complexity

(Equation (2.19)) is estimated from the number of unit operations (addition/multiplication) in-

volved in computing the LHS of the iterative update (Equation (2.17)). The breakdown for each

operation is given below.

Computation Unit ops.

Subtraction of Q from P O (NNZ(P−Q))
Multiplication of (P−Q) and b O (NNZ(P−Q))

Addition of e and (P−Q)b O
(∑

s∈S ksns
)

�

33

Table 2.5: Sample H+,H− for product rating networks

H+ Good Bad

Honest 0.5 -0.5

Fraud -0.5 0.5

H− Good Bad

Honest -0.5 0.5

Fraud 0.5 -0.5

2.4.7 Case Study - Product-Rating Network

In the following section, we introduce a case study of our ZooBP for product-rating networks

(which are signed bipartite networks) – other complex scenarios can also be represented easily.

The goal is to classify users and products as fraudulent or not.

Let G = (Vu ∪Vp, E+ ∪E−) be a product rating network where Vu is the set of users and Vp
is the set of products. Let np = |Vp| be the number of products and nu = |Vu| the number of

users. The edge sets E+ and E− represent the positive and negative ratings respectively.

Given the edge sets, we denote the corresponding nu × np adjacency matrices as A+ and

A−. Here, the rows correspond to users and columns correspond to products. Furthermore, let

us use the term positive degree to denote the number of positive ratings given to a product or

by a user (depending on the node type). Let Du+,Dp+ be the nu × nu and np × np diagonal

matrices of positive degree for users and products respectively. Similarly, we de�ne diagonal

degree matrices of negative degree for users and products - Du−,Dp−.

Further, let the residual compatibility matrices for positive and negative edges be H+ and

H− and the corresponding edge interaction strengths be ε+ and ε−. Here, the rows correspond

to user-classes and columns correspond to product-classes. In general, one would expect honest

users to give positive ratings to good products, while positive ratings for fraudulent products

are less likely; fraudsters in contrast might give positive ratings to fraudulent products. Thus,

the matrices H+ and H− might be instantiated as in Table 2.5 – of course, in our model, any

other constant-margin instantiation can be picked as well.

In general, considering the setting of product rating networks, the persona-in�uence and

echo-cancellation matrices are given by:

P =

[
0 ε+

2
H+ ⊗A+ + ε−

2
H− ⊗A−

(ε+
2

H+ ⊗A+ + ε−
2

H− ⊗A−)T 0

]
Q =

[
ε2+
4

H+HT
+ ⊗Du+ +

ε2−
4

H−HT
− ⊗Du− 0

0
ε2+
4

HT
+H+ ⊗Dp+ +

ε2−
4

HT
−H− ⊗Dp−

]

These matrices can now be used to compute the �nal beliefs using Theorem 2.1 (ZooBP).

Besides this general solution, let us focus on the case where we set compatibility matrices

as in Table 2.5 and tie the interaction strengths across both types of edges ε+ = ε− =: ε.
Let us now de�ne the total adjacency matrix (A) and total diagonal degree matrix (D) as

follows:

A =

[
0 A+ −A−

(A+ −A−)T 0

]
; D =

[
Du+ + Du− 0

0 Dp+ + Dp−

]

34

Using these, Theorem 2.4 provides a compact closed-form solution forZooBP (proof omitted

for brevity).

Theorem 2.4: ZooBP-2F

For fraud detection in product-rating networks, if ε denotes the desired interaction strength

and A and D are the total adjacency and diagonal degree matrices of users and products

as de�ned above, the ZooBP-2F closed-form solution is:

b = e +

([
0.5 −0.5
−0.5 0.5

]
⊗
(
ε

2
A− ε2

4
D

))
b

The exact and su�cient conditions for convergence of our ZooBP-2F can be derived as

before:

Lemma 2.8: Exact Guarantees for Convergence of ZooBP-2F

For fraud detection in product rating network, the su�cient and necessary condition for

convergence, in terms of total adjacency matrix A, the total diagonal degree matrix D and

interaction strength ε is given by: ρ
(
ε
2
A− ε2

4
D
)
< 1

Lemma 2.9: Su�cient Guarantees for Convergence of ZooBP-2F

For fraud detection in product rating network, with A and D denoting the total adjacency

and diagonal degree matrices respectively, if the interaction strength (ε) is chosen to satisfy

ε <
− ||A||+

√
||A||2 + 4dmax

dmax

then, ZooBP− 2F is guaranteed to converge.

2.5 Experiments

We conduct experiments to answer the following questions:

Q1. Accuracy: How well can ZooBP reconstruct the �nal beliefs given by BP? How accurate

are its predictions on real-world data?

Q2. (In-)Sensitivity to Interaction Strength: How does the performance of ZooBP vary

with interaction strength ε? What happens at the critical ε∗ from Theorem 2.2? How

sensitive is ZooBP to ε when ε < ε∗?

35

Figure 2.3: DBLP 4-area (Databases, Data Mining, Machine Learning, Information Re-

trieval, resp.) dataset with class hierarchy (k = [2, . . . , 7])

(a) ZooBPmatches the

beliefs of BP

(b) ZooBP is e�ective

in fraud detection

(c) ZooBP’s approx.

quality is independent

of ε (when ε < ε∗)

Interaction strength 0
10-10 10-5 100

R
un

ni
ng

 ti
m

e
(s

)

10-1

100

101

102

103

104

105

ZooBP
BP

0
*
 : 0.005

from Theorem 2

600X

(d) ZooBP’s speed gain

is fairly robust to ε (for
ε < ε∗)

Number of classes k
2 3 4 5 6 7

A
cc

u
ra

cy

0

0.2

0.4

0.6

0.8

1

ZooBP
BP

Ideal

(e) ZooBP is accurate

on DBLP

Interaction strength 0
10-5 100

A
cc

u
ra

cy

0

0.2

0.4

0.6

0.8

1

ZooBP
BP

Ideal

0
*
 : 1

from Theorem 2

(f) ZooBP’s accuracy on

DBLP (k = 4) is robust to
ε (for ε < ε∗)

k - Number of classes of authors/papers
2 3 4 5 6 7

T
im

e
 (

s
)

fo
r

1
0
 i
te

ra
ti
o
n
s

0.02

0.04

0.06

0.08

0.1

Running time Vs. number of classes in DBLP

(g) ZooBP scales

quadratically with

#classes on DBLP

k BP (s) ZooBP (s)

2 24.0196 0.0141

3 28.8042 0.0250

4 33.4384 0.0422

5 37.6492 0.0640

6 42.1226 0.0814

7 46.5648 0.1073

(h) BP vs ZooBP:

Matlab running

time for 10 itera-

tions on DBLP with

k

Figure 2.4: Experimental results on Flipkart (a-d) and DBLP (e-h) data: ZooBP is

accurate, robust, fast and scalable

Q3. Speed & Scalability: How well does ZooBP scale with the network size? How fast is

ZooBP compared to BP? Why? Does the speed-up generalize to networks with arbitrary

number of node-/edge-types and classes?

36

We now describe the data we use for our experiments.

2.5.1 Data Description and Experimental Setup

We use the following two real-world heterogeneous datasets in our experiments.

2.5.1.1 DBLP

The DBLP 4-area dataset consists of authors and the papers published by them to 12 confer-

ences. In the original dataset, these conferences were split into four areas (DB, DM, ML, IR).

To perform a deeper analysis, we varied the number of classes, k, from 2 to 7 by merging or

partitioning the above areas based on the conferences (Figure 2.3). The network is bipartite

(node types S = {author, paper}) with a single type of edges (T = {authorship}). The goal is to

assign a class to each author and paper.

The ground truth areas for papers and authors were obtained as follows. The area of a paper

is the area of the conference it is published in. The area of an author is the area which most of

her papers belong to, with ties broken randomly. As homophily captures the nature of network

e�ects in this dataset, a k × k compatibility matrix with interaction strength ε and residual

compatibility matrix Hk×k = Ik×k − 1
k
1k×k was used.

In our experiments, we seeded randomly chosen 30% of the authors and papers to their

ground truth areas. The prior for the correct class was set to +k × 0.001 and for the wrong

classes was set to −0.001. [0, . . . , 0] was used as the prior for unseeded nodes.

2.5.1.2 Flipkart

Flipkart is an e-commerce website that provides a platform for sellers to market their products

to customers. The dataset consists of about 1M users, their ∼3.3M ratings to ∼512K products

and ∼1.7M ratings to ∼4K sellers. In addition, we also have the connections between sellers

and products. All ratings are on a scale of 1 to 5 – for simplicity, we treated 4 and 5 star ratings

as positive edges, 1 and 2 star as negative edges and ignored the 3 star ratings.

We consider two versions of the data: (1) Flipkart-(2,2) (or Flipkart in short) containing

only user-product rating information (node types S = {user, product} and edge types T = {pos-

itive rating for product, negative rating for product}); and (2) Flipkart-(3,5) containing all 3

node types (user, product, seller) and 5 edge types (positive rating for product, negative rating

for product, positive rating for seller, negative rating for seller, seller sells product).

In both the Flipkart datasets, our goal is to classify users and products (and sellers) as

fraudulent or not. H+ and H− for both user-product and user-seller edges were chosen as in

Table 2.5 and ε values were tied and set to 10−4
, unless mentioned otherwise. We used 50 man-

ually labeled fraudsters as seed labels and initialized their prior to [−0.05,+0.05] respectively

for the honest and fraudulent classes. The prior for other users and all products (and all sellers)

were set to [0, 0].
We provide the full analysis on the DBLP and Flipkart datasets; for brevity, we only

present the fraud detection precision results on Flipkart-(3,5). To compare running times on

DBLP and Flipkart data with BP, we used an o�-the-shelf Matlab implementation of BP for

37

signed bipartite networks [ACF13]. To enable a fair comparison, we implemented ZooBP also

in Matlab.

2.5.2 Q1. Accuracy

A plot of the �nal beliefs returned by BP and ZooBP on Flipkart for ε = 10−4
is shown

in Figure 2.4(a). Here, we have subtracted 0.5 from the BP score (see y-axis) to match the

scale of beliefs from both methods. We see that all points lie on the line of slope 1 passing

through the origin, showing that ZooBP beliefs are highly correlated with BP beliefs. Such a

trend was observed for all the ε values we tried (while ensuring that ε < ε∗, the limit given by

Theorem 2.2).

Upon applying ZooBP to our data, we provided the list of 500 most fraudulent users (after

sorting beliefs) to the domain experts at Flipkart, who veri�ed our labels by studying various

aspects of user behavior such as frequency and distribution of ratings and review text given by

them. Figure 2.4(b) and Figure 2.2(c) depict how the precision at k changes with k over the top

500 results on Flipkart and Flipkart-(3,5) datasets. The high precision (1̃00% for top 250; 7̃0%

for top 500 users) con�rms the e�ectiveness of ZooBP. Owing to di�culty in obtaining ground

truth for all 1M users, studying recall was not possible.

Using theDBLP data, we study the performance for a graph from a di�erent domain (citation

network), with more than two classes. Figure 2.4(e) plots accuracy vs number of classes, k. The

uniformly high accuracy across k suggest our performance can be expected to generalize well

to networks from di�erent domains with arbitrary classes.

In sum, our accuracy results show that (1) our assumption of constant-margin compatibility

matrix is applicable in several realistic scenarios (2) our linear approximations do not lower the

quality of prediction, thus making ZooBP extremely useful in practice, for solving several real

world problems.

2.5.3 Q2. (In-)Sensitivity to Interaction Strength

Next, we study how the compatibility matrix (through interaction strength ε) in�uences the

performance and speed of ZooBP. Figure 2.4(c) and Figure 2.4(d) summarize the results on

Flipkart.

The correlation (of BP and ZooBP beliefs) and the running time were found to be fairly

constant with ε as long as ε < ε∗ (the limit from Theorem 2.2). As the spectral radius of P−Q
approaches 1, a slight increase in running time near ε∗ is observed; but the correlation is still

high. When ε > ε∗, the algorithm does not converge – ZooBP runs to a manually set maximum

iteration count of 200. Hence, the running time suddenly increases past the dotted line, while

the correlation drops to 0.0001. The resulting beliefs for high interaction strength (ε > 0.1) were

found to be unbounded (reaching ±∞) for some nodes – making the correlation coe�cient

indeterminate (these are omitted in Figure 2.4(c)).

On theDBLP data, we are not restricted to study correlation but are able to analyze the actual

accuracy of BP and ZooBP with varying ε. Figure 2.4(f) depicts the classi�cation accuracy vs ε
for theDBLP dataset with k = 4. We see that both BP andZooBP achieve a robust high accuracy

on a range of ε values within the convergence limit. Not surprisingly, when ε was increased

38

beyond ε∗ = 1, the performance of both methods deteriorated. This suggests our algorithm

is practically useful, with robust approximation quality in BP’s optimal range of interaction

strength.

These results show that our method is fairly robust (except around and beyond ε∗) and not

sensitive to the selection of interaction strength in general. Moreover, this value of ε∗ is exactly

as predicted by Theorem 2.2 (speci�cally, Result 2.8), thus validating its correctness.

Note to practitioner: Owing to the �nite precision of machines, we recommend setting

ε ∈ [0.01ε†, 0.1ε†], where ε† is calculated from Theorem 2.3.

2.5.4 Q3. Speed & Scalability

To examine the scalability of our method, we uniformly sampled 1K-3.3M edges from the Flip-

kart data and timed BP and ZooBP (with ε = 10−4
) on the resulting subgraphs. We focus on

the time taken for computations alone and ignore the time to load data and initialize matrices.

The results are shown in Figure 2.2(a) (Matlab) and Figure 2.2(b) (C++).

We see that ZooBP scales linearly with the number of edges in the graph (i.e., graph size),

which is same as the scalability of BP. In addition, on Matlab, ZooBP also o�ers a 600× speed-

up compared to BP, which is one of its most important practical advantages. On Flipkart

dataset with 3.3M edges, ZooBP requires only 1 second to run!

What can this speed-up be attributed to? There are two primary contributing factors:

(F1) ZooBP replaces the expensive logarithms and exponentiation operations in BP by multi-

plication and addition; (F2) ZooBP (via Theorem 2.1) converts the iterative BP algorithm into

a matrix problem – it foregoes the redundant message computation and exploits optimized

sparse-matrix operations.

To investigate the relative importance of the above factors, we implemented Lemma 2.4 in

Matlab. Lemma 2.4 is similar to BP except in operating on residuals directly in the linear space

through lighter-weight operations and hence serves as a clean break point between BP and

ZooBP to compare the speed-ups due to F1 and F2 individually. Our experimental observations

are summarized below:

• Savings A (∼ 2×) BP→ Lemma 2.4 (lighter operations)

This speed-up is not tied to Matlab as we demonstrate through identical experiments in

C++ (Figure 2.2(b)). Savings A is platform-independent with the precise speed-up factor

depending on the architecture-speci�c relative speed of elementary �oating point oper-

ations (add, multiply) and function calls (exp, log).

• Savings B (∼ 300×): Lemma 2.4 → ZooBP (optimized sparse matrix operations of

Matlab).

We note that although the 300× savings from Matlab implementation is largely due to

its ine�cient handling of loops, it may prove to be a critical factor of consideration for a

number of data mining practitioners.

Can we explain the speed-up in terms of the architecture speci�cations? Our ex-

periments used Intel i5 (Haswell) processor
3
. In this architecture, multiplication instructions

(FMUL, FIMUL) issued up to two times more macro instructions (OPs) than addition or sub-

3http://www.agner.org/optimize/instruction_tables.pdf pages 189-191

39

http://www.agner.org/optimize/instruction_tables.pdf

traction (FADD, FSUB, FIADD, FISUB). Further, function calls (i.e., control transfer instructions

such as CALL) needed 2-3 times more clock cycles compared to arithmetic operations. This is

exactly the speed-up (2-3×) that ZooBP achieves over BP in C++, as shown in Figure 2.2(b).

Do the speed gains persist as the number of classes grows? The answer is ‘yes’. Fig-

ure 2.4(g) and Figure 2.4(h) show the results on the DBLP data. ZooBP scales quadratically with

number of class labels, as expected from Lemma 2.7; but the speed-up gains were consistently

≈ 600× even as k varied (Figure 2.4(h)).

Comparison with the state-of-the-art: Table 2.1 gives the qualitative comparison of

ZooBP with top competitors. Only BP (and its asynchronous equivalent, RBP) can solve the

general problem, but neither of them provides a closed-form solution or convergence guaran-

tees. Still, we have provided comparison results against BP. None of the other methods (LinBP

[GGKF15], FaBP [KKK
+

11], [Gat15]) can handle arbitrary heterogeneous graphs (e.g., Flip-

kart-(3,5)) and are dropped from comparison. We use CAMLP as a baseline on the DBLP data,

although it cannot handle multiple node-types. In our experiments on DBLP data with k = 4,

ZooBP practically tied CAMLP (86% vs. 87% accuracy).

In summary, our experiments show that ZooBP obtains a very high prediction accuracy on

real-world data, while at the same time, being highly scalable at handling million-scale graphs.

2.6 Conclusion

We presented ZooBP, a novel framework which approximates BP with constant-margin com-

patibility matrices, in any undirected weighted heterogeneous graph. Our method has the fol-

lowing advantages:

• Generality: ZooBP approximates BP in any kind of undirected weighted heterogeneous

graph, with arbitrarily many node and edge types. Moreover, it includes existing tech-

niques like FaBP and LinBP as special cases.

• Closed-Form Solution: ZooBP leads to a closed form solution (Theorem 2.1, Equa-

tion (2.10)), which results in exact convergence guarantees (Theorem 2.2).

• Scalability: ZooBP scales linearly with the number of edges in the graph; moreover, it

nevers loses, and it usually wins over traditional BP, with up to 600× speed-up forMatlab

implementation.

• E�ectiveness: Applied on real-world data (Flipkart), ZooBP matches the accuracy of

BP, achieving 92.3 % precision for the top 300 nodes.

40

Chapter 3

NetConf: Leveraging Con�dence

Chapter based on work that appeared at SDM 2017 [EGF17a] [PDF].

Given a friendship network, how certain are we that Smith is a progressive (vs. conserva-

tive)? How can we propagate these certainties through the network? While Belief propa-

gation marked the beginning of principled label-propagation to classify nodes in a graph,

its numerous variants proposed in the literature fail to take into account uncertainty during

the propagation process. As we show, this limitation leads to counter-intuitive results for

even simple graphs. Motivated by these observations, we formalize axioms that any node

classi�cation algorithm should obey and propose NetConf which satis�es these axioms

and handles arbitrary network e�ects (homophily/heterophily) at scale. Our contributions

are: (1) Axioms: We state axioms that any node classi�cation algorithm should satisfy; (2)

Theory: NetConf is grounded in a Bayesian-theoretic framework to model uncertainties,

has a closed-form solution and comes with precise convergence guarantees; (3) Practice:

Our method is easy to implement and scales linearly with the number of edges in the graph.

On experiments using real world data, we always match or outperform BP while taking less

processing time.

3.1 Introduction

Suppose Smith has to choose between iOS and android phones based on inputs from Alice and

Bob (Figure 3.1). Alice (pink/dotted), a stubborn tech-geek, after some research believes that

iOS is (60-40) better than android. Non-techie Bob (green/solid) favors android (65-35). Which

phone would Smith buy? If Smith takes into account only friends’ beliefs, he would be swayed

by Bob towards android; however, considering their certainty/stubbornness, he would choose

iOS. In an online setting, knowing the browsing and buying patterns of Alice and Bob, what ad

(iOS/android phone) should we show Smith? The fundamental question is: how can we capture

these notions of certainty/stubbornness and leverage them to classify nodes in a network?

Network e�ects appear in many real life scenarios, usually as homophily (“birds of a feather

�ock together”), or heterophily (“opposites attract”) and occasionally a combination of both.

41

http://www.cs.cmu.edu/~deswaran/papers/sdm17-netconf.pdf

0.0 0.2 0.4 0.6 0.8 1.0

iOS point-belief android

0

1

2

3

4

5

6

7

8

p
d
f

Alice

Bob

Author Score H-index

Michael J. Carey 2.23 48

Rakesh Agrawal 2.20 96

Jiawei Han 2.00 139

Hamid Pirahesh 1.94 40

David J. DeWitt 1.84 81

Serge Abiteboul 1.80 77

Author Score H-index

Jiawei Han 1.00 139

Annie W. Shum 1.00 -

Werner Kießling 1.00 -

Xiaofang Zhou 1.00 36

Bertram Ludäscher 1.00 45

Amarnath Gupta 1.00 -

(a) (b) (c)

Figure 3.1: (a) Motivation: Who sways our opinion? Alice (certain, 60-40 iOS) or

Bob (uncertain, 65-35 android)? (b) Top DB authors using NetConf (c) Top DB au-

thors using BP (ties broken randomly). H-index was obtained from google scholar or

http://web.cs.ucla.edu.

Knowing the nature of network e�ects that apply in a given scenario, we may reason from

observed training cases directly to test cases; this is called transductive inference. Belief Propa-

gation (BP) [YFW03] has been successfully used to perform such inference in numerous areas

[ACF13, CKHF11].

However, BP still su�ers from one big limitation: it does not take the uncertainty of beliefs

into account. Mathematically, BP computes point estimates only, as opposed to full distribu-

tions capturing the uncertainty in the beliefs. Thus, when propagating information, BP treats

certain and uncertain nodes with equal weight, resulting in counter-intuitive responses, like

recommending android to Smith in Figure 3.1.

The intuition pays o�, as is seen from Figure 3.1(b) and Figure 3.1(c). Our method, NetConf

(NETwork e�ects with CON�dence) takes certainty into account, and produces a sound ranking

of database authors (from the DBLP co-authorship network – see Section 3.5 for more details).

The list of top �ve authors using NetConf (Figure 3.1(b)) includes authors who wrote many

milestone database papers and collaborated with many well-known DB authors. In contrast,

BP (Figure 3.1(c)) ignores certainty and results in numerous authors having perfect belief score

and tying in �rst place; for several of them we could not �nd the h-index (‘dash’). Informally,

the problem we address is the following:

Problem 3.1: Node Classi�cation (With Certainty)

• Given a graph G = (V , E), labels lv ∈ {1, 2, . . . , k} for a subset of the nodes v ∈ V
(with their uncertainties) and the nature of network e�ects (e.g., homophily),

• Find the probability (belief/leaning) bu(i) that node u has label i along with a mea-

sure of certainty (stubbornness).

The main ideas behind our method are to: (i) model beliefs as Dirichlet distributions to cap-

ture uncertainty and (ii) use multinomial counts as messages to propagate these uncertainties

along the edges of the network. Our contributions are as follows:

42

http://web.cs.ucla.edu

• Theory: We propose axioms that every network-e�ect method should obey; and a Bayesian

theoretic model for uncertainty. These lead to our proposed NetConf, which has a

closed-form solution (Theorem 3.2) and precise convergence guarantees (Theorem 3.3).

• Practice: NetConf is more accurate than BP, as we show with real data; it scales linearly

with the number of edges and is usually faster than BP.

3.2 Background

Belief propagation (BP, in short), introduced by Judea Pearl [Pea14] is a general technique to

perform approximate inference in various graphical models such as Bayesian networks, pairwise

Markov random �elds and factor graphs [YFW03]. Due to our interest in solving the node

classi�cation problem in an undirected graph, we will restrict our discussion of BP to pairwise

Markov random �elds.

The core idea in BP is for each node u to maintain its belief bu, a k-dimensional vector

(where k is the number of classes) in which the ith entry indicates the probability that node u
belongs to class i. The belief of a node evolves as it receives messages from its neighbors. A

message mvu sent from v to u encodes v’s belief about what class the node u should belong to.

Beginning with prior beliefs eu for each node u ∈ V , the algorithm iteratively propagates

messages and computes beliefs guided by the following update rules.

bu(i) ←
1

Zu
eu(i)

∏
v∈N (u)

mvu(i) (3.1)

mvu(i) ←
k∑
j=1

H(i, j)ev(j)
∏

w∈N (v)\u

mwv(j) (3.2)

Here, Zu is a normalization constant which ensures that the beliefs sum up to 1. The k × k
matrix H is the edge potential or compatibility matrix, which captures the a�nity between the

classes. The larger an entry H(i, j), the more likely a node with class i connects to a node with

class j. Thus, it can encode any kind of network e�ects such as (a) homophily (Figure 3.2(a)), (b)

heterophily (Figure 3.2(c)) or (c) a combination there of, for more than two classes.

Further, observe that, when v sends a message to u, it does not take into account the message

it previously received from u. This is known as echo-cancellation.

The method converges to exact marginals only in graphs without loops [Pea14] and in cer-

tain special cases [MK07]. In the presence of loops, the algorithm is not guaranteed to converge

to the true marginals, or even converge at all. However, in practice, loopy belief propagation

has been found to approximate the true marginals well [MWJ99] in a variety of applications

[CKHF11, FH06, PCWF07].

3.3 Axioms

Figure 7.1a demonstrated that the direct application of BP (or similar algorithms) to node clas-

si�cation problems in a graph often leads to counter-intuitive results. This phenomenon is com-

43

0.9 0.1

0.1 0.9

Conservative

ConservativeProgressive

Progressive

0.5 0.5

0.5 0.5

A B

B

A 0.2 0.8

0.8 0.2

Silent

Silent Talkative

Talkative

(a) (b) (c)

Figure 3.2: Example edge compatibility matrices H for a binary class problem. (a)

Homophily: friendship (b) No network e�ects: blood group (c) Heterophily: dating

BP

NetConf

P

10

33 Q

10

100 100

Figure 3.3: Ratio vs. Di�erence: BP gives a strong blue prediction for Q even though

Q has an fairly equal number of red and blue neighbors.

mon; an another example is Figure 3.3. BP’s results depend on the di�erence in the number of

blue and red neighbors, but not the actual ratio, as one would desire.

The key to address these problems is to quantify the uncertainty in beliefs using distribu-

tions. In this section, we set up three axioms that our proposed method, operating on belief

distributions, must obey.

Axiom 3.1: No Network E�ects

In the absence of network e�ects, i.e., when the class labels are indi�erent to each other,

the �nal belief distribution of every node should match its prior belief distribution.

Axiom 3.2: Certainty Pulls

In the presence of network e�ects, all else being equal, neighbors with more certain belief

distributions have a greater in�uence on a node’s belief distribution. Informally, stubborn

neighbors are more convincing.

44

Table 3.1: Notation

Entity/Operator Notation

Scalar lowercase, italics; e.g., n, k
Vector bold, lowercase, without tilde; e.g., bu, ĕu
Distribution bold, lowercase, with tilde; e.g., b̃u, m̃vu

Matrix bold, uppercase; e.g., B̆,H
Vectorization vec(.)
Set calligraphic, capital; e.g., V , E
Kronecker product ⊗
Vector/matrix entry Not bold; e.g., bu(i), H(i, j)
Spectral radius ρ(.)

Axiom 3.3: Certainty Pools

In the presence of network e�ects, all else being equal, an increase in certainty of a neigh-

bor’s belief distribution makes a node’s belief distribution more certain. Informally, stub-

born neighbors make you more stubborn.

As we will see later, Equation (3.7) ensures that our proposed NetConf obeys Axiom 3.1,

by propagating �at (uninformative) distributions. Our update rules together ensure that a node

with high certainty sends a heavy-weight (as measured by L1 norm) message according to

Equation (3.8), which in turn has a greater in�uence on its neighbors’ beliefs (Axiom 3.2) and

increases their certainty (Axiom 3.3) according to Equation (3.9). These are further illustrated

using an example in Section 3.5.1. We now describe our approach.

3.4 Proposed Method

In Figure 3.1, Alice is lukewarm towards iOS but very certain about her opinion, while Bob is

the reverse. Thus, we need to capture both the leaning/belief of a node (e.g., preference to iOS

vs android) as well as its stubbornness/certainty. At a high level, the heart of our idea is to use

a Beta distribution with two parameters (α + 1, β + 1) as depicted in Figure 3.1. The leaning

of a node is the ratio
α

α+β
, while its certainty is the height of the spike of the Beta distribution

captured through α+ β. For a multi-class case, we generalize this to the Dirichlet distribution.

Our approach is based on the following steps:

• Dirichlet Beliefs: The D-belief (Dirichlet-belief) b̆u of a node u is a k-d vector of reals

which parameterize its belief distribution.

• Multinomial Messages: The D-message m̆vu from node v to u is a k-d vector of multi-

nomial counts.

45

Table 3.2: Nomenclature

Symbol Meaning

n |V|, #nodes in the graph G = (V , E)
k number of classes

u, v, w nodes

i, j classes

bu, eu k-dim �nal, prior belief vectors of u
mvu k-dim message vector from v to u

b̃u, ẽu �nal, prior belief distributions of u
m̃vu message distribution from v to u

b̆u, ĕu k-dim �nal, prior D-belief vectors of u
m̆vu k-dim D-message vector from v to u

B̆, Ĕ n× k �nal, prior D-belief matrices

vec(B̆), vec(Ĕ) nk × 1 vectorized matrices B̆, Ĕ

xu k-dim point belief from b̆u or ĕu
φ continuous potential function

H k × k compatibility matrix

M k × k modulation matrix

A n× n adjacency matrix

D n× n diagonal degree matrix

• Network E�ects: The modulation matrix M is derived carefully from the compatibility

matrix H (to obey Axiom 3.1).

• NetConf Update Rules: We derive update rules (Equation (3.8) and Equation (3.9))

in terms of D-beliefs, D-messages and modulation matrix from Yedidia’s update rules

(Equation (3.1) and Equation (3.2)).

• Closed-Form Solution: From these update rules, we deriveNetConf’s recursive matrix

equation (Theorem 3.1), compute the closed-form solution (Theorem 3.2), and provide

necessary and su�cient convergence guarantees (Theorem 3.3).

Table 3.1 summarizes the notation and Table 3.2 lists the frequently used symbols. The rest

of the section describes the above steps in detail.

3.4.1 Dirichlet Beliefs

A principled way to model the uncertainty in k-d beliefs is through a distribution having a k−1-

d simplex as support, namely, the Dirichlet distribution. Its probability density function is given

by: p(x;α) ∝
k∏
i=1

xαi−1
i . The concentration parameters α1, . . . , αk are k real-valued numbers

which control the spread of the distribution in space. Let us use D-belief (b̆u) (analogously,

46

0.0 0.2 0.4 0.6 0.8 1.0

belief value for class 1: x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
ro

b
a
b
ili

ty
 o

f
(x

,1
-x

)

0.0 0.2 0.4 0.6 0.8 1.0

message value for class 1: x

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
ro

b
a
b
ili

ty
 o

f
(x

,1
-x

)

0.0 0.2 0.4 0.6 0.8 1.0

message value for class 1: x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
ro

b
a
b
ili

ty
 o

f
(x

,1
-x

)

0.0 0.2 0.4 0.6 0.8 1.0

message value for class 1: x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
ro

b
a
b
ili

ty
 o

f
(x

,1
-x

)

(a) Echo-cancelled (b) m̃vu is �at for no (c) m̃vu ≡ b̃v\u, for perfect (d) m̃vu ≡ �ipped b̃v\u, for

belief distribution b̃v\u network e�ects (ε = 0) homophily (ε = +0.5) perfect heterophily (ε = −0.5)

Figure 3.4: Understanding the corner cases of the continuous potential function: A

sample 2-class echo-cancelled belief distribution and the corresponding message dis-

tributions for the di�erent network e�ects

D-prior ĕu) to denote the parameters of u’s belief distribution minus 1.

b̃u(xu) = Dir(xu; b̆u + 1) (3.3)

ẽu(xu) = Dir(xu; ĕu + 1) (3.4)

As the scale of D-belief increases, the distribution begins to get peakier (certain) around its

mean; hence, we may quantify the certainty in belief as Certainty(b̆u) =
∑

i b̆u(i). Our richer

model for beliefs maintains only k-parameters at every node, similar to BP.

3.4.2 Multinomial Messages

If beliefs are distributions, how should we characterize messages? The key lies in interpreting

Equation (3.1) as an equation that guides Bayesian posterior estimation:

b̃u(xu) ∝ ẽu(xu)
∏

v∈N (u)

m̃vu(xu) (3.5)

We hypothesize that the message distributions are the likelihood of observations made by a

node about its neighbors. For tractability of estimation (using conjugacy of Dirichlet-Multinomial

distributions), we let observations be multinomial counts. Accordingly, the message distribu-

tion m̃vu from v to u is the likelihood of the message counts (D-message m̆vu) under the belief

distribution b̃u(xu) of the node which receives the message:

m̃vu(xu; m̆u) ∝
k∏
i=1

xu(i)
m̆u(i)

Plugging this in Equation (3.5), we derive NetConf’s �rst update rule:

b̆u ← ĕu +
∑

v∈N (u)

m̆vu

47

Network e�ects ε Checkpoint for continuous potential function φ Modulation matrix M Geometry (Figure 3.5)

None 0

∫
xv
φε=0(xu,xv)b̃v\u(xv) ∝ 1 M = 0 Point O (origin)

Perfect homophily 0.5

∫
xv
φε=0.5(xu,xv)b̃v\u(xv) ∝ b̃v\u(xu) M = I Point A (identical to b̆v\u)

Perfect heterophily -0.5

∫
xv
φε=−0.5(xu,xv)b̃v\u(xv) ∝ b̃v\u(1− xu) M =

(
0 1
1 0

)
Point B (image about x = y)

Table 3.3: NetConf corner cases of network e�ects: Checkpoints for φ and corre-

sponding instantiations of M

3.4.3 Network E�ects

Since now messages and beliefs are (continuous) distributions instead of vectors, the message

update rule in Equation (3.2) needs to be adapted. We use a continuous potential function anal-

ogous to the compatibility matrix H in the discrete setting.

m̃vu(xu) ∝
∫
xv

φ(xu,xv) ẽv(xv)
∏

w∈N (v)\u

m̃wv(xv)︸ ︷︷ ︸
b̃v\u

(3.6)

Suppose the compatibility matrix H for a two class problem is

(
0.5 + ε 0.5− ε
0.5− ε 0.5 + ε

)
where

ε indicates the nature of network e�ects. ε = 0.5 is perfect homophily; ε = −0.5 is perfect

heterophily; ε = 0 is the case of no network e�ects. Intermediate positive and negative values

correspond to varying degrees of homophily and heterophily respectively.

Denote with φε the (unknown) continuous potential function that re�ects the correspond-

ing scenario for a speci�c value of ε. Let b̃v\u be the echo-cancelled belief distribution from

Equation (3.6). It is desirable that the checkpoints in Table 3.3 hold, as also illustrated in Fig-

ure. 3.4. The intuition is as follows: (1) for no network e�ects, the message should not prefer any

belief value over the other (�at distribution); (2) for perfect homophily, a node believes about

its neighbors what it believes about itself; (3) for perfect heterophily, a node believes about its

neighbors the opposite of what it believes about itself.

Despite the mathematical niceness of the above formulation, it has proved hard to de�ne

a potential function that (i) preserves the functional form of message distributions, (ii) satis-

�es the checkpoints in Table 3.3, and (iii) ensures e�cient computation. Thus, we propose

to approximate the continuous potential function φ that operates on the distributions by a

modulation matrix M that operates on the corresponding hyperparameters. Following the up-

date rule of the belief distribution, the message update for the hyperparameters is de�ned by

m̆vu ←M(ĕv +
∑

w∈N (v)\u
m̆wv).

To formally de�ne the modulation matrix M, let us visualize the D-beliefs and D-messages

for a two class problem as points on a 2D plot, as shown in Figure 3.5. The x-axis represents the

D-score of a belief or message for the �rst class, while the y-axis represents the D-score for the

second class. LetA represent the D-scores of the echo-cancelled belief of node u, i.e., b̆v−m̆uv.

The three conditions on φ determine how the modulation matrix M is de�ned for the corner

cases of ε = 0.5, 0,+0.5 – these correspond to points A, O and B in Figure 3.5 respectively

48

!
!"#$,&'().+!

!"#,%&'(.*!
!

!"#,%&' ! D-­‐‑score	
 for	
 class	
 1
D-­‐‑
sc
or
e	
 f
or
	
 cl
as
s	
 2

B

A

O

(perfect heterophily)

(perfect homophily)

(no network effects)

!
˘ !

!
˘ !

!
˘ !

CAMLP

NETCONF

Figure 3.5: Illustration of modulated messages as a function of ε: Proposed NetConf

follows blue arrow (as ε increases from -0.5 to +0.5) and sends (0,0) message for no

network e�ects. Messages according to our competitor CAMLP [YFK16] follow the

red arrow and violate Axiom 3.1 (no network e�ects).

(see also Table 3.3). For any intermediate positive value of ε, we propose a linear interpolation

and transmit the D-message lying on the line AO. Similarly, for intermediate negative values

of ε, the D-message takes a value lying on OB. Hence, the modulation matrix for a two-class

problem is given by

M = 2

(
L(ε) L(−ε)
L(−ε) L(ε)

)
where L(.) is the Lasso operator de�ned as L(x) = x for x > 0, and 0 otherwise. This can be

generalized to the k-class case as:

M =
k

k − 1
L

(
H− 1

k

)
(3.7)

NetConf obeys Axiom 3.1: In the absence of network e�ects, M = 0. This makes all

message counts zero (i.e., message distributions �at), hence leaving the belief distributions of

all nodes unchanged.

3.4.4 Putting Things Together: NetConf

The update rules for NetConf, in terms of the modulation matrix M (Equation (3.7)) can be

summarized as:

b̆u ← ĕu +
∑

v∈N (u)

m̆vu (3.8)

m̆vu ← M(ĕv +
∑

w∈N (v)\u

m̆wv) (3.9)

49

NetConf obeys Axiom 3.2 and Axiom 3.3: A node with high certainty sends a heavy-

weight (as measured by L1 norm) message due to Equation (3.8). This increases its in�uence

on its neighbors’ beliefs (Axiom 3.2) and hence their certainty (Axiom 3.3) according to Equa-

tion (3.9).

While in principle one can simply invoke the previous two update equations several times

until the messages and beliefs converge, we infer a more e�cient variant that avoids computing

messages at all. We will use the following notation. Let G be an unweighted undirected graph

on n nodes, with adjacency matrix A. Let D be the diagonal degree matrix, whereD(q, q) = dq,
the degree of the qth node. Also, suppose that k is the number of classes. Then, we construct

the n× k D-belief matrix B̆ (and correspondingly, the D-prior matrix Ĕ), by stacking D-belief

(resp., D-prior) row vectors of all nodes one below the other. Now, we are ready to state our

main theorem.

Theorem 3.1: NetConf

For matrices A, D, B̆, Ĕ and M described as above, the �nal D-beliefs of nodes are given

by the equation system:

B̆ = Ĕ + (AB̆M−DB̆M2)(I−M2)−1
(3.10)

Proof. Rewriting the D-message update rule from Equation (3.9) in terms of D-belief b̆u, we

have

m̆vu ←M(b̆v − m̆uv)

Plugging the message update rule for m̆uv into the above yields

m̆vu ← M(b̆v −M(b̆u − m̆vu))

At steady state, we can replace the update sign with an equality and solve for m̆vu, in terms of

the steady state D-beliefs b̆u, b̆v. This gives us

m̆vu = (I−M2)−1(Mb̆v −M2b̆u) (3.11)

Now, the steady state D-beliefs can be calculated from the steady state D-messages using Equa-

tion (3.8).

b̆u = ĕu + (I−M2)−1
∑

v∈N (u)

(Mb̆v −M2b̆u)

Rewriting this in matrix form using the previously de�ned matrices (B̆, Ĕ,A and D) yields

Equation (3.10). �

As shown, Equation (3.10) operates on beliefs only; the messages are not explicitly required.

In practice, we can use the above result to compute the �nal belief matrix via an e�cient iter-

ative update of the following form:

B̆
(t+1)

= Ĕ + (AB̆
(t)

M−DB̆
(t)

M2)(I−M2)−1
(3.12)

50

Dataset Nodes Edges Description Classes

Polblogs [AG05] 1490 19090 Political blog hyperlink network Democrat/Republican

Coauthor [SHGY09] 28702 66832 Citation network 4 areas - DB, DM, AI, IR

Pokec [TZ12] 1632803 30622564 Friendship network in Slovakia Male/female (slight heterophily)

Table 3.4: Datasets used

Weighted edges: Although our proof assumes unweighted edges, it can be easily shown that

all our theorems hold for weighted adjacency matrix A as well.

3.4.5 Closed-Form Solution and Convergence

Before providing theoretical guarantees for our algorithm, we review two useful matrix algebra

concepts.

De�nition 3.1: Matrix Vectorization [HS81]

Vectorization of an m× n matrix converts it into a mn× 1 vector given by:

vec(X) = [x11, . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn]T

where xij denotes the element in the ith row and jth column of matrix X.

Lemma 3.1: Roth’s Column Lemma [HS81]

For any three matrices X,Y and Z,

vec(XYZ) = (ZT ⊗X)vec(Y) (3.13)

where ⊗ is the Kronecker product [HS81].

Theorem 3.2: Closed Form Solution

For matrices A, D, M and vectors vec(B̆) and vec(Ĕ) described as above, the closed form

solution for D-beliefs is

vec(B̆) = (I− (MM̂)T ⊗A + (M2M̂)T ⊗D)−1
vec(Ĕ) (3.14)

where M̂ = (I−M2)−1
.

51

http://networkdata.ics.uci.edu/data/polblogs/
http://www.ccs.neu.edu/home/yzsun/data/four_area.zip
http://snap.stanford.edu/data/soc-pokec.html

Proof. The theorem can be proved by vectorizing Equation (3.10) and applying Roth’s column

lemma. �

Theorem 3.3: Fixed Point and Convergence

The iterative updates in Equation (3.12) converge to a unique �xed point, for arbitrary

initialization of the D-belief matrix, if and only if the spectral norm of (MM̂)T ⊗ A +
(M2M̂)T ⊗D is less than 1.

NetConf converges ⇔

ρ
(

(MM̂)T ⊗A + (M2M̂)T ⊗D)
)
< 1 (3.15)

Here, M̂ = (I−M2)−1
.

Proof. The Jacobi method of solving a system of linear equations [Saa03] states that a linear

equation system of form x = (I−P)y converges if and only if ρ(P) < 1.

Rewriting the update rule in Equation (3.12) in terms of vectorized D-priors and D-beliefs

and applying the above result proves the theorem. �

In practice, convergence may be ensured by setting M as cM, where c > 0 is an appropri-

ately chosen constant according to Theorem 3.3. Here, c can be interpreted as the modulation

decay factor for message propagation.

3.5 Experiments

In this section, we (1) present a case study to demonstrate how the top competitors, unlike

NetConf, violate our axioms and (2) experimentally verify the scalability and e�ectiveness of

NetConf.

3.5.1 Synthetic Data

We present a case study (Figure 3.6(a)) to illustrate how major competitors disobey our axioms.

Here, A, B and C are the core nodes (unlabeled). Given the labels for the remaining periph-

eral nodes (red/green) and homophily network e�ects, we investigate the belief/leaning scores

assigned by NetConf, BP and CAMLP.

In experiments, we use [0.1, 0.9] and [0.9, 0.1] as prior for the red (top) and green (bot-

tom) with nodes. The core nodes are given uniform prior [0.5, 0.5]. Compatibility matrix from

Eq. 3.16 with ε = 0.4 is used, with CAMLP’s β set to the recommended default of 0.1. The

belief/leaning returned by the three methods are tabulated in Figure 3.6(b).

H =

(
0.5 + ε 0.5− ε
0.5− ε 0.5 + ε

)
(3.16)

52

Method A B C

BP 6.20e-9 0.2561 0.5+

CAMLP 0.4860 0.5005 0.5210

NetConf 0.4833 0.4967 0.5118

Figure 3.6: Case Study: (a) graph with k = 2 classes (b) BP vs CAMLP vs NetConf:

�nal belief/leaning for class green (bold = red; 0.5+
is slightly above 0.5)

All three methods label A correctly as red. CAMLP and NetConf result in a belief value which

is close to 0.5 as is desirable. However, BP yields a red belief (≈ 1) despite the comparable

number of red and green neighbors, which is counter-intuitive.

The classi�cation of node B illustrates the importance of certainty well. B has two neighbors

– the red A and the green C. CAMLP, which does not store/propagate certainty, compute B’s

belief from those of A and C, resulting in a misclassi�cation (violation of Axiom 3.2). However,

NetConf recognizes the high certainty of A (≈ 60× neighbors) and by giving it higher weight,

correctly classi�es B.

Similar results were obtained for ε ∈ (0, 0.5) and β ∈ (0, 1). In sum, NetConf obeys axioms

and results in intuitive classi�cation unlike major competitors.

3.5.2 Real-World Data

Our experiments use three diverse publicly available real-world datasets (Table 3.4). We imple-

mented NetConf (iterative version from Equation (3.12)) in MATLAB, as it is well-optimized

to handle sparse matrix operations. The modulation decay factor was chosen according to The-

orem 3.3. Due to lack of prior work which incorporates certainty in a scalable manner, we

resorted to the widely used BP as baseline. All experiments were conducted on 2.7 GHz Intel

Core i5 with 16 GB main memory. Our experimental �ndings can be summarized under the

following three categories.

3.5.2.1 Q1. Scalability: How fast and scalable is NetConf with #edges?

We uniformly sampled 150K-30M edges from Pokec network and timed NetConf and BP for 5

iterations (computations only) to allow comparability. In each case, we seeded 20% nodes and

used H from Equation (3.16) with ε = −0.4 (heterophily). Figure 3.7(a) plots running time (in

seconds; averaged over 10 trials) with the network size in log-log scale.

The plot shows our algorithm scales linearly with the graph size. It was also found to

be ∼ 600× faster than a MATLAB implementation of BP by avoiding loops and heavy-weight

53

105 106 107

Number of edges (log)

10-1

100

101

T
im

e
 i
n
 s

 (
lo

g
)

Slope=1

0 200 400 600 800 1000120014001600

n
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

u
ra

cy
@

n

BP

NetConf

(a) Scalability (b) Accuracy@n

Figure 3.7: NetConf is (a) scalable (b) outperforms the baseline, achieving better ac-

curacy and precision

operations (similar to [GGKF15]), processing upto∼ 30M edges in a few seconds. This suggests

that NetConf is fast and is expected to scale well to large graph applications.

3.5.2.2 Q2. E�ectiveness: How accurate is NetConf?

We compare overall accuracy and accuracy@n curve of NetConf against that of BP on three

datasets. In all cases, we seeded 30% nodes with their true labels and prior certainty of 1 (due to

lack of richer ground truth). Unlabeled nodes were initialized to [1
k
, . . . , 1

k
] where k = #classes.

The compatibility matrix H from Equation (3.16) with ε = 0.4 and −0.4 were used for ho-

mophily (Polblogs/Coauthor) and heterophily (Pokec) respectively.

(a) Overall Accuracy: The class with the highest belief/D-belief (BP/NetConf) was assigned

as the class for a node, breaking any ties arbitrarily. The accuracy results (Table 3.5) show that

NetConf consistently matches or outperforms BP and the di�erences are statistically signi�-

cant.

(b) Accuracy@n: We compute the accuracy on top n nodes in a ranking based on the con-

�dence of classi�cation and plotted it as a function of n. The di�erence in top two beliefs

was used as the ranking mechanism for BP; for NetConf, di�erence in top two D-beliefs

was used as it incorporates certainty as well. NetConf emerged as the clear winner on Pol-

blogs dataset, as is evident from Figure 3.7(b). Similar trends were observed in other datasets.

These results suggest that NetConf is ideal for precision-critical applications, e.g., fraud detec-

tion [GGF14b, HSB
+

16a].

3.5.2.3 Q3. Certainty Scores: Do they make sense?

On the Coauthor network, we rank the authors on their score for class DB (databases) and list

the top-5 by NetConf (Figure 3.1(b)) and by BP (Figure 3.1(c)). Authors in the former list, with

high D-belief for ‘DB’, have several DB publications and coauthors, a high H-index and several

DB-related distinctions. In contrast, BP ignores certainty and produces perfect scores for many

authors, as long as they have exclusively DB co-authors and publications, no matter how many

or how few. Thus, they all tie in �rst place; we broke ties arbitrarily and only Prof. Jiawei Han

is in both lists.

54

Table 3.5: Accuracy of BP vs NetConf (averaged over 5 runs): Underlined numbers

indicate signi�cant di�erences p ≤ 0.05 according to a two-sided sign test.

Accuracy Polblogs Coauthor Pokec

BP (Baseline) 91.38 76.26 73.78

NetConf 92.40 81.89 75.02

In summary, our empirical studies show that NetConf (i) obeys axioms and leads to in-

tuitive classi�cation (ii) is faster than BP and has linear scalability; (ii) never loses to BP and

usually outperforms it; (iii) produces certainty scores that re�ect our expectations.

3.6 Related Work

Table 3.6 gives an overview of the di�erences between the methods. In summary, our proposed

NetConf is the �rst method that (i) handles arbitrary network e�ects, (ii) satis�es all axioms,

and (iii) gives a closed-form solution for beliefs and certainties.

Transductive inference, a special case of semi-supervised learning, has attracted a lot of

interest [CSZ06a, Zhu05]. Belief Propagation [YFW03] is closely related, and we have described

it in Section 3.2. BP has replaced label propagation [Zhu05] and it has been successful on node

classi�cation problems, due to its ability to handle both homophily and heterophily. However,

its convergence can be guaranteed for some special graphs only [MK07]. Approximations to BP

were able to prove convergence, for the 2-class case [KKK
+

11], the multi-class case [GGKF15],

and heterogeneous graphs [EGF
+

17b]. However, none of the methods can model uncertainty.

E�orts to incorporate uncertainty or con�dence are recent [B
+

08, FHC12, OC12, TC09,

YFK15, YFK16]. Except CAMLP [YFK16], all are restricted to homophily e�ects only. Ad-

sorption [B
+

08] and its extension MADDL [TC09], which propagate labels by performing a

controlled random walk on the graph can only handle homophily. Dirichlet-based Graph Reg-

ularization (DRG) [FHC12] assumes every node has a Dirichlet prior and propagates it along

edges. However, it is slow, as it needs to solve an optimization problem numerically at every

iteration. Transduction Algorithm with Con�dence (TACO) [OC12] computes both belief and

k × k uncertainty matrix for all nodes alternatively at every iteration. But, it penalizes high

degree nodes for small di�erences in the beliefs of neighbors even if the neighbors indicate the

same class. None of the above methods handles arbitrary network e�ects. SOCNL [YFK15] and

CAMLP both introduce uncertainty, but they both fail Axiom 3.1 (no network e�ects).

In summary, NetConf is the only method that satis�es all the speci�cations in Table 3.6.

3.7 Conclusion

We presented NetConf, a method to perform belief propagation along with uncertainties. The

main idea was to model beliefs as Dirichlet distributions and messages as multinomial counts.

Unlike existing works, NetConf follows proposed axioms, generalizes to arbitrary network

55

LP SOCNL BP Adsorption MADDL DGR TACO LinBP CAMLP NetConf

[Zhu05] [YFK15] [YFW03] [B
+

08] [TC09] [FHC12] [OC12] [GGKF15] [YFK16]

Obeys axioms 3 3

Homo-/hetero-phily 3 3 3 3

Scalability 3 3 3 3 3 3 3 3 3

Closed-form 3 3 3 3 3

Table 3.6: NetConf has all desirable properties

e�ects and is highly scalable. NetConf has a closed-form solution and strong convergence

guarantees. Our empirical analysis indicated the strong potential of using uncertainty in node

classi�cation tasks.

56

Chapter 4

HOLS: Leveraging Higher-Order

Structures

Chapter based on work that appeared at TheWebConf 2020 [EKF20] [PDF].

Do higher-order network structures aid graph semi-supervised learning? Given a graph

and a few labeled vertices, labeling the remaining vertices is a high-impact problem with

applications in several tasks, such as recommender systems, fraud detection and protein

identi�cation. However, traditional methods rely on edges for spreading labels, which is

limited by the fact that all edges are not equal. Vertices with stronger connections partici-

pate in higher-order structures in graphs, which calls for methods that can leverage these

structures in the semi-supervised learning tasks.

Our contributions are three-fold. First, we create an information-theoretic metric to

quantify the homogeneity of labels in higher-order structures in graphs. We show that

across four diverse real-world networks, higher-order structures exhibit more homogene-

ity of labels compared to edges. Second, we create an algorithm, HOLS, for label spreading

using higher-order structures. HOLS has strong theoretical guarantees and reduces to stan-

dard label spreading [ZBL
+

03] in the base case. Third, we conduct extensive experiments

to compare HOLS to several traditional and recent state-of-the-art methods. We show that

higher-order label spreading using triangles in addition to edges (HOLS-3) is up to 4.7%

better than label spreading using edges alone. Compared to the baselines, HOLS-3 leads

to statistically signi�cantly higher accuracy in all-but-one cases. HOLS-3 is also fast and

scalable to large graphs, running under 2 minutes in graphs with over 21 million edges.

4.1 Introduction

Given an undirected unweighted graph and some labeled vertices, the graph transductive learn-

ing or semi-supervised learning problem (SSL) aims to infer the labels for the remaining un-

labeled vertices [ZGL03, ZBL
+

03, TC09, BMN04, YFW03, KW17, YCS16, APK
+

19]. Graph SSL

�nds applications in various use cases: in a social network, we can infer a particular character-

57

http://www.cs.cmu.edu/~deswaran/papers/www20-hols.pdf

?

Network
structure
(clique)

3 3 1
4 0 0

Alice
B

C

D

P
Q R

S =

K2 K3 K4

=
(a)

3 4 5
Clique size: k

0

10

20

30

40

50

%
LC

in
cr

ea
se

fr
om

K
2

to
K

k

EuEmail
PolBlogs

Cora
Pokec

2 3 4 5
Maximum clique size: k

0

1

2

3

4

A
cc

ur
ac

y
in

cr
ea

se
%

EuEmail
PolBlogs

Cora
Pokec

(b) (c)

Figure 4.1: (a) Motivation: Existing graph semi-supervised learning approaches prop-

agate labels via edges only and incorrectly classify the unlabeled central vertex ‘Alice’

as blue. We propose HOLS to leverage the higher-order network structures to prop-

agate vertex labels. HOLS correctly labels the central vertex as red. (b) Higher-Order
Label Consistency: We show that triangles are 7-23% more consistent in vertex labels

than edges across four real-world networks. The percentage increase diminishes with

clique size k. (c) Higher-Order Label Spreading: HOLS consistently outperforms the

edge-level label spreading algorithms in vertex labeling tasks. Using triangles helps

the most. Further higher-order cliques produce little-to-no added bene�t.

istic (e.g., political leaning) of a user based on the information of her friends to produce tailored

recommendations; in a user-product bipartite rating network, using a few manually identi�ed

fraudulent user accounts, SSL is useful to identify other fraudulent accounts [ACF13, EGF
+

17b];

from networks of their physical interaction of proteins, SSL can identifying protein functions

using a few labels [VFMV03].

Traditional graph SSL algorithms leverage a key property of real-world networks: the ho-

mophily of vertices [AB02, MSLC01], i.e., the nearby vertices in a graph are likely to have the

same label. However, these methods tend to be limited by the fact that all the neighbors of a

vertex are not equal. Consider your own friendship network where you have many acquain-

tances, but only a few close friends. In fact, prior research has shown that vertices with a

strong connection participate in several higher-order structures, such as dense subgraphs and

cliques [Jac10, JRBT12, SGB17, HR05]. Thus, leveraging the higher-order structure between

vertices is crucial to accurately label the vertices.

58

Let us elaborate this using a small friendship network example, shown in Figure 4.1(a). The

central vertex, Alice, participates in a close-knit community with three close friends B, C, and

D, all of whom know each other. In addition, she has four acquaintances P, Q, R, and S from

di�erent walks of life. Let the vertices be labeled by their political beliefs—vertices B, C, and D

have the same blue label; and the rest of the vertices have the red label. Even though Alice has

more red connections than blue, the connection between Alice, B, C, and D is stronger as Alice

participates in three 3-cliques and one 4-clique with them. In contrast, Alice has no 3- and 4-

cliques with P, Q, R, and S. Owing to the stronger connection with the red nodes, Alice should

be labeled red as well. However, traditional graph SSL techniques that rely on edges alone label

Alice as blue [ZGL03, ZBL
+

03]. This calls for methods that look beyond edges and leverage

strong higher-order structures to label vertices in graph SSL.

In this chapter, we quantify the usefulness of higher-order structures in graph semi-supervised

learning. We answer the following key research questions:

• [RQ1]Are higher-order network structures more homophilic in labels compared to edges?

• [RQ2] How can we leverage higher-order network structures for graph SSL in a princi-

pled manner?

• [RQ3] Do higher-order structures help improve graph SSL?

We make the following three contributions to answer the research questions.

First contribution: we create a novel metric to measure the homogeneity of labels within higher-

order structures in a network. If the homogeneity of a higher-order structure is high, then one

can expect label spreading methods using the higher-order structure to aid in vertex labeling

tasks. On the contrary, low homogeneity can hurt.

However, how can one compare the homogeneity across di�erent higher-order structures

and graphs? For example, how does the homogeneity of triangles compare to the homogeneity

of edges in a graph? An appropriate metric should be invariant to the size of the higher-order

structure, the number of instances of the structure in the graph, and the marginal distribution of

the labels in the graph. Thus, we propose an information-theoretic measure, called the ‘Higher-

Order Label Consistency’, which satis�es these desired properties. HOLC is an entropy score

normalized by the baseline distribution of expected homogeneity of labels in similar graphs.

Using the proposed label consistency metric, we measure the higher-order label consistency

across four real-world networks. We show the key �nding with cliques in Figure 4.1(b). We

�nd that cliques are more homogeneous than edges across all four networks, indicating that

the use of cliques can help in e�ciently labeling of vertices. Additionally, we observe that the

consistency increases with the order of the clique, although with diminishing returns.

Second contribution: we create an algorithm, HOLS, for label spreading using higher-order

structures. Spreading labels with higher-order structures is fundamentally di�erent from that

of the traditional edge-based label spreading [ZBL
+

03]. Thus, we develop a general algorithm,

HOLS, for graph SSL approaches that leverage higher-order structures. HOLS works for any

user-inputted higher-order structure and in the base case, is equivalent to the standard edge-

based label spreading. Furthermore, using the equivalence between HOLS and LS on a modi�ed

graph, we show that HOLS has a closed-form matrix solution and strong theoretical guarantees.

Third contribution: we conduct extensive experiments to show the e�ectiveness and speed of

HOLS. We use four real-world datasets for our experiments and show the key results in Fig-

59

ure 4.1(c). Here we show that label spreading via higher-order structures strictly outperforms

label spreading via edges. Compared to edges, the gain is the most when using 3-cliques. The

use of further higher-order cliques has little additional performance gain. In our experiments

shown later in Section 4.5, HOLS outperforms recent state-of-the-art methods by a statisti-

cally signi�cant margin across most datasets. Digging deeper into the performance reveals that

HOLS has the highest gain when the networks have high label consistency and high clustering

coe�cient.

Notably, HOLS is practically useful on large networks, with a total run time of under 2

minutes on networks with over 21 million edges. HOLS is over 15 times faster than the recent

deep learning baselines and has similar run-time compared to the standard label propagation

methods.

4.2 Related Work

Background on Graph SSL: Given a graph and labels on a few vertices, traditional graph

semi-supervised learning methods typically infer the labels for all vertices by optimizing a loss

function of the form L = (1 − η)Ls + ηLg. Here, the �rst term is the supervised loss which

imposes a penalty when the inferred values on the labeled vertices di�er from their given values

and the second term is the graph loss which penalizes inferred values that are not smooth over

the graph structure. A parameter η ∈ (0, 1) trades o� the two factors. Various graph SSL

methods de�ne their loss functions as variants of the above.

Traditional Graph SSL Approaches: By far, the most widely adopted graph SSL techniques

are label propagation [ZGL03] and label spreading [ZBL
+

03]. Label propagation (LP) clamps

labeled vertices to their provided values and uses a graph Laplacian regularization, while label

spreading (LS) uses a squared Euclidean penalty as supervised loss and normalized graph Lapla-

cian regularization which is known to be better-behaved and more robust to noise [VLBB08].

Both these techniques permit closed-form solution and are extremely fast in practice, scal-

ing well to billion-scale graphs. Consequently, a number of techniques build on top of these

approaches, for example, to allow inductive generalization [BMN04, WRC08], to incorporate

certainty [TC09], and so on. When the graph is viewed as pairwise Markov random �eld, belief

propagation (BP) [YFW03] may be used to recover the exact marginals on the vertices. BP can

handle network e�ects beyond just homophily; however, it has well-known convergence prob-

lems from a practitioner’s point of view [SNB
+

08]. While traditional techniques, in general,

show many desirable theoretical properties such as closed-form solution, convergence guaran-

tees, connections to spectral graph theory [ZGL03] and statistical physics [YFW03], as such,

they do not account for higher-order network structures.

Recent Graph SSL Approaches di�er from traditional SSL methods in training embeddings

of vertices to jointly predict labels as well as the neighborhood context in the graph. Speci�-

cally, Planetoid [YCS16] uses skipgrams, while GCN [KW17] uses approximate spectral convo-

lutions to incorporate neighborhood information. MixHop [APK
+

19] can learn a general class

of neighborhood mixing functions for graph SSL. As such, these do not incorporate speci�c

60

higher-order structures provided by the user. Further, their performance in practice tends to be

limited by the availability of ‘good’ vertex features for initializing the optimization procedure.

Hybrid Approaches for Graph SSL: Another way to tackle the graph SSL problem is a

hybrid approach to �rst extract vertex embeddings using an unsupervised approach such as

node2vec [GL16], DeepWalk [PAS14] or LINE [TQW
+

15] and then use the available labels to

learn a transductive classi�er such as an SVM [Joa99]. Such methods, however, neither have

well-understood theoretical properties nor do they optimize for a single objective in an end-to-

end manner.

Higher-Order Network Structures: Recent work has shown that graphs from diverse do-

mains have many striking higher-order network structures [BGL16] which can be leveraged to

improve graph clustering [YBL18], link prediction [BAS
+

18, AMA19] and ranking [RRK
+

19].

Signi�cant recent algorithmic advancements made in counting [JS17] and enumeration [DBS18]

of higher-order network structures (esp., cliques) enables and supports the aforementioned ap-

plications. From a graph SSL point of view, the explicit use of higher-order network structures

has remained limited to belief propagation over 2× 2 image cliques to improve image denois-

ing, segmentation and rendering in computer vision [LRHB06, PL08]. Till date, the importance

of higher-order network structures in SSL atop explicit graph data has largely remained unex-

plored and our work aims to address this gap.

Regularization Framework: Recent line of research [NSZ09] has shown that Laplacian reg-

ularization method for semi-supervised learning at the regime of a �xed number of labeled

points but a large number of unlabeled points is actually not well-posed, and as the number

of unlabeled points increases the solution degenerates to a non-informative function. To ad-

dress this issue, techniques based on `p-Laplacian regularization [ACR
+

16, ST17] have been

proposed, where p depends the dimensionality of the random graph model. The method we

consider in this chapter can be viewed as an alternative to p-Laplacian, based on the symmetric

Laplacian of a modi�ed graph constructed based on higher-order motif counts. Establishing the

precise nature of connection between these two forms of regularization, however, is beyond the

scope of this chapter and is left to future work.

Comparison: We compare the best performing HOLS algorithm (HOLS-3 which uses trian-

gles in addition to edges) qualitatively to prominent SSL approaches in Table 4.1 and quantita-

tively via experiments to representative methods from the above categories: LP and LS (tradi-

tional), GCN (recent) and node2vec + TSVM (hybrid).

4.3 Higher-Order Label Consistency

The motivation for our work comes from the hypothesis that when real-world networks exhibit

homophily, higher-order motifs (e.g., triangles) tend to be more homogeneous in labels than

edges. In this section, we develop an information-theoretic measure called label consistency to

61

Table 4.1: Qualitative comparison of HOLS-3 (using edges and triangles) with tradi-

tional and recent graph SSL approaches.

Desiderata

L
P

[
Z

G
L

0
3
]

L
S

[
Z

B
L

+
0
3
]

B
P

[
Y

F
W

0
3
]

P
l
a
n

e
t
o

i
d

[
Y

C
S
1
6
]

G
C
N

[
K

W
1
7
]

M
i
x
H

o
p

[
A

P
K

+
1
9
]

H
O
L
S
-
3

Higher-order structures 3 3 3 3

Theoretical guarantees 3 3 ? 3

Fast algorithm 3 3 3 3

quantify the extent of label homogeneity across occurrences of any given motif within a large

graph and use it to verify our hypothesis on real-world networks.

4.3.1 Notation

Consider a graph G = (V , E) where V is the set of vertices and E is the set of edges. Edges can

be directed and/or weighted; the weight of an edge from vertex i to vertex j is given by wij .
Let `(i) ∈ {1, 2, . . . , C} denote the label of a vertex i ∈ V . Each vertex has a unique label and

there are C possible labels.

For a given higher-order network structure (or motif) κ, let |κ| denote its size which is its

number of participating vertices. For example, when κ is a triangle, |κ| = 3. Let Qκ be the set

of all occurrences of motif κ in graph G. Let a subgraph q ∈ Qκ be a speci�c instantiation of κ.

1 [i ∈ q] denotes that a vertex i is part of the subgraph q and we say that κ is incident on vertex

i. |q| = |κ| ∀ q ∈ Qκ. Let wq denote the weight of subgraph q computed from the weights of its

incident edges, e.g., via a product.

Following standard practice, we useH(·) to denote entropy and 1 [·] to denote the indicator

function, which evaluates to 1 when the enclosed expression is true.

4.3.2 Quantifying Label Consistency

When can we say that a given subgraph over a set of vertices is consistent in labels? Intuitively,

highest label consistency is achieved when all its participating vertices have the same label and

lowest label consistency is achieved when all vertices have di�erent labels. Thus, the homo-

geneity of labels within a subgraph can be naturally quanti�ed via Shannon’s entropy [Sha48]

of label distribution over the participating vertices:

62

De�nition 4.1: Label Entropy of a Subgraph

Let q be a subgraph and and let p̂q(c) =
∑

i∈q 1 [`(i) = c] /|q| denote the probability that

a randomly chosen vertex from q has a label c. The label entropy of q is the Shannon’s

entropy of the distribution p̂q:

H(q) = −
C∑
c=1

p̂q(c)ln2p̂q(c) (4.1)

where 0ln20 = 0 by convention.

Note that 0 ≤ H(q) ≤ ln2C and a lower value signi�es a greater homogeneity in labels

within subgraph q. Given a motif κ, we may compute the vertex label entropy for a vertex by

aggregating the label entropy across its occurrences.

De�nition 4.2: Vertex Label Entropy of a Motif

The vertex label entropy of a motif κ incident on a vertex i in a graph G is the average

label entropy over all the instantiations of κ incident on i.

Hi(κ;G) =

∑
q∈Qκ 1 [i ∈ q]wqH(q)∑

q∈Qκ 1 [i ∈ q]wq
(4.2)

A low value of Hi(κ;G) suggests that labels within any randomly chosen occurrence of κ
in the neighborhood of vertex i are likely to be homogeneous and hence κ might be a useful

network structure to leverage for SSL of vertex i. Note that vertex label entropy is not de�ned

for a motif that does not appear in the neighborhood of interest.

It is crucial to observe that the label entropy values can vary signi�cantly across motifs and

graphs depending on (a) the size of the motif |κ|, (b) the number of possible labels C and (c) the

marginal distribution of the labels. To see this, note that the maximum possible entropy itself

scales as ln2 min(|κ|, C). Thus, we in order to derive a credible measure of label consistency that

can be fairly compared across di�erent motifs and graphs, we propose to compute the vertex

label entropy of a motif relative to a common baseline or null model. Let F be the distribution

of vertex-labeled graphs according to some null model. Then, the vertex label consistency of a

motif is de�ned as follows.

63

De�nition 4.3: Vertex Label Consistency of a Motif

The vertex label consistency of a motif κ incident on a vertex i in a graph G is de�ned

as the vertex label entropy of κ on i relative to the expected value in the null model F .

Mathematically,

λi(κ) = 1− Hi(κ;G)

EG′∼F [Hi(κ;G ′)]
(4.3)

Here, G ′ is a random graph drawn from the null model F and H(κ;G ′) is the vertex label

entropy of κ in G from De�nition 4.2. Several such random graphs are drawn and the expected

value over all such draws is the normalization denominator. Note that vertex label consistency,

similar to vertex label entropy, is only de�ned for motifs that appear in the neighborhood of a

vertex.

A value of λi(κ) = 1 indicates perfect vertex label consistency of motif κ: vertices partici-

pating in every occurrence of κ in the neighborhood of i have the same label `(i), resulting in

Hi(κ;G) = 0. A value of λi(κ) = 0 indicates that the labels of vertices within occurrences of

motif are no more consistent than they would be in the null model. Finally, negative values of

λi(κ) are also possible. This occurs when the vertex i preferentially attaches to those having a

diverse set of labels. In this case, the observed vertex label entropy is higher than is expected

in the null model.

What is the right null model to use? One can consider two possibilities: (i) Label permuta-

tion null model where the vertex-label assignments are shu�ed while �xing the graph structure

(edges) and the marginal label distribution. (ii) Edge permutation null model where the edges

are shu�ed uniformly at random as in an Erdős-Rényi random graph model, while �xing the

vertex-label assignments and hence the marginal distribution of labels. Surprisingly, both null

models lead to same value of vertex label consistency as the probability of observing a mo-

tif with a particular label con�guration according to either null model depends only on the

marginal label distribution.

We average the vertex label consistency across all vertices to assign a single label consis-

tency score to a motif. We can then compare this score across di�erent motifs.

De�nition 4.4: Label Consistency of a Motif

The label consistency of a motif κ is the average vertex label consistency over all vertices

Vκ =
⋃
q∈Qκ q incident with at least one occurrence of κ.

λ̄(κ) =

∑
i∈Vκ λi(κ)

|Vκ|
(4.4)

Using this, we say that a motif κ1 is more label-consistent than a motif κ2 if and only if

λ̄(κ1) > λ̄(κ2).

64

Table 4.2: Statistics of datasets used

Dataset Domain |V| |E| C

EuEmail [LKF07] Email communication 1005 16.0K 42

PolBlogs [AG05] Blog hyperlinks 1224 16.7K 2

Cora [SB13] Article citations 23.1K 89.1K 10

Pokec [TZ12] Friendship 1.6M 22.3M 10

Finally, we compare label consistency to two popular graph theoretical measures in the

literature. (i) Clustering Coe�cient [WS98, YBL18]: Despite any apparent similarities be-

tween label consistency and clustering coe�cient, they capture two very di�erent quantities.

Higher-order clustering coe�cient deals with the number of observed cliques given all possible

cliques that could have existed, and as such, does not use vertex labels. Label consistency, on

the other hand, measures the entropy of labels within any arbitrary motif across all its observed

occurrences. (ii) Assortativity [New03]: Label consistency is closely related to assortativity

coe�cient for discrete vertex characteristics. However, while assortativity quanti�es mixing of

vertices only at the level of edges, our proposed metric can handle any general higher-order

motifs.

4.3.3 Label Consistency in Real-World Networks

How label-consistent are higher-order motifs in real-world networks? Here, we will answer

this question with four diverse real-world datasets from several domains. We will use these

datasets for our empirical analysis and experiments throughout the chapter.

4.3.3.1 Dataset

We investigate the patterns of higher-order label consistencies in the following networks. A

summary of dataset statistics is provided in Table 4.2.

• EuEmail [LKF07] is an e-mail communication network from a large European research

institution. Vertices indicate members of the institution and an edge between a pair of

members indicates that they exchanged at least one email. Vertex labels indicate mem-

bership to one of the 42 departments.

• PolBlogs [AG05] is a network of hyperlinks between blogs about US politics during

the period preceding the 2004 presidential election. Blogs are labeled as right-learning or

left-leaning.

• Cora [SB13] is a citation network among papers published at computer science confer-

ences. Vertex labels indicate one of 10 areas that the paper belongs to based on its venue

of publication, e.g., Arti�cial Intelligence, Databases, Networking.

• Pokec [TZ12] is the most popular online social network in Slovakia. Vertices indicate

users and edges indicate friendships. From the furnished user pro�le information, we

extract the locality or ‘kraj’ that users belong to and use them as labels.

65

2
(0.000)

1-1
(1.000)

Label configuration (entropy)

100

R
el

at
iv

e
pr

ev
al

en
ce EuEmail: K2

3
(0.000)

2-1
(0.918)

1-1-1
(1.585)

Label configuration (entropy)

100

101

R
el

at
iv

e
pr

ev
al

en
ce EuEmail: K3

4
(0.000)

3-1
(0.811)

2-2
(1.000)

2-1-1
(1.500)

1-1-1-1
(2.000)

Label configuration (entropy)

101

R
el

at
iv

e
pr

ev
al

en
ce EuEmail: K4

5
(0.000)

4-1
(0.722)

3-2
(0.971)

3-1-1
(1.371)

2-2-1
(1.522)

2-1-1-1
(1.922)

1-1-1-1-1
(2.322)

Label configuration (entropy)

101

103

R
el

at
iv

e
pr

ev
al

en
ce EuEmail: K5

2
(0.000)

1-1
(1.000)

Label configuration (entropy)

100

R
el

at
iv

e
pr

ev
al

en
ce PolBlogs: K2

3
(0.000)

2-1
(0.918)

1-1-1
(1.585)

Label configuration (entropy)

10−1

100

R
el

at
iv

e
pr

ev
al

en
ce PolBlogs: K3

4
(0.000)

3-1
(0.811)

2-2
(1.000)

2-1-1
(1.500)

1-1-1-1
(2.000)

Label configuration (entropy)

100

R
el

at
iv

e
pr

ev
al

en
ce PolBlogs: K4

5
(0.000)

4-1
(0.722)

3-2
(0.971)

3-1-1
(1.371)

2-2-1
(1.522)

2-1-1-1
(1.922)

1-1-1-1-1
(2.322)

Label configuration (entropy)

10−1

101

R
el

at
iv

e
pr

ev
al

en
ce PolBlogs: K5

2
(0.000)

1-1
(1.000)

Label configuration (entropy)

100

R
el

at
iv

e
pr

ev
al

en
ce Cora: K2

3
(0.000)

2-1
(0.918)

1-1-1
(1.585)

Label configuration (entropy)

100

R
el

at
iv

e
pr

ev
al

en
ce Cora: K3

4
(0.000)

3-1
(0.811)

2-2
(1.000)

2-1-1
(1.500)

1-1-1-1
(2.000)

Label configuration (entropy)

10−1

101

R
el

at
iv

e
pr

ev
al

en
ce Cora: K4

5
(0.000)

4-1
(0.722)

3-2
(0.971)

3-1-1
(1.371)

2-2-1
(1.522)

2-1-1-1
(1.922)

1-1-1-1-1
(2.322)

Label configuration (entropy)

10−1

101

R
el

at
iv

e
pr

ev
al

en
ce Cora: K5

2
(0.000)

1-1
(1.000)

Label configuration (entropy)

100

R
el

at
iv

e
pr

ev
al

en
ce Pokec: K2

3
(0.000)

2-1
(0.918)

1-1-1
(1.585)

Label configuration (entropy)

100

R
el

at
iv

e
pr

ev
al

en
ce Pokec: K3

4
(0.000)

3-1
(0.811)

2-2
(1.000)

2-1-1
(1.500)

1-1-1-1
(2.000)

Label configuration (entropy)

10−1

101

R
el

at
iv

e
pr

ev
al

en
ce Pokec: K4

5
(0.000)

4-1
(0.722)

3-2
(0.971)

3-1-1
(1.371)

2-2-1
(1.522)

2-1-1-1
(1.922)

1-1-1-1-1
(2.322)

Label configuration (entropy)

100

103

R
el

at
iv

e
pr

ev
al

en
ce Pokec: K5

Figure 4.2: Most motifs in the real-world networks have low label entropy: Relative

prevalence of a label con�guration is its observed fraction in the dataset over its prob-

ability of occurrence under the null model. Motifs with label con�gurations having

low label entropy are strikingly more prevalent (relative prevalence � 1) than ex-

pected across all datasets, whereas those with high label entropy are unusually rare

(relative prevalence� 1).

These datasets exhibit homophily [AB02, MSLC01]: people typically e-mail others within

the same department; blogs tend to link to others having the same political leaning; papers

mostly cite those from the same area; people belonging to the same locality are more likely to

meet and become friends. In all cases, we omit self-loops and take the edges as undirected and

unweighted.

4.3.3.2 k-Clique Label Consistencies

In this section, we examine the label consistency of k-cliques in real-world networks. We focus

on cliques for two reasons: (i) cliques are quintessential dense subgraphs which are important

in network analysis and are the essential building blocks of many networks [Jac10, JRBT12,

SGB17, HR05]; moreover, (ii) recent advancements enable fast and e�cient enumeration of k-

cliques [DBS18]. We focus on k ∈ {2, 3, 4, 5} for computational reasons.

Label con�guration. We introduce the term label con�guration to capture a function of

vertex-label assignments that is invariant under the permutation of vertices and labels. For

66

−1.0 −0.5 0.0 0.5 1.0
Vertex label consistency: λi(Kk)

0.0

0.5

1.0

Pr
ob

ab
ili

ty
de

ns
it

y EuEmail

k = 5
k = 4
k = 3
k = 2

−1.0 −0.5 0.0 0.5 1.0
Vertex label consistency: λi(Kk)

0

2

4

6

Pr
ob

ab
ili

ty
de

ns
it

y PolBlogs

k = 5
k = 4
k = 3
k = 2

−1.0 −0.5 0.0 0.5 1.0
Vertex label consistency: λi(Kk)

0

2

4

Pr
ob

ab
ili

ty
de

ns
it

y Cora

k = 5
k = 4
k = 3
k = 2

−1.0 −0.5 0.0 0.5 1.0
Vertex label consistency: λi(Kk)

0

2

4

6

Pr
ob

ab
ili

ty
de

ns
it

y Pokec

k = 5
k = 4
k = 3
k = 2

Figure 4.3: Real-world networks have high vertex label consistency: Vertices typically
have a high positive value of k-clique vertex label consistency, which peak near the

highest possible value of 1. Vertices which have no incident k-cliques are ignored.

−1.0 −0.5 0.0 0.5 1.0
Difference in vertex LC: λi(Kk)− λi(K2)

0

2

4

Pr
ob

ab
ili

ty
de

ns
it

y EuEmail

k = 5
k = 4
k = 3

−1.0 −0.5 0.0 0.5 1.0
Difference in vertex LC: λi(Kk)− λi(K2)

0

2

4

6

Pr
ob

ab
ili

ty
de

ns
it

y PolBlogs

k = 5
k = 4
k = 3

−1.0 −0.5 0.0 0.5 1.0
Difference in vertex LC: λi(Kk)− λi(K2)

0.0

2.5

5.0

7.5

Pr
ob

ab
ili

ty
de

ns
it

y Cora

k = 5
k = 4
k = 3

−1.0 −0.5 0.0 0.5 1.0
Difference in vertex LC: λi(Kk)− λi(K2)

0

2

4

Pr
ob

ab
ili

ty
de

ns
it

y Pokec

k = 5
k = 4
k = 3

Figure 4.4: Larger cliques have higher vertex label consistency: Vertex label consistency

of cliques grows with their size k. Thus, the distribution of di�erences of k-clique
and 2-clique vertex label consistencies per vertex lies slightly right of zero, and shifts

rightward as k increases. Vertices which have no incident k-cliques are ignored.

example, a 2-clique has two label con�gurations: ‘2’ where both incident vertices have the

same label (label entropy: 0) and ‘1-1’ where they have di�erent labels (label entropy: 1). A

3-clique has three label con�gurations: ‘3’ where all three vertices have the same label, ‘2-1’

where two of them share the same label and third vertex has a di�erent label and ‘1-1-1’ where

67

each vertex has a di�erent label. Similarly, a 4-clique has 5 label con�gurations (4, 3-1, 2-2, 2-1-

1, 1-1-1-1) and a 5-clique has 7 label con�gurations (5, 4-1, 3-2, 3-1-1, 2-2-1, 2-1-1-1, 1-1-1-1-1).

Note that not all label con�gurations may be possible (e.g., 1-1-1 is impossible for a triangle in

a 2-class problem) and still fewer may actually occur in practice. Thus, as a �rst step toward

analyzing label consistency, we study the distribution over k-clique label con�gurations. Then,

we turn to patterns in vertex label consistencies and label consistencies of k-cliques.

Our analysis reveals the following key observations.

Observation 1: Most motifs in real-world networks have low label entropy. Figure 4.2

plots the relative prevalence of k-clique label con�gurations, i.e., the ratio of observed fraction

of k-cliques having a given label con�guration to the probability of observing such a con�gu-

ration under the null model. For example, if the probability of label con�guration ‘1-1’ for K2

is 0.5 (observed) and 0.25 (from null model), its relative prevalence is 2. Label con�gurations

on x-axis are sorted by increasing label entropy (indicated in brackets). We observe that low

entropy label con�gurations are signi�cantly more prevalent in the real-world than expected,

while high entropy label con�gurations are unusually rare than expected. This con�rms that

real-world k-cliques are indeed more homogeneous in labels than can be explained by random

chance.

Observation 2: Real-world networks have high vertex label consistency. A plot of the

kernel density distributions of the k-clique vertex label consistencies of vertices is shown in

Figure 4.3. We note that scores for most vertices are positive; moreover the distributions are

skewed towards the highest possible value of one. Overall, this indicates that k-cliques are

highly label-consistent in the neighborhoods of most vertices across all datasets.

Observation 3: Larger cliques have higher vertex label consistency. Are vertices more

label-consistent in higher-order cliques than in edges? To answer this, we compute the di�er-

ence in vertex label consistency wrt. k-cliques and 2-cliques per vertex, for vertices having at

least one incident k-clique. The resulting distributions are shown in Figure 4.4. We observe that

all the distributions lies towards the right of zero; with positive values of di�erence being more

likely across all values of k and all datasets. Moreover, the distributions shift further towards

the right for increasing k (this is most apparent for EuEmail dataset) showing that the vertex

label consistency improves with increasing k.

Observation 4: Larger cliques are more label-consistent than edges. Finally, we exam-

ine the overall label consistency of k-cliques shown in Figure 7.1(b). The �gure reveals that

the label consistency increases monotonically with k. Speci�cally, triangles (k = 3) are 7-23%

more label-consistent than edges, 4-cliques are 10-31% more label-consistent than edges and 5-

cliques are 11-35% more label-consistent than edges. Thus, while triangles provide signi�cant

improvements in label consistency over edges, higher-order cliques for k ≥ 4 provide dimin-

ishing returns in label consistency. The absolute values of label consistency for all considered

cliques were found to lie in [0.45, 0.6] for EuEmail (lowest), [0.8, 0.95] for PolBlogs (highest),

[0.7, 0.8] for Cora and [0.55, 0.8] for Pokec.

68

Altogether, in this section, we showed that real-world networks have highly label-consistent

higher-order cliques. This forms the basis of our higher-order label spreading algorithm that

we describe in the next section.

4.4 Higher-Order Label Spreading

In the section, we derive the proposed higher-order label spreading algorithm and shows its

desirable theoretical properties.

4.4.1 Generalized Loss Function

LetK be the set of network structures or motifs (e.g., edges, triangles, diamonds) that we want to

leverage for graph semi-supervised learning. Recall that Qκ is the set of occurrences of a motif

κ ∈ K and each such occurrence q ∈ Qκ has a weight wq. Let yi ∈ {0, 1}C be the provided

label for a labeled vertex i such that yic = 1 if vertex i has a label c and is zero otherwise. We

propose to leverage (higher-order) network structures in K by minimizing:

L = (1− η)Ls + ηLg = (1− η)Ls + η
∑
κ∈K

ακLg,κ (4.5)

where Ls is the supervised loss and Lg,κ is the graph loss with respect to motif κ. A parameter

η ∈ (0, 1) trades o� supervised and graph losses, while ακ ∈ (0, 1) captures the importance

weight of κ in semi-supervised learning. Note

∑
κ∈K ακ = 1.

How do we pickLg,κ? Intuitively, the graph loss with respect to a given motif should ensure

that the inferred labels are smooth over all occurrences of the motif. Thus, for each occurrence

of the motif, we propose to penalize the di�erence in inferred labels of every pair of incident

vertices via the squared Euclidean loss as follows:

Lg,κ =
1

2

∑
q∈Qκ

wq
∑
i,j∈q

||xi − xj||2 (4.6)

Observe the following:

Proposition 4.1: Generalized LP Graph Loss

The graph loss of label propagation [ZGL03] is a special case of the graph loss from Equa-

tion (4.5) when we use only 2-clique motifs, i.e., K = {K2}.

Proof. Follows from observing that the set of 2-cliques QK2 is simply the set of edges and for

each q = {i, j} ∈ QK2 , its subgraph weight is wq = wij where W = [wij] is the graph

adjacency. �

For supervised loss, we employ squared Euclidean penalty: Ls = 1
2

∑
i ||xi − yi||2.

69

Next, we show how the graph loss in Equation (4.5) can be viewed as the graph loss for

LP on a modi�ed graph where edges have been re-weighted based on motif counts. De�ne

κ-participation matrix as W(κ) = [w
(κ)
ij] where each entry w

(κ)
ij denotes the total weight of

κ-motifs that vertices i and j participate in. If 1 [·] denotes the indicator function, we have:

w
(κ)
ij =

∑
q∈Qκ

wq · 1 [i ∈ q ∧ j ∈ q] (4.7)

Observe that each pairwise loss term ||xi − xj||2 in Equation (4.5) appears with a total weight

w′ij given by w′ij =
∑

κ∈K ακw
(κ)
ij using which we may simplify the graph loss as:

Lg =
η

2

∑
i,j

w′ij||xi − xj||2 (4.8)

Thus, Equation (4.8) establishes that the graph loss from Equation (4.5) is equivalent to that of

LP on a modi�ed graph with adjacency matrix W′ =
∑

κ∈K ακW
(κ)

where each edge of the

original graph has been re-weighted according to the total weight of κ-motifs it participates

in, scaled by the corresponding motif importance ακ, and �nally summed over all such motifs

κ ∈ K of interest. We will use this connection to derive a closed-form solution to HOLS.

Analysis of the running example: Let us return to our running example of the octopus

graph, from Figure 4.1(a), to understand why the generalized loss function works well in prac-

tice. Let the inferred label for Alice be x∗. By symmetry, all red vertices will have the same

inferred label xr and all blue vertices have the same inferred label xb. Let us examine classi�-

cation results using (i) edges and (ii) edges and triangles with αK2 = αK3 = 0.5.

In the �rst case, the terms in the loss function for x∗ are 3η||x∗ − xr||2 + 4η||x∗ − xb||2.

The optimal solution is x∗ = (3xr + 4xb)/7, which is closer to the inferred label for the blue

vertices. We can show that for any value of η, the inferred label for blue labeled vertices is blue.

Thus, Alice is incorrectly assigned a blue label.

In the second case, the terms in the loss function for x∗ are 3×0.5η||x∗−xr||+4×0.5η||x∗−
xb||2 + 3× 0.5× 2η||x∗ − xr||2. These terms correspond to regularization for the 3 red edges,

4 blue edges and 3 red triangles, respectively (the factor of 2 in the last term appears because

every triangle has two loss terms containing x∗). In total, we get 4.5η||x∗−xr||2+2η||x∗−xb||2.

The resulting optimal solution is x∗ = (9xr + 4xb)/13. Thus, the unlabeled vertex is always

assigned the correct red label for all values of η.

Here we showed that the use of triangles helps to explicitly incorporate complex higher-

order structures in label spreading and vertex labeling.

4.4.2 Closed-Form and Iterative Solutions

Let Y = [y1 . . .yN]T and X = [x1 . . .xN]T be the N × C matrices of prior and inferred labels

where N is the total number of vertices. Let D′ = [d′ij] be the diagonal degree matrix for

the modi�ed graph adjacency W′ = [w′ij]. Thus, d′ii =
∑

j w
′
ij and d′ij = 0 if i 6= j. Let

70

Algorithm 1 Higher-Order Label Spreading (HOLS)

Input: graph G = (V , E), number of classes C , set of labeled vertices Vl ⊂ V and their

labels ` : Vl → {1, . . . , C} (at least one labeled vertex per class)

Parameters: motif set K, motif weights ακ ∈ (0, 1) such that

∑
κ∈K ακ = 1, weight

η ∈ (0, 1) for supervised loss

Output: �nal label assignments `∗(i) for all vertices i ∈ V
1: procedure HigherOrderLabelSpreading(G,Vl, `,K, α, η)

. Construct higher-order normalized graph Laplacian for regularization

2: for κ ∈ K do

3: Construct κ-participation matrix W(κ) = [w
(κ)
ij]

. w
(κ)
ij : total weight of κ-motifs where i and j appear together

4: W′ ←
∑

κ∈K ακW
(κ)

5: D′ ← diag(d′ii) where d′ii =
∑

j w
′
ij

6: L̃′ ← D′−1/2W′D′−1/2

. Construct label matricesY = [yic] (prior) andX = [xic] (inferred)

7: Y ← 0|V|×C
8: yi`(i) ← 1 ∀ i ∈ Vl
9: X← Y
. Label inference using HOLS

10: while not converged do

11: X← η(I− L̃′)X + (1− η)Y . Equation (4.12)

12: `∗(i)← argmaxc xic ∀ i ∈ V
13: return `∗

L′ = D′−W′
be the Laplacian matrix for the modi�ed graph. Equation (4.8) can be re-written

using matrix representation as:

L =
1− η

2
||X−Y||2F +

η

2
XTL′X (4.9)

We also consider a version of the loss function which uses the normalized Laplacian L̃′ =
D′−1/2L′D′−1/2

for regularization:

L̃ =
1− η

2
||X−Y||2F +

η

2
XT L̃′X (4.10)

Using L̃′ in place of L′ performs as well if not better in practice; and moreover provides certain

theoretical guarantees (see Proposition 4.3, and also [VLBB08]). Therefore, we will use Equa-

tion (4.10) as the loss function for our higher-order label spreading and refer to it as LHOLS. The

closed-form solution for HOLS can now be obtained by di�erentiating LHOLS with respect to X
and setting it to zero. Thus, we derive:

X = (1− η)
(
I− η(I− L̃′)

)−1

Y (4.11)

71

Thus, using Equation (4.11), we are able to compute the optimal solution to HOLS, as long as

the inverse of I− η(I− L̃′) exists.

Due to the use of normalized Laplacian regularization, the following holds:

Proposition 4.2: Generalized Label Spreading

The proposedHOLS algorithm reduces to traditional label spreading [ZBL
+

03] for the base

case of using only edge motifs, i.e., K = {K2}.

Proof. When K = {K2}, the modi�ed adjacency W′
is the same as the original adjacency

W. �

This generalization grants HOLS its name.

In practice, matrix inversion is computationally intensive and tends to be numerically unsta-

ble. Hence, we propose to use an iterative approach to solve Equation (4.11) by �rst initializing

X to an arbitrary value and then repeatedly applying the following update:

X← η(I− L̃′)X + (1− η)Y (4.12)

Proposition 4.3 describes the theoretical properties of this approach.

Proposition 4.3: Convergence Guarantee for HOLS

The iterative update in Equation (4.12) always converges to the unique �xed point given

in Equation (4.11) for any choice of initial X.

Proof. From the theory of sparse linear iterative systems [Saa03], we know that Equation (4.12)

converges if and only if ρ(η(I − L̃′)) < 1 where ρ(·) is the spectral norm or the maximum

absolute eigenvalue of the enclosed matrix. As the eigenvalues of normalized Laplacian L̃′ are

bounded in [0, 2] [CG97], the eigenvalues of η(I− L̃′) lie within [−η, η]. Now, since η ∈ (0, 1),

we have ρ(η(I − L̃′)) ≤ η < 1. Thus, Equation (4.12) always converges. At convergence, the

following holds: X = η(I− L̃′)X+(1−η)Y. This leads to the �xed point from Equation (4.11),

which is independent of initialization, as desired. �

The overall algorithm of HOLS is summarized in Algorithm 1. For each motif κ ∈ K,

construct its κ-participation matrix by an exhaustive enumeration of all its occurrences. Note

that the enumerated occurrences are processed one by one on the �y to update the participation

matrix and discarded (no need for storage). Moreover, the enumeration for di�erent motifs

can be done in parallel. The participation matrices are combined into a single modi�ed graph

adjacency W′
; applying the iterative updates from Equation (4.12) �nally results in labels for

the unlabeled vertices. In practice, the iterative updates are applied until entries in X do not

change up to a precision ε or until a maximum number of iterations T is reached.

72

Remark: It can be shown that higher-order label spreading on a graph G is equivalent to label

spreading on a hypergraph H (recall that a hypergraph is a generalization of a graph in which

a hyperedge can join any number of vertices.) constructed as follows: (i) Vertices in the hyper-

graph H are vertices in G. (ii) For each instance of a motif of interest (e.g. edge, triangle) in G,

add to H an hyperedge connecting all participating vertices with weight equal to the impor-

tance of this motif. This observation connects the proposedHOLS algorithm to existing spectral

semi-supervised classi�cation techniques on hypergraphs [ZHS06]. However, instead of mate-

rializing such hyperedges–which requires prohibitively expensive space complexity even when

reasonably sized motifs are used–HOLS provides a way to conduct higher-order label spreading

in a space-e�cient manner (see Proposition 4.4). In addition, this way of viewing hyperedges

as representing motifs also paves the way to use deep hypergraph semi-supervised learning

approaches [YNY
+

19, FYZ
+

19] to exploit higher-order network structures.

4.4.3 Time and Space Complexity

When only cliques are used as motifs K for semi-supervised learning, the following space and

time complexity bounds hold:

Proposition 4.4: Space Complexity of HOLS

The space complexity of HOLS for a graph with N vertices, M edges and C classes is

O (M +NC) independent of motif size and number of motifs used, provided all motifs

are cliques.

The proof is sketched as follows. O (NC) is needed to store X matrix with the inferred labels.

Note that two vertices participate in a clique only if they share an edge. Thus, the modi�ed

adjacency W′
is at least as sparse as W, having at most O (M) non-zero entries. Moreover,

W′
can be constructed by enumerating occurrences of all motifs inK and updating the relevant

entries of W′
on the �y.

Proposition 4.5: Time Complexity of HOLS

The time complexity of HOLS over a graph with M edges, C classes and a degeneracy

(core number) of kmax using K = {K2, . . . , Kn} is given by O
(
M
∑n

k=2 k
(
kmax

2

)k−2
)

for the construction of Kk-participation matrices plusO (MC) per iterative update using

Equation (4.12).

The proof follows from Theorem 5.7 of [DBS18].

Practical Consideration: Despite the exponential complexity in k, we are able to enumer-

ate cliques quickly using the sequential kClist algorithm [DBS18]. For example, our largest

Pokec dataset has 21M edges, 32M triangles, 43M 4-cliques and 53M 5-cliques; and the enu-

meration of each took a maximum of 20 seconds on a stock laptop. Thus, HOLS remains fast

73

Method EuEmail PolBlogs Cora Pokec

Label Propagation (LP) [ZGL03] 0.2905 0.5814 0.2765 0.1994

Label Spreading (LS) [ZBL
+

03] 0.5228 0.9361 0.4921 0.5514

node2vec+TSVM [GL16, Joa99] 0.4563 0.9481 0.4233 T.L.E.

Graph Convolution Networks (GCN) [KW17] 0.5251 0.9470 0.4673 0.5290

HOLS (proposed) 0.5473
∗

0.9476 0.4953
∗

0.5593
∗

Table 4.3: Accuracy of all methods averaged over �ve runs. In each column, the best

value is bold and underlined, and the second best is underlined. Asterisk (
∗
) denotes

statistically signi�cant di�erence (p < 0.05) compared to the closest second baseline.

The results show that HOLS outperforms the state-of-the-art methods in terms of ac-

curacy with a statistically signi�cant margin in three out of four graphs.

Method EuEmail PolBlogs Cora Pokec

Label Propagation (LP) [ZGL03] 0.11 0.070 2.1 1320

Label Spreading (LS) [ZBL
+

03] 0.040
∗

0.036
∗

0.21
∗

93
∗

node2vec+TSVM [GL16, Joa99] 46 29 3060 >1 day

Graph Convolution Networks (GCN) [KW17] 1.8 1.3 6.4 2880

HOLS (proposed) 0.089 0.083 0.41 117

Table 4.4: Running time of all methods averaged over �ve runs. In each column, the

best value is bold and underlined, and the second best is underlined. Asterisk (
∗
) de-

notes statistically signi�cant di�erence (p < 0.05) compared to the closest second base-

line. The results show that HOLS has comparable running time to the standard label

spreading algorithm andHOLS is at least 15 times faster than deep learning baselines.

and scalable when reasonably small cliques are used. Moreover, as we show in experiments,

typically using triangles (3-cliques) in addition to edges su�ces to achieve the best classi�cation

performance across a wide range of datasets.

4.5 Experiments

We empirically evaluate HOLS on the four diverse real-world networks: EuEmail (an e-mail

network), PolBlogs (a blog hyperlink network), Cora (an article citation network), and Pokec

(a friendship social network). Please refer to Section 4.3.3.1 for the network details.

74

4.5.1 Experimental Setup

We have implemented higher-order label spreading (HOLS) in MATLAB and have run the ex-

periments on MacOS with 2.7 GHz Intel Core i5 processor and 16 GB main memory.

Baselines: We compare HOLS to the following baselines: (1) Label Propagation (LP) [ZGL03]

which uses Laplacian regularization. (2) Label Spreading (LS) [ZBL
+

03] which uses normalized

Laplacian regularization. (3) node2vec+TSVM which generates unsupervised vertex embed-

dings using node2vec [GL16] and learns decision boundaries in the embedding space using a

transductive SVMs [Joa99]. (4) Graph Convolutional Network (GCN) [KW17] which is an end-

to-end semi-supervised learner using neural networks. We implement LP and LS in MATLAB,

and use open-sourced code for the rest.

Parameters: By default, we use a weight of η = 0.5 for supervised loss and K = {K2, K3}
motifs (edges and triangles) for HOLS. The importance weight for triangles α3 is tuned in

{0.1, 0.2, . . . , 0.9} for each dataset and results are reported on the best performing value. We

use the η = 0.5 for LS as well. LP, LS and HOLS are run until labels converge to a precision of

ε or until T iterations are completed, whichever occurs sooner. We set ε = 10−6
and T = 500.

We use the default hyperparameters for GCN, node2vec and TSVM. We supply 100, 20, 100 and

1000 labels for EuEmail, PolBlogs, Cora and Pokec datasets, where the vertices to label are

chosen by strati�ed sampling based on class. These correspond to label fractions of 5%, 1.6%,

0.4% and 0.06% and on an average, 1, 10, 10 and 100 labeled vertices per class respectively.

EvaluationMetrics: Evaluating only over unlabeled vertices of degree at least one, we quan-

tify success using: (i) accuracy: fraction of vertices correctly classi�ed, (ii) precision: fraction

of vertices classi�ed as class c which actually belong to class c, (iii) recall: fraction of vertices

which belong to a class c that are correctly classi�ed, (iv) F1-score: harmonic mean of per-class

precision and recall. For all these metrics, a higher value is more desirable.

4.5.2 Q1. Accuracy Comparison of HOLS

The accuracy of HOLS and all the baselines is summarized in Table 4.3. All values are averaged

over �ve runs, each run di�ering in the set of vertices for which labels are supplied. The values

for node2vec+TSVM on Pokec dataset are missing as the method did not terminate within 24

hours (‘T.L.E.’).

First, we observe in Table 4.3 that HOLS consistently leads to (statistically signi�cant) im-

provements over LS, showing that using higher-order structures for label propagation helps.

We show that HOLS outperforms all baselines in three out of four datasets. The improve-

ments over the best baseline are statistically signi�cant (p = 0.05) according to a two-sided

micro-sign test [YL99] in at least three out of �ve runs. Interestingly, for the smaller datasets

(EuEmail and PolBlogs), while GCN outperforms LS, GCN loses to HOLS when triangles are

used. node2vec+TSVM performs slightly better thanHOLS on PolBlogs, however, the increase

over HOLS is not statistically signi�cant. For the larger datasets with extremely low labeling

fraction (< 0.5% labeled vertices), HOLS performs the best and LS follows closely.

75

2 3 4 5
Maximum clique size: k

0

1

2

3

4

A
cc

ur
ac

y
in

cr
ea

se
%

EuEmail
PolBlogs

Cora
Pokec

0.0 0.2 0.4 0.6 0.8
Weight for triangles: αK3

0

2

4

A
cc

ur
ac

y
in

cr
ea

se
%

EuEmail
PolBlogs

Cora
Pokec

(a) (b)

Figure 4.5: (a) Higher-order structures in HOLS improve the performance of vertex

labeling. The use of 3-cliques gives the most boost. Larger cliques larger give mi-

nor improvements. (b) 3-cliques improve the performance for a large range of motif

weights α across all datsets.

4.5.3 Q2. Variation of Accuracy with Higher-Order Structures

In this experiment, we study the e�ect of adding higher-order structures to HOLS. The relevant

�gures are displayed in Figure 4.5; all reported accuracies are averaged across �ve runs.

Fixing the motif set as K = {K2, K3, . . . , Kk}, we varying k = 2, 3, 4, 5 to study the

marginal bene�t of including higher-order cliques in graph SSL. The motif weights are tuned

in αj ∈ {0, 0.1, . . . ,
0.9}, ensuring that edges are given a weight α2 ≥ 0.1 for a connected graph, and further, all

motif weights sum to 1.

The best performing motif weights were used to generate Figure 4.5(a), which plots the rel-

ative improvement in accuracy over LS that uses edges only. First, we observe that label propa-

gation via higher-order structures strictly outperforms label propagation via edges. Compared

to edges, the gain is the most when using 3-cliques. Second, we note that the use of further

higher-order cliques has little marginal performance gain. This can be explained by the obser-

vation that the value of label consistency tapers o� for higher-order cliques (see Figure 7.1(b)),

suggesting that they add little value to graph SSL.

Next, we investigate the e�ect of the importance given to triangles in comparison to edges

in HOLS. Fixing the motif set to K = {K2, K3}, we vary the triangle weight α3 of HOLS in

{0, 0.1, . . . , 0.9}. Figure 4.5(b) shows that the accuracy gain of HOLS over LS increases with an

increase in triangle weight for most graphs. The only exception is Cora, where the accuracy

gain grows until α3 = 0.4 before decreasing and eventually turning negative. Overall, triangles

consistently help over a large range of motif weights.

76

4.5.4 Q3. Runtime Performance of HOLS

The running time of HOLS and all the baselines is summarized in Table 4.4. Notably, we see

that HOLS runs in less than 2 minutes for graphs with over 21 million edges (the Pokec graph),

showing the real-world practical scalability of thep proposed method.

We observe that LS is the fastest of all methods and HOLS comes a close second for three

out of four datasets. The small di�erence in running time predominantly stems from the con-

struction of triangle participation matrix. Notably, HOLS is over 15× faster than the recent

GCN and node2vec+TSVM baselines, for comparable and often better values of accuracy.

4.5.5 Q4. Variation of Accuracy with Label Consistency

Figure 4.6 and Figure 4.1(b) compare the dependency of classi�cation performance (accuracy

and F1 score) on the label consistency of triangles and edges. We observe these at the level of

classes within a dataset and across datasets.

VariationAcross Classes: Figure 4.6 plots the F1 score of each class usingHOLS versus their

average label consistency (LC) with respect to edges and triangles, i.e., (λ̄c(K2) + λ̄c(K3))/2
where the class label consistency λ̄c(κ) of a class c with respect to a motif κ is the average

vertex label consistency of all vertices which belong to the class. This plot shows a strong

positive correlation between the two—the greater the label consistency for a class, the easier it

is to classify the vertices belonging to that class. The strength of linear relationship between

F1 and LC has high correlation coe�cient scores between 0.83 and 1.0 across all datasets.

Variation Across Datasets: Figure 4.5(a) plots all four graphs based on the prevalence of tri-

angles in the graph and the relative improvement in label consistency of triangles compared to

edges. The prevalence of triangles is measured by the average clustering coe�cient [WS98]—

higher implies more triangles. The bubble sizes indicate the relative improvement in accuracy

of HOLS (using triangles and edges) over LS (using edges only). We make an interesting ob-

servation that the large improvement from using triangles occurs when (i) triangles are more

label consistent than edges, and (ii) there are many triangles in the graph. Thus, the EuEmail

graph has the highest clustering coe�cient among the datasets and the high LC results in most

bene�t from using triangles. The PolBlogs and Cora graphs have lower values of clustering

coe�cient and LC scores; thus the improvements are lower. In Pokec, the lower clustering co-

e�cient is compensated by the larger value label consistency, resulting in similar performance

improvement to Cora.

4.5.6 Q5. Variation of Accuracy with Vertex Label Consistency

In this experiment, we investigate the properties of the vertices that are helped (and hurt) by

incorporating higher-order structures. Here, a vertex is ‘helped’ if HOLS with higher-order

structure correctly labels the vertex, while LS with only edges mislabels the vertex. Conversely,

a vertex is ‘hurt’ if HOLS mislabels it while LS labels it correctly. In this analysis, we do not

consider the vertices that are correctly or incorrectly classi�ed by both methods.

77

0.00 0.25 0.50 0.75

Label consistency

0.0

0.2

0.4

0.6

0.8

1.0

F1
sc

or
e

0
1

2

3

4

5

6

7

8
9 10

11

12

13

14

15

161719
20

21

2223

24

25

26

27

28

2931

32

34

35

36

37

38

39

40

EuEmail

0.800 0.825 0.850 0.875 0.900

Label consistency

0.94

0.95

0.96

F1
sc

or
e right

left

PolBlogs

0.6 0.8

Label consistency

0.3

0.4

0.5

0.6

0.7

F1
sc

or
e

AI

DSA

DB

EC
HWA

HCI

IR

NW

OS
PG

Cora

0.2 0.4 0.6 0.8

Label consistency

0.2

0.4

0.6

0.8

F1
sc

or
e bans

brat

cesk

kosinitr
pres

trna

tren

zahr

zili

Pokec

(a) (b) (c) (d)

Figure 4.6: Across all datasets, the F1 scores of classes for vertex classi�cation are

strongly positively correlated to the class label consistencies (correlation between 0.82

to 1.00). Bubble size indicates the number of vertices in the class.

101 2× 101

% LC increase from edge to triangle

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
vg

.c
lu

st
er

in
g

co
ef

fic
ie

nt EuEmail
4.70%

PolBlogs
1.23%

Cora
0.64%

Pokec
1.44%

Figure 4.7: HOLS leads to larger accuracy gains over LS when the average clustering

coe�cient is high due to the presence of many triangles and triangles are far more

label-consistent than edges.

We �nd a striking relation between the vertex label consistency scores and its helped/hurt

probability. For each vertex, we calculate its relative vertex label consistency ∆λi(K3), which

is the di�erence between the triangle minus edge vertex label consistency for the vertex. The

vertices are categorized into four bins using ∆λi(K3): (a) ‘N/A’, if the vertex is not a part of

any triangle, (b) < 0, where triangles have lower LC, (c) = 0 where the vertex has equal LC

for both triangles and edges, and �nally, (d) > 0 where triangles have a higher LC compared to

edge LC. Figure 4.8 presents aggregate statistics for all the graphs.

First, we note that the total number of vertices helped by HOLS is higher than the num-

ber of vertices hurt. Next, HOLS largely corrects the mistakes made by LS for vertices with

∆λi(K3) > 0. The overall bene�t of HOLS stems from the fact that most vertices have

∆λi(K3) > 0. In some datasets, the vertices ∆λi(K3) < 0 are hurt in HOLS as they have

lower vertex label consistency in triangles, which lead to misclassi�cation. Notably, many ver-

tices that do not participate in a triangle, i.e., ∆λi(K3) = N/A, are helped by HOLS because of

correct classi�cation of its neighbors.

78

N/A < 0 = 0 > 0
Difference in vertex LC: λi(K3)− λi(K2)

0

20

40

N
um

be
r

of
ve

rt
ic

es

Helped Hurt

N/A < 0 = 0 > 0
Difference in vertex LC: λi(K3)− λi(K2)

0

2

4

6

N
um

be
r

of
ve

rt
ic

es

Helped Hurt

(a) EuEmail (b) PolBlogs

53 helped, 21 hurt 14 helped, 5 hurt

N/A < 0 = 0 > 0
Difference in vertex LC: λi(K3)− λi(K2)

0

100

200

N
um

be
r

of
ve

rt
ic

es

Helped Hurt

N/A < 0 = 0 > 0
Difference in vertex LC: λi(K3)− λi(K2)

0

20000

40000

N
um

be
r

of
ve

rt
ic

es

Helped Hurt

(c) Cora (d) Pokec

770 helped, 685 hurt 79K helped, 68K hurt

Figure 4.8: Vertices having a positive di�erence of local LCwrt. triangles and edges are

generally helped by HOLS, while those having a negative di�erence tend to be hurt.

Vertices having zero di�erence or no incident triangles show mixed trends.

702
?

308

10

888

1096

844

549 1070

1153?

69308

10

81

844

518

(a) v702 (b) v1153

Figure 4.9: Case studies from PolBlogs dataset showing extended ego-networks of

vertices (a) v702 and (b) v1153 which are both incorrectly classi�ed by LS but correctly

classi�ed when triangles are taken into account using HOLS.

79

Case Studies: Here we look at real examples from the PolBlogs dataset to dig deep into

whenHOLS improves over LS. Figure 4.9 shows our analysis. Question mark denotes the central

vertices v702 and v1153 of interest with ground truth labels ‘blue’ and ‘red’ respectively. The

direct neighbors of the both v702 and v1153 are unlabeled and a few second hop neighbors are

labeled with one of two labels: ‘blue’ or ‘red’.

In both cases, LS correctly labels all vertices except the central vertex. This is because LS uti-

lizes only edge-level information – v702 has more second-hop red neighbors than blue whereas

v1153 has more second-hop blue neighbors than red. On the other hand, HOLS leverages the

fact that v702 participates in one triangle with (inferred) blue vertices and that v1153 partici-

pates in several triangles with (inferred) red vertices and thus produces the correct labels.

In summary, these case studies provide concrete examples from real-world data where label

spreading using edges alone leads to over-prediction of the locally popular class (e.g. blue for

v1153 in Figure 4.9 (b)). In such cases, the use of higher-order network information has the

bene�t of correcting the over-prediction problem and leading to the correct labels even when

they are not locally popular.

4.6 Conclusion

In this chapter, we created a framework to incorporate the signal present in higher-order struc-

tures in a graph. This work paves the way towards systematic study of the e�ect of higher-order

structures in graph semi-supervised learning. Our proposed higher-order label consistency

metric revealed that real-world graphs exhibit homophily in higher-order structures. We cre-

ated a higher-order label spreading algorithm and experimentally showed that incorporating

cliques aids in vertex labeling tasks across four large real-world datasets.

This work opens the avenue for several exciting future research directions. We outline four

directions below.

First, in Figure 4.8, we found that while most vertices are correctly labeled by using higher-

order structures, some vertices are mislabeled compared to when higher-ordered structures are

not used. A promising research direction is to learn a vertex-level decision function that selects

the label generated by edges or the higher-order structures. This will help in creating methods

that can leverage the best of all worlds in vertex labeling tasks.

Second, having seen the advantage of higher-order structure in real-world graphs, it be-

comes fundamental to understand the bene�ts in the theoretical networks. For instance, what

is the expected lift in using higher-order structures in Erdos-Renyi graphs? In stochastic block

models, how does the behavior vary with intra-group and inter-group edge probabilities?

Third, having seen the bene�ts in undirected, unweighted graphs for vertex labeling, it is

important to explore the bene�ts of higher-order structures in other types of graphs, such as

heterogeneous and dynamic graphs, and in other application tasks, such as graph classi�cation.

This will be crucial to create the next-generation of robust and e�cient algorithms.

Finally, it is promising to bring together recent local counting based techniques for e�cient

clique counts (e.g. [JS20]) with label spreading to improve the computational complexity of

higher-order label spreading approaches.

80

Part III

Dynamic Graphs

81

Overview: Dynamic Graphs

Given time-evolving graph (explicit or implicit), how can we detect

anomalies or events in near real-time immediately after they have occurred,

or perhaps even early warn when their occurrence is anticipated?

In this part, we consider mining anomalies from data in which the connectivity structure

evolves over time. In many settings, especially those relating to security and health care, the

value of a newfound or anticipated anomaly lies in the moment, and not later. Thus, detection

in near real-time, and early warning becomes critical. Our algorithms can detect anomalous

graph footprints such as sudden appearance or disappearance of dense subgraphs (SpotLight,

Chapter 5) and bridge edges (SedanSpot, Chapter 6) in near real-time, by only storing a small

synopsis of the graph seen so far and requiring no supervision. We also develop SmokeAlarm

(Chapter 7) to infer state-transition graph from time series data in an online manner and use

that to early warn against user-labeled anomalies such as adverse medical conditions.

83

84

Chapter 5

SpotLight: Anomalous

Dense-Subgraph Detection

Chapter based on work that appeared at KDD 2018 [EFGM18] [PDF].

How do we spot interesting events from e-mail or transportation logs? How can we detect

port scan or denial of service attacks from IP-IP communication data? In general, given a

sequence of weighted, directed or bipartite graphs, each summarizing a snapshot of activity

in a time window, how can we spot anomalous graphs containing the sudden appearance

or disappearance of large dense subgraphs (e.g., near bicliques) in near real-time using

sublinear memory? To this end, we propose a randomized sketching-based approach called

SpotLight, which guarantees that an anomalous graph is mapped ‘far’ away from ‘normal’

instances in the sketch space with high probability for appropriate choice of parameters.

Extensive experiments on real-world datasets show that SpotLight (a) improves accuracy

by at least 8.4% compared to prior approaches, (b) is fast and can process millions of edges

within a few minutes, (c) scales linearly with the number of edges and sketching dimensions

and (d) leads to interesting discoveries in practice.

5.1 Introduction

Time-evolving (or dynamic) weighted directed/bipartite graphs, where both nodes and edges

are continuously added over time, are artifacts generated in many real-world contexts. Exam-

ples include transportation logs (w cabs travel from location s to location d), network commu-

nication logs (w packets sent by IP address s to IP address d), instant-messaging, phone call,

e-mail logs (w messages/calls/emails from user s to user d), collaborative editing logs (w edits

made by user s to page d) and so on.

We consider the problem of near real-time anomaly detection in such settings. Due to the

�uid nature of what is considered ‘normal’, prior works typically focus on detecting speci�c

anomalous changes to the graph, e.g., bridge edges [SD14, RHSS16], hotspot nodes [YAMW13],

changes to community structure [STF06, SFPY07], graph metrics [HEF
+

10, FNG14], etc. In this

85

http://www.cs.cmu.edu/~deswaran/papers/kdd18-spotlight.pdf

Figure 5.1: Sudden appearance of a dense subgraph at t=3.

work, we focus on detecting anomalies involving the sudden appearance or disappearance of a

large dense directed subgraphs (near bicliques), which is useful in numerous applications: detect-

ing attacks (port scan, denial of service) in network communication logs, interesting/fraudulent

behavior creating spikes of activity in user-user communication logs (scammers who operate

fast and in bulk), important events (holidays, large delays) creating abnormal tra�c in/out �ow

to certain locations, etc. We are able to discover several of the above phenomena in real-world

data (e.g., Figure 5.12).

We highlight two important aspects of the above de�nition. The (dis)appearance of a large

dense subgraph is anomalous only if it is sudden, i.e., it has not been observed before or is not

part of a slow evolution (e.g., steadily growing communities). Similarly, the sudden (dis)appearance

of a large number of edges is anomalous only if the edges form a dense subgraph (the so-called

lockstep behavior indicating fraud [BXG
+

13]). Figure 5.1 illustrates this. In the evolution of a

bipartite graph, e.g., user edits page, an anomalous dense directed subgraph appears at t=3,

indicating a possible edit-war between users s3 and s4 w.r.t. pages d2, d3, d4, d5. In contrast, the

appearance of subgraph {s1, s2} → {d1, d2, d3} at t=4 is not anomalous, since it has already

been (partially) observed at t=1, 2.

The temporal aspect, i.e., near real-time detection, is crucial for our problem. The value of a

newfound surge of ridership requests or network attack lies in the moment, not one week later.

Moreover, given that nodes and edges are added over time, we seek solutions that can operate

in sublinear memory, without storing a counter for each edge/node. The problem we set out to

solve is:

Informal Problem 5.1

Given a stream of weighted, directed/ bipartite graphs, {G1,G2, . . .}, detect in near real-

time whether Gt contains a sudden (dis)appearance of a large dense directed subgraph

using sublinear memory.

The technical challenge in detecting the sudden (dis)appearance of a large dense directed

subgraph is computational. New edges and nodes are continuously arriving and we have limited

time and space to process the changes. The approach that we take is to design a short summary

86

or sketch of the graph that both reveals newly found anomalies and can be quickly updated and

maintained on a high-speed moving data stream.

Concretely, our contributions are: (a) Algorithm (Section 5.4): We propose SpotLight,

a simple randomized sketching-based approach to solve Problem 5.1. (b) Guarantees (Sec-

tion 5.5): We prove that SpotLight is focus-aware in expectation, i.e., �ags focused addition

or deletion of edges as more anomalous than dispersed changes of the same magnitude (The-

orem 5.1) and maps anomalous graphs ’far’ away from ‘normal’ instances in the sketch space

with high probability for appropriate choice of parameters (Theorem 5.2). (c) E�ectiveness

(Section 5.6): Extensive experiments on real-world data show that SpotLight outperforms

prior approaches in terms of precision and recall, is fast and scalable and leads to interesting

discoveries.

5.2 Related Work

Anomaly Detection in Static Graphs: is well-studied (for survey, see [ATK15]). Unsuper-

vised methods rely on node-level features [AMF10], spectral decomposition [PSS
+

10], �nding

dense subgraphs signifying fraud [BXG
+

13, HSB
+

16b], etc. In the presence of limited supervi-

sion, belief propagation is known to work well [EGF
+

17b].

Anomaly Detection in Time-Evolving Graphs: can be reviewed under the following cat-

egories (for survey, see [RSK
+

15]).

(i) Approaches comparing consecutive snapshots [KSV
+
16, SD14]: The traditional approach is

to compare adjacent graphs (Gt,Gt+1) via a similarity function based on, e.g., belief propagation

[KSV
+

16], random walks [SD14], etc., They do not consider evolutionary/periodic trends.

(ii) Dense subgraph detection based approaches [JBC
+
15, SHF16]: These techniques model

dynamic graphs as node×node×time tensors and aim to approximately identify the top-k dens-

est subblocks, e.g., persistent dense subgraphs. In contrast, we aim to detect only the sudden

appearance of dense subgraphs in near real-time.

(iii) Graph decomposition/partitioning based approaches [STF06, SFPY07]: These methods

store a summary of the graph structure based on tensor decomposition [STF06] or minimum

description language [SFPY07] and identify change points as anomalies. Their primary focus

is on the computationally hard problem of graph modeling.

(iv) Anomalous edge detection approaches [AZY11, RHSS16, MMA16]: The �rst two methods

score the likelihood of an edge based on the community structure [AZY11], prior occurrence

preferential attachment and homophily information [RHSS16]. By scoring edges independent

of each other, these methods miss complex structural (e.g., dense subgraph) anomalies. They

also cannot detect edges which are expected but do not occur. [MMA16] is closely related, but

is applicable when only multiple heterogeneous graphs are evolving simultaneously.

(v) Others: [HEF
+

10] o�ers a suite graph metrics to perform anomaly detection at multiple

temporal and spatial granularities. [IK04] detects anomalous nodes using their activity vectors

from principle component analysis (PCA). [YAMW13] also uses PCA, but to detect anomalous

nodes (hotspots). [FNG14] proposes density-consistent statistics to compare graphs having

signi�cantly di�erent edge counts.

87

Property

[
K
S
V

+
1
6
]
,
[
S
D
1
4
]

[
S
T
F
0
6
]
,
[
S
F
P
Y
0
7
]

[
Y
A
M
W

1
3
]

[
I
K
0
4
]

[
H
E
F

+
1
0
]

[
R
H
S
S
1
6
]

T
h
i
s
w
o
r
k

Directed/bipartite graphs 3 ? ? 3

Weighted/multi edges 3 3 3 3 3 3 3

Sublinear memory 3 3

Theoretical guarantee 3

Table 5.1: Qualitative comparison with prior work on anomaly detection in streaming

graphs.

A qualitative comparison is provided in Table 5.1.

Randomized Graph Streaming Algorithms: for testing connectivity and bipartiteness,

constructing sparsi�ers and spanners, approximating the densest subgraph etc. in the semi-

streaming model (inO (n polylog n) space where n is the number of nodes) are popular within

the theory community [McG14, MTVV15]. However, they do not address graph anomaly de-

tection using sublinear memory.

Randomized Algorithms for Anomaly Detection: Perhaps, the �rst known randomized

anomaly detector is Isolation Forests [LTZ08] for static multi-dimensional data. Due to its

empirical success, randomized algorithms for streaming multi-dimensional data streams are

recently gaining traction [WZF
+

14, Pev16, GMRS16]. In this work, we investigate a randomized

algorithm for the streaming graph setting.

5.3 Preliminaries

In this section, we introduce our streaming model and formalize how to detect the sudden

(dis)appearance of large dense subgraphs.

Streaming Model: Let G = {Gt}∞t=1 be a graph stream. Each graph Gt is a tuple (St,Dt, Et)
whereSt andDt are the possibly time-evolving sets of source and destination nodes respectively

and each edge (s, d, w) in the edge set Et originates from a source s ∈ St, ends at a destination

d ∈ Dt and carries a weight w ∈ R+
(w=0 is equivalent to the absence of an edge). We assume

each node (source or destination) has a unique identi�er that is �xed over time, i.e., the node-

correspondence across graphs is known. Let At = [At,sd] be the adjacency of Gt where each

At,sd denotes the sum of weight of edges connecting a source s to a destination d in graph Gt.

88

Figure 5.2: Overview of SpotLight

While there are other ways of aggregating weights, this is the most natural in the applications

we consider (see Section 5.1) .

The above model allows us to represent a �exible range of graphs: (i) weighted or un-

weighted (by letting At,sd = 1 ∀ s, d), (ii) bipartite or unipartite (by allowing St and Dt to

overlap) and (iii) directed or undirected (by constraining At,sd = At,ds) when s 6=d).

Problem Description: Given a graph G with adjacency A, let G(S ′,D′) denote the directed

subgraph induced by the source set S ′ and the destination set D′. Its density ρ(G(S ′,D′)) can

be de�ned in several ways, e.g.,

∑
s∈S′,d∈D′ Asd/ |S ′| |D′| – the higher the total weight of edges

in it, the greater its density [Die12].

In a nutshell, a graph Gt is said to be anomalous – i.e., contain a sudden appearance or

disappearance of a dense directed subgraph – if there is a large directed subgraph which shows

a signi�cant change in density compared to the past graphs {Gt−1,Gt−2, . . .}. For example, in

Figure 5.1, letting S ′ = {s3, s4} and D′ = {d2, d3, d4, d5}, the subgraph G3(S ′,D′) has high

density (=1) but G1(S ′,D′) and G2(S ′,D′) have low densities, 0.125 and 0 respectively. Hence

G3 is an anomaly. The next section presents the proposed method to identify such anomalies.

5.4 Proposed Method

The proposed method, called SpotLight, works in two main steps as shown in Algorithm 2.

First, it extracts a K-dimensional (we show how to choose K in Section 5.5) SpotLight sketch

v(G) for every G, such that graphs containing the sudden (dis)appearance of large dense sub-

graphs are ‘far’ from ‘normal’ graphs in the sketch space (line 4). Second, it exploits the distance

gap in the sketch space to detect graphs yielding anomalous sketches as anomalous graphs (line

5). A schematic is given in Figure 5.2. We next elaborate on these two steps in greater detail.

5.4.1 SpotLight Graph Sketching

A natural way to sketch a graph is by enumerating the total edge weight of each directed

subgraphG(S ′,D′) for su�ciently large source and destination setsS ′,D′. However, this sketch

89

Figure 5.3: A (K=3, p=0.5, q=0.33)-SpotLight sketch v(G) of a graph G with unit-

weight edges. Each sketch dimension vk(G) is the total weight of edges going from

a random set of sources S ′k and to a random set of destinations D′k.

has exponential number of dimensions and is infeasible to compute or store. Hence, we propose

to compose a sketch containing total edge weights of K speci�c directed subgraphs (called

query subgraphs henceforth) chosen independently and uniformly at random, according to node

sampling probabilities, p for sources and q for destinations. This leads to (K, p, q)-SpotLight

graph sketching.

Conceptually, SpotLight sketching �rst choosesK query subgraphs {(S ′k,D′k)}Kk=1 by sam-

pling each source (or destination) into each S ′k (resp. D′k) with probability p (resp. q).
This choice is made only once per source or destination (the �rst time it is seen) and is �xed

throughout the graph stream. Next, for every graph G, its sketch v(G) ∈ RK
is computed as

vk(G) =
∑

s∈S′k,d∈D
′
k
Asd = total_edge_weight(G(S ′k,D′k)). For example, in Figure 5.3 showing

a graph G with unit-weight edges, there are three edges belonging to the �rst query subgraph

(red), one to the second (green) and none to the third (blue). Hence, its sketch is v(G) = (3, 1, 0).

An e�cient implementation of SpotLight sketching using hashing is given in Algorithm 2.

The hash functions ensure that the node to query subgraph mapping remains �xed over time

without explicitly storing it. The choice of the �rst hash bucket in line 13 is arbitrary; one

can pick any value within the suitable range. Observe how this algorithm is able to seamlessly

process old and new nodes alike.

SpotLight sketching can be thought of in two alternative ways. First, it can be regarded

as a memory-limited and non-deterministic generalization of two common used graph fea-

tures – nodal degree (K= |S| , p=1/ |S| , q=1 orK= |D| , p=1, q=1/ |D|) and total edge weight

(K=p=q=1). Second, and more interestingly, each sketch dimension can be considered as a

spotlight which illuminates and allows for monitoring a region of the graph (i.e., its query

subgraph). The central idea is that the (dis)appearance of a large and dense subgraph would be

brought to light by at least one of these spotlights, provided there are enough of them and each one

is �ne-grained, illuminating a small enough region of the graph. In Section 5.5, we prove high

probability guarantees of exactly this nature.

90

Algorithm 2 SpotLight graph stream anomaly detection

Input: a stream G of weighted directed/bipartite graphs

Parameters: sketch dimensionality K , source sampling probability p, destination sam-

pling probability q
Output: a stream of anomaly scores

1: procedure SpotLight(G, K, p, q)
2: Initialize(K, p, q)
3: for graph G ∈ G do

4: v← Sketch(G)

5: yield AnomalyScore(v)

6: procedure Initialize(K, p, q)
7: for k = 1, . . . , K do

8: Pick source hash hk : S → {1, . . . , b1/pc} and destination hash h′k : D →
{1, . . . , b1/qc} independently at random.

9: procedure Sketch(G)

10: v← 0K
11: for edge e = (s, d, w) in graph G do

12: for k = 1, . . . , K do

13: if hk(s) == 1 and h′k(d) == 1 then

14: vk ← vk + w

15: return v

5.4.2 Anomaly Detection in the SpotLight Space

Exploiting the distance gap between the anomalous graphs containing the sudden (dis)appearance

of large dense subgraphs and ‘normal’ instances in the SpotLight (sketch) space, we may now

employ any o�-the-shelf data stream anomaly detector (e.g., [GMRS16, Pev16, WZF
+

14]) to

carry out AnomalyScore procedure call (line 5 of Algorithm 2). These techniques require sub-

linear memory and output an anomaly score for every data point (i.e., SpotLight graph sketch)

in the stream.

5.5 Theoretical Analysis

This section presents the distance guarantees o�ered by SpotLight sketch space and also anal-

ysis of running time and memory.

5.5.1 Guarantees for SpotLight Sketches

How do we theoretically analyze the distance between graphs in the SpotLight space, even

though the sketching algorithm is randomized? What properties should this distance function

obey? How do we choose the sketching parameters so that anomalous graphs lie ‘far’ from

91

‘normal’ instances with high probability in the SpotLight space? These are the questions we

set out to answer.

In the rest of this section, G is always an arbitrary weighted directed/bipartite graph on Ns

sources and Ns destinations. Adding unit-weight edges to G increments corresponding edge

weights by one, even if these edges already existed. v(·) represents the (K, p, q)-SpotLight

sketch. For simplicity, we letNs=Nd=N and p=q. Also, without loss of generality, we consider

only the appearance of dense subgraphs (disappearance can be argued in a similar way).

We begin by de�ning SL-distance (SL for SpotLight) between graphs G1 and G2 in the

SpotLight space as a deterministic function of G1,G2 and the sketching parameters K, p, q.

De�nition 5.1: SL-Distance

The SL-distance between graphs G1 and G2 is the expected squared Euclidean distance

between their SpotLight sketches, i.e., d̄(G1,G2) = E
[
||v(G1)− v(G2)||22

]
, where the

expectation is taken over the random coin tosses of the sketching algorithm
a
.

ad̄(·, ·) is not a metric, but it obeys a relaxed triangle inequality.

We devote the rest of this section to show (i) that SL-distance is focus-aware, a desirable

property for anomaly detection and (ii) how to set sketching parameters so that ‘anomalous’

graphs lie far from ‘normal’ ones according to SL-distance. All proofs are given in the appendix.

5.5.1.1 Focus-Awareness

Many highly dynamic settings, e.g., IP-IP communication logs, present bursty tra�c leading

to a high variance in the total edge weight. Thus, it becomes easy for a sudden appearance of

dense subgraph, e.g., denial of service attack, to evade detection, unless the distance function

used has the so-called focus-awareness property: ‘random [dispersed] changes in graphs are

less important [anomalous] than targeted [focused] changes of the same extent’ [KSV
+

16]. In

this section, we show that SL-distance has this desirable property. Consider,

Example 5.1: Star vs. Matching

Add an out-star graph (Figure 5.4(a)) ofm unit-weight edges (focused change) toG to obtain

GS . Add a matching graph (Figure 5.4(b)) of m edges (dispersed change) to G to create GM .

Intuitively, the appearance of a dense star subgraph is more anomalous (e.g., potential port

scan attack/ hotspot in road tra�c) and accordingly, we desire d̄(G,GS) > d̄(G,GM). See

Figure 5.4(c).

We show that SL-distance not only satis�es the condition above, but even the distance gap

increases with the number of edges m and sketch dimensionality K . That is, GS is increasingly

more anomalous than GM as m grows. See Lemma 5.1.

92

(a) Star graph (b) Matching graph (c) Ideal sketches

Figure 5.4: Focus-awareness: Addition of dense star graph is more anomalous than

that of the sparse matching graph.

Lemma 5.1: Star vs. Matching

Suppose G, GS and GM are as de�ned in Example 5.1, with (K, p, q)-SpotLight sketches

v(·) ∈ RK
and let 0 < p, q < 1. Then, d̄(GS,G) > d̄(GM ,G) +O (Km2).

Proof. Let 1 ≤ k ≤ K be a sketch dimension with query subgraph (S ′k,D′k). De�ne binary

random variables rks = I[s ∈ S ′k] and ukd = I[d ∈ D′k], where I[·] is the identity function.

From Figure 5.4a, vk(GS)−vk(G) =
∑m

i=1 rks1ukdi . Thus, d̄(GS,G) =
∑K

k=1 E [rks1(
∑m

i=1 ukdi)
2] =

Kmpq + Km(m−1)pq2
. From Figure 5.4b, vk(GM) − vk(G) =

∑n
i=1 rksiukdi and so we have

d̄(GM ,G) =
∑K

k=1 E [(
∑m

i=1 rksiukdi)
2] = Kmpq+Km(m−1)p2q2

. Thus, d̄(GS,G) > d̄(GM ,G)+
O (Km2) . �

The edge addition process in Example 5.1 was deterministic, in the sense that the relative

position of added edges was �xed. We now consider the more general case where m edges

are added uniformly at random (i.e., non-deterministically) in regions of di�erent sizes. Theo-

rem 5.1 shows that the smaller the region in which edges are added, the farther away the �nal

graph lies from the initial graph in the SpotLight space (in expectation). In other words, the

more focused the edge addition, the more anomalous the �nal graph is expected to be in the

SpotLight-space.

93

Theorem 5.1: Focus-Awareness

Consider the distribution of graphs F ′ obtained by adding m unit-weight edges (in expec-

tation) to any n′×n′ region of G by sampling each of the n′2 possible edges with probability

m/n′2. Let F ′′ be another distribution over graph obtained by adding edges in a similar

manner to any n′′×n′′ region. Then,

n′′ < n′ =⇒ EG′′∼F ′′
[
d̄(G,G ′′)

]
> EG′∼F ′

[
d̄(G,G ′)

]
(5.1)

Proof. We now state and prove a lemma which we will then use to prove the above theorem.

Lemma 5.2

Let G be an arbitrary graph and let G ′ be obtained by adding m(≤ n2) unit-weight edges

(in expectation) uniformly to any n×n region of G by sampling each of the n2
possible

edges independently with probability m/n2
. Assuming n is large and p=q,

E
[
d̄(G,G ′)

]
= Kp2m

(
1 +

2pm

n
+ p2m

)
(5.2)

Further, if n � m, Var

[
d̄(G,G ′)

]
= O (Kp4m2 (1 + 2p2m+ p4m2)), where the expec-

tation and variance have been taken over the random coin tosses of the edge addition

process.

Proof. Let A = [Asd] denote the adjacency of edges added to G to get G ′. Then, d̄(G,G ′) =

E
[
(
∑

s,d rksAsdukd)
2
]
, where the expectation is taken over the coin tosses of the algorithm,

i.e., {rks, ukd} ∀ k, s, d. Using E [rks] =E [ukd] =p. This simpli�es to d̄(G,G ′) = p2
∑

s,dAsd +

p3
∑

s,d 6=d′ AsdAsd′ + p3
∑

s 6=s′,dAsdAs′d + p4 ·
∑

s 6=s′,d 6=d′ AsdAs′d′ . To get E
[
d̄(G,G ′)

]
where

the expectation is now taken over the randomness of edge addition, i.e., Asd, we substitute

E [Asd] = m/n2
for 1 ≤ s ≤ n, 1 ≤ d ≤ n (and otherwise zero) to derive Equation (5.2).

Variance calculation, while similar and straight-forward, is omitted in the interest of space. �

The theorem is now proven by observing Equation (5.2) is decreasing in n. �

Theorem 5.1 guarantees a separation in the expected SL-distance, (the expectation is taken

over the random coin tosses of the edge addition process), which is a necessary condition for

anomaly detection to work. It is not su�cient, however: in order to detect F ′′ as anomalies

in the SpotLight space, a large distance gap with high probability is crucial. Section 5.5.1.2

addresses precisely this.

5.5.1.2 Criterion for Anomaly Detection

To show that anomalous graphs are mapped far from normal instances in the SpotLight space,

we need formal de�nitions for (i) what ‘far’ means in the sketch space and (ii) what class of

94

‘normal’ graphs to use as a control group. These are provided in De�nition 5.2 and De�nition 5.3

respectively.

De�nition 5.2: ε-SL-Farness

If d̄(G1,G) > d̄(G2,G) + ε, we say that G1 is ε-SL-far from G compared to G2.

De�nition 5.3: Erdős-Rényi Control Group

Let G be a graph on N sources and N destinations. An Erdős-Rényi (ER) control group

FER(G,m) is de�ned as a distribution of graphs, where each instance GER is obtained by

addingm unit-weight edges (in expectation) uniformly throughout the graph by sampling

each of the N2
possible edges independently with probability m/N2

.

The choice of ER control group is motivated by focus-awareness: we wish to distinguish

the addition of a dense subgraph ofm edges in any focused part of the graph from a case where

the same m edges are added uniformly at random throughout the graph. Theorem 5.2 asserts

this is indeed the case: when sketching parameters are chosen appropriately, it is possible to

achieve an ε-separation between the anomalous and normal graphs with high probability.

Theorem 5.2: Anomaly Detection Criterion

Add n2
unit-weight edges in any n×n region to get GBC (BC for BiClique). Let 1 �

n2 � N2
and p = q < 0.5. Then, GBC is ε-SL-far from G compared to a GER drawn

from FER(G, n2) with high probability 1−δ, i.e.,

PrGER∼FER(G,n2)

[
d̄(G,GBC)− d̄(G,GER) ≥ ε

]
≥ 1−δ (5.3)

where δ is the false positive rate on the ER control group, provided:

K >
(1 + p2n2)2

4p2n2δ
+

ε

p3n3
(5.4)

Proof. Let µ = E
[
d̄(G,GER)

]
and σ2 = Var

[
d̄(G,GER)

]
. Invoking Chebyshev’s inequality, we

have with probability 1−δ: |d̄(G,GER)−µ| ≤
√
σ2/δ. Thus, if we �ag a graph G ′ as anomalous if

|d̄(G,G ′)−µ| >
√
σ2/δ, we erroneously �ag δ fraction of the control group as anomalies (false

positive rate). In order to detect GBC as an anomaly at this threshold, we need d̄(G,GBC)−µ−ε >√
σ2/δ. Under the stated assumptions, d̄(G,GBC)−µ ≈ 2Kp3n3

and σ2 ≈ Kp4n4(1 + 2n2p2 +
n4p4). Thus, we derive a quadratic inequality in K resulting in the following, which can then

95

be relaxed using a2 + b2 ≥ 2ab to obtain Equation (5.4).

K ≥

1 + n2p2

4pn
√
δ

+

√(
1 + n2p2

4pn
√
δ

)2

+
ε

2p3n3

2

�

Observe from Equation (5.4) that more sketch dimensions are required if ε is high or δ is low

which is intuitive: the higher the separation needed between the anomaly and the control group

or the lower the permitted false positive rate on the control group, the more dimensions we

need. Another subtle point to note here is that Theorem 5.2 guarantees an isolation of anomalies

in the sketch space, without knowing a priori which n×n region contains the dense subgraph –

this is crucial because, in practice, anomalous dense subgraphs can appear (or disappear) in any

region. Further, Theorem 5.2 also guides us in choosing parameters, as stated below.

Corollary 5.1: Optimal Sketching Parameters

From Equation (5.4), the optimal value of p requiring the least sketching dimensionality

is obtained by solving n5p5
∗ − np∗ = 6εδ. When ε=0, this reduces to p∗=1/n i.e., sample

exactly one added edge in expectation. Accordingly, we require K∗ > 1/δ.

Proof. Setting the �rst derivative of RHS of Equation (5.4) to zero, we get n5p5
∗ − np∗ = 6εδ

(second derivative at p∗ ≥ 0). �

For example, with K=50, p=q=0.2, we may detect the addition of n=5 biclique as an

anomaly with ε=0 separation by incurring at most δ=2% false positive rate on the ER con-

trol group.

5.5.2 Time and Space Complexity

SpotLight obeys the sublinear memory and linear time constraints of Problem 5.1, as stated

below.

Lemma 5.3: Linear Running Time

SpotLight takes O (|E| ·K) time to process each G = (S,D, E) in the stream.

Lemma 5.4: Sublinear Memory Requirement

SpotLight takesO (lnNs + lnNd +K) to process each graph in a stream havingNs sources

and Nd destinations.

96

SpotLight sketching runs in O (|E| ·K) running time due to the loops in lines 11-12 (Al-

gorithm 2), since the other steps require constant time. The O (lnNs + lnNd) space is a lower

bound on memory requirements, since each edge (including source and destination identi�ers)

needs to be read (one by one). An additionalO (K) space is needed to store the sketch. Anomaly

detection in SpotLight space takes O (K) time and sublinear space, e.g., using [GMRS16].

5.6 Experiments

We empirically evaluate the proposed method on datasets where the anomalies are veri�able

and interpretable. We begin with the details of datasets and experimental setup.

5.6.1 Datasets

We shortlist three real-world publicly available time-evolving graph datasets, where the anoma-

lies can be veri�ed by comparing to manual annotations or by correlating with real-world

events:

Darpa dataset [LCF
+

99] contains 4.5M IP-IP communications taking place between 9484

source IPs and 23398 destination IPs over 87.7K time steps (minutes). Each communication is

a directed edge (srcIP, dstIP, 1, time). We obtain a stream of 1463 graphs by aggregating edges

occurring in every hourly duration. The dataset contains 89 known network attacks – large or

stealthy – e.g., portsweep, ipsweep, mscan and snmpgetattack. Most attacks were

large (> 100 edges), but were targeted at and/or engineered from a few hosts and occurred

in single/multiple bursts of time – thus, leading to the sudden (dis)appearance of large dense

subgraphs that we aim to detect. Using the furnished ground truth (attack/not) for each edge,

we label a graph as anomalous if it contains at least 50 attack edges.

Enron dataset [SA04] contains ∼ 50K emails exchanged among 151 employees of the en-

ergy company over a 3 year period surrounding the famous Enron scandal. Each email is a

directed edge (sender, receiver, 1, timestamp). We derive a stream of 1139 graphs by treating

each day as its own graph. As ground truth is not directly available, we verify the detected

anomalies by correlating with the major events of the scandal.

NycTaxi dataset [nyt18] contains taxi ridership data during a 3-month period (Nov 2015–

Jan 2016) obtained from New York City (NYC) Taxi Commission. Each taxi trip is furnished

with pick-up (PU)/drop-o� (DO) times and (lon, lat) coordinates of PU/DO locations, which

we process as follows. We manually click on the centers of 57 geographically or conceptually

distinguishable NYC zones based on common knowledge – including parks, airports, stadiums,

bridges, residential neighborhoods, islands – on a map and note their (lon, lat) coordinates. Ev-

ery PU/DO location is then assigned to the nearest zone. Thus, a directed edge (srcZone, dstZone,

1, timestamp) is created for each taxi trip. These are further aggregated into 2208 graphs, each

containing trips that took place in a given hourly duration. We verify the detected anomalies by

97

correlating with important occasions – holidays, events, unusual weather conditions – which

a�ect the normal rhythm of road tra�c.

5.6.2 Experimental Setup

We implement SpotLight (abbreviated as SL henceforth) in Python and run experiments on

MacOS with 2.7 GHz Intel Core i5 processor and 16 GB main memory. By default, we use

K=50 sketch dimensions and p=q=0.2 source/destination sampling probabilities. Mapping

to Theorem 5.2, this corresponds to detecting a n=5 biclique (or more) as an anomaly w.r.t.

the control group by incurring less than δ=2% false positives. This also ensures all edges are

covered twice in expectation. For the anomalous sketch detection step, we use the state-of-

the-art Robust Random Cut Forests (RRCF) [GMRS16] with 50 trees and 256 samples (unless

speci�ed otherwise).

Baselines: We compare SpotLight to the following three baselines on the labeled Darpa

dataset: (a) EdgeWeight (EW): We consider a vanilla version of SL by setting K=p=q=1,

i.e., sketching each graph using a single coarse-grained feature, namely, its total weight of

edges. Observe that EW tends to miss ‘small’ anomalies which do not alter the total edge

weight signi�cantly compared to usual. (b) RHSS [RHSS16], abbreviated based on the last

names of authors, processes each edge e in the stream individually, outputting a likelihood

score `(e). We compute the likelihood of a graph G = (S,D, E) as the geometric mean of the

per-edge likelihoods (similar to [AZY11]): `(G) = (
∏

e=(s,d,w)∈E `(e)
w)1/W

whereW is the total

edge weight. Finally, to re�ect the intuition that a more likely graph is less anomalous, we use

anomaly_score(G) = −ln`(G). We implement RHSS in Python without using the sketching-

based approximation
1
. (c) STA [STF06] scores the anomalousness of each graph as the error

incurred in reconstructing it based on a streaming graph decomposition. We use 50 as the rank

of decomposition.

Evaluation Metrics: Each method above outputs an anomaly score (higher is anomalous)

per graph. Sorting these in descending order, we compute the number of anomalies caught

TP (k) (true positives) among the top k most anomalous graphs, for every k. If the overall

number of anomalies is N , we compute precision@k = TP (k)/k and recall@k = TP (k)/N .

We also summarize the overall accuracy using the AUC (Area Under ROC Curve) score. Recall

that precision@k, recall@k and AUC lie in [0, 1] and a higher value is better. In addition, we note

the running time of all methods, averaged over �ve runs.

Experimental Design: Our experiments are designed to answer the following questions:

[Q1] Accuracy: How well is SpotLight able to spot anomalies compared to baselines? What

is the trade-o� with respect to running time? How does the performance vary with parameters?

[Q2] Scalability: How does the running time scale with the number of edges in the stream and

1
We also tried computing the anomaly score as the negative average of the per-edge likelihoods and obtained

similar results.

98

precision@ recall@
Method 100 200 300 400 100 200 300 400

Ideal 1.0 1.0 0.96 0.72 0.35 0.69 1.0 1.0

SL 0.96 0.79 0.64 0.57 0.34 0.55 0.67 0.80

EW 0.86 0.54 0.47 0.46 0.30 0.38 0.49 0.65

RHSS 0.31 0.28 0.32 0.36 0.11 0.19 0.33 0.50

STA 0.23 0.16 0.19 0.24 0.08 0.11 0.20 0.34

Table 5.2: SpotLight (SL) achieves better precision and recall than baselines (EW,

RHSS, STA). Bold indicates the highest value in each column (excluding ideal). Un-

derline shows signi�cant di�erences (p-value ≤ 0.01) w.r.t. baselines according to a

two-sided micro-sign test [YL99].

sketch dimensions K? [Q3] Discoveries: Does SpotLight lead to interesting discoveries on

real world data? We now present our �ndings.

5.6.3 Q1. Accuracy

Table 5.2, Figure 5.5 and Figure 5.6 compare the precision, recall, accuracy (AUC) and running

time of SL with baselines on the labeled Darpa dataset. Figure 5.7 shows the variation of accu-

racy with parameters. As SL and EW are initialized based on the �rst 256 graphs, performance is

reported on the subsequent 1463−256 = 1207 graphs, containing 288 ground truth anomalies

(23.8% of total).

Precision and Recall: Table 5.2 gives the precision and recall at cut-o� ranks k ∈ {100, 200,
300, 400}. Ideal values are computed based on an oracle which scores the ground truth anoma-

lies higher than all non-anomalies. We see that SL consistently outperforms all baselines achiev-

ing 11− 46% (statistically signi�cant) improvements. Further, a plot of precision vs. recall for

all methods, shown in Figure 5.5, reveals that SL’s curve (blue) lies completely above those of

all baselines, achieving higher precision for every recall value. Thus, the performance gain of

SL generalizes to all cut-o� ranks (k).

Accuracy vs. Running Time: Figure 5.6 plots the accuracy (AUC) of each method vs. its

running time (in seconds). We see that SL achieves the highest accuracy (=0.91), 8.4% higher

than EW (=0.83) and 30% higher than RHSS (=0.70). This gain comes at a cost of a mere 4×
slow down compared to EW and RHSS. STA, which computes graph decomposition, was con-

siderably slower.

Accuracy w.r.t. Sampling Probabilities p, q: Figure 5.7(a) shows how the accuracy varies

with source (p) and destination (q) sampling probabilities for K=10 dimensions, after tying

p=q for simplicity. We see that the poor accuracy results from choosing very low (anomalous

dense subgraphs are easily missed as very few nodes are sampled resulting in a sketch with

99

Figure 5.5: SL outperforms baselines

in terms of precision and recall.

Figure 5.6: Accuracy-running time

trade-o� o�ered by SL.

(a) (b)

Figure 5.7: Variation of accuracy with (a) p = q for K = 10 and (b) with K for p = q =
0.1.

mostly zeroes) and very high (sketch dimensions are coarse-grained, similar to EW, as almost

all nodes are sampled) node sampling probabilities. The sweet spot lies in between. Over a

large interval [0.05, 0.4], the accuracy remained fairly robust (insensitive) to the exact value of

p.

Accuracy w.r.t. #dimensions K: Figure 5.7(b) shows the variation of accuracy with the

number of sketch dimensions K ∈ {5, 20, 35, 50,
65, 80, 95} for p = q = 0.1. We see that accuracy increases rapidly from 0.67 to 0.95 as K is

increased from 5 to 50, beyond which it stabilizes around 0.95. This is the classic ‘diminishing

returns’ pattern we expect. When K is low, an added SpotLight sketch dimension likely ‘il-

luminates’ a new part of the graph and detects anomalies that were previously undetected, but

once K crosses a threshold (here, 50) when most of the graph is already ‘illuminated’, a new

sketch dimension gives little to no added bene�t.

100

(a) (b)

Figure 5.8: SL scales linearly with the number of (a) edges in the stream and (b) sketch

dimensions K.

5.6.4 Q2. Scalability

Figure 5.8 shows the scalability of SL with the number of edges and sketch dimensions. We use

RRCF with 10 trees and sample size 128.

With #edges: We uniformly sample 100K − 2M edges from the Darpa dataset in eight

logarithmic steps and timed SL. Figure 5.8(a) plots the running time (in seconds) vs. the number

of edges in log-log scales. We see that the points align with a line of slope 1, indicating SL scales

linearly with input size (as is desirable). Note also that SL is fast and is able to process 2M edges

in less than 2 minutes!

With#dimensions: We now vary the SpotLight sketch dimensionK ∈ {10, 20, . . . 70, 80}
and measure the time taken to compute sketches for 0.5M edges. Figure 5.8(b), plotting the run-

ning time (in seconds) with the number of dimensions, reveals that SL scales linearly with the

dimensionality of SpotLight sketch.

These are consistent with our expectations based on Lemma 5.3.

5.6.5 Q3. Discoveries

We provide a complete analysis of SL and baselines on the labeled Darpa dataset; in the interest

of space, we only summarize the discoveries due to SL on Enron andNycTaxi datasets, omitting

baseline results.

5.6.5.1 Darpa

Leveraging ground truth, we now delve deeper into why the baselines perform poorly compared

to SL onDarpa dataset. Figure 5.9 plots the anomaly scores (higher is anomalous) of all methods

along with ground truth (spikes in the ‘ideal’ black curve). Our explanation will use Figure 5.10,

which plots the number of attack (red) and non-attack (green) edges over time t. In these �gures,

101

Figure 5.9: Anomaly detection on Darpa dataset. Spikes in the ‘ideal’ black curve

indicate ground truth anomalies.

t < 0 corresponds to the initialization period for SL and EW, resulting in zero anomaly score.

We now examine each baseline separately.

EW:Around t={150, 450, 650, 850, 1000}, Figure 5.10 shows several spikes (of height 104−105
)

in attack weight (red); these are signi�cantly higher than the non-attack weight (green) which

never exceeds 104
. Hence, these ‘large’ anomalies are easily detected by tracking only the to-

tal edge weight (green spikes in Figure 5.9). However, EW fails to detect anomalous graphs in

which the total weight of edges is comparable to that observed at many prior graphs – e.g.,

102

Figure 5.10: Understanding (un)detected anomalies in Darpa using the number of at-

tack and non-attack edges over time.

anomalies around t={1, 300, 500}. On the other hand, SL keeps track of the total weight of

edges in several local regions within the graph; since attack edges are concentrated in regions of

the graph where non-attack edges typically do not occur, these are detected by SL, even if the

weight of attack edges is small, e.g., at t=1.

RHSS: RHSS scores each graph based on the likelihood of its edges computed based on

its prior occurrence, preferential attachment and homophily. Simply put, (graphs containing)

edges which are seen before or which connect high degree nodes or nodes having many com-

mon neighbors are non-anomalous. However, we �nd that these assumptions are more suited

to slowly-evolving social networks rather than highly dynamic settings. To see why, consider:

(a) Repeated attacks: neptune2
attack occurs at 33 di�erent times, including t = −204, which

is within the initialization period. Once RHSS has ‘seen’ all neptune attack edges, subse-

quent occurrences, however rare and dense, are not found anomalous. (b) Repeatedly attacking

(victimized) nodes: Once a node has (been) attacked su�ciently many times, it attains a high

degree; consequently, further attacks by (or on) it are ‘likely’ (due to preferential attachment)

and non-anomalous.

STA: STA computes a single graph decomposition model to summarize the data seen so far

– admittedly, a much harder problem than anomaly detection – and scores the anomalousness

of each graph as the error incurred in reconstructing it from the model. The assumption of a

single normal behavior does not apply to dynamic settings (such as this) – e.g., in Figure 5.10, it

is as normal for the number of non-attack edges to be around 1000 as it is to be 0 – consequently,

STA is very sensitive in practice and leads to numerous false alarms.

5.6.5.2 Enron

Figure 5.11 plots the anomaly score vs. time for Enron dataset, after initializing SL based on

the �rst 256 days (05/12/99-01/22/00) with shingle length 7 (weekly periodicity). We examine

the top 6 non-consecutive time durations having the highest anomaly scores. As we show

2
A SYN �ood denial of service attack to which every TCP/IP implementation is vulnerable to some extent. See

www.ll.mit.edu/ideval/docs/attackDB.html.

103

www.ll.mit.edu/ideval/docs/attackDB.html.

Figure 5.11: Anomaly detection on Enron dataset

below, these anomalies correspond to major events – either company-wide emails or public

announcements triggering excitement or confusion – in the Enron time line
3
.

2000: (1) Dec 13-14: Skilling announced as CEO. 2001: (2) May 23: Enron completes its

millionth transaction via Enron Online. (3) Sep 28: Lay to employees: ‘Third quarter is looking

great.’ (4) Oct 7-Nov 22: Wall Street Journal article reveals Enron’s precarious state. One ton

Enron documents shredded. Fastow ousted. SEC launches formal investigation. Restructuring

of $690M obligation is announced. 2002: (5) Jan 23-30: Lay resigns as chairman and CEO.

Baxter commits suicide. Cooper takes over as CEO. (6) Feb 7-8: Fastow, Kopper and Skilling

testify before Congress.

5.6.5.3 NycTaxi

Figure 5.12 plots the anomaly score vs. time for NycTaxi dataset, after initializing SL based on

the �rst 256 hours (∼ 10 days) of Nov 2015 with shingle length 24 (daily periodicity). As before,

we examine the top 6 non-consecutive time durations having the highest anomaly scores.

The most anomalous period (Jan 23-24) coincided with the January 2016 United States bliz-

zard which produced a historic 3 feet of snow and rendered normal tra�c operation impossi-

ble. The next three anomalies (around Nov 27, Dec 25, Jan 1) corresponded to festival periods

– Thanksgiving, Christmas, New Year – presumably due to unusual tra�c patterns around

Manhattan (closed o�ces, Macy’s Thanksgiving parade, New Year parties) and airports (people

�ying in/out of JFK and LaGuardia). The next two anomalies (Nov 14, Nov 29-30) are more

interesting because they do not coincide with holidays or weather conditions, and as such, are

not expected to be anomalous.

To further understand why Nov 14 and Nov 29-30 were �agged, we derive an anomaly score

per sketch dimension from RRCF and propagate the anomalousness to NYC zones. Thus, the

anomaly score of a zone is the sum of anomaly scores of all dimensions it participates in. The

most anomalous zones during these dates turned out to be Bedford on Nov 14 and LaGuardia

airport on Nov 29-30. Digging deeper, we discovered that these locations popped up in several

archived new articles on these dates. At 12pm Nov 14, ‘huge �re [ripped] through Bedford-

3
veri�ed using www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html

104

www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html

Figure 5.12: Anomaly detection on NycTaxi dataset

Stuyvesant building’
4

threatening its collapse and creating unusual tra�c in/out of the area.

On Nov 29-30 (Sunday after Thanksgiving), ‘thousands [were] delayed at airport in an attempt

to return home after Thanksgiving’
5

causing the usual morning rush hour tra�c at LaGuardia

to persist throughout the day with over an hour-long wait times for taxis.

Thus, the sudden (dis)appearance of large dense subgraphs detected by SL on real-world data

have a practical signi�cance, from network attacks in IP-IP communication logs to holidays,

abnormal weather or local tra�c conditions in transportation logs.

5.6.6 Discussion

Why do SL/EW perform better than STA/RHSS? STA and RHSS make strict modeling as-

sumptions, e.g., stable community structure or homophily, restricting their scope to limited

settings, e.g., slowly evolving graphs, friendship networks. In contrast, EW and SL use a less

restrictive de�nition of anomaly which is applicable to a wider variety of highly dynamic set-

tings. Can the detected anomalies be attributed to few nodes? Yes, by explicitly main-

taining the node to sketch dimension mapping and following the ‘anomalousness propagation’

heuristic in Section 5.6.5.3.

5.7 Conclusion

We presented a simple, scalable, easy-to-code algorithm called SpotLight for sketching a graph.

SpotLight sketches facilitate fast and reliable identi�cation of anomalies, where an anomaly

is the sudden appearance (or disappearance) of a large dense directed subgraph. Theoretical

analysis provides concrete settings where there is a provable distance gap in the sketch of a

graph where m edges are scattered at random throughout the graph (dispersed) vs. the sketch

of a graph where m edges are added in a smaller subgraph (focused). The distance gap sets

the stage for classic anomaly detection algorithms to spot the more distant graph. Experiments

4www.nydailynews.com/new-york/huge-fire-rips-bedford-stuyvesant-
building-article-1.2435059

5pix11.com/2015/11/29/thousands-delayed-at-airport-in-an-attempt-to-
return-home-after-thanksgiving/

105

www.nydailynews.com/new-york/huge-fire-rips-bedford-stuyvesant-building-article-1.2435059
www.nydailynews.com/new-york/huge-fire-rips-bedford-stuyvesant-building-article-1.2435059
pix11.com/2015/11/29/thousands-delayed-at-airport-in-an-attempt-to-return-home-after-thanksgiving/
pix11.com/2015/11/29/thousands-delayed-at-airport-in-an-attempt-to-return-home-after-thanksgiving/

on a variety of real-world datasets demonstrate that SpotLight outperforms prior approaches

in terms of both precision and recall. Yet, many new opportunities remain. Adaptive data-

driven sketches, while harder to analyze, may yield better results in practice. Interpretability

and anomaly attribution are also important questions. Finally, the trajectory of an anomaly is

vital to both understand and predict.

106

Chapter 6

SedanSpot: Anomalous Edge

Detection

Chapter based on work that appeared at ICDM 2018 [EF18] [PDF].

Given time-evolving IP-IP network tra�c, how can we identify malicious communications

as soon as they occur? How can we quickly spot suspicious calls/messages/e-mails (pos-

sibly, scam) from communication logs? More generally, given a stream of edges from a

time-evolving (un)weighted (un)directed graph, how can we detect anomalous edges in

near real-time using sublinear memory? To this end, we propose SedanSpot, a principled

randomized algorithm, which exploits two tell-tale signs of anomalous edges: they tend

to (i) occur as bursts of activity and (ii) connect parts of graph which are sparsely con-

nected. SedanSpot has the following desirable properties: (a) Burst resistance: It provably

downsamples edges from bursty periods of network tra�c, (b) Holistic scoring: It takes into

account the whole (sampled) graph while scoring the anomalousness of an edge, giving

diminishing importance to far-away neighbors, (c) E�ciency: SedanSpot supports fast up-

dates and scoring and hence can be e�ciently maintained over stream; further, it can detect

anomalous edges in sublinear space and constant time per edge. Through experiments on

real-world datasets, we demonstrate that SedanSpot is fast and accurate, outperforming

the state-of-the-art by 270% in terms of AUC while taking 3× less time.

6.1 Introduction

Time-evolving (un)weighted (un)directed graphs, where edges and vertices arrive continuously

over time, are becoming increasingly ubiquitous. Examples include phone call networks (user

u calls user v at time t, speaking for w seconds), instant-messaging/e-mail networks (user u
sends user v a message/e-mail of size w at time t), IP-IP networks (machine u sends machine

v a packet of size w at time t) and so on. In these settings, edges are generated in increasing

order of their time-stamps, giving rise to a stream of edges, or edge streams.

107

http://www.cs.cmu.edu/~deswaran/papers/icdm18-sedanspot.pdf

We consider the problem of near real-time anomaly detection in such edge streams, where

the goal is to detect whether an incoming edge is anomalous or not, as soon as it is received.

While graph anomaly detection is a well-explored research area, most methods apply to o�ine

settings, or online settings where the edges have been aggregated into graph snapshots (elabo-

rated in Section 6.2). In contrast, we seek algorithms which directly process the edge stream to

�ag anomalies in near real-time, which is crucial to curtail the impact of malicious activities and

kick-start recovery processes in a timely manner. Moreover, given that the number of vertices

is not known a priori and can grow as the stream progresses, the algorithm should operate in

memory sublinear in graph size. Informally, the problem we set out to solve is:

Informal Problem 6.1

Given an edge stream E={e1, e2, . . .} from a/an (un)weighted (un)directed graph, detect

whether ei is anomalous, in near real-time using sublinear memory.

Due to the �uid nature of what is considered ‘normal’, prior works typically focus on de-

tecting particular anomalous changes to the graph such as dense subgraphs [SHF18], hotspot

vertices [YAMW13] and changes to community structure [SFPY07]. In this work, we focus on

detecting edges which connect sparsely-connected parts of graph (e.g., bridge edges). Figure 6.1

illustrates this. In an edge stream from an unweighted directed graph, the edges received until

time t=0 form two clusters of vertices {(a1, . . . , a5), (b1, b2, b3)}. Thus, edges a4→b2, a4→b1

and a4→b3 (occurring at t=7) which connect these otherwise disconnected clusters of vertices

should be �agged anomalous (possibly an ‘attack’ by a4 on the (b1, b2, b3)-cluster).

The simultaneous occurrence of edges highlighted in red (at t=7) in Figure 6.1 is not coin-

cidental. Prior work has shown that fraudulent or important events in many real-world appli-

cations indeed occur as spikes or bursts of activity (e.g., [BXG
+

13, GGF14a]). Examples include

network security threats (port scan, denial of service), scams (malicious entities attacking many

victims before they get exposed), occasions (festivals producing a burst of longer-than-usual

phone calls) and so on. Anomaly detection approaches which do not account for this observa-

tion ([AZY11, RHSS16]) tend to miss several anomalies, e.g., a4→b3 being masked as normal by

the recent occurrences of a4→{b1, b2}.
While anomalous activity tends to occur as bursts, burstiness does not necessarily signify

an anomaly: in dynamic situations like network tra�c, normal activity can also be bursty.

Thus, in order to reliably detect anomalies, we need to combine the temporal dynamics of the

edges with the graph structural information. The proposed method, called SedanSpot (short

for Streaming EDge ANomaly SPOTter) does precisely this: it detects unexpected edges which

connect sparsely-connected regions in the face of spikes of anomalous activity. We note that

there other kinds of anomalies (e.g., low temperature or periodic attacks), but they are not the

focus of this work.

Given the running time and memory constraints of Problem 6.1, SedanSpot maintains an

online sample of edges (using SedanSampler) which is then used to score the anomalousness

of any new edge (via SedanScorer). SedanSpot has the following desirable properties. (a)

108

Figure 6.1: An edge stream showing a burst of three anomalous ‘bridge’ edges (high-

lighted in red).

(a) (b)

Figure 6.2: Overview of experimental results: SedanSpot (a) outperforms the state-

of-the-art in terms of both accuracy and speed and (b) scales linearly with the number

of edges in the input stream.

Burst resistance: SedanSampler provably downsamples edges from bursts of activity, (b) Holis-

tic scoring: SedanScorer scores the anomalousness of edges by taking into account the whole

(sampled) graph, giving diminishing importance to far-away neighbors, (c) E�ciency: SedanS-

pot supports fast updates and scoring and hence can be e�ciently maintained over stream;

further, it can detect anomalous edges in sublinear space and constant time per edge. Overall,

SedanSpot is fast and accurate, outperforming the state-of-the-art by 270% in terms of AUC

while taking 3× less time (Figure 6.2(a)) and scaling linearly with the number of edges in the

stream (Figure 6.2(b)).

Reproducibility: We use publicly-available datasets and open-source our code at https:
//github.com/dhivyaeswaran/sedanspot.

109

https://github.com/dhivyaeswaran/sedanspot
https://github.com/dhivyaeswaran/sedanspot

6.2 Background and Related Work

We review related work on graph anomaly detection and provide background on random walk

with restart and sampling in streams, which the proposed SedanSpot is based on.

6.2.1 Anomaly Detection in Graphs

O�line anomaly detection of static or time-evolving graphs is a well-explored research

area (for surveys, see [ATK15, RSK
+

15]). Unsupervised methods for static graphs rely on com-

paring node- or egonet-level features [AMF10], matrix factorization [TL11], graph partition-

ing [Cha04], node proximity measures such as Personalized Page Rank [Hav03], Katz mea-

sure [Kat53], etc. (see [LK03] for a comparative study of such measures). Any available labels

can be leveraged by employing semi-supervised methods, e.g., belief propagation [EGF
+

17b].

O�ine, unsupervised methods for dynamic graphs typically incorporate the timestamps on

edges by modeling them as node/edge attributes [HSB
+

16a] or �nding dynamic dense sub-

graphs occurring in short time intervals [RTG17] or spotting suspicious dense sub-tensors in

node× node× time tensor via decomposition [KB09] or greedy strategies [SHF18].

Online (streaming) anomaly detection methods can be further divided into those which

operate on (1) aggregated graph streams or (2) raw edge streams.

Graph Streams: Many methods assume that the raw edge stream has been processed into

a stream of graph snapshots (each containing edges occurring in a given duration). [STF06]

maintains a streaming tensor decomposition and uses it to detect and attribute events/changes

via the reconstruction error of a new tensor. [SFPY07] uses graph partitioning and minimum

description length to detect change points. [GGSH12] detects evolutionary community out-

liers, i.e., nodes which evolved di�erently compared to their communities. [RGNH13] uses

non-negative matrix factorization to determine the belongingness of nodes to ‘roles’, which is

then used to �ag anomalies. [WFLW15] �nds anomalous nodes using vector auto-regression

on the features of nodes and their communities. [SD14] and [KSV
+

16] compare consecutive

snapshots of graphs through similarity/distance functions related to random walks [KKK
+

11].

Speci�cally, [SD14] uses commute-time embedding, whereas [KSV
+

16] uses a fast variant of

belief propagation. While applicable only to undirected graphs, these can also attribute anoma-

lousness to nodes or edges.

Edge Streams: GOutlier [AZY11] scores the likelihood of each edge in the stream by main-

taining a ‘structural reservoir sample of edges’ to induce node partitioning and tracking the

probability of an edge connecting two of those partitions. [YAMW13] detects nodes having un-

usual levels of activity or structural changes by performing egonet-level Principal Component

Analysis at multiple temporal granularities. [RHSS16] scores the anomalousness of each edge

in the stream based on its prior occurrence, preferential attachment and mutual neighbors (ho-

mophily). [MMA16] is related, but applies only when multiple unweighted graphs with typed

nodes and edges are evolving simultaneously.

110

Table 6.1: Qualitative comparison with closely-related prior work

Property

D
C
[
K
S
V

+
1
6
]
,
C
A
D
[
S
D
1
4
]

A
H

[
Y
A
M
W

1
3
]

G
O
u
t
l
i
e
r
[
A
Z
Y
1
1
]

R
H
S
S
[
R
H
S
S
1
6
]

S
e
d
a
n
S
p
o
t

Online (operate on edge streams) 4 4 4 4

Generality (weighted/directed) 4 4

Burst resistance N/A 4

Holistic scoring 4 4

E�ciency (sublinear memory) ? 4 4

E�ciency (constant time per edge) N/A 4 4 4

As such, none of the prior methods have all the desirable properties that SedanSpot ex-

hibits, as shown in Table 6.1.

6.2.2 RandomWalk with Restart (RWR)

Consider a random surfer starting at a vertex u of a given (un)directed graph. At each step, he

returns to u with probability α or jumps to a random out-neighbor based on edge weight. The

steady state probability that the surfer will �nally remain at v is termed the RWR relevance

score of v w.r.t. u and is an attractive measure of vertex proximity in many applications, e.g.,

search and retrieval [TFP06]. Concretely, let A be the adjacency matrix with Auv denoting

the (non-negative) total weight of edge from u to v. De�ne row-normalized adjacency Ā as

Āuv = Auv/
∑

aAua when

∑
aAua > 0, or zero otherwise. If qu is the n-dimensional binary

vector where all but the uth entry are zeros, the vector of RWR relevance scores ru of all nodes

w.r.t. u is given by:

ru = (1− α)ĀT ru + αqu (6.1)

Equation (6.1) is typically solved by repeating the above update till convergence, which

takes O
(
NNZ(Ā)

)
time per iteration where NNZ(·) is the number of non-zero entries. Since

this can be expensive, fast approximate variants of RWR is a growing research area. In par-

ticular, local random walks (which we use) are successfully applied to link prediction [LL10]

and recommendation [EJL
+

18]. Existing work on RWR relevance score computation for edge

streams either assume a single start vertex known ahead of time [YJK18] or maintain all-pair

relevance scores [YM16]; thus they are are not applicable to our setting.

111

6.2.3 Sampling in Streams

Reservoir Sampling [Vit85] is classic algorithm to maintain a �xed-size uniform sample of ele-

ments in a stream. Weighted Reservoir Sampling [ES06] is used when elements are to be sam-

pled with di�erent weights. When the stream contains edges from a graph, several application-

speci�c sampling mechanisms exist for counting triangles [SERU17], wedges [ADWR17], etc. A

comprehensive treatment is given in [ANK14]. However, none of these techniques downsample

edges from bursty periods, which is needed to reliably detect anomalies (e.g., in Figure 6.1).

6.3 Problem Framework

We begin with some notation. Let E = {ei}∞i=1 = {e1, e2, . . . , eL, . . .} be the stream of edges

from an underlying time-evolving graphG. Each element ei in the stream is 4-tuple (ui, vi, wi, ti)
of a source vertex ui ∈ V , a destination vertex vi ∈ V , edge weight wi and time of occurrence ti
and represents the addition of this edge to the graph G. Here, V is the set of all vertices, which

is not known a priori but changes as G evolves, losing old vertices and gaining new ones. How-

ever, each vertex is assumed to have a unique identi�er, e.g., user ID or IP address, that is �xed

over time.

Note that G represents a multigraph; hence, two vertices may be (and usually are) con-

nected multiple times, each time with a possibly di�erent weight. Any number of edges could

arrive at the same time, thus ti+1≥ti. Further, depending on the nature of G, the edges can be

weighted (wi=1 ∀ ei, if unweighted) and/or have direction (assume a ‘fake’ (vi, ui, wi, ti) for

every (ui, vi, wi, ti) when ui 6=vi, if undirected). We will also sometimes overload t(e) and w(e)
to denote the timestamp and weight of edge e.

Next, we give the proposed framework to solve Problem 6.1.

6.3.1 Subproblems

Our goal is to detect anomalous edges by leveraging their temporal and spatial signals: they

tend to (i) occur as bursts of activity and (ii) connect sparsely-connected parts of the graph. To

do this quickly using bounded memory, we maintain a �xed-size sample of the edges seen thus

far and use it to score the anomalousness of any new edge. Thus, Problem 6.1 can be subdivided

into two subproblems, each incorporating one of the above signals of anomalousness, as follows:

Informal Problem 6.2: Edge Sampling

Given an edge stream E and S ∈ N, maintain an online sample S of S edges so as to

downsample bursts of activity.

112

Algorithm 3 SedanSpot

Input: edge stream E = {ei}∞i=1

Output: stream of anomaly scores {yi}∞i=1

. initializations

1: SedanSampler.initialize()

2: SedanScorer.initialize()

3: for edges Et received at time t from stream E do

4: for ei ∈ Et do
. score this edge based on the current sample of edges

5: yi ← SedanScorer.anomaly_score(ei)
. update the current sample of edges using this edge

6: erem, eadd ← SedanSampler.sample(ei)
7: SedanScorer.add(eadd) if eadd is not None

8: SedanScorer.remove(erem) if erem is not None

9: yield yi

Informal Problem 6.3: Anomaly Scoring

Given a sample of edges S and a new edge ei, design an anomaly scoring function yi =
f(ei;S) so as to give higher score to edges connecting parts of the graph which are sparsely

connected.

The proposed SedanSpot consists of two components, each addressing one subproblem

above – SedanSampler (Problem 6.2) and (ii) SedanScorer (Problem 6.3).

6.4 Proposed Method

A high-level pseudocode of SedanSpot using the sampling (Section 6.4.1) and scoring (Sec-

tion 6.4.2) components is given in Algorithm 3. Every edge ei in the stream is �rst compared

to the current sample of edges via SedanScorer to determine its anomaly score. The sample

is subsequently updated based on this edge using SedanSampler. We describe the algorithm

below, assuming directed edges (extension to other settings is discussed in Section 6.4.3) and

postpone analysis to Section 6.5.

6.4.1 Edge Sampling using SedanSampler

Given a sample size S ∈ N, the main idea behind SedanSampler is to perform rate-adjusted

reservoir sampling to maintain a rate-adjusted sample S containing S edges.

113

De�nition 6.1: Rate-adjusted sample

S is said to be a rate-adjusted sample from a stream E i� Pr [e ∈ S] ∝ 1/r(e) ∀ e ∈ E,

where r(e) is the edge rate at the time of occurrence of e.

Here, r(·) is a measure of edge rate such that a larger value signi�es a more intense burst –

shorter duration or higher count – of edges (see Equation (6.2)). Intuitively, rate-adjusted reser-

voir sampling ensures that, if a region R of an underlying graph G is densely connected solely

because of attack edges which occurred during bursts of activity, the corresponding region in

the sampled graph induced by S still remains somewhat sparsely connected. This sets the stage

to detect a subsequent edge belonging to same attack – and occurring in the same region R –

as an anomaly compared to the sample.

6.4.1.1 Computing Edge Rate r(·)

Let t(e) denote the timestamp of edge e and let Et(e) be the set of edges which arrive at time

t(e), including e. A natural choice for edge rate r(e) during the occurrence of edge e is:

r(e) =

∣∣Et(e)∣∣
t(e)− tLSP(e)

(6.2)

where tLSP(e) = maxe′ s.t. t(e′)<t(e) t(e
′) denotes the timestamp of the latest strictly previous (LSP)

edge corresponding to e1
. Clearly, edges arriving together have identical values of r(·) and

the larger the number of edges occurring at t(e) or the smaller the time gap between e and its

LSP edge, the more intense is the burst of edges and accordingly, the higher is the value of r(e).

While there are other possible characterizations of edge rate, we pick the form in Equation (6.2)

as it leads to theoretical guarantees (see Theorem 6.1), depends only the recent history and can

be computed in O (1) space by maintaining tLSP(e) and also works well in practice.

6.4.1.2 Dynamic Maintenance of Sample

A rate-adjusted sample of size S can be maintained using Weighted Reservoir Sampling (WRS)

[ES06]. In WRS, a stream of weighted elements are given and the goal is to maintain a �xed-

size reservoir (sample) of elements in a single pass over the stream, such that each element is

sampled proportional to its weight. In our case, each edge e constitutes an element, with weight
2

equal to 1/r(e). The resulting algorithm, given in Algorithm 4, uses a MinHeap-PriorityQueue

data structure for e�cient O (lnS) updates. In a nutshell, each edge e is assigned a priority,

which is a random number that tends to be lower if r(e) is high and at any point of time, the

top S edges having the highest priorities constitute the sample S .

1
For the �rst set of edges in the stream, we can de�ne tLSP(e) := 0.

2
This is di�erent from the edge weight w of an edge e = (u, v, w, t).

114

Algorithm 4 SedanSampler

Parameter(s): sample size S
1: procedure initialize

2: S ←MinHeap-PriorityQueue(size S)

. stores the top S edges with highest priorities; incurs O (lnS) addition, O (1) MPE (min. priority

element) retrieval costs

3: procedure sample(edge e)
4: x ∼ Uniform[0, 1]
5: p← xr(e) . priority of e; r(e) is de�ned in Equation (6.2)

6: if S .is_full() then

7: e′, p′ ← H .peek() . current MPE and its priority

8: if p′ < p then
9: S .pop() . remove current MPE, i.e., e′

10: S .insert(edge e with priority p)

11: return e′, e
12: else . leave sample unchanged

13: return None, None

14: else . heap is not full, simply add e

15: S .insert(edge e with priority p)

16: return None, e

6.4.2 Anomaly Scoring via SedanScorer

How do we quantify the ‘surprise’ on seeing an edge e based on the sample S? Intuitively,

the more drastic the change in proximity (distance) between u and v after adding edge e to

the sample, the more surprising it is. Accordingly, the main idea behind SedanScorer is to

score the edge anomalousness as f(e;S) = MPI(e;S) where MPI(·) is the marginal proximity

increase measure, as de�ned below.

De�nition 6.2: Marginal Proximity Increase

The marginal proximity increase measure of edge e from source u to destination v w.r.t. a

set of edges S is given by

MPI(e;S) = s (v | u;S ∪ {e})− s (v | u;S) (6.3)

Here, s (v | u;S) is a measure of directed vertex proximity between source u and destination

v based on edges S , such that greater the number of shorter, heavily weighted paths from u to

v in S , the higher is its value. For reasons we give next, we use the relevance score produced

by random walk with restart (Equation (6.1)) as the measure of directed vertex proximity.

115

Algorithm 5 SedanScorer

Parameter(s): restart probability α, number of walks N
1: procedure initialize

2: A← Hash table mapping vertices to their LATs

3: procedure add(edge e = (u, v, w, t))

4: A[u].increment(v, w)

5: procedure remove(edge e = (u, v, w, t))

6: A[u].decrement(v, w)

7: procedure sample_neighbor(vertex u∗, edge e = (u, v, w, t))

. samples neighbor of u∗ from S ∪ {e} based on edge weight

8: if e is None or u∗ 6= u then

9: return A[u∗].random_key()

10: else

11: W ← w + out-weight of u∗ in S ∪ {e}
12: return v w.p. w/W else A[u∗].random_key()

13: procedure visit_fraction(vertex u, vertex v, edge e)
. outputs an estimator ŝ (v | u;S ∪ {e}) for relevance score

14: initialize num_steps← 0, num_visits← 0
15: for i = 1, . . . , N do

16: walk length ` ∼ Geometric(α)

17: num_steps← num_steps + `
18: current vertex a← u
19: for j = 1, . . . , ` do
20: num_visits← num_visits + I (a == v)
21: a← sample_neighbor(a, e)
22: break if a has no outgoing edges in S ∪ {e}
23: return num_visits/num_steps

24: procedure anomaly_score(edge e = (u, v, w, t))

25: visit_frac_before← visit_fraction(u, v, None)

26: visit_frac_after← visit_fraction(u, v, e)
27: return max(0, visit_frac_after − visit_frac_before)

6.4.2.1 Why RWR Relevance Score

First, RWR relevance score is holistic as it incorporates direct as well as indirect (k-hop) paths

between vertices while computing their proximity; hence, it is robust to noise and subsampling.

Second, it is a probability and thus is bounded in [0, 1] even though the edge weights may be

arbitrarily large; thus, the resulting anomaly scores are also bounded. Third, relevance score

is, in general, not symmetric and can capture situations where an edge u→v is expected while

v→u is not. Finally, from a practical standpoint, relevance scores can also be estimated fast,

using local random walks, which we describe next.

116

6.4.2.2 Fast Estimation through Local RandomWalks

Computing RWR relevance score directly using Equation (6.1) takes O (S) time per iterative

update, which scales linearly with the sample size. Instead, given an application-speci�c budget

N on anomaly scoring time, SedanScorer performsN short, local, random walks starting from

source u. The number of times v is visited in this process is used as the estimator ŝ (v | u;S)
for the RWR relevance score. This procedure helps decouple memory budget S from anomaly

scoring time and thus, allows us to maintain a larger sample without compromising speed.

Algorithm 5 provides the pseudocode of SedanScorer based on local random walks. It uses

the current sample of edges stored in a data structure A, which for now, can be considered as

an adjacency list. Given parameters N and α, visit_fraction() outputs ŝ (v | u;S ∪ {e}) by

performing N local random walks. Each time, a walk length ` is sampled based on the restart

probability α (line 16). Then, ` steps (possibly less if there are dead ends) of random walk

starting from source vertex u are taken, each time sampling a neighbor of the current vertex

proportional to edge weight in S∪{e} (line 17-22). The ratio of the number of times v is visited

in this process to the total walk length is returned as the estimate ŝ.

6.4.2.3 E�cient Data Structure

In Algorithm 5, A is any data structure that supports edge addition/deletion and neighbor sam-

pling. We could have naïvely used adjacency list implemented as nested hash tables and in-

curredO (1) cost for updates andO (d) for sampling where d is the vertex degree in the sample

(increases with S). However, note that (i) the sampling routine is used signi�cantly more often

than updates, (ii) updates tend to become less frequent as the stream progresses
3
. We exploit

these observations to speed up by using Alias method [Vos91].

Given an arbitrary discrete distribution with k outcomes, Alias method can produce a sam-

ple inO (1) time by incurring anO (k) preprocessing cost upfront. Since neighbor sampling is

equivalent to sampling from a discrete distribution, we propose to use a hash table of Lazy Alias

Tables (LATs), one LAT per vertex, as our data structure A. Assuming the LATs are up-to-date,

sample_neighbor() takes onlyO (1) time. When an edge is added to or removed from the sam-

ple, only the LATs of a�ected vertices have to be updated. Moreover, even these updates can be

done in a lazy fashion, i.e., only when we need to sample a neighbor of an a�ected vertex.

Note that, while computing ŝ (v | u;S ∪ {e}) in Equation (6.3), the edge e should not actu-

ally be inserted into the data structure – this would force unnecessary updates to LATs, incur-

ring a large overhead. See line 12 of Algorithm 5 for how to avoid this. Also, due to randomness

in the estimator ŝ, it is possible (although unlikely) to have visit_frac_after < visit_frac_before

in line 27, hence we return the maximum of this value or zero.

6.4.3 Extensions

We highlight possible extensions to SedanSpot, without detailing them in the interest of space.

First, SedanSpot can be easily extended to undirected (by symmetrizing the MPI measure in

Equation (6.3)) and bipartite settings (by allowing forward and backward jumps). Next, we can

3
Unless we bias SedanSampler to sample recent edges; see Section 6.4.3.

117

easily bias the rate-adjusted sample towards recent edges by modifying line 5 of Algorithm 4 to

incorporate edge recency. Finally, in principle, we can sample edges proportional to any mono-

tonically decreasing function of their rate, f(r(e)), to downsample bursts. Using f(x)=1/x
leads to the guarantee in Theorem 6.1, but other variants may work well depending on the

application.

6.5 Theoretical Analysis

Here, we analyze SedanSpot, proving desirable algorithmic (Section 6.5.1) and computational

(Section 6.5.2) properties. Relevant proofs are given in the appendix.

6.5.1 Algorithmic Analysis

First, we show that Algorithm 4 is indeed correct: it samples each edge with probability in-

versely proportional to its edge rate:

Lemma 6.1: Correctness of Algorithm 4

Algorithm 4 maintains a rate-adjusted sample S , as de�ned in De�nition 6.1, from stream

E.

Proof. Follows from Proposition 3 of [ES06]. �

Importantly, SedanSampler ensures that the number of sampled edges belonging to a given

time interval only depends on its duration and not on the number of edges occurring during

it. In the following, a time tick τ is said to be anchored if some edge occurred at time τ , i.e., ∃
edge e s.t. τ=t(e).

Theorem 6.1: Burst Resistance

Consider time ticks τ0=0 and τ1 ≤ τ2 . . .≤τK which are anchored. Let Hk be the set of

edges arriving in time interval Ik := (τk−1, τk] of duration `k = τk − τk−1. If S is the

rate-adjusted sample till time τK ,

Pr [e ∈ Hk | e ∈ S] = `k/
K∑
k=1

`k, ∀ k (6.4)

which is independent of |Hk|.

Proof. A sampled edge e can belong to Hk in |Hk| mutually exclusive ways. Hence, we have

Pr [e ∈ Hk | e ∈ S] =
∑

e′∈Hk Pr [e = e′ | e ∈ S], which can be simpli�ed using Bayes’ rule to

118

∑
e′∈Hk Pr [e = e′ ∧ e ∈ S] /Pr [e ∈ S] ∝

∑
e′∈Hk Pr [e′ ∈ S] since Pr [e ∈ S] is independent

of k.

Suppose γ1<γ2 . . . <γzk=τk are the anchored time ticks during interval Ik:=(τk−1, τk]. Let

γ0=τk−1 and Eγi be the set of edges occuring at γi. Then,

∑
e′∈Eγi

Pr [e′ ∈ S] ∝
∑

e′∈Eγi
1/r(e′) =

γi−γi−1. Thus, Pr [e ∈ Hk | e ∈ S] ∝
∑

e′∈Hk Pr [e′ ∈ S] =
∑zk

i=1 γi−γi−1 = τk−τk−1 = `k.

This proves the theorem. �

This is advantageous given the tendency of anomalous edges to occur as bursts of activity:

even though many edges occur in a small duration, rate-adjusted sampling ensures that only a

few of them are stored in the sample, as illustrated below.

Example 6.1

Consider a ‘normal’ process generating 1M edges over 100 hours followed by an attacker

producing 0.5M in 10 minutes. The expected number of anomalous edges in the sample

is 10/(100× 60 + 10) < 0.2%.

In contrast, the sample S ′ produced by Uniform Reservoir sampler (UR-Sampler), which

samples edges uniformly, i.e., Pr [e ∈ S ′] ∝ 1 ∀e, has 0.5M/1.5M = 33.3% anomalous edges in

expectation. The reduced fraction of anomalous edges in the rate-adjusted sample maintained

by SedanSampler translates to a more accurate model of normal behavior, which sets the stage

for better anomaly scoring via SedanScorer.

Observe from Equation (6.4) that, when the considered intervals are of the same duration,

i.e., `i = ` ∀ i, a sampled edge is equally likely to come from any of these intervals. In other

words, rate-adjusted sampling ensures equal representation of two time durations of equal

length in the sample (in expectation) irrespective of the common length of intervals `, i.e.,

simultaneously at all temporal granularities.

Next, we show that Algorithm 5 returns a principled estimator of the random walk with

restart relevance score (Equation (6.1)), in the sense that it is unbiased and consistent, as stated

below.

Theorem 6.2

ŝ (v | u;S) from Algorithm 5 is an unbiased and consistent estimator of the RWR relevance

score s (v | u;S).

Recall that RWR relevance score of v w.r.t. u is the steady state probability of being at (i.e.,

visiting) v while performing random walk with restart from u. Thus, it turns out to be the

limiting value of the visit fraction output by Algorithm 5 (as N→∞). The proof is straight-

forward.

119

6.5.2 Time and Space Complexity

SedanSpot satis�es the sublinear memory and constant time per edge requirements of Prob-

lem 6.1 as stated below.

Lemma 6.2: Constant Scoring Time per Edge

SedanSpot takes at mostO (N/α) time in expectation (usually lesser in practice) to com-

pute anomaly score of an edge (line 5, Algorithm 3).

Proof. O (N/α) comes from theN local random walks, each of expected lengthE [Geometric(α)] =
1/α (lines 16-22 of Algorithm 5). Each step of random walk takes O (1) due to constant-time

neighbor sampling via LAT. �

Lemma 6.3: Sublinear Memory Requirement

SedanSpot takes O (Sln |V|) memory to process each edge.

Proof. TheO (ln |V|) is a lower bound on the memory requirement, since each edge (including

vertex IDs) needs to be read. Thus, O (Sln |V|) space is needed to store LAT data structures

over the sample of S edges. �

In addition, we can show that updates of SedanSpot are fast, especially amortized over

the length of stream L, as the updates become less frequent as the stream progresses. In the

following, let davg be an upper bound on the average vertex degree in the sample and let Hn =∑n
i=1 i

−1
denote the sum of �rst n terms in the harmonic series. Further, let the edge rate be

bounded in [rmin, rmax]. Then,

Lemma 6.4: Fast Amortized Updates per Edge

SedanSpot takes at most O
(

lnS+davg
L
·
(
S + rmin

rmax
(HL −HS)

))
amortized time in expec-

tation for updates (lines 6-8, Algorithm 3).

Proof. For i > S, the probability of sampling the ith edge ei in the stream is given by pi =
r(ei)

−1/
∑i

j=1 r(ej)
−1 ≤ rmax/(i · rmin). The expected number of updates is S +

∑L
S+1 pi ≤

S + rmax/rmin

∑L
S+1 1/i, each update costingO (lnS) for sampling andO

(
davg
)

for scoring in

expectation (assuming no correlation between edge rate and the degrees of incident vertices).

Amortization completes the proof. �

120

Table 6.2: Precision of SedanSpot and baseline (RHSS) at di�erent cut-o� ranks k.
Bold signi�es highest value in each column and underline shows signi�cant di�er-

ences (p-value ≤ 0.01) w.r.t. baseline according to a two-sided micro-sign test [YL99].

precision@
Method 200K 400K 600K 800K 1000K 1200K 1400K 1600K 1800K

SedanSpot 1.00 0.97 0.93 0.89 0.85 0.83 0.81 0.80 0.79

RHSS 0.49 0.36 0.29 0.29 0.32 0.35 0.36 0.36 0.33

As Hn = lnn+ γ+O
(

1
n

)
where γ is the Euler-Mascheroni constant, the amortized update

time per edge remains small.

6.6 Experiments

We empirically evaluate the proposed SedanSpot on datasets where the anomalies are veri�-

able and/or interpretable. We �rst describe datasets and experimental setup.

6.6.1 Datasets

We shortlist three publicly-available real-world time-evolving graph datasets where the anoma-

lies can be veri�ed by comparing either against manually obtained ground truth or publicly-

available information. These are:

Darpa [LCF
+
99] dataset consists of network tra�c from 9484 source IPs to 23398 destina-

tion IPs over 87.7K minutes. There are ∼ 4.5M directed <srcIP, dstIP, 1, time> edges in total,

of which 60% are manually annotated as anomalous. They correspond to 89 network attacks

– such as denial of service or port scan – injected by domain experts. Despite this high pro-

portion, the attacks themselves occurred infrequently (but as bursts of activity) and originated

from a mix of IP addresses which either were solely dedicated to attacks, or more challeng-

ingly, attempted camou�age by participating in normal tra�c. This makes Darpa dataset the

perfect testbed for SedanSpot, which aims to detect precisely such anomalous bursts occurring

in sparse regions of the graph.

Enron [SA04] dataset consists of e-mail communications among the 151 employees of En-

ron company from May 1999 to April 2002, a period of three years surrounding the famous

Enron scandal. There are ∼50K directed <sender, receiver, 1, date> edges. Since ground truth

is not directly available, we verify anomalies by correlating their time stamps with real-world

events. We expect more edges to be �agged anomalous during periods of large internal (e.g.,

new CEO) or external (e.g., updates on lawsuit) changes which create (or result from) excite-

ment or turbulence among the employees.

121

Figure 6.3: SedanSpot achieves better recall and precision on Darpa dataset for all

cut-o� ranks k.

(a) (b) (c)

Figure 6.4: SedanSpot (a) scales linearly with the number of walks N , (b) scales sub-

linearly with 1/α, the inverse of random walk restart probability and (c) grows very

slowly with the sample size S.

Dblp [dbl14] is the collaboration network of authors of papers from DBLP computer science

bibliography. Each undirected edge <auth1, auth2, 1, pub_year> between two authors represents

a joint publication. For simplicity, we only consider papers published in 1991-2010 and retain

nodes (authors) who have at least 50 edges, �ltering out the remaining nodes (and correspond-

ing edges). This resulted in a graph containing around 55.5K authors and 3.7M coauthorships.

We expect anomalous edges to represent unlikely collaborations, e.g., authors from unrelated

�elds or di�erent geographical regions. We verify anomalies using the public pro�les of the

authors.

6.6.2 Experimental Setup

We implement both SedanSpot and the baseline in C++ and run experiments on MacOS High

Sierra with 2.7 GHz Intel Core i5 processor and 16 GB main memory.

122

Baseline: While there are two edge stream anomaly detection approaches in the literature

– GOutlier [AZY11] and RHSS [RHSS16] – we use only RHSS, which extends to weighted

and directed edges, as baseline. We extend the original algorithm (for undirected graphs; see

Section 6.2) to directed setting by maintaining separate sketches for in- and out- neighbor-

hoods of vertices. Using the recommended parameters δ=ε=0.001, we ended up with CountMin

sketches of width w=2719 and depth d=7. We use the negative likelihood of edge occurrence

probabilities as anomaly scores, giving equal importance to sample, preferential attachment

and homophily scores.

Evaluation Metrics: All the methods output an anomaly score per edge (higher is more

anomalous). Sorting the edges in descending order of their scores, we count the number of

edges ck �agged correctly as anomalous among the top k edges, for every cut-o� rank k ∈ N.

If C is the total number of ground truth anomalies, we compute: precision@k = ck/k and

recall@k = ck/C . We also summarize the overall accuracy using the AUC (Area under ROC

Curve) measure. All the above metrics lie in [0, 1] and the higher, the better. We also note the

running time (excluding IO) averaged over �ve runs.

Experimental Design: We design our experiments to answer: [Q1] Accuracy: How well

does SedanSpot detect anomalies compared to baselines? What is the trade-o� w.r.t. running

time? How does the accuracy vary with parameters S,N and α? [Q2] Scalability: How

does the running time of SedanSpot scale with input stream length L? What is the e�ect of

parameters N , α and S? [Q3] Discoveries: Does SedanSpot lead to interesting discoveries in

practice?

We now detail our experimental �ndings.

6.6.3 Q1. Accuracy

Table 6.2, Figure 6.2(a) and Figure 6.3 show precision, recall, accuracy and running time of all

methods on the labeled Darpa dataset, with N=100 walks, α=0.15 restart probability (the

recommended value [LM04]) and S=10K sample size.

Precision and Recall: Table 6.2 tabulates the precision@k of SedanSpot and RHSS at nine

cut-o� ranks k ∈ [20K, 18K]. Despite the use of randomization, the standard deviations in

results (shown in brackets) were low (≤0.02) indicating a fairly consistent performance across

multiple runs. We see that SedanSpot outperforms RHSS on all considered k values, achieving

100−215% (statistically signi�cant) improvements in precision. Further, a plot of precision vs.

recall for all cut-o� ranks (Figure 6.3) shows that SedanSpot (solid blue) lies completely above

the baseline (dashed red), indicating that the performance gains generalize to all cut-o� ranks

k.

Accuracy vs. RunningTime: Figure 6.2(a) plots the average accuracy (AUC) of each method

vs. its average running time (in minutes), over �ve runs. Error bars are omitted in this plot as the

standard deviations turned out to be very low. We see that SedanSpot achieves a much higher

123

accuracy (=0.63) compared to the baseline (=0.17), while also running the faster (8 mins vs. 24

mins for RHSS). This corresponds to a 270% accuracy improvement in 3× less processing time.

We �nd that the main overhead of RHSS is due to computation using pairwise independent

hash functions.

Accuracy vs. Parameters: We summarize our observations regarding the variation of accu-

racy with parameters on Darpa dataset below, omitting �gures in the interest of space. First,

the accuracy was robust (∼ 0.635) to the restart probability α ∈ [0.5, 0.11]. This is consistent

with the trend observed for page rank (closely related to random walks), where α has little ef-

fect on the top ranking webpages based on their page ranks [LM04]. Next, accuracy exhibited a

‘diminishing return’ behavior as sample size S was varied in [6K, 20K]. As SedanSpot stores

more edges, it better models normal behavior and thus accuracy increases. But the marginal

increase itself decreases: once the normal behavior is captured su�ciently well in the sample,

subsequent increase in S leads to little improvement. Finally, somewhat surprisingly, increas-

ing the number of walks N did not necessarily lead to higher accuracy. In fact, the accuracy

peaks around N=10 and then gradually starts decreasing. A similar pattern is observed for

tasks such as link prediction, where estimates of RWR relevance scores based on a few walks

often outperform their steady state values [LL10].

6.6.4 Q2. Scalability

Figure 6.2(b) and Figure 6.4 show how SedanSpot scales with the number of edges in the stream

(or stream length) L, number of walksN , random walk restart probability α and sample size S.

By default, we use L=0.5M,S=10K,N=100 and α=0.15. Running times are averaged over

�ve runs and error bars indicate standard deviations.

With Stream Length L: We vary the number of edges L in the input stream in eight loga-

rithmic steps from 20K to 2.56M . Figure 6.2b, plotting the variation of running time in log-log

scales, reveals a line of slope 1.0. This con�rms the linear scalability of SedanSpot w.r.t. input

stream length, thanks to its constant processing time per edge. Observe that SedanSpot pro-

cesses 2.56M edges in around 4 minutes and thus is very fast (a speed of about 10.1K edges

per second).

With #Random Walks N : Figure 6.4(a) plots the running time of SedanSpot against the

number of random walks N , as it is varied in [20, 160]. The points align well on a straight line,

indicating that SedanSpot scales linearly with N .

With Restart Probability α: Figure 6.4(b) plots the running time of SedanSpot against

1/α, where α, the restart probability, is varied in [1/2, 1/9]. The curve begins to �atten out

for high values of 1/α, suggesting that the running time scales sublinearly with 1/α. This is

natural given the �nite sample of edges that SedanSpot maintains: even though the expected

length of walks increases linearly with 1/α, many of these walks terminate early, resulting in

a sublinear dependence.

124

Table 6.3: Contributions of SedanSampler and SedanScorer to AUC gains

Sampler Scorer AUC

No sampling RHSS 0.17

UR-Sampler RHSS 0.17

SedanSampler RHSS 0.45

UR-Sampler SedanScorer 0.57

SedanSampler SedanScorer 0.63

With Sample Size S: Figure 6.4(c) shows how running time varies with sample size S in

[128, 16384] in log-log scales. The running time was small for low S due to premature termina-

tion of local random walks in a small sample of edges (many vertices did not have any outgoing

edges). However, the curve begins to �atten out towards the end, indicating that the running

time grows very slowly with sample size.

These �ndings are consistent with our analysis in Section 6.5.2.

6.6.5 Q3. Discoveries

We provide a detailed analysis of SedanSpot and baseline on the labeled Darpa dataset; in the

interest of space, we only focus on discoveries due to SedanSpot on the other datasets.

6.6.5.1 Darpa

Leveraging ground truth, we aim to understand why SedanSpot signi�cantly outperforms

RHSS on Darpa dataset. Recall that SedanSpot improves the state-of-the-art RHSS in two

ways: (i) rate-adjusted sampling and (ii) holistic scoring. To understand their relative contribu-

tions to the overall accuracy gains (Figure 6.3), we consider the three intermediate versions of

algorithms, combining UR-Sampler (based on Uniform Reservoir sampling) or SedanSampler

with RHSS (which originally maintains counts over the whole stream, with ‘no sampling’), and

also using UR-Sampler with SedanScorer. Figure 6.5(a) summarizes the results.

We see that using RHSS as scorer gives the same AUC with or without Uniform Reservoir

sampling. This is because UR-Sampler, selecting each edge with equal probability, ‘preserves’

the fraction of anomalous edges while sampling, thus leading to similar results. Switching to

SedanSampler improves AUC by 165%; we explain this with the help of Figure 6.5(b) and

Figure 6.5(c). Figure 6.5(b), plotting the cumulative count of normal (non-attack, solid blue) and

anomalous (attack, dashed red) edges over time, contrasts the smooth increase of normal edges

to the step-like behavior of red curve which results from the bursty nature of network attacks.

SedanSampler exploits this by performing rate-adjusted sampling which downsamples edges

from bursty periods of time and thus signi�cantly decreases the fraction of anomalous edges

(‘corruption’) in the sample, as shown in solid blue curve of Figure 6.5(c) (while the dashed red

curve of UR-Sampler stabilizes around 0.6, which is exactly the fraction of anomalous edges

in this dataset). The decreased ‘sample corruption’ �nally paves the way to better anomaly

scoring based on the sample.

125

(a) Steps in red curve show ground truth anomalous edges occur in bursts.

(b) SedanSampler achieves lower sample ‘corruption’ by rate-adjusting.

Figure 6.5: Anomaly detection in Darpa dataset

Table 6.4: SedanSpot detects network attacks with high precision

Name % in top 0.2M Description

smurf/
smurfttl

82.45% DoS attack using ICMP echo requests through inter-

mediaries

neptune/
nep-
tunettl

13.06% SYN �ood due to excess partially-open connections

(over�ow)

satan 2.36% Gathers info on hosts by checking vulnerabilities

like �nger, ftp, nfs

ipsweep/
portsweep

0.74% surveillance sweep to determine hosts/ports listen-

ing on a network

teardrop 0.45% DoS attack due to improper handling of overlapping

IP fragments

apache2/
back

0.27% DoS attack against Apache web server where re-

quests have many http headers or front slashes

others 0.58% e.g., warez, rootkit, nmap
normal 0.09% incorrectly �agged normal tra�c

126

Figure 6.6: Anomaly detection in Enron dataset

Using SedanScorer over the baseline RHSS scoring function always helps, regardless of

the sampling algorithm employed, as seen from the improved accuracy values in Figure 6.5(a)

(0.17→0.57 with UR-Sampler, 0.45→0.63 with SedanSampler). We attribute this to the holis-

tic edge anomaly scoring by SedanScorer based on the whole (sampled) graph, as opposed to

RHSS which considers only the local neighborhood of the edge. Overall, using SedanScorer

with SedanSampler (i.e., SedanSpot) performs the best.

Figure 6.5(d) lists the network attacks detected by SedanSpot among the top 0.2M anoma-

lous edges. As shown, most �agged edges belonged to smurf, neptune, satan or ip-
sweep attacks, while less than 1% were false positives. In contrast, among the top 0.2M
anomalous edges detected by RHSS, 38.6% were smurf, 4.5% were ipsweep and 3.6% be-

longed to other attacks. Notably, over 53.3% of �agged edges were false positives, which is

unacceptable in many applications, especially network intrusion detection [SP10].

Somewhat surprisingly, RHSS did not detect any edge from neptune attack – the largest

attack in Darpa dataset, consisting of 2.1M edges (=46% of total) and recurring multiple times

– as an anomaly. However, this is easily explained: following the �rst occurrence of neptune
attack, RHSS increments corresponding edge counts and vertex degrees; thus subsequent oc-

currences of neptune edges, which now have been observed before and connect high degree

vertices, are �agged non-anomalous. On the other hand, the rate-adjusted sampling proce-

dure of SedanSpot gives very low priority to neptune edges, which not only decreases their

probability of being included in the sample, but also ensures that they are easily replaced even

if they have been sampled, as stream progresses. Thus, SedanSpot successfully detects 13%
neptune edges among its top 0.2M .

6.6.5.2 Enron

Figure 6.6 depicts the anomaly detection results on Enron dataset using N=50 walks, α=0.15
restart probability and S=2K edges in sample. The inset, plotting the distribution of anomaly

scores, showcases a large separation in scores for anomalies and non-anomalies, which is de-

127

sirable. Accordingly, we use the threshold marked in red (=0.76) to �ag anomalies
4
. The rest

of the �gure plots the temporal distribution of �agged edges (aggregated weekly), which we

verify by correlating with the publicly-available Enron time line
5
.

The red arrows in Figure 6.6 mark the top �ve non-contiguous periods of time having the

highest number of anomalous edges. As expected, these periods coincide well with notable

events surrounding the Enron scandal, creating a �ood of unusual e-mails from (even low-

level) employees: (1) Dec 2000: Skilling announced as CEO. (2) Jun 2001: The California energy

crisis ends. (3) Aug 2001: Skilling announces resignation. Lay named CEO. (4) Oct-Nov 2001:

Fastow ousted. A formal investigation against Enron is launched. Stocks crumble. Enron �les

for bankruptcy. (5) Jan-Feb 2002: Cooper takes over as CEO after Lay resigns. Fastow, Kopper,

Skilling and Watson (whistle-blower) testify before Congress.

6.6.5.3 Dblp

We run SedanSpot on Dblp with S=200K , α=0.15 and N=1000. As shown below with the

help of anecdotal evidence, the top anomalous edges indeed represent unexpected or unlikely

collaborations:

• Alex Galis, Robert Szabo (2004): This is due a joint invited paper at an IEEE MATA 2004

workshop, which marked the beginning of an unexpected collaboration between authors

of di�erent countries, namely, Galis from Univ. College London (UK) and Szabo from

Budapest Univ. of Technology and Economics (Hungary).

• Nikol Rummel, Nikolaos Avouris (2007): This is the result of an interdisciplinary paper

about Computer Supported Collaborative Learning, requiring collaboration between au-

thors belonging to di�erent �elds (Psychology, ECE).

• Ryan Thibodeau, Mark Carrington (2010): This is the product of a rare massive collabora-

tion e�ort among 44 authors across seven institutions, including Thibodeau from Univ. of

Georgia, USA and Carrington from Univ. of Cambridge, UK. This marks their only joint

publication.

In summary, our experiments demonstrate that SedanSpot outperforms state-of-the-art in

terms of both speed and accuracy. The detected anomalies also carry practical signi�cance, e.g.,

as security threats in network tra�c.

6.7 Conclusion

We considered the problem of near real-time anomaly detection given a stream of edges from

a/an (un)weighted (un)directed time-evolving graph, where anomalies are edges occurring as

spikes or bursts of activity and connecting parts of graph which are otherwise disconnected.

SedanSpot exploited these observations in sublinear memory by (i) performing rate-adjusted

sampling which downsamples edges from bursty periods of time and (ii) using a holistic random

4
In practice, one can use the median µ̂ and inter-quantile range σ̂ of past scores to �ag anomalies, in an online

manner, when the score exceeds µ̂+ 3σ̂.

5http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html

128

http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html

walk based edge anomaly scoring function to compare an incoming edge with the whole (sam-

pled) graph. Experiments on real-world datasets demonstrated the usefulness of our anomaly

de�nition and e�cacy of the proposed approach in several scenarios. Future work could ex-

plore detecting other kinds of anomalies, e.g., low temperature or periodic attacks, under the

computational constraints of the streaming edge setting.

129

130

Chapter 7

SmokeAlarm: Early Warning of

User-Input Anomalies

Chapter based on work that appeared at ICDM 2019 [EFMN19] [PDF].

How do can early warn against an impending student drop out or an adverse health con-

dition in near real-time? How can we leverage recent interventions such as tutoring or

medicines to early warn more accurately? More challengingly, how do we learn to early

warn from data that is peppered with such interventions? Early warnings are pivotal for

avoiding long-term problems in healthcare, education, mechanical failures, cloud and dis-

aster management. To e�ectively aid human decision making in these high-stakes contexts,

interpretability of the method producing warnings is a key concern.

We consider the problem of learning to interpretably early warn from labeled data

tainted by interventions. Our contributions are: (1) Principles: We lay out three characteristics–

dominance, precedence and intervention-awareness–of an ideal early warning system. (2) Al-

gorithm: In line with these, we propose SmokeAlarm which learns from past labeled data

containing interventions o�ine and can produce early warnings online. (3) Interpretability:

SmokeAlarm learns state-based progression models in the presence and absence of inter-

ventions, which are “bi-inspectable” by the human decision maker. Extensive experiments

on synthetic and real-world data demonstrate that SmokeAlarm outperforms baselines (by

16 − 38% in terms of AUC, with an average lead time of 6.1 hours before the onset of

septic shock), while scaling linearly with data size and also leading to intuitive, interesting

discoveries in practice.

7.1 Introduction

Early warnings have serious implications in a variety of domains. In medicine, warning of a

forthcoming epileptic seizure or septic shock event can be life-altering. In data centers, warn-

ing of a pending server crash can alert cloud system administrators of downstream problems.

Interventions can come to the rescue – particularly if they are delivered at an opportune mo-

131

http://www.cs.cmu.edu/~deswaran/papers/icdm19-smokealarm.pdf

ment. Pulling over to the side of the road before a seizure can prevent a car accident; antibiotics

can avert organ failure; counseling a student may prevent their drop out.

Consider how machine learning (ML) algorithms trained on historical data can automati-

cally early warn. The classical solution is to train an algorithm with labels “fast-forwarded” in

time. For instance, if the goal is to predict system failure k time steps in advance, then label a

time step t with what happened at t+k. However, as noted by [PNMS13], if interventions ad-

ministered in the intervening duration averted an event, the observed labels underestimate the

true early warning score. If the intervention aids an event, labels may overestimate the score.

Thus, if interventions are not handled correctly, counter-intuitive results may ensue, e.g., learn-

ing that asthma decreases the risk of pneumonia [CLG
+

15], when it was the aggressive care

that asthma patients received that improved outcomes.

How can an ML algorithm account for interventions? [DS16] presents a compelling solu-

tion: physicians pairwise compare patient trajectories and label which time point has a higher

severity score. A model trained to maximally agree with these pairwise labels then forms the ba-

sis for early warning. However, asking physicians to label trajectories ex post facto is laborious

and will not scale. Moreover, doctors may themselves be tainted by interventions: a condition

that can be treated e�ectively may be perceived less severe, and thus, may arti�cially de�ate

the early warning score. To cope with interventions, [DS16] clips o� the su�x of a time series

after the �rst event-related intervention is administered. However, following an intervention,

there is still an abundance of data for training. In some datasets, e.g., from ICUs, the prepon-

derance of data may be post-intervention. Further, even after an event-related intervention,

early warnings continue to be bene�cial since the �rst intervention may not be e�ective. We

consider how past data, peppered with interventions, can be used to learn intervention-aware

early warning scores.

To e�ectively aid human decision making in high-stakes domains such as healthcare, in-

terpretability of the warnings is a key concern. It is important for validating the model pre-

deployment and also for providing an evidence-based, human understandable explanation for

its score. As pointed out by [Lip18], interpretability is not a monolithic concept; in this work, we

seek an interpretable model which “can be readily presented to the user with visual or textual

artifacts” [RSG16]. See Figure 7.1(b).

The approach we take in this chapter is to �rst learn a function that predicts the probabil-

ity of a future event under various future intervention regimens and then suitably time-decay

this function to produce an early warning score. Speci�cally, we take the stochastic and pro-

longed e�ect of interventions into account to explicitly model the evolution of trajectories in

the presence and absence of their in�uence. Concretely, our contributions are:

1. Principles: We state three intuitive characteristics of an ideal early warning system:

producing high early warning scores when a future event is more likely (dominance),

or is expected to occur sooner (precedence) and not presupposing that a speci�c future

intervention will be administered (intervention-awareness). See Section 7.3.

2. Algorithm: We propose SmokeAlarm for learning to early warn from past labeled data

tainted by interventions. SmokeAlarm learns o�ine, produces early warning scores on-

line by ‘watching’ an evolving trajectory, and provably obeys all three principles. See

Section 7.4.

132

0.00 0.25 0.50 0.75 1.00
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

is
io

n

CoxT2E (AUC = 0.84)
LinearFLA (AUC = 0.71)
LinearVLA (AUC = 0.71)
SmokeAlarm (AUC = 0.98)

late
warning
(sick)

early warning
(escalating)

no warning
(healthy)

late
warning
(sick)

early warning
(escalating)

no warning
(healthy)

(a) Precision, Recall, AUC (b) Inferred SmokeAlarm Model

Figure 7.1: SmokeAlarm is accurate and interpretable: (a) SmokeAlarm outperforms

baselines on all metrics. (b) SmokeAlarm model with states (numbered vertices) and

early warning scores (vertex colors) shows that the method alarms when the patient

already has septic shock (late warning; red region), and does not warn when they are

healthy (green region). Importantly, it warns during the escalation to septic shock

(orange area), which is the opportune moment for intervention. SmokeAlarm also

learns that vasopressor interventions tend to increase MAP as indicated by dark, thick

rightward arrows in (b)-right; this results in decreased early warning scores of low-

MAP states {1, 7, 17}.

3. Interpretability: A key novelty of SmokeAlarm is its “bi-inspectability”, which is to

say that the model can be visualized both in the presence and in the absence of an in-

tervention. The probability of transitions between states can be compared depending

on whether the intervention was administered. For example, in Figure 7.1b, we see that

a vasopressor intervention is more likely to increase blood pressure (arrows are bolder

pointing to the right). Also, the early warning score can be compared with and without

an intervention: the deep red color of a sick state turns to a lighter red in the presence of

an intervention.

A comprehensive battery of experiments is presented in Section 7.5. Synthetic settings are

valuable because we can simulate what happens when sick patients are left untreated, with-

out incurring the associated human cost. Experiments on real-world ICU data reveal that

SmokeAlarm is better able to early warn of septic shock than past approaches, outperform-

ing by 16 − 38% in terms of AUC (see Figure 7.1(a)) with an average lead time of 6.1 hours

before the onset of septic shock.

We primarily use examples from a healthcare setting to motivate and explain our ideas.

However, we note that the ideas and algorithm presented in the chapter can be more broadly

applied, e.g., early warning against student drop out with tutoring as interventions, early warn-

ing against mechanical failures with part replacements or repairs as interventions, etc.

133

Table 7.1: Comparison of Smoke Alarm to Prior Work on Early Warning.

Desiderata

Method

Linear Linear Non-

T
h
i
s
w
o
r
k

Violates Violates Linear

All Some [FHH
+
17]

Principles Principles [CSSS17]

[NHR
+
18,

HHPS15]

[DS16] [?]

P1. Dominance 4

P2. Precedence 4

P3. Intervention-Aware 4 4

Interpretable Model 4 4 4

7.2 Related Work

Time series data has been well-studied in the data mining community for event detection

[WH98], anomaly detection [KLFH06], similarity search [YZU
+

18], visualization [GLL
+

17] and

more. [RLG
+

05] provides a comprehensive treatment. Here, we only survey work most relevant

to intervention-aware and interpretable early warning.

Early Prediction: Prior work has considered early warning against various adverse events

including sepsis [FHH
+

17, NHR
+

18], septic shock [HHPS15], heart failure [CSSS17], etc. In

general, these approaches do not account for confounding interventions which “can mask the

ground truth labels needed to train and evaluate a prediction system” [PNMS13], as we de-

scribed earlier in Section 7.1.

Handling Interventions: To cope with the counter-intuitive results due to intervention con-

founding, [CLG
+

15] advocates for intelligible models amenable to repairing by domain experts,

e.g., by deleting incorrect rules such as asthma reduces the risk of pneumonia. [DS16] proposes

a human-in-the-loop solution by seeking expert labels for pairwise comparisons of time points.

In contrast, we focus on solutions requiring minimal human labeling and post-processing ef-

forts. More recently, [SS17] uses Counterfactual Gaussian Processes to forecast a single real-

valued measurement in the presence of interventions. As such [SS17] does not address the early

warning problem and scales poorly with input size due to the use of Gaussian Processes.

Progression Modeling: State-based methods can interpretably model the progression of

trajectories. [WSW14] infers a continuous-time Markov model to stitch together partial dis-

ease trajectories into a global progression model for chronic obstructive pulmonary disease.

[YML
+

14] learns a probabilistic model to estimate the stages of chronic kidney disease, among

other applications. Both methods are unsupervised, ignore interventions and do not early

warn. We also employ a state-based model, but explicitly account for interventions, illustrate

bi-inspectability, and capitalize on labels to early warn.

134

time into the future

fu
tu

re
 e

ve
nt

 p
ro

ba
bi

lit
y

1
<latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit>

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

⌧1
<latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit>

⌧2
<latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit>

⌧
<latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit>

(now)

f1
<latexit sha1_base64="J51+RLKp13KuhPBKjt0hpAV4QeY=">AAAB63icZVBNSwMxEJ2tX7V+VT16CZaCp7JbBT0WvXisaD+gXUo2zbahSXZJskJZ+hM8CQri1V/kyX9jul3Etg8GHu/NMDMviDnTxnV/nMLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7uZ+55kqzSL5ZKYx9QUeSRYygo2VHsOBNyhX3JqbAa0TLycVyNEclL/7w4gkgkpDONa657mx8VOsDCOczkr9RNMYkwke0Z6lEguq/TQ7dYaqVhmiMFK2pEGZ+n8ixULrqQhsp8BmrFe9ufjnVZdWmfDGT5mME0MlWWwKE45MhOaPoyFTlBg+tQQTxeyxiIyxwsTYeEo2BW/153XSrte8y1r94arSuM3zKMIZnMMFeHANDbiHJrSAwAhe4A3eHeG8Oh/O56K14OQzp7AE5+sXcKWNvQ==</latexit>

f2
<latexit sha1_base64="UratfCRTyi9v1+8tA8V+k6LXIV4=">AAAB63icZVBNSwMxEJ2tX7V+VT16CZaCp7JbBT0WvXisaD+gXUo2zbahSXZJskJZ+hM8CQri1V/kyX9jul3Etg8GHu/NMDMviDnTxnV/nMLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7uZ+55kqzSL5ZKYx9QUeSRYygo2VHsNBfVCuuDU3A1onXk4qkKM5KH/3hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU+2l26gxVrTJEYaRsSYMy9f9EioXWUxHYToHNWK96c/HPqy6tMuGNnzIZJ4ZKstgUJhyZCM0fR0OmKDF8agkmitljERljhYmx8ZRsCt7qz+ukXa95l7X6w1WlcZvnUYQzOIcL8OAaGnAPTWgBgRG8wBu8O8J5dT6cz0VrwclnTmEJztcvciqNvg==</latexit>

1
<latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit>

�
<latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit>

�
<latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit>

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

time into the future
⌧1

<latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit>

⌧2
<latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit>

⌧
<latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit>

fu
tu

re
 e

ve
nt

 p
ro

ba
bi

lit
y

(now)

f1
<latexit sha1_base64="J51+RLKp13KuhPBKjt0hpAV4QeY=">AAAB63icZVBNSwMxEJ2tX7V+VT16CZaCp7JbBT0WvXisaD+gXUo2zbahSXZJskJZ+hM8CQri1V/kyX9jul3Etg8GHu/NMDMviDnTxnV/nMLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7uZ+55kqzSL5ZKYx9QUeSRYygo2VHsOBNyhX3JqbAa0TLycVyNEclL/7w4gkgkpDONa657mx8VOsDCOczkr9RNMYkwke0Z6lEguq/TQ7dYaqVhmiMFK2pEGZ+n8ixULrqQhsp8BmrFe9ufjnVZdWmfDGT5mME0MlWWwKE45MhOaPoyFTlBg+tQQTxeyxiIyxwsTYeEo2BW/153XSrte8y1r94arSuM3zKMIZnMMFeHANDbiHJrSAwAhe4A3eHeG8Oh/O56K14OQzp7AE5+sXcKWNvQ==</latexit>

f2
<latexit sha1_base64="UratfCRTyi9v1+8tA8V+k6LXIV4=">AAAB63icZVBNSwMxEJ2tX7V+VT16CZaCp7JbBT0WvXisaD+gXUo2zbahSXZJskJZ+hM8CQri1V/kyX9jul3Etg8GHu/NMDMviDnTxnV/nMLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7uZ+55kqzSL5ZKYx9QUeSRYygo2VHsNBfVCuuDU3A1onXk4qkKM5KH/3hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU+2l26gxVrTJEYaRsSYMy9f9EioXWUxHYToHNWK96c/HPqy6tMuGNnzIZJ4ZKstgUJhyZCM0fR0OmKDF8agkmitljERljhYmx8ZRsCt7qz+ukXa95l7X6w1WlcZvnUYQzOIcL8OAaGnAPTWgBgRG8wBu8O8J5dT6cz0VrwclnTmEJztcvciqNvg==</latexit>

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

time into the future
⌧1

<latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit>

⌧2
<latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit>

⌧
<latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit>

cu
m

ul
at

iv
e

fu
tu

re
 e

ve
nt

pr

ob
ab

ili
ty

�
<latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit>

�
<latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit>

(now)

F2
<latexit sha1_base64="iQPzyUBHtMqbJxRKtDnLKII9gUQ=">AAAB63icZVBNSwMxEJ2tX7V+VT16CZaCp7JbC3osCuKxov2AdinZNNuGJtklyQpl6U/wJCiIV3+RJ/+NabuIbR8MPN6bYWZeEHOmjev+OLmNza3tnfxuYW//4PCoeHzS0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY38789jNVmkXyyUxi6gs8lCxkBBsrPd71q/1iya24c6B14mWkBBka/eJ3bxCRRFBpCMdadz03Nn6KlWGE02mhl2gaYzLGQ9q1VGJBtZ/OT52islUGKIyULWnQXP0/kWKh9UQEtlNgM9Kr3kz888pLq0x47adMxomhkiw2hQlHJkKzx9GAKUoMn1iCiWL2WERGWGFibDwFm4K3+vM6aVUr3mWl+lAr1W+yPPJwBudwAR5cQR3uoQFNIDCEF3iDd0c4r86H87lozTnZzCkswfn6BUFKjZ4=</latexit>

F1
<latexit sha1_base64="vA89CKCR4/VFdx8oj7WmtBlKA8k=">AAAB63icZVBNSwMxEJ2tX7V+VT16CZaCp7JbC3osCuKxov2AdinZNNuGJtklyQpl6U/wJCiIV3+RJ/+NabuIbR8MPN6bYWZeEHOmjev+OLmNza3tnfxuYW//4PCoeHzS0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY38789jNVmkXyyUxi6gs8lCxkBBsrPd71vX6x5FbcOdA68TJSggyNfvG7N4hIIqg0hGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKrGg2k/np05R2SoDFEbKljRorv6fSLHQeiIC2ymwGelVbyb+eeWlVSa89lMm48RQSRabwoQjE6HZ42jAFCWGTyzBRDF7LCIjrDAxNp6CTcFb/XmdtKoV77JSfaiV6jdZHnk4g3O4AA+uoA730IAmEBjCC7zBuyOcV+fD+Vy05pxs5hSW4Hz9Aj/FjZ0=</latexit>

(a) (b) (c)

Figure 7.2: Principle of dominance: (a) The trajectory T1 having a higher likelihood of

event in the future and hence a dominating future event probability function f1 (solid

line) should have a higher warning score. Principle of precedence: (b) The trajectory

T1 expected to have an event sooner and hence a dominating cumulative future event

probability function F1 in (c) should have a higher warning score.

Other Related Work: [SBB
+

09] uses di�erential equations to model the dynamics of a sys-

tem and then exploits regime shifts such as a critical slowing down to early warn. As such, they

do not learn from data. Reinforcement learning [SB18] can be used to learn optimal interven-

tion policies, e.g., for sepsis [RKC
+

17]. However, our focus is on a related but di�erent problem

of producing credible early warning scores to aid the human decision maker.

As summarized in Table 7.1, SmokeAlarm compares favorably to prior approaches which

early warn: the scores are learned with minimal human e�ort by an interpretable model which

follows all principles of an ideal early warning system.

7.3 Preliminaries and Principles

Let T be a set of trajectories where each trajectory T ∈ T consists of measurements xt, inter-

vention yt and event label `t observed at discrete time steps t=1, 2, . . . , T . Each measurement

is a vector xt=(xt1, . . . , xtM) of recorded values for M measurement types, each taking either

real (e.g., temperature) or categorical values (e.g., eye color). Each label `t is binary with 1 de-

noting an event occurrence. The values for some measurements and labels may be missing, but

the interventions are assumed to be fully observed. We consider a single intervention type (e.g.,

aspirin) and let each yt ∈ {0, 1, . . . , Y } denote the quantity of intervention given at t where Y
is the maximum permissible dose. Handling multiple intervention types is left to future work.

Denote using x:t and y:t the measurements and interventions observed upto (and including)

time t. Similarly, let yt+1: denote the interventions after time t, i.e., t+1 onward. Given a tra-

jectory T =(x:t,y:t) observed until time t, our goal in this work is to produce an early warning

scorew(T) = w(x:t,y:t) as a scalar re�ecting how soon and likely an event occurrence is, when

not disturbed by future interventions. The rest of this section formalizes the above intuition as

principles. To do so, we will need the following de�nitions:

135

De�nition 7.1: Intervention-Free Future

A trajectory T = (x:t,y:t) is said to have an intervention-free future i� no intervention is

given after time t, i.e., yt+1: = 0.

De�nition 7.2: Future Event Probability Function

A future event probability function f :Z≥0 → [0, 1] maps a given τ≥0 to the probability of

an event τ steps into the future.

De�nition 7.3: Dominance and Strict Dominance

For functions g1, g2 : D → R where D is a countable set, g1 is said to dominate g2 i�

g1(z) ≥ g2(z) ∀ z ∈ D and is denoted as g1 ≥ g2. Further, g1 is said to strictly dominate g2

i� g1 ≥ g2 and ∃ D′ ⊆ D for which g1(z) > g2(z) ∀ z ∈ D′. Strict dominance is denoted

as g1 > g2.

7.3.1 Principles of an Ideal Early Warning System

Let T1 and T2 be a pair of trajectories with intervention-free futures and future event probability

functions f1 and f2 respectively. De�ne cumulative future event probability functions F1(τ) =∑τ
τ ′=0 f1(τ ′) and F2(τ) =

∑τ
τ ′=0 f2(τ ′).

Problem 7.1 states that the greater the chances of an event in the future, the higher the early

warning score should be.

Principle 7.1: Dominance

Given a pair of trajectories with intervention-free futures, an ideal early warning system

gives a (strictly) higher score to the trajectory having a (strictly) dominating future event

probability function.

f1 ≥ f2 =⇒ w(T1) ≥ w(T2); f1 > f2 =⇒ w(T1) > w(T2) (7.1)

The next principle states that the sooner an event is expected in the future, the higher should

be the early warning score.

136

Principle 7.2: Precedence

Given a pair of trajectories with intervention-free futures, an ideal early warning system

gives a (strictly) higher score to the trajectory having a (strictly) dominating cumulative

future event probability function.

F1 ≥ F2 =⇒ w(T1) ≥ w(T2);F1 > F2 =⇒ w(T1) > w(T2) (7.2)

Figure 7.2 shows trajectories T1 and T2 with future event probability functions f1 (solid) and

f2 (dashed) di�ering only in [τ1, τ2]. In Figure 7.2a, f1 strictly dominates f2 in [τ1, τ2], encoding

a greater event likelihood. In Figure 7.2b, neither curve dominates the other; rather, the event

probabilities are swapped in time, with f1 predicting an event sooner than f2. In both cases, the

aforementioned principles require T1 to have a strictly higher early warning score. Observe how

the temporal precedence relation between f1 and f2 is captured by their cumulative future event

probability functions F1 and F2 (Figure 7.2c). Also, note that dominance implies precedence,

but not vice versa.

The last principle addresses how an ideal early warning system should consider interven-

tions.

Principle 7.3: Intervention-Awareness

The score given by an ideal early warning system is independent of any anticipated future

interventions. An ideal early warning system presupposes that no interventions will be

given in the future.

w(x:t,y:t) = w(x:t,y:t,yt+1: = 0) (7.3)

That is, the early warning score should not be boosted or lowered under the pretext that

certain interventions will be given in the future. This is important as an agent may change

how/when they administer interventions in response to the early warning system. For example,

a system assuming that patients will be treated may optimistically not alert a caretaker, who

relies on the system alerts to administer treatment.

7.3.2 Prior Works Violate Principles

Consider three ‘label functions’ that prior approaches typically employ an ML algorithm to

predict: (a) �xed look ahead (FLA; [CSSS17]): event occurrence exactly after τ∗∈N time steps;

(b) variable look ahead (VLA; [FHH
+

17]): event occurrence within τ∗ time steps; (c) time to

event (T2E; [HHPS15], [NHR
+

18]): a monotonically decreasing function of the time until next

event.

Approaches predicting FLA, VLA and T2E label functions at time t using past observations

(x:t ,y:t) violate all three principles of an ideal early warning system.

As argued in Section 7.1 and also by [PNMS13], predicting any function of the future is

intervention-unaware unless intermediate interventions are accounted for; thus Principle 3 is

137

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

1
<latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit>

⌧
<latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit>

earthquakes at L1
and L2 begin

simultaneously

earthquake at L1
lasts longer than

that at L2

�
<latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit>

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

pr
ob

ab
ili

ty
 o

f e
ar

th
qu

ak
e

(now)
⌧1

<latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit>

⌧2
<latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit>

time into the future time into the future

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

1
<latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit><latexit sha1_base64="u1D6YNwx7surnzfNfQthsnT9ZJ4=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis1vUG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv464zg</latexit>

�
<latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit>

�
<latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit><latexit sha1_base64="ORaBVwXE/5rxe27STqc0CkdKqm0=">AAAB7nicZVBNS8NAEN3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWw203btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Bm1ErB5xkoAfsaESA8EZWqnVC0Ei65crbs2dg64TLycVkqPRL3/3wpinESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQupYqFoHxs/m1U1q1SkgHsbalkM7V/xMZi4yZRIHtjBiOzKo3E/+86tIqHNz4mVBJiqD4YtMglRRjOvudhkIDRzmxhHEt7LGUj5hmHG1CJZuCt/rzOmld1jzLH64q9ds8jyI5I+fkgnjkmtTJPWmQJuHkibyQN/LuJM6r8+F8LloLTj5zSpbgfP0CEiOPRw==</latexit>

both S1
and S2 fail

server S1
fails

server S2
fails

0
<latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit><latexit sha1_base64="OxyCmiTPiimuQIY896aR0gamn0k=">AAAB6XicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48t2A9oQ9lsJ+3SzSbsboQS+gs8CQri1Z/kyX/jtg1i2wcDj/dmmJkXJIJr47o/TmFre2d3r7hfOjg8Oj4pn561dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjB5mPudZ1Sax/LJTBP0IzqSPOSMGis13UG54tbcBcgm8XJSgRyNQfm7P4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD1LJY1Q+9ni0BmpWmVIwljZkoYs1P8TGY20nkaB7YyoGet1by7+edWVVSa88zMuk9SgZMtNYSqIicn8bTLkCpkRU0soU9weS9iYKsqMDadkU/DWf94k7euaZ3nzplK/z/MowgVcwhV4cAt1eIQGtIABwgu8wbszcV6dD+dz2Vpw8plzWIHz9Qv3Zozf</latexit>

(now)
⌧1

<latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit><latexit sha1_base64="iblxFOohm62E9uxearQNfH8H99g=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q+eBAXx6v/x5L9x2wax7YOBx3szzMwLEikMuu6PU9jY3NreKe6W9vYPDo/KxyctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7k2IlaPOEm4H9GhEqFgFK3U6iFN+16/XHFr7hxknXg5qUCORr/83RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTUrXKgISxtqWQzNX/ExmNjJlEge2MKI7MqjcT/7zq0ioMb/xMqCRFrthiU5hKgjGZ/U4GQnOGcmIJZVrYYwkbUU0Z2oRKNgVv9ed10rqseZY/XFXqt3keRTiDc7gAD66hDvfQgCYweIIXeIN3J3FenQ/nc9FacPKZU1iC8/ULyVWPFw==</latexit>

⌧2
<latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit><latexit sha1_base64="goyKOC387poAZoPI+tCggX1vfK8=">AAAB7nicZVBNS8NAEJ3Ur1q/qh69LJaCp5IUQY9FLx4r2A9oQ9lsN+3azSbsToQS+h88CQri1f/jyX/jtg1i7YOBx3szzMwLEikMuu63U9jY3NreKe6W9vYPDo/KxydtE6ea8RaLZay7ATVcCsVbKFDybqI5jQLJO8Hkdu53nrg2IlYPOE24H9GREqFgFK3U7iNNB/VBueLW3AXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6CfUY2CST4r9VPDE8omdMR7lioaceNni2tnpGqVIQljbUshWah/JzIaGTONAtsZURyb/95c/PWqK6swvPYzoZIUuWLLTWEqCcZk/jsZCs0ZyqkllGlhjyVsTDVlaBMq2RS8/z+vk3a95ll+f1lp3OR5FOEMzuECPLiCBtxBE1rA4BGe4RXenMR5cd6dj2VrwclnTmEFzucPytqPGA==</latexit>

⌧
<latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit><latexit sha1_base64="q7W1R1FVjTirOPDcuG1fCRrjaXk=">AAAB7HicZVBNS8NAEJ3Ur1q/qh69LJaCp5KIoMeiF48V7Ae0oWy2m3bpZhN2J0IJ/QueBAXx6h/y5L9x0wax9sHA470ZZuYFiRQGXffbKW1sbm3vlHcre/sHh0fV45OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiNUjzhLuR3SsRCgYxVwaIE2H1ZrbcBcg68QrSA0KtIbVr8EoZmnEFTJJjel7boJ+RjUKJvm8MkgNTyib0jHvW6poxI2fLW6dk7pVRiSMtS2FZKH+nchoZMwsCmxnRHFi/nu5+OvVV1ZheONnQiUpcsWWm8JUEoxJ/jkZCc0ZypkllGlhjyVsQjVlaPOp2BS8/z+vk85lw7P84arWvC3yKMMZnMMFeHANTbiHFrSBwQSe4RXeHOW8OO/Ox7K15BQzp7AC5/MHoPOOcw==</latexit>

pr
ob

ab
ili

ty
 o

f s
er

ve
r f

ai
lu

re

(a) Short vs. long earthquake (b) Early vs. late server failure

with the same onset time recurrence of same duration

Figure 7.3: (a) The longer earthquake atL1 has a strictly dominating future event prob-

ability function. (b) The server S1 failing in quick successions has a strictly dominat-

ing cumulative future event probability function. Hence, principles of dominance and

precedence insist L1 and S1 should have strictly higher early warning scores than L2

and S2 respectively. However, in both cases, FLA, VLA and T2E produce tied scores

when τ∗ 6∈ [τ1, τ2].

violated. Now observe that if a label function violates Problem 7.1 and Problem 7.2, so do the

approaches predicting it. Figure 7.3 presents two such counterexamples where all the label

functions are in violation of the principles of dominance and precedence.

7.3.3 Problem

Overall, the early warning problem we seek to solve is:

Informal Problem 7.1: Intervention-Aware Early Warning

Given a set of trajectories T, and for each T ∈ T, its (a) measurements x1:T regarding

M measurement types (categorical or real-valued), possibly containing missing values,

(b) interventions yt ∈ {0, 1, . . . , Y } indicating the quantity administered, and (c) binary

event label `t for an event of interest, at equidistant time instants t = 1, 2, . . . , T , learn

an early warning scoring function w which provably obeys Principles 1, 2 and 3.

7.4 Proposed Approach

Our main insight is to explicitly model the evolution of measurements in the presence and

absence of interventions separately and leverage it to produce early warning scores. Thus,

SmokeAlarm has two components:

138

s1 st-1 st

rTrt

st+1

rt-1 rt+1r1

xt

ℓt

xt-1

ℓt-1

xt+1

ℓt+1

ytyt-1

x1

ℓ1

y1

sT

xT

ℓT

yt+1

N entities

measure-
-ments

interven-
-tionsyT

event
labels

states
(latent)

residues
(latent)

Figure 7.4: Probabilistic model used by SmokeAlarm

• Intervention-Aware Modeling: Given past trajectories labeled with the occurrences of

a target event, SmokeAlarm learns a probabilistic model which takes the stochastic and

prolonged e�ect of interventions into account. Speci�cally, the model learns how long

the e�ect interventions last, and how measurements evolve in the presence and absence

of their in�uence.

• Early Warning Scoring: When presented a stream of measurements and interventions

of a trajectory under observation, SmokeAlarm uses the learned model to produce early

warning scores in an online manner.

We describe these below, postponing analysis to Section 7.4.3.

7.4.1 Intervention-Aware Modeling

Figure 7.4 depicts how we model the evolution of observed variables (measurements xt, inter-

ventions yt and event labels `t) shown in white boxes, through latent variables (states st and

residues rt) shown in dark boxes.

Latent Variables: The latent state variable captures the progression stage at which the en-

tity is w.r.t. the event (e.g., distant vs. close vs. occurrence) and takes categorical values

{1, 2, . . . , S} for an input number of states S. The latent residue variable captures the resid-

ual quantity of intervention (e.g., medicines, from among those administered in the past) cur-

rently active in in�uencing the progression of states. It takes non-negative integral values

{0, 1, 2, . . .}.

Initial Variables: Each trajectory begins in a state s1 with an intervention residue r1 based

on the initial distribution Φ.

139

Labels and Measurements: At time t, the event label `t and measurements xt are noisy ob-

servations of the current state st according to the observation distribution Θ, and are further,

conditionally independent of each other given the state. While simplifying the model and in-

ference procedure, this still allows for the labels and measurements to depend on each other

through the latent state. Thus,

ωst(xt, `t) , p(xt, `t | st) = p(`t | st) ·
∏
m

p(xtm | st) (7.4)

Following standard practice in generative modeling [Rab89], we allow for per-state measure-

ment distributions which are categorical or Gaussian depending on the type of measurement.

As we show in Section 7.5, SmokeAlarm yields useful results even when these assumptions do

not hold. Note also that SmokeAlarm naturally handles missing values via marginalization, i.e.,

simply dropping relevant terms from Equation (7.4).

Interventions: Based on the latent state and latent residue at time t, an expert uses an inter-

vention policy π to determine the quantity yt of intervention to administer:

π(yt | rt, st) , p(yt | rt, st), y ∈ {0, 1, . . . , Y } (7.5)

where Y is the maximum admissible quantity of intervention. For example, when a person is

healthy or is already pumped with medications, no further medication may be necessary.

Residues: As older interventions wear o�, only a fraction of the rt units of residue at time t
‘survives’ till t+1. If each residue stays active with an activation probability α, we have:

p(rt+1 | rt,yt) = Brt,α(rt+1 − yt) (7.6)

whereBN,p(·) is the probability mass function of binomial distribution withN trials and success

probability p. If α=1, the intervention is always e�ective and remains so forever. α=0 captures

an intervention that is active for only one time step. Domain knowledge about the intervention

can be incorporated by endowing α with a Beta prior, say β.

States: Finally, the next state st+1 is derived based on current state st and the residual quan-

tity of intervention rt+1 that remains active between t and t+1. When rt+1 = 0, state tran-

sitions follow an S×S intervention-free state transition matrix Q0; when rt+1 > 0, they fol-

low intervention-bound state transition matrices Qrt+1 . To capture the intuition that multiple

units of intervention are administered to accelerate state progression, we tie these matrices as

Qrt+1 = Q
rt+1

1 so that the e�ect of rt+1 ≥ 2 active units of intervention is equivalent to that

of a single active unit lasting rt+1 time steps. This also keeps the number of parameters small.

Overall,

p(st+1 | st, rt+1) = Qrt+1(st, st+1) (7.7)

140

Inference: Given a set of labeled trajectories T, the goal of model inference is to �nd the

optimal parameters Λ∗ = {Φ∗,Θ∗, π∗, α∗,Q∗} and the latent residues R∗ and states S∗ for all

trajectories which maximize their posterior probability given the observed dataT and activation

prior β.

Λ∗,R∗,S∗ = arg max
Λ,R,S

p(Λ,R,S | T; β) (7.8)

To perform this optimization e�ciently, we adopt coordinate ascent strategy, which is known

to converge faster than standard expectation-maximization [DLR77] in practice, while yielding

results of a similar quality [YML
+

14]. This is sketched below.

1. Initialize the model parameters Λ.

2. Fix the model parameters Λ and �nd the best assignment of latent variables (R,S) max-

imizing the objective using a Viterbi dynamic programming algorithm [Rab89].

3. Fix the latent variables (R,S) and �nd the optimal model parameters Λ maximizing the

objective. Due to the distributions chosen, this can be solved in closed-form.

4. Repeat steps (2) and (3) till (Λ,R,S) change no more or a maximum number of iterations

is reached.

We initialize the coordinate ascent procedure using clustering for states (handling missing and

categorical data appropriately), mode of activation prior β as the activation probability α, and

uniform distribution for transition matrices and initial distributions. We note that (2) is the

most computationally intensive step; however, it can be carried out embarrassingly in parallel

over all trajectories. In the interest of space, we omit details on steps (2) and (3) which are

standard.

7.4.2 Early Warning Scoring

Given the learned model Λ, we propose to use the following early warning function to score a

test trajectory T :

De�nition 7.4: eDoc Early Warning Function

The eDoc early warning function scores a trajectory T , with future event probability func-

tion f , as the Expected Discounted event Occurrence Count in the future.

w(T ; Λ) ,
∞∑
τ=0

γτf(τ) =
∞∑
0

γτp(`t+τ = 1|T ; Λ) (7.9)

Here, γ ∈ (0, 1) is the discount factor determining the relative importance of event occur-

rences at di�erent times in the future.

Thus, eDoc warning score is equivalent to the reinforcement learning notion of return

[SB18] when rewards are set to the probability of event occurrences based on the learned model

Λ. There are two considerations to bear in mind, however. First, in accordance with Problem 7.3

(Intervention-Awareness), the score must be computed using an intervention-free future, i.e.,

141

under the no-intervention policy at all times τ > t.

π0(y|r, s) = I[y == 0] ∀ r, s (7.10)

Here, I[·] is the identity function. Second, as the intervention policy π′ observed in the test

trajectory can di�er signi�cantly from π learned during training, the scoring should use π′

rather than π up to time t. As π′ is typically unknown, a trajectory-speci�c time-varying policy

estimate based on the observed interventions π̂′t(yt | r, s) = 1 ∀ r, s may be used. Theorem 7.1

shows how to compute early warning scores e�ciently online.

7.4.3 Theoretical Analysis

Our main theoretical results are that SmokeAlarm computes eDoc early warning scores in an

online manner (Theorem 7.1) and adheres to all principles from Section 7.3.1 (Theorem 7.2).

Theorem 7.1: Online Early Warning

SmokeAlarm produces eDoc early warning scores on an evolving trajectory T =(x:t,y:t)
e�ciently in a constant time per new observation (xt,yt), independent of the length of its

history.

Proof. Using Principle 7.3, w(T) can be written as:

w(x:t,y:t,yt+1:=0) =
∞∑
τ=0

γτp(`t+τ=1|x:t,y:t,yt+1:=0)

Marginalizing over the latent variables at time t and using the Markov property, we obtain∑
rt,st

∑∞
τ=0 γ

τp(rt, st|x:t,y:t,yt+1:=0) · p(`t+τ=1|rt, st,yt,yt+1:=0). Thus, we derive:

w(T) =
∑
rt,st

p(rt, st|x:t,y:t,yt+1:=0)︸ ︷︷ ︸
latent variable distribution at t

·w∗(rt, st,yt)︸ ︷︷ ︸
early warn. score

(7.11)

where w∗(r, s, y) is the early warning score output for a trajectory starting in (r, s) with an

intervention y:

w∗(r, s, y) =
∞∑
τ=0

γτp(`t+τ=1|rt=r, st=s,yt=y,yt+1:=0) (7.12)

Observing that w∗ does not depend on the history of the trajectory and hence need to be com-

puted exactly once a priori (Lemma 7.1) and that the latent variable distribution at every time

step can be updated e�ciently online (Lemma 7.2) completes the proof.

142

Lemma 7.1: Precomputation of Early Warning Table

The R× S × Y early warning table containing all early warning scores w∗(r, s, y) can be

precomputed in O
(
R2S2(RS + Y)

)
time complexity.

Proof. Unrolling the sum in Equation (7.12) over a single step in the future and marginalizing

over the latent state and residue at the next time step, we derive the following recursive relation:

w∗(r, s, y) = ρs + γ
∑
r′,s′

p(r′|r, y) · p(s′|s, r′) · w∗(r′, s′, 0) (7.13)

For y=0, we construct the system of linear equations w∗(r, s, 0) = ρs + γ
∑

r′,s′ p(r
′|r, 0) ·

p(s′|s, r′) · w∗(r′, s′, 0),∀ r, s which can be solved by matrix inversion in O
(
R3S3

)
. Plugging

these in Equation (7.13), other scores are precomputed in an additional O
(
R2S2Y

)
time. �

Lemma 7.2: Online Computation of Latent Variables

The distribution p(rt, st|x:t,y:t,yt+1:=0) of latent variables at every time step t for an

evolving trajectory T = (x:t,y:t) can be computed using dynamic programming inO
(
R2S2

)
time per new pair (xt,yt).

Proof. De�ne ψt(r, s) = p(x:t,y:t, rt=r, st=s,yt+1:=0) as the probability of observing mea-

surements and interventions till time t, landing in latent variables (r, s) at time t and observing

no interventions thereafter. In terms of ψ, the required probability is ψt(r, s)/
∑

r′,s′ ψt(r
′, s′).

Thus, we need only show how to compute ψt(r, s) e�ciently.

The base case isψ1(r, s) = Φ(r, s)·p(x1|s)·π′(y1|r, s)·
∏∞

τ=2

∑
rτ ,sτ

p(rτ , sτ |rτ−1, sτ−1,yτ−1)·
π0(yτ |rτ , sτ) which can be simpli�ed using Equation (7.10) as Φ(r, s)·p(x1|s)·π′(y1|r, s). Thus,

ψ1 can computed in O
(
RS
)

time.

In a similar way, for t>1, we derive: ψt(r, s) =
∑

r′,s′ ψt−1(r′, s′) · p(r′|r,yt−1) · p(s|s′, r) ·
p(xt|s) ·π′(yt|r, s) which can be computed inO

(
RS
)

for every r, s from the latent distribution

ψt−1 at the previous time step. �

This proves the theorem. �

Theorem 7.2: Adherance to Principles

SmokeAlarm follows all three principles–dominance, precedence and intervention-awareness–

of an ideal early warning system.

143

Proof. Consider two trajectories T1, T2 with future event probability functions f1 and f2 and

cumulative future event probability functions F1 and F2 respectively. For i = 1, 2, let Fi(−1) =
0 so that fi(τ) = Fi(τ) − Fi(τ − 1) ∀ τ = 0, 1, Using Equation (7.9), w(T1) − w(T2) =∑∞

τ=0 γ
τ (f1(τ)− f2(τ)).

Principle 7.1 (Dominance): Suppose f1 ≥ f2. Then, f1(τ) − f2(τ) ≥ 0 ∀ τ and hence

w(T1) − w(T2) ≥ 0. Suppose instead that f1 > f2 with C = {τ : f1(τ) > f2(τ)} 6= {}. As

f1(τ) = f2(τ) ∀ τ 6∈ C, we obtain w(T1)− w(T2) =
∑

τ∈C γ
τ (f1(τ)− f2(τ)) > 0 as desired.

Principle 7.2 (Precedence): In terms of the cumulative future event probability function,

w(T1)−w(T2) =
∑∞

τ=0 γ
τ [F1(τ)−F1(τ−1)−F2(τ)+F2(τ−1)] =

∑∞
τ=0(γτ−γτ+1)(F1(τ)−

F2(τ)) where γτ − γτ+1 > 0 as γ ∈ (0, 1). Suppose F1 ≥ F2. Then, F1(τ)−F2(τ) ≥ 0 ∀ τ and

hence w(T1)− w(T2) ≥ 0. Suppose instead that F1 > F2 with C = {τ : F1(τ) > F2(τ)} 6= {}.
As F1(τ) = F2(τ) ∀ τ 6∈ C, we obtain w(T1)−w(T2) =

∑
τ∈C(γ

τ − γτ+1)(F1(τ)− F2(τ)) > 0
as desired.

Principle 7.3 (Intervention-Awareness): This follows by construction from the �rst line in the

proof of Theorem 7.1. �

7.5 Experiments

We conduct extensive experiments on both synthetic and real-world data to answer the follow-

ing questions: [Q1] Accuracy: How well does SmokeAlarm perform compared to baselines?

[Q2] Interpretability: Is the model learned easy to interpret? [Q3] Discoveries: Does it lead

to interesting discoveries in practice? [Q4] Scalability: How does the running time scale with

input size? Our experiments focus on healthcare settings, but the ideas can be more broadly

applied.

7.5.1 Experimental Setup

We implement SmokeAlarm in Python using the pomegranate library for probabilistic modeling

[Sch17] and run experiments on a machine with 64 2.67GHz Intel Xeon E7-8837 CPUs.

Baselines: Due to our emphasis on interpretability, we compare to the following linear ap-

proaches: (a) CoxT2E or Cox Proportional Hazards Model [LW89] is a (linear) survival model

to evaluate the e�ect of multiple variables on the time to an event, (b) LinearFLA and (c) Lin-

earVLA which predict whether an event happens exactly at or within τ∗ steps in the future

by performing least squares regression with L2 regularization. All baselines are intervention-

unaware: they predict the future without carefully considering the intermediate interventions.

Evaluation Metrics: Principle 7.3 advocates for early warning scores which re�ect future

event occurrences in the absence of interventions. Thus, we use ground truth future events

only from intervention-free test data for evaluation. Recall that each method assigns a score per

time step of each trajectory, a higher value signifying a greater risk of an impending event.

Sorting these in descending order (breaking ties randomly), we compute precision and recall as

in [WH98]. Speci�cally designed for early warning, these metrics normalize for multiple alarms

144

of the same event and account for the fact that false alarms “located closely together may not

be as harmful as the same number spread out over time”. We detail the procedure below.

An event is said to be correctly predicted if there is at least one alarm in its preceding L-

length window. Conversely, each alarm is ‘active’ for a duration L after being raised, during

which an event is expected to take place. Let TP(k) be the number of distinct events correctly

predicted using the top k alarms. Let FP(k) be the number of complete non-overlapping L-

length ‘active’ windows in which no events take place. If N is the total number of events, we

derive: Precision@k = TP(k) / (TP(k) + FP(k)) and Recall@k = TP(k) / N. We summarize the overall

accuracy using the area under curve (AUC) measure. In addition, we quantify the earliness of

warning using average lead time over all early warned events, where the lead time of an event

is determined by the earliest alarm in its preceding L-length window. For all metrics, a higher

value is more desirable, and all except average lead time lie in [0, 1].

7.5.2 Synthetic Data

Synthetic data allows us to control the interventions without incurring high human costs, e.g.,

student drop out, patient death. Thus, by varying the intervention policy in the training data,

we study how intervention-aware di�erent methods are.

Data Generation: We generate a SyntheticFlu dataset with temperature and white blood

cell (WBC) count measurements akin to [DS16] such that high temperature or high WBC count

indicates �u. 40% of the population is healthy; the rest develop �u due to an escalating mea-

surement (30% each). Aspirin interventions decrease temperature for the next 3 hours but do

not a�ect WBC count. We create two training datasets: set (+I) with aspirin interventions and

set (-I) without. Each method is trained on both sets in turn and tested on the same held-out set

of intervention-free data. More details are given below.

Measurements for temperature and WBC count are independently drawn from a Hidden

Markov Model with 10 latent states {0, 1, . . . , 9} such that the observed value in state s is

normally distributed asN (s, σ2). Each subject begins in a state s≤3 for temperature and WBC

count. For a stable measurement, a state s decreases to s−1, remains the same and increases

to s+1 during the next hour with probabilities 0.2, 0.7 and 0.1 respectively. The corresponding

values for an escalating measurement are 0.2, 0.3 and 0.5 so that the value tends to increase.

Subjects in states s ∈ {8, 9} for temperature or WBC count have �u. When either reaches state

9, the subject expires and their trajectory terminates. Aspirin is given with probability p when

temperature is in states 6-8. When administered, it decreases the temperature by six states

over the next three hours. With probability 0.4, it may also stabilize the temperature to prevent

future escalation. Aspirin interventions are binary (ignoring quantity administered). All values

are recorded at hourly intervals for a maximum duration of 50 hours for each trajectory. We use

a mixture of aspirin probabilities p ∈ {0.5, 0.3, 0.1} for set (+I) and set p= for set (-I) and test

data. We set the noise level σ2
to 0.04. All training and test datasets contain 5000 trajectories

each.

Parameters: For SmokeAlarm, we set S=16 states, discount factor γ=0.75, and activation

prior in the ratio 2:1 (scaled to the dataset size) to incorporate that aspirin lasts around 3 hours

145

Table 7.2: Accuracy (AUC) on SyntheticFlu When the Trained on Data Untainted (-I)

and Tainted (+I) by Interventions

Setting CoxT2E LinearFLA LinearVLA SmokeAlarm

Untainted set (-I) 0.9189 0.9188 0.9185 0.9993

Tainted set (+I) 0.8845 0.8127 0.8452 0.9985

Drop in accuracy 3.74% 11.5% 7.98% 0.08%

0 2 4 6 8
Measurement 1: Temperature

0

2

4

6

8

M
ea

su
re

m
en

t
2:

 W
B

C
 C

ou
nt

0

1

2

3

4
5

67

8

9

1011

12
13

14

15

Without Aspirin Intervention

0 2 4 6 8
Measurement 1: Temperature

0

2

4

6

8

M
ea

su
re

m
en

t
2:

 W
B

C
 C

ou
nt

0

1

2

3

4
5

67

8

9

1011

12
13

14

15

With One-Step Aspirin Intervention

low

high

ea
rl

y
w

ar
ni

ng
 s

co
re

Figure 7.5: Model learned on SyntheticFlu set (+I) peppered with interventions shows

that SmokeAlarm successfully learns the evolution of measurements (and hence the

risk of �u) in the presence and absence of aspirin.

(in expectation). Linear regression baselines use the three most recent measurements and inter-

ventions (i.e., shingle size 3) to predict event within/at τ∗=9 hours in the future. Accordingly,

we use L=9 hours as the maximum lead time for evaluation.

7.5.2.1 Q1. Accuracy

Table 7.2 summarizes the AUC of all methods using sets (+I) and (-I) for training. Bold indicates

the best performing method for each metric. First, note that all methods perform their best

when trained using set (-I) whose no-intervention policy (p=0) matches that of the test set. The

change from set (-I) to set (+I) hurts baselines the most, with accuracy dropping up to 11.5%.

In contrast, the performance of SmokeAlarm remains comparable, suggesting that learning

separate models for the presence and absence of interventions pays o�. Thus, it is able to

produce early warning scores untainted by interventions from limited intervention-free data.

7.5.2.2 Q2. Interpretability

Figure 7.5 depicts the model learned by SmokeAlarm on set (+I) in the absence of aspirin (left)

and under a single aspirin intervention followed by an intervention-free future (right). States

(numbered vertices) are plotted using the mean of their temperature and WBC count distribu-

146

0 5 10 15 20
0

5

10

va
lu

es

measurements
temperature WBC count

0 5 10 15 20
time

0.0

0.2

0.4

D
oV ideal

degree of intervention-awareness violation (DoV)
CoxT2E LinearFLA LinearVLA SmokeAlarm

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

5

10

va
lu

es

measurements
temperature WBC count

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.0

0.2

0.4

D
oV ideal

degree of intervention-awareness violation (DoV)
CoxT2E LinearFLA LinearVLA SmokeAlarm

(a) A SyntheticFlu trajectory (b) A SyntheticFlu trajectory

with temperature escalation with WBC count escalation

Figure 7.6: SmokeAlarm is intervention-aware: Degree of intervention-awareness vi-

olation (DoV) on representative trajectories con�rms that only SmokeAlarm yields a

consistently low DoVwithin the grey ‘ideal’ band. The baselines have high DoVwhich

grows in t>15, which is the crucial period for early warning.

tions. Squares indicate states with �u, i.e., a high value of p(`=1 | s). Colors (yellow=healthy,

red=sick) represent their early warning scores in the presence or absence of aspirin, as appli-

cable. Dark and thick arrows depict probable state transitions.

In both �gures, healthy states with low temperature and WBC count have the lowest scores

(yellow), �u states {1, 5} with high temperature or WBC count have the highest scores (red),

and the red shade lightens towards the origin. Orange circular vertices are the early warning

states, where there is no �u, but the score is high and an alarm is triggered. Without aspirin

(left), red fades symmetrically along both axes because the measurements evolve and contribute

to �u similarly. With aspirin (right), red fades faster along temperature axis going from state 5

to 7. The yellower colors of states 6 and 12 in the presence of aspirin showcases a decreased risk

of �u and is consistent with the high probability ‘becoming-healthier’ transitions from states 5

to 12 to 6 to 9. Thus, SmokeAlarm successfully learns that without aspirin, high temperature

states {6, 12} are as dangerous as high WBC count states {3, 8} with respect to �u; however,

aspirin lowers temperature and hence also the imminent danger of �u from high temperature

states.

7.5.2.3 Q3. Discoveries

Figure 7.6 depicts two representative trajectories–with di�erent ways of �u escalations–from

test data. The top panels show the temperature and WBC count measurements; the person

has the �u if at least one of them cross the dotted line. The bottom panels plot the degree

of intervention-awareness violation (DoV) which measures the extent to which Principle 7.3 is

violated. If the early warning scores produced by a method on a trajectory arew+ andw− when

trained on sets (+I) and (-I) respectively, DoV= |w+−w−|. Ideally, w−=w+ and DoV=0 as the

underlying risk of �u does not depend on training data. However, Figure 7.6 reveals that the

baselines produce a large DoV in at least one type of �u escalation. Notably, DoV is high for

147

100 101

average lead time
0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

 e
ar

ly
 w

ar
ne

d

ideal
CoxT2E
LinearFLA
LinearVLA
SmokeAlarm

(a) (b)

Figure 7.7: SmokeAlarm (a) scales linearly with input size N ; (b) early warns 93.7%
patients (avg. lead time: 6.1 hours) before the onset of septic shock.

t≥15 which is the crucial period for early warning. Only SmokeAlarm yields a consistently low

DoV lying within the gray ‘ideal’ band at all times and for both �u escalations.

7.5.2.4 Q4. Scalability:

We vary the input size, i.e., total number of time steps across all trajectories, and measure the

average time taken (excluding IO operations) for early warning scoring (testing phase) over �ve

runs. Figure 7.7(a) yields a line with slope 1 in log-log scales; thus, the running time is linear

on the input size N . The time for model inference (training phase) is also linear, but it is not

shown in the interest of space.

7.5.3 Real-World Data

We consider the task of early warning against septic shock, an adverse outcome of bacterial in-

fection in the ICU and a leading cause of mortality. Data is extracted from the publicly-available

MIMIC-III Clinical Database [JPS
+

16]. We extract values of SOFA scores, serum lactate, mean

arterial pressure, and vasopressor interventions, preprocessing and aggregating appropriately

in 4-hour intervals as detailed in the following paragraph. The data is labeled following Sepsis-

3 guidelines [SDS
+

16] assuming a baseline that all subjects are suspected of infection. We use

data with and without vasopressor interventions for training (3469 subjects; around 30% with

septic shock and 17% vasopressor-free) but validate and test only on subjects who were never

given vasopressors during their stay (400 and 600 subjects respectively, with 13−13.5% having

septic shock).

Data Preprocessing: From the Metavision information system of MIMIC-III, we extract seven

relevant measurements–bilirubin, creatinine, Glasgow coma score, mean arterial pressure, PaO2/FiO2,

platelet and serum lactate–processing them to ignore extreme values (e.g., typos) and clipping

148

Table 7.3: Precision and Recall for Early Warning of Septic Shock (underline shows

signi�cant di�erences at p=0.0001)

Method Precision @ k Recall @ k
300 600 900 300 600 900

CoxT2E 0.89 0.81 0.78 0.38 0.62 0.79

LinearFLA 0.63 0.78 0.82 0.14 0.40 0.60

LinearVLA 0.64 0.81 0.83 0.13 0.48 0.62

SmokeAlarm 1.00 0.95 0.89 0.51 0.85 0.97

them to appropriately de�ned intervals based on the tail behavior of the per-measurement dis-

tributions. We further combine the �rst six measurements into Sequential Organ Failure Assess-

ment (SOFA) score, a routinely evaluated measure of ICU mortality by doctors. We aggregate all

values in 4-hour intervals, by averaging the real-valued measurements and OR-ing the binary

interventions (ignoring the quantity). We focus on subjects at least 15 years of age at the time

of hospital admission who were not admitted due to septic shock and whose stay lasts between

2-50 days. If the same subject is admitted multiple times, we treat each such admission as a

di�erent trajectory, ignoring trajectories which have excessive missing values (> 80%) or do

not have at least one assessment for each measurement. While SmokeAlarm naturally handles

missing values, the baselines do not. Thus, for a fair comparison, we supply the imputed data

to all methods, where imputation is done using linear interpolation followed by backward/for-

ward �ll at the beginning/end of the trajectories. We follow the Sepsis-3 guidelines [SDS
+

16]

for labeling of septic shock (SOFA score ≥ 2, mean arterial pressure < 65 despite vasopres-

sors/�uid resuscitation, serum lactate > 2mmol/L) assuming a baseline that all subjects are

suspected of infection. This resulted in a cohort of 4469 subjects, with 1374 (30.7%) positive

with septic shock and 1606 vasopressor-free throughout their stay.

Parameters: For SmokeAlarm, we set the activation prior in the ratio 1:1 to capture that

patients in ICU are given fast-acting drugs. We tune the number of states S ∈ {8, 12, 16, 20, 24}
and discount factor γ ∈ {0.2, 0.4, 0.6, 0.8} to maximize validation AUC. The best performing

model (S=20, γ=0.4) was used for evaluation. The linear baselines use a shingle size of three to

predict septic shock in τ∗=36 hours. We use a larger window of L=48 hours as the maximum

lead time in evaluation.

7.5.3.1 Q1. Accuracy

Table 7.3 tabulates the precision and recall of all methods at cut-o� ranks k ∈ {300, 600, 900}.
Bold shows the best performing method according to each metric. We see that SmokeAlarm

consistently outperforms all baselines, achieving 8 − 288% higher precision and recall at all

ranks considered. The gains are statistically signi�cant according to a two-sided micro sign

test [YL99].

Figure 7.1(a), plotting the precision vs. recall at all cut-o� ranks k, reveals that the curve for

SmokeAlarm (red) lies completely above those of all baselines. Said another way, SmokeAlarm

149

0 5 10 15 20

65

43

86

M
A

P

mean arterial pressure (MAP), serum lactate (SL)

0 5 10 15 20
time (1 unit = 4 hours)

al
ar

m

ground truth (black), output alarms (color)
CoxT2E LinearFLA LinearVLA SmokeAlarm

2.0

0.9

3.1

SL

0 5 10 15 20

65

47

82

M
A

P

mean arterial pressure (MAP), serum lactate (SL)

0 5 10 15 20
time (1 unit = 4 hours)

al
ar

m

ground truth (black), output alarms (color)
CoxT2E LinearFLA LinearVLA SmokeAlarm

2.0

1.2

2.8

SL

(a) (b)

Figure 7.8: Trajectories of patientwith septic shock from the test set showingmeasure-

ments (except SOFA score; top panel), ground truth septic shock label (black; bottom

panel) and alarms output by various methods (bottom panel).

achieves higher precision for every recall value. This is also re�ected in AUC=0.98 of SmokeAlarm,

which is 16% higher than the best baseline. The operating point (shown as stars) is chosen at

a precision of 0.827, the highest common value of precision achieved by all methods.

As the onset of septic shock is the hardest and the most valuable to predict, we now measure

performance of each method based only on the �rst septic shock event of all patients who are

labeled positive. Speci�cally, we compute the fraction of septic shock patients who are early

warned of their �rst septic shock event, and also the average lead time of such a warning.

Figure 7.7(b), plotting the results, shows that SmokeAlarm warns 93.7% patients with a mean

lead time of 6.1 hours before septic shock onset. The baselines warn only <41% patients; so

their mean lead time arguably does not matter.

7.5.3.2 Q2. Interpretability

Figure 7.1(b) depicts the model learned by SmokeAlarm on Mimic-III data without vasopres-

sors (left) and with one-step vasopressor followed by an intervention-free future (right). States

(numbered vertices) are plotted by their mean arterial pressure (MAP) and serum lactate (SL)

values and colored based on their early warning scores. SOFA score turned out to be uniformly

high across most patients (and most states) and hence is omitted. Squares indicate ‘septic shock’

states with a high value for p(`=1 | s). Only high probability transitions (≥ 0.05, i.e., uniform

distribution over S=20 states) are shown. Darker and thicker arrows indicate more likely state

transitions.

In both �gures, healthy states with low SL and/or high MAP have the lowest scores (blue),

septic shock states {1, 7, 17} with high SL (>2) and low MAP (<65) have the highest scores

(red). The early warning scores decrease diagonally downward as indicated by color change

from red to yellow to green to blue. Yellow and green circular vertices are the early warning

states, where there is no septic shock, but the score is high enough that an alarm is triggered

at operating point (red star in Figure 7.1(a)). We note an increased number of thicker/darker

arrows pointing rightward in the presence of vasopressors as they tend to increase MAP by con-

150

stricting blood vessels. Thus, the scores of low MAP states {1, 7, 17}) decreases considerably,

with the change in vertex color of states 7 and 17 being the most apparent. Thus, SmokeAlarm

successfully learns that high SL and low MAP are linked to septic shock and that vasopressor

interventions tend to increase low MAP and consequently decreases risk of septic shock.

7.5.3.3 Q3. Discoveries

Figure 7.8 shows trajectories from two patients in the test set. The top panel plots their MAP and

SL measurements (SOFA score was consistently above 2 and hence omitted). The healthy range

for the measurements are MAP≥65 (above the dashed line; brown hollow triangles) and SL≤2
(below the dashed line; pink hollow diamonds). Abnormal values are indicated using �lled

markers. When all measurements are abnormal, the patient has septic shock; these appear as

spikes with crosses in the black curve of the bottom panel. Alarms output by various methods

at their operating points are also indicated via markers and spikes in the bottom.

For the patient in Figure 7.8(a), serum lactate (SL) value is unhealthy throughout. MAP

starts at a healthy range around 85 and declines rapidly at t=5 and steadily thereafter until

septic shock occurrence at t=12. Despite a brief recovery around t=14, the person goes on to

have septic shock for t≥19. As seen, SmokeAlarm is the only method which alarms the �rst

septic shock occurrence. Notably, the lead time is 28 hours and the �rst alarm coincides with

the �rst sharp decline in MAP at t=5. The alarm stops brie�y when MAP appears to increase

around t=14, but as MAP declines further, the alarms restart at t=18, four hours before the

septic shock at t=19. The baselines entirely miss the �rst septic shock incidence, and only

provide late alarms for even the longer– and perhaps more severe–septic shock incidence at

t≥19.

The patient in Figure 7.8(b) begins with measurements which are normal, but escalating.

Among the baselines, LinearFLA provides no warning and CoxT2E issues only a late alarm 12

hours into septic shock. Only LinearVLA raises an early alarm (lead time: 4 hours), but it still

fails to continue warning through the period of septic shock. In contrast, SmokeAlarm warns

16 hours before the values decline past the dashed line and continues to warn until the patient

has safely recovered.

Thus, our experiments show that SmokeAlarm outperforms baselines, scales linearly with

data size, is visually interpretable, and yields interesting discoveries on real-world data.

7.6 Conclusion

We considered the problem of learning to interpretably early warn from labeled data tainted

by interventions. We proposed SmokeAlarm, an intervention-aware method which learns of-

�ine from past labeled data containing interventions and produces early warning scores online.

Moreover, it is “bi-inspectable”, i.e., the model can be visualized both in the presence and in the

absence of an intervention. SmokeAlarm also provably obeys all three principles of an ideal

early warning system, Applied on real-world data, it outperforms baselines by 16 − 38% in

terms of AUC, while also early warning with an average lead time of 6.1 hours before the onset

of septic shock.

151

152

Part IV

Conclusion

153

Chapter 8

Conclusion and Future Work

8.1 Summary

This thesis provides a suite of algorithms for anomaly detection in static and dynamic graphs

which leveraging several key insights from real-world data. Speci�cally,

StaticGraphs: We broaden the scope of present literature on graph semi-supervised learning–

a core problem in mining anomalies within static graphs when given a few labeled examples–in

the following ways:

• Our ZooBP algorithm [EGF
+

17b] described in Chapter 2 takes into account the hetero-

geneity in vertex and edge types of real-world graphs to provide a principled accurate

approximation of Belief Propagation, which not only has closed-form solution and con-

vergence guarantees, but also provides 2-600× platform-dependent speedups.

• Our NetConf algorithm [EGF17a] described in Chapter 3 exploits the skewed-degree

distributions of vertices in real-world graphs to incorporate a notion of con�dence or un-

certainty during inference. By carefully propagating messages which capture not just

point estimates, but their underlying uncertainty, NetConf improves classi�cation ac-

curacy by up to 5% absolute percentage points, while still having closed-form solution

and convergence guarantee.

• Our HOLC metric described in Chapter 4 establishes that higher-order network structures

such as triangles and 4-cliques are more consistent in labels compared to edges in real-

world graphs. Subsequently, our HOLS algorithm [EKF20] leverages the signal present in

higher-order network structures to improve classi�cation accuracy by up to 4.7% relative

percentage points, in comparable runtime.

DynamicGraphs: We push the state-of-the-art in near real-time detection and early warning

of anomalies and events in the following ways:

• Our SpotLight algorithm [EFGM18] described in Chapter 5 adopts the powerful ran-

domized sketching based approach to provably detect the sudden appearance or disappear-

ance of large dense directed subgraphs under the stringent time and memory constraints

155

of the streaming setting, leading to 11-46% (statistically signi�cant) relative percentage

points improvements compared to prior approaches.

• Our SedanSpot algorithm [EF18] described in Chapter 6 exploits the lockstep behav-

ior of anomalies to detect anomalous bridge edges under time and space constraints of

the streaming setting. The main idea was to lower the probability of sampling anoma-

lous edges, and maintain a better representation of normal behavior, leading to 270%

improvement in accuracy in terms of relative percentage points in 3× lesser time.

• Our SmokeAlarm algorithm [EFMN19] described in Chapter 7 learns to early warn

against upcoming anomalies, by utilizing supervision, in an online and interpretable man-

ner satisfying three principles of an ideal early warning system – dominance, precedence

and intervention-awareness. Applied on real-world data, SmokeAlarm outperforms base-

lines by 16-38% AUC, while early warning 6.1 hours before septic shock onset on average.

For reproducibility, we open-source most of the algorithms proposed in the thesis and use

publicly-available datasets wherever possible.

8.2 Vision and Future Work

This thesis takes a step towards pushing the boundary of anomaly detection by developing

principled, e�cient, e�ective for large-scale static and dynamic graphs. Below, we outline three

concrete research direction towards our ultimate vision for this niche area, which is holistic,

self-learning, adversarially robust algorithms for anomaly detection.

Holistic Algorithms for AnomalyDetection: Our proposed algorithms leveraged connec-

tivity and temporal information to �ag anomalies. But in many real-world applications, vertices

and edges may have attributes (e.g. demographics of users, ratings/reviews on edges), which

can act as valuable side-information. For example, a set of users who each have a single (posi-

tive) rating, to the same product in the same month may only be a little suspicious, since there

are not enough ratings per user to make a high-con�dence prediction. But this suspicion could

be further bolstered by observing that these users are named user001, user002, user003, and

so on. Thus, we need approaches which can holistically model the simultaneous evolution of

connectivity structure and attributes to more accurately detect anomalies.

Self-LearningAlgorithms forAnomalyDetection: In many real-world settings including

security and health care, anomaly detection systems are used for human decision making. In

such cases, labels (true positive or false positive) for �agged anomalies are readily available

based on human feedback. An open challenge is to develop a principled algorithmic framework

which can leverage this feedback in an online manner to tailor the de�nition of anomalousness

to the needs of the user, either by tweaking the underlying anomaly detector itself or by �ltering

out uninteresting/expected anomalies using a online classi�er in conjunction with the anomaly

detector.

156

Adversarially Robust Algorithms for Anomaly Detection: Consider anomalies which

arise from malicious behavior of fraudsters, e.g., fake reviews or followers, network intrusion

attacks. If an anomaly detector is deterministic and does not account for adversaries, intelligent

fraudsters can adjust their behaviors in response to the improvements in detection algorithms

and successfully evade detection. A �rst step towards deterring such attacks is the use of ran-

domization as in SpotLight and SedanSpot, so that even though the adversary knows the

algorithm employed for detection, the exact sequence of random coin tosses remains private,

making evasion di�cult. The next step would be to leverage game theoretic ideas for adversar-

ially robust anomaly detection.

157

158

Bibliography

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.

Reviews of modern physics, 74(1):47, 2002. 58, 66

[ACF13] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion fraud detection in

online reviews by network e�ects. In ICWSM, pages 2–11, 2013. 16, 22, 38, 42, 58

[ACR
+

16] Ahmed El Alaoui, Xiang Cheng, Aaditya Ramdas, Martin J. Wainwright, and

Michael I. Jordan. Asymptotic behavior of p-based laplacian regularization in semi-

supervised learning. CoRR, abs/1603.00564, 2016. 61

[ADWR17] Nesreen K Ahmed, Nick Du�eld, Theodore L Willke, and Ryan A Rossi. On sam-

pling from massive graph streams. PVLDB, 10(11):1430–1441, 2017. 112

[AG05] Lada A. Adamic and Natalie S. Glance. The political blogosphere and the 2004 U.S.

election: divided they blog. In LinkKDD, pages 36–43. ACM, 2005. 51, 65

[AMA19] Ghadeer AbuOda, Gianmarco De Francisci Morales, and Ashraf Aboulnaga. Link

prediction via higher-order motif features. CoRR, abs/1902.06679, 2019. 61

[AMF10] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. oddball: Spotting anoma-

lies in weighted graphs. In PAKDD, volume 6119, pages 410–421. Springer, 2010.

87, 110

[ANK14] Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. Network sampling:

From static to streaming graphs. TKDD, 8(2):7, 2014. 112

[APK
+

19] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-

order graph convolutional architectures via sparsi�ed neighborhood mixing. In

ICML, volume 97 of Proceedings of Machine Learning Research, pages 21–29. PMLR,

2019. 57, 60, 62

[ATK15] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection

and description: a survey. Data Min. Knowl. Discov., 29(3):626–688, 2015. 87, 110

[Ayr62] Frank Ayres. Schaum’s outline of theory and problems of matrices. McGraw-Hill,

1962. 19

[AZY11] Charu C. Aggarwal, Yuchen Zhao, and Philip S. Yu. Outlier detection in graph

streams. In ICDE, pages 399–409. IEEE, 2011. 87, 98, 108, 110, 111, 123

159

[B
+

08] Shumeet Baluja et al. Video suggestion and discovery for youtube: Taking random

walks through the view graph. In WWW, pages 895–904, 2008. 55, 56

[BAS
+

18] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon M. Klein-

berg. Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci.

U.S.A., 115(48):E11221–E11230, 2018. 61

[BGHS12] Brigitte Boden, Stephan Günnemann, Holger Ho�mann, and Thomas Seidl. Mining

coherent subgraphs in multi-layer graphs with edge labels. In SIGKDD, pages 1258–

1266, 2012. 16

[BGL16] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of

complex networks. Science, 353(6295):163–166, 2016. 61

[BMN04] Mikhail Belkin, Irina Matveeva, and Partha Niyogi. Regularization and semi-

supervised learning on large graphs. In COLT, volume 3120 of Lecture Notes in

Computer Science, pages 624–638. Springer, 2004. 57, 60

[BXG
+

13] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Chris-

tos Faloutsos. Copycatch: stopping group attacks by spotting lockstep behavior in

social networks. In WWW, pages 119–130. ACM, 2013. 86, 87, 108

[CG97] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. Ameri-

can Mathematical Soc., 1997. 72

[Cha04] Deepayan Chakrabarti. Autopart: Parameter-free graph partitioning and outlier

detection. In PKDD, volume 3202 of LNCS, pages 112–124. Springer, 2004. 110

[CKHF11] Duen Horng Chau, Aniket Kittur, Jason I Hong, and Christos Faloutsos. Apolo:

making sense of large network data by combining rich user interaction and ma-

chine learning. In ACM SIGCHI, pages 167–176, 2011. 16, 42, 43

[CLG
+

15] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie

Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital

30-day readmission. In KDD, pages 1721–1730. ACM, 2015. 132, 134

[CSSS17] Edward Choi, Andy Schuetz, Walter F. Stewart, and Jimeng Sun. Using recurrent

neural network models for early detection of heart failure onset. JAMIA, 24(2):361–

370, 2017. 134, 137

[CSZ06a] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Transductive Inference

and Semi-Supervised Learning. MIT Press, 2006. 21, 55

[CSZ
+

06b] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien, et al. Semi-supervised

learning. 2006. 16

[dbl14] Dblp network dataset. http://konect.uni-koblenz.de/networks/
dblp_coauthor, 2014. 122

[DBS18] Maximilien Danisch, Oana Denisa Balalau, and Mauro Sozio. Listing k-cliques in

sparse real-world graphs. In WWW, pages 589–598. ACM, 2018. 61, 66, 73

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in math-

ematics. Springer, 2012. 89

160

http://konect.uni-koblenz.de/networks/dblp_coauthor
http://konect.uni-koblenz.de/networks/dblp_coauthor

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series

B, 39(1):1–22, 1977. 141

[DS16] Kirill Dyagilev and Suchi Saria. Learning (predictive) risk scores in the presence of

censoring due to interventions. Machine Learning, 102(3):323–348, 2016. 132, 134,

145

[EF18] Dhivya Eswaran and Christos Faloutsos. Sedanspot: Detecting anomalies in edge

streams. In ICDM, pages 953–958. IEEE Computer Society, 2018. 4, 6, 107, 156

[EFGM18] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. Spotlight:

Detecting anomalies in streaming graphs. In KDD, pages 1378–1386. ACM, 2018.

4, 6, 85, 155

[EFMN19] Dhivya Eswaran, Christos Faloutsos, Nina Mishra, and Yonatan Naamad.

Intervention-aware early warning. In ICDM, pages 953–958. IEEE Computer So-

ciety, 2019. 4, 6, 131, 156

[EGF17a] Dhivya Eswaran, Stephan Günnemann, and Christos Faloutsos. The power of cer-

tainty: A dirichlet-multinomial model for belief propagation. In SDM, pages 144–

152. SIAM, 2017. 4, 41, 155

[EGF
+

17b] Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, and

Mohit Kumar. Zoobp: Belief propagation for heterogeneous networks. PVLDB,

10(5):625–636, 2017. 4, 13, 55, 58, 87, 110, 155

[EJL
+

18] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,

Charles Sugnet, Mark Ulrich, and Jure Leskovec. Pixie: A system for recommending

3+ billion items to 200+ million users in real-time. In WWW, pages 1775–1784.

ACM, 2018. 111

[EKF20] Dhivya Eswaran, Srijan Kumar, and Christos Faloutsos. Higher order label homo-

geneity and spreading in graphs. TheWebConf, 10(5):625–636, 2020. 4, 57, 155

[EMK06] Gal Elidan, Ian McGraw, and Daphne Koller. Residual belief propagation: Informed

scheduling for asynchronous message passing. UAI, pages 165–173, 2006. 16, 17

[ES06] Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reser-

voir. Inf. Process. Lett., 97(5):181–185, 2006. 112, 114, 118

[FH06] Pedro F Felzenszwalb and Daniel P Huttenlocher. E�cient belief propagation for

early vision. IJCV, pages 41–54, 2006. 16, 43

[FHC12] Yuan Fang, Bo-June Paul Hsu, and Kevin Chen-Chuan Chang. Con�dence-aware

graph regularization with heterogeneous pairwise features. In SIGIR, pages 951–

960, 2012. 55, 56

[FHH
+

17] Joseph Futoma, Sanjay Hariharan, Katherine A. Heller, Mark Sendak, Nathan Bra-

jer, Meredith Clement, Armando Bedoya, and Cara O’Brien. An improved multi-

output gaussian process RNN with real-time validation for early sepsis detection.

In MLHC, volume 68, pages 243–254. PMLR, 2017. 134, 137

161

[FK96] Brendan J. Frey and Frank R. Kschischang. Probability propagation and iterative

decoding. In Allerton Conference on Communications, Control and Computing, pages

482–493, 1996. 16

[FMI] Marc PC Fossorier, Miodrag Mihaljevic, and Hideki Imai. Reduced complexity iter-

ative decoding of low-density parity check codes based on belief propagation. IEEE

Transactions on communications, pages 673–680. 16

[FNG14] Timothy La Fond, Jennifer Neville, and Brian Gallagher. Anomaly detection in

dynamic networks of varying size. CoRR, abs/1411.3749, 2014. 85, 87

[FYZ
+

19] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph

neural networks. In AAAI, pages 3558–3565. AAAI Press, 2019. 73

[Gat15] Wolfgang Gatterbauer. The linearization of pairwise markov networks. arXiv

preprint arXiv:1502.04956, 2015. 16, 17, 40

[GGF14a] Nikou Günnemann, Stephan Günnemann, and Christos Faloutsos. Robust multi-

variate autoregression for anomaly detection in dynamic product ratings. InWWW,

pages 361–372. ACM, 2014. 108

[GGF14b] Stephan Günnemann, Nikou Günnemann, and Christos Faloutsos. Detecting

anomalies in dynamic rating data: a robust probabilistic model for rating evolu-

tion. In KDD, pages 841–850, 2014. 54

[GGKF15] Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and Christos Faloutsos.

Linearized and single-pass belief propagation. PVLDB, 8(5):581–592, 2015. 15, 16,

17, 20, 21, 40, 54, 55, 56

[GGSH12] Manish Gupta, Jing Gao, Yizhou Sun, and Jiawei Han. Integrating community

matching and outlier detection for mining evolutionary community outliers. In

KDD, pages 859–867. ACM, 2012. 110

[GL16] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.

In KDD, pages 855–864. ACM, 2016. 61, 74, 75

[GLL
+

17] Yifeng Gao, Qingzhe Li, Xiaosheng Li, Jessica Lin, and Huzefa Rangwala. Trajviz:

A tool for visualizing patterns and anomalies in trajectory. In ECML/PKDD (3),

volume 10536, pages 428–431. Springer, 2017. 134

[GMRS16] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust random cut

forest based anomaly detection on streams. In ICML, volume 48, pages 2712–2721.

JMLR.org, 2016. 88, 91, 97, 98

[Hav03] Taher H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algo-

rithm for web search. TKDE, 15(4):784–796, 2003. 110

[Haw80] Douglas M Hawkins. Identi�cation of outliers, volume 11. Springer, 1980. 3

[HEF
+

10] Keith Henderson, Tina Eliassi-Rad, Christos Faloutsos, Leman Akoglu, Lei Li, Koji

Maruhashi, B. Aditya Prakash, and Hanghang Tong. Metric forensics: a multi-level

approach for mining volatile graphs. In KDD, pages 163–172. ACM, 2010. 85, 87,

88

162

[HHPS15] Katharine E Henry, David N Hager, Peter J Pronovost, and Suchi Saria. A targeted

real-time early warning score (trewscore) for septic shock. Science translational

medicine, 7(299):299ra122–299ra122, 2015. 134, 137

[HR05] Robert A Hanneman and Mark Riddle. Introduction to social network methods,

2005. 58, 66

[HS81] Harold V Henderson and Shayle R Searle. The vec-permutation matrix, the vec

operator and kronecker products: A review. Linear and multilinear algebra, pages

271–288, 1981. 18, 19, 51

[HSB
+

16a] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit

Kumar, Disha Makhija, and Christos Faloutsos. BIRDNEST: bayesian inference for

ratings-fraud detection. In SDM, pages 495–503. SIAM, 2016. 54, 110

[HSB
+

16b] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. FRAUDAR: bounding graph fraud in the face of camou�age. In KDD,

pages 895–904. ACM, 2016. 87

[IK04] Tsuyoshi Idé and Hisashi Kashima. Eigenspace-based anomaly detection in com-

puter systems. In KDD, pages 440–449. ACM, 2004. 87, 88

[Jac10] Matthew O Jackson. Social and economic networks. Princeton university press, 2010.

58, 66

[JBC
+

15] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos

Faloutsos. A general suspiciousness metric for dense blocks in multimodal data.

In ICDM, pages 781–786. IEEE, 2015. 87

[JNG04] David Jensen, Jennifer Neville, and Brian Gallagher. Why collective inference im-

proves relational classi�cation. In KDD, pages 593–598. ACM, 2004. 16

[Joa99] Thorsten Joachims. Transductive inference for text classi�cation using support

vector machines. In ICML, pages 200–209. Morgan Kaufmann, 1999. 61, 74, 75

[JPS
+

16] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,

Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and

Roger G Mark. Mimic-iii, a freely accessible critical care database. Scienti�c data,

3:160035, 2016. 148

[JRBT12] Matthew O Jackson, Tomas Rodriguez-Barraquer, and Xu Tan. Social capital and

social quilts: Network patterns of favor exchange. American Economic Review,

102(5):1857–97, 2012. 58, 66

[JS17] Shweta Jain and C. Seshadhri. A fast and provable method for estimating clique

counts using turán’s theorem. In WWW, pages 441–449. ACM, 2017. 61

[JS20] Shweta Jain and C. Seshadhri. The power of pivoting for exact clique counting. In

WSDM, pages 268–276. ACM, 2020. 80

[Kat53] Leo Katz. A new status index derived from sociometric analysis. Psychometrika,

18(1):39–43, 1953. 110

163

[KB09] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.

SIAM Review, 51(3):455–500, 2009. 110

[KKK
+

11] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Polo Chau, Hsing-Kuo Kenneth

Pao, and Christos Faloutsos. Unifying guilt-by-association approaches: Theorems

and fast algorithms. In ECML PKDD, pages 245–260, 2011. 15, 16, 17, 20, 40, 55, 110

[KLFH06] Eamonn J. Keogh, Jessica Lin, Ada Wai-Chee Fu, and Helga Van Herle. Finding un-

usual medical time-series subsequences: Algorithms and applications. IEEE Trans.

Information Technology in Biomedicine, 10(3):429–439, 2006. 134

[KSV
+

16] Danai Koutra, Neil Shah, Joshua T. Vogelstein, Brian Gallagher, and Christos Falout-

sos. Deltacon: Principled massive-graph similarity function with attribution.

TKDD, 10(3):28:1–28:43, 2016. 87, 88, 92, 110, 111

[KW17] Thomas N. Kipf and Max Welling. Semi-supervised classi�cation with graph con-

volutional networks. In ICLR (Poster). OpenReview.net, 2017. 57, 60, 62, 74, 75

[LCF
+

99] Richard Lippmann, Robert K. Cunningham, David J. Fried, Isaac Graf, Kris R.

Kendall, Seth E. Webster, and Marc A. Zissman. Results of the DARPA 1998 o�ine

intrusion detection evaluation. In Recent Advances in Intrusion Detection, 1999. 97,

121

[Lip18] Zachary C. Lipton. The mythos of model interpretability. Commun. ACM,

61(10):36–43, 2018. 132

[LK03] David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for social

networks. In CIKM, pages 556–559. ACM, 2003. 110

[LKF07] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densi-

�cation and shrinking diameters. TKDD, 1(1):2, 2007. 65

[LL10] Weiping Liu and Linyuan Lü. Link prediction based on local random walk. EPL

(Europhysics Letters), 89(5):58007, 2010. 111, 124

[LM04] Amy N Langville and Carl D Meyer. Deeper inside pagerank. Internet Mathematics,

1(3):335–380, 2004. 123, 124

[LRHB06] Xiangyang Lan, Stefan Roth, Daniel P. Huttenlocher, and Michael J. Black. E�cient

belief propagation with learned higher-order markov random �elds. In ECCV (2),

volume 3952 of Lecture Notes in Computer Science, pages 269–282. Springer, 2006.

61

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In ICDM, pages

413–422. IEEE, 2008. 88

[LW89] Danyu Y Lin and Lee-Jen Wei. The robust inference for the cox proportional hazards

model. Journal of the American statistical Association, 84(408):1074–1078, 1989. 144

[McG14] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–

20, 2014. 88

[MK07] Joris M Mooij and Hilbert J Kappen. Su�cient conditions for convergence of the

sum–product algorithm. IEEE Transactions on Information Theory, pages 4422–4437,

164

2007. 16, 43, 55

[MMA16] Emaad A. Manzoor, Sadegh M. Milajerdi, and Leman Akoglu. Fast memory-e�cient

anomaly detection in streaming heterogeneous graphs. In KDD, pages 1035–1044.

ACM, 2016. 87, 110

[MSLC01] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Ho-

mophily in social networks. Annual review of sociology, 27(1):415–444, 2001. 58,

66

[MTVV15] Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest sub-

graph in dynamic graph streams. In MFCS, volume 9235, pages 472–482. Springer,

2015. 88

[MWJ99] Kevin P Murphy, Yair Weiss, and Michael I Jordan. Loopy belief propagation for

approximate inference: An empirical study. In UAI, pages 467–475, 1999. 16, 43

[New03] Mark EJ Newman. Mixing patterns in networks. Physical Review E, 67(2):026126,

2003. 65

[NHR
+

18] Shamim Nemati, Andre Holder, Fereshteh Razmi, Matthew D Stanley, Gari D Clif-

ford, and Timothy G Buchman. An interpretable machine learning model for accu-

rate prediction of sepsis in the icu. Critical care medicine, 46(4):547–553, 2018. 134,

137

[NJ00] Jennifer Neville and David Jensen. Iterative classi�cation in relational data. In

AAAI Workshop on Learning Statistical Models from Relational Data, pages 13–20,

2000. 16

[NSZ09] Boaz Nadler, Nathan Srebro, and Xueyuan Zhou. Statistical analysis of semi-

supervised learning: The limit of in�nite unlabelled data. In NIPS, pages 1330–1338.

Curran Associates, Inc., 2009. 61

[nyt18] Nyc taxi & limousine corporation - trip record data. http://www.nyc.gov/
html/tlc/html/about/trip_record_data.shtml, 2018. 97

[OC12] Matan Orbach and Koby Crammer. Graph-based transduction with con�dence. In

ECMLPKDD, pages 323–338. Springer, 2012. 55, 56

[PAS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of

social representations. In KDD, pages 701–710. ACM, 2014. 61

[PCWF07] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Net-

probe: a fast and scalable system for fraud detection in online auction networks. In

WWW, pages 201–210, 2007. 16, 43

[Pea82] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchical ap-

proach. In AAAI, pages 133–136, 1982. 16

[Pea14] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible in-

ference. Morgan Kaufmann, 2014. 16, 43

[Pev16] Tomás Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learning,

102(2):275–304, 2016. 88, 91

165

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

[PL08] Brian Potetz and Tai Sing Lee. E�cient belief propagation for higher-order cliques

using linear constraint nodes. Computer Vision and Image Understanding, 112(1):39–

54, 2008. 61

[PNMS13] Chris Paxton, Alexandru Niculescu-Mizil, and Suchi Saria. Developing predictive

models using electronic medical records: challenges and pitfalls. In AMIA Annual

Symposium Proceedings, page 1109, 2013. 132, 134, 137

[PSS
+

10] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and

Christos Faloutsos. Eigenspokes: Surprising patterns and scalable community chip-

ping in large graphs. In PAKDD, volume 6119, pages 435–448. Springer, 2010. 87

[Rab89] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. IEEE, 77(2):257–286, 1989. 140, 141

[RGNH13] Ryan A Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Modeling

dynamic behavior in large evolving graphs. In Proceedings of the sixth ACM in-

ternational conference on Web search and data mining, pages 667–676. ACM, 2013.

110

[RHSS16] Stephen Ranshous, Steve Harenberg, Kshitij Sharma, and Nagiza F Samatova. A

scalable approach for outlier detection in edge streams using sketch-based approx-

imations. In SDM, pages 189–197. SIAM, 2016. 85, 87, 88, 98, 108, 110, 111, 123

[RKC
+

17] Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits, and

Marzyeh Ghassemi. Continuous state-space models for optimal sepsis treatment: a

deep reinforcement learning approach. InMLHC, volume 68, pages 147–163. PMLR,

2017. 135

[RLG
+

05] Chotirat Ann Ralanamahatana, Jessica Lin, Dimitrios Gunopulos, Eamonn Keogh,

Michail Vlachos, and Gautam Das. Mining time series data. In Data mining and

knowledge discovery handbook, pages 1069–1103. Springer, 2005. 134

[RRK
+

19] Ryan A. Rossi, Anup Rao, Sungchul Kim, Eunyee Koh, Nesreen K. Ahmed, and Gang

Wu. Higher-order ranking and link prediction: From closing triangles to closing

higher-order motifs. CoRR, abs/1906.05059, 2019. 61

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?":

Explaining the predictions of any classi�er. In KDD, pages 1135–1144. ACM, 2016.

132

[RSK
+

15] Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Falout-

sos, and Nagiza F Samatova. Anomaly detection in dynamic networks: a survey.

Wiley Interdisciplinary Reviews: Computational Statistics, 7(3):223–247, 2015. 87,

110

[RTG17] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. Finding dynamic dense

subgraphs. TKDD, 11(3):27:1–27:30, 2017. 110

[SA04] Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and brief

statistical report. Information sciences institute technical report, University of South-

ern California, 4(1):120–128, 2004. 97, 121

166

[Saa03] Yousef Saad. Iterative methods for sparse linear systems, volume 82. SIAM, 2003. 32,

52, 72

[SB13] Lovro Subelj and Marko Bajec. Model of complex networks based on citation dy-

namics. In WWW (Companion Volume), pages 527–530. International World Wide

Web Conferences Steering Committee / ACM, 2013. 65

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018. 135, 141

[SBB
+

09] Marten Sche�er, Jordi Bascompte, William A Brock, Victor Brovkin, Stephen R Car-

penter, Vasilis Dakos, Hermann Held, Egbert H Van Nes, Max Rietkerk, and George

Sugihara. Early-warning signals for critical transitions. Nature, 461(7260):53, 2009.

135

[Sch17] Jacob Schreiber. pomegranate: Fast and �exible probabilistic modeling in python.

JMLR, 18:164:1–164:6, 2017. 144

[SD14] Kumar Sricharan and Kamalika Das. Localizing anomalous changes in time-

evolving graphs. In SIGMOD, pages 1347–1358. ACM, 2014. 85, 87, 88, 110, 111

[SDS
+

16] Mervyn Singer, Cli�ord S Deutschman, Christopher Warren Seymour, Manu

Shankar-Hari, Djillali Annane, Michael Bauer, Rinaldo Bellomo, Gordon R Bernard,

Jean-Daniel Chiche, Craig M Coopersmith, et al. The third international consensus

de�nitions for sepsis and septic shock (sepsis-3). Jama, 315(8):801–810, 2016. 148,

149

[SERU17] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. Triest:

Counting local and global triangles in fully dynamic streams with �xed memory

size. ACM Transactions on Knowledge Discovery from Data (TKDD), 11(4):43, 2017.

112

[SFPY07] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. Graph-

scope: parameter-free mining of large time-evolving graphs. In KDD, pages 687–

696. ACM, 2007. 85, 87, 88, 108, 110

[SGB17] Ann Sizemore, Chad Giusti, and Danielle S Bassett. Classi�cation of weighted

networks through mesoscale homological features. Journal of Complex Networks,

5(2):245–273, 2017. 58, 66

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. Bell system

technical journal, 27(3):379–423, 1948. 62

[SHF16] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-zoom: Fast dense-block de-

tection in tensors with quality guarantees. In ECML/PKDD, volume 9851, pages

264–280. Springer, 2016. 87

[SHF18] Kijung Shin, Bryan Hooi, and Christos Faloutsos. Fast, accurate, and �exible al-

gorithms for dense subtensor mining. ACM Transactions on Knowledge Discovery

from Data, 12(3):28:1–28:30, 2018. 108, 110

[SHGY09] Yizhou Sun, Jiawei Han, Jing Gao, and Yintao Yu. itopicmodel: Information

network-integrated topic modeling. In ICDM, pages 493–502. IEEE, 2009. 51

167

[SNB
+

08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and

Tina Eliassi-Rad. Collective classi�cation in network data. AI Magazine, 29(3):93–

106, 2008. 60

[SP10] Robin Sommer and Vern Paxson. Outside the closed world: On using machine

learning for network intrusion detection. In Security and Privacy (SP), 2010 IEEE

Symposium on, pages 305–316. IEEE, 2010. 127

[SS17] Peter Schulam and Suchi Saria. Reliable decision support using counterfactual mod-

els. In NIPS, pages 1697–1708, 2017. 134

[ST17] Dejan Slepcev and Matthew Thorpe. Analysis of p-laplacian regularization in

semi-supervised learning. CoRR, abs/1707.06213, 2017. 61

[STF06] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs:

dynamic tensor analysis. In KDD, pages 374–383. ACM, 2006. 85, 87, 88, 98, 110

[SZS03] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using belief

propagation. IEEE Transactions on pattern analysis and machine intelligence, pages

787–800, 2003. 16

[TC09] Partha Pratim Talukdar and Koby Crammer. New regularized algorithms for trans-

ductive learning. In ECML/PKDD, pages 442–457, 2009. 55, 56, 57, 60

[TFP06] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart

and its applications. In ICDM, pages 613–622. IEEE, 2006. 16, 111

[TL11] Hanghang Tong and Ching-Yung Lin. Non-negative residual matrix factorization

with application to graph anomaly detection. In SDM, pages 143–153. SIAM, 2011.

110

[TQW
+

15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE:

large-scale information network embedding. CoRR, abs/1503.03578, 2015. 61

[TZ12] Lubos Takac and Michal Zabovsky. Data analysis in public social networks. In

International Scienti�c Conference & International Workshop Present Day Trends of

Innovations, 2012. 51, 65

[VFMV03] Alexei Vazquez, Alessandro Flammini, Amos Maritan, and Alessandro Vespignani.

Global protein function prediction from protein-protein interaction networks. Na-

ture biotechnology, 21(6):697, 2003. 11, 58

[Vit85] Je�rey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-

matical Software (TOMS), 11(1):37–57, 1985. 112

[VLBB08] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral

clustering. The Annals of Statistics, pages 555–586, 2008. 60, 71

[Vos91] Michael D. Vose. A linear algorithm for generating random numbers with a given

distribution. IEEE Transactions on software engineering, 17(9):972–975, 1991. 117

[WFLW15] Teng Wang, Chunsheng Victor Fang, Derek Lin, and Shyhtsun Felix Wu. Localizing

temporal anomalies in large evolving graphs. In SDM, pages 927–935. SIAM, 2015.

110

168

[WH98] Gary M. Weiss and Haym Hirsh. Learning to predict rare events in event sequences.

In KDD, pages 359–363. AAAI Press, 1998. 134, 144

[WRC08] Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-

supervised embedding. In ICML, volume 307 of ACM International Conference Pro-

ceeding Series, pages 1168–1175. ACM, 2008. 60

[WS98] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ net-

works. nature, 393(6684):440, 1998. 65, 77

[WSW14] Xiang Wang, David Sontag, and Fei Wang. Unsupervised learning of disease pro-

gression models. In KDD, pages 85–94. ACM, 2014. 134

[WZF
+

14] Ke Wu, Kun Zhang, Wei Fan, Andrea Edwards, and Philip S. Yu. Rs-forest: A rapid

density estimator for streaming anomaly detection. In ICDM, pages 600–609. IEEE,

2014. 88, 91

[YAMW13] Weiren Yu, Charu C Aggarwal, Shuai Ma, and Haixun Wang. On anomalous

hotspot discovery in graph streams. In ICDM, pages 1271–1276. IEEE, 2013. 85,

87, 88, 108, 110, 111

[YBL18] Hao Yin, Austin R Benson, and Jure Leskovec. Higher-order clustering in networks.

Physical Review E, 97(5):052306, 2018. 61, 65

[YBZ
+

17] Carl Yang, Lanxiao Bai, Chao Zhang, Quan Yuan, and Jiawei Han. Bridging collab-

orative �ltering and semi-supervised learning: A neural approach for POI recom-

mendation. In KDD, pages 1245–1254. ACM, 2017. 11

[YCS16] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-

supervised learning with graph embeddings. In ICML, volume 48 of JMLRWorkshop

and Conference Proceedings, pages 40–48. JMLR.org, 2016. 57, 60, 62

[YFK15] Yuto Yamaguchi, Christos Faloutsos, and Hiroyuki Kitagawa. Socnl: Bayesian label

propagation with con�dence. In PAKDD, pages 633–645, 2015. 55, 56

[YFK16] Yuto Yamaguchi, Christos Faloutsos, and Hiroyuki Kitagawa. Camlp: Con�dence-

aware modulated label propagation. In SDM, 2016. 16, 17, 22, 49, 55, 56

[YFW03] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding belief prop-

agation and its generalizations. In Exploring arti�cial intelligence in the new mil-

lennium, pages 239–269. Morgan Kaufmann Publishers Inc., 2003. 17, 19, 42, 43, 55,

56, 57, 60, 62

[YJK18] Minji Yoon, Woojeong Jin, and U. Kang. Fast and accurate random walk with restart

on dynamic graphs with guarantees. In WWW, pages 409–418. ACM, 2018. 111

[YL99] Yiming Yang and Xin Liu. A re-examination of text categorization methods. In

SIGIR, pages 42–49. ACM, 1999. 75, 99, 121, 149

[YM16] Weiren Yu and Julie A. McCann. Random walk with restart over dynamic graphs.

In ICDM, pages 589–598. IEEE, 2016. 111

[YML
+

14] Jaewon Yang, Julian J. McAuley, Jure Leskovec, Paea LePendu, and Nigam Shah.

Finding progression stages in time-evolving event sequences. InWWW, pages 783–

169

794. ACM, 2014. 134, 141

[YNY
+

19] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis,

and Partha P. Talukdar. Hypergcn: A new method for training graph convolutional

networks on hypergraphs. In NeurIPS, pages 1509–1520, 2019. 73

[YZU
+

18] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Zachary Zimmerman, Diego Furtado Silva, Abdullah Mueen, and

Eamonn J. Keogh. Time series joins, motifs, discords and shapelets: a unifying view

that exploits the matrix pro�le. Data Min. Knowl. Discov., 32(1):83–123, 2018. 134

[ZBL
+

03] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard

Schölkopf. Learning with local and global consistency. In NIPS, pages 321–328. MIT

Press, 2003. 57, 59, 60, 62, 72, 74, 75

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John D. La�erty. Semi-supervised learning

using gaussian �elds and harmonic functions. In ICML, pages 912–919. AAAI Press,

2003. 57, 59, 60, 62, 69, 74, 75

[ZHS06] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hyper-

graphs: Clustering, classi�cation, and embedding. In NIPS, pages 1601–1608. MIT

Press, 2006. 73

[Zhu05] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report 1530,

Computer Sciences, University of Wisconsin-Madison, 2005. 16, 55, 56

170

	I Introduction
	1 Introduction
	1.1 Problem
	1.2 Organization
	1.3 Overview of Part II: Static Graphs
	1.4 Overview of Part III: Dynamic Graphs

	II Static Graphs
	2 ZooBP: Leveraging Heterogeneity
	2.1 Introduction
	2.2 Related Work
	2.3 Preliminaries
	2.4 Proposed Method
	2.4.1 Notation and Problem Description
	2.4.2 Key Insights
	2.4.3 ZooBP
	2.4.4 Derivation of ZooBP
	2.4.5 Iterative Updates and Convergence
	2.4.6 Time and Space Complexity
	2.4.7 Case Study - Product-Rating Network

	2.5 Experiments
	2.5.1 Data Description and Experimental Setup
	2.5.2 Q1. Accuracy
	2.5.3 Q2. (In-)Sensitivity to Interaction Strength
	2.5.4 Q3. Speed & Scalability

	2.6 Conclusion

	3 NetConf: Leveraging Confidence
	3.1 Introduction
	3.2 Background
	3.3 Axioms
	3.4 Proposed Method
	3.4.1 Dirichlet Beliefs
	3.4.2 Multinomial Messages
	3.4.3 Network Effects
	3.4.4 Putting Things Together: NetConf
	3.4.5 Closed-Form Solution and Convergence

	3.5 Experiments
	3.5.1 Synthetic Data
	3.5.2 Real-World Data

	3.6 Related Work
	3.7 Conclusion

	4 HOLS: Leveraging Higher-Order Structures
	4.1 Introduction
	4.2 Related Work
	4.3 Higher-Order Label Consistency
	4.3.1 Notation
	4.3.2 Quantifying Label Consistency
	4.3.3 Label Consistency in Real-World Networks

	4.4 Higher-Order Label Spreading
	4.4.1 Generalized Loss Function
	4.4.2 Closed-Form and Iterative Solutions
	4.4.3 Time and Space Complexity

	4.5 Experiments
	4.5.1 Experimental Setup
	4.5.2 Q1. Accuracy Comparison of HOLS
	4.5.3 Q2. Variation of Accuracy with Higher-Order Structures
	4.5.4 Q3. Runtime Performance of HOLS
	4.5.5 Q4. Variation of Accuracy with Label Consistency
	4.5.6 Q5. Variation of Accuracy with Vertex Label Consistency

	4.6 Conclusion

	III Dynamic Graphs
	5 SpotLight: Anomalous Dense-Subgraph Detection
	5.1 Introduction
	5.2 Related Work
	5.3 Preliminaries
	5.4 Proposed Method
	5.4.1 SpotLight Graph Sketching
	5.4.2 Anomaly Detection in the SpotLight Space

	5.5 Theoretical Analysis
	5.5.1 Guarantees for SpotLight Sketches
	5.5.2 Time and Space Complexity

	5.6 Experiments
	5.6.1 Datasets
	5.6.2 Experimental Setup
	5.6.3 Q1. Accuracy
	5.6.4 Q2. Scalability
	5.6.5 Q3. Discoveries
	5.6.6 Discussion

	5.7 Conclusion

	6 SedanSpot: Anomalous Edge Detection
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 Anomaly Detection in Graphs
	6.2.2 Random Walk with Restart (RWR)
	6.2.3 Sampling in Streams

	6.3 Problem Framework
	6.3.1 Subproblems

	6.4 Proposed Method
	6.4.1 Edge Sampling using SedanSampler
	6.4.2 Anomaly Scoring via SedanScorer
	6.4.3 Extensions

	6.5 Theoretical Analysis
	6.5.1 Algorithmic Analysis
	6.5.2 Time and Space Complexity

	6.6 Experiments
	6.6.1 Datasets
	6.6.2 Experimental Setup
	6.6.3 Q1. Accuracy
	6.6.4 Q2. Scalability
	6.6.5 Q3. Discoveries

	6.7 Conclusion

	7 SmokeAlarm: Early Warning of User-Input Anomalies
	7.1 Introduction
	7.2 Related Work
	7.3 Preliminaries and Principles
	7.3.1 Principles of an Ideal Early Warning System
	7.3.2 Prior Works Violate Principles
	7.3.3 Problem

	7.4 Proposed Approach
	7.4.1 Intervention-Aware Modeling
	7.4.2 Early Warning Scoring
	7.4.3 Theoretical Analysis

	7.5 Experiments
	7.5.1 Experimental Setup
	7.5.2 Synthetic Data
	7.5.3 Real-World Data

	7.6 Conclusion

	IV Conclusion
	8 Conclusion and Future Work
	8.1 Summary
	8.2 Vision and Future Work

	Bibliography

