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Abstract

Infectious diseases remain among the top contributors to human illness
and death worldwide [Murray et al., 2012, World Health Organization]. While
some infectious disease activity appears in consistent, regular patterns within
a population, many diseases produce less predictable epidemic waves of ill-
ness. Uncertainty and surprises in the timing, intensity, and other charac-
teristics of these epidemics stymies planning and response of public health
officials, health care providers, and the general public. Accurate forecasts of
this information with well-calibrated descriptions of their uncertainty can as-
sist stakeholders in tailoring countermeasures, such as vaccination campaigns,
staff scheduling, and resource allocation, to the situation at hand, which in
turn could translate to reductions in the impact of a disease.

Domain-driven epidemiological models of disease prevalence can be diffi-
cult to fit to observed data while incorporating enough details and flexibility
to explain the data well. Meanwhile, more general statistical approaches can
also be applied, but traditional modeling frameworks seem ill-suited for irreg-
ular bursts of disease activity, and focus on producing accurate single-number
estimates of future observations rather than well-calibrated measures of un-
certainty on more complicated functions of the data. The first part of this
work develops variants of simple statistical approaches to address these issues,
and a way to incorporate features from certain domain-driven models.

Epidemiological surveillance systems commonly incorporate a data revi-
sion process, whereby each measurement may be updated multiple times to
improve accuracy as additional reports and test results are received and data
is cleaned. The second part of this work discusses how this process impacts
proper forecast evaluation and visualization. Additionally, it extends the
models above to “backcast” how existing measurements will be revised, which
in turn can be used to improve forecast accuracy. These models are then ex-
panded further to include auxiliary data from other surveillance systems.

The preceding sections describe several prediction algorithms, and many
more are available in existing literature and deployed in operational systems.
The final part of this work demonstrates one method to combine output from
multiple such prediction systems with consideration of the domain, which on
average tends to match or outperform its best individual component.
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Chapter 1

Introduction

Much of this chapter is based on material from Brooks et al. [2018].

1.0.1 Infectious diseases and the motivation for forecasting

Despite modern medical advances, infectious diseases remain among the top causes
of human illness and death worldwide, and pose major threats even in high-income
countries [Lozano et al., 2012, Murray et al., 2012, World Health Organization].
Within the scope of infectious diseases, leading contributors include lower respira-
tory infections (e.g., with pneumonia or influenza) and diarrheal diseases (e.g., from
foodborne bacteria and viruses) [El Bcheraoui et al., 2018, Lozano et al., 2012, Mur-
ray et al., 2012, World Health Organization]. Some infectious disease activity occurs
in consistent, regular “endemic” patterns within a population, but many diseases
produce less predictable “epidemic” waves of illness. Uncertainty and surprises in
the timing, intensity, and other characteristics of these epidemics stymies planning
and response of public health officials, health care providers, and the general public,
and contributes to a high health and economic burden.

For instance, in the United States and other temperate regions, lower respira-
tory infection activity various classes of respiratory and circulatory disease, such as
lower respiratory infections, present fairly uniform “baseline” patterns repeating each
year, punctuated by sharp spikes in prevalence often associated with influenza epi-
demics [Kyeyagalire et al., 2014, Serfling, 1963, Thompson et al., 2010, 2003, Zhou
et al., 2012]. Influenza epidemics typically occur once a year during the “influenza
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season” (roughly from October to May in the Northern Hemisphere), but vary in
timing, intensity, and other traits; these “seasonal” epidemics are associated with an
estimated 250 000 to 500 000 annual deaths worldwide [World Health Organization,
2016], with a range of 3000 to 56 000 deaths in the US alone [Centers for Disease
Control and Prevention, National Center for Immunization and Respiratory Dis-
eases (NCIRD), 2016a, Rolfes et al., 2016, Thompson et al., 2010]. Additionally,
influenza “pandemics”, which are rare global outbreaks of especially novel influenza
viruses [Centers for Disease Control and Prevention, National Center for Immuniza-
tion and Respiratory Diseases (NCIRD), 2016b, 2017b], can cause deaths on even
greater scales [Johnson and Mueller, 2002, Viboud et al., 2010]. Potential coun-
termeasures include [Niska and Shimizu, 2011] adjusting scheduling and providing
on-site child care for health workers to better handle increased patient loads; can-
celing or rebooking less urgent medical appointments and procedures, admitting
emergency department patients to inpatient hallway beds and reconfigured or alter-
native spaces; transferring patients to other facilities to avoid or reduce overcrowding;
producing and tuning composition of vaccines; manufacturing, allocating, and redis-
tributing antiviral medication, respirators, and other resources; inducing insurance
companies to pay for more expensive brands of the same medications when avail-
ability of cheaper alternatives is limited; and launching or modifying campaigns to
promote vaccination, effective hand-washing practices, wearing face masks [Aiello
et al., 2008, Cowling et al., 2009, Rabie and Curtis, 2006, Simmerman et al., 2011,
Suess et al., 2012, Talaat et al., 2011], and other beneficial behaviors, targeted to sick
individuals, their close contacts, or health workers, in order to curtail the spread and
consequences of infections. The design and effectiveness of these efforts depends
on the range of expectations for and ultimate reality of an epidemic’s size, timing,
and other characteristics.

Accurate and reliable forecasts of this information could provide early warning,
bolster situational awareness, and assist in designing countermeasures, which in turn
may reduce the overall impact of infectious disease. While the idea of epidemic
modeling and forecasting is not new, recent years have seen growing interest driving
government initiatives that standardize datasets, tasks, and metrics to improve fore-
cast usability, address decision-maker needs, attract and assist external modelers,
and allow for rigorous evaluation and comparison. These efforts include the U.S.
government’s Dengue Forecasting project, CHIKV (Chikungunya virus) Challenge,
and a series of influenza forecast comparisons. This document will focus on these
influenza forecasting testbeds and corresponding surveillance systems in the US.

The Centers for Disease Control and Prevention (CDC) monitors influenza preva-
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lence with several well-established surveillance systems [Centers for Disease Control
and Prevention, 2013]; the recurring nature of seasonal epidemics and availability of
historical data provide promising opportunities for the formation, evaluation, and
application of statistical models. Starting with the 2013/2014 “Predict the Influenza
Season Challenge” [Biggerstaff et al., 2016] and continuing each season thereafter
as the Epidemic Prediction Initiative’s FluSight project [Biggerstaff et al., 2018],
CDC has solicited and compiled forecasts of influenza-like illness (ILI) prevalence
from external research groups and worked with them to develop standardized fore-
cast formats and quantitative evaluation metrics. Targets of interest include disease
prevalence in the near future, as well as features describing the timing and overall
intensity of the disease activity in the season currently underway. Policymakers de-
sire not only in point predictions of these quantities, but full distributional forecasts;
recent initiatives solicit both types of estimates, but base evaluation on customized
log scores of distributional forecasts.

1.1 Models of disease dynamics

Various approaches to influenza epidemic forecasting are summarized in literature re-
views [Chretien et al., 2014, Nsoesie et al., 2014, Unkel et al., 2012] and descriptions of
the CDC comparisons [Biggerstaff et al., 2016, 2018]. Some common approaches are
described below, with references to work applicable to the current FluSight project
and related seasonal dengue forecasting tasks, emphasizing more recent work that
may not be listed in the above three literature reviews:

• Mechanistic models: describe the disease state and interaction between indi-
viduals with causal models, as well as the surveillance data generation process.

• Compartmental models (e.g., [Hickmann et al., 2015, Kandula et al.,
2017, Shaman and Karspeck, 2012a, Shaman et al., 2013a, Zhang et al.,
2017]) break down the population into a number of discrete “compart-
ments” describing their characteristics (e.g., age, location) and state (e.g.,
susceptible to, infectious with, or recovered from a particular disease), and
describe how the occupancy of these compartments changes over time, ei-
ther deterministically or probabilistically. In many of these models, this
division describes solely the state with respect to a single disease, ig-
noring details regarding age, spatial dynamics, and mixtures of ILI dis-
eases, but keeping the number of parameters to infer low. Methods to fit
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these models to data include variants of particle and ensemble Kalman fil-
ters [Yang et al., 2014], naïve importance sampling [Brooks et al., 2015a],
iterative augmented-state filtering [Ionides et al., 2006, 2015, Lindström
et al., 2012], general Bayesian frameworks [Osthus et al., 2019] (using
JAGS [Plummer, 2003], Stan [Carpenter et al., 2017], etc.), filtering us-
ing linear noise approximation [Zimmer et al., 2017, 2018], and Gaussian
process approximations [Buckingham-Jeffery et al., 2018].

• Agent-based models (e.g., [Deodhar et al., 2015, Nsoesie et al., 2014]),
also known as individual-based models, these approaches use more de-
tailed descriptions of disease state and/or individual characteristics and
behavior, which are not easily simplified into a compartmental form, typ-
ically studied using computation-heavy simulations. These approaches
usually include many more parameters than compartmental models, which
may be set based on heuristics or additional data sources and studies,
or, alternatively, inferred based on the surveillance data, often by using
Markov chain Monte Carlo (MCMC) procedures. Developing effective in-
ference and prediction techniques is an active area, with scalability to large
populations still on the frontier of research, requiring special techniques
and/or likelihood approximations [O’Neill, 2010].

• Phenomenological models: also referred to as statistical models, these ap-
proaches describe the surveillance data without directly incorporating the epi-
demiological underpinnings.

• Direct regression models (e.g., [Brooks et al., 2015a, Chakraborty et al.,
2014, Ray et al., 2017, Viboud et al., 2003]) attempt to estimate future
prevalence or targets of interest using various types of regression, includ-
ing nonparametric statistical approaches and alternatives from machine
learning literature.

• Time series models (e.g., [Generous et al., 2014, Höhle et al., 2017, Jo-
hansson et al., 2016, Lampos et al., 2015, Lowe et al., 2013, Martinez et al.,
2011, Paul et al., 2014a, Yang et al., 2015, 2017]) represent the expected
value of (transformations of) observations and/or underlying latent state
at a particular time as (typically linear) functions of these quantities at
previous times and additional covariates, paired with Gaussian, Poisson,
negative binomial, or other noise distributions. This category includes
linear dynamical systems and frameworks such as SARIMAX.

Complicated mechanistic approaches such as agent-based models are often too
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complex to efficiently fit to surveillance data and are instead less strictly “cali-
brated” based on summary measures, which may not produce a close match to the
surveillance observations. Instead, mechanistic forecasting approaches have focused
on simpler compartmental models and frameworks for fitting them to surveillance
data. However, oversimplified compartmental models often cannot tightly match the
surveillance data for an entire season simultaneously [Brooks et al., 2015a], which
can degrade prediction quality. Some degree of mismatch can be attributed to ob-
servation models that do not reflect important details of the surveillance system,
which are discussed in the next section. Another contributor is the rigidity of com-
partmental models with deterministic state transitions, the full mixing assumption,
and shallow-tailed observational noise, leading to overconfident forecasts; some paths
forward are to incorporate variance inflation factors [Shaman and Karspeck, 2012a],
overdispersed observational noise [Lowe et al., 2013], stochastic variants or process
noise [King et al., 2015], random walk discrepancy terms [Osthus et al., 2019], error
breeding procedures [Pei and Shaman, 2017], more complex models with appropriate
filtering algorithms [Pei et al., 2018], or use of improper conditioning procedures to
combat overconfidence.

Phenomenological models, on the other hand, offer a wide range of general-
purpose methods designed around efficient, straightforward predictions. Univariate
response models are extremely flexible, but seem inappropriate when the target of
interest is a function of a surveillance time series. The most popular statistical time
series methods, falling within “alphabet soup” frameworks such as SARIMAX and
GARCH, directly model the time series, but sacrifice some flexibility by focusing on
linear dynamics and Gaussian noise.

Chapter 2 expands the phenomenological front and moves toward the mechanis-
tic one, presenting methods that incorporate the flexibility of univariate response
models into ARI-type time series models, and ways to tailor these models to epi-
demiological settings to resemble a compartmental model. Concurrent work similar
expands flexibility of time series models using an alternative copula approach [Ray
et al., 2017], and other work incorporates additional aspects of epidemiological data
within a Bayesian optimization framework [Osthus and Moran, 2019]; many addi-
tional alternatives are listed in [Biggerstaff et al., 2018] and [Biggerstaff et al., 2016].
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1.2 Models of observations

Most epidemic modeling work, including much of the epidemic forecasting literature,
tends to focus on the disease transmission dynamics, with the nature of surveillance
system modeled with a very simple observational noise term. However, recogniz-
ing some details of surveillance systems is essential when performing retrospective
forecast preparation and evaluation, and using these details to inform models can
improve forecast accuracy. For example, surveillance data may contain spikes around
holidays, which may be explained by differences in health care seeking behavior pro-
ducing artifacts in the surveillance system, and/or due to changes in disease trans-
mission behavior. Chapter 2 touches on some model settings that can be used to
acknowledge holiday effects.

A more fundamental issue is that the ground truth from traditional surveillance
systems used for evaluation is not available in real-time for use in forecasts. It takes
time for symptoms to be recorded, diagnoses to be made, lab tests to complete; for
health care workers to prepare and submit reports; and for public health officials to
compile, clean, summarize, and publish the data. Furthermore, a case might only
be reported after recovery or death, but recorded with a time closer to the onset
of symptoms. In short, there is a trade-off between the accuracy of an observation
and its timeliness. Traditional surveillance systems often address this problem by
publishing an initial observation for a given time once the level of reliability is deemed
acceptable, then later reporting a revised value or sequence of revised values that
improve the expected accuracy. After some time, the observation may be finalized in
the surveillance system or considered stabilized enough to be interchangeable with
the finalized value and used as ground truth for forecast evaluation. Within this
document, the distinction between these two cases will be ignored, and “finalized”
will be used to refer to the data used for forecast evaluation. Chapter 3 discusses
how the revision process impacts proper retrospective forecast evaluation, and how
forecast accuracy can be improved by modeling the revision process.

In recent years, a number of novel digital surveillance sources and derived esti-
mators have been prepared using internet search query data [Ginsberg et al., 2009],
social media activity [Dredze et al., 2014], web page hits [Farrow, 2016, Hickmann
et al., 2015], self-reported illness [Smolinski et al., 2015], internet-integrated monitor-
ing and testing devices [Farrow, Accessed 2017-04-26, Miller et al., 2018], electronic
health records and derived statistics [Santillana et al., 2015], insurance claims [Jahja
et al., 2018, Viboud et al., 2014], or some combination along with traditional surveil-
lance data (discussed further in Section 4.1). These estimates are not used as ground
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truth for evaluation, but may have better timeliness and temporal, geographic, or de-
mographic resolution, and offer opportunities for improved forecasting. Some of these
sources undergo a similar revision process as more traditional surveillance data. For
truly real-time systems, initial estimates for a given time interval may be available
before the end of that time interval (e.g., an initial estimate for cases for an entire
Sunday-to-Saturday week may be available based on data from Sunday through Tues-
day). Chapter 4 discusses how to incorporate these additional data sources within
the modeling framework presented in the previous chapters.

1.3 Epidemiological surveillance data

Epidemiological surveillance data exhibit a number of behaviors which are problem-
atic for traditional time series methods:

• Rare or one-time events cause major shifts in reported disease prevalence, in-
cluding

• invasions: introduction of a disease into an area that has not encountered
it before;

• novel strain pandemics: epidemics with wider geographical spread or high
incidence, often occurring at unseasonal times of year, caused by muta-
tions in a strain of a disease that result in more effective transmission;

• mass vaccination and eradication campaigns: coordinated efforts by
public health officials to drastically increase the proportion of the popu-
lation that is vaccinated against a disease; and

• sudden shifts in reporting practices or suitability: changes in report-
ing requirements; the type or number of reporting health care providers (in
a passive surveillance system (define)); disease definitions, testing proce-
dures, testing equipment, or testing sensitivity to prevalent disease strains;
reporting frequency, geographical and temporal scope and resolution, dis-
ease specificity; among other changes;

• Seasonality in transmissibility which results in irregular seasonal behavior in
case counts: epidemic waves of varying heights and times that usually occur
with some wide “on-season” time window (in addition to more predictable
background seasonality for which sinusoidal or seasonal autoregressive terms
and Gaussian-like noise seem more appropriate)
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• Nonadditive holiday effects on health care seeking, reporting, or disease trans-
mission rates;

• Data revisions to past surveillance data are common, as the reporting delay
for cases may vary based on the attending health care provider and duration
of illness, suspected cases of a disease may be included in early estimates but
ruled out later, and, for rapidly available datasets, the time window for data
aggregation may include times in the future (e.g., later days of the current
week) which are necessarily not observed yet; and

• Ragged data availability , used here to refer to differences among surveillance
signals in geotemporal and demographic resolution, availability, and reliability
patterns; timeliness of release; and underlying stimuli, complicate the creation
and use of models incorporating multiple signals simultaneously.

1.3.1 The ILINet surveillance system

This subsection reproduces or incorporates content from Brooks et al. [2018].

One example of a traditional surveillance system designed to monitor influenza
activity is the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet).
Recording every case of influenza is not practicable; infections are often asymp-
tomatic [Leung et al., 2015] or symptomatic but not clinically attended [Hayward
et al., 2014], laboratory testing may not be performed for clinically attended cases
or give false negative results, and reporting of lab-confirmed cases is not mandatory
in most instances. Instead, estimates of true influenza activity are often based on
syndromic clinical surveillance data from ILINet [Brammer et al., 2013, Centers for
Disease Control and Prevention, 2013], a group of health care providers that volun-
tarily report statistics regarding ILI, where ILI is defined as a 100 °F (37.8 ○C) fever
with a cough and/or sore throat without a known cause other than influenza. CDC
aggregates these reports and estimates the weekly percentage of patients seen that
have ILI, %ILI, across all health care providers using a measure called weighted %ILI
(wILI).

• Geographical resolution: CDC reports wILI for each of the 10 U.S. Depart-
ment of Health & Human Services (HHS) Regions, as well as for the nation
as a whole; the wILI for each of these locations is a weighted average of the
ILINet %ILI for state-level units based on population.
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• Temporal resolution: wILI is available on a weekly basis; weeks begin on Sun-
day, end on Saturday, and are numbered according to the epidemiological week
(epi week) convention in the United States.

• Timeliness: Initial wILI estimates for a given week are typically released on
Friday of the following week; additional reports and revisions from participating
health care providers are incorporated in updates throughout the season and
after it ends.

• Specificity: Influenza is just one of many potential causes of ILI. Laboratory
testing data [Centers for Disease Control and Prevention, 2013] suggest that
influenza is responsible for a significant portion of ILI cases during the flu
season, especially for weeks when wILI is high, but only for a very small fraction
of cases in the typical flu off-season. Much of the variance and “peakiness” in
wILI can be associated with influenza epidemics, but wILI trajectories do not
taper off to near-zero values as one might expect in a direct measurement of
influenza prevalence.

• Influence of non-ILI cases: Since wILI depends on records of both ILI cases
and total cases, patterns in non-ILI cases can impact wILI trajectories. We
discuss one such pattern in Section 2.5.

CDC hosts the latest ILINet report and other types of surveillance data through
FluView Interactive, a collection of web modules [Centers for Disease Control and
Prevention, National Center for Immunization and Respiratory Diseases (NCIRD),
2017a]; the Delphi Group at Carnegie Mellon University provides current and his-
torical ILINet reports and some other data sources through our delphi-epidata
API [The Delphi Group at Carnegie Mellon University, Accessed 2017-04-26] and
epivis visualizer [Farrow, Accessed 2017-04-26]. Figure 1.1 and Figure 1.2 show
wILI data at the national level from one such report.

Forecasting targets

Starting with the 2013/2014 “Predict the Influenza Season Challenge” [Biggerstaff
et al., 2016] and continuing each season thereafter as the Epidemic Prediction Ini-
tiative’s FluSight project [Biggerstaff et al., 2018], CDC has solicited and compiled
forecasts of ILI prevalence from external research groups and worked with them
to develop standardized forecast formats and quantitative evaluation metrics. The
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FluSight project focuses on in-season distributional forecasts and point predictions
of key targets of interest to public health officials:

• Short-term wILI: the four wILI values following the last available observation
(incorporating all data revisions through some week well after the season’s end)

• Season onset: the first week in the first run of at least three consecutive weeks
with wILI values above a location- and season- specific baseline wILI level set
by CDC [Centers for Disease Control and Prevention, 2013], or “none” if no
such runs exist; describes whether and when an influenza epidemic started in
a given season

• Season peak percentage: the maximum of all wILI values for a given season

• Season peak week: the week or weeks in which wILI takes on its maximum
value, or “none” if there was no onset in the 2015/2016 comparison

When making distributional forecasts, wILI values are discretized into CDC-specified
bins and a probability assigned to each bin, forming a histogram over possible obser-
vations. The width of the bins was set at 0.5 %wILI for the 2015/2016 comparison
and 0.1 %wILI for the 2016/2017, 2017/2018, and 2019/2020 comparisons; we use a
width of 0.1 %wILI for cross-validation analysis. CDC typically presents wILI values
rounded to a resolution of 0.1 %wILI; some targets and evaluations are based on
these rounded values.

1.4 Evaluation metrics

This section reproduces or incorporates content from Brooks et al. [2018].

We focus on three metrics for evaluating performance of a forecast for a given
target:

• Unibin log score: log p̂i, where p̂i is the probability assigned to i, the bin con-
taining the observed value. This scoring rule is illustrated in Figure 1.3. We
use this score for ensemble weight selection and most internal evaluation as it
has ties to maximum likelihood estimation, and is “proper score” [Hendrick-
son and Buehler, 1971]. A score for a (reported) distributional prediction p̂ is
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for the “Season onset” target in the FluSight forecasting context, although actual
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just 4.
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called “proper” if its expected value according to any (internal) distributional
prediction q̂ is maximized when reporting p̂ = q̂, i.e., forecasters can maximize
their expected scores by reporting their true beliefs. We refer to the “unibin log
score” simply as the “log score” except for when comparing it with the multibin
log score, which is defined next. The exponentiated mean unibin log scoreis the
(geometric) average probability assigned to events that were actually observed.
The exponentiated difference in the mean log scores of method A and method B
is an estimate of the (geometric) expected winnings of unit-sized bets of the
form “this bin will hold the true value” when bets are placed optimally accord-
ing to the forecasts of A, and (relative) prices are set optimally according to
the forecasts of B. A distributional prediction assigning a probability of zero
to an event that actually occurred will be assigned a “raw” unibin log score
of −∞, and cause the corresponding forecaster to receive an overall raw log
score of −∞; in some analyses, we will threshold individual unibin log scores
at −10 ≈ log 0.0000454 to enable more meaningful comparisons; in others, we
will use raw log score, but only compare variants of methods that avoid infinite
and extremely low individual scores.

• Multibin log score: log∑i near observed value p̂i, where the i’s considered are typ-
ically bins within 0.5 %wILI of observed values for a wILI target, or within
1 week for a timing target. Similarly to the unibin log score, the multibin
log score may be thresholded, e.g., at a minimum of −10 ≈ log 0.0000454, to
limit the sensitivity of the mean score on any individual score. A thresholded
multibin log score was designed by FluSight hosts in consultation with par-
ticipants, and the judgment “near observed value” was selected as a level of
error that would not significantly impact policymakers’ decisions. The expo-
nentiated mean multibin log score, or “skill score”, is the (geometric) average
amount of mass a forecaster placed within this margin for error of observed
target values.

• Absolute error: ∣ŷ − y∣, where ŷ is the point prediction and y is an observed
value. (In the case of onset, we consider point predictions for the value of on-
set conditioned on the fact that an onset actually occurs. We do not consider
absolute error for onset in instances where no onset occurred. Some methods
considered would sometimes fail to produce such conditional onset point pre-
dictions when they were confident that there was no onset, but these methods
are not included in any of the figures containing absolute errors.)

The FluSight 2015/2016, 2016/2017, and 2018/2019 forecast comparison overall eval-
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uations were based solely on the thresholded multibin log score [Epidemic Prediction
Initiative, 2016], while the 2019/2020 comparison is set to use the unibin log score.

1.5 Overview

This work focuses on building models for disease data that accommodate seasonality,
holiday effects, data revisions, and ragged data availability. Chapter 2 focuses on
building nonparametric univariate time series models that factor in holiday effects
and seasonality in transmissibility, ignoring the fact that data revisions occur and
additional surveillance signals may be available. Chapter 3 deals with the model-
ing of data revisions. Chapter 4 discusses incorporation of additional data sources
with differing availability patterns. Chapter 5 describes a method to combine pan-
casts from multiple methodologies leveraging information about their behavior from
retrospective forecasts.
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Chapter 2

Probabilistic forecasting of the
spread of epidemics

Stakeholders desire accurate and reliable forecasts of disease prevalence in the next
few weeks, and of summary statistics about the timing and intensity of epidemics.
The goal is to improve situational awareness and decision-making regarding, for ex-
ample, hospital staffing and scheduling impacting readiness for surges in the number
of inpatients, or the timing of a vaccination campaign. Each of the prediction targets
could be handled separately: one model could be built to forecast disease prevalence
next week, another to forecast the week when prevalence is highest, and so on. How-
ever, we focus on a more unified approach: first, forecasting the distribution of the
disease prevalence trajectory for the entire season, then extracting the corresponding
distributions for the targets of interest. This chapter discusses methods of forecasting
the future of a trajectory given observed values of this trajectory in the past. These
methods fall into two categories: “entire-trajectory models”, which treat Y1..T as a
vector, and “chained one-ahead models”, which break it into scalars using Markov-
like assumptions. Section 2.2, Section 2.3, and Section 2.4 lay out specific modeling
frameworks falling within one of these two categories. Subsection 2.4.2 discusses how
to incorporate mechanistic model-inspired covariates into one of these frameworks.
Finally, Section 2.5 discusses approaches to incorporating holiday effects in these
frameworks. All of the methods described in this chapter are “revision-ignorant”,
assuming that these past values do not undergo a revision process; this aspect of
surveillance data is addressed in Chapter 3 and Chapter 4.
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2.1 Revision-ignorant forecasting task

Given past observations Y1..t of a univariate surveillance time series Y1..T for a semi-
regular seasonal epidemic, we want to estimate the distribution of future trajectories,
Yt+1..T . The distributional aspect of the forecast is important: many time series meth-
ods focus on conditional mean estimation, and incorporate Gaussian observational
and/or process noise as a matter of convenience to obtain a generative model; we
seek a more flexible noise model able of capturing heavy tails and multi-modality.
Furthermore, we prefer the conditional mean estimates that are produced to have a
flexible, nonparametric flavor. Being able to produce a sample from the distribution
for Yt+1..T is sufficient; we do not need an explicit representation of the model.

The forecasting methodologies described below are based on two general ap-
proaches satisfying the above criteria:

• Entire-trajectory models: characterize the set or distribution of possible tra-
jectories Y1..T , and use conditioning or inference techniques to obtain a related
conditional distribution Yt+1..T ∣ Y1..t.

• Chained one-ahead models: construct many “one-ahead” conditional density
models Yu ∣ Y1..u−1 and piece them together to form (a sample from) an estimate
of the conditional distribution Yt+1..T ∣ Y1..t.

Hybrid approaches are also possible, combing conditional future mean curves E [Yt+1..T ∣ Y1..t]

from some entire-trajectory model with a chained one-ahead model for the residuals
(Yt+1..T −E [Yt+1..T ∣ Y1..t]) ∣ Y1..t.

2.1.1 Entire-trajectory models:

Entire-trajectory models directly characterize the full set or distribution of trajec-
tories Y1..T , often as some latent mean curve Z1..T plus noise Y1..T − Z1..T . This
entire-trajectory characterization is transformed into (a sample from) a related esti-
mate of Yt+1..T ∣ Y1..t either via techniques to condition on Y1..t (such as importance
sampling) or via maximum likelihood or maximum a posteriori estimation of Z1..t or
Z1..T (e.g., involving regression to fit means of Y1..t). This document will describe one
such method, an empirical Bayes style approach that fits a library of mean curves and
noise models and performs importance sampling to extract a posterior over related
parameters and a sample from a predictive distribution for Yt+1..T ∣ Y1..t.

18



2.1.2 Chained one-ahead models:

Chained one-ahead models can borrow from well-known, flexible methods for univari-
ate regression and density estimation and repurpose them for time series estimation.
A simple procedure allows us to sample from an estimate of Yt+1..T ∣ Y1..t based on sam-
plers for estimates of one-step-ahead conditional distributions Yt+1 ∣ Y1..t, Yt+2 ∣ Y1..t+1,
. . . , YT ∣ Y1..T−1:

• Draw Y sim
t+1 ∼ Yt+1 ∣ Y1..t

• Draw Y sim
t+2 ∼ Yt+2 ∣ Y1..t, Yt+1 = Y sim

t+1 (using model for Yt+2 ∣ Y1..t+1)

• Draw Y sim
t+3 ∼ Yt+3 ∣ Y1..t, Yt+1,t+2 = Y sim

t+1,t+2 (using model for Yt+3 ∣ Y1..t+2)

• . . .

• Draw Y sim
T ∼ YT ∣ Y1..t, Yt+1..t = Y sim

t+1..T−1 (using model for YT ∣ Y1..T−1)

• Record Y sim
t+1..T and repeat this process to obtain additional simulated futures.

There are essentially no restrictions on the models selected for Yu ∣ Y1..u−1 for each u.
It would be more faithful to condition, e.g., in the first step, on the random variable
Y sim
t+1 rather than on the condition Yt+1 = Y sim

t+1 , but also more algorithmically and
computationally challenging.

One natural approach to building the conditional distributions above is to first
directly estimate the conditional distribution Ψ[u] ∣ Φ[u], where Ψ[u] is a (potentially
u-specific) function of Y1..u from which Yu can be recovered given Y1..u−1 (e.g., Ψ[u] =

∆Yu = Yu − Yu−1 or Ψ[u] = logYu), and Φ[u] is a (potentially u-specific) vector of
features derived from Y1..u−1.1 During simulation, Y sim

1..u−1 will be used to calculate
corresponding simulated feature values Φ[u],sim, which are used to draw a simulated
transformed value Ψ[u],sim, from which a corresponding simulated value Y sim

u can be
recovered. Nonparametric methods along these lines include:

• Kernel delta density, which draws ∆Y sim
u from an estimate of the conditional

density for ∆Yu ∣ Φ[KDD,u] based on smoothing kernel methods with some
heuristic modifications, where Φ[KDD,u] is a vector of heuristically constructed
and weighted features for time u derived from Y1..u−1, and

1Note that ∆ denotes a backward difference rather than a forward difference throughout this
document.
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• Quantile autoregression using locally linear quantile regression and optional
post-processing noise, which selects Ψ[u],sim as the sum of a random estimated
conditional quantile and (optionally) some smoothing noise, where the con-
ditional quantile is estimated for Ψ[u] ∣ Φ[QARlinear,u],Φ[QARkernel,u] as a linear
function of covariates Φ[QARlinear,u], with training data weighted with a smooth-
ing kernel on covariates Φ[QARkernel,u].

The entire-trajectory empirical Bayes framework and chained one-ahead kernel
delta density and quantile autoregression approaches are described and studied in
more detail in their own sections, and the latter two are extended in subsequent
chapters.

2.2 Empirical Bayes framework

This section reproduces or incorporates content from Brooks et al. [2015a].

The empirical Bayes framework was initially designed by Ryan Tibshirani and Roni
Rosenfeld; other authors in the original paper and later collaborators contributed to
the implementation, extension, application, and study of the method. Below, certain
details of the model are selected with a certain disease and surveillance system in
mind, but can (and have [van Panhuis et al., 2014]) been adjusted when applied in
other contexts.

The forecasting framework is composed of five major procedures:

1. Model past seasons’ epidemic curves as smoothed versions plus i.i.d. Gaussian
noise.

2. Construct a prior for the current season’s epidemic curve by considering sets
of transformations of past seasons’ curves.

3. Set a point estimate for the ground truth values for the recent past given
provisional values and auxiliary data sources.

4. Repeatedly sample whole-season trajectories and assign them weights, such
that the product of the sampling frequency and assigned weights is propor-
tional to the posterior probability: the prior probability times the likelihood
of the point estimates for ground truth in the recent past. (E.g., by sampling
trajectories from the prior and assigning weights based on the likelihood.)
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5. Use the sampled trajectories and their associated weights to calculate a poste-
rior distribution over any desired forecasting target.

The first two steps only need to be executed once, at the beginning of the current
season. As additional data becomes available throughout the season, we generate
forecasts using steps 3–5.

We perform predictions for each geographical unit — the US as a whole or indi-
vidual HHS Regions — separately. Historically, surveillance has focused on influenza
activity between epidemiological weeks 40 and 20, inclusive. We define seasons as
epidemic weeks 21 to 39, the “preseason”, together with weeks 40 to 20. During
the 2013/2014 competition, data was available for 15 historical seasonal influenza
epidemics. We excluded the 2009/2010 season from the data since it included non-
seasonal behavior from the 2009 pandemic in the preseason. Additionally, there was
partial data available for the 2013/2014 season (updated weekly).

Data model

We view wILI trajectories for a geographical unit r as the sum of some underlying
ILI curve plus noise:

yr, si = f r, s(i) + εr, si , εr, si ∼ N (0, τ r, s), for each week i, (2.1)

where yr, si is the wILI observation for the ith week of season s, f r, s is the underlying
curve, and εsi is (independent) zero-mean normally distributed noise. We estimate the
underlying ILI curve f̂ r, s from the wILI curve yr, s with quadratic trend filtering [Tib-
shirani, 2014] for each historical season s. This method smooths out fluctuations in
the wILI data, producing a new set of points that lie on a piecewise quadratic curve.
We use the cv.trendfilter [Arnold and Tibshirani, 2014] method to select an ap-
propriate amount of smoothness for each curve, then estimate the corresponding
noise level τ̂ r, s:

(τ̂ r, s)2 = avg
i

[yr, si − f̂ r, s(i)]2.

The quadratic trend filtering procedure produces one point for each available wILI
observation, i.e., 33 or 34 for the first six seasons, where only data from the flu season
is available, and 52 or 53 for the rest. We fill in the curve on the rest of the real line —
the missing off-season observations in the first six seasons, plus any additional values
requested from any season’s curve due to time shift transformations described below
— by copying the first available wILI value at earlier times, copying the last mea-
surement at later times, and using linear interpolation at non-integer values. These
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filled-in values are later used to construct variants of these curves that are shifted
and/or stretched along the time axis in order to obtain a wider library of curves in
the prior. Trend filtering seems better suited for epidemic data with than the more
common smoothing spline fit because it is more “locally adaptive”, responding better
to varying levels of smoothness in data [Tibshirani, 2014], e.g., relatively sharp peaks
mixed with smoother, flatter, less active regions. Figure 2.1 compares trend filter-
ing, SIR, and smoothing spline fits for two fairly representative wILI trajectories. A
reviewer for this work identified Bayesian nonparametric covariance regression [Fox
and Dunson, 2011] as another alternative for fitting curves and noise models, which
can incorporate heteroscedasticity and spatial relationships. More realistic versions
of each of these smoothing methods would explicitly incorporate holiday effects on
both the trend and on the noise; from Figure 2.1 and similar plots, we observe some
potential issues with fits of the first three methods: (a) smoothing out and removing
the holiday effects (which sometimes leads to inappropriately low trend estimates
around the peak week), (b) undersmoothing of non-holiday weeks due to the impact
of the holiday on smoothness parameter selection, and/or (c) oversmoothing of the
entire curve, each accompanied by a related effect on estimates of noise levels.

Prior

The key assumption of the framework is that the current season will resemble one of
the past seasons, perhaps with a few changes.

• Shape: The general shape f r of the underlying curve is taken from one of the
past seasons. We select each of the historical shapes with equal probability:
f r ∼ Unif{f̂ r, s ∶ historical season s}.

• Noise: The standard deviation of the normally distributed noise at each week is
assumed to take on values from the past years’ candidates with equal proba-
bility: σ ∼ Unif{τ̂ r, s ∶ historical season s}.

• Peak height: The distribution of underlying peak heights is drawn from a con-
tinuous uniform distribution: θ ∼ U[θm, θM]. We use an unbiased estima-
tor [Lehmann and Casella, 1998, Chapter 2] for θm and θM based on past sea-
sons’ trend filtered curves. The resulting curve is f r2 (i) = br+ θr−br

maxj fr(j)−br (f
r(i)−

br), where br is the current year’s CDC baseline wILI level (i.e., the onset
threshold) for the selected geographical region r, e.g., 2% for the US as a na-
tion for the 2013/2014 flu season.
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Figure 2.1: Trend filtering, SIR, and smoothing spline fits for HHS re-
gion 3 for two seasons. The quadratic trend filtering fit was performed with the
cv.trendfilter [Arnold and Tibshirani, 2014] method, which automatically selects
an base level of smoothness to use, and adapts to differences in smoothness in dif-
ferent parts of the trajectory. The cubic natural smoothing spline fit was produced
by smooth.spline [R Core Team, 2015], which also automatically selects a level
of smoothness, but by different criteria. (A) 2008/2009 season: trend filtering and
smoothing splines both smooth out the holiday effects. The smoothing spline appears
to overfit to noise in the preseason and early flu season. (B) 2006/2007 season: in
addition to holiday effects, there is a large jump in wILI at week 40, which coincides
with the beginning of the influenza season and a large jump in the number of report-
ing providers (from about 30 to over 100). The trend filtering procedure has trouble
matching the beginning-of-season and holiday effects, attributing most of these effects
to noise and smoothing them out. The smooth.spline procedure selects a level of
smoothness that essentially duplicates the observed wILI and would produce a noise
estimate near 0, which does not seem appropriate. Alternative methods of selecting
a level of smoothness may produce looser fits and avoid these near-0 noise estimates,
though. Beginning-of-season and holiday effects can be incorporated in both of the
smoothing procedures, and would likely improve the resulting fits. Regional wILI
dynamics are generally not tightly fit by the described SIR model.

23



• Peak week: The distribution of underlying peak weeks is formed in a similar
manner to the peak height distribution; we find unbiased estimators µm, µM
for uniform distribution bounds, but restrict the distribution to integral output:
µ ∼ Unif{i ∈ {1..53} ∶ µm ≤ i ≤ µM}. The resulting curve is f r3 (i) = f r2 (i − µr +
arg maxj f r2 (j)).

• Pacing: We allow for variations in the “pace” of an epidemic by incorporat-
ing a time scale that stretches the curve about the peak week; the distribu-
tion of time scale factors is ν ∼ U[0.75,1.25]. The resulting curve is f r4 (i) =

f r3 (
i−arg maxj fr3 (j)

ν + arg maxj f r3 (j)).

To generate a possible curve for the current season, i.e., to sample from the prior,
we independently sample a shape, noise level, peak height, peak week, and pacing
parameter from the above distributions, then generate the corresponding wILI curve.
We have also developed and are investigating an alternative “local” transformation
prior [van Panhuis et al., 2014] that does not use information from other historical
curves when transforming a particular historical curve f , but instead reuses the noise
level for f and makes smaller changes to the peak week and height of f , which are
restricted to a smaller, predefined range; this is more appropriate for surveillance
data with less regular seasonal behavior, such as dengue case counts in Brazil.

In total, we model the underlying curve f r, scurr for the current season as the curve
generated by a randomly sampled parameter configuration ⟨f r, σr, νr, θr, µr⟩, using
the following equation:

f r, scurr(i) = f r4 (i) = b
r +

θr − br

maxj f r(j) − br
[f r (

i − µr

νr
+ arg max

j
f r(j)) − br] .

Figure 2.2 illustrates the peak week, peak height, and pacing transformations, and
different levels of noise that could be considered. The data model for the current
season’s wILI values yr, scurr is the same as that for historical seasons, shown in Equa-
tion 2.1.

Sampling from the posterior

We use importance sampling [Liu, 2008] to obtain a large set of curves from the
posterior weighted by how closely they match the epidemic curve so far, beginning
with week 40. More concretely, we obtain a single weighted sample from the poste-
rior by (i) sampling a historical smoothed curve f , noise level σ, and transformation
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Figure 2.2: Examples of possible peak week, peak height, and pacing trans-
formations, and different noise levels. Thick black, original curve; red, possible
peak week transformations; thick red, a random peak week transformation; purple,
possible peak height transformations; thick purple, a random peak height transfor-
mation; blue, possible pacing transformations; thick blue, a random pacing transfor-
mation; dotted green, 5th and 95th (pointwise) percentiles of noise distribution for
possible noise levels; dashed green, percentiles for a random noise level; thick green,
one possible trajectory for the selected transformations and noise level. (A) Peak
week transformations. Peak weeks of historical smoothed curves occurred between
weeks 51 and week 10 of the next year, so we limit transformations to give peak
weeks roughly within this range. (B) Peak height transformations. Peak heights of
historical smoothed curves were between 2% and 8%, so we limit transformations to
give peak heights roughly within this range. (C) Pacing transformations. We stretch
the curve by a factor between 75% and 125% about the peak week. (D) Noise levels.
We randomly select one of 15 noise levels from the fitting procedure and add this
level of Gaussian noise to the transformed curve.
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parameters ν, θ, and µ from the prior; (ii) applying the peak height, peak week, and
pacing transformations; (iii) assigning the curve an “importance weight” or “likeli-
hood” based on how well it matches existing observations for the current seasons; and
(iv) drawing noisy wILI observations around the curve for the rest of the season. We
apply this procedure many times to obtain a collection of possible wILI trajectories
and associated weights, forming a probability distribution over possible futures for
the current season.

Sampling algorithm Outlined below is a simpler version of the sampling algo-
rithm that does not use importance sampling.
Algorithm 1: One weighted sampling procedure for empirical Bayes model
Data: yr, scurr , the wILI observations so far; zr,scurr , a version of yr, scurr with

two extra points estimated from GFT; prior distributions of wILI
curves, noise levels, and transformations

Result: weighted collection of curves
Let φ(x;µ,σ) be the normal pdf;
for a large number of times do

Randomly draw f r, σ, ν, θ, and µ from the corresponding priors;
Let f r, scurr(i) = f r4 (i) = b

r + θr−br

maxj fr(j)−br [f
r (

i−µr

νr + arg maxj f r(j)) − br];
Calculate weight w =∏

length(zr,scurr)
i=1 φ(z; f r, scurr(i), σ);

Let v be a 53-length vector, a possible curve for this season;
for i in 1..length(yr, scurr) do

vi ∶= y
r, scurr
i ;

end
for i in (length(yr, scurr) + 1)..53 do

vi ∶= f r, scurr(i);
end
Add curve v with weight w to the collection of possibilities for this
season (the posterior estimate)

end

To improve computational efficiency, we also use an importance sampling tech-
nique that first divides up the possible values of f r, σ, ν, θ, and µ into bins and
estimates the average weight of f r, scurr ’s in each bin using a single configuration
from that bin. By sampling values of f r, σ, ν, θ, and µ more frequently from the
higher-weighted bins (and compensating appropriately for this decision in the weight
calculation), we are able to construct a collection of curves with a high total weight
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more quickly than the version above.

Forecasting targets

For the initial CDC ILINet forecasting challenge, we were interested in four fore-
casting targets: the epidemic’s onset, peak week, peak height, and duration. These
features were already used to summarize epidemic curves and perform retrospec-
tive analysis, and CDC selected them as forecasting targets for the competition,
as accurate predictions of these milestones would assist policy makers in planning
vaccination campaigns, resource allocation, and messages to the public.

• Onset: The first week that the wILI curve is above a specified CDC baseline
wILI level, and remains there for at least the next two weeks. For example,
the 2013/2014 national baseline wILI level was 2%, so the onset was the first
in at least three consecutive weeks with wILI levels above 2%.

• Peak Week: The week(s) in which the wILI curve attains its maximum value.

• Peak: The maximum observed wILI value in a season.

• Duration: Roughly, how many weeks the wILI level remained above the CDC
baseline since the onset. We defined this more rigorously as the sum of the
lengths of all periods of three or more consecutive weeks with wILI levels above
the CDC baseline.

We generate distributions for each of these targets by repeatedly (i) sampling a
possible wILI trajectory and associated weight from the posterior, (ii) calculating
the four forecasting targets for that trajectory, and (iii) storing these four values
along with the trajectory’s weight. We represent these forecasting target posterior
distributions with histograms, and generate point estimates by taking the posterior
mean for each target.

Sample empirical Bayes forecasts

Figure 2.3 illustrates some forecasts made by a version of the system described above
for the same location at different times throughout the same influenza season.
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Figure 2.3: 2013/2014 national forecast, using empirical Bayes framework,
retrospectively, using the final revisions of wILI values, using revised wILI
data through epidemiological weeks (A) 47, (B) 51, (C) 1, and (D) 7.
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Cross-validation point prediction performance

Figure 2.4 shows the cross-validated error for national point predictions of our current
empirical Bayes framework, as well a few other approaches, for each for the above
four forecasting targets. The methods for predicting tarrj(yr, scv) are summarized
below.

• Baseline (Mean of Other Seasons): takes the average target value across the
14 other seasons, completely ignoring any data from the current season; pro-
vides an idea of whether other forecasters provide reasonable levels of error at
the beginning of the season, and how much they benefit from incorporating
data from the season they are forecasting.

• Pinned Baseline (Mean of Other Seasons, Conditioned on Current Season to Date):
constructs 14 possible wILI trajectories for the current season by using the
available observations for previous weeks and other historical curves for future
weeks; reports the mean target value across these 14 trajectories; this is another
very generic baseline that allows us to see the effect of using more complex wILI
models and forecasting methods.

• Pointwise Percentile (P2014) [van Panhuis et al., 2014]: Constructs a sin-
gle possible future wILI trajectory using the pointwise qth quantile from other
seasons; estimates an appropriate value of q from the observed data so far,
trying to match more recent observations more closely than less recent ones.

• k Nearest Neighbors (knn): Uses a method similar to existing systems for
shorter-term prediction [Viboud et al., 2003] to identify k sections of other
seasons’ data that best match recent observations, and uses them to construct
and weight k possible future wILI trajectories.

• Empirical Bayes (Transformed Versions of Other Seasons’ Curves): Our
current framework, using transformed versions of other seasons’ curves to form
the prior.

• Empirical Bayes (SIR Curves): Our current framework, using scaled and shifted
SIR curves rather than other seasons’ curves to form the prior; this is a some-
what similar approach to the SIRS-EAKF method used by the contest win-
ner [Shaman and Karspeck, 2012a]. Figure 2.1 shows two fits to regional data.

Figure 2.4 indicates that, for all forecasting targets and most weeks, the average
point prediction error for the EB method is similar (overlapping error bars) or lower
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Figure 2.4: Cross-validated mean absolute error estimates and standard
error bars for point predictions for (A) onset, (B) peak week, (C) peak
height, and (D) duration. (The onset and duration were defined based on the
2% national threshold set by CDC for the 2013/2014 season.)
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than the average error for the best predictor for that target and week. An important
feature of this approach is that it provides a smooth distribution over possible curves
and target values, rather than just a single point. From this distribution, we can
calculate point predictions to minimize some expected type of error or loss, build
credible intervals, and make probabilistic statements about future wILI and target
values.

2.3 Kernel delta density

This section reproduces or incorporates content from Brooks et al. [2018].

Kernel density estimation and kernel regression use smoothing kernels to produce
flexible estimates of the density of a random variable (e.g., fYt+1..T ) and the conditional
expectation of one random variable given the value of another (e.g., E[Yt+1..T ∣ Y1..t]),
respectively; we can combine these two methods to obtain estimates of the conditional
density of one random variable given the value of another. One possible approach
would be to use the straightforward entire-trajectory model

f̂Yt+1..T ∣Y1..t(yt+1..T ∣ y1..t) =
∑
S
s=1 I

[1..t](y1..t, Y(1..t)+(∆t)s)O
[t+1..T ](yt+1..T , Y(t+1..T )+(∆t)s)

∑
S
s=1 I

[1..t](y1..t, Y(1..t)+(∆t)s)
,

where {1..S} is the set of fully observed historical training seasons, and I[1..t] and
O[t+1..T ] are smoothing kernels describing similarity between “input” trajectories and
between “output” trajectories, respectively. However, while basic kernel smooth-
ing methods can excel in low-dimensional settings, their performance scales very
poorly with growing dimensionality. During most of the season, neither Y1..t nor
Yt+1..T is low-dimensional, and the current season’s observations are extremely un-
likely to closely match any past Y(1..t)+(∆t)s or Y(t+1..T )+(∆t)s . This, in turn, can lead
to kernel density estimates for Yt+1..T based almost entirely on the single season s
with the closest Y(1..t)+(∆t)s when conditioning on Y1..t, and unrealistic density esti-
mates for Yt+1..T even without conditioning on Y1..t. The high-dimensional output
issue is readily resolved by the chained one-ahead approach, combining univariate
conditional density estimates for each observation conditioned on previous observa-
tions: f∆Yu∣Y1..u−1 for each u from t + 1 to T , where ∆Yu = Yu − Yu−1. Estimating
single-dimensional densities requires relatively little data. However, this reformula-
tion exacerbates the high-dimensional input problem since we are conditioning on
Y1..u−1, which can be considerably longer than Y1..t. We address the high-dimensional
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input problem by approximating f∆Yu∣Y1..u−1 with f∆Yu∣Φ[KDD,u] where Φ[KDD,u] is some
low-dimensional vector of features derived from Y1..u−1. The straightforward condi-
tional density estimation method described above for Yt+1..T ∣ Y1..t can be applied
to the chained distributions ∆Yu ∣ Φ[KDD,u], although literature indicates that this
approach is suboptimal [Hansen, 2004].

We developed the conditional estimates above based on combining kernel regres-
sion and univariate kernel density estimation techniques, it can also be understood as
sampling from a joint kernel density estimate over input and output variables using a
product kernel. A slightly more complicated take on the former viewpoint has been
found to yield faster theoretical and simulated statistical convergence rates [Hansen,
2004]. The latter interpretation offers additional alternatives such as deriving results
from a joint density estimate based on a kernel that is not the product of an input
and output kernel, as well as copula techniques. These approaches have been incor-
porated in a separate epidemiological forecasting system working directly with the
higher-dimensional inputs and outputs rather than the one-step-ahead approach [Ray
et al., 2017]. A host of work on kernel conditional density estimation offers avenues
to improving these kernel delta density approaches, as well as resolving the original
issues regarding high dimensionality.

We use two sets of choices for the approximate conditional density function and
summary features to form two versions of the method.

• Markovian delta density: approximates the conditional density of ∆Yu given
Y1..u−1 with its conditional density given just the previous (real or simulated)
observation, Yu:

f̂Yt+1..T ∣Y1..t(yt+1..T ∣ y1..t) =
T2

∏
u=t+1

f̂∆Yu∣Y1..u−1(∆yu ∣ y1..u−1)

=
T2

∏
u=t+1

f̂∆Yu∣Yu−1(∆yu ∣ yu−1)

=
T2

∏
u=t+1

∑s I
[u](yu−1, Yu−1+(∆t)s) ⋅O

[u](∆yu,∆Yu+(∆t)s)
∑s I

[u](yu−1, Yu−1+(∆t)s)
,

where I[u] and O[u] are Gaussian smoothing kernels. The first equality corre-
sponds to the chain rule of probability on the actual (not estimated) densities;
the second incorporates the Markov assumption (i.e., selects Φ[u] = [Yu−1]); and
the third gives our choice of estimators for the conditional densities f̂∆Yu∣Yu−1

for each u. The bandwidth of each I[u] and O[u] is chosen separately using
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bandwidth selection procedures for regular kernel density estimation of Yu−1
and ∆Yu, respectively. (Specifically, we use the bw.SJ function from the R[R
Core Team, 2015] built-in stats package, with bw.nrd0 as a fallback in the
case of errors. These functions do not accept weights for the inputs; it may
be possible to improve forecast performance by incorporating these weights or
by using other approaches to select the bandwidths.) Note that density esti-
mates for ∆Yu are based on data from past seasons on week u only, allowing
the method to incorporate seasonality and holiday effects (for holidays that
consistently occur at the same time of year).
Forecasts are based on Monte Carlo simulations of Yt+1..T ∣ Y1..t using the
chained one-step-ahead procedure described in the previous section. This pro-
cess is illustrated in Figure 2.5. Repeating this procedure many times yields
a sample from the model for Yt+1..T ∣ Y1..t; stopping at 2000 draws seems suffi-
cient for use in our ensemble forecasts, while at least 7000 are needed to smooth
out noise when displaying distributional target forecasts for the delta density
method in isolation. Any negative simulated wILI values in these trajectories
are clipped off and replaced with zeroes.

• Extended delta density: approximates the conditional density of ∆Yu given
Y1..u−1 with its conditional density given four features:

• the previous wILI value, Yu−1;
• the sum of the previous ku wILI values, roughly corresponding to the sum

of wILI values for the current season;
• an exponentially weighted sum of the previous ku wILI; values, where the

weight assigned to time u′ is 0.5t′−u′ ; and
• the previous change in wILI value, ∆Yu−1.

The approximate conditional density assigns each of these features a weight
(0.5, 0.25, 0.25, and 0.5, respectively) in order to reduce overfitting and em-
phasize some relative to the others, and incorporates data from other weeks
close to u (specifically, within lu weeks; the choice of lu is discussed in a later
sectionadd holiday section somewhere and reference here) with a truncated
Laplacian kernel. We selected these weights and other settings, such as kernel
bandwidth selection rules, somewhat arbitrarily based on intuition and exper-
imentation on out-of-sample data; a cross-validation subroutine could be used
to make the selection as well, but would multiply the amount of computation
required. In case the resulting product of Gaussian and Laplacian kernels is
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Figure 2.5: The delta density method conditions on real and simulated ob-
servations up to week u − 1 when building a probability distribution over
the observation at week u. This figure demonstrates the process for drawing a
single trajectory from the Markovian delta density estimate. The past data Y1..t,
which incorporates observations through week 48, is shown in black. Kernel smooth-
ing estimates for future values at times u from t + 1 to T2 are shown in blue, as are
simulated observations drawn from these estimates. Past seasons’ trajectories are
shown in red, with alpha values proportional to the weight they are assigned by the
kernel Iu.
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too narrow, we mix its results with a wide boxcar kernel which evenly weights
all data from time u − lu to u + lu:
f̂∆Yu∣Y1..u−1(∆yu ∣ y1..u−1)

= 0.9 ⋅ ∑s∑
u+lu

u′=u−lu 0.7∣u′−u∣[Iu1 (yu−1, Y(u′−1)+(∆t)s)]
0.5
⋯Ou(∆yu,∆Y(u′)+(∆t)s)

∑s∑
lu

u′=u−lu 0.7∣u′−u∣[Iu1 (yu−1, Y(u′−1)+(∆t)s)]
0.5
⋯[Iu4 (∆yu−1,∆Y(u′−1)+(∆t)s)]

0.5

+ 0.1 ⋅ ∑s∑
u+lu

u′=u−lu O
u(∆yu,∆Y(u′)+(∆t)s)

∑s∑
u+lu

u′=u−lu 1
.

Using data from u′ ≠ u incorporates additional reasonable outcomes for ∆yu
by incorporating past wILI patterns with different timing, but risks including
some very unreasonable possibilities produced by repeatedly drawing from the
same u′ rather than following seasonal trends with increasing u′’s. For exam-
ple, when a portion of a past season that is more similar to itself with a slight
time shift than to any other past season, it may be selected for multiple consec-
utive u’s and produce an unreasonable trajectory. This could potentially occur
when drawing data from the relatively flat regions of wILI trajectories of many
seasons, or when incorporating observations around an unusually early, late,
high, or low peak. To prevent this possibility, we combine the natural estimate
for Yu arising from the density estimate for ∆Yu with a random draw Yuncondu
from the unconditional density estimate for Yu (using a Gaussian kernel and
only data from week u):

Y sim
u = 0.9 ⋅ (Yu−1 +∆Y sim

u ) + 0.1 ⋅ Y uncond
u .

2.4 Quantile autoregression

Locally linear quantile regression offers an alternative approach to modeling Yu ∣

Y1..u−1 offering greater flexibility in covariate relationships and better anticipated
behavior with larger numbers of covariates; post-processing its output with additional
random noise is one way to address potential issues with discrete outputs that do
not cover the entire support of Yu. Basic linear quantile regression estimates the
τth conditional quantile of some variable Y given covariates X as a linear function
of X; locally linear quantile regression additionally allows for weighting of training
instances based on a smoothing kernel on another set of covariates X ′ (potentially
overlapping with X). Additionally, the same types of transformations can be applied
on the output and covariates as in the kernel smoothing case. A specification of a
simple locally linear quantile autoregression approach could consist of:
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• Ψ[u]: a transformation of Yu from which we can recover Yu (potentially using
information from Y1..u−1),

• Φ[QARlinear,u]: a set of features (derived from Y1..u−1) to use in the linear com-
bination estimating some quantile of Yu,

• Φ[QARkernel,u],KΦ[QARkernel,u] : a set of features (derived from Y1..u−1) and corre-
sponding smoothing kernel (or “weighted” smoothing kernel as used in extended
delta density) that assigns weights to training instances, and

• KΨ[u] , a smoothing kernel that defines the distribution of additive post-processing
noise.

The corresponding sampling procedure for Y sim
u is:

1. Draw quantile level τ ∼ U[0,1].

2. Compute estimate q̂ of the level τ quantile of Ψ[u] ∣ Φ[QARlinear,u],Φ[QARkernel,u]

using locally linear quantile regression.

3. Draw ε ∼KΨ[u] from post-processing noise distribution.

4. Let Ψ[u],sim = q̂ + ε.

5. Let Y sim
u be the value of Yu given by Ψ[u] = Ψ[u],sim and Y1..u−1.

Quantile autoregression has already been formulated and studied from a theo-
retical perspective and applied to economic datasets [Koenker and Xiao, 2006]. A
recent application to flu forecasting [Wang, 2016] studied different data weighting ap-
proaches based on time of season. Similarly, quantile autoregression can be applied
to epidemiological data and customized based on domain knowledge.

2.4.1 Connection to smoothing kernel approaches

The family of locally linear quantile autoregression approaches above subsumes the
considered delta density approaches after mirroring any heuristic modifications to the
kernel conditional density estimates. Consider a kernel conditional density estimate
of ∆Yu ∣ Φ[KDD,u] using covariate kernel KΦ[KDD,u] . If the response kernel K∆Yu is re-
placed with the degenerate Dirac delta distribution, the resulting kernel conditional
“density” estimates are just weighted empirical distributions. The corresponding
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quantiles are weighted sample quantiles of ∆Yu with weights based on KΦ[KDD,u] ;
this coincides with the estimated quantiles of the locally linear/constant quantile
regression model with the same Ψ[u], Φ[QARlinear,u] = (1) (the model only fits an
“intercept”), Φ[QARkernel,u] = Φ[KDD,u], and KΦ[QARkernel,u]

= KΦ[KDD,u] . The sampling
procedures also coincide: drawing from a weighted empirical distribution function
gives an equivalent distribution to selecting a weighted sample quantile with a level
randomly distributed on the unit interval. (“Sample quantile” here is restricted to
quantiles of the type outputted by quantile regression; for a finite number of quan-
tile levels, there will not be a unique associated sample quantile and the one selected
may vary across implementations, but these levels are drawn with probability 0.
For other types of quantiles, e.g., from continuous quantile functions [Hyndman and
Fan, 1996], this is normally not the case.) Using K∆Yu instead of the Dirac dis-
tribution is equivalent to just adding additional noise to a draw from the weighted
empirical distribution; thus, the smoothing kernel approach can be completely mim-
icked by a locally linear quantile regression approach using the same K∆Yu as the
post-processing noise distribution.

2.4.2 Incorporating covariates inspired by mechanistic mod-
els

While quantile regression can be restricted and post-processed to match the output
of the kernel conditional density method, it is natural to favor use of Φ[QARlinear,u]

covariates not only in appeal to more general statistical arguments regarding scaling
with higher dimensionality inputs and boundary bias, but also due to similarities
with domain-driven mechanistic models when incorporating autoregressive terms.
Furthermore, additional covariates can be constructed to strengthen this resemblance
while maintaining the flexibility of quantile modeling and smoothing kernel weight-
ing.

Epidemiological compartmental models are a popular class of mechanistic model
that divides a population into a fixed number of “compartments” and considers
all individuals within each compartment to behave identically. System dynamics
are characterized by the manner in which individuals are added, removed, or flow
between different compartments. For example, “SIRS” compartmental models rep-
resent population state by the number or proportion of individuals in each of three
states: those

• Susceptible to infection with some disease,
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• Infectious and spreading the disease, and

• Recovered from the infectious stage of a disease and currently immune to future
reinfection;

Susceptible individuals can become Infectious by interacting with Infectious indi-
viduals, Infectious individuals transition to Recovered over time, and Recovered
individuals can become Susceptible again due to waning immunity or mismatches
of antibodies with currently circulating strains of a pathogen; these possible transi-
tions are the basis for the initialism “SIRS”. A simple deterministic, continuous-time,
proportion-based SIRS model can be specified with the following system of differen-
tial equations:

s′(t) = −s(t) ⋅ βi(t) + r(t) ⋅ µ

i′(t) = +s(t) ⋅ βi(t) − i(t) ⋅ γ

r′(t) = +i(t) ⋅ γ − r(t) ⋅ µ

s(0) + i(0) + r(0) = 1, s(0) ≥ 0, i(0) ≥ 0, r(0) ≥ 0,

where

• s(t), i(t), and r(t) are the proportions of the population in the Susceptible,
Infectious, and Recovered states, respectively, at time t;

• β is the rate at which any individual experiences contact with another person
in which the latter could potentially spread an infection to the former (assumed
to be the same across all pairs of individuals, regardless of their current state),
potentially modulated by the current weather (i.e., β(w) where w is a vector
of weather variables) or other data;

• µ is the rate at which recovered individuals become susceptible again;

• γ is the rate at which infectious individuals recover; and

• the conditions on the state at t = 0 are preserved as invariants for all other t.

The underlying proportions s(t), i(t), and r(t) are latent; a simple noiseless observa-
tion model assumes that infectious individuals produce some kind of reported health
care events at a steady rate, with no false positives from the other compartments:

y(t) = i(t) ⋅Nρ,

where
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• y(t) is the number of reported health care events at time t,

• N is the population size, and

• ρ is the rate at which infectious individuals generate reported health care
events;

we sometimes refer to SIRS models incorporating observations of medically “At-
tended” cases as a “SIRSA” models. Already, this formulation suggests the use of
models with linear autoregressive terms, as changes to compartment occupancy de-
pend linearly or quadratically on the current occupancy, and the observations depend
linearly on compartment occupancy. However, the latent dynamics and quadratic
terms complicate the relationship; fortunately, a few manipulations will allow us to
fully characterize the dynamics of y(t) without any reference to latent state, re-
vealing a very direct relationship with linear autoregressive and additional auxiliary
terms. (These types of manipulations and others have been developed before [Heffer-
nan et al., 2005, Hethcote and Tudor, 1980], but such analyses often do not include
an observation model, and focus on system behavior and parameter inference rather
than prediction.) The techniques used are likely more widely familiar in the context
of differential equations than discrete-time difference equations, so we examine the
former first then establish parallels in the latter.

Our ultimate goal is to express y′(t) as a causal function of y(t) (i.e., a function
depending only on y(τ) for τ ≤ t). First, note that

y′(t) = i′(t) ⋅Nρ and (derivatives are linear)

i(t) =
1
Nρ

y(t) (scale both sides of y(t) definition)

so we can instead seek to express i′(t) as a causal function of i(t) and quickly obtain
y′(t) as a causal function of y(t). Next, observe that

i′(t) = βs(t)i(t) − γi(t)

= β[1 − i(t) − r(t)]i(t) − γi(t), (proportions sum to 1)

so we just need to express r(t) as a causal function of i(t). Rearranging the equation
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for r′(t) and applying an integrating factor approach, we find that

r′(t) = i(t) ⋅ γ − r(t) ⋅ µ

µr(t) + r′(t) = γi(t)

µeµtr(t) + eµtr′(t) = γeµti(t)

eµtr(t) = γ ∫
t

t0
eµτ i(τ)dτ +C

r(t) = γ ∫
t

t0
e−µ(t−τ)i(τ)dτ +Ce−µt,

for

• a time t0 which is arbitrary for this derivation, but which we must select to be
in the range of times for which observations are available, to ensure the integral
involves only observed values of its argument, and

• a constant of integration C ≥ 0 determining the initial conditions;

thus, r(t) can be represented as a scaled exponential moving average of i(t) (a causal
function of i(t)) plus an exponential decay term. Applying the earlier observations
gives

i′(t) = β[1 − i(t) − r(t)]i(t) − γi(t)

= β[1 − i(t) − γ ∫
t

t0
e−µ(t−τ)i(τ)dτ −Ce−µt]i(t) − γi(t)

= (β − γ) [i(t)] − β [i2(t)] − βγ [∫

t

t0
e−µ(t−τ)i(τ)dτ ⋅ i(t)] − βC [e−µti(t)]

and

y′(t) = i′(t) ⋅Nρ

= Nρ(β − γ) [i(t)] −Nρβ [i2(t)] −Nρβγ [∫

t

t0
e−µ(t−τ)i(τ)dτ ⋅ i(t)] −NρβC [e−µti(t)]

= (β − γ)[y(t)] −
β

Nρ
[y2(t)] −

βγ

Nρ
[∫

t

t0
e−µ(t−τ)y(τ)dτ ⋅ y(t)] − βC [e−µty(t)] .

The discrete-time analogues of the key equations above and some additional trans-
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formations follow:

st+1 = st − βstit + µrt

it+1 = it + βstit − γit

rt+1 = rt + γit − µrt

s0 + i0 + r0 = 1, s0 ≥ 0, i0 ≥ 0, r0 ≥ 0
yt = Nρit

∆yt+1 = yt+1 − yt = (β − γ) [yt] −
β

Nρ
[y2
t ] −

βγ

Nρ
[
t−1
∑
t0

(1 − µ)t−1−τyτ ⋅ yt] − βC [(1 − µ)t−1yt]

yt+1 = (1 + β − γ) [yt] −
β

Nρ
[y2
t ] −

βγ

Nρ
[
t−1
∑
t0

(1 − µ)t−1−τyτ ⋅ yt] − βC [(1 − µ)t−1yt]

∆yt+1

yt
= (β − γ) [1] − β

Nρ
[yt] −

βγ

Nρ
[
t−1
∑
t0

(1 − µ)t−1−τyτ] − βC [(1 − µ)t−1] .

The last few equations motivate the use of the bracketed quantities on the right
as covariates in a regression for the response variable given on the left. However,
the parameter µ is unknown, so the last two bracketed quantities in each of these
equations cannot be formed as stated. Fortunately, additional manipulations of the
last equation resolve this issue:

∆yt+1

yt
= (β − γ) [1] − β

Nρ
[yt] −

βγ

Nρ
[
t−1
∑
t0

(1 − µ)t−1−τyτ] − βC [(1 − µ)t−1]

= (β − γ) [(1 − µ) ⋅ 1 + µ ⋅ 1] − β

Nρ
[(1 − µ)yt−1 − (1 − µ)yt−1 + yt] . . .

. . . −
βγ

Nρ
[(1 − µ)

t−2
∑
t0

(1 − µ)t−2−τyτ + yt−1] − βC [(1 − µ) ⋅ (1 − µ)t−2]

= (1 − µ) [∆yt
yt−1

] + (β − γ) [µ ⋅ 1] − β

Nρ
[−(1 − µ)yt−1 + yt] −

βγ

Nρ
[yt−1]

= (1 − µ) [∆yt
yt−1

] + (β − γ)µ [1] − β

Nρ
[yt] −

β

Nρ
(γ + µ − 1) [yt−1]

∆ [
∆yt+1

yt
] = − µ [

∆yt
yt−1

] + (β − γ)µ [1] − β

Nρ
[yt] −

β

Nρ
(γ + µ − 1) [yt−1]

∆yt+1 = (1 − µ) [ yt
yt−1

∆yt] + (β − γ)µ [yt] −
β

Nρ
[y2
t ] −

β

Nρ
(γ + µ − 1) [ytyt−1]

yt+1 = (1 − µ) [ yt
yt−1

∆yt] + (βµ − γµ + 1) [yt] −
β

Nρ
[y2
t ] −

β

Nρ
(γ + µ − 1) [ytyt−1] .
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The bracketed quantities contain no latent state and no unknown parameters; they
can be incorporated as covariates in a nonlinear autoregression framework.

Parameter and latent state inference

The primary goal of this effort is to inform construction of a higher-quality, easily
fit model for yt; any interpretation regarding the latent state is suspect in such a
simplistic model, particularly causal or counterfactual reasoning, and especially if
some parameters are nonidentifiable. Still, it is notable that we can recover (esti-
mates of) µ, γ, β, Nρ, and the latent state time series, at least in this particular
SIRS model (identifiability is discussed in the next heading). Performing the linear
regression suggested by the equation for ∆ [

∆yt+1
yt

] above gives an estimate for µ: the
negation of the coefficient fit for ∆yt+1

yt
. Then, treating µ as given in the equation for

∆yt+1
yt

involving exponentially weighted moving averages and performing the linear
regression suggested there, we obtain fit coefficients θ1..θ4, which can be used to find
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the rest of the parameters and latent state mentioned above:

θ1 = β − γ

θ2 = −
β

Nρ

θ3 = −
βγ

Nρ

θ4 = −βC

γ =
θ3

θ2
=
−βγ/(Nρ)

−β/(Nρ)
(using definitions of θ2, θ3)

β = θ1 +
θ3

θ2
= θ1 + γ (using definition of θ1)

Nρ = −
θ1

θ2
−
θ3

θ2
2

= −
β

θ2
(using definition of θ2)

C = −
θ4

θ1 +
θ3
θ2

= −
θ4

β
(using definition of θ4)

it =
yt
Nρ

rt= γ
t−1
∑
t0

(1 − µ)t−1−τ iτ +C(1 − µ)t−1 (parallel of continuous-time result)

st = 1 − it − rt.

The parameter estimates for key parameters γ, β, and Nρ contain θ2 as a divisor and
may be sensitive to errors in its estimates; one point of interest for inference work is
whether estimates of these key parameters can be improved by alternative formula-
tions involving 1/theta2 or log θ2 and/or fitting techniques other than ordinary linear
regression. Extending this approach to a probabilistic formulation likely will likely
involve some of these transformations and alternative regression techniques as well,
e.g., log-transformed parameters and multinomial regression.

Identifiability

At least for some selections of parameter values and initial state, the quantities
above are uniquely identifiable. For example, this appears to be the case with β =

0.3, γ = 0.15, µ = 0.001, Nρ = 300, s0 = 0.80, i0 = 0.01, and r0 = 0.19, and with
observations starting at t0 = 1, where parameter and latent state estimates from the
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procedure described above exactly match the true values given a sufficient number
of observations (six observations gives relative absolute errors below 10−4 for µ and
below a standard threshold around 1.5 ⋅ 10−8 for all quantities but µ; at sixteen
or more observations, relative absolute error for µ also appears to stabilize below
this narrower threshold). However, in this SIRS model, starting from the above
parameter values, the latent state and observed values will approach a fixed point
called the endemic equilibrium, shown in Figure 2.6. If the first observation t0 was
instead after the system had already stabilized at the endemic equilibrium, or if i0
was instead selected to be 0, then none of the above quantities can be fully identified
(save for it = 0 for all t in the latter case, when assuming Nρ > 0). The inference
procedure will also encounter issues due to multicollinearity among features. Still,
this inference procedure may be of interest in a pandemic scenario where a steady
state has not been reached and this simple SIRS model is deemed appropriate. A
more important observation is that the modeled flat-line asymptotic behavior does
not line up with real-world disease dynamics that would be of interest to predict;
randomness, seasonality, and a host of other details have been omitted. Adding
these features to a mechanistic framework and performing similar derivations and
identifiability analysis is of interest for future work; here, though, we will rely on the
one-step-ahead conditional distribution framework to compensate for some of these
omissions.

Discussion, future directions, and variants on derivations

The derivations above present some exciting possibilities for fitting compartmental
models using standard regression routines, which may scale more readily than particle
filter and MCMC approaches. While the derivations are based on a deterministic
model, various types of regression models, such as quantile regression and generalized
linear models, can be applied to the covariate-response combinations suggested by
the above equations, providing a way to introduce noise into the model. The noise
introduced seems to correspond to a type of process noise in it, but not process noise
in st and rt nor observational noise in yt; the latter is especially important when
dealing with noisy signals so momentary fluctuations are not mistaken for trends.
We explore performance of the simplest method along these lines — just adding
the bracketed quantities listed immediately preceding Section 2.4.2 into a quantile
autoregression alongside existing covariates, with no re-derivations, no constraints on
the fit coefficients, etc. — in Chapter 4. Unfortunately, this approach is unsuccessful
in improving overall performance due at least in part to superexponential growth
in some simulated trajectories. Further investigation could ascertain the cause or
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Figure 2.6: Simple SIRS models’ state approaches a fixed point. Shown
here are the values of the latent state of a simple deterministic SIRS model where
the latent state approaches a fixed point called an endemic equilibrium, where the
proportion of individuals who are infectious is approximately a constant greater than
zero. Another possible fixed point, approached given i0 = 0 and/or certain other
disease parameters configurations leading to disease extinction, is a fully susceptible
population.

45



causes of superexponential growth — which could include the simple manner in
which the covariates were included in the quantile autoregression framework, issues
with the deterministic SIRSA model used to derive the covariates (discussed in the
next paragraph), and/or numerical computation issues with the simulation procedure
when paired with these covariates (hinted as a possibility below in Figure 2.7) —
and could develop a derivation, fitting, and simulation framework that avoids such
superexponential growth.

Many details have been oversimplified or omitted entirely in the SIRSA model
considered above: there is no process noise nor observational noise (which is ad-
dressed only partially by use of derived covariates in an autoregressive framework),
resistance to a disease is either complete immunity or susceptibility, and is lost instan-
taneously after an exponentially-distributed amount of time following recovery from
infection; the infectious contact rate is constant, ignoring seasonal trends, weather,
school calendars, and holidays; the population is treated as homogeneous and in-
teractions fully mixed, without breakdowns into geographical, demographic, and
occupational groups, nor any social network structure; multiple diseases, types, sub-
types, and strains and their interaction are not incorporated; public health responses
are not included; only a single surveillance source has been considered, with a case
reporting rate that neglects holiday, media, geographic, demographic, and disease
strain-based effects, and no false positives; the population is constant with no birth,
death, or migration; importation of cases from other locations or animal reservoirs
is excluded; and so on. Incorporating some of these details will require general-
ization of the derivations applied to the simplistic model studied above. Existing
work which could help toward this end includes: (a) spectral methods for predictive
linear dynamical models (e.g., hidden Markov models (HMMs) [Hsu et al., 2012],
kernelized HMMs [Song et al., 2010], and linear dynamical systems (Kalman filter-
ing) [Boots, 2012]), for fitting models with multivariate observational and process
noise in a tractable, deterministic manner, (b) differential equation and control the-
ory machinery such as the state-transition matrix and Peano–Baker series [Baake
and Schlaegel, 2011] for generalizing the integral and exponential-moving-sum re-
formulations to the multivariate case; (c) linear algebra tools such as the Schur
complement for further multivariate manipulations, and (d) quantile regression ex-
tensions such as the multiple quantile graphical model [Ali et al., 2016] and quantile
filtering [Johannes et al., 2009] for maintaining a nonparametric noise model. This
type of analysis may benefit from existing work or find additional applications in
other modeling domains, including population ecology, chemical rate equations, and
general agent-based modeling.

46



The next few headings provide auxiliary derivations with more interpretable and
extensible formulations for the same deterministic SIRS model, and work towards
application in more complicated setups.

More interpretable formulation without reliance on sum constraint By
applying an integrating factor approach to re-express both r(t) and s(t) in terms
of i(t) and more carefully expressing constants of integration, we arrive at a more
interpretable formulation which also does not rely on the constraint s(t)+i(t)+r(t) =
1, providing a path forward to cases incorporating changes in population.

A similar integrating factor approach is used throughout many derivations. Note
that, given some time series x(t), a(t), b(t), if

x′(t) = a(t)x(t) + b(t)

for all t, then:

x′(t) − a(t)x(t) = b(t)

e− ∫
t
t0
a(τ)dτ

[x′(t) − a(t)x(t)] = e− ∫
t
t0
a(τ)dτb(t)

e− ∫
t
t0
a(τ)dτx(t) = x(t0) + ∫

t

t0
e− ∫

ν
t0
a(τ)dτb(ν)dν

x(t) = x(t0)e∫
t
t0
a(τ)dτ

+ ∫

t

t0
e∫

t
t0
a(τ)dτ−∫

ν
t0
a(τ)dτb(ν)dν

= x(t0)e∫
t
t0

dτ a(τ)
+ ∫

t

t0
dν b(ν)e∫

t
ν dτ a(τ)

⋅

This manipulation may be hard to interpret in the abstract form above, but becomes
clear as it is applied to transform the SIRS differential equations. Recall that

s′(t) = −s(t) ⋅ βi(t) + r(t) ⋅ µ

i′(t) = +s(t) ⋅ βi(t) − i(t) ⋅ γ

r′(t) = +i(t) ⋅ γ − r(t) ⋅ µ.

Using the manipulation above with x(t) = r(t), a(t) = −µ, and b(t) = i(t) ⋅ γ, we
obtain:

r(t) = r(t0)e∫
t
t0

(−µ)dτrr + ∫
t

t0
dνir i(νir)γe∫

t
νir

dτrr (−µ)

= r(t0)e
−(t−t0)µ + ∫

t

t0
dνir i(νir)γe−µ(t−νir).
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Multiplying through by N gives an easily read interpretation:

Nr(t) = Nr(t0)e
−(t−t0)µ + ∫

t

t0
dνirNi(νir)γe−µ(t−νir);

that is, the number of recovered agents at time t is the sum of:

• the number of recovered agents at time t0 that never lost immunity (as of time
t),

• the number of infectious agents that recovered at some time νir between t0 and
t and did not subsequently lose immunity before time t.

The same manipulation can be used to re-express s(t) and the result combined with
the above expression for r(t):

s′(t) = −βi(t)s(t) + µr(t)

s(t) = s(t0)e
− ∫

t
t0

dτss βi(τss) + ∫
t

t0
dνrs r(νrs)µe− ∫

t
νrs

dτss βi(τss)

= s(t0)e
− ∫

t
t0

dτss βi(τss) + ∫
t

t0
dνrs (r(t0)e

−µ(νrs−t0) + ∫

νrs

t0
dνir i(νir)γe−µ(νrs−νir))µe− ∫

t
νrs

dτss βi(τss)

= s(t0)e
− ∫

t
t0

dτss βi(τss) +

. . . r(t0)∫
t

t0
dνrs e−µ(νrs−t0)µe− ∫

t
νrs

dτss βi(τss) +

. . .∫
t

t0
dνrs∫

νrs

t0
dνir i(νir)γe−µ(νrs−νir)µe− ∫

t
νrs

dτss βi(τss);

multiplying the equations through by N yields a statement that the number of sus-
ceptible agents at time t is the sum of:

• the number of susceptible agents at time t0 that were never infected (as of time
t),

• the number of recovered agents at time t0 that lost immunity between times t0
and t but were never subsequently infected (as of time t), and

• the number of infectious agents that recovered at some time νir between t0 and
t that subsequently lost immunity at some time νrs and remained susceptible
until time t.
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Plugging the above expressions into the differential equation for i′(t) yields:

i′(t) = +s(t) ⋅ βi(t) − i(t) ⋅ γ

= s(t0)e
− ∫

t
t0

dτss βi(τss)i(t) . . .

. . . + r(t0)∫
t

t0
dνrs e−µ(νrs−t0)µe− ∫

t
νrs

dτss βi(τss)βi(t) . . .

. . . + ∫
t

t0
dνrs∫

νrs

t0
dνir i(νir)γe−µ(νrs−νir)µe− ∫

t
νrs

dτss βi(τss)βi(t) . . .

. . . − i(t) ⋅ γ.

Here, i′(t) is expressed using only i(t), i(⋅) at previous times, and the initial con-
ditions of s(t0) and r(t0). Similarly, y′(t) can be similarly expressed as a causal
function of y(t) and initial latent state alone, as in the original derivation. The
integrating factor technique could also potentially be used to re-express some or all
instances of i(⋅) in terms of itself at previous times, and lead to even more ways to
express y′(t) under the same constraints. This reformulation does not rely on the fact
that s(t)+ i(t)+ r(t) = 1, and so this approach could provide opportunities to derive
covariates from models incorporating birth and death events. It does, however, rely
on the fact that in the graph of possible state transitions for individual agents, the
subgraph for inexactly observed or unobserved states — s and r in this derivation
— is acyclic, in order for the number of integrals in the final expression for i(t) to be
finite, or, in the discrete-time case, for the number of summations in the expression
for it to not grow with t− t0. Such a situation may introduce additional obstacles in
later steps requiring more powerful techniques to resolve.

Posynomial reformulation of discrete-time SIRS model A “posynomial” is
a function of the form

K

∑
k=1
ckx

a1k
1 xa2k

2 . . . xankn ,

where ck, x1, x2, . . . , xn > 0 and ajk ∈ R∀j ∈ {1..n}, k ∈ {1..K}; recognizing or re-
formulating optimization problems (such as model fitting) in terms of posynomials
sometimes enables the use of certain efficient, reliable algorithms for “geometric
programming” [Boyd and Vandenberghe, 2004, sec. 4.5]. The latent state and ob-
servations in the simple discrete-time SIRS model used in this chapter can be quickly
rewritten as posynomial function of transformed parameters and quantities from the
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previous time step, assuming they are all nonzero:

st+1 = st − βstit + µrt = (st + β̄it + rt)st + µrt;
it+1 = it + βstit − γit = γ̄it + βstit;
rt+1 = rt + γit − µrt = µ̄rt + γit;
yt+1 = Nρit+1 = Nργ̄it +Nρβstit; where

where β̄ = 1 − β, γ̄ = 1 − γ, and µ̄ = 1 − µ are treated as additional parameters; the
first equation can be interpreted as stating that susceptible individuals at time t + 1
are either:

• susceptible individuals from time t that potentially interacted with:

– a susceptible individual,
– an infectious individual, but were not infected, or
– a recovered individual, and

• recovered individuals that lost immunity between times t and t + 1.

One issue with this reformulation is that constraining β + β̄ = 1, γ + γ̄, µ + µ̄, and
st + it + rt = 1 cannot be implemented directly in geometric programming (although
relaxations replacing = with < are possible); however, this issue may actually not
apply in the context of more complicated, believable SIRS models which incorporate
birth and death. This posynomial reformulation can be applied recursively to rewrite
the state and observations at time t + 1 as a posynomials of parameters and initial
state, or perhaps used in combination with the manipulations from the heading above
to rewrite Nst+1, Nit+1, and Nrt+1 as posynomials of parameters, initial state, and
observations y1..t. This strategy may transfer to probabilistic SIRS models using
binomial random variables, leading to statements such as

Yt+k ∣ S0, I0,R0, Y1..t ∼ B(S0, gS,0,t+k(θ)) +B(I0, gI,0,t+k(θ)) +B(R0, gR,0,t+k(θ)) +
t

∑
τ=1

B(Yτ , gY,τ,t+k(θ)),

for count random variables S0, I0,R0, Y1..t+k, and posynomial functions g⋅,⋅(⋅) which
may have special forms.

However, experiments with the deterministic SIRS models also reveals a potential
hazard with rewriting the original system equations: superexponential numerical
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error growth. Figure 2.7 shows values of yt over time given the same initial state
and same parameters using the original SIRS equations and using the posynomial
reformulation. The first plot shows that yt in the posynomial formulation does indeed
appear to coincide with yt from the original equations for some time, supporting
the assertion that the reformulation is mathematically valid with exact arithmetic.
However, the second plot, which shows the same time series over an expanded time
frame, demonstrates superexponential error growth in the posynomial formulation.
Shortly after the end of the second plot, at time t = 106, yt in the posynomial
reformulation becomes infinity when using double-precision floating-point arithmetic.
Clearly, the invariant st+it+rt = 1 has been violated, and st+it+rt in the posynomial
reformulation grows superexponentially as well. The exponential-moving-sum and
other reformulations may or may not exhibit this same type of numerical error growth
issue when applied in a purely mechanistic setting with known initial state and
parameters, but naïvely adding the derived covariates to the quantile autoregression
framework, it does demonstrate superexponential growth to infinity in some of its
simulations; some performance metrics are shown in Chapter 4.

Deterministic SIRS; discrete types; one infection/immunity at a time We
can extend the model above to incorporate multiple disease types in certain ways
while avoiding the extra complication of cycles within the latent state transition
graph. There are many schemes for building multi-strain models, partially driven
by an explosion in the number of possible states and parameters in straightforward,
faithful approaches [Kucharski et al., 2016]. We take a simple approach intended to
readily scale to several pathogens or strains by allowing for only a single infection
at a time, and forgetting information about all but the most recent infection of each
individual. When modeling M different strains, the model includes 2M + 1 possible
agent states:

• susceptible to all strains;

• infectious with strain k, for k ∈ {1..M};

• recovered from strain l, for l ∈ {1..M}.

Cross-protection and differing infectious contact, recovery, reporting, and waning
immunity rates are captured by a quadratic number of parameters:

• βk, k ∈ {1..M}: infectious contact rates for interactions of fully-susceptible
individuals with strain-k-infectious individuals;
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Figure 2.7: A posynomial reformulation of SIRS equations appears to coin-
cide numerically with the original equations for some time, but subsequent
time steps demonstrate superexponential error growth. Both of the plots
shows yt versus t as calculated by the original SIRS equations and the posynomial re-
formulation; the first plot covers t ∈ {1..80}, while the second covers t ∈ {1..100}. The
source of the errors evident in the second plot is entirely numerical; the parameters
and initial state are given exactly, rather than estimated.
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• βkl, k, l ∈ {1..M}, k ≠ l: infectious contact rates for interactions of strain-l-
recovered individuals with strain-k-infectious individuals;

• γk, k ∈ {1..M}: recovery rate for strain k; and

• ρk, k ∈ {1..M}: reporting rate for strain k; and

• µl, l ∈ {1..M}: waning immunity rate for strain l.

The differential equations are still quite similar to the single-strain case:

s′(t) = −∑
k

βks(t)ik(t) +∑
l

µlrl(t)

i′k(t) = βkik(t)s(t) +∑
l≠k

βklik(t)rl(t) − γkik(t)

r′l(t) = γlil(t) −∑
k≠l

βklik(t)rl(t) − µlrl(t)

s(t) +∑
k

ik(t) +∑
l

rl(t) = 1

yk(t) = Nρkik(t)

Furthermore, manipulations similar to the single-strain case appear to be possible,
e.g., rewriting the number of recovered individuals in terms of the number of infec-
tious individuals:

r′l(t) = γlil(t) −∑
k≠l

βklik≠l(t)rl(t) − µlrl(t)

rl(t) = ∫
t

t0
e(∑k≠l βkl ∫

ν
t0
ik(τ)dτ+µl(ν−t0))−(∑k≠l βkl ∫

t
t0
ik(τ)dτ+µl(t−t0))γlil(ν)dν +

. . . rl(t0)e
−∑k≠l βkl ∫

t
t0
il(τ)dτ−µl(t−t0)

rl(t) = ∫
t

t0
γlil(ν)e

−∑k≠l βkl ∫
t
ν il(τ)dτ−µl(t−ν) dν +

. . . rl(t0)e
−∑k≠l βkl ∫

t
t0
il(τ)dτ−µl(t−t0)

However, additional difficulties and complications are expected when fitting coherent
exponential moving average parameters or working around them.

2.5 Incorporating holiday effects

This subsection reproduces or incorporates content from Brooks et al. [2018].
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Holidays can impact the spread, observation, and impact of a disease. For example,
reduced school and workplace contact may reduce disease transmission, patients
may not seek or may delay medical care for less serious issues, and some health
care providers may not be open or operate with reduced staffing. The delta density
methods described above attempt to match holiday behaviors by restricting training
windows around major holidays to focus on data from the same, or nearby, weeks
of the year. This reduction in the amount of training data might actually degrade
performance. A more direct model of the holiday effects may allow a model to match
holiday behavior with less data, and simultaneously remove the perceived need for
narrow training windows.

For example, CDC’s wILI measure is an estimate of the proportion of health care
visits in an area that are due to ILI. Sharp rises and drops in wILI are common from
early or mid-December to early January (roughly coinciding with a four week period
beginning with epi week 50), with either the season’s peak or a lower, secondary
peak commonly occurring on epi week 52. This pattern appears to arise from at
least two factors:

• spikes downward in the number of non-ILI visits during the holiday season
(corresponding to increases in wILI), perhaps caused by patients choosing not
to visit the doctor for less serious issues on holidays, and

• decreasing slope of the average ILI visit curve during the holidays (changing
from its highest positive value to a slightly negative value), perhaps due to
“deceleration” in the true incidence of ILI resulting from a decreased average
infectious contact rate during holidays, which partially counteracts the above
increases in wILI due to health care seeking behavior changes during the holi-
days, but also accentuates this spike visually due to the negative slope at the
end of the holiday period.

Similarly, there are spikes or minor blips downward in the average number of non-ILI
visits (which can result in small increases in wILI) associated with Thanksgiving Day;
Labor Day; Independence Day; Memorial Day; Birthday of Martin Luther King, Jr.;
Washington’s Birthday; Columbus Day; and perhaps other holidays. Spikes upward
in wILI at Thanksgiving can push wILI unexpectedly over the onset threshold, and
holiday effects may help explain the surprising frequency at which peaks occur on epi
week 7 but not neighboring weeks. Figure 2.8 summarizes these effects using average
ILI, non-ILI, and wILI trends for all age groups. Additional age-specific patterns
may be obscured by this analysis of overall trends.
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Figure 2.8: On average, wILI is higher on holidays than expected based on
neighboring weeks. Weekly trends in wILI values, as expressed by the contribu-
tion of a each week to a sum of wILI values from seasons 2003/2004 to 2015/2016,
excluding 2008/2009 and 2009/2010 (which include portions of the 2009 influenza
pandemic), show spikes and bumps upward on and around major holidays. (U.S.
federal holidays are indicated with event lines.) The number of non-ILI visits to
ILINet health care providers spikes downwards on holidays (disproportionately with
any drops in the number of ILI visits), contributing to higher wILI. The number of
ILI visits generally declines in the second half of the winter holiday season, causing
winter holiday peaks to appear even higher relative to nearby weeks. In addition to
holiday effects, we see that average ILINet participation jumps upward on epi week
40, and gradually tapers off later in the season and in the off-season.
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Approaches to incorporating holiday effects include:

• in entire-trajectory models, adding constant or random multiplicative effects
to each trajectory in the set or distribution of possible Y1..T ’s;

• in chained one-ahead models, weighting training instances based on whether
they share the same holiday status as the test instance or come from the same
time of year; and

• in chained one-ahead models, adding holiday indicator variables and/or interac-
tions of holiday indicator variables with other quantities of interest as covariates
in the quantile autoregression framework, and/or modeling the number of ILI
and non-ILI visits instead of %wILI.

Preliminary performance analysis suggests that:

• The first approach applied within the empirical Bayes framework produces tra-
jectories in the prior that are qualitatively more similar to actual surveillance
trajectories, but doesn’t lead to better forecast performance. This phenomenon
arose when fitting a constant (across elements of the prior) or randomly scaled
multiplier patterns to weeks of the season typically associated with Thanks-
giving and with winter holidays, which was fit in conjunction with the trend
filtering procedure.

• Each U.S. federal holiday above occurs at roughly the same time of year every
year, falling on one of two possible epi week numbers. Thus, models that predict
behavior at a given epi week by prioritizing or focusing solely on past behavior
at that given epi week will automatically perform a rough adjustment for hol-
iday effects. This factor informs our decision to use historical data only from
corresponding weeks in the Markovian delta density method, and a truncated
Laplacian kernel with narrower width near winter holidays in the extended
delta density method. Specifically, for the extended delta density method, we
choose the half-width of the kernel to be lu = min{10,max{0, ∣u − 22∣ − 1}},
which assigns lu = 0 for u within one week of epi week 52, and larger lu’s the
farther u is from this time period, up to a maximum value of 10. However, the
extended delta density method actually exhibits a large degree of bias in ground
truth estimates around these holidays; this bias or error seems attributable to
other details of the extended delta density model, though, as it is present even
in the week with a kernel width of 0, which causes the truncated Laplacian
kernel to match the Markovian delta density kernel.
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• One method in the third category is to add week-of-season or time-relative-
to-holiday indicator variables and/or interactions with other quantities as co-
variates in the quantile autoregression framework; initial performance results
suggest this method is surprisingly unsuccessful despite matching well with the
intuition for the multiplicative nature of surveillance system holiday effects in
this setting.
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Chapter 3

Modeling surveillance data
revisions

The above discussion assumed that, when forecasting future measurements of disease
prevalence, we have access to these same desired measurements for all times in the
past. In reality, this exact data is not immediately accessible, as accurate measure-
ments may take weeks or years to be completed. However, to enable decisionmakers
to quickly assess and respond to a situation, epidemiological surveillance systems of-
ten publish a sequence of provisional estimates of each complete measurement, with
later versions more accurate on average. The existence of multiple versions of mea-
surements has significant implications for proper forecast evaluation and analysis,
and explicitly accounting for the revision process can improve model forecasts:

• Faithful retrospective validation: When estimating the performance of a pro-
posed model by mimicking the forecasts it would have made in the past, it is
important that we input the version of each measurement that would have
been available at the time of each forecast; otherwise, accuracy estimates will
almost surely be too high since the evaluation was based on higher accuracy
input data.

• Faithful forecast visualization: Visualizing past forecasts together with com-
pleted measurements can cause confusion when the version of the measurements
fed into the forecast has significant error; plotting the available version along-
side the complete measurements and forecast can eliminate this confusion.

• Forecast improvement: Forecast performance can potentially be improved by
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modeling the data revision process in addition to future observations, especially
when a small change in past observations can cause a large change in the
prediction target or associated forecast evaluations (as is sometimes the case
for some timing and overall intensity targets), or when there is a high degree
of error in earlier versions of measurements.

Section 3.1 describes in more detail the nature of some provisional data, and
Section 3.2 provides notation to discuss such data. Section 3.3 describes methods
for distribution prediction of finalized data given the partial, provisional data that
are available in real time. Chapter 4 describes additional extensions and studies the
performance of different approaches.

3.1 Examples of provisional data

This section reproduces or incorporates content from Brooks et al. [2018].

The use of provisional estimates is commonplace in epidemiological surveillance, and
is also observed in other contexts; for example:

• ILINet is a network of health care providers that voluntarily submit reports to
CDC, which cleans and aggregates the data. Providers may differ in timeli-
ness and frequency of reporting, and new providers may enter the system and
might provide a chunk of data, and the aggregate measure of ILI prevalence is
updated as additional providers submit or revise their data. CDC adjusts for
the fact that different versions will be based on different numbers of providers
by reporting the proportion of visits due to ILI, but earlier versions can still
be biased, as slower or less frequent reporters may serve different populations
with higher or lower typical ILI proportions than earlier reporters. The revi-
sions may also be correlated across time, as a lower frequency or slower huge
provider or group of similar providers may report a chunk of multiple weeks
at the same time. CDC may also perform data cleaning, which can affect the
entire season at the same time; for example, they may remove all data from a
particular provider.

• The Influenza Hospitalization Surveillance Network (FluSurv-NET) is a surveil-
lance network for laboratory-confirmed influenza hospitalizations. Many of the
issues above still are applicable; for example, differences in types of laboratory
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test used, testing location, testing capacity, hospital administration, etc., can
contribute to differences in timeliness of reporting between hospitals. Report-
ing may not take place until after a patient is discharged, which spreads reports
apart further based on uncontrollable factors regarding duration of patients’
illnesses. Additionally, reports may be revised after cases are ruled out as ad-
ditional tests are performed. The combined effect is that the initially reported
hospitalization rates are always or nearly always lower than the finalized fig-
ures, and half of the time are ≈ 50% of the finalized value or less, while later
versions have a growing chance of overestimating the finalized value but are
closer to it on average.

• Gross domestic product (GDP) and gross national product (GNP) estimates
can also be revised over time. Previous work has named different types of
updates and addressed the task of forecasting these updates in the context of
Kalman filtering [Aruoba, 2008, Jacobs and Van Norden, 2011, Julio et al.,
2011, Mankiw and Shapiro, 1986].

Details of which provisional data are released and the nature of their revisions vary
by setting; some specifics for the ILINet system are included below.

ILINet versioning process Recall that ILINet is a network of outpatient health
care providers providing statistics which are compiled, processed, and published by
CDC. These health care providers vary in size, types of care provided, administra-
tive resources available, and nature of their recordkeeping and reporting systems.
Not all providers transmit statistics on a weekly basis in time for inclusion in the
quickest CDC estimates of ILI activity for every week. After this first deadline has
passed, ILINet members provide “backfill” statistics or revisions for past weeks and
CDC continually considers data cleaning operations of incoming and priorly submit-
ted statistics; wILI observations are updated accordingly. Forecasting performance
can be improved by modeling and “backcasting” these updates, accounting for the
following sources of error:

• Biased early reports: earlier wILI versions are generally biased downwards early
in the in-season, and upwards towards the end of the in-season, which may lead
to forecasts of lower, later peaks early in the season, and of longer epidemic
duration later in the season;

• Overconfident short-term distributional forecasts: since updates in wILI
can cause “observed” data, e.g., of the wILI at the presumed peak week, to
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shift, ignoring backfill may lead to “thin”, overconfident forecast distributions;

• Revisions of “observed” seasonal targets: wILI updates sometimes cause large
changes in the apparent onset week or peak week when there are bumps or mul-
tiple peaks in the trajectory: wILI updates can cause a measurement to change
from above the CDC baseline to below (or vice versa), or for an earlier, lower
peak to rise above a later peak (or vice versa); ignoring backfill updates can
cause models to completely miss some possibilities when these targets appear
to be determined. A similar type of error can arise from revisions to the peak
height value (regardless of whether the peak week changes); even small updates
can result in large unibin log score penalties.

3.2 Notation

In Chapter 2, the goal was to estimate the distribution of future observations of a
time series of interest, Yt+1..T , as a function of past observations of that time series,
Y1..t. However, as described above, we do not have access to Y1..t itself in real time,
but instead a sequence of provisional reports, Y (1)

1 , Y
(2)

1..2 , . . . , Y
(t−1)

1..t−1 , Y
(t)

1..t , each adding
a new (provisional) observation and revising previous values. Our goal now is to
build a distributional forecast of the entire, finalized time series of interest, Y1..T2 ,
effectively leveraging information from provisional measurements Y (1)

1 , Y
(2)

1..2 , . . . , Y
(t)

1..t
and completed measurements Y1..T1 (where T1 ≤ t and T1 < T2). That is, we want to
jointly “backcast” (a.k.a. “backforecast”, “back-forecast”) YT1+1..t and forecast Yt+1..T2 ,
and append the results to observations Y1..T1 . Figure 3.1 depicts the prediction
targets together with the observations available as of report t, which visually form a
“provisional data triangle”.

3.3 Nonparametric one-ahead backcasting and fore-
casting methods

There is an approach to backcasting and forecasting in this setting which is very sim-
ilar in nature to the chained one-ahead future trajectory simulation procedure from
Subsection 2.1.2. We can simulate a random trajectory Y sim

1..T2
from the distribution

of Y1..T2 given all provisional data Y (1..t) by chaining together T2 − T1 1-step-ahead
simulations:
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Latest available report; to be updated
each issue from (t + 1) onward

Figure 3.1: Initial surveillance data values and subsequent revisions form
a “provisional data triangle”. The top shaded region of this diagram represents
some of the backcasting and forecasting forecasting targets, Y1..T2 : the finalized values
of the surveillance data after many revisions. (The exact versions to be considered
“finalized” may be explicitly specified by stakeholders soliciting forecasts.) The sec-
ond shaded region corresponds to the most recent surveillance report or “issue”, Y (t)

1..t ,
containing (a) Y (t)

1..t−1, revisions of values from the previous report, and (b) Y (t)
t , the

initial estimate of Yt. The lines below the second shaded region correspond to a few
older reports, Y (t−4)

1..t−4 ..Y
(t−1)

1..t−1 ; moving from older reports below to newer reports above,
each report contains an observation for one additional time interval and revisions for
the rest, giving rise to the triangular arrangement of the diagram.
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• Let Y sim
1..T1

= Y1..T1

• Draw Y sim
T1+1 ∼ YT1+1 ∣ Y (1..t), Y1..T1 = Y

sim
1..T1

• Draw Y sim
T1+2 ∼ YT1+2 ∣ Y (1..t), Y1..T1+1 = Y sim

1..T1+1

• Draw Y sim
T1+3 ∼ YT1+3 ∣ Y (1..t), Y1..T1+2 = Y sim

1..T1+2

• . . .

• Draw Y sim
T2

∼ YT2 ∣ Y (1..t), Y1..T2−1 = Y sim
1..T2−1

That is, we simulate the first latent observation YT1+1, then feed that simulated value
Y sim
T1+1 into a model for YT1+2, then feed the resulting value Y sim

T1+2 along with Y sim
T1+1 into

a model for YT1+3, and so on. The model selected for Yu ∣ Y (1..t), Y1..u−1 is once again
arbitrary, but it is often convenient to consider direct models of Ψ[u] ∣ Φ[u], where
Ψ[u] can now depend on Y (1..t), Y1..u such that Yu is recoverable, and Φ[u] is a feature
vector prepared from Y (1..t), Y1..u−1. For example, a natural choice for Φ[u] is a small
selection of provisional data for times intervals u and nearby time intervals. One
drawback of this choice paired with the procedure above is that it leads to algorithms
akin to Kalman filtering or fixed-lag smoothing rather than comprehensive Kalman
smoothing; that is, the u-th simulated value, Y sim

u , will either ignore available data
for time intervals after u (“filtering”), or will ignore available data for time intervals
after u + k for some fixed k > 0 (“fixed-lag smoothing”), rather than considering
data from all time intervals (comprehensive smoothing). For lower-noise data sets,
these omissions may not be too harmful, as enough signal is already present in
nearby (and far past) time intervals to backcast accurately. The kernel delta density
and locally linear quantile autoregression approaches have analogues in this setting:
kernel residual density and quantile ARX (autoregression with additional covariates
treated as exogenous):

• Kernel residual density: uses kernel smoothing methods to estimate the con-
ditional distribution (a) of residuals Yu−Ŷu given some covariates and an initial
estimate Ŷu when u ≤ t, and (b) of deltas Yu − Yu−1 when u > t.

• Quantile ARX: uses quantile regression to estimate the conditional distribution
of Yu given a selection of features from Y1..u−1 and Y (1..t).
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3.3.1 Kernel residual density

This subsection reproduces or incorporates content from Brooks et al. [2018].

The kernel residual density method chains together draws from conditional density
estimates of (Yu − Ŷu) ∣ Φ[u] for u from T1 + 1 to t and of ∆Yu ∣ Φ[u] for u from t + 1
to T2, where Φ[u] is a function of Y1..u−1 and Y (1..t) and Ŷu is some initial estimate of
Yu:

• The data revision-ignorant delta density method can be seen as a special case
where ŶT1+1..t = YT1+1..t (i.e., past values YT1+1..t are all treated as known and
are simply duplicated in the simulated trajectories) and Ŷt+1..T2 = Yt..T2−1 (i.e.,
the estimator Ŷu when u ≥ t + 1 is the lagged value Yu−1, available in simu-
lated trajectories from previous simulation steps). Each later residual Yu−Yu−1
corresponds to a delta in the delta density approach, ∆Yu.

• A data revision-aware variant is obtained by using ŶT1+1..t = Y
(t)
T1+1..t (i.e., the

latest provisional value for every time interval for which provisional data is
available) while keeping Ŷt+1..T2 = Yt..T2−1.

The performance of these kernel residual density approaches is studied alongside
additional variants in Section 4.2 (the revision-unaware approach corresponding to
“Ground truth, no nowcast” and “Real-time data, no nowcast”, and the revision-
aware approach above corresponding to “Backcast, no nowcast”).

3.3.2 Quantile ARX

Another candidate is a regularized locally linear quantile regression on a subset of
the conditioning covariates. One option is to simulate quantiles of Yu as a linear
function of the following covariates, along with a data weighting kernel and optional
extra post-processing noise: Figure 3.2 visualizes this availability-dependent selection
with a template for a roughly corresponding Bayes net. This Bayes net description
is inexact, as the sampling procedure described in the introduction to this chapter
models the dependence of each node on its ancestors, but not its descendants. Usu-
ally, we will start simulating with u’s where most of this data is available, but at
higher u some of the covariates will be excluded due to unavailability. For example,
when simulating Yt+1, the above covariate set would incorporate only Y (t)

t and Y sim
t−3..t.

Training instances for the quantile regression model map these test covariates to the
following training covariates:
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Name Type Description Notation
Stable@u-4 Input Stable/simulated value 4 weeks before Yu−4/Y sim

u−4
Stable@u-3 Input Stable/simulated value 3 weeks before Yu−3/Y sim

u−3
Stable@u-2 Input Stable/simulated value 2 weeks before Yu−2/Y sim

u−2
Stable@u-1 Input Stable/simulated value 1 weeks before Yu−1/Y sim

u−1
Latest@u-1 Input Latest value for 1 week before Y

(t)
u−1

Latest@u Input Latest value for given week Y
(t)
u

Latest@u+1 Input Latest value for 1 week after Y
(t)
u+1

Second-Latest@u Input Second-latest value for given week Y
(t−1)
u

Stable@u Output Stable/simulated value for given week Yu/Y sim
u

Table 3.1: One potential choice of Φ[u],QARXlinear and Ψ[u].

u − 4 u − 3 u − 2 u − 1 u u + 1

Yu−4? Yu−3? Yu−2? Yu−1? Yu

Y ↑u−1? Y ↑u ? Y ↑u+1?

Y ↑#u ?

Time

Finalized data

Latest provisional

Second-latest provisional

Figure 3.2: Bayes net template related to earlier covariate table. Here, u could refer
to a past, present, or future week, not just the current week. Question marks de-
note covariates that are included if available (observed/simulated) at test/application
time. The ↑̄ symbol refers to the latest version of a wILI measurement available at
test time (if there are any versions available), while ↑̄ # refers to the second-latest
version of a wILI measurement available at test time (if there are ≥ 2 versions avail-
able).
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• Y
(t+∆t)
(u−1..u+1)+∆t corresponding to available Y (t)

u−1..u+1

• Y
(t−1+∆t)
u+∆t corresponding to available Y (t−1)

u

• Y(u−4..u−1)+∆t, corresponding to available Y sim
u−4..u−1 or Yu−4..u−1

The training set is limited to those instances where all of the above covariates are
available. Weights can be assigned to training instances to encourage use of data
from similar times of year and similar values of the covariates. Regularization is
incorporated to prevent overfitting and remain robust in the face of collinearities.
(Collinearities can arise, e.g., when the training set used fills in holes in records for
Y (1..t) with other values from Y (1..T ) or Y1..T .) The performance of this approach
is studied in Subsection 4.3.1 (approaches “T:B” and “T:BNF”).

Consider a more restrictive set of covariates: Y (t)
u , if available, and Y sim

u−1 (or Yu−1 if
available). Then the above process draws from conditional distributions that resem-
ble a state space filter; for example, YT1+1 ∣ Y

(t)
T1+1, YT1 , using natural Markov assump-

tions, would be equivalent to YT1+1 ∣ Y
(t)
T1+1, Y1..T1 , but would not consider information

from observations for subsequent epiweeks such as Y (t)
T1+1..T2

. Since dependencies be-
tween data updates to observations for nearby weeks, we may want to ensure that
this information is included. One simple way is to simply add more elements from
Y

(t)
T1+1..T2

as covariates when available, but this might lead to issues with fitting too
many parameters, e.g., at T1 + 1. An alternative would be to add a backward pass
that parallels a state space smoothing algorithm; this approach may not be feasible
when using complicated transformations or data weights. Yet another path is to add
subsequent values such as Yu+1 to the conditioning covariates and perform fitting
and sampling using algorithms for the Multiple Quantile Graphical Model [Ali et al.,
2016].
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Chapter 4

Incorporating additional
surveillance sources into
pancasters

The previous two chapters discuss models for a single source of surveillance data
that reports (multiple versions of) a single measurement for each time in the past
for a particular location. This approach forgoes useful information available from
additional traditional surveillance sources and a number of novel digital surveil-
lance sources such as search query volume, social media activity, page hits, illness
self-reporting, internet-integrated monitoring and testing devices, electronic health
records, and insurance claims. We can generalize the above approaches to forecast
multiple data sources and/or locations at once, incorporating information from mul-
tiple auxiliary data streams. This chapter describes a joint modeling and simulation
approach that incorporates dependencies across sources using a domain-informed
dependence graph. This task is often referred to as “nowcasting” or “nearcasting”
when “predicting” ground truth data for times u at or around the time that the
predictions are made. Even the most quickly released traditional surveillance data
are not as timely as novel digital sources, so this typically entails estimating stable
ground truth data Yu given lower-latency external data Xu for the same time period
and provisional data Y (t)

1..t , t < u, which does not contain an estimate for time interval
u. Performing joint distribution prediction for YT1..T2 covering times before, near,
and after t combines the tasks of backcasting, nowcasting, and forecasting, and we
will henceforth refer to it as “pancasting”.
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Section 4.1 discusses the task of nowcasting, some available nowcasting systems
for wILI, and the general tactic that will be taken to incorporate these in distribu-
tional trajectory predictions. Section 4.2 pairs this tactic with the kernel residual
density backcasting approach and various forecasters. Section 4.3 applies the same
tactic in the quantile ARX modeling framework, with the option of performing the
entire pancast within the quantile ARX model, which appears competitive with any
of the piecemeal approaches combining separate backcasters, nowcasters, and fore-
casters.

4.1 Latency of initial wILI values and “nowcast-
ing”

This section reproduces or incorporates content from Brooks et al. [2018].

The initial ILINet wILI value for a given “target” week (from Sunday to Saturday) is
typically released on Friday of the following week. Data sources with lower latency
and higher temporal resolution can be used to prepare wILI estimates (“nowcasts”)
earlier in the following week or even during the target week itself. More generally,
auxiliary data for past and current weeks can improve not only models of disease ac-
tivity in these weeks but also forecasts of future disease activity. Given a backcaster
that simulates finalized data for past weeks Y1..t given observed ILINet and auxiliary
data, a nowcaster that simulates Yt+1 given these observations and (a simulated)
Y1..t, and a forecaster that simulates Yt+2..T given these observations and (a simu-
lated) Y1..t+1, we can sample from an enhanced model of Y1..T (given the latest wILI
observations Y t

1..t, previous versions of wILI, and auxiliary data) using the following
procedure:

1. Repeatedly draw a random value Y sim
1..T for Y1..T by:

(a) drawing a random value Y sim
1..t for Y1..t conditioned on the observed data,

using the backcaster, then
(b) drawing a random value Y sim

t+1 for Yt+1 conditioned on the observed data
and Y1..t = Y

sim
1..t , using the nowcaster, then

(c) drawing a random value Y sim
t+2..T for Yt+2..T conditioned on the observed data

and Y1..t+1 = Y
sim

1..t+1, using the forecaster, then
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(d) combining Y sim
1..t , Y sim

t+1 , and Y sim
t+2..T into a single (random) trajectory Y sim

1..T ,
and

2. Collect these individual, randomly drawn trajectories into a list (i.e., a random
sample).

As with the earlier method of combining backcasts and forecasts without a nowcaster,
this procedure may be too computationally expensive for some implementations of
some forecasters; we use these steps exactly with the delta density methods, for
example, but consider modifications and approximations for some other forecasters.

This methodology can be applied in conjunction with one of many available now-
casters. We focus on ILI-Nearby [Farrow, 2016, Farrow et al., 2019], which produces
nowcasts for wILI by fusing together several “sensors” using another type of stacked
generalization, where each sensor is also a nowcast of wILI data; we reproduce a list
of references from [Farrow, 2016] on other methodologies for nowcasting and incor-
porating auxiliary data here [Achrekar et al., 2011, Araz et al., 2014, Broniatowski
et al., 2013, Culotta, 2010, Dredze et al., 2014, Dugas et al., 2013, Eysenbach, 2006,
Generous et al., 2014, Ginsberg et al., 2009, Hickmann et al., 2015, Hulth et al.,
2009, McIver and Brownstein, 2014, Paul et al., 2014b, Polgreen et al., 2008, Preis
and Moat, 2014, Ritterman et al., 2009, Santillana et al., 2014, 2015, Shaman and
Karspeck, 2012b, Shaman et al., 2013b, Signorini et al., 2011, Soebiyanto et al., 2010,
Yang et al., 2015] along with some more recent work [Johansson et al., 2016, Lam-
pos et al., 2015, Yang et al., 2017], with special note of other work using multiple
auxiliary data sources [Yang et al., 2017] or nowcasters [Santillana et al., 2015]. We
consider four distributional nowcasters:

• Y sim
t+1 produced by the forecaster, i.e., not using separate nowcasts at all —

the basis for all kernel residual density performance estimates unless otherwise
noted, as no nowcasts were incorporated into the Delphi-Stat forecasts for the
2015/2016 season;

• Y sim
t+1 following a normal distribution with mean and standard deviation given

by the ILI-Nearby nowcasting system (ignoring the backcaster’s output);

• Y sim
t+1 following a Student’s t distribution with two degrees of freedom, centrality

parameter set to the ILI-Nearby point estimate, and scale parameter set to the
ILI-Nearby standard deviation estimate, intended to be a wide-tailed variant
of the above (ignoring the backcaster’s output);
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• an ensemble of first and third approaches, with associated weights (probabili-
ties) of 15% and 85% respectively. (The choice of weights was inherited from
a similar approach that mixed “1 wk ahead” delta density forecasts with now-
casts, rather than ensemble forecasts (including a uniform component) based
on these two approaches; a nowcast weight of 85% was selected on a limited
amount of out-of-sample (preseason) forecasts to maximize log score.).

Section 4.3 discusses a special case of the first approach where backcasts, nowcasts,
and forecasts are all unified under the same modeling framework, which treats pro-
visional ILINet data and ILI-Nearby as potentially missing inputs.

4.2 Backcasting and nowcasting wILI using kernel
residual density and ILI-Nearby

This section reproduces or incorporates content from Brooks et al. [2018].

We first consider pancasting by stitching together the forecasts of separate backcast-
ing, nowcasting, and forecasting systems. We estimate the distribution of backfill
updates using the residual density method described in Subsection 3.3.1, with t1 = 0,
t2 = t, X1..t = Y

t
1..t the latest version of wILI available, Y1..t the corresponding final

revisions, and Φu = [Yu−1]. The weight given to a historical nonfinal-to-final residual
is based on three factors:

• Lag amount: later revisions of wILI values tend to be closer to the final revision
than earlier revisions are; thus, when estimating the distribution of n-week-old
wILI to finalized wILI residuals, only n-week-old wILI to finalized wILI data is
considered; backfill data for other lags is ignored (i.e., has zero weight);

• The current season’s nonfinal wILI value: historical backfill updates with
nonfinal wILI values closer to the nonfinal wILI value from the current sea-
son are given greater weights according to a Gaussian kernel (with bandwidth
based on a rule for kernel density estimation of the historical nonfinal wILI
values);

• Epi week of observation: since the backfill pattern changes throughout a sea-
son, historical backfill updates corresponding to nearby epi weeks are weighted
more highly than those from a different time of the season, using a Laplacian
kernel (with an arbitrarily selected bandwidth).
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The bandwidth of the density estimate is based on a kernel density estimate of the
nonfinal-to-final residuals.

The backcasting method is modular and can combine with any forecaster expect-
ing ground truth wILI as input. The straightforward approach is to sample a few
hundred or thousand trajectories from the backfill simulator, feed each of these into
the forecaster to obtain a trajectory or a distribution over targets, and aggregate the
results. Some forecasting methods considered do not have a simple way to quickly
generate single-trajectory forecasts, so we also use alternative approaches to reduce
computation, such as randomly pairing backcasts and trajectory forecasts, where
the trajectory forecasts are efficiently generated in batch, based on the pointwise
mean of the backcasts. Figure 4.1 shows sample forecasts over wILI trajectories
generated by each of these approaches and compares them to some alternatives de-
scribed in Appendix B. Note that the pancast trajectory distributions express some
uncertainty (vertical spread among black lines) even for time intervals where there
is a provisional estimate (yellow line) available. Naturally, uncertainty is generally
greater for later time periods; e.g., greater around the last time period for which a
provisional data estimate is available (right tip of yellow line) than the thoroughly
revised data from August (leftmost part of yellow line).

Figure 4.2 shows cross-validation performance estimates for the extended delta
density method based on the following input data:

• Ground truth, no nowcast: the ground truth wILI for the left-out season up
to the forecast week is provided as input, resulting in an optimistic performance
estimate;

• Real-time data, no nowcast: the appropriate wILI report is used for data from
the left-out season, but no adjustment is made for possible updates; this per-
formance estimate is valid, but we can improve upon the underlying method;

• Backcast, no nowcast: the appropriate wILI report is used for data from the
left-out season, but we use a residual density method to “backcast” updates to
this report; this performance estimate is valid, and the backcasting procedure
significantly improves the log score;

• Backcast, Gaussian nowcast: same as “Backcast, no nowcast” but with an-
other week of simulated data added to the forecast, based on a Gaussian-
distributed nowcast; and

• Backcast, Student t nowcast: same as “Backcast, Gaussian nowcast” but us-
ing a Student t-distributed nowcast in place of the Gaussian nowcast.
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Figure 4.1: Delta and residual density methods generate wider distribu-
tions over trajectories than methods that treat entire seasons as units.
These plots show sample forecasts of wILI trajectories generated from models that
treat seasons as units (BR, Empirical Bayes) and from models incorporating delta
and residual density methods. Yellow, the latest wILI report available for these fore-
casts; magenta, the ground truth wILI available at the beginning of the following
season; black, a sample of 100 trajectories drawn from each model; cyan, the closest
trajectory to the ground truth wILI from each sample of 100.
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• Backcast, ensemble nowcast: same as the previous two but using the ensem-
ble nowcast (which combines “no nowcast” with “Student t nowcast”).

For every combination of target and forecast week, using ground truth as input rather
than the appropriate version of these wILI observations produces either comparable
or inflated performance estimates.

Using the “backcasting” method to model the difference between the ground truth
and the available report helps close the gap between the update-ignorant method.
The magnitude of the performance differences depends on the target and forecast
week. Differences in mean scores for the short-term targets are small and may be rea-
sonably explained by random chance alone; the largest potential difference appears
to be an improvement in the “1 wk ahead” target by using backcasting. More signif-
icant differences appear in each of the seasonal targets following typical times for the
corresponding onset or peak events; most of the improvement can be attributed to
preventing the method from assigning inappropriately high probabilities (often 1) to
events that look like they must or almost certainly will occur based on available wILI
observations for past weeks, but which are ultimately not observed due to revisions
of these observations. The magnitude of the mean log score improvement depends
in part on the resolution of the log score bins; for example, wider bins for “Season
peak percentage” may reduce the improvement in mean log score (but would also
shrink the scale of all mean log scores). Similarly, the differences in scores may be
reduced but not eliminated by use of multibin scores for evaluation or ensembles
incorporating uniform components for forecasting.

Using the heavy-tailed Student t nowcasts or nowcast ensemble appears to im-
prove on short-term forecasts without damaging performance on seasonal targets.
The Gaussian nowcast has a similar effect as the other nowcasters except on the “1
wk ahead” target that it directly predicts: its distribution is too thin-tailed, resulting
in lower mean log scores than using the forecaster by itself on this target.

4.3 Unified quantile ARX-based pancast filtering
model

A limited number of additional data sources with sufficient temporal availability and
matching resolution can be easily and directly added to the kernel residual density
and quantile ARX models by treating these external data sources as exogenous co-
variates, plus a mechanism for handling missingness which takes into account the fact
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Figure 4.2: Using finalized data for evaluation leads to optimistic estimates
of performance, particularly for seasonal targets, “backcasting” improves
predictions for seasonal targets, and nowcasting can improve predictions
for short-term targets. Mean log score of the extended delta density method, av-
eraged across seasons 2010/2011 to 2015/2016, all locations, all targets, and forecast
weeks 40 to 20, both broken down by target and averaged across all targets (“Over-
all”). Rough standard error bars for the mean score for each target (or overall)
appear on the right, in addition to the error bars at each epi week.
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u − 4 u − 3 u − 2 u − 1 u u + 1

Yu−4? Yu−3? Yu−2? Yu−1? Yu

Nu?

Y ↑u−1? Y ↑u ? Y ↑u+1?

Y ↑#u ?

Time

Finalized data

ILI-Nearby

Latest provisional

Second-latest provisional

Figure 4.3: Bayes net template corresponding to earlier covariate table. Here, u
could refer to a past, present, or future week, not just the current week. Ques-
tion marks denote covariates that are included if available (observed/simulated) at
test/application time. The ↑̄ symbol refers to the latest version of a wILI measure-
ment available at test time (if there are any versions available), while ↑̄ # refers to
the second-latest version of a wILI measurement available at test time (if there are
≥ 2 versions available).

that the data sources involved are streaming with different latencies. In the quantile
autoregression framework, the ILI-Nearby data can be treated in the same way as
a provisional data point: added to the selection of covariates used in the quantile
ARX pancasting routine. Figure 4.3 visualizes this availability-dependent selection
with a Bayes net for a single location.

4.3.1 Unified quantile autoregression pancast performance

Figure 4.5 compares the average unibin log score of various forecasting methods given
preliminary data, partial pancasts, or full pancasts as input. Only the delta density
methods leave nontrivial input from the pancaster untouched, with other forecast-
ing methods ignoring pancasting input or performing alterations for computational
tractability that hurt unibin log score: the Uniform and EmpiricalTrajectories base-
lines completely ignores pancaster input, BasisRegression resamples and Empirical-
Futures sparsely resamples the pancast (partial) trajectories, and EmpiricalBayes and
EmpiricalBayes_Cond4 average over the pancast (partial) trajectories and treat the
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each issue from (t + 1) onward

Figure 4.4: Expansion of the Bayes net template above for a short trajectory.

result as an observed (partial) trajectory with no uncertainty. The output of each
pancaster-forecaster pair other than those for the Uniform baseline is a weighted
sample of complete trajectories, which is transformed into a weighted sample over
forecasting target values, which are in turn smoothed using uniform pseudocounts
and kernel density estimation (differences between EmpiricalBayes and Empirical-
Bayes_Cond4 given a full pancast as input are due differences in the amount of
smoothing due to differing sample sizes output from these forecasters). We observe
that:

• The pancaster-forecaster pairs with the highest overall scores are completely
based on chained one-ahead models (quantile ARX pancasting or kernel delta
density models for every observation) rather than entire-trajectory approaches.

• Differences in performance between different forecasting methodologies are
more obvious than those between backcasting and nowcasting methodologies.

• Pairs that faithfully incorporate distributional backcasts have higher overall
scores than those that do not; those that heavily resample or replace the back-
cast distribution with a singleton have lower overall unibin scores.
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Figure 4.5: Quantile ARX pancasting variants of the best forecasting approaches
considered have higher cross-validation log scores for ILINet national and regional
forecasts compared to forecasting-only variants. This table shows the average cross vali-
dation unibin log score in the ILINet national and regional forecasting setting for various types of
forecasters and pancasting configurations. The first column corresponds to scores of forecasting
methods when they are provided preliminary data as if they were finalized. Subsequent columns
correspond to sampling partial or full trajectories from a particular type of quantile ARX pan-
caster as input to the forecasting method. “Pancast times” and the next three rows both describe
how much of the trajectory is modeled using the pancaster: none (revision-ignorant), times T1..t
(backcasting), times T1..t + 1 (backcasting & nowcasting), or times T1..T2 (unified pancasting).
“Uses ILI-Nearby” indicates whether auxiliary data from ILI-Nearby is used by the pancaster
in addition to preliminary ILINet data. “Uses SIRSA features” indicates whether the pancaster
incorporates SIRS-inspired covariates, without addressing issues with superexponential trajec-
tory growth. “Missingness handler” is “Thin” when the pancaster uses covariate missingness
indicator variables and a thin SVD approach to avoid issues with (near-)singular training covari-
ate matrices, and is “Drop” when using an ad-hoc method to select a subset of covariates and
training instances without missingness or singularity, incorporating lasso regularization when
near-singularity does not interfere with the fitting routine.
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• Pairs that incorporate distributional nowcasts faithfully have higher overall
scores than those that do not.

• Pairs that incorporate auxiliary data from ILI-Nearby have comparable or
higher overall scores than comparable pairs excluding them.

• Pairs that incorporate SIRS-inspired covariates have lower overall scores than
comparable pairs excluding them; this suboptimal performance is due at least
in part to superexponential growth in some simulated trajectories which may
be avoidable with better fitting and/or simulation approaches.

• Pairs that use the “Drop” missingness handler in the pancast stage have higher
overall scores than comparable pairs with the “Thin” missingness handler.
(However, the “Drop” missingness handler does not avoid all (near-)singular
matrix issues in the fitting routine used for other pancasting configurations
tested, causing analysis for these configurations to fail and be excluded; the
current “Thin” implementation is more robust in an operational sense.)

Figure 4.6 shows a cross-validation overall multibin log score analysis with similar
overall conclusions, except that some methods that incorporate distributional back-
casts and nowcasts “unfaithfully” can exhibit potential increases in overall scores
rather than drops. Figure 4.7 and Figure 4.8 show cross validations score break-
downs by target and by location for national and regional ILINet forecasting for
the same set of pancasting configurations combined with the ExtendedDeltaDensity
forecaster; the best performing configurations from the overall scores have consistent
top-ranking performance across all targets and locations.
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Figure 4.6: Cross-validation overall multibin log scores for national and
regional ILINet forecasts.

81



−3.23 −3.24 −3.15 −3.14 −3.17 −3.13 −3.14 −3.12
−3.12 −3.11 −3.00 −3.02 −3.06 −3.02 −2.97 −2.99
−2.94 −2.94 −2.80 −2.84 −2.90 −2.87 −2.74 −2.78
−2.75 −2.69 −2.60 −2.60 −2.68 −2.66 −2.60 −2.60
−3.75 −3.10 −3.09 −3.05 −3.04 −3.32 −2.95 −2.90
−1.98 −1.89 −1.85 −1.72 −1.74 −1.81 −1.78 −1.65
−1.89 −1.38 −1.38 −1.34 −1.33 −1.41 −1.30 −1.27

none T1..t T1..t + 1 T1..T2 T1..T2 T1..T2 T1..t + 1 T1..T2
− Y Y Y Y Y Y Y
− − Y Y Y Y Y Y
− − − Y Y Y − Y
− − Y Y − Y Y Y
− − − − − Y − −
− Thin Thin Thin Thin Thin Drop Drop

ILINet National&Regional  
ExtendedDeltaDensity  

Unibin Log Score  
by Target  

  
  
  
  
  

Add QARX backcast
Add QARX nowcast
Add QARX forecast

Add ILI−Nearby
Add SIRSA features

Thin → Drop

Missingness handler
Uses SIRSA features

Uses ILI−Nearby
Unified QARX Pancasting

QARX Nowcasting
QARX Backcasting

Pancast times
4 wk ahead
3 wk ahead
2 wk ahead
1 wk ahead

Season peak percentage
Season peak week

Season onset

0 T:B
T:BN+I

T:BNF+I
T:BNF

T:BNF+IM
D:BN+I

D:BNF+I

Pancast configuration

P
an

ca
st

 s
et

tin
gs

 | 
Ta

rg
et

−0.8 −0.6 −0.4 −0.2 0.0

Average Log Score
Relative to Best in Row

Figure 4.7: Incorporating backcasts and nowcasts into ILINet forecasts
from the extended delta density method yields higher cross-validation
log scores for all targets; the unified pancaster has mixed results across
targets relative to the two-step backcast&nowcast-forecast approach.
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Figure 4.8: Incorporating backcasts and nowcasts into ILINet forecasts
from the extended delta density method yields higher cross-validation log
scores for all locations, and the unified pancaster has similar or still better
average scores. Different locations have different %wILI scales and exhibit dif-
ferent revision patterns. Estimated performance gains from backcasting&nowcasting
are higher in those particularly large (in absolute %wILI terms) revisions on average,
but not all high performance gains correspond to locations with large revisions on
average; see Figure 4.9.
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Figure 4.9: ILINet absolute-scale revision distributions by location. Violins
represent density estimates, while horizontal lines mark the 5th and 95th empiri-
cal percentiles. The “residual” here is Yt − Y (t)

t (the negation of the error of the
first available provisional estimate for each time period), and is not normalized to
account for differences in individual or average values of Yt across locations; these
absolute residuals may be indicative of possible impacts on the average log scores
for forecasters, which are measured based on an absolute scale, but may not give
the best picture of revision patterns themselves. Differences in scale and revision
patterns may be explained by differences in the mixes of types, behavior, technology,
and communication protocols of the healthcare providers participating in ILINet in
different location.
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Chapter 5

Combining multiple methods:
stacking approach to model
averaging

Much of this chapter is based on material from Brooks et al. [2018].

Forecasting systems that select effective combinations of predictions from multiple
models can improve on the performance of the individual components, as demon-
strated by their successful application in many domains. For each probability dis-
tribution and point prediction in a forecast, we treat the choice of an effective com-
bination as a statistical estimation problem, and base each decision on the models’
behavior in leave-one-out cross-validation forecasts. Additional cross-validation anal-
ysis indicates that this approach achieves performance comparable to or better than
the best individual component.

Section 5.1 motivates the use of ensemble in this problem domain. Section 5.2
describes a “stacking” approach to combining distributional predictions into an en-
semble leveraging historical or retrospective predictions generated from each of the
ensemble’s component models. Section 5.3 studies the performance of this stacking
approach.
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5.1 Background, motivation for combining fore-
casts

Methods that combine the output of different models, called “ensembles”, “multi-
model ensembles”, “super-ensembles”, “model averages”, or various other names
based on the domain and type of approach, have been applied successfully in many
problem settings, improving upon the results of the best individual model. An en-
semble approach is motivated in the context of seasonal epidemic forecasting by
factors such as:

• Model misspecification and overconfidence in distributional forecasts:
Many methods overlook the possibility of a significant proportion of observed
outcomes, or assign otherwise inappropriate probabilities. These omissions and
other mistakes are not identical across models; the gaps left by one component
can be filled in by another.

• Leveraging partially correlated errors in point predictions: The point pre-
diction errors of individual methods can vary in magnitude and are often only
partially correlated with each other, allowing ensemble methods to improve
performance, e.g., by highly weighting more accurate predictors, or by reduc-
ing the variance when combining multiple unbiased estimators.

• Strengths and weaknesses in different targets: Some methods may work well
for certain forecasting targets, but have poor performance or fail to produce
predictions for others; model averages can be smoothly adjusted to account for
different behaviors for different targets.

• Changes in performance within seasons: Making predictions at the begin-
ning, middle, and end of a season can be seen as different tasks, and the relative
performance characteristics of the components may change based on the time
of season (or whether it is around a holiday). Just as ensemble methods can
account for distinct patterns based on forecasting target, they can be tailored
to account for changes in behavior within a season.

We developed an adaptively weighted model average that consistently outperforms
the best individual component. Other teams submitting forecasts to the FluSight
comparison have concurrently developed other data-driven ensemble systems and
found similar success Ray and Reich [2017], Yamana et al. [2017]; less data-driven
ensemble techniques applied to forecasts of multiple research groups also exhibit
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strong performance, including a wisdom-of-crowds Morgan et al. [2018] and simple
average approaches McGowan et al. [2019]. Our ensemble framework is distinguished
from these other methods in that it very directly estimates the best model average
weights for a given location, time, target, and evaluation metric. This framework
has been reapplied with slightly different settings by the FluSight Network, which
uses historical and ongoing component forecasts from multiple research groups Reich
et al. [2019a] to form a highly-ranked ensemble forecast Reich et al. [2019c].

5.2 A stacking approach to model averaging

For each location l, week t, target i, and evaluation metric e, we choose a (weighted)
model average as the final prediction: an ensemble forecast of the form Xw, where

• X is the output of the m ensemble components — either (a) a row vector of
point predictions with m entries, or (b) a matrix of distributional predictions
with m columns — and

• w ∈ [0,1]m is a (column) vector of weights, one per component, with ∑mj=1wj =
1.

Variants of the same models — or methods based on related approaches or assump-
tions — may at times produce similar forecasts that commit the same errors, while
producing a misleading impression of consensus; a successful ensemble may need
to consider not only the performance of each individual component, but also the
relationships between the raw output of the components. To this end, we use a
“stacking generalization” approach Breiman [1996], Wolpert [1992], treating the se-
lection of weights w for the current season, S + 1, as the task of frequentist estimation
of the risk-optimal weight vector,

w∗ = arg max
w∈[0,1]m
∑
m
j=1 wj=1

E [Score(w, S + 1, l, t, i, e)] ,

based on leave-one-season-out cross-validation:
ŵ = µeuniform + (1 − µ)arg max

w∈[0,1]m
∑
m
j=1 wj=1

∑
s′∈{1..S},
l′,t′,i′,e′

RelevanceWeight(s′, l′, t′, i′, e′;S + 1, l, t, i, e)
⋅CrossValidationScore(w, s′, l′, t′, i′, e′),

where µ is an inflation factor that gives addition weight to the uniform component
(euniform is a vector containing a 1 in the position corresponding to the uniform distri-
bution component, and 0 in every other position). We changed the RelevanceWeight
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function used for real-time forecasts throughout the 2015/2016 season, but study
only the following RelevanceWeight function in the cross-validation analysis of the
adaptively weighted ensemble:

RelevanceWeight(s, l, t, i, e; s′, l′, t′, i′, e′) =
⎧⎪⎪
⎨
⎪⎪⎩

1, ∣t − t′∣ ≤ 4, i = i′, e = e′
0, otherwise.

A larger collection of cross-validation data can be considered by assigning relevance
weights of 1 to additional training instances; relevance weights can also be gradually
decreased for less similar data rather than jumping down to zero.

When e is the unibin or multibin log score:

• Using the rule of three Jovanovic and Levy [1997] to estimate the frequency
of events that we haven’t seen before, we chose µ = 3

S⋅L for most submissions.
(Prior to the submission for 2015 EW43, we used a constant µ = 0.01 to guar-
antee a certain minimum log score.)

• The optimization problem is equivalent to fitting a mixture of distributions,
and we can use the degenerate EM algorithm Rosenfeld [Accessed 2017-03-
21] to efficiently find the weights; convex optimization techniques such as the
logarithmic barrier method are also appropriate.

When e is mean absolute error:

• We choose µ = 0 (and further, exclude the uniform distribution method from
the ensemble entirely).

• This optimization problem is referred to as least absolute deviation regression
or median regression, with linear inequality and equality constraints on the co-
efficients; we reformulate the problem as a linear program and use the lpSolve
package Berkelaar and others [2015] to find a solution.

We compare the “adaptive” weighting scheme above to two alternatives:

• Fixed-weightset-based stacking: the same approach as above, with the same
µ selections but a different RelevanceWeight function:

RelevanceWeight(s, l, t, i, e; s′, l′, t′, i′, e′) =
⎧⎪⎪
⎨
⎪⎪⎩

1, e = e′

0, otherwise;

and
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• Equal weights: does not use the above stacking scheme; instead, for every pre-
diction, assigns each component the same weight in the ensemble, 1

m (replacing
ŵ with 1

m1).

The ensemble and each of its components forecast the targets Z(t) given a point
or distributional estimate for Y1..T . The fixed-weightset-based stacking matches the
real-time approach in Yamana et al. [2017], while the adaptive approach considered
offers a way to condition on “time of season” that is possible in real time. The
adaptive approach considered is less flexible and likely suffers more from the curse
of dimensionality more than the gradient tree boosting approach in Ray and Reich
[2017], but has more easily inspected weight selections and does not require a softmax
transformation.

5.3 Ensemble performance

5.3.1 Cross-validation of ensemble and its components

ILINet forecasting, U.S. national and HHS regional geographies

Figure 5.1 shows the distribution of cross-validation log scores for several forecasting
methods, described earlier in the text and in Appendix B, and the three ensemble
approaches specified earlier in the text, in the context of the FluSight forecast-
ing comparison on U.S. national and HHS regional ILINet data. Except for the
uniform distribution and ensembles, all forecasting methods miss some possibilities
completely, reporting unreasonable probabilities less than exp(−10) ≈ 0.0000454 for
events that actually occurred. In these situations, the log score has been increased
to the cap of −10 (as CDC does for multibin log scores, although multibin scores
are in general less negative already). Delta and residual density forecasting methods
(Delta density, Markovian; Delta density, extended; and BR, residual density) are
less likely to commit these errors than other non-ensemble, non-uniform approaches,
and have higher average log scores. Ensemble approaches combine forecasts of multi-
ple components, missing fewer possibilities, and ensuring that a reasonable log score
is obtained by incorporating the uniform distribution as a component. For the full
Delphi-Stat ensemble, the main advantage of the ensemble over its best component
appears to be successfully filling in possibilities missed by the best component with
other models to avoid -10 and other low log scores appears, while for ensembles of
subsets of the forecasting methods, there are other benefits; Appendix A shows the
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impact of these missed possibilities and the log score cap.
Figure 5.1 also includes estimates of the mean log score for each method and

rough error bars for these estimates. We expect there to be strong statistical depen-
dence across evaluations for the same season and location, and weaker dependencies
between different seasons and locations; thus, the most common approaches to cal-
culating standard errors, confidence intervals, and hypothesis test results will be
inappropriate. Properly accounting for such dependencies and calibrating intervals
and tests is an important but difficult task and is left for future investigation. We use
“rough standard error bars” on estimates of mean evaluations: first, the relevant data
(e.g., all cross-validation evaluations for a particular method and evaluation metric)
is summarized into one value for each season-location pair by taking the mean of all
evaluations for that season-location pair; we then calculate the mean and standard
error of the mean of these season-location values using standard calculations as if
these values were independent. Under some additional assumptions which posit the
existence of a single underlying true mean log score for each method, these individual
error bars — or rough error bars for the mean difference in log scores between pairs
of methods — suggest that the observed data is unlikely to have been recorded if
the true mean log score of the extended delta density method were greater than that
of the adaptively weighted ensemble, or if the true mean log score of the “Empirical
Bayes A” method were greater than the extended delta density method.

Methods that model wILI trajectories and “pin” past wILI to its observed values
have a large number of log scores near 0 because they are often able to confidently
“forecast” many onsets and peaks that have already occurred; ensemble methods
also have a large number of log scores near 0. Note that these scores are closer to
0 for ensembles that optimize weighting of different methods than for the ensemble
with uniform weights. For this particular set of forecasting methods, targets, and
evaluation seasons:

• the equally-weighted ensemble has lower average log score than the best indi-
vidual component (extended delta density),

• using the stacking approach to assign weights to ensemble components improves
ensemble performance significantly and gives higher average log score than the
best individual component,

• the adaptive weighting scheme does not provide a major benefit over a fixed-
weight scheme using a single set of weights for each evaluation metric.
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When given subsets of these forecasting methods as input, with regard to average
performance:

• the equally-weighted ensemble often outperforms the best individual, but is
sometimes slightly (≈ 0.1 log score) worse;

• the stacking approach improves upon the performance of the uniformly weighted
ensemble; and

• the adaptive weighting scheme’s performance is equal to or better than that
of the fixed-weight scheme, sometimes improving on the log score by ≈ 0.1.
The adaptive weighting scheme’s relative performance appears to improve with
more input seasons, fewer ensemble components, and increased variety in un-
derlying methodologies and component performance. These trends suggest that
using wider RelevanceWeight kernels, regularizing the component weights, or
considering additional data from 2003/2004 to 2009/2010, for which ground
truth wILI but not weekly ILINet reports are available, may improve the per-
formance of the adaptive weighting scheme. In addition to these avenues for
possible improvement in ensemble weights for the components presented in Fig-
ure 5.1, the adaptive weighting scheme provides a natural way of incorporating
forecasting methods that generate predictions for only a subset of all targets,
forecast weeks, or forecast types (distributional forecast or point prediction).
For example, in the 2015/2016 season, we incorporated a generalized additive
model that provided point predictions (and later, distributional forecasts) for
peak week and peak height given at least three weeks of observations from the
current season.

Figure 5.2 shows a subset of the cross-validation data used to form the ensemble
and evaluate the effectiveness of the ensemble method, for two sets of components:
one using all the components of Delphi-Stat, and the other incorporating three of
the lower-performance components and a uniform distribution for distributional fore-
casts.1 The Delphi-Stat ensemble near-uniformly dominates the best component,
extended delta density, in terms of log score, and has comparable mean absolute

1The specific forecasting methods selected in the subset were “Empirical Bayes B”, “BR, degen-
erate”, and “Targets, conditional density”, plus “Targets, uniform” for distributional forecasts. This
subset was selected to examine ensemble performance on a subset of lower-performance methods
based on different methodologies. We find roughly similar results on random subsets of methods,
but performance gains are (a) lessened when there are less obvious difference in performance trends
among the included components, and (b) limited when the highest-scored individual components
(the delta density methods, especially the extended version).
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Figure 5.1: Delta and residual density methods cover more observed events
and attain higher average log scores than alternatives operating on sea-
sons as a unit; ensemble approaches can eliminate missed possibilities
while retaining high confidence when justified. This figure contains his-
tograms of cross-validation log scores for a variety of forecasting methods, averaged
across seasons 2010/2011 to 2015/2016, all locations, forecast weeks 40 to 20, and
all forecasting targets. A solid black vertical line indicates the mean of the scores
in each histogram, which we use as the primary figure of merit when comparing
forecasting methods; a rough error bar for each of these mean scores is shown as a
colored horizontal bar in the last panel, and as a black horizontal line at the bottom
of the corresponding histogram if the error bar is wider than the thickness of the
black vertical line. Log scores near 0 typically correspond to forecasts of seasonal
targets when most of the season is over.
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Estimate Median percent signed error
Initial report −40% (underestimate)
↝ 1 wk ahead ML forecast −42% (underestimate)
Initial backcast −3% (≈ unbiased)
↝ 1 wk ahead ML forecast −6% (minor bias)

Table 5.1: Backcasting stable hospitalization data removes almost all bias
in initial reports; this in turn removes most bias in ensemble 1 wk ahead
point predictions. Performance metrics were computed using cross-validation on
data for the entire FluSurv-NET as a whole, and the “Overall” age group only. Bias
and absolute error are calculated based on relative deviations (normalized by the
stable values) for better interpretability, and use the median to give finite metric
values in the presence of some stable values of zero.

error overall. The ensemble approach produces greater gains for the smaller subset
of methods, surpassing not only its best components, but all forecasting methods in
the wider Delphi-Stat ensemble except for the delta density approaches.

FluSurv-NET hospitalization forecasting

Table 5.1 shows that the backcasting method described in Chapter 3 (without the
use of ILI-Nearby, which is designed to predict ILINet data) successfully removes
bias and error in initial FluSurv-NET reports (taken as an estimate of stable val-
ues). Other cross-validation results (not in this table) indicate that incorporating
backcasting reduces median relative absolute error as well. Figure 5.3 and Figure 5.4
show some similar cross-validation unibin log score tables as shown for the national
and regional ILINet forecasts earlier. In the FluSurv-NET setting, faithfully incor-
porating distributional backcasts and nowcasts appears to have a larger impact than
switching between the different forecasting methodologies considered, in contrast
with the national and regional ILINet setup. This observation is not a surprise, as
revisions are relatively larger on average and more biased on average than in the
national and regional ILINet data.
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Figure 5.2: The ensemble method matches or beats the best component
overall, consistently improves log score across all times, and, for some
sets of components, can provide significant improvements in both log score
and mean absolute error. These plots display cross-validation performance for
two ensembles and some components broken down by evaluation metric, target type,
and forecast week; each point is an average of cross-validation evaluations for all
11 locations, seasons 2010/2011 to 2015/2016, and all targets of the given target
type; data from the appropriate ILINet reports is used as input for the left-out
seasons, while finalized wILI is used for the training seasons. Top half: log score
evaluations (higher is better); bottom half: mean absolute error, normalized by
the standard deviation of each target (lower is better). Left side: full Delphi-Stat
ensemble, which includes additional methods not listed in the legend; right side:
ensemble of the three methods listed in the legend, with the uniform distribution
component incorporated only in distributional forecasts. Many components of the
full ensemble are not displayed. The “Targets, uniform” method is excluded from
any mean absolute error plots as it was not incorporated into the point prediction
ensembles.
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Figure 5.3: Cross-validation overall unibin log scores for FluSurv-NET fore-
casts for a few pancaster-forecaster pairs.
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Figure 5.4: Cross-validation overall unibin log scores for FluSurv-NET fore-
casts broken down by target and pancaster, using the ExtendedDeltaDen-
sity forecaster; “x wk behind” targets are included for additional infor-
mation and not considered in overall score comparisons.
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5.3.2 External, prospective evaluation

The ensemble methodology set forth above has been externally and prospectively
evaluated as part of CDC’s Epidemic Prediction Initiative’s ongoing comparisons of
forecasting methodologies developed by multiple research groups. Table 5.2 summa-
rizes the overall multibin log scores for a few systems in these comparisons:

• Delphi-Stat: the ensemble framework above, using one of the three weighting
schemes described earlier, or a similar scheme (selected based on cross val-
idation unibin log score), applied to the collection of methods described in
Appendix B, Figure 4.5, or some similar set; at least some form of backcasting
was incorporated since midway through the 2015/2016 season.

• EB, Spline: early stand-alone versions of the empirical Bayes and basis regres-
sion methods described in Chapter 2 and Appendix B.

• Delphi-Epicast Farrow [2016], Farrow et al. [2017]: a wisdom-of-crowds ap-
proach to forecasting which is has relatively good performance and consistent
application across seasons and forecasting targets. (Epicast2 is Epicast with a
submission error corrected. Epicast-Mturk is a variant incorporating forecasts
crowdsourced from Amazon Mechanical Turk in place of the typical volunteer
pool.)

• FSNet: FluSight-Network Reich et al. [2019b]: the ensemble framework above,
using one of a few similar weighting schemes (selected based on pseudoprospec-
tive multibin log score), applied to a collection of methods from multiple re-
search groups Reich et al. [2019a], organized, run, monitored, and maintained
by researchers in the Reich Lab at the University of Massachusetts Amherst.

• EqWts: an ensemble of all CDC comparison entries, with each entry assigned
equal weight.

• PPFST, PPFST2 Morgan et al. [2018]: a wisdom-of-crowds approach to en-
semble forecasts, incorporating methods from multiple research groups.

• HistAvg: a baseline method based on kernel density estimation that does not
factor in any observations from the season for which forecasts are being made.

The ensemble framework described in this chapter is incorporated in two systems
(Stat and FSNet) with consistently high rankings in these comparisons.
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2014/2015 2015/2016 2016/2017 2017/2018 2018/2019
US National US + Regions US + Regions US + Regions States Hospitalizations US + Regions States Hospitalizations

Rank System Rank System Rank System Rank System Rank System Rank System Rank System Rank System Rank System
1 Epicast 1 Stat 1 Epicast 1 Epicast 1 Stat 1 Stat ⋮ 2 others 1 . 1 Stat
2 EB 2 Epicast 2 Stat 2 FSNet 2 . EqWts 3 FSNet 2 Stat 2 .

HistAvg 3 Archefilter EqWts ⋮ 3 others 3 . 2 . PPFST2 PPFST2 EqWts
3 . 4 . 3 . EqWts EqWts 3 Epicast PPFST 3 . HistAvg
4 . 5 . 4 . PPFST 4 . HistAvg 4 Stat EqWts 3 Epicast
5 . 6 . ⋮ 8 others ⋮ 2 others 5 . 4 . 5 . PPFST 4 .
6 Spline 7 . 13 . 8 Stat HistAvg EqWts ⋮ 2 others 5 .
7 . 8 . 14 . 9 . 6 . 6 . HistAvg

9 . 15 . ⋮ 6 others 7 . 7 Epicast2 6 .
10 . HistAvg 16 . 8 . ⋮ 7 others 7 .
11 . 16 . HistAvg 9 . 15 Epicast 8 Epicast-Mturk
12 . 17 . 17 . 10 . ⋮ 6 others 9 .
13 . ⋮ 8 others 18 . 11 . HistAvg 10 .
14 . 26 . ⋮ 9 others 12 . 22 . ⋮ 2 others

27 . 28 . ⋮ 11 others 13 .
28 . 29 . 33 . 14 .

Styling key:
Delphi-Stat and early stand-alone versions of components (this work)
Delphi-Epicast and variants (wisdom-of-crowds approach)
FluSight-Network ensemble (same stacking framework with components from multiple research groups)
Other multi-group ensembles (unranked; prepared on different schedule from other systems)
HistAvg baseline (target distribution from other seasons; does not use data from current season; unranked)
Other forecasting systems (denoted by “.” for single systems or “⟨n⟩ others” for multiple)

Table 5.2: Delphi-Stat consistently attains high ranks in comparisons or-
ganized by CDC’s Epidemic Prediction Initiative. The FluSight-Network
multi-group ensemble, which uses the same framework, but includes component mod-
els from multiple groups and considers different weighting schemes. The 2013/2014
national and regional ILINet forecasting challenge is not included in this table as
there was not a comprehensive ranking published; forecasts based on the empirical
Bayes methodology were submitted but did not rank first.
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Appendix A

“Missed possibilities” and -10 log
score threshold

This appendix reproduces or incorporates content from Brooks et al. [2018].

Individual unibin and multibin log scores below -10 have been increased to a
minimum of -10 (as if a probability of ≈ 0.0000454 — still very small for the selected
bin sizes — had been assigned) in all analysis. This threshold operation can be in-
terpreted as adding up to a certain amount of probability mass to a distributional
forecast, which normally has a total probability mass of 1; the maximum number of
bins in any target’s distributional forecast is 131, so the threshold operation cannot
increase the amount of probability mass to more than ≈ 1.006. This threshold was
implemented by CDC for forecast comparisons so that submissions would not be
assigned very low mean log scores (e.g., −∞) for assigning a few events extremely
low (e.g., 0) probabilities to events that actually occurred. We also use it when com-
paring individual methods in the ensemble. Without such a threshold, each FluSight
submission or ensemble component would need to ensure that no possibilities are
missed and assigned extremely low probabilities, e.g., by mixing model forecasts
with a uniform distribution (which bears similarity to the threshold operation) using
the rule of three to determine the mixing weights. Thresholded log scores are no
longer proper scores, as forecasters may expect to benefit by reporting probabilities
of 0 for any bin with a modeled probability less than the exponentiated threshold,
and using the difference in mass to increase probabilities assigned to other bins; with
a threshold of -10, there is not much expected benefit (at most ≈ 0.006 mass would
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be reassigned), but at higher thresholds, this impropriety may be problematic. The
stacking-based ensembles presented in the main text, and in this appendix unless
otherwise noted, use weight selections intended to maximize mean unibin log score
without thresholding.

For the full Delphi-Stat ensemble, the main advantage of the ensemble over its
best component appears to be successfully filling in possibilities missed by the best
component with other models to avoid -10 and other low log scores appears, while
for ensembles of subsets of the forecasting methods, there are other benefits. We
investigate changes to this log score threshold, and experiment with removing the
lowest p% of log scores instead. As the log score threshold or p is increased, the
relative performance of an ensemble over the best component declines and becomes
negative when the ensemble is still tuned to optimize non-thresholded log score.
Tailoring the optimization criterion to better match modified evaluation criteria can
help restore the ensemble’s superior or competitive performance compared to its best
component.

A.1 Analysis of full Delphi-Stat ensemble

Figure 5.1 shows histograms of the cross validation log scores of the Delphi-Stat
components and full ensemble with the original −10 ≈ log(0.0000454) threshold;
compared with the extended delta density method, the adaptively weighted ensemble:

• has higher mean log score;

• eliminates all -10 log scores;

• has less log scores of 0, but more right below 0; and

• smoother and wider tails about the mode of the histogram near the mean log
score.

Figure A.2 shows the same histograms using a threshold of −7 ≈ log(0.000912); the
four points above still hold, but the difference in mean log score between the two
forecasters is notably smaller.

Figure A.3 and Figure A.4 show that the adaptively weighted ensemble and ex-
tended delta density are surpassed by other methods for thresholds from -3 to 0.
However, Figure A.4 also shows that a threshold of −3 ≈ log(0.0498) already changes
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Figure A.1: Figure 5.1 from the main text: log score means and histograms
for each method using a log score threshold of -10, and ensemble weights
trained ignoring the log score threshold. This figure contains histograms of
cross-validation log scores for a variety of forecasting methods, averaged across sea-
sons 2010/2011 to 2015/2016, all locations, forecast weeks 40 to 20, and all forecast-
ing targets. The solid black vertical lines indicate the mean of the scores in each
histogram, which we use as the primary figure of merit when comparing forecast-
ing methods; a rough error bar for each of these mean scores is shown as a colored
horizontal bar in the last panel, and as a black horizontal line at the bottom of the
corresponding histogram if the error bar is wider than the thickness of the black
vertical line.
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Figure A.2: Log score means and histograms for each method using a log
score threshold of -7 and ensemble weights trained ignoring the log score
threshold.
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Figure A.3: Thresholded mean log scores for each method and thresholds
from -15 to 0.

from 25% to over 50% of the log scores for each method, which seems inappropriate.
Nevertheless, ensemble methods could still be useful in this case, but the weight se-
lection objective must be updated to better match the evaluation metric; Figure A.5
shows that the ensemble score can be improved significantly by solving a relaxation
(approximation) of the thresholded log score optimization problem. The relative
trends are similar when throwing away the lowest p% of log scores for a method
rather than imposing a minimum log score threshold; Figure A.6 shows that, when
p is high enough to discard all −∞ log scores for delta density methods, their perfor-
mance is similar to that of the ensemble. Again, optimizing the ensemble weights to
these modified error metrics could potentially result in performance improvements.

A.2 Analysis of a subset of presented methods

Figure A.7 shows log score histograms for a subset of the methods above and ensem-
bles using only those methods. The best component in this subset is “Targets, condi-
tional density”, which is completely missing the spike in log scores near 0 present in
“Empirical Bayes B” and “BR, degenerate” (which model trajectories and calculate
target distributions from these trajectory distributions), but still has higher mean
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Figure A.4: Log score means and histograms for each method using a log
score threshold of -3 and ensemble weights trained ignoring the log score
threshold. Note that the ranges of values shown along both axes differ from the
ranges used for similar figures for the -10 and -7 thresholds.
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Figure A.5: Log score means and histograms for each method using a
log score threshold of -3 and ensemble weights trained using a concave
relaxation of thresholded log score. Note that the ranges of values shown
along both axes differ from the ranges used for similar figures for the -10 and -7
thresholds.
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Figure A.6: Mean log score for each method in the full ensemble, with no
thresholding but throwing out the lowest p percent of log scores for each
method for various values of p.

log score than these two due to less scores of -10 and a higher concentration of scores
from -5 to -1. The ensemble is able to combine the strengths of these models and the
uniform distribution, avoiding any scores of -10 (or even -8), incorporating a spike
in log scores near 0, and concentrating the rest of its log scores on the higher end of
the -8 to -1 range. “Empirical Bayes B” is a close second to “Targets, conditional
density”, but the ensemble approach provides additional benefit besides just avoiding
its missed possibilities; Figure A.8 shows that, even when ignoring the lowest 10%
of log scores for each method (which removes all scores of −∞ for “Empirical Bayes
B”), the adaptively weighted ensemble provides a large improvement in log score.
This benefit vanishes and “Empirical Bayes B” starts to perform better as higher
percentages (20% to 30%) of log scores are ignored; again, it may be possible to
construct a successful ensemble in these cases by choosing an optimization criterion
more similar to the evaluation criterion.
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Figure A.7: Log score means and histograms for a subset of methods
(the same as the subset in Chapter 5 of the main text) using a log score
threshold of -10, and ensemble weights trained ignoring the log score
threshold.
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Appendix B

Description of all ensemble
components in the 2015/2016
Delphi-Stat forecasting system

This appendix reproduces or incorporates content from Brooks et al. [2018].

This appendix describes details of the components of the Delphi-Stat ensem-
ble system following the end of the 2015/2016 season, the version used for the
performance analysis in Section 4.2 and Section 5.3.1. Changes made to Delphi-
Stat throughout the 2015/2016 season are described in Appendix C; additional
changes, such as a switch to the quantile regression pancasting framework, were
implemented in subsequent seasons. Our past and ongoing forecasts, as well as
Python [Van Rossum and Drake, 2003] and R [R Core Team, 2015] code for com-
ponents of the systems used to generate them, are publicly available online [Brooks
et al., 2015b, Carnegie Mellon University Delphi group, Accessed 2017-04-26, Reichek
and Gao, Accessed 2017-04-26].

B.1 Ensemble components

Delphi-Stat incorporated 10 individual forecasting methods in the 2015/2016 season
based on diverse methodologies to forecast the targets of interest Z(t) conditioned on
the finalized wILI values up to time t, Y1..t. When producing prospective forecasts,
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we do not have access to the finalized values Y1..t, but rather the t-th report for
the current season, Y t

1..t; we discuss a method for distributional estimates of Y1..t
based on Y t

1..t in the main text. All methods produce distributional forecasts for
the targets of interest; their point predictions are the medians of the corresponding
distributional forecasts. Most methods, rather than directly producing forecasts for
the targets, first estimate the distribution of the entire wILI trajectory Y1..T based on
the available data, then calculates the corresponding distribution over the targets.
(Since the data are at a weekly resolution, the number of wILI values in the current
season, T , is either 52 or 53; we present the methods here as if all seasons were of
the same length T , omitting all details dealing with mismatches between the length
of a training season and the length of a test season.)

B.1.1 Methods based on delta density

Markovian delta density

Described in the main text.

Extended delta density

Described in the main text.

B.1.2 Methods based on empirical distribution of curves

Another class of methods are based on using and expanding the empirical distribution
of wILI trajectories.

Empirical distribution of wILI trajectories for future times

Consider all Y s
t+1..T , s ∈ {1 . . S}, equally likely to reoccur. Observations from the

current season are used for times up to t.

Empirical Bayes procedure on wILI trajectories

Model Y1..T as some underlying curve, F1..T , plus i.i.d. Gaussian observational noise.
Estimate F s

1..T and a noise level for each s ∈ {1 . . S} using a trend filtering proce-
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dure. Build a distribution for F1..T and the noise level using these estimates, plus a
probability distribution over ways to shift and scale these curves to produce a wider
range of possibilities for Y1..T . The resulting distribution describes our prior beliefs
about the distribution of Y1..T before seeing any observations from the current season;
calculate the corresponding posterior distribution, Y1..T ∣ Y1..t, describing our beliefs
after seeing the available observations, using importance sampling techniques [Liu,
2008].

Implements the empirical Bayes method as described in [Brooks et al., 2015a],
with a few modifications:

• Only the time-shift and wILI-scale transformations are used.

• The time-shift is a “local” transformation: rather than having a distribution of
peak weeks determine the shift amount, we directly choose a distribution over
shift amounts. Specifically, we use a discrete uniform distribution over integers
centered at zero, width equal (ignoring rounding) to twice the bin width of a
histogram of the historical peak weeks using Sturges’ rule.

• The wILI-scale is a “local” transformation: rather than having a distribution
of peak heights determine the scale amount, we directly choose a distribution
over scale amounts. Specifically, we use a log-uniform distribution centered
at 0 in the log-scale with log-scale width equal tot twice the bin width of a
histogram of the logarithms of the historical peak heights, using Sturges’ rule.
Note that this behavior can significantly bias the mean of the prior for the peak
heights, but does not significantly affect the median of the prior for the peak
heights. Another difference from the scaling transformation in the paper is
that, instead of scaling the wILI trajectory above and about the CDC baseline,
we scale from 0, and also multiply the noise associated with each observation
based on how much it was scaled.

• Instead of randomly mixing and matching smooth curve shapes and noise levels,
these two parameters are linked together: a given noise level estimate is always
paired with the corresponding smoothed curve.

• We add a “reasonable future” term to the posterior log-likelihood (given obser-
vations in past weeks) of each proposed trajectory, proportional to the average
log-likelihood of the 3 most similar historical curves in future weeks.

• We condition on a maximum of 5 observations from the current season; if more
than 5 observations are available for the current season, we use only the most

111



recent 5.

• We use the glmgen package [Arnold et al., 2014] to rapidly perform trend
filtering for smoothing past seasons’ trajectories.

We form two other versions of the empirical Bayes forecaster by using subsets of these
changes and other parameter settings; these variants were used in the 2016/2017
ensemble but not the 2015/2016 ensemble.

B.1.3 Basis regression approach

Estimates the mean curve EY1..T with elastic net regression from a collection of
basis functions to a trajectory of “pseudo-observations” Ỹ1..T which is the concate-
nation of (a) the available observations Y1..t, and (b) the pointwise mean of Y s

t+1..T
for s ∈ {1 . . S}. We chose a B-spline basis, which produces a variation on smoothing
spline estimation of EY1..T . The glmnet package [Friedman et al., 2010] was used
to perform the elastic net regression, with evenly weighed L1 and L2 regulariza-
tion (the default setting, α = 0.5), and to automatically select the overall regression
penalty coefficient λ using random 5-fold cross-validation on weeks of the current
season, seeing how well the smoothed estimate for EY1..T is able to predict left-out
pseudo-observations from Ỹ1..T .

Basis regression with degenerate distributional forecast

Forecasts that Y1..T will be equal to the basis regression estimate for EY1..T with prob-
ability 1. There is a small amount of randomness in the basis regression estimation
procedure itself arising from the default method for selecting λ, so we actually take
a sample by calling the procedure many times, forming a very narrow distribution.

Basis regression with residual density distributional forecast

Constructs a distributional forecast for Y1..T by applying the residual density method
withX1..T equal to the basis regression estimate for EY1..T and other settings the same
as in the Markovian delta density method.
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B.1.4 No-trajectory approaches

These approaches form a forecast for Z(t) from an estimate of Y1..t without first
constructing a forecast for the entire trajectory Y1..T .

Empirical distribution of target values

Consider all Y s
1..T , s ∈ {1 . . S}, equally likely to reoccur, ignoring and overriding the

available observations from the current season (Y1..t). For each target, the distri-
butional forecast is its empirical distribution, and the point prediction is the corre-
sponding median.

Direct target forecasts with kernel smoothing

Uses the kernel smoothing method used in the delta density method to estimate the
distribution of Z(t) conditioned only on (an estimate of) Yt.

Direct target forecasts with generalized additive model

Uses a generalized additive model to predict the expected value of a subset of the tar-
gets, and assumes a normal distribution for the residuals when making distributional
forecasts. Provided by Shannon Gallagher. This method was used in the 2015/2016
ensemble, but not the 2016/2017 ensemble nor the cross-validation analysis.

Uniform distribution

Outputs the same probability for each bin, regardless of the input data. The corre-
sponding point predictions are excluded from the ensemble.
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Appendix C

Log of changes to Delphi-Stat
throughout the 2015/2016 season
and for cross-validation analysis

This appendix reproduces or incorporates content from Brooks et al. [2018].

C.1 Initial description (2015 EW42)

The Delphi-Stat system is an ensemble of several baselines and statistical forecasting
methods. Its forecasts are a linear combination of the forecasts of these individual
systems, with a separate set of coefficients determined for each epi week, geograph-
ical area (nation + 10 HHS regions), metric (MAE or log score), and target. The
methods are outlined below. Note that the term “past epiweeks” refers to a set of epi
week numbers in any season — specifically, epi weeks 21 up to the forecast week; “fu-
ture epiweeks” is used in a similar fashion. (Nonnegative coefficients summing to 1
are calculated for point predictions using constrained LAD regression (implemented
using the linear programming package lpSolve [Berkelaar and others, 2015]), and
for distributional predictions with the degenerate EM algorithm [Rosenfeld, Accessed
2017-03-21].)

• Empirical prior: ignores all data from the current season, and considers each
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training season — 2003/2004 to 2014/2015, excluding the pandemic — as
equally likely to reoccur.

• Pinned baseline: uses the available observations for the current season for pre-
vious epi-weeks; for future epi weeks, each training curve is considered equally
likely to reoccur.

• Basis regression:

1. Aligns training curves with the current season by shifting in time and
scaling weighted ILI values until the maximum of each training curve
in past epiweeks is the same as that of the current season. (Scaling is
performed only above the CDC baseline; if a curve is entirely below the
CDC baseline, it is not scaled at all.)

2. Fits a smooth curve to the observed data in past epiweeks and the mean
of the aligned training curves in future epiweeks. (The smooth curve is a
spline: specifically, a linear combination of B-splines selected with elastic
net using the glmnet package [Friedman et al., 2010], with a trade-off
penalty between the importance of matching past and future epiweeks.)

3. Uses observations from the current season in past epiweeks; considers this
single curve as the only possibility for future weeks.

• Basis regression with noise:

1. Generates the spline curve above.
2. Considers the spline as estimating the change in weighted ILI from one

week to the next; for each epi week, estimates the distribution of errors at
that epi week using the training curves. (Distributions are estimated using
weighted kernel density estimation: when adding noise to a simulated
2015/2016 curve at some future epiweek, training curves that more closely
resemble the simulated curve in previous epiweeks contribute more to the
result.)

3. Generates many simulated 2015/2016 curves by taking the observations
from the current season so far, and at each week, adding the estimated
change from the spline curve, then drawing a value from the estimated
error distribution.

• Time-parameterized weighted kernel density estimation: Follows the same
process as the basis regression with noise; however, it directly estimates the
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distribution of changes in weighted ILI values, rather than the corresponding
distribution of errors in the spline estimate.

• Empirical Bayes: We use the procedure described in this document [Brooks
et al., 2015a], with a few modifications: a smoothed (trend-filtered [Tibshirani,
2014]) curve is never paired with a noise estimate from another smoothed curve,
scaling and shifting is performed only in small amounts resulting in “local”
transformations, an additional component is added to the likelihood to encour-
age reasonable predictions at future weeks (by penalizing simulated curves if
they deviate too much from all of the training curves), and incorporating a
random inflation in the noise parameter to prevent forecast “overconfidence”.

• Uniform prior: Considers each cell in the spreadsheet to be equally likely. (This
component only produces distributional forecasts.) Additional weight is added
to this component after the coefficients for each method are determined via
cross-validation to prevent any 0 or near-0 probability forecasts.

C.2 Changes, 2015 EW43

• Mixing coefficients between methods: a set of weights for each of the fore-
casting methods is determined for each epi week, metric (MAE or log score),
and target, but are tied across areas (nation + 10 HHS regions); thus, any
method will receive the same weight in all areas (for the same epi week, metric,
and target). For distributional forecasts, the weight assigned to the uniform
distribution is increased by approximately 2.5% (based on the rule of three),
and weight taken away evenly from all methods to make the weights again sum
to 1. This is accomplished by changing the RelevanceWeight function from

RelevanceWeight(s, l, t, i, e; s′, l′, t′, i′, e′) =
⎧⎪⎪
⎨
⎪⎪⎩

1, l = l′, t = t′, i = i′, e = e′

0, otherwise

to

RelevanceWeight(s, l, t, i, e; s′, l′, t′, i′, e′) =
⎧⎪⎪
⎨
⎪⎪⎩

1, t = t′, i = i′, e = e′

0, otherwise,

and setting µ as described in the main text. These changes motivated on two
hypotheses:
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• The previous weight vector calculations, which previously only consid-
ered 11 training instances at a time (one per season from 2003/2004 to
2014/2015, excluding 2009/2010), were based on much too little data,
and considering training instances from other locations would be benefi-
cial (even though training data from other locations seems less relevant
than training data from the same location).

• The µ value from the rule of three will be more appropriate than an µ
value selected to ensure an arbitrary minimum log score value, and will
automatically update based on the amount of training data available.

• New method added to ensemble: direct target density estimation: uses the
same weighted kernel density estimation approach as two existing methods
to directly forecast each of the targets without constructing, rather than con-
structing a distribution of flu curves and extracting the target values from these
curves. Adjustments to the output are made so that all predicted possible val-
ues are integers when appropriate and lie in the correct range.

C.3 Changes and clarifications, 2015 EW44

• New method added to ensemble: modified time-weighted kernel density esti-
mation: this version changes the weighting criteria used for matching simulated
data for this year to past seasons; attempts to make simulated trajectories more
closely resemble past seasons’ data; and considers a wider range of past data.
When constructing trajectories, this version weights past seasons based on the
previous week’s wILI value; the sum of previous wILI values in the season; a
weighted sum of wILI values stressing more recent weeks; and a weighted sum
of the week-to-week changes in wILI stressing more recent times. With low
probability, these weights are ignored and a random change in wILI is selected
from historical data. The simulated data values are also pushed towards ran-
domly selected historical data by a small amount. When simulating data at
epi week t, instead of just looking at other seasons at week t, also considers
nearby weeks, unless t is a time near the end of year holidays.

• Clarification: older kernel density estimation method, direct target density es-
timation: only weight data based on the previous wILI value.
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C.4 Changes, 2015 EW46

• Backfill forecasting: we now use backfill forecasting in combination with almost
all of the forecasting methods in the Delphi-Stat ensemble. For each nonfinal
wILI value in the current season, we estimate a distribution for its final revised
value. The distribution is based on historical revisions of wILI with the same
lag (e.g., the latest measurement vs. the second most recent measurement),
and is formed using weighted kernel density estimation, with weights depending
on the epiweek to which the measurement corresponds, and the nonfinal wILI
value itself.

C.5 Changes, 2016 EW03

Another statistical method has been added to the Delphi-Stat ensemble:

• Target forecast: We use an additive model to create predictions that are target
specific using the past 3 values observed.

C.6 Changes, for cross-validation analysis

• Changes to ensemble weight training data: ensemble weights are selected
using cross-validation component forecasts based on the version of test sea-
son data that would have been available at the forecast time, rather than
ground truth; since regional back issues are available starting only in late 2009,
cross-validation analysis is performed on seasons 2010/2011 to 2015/2016 as
described in the main text.

• Changes to RelevanceWeight function: the RelevanceWeight function still
seems like it will lead to ensemble weight vectors based on too little training
data, especially considering the reduction in the number of training seasons,
so we use the RelevanceWeight function specified in the text, which consid-
ers cross-validation component evaluations from forecast weeks within 4 weeks
of t when setting weights for forecast week t (chosen to include many addi-
tional weeks while keeping early-season evaluations from influencing late-season
weights, and late-season evaluations from influencing early-season weights).
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• Changes to methods in ensemble: the additive model was removed from the
ensemble to ease system maintenance, and the two Empirical Bayes variants
were added to compare cross-validation forecast behavior and potentially im-
prove the ensemble performance.
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Appendix D

Additional details on selected
elements of pancasting system

Source code for the Delphi-Stat system is available online as an R package [Brooks
et al., 2015b]. This appendix describes certain elements of the system used for
the performance analysis in Subsection 4.3.1, and the current approach to ensemble
forecasting.

D.1 Ensemble forecasting

In the ILINet and FluSurv-NET forecasting settings, retrospective forecasts are made
for each season and week from some set, and contain predictions for each “epigroup”
(location for ILINet, age group for FluSurv-NET), target (onset week, peak week,
etc.), and forecast type (point or distribution). When preparing ensemble forecasts,
we consider “instances” to be component forecasts prepared:

• in season s,

• using data from issue week w (of season s),

• for epigroup g,

• for target t,

• with type m,
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• with pancasting configuration b, and

• with forecaster f .

Retrospective component forecasts are prepared and evaluated in one of four modes:

• Leave-one-season-out (LOSOCV) v1:

• Component forecasts’ training data: all revisions of measurements made
for other seasons

• Component forecasts’ test/conditioning data: Y (t)
1..t when available; miss-

ing revision data are filled in with the latest values as of when the analysis
was run (i.e., with values from Y

(analysis time)
1..t )

• Evaluation data: the latest version of the data available (Y (analysis time)
1..analysis time )

• Ensemble training data: LOSOCV v1 component forecasts for other sea-
sons

• Ensemble selection data: LOSOCV v1 ensemble forecasts for other sea-
sons

• Leave-one-season-out (LOSOCV) v2:

• Component forecasts’ training data: all prior issues (Y (1)..Y (t)) plus
the parts of issues from future seasons that do not contain measurements
for the test season

• Component forecasts’ test/conditioning data: all recorded data from
Y (1)..Y (t), plus, wherever values of Y (t)

1..t are not available: nothing, if
there is an older version available (Y (v)

u , v < t), otherwise the earliest later
version Y (v)

u with v − u ≤ 52, otherwise the latest version as of when the
analysis was run (Y (analysis time)

u )

• Evaluation data: the latest version of the data available (Y (analysis time)
1..analysis time )

• Ensemble training data: LOSOCV v2 component forecasts for other sea-
sons

• Ensemble selection data: LOSOCV v2 ensemble forecasts for other sea-
sons

• Pseudoprospective v1:
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• Component forecasts’ training and test data: same as LOSOCV v2
test/conditioning data.

• Evaluation data: the latest version of the data available (Y (analysis time)
1..analysis time )

• Ensemble training data: pseudoprospective v1 forecasts for prior sea-
sons

• Ensemble selection data: pseudoprospective v1 ensemble forecasts for
prior seasons

• Pseudoprospective v2:

• Component forecasts’ training and test data: same as LOSOCV v2
test/conditioning data. all recorded data from Y (1)..Y (t), plus, wherever
values of Y (t)

1..t are not available: nothing, if there is an older version avail-
able (Y (v)

u , v < t), otherwise the earliest later version Y (v)
u

• Evaluation data: the data as of issue week 28 immediately following the
end of the test season, filling in any missing records in the same manner
as missing values from Y

(t)
1..t in the component forecasts’ training and test

data
• Ensemble training data: pseudoprospective v1 or v2 forecasts for prior

seasons
• Ensemble selection data: pseudoprospective v2 ensemble forecasts for

prior seasons

• Hybrid LOSOCV-pseudoprospective v1:

• Component forecasts’ training data: all prior issues (Y (1)..Y (t)) plus
the parts of issues from future seasons up to some issue ILOSOCV end that
do not contain measurements for the test season

• Component forecasts’ test/conditioning data: same as LOSOCV v1
• Evaluation data: same as LOSOCV v1
• Ensemble training data: hybrid LOSOCV-pseudoprospective v1 forecasts

for other seasons up to some season SLOSOCV end

• Ensemble selection data: hybrid LOSOCV-pseudoprospective v1 ensem-
ble forecasts for other seasons up to some season SLOSOCV end
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Ensemble performance statistics were prepared using LOSOCV v1, with training
data from 2003/2004 to 2015/2016, excluding 2009/2010, and evaluation data from
2010/2011 to 2015/2016, epi weeks 44 to 17. Pancaster-forecaster pairs were analyzed
with hybrid LOSOCV v2, with training data from 1997/1998 to 2018/2019, and
evaluation data from 2010/2011 to 2018/2019, model weeks 40 to 73. The FluSight-
Network ensemble is currently prepared using pseudoprospective v2 with evaluation
data from 2010/2011 to 2018/2019, epi weeks 40 to 20; component forecasts from the
Delphi-Stat system submitted to the network were prepared using hybrid LOSOCV-
pseudoprospective v1 with training data from 2003/2004 to 2018/2019, and LOSOCV
end issue 201039 and season 2009/2010.

Weighting schemes similar to the following are considered (see Chapter 5 for the
ones used in the ensemble performance study):

• Target&metric-based: a different weightset is fit for each target and metric,
based on all ensemble training data for that target and metric

• Target&metric&3time-based: a different weightset is fit for each target, met-
ric, and week based on all ensemble training data for that target and metric,
and model weeks within 1 week of the target model week

• Target&metric&9time-based: a different weightset is fit for each target, met-
ric, and week based on all ensemble training data for that target and metric,
and model weeks within 4 weeks of the target model week

• Coherent log-score-9time-based: a different weightset is fit for each week
based on all ensemble training data for model weeks within 4 weeks of the
target model week, based on log score evaluations (even for point predictions)
— this scheme is “coherent” in that it uses the same weightset for all targets
and types of predictions made at the same time.

The weighting scheme is selected based on the “ensemble selection data” described
above. Thus, the general procedure of generating ensemble forecasts has the following
steps:

1. Generate retrospective component forecasts for each s, w, g, t, m selected to
generate the ensemble training data, using every pancaster-forecaster pair b, f .

2. Generate retrospective ensemble forecasts for the same values of s, w, g, t, m to
generate the ensemble selection data, using every ensemble weighting scheme
e.
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3. Select the best ensemble weighting scheme based on the ensemble selection
data ê.

4. Generate prospective component forecasts and combine them using weighting
scheme ê.

D.2 Quantile pancasting framework

The quantile regression pancaster generates 200 simulated trajectories Y sim 1
T1+1..T2

..Y sim 200
T1+1..T2

as follows:

1. For each node Yu to simulate, in order:

(a) Handle test data missingness: select covariates to consider in the model for
Yu using a Bayes net template (which specifies what actions to take when
potential covariates are missing in test data, and allows for conditioning
on previous simulations).

(b) Translate test covariates and responses into node “characterizations”: char-
acterize each test covariate as Source(u+lag)

u+shift , for some Source, lag , and
shift.

(c) Populate training data set by forming training instances (from the same
location) with covariates and responses with characterizations matching
those of the test instance; include all training instances with non-missing
response data, even if training covariate data are missing. Assign training
instances weights based on Φ[QARXkernel,u] and the associated smoothing
kernel — in all cases studied, just a boxcar kernel on the model week for
each instance, which effectively just limits the training data to instances
corresponding to model weeks within 4 weeks of the model week of the
test instance.

(d) Use the training covariate missingness handler and a quantile regression
method to add simulated values of Yu onto each simulation (i.e., to gen-
erate Y sim 1..200

u ).

These simulated trajectories Y sim 1
T1+1..T2

..Y sim 200
T1+1..T2

are then fed into each forecaster to
generate a point and distributional prediction for each target. For all forecasters
but the uniform-distribution baseline, the distributional prediction p is used to form
p′ = M

M+3p +
3

M+3u, where u is the uniform distribution over bins, where M is the
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number of simulations produced by the forecaster. The final distributional forecast
for the pancaster-forecaster pair is p′′, a kernel-smoothed version of p′ prepared by

1. pairing the average valid value for each bin with the corresponding “weight”
from (M + 3)p′, and

2. calling a weighted version of bw.nrd0 on this “weighted sample”.

The purpose of this baseline-combination and smoothing step is to account for the
fact that M simulations are just a noisy version of the true distribution associ-
ated with the given pancaster-forecaster pair, and to ensure that every pancaster-
forecaster pair assigns nonzero probability to every possible value of every target,
so that they can more readily be compared using non-thresholded log scores. Addi-
tional smoothing may be beneficial, as this step does not account for cases where the
pancaster produces less simulations than the forecaster and requires resampling, nor
for model misspecification, overconfidence, and overfitting; we rely on the ensemble
method to account or compensate for some of these issues.

D.3 Handling missing data in quantile regression
framework

Predictions for “response nodes” in the Bayes net template expansion — i.e., nodes
with incoming arrows — are made under the assumption that they will be observed
before or at evaluation time; “missing” is never a correct prediction. The training
data selection algorithm accounts for this assumption by forming training instances
only from times where the response variable is nonmissing. However, the candidate
covariates described by the Bayes net template (the nodes with arrows pointing to a
given response node) are allowed to be missing in both test and training instances.
Missingness of candidate covariates in test instances is handled by the Bayes net
template specification itself; template resolution for a given response node only selects
covariates that are non-missing in the test instance. Missingness of the selected
covariates in training instances is addressed by one of two handlers, “Thin” or “Drop”,
designed to build upon quantile regression routines that do not allow missingness or
near-singularity in training data.

Algorithm 2 describes the “Thin” approach, which uses missingness indicator
covariates (currently with no interaction covariates) and zero-filling to resolve miss-
ingness, and an SVD to detect and correct for near-singularity. Algorithm 3 describes
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Algorithm 2: Fitting procedure using “Thin” missingness and near-singularity
handlerData:

Φ ∈ (R ∪ {NA})n,p: selected covariates
ψ ∈ Rn: response values (nonmissing)
τ ∈ [0,1]m: quantile levels
w ∈ {none,Rp

+}: instance weights (optional)
dtolrelmaxconstant: threshold determining when to drop left-singular and
right-singular vectors in an SVD when fitting regression coefficients, used in
a way to attempt to prevent (near-)singular matrix errors in
quantreg::rq [Koenker, 2015] routines; default is 10−6; lower than
10 ⋅ εmachine likely risks errors
Result:
B ∈ R1+p,m: fitted coefficient matrix including intercepts

Construct M ∈ {0,1}n,p with mij ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, φij is NA
0, otherwise

;

Construct C ∈ Rn,p with cij ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0, φij is NA
φij, otherwise

;

Let Φ′ ∈ Rn,1+2p ∶= [1 M C];
Let U′D′V′T ∶= Φ′ be an SVD (with U′ an n × (1 + 2p) orthogonal matrix
and such that D is a (1 + 2p) × (1 + 2p) (diagonal) matrix with all
non-negative entries);
Let dtolrelmax ∶= max{n,1 + 2p} ⋅ dtolrelmaxconstant;
Set U′′ ∶= U⋅,k, D′′ ∶= D′

k,k, and V′′ ∶= V′
k,⋅ to be a thin SVD corresponding to

singular values — previously at indices k — greater than or equal to
dtolrelmax ⋅maxl D′

l,l;
Let Φ′′′ ∶= U′′D′′;
Let A ∈ R1+2p,m be the coefficient matrix obtained from a (potentially
weighted) quantile regression routine on Φ′′′, ψ, τ, w;
Let Bfull ∶= V′′A;
Let B ∶= Bfull

{1..1+p},⋅ (dropping missingness indicator coefficients that will be
multiplied by zero in test instance);
Return B.
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the “Drop” approach, which employs a heuristic selection algorithm to select a set of
covariates that appear together without missingness in at least a certain number or
proportion of training instances, favoring selection of covariates that appear first in
the training data matrix; it uses a QR decomposition with pivoting to remove some
near-singularities, injects noise in training data to attempt to remove others, and
utilizes fallback quantile regression algorithms to address any near-singularity errors
that still occur. As noted in Chapter 4, it appears to have higher performance than
“Thin” for covariate selections where it consistently avoids errors from the quantile
regression routines, but as it sometimes fails to avoid all near-singular matrix issues,
it is not as operationally robust.

D.4 Delta density forecasters

Both delta density forecasters share the same first few pre-processing steps, outlined
below: When preparing Gaussian kernel density estimates for covariates or response
variables, both variants share the same method to select bandwidths: they try the
bw.SJ [R Core Team, 2015] method on the training data for that covariate or response
variable, falling back on bw.nrd0 [R Core Team, 2015] in the case of errors. (This
approach is computationally convenient, but is unlikely to be statistically optimal.)

Algorithm 5 descirbes the Markovian delta density method, which performs con-
ditioning effectively using the product of (a) a zero-width boxcar kernel on the week
of the season, and (b) a Gaussian kernel over the previous measurement. Section 2.3
details the differences between the Markovian delta density method and the extended
delta density variant.
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Algorithm 3: Fitting procedure using “Drop” missingness and near-singularity
handlerData:

Φ ∈ (R ∪ {NA})n,p: selected covariates
ψ ∈ Rn: response values (nonmissing)
τ ∈ [0,1]m: quantile levels
w ∈ {none,Rp

+}: instance weights (optional)
tol: tolerance, e.g, 10−3, for near-singularities in the QR decomposition
relsigma: scaling factor, e.g, 10−3, for standard deviation when jittering
training data
Result:
B ∈ R1+p,m: fitted coefficient matrix including intercepts (or, for certain
covariate selections, near-singularity errors that were not successfully
avoided or addressed)
Let min.nrow ∶= max{10, n/10};
Initialize mutable Φ′ ←Φ;
for j ∈ {1..p}, sequentially, do

if current Φ′
⋅,j has at least min.nrow nonmissing values then

Set Φ′ ←Φ′
i,⋅ where i are the indices of the nonmissing Φ′

⋅,j entries
else

Set Φ′ ←Φ′
⋅,−j (i.e., drop column j from Φ′), maintaining the same

column indices for columns j + 1..p rather than shifting them
end

end
Let Φ′′ ∶= Φ′

⋅,j, where j are the indices of features that are not dropped linear
regression of ψ on Φ′ with an intercept, where the linear regression utilizes
QR decomposition with pivoting with collinearity tolerance tol ;
Let Φ′′′ ∶= Φ′′ +E, where E is a “jitter” matrix of independent draws from
Gaussian noise variables, with Ei,j ∼ N (0, σ̂j), where σ̂j is the sample
standard deviation of Φ′′

⋅,j;
Let A ∈ R1+p′′′,m be the coefficient matrix obtained from a (potentially
weighted) quantile regression routine on [1 Φ′′′], ψ, τ, w, where the
routine tries: (a) a lasso-based fit if desired, then (b) a non-lasso fit using
the Frisch-Newton algorithm if the lasso routine failed due to unhandled
near-singularities, aborting if the latter fails as well;
Construct B ∈ R1+p,m with B1,⋅ ∶= A1,⋅ and

B1+j,⋅ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

A1+j,⋅, column j from Φ was not dropped when forming Φ′

0, otherwise
;

Return B.
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Algorithm 4: Shared delta density setup

Data:
Y

input sim 1..ninput
T1+1..T2

: partially observed and/or simulated trajectories from a
backcaster or pancaster
winput ∈ Rninput

+ : importance weights for the input simulations
T2: time of last observation already observed or simulated
T3: time of last observation to simulate
D: set of time-shifted training trajectories covering roughly T1 + 1 to T3
noutput: number of fully simulated trajectories to produce
Result:
Y

output sim 1..noutput
T1+1..T2

: potentially resampled version of Y input sim 1..ninput , to be
extended into fully simulated trajectories
woutput ∈ Rnoutput

+ : corresponding trajectory importance weights
if ninput = noutput then

Let Y output sim 1..noutput
T1+1..T2

∶= Y
output sim 1..ninput
T1+1..T2

;
Let woutput = winput

else
Let Y output sim 1..noutput

T1+1..T2
be a resampling of Y output sim 1..ninput

T1+1..T2
using weights

winput ;
Let woutput ∈ Rnoutput

+ ∶= c1, where c is the mean of winput if downsampling
or winput ⋅ 1/noutput if upsampling

end
Let D be a matrix of training trajectories formed from D by dropping times
which are not observed in every training trajectory in D (e.g., clipping off
the 53rd week in some trajectories when working with year-long trajectories)
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Algorithm 5: Markovian delta density

Data:
Y

input sim 1..ninput
T1+1..T2

: partially observed and/or simulated trajectories from a
backcaster or pancaster
winput ∈ Rninput

+ : importance weights for the input simulations
T2: time of last observation already observed or simulated
T3: time of last observation to simulate
D: set of time-shifted training trajectories covering roughly T1 + 1 to T3
noutput: number of fully simulated trajectories to produce
Result:
Y

output sim 1..noutput
T1+1..T3

: fully simulated trajectories
woutput ∈ Rnoutput

+ : corresponding trajectory importance weights
Let Y output sim 1..noutput

T1+1..T2
, woutput ∈ Rnoutput

+ , and D be given by the shared delta
density setup;
for u ∈ {T2 + 1..T3}, sequentially, do

Let u′ be the closest time index to u such that u′ and u′ − 1 are reported
in D, breaking any ties arbitrarily (expectation: u′ = u except maybe
when u = T3, and no ties occur);
Draw ∆Y sim 1..noutput

u from a Gaussian kernel conditional density estimate
of ∆Y based on portions of D at time u′;
Let Y output sim 1..noutput

u = Y
output sim 1..noutput
u−1 +∆Y sim 1..noutput

u

end
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