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Abstract

Dependent type theories are a family of logical systems that serve as expressive
functional programming languages and as the basis of many proof assistants. In the
past decade, type theories have also attracted the attention of mathematicians due
to surprising connections with homotopy theory; the study of these connections,
known as homotopy type theory, has in turn suggested novel extensions to type theory,
including higher inductive types and Voevodsky’s univalence axiom. However, in their
original axiomatic presentation, these extensions lack computational content, making
them unusable as programming constructs and unergonomic in proof assistants.

In this dissertation, we present Cartesian cubical type theory, a univalent type
theory that extends ordinary type theory with interval variables representing abstract
hypercubes. We justify Cartesian cubical type theory by means of a computational

semantics that generalizes Allen’s semantics of Nuprl [All87] to Cartesian cubical
sets. Proofs in our type theory have computational content, as evidenced by the
canonicity property that all closed terms of Boolean type evaluate to true or false.
It is the second univalent type theory with canonicity, after the De Morgan cubical
type theory of Cohen et al. [CCHM18], and a�rmatively resolves an open question
of whether Cartesian interval structure constructively models univalent universes.
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1
Introduction

One might come to believe that any decision to adopt a system of
axioms about sets would be arbitrary in that no explanation could
be given why the particular system adopted had any greater claim
to describe what we conceive sets and the membership relation
to be like than some other system, perhaps incompatible with the
one chosen. One might think that no answer could be given to
the question: why adopt this particular system rather than that
or this other one?

—George Boolos, The Iterative Conception of Set [Boo71]

Dependent type theories are a family of logical systems employed by philosophers as foun-
dations of constructive mathematics, and by computer scientists as expressive functional
programming languages. In the past decade, type theories have also attracted the attention
of mathematicians due to surprising connections with homotopy theory; the study of
these connections, known as homotopy type theory, has in turn motivated powerful new
logical principles in type theory. This dissertation extends traditional computer-scienti�c
techniques in type theory to account for these novel principles.

1.1 The Martin-Löf ethos

To the great consternation of mathematicians, there is no set of all type theories. Instead, the
study of type theory comprises techniques drawn from computer science, mathematics, and
philosophy which, when applicable to an object, confer upon it the status of type theory.
Many mainstream type theories, however—from the seminal work of Per Martin-Löf
[ML75b; ML82; ML84] to Nuprl [Con+85] and the calculus of constructions [CH88]—share
various hallmarks which we henceforth describe, with the caveat that these hallmarks are
not all universal among type theories.

Unity of collections and propositions Set theory is typically presented as an axiomatic
system that de�nes set membership as a proposition inside an ambient logic. A type theory,
in contrast, is a self-contained foundation of mathematics in which types serve both as
collections of objects and as logical propositions. Standard type theories comprise two core
judgments—typehood (A type) and membership (M ∈ A)1—and the auxiliary judgments of

1Once standard notation [ML75b; ML82; ML84; Con+85], M ∈ A is now more often written M : A.

1



2 Introduction

type and member equality under hypotheses. Regarding the type A as a collection, M ∈ A
expresses that M is an element of A; regarding A instead as a proposition, M ∈ A expresses
that M is a proof of A.

Given a type A and a family of types B(a) indexed by a ∈ A, the dependent function
type (a:A) → B(a) (or

∏
a:A B(a)) classi�es functions sending every M ∈ A to an element

of B(M), and the dependent pair type (a:A) × B(a) type (or
∑

a:A B(a)) classi�es pairs of
M ∈ A and an element of B(M). If we interpret B(−) as a predicate over A, (a:A) → B(a) is
the proposition that B(a) holds for all a ∈ A, because its proofs specify a proof of B(M) for
every M ∈ A, and (a:A) × B(a) is the proposition that B(a) holds for some a ∈ A, because
its proofs specify an M ∈ A and a proof of B(M).

Now, because types are both collections and propositions, it is possible for a proposition
to have many distinct proofs, and for subsequent proofs or constructions to be proof-

relevant, that is, dependent on a choice of proof. For instance, the type of natural numbers
is a proposition with in�nitely many distinct proofs, each of which has a distinct successor.
Some authors therefore only regard as propositions (or mere propositions [UF13, De�nition
3.3.1]) types with at most one element; another possibility is to reject the collection–
proposition dichotomy as intrinsically non-type-theoretic.

Readers unfamiliar with standard type formers or the style of mathematics developed
inside type theories may wish to consult Nordström, Petersson, and Smith [NPS90] or the
Homotopy Type Theory book [UF13] as necessary while reading this dissertation.

Constructivity As logics, type theories are typically constructive, or intuitionistic, not
classical. Intuitionism is a philosophical stance introduced by Brouwer, who held that
mathematical objects exist only as constructions in an idealized mind, that propositions
are true exactly when mental constructions of their proofs exist, and that the sole pur-
pose of mathematical language is to convey such constructions, which are themselves
extralinguistic [TD88, p. 4].

The Brouwer–Heyting–Kolmogorov (BHK) interpretation of the logical connectives
therefore maps each connective to a construction—to prove ∃n:nat.B(n) is to construct a
natural number n and a proof of B(n); to prove a disjunction A ∨ B is to construct either a
proof of A or a proof of B [TD88, p. 9]; et cetera. It follows that excluded middle (A ∨ ¬A
for all A) is not intuitionistically valid: to prove (∃n:nat.B(n)) ∨ ¬(∃n:nat.B(n)) for all B,
one must either produce a concrete n and a proof of B(n), or a proof that no such n exists.

Constructivity is popularly characterized as the failure of excluded middle, but is more
accurately captured by the existence property: if ∃n:nat.B(n) is provable, one can construct
a concrete numeral n̄ for which B(n̄) is provable [TD88, p. 139]. From this perspective, it is
fortunate that most principles of classical mathematics are constructively valid. On the
other hand, there are constructive logics with principles false in classical mathematics,
including Brouwer’s intuitionism and the Nuprl type theory, which adopt continuity
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principles for choice sequences [RB16; TD88, pp. 206–210], and Russian constructive
recursive mathematics, which adopts Church’s thesis [TD88, pp. 185–195].

Martin-Löf’s type theories, as he explains in Constructive mathematics and computer

programs [ML82], are rooted in a modi�ed form of intuitionism which considers mathe-
matical objects to be constructions not of the mind but of a programming language. This
conception of intuitionism is incompatible with Brouwer’s, as it is essentially linguistic.
However, by equating construction and computation, it transforms intuitionism from
merely a philosophical stance to a pragmatic one—intuitionistic mathematics is mathemat-
ics that computes, a fruitful endeavor regardless of one’s beliefs.

The intuitionistic readings of Martin-Löf’s type theories are provided in his meaning

explanations, BHK interpretations which gloss each type former as a behavioral predicate
over programs [ML82]. For instance, M ∈ (a:A)×B(a) when M is a program that computes
a pair 〈M1,M2〉 with M1 ∈ A and M2 ∈ B(M1) (that is, M1 computes in accordance with
A, and M2 with B(M1)). Hypotheses simply range over all programs with the speci�ed
behavior, so the assertion “assuminga ∈ A, B(a) type” means that for every programM ∈ A,
the expression B(M) corresponds to a behavioral predicate. The canonicity property—if
M ∈ bool, thenM computes to and is equated with a canonical Boolean, either true or false—
is a type-theoretic analogue of the existence property, and an immediate consequence of
the meaning explanations (because bool corresponds to precisely that predicate).

Meaning explanations are typically presented in an intuitive, premathematical style
ambiguous about the programming language and rules of inference purportedly being
explained. These choices are deliberate—appeals to intuition ensure the explanations
take on a foundational character (that is, without appealing to an ambient logic), and
ambiguity over computation and deductive systems ensures the explanations remain open-
ended with respect to the choice of programs or predicates. Further discussion of the role
of intuitionism in type theories is beyond the scope of this dissertation; we direct the
interested reader to the writings of Martin-Löf [ML82; ML13] and Granström [Gra09].

As type theories grow in complexity, it is increasingly di�cult to convey their intended
meanings through intuition alone, or be con�dent that such intuitions are sensible. (Such
is the case in this dissertation.) One can instead transform the meaning explanations into
precise mathematical constructions, which we call computational semantics. The variants of
computational semantics used in Chapters 2 and 4 of this dissertation serve as constructive
proofs of consistency and canonicity, and explicit Curry–Howard or propositions-as-types2

correspondences [How80] that construct type theories as program logics for functional
programming languages.

2By propositions-as-types we mean that the logical propositions (that is, the types) of a type theory can
equally well be viewed as the type system of a programming language, not merely the observation that the
types of a type theory serve also as its logical propositions.
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Suitability for computer implementation Of course, the study of type theories inter-
sects computer science not only through computational semantics, but also through the
development of proof assistants—software for developing computer-checked mathematical
proofs—many of which are based on dependent type theories, including Agda [Agda], Coq
[Coq], Lean [Mou+15], and Nuprl [Con+85].

In recent years, computer scientists have begun to coordinate large-scale uses of proof
assistants in formally specifying and verifying the behavior of realistic software programs
and protocols [App+17]. And while proof assistants remain on the fringe of mathematical
practice, expert users have formalized increasingly sophisticated results, culminating
famously in the Coq proofs of the four-color [Gon08] and odd-order theorems [Gon+13].

Proof assistants serve to bridge the gap between high-level mathematical arguments and
low-level formal proofs composed of primitive inferences, thereby reducing the correctness
of the former to the correctness of the latter. In practice, proof assistants require vastly
more detail than is customary in paper proofs, but do perform humanly-impossible feats
of logical bureaucracy and even automated combinatorial reasoning [Gon+13, p. 173].

The primitive inferences of a proof assistant, being the linchpin of its correctness, are
often isolated in a trusted kernel; complex features are not trusted, but instead emit proofs
checked by the kernel. For type theories, these primitive inferences are rules specifying
when a term is a type or element of a type; in contrast to the open-ended character of
meaning explanations, the kernel necessarily �xes a collection of rules, and hence, of types
and elements.

The hallmarks of type theories, we argue, contribute in part to the success of type-
theoretic proof assistants. First, types directly provide many basic mathematical objects
(functions, products, natural numbers, et cetera) that are derived notions in, say, set theory.
Ordinary mathematical proofs should in theory reduce to applications of the axioms of
set theory; a proof assistant based on set theory must in fact perform such a reduction
(or else de�ne these objects primitively), signi�cantly widening the gap between informal
and formal proof. In contrast, Agda’s interface is usable despite being quite close to its
underlying type theory—users prove A by providing (most of) an M such that M ∈ A.

Secondly, the constructive nature of type theories enables proof assistants to seamlessly
incorporate computation in many bene�cial ways. The judgments of type theory are closed
under computation, allowing users to simplify proof goals by evaluating them; canonicity
ensures that elements of types constructed without hypotheses evaluate to canonical
forms. Proof by re�ection allows users to implement and even verify decision procedures
written in the very programming language underlying the type theory itself [Gon+13].
Program extraction converts proofs into standalone, correct-by-construction functional
programs, and has been used to develop a veri�ed C compiler [Ler09]. Implementation
of such features is beyond the scope of this dissertation; we discuss their relationship to
computational semantics in Section 2.4.
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1.2 The algebraic perspective

The aforementioned philosophical and computational desiderata constitute one perspec-
tive on type theories. Another perspective, particularly common amongst homotopy
type theorists, is to regard as type theories all collections of rules bearing a super�cial
resemblance to type theories in the former sense.3 A type theorist of this kind regards
a type theory as an algebraic structure de�ned by its collection of rules, and asks: what
counts as a model (resp., morphism of models) of this type theory? Does this type theory
have interesting models? What properties are shared by all of its models?

One purpose of such questions is to establish metatheorems about the rules imple-
mented in a proof assistant. Logical consistency follows from the existence of non-trivial
models. Proof assistants often employ only rules whose premises are decidable, a property
commonly established by normalization-by-evaluation models [ACD07]. Independence
results follow from the existence of models both validating and invalidating certain princi-
ples. In a classic paper, Smith [Smi88] proved the independence of Peano’s fourth axiom
(∀n:nat.0 , n + 1) from a type theory without universe types, by constructing a model in
which the natural numbers are a one-element set. (The standard computational seman-
tics validate Peano’s axiom.) More recently, Coquand and Mannaa [CM16] proved the
independence of Markov’s principle from type theory by a forcing argument.

A second purpose is to establish the mathematical signi�cance of theorems proven in
a proof assistant. We expect, for example, that the Coq proof of the four-color theorem
implies the truth of the four-color theorem as ordinarily construed. Such an implication
rests not only on Coq’s consistency but also the ability to interpret Coq’s logical connectives
and rules as classical set-theoretic connectives and tautologies. If classical truth is one’s
only goal, one may even choose to disrupt the constructive nature of a type theory by
adding to it classical axioms for real numbers [BLM15].

Conversely, theorems in a proof assistant carry more content than their classical
counterparts. Standard rules of type theories are valid in all locally Cartesian closed
categories [Cur93; See84]—not only in sets—thus licensing type-theoretic language in
presheaf categories. Orton and Pitts [OP16] have recently employed this principle to carry
out cubical set constructions of Cohen et al. [CCHM18] in Agda extended with an axiomatic
interval type, thereby both formalizing and generalizing the original constructions.

Homotopy type theory The intensional rules of type theory [ML75b], which form the
basis of Agda and Coq, de�ne an identity type IdA(M,N ) whose elements are proofs that
M,N ∈ A are equal. Standard computational and set-theoretic semantics model identity
types as collections with one element when true and zero elements when false. Surprisingly,

3The precise class of such theories, which Voevodsky [Voe15] calls “dependent type theory of Martin-Löf
‘genus,’” currently lacks a satisfactory de�nition.
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Hofmann and Streicher [HS98] showed that uniqueness of identity proofs—the principle
that any two proofs of IdA(M,N ) are equal—is independent of intensional type theory, by
constructing a groupoid model in which some identity types have multiple elements. The
Hofmann–Streicher groupoid model nevertheless validates uniqueness of identity proofs
of identity proofs, that is, any two proofs of IdIdA(M,N )(P,Q) are equal.

The �eld of homotopy type theory originates4 with the observations of Awodey and
Warren [War08; AW09] and Voevodsky [KL16] that n-fold iterated identity types admit
complex structure closely related to that of n-dimensional paths in topological spaces, by
constructing models of intensional type theory in, respectively, Quillen model categories
and Kan simplicial sets. Voevodsky [Voe10a] further observed that the simplicial model
validates a univalence axiom stating that identity of types is homotopy equivalent to
homotopy equivalence of types (or informally, that isomorphic types can be regarded as
equal). Finally, Lumsdaine and Shulman [LS19] and others observed that many familiar
topological spaces can be de�ned axiomatically in type theory as higher inductive types.

Voevodsky subsequently championed Univalent Foundations—formulated as intensional
type theory extended with univalence—as a new foundation for formalized, structuralist
mathematics [Voe10b]. Parallel community e�orts over 2012–2013 at the Institute for
Advanced Study produced the Homotopy Type Theory book [UF13], which uses intensional
type theory extended with univalence and higher inductive types as an axiom system in
which to develop the homotopy theory of spaces. (In a confusing instance of synecdoche,
that type theory is often called homotopy type theory; we instead call it Book HoTT.)

Are Univalent Foundations and Book HoTT—as emulated in Coq [VAG+; Bau+17],
Agda [Bru+18], and Lean [DRB17]—the most perspicuous axiomatizations of univalence
and higher inductive types? On what basis should we judge type theories qua algebraic
structures? Or, as Boolos [Boo71] asks, “Why adopt this particular system rather than that
or this other one?”

Consistency is paramount, and follows from the simplicial set semantics of Voevodsky
[KL16] and Lumsdaine and Shulman [LS19].5 Those semantics moreover establish that
theorems of Book HoTT hold also in standard homotopy theory, because the homotopy
theory of simplicial sets is famously the same as that of topological spaces.

Importantly, Book HoTT concerns an abstract notion of space, de�ned without ref-
erence to, say, topologies or real numbers; as a result, Book HoTT has already led to
novel generalizations of theorems [Ane+17]. Alternatives to Book HoTT, including those
proposed in this dissertation, are thus judged in part on the generality of their models.

4This is a woefully incomplete summary of early ideas in homotopy type theory; other early contributors
to the homotopy-theoretic semantics of type theory include Gambino and Garner [GG08], Lumsdaine
[Lum09], van den Berg and Garner [BG11], and Streicher [Str06].

5Excepting closure of type universes under parametrized higher inductive types, which was later
addressed in cubical set models of Coquand, Huber, and Mörtberg [CHM18] and Cavallo and Harper
[CH19a].
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Moreover, homotopy type theorists conjecture that type theories with univalence are
in a precise sense sound and complete for mathematical domains known as elementary
∞-toposes. However, the community is very far from proving this conjecture—the state
of the art includes only dependent pairs and identity types [KS19]—and in fact, lacks
consensus on the very de�nition of elementary∞-topos.

As foundations of mathematics, Univalent Foundations and Book HoTT have several
advantages over set theory: they are more amenable to computer formalization, and
more elegantly express many ideas from homotopy theory and higher category theory.
However, univalence is not as straightforward as the slogan isomorphic types are equal:
a minor change in its statement renders it inconsistent [UF13, Exercise 4.6(iii)], and its
standard model in simplicial sets requires powerful mathematical tools. Nor are these
theories obviously constructive in any sense: Univalent Foundations and Book HoTT lack
the canonicity and existence properties, and thus even the failure of excluded middle in
these theories is subtle [UF13, Corollary 3.2.7]. Such subtleties, in the author’s opinion,
jeopardize the ontological primacy of these systems.

The failure of canonicity in Book HoTT is caused by a dearth of equations regarding
univalence and higher inductive types. For instance, higher inductive types are generated
by element and path constructors, and functions out of such types specify where to send
those generators; in Book HoTT, a function so de�ned only weakly sends path constructors
to their speci�ed images (that is, up to a path), requiring complex bookkeeping in otherwise
straightforward proofs [Soj16].

Stranger yet, because Univalent Foundations and Book HoTT co-opt type-theoretic
identity to mediate path structure, they lack any internal notion of traditional mathematical
equality. That is, one cannot speak of two types being exactly the same, nor de�ne
relations �ner than homotopy, nor argue that a function can be silently replaced by another
whose pointwise behavior is identical, despite nearly all models validating such notions.
The inability to impose strict coherence conditions has in fact frustrated the de�nition
of semisimplicial types in these systems, prompting Voevodsky to propose extending
Univalent Foundations with strict equality in his Homotopy Type System [Voe13].

1.3 Contributions

This dissertation aims to understand the higher-dimensional concepts of univalence and
higher inductive types through computational semantics. We describe Cartesian cubical

type theory and its computational semantics, which reconstruct these concepts by means
of a novel notion of untyped, higher-dimensional computation, supporting the thesis
that higher-dimensional types classify higher-dimensional programs extensionally according

to their behaviors. Our type theory satis�es the canonicity property, and provides a
constructive, elementary (although admittedly complex) semantics of univalence.
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We have three main contributions. First and foremost, ours is the second type theory
admitting both univalence and canonicity, after the cubical type theory of Cohen et al.
[CCHM18]. In both cases, cubical refers to presentations of higher-dimensional structure
using interval variables, products of which represent abstract n-dimensional hypercubes.
We equip our interval with Cartesian structure and our types with a generalized Kan
�lling operation, whereas Cohen et al. [CCHM18] equip their interval with a stronger
De Morgan structure and their types with a weaker Kan composition operation.6 We
therefore a�rmatively resolve the open question of whether Cartesian interval structure
constructively models univalent universes [Coq14; LB14].

Secondly, our semantics consist of programs and thus hew closely to the syntax of
type theory, illuminating which rules and even which evaluation strategies to consider. In
Appendix A we present a type theory in the style of the Nuprl computational type theory
[Con+85], which admits a strict equality type with the equality re�ection principle. Ours
is the �rst type theory with canonicity that, like Voevodsky’s Homotopy Type System,
has both path types and strict equality types. Such type theories are called two-level

[ACK16], because they must stratify types into those that respect paths and those that do
not (notably, certain equality types). We moreover present a �ner strati�cation of types
than previously described, allowing us to deduce that some equality types do respect paths.

Thirdly, we place a novel validity restriction on the shapes of Kan �lling scenarios
to obtain a strong canonicity result for higher inductive types: all closed 0-dimensional
elements of higher inductive types compute to constructors. In contrast, Cohen et al.
[CCHM18] also admit 0-dimensional Kan compositions as canonical forms. Our result
simpli�es many proofs involving higher inductive types, and we believe it is critical
for higher-dimensional programming—for instance, all elements of a type quotient are
guaranteed to compute to constructors of the underlying type.

Cartesian cubical type theory has already been implemented in two experimental proof
assistants, RedPRL [Red16] and redtt [Red18], with which the author and his collabora-
tors have considered applications to synthetic homotopy theory, constructive mathematics,
and programming. Notably, we have formalized the de�nition of semisimplicial types in
RedPRL.7 Cavallo and Harper [CH19a] have extended the present work with a schema for
indexed higher inductive types, and en passant complete the Cartesian cubical semantics
of Book HoTT by de�ning Book HoTT–style identity types.

Outline In Chapter 2 we introduce standard computational semantics in the setting
of Idealized Nuprl, a core type theory modeled after Nuprl. We discuss the rationale

6See Chapter 3 for further discussion of cubical semantics, including the work of Awodey [Awo18] and
Bezem, Coquand, and Huber [BCH14; BCH18].

7Available at https://git.io/fhpTd.

https://git.io/fhpTd
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behind di�erent systems of inference rules implemented by proof assistants, including the
computational type theory of Nuprl and the intensional type theory of Coq, Agda, and Lean.

In Chapter 3 we describe the history of cubical type theories, compare various cube
categories and Kan operations, and connect the path types of Cartesian cubical type
theory with the identity types of Book HoTT. We also describe regularity, a technical
problem which arises in cubical models of type theory, and validity, a re�nement of our
Kan operations which strengthens our canonicity theorem.

Chapter 4 presents the main technical results of this dissertation, namely, the compu-
tational semantics of Cartesian cubical type theory. These semantics directly justify the
two-level, computational-style rules listed in Appendix A (roughly what is implemented
in RedPRL), and also model the intensional-style rules of Appendix B (roughly redtt).

In Chapter 5 we summarize our contribution, discuss recent developments in cubical
type theory, and conclude with remarks on notions of equality in dependent type theory.

Publications This dissertation’s main results have been published:

• Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths

and Equalities [AFH18] details the main results of this dissertation. The associated
preprint Computational Higher Type Theory III: Univalent Universes and Exact Equality

[AFH17] is superseded by Chapter 4 of this dissertation.

• The RedPRL Proof Assistant [Ang+18] discusses Cartesian cubical computational
type theory and its implementation in the RedPRL proof assistant.

• Meaning explanations at higher dimension [AH18] informally describes our semantics
as a generalization of Martin-Löf’s meaning explanations of type theory.

• Computational Higher-Dimensional Type Theory [AHW17] explains an earlier ver-
sion of our semantics that did not yet account for univalent universes. The associ-
ated preprint Computational Higher Type Theory II: Dependent Cubical Realizability

[AH17] is superseded by Chapter 4.

In addition, the preprint Syntax and Models of Cartesian Cubical Type Theory [Ang+19]
outlines an alternative presentation of Cartesian cubical type theory without exact equality,
along with an Agda formalization of its denotational semantics.

Readers may also wish to consult the author’s paper Homotopical patch theory [Ang+16]
(an extended version of an earlier conference paper [Ang+14]), which predates constructive
models of univalence, and describes a conjectural application of Book HoTT to dependently-
typed programming: modeling version control systems and their implementations as higher
inductive types and functions from such types into univalent universes.
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One paper not coauthored by the author deserves particular mention. Higher Inductive
Types in Cubical Computational Type Theory [CH19a], with associated preprint Compu-

tational Higher Type Theory IV: Inductive Types [CH18], proposes a schema for indexed
higher inductive types (including Book HoTT–style identity types) in Cartesian cubical
computational type theory, and extends our computational semantics accordingly.
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Idealized Nuprl

Types of theories:

(1) Theories with one intended model, such as number theory
and (for the Platonist) analysis and classical set theory.

(2) Theories with many intended models, such as group theory.
In case (1), the primary aims of axiomatization are clarity
and rigor. On the contrary, in case (2), the prime goal is
generality, and rigor and clarity are by-products.

—Michael J. Beeson,
Foundations of Constructive Mathematics [Bee85, p. 83]

This chapter introduces Idealized Nuprl, a (non-univalent, non-cubical) constructive type
theory based on Nuprl [Con+85], with dependent functions, dependent pairs, natural
numbers, booleans, and two parallel cumulative hierarchies of universes. Like Nuprl,
Idealized Nuprl de�nes types as behavioral predicates over computer programs, using
Allen-style computational semantics [All87] that mathematize Martin-Löf’s meaning
explanations of type theory [ML82].

We intend this chapter to serve as a primer on computational semantics and the
Nuprl tradition, divorced from cubical complications that arise in Chapter 4. We therefore
intentionally omit many features of modern Nuprl that we have not yet developed in the
cubical setting, including untyped computational equivalence [How89]. Unlike Nuprl, we
include a predicative hierarchy Propi of universes of subsingleton types that are subtypes
of the standard universe hierarchy Typei , foreshadowing the Kan and pretype universes in
Chapter 4. Parallel universes were previously considered by Krishnaswami, Pradic, and
Benton [KPB15]; as far as we know, we are the �rst to consider subtyping between them.

To be clear, the main results of this chapter are not novel, and were previously described
by (among others) Allen [All87], Harper [Har92], and Anand and Rahli [AR14]—the last
of whom provide a Coq formalization! However, the author is unsatis�ed with existing
presentations for various reasons, and has strived for detail and clarity in this chapter.

Why computational semantics? There are many styles of type-theoretic semantics,
often based on category theory. Computational semantics are essential to Nuprl as they
comprise its only intended semantics—unlike intensional [ML75b] and extensional [ML82]

11
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type theory which, as discussed in Section 1.2, are celebrated in part for their range of
models. As a result, the rules of Nuprl permit structurally ill-typed terms, terms with many
distinct types, untyped reduction, non-termination, and many other features sensible
in the λ-calculus but foreign to categorical semantics of type theories. Categorically,
computational semantics are a model of type theory in modest sets, sets whose elements
are tracked by collections of elements of a partial combinatory algebra [Oos08]. However,
whereas universes of modest sets model an impredicative type-theoretic universe, the
universes of computational semantics do not, because the latter are inductive-recursively
de�ned modest sets of named collections of types.

More generally, our freestyle approach has the advantage of providing self-contained,
elementary, constructive semantics directly justifying program extraction: indeed, we
de�ne M ∈ A to mean that M is a program with behavior A. Computational semantics
of intensional type theory, for instance, validate erasure of type annotations and identity
proofs during extraction, as they are unneeded at runtime. In Cartesian cubical type theory,
computational semantics allow us to consider the e�ciency of Kan operations, suggesting
faster algorithms valid only for closed terms, or containing structurally ill-typed subterms.

Being self-contained and constructive, computational semantics are quite portable
across metatheories. We have written Chapters 2 and 4 in an agnostic style compatible
with both (constructive) set theory and extensional type theory. Sterling and Harper
[SH18] develop the computational semantics of guarded computational type theory in the
internal language of a particular presheaf topos that they simulate by Coq with axioms.

Computational semantics are an instance of the technique of logical relations, or Tait’s
method [Tai67], which is commonly used in type theory to establish completeness of
normalization by evaluation [Abe13], and in programming language theory to prove
properties of type systems, such as termination, parametricity, and safety. Our compu-
tational semantics constitute a logical relations proof that the rules of Idealized Nuprl
enforce behavioral properties of extracts. (The Nuprl perspective, however, is typically the
reverse—viewing not the rules but the semantic relations as de�nitive.)

2.1 Syntax and operational semantics

Idealized Nuprl is founded on an untyped functional programming language whose syntax
is presented in Figure 2.1. This language extends the λ-calculus in a standard fashion and is
an instance of both Martin-Löf’s system of arities [NPS90, Chapter 3] and Harper’s abstract
binding trees [Har16, Chapter 1]. We include type constructors because dependency
induces computation in types; types and terms cannot have distinct syntactic sorts because
typehood in Idealized Nuprl is posterior to operational semantics.

We follow Harper’s syntax chart notation in Figure 2.1, writing every term �rst as an
abstract binding tree, then in a friendlier concrete notation, and �nally in English. Capital



Syntax and operational semantics 13

M := Π(A,a.B) (a:A) → B dependent function type
λ(a.M) λa.M lambda abstraction
app(M,N ) M N function application
Σ(A,a.B) (a:A) × B dependent pair type
pair(M,N ) 〈M,N 〉 pairing
fst(M) fst(M) �rst projection
snd(M) snd(M) second projection
Eq(A,M,N ) EqA(M,N ) equality type
refl ? equality proof
nat nat natural number type
z z zero
s(M) s(M) successor
natrec(M,N1,n.a.N2) natrec(M ;N1,n.a.N2) natural number recursion
bool bool boolean type
true true true
false false false
if(M,N1,N2) if(M ;N1,N2) boolean recursion
Prop[i] Propi ith subsingleton universe
Type[i] Typei ith type universe

Figure 2.1: Syntax of Idealized Nuprl.

letters (M,N ,A, . . . ) represent terms, and lowercase letters (a,n) represent variables and
binders. (We deliberately avoid x,y, z as Chapter 4 uses these for interval variables.) Note
that in (a:A) → B and (a:A) × B, the variable a is bound in B; we write A→ B and A × B
respectively when a does not occur in B.

As is customary, we equate α-equivalent terms1 (quotienting terms by renaming of
bound variables, or choosing a nameless representation of variable binders), and equip
terms with a capture-avoiding substitution M[N /a] that replaces free occurrences of a
with N in M . Readers unfamiliar with these concepts may wish to consult Harper [Har16,
Chapter 1]. We do not quotient terms by β- or η-equivalence at this stage. (Modern Nuprl
quotients untyped terms by applicative bisimulation [How89], as we discuss in Section 2.6.)

We give operational meaning to closed terms (those without free variables) using
a structural operational semantics [Plo81] de�ned in Figure 2.2. The judgment M0 val
speci�es when M0 is a value, and M 7−→ M′ speci�es when M takes one step of weak head
evaluation to M′. We will write M 7−→∗ M′ when M steps to M′ in zero or more steps, and
M ⇓ M0, or M evaluates to M0, when M 7−→∗ M0 and M0 val.

1Surprisingly, Allen does not equate α-equivalent terms [All87, p. 66]!
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(a:A) → B val λa.M val

M 7−→ M′

M N 7−→ M′ N (λa.M) N 7−→ M[N /a]

(a:A) × B val 〈M,N 〉 val

M 7−→ M′

fst(M) 7−→ fst(M′)

M 7−→ M′

snd(M) 7−→ snd(M′)

fst(〈M,N 〉) 7−→ M snd(〈M,N 〉) 7−→ N

EqA(M,N ) val ? val

nat val z val s(M) val

M 7−→ M′

natrec(M ;Z ,n.a.S) 7−→ natrec(M′;Z ,n.a.S)

natrec(z;Z ,n.a.S) 7−→ Z natrec(s(M);Z ,n.a.S) 7−→ S[M/n][natrec(M ;Z ,n.a.S)/a]

bool val true val false val

M 7−→ M′

if(M ;T , F ) 7−→ if(M′;T , F ) if(true;T , F ) 7−→ T if(false;T , F ) 7−→ F

Propi val Typei val

Figure 2.2: Operational semantics of Idealized Nuprl.
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These judgments satisfy two key properties easily proven by induction on their def-
initions. First, if M val, then M X7−→. (The converse is not the case; counterexamples,
such as fst(λa.a), are called stuck.) Second is determinacy of evaluation: if M 7−→ M′ and
M 7−→ M′′, then M′ = M′′.

2.2 Constructing type systems

Our programming language contains building blocks of mathematics—functions, pairs,
natural numbers, et cetera—which we must now assemble into the types and elements of
Idealized Nuprl. We brie�y survey the requirements of our construction before making
them precise below. In short, we must de�ne a collection V0 ⊂ Tm of closed terms that
name types, and assign to each A ∈ V0 a collection El(A) ⊂ Tm of its closed term elements.

We de�ne V0 inductively. To de�ne the type of Booleans, for instance, we specify that
bool ∈ V0. Clearly true and false denote Booleans, as do all programs evaluating to true or
false, such as (λa.a) true; thus El(bool) = {M | M ⇓ true ∨M ⇓ false}. As for the type of
equality proofs, we require at a minimum that EqA(M,N ) ∈ V0 when A is a type (A ∈ V0)
with elements M and N (M,N ∈ El(A))—a strange condition, because the de�nition of
V0 now refers to El, a function out of V0! Because EqA(−,−) is a dependent type, we
must also demand that it respect equality in its arguments, lest λa.EqA(M,a) not form an
A-indexed family of types. (In fact, without any such condition, even Eqbool(true, true)
and Eqbool(true, (λa.a) true) need not be equal!)

Element equality is type-sensitive (for instance, because of η principles), so we must
de�ne for each type A not only El(A) but also an equivalence relation on El(A), and check
that types dependent on A send equal elements of El(A) to equal types. Equality of types,
in turn, forms an equivalence relation on V0 that El must respect.

Finally, given V0 and El, we construct a second, larger collection of types V1 closed
under the same type formers, with an additional base type Type0 ∈ V1 whose elements are
types of the previous level (El(Type0) = V0). We obtain a cumulative hierarchy of universes
in Vω by iterating this process V0 ⊂ V1 ⊂ · · · where Type0, Type1, . . . , Typen−1 ∈ Vn.

Actualizing the vision De�ning simultaneously a set Vi , an equivalence relation on Vi ,
a map El : Vi → Set, and an equivalence relation on each El(A) is a process requiring careful
justi�cation. As a cautionary tale, recall that type theories with the rule Typei ∈ Typei are
inconsistent, essentially for the same reason that there is no set of all sets [Hur95]. Such a
principle is not obviously incompatible with the semantics outlined above—in particular,
there is no size issue with a construction in which Typei ∈ Vi and El(Typei) = Vi . Instead,
we will see that such a de�nition is subtly ill-founded.

Induction-recursion is a generalization of type-theoretic inductive de�nition in which an
inductive type is de�ned simultaneously with a recursive function out of that type [Dyb00].
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Our de�nition of Vi can be justi�ed by induction-recursion, and was in fact its motivating
example. In this dissertation we opt instead for a �xed point construction described by
Allen [All87]: we �nd Allen’s construction more straightforward on paper and appreciate
that it can be carried out in set theory or type theories without induction-recursion. Indeed,
Allen’s construction is also used by Nuprl in Coq [AR14], as Coq lacks induction-recursion.

Rather than specifying �rst a subset of Tm and then an equivalence relation on that
subset, we de�ne both simultaneously as a partial equivalence relation (PER), or a symmetric
and transitive binary relation. A partial equivalence relation R on Tm corresponds to
the subset {M ∈ Tm | R(M,M)} on which it is an equivalence relation; conversely, an
equivalence relation R on a subset of Tm is a PER on the whole of Tm. Because typehood
and membership should respect evaluation, we de�ne them as PERs on values and lift to
terms by evaluation. We cannot actually quotient terms by semantic equality at any point
during this process because computation can distinguish semantically equal terms.

Summing up, we must de�ne a PER of value types, and for each value type, a PER of
value elements. Harper [Har92] constructs these as the least �xed point of a monotone func-
tion on the pointed directed-complete partial order (V :PER(Val)) × (Val/V → PER(Val)).
Unfortunately, the existence of such a �xed point requires a classical cardinality argument,
and to make Harper’s construction precise, one must verify the monotone function sends
PERs to PERs and respects type equality. Following Allen [All87], we instead achieve onto-
logical reality with a least �xed point on the complete lattice of candidate (or possible) type
systems P(Val × Val × P(Val × Val)), and observe after the fact that we have constructed
a proper type system.

De�nition 2.1. A candidate type system is a relation τ (A0,B0,φ) over A0 val, B0 val, and
binary relations φ(M0,N0) over M0 val and N0 val.

De�nition 2.2. A type system is a candidate type system τ satisfying:

1. Unicity: If τ (A0,B0,φ) and τ (A0,B0,φ
′) then φ = φ′.

2. PER-valuation: If τ (A0,B0,φ) then φ is symmetric and transitive.

3. Symmetry: If τ (A0,B0,φ) then τ (B0,A0,φ).

4. Transitivity: If τ (A0,B0,φ) and τ (B0,C0,φ) then τ (A0,C0,φ).

The relation τ (A0,B0,φ) encodes that A0 and B0 are equal value types with element
relationφ. The conditions of De�nition 2.2 ensure that types have unique element relations,
and that type and element equality are PERs.

Our construction uses the Knaster–Tarski �xed point theorem, which states that any
monotone (order-preserving) function F (x) on a complete lattice has a least �xed point
µx .F (x) that is also its least pre-�xed point [DP02, 2.35]. We consider monotone functions
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on the complete lattice of candidate type systems2 ordered by inclusion, built using the
following combinators that resurface as judgments in De�nitions 2.12 and 2.20:

De�nition 2.3 (Candidate judgments). Given a candidate type system τ :

1. A ∼ A′ ↓ α ∈ τ when A ⇓ A0, A′ ⇓ A′0, and τ (A0,A
′
0,α).

2. M ∼ M′ ∈ α when M ⇓ M0, M′ ⇓ M′0, and α(M0,M
′
0).

3. a : α . B ∼ B′ ↓ β ∈ τ when for all M ∼ M′ ∈ α , B[M/a] ∼ B′[M′/a] ↓ βM,M ′ ∈ τ .

4. a : α . N ∼ N ′ ∈ β when for all M ∼ M′ ∈ α , N [M/a] ∼ N ′[M′/a] ∈ βM,M ′ .

In Figure 2.3, we de�ne each type former as a monotone function on candidate type
systems. For instance, Pair(τ ) is a candidate type system whose types are all possible
dependent pairs of types and type families of τ , de�ned by formation and introduction
rules.3 Base types Nat and Bool take no input because their meaning is constant in τ .
Candidate type system τ0 := µτ .Types(�, τ ) is the least �xed point of the union (disjoint by
construction) of the type formers, and is therefore the least candidate type system closed
under the non-universe type formers. As with V0 earlier, τ0 will serve as universe Type0 of
the �nal type system.

Idealized Nuprl has a second universe hierarchy Propi ⊂ Typei whose elements are
subsingletons, types all of whose elements are equal. We construct π0 := µπ .Props(π , τ0)

as the least �xed point of the type formers that preserve subsingletons: EqA(M,N ) for any
A (drawn from τ0), (a:A) × B(a) for subsingletons A and B(a) (both drawn from π0), and
(a:A) → B for A in τ0 and B(a) in π0.

We de�ne a third candidate type system, ν1, containing only two types—Type0 whose
elements are types of τ0, and Prop0 whose elements are types of π0—and then a fourth
candidate type system, τ1, the least �xed point of the type formers and the universes of
ν1. We iterate this process for all i ∈ {0, 1, . . . ,ω} to obtain three sequences of candidate
type systems: τi of all types with universes < i , πi of subsingleton types with universes
< i , and νi of only universes < i .

Suppose we had instead considered a single universe Type ∈ Type containing itself:

Types(τ ) = Fun(τ , τ ) ∪ · · · ∪ {(Type, Type, {(A0,B0) | τ (A0,B0,φ)})}

Such a Types function is not monotone, since adding types to τ does not preserve the
elements of Type, so we are not guaranteed a least �xed point. Readers who prefer type

2Type systems do not form a complete lattice, as unicity and transitivity are not preserved by joins.
3Standard logical relations de�ne function and pair types not by introduction but rather elimination: one

demands not that M ∈ (a:A) × B(a) evaluate to a pair, but instead that fst(M) ∈ A and snd(M) ∈ B(fst(M)).
Either de�nition is workable in this chapter, but relying on introduction forms will be crucial in Chapter 4.



18 Idealized Nuprl

Fun(τ , π ) := {((a:A) → B, (a:A′) → B′,φ) |

∃α, β .(A ∼ A′ ↓ α ∈ τ ) ∧ (a : α . B ∼ B′ ↓ β ∈ π )

∧ φ = {(λa.N , λa.N ′) | a : α . N ∼ N ′ ∈ β}}

Pair(τ ) := {((a:A) × B, (a:A′) × B′,φ) |
∃α, β .(A ∼ A′ ↓ α ∈ τ ) ∧ (a : α . B ∼ B′ ↓ β ∈ τ )

∧ φ = {(〈M,N 〉, 〈M′,N ′〉) | (M ∼ M′ ∈ α) ∧ (N ∼ N ′ ∈ βM,M ′)}}

Eq(τ ) := {(EqA(M,N ), EqA′(M
′,N ′),φ) |

∃α .(A ∼ A′ ↓ α ∈ τ ) ∧ (M ∼ M′ ∈ α) ∧ (N ∼ N ′ ∈ α)

∧ (φ = {(?,?) | M ∼ N ∈ α })}

Nat := {(nat, nat,φ) | φ = µR.({(z, z)} ∪ {(s(M), s(M′)) | M ∼ M′ ∈ R})}

Bool := {(bool, bool,φ) | φ = {(true, true), (false, false)}}
Prop(ν ) := {(Propi, Propi,φ) | Propi ∼ Propi ↓ φ ∈ ν }

Type(ν ) := {(Typei, Typei,φ) | Typei ∼ Typei ↓ φ ∈ ν }

Props(π , τ ) := Fun(τ , π ) ∪ Pair(π ) ∪ Eq(τ )
Types(ν, τ ) := Fun(τ , τ ) ∪ Pair(τ ) ∪ Eq(τ ) ∪ Nat ∪ Bool ∪ Prop(ν ) ∪ Type(ν )

νn := {(Propi, Propi,φ) | (i < n) ∧ (φ = {(A0,B0) | ∃α .A0 ∼ B0 ↓ α ∈ πi})}

∪ {(Typei, Typei,φ) | (i < n) ∧ (φ = {(A0,B0) | ∃α .A0 ∼ B0 ↓ α ∈ τi})}

πn := µπ .Props(π , τn)
τn := µτ .Types(νn, τ )

Figure 2.3: PER semantics of Idealized Nuprl.
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theory as a metatheory can read Figure 2.3 quite directly as an inductive de�nition of
τi, πi : Val × Val × (Val × Val→ Prop) → Prop for an impredicative Prop, in which case
the above Types would be insu�ciently positive. In the absence of impredicative Prop, one
can de�ne n levels of Idealized Nuprl with (n + 1) predicative universes [AR14].

The rest of this section is devoted to proofs that τi, πi are type systems (Theorem 2.8)
and that πi ⊂ τi (Theorem 2.11). We hope some readers will �nd these proofs instructive,
as the author was unable to locate any paper versions of these proofs longer than “By
induction.” The uninterested reader may nevertheless safely skip to Section 2.3.

Lemma 2.4. Let F (R) = {(z, z)} ∪ {(s(M), s(M′)) | M ∼ M′ ∈ R}. Then N := µR.F (R) is
symmetric and transitive.

Proof.

1. Symmetry.

Let Φ = {(M′0,M0) | N(M0,M
′
0)}, and show that Φ is a pre-�xed point of F (that is,

F (Φ) ⊆ Φ); N is the least pre-�xed point of F , so N ⊆ Φ, and thus N is symmetric.
There are two cases. If F (Φ)(z, z), then we must show Φ(z, z), which is trivial. If
F (Φ)(s(M′), s(M)), then M′ ∼ M ∈ Φ and hence M ∼ M′ ∈ N; we must show
N(s(M), s(M′)), which follows by N = F (N).

2. Transitivity.

Let Φ = {(M0,M
′
0) | ∀M

′′
0 .N(M

′
0,M

′′
0 ) =⇒ N(M0,M

′′
0 )}, and show that F (Φ) ⊆ Φ; it

follows that N ⊆ Φ, and therefore that N is transitive.
Again, there are two cases. If F (Φ)(z, z), we must show Φ(z, z), that is, for all M0
such that N(z,M0) we have N(z,M0), which is trivial. If F (Φ)(s(M), s(M′)) (that is,
M ∼ M′ ∈ Φ), we must showΦ(s(M), s(M′)): for all valuesM′′0 such thatN(s(M′),M′′0 ),
we must show N(s(M),M′′0 ). But then M′′0 = s(M′′) and M′ ∼ M′′ ∈ N for some M′′,
so by M ∼ M′ ∈ Φ, M ∼ M′′ ∈ N. The result follows by N = F (N). �

Notice that N and Φ are de�ned only on values, but the successor case of F forces us
to confront non-values as well. In (1), M′ ∼ M ∈ Φ implies M ∼ M′ ∈ N not immediately
by de�nition, but by observing that M ⇓ M0, M′ ⇓ M′0, and Φ(M′0,M0), hence N(M0,M

′
0),

hence M ∼ M′ ∈ N. The next proofs are complicated further by Fun and Pair, which lift
inductive hypotheses to families of open terms; in the proof of Lemma 2.6, this lifting
forces us to simultaneously prove transitivity on the left and right.

Lemma 2.5. If ν is a type system, then µTypes(ν ) := µτ .Types(ν, τ ) satis�es unicity.

Proof. Let Φ = {(A0,B0,φ) | ∀φ
′.µTypes(ν )(A0,B0,φ

′) =⇒ (φ = φ′)} and prove Φ is a
pre-�xed point of Types(ν,−) (that is, Types(ν,Φ) ⊆ Φ). Because µTypes(ν ) is the least
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pre-�xed point of Types(ν,−), it will follow that µTypes(ν ) ⊆ Φ, and therefore that µTypes(ν )
satis�es unicity. We can consider each type former separately because they are disjoint.
We will write out the case for Fun carefully; Pair and Eq are similar, Nat and Bool are
immediate, and Prop and Type follow from the unicity of ν .

Consider the Fun clause of Types(ν,Φ): suppose Fun(Φ,Φ)((a:A) → B, (a:A′) → B′,φ)
and show Φ((a:A) → B, (a:A′) → B′,φ), that is, if µTypes(ν )((a:A) → B, (a:A′) → B′,φ′)
then φ = φ′. Unrolling µTypes(ν ), we have A ∼ A′ ↓ α ′ ∈ µTypes(ν ) and a : α ′ . B ∼ B′ ↓
β′ ∈ µTypes(ν ) for some α ′, β′. Unrolling Fun(Φ,Φ), we have A ∼ A′ ↓ α ∈ Φ, or for any
α ′′ such that A ∼ A′ ↓ α ′′ ∈ µTypes(ν ), α = α ′′. Such an α ′′ exists (namely, α ′), so it is
unique. Similarly, by a : α . B ∼ B′ ↓ β ∈ Φ, we know that for any M,M′ with M ∼ M′ ∈ α ,
there is a unique β′M,M ′ such that B[M/a] ∼ B′[M′/a] ↓ β′M,M ′ ∈ µTypes(ν ). Because φ,φ′
are determined by the choice of α ′ and those β′M,M ′ we conclude that φ = φ′. �

Lemma 2.6. If ν is a type system, then µTypes(ν ) := µτ .Types(ν, τ ) is a type system.

Proof. We must prove PER-valuation, symmetry, and transitivity simultaneously. Let

Φ(A0,B0,φ) = {µTypes(ν )(A0,B0,φ) ∧ φ is a PER ∧ µTypes(ν )(B0,A0,φ)

∧ (∀C0,φ
′.µTypes(ν )(B0,C0,φ

′) =⇒ µTypes(ν )(A0,C0,φ) ∧ φ = φ
′)

∧ (∀C0,φ
′.µTypes(ν )(C0,A0,φ

′) =⇒ µTypes(ν )(C0,B0,φ) ∧ φ = φ
′)}

We prove Types(ν,Φ) ⊆ Φ; it will follow that µTypes(ν ) ⊆ Φ, and by Lemma 2.5 that
µTypes(ν ) is a type system. (Surprisingly, unicity �gures nowhere else in this proof!)
Suppose Fun(Φ,Φ)((a:A) → B, (a:A′) → B′,φ). Unfolding de�nitions,

1. A ∼ A′ ↓ α ∈ µTypes(ν ),

2. α is a PER,

3. A′ ∼ A ↓ α ∈ µTypes(ν ),

4. if A′ ∼ A′′ ↓ α ′ ∈ µTypes(ν ) then A ∼ A′′ ↓ α ∈ µTypes(ν ) and α = α ′,

5. if A′′ ∼ A ↓ α ′ ∈ µTypes(ν ) then A′′ ∼ A′ ↓ α ∈ µTypes(ν ) and α = α ′,

6. for all M ∼ M′ ∈ α , B[M/a] ∼ B′[M′/a] ↓ βM,M ′ ∈ µTypes(ν ),

7. for all M ∼ M′ ∈ α , βM,M ′ is a PER,

8. for all M ∼ M′ ∈ α , B′[M′/a] ∼ B[M/a] ↓ βM,M ′ ∈ µTypes(ν ),

9. for all M ∼ M′ ∈ α , if B′[M′/a] ∼ C ↓ β′M,M ′ ∈ µTypes(ν ) then B[M/a] ∼ C ↓ βM,M ′ ∈
µTypes(ν ) and βM,M ′ = β′M,M ′ ,
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10. for all M ∼ M′ ∈ α , if C ∼ B[M/a] ↓ β′M,M ′ ∈ µTypes(ν ) then C ∼ B′[M′/a] ↓ βM,M ′ ∈
µTypes(ν ) and βM,M ′ = β′M,M ′ , and

11. φ = {(λa.N , λa.N ′) | a : α . N ∼ N ′ ∈ β}.

We prove each component of Φ((a:A) → B, (a:A′) → B′,φ) separately:

1. We have µTypes(ν )((a:A) → B, (a:A′) → B′,φ) by (1,6,11).

2. PER-valuation.

To prove φ is transitive, suppose that a : α . N ∼ N ′ ∈ β , a : α . N ′ ∼ N ′′ ∈ β ,
and M ∼ M′ ∈ α , and show N [M/a] ∼ N ′′[M′/a] ∈ βM,M ′. Because α is a PER,
M ∼ M ∈ α , so N [M/a] ∼ N ′[M/a] ∈ βM,M and N ′[M/a] ∼ N ′′[M′/a] ∈ βM,M ′. We
know βM,M ′ is transitive, so it su�ces to show that βM,M = βM,M ′:

B′[M/a] ∼ B[M/a] ↓ βM,M ∈ µTypes(ν ) by (8)
B[M/a] ∼ B′[M′/a] ↓ βM,M ′ ∈ µTypes(ν ) by (6)

βM,M = βM,M ′ by (10)

To prove φ is symmetric, suppose that a : α . N ∼ N ′ ∈ β and M ∼ M′ ∈ α ,
and show N ′[M/a] ∼ N [M′/a] ∈ βM,M ′. Because α is a PER, M′ ∼ M ∈ α , so
N [M′/a] ∼ N ′[M/a] ∈ βM ′,M . We know βM,M ′ is symmetric, so it su�ces to show
that βM ′,M = βM,M ′:

B[M/a] ∼ B′[M/a] ↓ βM,M ∈ µTypes(ν ) by (6)
B′[M/a] ∼ B[M′/a] ↓ βM ′,M ∈ µTypes(ν ) by (8)

βM ′,M = βM,M = βM,M ′ by (9), βM,M = βM,M ′

3. Symmetry.

We must show µTypes(ν )((a:A′) → B′, (a:A) → B,φ). By (3) we have A′ ∼ A ↓ α ∈
µTypes(ν ). It su�ces to show a : α . B′ ∼ B ↓ β ∈ µTypes(ν ). Suppose M ∼ M′ ∈ α . By
(2,8) we have B′[M/a] ∼ B[M′/a] ↓ βM ′,M ∈ µTypes(ν ), and by the above argument,
βM ′,M = βM,M ′ .

4. Right transitivity.

Suppose µTypes(ν )((a:A′) → B′,C0,φ
′), and show µTypes(ν )((a:A) → B,C0,φ) and

φ = φ′. By inspecting the de�nition of Types, we conclude C0 = (a:A′′) → B′′,
A′ ∼ A′′ ↓ α ′ ∈ µTypes(ν ), and a : α ′ . B′ ∼ B′′ ↓ β′ ∈ µTypes(ν ). By (4), A ∼ A′′ ↓ α ∈
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µTypes(ν ) and α = α ′. It su�ces to show a : α . B ∼ B′′ ↓ β ∈ µTypes(ν ). Suppose
M ∼ M′ ∈ α .

B[M/a] ∼ B′[M/a] ↓ βM,M ∈ µTypes(ν ) by (6)
B′[M/a] ∼ B′′[M′/a] ↓ β′M,M ′ ∈ µTypes(ν ) by hypothesis
B[M/a] ∼ B′′[M′/a] ↓ βM,M ′ ∈ µTypes(ν ) by (9), βM,M = βM,M ′

5. Left transitivity.

Suppose µTypes(ν )(C0, (a:A) → B,φ′), and show µTypes(ν )(C0, (a:A′) → B′,φ) and
φ = φ′. By the de�nition of Types, C0 = (a:A′′) → B′′, A′′ ∼ A ↓ α ′ ∈ µTypes(ν ), and
a : α ′ . B′′ ∼ B ↓ β′ ∈ µTypes(ν ). By (5), A′′ ∼ A′ ↓ α ∈ µTypes(ν ) and α = α ′. To show
a : α . B′′ ∼ B′ ↓ β ∈ µTypes(ν ), suppose M ∼ M′ ∈ α .

B′′[M/a] ∼ B[M′/a] ↓ β′M,M ′ ∈ µTypes(ν ) by hypothesis
B[M′/a] ∼ B′[M′/a] ↓ βM ′,M ′ ∈ µTypes(ν ) by (6)
B′′[M/a] ∼ B′[M′/a] ↓ βM ′,M ′ ∈ µTypes(ν ) by (10)

It remains only to show βM ′,M ′ = βM,M ′:

B[M/a] ∼ B′[M′/a] ↓ βM,M ′ ∈ µTypes(ν ) by (6)
B′[M′/a] ∼ B[M′/a] ↓ βM ′,M ′ ∈ µTypes(ν ) by (8)

βM ′,M ′ = βM,M ′ by (9)

The cases for Pair and Eq are very similar. PER-valuation follows from Lemma 2.4 for
Nat, trivially for Bool, and from PER-valuation of ν for Prop and Type. Symmetry, left
transitivity, and right transitivity for Nat, Bool, Prop, and Type are immediate. �

Lemma 2.7. If τ is a type system, then µProps(τ ) := µπ .Props(π , τ ) is a type system.

Proof. The proof follows those of Lemmas 2.5 and 2.6. The Pair case is identical. In the
Eq case, the index type is drawn from τ and not π , so we have no inductive hypotheses
and instead observe that the desired properties follow from those of τ . In the Fun case,
the domain is drawn from τ and the codomain type is drawn from π , so we only have
inductive hypotheses arising from a : α . B ∼ B′ ↓ β ∈ π and a : α . N ∼ N ′ ∈ β . �

Theorem 2.8. For all i ∈ {0, 1, . . . ,ω}, νi , τi , and πi are type systems.

Proof. By strong induction on i . In the base case, ν0 is empty and thus a type system;
τ0 = µTypes(ν0) is a type system by Lemma 2.6; and π0 = µProps(τ0) is a type system by
Lemma 2.7. In the inductive case, suppose that νi, τi, πi are type systems for all i < n. Then
νn is a type system: unicity, symmetry, and transitivity are immediate, and PER-valuation
follows from symmetry and transitivity of τi and πi for i < n. Once again, τn and πn are
type systems by Lemmas 2.6 and 2.7. (The ω case is identical.) �
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Finally, to prove our universes are cumulative (Typei ⊆ Typej and Propi ⊆ Propj)
we must observe that the sequences of type systems {τi}i, {πi}i are increasing. To prove
Propi ⊆ Typei we must observe πi ⊆ τi , which will require a lesser-known theorem about
simultaneous �xed points [Bek84].

Lemma 2.9. In any complete lattice, if F (x) andG(x) are monotone and F (x) ⊆ G(x) for all
x , then µx .F (x) ⊆ µx .G(x).

Proof. µx .G(x) is a pre-�xed point of F because F (µx .G(x)) ⊆ G(µx .G(x)) = µx .G(x). But
µx .F (x) is the least such, so µx .F (x) ⊆ µx .G(x). �

Lemma 2.10. In any complete lattice, if F (x,y) and G(x,y) are monotone and F (x,y) ⊆
G(x,y) whenever x ⊆ y, then µF ⊆ µG where (µF , µG) := µ(x,y).(F (x,y),G(x,y)).

Proof. Let µ∩ = µF ∩ µG . (µ∩, µG) is a pre-�xed point of (x,y) 7→ (F (x,y),G(x,y)) because,
by assumption and (µF , µG) being a �xed point, F (µ∩, µG) ⊆ F (µF , µG) = µF and F (µ∩, µG) ⊆
G(µ∩, µG) ⊆ G(µF , µG) = µG . This implies (µF , µG) ⊆ (µ∩, µG) and thus µF ⊆ µG . �

Theorem 2.11. For i, j ∈ {0, 1, . . . ,ω} where i ≤ j, we have τi ⊆ τj , πi ⊆ πj , and πi ⊆ τi .

Proof. The functions Types and Props are monotone in both arguments, so by Lemma 2.9,
µTypes and µProps are also monotone. When i ≤ j we have νi ⊆ νj by construction, so
τi = µTypes(νi) ⊆ µTypes(νj) = τj and πi = µProps(τi) ⊆ µProps(τj) = πj .

By a theorem of Bekić [Bek84, p. 39] on simultaneous �xed points, for all ν ,

µ(π , τ ).(Props(π , τ ),Types(ν, τ )) = (µProps(µTypes(ν )), µTypes(ν ))

When π ⊆ τ , Props(π , τ ) ⊆ Types(ν, τ ); thus πi ⊆ τi follows by Lemma 2.10. �

2.3 Closed and open judgments

Unlike the candidate judgments of Section 2.2, the judgments of Idealized Nuprl contain
only terms (not also relations α, β) and de�ne typehood and membership under arbitrarily
many hypotheses (not only zero or one). We �rst de�ne the closed judgments of type and
element equality under no hypotheses.

De�nition 2.12 (Closed judgments). Given a type system τ :

1. A � B type when A ∼ B ↓ α ∈ τ .4

2. M � N ∈ A, presupposing A � A type, when A ∼ A ↓ α ∈ τ and M ∼ N ∈ α .
4We adopt the � notation because homotopy type theorists commonly use = for homotopy, not equality.
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A presupposition is an assumption required to make sense of a judgment. The statement
“M and N are equal elements of A” is only well-formed if A is a type (and hence equipped
with a notion of equal element). Whenever we assert M �N ∈ A, we implicitly assertA is a
type; whenever A is a type, we will write nAo for its PER of elements (α in De�nition 2.12).

The closed judgments are symmetric and transitive by the corresponding properties of
type systems. As a corollary, A � A type whenever A � B type; by unicity of type systems,
both judgments give rise to the same nAo. We henceforth abbreviate A �A type by A type,
and M � M ∈ A by M ∈ A.

Lemma 2.13. If A � B type andM � N ∈ A thenM � N ∈ B.

Proof. By unicity of type systems, nAo = nBo; M ∼ N ∈ nAo implies M ∼ N ∈ nBo. �

De�nition 2.12 is parametrized by a choice of type system serving as an ambient

universe of types. The type system τω constructed in Section 2.2 is the ambient universe of
Idealized Nuprl, but we must also consider τi, πi to prove properties of its internal universes
Typei, Propi . We write τ |= J for any judgment J to make the choice of τ explicit; when
unspeci�ed, judgments are relative to τω .

Lemma 2.14. If A � B ∈ Propi or A � B ∈ Typei then A � B type.

Proof. Suppose τω |=
(
A � B ∈ Propi

)
; then A ∼ B ↓ α ∈ πi . By Theorem 2.11, πi ⊆ τω ,

so A ∼ B ↓ α ∈ τω , and thus A � B type. Similarly, when τω |=
(
A � B ∈ Typei

)
, we have

A ∼ B ↓ α ∈ τi and τi ⊆ τω . �

Types whose elements are types (as in Lemma 2.14) are known as universes à la Russell,
in contrast to universes à la Tarski, whose elements are the names of types (n̂at ∈ Typei and
El(n̂at)� nat type) [ML84]. The distinction is blurred in computational semantics, because
elements of universes are the names of types—nTypeio contains nat, not nnato—but the
typehood judgment also concerns the names of types!

The signature feature of Nuprl is that its judgments range over untyped terms, allow-
ing users to establish typehood and membership judgments by untyped evaluation—for
instance, A type by A ⇓ A0 and A0 type. In contrast, the judgments of most type theories
range over structurally well-typed terms, but are closed under evaluation—if A type (hence
A � A type) and A ⇓ A0, then A � A0 type.

Lemma 2.15 (Head expansion).

1. If A′ type and A 7−→∗ A′, then A � A′ type.

2. IfM′ ∈ A andM 7−→∗ M′, thenM � M′ ∈ A.

Proof. For part (1), A′ type impliesA′ ⇓ A0 and τω(A0,A0,α). By determinacy of evaluation,
A ⇓ A0 as well, and therefore A � A′ type by de�nition. Part (2) follows similarly. �
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Lemma 2.16 (Evaluation). IfM ∈ A thenM � M0 ∈ A whereM ⇓ M0.

Proof. By de�nition, M ⇓ M0 and nAo(M0,M0), and therefore M � M0 ∈ A. �

Open judgments The open judgments of type and element equality under hypotheses
express that an equality holds as a closed judgment for all instantiations by elements
(proofs) of the hypotheses. We begin by de�ning lists of hypotheses and their instantiations.

De�nition 2.17. A telescope is either

1. nil, written ·, or

2. cons(A,a.Γ), written (a : A, Γ), for a term A and telescope Γ.

De�nition 2.18. For γ ,γ ′ lists and Γ a telescope, γ ∼ γ ′ ∈ Γ when

1. · ∼ · ∈ ·, or

2. (M,γ ) ∼ (M′,γ ′) ∈ (a : A, Γ) when M � M′ ∈ A and γ ∼ γ ′ ∈ Γ[M/a].

A telescope is a cons list whose tail has a bound variable, allowing later hypotheses to
be parametrized over earlier ones. Telescopes are abstract binding trees and inherit notions
of α-equivalence and substitution Γ[M/a]. The relation γ ∼ γ ′ ∈ Γ, which Crary [Cra98,
p. 56] calls assignment similarity, expresses that γ ,γ ′ are pointwise equal in the types of Γ;
however, because Γ[M/a] and Γ[M′/a] need not have equal elements when M �M′ ∈ A,
assignment similarity is neither symmetric nor transitive! Following Martin-Löf [ML82],
we restrict attention to contexts (a : A, Γ) in which the telescope Γ(a) respects equality in
A. (Allen [All87] has a rather di�erent de�nition of context, as we discuss in Section 2.6.)

De�nition 2.19 (Contexts). For Γ, Γ′ telescopes, Γ � Γ′ ctx when

1. · � · ctx, or

2. (a : A, Γ) � (a : A′, Γ′) ctx when A � A′ type and for all M � M′ ∈ A, Γ[M/a] �
Γ′[M′/a] ctx.

Thus, as in the categorical semantics of type theory, a context Γ is simply a nested
dependent pair type written as a telescope, an assignment γ ∼ γ ∈ Γ is an element of that
type written as a list, and an open judgment Γ � J is a dependent function (γ :Γ) → J(γ ).

De�nition 2.20 (Open judgments).

1. Γ � A � A′ type, presupposing Γ � Γ ctx, when for all γ ∼ γ ′ ∈ Γ, Aγ � A′γ ′ type.
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2. Γ � M � M′ ∈ A, presupposing Γ � A � A type, when for all γ ∼ γ ′ ∈ Γ,
Mγ � M′γ ′ ∈ Aγ .

In De�nition 2.20, A, A′, M , and M′ extend the telescope Γ on the right (that is, they are
under all the binders of Γ), and the operation Mγ simultaneously substitutes the terms of γ
for the corresponding variables of Γ in M . These judgments are symmetric and transitive
despite omitting the crossed instantiations Mγ ′ and M′γ , because assignment similarity is
symmetric and transitive for contexts.

As with the closed judgments, we will henceforth abbreviate Γ � Γ ctx by Γ ctx,
Γ � A�A type by Γ � A type, and Γ � M �M ∈ A by Γ � M ∈ A. We adopt the Γ � J
notation used in the Nuprl book [Con+85] over the more standard Γ ` J to emphasize
that the open judgments of (Idealized) Nuprl express semantic consequence, not syntactic
consequence as in most type theories. That is, in Idealized Nuprl, if a type in Γ has no
elements, then any judgment whatsoever holds because the antecedent is vacuous (even,
say, Γ � z ∈ z), whereas in Coq one can only derive elements of structurally well-typed

types from a contradiction.
Most authors de�ne contexts as snoc lists to match the rules of type theory, which

add hypotheses on the right. In such presentations, the open judgments must be de�ned
mutually—for instance, (Γ,a : A) ctx when Γ � A type, which holds when Γ ctx et cetera.
In exchange for avoiding this di�culty, we must de�ne context extension (Γ,a : A) as a
derived operation (which concatenates the telescopes Γ and cons(A,a.nil) by recursion on
Γ), and must prove its usual property:

Lemma 2.21 (Context extension). If Γ � Γ′ ctx and Γ � A � A′ type then (Γ,a : A) �
(Γ′,a : A′) ctx.

Proof. By induction on Γ � Γ′ ctx. If Γ = Γ′ = ·, we must show that if A � A′ type then
(a : A) � (a : A′) ctx, which is immediate. Now suppose (b : B, Γ) � (b : B′, Γ′) ctx and
b : B, Γ � A � A′ type, and show ((b : B, Γ),a : A) � ((b : B′, Γ′),a : A′) ctx. By de�nition,
((b : B, Γ),a : A) = (b : B, (Γ,a : A)). We know B � B′ type, so it su�ces to show for any
N � N ′ ∈ B that (Γ[N /b],a : A[N /b]) � (Γ′[N ′/b],a : A′[N ′/b]) ctx. The result follows by
the inductive hypothesis, Γ[N /b] � Γ′[N ′/b] ctx, and Γ[N /b] � A[N /b] � A′[N ′/b] type
(by unrolling the de�nition of b : B, Γ � A � A′ type). �

Judgments satisfy the structural rules of hypothesis, weakening, and substitution.

Lemma 2.22 (Hypothesis). If (Γ,a : A,∆) ctx then Γ,a : A,∆ � a ∈ A.

Proof. We establish the presupposition Γ,a : A,∆ � A type by induction on Γ, unrolling
(Γ,a : A,∆) ctx to obtain Aγ � Aγ ′ type for all γ ∼ γ ′ ∈ Γ, and observing that a and the
variables of ∆ cannot occur in A. Now suppose (γ ,M, δ ) ∼ (γ ′,M′, δ ′) ∈ (Γ,a :A,∆) (hence
γ ∼ γ ′ ∈ Γ and M � M′ ∈ Aγ ) and show M � M′ ∈ Aγ , which is immediate. �
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Lemma 2.23 (Weakening). Supposing Γ � A type:

1. If Γ,∆ � B � B′ type then Γ,a : A,∆ � B � B′ type.

2. If Γ,∆ � N � N ′ ∈ B then Γ,a : A,∆ � N � N ′ ∈ B.

Proof. Suppose γ ∼ γ ′ ∈ Γ. We establish the presupposition (Γ,a : A,∆) ctx by induction
on Γ, obtaining Aγ � Aγ ′ type from Γ � A type and ∆γ � ∆γ ′ ctx from (Γ,∆) ctx. (The
latter su�ces because a cannot occur in ∆.) For part (1), suppose (γ ,M, δ ) ∼ (γ ′,M′, δ ′) ∈
(Γ,a : A,∆) and show Bγ [M/a]δ � B′γ ′[M′/a]δ ′ type. Because a cannot occur in B, this is
exactly Bγδ � B′γ ′δ ′ type, which holds by assumption. Part (2) follows similarly. �

Lemma 2.24 (Substitution). Supposing Γ � M � M′ ∈ A:

1. If Γ,a : A,∆ � B � B′ type then Γ,∆[M/a] � B[M/a] � B′[M′/a] type.

2. If Γ,a : A,∆ � N � N ′ ∈ B then Γ,∆[M/a] � N [M/a] � N ′[M′/a] ∈ B[M/a].

Proof. As in the previous lemmas, the presupposition (Γ,∆[M/a]) ctx is established by
induction on Γ, noting that for any γ ∼ γ ′ ∈ Γ, we have Mγ ∈ Aγ and ∆[M/a]γ =
∆γ [Mγ/a]. For part (1), suppose (γ , δ ) ∼ (γ ′, δ ′) ∈ (Γ,∆[M/a]), where γ ∼ γ ′ ∈ Γ and
δ ∼ δ ′ ∈ ∆[M/a]γ . Then (γ ,Mγ , δ ) ∼ (γ ′,M′γ ′, δ ′) ∈ (Γ,a : A,∆) by Mγ � M′γ ′ ∈ Aγ and
∆[M/a]γ = ∆γ [Mγ/a], so by hypothesis we have Bγ [Mγ/a]δ � B′γ ′[M′γ ′/a]δ ′ type and
hence B[M/a]γδ � B′[M′/a]γ ′δ ′ type as required. Part (2) follows similarly. �

Surprisingly, Lemma 2.24 does not hold in ordinary Nuprl—in Allen’s nonstandard
semantics of open judgments, the cut principle holds only if a does not occur in ∆—but it
does hold in Idealized Nuprl and Chapter 4 of this dissertation.

It remains to show that τω admits the formation, introduction, elimination, and com-
putation principles of dependent function types, universe types, et cetera. We will prove
only the closed, binary forms of these principles, as the open forms follow directly by
commuting substitutions past constructors. By way of illustration, consider the open form
of Lemma 2.13:

Lemma 2.25. If Γ � A � B type and Γ � M � N ∈ A then Γ � M � N ∈ B.

Proof. Suppose γ ∼ γ ′ ∈ Γ and show Mγ � Nγ ′ ∈ Bγ . By our second assumption,
Mγ � Nγ ′ ∈ Aγ . By our �rst assumption and γ ∼ γ ∈ Γ (by Γ ctx), Aγ � Bγ type. The
result follows by Lemma 2.13. �
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2.4 Rules of inference

Sections 2.2 and 2.3 de�ne Idealized Nuprl as a mathematical object, but these de�nitions
alone are neither useful in practice (how does one establish a judgment?) nor obviously
correct (is (a:A) → B a dependent function type in the usual sense?). We address both
concerns by proving that Idealized Nuprl admits standard type-theoretic rules of inference,
listed in Figure 2.4. Each rule is annotated with the lemma containing its proof: structural
rules were proven in Section 2.3, and rules governing type formers are proven in Section 2.5.
We suppress ambient hypotheses in these rules for clarity; every judgment implicitly
contains additional hypotheses Γ.

These natural deduction–style rules characterize type formers by rules of formation,
establishing when an instance is a type; introduction, establishing how to construct an
element of that type; and elimination, establishing how to use an element of that type
[Pra65]. Some type formers also have a uniqueness, or η, rule establishing that all ele-
ments are equal to introduction forms.5 In standard natural deduction, type formers have
computation, or β , rules establishing how elimination acts on introduction:

a : A � M ∈ B N ∈ A

(λa.M) N � M[N /a] ∈ B[N /a]

Computation rules are true but super�uous in Idealized Nuprl, because they are instances
of head expansion (Lemma 2.15).

Choosing rules As the computation rules have already illustrated, there are many
possible collections of inference rules for any type theory. Their relative merits are a
topic of frequent debate amongst type theorists, and while we do not enter the fray in this
dissertation, we will nevertheless sketch various considerations. First, the very meaning of
a type theory qua algebraic structure (Section 1.2), by de�nition, depends on its collection
of rules; the biggest open problem in homotopy type theory is to characterize all models
of Book HoTT and various cubical type theories.

Secondly, proof assistants invariably implement type theories as collections of primitive
inference steps (Section 1.1). These steps must be machine-checkable and, unlike Figure 2.4,
cannot rely on notational conventions or semantic presuppositions. For instance, if a reader
claimed to �nd an inconsistency in Figure 2.4 by shadowing variable names, we would
admonish them to recall standard notational conventions; a proof assistant, on the other
hand, must actually implement variable binding.

Unlike variable freshness, which is fully automated, our judgments’ presuppositions
can induce subgoals requiring user input. For instance, to maintain the invariant that

5Many type theories have few or no uniqueness rules. In Idealized Nuprl, every type has a uniqueness
principle; those of nat and bool can be derived from their elimination rules.
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A ∈ Typei
a : A � a ∈ A

(2.22)
M � M′ ∈ B A ∈ Typei

a : A � M � M′ ∈ B
(2.23)

M � M′ ∈ A A � A′ ∈ Typei
M � M′ ∈ A′

(2.13)
a : A � M � M′ ∈ B N � N ′ ∈ A

M[N /a] � M′[N ′/a] ∈ B[N /a]
(2.24)

M′ ∈ A M 7−→∗ M′

M � M′ ∈ A
(2.15)

M ∈ A M ⇓ M0

M � M0 ∈ A
(2.16)

A ∈ Typei a : A � B ∈ Typei
(a:A) → B ∈ Typei

(2.26)
A ∈ Typei a : A � B ∈ Propi

(a:A) → B ∈ Propi
(2.26)

a : A � M ∈ B

λa.M ∈ (a:A) → B
(2.27)

M ∈ (a:A) → B N ∈ A

M N ∈ B[N /a]
(2.28)

M ∈ (a:A) → B

M � λa.M a ∈ (a:A) → B
(2.30)

A ∈ Typei a : A � B ∈ Typei
(a:A) × B ∈ Typei

(2.31)
A ∈ Propi a : A � B ∈ Propi

(a:A) × B ∈ Propi
(2.31)

a : A � B ∈ Typei M ∈ A N ∈ B[M/a]

〈M,N 〉 ∈ (a:A) × B
(2.32)

P ∈ (a:A) × B
fst(P) ∈ A

(2.33)

P ∈ (a:A) × B
snd(P) ∈ B[fst(P)/a]

(2.33)
P ∈ (a:A) × B

P � 〈fst(P), snd(P)〉 ∈ (a:A) × B
(2.34)

Figure 2.4: Idealized Nuprl: structural rules, functions, pairs.
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A ∈ Typei M ∈ A N ∈ A

EqA(M,N ) ∈ Propi
(2.35)

M � N ∈ A

? ∈ EqA(M,N )
(2.36)

E ∈ EqA(M,N )

M � N ∈ A
(2.37)

E ∈ EqA(M,N )

E � ? ∈ EqA(M,N )
(2.38)

nat ∈ Typei
(2.39)

z ∈ nat
(2.40)

M ∈ nat

s(M) ∈ nat
(2.40)

n : nat � A ∈ Typei
M ∈ nat Z ∈ A[z/n] n : nat,a : A � S ∈ A[s(n)/n]

natrec(M ;Z ,n.a.S) ∈ A[M/n]
(2.41)

bool ∈ Typei
(2.43)

true ∈ bool
(2.44)

false ∈ bool
(2.44)

b : bool � A ∈ Typei M ∈ bool T ∈ A[true/b] F ∈ A[false/b]

if(M ;T , F ) ∈ A[M/b]
(2.45)

Typei ∈ Typei+1
(2.48)

Propi ∈ Typei+1
(2.48)

A ∈ Propi
A ∈ Typei

(2.49)

A ∈ Typei
A ∈ Typei+1

(2.50)
A ∈ Propi
A ∈ Propi+1

(2.50)
M ∈ A N ∈ A A ∈ Propi

M � N ∈ A
(2.51)

Figure 2.4: Idealized Nuprl: equality, natural numbers, Booleans, universes.
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Γ ctx holds whenever Γ � B type is provable in our proof assistant, we might demand
that users prove new hypotheses are types before extending contexts. Typehood cannot
be established automatically, as it is undecidable (if EqA(M,M) type then M halts) and
commonly intractable, often requiring proofs that two functions are extensionally equal.

Computational type theories—implemented in the Nuprl [Con+85] andRedPRL [Red16]
proof assistants—alleviate the burden by allowing users to employ computation in their
proofs. Computational type theories are de�ned by two characteristics: having a computa-
tional semantics, and using inference rules that irrevocably commit to that semantics. The
latter is evident in the head expansion and evaluation rules of Figure 2.4, which expose
the operational semantics, but crucially, allow users to prove theorems by �rst computing
them. On top of that, Nuprl’s developers frequently extend Nuprl with useful rules subject
only to validation by their computational semantics.

Figure 2.4 di�ers from the rules used by Nuprl and RedPRL in a few important
ways. Both proof assistants adopt sequent calculi, not natural deduction rules, in which
elimination rules are replaced by left rules explaining how to use hypotheses of each
type. In practice, one needs head expansion for open terms, despite our operational
semantics being de�ned only for closed terms. Fortunately, 7−→ is stable under substitution
when lifted to open terms—that is, if a rule of 7−→ applies to open terms M and M′, then
Mγ 7−→ M′γ for all substitutionsγ—allowing us to reduce subgoals like Γ � fst(〈a,b〉) ∈ A
to Γ � a ∈ A. (We will not be as fortunate in Chapter 4.)

Intensional type theories—implemented in the Agda [Agda] and Coq [Coq] proof
assistants—axiomatize and automate a decidable underapproximation of the judgments,
reducing users’ proof burden while restricting what is provable. These type theories
notably lack an equality re�ection rule converting proofs of EqA(M,N ) to M � N ∈ A;
instead, silent equations are restricted to those provable by computation, whereas any
appeals to non-trivial equations (those requiring inductive proofs) must be annotated.

Those silent equations, known as de�nitional equalities [ML75a], do not constitute a
mathematically natural notion of equality, unlike the equality judgment considered in
this dissertation—many types lack de�nitional uniqueness principles, and therefore lack
strict universal properties in the categorical sense.6 De�nitional equality is also brittle, as
extensions require signi�cant e�ort both devising algorithms and proving them correct.
However, the bene�t of being fully automated cannot be understated.

Computational type theory is often considered odd for having undecidable judgments.
On the contrary, it is perfectly natural for a judgment to be sensible without being obviously

sensible; in ordinary mathematical practice, a theorem’s statement may require explanation
even before its proof. De�nitional equality is decidable not because decidability is most
natural, but because it allows proof assistants to fully automate all appeals to computation.

6Nor, in the author’s opinion, does de�nitional equality constitute a philosophically natural notion of
intension, as the name of intensional type theory might suggest.
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2.5 Semantics of types

We now prove the formation, introduction, elimination, and uniqueness rules that govern
each type former. We will also establish that Idealized Nuprl is consistent (Theorem 2.47),
and that it enjoys the canonicity (Theorem 2.46) and existence properties (Theorem 2.42)
characteristic of constructive type theories.

Recall that the judgments of Idealized Nuprl are de�ned relative to the type system τω
constructed in Section 2.2. Formation and introduction rules for each type hold essentially
by construction, after expanding judgments into the candidate judgments of Figure 2.3;
elimination rules hold by observing that elimination forms compute on introduction forms;
and uniqueness rules hold by induction (all elements are equal to introduction forms)
coupled with introduction rules (to see that two introduction forms are equal).

2.5.1 Dependent functions

Recall from Figure 2.3 that for i ∈ {0, 1, . . . ,ω} and R ∈ {τi, πi},

R((a:A) → B, (a:A′) → B′, {(λa.N , λa.N ′) | a : α . N ∼ N ′ ∈ β})

if and only if A ∼ A′ ↓ α ∈ τi and a : α . B ∼ B′ ↓ β ∈ R.

Rule 2.26 (Formation).

1. If A � A′ ∈ Typei and a :A � B � B′ ∈ Typei then (a:A) → B � (a:A′) → B′ ∈ Typei .

2. If A � A′ ∈ Typei and a :A � B � B′ ∈ Propi then (a:A) → B � (a:A′) → B′ ∈ Propi .

3. If A � A′ type and a : A � B � B′ type then (a:A) → B � (a:A′) → B′ type.

Proof. For part (1), A � A′ ∈ Typei implies A ∼ A′ ↓ α ∈ τi (by the de�nition of nTypeio),
A � A′ type (by Lemma 2.14), and α = nAo (by Theorem 2.11). Furthermore, a : A �
B � B′ ∈ Typei states that for any M � M′ ∈ A (equivalently, M ∼ M′ ∈ α ), B[M/a] �
B′[M′/a] ∈ Typei , and thus a : α . B ∼ B′ ↓ β ∈ τi . We conclude that (a:A) → B ∼
(a:A′) → B′ ↓ n(a:A) → Bo ∈ τi , and therefore (a:A) → B � (a:A′) → B′ ∈ Typei , where
n(a:A) → Bo(λa.N , λa.N ′) holds if and only if a : α . N ∼ N ′ ∈ β . Parts (2) and (3) are
similar, appealing to the de�nitions of πi and τω , respectively, instead of τi . �

Rule 2.27 (Introduction). If a : A � M � M′ ∈ B then λa.M � λa.M′ ∈ (a:A) → B.

Proof. The presupposition (a:A) → B type holds by the formation rule applied to the
premise’s presupposition a : A � B type. We know for any N � N ′ ∈ A that M[N /a] �
M′[N ′/a] ∈ B[N /a]; thus a : nAo .M ∼ M′ ∈ β where a : nAo . B ∼ B ↓ β ∈ τω (because
unicity implies βN ,N ′ = nB[N /a]o), and hence n(a:A) → Bo(λa.M, λa.M′). �
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Observe that a :A � B �B′ type and a :A � M �M′ ∈ B are equivalent to a :nAo .B ∼
B′ ↓ β ∈ τω and a :nAo.M ∼ M′ ∈ β respectively. We henceforth freely use this equivalence
when unfolding de�nitions of type formers.

Rule 2.28 (Elimination). If M � M′ ∈ (a:A) → B and N � N ′ ∈ A then M N � M′ N ′ ∈
B[N /a].

Proof. By the de�nition of n(a:A) → Bo, we know M ⇓ λa.O , M ⇓ λa.O′, and a : A �
O � O′ ∈ B. By the latter, O[N /a] � O′[N ′/a] ∈ B[N /a]. By Lemma 2.15 and M N 7−→∗

(λa.O) N 7−→ O[N /a], we know M N � O[N /a] ∈ B[N /a], and analogously, M′ N ′ �
O′[N ′/a] ∈ B[N /a]. The result follows by symmetry and transitivity of equality. �

As discussed in Section 2.4, we omit computation rules from Figure 2.4. We will prove
Rule 2.29 for illustrative purposes, and leave further computation rules as an exercise.

Rule 2.29 (Computation). If a :A � M ∈ B and N ∈ A then (λa.M) N �M[N /a] ∈ B[N /a].

Proof. Our hypotheses imply M[N /a] ∈ B[N /a]. The result follows by Lemma 2.15 and
(λa.M) N 7−→ M[N /a]. �

Rule 2.30 (Uniqueness). IfM ∈ (a:A) → B thenM � λa.M a ∈ (a:A) → B.

Proof. By M ∈ (a:A) → B, we know M ⇓ λa.O and a : A � O ∈ B. By the de�nition of
n(a:A) → Bo, it su�ces to show a : A � O � M a ∈ B. Suppose N � N ′ ∈ A. Then by
a : A � O ∈ B we have O[N /a] � O[N ′/a] ∈ B[N /a]; by Lemma 2.15 and M N ′ 7−→∗

(λa.O) N ′ 7−→ O[N ′/a] we have O[N ′/a] � M N ′ ∈ B[N /a]; and thus O[N /a] � M N ′ ∈
B[N /a] as required. �

2.5.2 Dependent pairs

For i ∈ {0, 1, . . . ,ω} and R ∈ {τi, πi},

R((a:A) × B, (a:A′) × B′, {(〈M,N 〉, 〈M′,N ′〉) | (M ∼ M′ ∈ α) ∧ (N ∼ N ′ ∈ βM,M ′)})

if and only if A ∼ A′ ↓ α ∈ R and a : α . B ∼ B′ ↓ β ∈ R.

Rule 2.31 (Formation).

1. If A � A′ ∈ Typei and a : A � B � B′ ∈ Typei then (a:A) × B � (a:A′) × B′ ∈ Typei .

2. If A � A′ ∈ Propi and a : A � B � B′ ∈ Propi then (a:A) × B � (a:A′) × B′ ∈ Propi .

3. If A � A′ type and a : A � B � B′ type then (a:A) × B � (a:A′) × B′ type.
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Proof. The proof proceeds identically to that of Rule 2.26. Note that the Pair clause of πi
requires A ∼ A′ ↓ α ∈ πi and not A ∼ A′ ↓ α ∈ τi as in the Fun clause. �

Rule 2.32 (Introduction). If a : A � B ∈ Typei ,M � M′ ∈ A, and N � N ′ ∈ B[M/a], then
〈M,N 〉 � 〈M′,N ′〉 ∈ (a:A) × B.

Proof. The �rst premise and the formation rule ensure the presupposition (a:A) × B type.
It remains to show n(a:A) × Bo(〈M,N 〉, 〈M′,N ′〉), which follows from M ∼ M′ ∈ nAo and
N ∼ N ′ ∈ βM,M ′ where a : nAo . B ∼ B ↓ β ∈ τω (by βM,M ′ = nB[M/a]o). �

Rule 2.33 (Elimination). If P � P ′ ∈ (a:A) × B then

1. fst(P) � fst(P ′) ∈ A and

2. snd(P) � snd(P ′) ∈ B[fst(P)/a].

Proof. By the de�nition of n(a:A) × Bo, we know P ⇓ 〈M,N 〉, P ′ ⇓ 〈M′,N ′〉, M � M′ ∈ A,
and N � N ′ ∈ B[M/a]. For part (1), by Lemma 2.15 and fst(P) 7−→∗ fst(〈M,N 〉) 7−→ M , we
know fst(P) � M ∈ A and analogously M′ � fst(P ′) ∈ A; the result follows by transitivity.

For part (2), by Lemma 2.15 and snd(P) 7−→∗ snd(〈M,N 〉) 7−→ N , we know snd(P) �
N ∈ B[M/a] and analogously N ′ � snd(P ′) ∈ B[M/a], hence snd(P) � snd(P ′) ∈ B[M/a].
We have a : A � B type by (a:A) × B type and inversion on the de�nition of τω ; thus
B[M/a] � B[fst(P)/a] type, and the result follows by Lemma 2.13. �

Rule 2.34 (Uniqueness). If P ∈ (a:A) × B then P � 〈fst(P), snd(P)〉 ∈ (a:A) × B.

Proof. By P ∈ (a:A) × B, we know P ⇓ 〈M,N 〉, M ∈ A, and N ∈ B[M/a]. By the de�nition
of n(a:A) × Bo, it su�ces to show M � fst(P) ∈ A and N � snd(P) ∈ B[M/a]; both are
immediate by Lemma 2.15. �

2.5.3 Equalities

For i ∈ {0, 1, . . . ,ω} and R ∈ {τi, πi},

R(EqA(M,N ), EqA′(M
′,N ′), {(?,?) | M ∼ N ∈ α })

if and only if A ∼ A′ ↓ α ∈ τi , M ∼ M′ ∈ α , and N ∼ N ′ ∈ α .

Rule 2.35 (Formation).

1. IfA�A′ ∈ Typei ,M�M′ ∈ A, andN �N ′ ∈ A, then EqA(M,N )�EqA′(M
′,N ′) ∈ Typei .

2. IfA�A′ ∈ Typei ,M�M′ ∈ A, andN �N ′ ∈ A, then EqA(M,N )�EqA′(M
′,N ′) ∈ Propi .

3. If A � A′ type,M � M′ ∈ A, and N � N ′ ∈ A, then EqA(M,N ) � EqA′(M
′,N ′) type.
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Proof. For part (1), A � A′ ∈ Typei implies A ∼ A′ ↓ nAo ∈ τi . From M ∼ M′ ∈ nAo
and N ∼ N ′ ∈ nAo we conclude EqA(M,N ) ∼ EqA′(M

′,N ′) ↓ nEqA(M,N )o ∈ τi and
therefore EqA(M,N ) � EqA′(M

′,N ′) ∈ Typei , where nEqA(M,N )o(?,?) holds if and only
if M ∼ N ∈ nAo. Parts (2) and (3) are similar, appealing to the de�nitions of πi and τω ,
respectively, instead of τi . �

Rule 2.36 (Introduction). IfM � N ∈ A then ? ∈ EqA(M,N ).

Proof. The premise implies A type, M ∈ A, and N ∈ A, so by the formation rule, the
presupposition EqA(M,N ) type holds. It remains to show nEqA(M,N )o(?,?), which is
immediate by M ∼ N ∈ nAo. �

Rule 2.37 (Elimination). If E ∈ EqA(M,N ) thenM � N ∈ A.

Proof. By the de�nition of nEqA(M,N )o, E ⇓ ? and M � N ∈ A. �

Rule 2.37 is commonly known as equality re�ection. As discussed in Section 2.4, inten-
sional type theories omit such a rule despite it holding in their computational semantics
(in the non-univalent case).

Rule 2.38 (Uniqueness). If E ∈ EqA(M,N ) then E � ? ∈ EqA(M,N ).

Proof. By E ∈ EqA(M,N ) we know E ⇓ ? and M � N ∈ A, which by the de�nition of
nEqA(M,N )o is exactly what we must show. �

2.5.4 Natural numbers

For i ∈ {0, 1, . . . ,ω}, τi(nat, nat, µR.F (R)) holds, where

F (R) = {(z, z)} ∪ {(s(M), s(M′)) | M ∼ M′ ∈ R}.

Rule 2.39 (Formation). nat ∈ Typei .

Proof. Immediate by the de�nition of nTypeio. �

Rule 2.40 (Introduction).

1. z ∈ nat.

2. IfM � M′ ∈ nat then s(M) � s(M′) ∈ nat.

Proof. The presupposition nat type holds by the formation rule and Lemma 2.14. Part (1)
is immediate by F (nnato)(z, z), because nnato = F (nnato). Part (2) is similarly immediate
by F (nnato)(s(M), s(M′)) whenever M ∼ M′ ∈ nnato. �
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Rule 2.41 (Elimination). If n : nat � A ∈ Typei , M � M′ ∈ nat, Z � Z ′ ∈ A[z/n], and
n :nat,a :A � S�S′ ∈ A[s(n)/n], then natrec(M ;Z ,n.a.S)�natrec(M′;Z ′,n.a.S′) ∈ A[M/n].

Proof. Let Φ = {(N0,N
′
0) | nnato(N0,N

′
0) ∧ natrec(N0;Z ,n.a.S) � natrec(N ′0;Z ′,n.a.S′) ∈

A[N0/n]}. First, show N ∼ N ′ ∈ Φ implies natrec(N ;Z ,n.a.S) � natrec(N ′;Z ′,n.a.S′) ∈
A[N /n]. Since Φ ⊆ nnato, we have N ∈ nat and thus the presupposition A[N /n] type. By
de�nition, N ⇓ N0, N ′ ⇓ N ′0, and Φ(N0,N

′
0). Therefore, by Lemma 2.15, it su�ces to show

natrec(N0;Z ,n.a.S) � natrec(N ′0;Z ′,n.a.S′) ∈ A[N /n]. These terms are equal in the type
A[N0/n] by Φ(N0,N

′
0); the result follows by A[N0/n]�A[N /n] type (by N �N0 ∈ nat) and

Lemma 2.13.
Now let us show F (Φ) ⊆ Φ; because nnato is the least such relation, it will follow

that nnato ⊆ Φ. Suppose F (Φ)(N0,N
′
0) and show Φ(N0,N

′
0). There are two possibilities.

If N0 = N ′0 = z, then nnato(z, z). By Lemma 2.15 and natrec(z;Z ,n.a.S) 7−→ Z , it su�ces
to show Z � Z ′ ∈ A[z/n], which we have assumed. Otherwise, N0 = s(N ), N ′0 = s(N ′),
and N ∼ N ′ ∈ Φ. Since Φ ⊆ nnato we have nnato(s(N ), s(N ′)). By Lemma 2.15 and
natrec(s(N );Z ,n.a.S) 7−→ S[N /n][natrec(M ;Z ,n.a.S)/a], it su�ces to show

S[N /n][natrec(N ;Z ,n.a.S)/a] � S′[N ′/n][natrec(N ′;Z ′,n.a.S′)/a] ∈ A[s(N )/n]

which follows from N � N ′ ∈ nat, natrec(N ;Z ,n.a.S) � natrec(N ′;Z ,n.a.S) ∈ A[N /n] (by
the observation in the previous paragraph), and our assumption on S and S′.

By M �M′ ∈ nat and nnato ⊆ Φ, M ∼ M′ ∈ Φ, from which the result is immediate. �

Idealized Nuprl, as formulated in Figure 2.4, is constructive in the sense of satisfying the
existence property [TD88, p. 139]. We demand not only that our computational semantics
have existential witnesses but in fact that our chosen rules determine these witnesses—in
the absence of the latter, users of Idealized Nuprl would not reap the bene�ts of the former.

Theorem 2.42 (Existence). If n : nat � B ∈ Typei and M ∈ (n:nat) × B, there exist terms

n̄ = s · · · s(z) and P such that P ∈ B[n̄/n]. Furthermore, the rules of Figure 2.4 su�ce to derive

n̄ and P .

Proof. By Lemma 2.16 (and the de�nition of n(n:nat) × Bo), M ⇓ 〈N , P〉 and M � 〈N , P〉 ∈
(n:nat)×B. By Rule 2.33 and Lemma 2.16, fst(M)�N ∈ nat and snd(M)� P ∈ B[fst(M)/n].
To determine n̄ = s · · · s(z) such that N � n̄ ∈ nat, apply Lemma 2.16 recursively to N—
either N ⇓ z or N ⇓ s(N ′) such that N ′� n̄′ ∈ nat, and in the latter case, s(N ′)� s(n̄′) ∈ nat
by Rule 2.40. (To project N ′ from s(N ′), subtract s(z) and evaluate.) Then B[fst(M)/n] �
B[n̄/n] ∈ Typei by Lemma 2.24, and P ∈ B[n̄/n] by Lemma 2.13.

To see why the recursive procedure succeeds, let Φ = {(N0,N
′
0) | ∃n̄.N0 � n̄ ∈ nat}. We

show F (Φ) ⊆ Φ, and therefore nnato ⊆ Φ; it follows that whenever N ∈ nat, N ⇓ N0 and
N0 � n̄ ∈ nat. Suppose F (Φ)(N0,N

′
0). If F (Φ)(z, z) then n̄ = z and z � z ∈ nat. Otherwise

F (Φ)(s(M), s(M′)) and Φ(M,M′), and therefore M ⇓ M0 and M0 � n̄′ ∈ nat; then n̄ = s(n̄′)
and s(M) � n̄ ∈ nat by Lemma 2.16 and Rule 2.40. �
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2.5.5 Booleans

For i ∈ {0, 1, . . . ,ω}, τi(bool, bool, {(true, true), (false, false)}).

Rule 2.43 (Formation). bool ∈ Typei .

Proof. Immediate by the de�nition of nTypeio. �

Rule 2.44 (Introduction).

1. true ∈ bool.

2. false ∈ bool.

Proof. The presupposition bool type holds by the formation rule and Lemma 2.14. Both
parts are immediate by the de�nition of nboolo. �

Rule 2.45 (Elimination). If b : bool � A ∈ Typei ,M �M′ ∈ bool, T �T ′ ∈ A[true/b], and
F � F ′ ∈ A[false/b], then if(M ;T , F ) � if(M′;T ′, F ′) ∈ A[M/b].

Proof. There are two possibilities for M �M′ ∈ bool. If M ⇓ true and M′ ⇓ true, then by
Lemma 2.15 and if(M ;T , F ) 7−→∗ if(true;T , F ) 7−→ T , it su�ces to show T � T ′ ∈ A[M/b].
The result follows by T � T ′ ∈ A[true/b], A[true/b] � A[M/b] type (by true � M ∈ bool),
and Lemma 2.13. The false case is analogous. �

By the de�nition of nboolo, every closed Boolean equals either true or false. Canonicity,
like the existence property, states that the rules of Idealized Nuprl derive such equations.

Theorem 2.46 (Canonicity). If M ∈ bool then either M ⇓ true and M � true ∈ bool or
M ⇓ false andM � false ∈ bool; moreover, the rules of Figure 2.4 derive these equations.

Proof. By the de�nition of nboolo, either M ⇓ true or M ⇓ false; the result follows by
Lemma 2.16, which is a rule in Figure 2.4. �

Of course, Idealized Nuprl is also consistent, as it has empty types.

Theorem 2.47 (Consistency). There is no E such that E ∈ Eqbool(true, false).

Proof. Suppose such an E existed. Then true� false ∈ bool by Rule 2.37, which contradicts
the de�nition of nboolo. �
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2.5.6 Universes

For i, j ∈ {0, 1, . . . ,ω} with i < j:

τj(Propi, Propi, {(A0,B0) | ∃α .πi(A0,B0,α)})

τj(Typei, Typei, {(A0,B0) | ∃α .τi(A0,B0,α)})

Rule 2.48 (Formation).

1. Typei ∈ Typei+1.

2. Propi ∈ Typei+1.

Proof. The presupposition Typei+1 type is immediate by the de�nition of τω ; parts (1) and
(2) are immediate by the de�nition of nTypei+1o. �

We have already stated and proven the introduction rules of Propi and Typei as forma-
tion rules of other types. The elimination rules of Propi and Typei are simply that their
elements are types, which we established in Lemma 2.14.

Rule 2.49 (Subtyping). If A � A′ ∈ Propi then A � A′ ∈ Typei .

Proof. By the de�nition of nPropio, A ∼ A′ ↓ α ∈ πi . By Theorem 2.11 and monotonicity of
candidate judgments, A ∼ A′ ↓ α ∈ τi ; the result follows by the de�nition of nTypeio. �

Rule 2.50 (Cumulativity).

1. If A � A′ ∈ Typei then A � A′ ∈ Typei+1.

2. If A � A′ ∈ Propi then A � A′ ∈ Propi+1.

Proof. For part (1), A ∼ A′ ↓ α ∈ τi implies A ∼ A′ ↓ α ∈ τi+1 by Theorem 2.11, and the
result follows by the de�nition of nTypei+1o. Part (2) is analogous. �

Rule 2.51 (Subsingleton). IfM ∈ A,M′ ∈ A, and A ∈ Propi , thenM � M′ ∈ A.

Proof. Let Φ = {(A0,A
′
0,φ) | πi(A0,A

′
0,φ) ∧ ∀M,M

′.(M,M′ ∈ A0 =⇒ M � M′ ∈ A0)}.
(Note that πi(A0,A

′
0,φ) implies A0 type because πi ⊆ τω by Theorem 2.11.) We begin by

showing Props(Φ, τi) ⊆ Φ; consulting Figure 2.3, there are three cases.

1. Fun(τi,Φ)((a:A) → B, (a:A′) → B′,φ).
By construction, Φ ⊆ πi , and therefore πi((a:A) → B, (a:A′) → B′,φ) by Fun(τi,Φ) ⊆
Fun(τi, πi) ⊆ πi . Suppose M,M′ ∈ (a:A) → B. To show M and M′ are equal, it
su�ces by Rules 2.27 and 2.30 to show a : A � M a � M′ a ∈ B, and hence that
M N � M′ N ′ ∈ B[N /a] for any N � N ′ ∈ A. Unrolling the de�nition of Fun(τi,Φ),
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a : nAo . B ∼ B′ ↓ β ∈ Φ and therefore B[N /a] ⇓ B0 where B0 ∈ Propi and all
elements of B0 are equal. But then B[N /a] � B0 type, so M N � M′ N ′ ∈ B[N /a] by
Lemma 2.13.

2. Pair(Φ)((a:A) × B, (a:A′) × B′,φ).

Again, πi((a:A) × B, (a:A′) × B′,φ) by Pair(Φ) ⊆ Pair(πi) ⊆ πi . Suppose M,M′ ∈
(a:A) × B. By Rules 2.32 and 2.34, it su�ces to show fst(M) � fst(M′) ∈ A and
snd(M) � snd(M′) ∈ B[fst(M)/a]. Unrolling the de�nition of Pair(Φ), A ∼ A′ ↓
nAo ∈ Φ and a : nAo . B ∼ B′ ↓ β ∈ Φ. By the former, A ⇓ A0, A0 ∈ Propi , and all
elements of A0 are equal; thus by Lemma 2.13, fst(M) � fst(M′) ∈ A. By the latter,
B[fst(M)/a] ⇓ B0, B0 ∈ Propi , and all elements of B0 are equal; again, by Lemma 2.13,
snd(M) � snd(M′) ∈ B[fst(M)/a].

3. Eq(τi)(EqA(M,N ), EqA′(M′,N ′),φ).

We have πi(EqA(M,N ), EqA′(M′,N ′),φ) by Eq(τi) ⊆ πi . Suppose E, E′ ∈ EqA(M,N ).
By Rule 2.38, E � ? ∈ EqA(M,N ) and E′ � ? ∈ EqA(M,N ), and therefore E � E′ ∈
EqA(M,N ).

Because πi is the least pre-�xed point of Props(−, τi), πi ⊆ Φ. Suppose A ∈ Propi . Then
A ⇓ A0, A � A0 ∈ Propi , and by nPropio = πi ⊆ Φ, Φ(A0,A0); therefore all elements of A0
(and A) are equal, completing the proof. �

On open-endedness Computational semantics are open-ended in the sense of being
modular and, like the BHK interpretation, easily extended with additional type form-
ers, thereby re�ecting the intuitionistic perspective that mathematics evolves over time
[Dum77]. However, Idealized Nuprl’s universes are not open-ended; on the contrary, they
are �xed, inductively-de�ned collections of types! In this regard, computational semantics
deviate signi�cantly from categorical semantics, in which universes typically classify all
collections below some size cuto�.

The inductive nature of our universes has some surprising consequences. First, not all
subsingleton types are elements of Propi ; for instance, (n:nat)×Eqnat(n, z) < Propi because
nat is not subsingleton.7 Secondly, functions out of Typei can be de�ned by cases on type
formers if the underlying programming language has such a facility, often called typecase.
We sketch the operational semantics of typecase and the resulting Typei elimination rule
in Figure 2.5.

There are several ways to limit the power of typecase. Allen suggests a variant of
computational semantics parametric in extensions of the Types operator (Figure 2.3) that

7In this chapter, of course, one can simply de�ne Propi := (A:Typei ) × ((a:A) → (a′:A) → EqA(a,a
′)),

but in Chapter 4 we cannot internalize the statement that a type is Kan.
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typecase(bool;Cbool, c .c
′.Cfun, . . . ) 7−→ Cbool

typecase((a:A) → B;Cbool, c .c
′.Cfun, . . . ) 7−→

Cfun[A/c][λa.typecase(B;Cbool, c .c
′.Cfun, . . . )/c

′]

· · ·

a : Typei � C ∈ Typei A ∈ Typei
Cbool ∈ C[bool/a] c : Typei, c

′ : c → Typei � Cfun ∈ C[(a:c) → (c′ a)/a] . . .

typecase(A;Cbool, c .c
′.Cfun, . . . ) ∈ C[A/a]

Figure 2.5: Fragment of the syntax and semantics of typecase.

generates the universe hierarchy [All87, Chapter 6]. In Chapter 4 of this dissertation,
universes are inductively de�ned but include a univalence operator requiring maps out
ofUKan

i to respect type isomorphism. Cavallo and Harper [CH19b] extend cubical type
theory with a relativity principle that refutes excluded middle by ensuring maps out of the
universe are in some sense parametric. Conversely, inductively-de�ned universes are in
some cases desirable; Dagand and McBride have proposed closed universes of datatypes
as an implementation strategy for datatype-generic dependent programming [Dag13].

Although its universes are not open-ended, Idealized Nuprl is nevertheless open-ended
in two signi�cant respects. First, because its judgments are monotone in the choice of type
system, the ambient universe τω is easily extended to a larger type system τ ′ω . For instance,
to add an empty type to Idealized Nuprl, de�ne

τ ′ω := µτ .(Types(νω, τ ) ∪ {(void, void, {})}).

The containment τω ⊆ τ ′ω follows from Lemma 2.9, τ ′ω is a type system by a trivial modi�-
cation to Lemma 2.6, and thus, by monotonicity of judgments, the rules of Figure 2.4 hold
relative to τ ′ω (as does void type, but not void ∈ Typei ).

Secondly, Idealized Nuprl is stable under extensions of the syntax and operational
semantics of its underlying programming language, subject to certain weak restrictions
(notably, determinacy of evaluation) [How91]. Howe calls this property computational

open-endedness, and, with Stoller, has de�ned a variant of the Nuprl type theory that
includes all classical set-theoretic functions [HS94].
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2.6 Modern Nuprl

The PRL group at Cornell has used the Nuprl theorem prover [Con+85] continuously
since the mid-1980s, when Allen [All87] �rst described its computational semantics. They
have extended the system and its semantics many times in the intervening decades, both
increasing its expressivity and re�ning their methodology of computational type theory
(described in Section 2.4). We close our discussion of Idealized Nuprl by summarizing
some of modern Nuprl’s most signi�cant innovations.

Continuity principles In Nuprl, any F ∈ (nat → nat) → nat provably depends on
only �nitely many values of its input functions [RB16]; intuitively, a terminating program
cannot check in�nitely many values. Brouwer used this and other continuity principles

to prove that, intuitionistically, all functions on the real numbers are continuous [TD88,
pp. 206–210]. (Both of these statements are classically false, of course, so modern Nuprl is
not compatible with classical logic.) Nuprl validates this principle by means of exceptions
[Har16, Chapter 29] in its programming language that allow users to intercept F ’s calls to
its input and compute an explicit bound.

Non-termination Nuprl’s programming language extends the untyped λ-calculus, which
famously contains divergent terms [Har16, Chapter 21]. Building on earlier work of Smith
[Smi89], Crary [Cra98] extends Nuprl with partial types Ā whose elements are either
divergent or elements of A. Unlike Idealized Nuprl, in which all elements terminate, Crary
de�nes types as evaluation-respecting PERs on Tm (if nAo(M,M) and M 7−→ M′ then
nAo(M,M′)). Finally, Crary establishes a broad class of admissible types A whose partial
types contain all �xed points of functions Ā→ Ā:

M ∈ Ā→ Ā A admiss

fix(M) ∈ Ā

Computational equivalence As discussed in Section 2.4, Idealized Nuprl respects open
computation at top level in both terms and types. In practice, one wishes also to compute
inside larger terms to prove, for instance, that Γ � M[fst(〈a,b〉)/c] � M[a/c] ∈ A. Such a
principle holds de�nitionally in intensional type theory, but is defeasible in computational
semantics—in theory, M could detect the head constructor of an unevaluated subterm.

Howe [How89] proves that Nuprl’s type system respects applicative bisimulation (es-
sentially, untyped equivalence of evaluation behavior), and moreover, that applicative
bisimulation is a congruence if every operator depends only on the evaluation behavior
of its arguments, unlike our hypothetical M—a condition satis�ed by Nuprl’s program-
ming language. Nuprl’s users can therefore replace arbitrary subterms of proof goals by
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equivalent terms, including but not limited to β-reductions; Rahli, Bickford, and Anand
[RBA13] have applied non-trivial optimizations to extracted Paxos code. Modern Nuprl
de�nes types as applicative bisimulation–respecting PERs, and includes a base type whose
elements are all closed terms modulo applicative bisimulation [AR14].

Membership and PER types The base type is an essential component of modern Nuprl’s
expressive power. In Idealized Nuprl, the equality type on A ranges over elements of A, so
the proposition EqA(M,M) carries no information—whenever it is a type, it is also true.
In Nuprl, equality types range instead over base, allowing them to internalize not only
equality but also membership in the form of EqA(M,M) [AR14].

Anand et al. [Ana+14] recently extended Nuprl with a pertype(R) type former that, for
any symmetric and transitive R ∈ base→ base→ Typei , has R as its underlying PER of
elements. Many standard type formers are instances of PER types and can therefore be
de�ned internally in Nuprl, including dependent function types, inductive types, partial
types, and quotient types.

Pointwise functionality Idealized Nuprl’s open judgments range over contexts, tele-
scopes of types that respect the equality of, or are functional in, all earlier types. Nuprl is
based instead on pointwise functionality, a notion introduced by Allen [All87, Chapter 8]
and de�ned by Anand and Rahli [AR14] as follows:

De�nition 2.52 (Pointwise functionality). For γ a list and Γ a telescope, Γ ctx @ γ when
Γ@γ ∼ Γ@γ ′

−−−⇀
type for all γ ′ such that γ ∼ γ ′ ∈ Γ, where

1. ·@· ∼ ·@· −−−⇀type, and

2. (a : A, Γ)@(M,γ ) ∼ (a : A′, Γ′)@(M′,γ ′) −−−⇀type when A � A′ type and Γ[M/a]@γ ∼

Γ′[M′/a]@γ ′
−−−⇀
type.

De�nition 2.53 (Pointwise open judgments).

1. Γ � A � A′ type when for all γ ∼ γ ′ ∈ Γ, if Γ ctx @ γ then Aγ � A′γ ′ type.

2. Γ � M � M′ ∈ A when for all γ ∼ γ ′ ∈ Γ, if Γ ctx @ γ then Aγ � Aγ ′ type and
Mγ � M′γ ′ ∈ Aγ .

Unlike our De�nition 2.19, which requires each type of Γ to respect all equalities in
its indices, pointwise functionality requires only that each type respect equality at total
assignments γ of Γ. As a consequence, Nuprl admits several nonstandard rules, notably:
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Γ,a : base,a′ : base, e : EqA(a,a
′),∆ � B � B[a′/a] ∈ Typei

Γ,a : base, e : EqA(a,a),∆ � M ∈ B a, e # M
Γ,a : A,∆ � M ∈ B

M ∈ nat Z ∈ A[z/n] n : nat,a : A � S ∈ A[s(n)/n]

natrec(M ;Z ,n.a.S) ∈ A[M/n]

The �rst, called pointwise functionality, allows users to rewrite a hypothesis a : A as
a hypothesis a : base such that a ∈ A, so long as the conclusion is functional in equality
in A. The second is a very strong elimination rule for nat that omits the usual premise
n :nat � A ∈ Typei . In Idealized Nuprl, that premise is required for the third premise to be
well-formed, because (n :nat,a :A)must be a context; in Nuprl, the pointwise functionality
of A in nat is established inductively by earlier instances of S . This rule nearly halves the
number of inductions on nat one performs, because establishing n : nat � A ∈ Typei itself
often requires induction.

On the other hand, Nuprl’s open judgments do not validate the dependent cut principle8

(Lemma 2.24), but instead the weaker rule

Γ,a : A,∆ � M ∈ B Γ � N ∈ A

Γ,∆ � M[N /a] ∈ B[N /a]

where ∆ does not depend on a. Why does dependent cut fail? In both Nuprl and Idealized
Nuprl, ∆[M/a] may respect equality in Γ while ∆ does not respect equality in (Γ,a : A). In
Nuprl, this causes (Γ,∆[M/a]) ctx @ (γ , δ ) to hold while (Γ,a : A,∆) ctx @ (γ ,M, δ ) fails,
and because these occur in antecedents of implications in De�nition 2.53, the conclusion
of dependent cut fails while its premises hold.

8Dependent cut is only admissible in intensional type theory, allowing one in principle to consider
models not closed under it; however, usual notions of categorical model of type theory [Dyb96] are closely
related to explicit substitution calculi [Gra09, Chapter V] in which dependent cut is derivable.





3
Cubical methods

In this note it will be indicated how a homotopy theory may be
developed for all abstract cubical complexes which satisfy only a
certain extension axiom; homotopy groups will be introduced for
all such complexes.

—Daniel M. Kan, Abstract Homotopy. I [Kan55, p. 1092]

This dissertation extends the computational semantics of type theory to account for the
homotopy-type-theoretic features of univalence and higher inductive types. We begin this
chapter by describing these features’ original formulations in Book HoTT [UF13]. Next,
we motivate and compare various cubical approaches to homotopy type theory, from the
symmetric monoidal cubical model of Bezem, Coquand, and Huber [BCH14; BCH18] to
our Cartesian cubical type theory and the De Morgan cubical type theory of Cohen et al.
[CCHM18]. Finally, we discuss possible variations on existing cubical techniques.

Book HoTT The equality type of Idealized Nuprl, like those of Nuprl [Con+85] and
extensional type theory [ML82], satis�es straightforward rules that capture a mathematical
notion of equality—proofs of equality are unique, equality is extensional at every type,
and any element can be silently replaced by an equal element. In contrast, as discussed in
Section 2.4, intensional type theory [ML75b] restricts silent de�nitional equality to α-, β-,
and certain η-equivalences, mediating all other equations through an identity type whose
rules are listed in Figure 3.1 [ML75b; UF13, Section A.2.10]. (We write Γ ` M = N : A for
the judgments of intensional type theories, to emphasize that they have di�erent intended
properties than judgments of computational semantics Γ � M � N ∈ A.)

To understand the e�ects of de�nitional equality, consider addition of natural numbers,
de�ned by recursion on the left argument (that is, z +m =m and s(n) +m = s(n +m)):

n +m := natrec(n;m, _.a.s(a))

Here the equation z + m = m holds de�nitionally, whereas Idnat(n + z,n) only holds
propositionally, or up to the identity type, because the latter equation must be established
by induction on n. Given a nat-indexed family of types C(n), an element of C(z +m) is
also an element of C(m), because these types are de�nitionally equal, but an element of
C(n + z) must be transported over a proof of Idnat(n + z,n) to obtain an element of C(n).

45
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Γ ` M : A Γ ` N : A
Γ ` IdA(M,N ) : Typei

Γ ` M : A
Γ ` refl(M) : IdA(M,M)

Γ,a : A,b : A,p : IdA(a,b) ` C : Typei
Γ, z : A ` Q : C[z, z, refl(z)/a,b,p] Γ ` P : IdA(M,N )

Γ ` Ja.b .p.C(P ; z.Q) : C[M,N , P/a,b,p]

Γ,a : A,b : A,p : IdA(x,y) ` C : Typei
Γ, z : A ` Q : C[z, z, refl(z)/a,b,p] Γ ` M : A

Γ ` Ja.b .p.C(refl(M); z.Q) = Q[M/a] : C[M,M, refl(M)/a,b,p]

Figure 3.1: Rules of intensional identity types.

Transport is a crucial but straightforward consequence of identity elimination:

transport : (C:B → Typei) → (p:IdB(b,b′)) → C b → C b′

transport C p := Ja.a′._.C(a)→C(a′)(p; _.λc .c)

The requirement that proofs explicitly annotate uses of non-trivial equations allows
implementations of intensional type theory to decide equality of elements and thence
typing judgments, at the cost of added bureaucracy. Computational semantics nevertheless
validate erasing all uses of transport—because all closed identity proofs are re�exive—
allowing extracted programs to avoid any overhead induced by these annotations.

Many semantically-natural equations hold only propositionally in intensional type
theory, including uniqueness principles for many types [UF13, Corollary 2.7.3]. Many
others fail completely, including function extensionality [Str93, p. 106], the principle that
(a:A) → IdB(f (a),д(a)) implies IdA→B(f ,д), and uniqueness of identity proofs [HS98], the
principle that IdIdA(a,a′)(p,p′) for all p,p′ : IdA(a,a′). However, identity proofs are unique
in the following weaker sense, often called singleton contractibility:

ÎdA(a) := (b:A) × IdA(a,b)

uniqueness : (a:A) → (p̂:ÎdA(a)) → IdÎdA(a)(〈a, refl(a)〉, p̂)

uniqueness a 〈b,p〉 := Ja.b .p.IdÎdA(a)(〈a,refl(a)〉,〈b,p〉)
(p; z.refl(〈z, refl(z)〉))

As discussed in Section 1.2, the intensional identity type is compatible with non-trivial
elements of not only IdA(a,b) but also IdIdA(a,b)(p,q), IdIdIdA(a,b)(p,q)(α, β), et cetera. One such
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element is postulated by Voevodsky’s univalence axiom [Voe10a], originally formulated:

IsEquiv : (A→ B) → Typei
idequiv : (A:Typei) → IsEquiv(λa.a)

idtoequiv : IdTypei (A,B) → ((f :A→ B) × IsEquiv(f ))

idtoequiv p := Ja.b ._.(f :a→b)×IsEquiv(f )(p; z.〈λa.a, idequiv(z)〉)
univalence : IsEquiv(idtoequiv)

Here, IsEquiv(f ) is a propositionally-subsingleton notion of isomorphism up to the identity
type, and idequiv(A) is a proof that the identity function A→ A is such an equivalence.
(Consult the Homotopy Type Theory book for many possible de�nitions of equivalence
[UF13, Chapter 4].) For the purposes of this dissertation, we consider an equivalent but
simpler presentation of univalence suggested by Licata [Lic16]:

ua : (f :A→ B) → IsEquiv(f ) → IdTypei (A,B)

uaβ : (f :A→ B) → (e:IsEquiv(f )) → (a:A) → IdB(transport (λA.A) (ua f e) a, f a)

To see that univalence refutes uniqueness of identity proofs, consider the two proofs of
IdTypei (bool, bool) obtained by applying ua to the equivalences λb .b and λb .if(b; false, true).
If these were equal, (transport (λA.A) − true) across each would be equal, but uaβ propo-
sitionally equates these transports to true and false respectively. Moreover, a hierarchy of
n univalent universes refutes uniqueness of n-fold iterated identity proofs [KS15].

Models of univalent type theory must therefore account for arbitrarily-iterated identity
structure; Voevodsky’s model [KL16] interprets types as simplicial sets—a combinatorial
representation of topological spaces using triangles and tetrahedra of arbitrary dimension—
and n-fold iterated identity types as (approximately) the collection of n-dimensional sim-
plices of a type.

Computational content Univalence essentially adds new introduction rules (ua and
uaβ) to Book HoTT’s identity type without adding computation rules describing how
Ja.b .p.C(−; z.Q) acts on these identity proofs. Book HoTT therefore lacks the canonicity and
existence properties characteristic of type theories; for instance, transporting true across
univalence yields a closed Boolean de�nitionally equal to neither true nor false:

transport (λA.A) (ua (λb .b) (idequiv bool)) true : bool

As a result, proof assistants based on Book HoTT cannot fully simplify proof goals by
open computation. Users of Book HoTT instead “compute propositionally” by manually in-
voking lemmas to simplify transports according to type family or identity proof.1 The uaβ

1Readers can consult Angiuli et al. [Ang+16] for many examples of “propositional computation.”
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axiom is one such lemma, simplifying the above transport to true; another propositionally
equates the transport of 〈M,N 〉 in a family of product types to the pair of transports of M
and N [UF13, Theorem 2.6.4].

In fact, Sattler and Kapulkin have recently shown2 that “propositional computation”
enjoys homotopy canonicity [Voe10b]—every closed Boolean can be propositionally sim-
pli�ed to true or false. Such simpli�cations are nevertheless challenging in practice, as
famously demonstrated by Brunerie’s number, a topological invariant of type nat de�ned
in Book HoTT. In ordinary type theories, any such de�nition must compute to a concrete
numeral. In Book HoTT, however, Brunerie could not prove it propositionally equal to
any numeral; he later gave a di�erent construction in which the invariant is 2 [Bru16].

These and other di�culties led researchers to seek univalent type theories with de�-
nitional canonicity, hoping that such type theories would be more usable (as their proof
goals would simplify further), would enable the use of univalence in dependently-typed
programming (as explored, for instance, by Angiuli et al. [Ang+16]), and would produce a
constructive model of univalence simpler than Voevodsky’s model, which is essentially
classical [BC15].

To this end, Licata and Harper [LH12] established canonicity for a “truncated” type
theory with non-trivial proofs of IdA(M,N ), but de�nitional uniqueness of IdIdA(M,N )(P,Q)
proofs. Their type theory introduces an auxiliary judgment Γ ` P : M 'A N expressing
that P is a “term equivalence” between M and N in A; any such term equivalence gives
rise to an element of IdA(M,N ), and vice versa. Using their auxiliary judgment, Licata and
Harper explicitly axiomatize all operations on term equivalences (transport, symmetry
and transitivity of identity, et cetera), providing enough computation rules (transport in a
family of product types, transport across univalence, et cetera) to achieve canonicity.

Licata and Harper’s term equivalence judgment reconciles non-trivial identity proofs
with the type-theoretic aphorism3 that type formers internalize judgmental structure. Indeed,
dependent function types internalize membership-under-hypotheses (λa.M : (a:A) → B
whenever a :A ` M : B), identity types originally internalized de�nitional equality (refl(M) :
IdA(M,N ) whenever M = N : A), and the identity types of Licata and Harper [LH12]
internalize term equivalence. The failure of this aphorism for Book HoTT’s identity type—
which is generated by refl(M), univalence, and even identity elimination—syntactically
obscures the principle that IdA(M,N )mirrors the structure ofA (for instance, that transport
in a family of product types is a pair of transports, or that propositional equality in a
product type is a pair of propositional equalities).

However, Licata and Harper’s approach does not scale to the in�nitely-iterated iden-
tity structure found in Book HoTT, which would require not only in�nitely many term
equivalence judgments, but also in�nitely many operations and computation rules.

2See the TYPES ’19 abstract at http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_110.
3Also known as Martin-Löf’s judo move.

http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_110
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Figure 3.2: n-simplices (top) and n-cubes (bottom).

3.1 Symmetric monoidal cubes

Bezem, Coquand, and Huber [BCH14; BCH18] sparked a cubical revolution by present-
ing a constructive model of univalent type theory in symmetric monoidal cubical sets, a
combinatorial presentation of in�nite-dimensional structure analogous to simplicial sets.
Cubical sets and simplicial sets generalize directed graphs (n = 1) in two di�erent ways,
as illustrated in Figure 3.2—an n-dimensional simplex has n + 1 faces of dimension n − 1,
but an n-dimensional cube has 2n faces of dimension n − 1. Symmetric monoidal cubical
sets are the �rst of three variations on cubical sets discussed in this dissertation, each with
more operations than the last.

De�nition 3.1. The symmetric monoidal cube category �⊗ has as objects �nite sets, and as
morphisms I → J set-theoretic functions f : J → I + {0, 1} for which f |f −1(I ) is injective
(equivalently, for which f (x) = f (y) ∈ I implies x = y) [BCH14; Pit15].4 Composition of
morphisms is the evident Kleisli composition, namely, (д◦ f )(x) = f (x)when f (x) ∈ {0, 1}
and д(f (x)) otherwise.

Notable morphisms of �⊗ include face maps

(xi := 0), (xi := 1) : ({x1, . . . , xn} \ {xi}) → {x1, . . . , xn}

that are identity functions except for sending xi to 0 or 1, and degeneracy maps

ŷ : {x1, . . . , xn,y} → {x1, . . . , xn}

4Bernardy, Coquand, and Moulin [BCM15] consider a very similar category whose morphisms I → J
are functions f : J → I + {0} satisfying the same injectivity condition.
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Figure 3.3: Operations in cubical sets.

that miss y and are otherwise identity functions. (Because of degeneracy maps, �⊗ is in
fact a symmetric semicartesian monoidal category.)

A symmetric monoidal cubical set F is a presheaf on �⊗, that is, a functor �op⊗ → Set, or
a family of sets F (I ) for each I ∈ �⊗ equipped with functions F (f ) : F (I ) → F (J ) for each
f : J → I in �⊗. Geometrically, one can imagine F as a space and F ({x1, . . . , xn}) as the
set of continuous functions [0, 1]n → F , or n-cubes of F ; then face maps F (xi := ε) restrict
n-cubes to (n− 1)-cubes by setting the xi coordinate to ε , and degeneracy maps F (ŷ) regard
n-cubes as (n + 1)-cubes constant in the new y coordinate. (See Figure 3.3.) Faces and
degeneracies satisfy the expected geometric identities—the “top” face of the “left” face of a
square is also the “left” face of its “top” face (because (x := 0)◦(y := 0) = (y := 0)◦(x := 0)),
and the “top” and “bottom” faces of a vertically-degenerate square are equal (because
ŷ ◦ (y := 0) = ŷ ◦ (y := 1) = id).

Cubical sets are a convenient representation of in�nitely-iterated data, but lack enough
structure needed to model spaces or identity types. In a space X , every path p : [0, 1] → X
has an inverse path p−1 with p−1(0) = p(1) and p−1(1) = p(0); similarly, in intensional type
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theory, identity is symmetric:

λp.transport (λc .IdA(c,a)) p refl(a) : IdA(a,b) → IdA(b,a)

In symmetric monoidal (or Cartesian) cubical sets, however, n-cubes need not be invert-
ible. Mathematicians describe spacelike cubical sets as those satisfying the Kan condition

[Kan55], namely, for any con�guration of (n − 1)-cubes forming all but one face of an
n-cube, there exists an n-cube with that boundary. For n = 2, the Kan condition asserts
that for any three lines forming the left, top, and right sides of a square (evocatively called
an open box), there exists a square (a �ller) whose left, top, and right faces are those lines.

In their model of type theory, Bezem, Coquand, and Huber [BCH14] introduce uniform
Kan operations, which re�ne the Kan condition in three critical ways.5 First, rather than
stipulating the mere existence of �llers, the uniform Kan operations determine functions
sending each open box to a chosen �ller. Secondly, open boxes are allowed to omit more
than one face from a cube, and in fact can specify as few as one face. Thirdly, the uniform
Kan operations must commute with face and degeneracy maps—degenerating the �ller of
an open box must coincide with the �ller of the degenerated open box:

degenerate

•

•

•

•

p

qr = �ll r

p

q

•

•
•

•

•

•
•

•

Bezem, Coquand, and Huber [BCH14; BCH18] therefore model types as symmetric
monoidal cubical sets equipped with a uniform Kan operation; their model includes
dependent function types, dependent pair types, identity types, and univalent universes.

Towards cubical type theory The model of Bezem, Coquand, and Huber [BCH14]
brought us closer to a univalent type theory with canonicity—it allows one to compute
the values of well-typed terms,6 but not to re�ect those computations as de�nitional (or
even propositional) equalities of the theory. However, various researchers immediately
set out to develop a type theory based on uniform Kan cubical sets, using the insight that
cubical sets have a natural syntactic representation.

5In Section 3.2 we will de�ne uniform Kan operations more precisely in the Cartesian setting. Readers
speci�cally interested in the setting of Bezem, Coquand, and Huber [BCH14] may wish to consult the detailed
exposition of Harper and Hou (Favonia) [HF15].

6In December 2013, Cohen, Coquand, Huber, and Mörtberg released cubical (https://github.com/
simhu/cubical), a prototype evaluator with precisely this purpose.

https://github.com/simhu/cubical
https://github.com/simhu/cubical
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By the Yoneda lemma, the n-cubes of a cubical set F are in bijection with the natural
transformations hom�⊗(−, {x1, . . . , xn}) → F . The Yoneda embedding sends the monoidal
product ⊗ of �⊗ (for which {x1, . . . , xn} = {x1} ⊗ · · · ⊗ {xn}) to a Day convolution product
of presheaves. Therefore, writing I := hom�⊗(−, {?}) for the representable 1-cube, we
obtain a bijection between the n-cubes of F and natural transformations I⊗n → F .

These calculations justify our earlier intuition that n-cubes of F are continuous func-
tions [0, 1]n → F . (Unlike [0, 1], I is an abstract interval with only two points, 0 and 1.)
Critically, F ’s structure is determined by morphisms out of a product of cubical sets, just as
the judgments of type theory describe morphisms out of products of types. We therefore
consider cubical judgments expressing that M is an n-cube of A:

x1 : I, . . . , xn : I ` M : A

Cubical judgments involve a new form of interval variable xi , subject to interval substi-

tutions 〈0/xi〉 and 〈1/xi〉 which implement the action of face maps (xi := 0) and (xi := 1),
and weakenings, which implement the action of degeneracy maps. Cubical type theory
therefore scales Licata and Harper’s type theory [LH12] to arbitrary dimension: inter-
val variables uniformly de�ne n-dimensional judgments, and uniform Kan operations,
which commute with interval substitution and can therefore be represented syntactically,
compactly axiomatize all operations on n-cubes.

A frequent question from mathematicians is: why cubical type theory and not simpli-
cial type theory? The representable n-simplex is not a product of representable 1-simplices,
making simplices less amenable than cubes to syntactic encoding. Mathematicians prefer
simplicial sets because geometric realization commutes with products of simplicial sets up
to homotopy, whereas the same is not true of symmetric monoidal cubical sets [BM17].
These concerns appear irrelevant to type theory, however—they a�ect the spacelike struc-
ture induced abstractly on presheaves through equivalence of categories [Cis06], whereas
we induce spacelike structure explicitly on types through uniform Kan operations.

Symmetric monoidal cubes nevertheless pose two di�culties to type theorists. First,
their interval variables are substructural—by the injectivity condition of De�nition 3.1,
there are no contraction substitutions joining two variables—and many subtleties arise when
unifying dependency and substructurality [KPB15]. More importantly, the elimination
principles of higher inductive types appear to require contraction. Suppose we have a
higher inductive type T with 1-cube constructor x : I ` line(x). Functions (t :T) → A are
therefore determined by 1-cubes x : I ` L : A[line(x)/t], and send constructors line(y) to
L〈y/x〉, which contracts x and y in L:

Γ, t : T ` A : Typei
Γ ` M : T

Γ, x : I ` L : A[line(x)/t]
Γ ` elimt .A(M ;x .L) : A[M/t]

Γ, t : T ` A : Typei Γ, x : I ` L : A[line(x)/t]
Γ ` elimt .A(line(y);x .L) = L〈y/x〉 : A[line(y)/t]
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Γ ` M : A
(∀i) Γ, ξi,y : I ` Ni : A
(∀i, j) Γ, ξi, ξj,y : I ` Ni = Nj : A
(∀i) Γ, ξi ` Ni 〈r/y〉 = M : A

Γ,y : I ` hcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) : A

=

{
M under 〈r/y〉
Ni under ξi

Γ, x : I ` A : Typei Γ ` M : A〈r/x〉

Γ ` coer r ′

x .A (M) : A〈r ′/x〉
= M under r = r ′

Figure 3.4: Cartesian cubical Kan operations.

3.2 Cartesian cubes

Cartesian cubical sets augment symmetric monoidal cubical sets with contraction substi-
tutions 〈y/x〉, whose actions compute the diagonals of (n + 2)-cubes. (See Figure 3.3.)
Cartesian interval variables are structural (satisfy exchange, weakening, and contraction)
and, unlike De Morgan interval variables, are subject to no equations.

De�nition 3.2. The Cartesian cube category � has as objects �nite sets, and as morphisms
I → J set-theoretic functions J → I + {0, 1}, with the evident Kleisli composition [AFH18;
Ang+19; Awo18; Par15].

Work on Cartesian cubes dates to around 2014, when Coquand7 and Licata and Brunerie
[LB14] presented fragments of Cartesian cubical type theories. In 2016, Awodey [Awo18]
presented a model of identity types in Cartesian cubical sets. In 2017, the author and
collaborators succeeded in de�ning a univalent Cartesian cubical type theory with canon-
icity, presented both as a computational type theory (Appendix A) with a computational
semantics (Chapter 4) [AFH18], and as an intensional type theory (Appendix B) with a
denotational semantics in Cartesian cubical sets [Ang+19].

In Chapter 4 we will decompose the uniform Kan operation into homogeneous compo-

sition, which �lls boxes in cubically-constant types, and coercion, a form of transport for
cubically-dependent types. This decomposition is essential when de�ning higher inductive
types [CH19a]; De Morgan cubical type theory adopts a similar decomposition but only at
higher inductive types [CHM18]. Figure 3.4 contains rules for our Kan operations, in which
r and r ′ are interval terms, or elements of I (concretely, either 0, 1, or interval variables), and
ξi are interval equations (concretely, r = r ′) that restrict judgments to particular subcubes.

7See the note at http://www.cse.chalmers.se/~coquand/diag.pdf, dated April 9, 2014.

http://www.cse.chalmers.se/~coquand/diag.pdf
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Γ, x : I ` A : Typei
Γ ` P0 : A〈0/x〉
Γ ` P1 : A〈1/x〉

Γ ` Pathx .A(P0, P1) : Typei

Γ, x : I ` M : A
Γ ` 〈x〉M : Pathx .A(M 〈0/x〉,M 〈1/x〉)

Γ ` M : Pathx .A(P0, P1)

Γ ` M@r : A〈r/x〉
Γ ` M : Pathx .A(P0, P1)

Γ ` M@0 = P0 : A〈0/x〉
Γ ` M : Pathx .A(P0, P1)

Γ ` M@1 = P1 : A〈1/x〉

Γ, x : I ` M : A
Γ ` (〈x〉M)@r = M 〈r/x〉 : A〈r/x〉

Γ ` M : Pathx .A(P0, P1)

Γ ` M = 〈x〉M@x : Pathx .A(P0, P1)

Figure 3.5: Rules of path types in cubical type theory.

Identity elimination To familiarize ourselves with these Kan operations, we will con-
sider path types (Figure 3.5), a cubical analogue of identity types8 that propositionally—but
not de�nitionally—model the computation rule in Figure 3.1. Elements of Pathx .A(P0, P1)

are dependent functions (x :I) → A that send 0 and 1 to P0 and P1 respectively; like ordinary
functions, paths are introduced by abstraction (〈x〉M) and eliminated by application (M@r ).
The re�exive path on M : A is a constant function 〈_〉M , which has type Path_.A(M,M).

We de�ne the “identity eliminator” of path types using Kan operations and the folkloric
observation that identity elimination is interderivable with transport and uniqueness.
Transport for path types is a straightforward instance of coercion:

transport� : (C:B → Typei) → (p:Path_.B(b,b
′)) → C b → C b′

transport� C p c := coe0 1
x .C (p@x)(c)

observing that (C (p@x))〈0/x〉 = C b and (C (p@x))〈1/x〉 = C b′.
Singleton contractibility follows from homogeneous composition (hcom) in a manner

best explained graphically: �PathA(a) := (b:A) × Path_.A(a,b)

uniqueness� : (a:A) → (p̂:�PathA(a)) → Path_.�PathA(a)(〈a, 〈_〉a〉, p̂)
uniqueness� a 〈b,p〉 := 〈x〉

〈
a

a

p , 〈y〉 a

a

p

〉
8In fact, they correspond to Book HoTT’s dependent paths [UF13, Section 2.3], because the type A can

vary in x : I.
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To construct an element of type Path_.�PathA(a)(〈a, 〈_〉a〉, p̂), we abstract x : I and construct
an element of type (b:A) × Path_.A(a,b) equal to 〈a, 〈_〉a〉 when x = 0 (on the left) and
〈b,p〉 when x = 1 (on the right). Such an element is itself a pair; for its �rst component we
could choose p@x , as p is a path from a to b, but let us momentarily postpone our choice.

By the ordinary rules of dependent pair types, the second component must have type
Path_.A(a,q), where q is the �rst component. We exhibit such a path by abstracting y : I
and constructing an element of A equal to a when y = 0 (on the top) and q when y = 1 (on
the bottom). However, these are not our only constraints—as we noted when abstracting
x : I, the path must also equal 〈_〉a when x = 0 and p when x = 1.

In sum, we require a square equal to a when x = 0 or y = 0, to p when x = 1, and to q
when y = 1. We select the following �ller, depicted in our de�nition of uniqueness� as a
hatched square:

F := hcom0 y
A (a;x = 0 ↪→ _.a, x = 1 ↪→ y.p@y)

The premises of the hcom rule require (1) A is a type, (2) a : A, (3) a : A when x = 0 and
p@y : A when x = 1, (4) a = p@y : A whenever both x = 0 and x = 1, which is vacuous,
and (5) a〈0/y〉 = a : A when x = 0 and (p@y)〈0/y〉 = a : A when x = 1. The conclusions
assert (1) F : A, (2) F 〈0/y〉 = a : A, and (3) F = a : A when x = 0 and F = p@y : A when
x = 1. These conclusions discharge all of our obligations except F 〈1/y〉 = q : A, which we
discharge by de�ning q := F 〈1/y〉, the missing bottom face of the �ller.

The hcom rule in Figure 3.4 is quite technical because it systematically accounts for
all possible �lling scenarios; particular instances, such as F , are often much simpler. For
example, it is essential that ξi not depend on y : I; otherwise, one could �ll closed boxes and
obtain uniqueness of identity proofs. We defer most technical details to Section 4.3.2, whose
de�nition of hcom di�ers from Figure 3.4 in primarily cosmetic ways: the computational
semantics divide interval variables, interval equations, and ordinary variables into three
separate contexts, and explicitly close hcom under interval substitution by admitting
composition to any r ′, not only y : I. (A more signi�cant di�erence is the validity condition,
discussed in Section 3.5.)

We are �nally prepared to derive an uncurried variant of identity elimination:

J� : (a:A) → (C:�PathA(a) → Typei) → C 〈a, 〈_〉a〉 → (p̂:�PathA(a)) → C p̂

J� a C c p̂ := transport� C (uniqueness� a p̂) c

We do not obtain J� a C c 〈a, 〈_〉a〉 = c : C 〈a, 〈_〉a〉, which seems to require both
uniqueness� a 〈a, 〈_〉a〉 to be a constant path, and transport� C p c to be the identity
function when p is constant. These conditions, jointly named regularity, are a priori

sensible but have proven quite elusive; we discuss regularity further in Section 3.4.
Instead, we exhibit a path between J� a C c 〈a, 〈_〉a〉 and c , or an element of:

(a:A) → (C:�PathA(a) → Typei) → (c:C 〈a, 〈_〉a〉) → Path_.C 〈a,〈_〉a〉(J� a C c 〈a, 〈_〉a〉, c)
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Because J� is an instance of transport�, which is in turn an instance of coercion, we obtain
a dependent path between J� a C c 〈a, 〈_〉a〉 and c by coercing to an interval variable:

λC .λp.λc .〈x〉coe0 x
x .C (p@x)(c) :

(C:B → Typei) → (p:Path_.B(b,b
′)) → (c:C b) → Pathx .C (p@x)(c, transport� C p c)

observing that (coe0 x
x .C (p@x)

(c))〈0/x〉 = c : C b and (coe0 x
x .C (p@x)

(c))〈1/x〉 is by de�nition
transport� C p c .

When specialized to J�, we obtain an element of

Pathx .C ((uniqueness� a 〈a,〈_〉a〉)@x)(c, J� a C c 〈a, 〈_〉a〉)

a path with the desired endpoints but in the wrong type. To correct its type, we exhibit a
path between uniqueness� a 〈a, 〈_〉a〉 and 〈_〉〈a, 〈_〉a〉, which amounts to a path between
〈_〉a and the composition of a, a, and a, de�ned as the front face of a �ller whose back,
right, top, and bottom faces are a, and whose left face is the �ller of a, a, and a:

x

y
z

•

•

•

•

a

a

•

•

We complete the proof by transporting our dependent path over the propositional equality
between uniqueness� a 〈a, 〈_〉a〉 and 〈_〉〈a, 〈_〉a〉, then inverting the result.

Path types are incredibly useful in cubical type theory, notwithstanding their failure to
strictly model the computation rule of identity types. However, there are also constructions
that do strictly model the rules of identity types (but not the rules of path types). The
�rst, due to Swan [Swa18a], was originally conceived in the symmetric monoidal and
De Morgan settings but has later been ported to the Cartesian setting by Angiuli et al.
[Ang+19]. The second, due to Cavallo and Harper [CH19a], obtains identity types as an
instance of indexed inductive types.

Closure under type formers To achieve canonicity, all hcom and coe terms must com-
pute. In Chapter 4, we include computation steps de�ning the Kan operations at compound
types in terms of the Kan operations at constituent types. The same principle applies
in denotational semantics, in which one must check that, for example, the product of
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Kan cubical sets is again Kan. Closure of Kan operations under the type formers, and
particularly univalent universes, is one of the most technical aspects of cubical type theory.

Our construction of J� has already required coercions 0  r ′ and homogeneous
compositions 0 r ′ with equations (x = 0), (x = 1). We now argue that closure under
dependent function and path types requires coercion and composition from arbitrary
interval terms r as well.

Suppose x : I ` (a:A) → B : Typei and M : ((a:A) → B)〈0/x〉, and de�ne a function
((a:A) → B)〈r ′/x〉 by abstracting a : A〈r ′/x〉. We cannot apply M to a directly, but we can
apply M to coer

′ 0
x .A (a), obtaining an element of B〈0/x〉[coer ′ 0

x .A (a)/a]. If B were not depen-
dent, we would have an element of B〈0/x〉 and could simply coerce 0 r ′ in B. Instead,
we must coerce in B[coer

′ x
x .A (a)/a], a type whose 〈0/x〉 face is B〈0/x〉[coer ′ 0

x .A (a)/a], and
whose 〈r ′/x〉 aspect is B〈r ′/x〉 (by coer

′ r ′

x .A (a) = a : A〈r ′/x〉). In sum:9

coe0 r ′

x .(a:A)→B(M) := λa.coe0 r ′

x .B[coer ′ x
x .A (a)/a]

(M coer
′ 0
x .A (a))

Because we need coercion 0 r ′ in all types to de�ne J�, and we need coercion r ′ x
in all types to obtain coercion 0 r ′ in all dependent function types, we conclude that all
coercions r  r ′ are required.

Now suppose y : I ` Pathx .A(P0, P1) : Typei and M : (Pathx .A(P0, P1))〈r/y〉 and de�ne a
path (Pathx .A(P0, P1))〈r

′/y〉 by abstracting x : I. The coercion coer r ′

y.A (M@x) : A〈r ′/y〉 has
the correct type, but its 〈ε/x〉 faces are coer r ′

y.A〈ε/x〉
(Pε 〈r/y〉) and not Pε 〈r ′/y〉 as required.

However, under x = ε , coey r ′

y.A (Pε) : A〈r ′/y〉 is a y-cube whose 〈r/y〉 aspect agrees with
our coercion of M@x , and whose 〈r ′/y〉 aspect agrees with Pε 〈r

′/y〉. We obtain the result
by composing the three aforementioned elements of A〈r ′/y〉:

coer r ′

y.Pathx .A(P0,P1)
(M) := 〈x〉hcomr r ′

A〈r ′/y〉(coe
r r ′

y.A (M@x);
−−−−−−−−−−−−−−−−−−−−−⇀
x = ε ↪→ y.coey r ′

y.A (Pε))

To de�ne coercion r  r ′ in path types, we thus require composition r  r ′ in all types.
Finally, consider homogeneous composition in Pathx .A(P0, P1):

hcomr r ′

Pathx .A(P0,P1)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) := 〈x〉hcomr r ′

A (M@x ;−−−−−−−−−−−−⇀x = ε ↪→ _.Pε,
−−−−−−−−−−−−⇀
ξi ↪→ y.Ni@x)

If we omitted the equations (x = 0), (x = 1) in the de�niens, its 〈ε/x〉 faces would be
hcomr r ′

A〈ε/x〉(Pε ;
−−−−−−−−⇀
ξi ↪→ _.Pε) and not Pε as required. Therefore, to de�ne composition of

shape ξ1, . . . , ξn in path types, we require composition of shape ξ1, . . . , ξn, (x = 0), (x = 1).
Coercion r  r ′ and composition r  r ′ of shape (x1 = 0), (x1 = 1), . . . , (xn =

0), (xn = 1) su�ce to de�ne dependent function, dependent pair, and path types [AHW17].
9One must also verify coe0 0

x .(a:A)→B (M) = M . Simplifying our de�nition, coe0 0
x .(a:A)→B (M) = λa.M a, so

the result follows by the (de�nitional) uniqueness rule for dependent function types.
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As we will see in Chapter 4, univalent universes require also (1) equations corresponding
to diagonals x = z, introduced by Angiuli, Hou (Favonia), and Harper [AFH17], and (2)
closure of composition shapes under the deletion of equations that depend on x : I, an
operation named “∀x” by Cohen et al. [CCHM18].

At the time of writing, two prototype proof assistants implement Cartesian cubical
type theory. The �rst, RedPRL [Red16], implements a computational type theory—in the
sense of Section 2.4—with both equality types (as in Chapter 2) and path types. The second,
redtt [Red18], implements an intensional type theory—in the sense of Section 2.4—and
currently lacks equality types. (With Anders Mörtberg, the author has also implemented
yacctt (https://github.com/mortberg/yacctt), a defunct experimental type-checker
for intensional Cartesian cubical type theory.)

3.3 De Morgan cubes

In 2016, while investigations into Cartesian cubical type theory were ongoing, Cohen
et al. [CCHM18] discovered that one can substantially simplify the Cartesian uniform
Kan operation at the cost of adding further operations to the cube category, leading them
to de�ne a univalent De Morgan cubical type theory with canonicity [Hub18] and a
denotational semantics in De Morgan cubical sets [CCHM18; OP16; Lic+18].

De�nition 3.3. The De Morgan cube category �DM has as objects �nite sets, and as
morphisms I → J set-theoretic functions J → DM(I ), where DM(I ) is the free De Morgan
algebra on I , with the evident Kleisli composition [CCHM18]. (A De Morgan algebra has
binary operations ∧,∨ and constants 0, 1 forming a bounded distributive lattice, and an
involution ¬ satisfying ¬(r ∨ r ′) = ¬r ∧ ¬r ′ and ¬(r ∧ r ′) = ¬r ∨ ¬r ′.)

De Morgan cubical type theory augments Cartesian cubical type theory with three
interval term formers: connections r ∧ r ′ and r ∨ r ′ which compute the minimum and
maximum of r , r ′ respectively, and reversals ¬r which compute 1 − r . Geometrically,
connections provide an alternative form of degeneracy that is constant on two non-opposing

faces, and reversals exchange the endpoints of one interval. (See Figure 3.3.)
These connections and reversals allow Cohen et al. [CCHM18] to consider a uniform

Kan operation limited to 0 1 and shapes generated by conjunctions and disjunctions of
(xi = 0) and (xi = 1). Figure 3.6 describes their heterogeneous composition operation for
cubically-dependent types, which encompasses both homogeneous composition (when
A is constant in y : I) and coercion (when there are no ξi ). It is often easier to construct
instances of comp than of the Cartesian hcom and coe—unlike hcom and coe, the source
and target r  r ′ of comp can never become equal, so comp is subject only to one equation
(“under ξi”) and not two (“under 〈r/y〉”).

https://github.com/mortberg/yacctt
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Γ,y : I ` A : Typei
Γ ` M : A〈0/y〉

(∀i) Γ, ξi,y : I ` Ni : A
(∀i, j) Γ, ξi, ξj,y : I ` Ni = Nj : A
(∀i) Γ, ξi ` Ni 〈0/y〉 = M : A〈0/y〉

Γ ` compy.A(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) : A〈1/y〉

= Ni 〈1/y〉 under ξi

Figure 3.6: De Morgan cubical Kan operation.

Surprisingly, many of the constructions described in Section 3.2 can be recovered in
the De Morgan setting. For instance, forward coercion 0 1 in x : I ` (a:A) → B : Typei
previously required backward coercion 1  0 in x : I ` A : Typei , but here we can
simply coerce (forward) in x : I ` A〈¬x/x〉 : Typei .10 As before, J� (with propositional
computation rule) follows from transport� and uniqueness�, but the latter is now a direct
consequence of connections: uniqueness� a 〈b,p〉 := 〈x〉〈p@x, 〈y〉p@(x ∧ y)〉. Finally,
although composition 0 1 directly provides only the “missing face” of a �ller and not its
interior, one can recover �lling from composition and connections in an ingenious fashion:

•

•

•

•

p

qr := r ′

p

q′

•

•

•

•

•

•

•

•

That is, we can de�ne the �ller of p, q, and r as the missing bottom face of an open box
whose top and back faces are p degenerated, and whose left and right faces are connections
of r and q, that is, squares whose top and back faces are degenerate and whose front and
bottom faces are r and q respectively.

Conversely, in the Cartesian setting, one can de�ne weak connections and reversals
that have the correct faces and diagonals but do not satisfy the equations of a De Morgan
algebra; for example, reversing a path twice is only propositionally an involution.

De Morgan cubical type theory is the basis of a recent cubical extension to the Agda
proof assistant [VMA19]; earlier, Cohen, Coquand, Huber, and Mörtberg implemented it in
an experimental type-checker cubicaltt (https://github.com/mortberg/cubicaltt).

10In fact, Cohen et al. [CCHM18] need reversals only for backward composition, and implicitly also
de�ne a distributive lattice cubical type theory that replaces reversals by comp0 1

y .A and comp1 0
y .A .

https://github.com/mortberg/cubicaltt
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3.4 Regularity

In cubical type theories, paths in A correspond to open elements of A. Path types are
therefore quite well-behaved: they are automatically dependent (in the sense of Book
HoTT [UF13, Section 2.3]), and commute appropriately with other type formers, including
dependent function types:

funext : ((a:A) → Path_.B(f a,д a)) → Path_.(a:A)→B(f ,д)

funext h := 〈x〉λa.(h a)@x

One of their few drawbacks is that path types do not strictly satisfy the rules of identity
types, which would allow cubical type theory to import proofs from Book HoTT in a
natural way, sending identity types to path types.

Recall our cubical de�nition of J� in Section 3.2. To validate the de�nitional compu-
tation rule of identity types, we seem to require transport� C (〈_〉b) c to be the identity
function onC b, and uniqueness� a 〈a, 〈_〉a〉 to be a degenerate path at 〈a, 〈_〉a〉. In Carte-
sian cubical type theory, the former holds if coercion in degenerate types (x : I ` C : Typei
such that C = C 〈0/x〉 : Typei ) is constant, and the latter holds if any open box whose
speci�ed ξi sides are degenerate has a degenerate �ller:

p
•

•

•

•

=

•

•

•

•

p

p

(In De Morgan cubical type theory, uniqueness� a 〈a, 〈_〉a〉 is re�exive when de�ned with
connections, but transport� C (〈_〉b) c is not the identity.)

These conditions on coercion and composition, jointly known as regularity, were
discovered by several researchers, including Coquand11 and Awodey [Awo18]. Early
investigations into cubical type theory focused on de�ning regular uniform Kan operations
closed under the type formers of Book HoTT. In April 2015, Cohen, Coquand, Huber,
and Mörtberg circulated an early version of De Morgan cubical type theory apparently
satisfying regularity. In May 2015, Licata, Harper, Morehouse, and the author discovered
an error in their treatment of universes, which Cohen et al. corrected in July 2015 at the
cost of abandoning regularity.

Regularity for universes All open boxes in a universe must have �llers. Because those
�llers are elements of a universe, they must themselves be types. Consider the bottom

11See the note at http://www.cse.chalmers.se/~coquand/comp.pdf, dated November 8, 2014.

http://www.cse.chalmers.se/~coquand/comp.pdf


Regularity 61

face of a �ller whose other faces are types A, B, and C (below, right). Coercion in the
�ller’s y-coordinate requires this type to be equivalent to A. However, this type is not
equal to A, because its 〈0/x〉 and 〈1/x〉 faces are C 〈1/y〉 and B〈1/y〉. Instead, we regard
it as a new type whose elements are triples of a : A, b : B〈1/y〉, and c : C 〈1/y〉 such that
a〈0/x〉 = coe1 0

y.C (c) : A〈0/x〉 and a〈1/x〉 = coe1 0
y.B (b) : A〈1/x〉:

x

y

c b

coe1 0
y.C (c) coe1 0

y.B (b)
a •

•

•

•
C

A

B:

This type must moreover admit a Kan operation, which failed to be regular in the April
2015 draft of De Morgan cubical type theory. It remains unknown how to equip this type
with a regular Kan operation, and a semantic analysis by Swan [Swa18b] proves regularity
is in fact impossible to achieve in certain classes of models. A representative case of the
di�culty with regularity follows.

Suppose A, B, and C vary also in z : I; for simplicity, let C be degenerate in y : I.
Coercion 0  1 in the composite type’s z-coordinate takes as input x : I ` a : A〈0/z〉
and b : B〈0/z〉〈1/y〉 such that a〈1/x〉 = coe1 0

y.B〈0/z〉(b) : B〈0/z〉〈0/y〉, and must produce
x : I ` a′ : A〈1/z〉 and b′ : B〈1/z〉〈1/y〉 such that a′〈1/x〉 = coe1 0

y.B〈1/z〉(b
′) : B〈1/z〉〈0/y〉:

x

y
z

B

A

3 b

3

a

•

•

•

•

•

•

•

•

By de�nition, b′ is the 〈1/x〉 face of our coercion. On the other hand, the 〈1/x〉
face of the type in which we coerce equals B〈1/y〉, so the 〈1/x〉 face of our coercion
must equal coe0 1

z.B〈1/y〉(b) by commuting coercion and substitution. We therefore de�ne
b′ := coe0 1

z.B〈1/y〉(b).
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It is tempting to de�ne x : I ` a′ : A〈1/z〉 as coe0 1
z.A (a), but this de�nition does not

necessarily satisfy a′〈1/x〉 = coe1 0
y.B〈1/z〉(b

′) : B〈1/z〉〈0/y〉 as required:

a′〈1/x〉 = coe0 1
z.A〈1/x〉(a〈1/x〉) = coe0 1

z.A〈1/x〉(coe
1 0
y.B〈0/z〉(b))

, coe1 0
y.B〈1/z〉(b

′) = coe1 0
y.B〈1/z〉(coe

0 1
z.B〈1/y〉(b))

That is, coercing b up then forward may not be the same as coercing it forward then up.
There is, however, a path between those coercions, which we obtain by coercing b up to
B〈0/z〉, then coercing forward along all of B:

coe0 1
z.B〈0/y〉(coe

1 0
y.B〈0/z〉(b)) coe1 0

y.B〈1/z〉(coe
0 1
z.B〈1/y〉(b))

coey 0
y.B〈1/z〉(coe

0 1
z.B (coe

1 y
y.B〈0/z〉(b)))

De�ne a′ as the composite of coe0 1
z.A (a) and the above adjustment path.

We have just de�ned coercion in the composite of A and B, but our de�nition does
not satisfy regularity. Suppose the composite type (and hence also A and B) is degenerate
in z : I; then regularity requires our coercion to be the identity function (that is, a′ = a
and b′ = b). Assuming regularity holds for coercion in A and B, we have b′ = b and
coe0 1

z.A (a) = a, but the adjustment path above requires coercion in y : I and thus only
simpli�es to coey 0

y.B (coe
1 y
y.B (b)). Therefore a′ , a, and regularity fails for our de�nition.

Regularity for other types On the other hand, regular uniform Kan operations are

straightforwardly closed under dependent function, dependent pair, and path types, and in
fact, regularity simpli�es the de�nition of composition in Pathx .A(P0, P1) that we presented
in Section 3.2. Unlike in ordinary cubical type theory, we can de�ne:

hcomr r ′

Pathx .A(P0,P1)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) := 〈x〉hcomr r ′

A (M@x ;
−−−−−−−−−−−−⇀
ξi ↪→ y.Ni@x)

The 〈ε/x〉 faces of the de�niens are hcomr r ′

A〈ε/x〉(Pε ;
−−−−−−−−⇀
ξi ↪→ _.Pε), which by regularity equal

Pε (because P0, P1 are constant in y : I).
To obtain a cubical type theory closed under dependent function, dependent pair, and

path types that strictly model identity types, it su�ces to equip each type with regular
coercion r  r ′ and regular composition r  r ′ of shape (x = 0), (x = 1) only.12 (We still
need compositions of such shape to de�ne J� and coercion in path types, but composition
in path types no longer alters composition shapes.) Awodey [Awo18] models identity
types in Cartesian cubical sets by a similar observation.

12Sterling, Angiuli, and Gratzer [SAG19] use exactly these Kan operations in a cubical type theory with
non-univalent universes and path types satisfying uniqueness of identity proofs.
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3.5 Validity and other considerations

Regularity is one of many subtleties in de�ning a uniform Kan operation. Another is: do we
permit 0-dimensional �lling problems? Cohen et al. [CCHM18] answer in the a�rmative,
allowing compositions of empty shape · ` compy.A(M ; ·) : A〈1/y〉 for · ` M : A〈0/y〉.
Such compositions simplify only according to type-speci�c principles analogous to those
in Section 3.2, because the sole type-generic equation governing comp (Figure 3.6) does
not apply to empty shapes. (If comp were regular, then comp_.A(M ; ·) = M would hold
generically.) For a higher inductive type T, comp_.T(M ; ·) never simpli�es, because T’s
elimination principle stipulates that T is the least uniform Kan type with given constructors.

Perhaps surprisingly, empty compositions in higher inductive types pose major dif-
�culties in cubicaltt, where closed terms of higher inductive type often compute to
values with hundreds of nested empty compositions comp_.T(comp_.T(· · · ; ·); ·). Such
empty compositions partially negate the bene�ts of computation. Imagine, for instance,
computing a closed element of a set quotient A/R [UF13, Section 6.10]. In cubicaltt, such
an element’s value may contain arbitrarily many empty compositions; if we could disallow
empty compositions, its value would always be the injection in(M) of an element of A.

We contribute a method for disallowing empty compositions, allowing us to obtain a
strong canonicity theorem for 0-cubes of higher inductive type (Theorem 4.77); recently,
Vezzosi, Mörtberg, and Abel [VMA19] have developed such a method in the De Morgan
setting in cubical Agda. To understand our approach, recall that uniform Kan operations
must commute with interval substitutions. One must therefore prohibit not only empty
compositions but also all compositions with empty substitution instances. For example,
although hcom0 1

A (M ;x = 1 ↪→ y.N ) is not empty, its 〈0/x〉 face has shape (0 = 1), which
is either empty or equally problematic, because it is unsatis�able.

We thus restrict hcom to shapes ξ1, . . . , ξn all of whose closed instantiations contain
at least one true clause—that is, for which (∀x1, . . . , xm ∈ {0, 1}.ξ1 ∨ · · · ∨ ξn) holds.
Geometrically, such open boxes cover all 0-cells of their �llers (below, left but not right):

M

NN ′

hcom0 y
A (M ;x = 1 ↪→ y.N , x = 0 ↪→ y.N ′)

M

N

hcom0 y
A (M ;x = 1 ↪→ y.N )

3

3

3

3

3 3

37

In Chapter 4 we underapproximate the above condition, requiring simply that valid com-
position shapes contain either a true clause or a pair of clauses (x = 0), (x = 1) for some x
(De�nition 4.28).
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Following the observations of Section 3.2, valid homogeneous composition r  r ′

and coercion r  r ′ su�ce to de�ne dependent function, dependent pair, and path types.
Univalent universes are more challenging, as the aforementioned ∀x operation [CCHM18]
produces invalid shapes from valid ones, for example, when deleting all x clauses from
the shape (x = 0), (x = 1), (z = 1). In such cases we use a derived operation called
generalized homogeneous composition, written ghcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni), which �lls

boxes of possibly-invalid shape by iterated valid �llers (Theorem 4.34).13 Our generalized
compositions compute not according to their type but rather the length of ξ1, . . . , ξn;
moreover, although generalized compositions satisfy the rules of Figure 3.4, they do not
equal the corresponding hcoms if applied to valid shapes.

Equality of compositions Our discussion of validity raises another question: when
are two compositions equal? Many syntactically distinct �lling problems have equal
extensions as open boxes, including:

hcomr r ′

A (M ; ξ ↪→ y.N , 0 = 1 ↪→ y.N ′) = hcomr r ′

A (M ; ξ ↪→ y.N )

hcomr r ′

A (M ; ξ ↪→ y.N , ξ ′ ↪→ y.N ′) = hcomr r ′

A (M ; ξ ′ ↪→ y.N ′, ξ ↪→ y.N )

hcomr r ′

A (M ; ξ ↪→ y.N , ξ ↪→ y.N ) = hcomr r ′

A (M ; ξ ↪→ y.N )

hcomr r ′

A (M ; s = s′ ↪→ y.N ) = hcomr r ′

A (M ; s′ = s ↪→ y.N )

The �rst three are de�nitional equalities of De Morgan cubical type theory, where they
are used in the de�nition of identity types [CCHM18, Section 9.1]. (The fourth is moot
because Cohen et al. [CCHM18] consider only easily-oriented equations (x = 0), (x = 1).)
We adopt none of the above equations in this dissertation; Cavallo and Harper [CH19a]
provide an alternative de�nition of identity types not reliant on these equations. Aside
from identity types, such equations seem expendable in practice, and complicate both
implementations and our de�nition of generalized composition.

Readers often ask whether coercions satisfy the equation:

coer
′ r ′′

x .A (coer r ′

x .A (M)) = coer r ′′

x .A (M)

In fact, this equation implies that every path in Typei induces a strict isomorphism be-
tween its endpoints (by λa.coe0 1

x .p@x (a) and λa.coe1 0
x .p@x (a)) rather than an equivalence,

ruling out many instances of univalence. These coercions are nevertheless related by
coex r ′′

x .A (coer x
x .A (M)), which equals the left one under 〈r ′/x〉 and the right under 〈r/x〉.

13Our construction of univalent universes is only simpli�ed by omitting validity (and thus, generalized
composition); see Appendix B or, for an alternate construction, Angiuli et al. [Ang+19].
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Compositions of types As suggested in Section 3.4, we regard homogeneous composi-
tion of types as a type former in its own right, and must therefore specify its introduc-
tion, elimination, computation, and uniqueness principles. For example, an element of
hcom0 1

Typei
(A;x = 0 ↪→ y.C, x = 1 ↪→ y.B), written box0 1(a;x = 0 ↪→ c, x = 1 ↪→ b),

consists of an element a : A and two partial elements (x = 0) ` c : C 〈1/y〉 and (x = 1) ` b :
B〈1/y〉 satisfying (x = 0) ` a = coe1 0

y.C (c) : A and (x = 1) ` a = coe1 0
y.B (b) : A.

x

y

c b

coe1 0
y.C (c) coe1 0

y.B (b)
a •

•

•

•

C

A

B:

This introduction principle is far from arbitrary. If x = 1, the composite type must equal
B〈1/y〉; accordingly, if x = 1, the above data speci�es precisely an element of B〈1/y〉—the
partial element c is vacuous because x = 0 is impossible,14 and a must be exactly coe1 0

y.B (b)

because x = 1 is tautologous. Coercion in y.hcom0 y
Typei
(A;x = 0 ↪→ y.C, x = 1 ↪→ y.B)

implies the composite type is equivalent to A, which is why boxes include a : A (as well
as its equations with b and c , lest the type be equivalent instead to A ×C 〈1/y〉 × B〈1/y〉).
Conversely, if composite types do not admit coercion, they need not be equivalent to A; in
Section 4.4.10 we de�ne compositions of non-Kan types to be empty.

Finally, to compose and coerce in composite types, we must access the components
of boxes. We easily obtain b and c as the 〈1/x〉 and 〈0/x〉 faces of the box above, and we
compute a using cap, the elimination form of composite types. In general, eliminating
an element of hcom0 1

Typei
(A;x = 0 ↪→ y.C, x = 1 ↪→ y.B) produces an element of A. The

cap of a box is simply its a : A component; if x = 1, the input to cap is not a box but
an element of B〈1/y〉, and cap instead applies coe1 0

y.B (−). (These computations agree by
(x = 1) ` a = coe1 0

y.B (b) : A.) See Section 4.4.11 for details.

V-types If Typei is univalent, we have a function:

ua� : (A B:Typei) → ((f :A→ B) × IsEquiv(f )) → Path_.Typei (A,B)

Applying elimination rules, (ua� A B 〈f , e〉)@x must therefore be a type with extent in
x : I. In this dissertation, we regard this type as a new type former written Vx (A,B, 〈f , e〉),
equal to A when x = 0 and B when x = 1.

What is the formation principle of Vx (A,B, 〈f , e〉)? In particular, what do occurrences
of x mean in A,B, f , e? (No such occurrences exist in our motivating example above.) We

14We discuss judgments under interval equations in Section 4.3.2.
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cannot insist thatx does not occur, because formation would not be closed under diagonals—
typehood of Vx (A,B, 〈f , e〉) would not imply typehood of (Vx (A,B, 〈f , e〉))〈y/x〉 when y
occurs in A,B, f , e .15 Nor can we ask that A and B be disjoint partial types (x = 0) ` A :
Typei and (x = 1) ` B : Typei , because we would not be able to form A→ B.

Instead, we require types (x = 0) ` A : Typei and B : Typei and an equivalence
(x = 0) ` 〈f , e〉 : (f :A→ B) × IsEquiv(f ). That is, given a type B and a partial type A
equivalent to B〈0/x〉 under x = 0, we obtain a line Vx (A,B, 〈f , e〉) between A and B〈1/x〉,
e�ectively composing the equivalence f and the type B:

x

a

f a •b

A

• •B

f:

By analogy with composite types, an element of Vx (A,B, 〈f , e〉), written Vinx (a,b),
consists of b : B and a partial element (x = 0) ` a : A satisfying (x = 0) ` f a = b :
B; Vinx (a,b) equals a when x = 0 and b〈1/x〉 when x = 1. The elimination form for
Vx (A,B, 〈f , e〉), written Vprojx (−, f ), produces an element of B. Applied to Vinx (a,b),
Vproj returns b; if x = 0, the argument of Vproj is an element of A instead, and Vproj
applies f . See Section 4.4.9 for details.

V-types and composite types arise as special cases of the Glue types of Cohen et al.
[CCHM18], in which a single type is composed with any con�guration of partial types
equivalent to it. (One obtains composite types by using coercion to transform each y.Bi
into an equivalence.) Angiuli et al. [Ang+19] develop Glue types in the Cartesian setting;
we do not discuss them further in this dissertation.

Extension types We consider several variations on path types in RedPRL and redtt.
Elements of line types are dependent functions from I with arbitrary endpoints:

Γ, x : I ` A : Typei
Γ ` (x :I) → A : Typei

Γ, x : I ` M : A
Γ ` 〈x〉M : (x :I) → A

Γ ` M : (x :I) → A

Γ ` M@r : A〈r/x〉

Elements of a restriction type A [
−−−−−−−⇀
ξi ↪→ Ni] are elements of A that equal Ni when ξi :

Γ ` A : Typek
(∀i) Γ, ξi ` Ni : A
(∀i, j) Γ, ξi, ξj ` Ni = Nj : A

Γ ` A [
−−−−−−−⇀
ξi ↪→ Ni] : Typek

Γ ` M : A
(∀i) Γ, ξi ` M = Ni : A

Γ ` in(M) : A [
−−−−−−−⇀
ξi ↪→ Ni]

Γ ` M : A [
−−−−−−−⇀
ξi ↪→ Ni]

Γ ` out(M) : A
= Ni under ξi

15This de�nition, known as the G-type, is possible in the symmetric monoidal setting [BCH18].
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(One can avoid the bureaucracy of explicit in/out coercions by considering A [
−−−−−−−⇀
ξi ↪→ Ni] a

subtype of A; similarly, one can consider Pathx .A(M,N ) a subtype of (x :I) → A.)
We can recover path types as a combination of line and restriction types:

Pathx .A(a,a′) := (x :I) → A [x = 0 ↪→ a, x = 1 ↪→ a′]

However, the �exibility of line and restriction types makes them more ergonomic than
path types. Consider binary path composition, which takes three points a,b, c : A and
two paths Path_.A(a,b) and Path_.A(b, c). Using line types, we can eliminate the �rst three
arguments a,b, c , instead stating that composition takes a line p : I → A and a line
q : (x :I) → A [x = 0 ↪→ p@1] whose left endpoint equals the right endpoint of p:

composition : (a b c:A) → Path_.A(a,b) → Path_.A(b, c) → Path_.A(a, c)

composition′ : (p:I→ A) → (q:(x :I) → A [x = 0 ↪→ p@1]) → Path_.A(p@0,q@1)

Another example is the type of squares bounded by four paths p : Path_.A(a,b), q :
Path_.A(a, c), r : Path_.A(b,d), and s : Path_.A(c,d), typically de�ned as the iterated path
type Pathx .Path_.A(p@x,s@x)(q, r ). We can express the geometry of these constraints more
directly using line and restriction types:

(x y:I) → A [x = 0 ↪→ q@y, x = 1 ↪→ r@y,y = 0 ↪→ p@x,y = 1 ↪→ s@x]

If x : I ` A : Typei is Kan then (x :I) → A is Kan. The same is not true for restriction
types, as that would imply that all paths exist:

〈x〉out(coe0 x
x .A [x=0↪→true,x=1↪→false](in(true))) : Path_.bool(true, false)

Fortunately, (−⇀xi :I) → A [
−−−−−−−⇀
ξj ↪→ Nj] is Kan whenever

−⇀
ξj is empty or valid, and moreover

mentions only interval variables in −⇀xi—that is, whenever line types bind all the variables
involved in a restriction type. The latter condition is satis�ed by path types, composition′,
square types, and many other examples.

For that reason, we consider (−⇀xi :I) → A [
−−−−−−−⇀
ξj ↪→ Nj] to be a primitive type former known

as extension types, following Riehl and Shulman [RS17], who �rst introduced them. The
Kan operations for extension types are very similar to those of path types (Section 3.2),

adjusting homogeneous compositions by
−−−−−−−−−⇀
ξj ↪→ _.Nj and coercions by

−−−−−−−−−−−−−−−−−−⇀
ξj ↪→ y.coey r ′

y.A (Nj).
The redtt proof assistant currently supports extension types, and uses them to reify

boundary constraints on subgoals. For example, if a user writes the partial term:

hcom0 1
A (M ;x = 0 ↪→ y.N , x = 1 ↪→ ?)

redtt displays (y:I) → A [y = 0 ↪→ M, 1 = 0 ↪→ _] for the type of the hole ?. Cubical
Agda currently supports line and restriction types (the latter via “partial cubical types”) but
not Kan extension types, nor does it formulate subgoals using extension types [VMA19,
Section 3.3]. We anticipate these features will be implemented in the future.





4
Cartesian cubical type theory

Now, it is the contention of the intuitionists (or constructivists, I
shall use these terms synonymously) that the basic mathematical
notions, above all the notion of function, ought to be interpreted
in such a way that the cleavage between mathematics (classical
mathematics, that is) and programming that we are witnessing at
present disappears.

—Per Martin-Löf,
Constructive mathematics and computer programming [ML82]

This chapter describes the computational semantics of Cartesian cubical type theory,
which extends ordinary constructive type theory with path, circle, and univalent universe
types. Like De Morgan cubical type theory [CCHM18], Cartesian cubical type theory uses
interval variables x : I and uniform Kan operations to mediate the higher-dimensional
structure induced by univalence and higher inductive types.

Our computational semantics directly justify Cartesian cubical computational type

theory (Appendix A), a Nuprl-style type theory implemented in theRedPRL proof assistant
[Red16]. Cartesian cubical computational type theory is a two-level type theory, like
Voevodsky’s Homotopy Type System [Voe13], containing both Kan types equipped with
homogeneous composition and coercion operations (as described in Section 3.2), and
pretypes possibly lacking such operations. As in Chapter 2, we establish consistency
(Theorem 4.58) and canonicity (Theorems 4.63 and 4.77) for our computational type theory.

Cartesian cubical computational type theory contains two cumulative hierarchies of
universes: UKan

i whose elements are Kan types, and Upre
i ⊃ UKan

i whose elements are
pretypes. BothUKan

i andUpre
i are Kan types, and eachUKan

i is univalent. Our pretypes
include strict equality EqA(M,N ) with equality re�ection; strict equality is not generally
Kan, as that would imply that all paths are trivial:

λp.transport� (λb .EqA(a,b)) p ? : Path_.A(a,a
′) → EqA(a,a

′)

This chapter derives heavily from the author’s Cartesian Cubical Computational Type

Theory: Constructive Reasoning with Paths and Equalities [AFH18] and its associated
preprint [AFH17], but incorporates additional exposition and various technical improve-
ments, notably: simpler de�nitions of coercion in V-types and homogeneous composition
in hcomUKan

i
types suggested by Anders Mörtberg (Figure 4.2); a construction of hcomUpre

i
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types suggested by Andrew Pitts enablingUpre
i to be Kan (Section 4.4.10); and new notation

for candidate judgments after Chapter 2 (De�nition 4.5).
Cavallo and Harper [CH19a] extend our computational semantics with a schema for

indexed higher inductive types accounting for many types considered in Book HoTT,
including spheres, homotopy pushouts, truncations, and the identity type (with strict
computation rule). In a separate line of work, Cavallo and Harper [CH19b] extend our
computational semantics with bridge variables expressing internal parametricity primitives
in the style of Bernardy, Coquand, and Moulin [BCM15], which refute the law of excluded
middle for homotopy subsingleton types [UF13, Section 3.4]. We do not present these
extensions in this dissertation.

Denotational and intensional formulations Although we analyze Cartesian cubical
type theory from the computational perspective, our uniform Kan operation can be for-
mulated for arbitrary Cartesian cubical sets. Angiuli et al. [Ang+19] show that Cartesian
cubical sets with such an operation are closed under dependent functions, dependent pairs,
univalent universes, et cetera, accompanied by an Agda formalization in the axiomatic
style developed by Orton and Pitts [OP16] and Licata et al. [Lic+18].

Moreover, just as the computational semantics of Idealized Nuprl also model intensional
type theory (in the sense of Section 2.4), we can de�ne a Cartesian cubical intensional type

theory and regard this chapter as a proof of its consistency.1 Angiuli et al. [Ang+19] propose
one such type theory; we propose another in Appendix B closer to what is implemented in
the redtt [Red18] proof assistant and described by our computational semantics (namely,
with V and hcomUKan

i
type formers instead of Glue types [Ang+19, Section 2.11]).

Neither Cartesian cubical intensional type theory contains strict equality types—
although equality re�ection is semantically justi�ed and natural in computational type
theory, it is undesirable for de�nitional equality as re�ection disrupts its decidability.
Altenkirch, Capriotti, and Kraus [ACK16] and Boulier and Tabareau [BT17] have proposed
two-level intensional type theories (without canonicity) whose strict equality types are
identity types augmented by axioms for function extensionality and uniqueness of identity
proofs. More recently, Sterling, Angiuli, and Gratzer [SAG19] proposed XTT, a cubical
intensional type theory with canonicity, whose path type satis�es function extensionality
and uniqueness of identity proofs. We hope to integrate XTT into redtt to obtain strict
equality without re�ection in an intensional, two-level cubical type theory with canonicity.

Outline Before diving into technical details, we brie�y outline the di�culties that arise
in this chapter. Cartesian cubical type theory is based on a cubical programming language
whose programs contain interval variables that can be instantiated with 0 and 1. As in

1Canonicity does not follow immediately, as intensional type theories contain only typed equations, but
we expect that this chapter and Huber’s canonicity proof [Hub18] contain all the necessary ingredients.
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Chapter 2, our operational semantics range only over programs with no free term variables,
and open judgments express the truth of their conclusion for all closed elements of their
hypotheses. However, interval variables cannot stand only for their endpoints 0 and 1,
because such an interpretation would equate all lines with equal boundaries and thus
imply uniqueness of identity proofs.

We therefore de�ne our cubical operational semantics for programs with free interval
variables (but no free term variables), and de�ne types by their PERs of closed value
elements at every dimension, that is, for every set of interval variables. We ensure that the
PERs of elements of each closed type determine a Cartesian cubical set whose restriction
maps are given by interval substitution followed by evaluation. (Evaluation is needed
because the endpoints of values are not necessarily values.)

We equip every Kan type with coercion and homogeneous Kan composition operations
su�cient for de�ning transport and singleton contractibility (Section 3.2). To de�ne
homogeneous Kan composition (De�nition 4.29), we must specify when a collection of
n-cubes forms an open box of a given shape. We implement the Kan operations of each type
former using operational semantics rules which rely on the Kan operations of constituent
types. As outlined in Section 3.4, homogeneous compositions of Kan types are themselves
types whose elements are formal boxes of elements of the constituent types. To ensure our
universes are univalent, given any types A,B and equivalences E between them, we de�ne
a type Vx (A,B, E) whose endpoints are A and B. These “V-types” are a special case of the
“Glue types” of Cohen et al. [CCHM18], and closely related to the “G-types” of Bezem,
Coquand, and Huber [BCH18].

Finally, as in Section 2.5, we prove the formation, introduction, elimination, and
uniqueness rules for each type former. In the cubical setting, we must also verify that
each type is Kan, that is, that its operational semantics rules properly implement its Kan
operations. In Section 2.5, we proved most rules using head expansion (Lemma 2.15), by
which it su�ces to consider a term’s evaluation behavior; in Section 4.4, we must often rely
instead on coherent expansion (Lemma 4.18), which requires us to consider the evaluation
behavior of all interval substitution instances of a term.

4.1 Syntax and operational semantics

Cartesian cubical type theory is based on a untyped functional programming language
with two sorts: interval terms and ordinary terms. The only interval terms are 0, 1, and
interval variables x,y, . . . ; ordinary terms include standard type and term constructors
previously seen in Idealized Nuprl, as well as new constructs (for Kan operations, higher
inductive types, et cetera) with interval term arguments.

We de�ne the syntax of ordinary terms in Figure 4.1. As before, capital letters
M,N ,A, . . . represent ordinary terms and a,b, . . . represent ordinary term variables and
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M := Π(A,a.B) (a:A) → B dependent function type
λ(a.M) λa.M lambda abstraction
app(M,N ) M N function application
Σ(A,a.B) (a:A) × B dependent pair type
pair(M,N ) 〈M,N 〉 pairing
fst(M) fst(M) �rst projection
snd(M) snd(M) second projection
Eq(A,M,N ) EqA(M,N ) equality pretype
refl ? equality proof
nat nat natural number type
z z zero
s(M) s(M) successor
natrec(M,N1,n.a.N2) natrec(M ;N1,n.a.N2) natural number recursion
bool bool boolean type
true true true
false false false
if(M,N1,N2) if(M ;N1,N2) boolean recursion
void void empty type

Path(x .A,M,N ) Pathx .A(M,N ) path type
ilam(x .M) 〈x〉M interval abstraction
iapp(M, r ) M@r interval application
V(r ,A,B, E) Vr (A,B, E) weak univalence axiom
Vin(r ,M,N ) Vinr (M,N ) V-type injection
Vproj(r ,M, F ) Vprojr (M, F ) V-type projection
circle S1 circle type
base base base point
loop(r ) loopr loop
celim(c .A,M,N1, x .N2) S

1-elimc .A(M ;N1, x .N2) circle induction
Pre[i] U

pre
i ith pretype universe

Kan[i] UKan
i ith Kan type universe

Figure 4.1: Syntax of Cartesian cubical type theory: basic constructs.

binders. We additionally write r , s, . . . for interval terms, x,y, . . . for interval variables
and binders, ε for interval constants 0 and 1, and FI(M) for the set of interval variables
free in M . One can substitute ordinary terms into ordinary terms M[N /a], and interval
terms into either sort: M 〈r/x〉 and s 〈r/x〉.
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coe(x .A, r , r ′,M) coer r ′

x .A (M) coercion
hcom[n](A, r , r ′,M,

−−−−−−−−⇀
ri, r
′
i ,y.Ni) hcomr r ′

A (M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) homog. comp.

com[n](y.A, r , r ′,M,
−−−−−−−−⇀
ri, r
′
i ,y.Ni) comr r ′

y.A (M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) heterog. comp.

ghcom[n](A, r , r ′,M,
−−−−−−−−⇀
ri, r
′
i ,y.Ni) ghcomr r ′

A (M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) generalized hcom

gcom[n](y.A, r , r ′,M,
−−−−−−−−⇀
ri, r
′
i ,y.Ni) gcomr r ′

y.A (M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) generalized com

box[n](r , r ′,M,
−−−−−−⇀
ri, r
′
i ,Ni) boxr r ′(M ;

−−−−−−−−−−−⇀
ri = r

′
i ↪→ Ni) box formation

cap[n](r , r ′,M,
−−−−−−−−⇀
ri, r
′
i ,y.Bi) caprfr ′(M ;

−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Bi) cap projection

Figure 4.1: Syntax of Cartesian cubical type theory: Kan operations.

The Kan composition operators are indexed by external natural numbers. For instance,
hcom[n] represents homogeneous composition alongn equations, and has 3n+4 arguments,
the last 3n of which are grouped in triples ri, r ′i ,y.Ni specifying Ni as the ri = r ′i component
of an open box. We write ξi for equations ri = r ′i (formally, pairs of interval terms), and
pun ξi and ¬ξi for the propositions that such an equation holds or fails to hold.

In Figure 4.2, we de�ne a structural operational semantics [Plo81] over terms with free
interval variables but no free term variables. The judgment M0 val speci�es when M0 is
a value, and M 7−→ M′ speci�es when M takes one step of evaluation to M′. We write
M 7−→∗ M′ when M steps to M′ in zero or more steps, and M ⇓ M0 when M 7−→∗ M0 and
M0 val. Curiously, coercion is the only place where evaluation descends under interval
binders, as coe must evaluate its type argument x .A and dispatch on A’s head constructor.

These judgments satisfy three key properties easily proven by induction on their
de�nitions. First, if M val, then M X7−→. (As before, the converse is not the case.) Secondly,
evaluation is deterministic: if M 7−→ M′ and M 7−→ M′′, then M′ = M′′. Finally, evaluation
never introduces additional free interval variables: if M 7−→ M′, then FI(M′) ⊆ FI(M).

Finite sets of interval variables and total interval substitutions present the Cartesian
cube category described in De�nition 3.2.

De�nition 4.1. Given �nite sets Ψ,Ψ′ of interval variables, a total interval substitution

ψ : Ψ′→ Ψ assigns to each element of Ψ either 0, 1, or an element of Ψ′.

Our computational semantics associate to each closed type a Cartesian cubical set
whose Ψ-cubes are values M0 with FI(M0) ⊆ Ψ, and whose restriction maps are given by
interval substitution followed by evaluation. Evaluation is necessary because, crucially,
our operational semantics are not cubically stable, or stable under interval substitution.
(Recall that, in contrast, evaluation in Idealized Nuprl is stable under substitution when
lifted to open terms.) They do, however, respect permutations of interval variables, which
form a “nominal” [Pit13; Pit15] wide subcategory of the Cartesian cube category.
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To see why the operational semantics do not respect interval substitution, consider
the circle S1, a higher inductive type generated by a point base and a line loopx . The
constructors base and loopx are values; we ensure the faces of loopx are base by the
operational step (loopx )〈0/x〉 = loop0 7−→ base. (Thus M val does not imply Mψ val.)
Maps out of the circle are determined by a point P (the image of base) and an abstracted
line x .L (the image of loopx ). The operational step S1-elimc .A(loopx ; P, x .L) 7−→ L is not
stable under interval substitution, because:

(S1-elimc .A(loopx ; P, x .L))〈0/x〉 = S1-elimc .A〈0/x〉(loop0; P 〈0/x〉, x .L)
7−→ S1-elimc .A〈0/x〉(base; P 〈0/x〉, x .L)
7−→ P 〈0/x〉

where P 〈0/x〉 need not equal L〈0/x〉. (Thus M 7−→ M′ does not imply Mψ 7−→∗ M′ψ .)
Fortunately, many operational semantics rules are in fact cubically stable, including

all the rules shared with Idealized Nuprl. In Figure 4.2, many rules are annotated with
�, de�ning an additional pair of judgments M val� and M 7−→� M′ by replacing every
occurrence of val (resp., 7−→) in those rules with val� (resp., 7−→�). The judgments M val�
and M 7−→� M′ are cubically-stable subrelations of the operational semantics.

Lemma 4.2 (Cubically-stable evaluation). For all total interval substitutionsψ :

1. IfM val� thenMψ val.

2. IfM 7−→� M′ thenMψ 7−→ M′ψ .

Cubically-stable evaluation �gures prominently in this chapter’s proofs, as head ex-
pansion (Lemma 4.32) holds only for cubically-stable steps. In RedPRL, we de�ne a more
sophisticated 7−→� relation which accounts also for steps that are stable by virtue of
occurring under interval binders [Ang+18]. For instance:

coer r ′

x .S1-elimc .A(loopx ;P,x .L)(M) 7−→� coer r ′

x .L (M)

is stable because the x of loopx is bound and thus una�ected by interval substitutions.
Note that we �x a strategy for simplifying hcom—checking �rst the type, then (at base

types) r = r ′, followed by each ξi in order. Other strategies, such as inspecting r , r ′, ξi before
the type, are semantically equivalent, but exhibit di�erent performance characteristics.

4.2 Constructing cubical type systems

We now assemble the cubical programs of Section 4.1 into the types and elements of our
Cartesian cubical type theory. As in Section 2.2, we use Allen’s �xed point construction



Constructing cubical type systems 75

A 7−→ A′

hcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ hcomr r ′

A′ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)

�

A 7−→ A′

coer r ′

x .A (M) 7−→ coer r ′

x .A′ (M)
�

comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ hcomr r ′

A〈r ′/y〉(coe
r r ′

y.A (M);
−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.coey r ′

y.A (Ni))

�

r = r ′ A ∈ {S1,UKan
j ,U

pre
j }

hcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ M

�

r , r ′ ¬ξi (∀i < j) ξj A ∈ {S1,UKan
j ,U

pre
j }

hcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ Nj 〈r

′/y〉

r , r ′ ¬ξi (∀i) A ∈ {S1,UKan
j ,U

pre
j }

hcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) val

ghcomr r ′

A (M ; ·) 7−→ M
�

Tε,ε̄ := hcomr z
A (M ; s′ = ε ↪→ y.N , s′ = ε̄ ↪→ y.ghcomr y

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni),

−−−−−−−−−⇀
ξi ↪→ y.Ni)

ghcomr r ′

A (M ; s = s′ ↪→ y.N ,
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→

hcomr r ′

A (M ; s = 0 ↪→ z.T0,1, s = 1 ↪→ z.T1,0, s = s
′ ↪→ y.N ,

−−−−−−−−−⇀
ξi ↪→ y.Ni)

�

gcomr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ ghcomr r ′

A〈r ′/y〉(coe
r r ′

y.A (M);
−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.coey r ′

y.A (Ni))

�

Figure 4.2: Operational semantics: generic Kan operations.
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(a:A) → B val
�

M 7−→ M′

M N 7−→ M′ N
�

(λa.M) N 7−→ M[N /a]
�

λa.M val
�

hcomr r ′

(a:A)→B(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ λa.hcomr r ′

B (M a;
−−−−−−−−−−⇀
ξi ↪→ y.Ni a)

�

coer r ′

x .(a:A)→B(M) 7−→ λa.coer r ′

x .B[coer ′ x
x .A (a)/a]

(M coer
′ r
x .A (a))

�

(a:A) × B val
�

M 7−→ M′

fst(M) 7−→ fst(M′)
�

M 7−→ M′

snd(M) 7−→ snd(M′)
�

〈M,N 〉 val
�

fst(〈M,N 〉) 7−→ M
�

snd(〈M,N 〉) 7−→ N
�

F := hcomr z
A (fst(M);

−−−−−−−−−−−−−⇀
ξi ↪→ y.fst(Ni))

hcomr r ′

(a:A)×B(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→

〈hcomr r ′

A (fst(M);
−−−−−−−−−−−−−⇀
ξi ↪→ y.fst(Ni)), comr r ′

z.B[F/a](snd(M);
−−−−−−−−−−−−−−⇀
ξi ↪→ y.snd(Ni))〉

�

coer r ′

x .(a:A)×B(M) 7−→ 〈coe
r r ′

x .A (fst(M)), coe
r r ′

x .B[coer x
x .A (fst(M))/a]

(snd(M))〉
�

Pathx .A(M,N ) val
�

M 7−→ M′

M@r 7−→ M′@r
�

(〈x〉M)@r 7−→ M 〈r/x〉
�

〈x〉M val
�

hcomr r ′

Pathx .A(P0,P1)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→

〈x〉hcomr r ′

A (M@x ;−−−−−−−−−−−−⇀x = ε ↪→ _.Pε,
−−−−−−−−−−−−⇀
ξi ↪→ y.Ni@x)

�

coer r ′

y.Pathx .A(P0,P1)
(M) 7−→ 〈x〉comr r ′

y.A (M@x ;−−−−−−−−−−−−⇀x = ε ↪→ y.Pε)
�

Figure 4.2: Operational semantics: functions, pairs, paths.



Constructing cubical type systems 77

EqA(M,N ) val
�

? val
�

hcomr r ′

EqA(E0,E1)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ ?

�

void val
�

nat val
�

z val
�

s(M) val
�

M 7−→ M′

natrec(M ;Z ,n.a.S) 7−→ natrec(M′;Z ,n.a.S)
�

natrec(z;Z ,n.a.S) 7−→ Z
�

natrec(s(M);Z ,n.a.S) 7−→ S[M/n][natrec(M ;Z ,n.a.S)/a]
�

hcomr r ′

nat (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ M

�
coer r ′

x .nat (M) 7−→ M
�

bool val
�

true val
�

false val
�

M 7−→ M′

if(M ;T , F ) 7−→ if(M′;T , F )
�

if(true;T , F ) 7−→ T
�

if(false;T , F ) 7−→ F
�

hcomr r ′

bool (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ M

�
coer r ′

x .bool(M) 7−→ M
�

Figure 4.2: Operational semantics: equality, void, natural numbers, Booleans.
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S1 val
�

loopε 7−→ base
�

base val
�

loopx val

M 7−→ M′

S1-elimc .A(M ; P, x .L) 7−→ S1-elimc .A(M
′; P, x .L)

�
S1-elimc .A(base; P, x .L) 7−→ P

�

S1-elimc .A(loopy ; P, x .L) 7−→ L〈y/x〉

r , r ′ ¬ξi (∀i) F := hcomr z
S1 (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)

S1-elimc .A(hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni); P, x .L) 7−→

comr r ′

z.A[F/c](S
1-elimc .A(M ; P, x .L);

−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.S1-elimc .A(Ni ; P, x .L))

coer r ′

x .S1 (M) 7−→ M
�

s , s′ ¬ξi (∀i) Ni := coes
′ z
z.Bi
(coer x

x .Bi 〈s ′/z〉
(M))

O := hcoms ′〈r/x〉 z
A〈r/x〉

(caps 〈r/x〉fs ′〈r/x〉(M ;
−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r/x〉 ↪→ z.Bi 〈r/x〉);

−⇀
T )

−⇀
T :=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r/x〉 ↪→ z.coez s 〈r/x〉

z.Bi 〈r/x〉
(coes

′〈r/x〉 z
z.Bi 〈r/x〉

(M))

P := gcomr r ′

x .A (O 〈s 〈r/x〉/z〉;
−−−−−−−−−−−−−−⇀
ξi ↪→ x .Ni 〈s/z〉|(x#ξi ), s = s

′ ↪→ x .coer x
x .A (M)|(x#s,s ′))

Qk := gcoms 〈r ′/x〉 z
z.Bk 〈r ′/x〉

(P ;
−−−−−−−−−−−−−−−⇀
ξi ↪→ z.Ni 〈r

′/x〉|(x#ξi ), r = r
′ ↪→ z.coes

′〈r ′/x〉 z
z.Bk 〈r ′/x〉

(M))

H := hcoms 〈r ′/x〉 s ′〈r ′/x〉
A〈r ′/x〉

(P ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r

′/x〉 ↪→ z.coez s 〈r ′/x〉
z.Bi 〈r ′/x〉

(Qi), r = r
′ ↪→ z.O)

coer r ′

x .hcoms s ′

UKan
j
(A;
−−−−−−−⇀
ξi ↪→z.Bi )

(M) 7−→ boxs 〈r
′/x〉 s ′〈r ′/x〉(H ;

−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r

′/x〉 ↪→ Qi 〈s
′〈r ′/x〉/z〉)

Figure 4.2: Operational semantics: circle, universes.
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U
pre
j val

�
UKan

j val
�

coer r ′

x .Uκ
j
(M) 7−→ M

�

r = r ′

boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) 7−→ M

�
r , r ′ ¬ξi (∀i < j) ξj

boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) 7−→ Nj

r , r ′ ¬ξi (∀i)

boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) val

r = r ′

caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) 7−→ M

�

r , r ′ ¬ξi (∀i < j) ξj

caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) 7−→ coer

′ r
y.Bj
(M)

r , r ′ ¬ξi (∀i) M 7−→ M′

caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) 7−→ caprfr ′(M′;

−−−−−−−−⇀
ξi ↪→ y.Bi)

r , r ′ ri , r ′i (∀i)

caprfr ′(boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni);

−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Bi) 7−→ M

s , s′ sj , s′j (∀j) Oi := capsfs ′(Ni ;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj)

Pj := hcomr y
Bj 〈s ′/z〉

(M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) Q := hcomr r ′

A (capsfs ′(M ;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj);

−⇀
T )

−⇀
T :=

−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Oi,

−−−−−−−−−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ y.coes

′ s
z.Bj
(Pj), s = s

′ ↪→ y.hcomr y
A (M ;

−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni)

hcomr r ′

hcoms s ′

UKan
k
(A;
−−−−−−−−−−⇀
sj=s

′
j ↪→z.Bj )

(M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) 7−→ boxs s ′(Q ;

−−−−−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ Pj 〈r

′/y〉)

Figure 4.2: Operational semantics: universes (continued).
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Vx (A,B, E) val V0(A,B, E) 7−→ A
�

V1(A,B, E) 7−→ B
�

Vinx (M,N ) val

Vin0(M,N ) 7−→ M
�

Vin1(M,N ) 7−→ N
�

Vproj0(M, F ) 7−→ F M
�

Vproj1(M, F ) 7−→ M
�

M 7−→ M′

Vprojx (M, F ) 7−→ Vprojx (M
′, F )

Vprojx (Vinx (M,N ), F ) 7−→ N

O := hcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)

−⇀
T := x = 0 ↪→ y.fst(E) O, x = 1 ↪→ y.hcomr y

B (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)

hcomr r ′

Vx (A,B,E)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→

Vinx (O 〈r ′/y〉, hcomr r ′

B (Vprojx (M, fst(E));
−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.Vprojx (Ni, fst(E)),

−⇀
T ))

N := coer r ′

x .B (Vprojr (M, fst(E〈r/x〉)))
F := (a:A〈r ′/x〉) × Path_.B〈r ′/x〉(fst(E〈r ′/x〉) a,N ) C := snd(E〈r ′/x〉) N

O := hcom1 0
F (fst(C); r = 0 ↪→ z.(snd(C) 〈M, 〈_〉(fst(E〈0/x〉)M)〉)@z, r = 1 ↪→ _.fst(C))

P := hcom1 0
B〈r ′/x〉(N ; r ′ = 0 ↪→ z.snd(O)@z, r ′ = 1 ↪→ _.N , r = r ′ ↪→ _.Vprojr (M, fst(E〈r/x〉)))

coer r ′

x .Vx (A,B,E)
(M) 7−→ Vinr ′(fst(O), P)

�

x , y
−⇀
T := x = 0 ↪→ y.fst(E) coer y

y.A (M), x = 1 ↪→ y.coer y
y.B (M)

coer r ′

y.Vx (A,B,E)
(M) 7−→ Vinx (coer r ′

y.A (M), com
r r ′

y.B (Vprojx (M, fst(E〈r/y〉));
−⇀
T ))

Figure 4.2: Operational semantics: univalence.
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[All87] to de�ne a PER of value types, and for each value type, a PER of value elements. In
the cubical setting, however, we must de�ne such PERs at every dimension (that is, for
each �nite set of interval variables).

De�nition 4.3. A candidate cubical type system is a relation τ (Ψ,A0,B0,φ) over a �nite
set Ψ of interval variables, A0 val, B0 val, and binary relations φ(M0,N0) over M0 val and
N0 val, where FI(A0,B0,M0,N0) ⊆ Ψ.

The relation τ ({x1, . . . , xn},A0,B0,φ) encodes that A0 and B0 are equal n-dimensional
value types (x1 : I, . . . , xn : I ` A0 = B0 : Typei in Chapter 3’s notation) whose n-dimensional
value elements are speci�ed by φ.

In Idealized Nuprl, we de�ne the closed judgments (De�nition 2.12) as the evaluation
lifting of τ , thereby ensuring they are closed under evaluation. In cubical type theory,
judgments must be closed under both evaluation and interval substitution—if x1 : I, . . . , xn :
I ` M : A andψ : {x1, . . . , xm} → {x1, . . . , xn} then x1 : I, . . . , xm : I ` Mψ : Aψ . The latter
condition is complicated by the fact that types contain interval variables, as types depend
on terms, and terms contain interval variables. Therefore, not only must a type itself
evaluate to a value type, but also all of its interval substitution instances must as well. We
track this data by assigning to each type over Ψ a Ψ-relation of elements.

De�nition 4.4. A Ψ-relation is a family of binary relations αψ (M,N ) indexed by interval
substitutionsψ : Ψ′→ Ψ, over terms FI(M,N ) ⊆ Ψ′. We write α(M,N ) for αidΨ(M,N ). A
Ψ-relation that depends only on Ψ′ (and notψ ) is context-indexed, and we write αΨ′(M,N ).

A Ψ-PER captures the data of a functor (�/Ψ)op → Set. Intuitively, such functors are
dependent Cartesian cubical sets, because a dependent type over the Yoneda embedding
of Ψ is an object of [�op, Set]/hom�(−,Ψ) ' [(�/Ψ)op, Set]. Like such a functor, we can
precompose a Ψ-relation α by an interval substitutionψ : Ψ′→ Ψ, obtaining a Ψ′-relation
(αψ )ψ ′(M,N ) := αψψ ′(M,N ). A context-indexed PER captures the data of an ordinary
Cartesian cubical set, or a functor �op → Set.

As in Section 2.2, we de�ne candidate cubical judgments for use in our �xed point
construction. Every type A over Ψ must give rise to a Ψ-PER nAo of value elements, whose
ψ1 : Ψ1 → Ψ component we extract from τ as the relation φ for which τ (Ψ1,A1,A1,φ)
where Aψ1 ⇓ A1. Moreover, meanings of types must be preserved by both evaluation
(nAo = nA0o when A ⇓ A0) and interval substitution (nAoψ1 = nAψ1o whenψ1 : Ψ1 → Ψ).
Thus nAoψ1 = nA1o when Aψ1 ⇓ A1; unrolling de�nitions, we must require that for all
ψ2 : Ψ2 → Ψ1, τ assigns the same relation to the values of Aψ1ψ2 and A1ψ2 at Ψ2.

De�nition 4.5 (Candidate cubical judgments). Given a candidate cubical type system τ ,
and writing τ ⇓(Ψ,A,B,φ) for A ⇓ A0, B ⇓ B0, and τ (Ψ,A0,B0,φ):
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1. A ∼ A′ ↓ α ∈ τ [Ψ] when for all ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1, we have
Aψ1 ⇓ A1 and A′ψ1 ⇓ A

′
1; there exists a φ such that τ ⇓(Ψ2,−,−,φ) relates the pairs

(A1ψ2,Aψ1ψ2), (Aψ1ψ2,A1ψ2), (A′1ψ2,A
′ψ1ψ2), (A′ψ1ψ2,A

′
1ψ2), and (A1ψ2,A

′
1ψ2); and α

is a Ψ-relation on values satisfying τ ⇓(Ψ′,Aψ ,A′ψ ,αψ ) for allψ : Ψ′→ Ψ.

2. M ∼ M′ ∈ α [Ψ] when for all ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1, we have
Mψ1 ⇓ M1, M′ψ1 ⇓ M

′
1, and (αψ1ψ2)

⇓ relates the pairs (M1ψ2,Mψ1ψ2), (Mψ1ψ2,M1ψ2),
(M′1ψ2,M

′ψ1ψ2), (M′ψ1ψ2,M
′
1ψ2), and (M1ψ2,M

′
1ψ2).

3. a : α . B ∼ B′ ↓ β ∈ τ [Ψ] when for all ψ : Ψ′ → Ψ and M ∼ M′ ∈ αψ [Ψ′],
Bψ [M/a] ∼ B′ψ [M′/a] ↓ βψ ,M,M

′

∈ τ [Ψ′].

4. a : α . N ∼ N ′ ∈ β [Ψ] when for all ψ : Ψ′ → Ψ and M ∼ M′ ∈ αψ [Ψ′],
Nψ [M/a] ∼ N ′ψ [M′/a] ∈ βψ ,M,M

′

[Ψ′].

One can easily check that the candidate judgments are monotone in τ and closed under
interval substitution. Monotonicity is essential, as we de�ne the computational semantics
of Cartesian cubical type theory as a cubical type system given by the least �xed point of a
monotone function on the complete lattice of candidate cubical type systems.

De�nition 4.6. A cubical type system is a candidate cubical type system τ satisfying:

1. Unicity: If τ (Ψ,A0,B0,φ) and τ (Ψ,A0,B0,φ
′) then φ = φ′.

2. PER-valuation: If τ (Ψ,A0,B0,φ) then φ is symmetric and transitive.

3. Symmetry: If τ (Ψ,A0,B0,φ) then τ (Ψ,B0,A0,φ).

4. Transitivity: If τ (Ψ,A0,B0,φ) and τ (Ψ,B0,C0,φ) then τ (Ψ,A0,C0,φ).

5. Value-coherence: If τ (Ψ,A0,B0,φ) then A0 ∼ B0 ↓ α ∈ τ [Ψ] for some α .

If τ is a cubical type system, then A ∼ A′ ↓ α ∈ τ [Ψ] enjoys unicity, symmetry,
transitivity, and is Ψ-PER-valued. If α is a Ψ-PER, then − ∼ − ∈ α [Ψ] is a PER. Value-
coherence ensures that the value types of τ are types in the sense of the candidate judgments,
which was automatic in Section 2.2; it also ensures that value types form a Cartesian cubical
set whose restriction maps are given by interval substitution followed by evaluation.
(Without it, one might have τ (Ψ,A0,A0,φ) but not τ ⇓(Ψ′,A0ψ ,A0ψ ,φ

′).) In De�nition 4.11,
we will impose an analogous condition on the meaning of each type.

De�nition 4.7. A Ψ-relation on values α is value-coherent, written Coh(α), when for all
ψ : Ψ′ → Ψ, if αψ (M0,N0) then M0 ∼ N0 ∈ αψ [Ψ

′]. Given a : α . B ∼ B′ ↓ β ∈ τ [Ψ], we
write CohFam(β) when Coh(βψ ,M,M

′

) for allψ : Ψ′→ Ψ and M ∼ M′ ∈ αψ [Ψ′].
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Despite their complexity, the above de�nitions in fact coincide with De�nitions 2.2
and 2.3 if our cubical type theory has no cubical structure (that is, if programs cannot
contain interval variables and τ is constant in Ψ). Thinking in terms of categories, one can
regard a set-theoretic model as a cubical set model restricted to constant presheaves.

In Figure 4.3, we de�ne each type former by its formation and introduction rules, as a
monotone function on candidate cubical type systems, using the abbreviations:

valid(
−−−−−⇀
ri = r

′
i ) := ∃j,k .(rj = rk) ∧ (r ′j = 0) ∧ (r ′k = 1)

isContr(C) := (c:C) × ((c′:C) → Path_.C(c
′, c))

Equiv(A,B) := (f :A→ B) × ((b:B) → isContr((a:A) × Path_.B(f a,b)))

In the cubical setting, it is essential that we de�ne types by their introduction (rather than
elimination) rules, because our proofs of value-coherence in Section 4.4 rely on knowing
the head constructors of value elements in order to characterize their evaluation behavior
under interval substitutions.

In Figure 4.3, the candidate cubical type system K(ν,σ ) generates Kan types, drawing
universes from ν and constituent Kan types from σ ; P(ν,σ , τ ) generates pretypes (arbitrary
types), drawing universes from ν , constituent Kan types from σ , and constituent pretypes
from τ . Pretypes depend on Kan types because of homogeneous compositions of Kan types
(HKan); the only non-Kan type formers are Eq and HPre. The value elements of certain
base types (Nat and Circ) are mutually de�ned for all Ψ and are therefore de�ned as �xed
points (N and C).

As in Idealized Nuprl, we have two universe hierarchiesUKan
i andUpre

i whose elements
are Kan types and pretypes respectively. For all i ∈ {0, 1, . . . ,ω}, we de�ne νi as the
candidate cubical type system consisting of universes < i , τKani

:= µσ .K(νi,σ ) as the ith
Kan type universe, and τ prei

:= µτ .P(νi, τKani , τ ) as the ith pretype universe. The rest of this
section is devoted to rather technical proofs that τ prei and τKani are cubical type systems
(Theorem 4.9), and that τKani ⊂ τ

pre
i (Theorem 4.10).

Lemma 4.8. If ν andσ are cubical type systems, then µKan(ν ) := µσ .K(ν,σ ) and µpre(ν,σ ) :=
µτ .P(ν,σ , τ ) are cubical type systems.

Proof. We can consider each type former Fun, Pair, . . . separately because they are disjoint.
We describe the proof for µpre(ν,σ ); the proof for µKan(ν ) is analogous. Unlike in Lemma 2.6,
we can prove each property separately, as the candidate cubical judgments inadvertently
contain “cross cases” needed for symmetry and transitivity of type families.

1. Unicity.

Let Φ = {(Ψ,A0,B0,φ) | ∀φ
′.µpre(ν,σ )(Ψ,A0,B0,φ

′) =⇒ (φ = φ′)}, and show that
Φ is a pre-�xed point of P(ν,σ ,−) (that is, P(ν,σ ,Φ) ⊆ Φ). Because µpre(ν,σ ) is the
least pre-�xed point, it will follow that µpre(ν,σ ) ⊆ Φ, and that µpre(ν,σ ) has unicity.



84 Cartesian cubical type theory

Fun(τ ) := {(Ψ, (a:A) → B, (a:A′) → B′,φ) |

∃α, β (−,−,−).(A ∼ A′ ↓ α ∈ τ [Ψ]) ∧ Coh(α)

∧ (a : α . B ∼ B′ ↓ β ∈ τ [Ψ]) ∧ CohFam(β)

∧ (φ = {(λa.N , λa.N ′) | a : α . N ∼ N ′ ∈ β [Ψ]})}

Pair(τ ) := {(Ψ, (a:A) × B, (a:A′) × B′,φ) |
∃α, β (−,−,−).(A ∼ A′ ↓ α ∈ τ [Ψ]) ∧ Coh(α)

∧ (a : α . B ∼ B′ ↓ β ∈ τ [Ψ]) ∧ CohFam(β)

∧ (φ = {(〈M,N 〉, 〈M′,N ′〉) | (M ∼ M′ ∈ α [Ψ]) ∧ (N ∼ N ′ ∈ β idΨ,M,M
′

[Ψ])})}

Path(τ ) := {(Ψ, Pathx .A(P0, P1), Pathx .A′(P ′0, P
′
1),φ) |

∃α .(A ∼ A′ ↓ α ∈ τ [Ψ, x]) ∧ Coh(α) ∧ (∀ε .Pε ∼ P ′ε ∈ α 〈ε/x〉 [Ψ])

∧ (φ = {(〈x〉M, 〈x〉M′) |

(M ∼ M′ ∈ α [Ψ, x]) ∧ (∀ε .M 〈ε/x〉 ∼ Pε ∈ α 〈ε/x〉 [Ψ])})}

Eq(τ ) := {(Ψ, EqA(M,N ), EqA′(M
′,N ′),φ) |

∃α .(A ∼ A′ ↓ α ∈ τ [Ψ]) ∧ Coh(α) ∧ (M ∼ M′ ∈ α [Ψ]) ∧ (N ∼ N ′ ∈ α [Ψ])

∧ (φ = {(?,?) | M ∼ N ∈ α [Ψ]})}

V(τ ) := {((Ψ, x),Vx (A,B, E),Vx (A
′,B′, E′),φ) |

∃β,α (−),η(−).(B ∼ B′ ↓ β ∈ τ [Ψ, x]) ∧ Coh(β)

∧ (∀ψ .(xψ = 0) =⇒ (Aψ ∼ A′ψ ↓ αψ ∈ τ [Ψ′]) ∧ Coh(αψ )

∧ (Equiv(Aψ ,Bψ ) ∼ Equiv(Aψ ,Bψ ) ↓ ηψ ∈ τ [Ψ′]) ∧ (Eψ ∼ E′ψ ∈ ηψ [Ψ′]))

∧ (φ = {(Vinx (M,N ),Vinx (M′,N ′)) | (N ∼ N ′ ∈ β [Ψ, x]) ∧ (∀ψ .(xψ = 0) =⇒
(Mψ ∼ M′ψ ∈ αψ [Ψ′]) ∧ (fst(Eψ )Mψ ∼ Nψ ∈ βψ [Ψ′]))})}

HPre(τ ) := {(Ψ, hcomr r ′

U
pre
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi), hcomr r ′

U
pre
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i), {}) |

∃α, β (−,−,−).(r , r ′) ∧ (∀i .¬ξi) ∧ valid(
−⇀
ξi ) ∧ (A ∼ A′ ↓ α ∈ τ [Ψ]) ∧ Coh(α)

∧ (∀i, j,ψ .(ξiψ ∧ ξjψ ) =⇒ (Biψ ∼ B′jψ ↓ β
ψ ,i,j ∈ τ [Ψ′]) ∧ Coh(βψ ,i,j))

∧ (∀i,ψ .ξiψ =⇒ Bi 〈r/y〉ψ ∼ Aψ ↓ _ ∈ τ [Ψ′])}

Figure 4.3: PER semantics.
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Void := {(Ψ, void, void, {})}
Nat := {(Ψ, nat, nat,φ) | φ = {(M0,M

′
0) | N(Ψ,M0,M

′
0)}}

Bool := {(Ψ, bool, bool, {(true, true), (false, false)})}
Circ := {(Ψ, S1, S1,φ) | φ = {(M0,M

′
0) | C(Ψ,M0,M

′
0)}}

UPre(ν ) := {(Ψ,Upre
j ,U

pre
j ,φ) | ν (Ψ,U

pre
j ,U

pre
j ,φ)}

UKan(ν ) := {(Ψ,UKan
j ,U

Kan
j ,φ) | ν (Ψ,U

Kan
j ,U

Kan
j ,φ)}

HKan(τ ) := {(Ψ, hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi), hcomr r ′

UKan
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i),φ) |

∃α, β (−,−,−).(r , r ′) ∧ (∀i .¬ξi) ∧ valid(
−⇀
ξi ) ∧ (A ∼ A′ ↓ α ∈ τ [Ψ]) ∧ Coh(α)

∧ (∀i, j,ψ : Ψ′→ (Ψ,y).(ξiψ ∧ ξjψ ) =⇒
(Biψ ∼ B′jψ ↓ β

ψ ,i,j ∈ τ [Ψ′]) ∧ Coh(βψ ,i,j))

∧ (∀i,ψ .ξiψ =⇒ Bi 〈r/y〉ψ ∼ Aψ ↓ _ ∈ τ [Ψ′])

∧ (φ = {(boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni), boxr r ′(M′;

−−−−−−−⇀
ξi ↪→ N ′i )) | (M ∼ M′ ∈ α [Ψ])

∧ (∀i, j,ψ .(ξiψ ∧ ξjψ ) =⇒ Niψ ∼ N ′jψ ∈ β
ψ ,i,j 〈r ′ψ/y〉 [Ψ′])

∧ (∀i,ψ .ξiψ =⇒ Mψ ∼ coer
′ψ rψ
y.Biψ

(Niψ ) ∈ αψ [Ψ
′])})}

N := µR.({(Ψ, z, z)} ∪ {(Ψ, s(M), s(M′)) | M ∼ M′ ∈ R [Ψ]})

C := µR.({(Ψ, base, base), ((Ψ, x), loopx , loopx )} ∪

{(Ψ, hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni), hcomr r ′

S1 (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i )) |

(r , r ′) ∧ (∀i .¬ξi) ∧ valid(
−⇀
ξi ) ∧ (M ∼ M′ ∈ R [Ψ])

∧ (∀i, j,ψ : Ψ′→ (Ψ,y).(ξiψ ∧ ξjψ ) =⇒ Niψ ∼ N ′jψ ∈ R [Ψ
′])

∧ (∀i,ψ : Ψ′→ Ψ.ξiψ =⇒ Ni 〈r/y〉ψ ∼ Mψ ∈ R [Ψ′])})

Figure 4.3: PER semantics.
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P(ν,σ , τ ) := Fun(τ ) ∪ Pair(τ ) ∪ Path(τ ) ∪ Eq(τ ) ∪ V(τ ) ∪ HKan(σ ) ∪ HPre(τ )
∪ Void ∪ Nat ∪ Bool ∪ Circ ∪ UPre(ν ) ∪ UKan(ν )

K(ν,σ ) := Fun(σ ) ∪ Pair(σ ) ∪ Path(σ ) ∪ V(σ ) ∪ HKan(σ )
∪ Void ∪ Nat ∪ Bool ∪ Circ ∪ UPre(ν ) ∪ UKan(ν )

νn := {(Ψ,Uκ
i ,U

κ
i ,φ) | (i < n) ∧ (φ = {(A0,B0) | τ

κ
i (Ψ,A0,B0, _)})}

τKann := µσ .K(νn,σ )
τ
pre
n := µτ .P(νn, τKann , τ )

Figure 4.3: PER semantics.

Assume that Fun(Φ)(Ψ, (a:A) → B, (a:A′) → B′,φ). Thus A ∼ A′ ↓ α ∈ Φ [Ψ], and
in particular, for allψ : Ψ′→ Ψ, µpre(ν,σ )⇓(Ψ′,Aψ ,A′ψ ,φ′) implies αψ = φ′, so α is
unique in µpre(ν,σ )when it exists. Similarly, each β (−,−,−) is unique in µpre(ν,σ )when
it exists. The relation φ is determined uniquely by α and β (−,−,−). Now let us show
Φ(Ψ, (a:A) → B, (a:A′) → B′,φ), that is, assume µpre(ν,σ )(Ψ, (a:A) → B, (a:A′) →
B′,φ′) and show φ = φ′. It follows that A ∼ A′ ↓ α ′ ∈ µpre(ν,σ ) [Ψ] for some α ′, and
similarly for some family β′, but α = α ′ and β (−,−,−) = β′(−,−,−). Because φ′ is de�ned
using the same α and β (−,−,−) as φ, we conclude φ = φ′. Other cases are similar; for
HKan,UPre,UKan we use that ν,σ have unicity.

2. PER-valuation.

LetΦ = {(Ψ,A0,B0,φ) | φ is a PER}, and show thatΦ is a pre-�xed point of P(ν,σ ,−).
It follows that µpre(ν,σ ) is PER-valued, by µpre(ν,σ ) ⊆ Φ.

Assume that Fun(Φ)(Ψ, (a:A) → B, (a:A′) → B′,φ). Then A ∼ A′ ↓ α ∈ Φ [Ψ], and
in particular, for allψ : Ψ′→ Ψ, Φ⇓(Ψ′,Aψ ,A′ψ ,αψ ), so each αψ is a PER. Similarly,
each β

ψ ,M,M ′

ψ ′
is a PER. Now we must show Φ(Ψ, (a:A) → B, (a:A′) → B′,φ). The

relation φ is a PER because α and β are PER-valued so their candidate equality
judgments are PERs. Most cases proceed in this fashion. For Nat and Circ we show
that N and C are symmetric and transitive at all Ψ (employing the same strategy as
in parts (3–4)); for HKan,UPre,UKan we use that σ ,ν are PER-valued.

3. Symmetry.

Let Φ = {(Ψ,A0,B0,φ) | µ
pre(ν,σ )(Ψ,B0,A0,φ)}, and show that Φ is a pre-�xed point

of P(ν,σ ,−). It will follow that µpre(ν,σ ) is symmetric, by µpre(ν,σ ) ⊆ Φ.
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Assume that Fun(Φ)(Ψ, (a:A) → B, (a:A′) → B′,φ). Then A ∼ A′ ↓ α ∈ Φ [Ψ]
and Coh(α), and therefore µpre(ν,σ )⇓(Ψ′,A′ψ ,Aψ ,αψ ), Aψ1 ⇓ A1, A′ψ1 ⇓ A′1, and
µpre(ν,σ )⇓(Ψ2,−,−,φ) relates the pairs (Aψ1ψ2,A1ψ2), (A1ψ2,Aψ1ψ2), (A′ψ1ψ2,A

′
1ψ2),

(A′1ψ2,A
′ψ1ψ2), and (A′1ψ2,A1ψ2). Similar facts hold for instances of B,B′, β . We must

show Φ(Ψ, (a:A) → B, (a:A′) → B′,φ), that is, µpre(ν,σ )(Ψ, (a:A′) → B′, (a:A) →
B,φ). This requires A′ ∼ A ↓ α ∈ µpre(ν,σ ) [Ψ] and Coh(α), which follows from
the above facts; and also B′ψ [M/a] ∼ Bψ [M′/a] ↓ βψ ,M,M

′

∈ µpre(ν,σ ) [Ψ] and
Coh(βψ ,M,M

′

) whenever M ∼ M′ ∈ αψ [Ψ′], which follows from the symmetry of
− ∼ − ∈ αψ [Ψ′] (because each αψ is a PER, by (2)), and the above facts. Other cases
are similar; for HKan we use that σ is symmetric.

4. Transitivity.

Let Φ = {(Ψ,A0,B0,φ) | ∀C0.µ
pre(ν,σ )(Ψ,B0,C0,φ) =⇒ µpre(ν,σ )(Ψ,A0,C0,φ)},

and show that Φ is a pre-�xed point of P(ν,σ ,−). It will follow that µpre(ν,σ ) is
transitive, by µpre(ν,σ ) ⊆ Φ.

Assume that Fun(Φ)(Ψ, (a:A) → B, (a:A′) → B′,φ). Then A ∼ A′ ↓ α ∈ Φ [Ψ],
and thus if µpre(ν,σ )⇓(Ψ′,A′ψ ,C0,αψ ) then µpre(ν,σ )⇓(Ψ′,Aψ ,C0,αψ ). Furthermore,
Aψ1 ⇓ A1, A′ψ1 ⇓ A′1, and for any C0, µpre(ν,σ )⇓(Ψ2,−,−,φ) relates (Aψ1ψ2,C0) if
and only if (A1ψ2,C0); (A′ψ1ψ2,C0) if and only if (A′1ψ2,C0); and if (A′1ψ2,C0) then
(A1ψ2,C0). Similar facts hold for B,B′, β by a : α . B ∼ B′ ↓ β ∈ Φ [Ψ].

Now we must show Φ(Ψ, (a:A) → B, (a:A′) → B′,φ), that is, if µpre(ν,σ )(Ψ, (a:A′) →
B′,C0,φ) then µpre(ν,σ )(Ψ, (a:A) → B,C0,φ). Inspecting P , C0 = (a:A′′) → B′′; thus
A′ ∼ A′′ ↓ α ′ ∈ µpre(ν,σ ) [Ψ] and Coh(α ′), so µpre(ν,σ )⇓(Ψ′,A′ψ ,A′′ψ ,α ′

ψ
), and by

hypothesis, µpre(ν,σ )⇓(Ψ′,Aψ ,A′′ψ ,αψ ) and Coh(α). We already know Aψ1 ⇓ A1,
A′′ψ1 ⇓ A

′′
1 , and that µpre(ν,σ )⇓(Ψ2,−,−,φ) relates (A′′ψ1ψ2,A

′′
1ψ2) and vice versa. By

(A′1ψ2,A
′′
1ψ2) and the above, we have (A1ψ2,A

′′
1ψ2). Finally, by (A′ψ1ψ2,A

′
1ψ2) and

transitivity we have (A′1ψ2,A
′
1ψ2), hence by transitivity and symmetry (A′1ψ2,A1ψ2),

and again by transitivity (A1ψ2,A1ψ2); as needed, (A1ψ2,A0ψ2) and vice versa follow
by transitivity. Similarly, using transitivity of each αψ (by (2)), whenever M ∼ M′ ∈

αψ [Ψ′], Bψ [M/a] ∼ B′′ψ [M′/a] ↓ βψ ,M,M
′

∈ µpre(ν,σ ) [Ψ′] and Coh(βψ ,M,M
′

). Other
cases are similar; for HKan we use that σ is transitive.

5. Value-coherence.

Let Φ = {(Ψ,A0,B0,φ) | A0 ∼ B0 ↓ α ∈ µ
pre(ν,σ ) [Ψ]}, and show that Φ is a pre-�xed

point of P(ν,σ ,−). It will follow that µpre(ν,σ ) is value-coherent, by µpre(ν,σ ) ⊆ Φ.
We will check Fun (Pair, Path, and Eq are similar) and V (HKan and HPre are
similar); the property P(ν,σ ,Φ) ⊆ Φ is trivial for base types (Void, Nat, . . . ) and
universes (UPre, UKan).
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Assume Fun(Φ)(Ψ, (a:A) → B, (a:A′) → B′,φ). Then by A ∼ A′ ↓ α ∈ Φ [Ψ] and
Coh(α), we have Φ⇓(Ψ′,Aψ ,A′ψ ,αψ ), Aψ1 ⇓ A1, A′ψ1 ⇓ A

′
1, Φ⇓(Ψ2,A1ψ2,Aψ1ψ2,φ

′),
and so forth. Note that on values, A0 ∼ B0 ↓ α ∈ τ [Ψ] implies τ (Ψ,A0,B0,αidΨ).
Therefore µpre(ν,σ )⇓(Ψ′,Aψ ,A′ψ ,αψ ), and so forth. Similar facts hold for B,B′, β
by a : α . B ∼ B′ ↓ β ∈ Φ [Ψ] and CohFam(β). We must show Φ(Ψ, (a:A) →
B, (a:A′) → B′,φ′), that is, (a:A) → B ∼ (a:A′) → B′ ↓ γ ∈ µpre(ν,σ ) [Ψ]. We
know (a:A) → B val�, and by the above, A ∼ A′ ↓ α ∈ µpre(ν,σ ) [Ψ], Coh(α), and
for all M ∼ M′ ∈ αψ [Ψ′], Bψ [M/a] ∼ B′ψ [M′/a] ↓ βψ ,M,M

′

∈ µpre(ν,σ ) [Ψ′] and
Coh(βψ ,M,M

′

). The result holds because value-coherence and the candidate cubical
judgments are closed under interval substitution.
The V case is more complicated because not all instances of Vx (A,B, E) have the same
head constructor. As before, by V(Φ)(Ψ,Vx (A,B, E),Vx (A

′,B′, E′),φ) we have B ∼
B′ ↓ β ∈ µpre(ν,σ ) [Ψ] and for all ψ with xψ = 0, Aψ ∼ A′ψ ↓ αψ ∈ µpre(ν,σ ) [Ψ′].
However, to see that Vx (A,B, E) ∼ Vx (A

′,B′, E′) ↓ γ ∈ µpre(ν,σ ) [Ψ], we must
consider the cases in which Vxψ (Aψ ,Bψ , Eψ ) steps to Aψ or Bψ , and show that for
everyψ1,ψ2, the appropriate relations hold in µpre(ν,σ ). See Rule 4.78 for full details,
and Lemma 4.88 and Rule 4.87 for corresponding results about HKan and HPre. �

Theorem 4.9. For all i ∈ {0, 1, . . . ,ω}, νi , τ
pre
i , and τKani are cubical type systems.

Proof. By strong induction on i . In the base case, ν0 is empty and thus a cubical type
system; therefore, by Lemma 4.8, so are τKan0 = µKan(ν0) and τ pre0 = µpre(ν0, µ

Kan(ν0)). In
the inductive case, suppose τκi are cubical type systems for i < n. Then νn is a cubical type
system: unicity, symmetry, transitivity, and value-coherence are immediate; PER-valuation
follows from symmetry and transitivity of τκi for i < n. By Lemma 4.8, τKann and thence
τ
pre
n are cubical type systems. (The ω case is identical.) �

Theorem 4.10. For i, j ∈ {0, 1, . . . ,ω} where i ≤ j, we have τκi ⊆ τ
κ
j and τKani ⊆ τ

pre
i .

Proof. The functions P and K are monotone in all arguments, so by Lemma 2.9, µpre and
µKan are as well. When i ≤ j , νi ⊆ νj by construction, so τKani = µKan(νi) ⊆ µ

Kan(νj) = τ
Kan
j ,

and similarly, τ prei = µpre(νi, τ
Kan
i ) ⊆ µpre(νj, τ

Kan
j ) = τ

pre
j .

By a theorem of Bekić [Bek84] on simultaneous �xed points, for all ν ,

(µKan(ν ), µpre(ν, µKan(ν ))) = µ(σ , τ ).(K(ν,σ ), P(ν,σ , τ ))

When σ ⊆ τ , K(ν,σ ) ⊆ P(ν,σ , τ ); thus τKani ⊆ τ
pre
i follows by Lemma 2.10. �

4.3 Cubical judgments and Kan operations

The typehood and membership judgments of Cartesian cubical type theory mirror those
of Idealized Nuprl, parametrized by �nite sets of interval variables Ψ. This section never-
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theless di�ers from Section 2.3 in two key respects. First, the candidate cubical judgments
(De�nition 4.5) are more complex than Idealized Nuprl’s candidate judgments (De�ni-
tion 2.3), and must be established by more sophisticated means—one must consider the
evaluation behavior of all interval substitution instances of a term, not only the term
itself. Secondly, we must de�ne the uniform Kan operations (De�nition 4.29), introduced in
Chapter 3, which serve an analogous role to Book HoTT’s identity elimination.

De�nition 4.11 (Closed judgments). Given a cubical type system τ :

1. A � B typepre [Ψ] when A ∼ B ↓ α ∈ τ [Ψ] and Coh(α).

2. M � N ∈ A [Ψ], presupposing A � A typepre [Ψ], when A ∼ A ↓ α ∈ τ [Ψ] and
M ∼ N ∈ α [Ψ].

The closed judgments are symmetric and transitive, and therefore A � A typepre [Ψ]
whenever A � B typepre [Ψ]. As in Section 2.3, we abbreviate A � A typepre [Ψ] by
A typepre [Ψ] andM�M ∈ A [Ψ] byM ∈ A [Ψ] (and similarly for all subsequent judgments).
Every judgment J [Ψ] presupposes implicitly that FI(J) ⊆ Ψ. All judgments are relative
to a choice of cubical type system τ , which we can notate explicitly by τ |= J [Ψ]; when
unspeci�ed, judgments are relative to τ preω . When A ∼ B ↓ α ∈ τ [Ψ] and τ is a cubical type
system, the Ψ-PER α is uniquely determined and independent of B, so we write nAo for α .

As before, equal pretypes have equal elements; moreover, the closed judgments are
preserved by interval substitutions.

Lemma 4.12. If A � B typepre [Ψ] andM � N ∈ A [Ψ] thenM � N ∈ B [Ψ].

Proof. By the unicity and symmetry properties of τ , nAo = nBo; thus M ∼ N ∈ nAo [Ψ]
implies M ∼ N ∈ nBo [Ψ]. �

Lemma 4.13. Supposingψ : Ψ′→ Ψ:

1. If A � B typepre [Ψ] then Aψ � Bψ typepre [Ψ
′].

2. IfM � N ∈ A [Ψ] thenMψ � Nψ ∈ Aψ [Ψ′].

Proof. For part (1), A ∼ B ↓ nAo ∈ τ [Ψ] implies Aψ ∼ Bψ ↓ nAoψ ∈ τ [Ψ′] by precompos-
ing ψ1 with ψ in De�nition 4.5, and by the unicity property of τ . Similarly, Coh(nAoψ )
follows from Coh(nAo) by precomposition withψ in De�nition 4.7. For part (2), the pre-
supposition Aψ typepre [Ψ

′] is resolved by part (1); the result follows by nAψo = nAoψ and
precomposingψ1 withψ in De�nition 4.5. �

The judgments of Idealized Nuprl are closed under both forward (Lemma 2.16) and back-
ward (Lemma 2.15) evaluation, essentially by de�nition. Cubical typehood and membership
are also closed under forward evaluation to a value, but the arguments are more subtle
and require value-coherence (of the cubical type system and of pretypes, respectively).
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Lemma 4.14 (Evaluation I). If A typepre [Ψ] then A ⇓ A0 where A � A0 typepre [Ψ].

Proof. We obtain A ⇓ A0 by instantiating A ∼ A ↓ nAo ∈ τ [Ψ] at substitutions idΨ and
idΨ. It remains only to show A ∼ A0 ↓ nAo ∈ τ [Ψ]; Coh(nAo) follows from A typepre [Ψ].
Suppose ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1. We must show that τ ⇓(Ψ2,Aψ1ψ2,A1ψ2,φ),
τ ⇓(Ψ2,Aψ1ψ2,A0ψ1ψ2,φ

′), and τ ⇓(Ψ2,A1ψ2,A
′
1ψ2,φ

′′) where Aψ1 ⇓ A1 and A0ψ1 ⇓ A
′
1; the

remaining conditions of De�nition 4.5 follow from unicity, symmetry, and transitivity of τ .
The �rst holds by A ∼ A ↓ nAo ∈ τ [Ψ] at the substitutions ψ1 and ψ2. The second

holds by A ∼ A ↓ nAo ∈ τ [Ψ] at idΨ and ψ1ψ2. For the third, A ∼ A ↓ nAo ∈ τ [Ψ]
at ψ1, idΨ1 implies τ ⇓(Ψ1,A1,Aψ1, _) and at idΨ,ψ1 implies τ ⇓(Ψ1,A0ψ1,Aψ1, _). By tran-
sitivity, τ (Ψ1,A1,A

′
1, _); by value-coherence of τ , A1 ∼ A′1 ↓ nA1o ∈ τ [Ψ1]. Therefore

τ ⇓(Ψ2,A1ψ2,A
′
1ψ2,φ

′′) as required. �

Lemma 4.15. IfM ∈ A [Ψ], N ∈ A [Ψ], and nAo⇓(M,N ), thenM � N ∈ A [Ψ].

Proof. For all ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1, we must show nAo⇓
ψ1ψ2
(Mψ1ψ2,Nψ1ψ2);

the remaining conditions of De�nition 4.5 follow from M ∈ A [Ψ] and N ∈ A [Ψ]. By
presupposition we have Coh(nAo), so nAo⇓(M,N ) implies M0 ∼ N0 ∈ nAo [Ψ] where
M ⇓ M0 and N ⇓ N0. We conclude that nAo⇓

ψ1ψ2
(M0ψ1ψ2,N0ψ1ψ2). From M ∈ A [Ψ] we

know nAo⇓
ψ1ψ2
(M0ψ1ψ2,Mψ1ψ2) and similarly for N ; the result follows by transitivity. �

Lemma 4.16 (Evaluation II). IfM ∈ A [Ψ] thenM � M0 ∈ A [Ψ] whereM ⇓ M0.

Proof. By M ∈ A [Ψ] at idΨ, idΨ we have M ⇓ M0 and nAo(M0,M0); therefore, by Coh(nAo),
M0 ∈ A [Ψ]. The result follows by Lemma 4.15. �

Lemma 4.15 is much weaker than its counterpart in Idealized Nuprl, in whichM�N ∈ A
follows directly from nAo⇓(M,N )! That statement is easy to refute in cubical type theory,
as the term S1-elim_.bool(loopx ; z, _.true) evaluates to true but cannot be a Boolean because
its 〈0/x〉 face evaluates to z. Nor does it su�ce to check that nAo⇓

ψ
(Mψ ,Nψ ) for all ψ—

although all instances of S1-elim_.bool(loopx ; false, _.true) evaluate to Booleans, evaluation
under idΨ then 〈0/x〉 yields true, whereas evaluation under 〈0/x〉 then idΨ yields false.

In Idealized Nuprl, we commonly use head expansion (or closure under backward
evaluation) to establish judgments. Its analogue in this chapter is coherent expansion,2
which states that a term is a pretype (resp., element) if all of its interval substitution
instances eventually step to pretypes (resp., elements) in a suitably coherent way. More
precisely, to prove A typepre [Ψ], it su�ces to exhibit a family of reducts {AΨ′

ψ
| Aψ 7−→∗

AΨ′

ψ
}ψ :Ψ′→Ψ for which AΨ′

ψ
typepre [Ψ

′] and AΨ′′

ψψ ′
� (AΨ′

ψ
)ψ ′ typepre [Ψ

′′] (or equivalently,
AΨ′

ψ
� (AΨ

idΨ
)ψ typepre [Ψ

′]).
2A similar lemma appears independently in Huber’s canonicity proof [Hub18, Lemma 9].
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Lemma 4.17 (Coherent expansion I). Suppose A is a term and {AΨ′

ψ
}ψ :Ψ′→Ψ is a family

of terms such that AΨ′

ψ
� (AΨ

idΨ
)ψ typepre [Ψ

′] and Aψ 7−→∗ AΨ′

ψ
for all ψ : Ψ′ → Ψ. Then

A � AΨ
idΨ

typepre [Ψ].

Proof. It su�ces to check for allψ1 : Ψ1 → Ψ andψ2 : Ψ2 → Ψ1 that Aψ1 ⇓ A1, (AΨ
idΨ
)ψ1 ⇓

A′1, and τ ⇓(Ψ2,−,−, _) relates A1ψ2, Aψ1ψ2, (AΨ
idΨ
)ψ1ψ2, and A′1ψ2.

1. Aψ1 ⇓ A1 and τ ⇓(Ψ2,A1ψ2,Aψ1ψ2,φ).
By AΨ1

ψ1
typepre [Ψ1] at idΨ1,ψ2 and Aψ1 7−→

∗ AΨ1
ψ1

, we know τ ⇓(Ψ2,A1ψ2, (A
Ψ1
ψ1
)ψ2,φ)

where Aψ1 ⇓ A1. By AΨ1
ψ1
� (AΨ

idΨ
)ψ1 typepre [Ψ1] and (AΨ

idΨ
)ψ1ψ2 � AΨ2

ψ1ψ2
typepre [Ψ2],

we have (AΨ1
ψ1
)ψ2 � AΨ2

ψ1ψ2
typepre [Ψ2] and thus τ ⇓(Ψ2, (A

Ψ1
ψ1
)ψ2,A

Ψ2
ψ1ψ2
,φ). The result

follows by transitivity of τ and Aψ1ψ2 7−→
∗ AΨ2

ψ1ψ2
.

2. τ ⇓(Ψ2,Aψ1ψ2, (A
Ψ
idΨ
)ψ1ψ2,φ

′).

By AΨ2
ψ1ψ2

� (AΨ
idΨ
)ψ1ψ2 typepre [Ψ2] we have τ ⇓(Ψ2,A

Ψ2
ψ1ψ2
, (AΨ

idΨ
)ψ1ψ2,φ

′); the result
follows by Aψ1ψ2 7−→

∗ AΨ2
ψ1ψ2

.

3. (AΨ
idΨ
)ψ1 ⇓ A

′
1 and τ ⇓(Ψ2, (A

Ψ
idΨ
)ψ1ψ2,A

′
1ψ2,φ

′′).

By AΨ
idΨ

typepre [Ψ]. �

Lemma 4.18 (Coherent expansion II). SupposeA typepre [Ψ],M is a term, and {MΨ′

ψ
}ψ :Ψ′→Ψ

is a family of terms such thatMΨ′

ψ
�(MΨ

idΨ
)ψ ∈ Aψ [Ψ′] andMψ 7−→∗ MΨ′

ψ
for allψ : Ψ′→ Ψ.

ThenM � MΨ
idΨ
∈ A [Ψ].

Proof. It su�ces to check for all ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1 that Mψ1 ⇓ M1,
(MΨ

idΨ
)ψ1 ⇓ M

′
1, and nAo⇓

ψ1ψ2
relates M1ψ2, Mψ1ψ2, (MΨ

idΨ
)ψ1ψ2, and M′1ψ2.

1. Mψ1 ⇓ M1 and nAo⇓
ψ1ψ2
(M1ψ2,Mψ1ψ2).

By MΨ1
ψ1
∈ Aψ1 [Ψ1] at idΨ1,ψ2 and Mψ1 7−→

∗ MΨ1
ψ1

, we know nAo⇓
ψ1ψ2
(M1ψ2, (M

Ψ1
ψ1
)ψ2)

whereMψ1 ⇓ M1. ByMΨ1
ψ1
�(MΨ

idΨ
)ψ1 ∈ Aψ1 [Ψ1] and (MΨ

idΨ
)ψ1ψ2�M

Ψ2
ψ1ψ2
∈ Aψ1ψ2 [Ψ2],

we have (MΨ1
ψ1
)ψ2 �MΨ2

ψ1ψ2
∈ Aψ1ψ2 [Ψ2] and thus nAo⇓

ψ1ψ2
((MΨ1

ψ1
)ψ2,M

Ψ2
ψ1ψ2
). The result

follows by transitivity of τ and Mψ1ψ2 7−→
∗ MΨ2

ψ1ψ2
.

2. nAo⇓
ψ1ψ2
(Mψ1ψ2, (M

Ψ
idΨ
)ψ1ψ2).

By MΨ2
ψ1ψ2

� (MΨ
idΨ
)ψ1ψ2 ∈ Aψ1ψ2 [Ψ2] we have nAo⇓

ψ1ψ2
(MΨ2

ψ1ψ2
, (MΨ

idΨ
)ψ1ψ2); the result

follows by Mψ1ψ2 7−→
∗ MΨ2

ψ1ψ2
.
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3. (MΨ
idΨ
)ψ1 ⇓ M

′
1 and nAo⇓

ψ1ψ2
((MΨ

idΨ
)ψ1ψ2,M

′
1ψ2).

By MΨ
idΨ
∈ A [Ψ]. �

In the special case that M 7−→∗
�
M′ and M′ ∈ A [Ψ], we can invoke Lemma 4.18 with

M and the family {M′ψ }ψ :Ψ′→Ψ, because M′ψ ∈ Aψ [Ψ′] (where M′ψ = (M′idΨ)ψ on the
nose) and Mψ 7−→∗ M′ψ for all ψ : Ψ′ → Ψ. We therefore obtain head expansion with
respect to cubically-stable evaluation, as we observe in Lemma 4.32.

4.3.1 Open judgments

As in Idealized Nuprl, open judgments express that an equality holds as a closed judgment
for all instantiations by elements of the hypotheses Γ. Our notation Γ � J [Ψ] distin-
guishes the contexts Γ and Ψ in accordance with their di�ering semantics. One can instead
interleave term (a : A) and interval (x : I) variables in a single context; in fact, all current
cubical proof assistants do so, including RedPRL, redtt, and cubical Agda.

De�nition 4.19. For γ ,γ ′ lists and Γ a telescope (De�nition 2.17), γ ∼ γ ′ ∈ Γ [Ψ] when

1. · ∼ · ∈ · [Ψ], or

2. (M,γ ) ∼ (M′,γ ′) ∈ (a : A, Γ) [Ψ] when M � M′ ∈ A [Ψ] and γ ∼ γ ′ ∈ Γ[M/a] [Ψ].

De�nition 4.20 (Contexts). For Γ, Γ′ telescopes, Γ � Γ′ ctx [Ψ] when

1. · � · ctx [Ψ], or

2. (a : A, Γ) � (a : A′, Γ′) ctx [Ψ] when A � A′ typepre [Ψ] and for all ψ : Ψ′ → Ψ and
M � M′ ∈ Aψ [Ψ′], Γψ [M/a] � Γ′ψ [M′/a] ctx [Ψ′].

The relation γ ∼ γ ′ ∈ Γ [Ψ] is symmetric and transitive when Γ ctx [Ψ]; the judgment
Γ�Γ′ ctx [Ψ] is always symmetric and transitive. Both are closed under interval substitution
as a straightforward consequence of Lemma 4.13.

De�nition 4.21 (Open judgments).

1. Γ � A � A′ typepre [Ψ], presupposing Γ ctx [Ψ], when for all ψ : Ψ′ → Ψ and
γ ∼ γ ′ ∈ Γψ [Ψ′], Aψγ � A′ψγ ′ typepre [Ψ

′].

2. Γ � M � M′ ∈ A [Ψ], presupposing Γ � A typepre [Ψ], when for all ψ : Ψ′ → Ψ
and γ ∼ γ ′ ∈ Γψ [Ψ′], Mψγ � M′ψγ ′ ∈ Aψγ [Ψ′].

The open judgments are symmetric, transitive, and closed under interval substitution.
It remains to prove that contexts can be extended on the right by open types, and that the
open judgments satisfy the structural rules of hypothesis, weakening, and substitution.
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Lemma 4.22 (Context extension). If Γ � Γ′ ctx [Ψ] and Γ � A � A′ typepre [Ψ] then
(Γ,a : A) � (Γ′,a : A′) ctx [Ψ].

Proof. The telescope (Γ,a : A) is de�ned by recursion on Γ, so we prove the lemma by
induction on Γ � Γ′ ctx [Ψ]. If Γ = Γ′ = ·, we must show that if Aψ � A′ψ typepre [Ψ

′] for
allψ : Ψ′→ Ψ then A � A′ typepre [Ψ], which is immediate.

Now suppose (b : B, Γ) � (b : B′, Γ′) ctx [Ψ] and b : B, Γ � A �A′ typepre [Ψ], and show
((b :B, Γ),a :A)� ((b :B′, Γ′),a :A′) ctx [Ψ]. By de�nition, ((b :B, Γ),a :A) = (b :B, (Γ,a :A)).
We know B � B′ typepre [Ψ], and must show for any ψ : Ψ′ → Ψ and N � N ′ ∈ Bψ [Ψ′]
that (Γψ [N /b],a : Aψ [N /b]) � (Γ′ψ [N ′/b],a : A′ψ [N ′/b]) ctx [Ψ′].

It su�ces to establish Γψ [N /b] � Aψ [N /b]�A′ψ [N ′/b] typepre [Ψ
′]; the result then fol-

lows from the inductive hypothesis and Γψ [N /b]�Γ′ψ [N ′/b] ctx [Ψ′]. We must show for all
ψ ′ : Ψ′′→ Ψ′ andγ ∼ γ ′ ∈ Γψ [N /b]ψ ′ [Ψ′′] thatAψ [N /b]ψ ′γ�A′ψ [N ′/b]ψ ′γ ′ typepre [Ψ′′].
This follows fromb:B, Γ � A�A′ typepre [Ψ] instantiated atψψ ′ and (Nψ ′,γ ) ∼ (N ′ψ ′,γ ′) ∈
(b : B, Γ)ψψ ′ [Ψ′′]. �

Lemma 4.23 (Hypothesis). If (Γ,a : A,∆) ctx [Ψ] then Γ,a : A,∆ � a ∈ A [Ψ].

Proof. First, we establish the presupposition Γ,a : A,∆ � A typepre [Ψ] by induction on
Γ, unrolling the de�nition of (Γ,a : A,∆) ctx [Ψ], gathering iterated interval substitutions
(as in the previous proof), and observing that a and the variables of ∆ cannot occur in
A. To establish the judgment itself, suppose ψ : Ψ′ → Ψ and (γ ,M, δ ) ∼ (γ ′,M′, δ ′) ∈
(Γ,a : A,∆)ψ [Ψ′] (hence γ ∼ γ ′ ∈ Γψ [Ψ′] and M � M′ ∈ Aψγ [Ψ′]); we must show
M � M′ ∈ Aψγ [Ψ′], which is immediate. �

Lemma 4.24 (Weakening). Supposing Γ � A typepre [Ψ]:

1. If Γ,∆ � B � B′ typepre [Ψ] then Γ,a : A,∆ � B � B′ typepre [Ψ].

2. If Γ,∆ � M � M′ ∈ B [Ψ] then Γ,a : A,∆ � M � M′ ∈ B [Ψ].

Proof. For part (1), as previously, we establish the presupposition (Γ,a : A,∆) ctx [Ψ]
by induction on Γ, observing for all ψ : Ψ′ → Ψ and γ ∼ γ ′ ∈ Γψ [Ψ′] that Aψγ �
Aψγ ′ typepre [Ψ

′] and ∆ψγ � ∆ψγ ′ ctx [Ψ′]. To establish the judgment, suppose (γ ,M, δ ) ∼
(γ ′,M′, δ ′) ∈ (Γ,a : A,∆)ψ [Ψ′] and showBψγ [M/a]δ�B′ψγ ′[M′/a]δ ′ typepre [Ψ

′]. Because
a cannot occur in B, this is exactly Bψγδ � B′ψγ ′δ ′ typepre [Ψ

′], which is immediate. Part
(2) follows similarly. �

Lemma 4.25 (Substitution). Supposing Γ � M � M′ ∈ A [Ψ]:

1. If Γ,a :A,∆ � B � B′ typepre [Ψ] then Γ,∆[M/a] � B[M/a] � B′[M′/a] typepre [Ψ].

2. If Γ,a :A,∆ � N �N ′ ∈ B [Ψ] then Γ,∆[M/a] � N [M/a]�N ′[M′/a] ∈ B[M/a] [Ψ].
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Proof. For part (1), once again we establish the presupposition (Γ,∆[M/a]) ctx [Ψ] by induc-
tion on Γ, observing for allψ : Ψ′→ Ψ and γ ∼ γ ′ ∈ Γψ [Ψ′] that (γ ,Mψγ ) ∼ (γ ′,Mψγ ′) ∈
(Γ,a : A)ψ [Ψ′] and thus (∆[M/a])ψγ � (∆[M/a])ψγ ′ ctx [Ψ′] (because (∆[M/a])ψγ =
∆ψγ [Mψγ/a]). To establish the judgment, show if (γ , δ ) ∼ (γ ′, δ ′) ∈ (Γ,∆[M/a])ψ [Ψ′] then
B[M/a]ψγδ � B′[M′/a]ψγ ′δ ′ typepre [Ψ

′], which follows by B[M/a]ψγδ = Bψγ [Mψγ/a]δ
and (γ ,Mψγ , δ ) ∼ (γ ′,M′ψγ ′, δ ′) ∈ (Γ,a : A,∆)ψ [Ψ′]. Part (2) follows similarly. �

4.3.2 Kan operations

As we explained in Chapter 3, cubical type theories are motivated by two key insights.
First, interval variables allow us to generalize the typehood and membership judgments
to arbitrary dimension, and thereby represent the arbitrary-dimensional data induced by
univalence and higher inductive types. Secondly, uniform Kan operations equip these
types with structure that in Book HoTT is induced by identity elimination: composition
and inversion of paths, transport, et cetera.

We therefore de�ne a new judgment expressing that a type is Kan, or equipped with the
uniform Kan operations of coercion and homogeneous composition described in Section 3.2.
This judgment has similar force to the typehood judgment of Cohen et al. [CCHM18], in
whose type theory all types are Kan. In contrast, we explicitly consider pretypes that are
not Kan, including many equality types.

Like Cohen et al. [CCHM18], we express open boxes using restricted judgments, which
limit the force of a cubical judgment to a subcube of Ψ [Ang+19].

De�nition 4.26. An interval substitution ψ : Ψ′ → Ψ satis�es a set of unordered equa-
tional constraints Ξ = {r1 = r

′
1, . . . , rn = r

′
n} for which FI(Ξ) ⊆ Ψ when for all i , riψ = r ′iψ .

De�nition 4.27 (Restricted judgments). For every judgment form J , we say J [Ψ | Ξ],
presupposing FI(Ξ) ⊆ Ψ, when Jψ [Ψ′] for allψ : Ψ′→ Ψ satisfying Ξ.

Restricted judgments maintain the presuppositions of their unrestricted forms; for
instance, M ∈ A [Ψ | Ξ] presupposes A typepre [Ψ | Ξ]. (This presupposition is needed
to ensure the presupposition of Mψ ∈ Aψ [Ψ′] for allψ : Ψ′→ Ψ satisfying Ξ.) One can
translate any J [Ψ | Ξ] into an unrestricted judgment by case analysis on Ξ:

1. J [Ψ | ·] if and only if J [Ψ].

Both are equivalent to Jψ [Ψ′] for allψ , because all interval substitutions satisfy ·,
and all judgment forms are closed under interval substitution.

2. J [Ψ | Ξ, r = r ] if and only if J [Ψ | Ξ].

An interval substitution satis�es {Ξ, r = r } if and only if it satis�es Ξ.
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3. J [Ψ | Ξ, 0 = 1] always.

No interval substitutions satisfy {Ξ, 0 = 1}.

4. J [Ψ, x | Ξ, x = r ] if and only if J〈r/x〉 [Ψ | Ξ〈r/x〉].

An interval substitution ψ : Ψ′ → (Ψ, x) satis�es {Ξ, x = r } if and only if ψ =
〈r/x〉ψ ′ andψ ′ : Ψ′→ Ψ satis�es Ξ〈r/x〉.

Restrictions are nevertheless critical because they specify subcubes in a manner that is
both closed under interval substitution (becauseψ ′ satis�es Ξψ if and only ifψψ ′ satis�es
Ξ) and amenable to intersection. To illustrate the latter point, consider three lines in the
x = 0, x = 1, and x = y instances of A typepre [x,y] that agree on their intersections.
Using restricted judgments, we can express such a scenario with three singly-restricted
elements and three doubly-restricted equations (below, left). Using interval substitutions,
it is easy to express the three lines themselves, but their intersections are not computed
uniformly—the intersection of x = 0 and x = 1 is empty, whereas the intersection of x = ε
and x = y corresponds to the substitution 〈ε/x〉〈ε/y〉 (below, right):

M ∈ A [x,y | x = 0] M ∈ A〈0/x〉 [y]
N ∈ A [x,y | x = 1] N ∈ A〈1/x〉 [y]
O ∈ A [x,y | x = y] O ∈ A〈y/x〉 [y]

M � N ∈ A [x,y | x = 0, x = 1] −

M � O ∈ A [x,y | x = 0, x = y] M 〈0/y〉 � O 〈0/y〉 ∈ A〈0/x〉〈0/y〉 [·]
N � O ∈ A [x,y | x = 1, x = y] N 〈1/y〉 � O 〈1/y〉 ∈ A〈1/x〉〈1/y〉 [·]

We writeA typeKan [Ψ]whenA is a pretype whose interval substitution instances admit
the Cartesian cubical Kan operations (Figure 3.4), restricted to valid open box shapes.3
As discussed in Section 3.5, the validity condition is defeasible (Angiuli et al. [Ang+19]
omit it) and engenders additional complications (Theorem 4.34), but allows us to obtain
a sharper canonicity result in which 0-dimensional elements of higher inductive types
evaluate to constructors (Theorem 4.77).

De�nition 4.28. A set of equational constraints
−−−−−⇀
ri = r

′
i is valid when either ri = r ′i for

some i , or ri = rj , r ′i = 0, and r ′j = 1 for some i, j.

De�nition 4.29 (Kan types). A � B typeKan [Ψ], presupposing A � B typepre [Ψ], when
for anyψ : Ψ′→ Ψ:

3More precisely, we require not only that Aψ admit Kan operations but moreover that the particular
terms hcomAψ and coex .Aψ de�ne such operations.
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1. If

a)
−⇀
ξi is valid,

b) M � M′ ∈ Aψ [Ψ′],

c) Ni � N ′j ∈ Aψ [Ψ
′,y | ξi, ξj] for any i, j, and

d) Ni 〈r/y〉 � M ∈ Aψ [Ψ′ | ξi] for any i ,

then

a) hcomr r ′

Aψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

Bψ (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ Aψ [Ψ

′];

b) if r = r ′ then hcomr r ′

Aψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ Aψ [Ψ′]; and

c) if ξi then hcomr r ′

Aψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ Aψ [Ψ′].

2. If Ψ′ = (Ψ′′, x) and M � M′ ∈ Aψ 〈r/x〉 [Ψ′′], then

a) coer r ′

x .Aψ
(M) � coer r ′

x .Bψ
(M′) ∈ Aψ 〈r ′/x〉 [Ψ′′]; and

b) if r = r ′ then coer r ′

x .Aψ
(M) � M ∈ Aψ 〈r/x〉 [Ψ′′].

Γ � A � A′ typeKan [Ψ], presupposing Γ � A � A′ typepre [Ψ], when for all ψ : Ψ′ → Ψ
and γ ∼ γ ′ ∈ Γψ [Ψ′], Aψγ � A′ψγ ′ typeKan [Ψ

′].

The closed and open Kan judgments are symmetric, transitive, and closed under interval
substitution. We can establish further properties of these judgments by appealing to earlier
evaluation and coherent expansion lemmas.

Lemma 4.30. Suppose A typeKan [Ψ], B typeKan [Ψ], and for all ψ : Ψ′ → Ψ we have

Aψ � Bψ typeKan [Ψ
′] where Aψ ⇓ Aψ and Bψ ⇓ Bψ . Then A � B typeKan [Ψ].

Proof. Let ψ : Ψ′ → Ψ. By Lemma 4.14, Aψ � Aψ typepre [Ψ
′] and Bψ � Bψ typepre [Ψ

′];
therefore Aψ � Bψ typepre [Ψ

′], and in particular, the presupposition A � B typepre [Ψ]
holds. Now, suppose

1.
−⇀
ξi is valid,

2. M � M′ ∈ Aψ [Ψ′],

3. Ni � N ′j ∈ Aψ [Ψ
′,y | ξi, ξj] for any i, j, and

4. Ni 〈r/y〉 � M ∈ Aψ [Ψ′ | ξi] for any i ,
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and show hcomr r ′

Aψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

Bψ (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ Aψ [Ψ

′]. Both sides of
this equation are elements of Aψ (by De�nition 4.29 and Aψ � Bψ typepre [Ψ

′]), so by
Lemma 4.15 it su�ces to check that these terms are related by nAψo⇓ or equivalently
nAψo⇓. This holds by hcomAψ � hcomBψ ∈ Aψ [Ψ

′] (using Aψ � Bψ typeKan [Ψ
′] and, for

the premises, Aψ � Aψ typepre [Ψ
′]), hcomAψ 7−→

∗ hcomAψ , and hcomBψ 7−→
∗ hcomBψ .

The remaining hcom equations of De�nition 4.29 follow by transitivity and the equations
of Aψ typeKan [Ψ

′]; the coe equations follow similarly. �

Lemma 4.31 (Coherent expansion III). Suppose A is a term and {AΨ′

ψ
}ψ :Ψ′→Ψ is a family

of terms such that AΨ′

ψ
� (AΨ

idΨ
)ψ typeKan [Ψ

′] and Aψ 7−→∗ AΨ′

ψ
for all ψ : Ψ′ → Ψ. Then

A � AΨ
idΨ

typeKan [Ψ].

Proof. The presuppositionA�AΨ
idΨ

typepre [Ψ] is immediate by Lemma 4.17. Now, suppose
ψ : Ψ′→ Ψ,

1.
−⇀
ξi is valid,

2. M � M′ ∈ Aψ [Ψ′],

3. Ni � N ′j ∈ Aψ [Ψ
′,y | ξi, ξj] for any i, j, and

4. Ni 〈r/y〉 � M ∈ Aψ [Ψ′ | ξi] for any i ,

and show hcomr r ′

Aψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

(AΨ
idΨ
)ψ (M

′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ Aψ [Ψ′]. We apply

Lemma 4.18 at Aψ typepre [Ψ
′] to the term hcomr r ′

Aψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) and family of terms

{hcomrψ ′ r ′ψ ′

AΨ′′

ψψ ′
(Mψ ′;

−−−−−−−−−−−−−⇀
ξiψ
′ ↪→ y.Niψ

′)}Ψ
′′

ψ ′
.

We know hcomAψψ ′ 7−→
∗ hcomAΨ′′

ψψ ′
byAψψ ′ 7−→∗ AΨ′′

ψψ ′
, and hcomAΨ′′

ψψ ′
�hcom

(AΨ′

ψ )ψ
′ ∈

Aψψ ′ [Ψ′′] byAΨ′′

ψψ ′
�(AΨ′

ψ
)ψ ′ typeKan [Ψ

′′] andAΨ′′

ψψ ′
�Aψψ ′ typepre [Ψ

′′] (both by transitivity
through (AΨ

idΨ
)ψψ ′). We conclude that hcomAψ �hcomAΨ′

ψ
∈ Aψ [Ψ′], and the desired result

follows by AΨ′

ψ
� (AΨ

idΨ
)ψ typeKan [Ψ

′]. The remaining hcom equations of De�nition 4.29
follow by transitivity and AΨ

idΨ
typeKan [Ψ].

Now, suppose ψ : (Ψ′, x) → Ψ and M � M′ ∈ Aψ 〈r/x〉 [Ψ′] and show coer r ′

x .Aψ
(M) �

coer r ′

x .(AΨ
idΨ
)ψ
(M′) ∈ Aψ 〈r ′/x〉 [Ψ′]. We apply Lemma 4.18 at Aψ 〈r ′/x〉 typepre [Ψ′] to the

term coer r ′

x .Aψ
(M) and family of terms {coerψ

′ r ′ψ ′

x .AΨ′′

ψψ ′
(Mψ ′)}Ψ

′′

ψ ′
. As above, we obtain coex .Aψ �

coex .AΨ′

ψ
∈ Aψ 〈r ′/x〉 [Ψ′], and the desired result follows by AΨ′

ψ
� (AΨ

idΨ
)ψ typeKan [Ψ

′, x].
The remaining coe equation of De�nition 4.29 follows similarly. �
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Lemma 4.32 (Head expansion).

1. If A′ typepre [Ψ] and A 7−→
∗
�
A′ then A � A′ typepre [Ψ].

2. IfM′ ∈ A [Ψ] andM 7−→∗
�
M′ thenM � M′ ∈ A [Ψ].

3. If A′ typeKan [Ψ] and A 7−→
∗
�
A′ then A � A′ typeKan [Ψ].

Proof. Part (1) follows from Lemma 4.17 applied to the term A and family {A′ψ }Ψ′
ψ

, observ-
ing that A′ψ typepre [Ψ

′] and Aψ 7−→∗ A′ψ for allψ . Parts (2–3) follow similarly, appealing
instead to Lemma 4.18 and Lemma 4.31 respectively. �

Using homogeneous composition, which �lls open boxes in constant types, and coer-
cion, which varies the type of a single element, we can de�ne a heterogeneous composition
that �lls open boxes in a varying type. In fact, we have already seen an instance of
heterogeneous composition in our de�nition of coercion in path types (Section 3.2).

Theorem 4.33 (Heterogeneous composition). If A � B typeKan [Ψ,y],

1.

−⇀
ξi is valid,

2. M � M′ ∈ A〈r/y〉 [Ψ],

3. Ni � N ′j ∈ A [Ψ,y | ξi, ξj] for any i, j, and

4. Ni 〈r/y〉 � M ∈ A〈r/y〉 [Ψ | ξi] for any i ,

then

1. comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � comr r ′

y.B (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ A〈r

′/y〉 [Ψ];

2. if r = r ′ then comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ A〈r/y〉 [Ψ]; and

3. if ξi then comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ A〈r ′/y〉 [Ψ].

Proof. By hypothesis (3), Niψ � N ′jψ ∈ Aψ [Ψ
′] for all ψ : Ψ′ → (Ψ,y) satisfying ξi and

ξj . By A � B typeKan [Ψ,y] we have (coey r ′

y.A (Ni))ψ � (coey r ′

y.B (N
′
j ))ψ ∈ A〈r ′/y〉ψ [Ψ′],

and therefore coey r ′

y.A (Ni) � coey r ′

y.B (N
′
j ) ∈ A [Ψ,y | ξi, ξj]. Similarly, by hypothesis

(4) we conclude (coey r ′

y.A (Ni))〈r/y〉 � coer r ′

y.A (M) ∈ A〈r ′/y〉 [Ψ | ξi], and by hypoth-
esis (2), coer r ′

y.A (M) � coer r ′

y.B (M
′) ∈ A〈r ′/y〉 [Ψ]. Therefore, by hypothesis (1) and
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A � B typeKan [Ψ,y]:

hcomr r ′

A〈r ′/y〉(coe
r r ′

y.A (M);
−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.coey r ′

y.A (Ni))

� hcomr r ′

B〈r ′/y〉(coe
r r ′

y.B (M
′);
−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.coey r ′

y.B (N
′
i )) ∈ A〈r

′/y〉 [Ψ]

Part (1) follows by Lemma 4.32 on each side. Moreover, when r = r ′,

hcomr r ′

A〈r ′/y〉(coe
r r ′

y.A (M);
−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.coey r ′

y.A (Ni)) � coer r ′

y.A (M)

� M ∈ A〈r ′/y〉 [Ψ]

and when ξi ,

hcomr r ′

A〈r ′/y〉(coe
r r ′

y.A (M);
−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.coey r ′

y.A (Ni)) � (coe
y r ′

y.A (Ni))〈r
′/y〉

� Ni 〈r
′/y〉 ∈ A〈r ′/y〉 [Ψ].

Parts (2–3) follow from the above facts and Lemma 4.32. �

Our de�nition of coercion in x .hcoms s ′

UKan
j
(A;
−−−−−−−−⇀
ξi ↪→ z.Bi) requires �lling open boxes of

possibly-invalid shape—namely, the subset of
−⇀
ξi not containing x (Section 4.4.11).4 Such

box �llers are not instances of homogeneous composition in the sense of De�nition 4.29;
however, as discussed in Section 3.5, they are de�nable by recursion on the list of equations.

Theorem 4.34 (Generalized homogeneous composition). If A � B typeKan [Ψ],

1. M � M′ ∈ A [Ψ],

2. Ni � N ′j ∈ A [Ψ,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ A [Ψ | ξi] for any i ,

then

1. ghcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � ghcomr r ′

B (M′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ A [Ψ];

2. if r = r ′ then ghcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ A [Ψ]; and

3. if ξi then ghcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ A [Ψ].

4Following Cohen et al. [CCHM18], Angiuli et al. [Ang+19] notate this �ltering operation ∀x .
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Proof. By induction on the length of
−⇀
ξi . If

−⇀
ξi = ·, part (1) requires ghcomr r ′

A (M ; ·) �
ghcomr r ′

B (M′; ·) ∈ A [Ψ], which is immediate by Lemma 4.32 on both sides; part (2) is
immediate by Lemma 4.32 on the left; and part (3) is impossible.

Now consider ghcomr r ′

A (M ; s = s′ ↪→ y.N ,
−−−−−−−−−⇀
ξi ↪→ y.Ni), armed with the inductive hy-

pothesis that ghcoms with one fewer attached face satisfy properties (1–3). By Lemma 4.32
we must show (the binary form of)

hcomr r ′

A (M ;−−−−−−−−−−−⇀s = ε ↪→ z.Tε, s = s
′ ↪→ y.N ,

−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ] where

Tε = hcomr z
A (M ; s′ = ε ↪→ y.N , s′ = ε ↪→ y.ghcomr y

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni),

−−−−−−−−−⇀
ξi ↪→ y.Ni)

writing ε for 1 when ε = 0 and vice versa. Let us �rst show Tε ∈ A [Ψ, z | s = ε] by
De�nition 4.29, noting that the composition is valid by s′ = ε, s′ = ε and that

1. M ∈ A [Ψ | s = ε] by M ∈ A [Ψ],

2. N ∈ A [Ψ,y | s = ε, s′ = ε] (by N ∈ A [Ψ,y | s = s′], because s = s′ whenever
s = ε, s′ = ε), N � Ni ∈ A [Ψ,y | s = ε, s

′ = ε, ξi] (by N � Ni ∈ A [Ψ,y | s = s′, ξi]),
and N 〈r/y〉 � M ∈ A [Ψ | s = ε, s′ = ε] (by N 〈r/y〉 � M ∈ A [Ψ | s = s′]), and

3. ghcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ,y | s = ε, s′ = ε] by inductive hypothesis

(1), ghcomA � Ni ∈ A [Ψ,y | s = ε, s′ = ε, ξi] by inductive hypothesis (3), and
(ghcomA)〈r/y〉 � M ∈ A [Ψ,y | s = ε, s′ = ε] by inductive hypothesis (2).

The remaining equations are immediate. To check hcomA ∈ A [Ψ] it su�ces to observe that
Tε ∈ A [Ψ, z | s = ε] (by the above);Tε � N 〈z/y〉 ∈ A [Ψ, z | s = ε, s = s′] (by the s′ = ε face
of Tε ); Tε � Ni 〈z/y〉 ∈ A [Ψ, z | s = ε, ξi] (by the ξi face of Tε ); Tε 〈r/z〉 � M ∈ A [Ψ | s = ε]
(by r = z〈r/z〉 in Tε ); and the −−−⇀s = ε faces ensure the composition is valid. Part (1) follows
by repeating this argument on the right side, and parts (2–3) follow by De�nition 4.29. �

Theorem 4.35 (Generalized heterogeneous composition). If A � B typeKan [Ψ,y],

1. M � M′ ∈ A〈r/y〉 [Ψ],

2. Ni � N ′j ∈ A [Ψ,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ A〈r/y〉 [Ψ | ξi] for any i ,

then

1. gcomr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � gcomr r ′

y.B (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ A〈r

′/y〉 [Ψ];

2. if r = r ′ then gcomr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ A〈r/y〉 [Ψ]; and
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3. if ξi then gcomr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ A〈r ′/y〉 [Ψ].

Proof. Our implementation of gcom by ghcom and coe mirrors exactly our implementation
of com by hcom and coe. The proof is therefore identical to that of Theorem 4.33, appealing
to Theorem 4.34 instead of De�nition 4.29. �

4.4 Semantics of types

We now establish the basic properties of each type former in Cartesian cubical type theory.
Many of these properties are the standard rules of type theory (as in Figure 2.4) generalized
to arbitrary Ψ. Others govern novel type formers—path types, S1, V-types, and formal
composites of types—or specify when types are Kan.

Unlike in Section 2.5, formation and introduction rules do not follow directly from the
de�nitions of Figure 4.3, but require value-coherence of each type’s underlying Ψ-PER. The
Kan formation rules require us to verify that the operational semantics of hcom and coe at
each type satisfy the conditions of De�nition 4.29. We prove elimination and computation
rules by coherent expansion, checking that the interval substitution instances of each
elimination form compute coherently on introduction forms. Finally, uniqueness rules
follow from induction on the value elements of each type, as in Idealized Nuprl. We prove
only the closed, binary form of each rule, as one can mechanically extend these to open
terms by commuting term substitutions past constructors, using the fact that judgments
are closed under interval substitutions.

We present the rules of Cartesian cubical type theory in the appendices of this disserta-
tion, both as a computational type theory (in the style of Nuprl or RedPRL) in Appendix A,
and as an intensional type theory (in the style of Agda, Coq, or redtt) in Appendix B. (See
Section 2.4 for a discussion of computational and intensional type theories.) The former
exposes particularities of our computational semantics, whereas we expect the latter to
admit denotational semantics in Cartesian cubical sets similar to those of Angiuli et al.
[Ang+19]. The results of this section establish consistency (Theorem 4.58) of both type
theories, as well as canonicity for the computational calculus (Theorems 4.63 and 4.77).

4.4.1 Dependent functions

Recall from Figure 4.3 that for i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan},

τκi (Ψ, (a:A) → B, (a:A′) → B′, {(λa.N , λa.N ′) | a : A � N � N ′ ∈ B [Ψ]})

if and only if A ∼ A′ ↓ α ∈ τκi [Ψ], a : α . B ∼ B′ ↓ β ∈ τκi [Ψ], Coh(α), and CohFam(β);
expanding de�nitions, these in turn hold if and only if τκi |= (A � A′ typepre [Ψ]) and τκi |=
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(a : A � B � B′ typepre [Ψ]). Moreover, (a:A) → B ∼ (a:A′) → B′ ↓ n(a:A) → Bo ∈ τκi [Ψ]
because interval substitutions preserve judgments and (a:A) → B val�.

In the remainder of this section, all judgments are relative to τκi . Relative to τ
pre
ω ,

Rule 4.36 is the ordinary formation rule for dependent functions. In our proof of Rule 4.103,
however, we will invoke Rule 4.36 at arbitrary τκi in order to observe that every universe
Uκ

i is closed under dependent functions.

Rule 4.36 (Pretype formation). If A � A′ typepre [Ψ] and a : A � B � B′ typepre [Ψ] then
(a:A) → B � (a:A′) → B′ typepre [Ψ].

Proof. We have already observed that (a:A) → B ∼ (a:A′) → B′ ↓ n(a:A) → Bo ∈
τκi [Ψ]; it remains to show Coh(n(a:A) → Bo). Suppose ψ : Ψ′ → Ψ and n(a:A) →
Boψ (λa.N , λa.N ′), in which case a : Aψ � N � N ′ ∈ Bψ [Ψ′]. We must show λa.N ∼
λa.N ′ ∈ n(a:A) → Boψ [Ψ′]. By λa.N val�, it su�ces to see that for all ψ ′ : Ψ′′ → Ψ′,
n(a:A) → Boψψ ′(λa.Nψ ′, λa.N ′ψ ′), which holds bya:Aψψ ′ � Nψ ′�N ′ψ ′ ∈ Bψψ ′ [Ψ′′]. �

Because we have de�ned the value elements of (a:A) → B according to its introduction
principle, value-coherence amounts to the introduction rule itself.

Rule 4.37 (Introduction). If a :A � M �M′ ∈ B [Ψ] then λa.M � λa.M′ ∈ (a:A) → B [Ψ].

Proof. The presuppositions of our hypothesis and Rule 4.36 imply (a:A) → B typepre [Ψ].
The result follows by Coh(n(a:A) → Bo) at idΨ. �

Lemma 4.38. IfM ∈ (a:A) → B [Ψ] and N ∈ A [Ψ] thenM ⇓ λa.O andM N � O[N /a] ∈
B[N /a] [Ψ].

Proof. The presupposition of our �rst hypothesis, (a:A) → B typepre [Ψ], implies a : A �
B typepre [Ψ]; the presupposition B[N /a] typepre [Ψ] follows immediately.

For all ψ : Ψ′ → Ψ, we know Mψ ⇓ λa.Oψ and n(a:A) → Boψ (λa.OidΨψ , λa.Oψ ), and
therefore a : Aψ � OidΨψ � Oψ ∈ Bψ [Ψ′]. We apply coherent expansion (Lemma 4.18)
to (M N ), B[N /a] typepre [Ψ], and {Oψ [Nψ/a]}Ψ

′

ψ
, using Mψ Nψ 7−→∗ (λa.Oψ ) Nψ 7−→

Oψ [Nψ/a] and Oψ [Nψ/a] � (OidΨ[N /a])ψ ∈ Bψ [Nψ/a] [Ψ′]. We conclude that M N �
OidΨ[N /a] ∈ B[N /a] [Ψ], as desired. �

Rule 4.39 (Elimination). IfM�M′ ∈ (a:A) → B [Ψ] andN�N ′ ∈ A [Ψ] thenM N�M′N ′ ∈
B[N /a] [Ψ].

Proof. By Lemma 4.38, M ⇓ λa.O , M′ ⇓ λa.O′, M N �O[N /a] ∈ B[N /a] [Ψ], and M′ N ′ �
O′[N ′/a] ∈ B[N ′/a] [Ψ]. By Lemma 4.16, M � λa.O ∈ (a:A) → B [Ψ] and M′ � λa.O′ ∈
(a:A) → B [Ψ], and so by n(a:A) → Bo(λa.O, λa.O′), a :A � O �O′ ∈ B [Ψ]. We conclude
O[N /a]�O′[N ′/a] ∈ B[N /a] [Ψ] and B[N /a]�B[N ′/a] typepre [Ψ], and the result follows
by symmetry, transitivity, and Lemma 4.12. �
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Rule 4.40 (Uniqueness). IfM ∈ (a:A) → B [Ψ] thenM � λa.M a ∈ (a:A) → B [Ψ].

Proof. By Lemma 4.16, M ⇓ λa.O and M � λa.O ∈ (a:A) → B [Ψ]; by transitivity and
Rule 4.37 it su�ces to show a :A � O �M a ∈ B [Ψ], that is, ifψ : Ψ′→ Ψ and N � N ′ ∈
Aψ [Ψ′] then Oψ [N /a] � Mψ N ′ ∈ Bψ [N /a] [Ψ′]. By Lemma 4.38, Oψ [N ′/a] � Mψ N ′ ∈
Bψ [N ′/a] [Ψ′], whereMψ ⇓ λa.Oψ . The result follows by Bψ [N /a]�Bψ [N ′/a] typepre [Ψ′]
and a : Aψ � OidΨψ � Oψ ∈ Bψ [Ψ

′], the latter by n(a:A) → Boψ (λa.Oψ , λa.Oψ ). �

Computation rules that correspond to cubically-stable evaluation steps follow directly
from head expansion; as in Idealized Nuprl, we omit such proofs, and omit such rules from
Appendix A. We include the following proof for illustrative purposes:

Rule 4.41 (Computation). If a :A � M ∈ B [Ψ] and N ∈ A [Ψ] then (λa.M) N �M[N /a] ∈
B[N /a] [Ψ].

Proof. By Lemma 4.32, M[N /a] ∈ B[N /a] [Ψ], and (λa.M) N 7−→� M[N /a]. �

Finally, we must show that the dependent function type of two Kan types is again Kan.
In our proof of Rule 4.102, we will invoke Rule 4.42 in order to observe that the (inductively
de�ned collection of) elements ofUKan

i are Kan types.

Rule 4.42 (Kan type formation). IfA�A′ typeKan [Ψ] and a :A � B � B′ typeKan [Ψ] then
(a:A) → B � (a:A′) → B′ typeKan [Ψ].

Proof. Rule 4.36 establishes the presupposition (a:A) → B � (a:A′) → B′ typepre [Ψ]. It
remains to check the Kan conditions of De�nition 4.29; we begin with homogeneous
composition. Supposeψ : Ψ′→ Ψ,

−⇀
ξi is valid,

1. M � M′ ∈ (a:Aψ ) → Bψ [Ψ′],

2. Ni � N ′j ∈ (a:Aψ ) → Bψ [Ψ′,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ (a:Aψ ) → Bψ [Ψ′ | ξi] for any i; show

hcomr r ′

(a:Aψ )→Bψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

(a:A′ψ )→B′ψ (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ (a:Aψ ) → Bψ [Ψ′]. By

Lemma 4.32 on both sides and Rule 4.37, it su�ces to show

a : Aψ � hcomr r ′

Bψ (M a;
−−−−−−−−−−⇀
ξi ↪→ y.Ni a) � hcomr r ′

B′ψ (M
′ a;
−−−−−−−−−−−⇀
ξi ↪→ y.N ′i a) ∈ Bψ [Ψ

′]

which is to say that for anyψ ′ : Ψ′′→ Ψ′ and N � N ′ ∈ Aψψ ′ [Ψ′′],

hcomrψ r ′ψ
Bψψ ′[N /a]

(Mψ ′ N ;
−−−−−−−−−−−−−−−−⇀
ξiψ
′ ↪→ y.Niψ

′ N )

� hcomrψ r ′ψ
B′ψψ ′[N ′/a]

(M′ψ ′ N ′;
−−−−−−−−−−−−−−−−⇀
ξiψ
′ ↪→ y.N ′iψ

′ N ′) ∈ Bψψ ′[N /a] [Ψ′′].
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We have Bψψ ′[N /a] � B′ψψ ′[N ′/a] typeKan [Ψ
′′] by a : A � B � B′ typeKan [Ψ], so the

result follows from De�nition 4.29 if we show that
−−⇀
ξiψ
′ is valid,

1. Mψ ′ N � M′ψ ′ N ′ ∈ Bψψ ′[N /a] [Ψ′′],

2. Niψ
′ N � N ′jψ

′ N ′ ∈ Bψψ ′[N /a] [Ψ′′,y | ξiψ
′, ξjψ

′] for any i, j, and

3. Ni 〈r/y〉ψ
′ N � Mψ ′ N ′ ∈ Bψψ ′[N /a] [Ψ′′ | ξiψ

′] for any i .

These follow from our hypotheses and a restricted elimination rule (obtained from Rule 4.39
and De�nition 4.27)—if M � M′ ∈ (a:A) → B [Ψ | Ξ] and N � N ′ ∈ A [Ψ | Ξ] then
M N � M′ N ′ ∈ B[N /a] [Ψ | Ξ].

Next, show that if r = r ′ then hcomr r ′

(a:Aψ )→Bψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ (a:Aψ ) → Bψ [Ψ′].

By Lemma 4.32 on the left and Rule 4.40 on the right, it su�ces to show

λa.hcomr r ′

Bψ (M a;
−−−−−−−−−−⇀
ξi ↪→ y.Ni a) � λa.M a ∈ (a:Aψ ) → Bψ [Ψ′].

By Rule 4.37, it su�ces to show that for anyψ ′ : Ψ′′→ Ψ′ and N � N ′ ∈ Aψψ ′ [Ψ′′],

hcomrψ r ′ψ
Bψψ ′[N /a]

(Mψ ′ N ;
−−−−−−−−−−−−−−−−⇀
ξiψ
′ ↪→ y.Niψ

′ N ) � Mψ ′ N ′ ∈ Bψψ ′[N /a] [Ψ′].

By Bψψ ′[N /a] typeKan [Ψ
′′] and r = r ′ on the left, it su�ces to show Mψ ′ N � Mψ ′ N ′ ∈

Bψψ ′[N /a] [Ψ′′], which holds by Rule 4.39.
The �nal hcom property states that if ξi holds then hcomr r ′

(a:Aψ )→Bψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) �

Ni 〈r
′/y〉 ∈ (a:Aψ ) → Bψ [Ψ′]. As before, by Lemma 4.32 on the left, Rule 4.40 on the right,

and Rule 4.37, show for anyψ ′ : Ψ′′→ Ψ′ and N � N ′ ∈ Aψψ ′ [Ψ′′] that

hcomrψ r ′ψ
Bψψ ′[N /a]

(Mψ ′ N ;
−−−−−−−−−−−−−−−−⇀
ξiψ
′ ↪→ y.Niψ

′ N ) � Ni 〈r
′/y〉ψ ′ N ′ ∈ Bψψ ′[N /a] [Ψ′].

This follows by Bψψ ′[N /a] typeKan [Ψ
′′] and ξiψ ′ on the left, and Rule 4.39.

Now we must show that dependent functions also support coercion. Suppose ψ :
(Ψ′, x) → Ψ and M � M′ ∈ (a:Aψ 〈r/x〉) → Bψ 〈r/x〉 [Ψ′], and show coer r ′

x .(a:Aψ )→Bψ
(M) �

coer r ′

x .(a:A′ψ )→B′ψ
(M′) ∈ (a:Aψ 〈r ′/x〉) → Bψ 〈r ′/x〉 [Ψ′]. By Lemma 4.32 on both sides and

Rule 4.37, we must show for anyψ ′ : Ψ′′→ Ψ′ and N � N ′ ∈ Aψψ ′〈r ′ψ ′/x〉 [Ψ′′] that

coerψ
′ r ′ψ ′

x .Bψψ ′[coer
′ψ ′ x

x .Aψψ ′ (N )/a]
(Mψ ′ coer

′ψ ′ rψ ′

x .Aψψ ′
(N ))

� coerψ
′ r ′ψ ′

x .B′ψψ ′[coer
′ψ ′ x

x .A′ψψ ′(N
′)/a]
(M′ψ ′ coer

′ψ ′ rψ ′

x .A′ψψ ′
(N ′)) ∈ Bψψ ′〈r ′ψ ′/x〉[N /a] [Ψ′′].

By Aψψ ′ � A′ψψ ′ typeKan [Ψ
′′, x], coer

′ψ ′ x
x .Aψψ ′

(N ) � coer
′ψ ′ x
x .A′ψψ ′

(N ′) ∈ Aψψ ′〈r ′ψ ′/x〉 [Ψ′′];
therefore, the above instances of Bψψ ′ and B′ψψ ′ are equal Kan types. By Rule 4.39,

Mψ ′ coer
′ψ ′ rψ ′

x .Aψψ ′
(N ) � M′ψ ′ coer

′ψ ′ rψ ′

x .A′ψψ ′
(N ′) ∈ Bψψ ′〈rψ ′/x〉[coer

′ψ ′ rψ ′

x .Aψψ ′
(N )/a] [Ψ′′]
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so the above coe are equal in Bψψ ′〈r ′ψ ′/x〉[coer
′ψ ′ r ′ψ ′

x .Aψψ ′
(N )/a]. The result follows by

Lemma 4.12 and coer
′ψ ′ r ′ψ ′

x .Aψψ ′
(N ) � N ∈ Aψψ ′〈r ′ψ ′/x〉 [Ψ′′].

Finally, show that if r = r ′ then coer r ′

x .(a:Aψ )→Bψ
(M)�M ∈ (a:Aψ 〈r ′/x〉) → Bψ 〈r ′/x〉 [Ψ′].

By Lemma 4.32 on the left, Rule 4.40 on the right, and Rule 4.37, it su�ces to show for any
ψ ′ : Ψ′′→ Ψ′ and N � N ′ ∈ Aψψ ′〈r ′ψ ′/x〉 [Ψ′′] that

coerψ
′ r ′ψ ′

x .Bψψ ′[coer
′ψ ′ x

x .Aψψ ′ (N )/a]
(Mψ ′ coer

′ψ ′ rψ ′

x .Aψψ ′
(N )) � Mψ ′ N ′ ∈ Bψψ ′〈r ′ψ ′/x〉[N /a] [Ψ′′].

By rψ ′ = r ′ψ ′, Aψψ ′ typeKan [Ψ′′, x], Rule 4.39, and Bψψ ′[coer
′ψ ′ x
x .Aψψ ′

(N )/a] typeKan [Ψ
′′, x],

it su�ces to show Mψ ′ N � Mψ ′ N ′ ∈ Bψψ ′〈r ′ψ ′/x〉[N /a] [Ψ′′]. Rule 4.39 completes the
proof. �

4.4.2 Dependent pairs

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan},

τκi (Ψ, (a:A)×B, (a:A′)×B′, {(〈M,N 〉, 〈M′,N ′〉) | M �M′ ∈ A [Ψ]∧N �N ′ ∈ B[M/a] [Ψ]})

if and only if A ∼ A′ ↓ α ∈ τκi [Ψ], a : α . B ∼ B′ ↓ β ∈ τκi [Ψ], Coh(α), and CohFam(β);
expanding de�nitions, these in turn hold if and only if τκi |= (A � A′ typepre [Ψ]) and
τκi |= (a : A � B � B′ typepre [Ψ]). In the remainder of this section, all judgments are
relative to τκi .

Rule 4.43 (Pretype formation). If A � A′ typepre [Ψ] and a : A � B � B′ typepre [Ψ] then
(a:A) × B � (a:A′) × B′ typepre [Ψ].

Proof. First, (a:A) × B ∼ (a:A′) × B′ ↓ n(a:A) → Bo ∈ τκi [Ψ] because (a:A) × B val�
and interval substitutions preserve judgments. It remains to show Coh(n(a:A) × Bo).
Suppose ψ : Ψ′ → Ψ and n(a:A) × Boψ (〈M,N 〉, 〈M′,N ′〉). Then M � M′ ∈ Aψ [Ψ′] and
N �N ′ ∈ Bψ [M/a] [Ψ′]; because 〈M,N 〉 val�, 〈M,N 〉 ∼ 〈M′,N ′〉 ∈ n(a:A) × Boψ [Ψ]. �
Rule 4.44 (Introduction). Ifa:A � B typepre [Ψ],M�M

′ ∈ A [Ψ], andN�N ′ ∈ B[M/a] [Ψ],
then 〈M,N 〉 � 〈M′,N ′〉 ∈ (a:A) × B [Ψ].

Proof. Immediate by Rule 4.43. (Note that the hypothesis a : A � B typepre [Ψ] does not
follow from the presupposition B[M/a] typepre [Ψ].) �

Rule 4.45 (Elimination). If P � P ′ ∈ (a:A) × B [Ψ] then fst(P) � fst(P ′) ∈ A [Ψ] and
snd(P) � snd(P ′) ∈ B[fst(P)/a] [Ψ].
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Proof. For anyψ : Ψ′→ Ψ, Pψ ⇓ 〈Mψ ,Nψ 〉, Mψ ∈ Aψ [Ψ
′], and Nψ ∈ Bψ [Mψ /a] [Ψ

′]. For
part (1), apply coherent expansion to fst(P) with family {Mψ }

Ψ′

ψ
; then (MidΨ)ψ � Mψ ∈

Aψ [Ψ′] by P ∈ (a:A) × B [Ψ] at idΨ,ψ . By Lemma 4.18, fst(P) �MidΨ ∈ A [Ψ], and part (1)
follows by MidΨ � M′idΨ ∈ A [Ψ] and a symmetric argument on the right side.

For part (2), apply coherent expansion to snd(P)with family {Nψ }Ψ
′

ψ
. We have (NidΨ)ψ �

Nψ ∈ Bψ [(MidΨ)ψ/a] [Ψ
′] by P ∈ (a:A)×B [Ψ] at idΨ,ψ , so by Lemma 4.18, snd(P)�NidΨ ∈

B[MidΨ/a] [Ψ]. Part (2) follows by B[MidΨ/a] � B[fst(P)/a] typepre [Ψ] (by a : A � B �
B′ typepre [Ψ] and MidΨ � fst(P) ∈ A [Ψ]), NidΨ � N ′idΨ ∈ B[MidΨ/a] [Ψ], and a symmetric
argument on the right side. �

Rule 4.46 (Uniqueness). If P ∈ (a:A) × B [Ψ] then P � 〈fst(P), snd(P)〉 ∈ (a:A) × B [Ψ].

Proof. By Lemma 4.16, P ⇓ 〈M,N 〉, P � 〈M,N 〉 ∈ (a:A) × B [Ψ], M ∈ A [Ψ], and N ∈
B[M/a] [Ψ]. By Rule 4.44 and Lemma 4.15 and transitivity, we show nAo⇓(M, fst(P))
and nB[M/a]o⇓(N , snd(P)). This is immediate by fst(P) 7−→∗ fst(〈M,N 〉) 7−→ M and
snd(P) 7−→∗ snd(〈M,N 〉) 7−→ N . �

Rule 4.47 (Kan type formation). IfA�A′ typeKan [Ψ] and a :A � B � B′ typeKan [Ψ] then
(a:A) × B � (a:A′) × B′ typeKan [Ψ].

Proof. We begin with homogeneous composition. Supposeψ : Ψ′→ Ψ,
−⇀
ξi is valid,

1. M � M′ ∈ (a:Aψ ) × Bψ [Ψ′],

2. Ni � N ′j ∈ (a:Aψ ) × Bψ [Ψ′,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ (a:Aψ ) × Bψ [Ψ′ | ξi] for any i; show

hcomr r ′

(a:Aψ )×Bψ (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

(a:A′ψ )×B′ψ (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ (a:Aψ ) × Bψ [Ψ′]. By

Lemma 4.32 on both sides and Rule 4.44, it su�ces to show (the binary forms of)

hcomr r ′

Aψ (fst(M);
−−−−−−−−−−−−−⇀
ξi ↪→ y.fst(Ni)) ∈ Aψ [Ψ

′]

comr r ′

z.Bψ [F/a](snd(M);
−−−−−−−−−−−−−−⇀
ξi ↪→ y.snd(Ni)) ∈ Bψ [hcomAψ /a] [Ψ

′]

where F := hcomr z
Aψ (fst(M);

−−−−−−−−−−−−−⇀
ξi ↪→ y.fst(Ni)).

We have hcomAψ ∈ Aψ [Ψ′] and F ∈ Aψ [Ψ′, z] by A typeKan [Ψ] and Rule 4.45. We es-
tablish comz.Bψ [F/a] ∈ Bψ [hcomAψ /a] [Ψ

′] by Theorem 4.33, using Bψ [F/a] typeKan [Ψ
′, z],

F 〈r ′/z〉 = hcomAψ ,

1. snd(M) ∈ Bψ [F 〈r/z〉/a] [Ψ′] by F 〈r/z〉 � fst(M) ∈ Aψ [Ψ′] and Rule 4.45,

2. Ni � Nj ∈ Bψ [F 〈y/z〉/a] [Ψ′,y | ξi, ξj] by F 〈y/z〉 � fst(Ni) ∈ Aψ [Ψ′,y | ξi] and
Rule 4.45, and
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3. snd(Ni 〈r/y〉) � snd(M) ∈ Bψ [F 〈r/z〉/a] [Ψ′ | ξi] by F 〈r/z〉 � fst(M) ∈ Aψ [Ψ′] and
Rule 4.45.

Next, we must show that if r = r ′ then hcom(a:Aψ )×Bψ � M ∈ (a:Aψ ) × Bψ [Ψ′]. By
Lemma 4.32, hcom(a:Aψ )×Bψ � 〈hcomAψ , comz.Bψ [F/a]〉 ∈ (a:Aψ )×Bψ [Ψ′]. By De�nition 4.29
and Theorem 4.33, hcomAψ � fst(M) ∈ Aψ [Ψ′], comz.Bψ [F/a]�snd(M) ∈ Bψ [F 〈r/z〉/a] [Ψ′],
and Bψ [F 〈r/z〉/a] � Bψ [fst(M)/a] typeKan [Ψ

′]. The result follows by Rule 4.46.
Finally, show that if ξi , hcom(a:Aψ )×Bψ � Ni 〈r

′/y〉 ∈ (a:Aψ ) × Bψ [Ψ′]; this follows from
hcomAψ � fst(Ni 〈r

′/y〉) ∈ Aψ [Ψ′], comz.Bψ [F/a] � snd(Ni 〈r
′/y〉) ∈ Bψ [F 〈r ′/z〉/a] [Ψ′], and

Bψ [F 〈r ′/z〉/a] � Bψ [fst(Ni 〈r
′/y〉)/a] typeKan [Ψ

′].
For coercion, suppose thatψ : (Ψ′, x) → Ψ and M �M′ ∈ ((a:Aψ ) ×Bψ )〈r/x〉 [Ψ′], and

show coer r ′

x .(a:Aψ )×Bψ (M) � coer r ′

x .(a:A′ψ )×B′ψ (M
′) ∈ ((a:Aψ ) × Bψ )〈r ′/x〉 [Ψ′]. By Lemma 4.32

and Rule 4.44, it su�ces to show (the binary form of)

coer r ′

x .Aψ (fst(M)) ∈ Aψ 〈r
′/x〉 [Ψ′]

coer r ′

x .Bψ [coer x
x .Aψ (fst(M))/a]

(snd(M)) ∈ Bψ 〈r ′/x〉[coer r ′

x .Aψ (fst(M))/a] [Ψ
′]

We know that coer r ′

x .Aψ
(fst(M)) ∈ Aψ 〈r ′/x〉 [Ψ′] and Bψ [coer x

x .Aψ
(fst(M))/a] typeKan [Ψ

′, x]

by Aψ typeKan [Ψ
′, x], a : Aψ � Bψ typeKan [Ψ

′, x], and Rule 4.45. We also know that
snd(M) ∈ Bψ 〈r/x〉[fst(M)/a] [Ψ′] and (coer x

x .Aψ
(fst(M)))〈r/x〉 � fst(M) ∈ A〈r/x〉 [Ψ′], so

coex .Bψ [.../a] ∈ Bψ 〈r ′/x〉[coer r ′

x .Aψ
(fst(M))/a] [Ψ′] and the result follows.

Finally, show that if r = r ′ then coer r
x .(a:Aψ )×Bψ (M) � M ∈ ((a:Aψ ) × Bψ )〈r/x〉 [Ψ′]. By

Lemma 4.32 and Rules 4.44 and 4.46, this follows from coex .Aψ � fst(M) ∈ Aψ 〈r/x〉 [Ψ′]
and coex .Bψ [.../a] � snd(M) ∈ Bψ 〈r/x〉[fst(M)/a] [Ψ′]. �

4.4.3 Paths

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan}, τκi (Ψ, Pathx .A(P0, P1), Pathx .A′(P ′0, P
′
1),φ) where

φ = {(〈x〉M, 〈x〉M′) | (M ∼ M′ ∈ α [Ψ, x]) ∧ (∀ε .M 〈ε/x〉 ∼ Pε ∈ α 〈ε/x〉 [Ψ])}

if and only if A ∼ A′ ↓ α ∈ τκi [Ψ, x], Coh(α), and Pε ∼ P ′ε ∈ α 〈ε/x〉 [Ψ] for ε ∈ {0, 1}, or
equivalently, τκi |= (A � A′ typepre [Ψ, x]) and τκi |= (Pε � P ′ε ∈ A〈ε/x〉 [Ψ]) for ε ∈ {0, 1}.
Relative to τκi :

Rule 4.48 (Pretype formation). If A � A′ typepre [Ψ, x] and Pε � P ′ε ∈ A〈ε/x〉 [Ψ] for
ε ∈ {0, 1}, then Pathx .A(P0, P1) � Pathx .A′(P ′0, P

′
1) typepre [Ψ].

Proof. We have Pathx .A(P0, P1) ∼ Pathx .A′(P ′0, P
′
1) ↓ nPathx .A(P0, P1)o ∈ τκi [Ψ] because

Pathx .A(P0, P1) val�. It remains to show Coh(nPathx .A(P0, P1)o). Suppose thatψ : Ψ′→ Ψ
and nPathx .A(P0, P1)oψ (〈x〉M, 〈x〉M′). Then M � M′ ∈ Aψ [Ψ′, x] and M 〈ε/x〉 � Pεψ ∈
Aψ 〈ε/x〉 [Ψ′]; by 〈x〉M val�, 〈x〉M ∼ 〈x〉M′ ∈ nPathx .A(P0, P1)oψ [Ψ]. �
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Rule 4.49 (Introduction). IfM �M′ ∈ A [Ψ, x] andM 〈ε/x〉�Pε ∈ A〈ε/x〉 [Ψ] for ε ∈ {0, 1},
then 〈x〉M � 〈x〉M′ ∈ Pathx .A(P0, P1) [Ψ].

Proof. Immediate by Rule 4.48. �

Rule 4.50 (Elimination).

1. IfM � M′ ∈ Pathx .A(P0, P1) [Ψ] thenM@r � M′@r ∈ A〈r/x〉 [Ψ].

2. IfM ∈ Pathx .A(P0, P1) [Ψ] thenM@ε � Pε ∈ A〈ε/x〉 [Ψ].

Proof. Apply coherent expansion to M@r with family {Mψ 〈rψ/x〉 | Mψ ⇓ 〈x〉Mψ }
Ψ′

ψ
. By

M ∈ Pathx .A(P0, P1) [Ψ] at idΨ,ψ we know (MidΨ)ψ �Mψ ∈ Aψ [Ψ
′, x], so (MidΨ)ψ 〈rψ/x〉�

Mψ 〈rψ/x〉 ∈ A〈r/x〉ψ [Ψ
′]. Thus by Lemma 4.18, M@r � MidΨ 〈r/x〉 ∈ A〈r/x〉 [Ψ]; part

(1) follows by the same argument on the right side and MidΨ � M′idΨ ∈ A [Ψ, x]. Part (2)
follows from M@ε � MidΨ 〈ε/x〉 ∈ A〈ε/x〉 [Ψ] and MidΨ 〈ε/x〉 � Pε ∈ A〈ε/x〉 [Ψ]. �

Rule 4.51 (Uniqueness). IfM ∈ Pathx .A(P0, P1) [Ψ],M � 〈x〉(M@x) ∈ Pathx .A(P0, P1) [Ψ].

Proof. By Lemma 4.16, M ⇓ 〈x〉N and M � 〈x〉N ∈ Pathx .A(P0, P1) [Ψ]. By Rule 4.50,
M@x � (〈x〉N )@x ∈ A [Ψ, x], so by Lemma 4.32 on the right, M@x � N ∈ A [Ψ, x]. By
Rule 4.49, 〈x〉(M@x)�〈x〉N ∈ Pathx .A(P0, P1) [Ψ], and the result follows by transitivity. �

Rule 4.52 (Kan type formation). If A � A′ typeKan [Ψ, x] and Pε � P ′ε ∈ A〈ε/x〉 [Ψ] for
ε ∈ {0, 1}, then Pathx .A(P0, P1) � Pathx .A′(P ′0, P

′
1) typeKan [Ψ].

Proof. We begin with homogeneous composition. Supposeψ : Ψ′→ Ψ,
−⇀
ξi is valid,

1. M � M′ ∈ Pathx .Aψ (P0ψ , P1ψ ) [Ψ
′],

2. Ni � N ′j ∈ Pathx .Aψ (P0ψ , P1ψ ) [Ψ
′,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ Pathx .Aψ (P0ψ , P1ψ ) [Ψ
′ | ξi] for any i; show

hcomr r ′

(Pathx .A(P0,P1))ψ
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)

� hcomr r ′

(Pathx .A′(P ′0,P
′
1))ψ
(M′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ (Pathx .A(P0, P1))ψ [Ψ

′].

By Lemma 4.32 and Rule 4.49 on both sides it su�ces to show

hcomr r ′

Aψ (M@x ;
−−−−−−−−−−−−−⇀
x = ε ↪→ _.Pεψ ,

−−−−−−−−−−−−⇀
ξi ↪→ y.Ni@x)

� hcomr r ′

A′ψ (M
′@x ;

−−−−−−−−−−−−−⇀
x = ε ↪→ _.P ′εψ ,

−−−−−−−−−−−−⇀
ξi ↪→ y.N ′i @x) ∈ Aψ [Ψ′, x]

and (hcomAψ )〈ε/x〉 � Pεψ ∈ Aψ 〈ε/x〉 [Ψ
′]. By our hypotheses and Rule 4.50,
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1. M@x � M′@x ∈ Aψ [Ψ′, x],

2. Pεψ � P ′εψ ∈ Aψ [Ψ
′, x | x = ε] and Pεψ � M@x ∈ Aψ [Ψ′, x | x = ε],

3. Ni@x � N ′j @x ∈ Aψ [Ψ′, x,y | ξi, ξj], Ni@x � P ′εψ ∈ Aψ [Ψ′, x,y | ξi, x = ε], and
Ni 〈r/y〉@x � M@x ∈ Aψ [Ψ′, x | ξi],

so hcomAψ � hcomA′ψ ∈ Aψ [Ψ
′, x] and (hcomAψ )〈ε/x〉 � Pεψ ∈ Aψ [Ψ].

Next, show if r = r ′, hcomr r ′

(Pathx .A(P0,P1))ψ
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ (Pathx .A(P0, P1))ψ [Ψ

′].
By Rule 4.49 and De�nition 4.29 the left side equals 〈x〉(M@x); the result follows by
Rule 4.51.

Finally, if ξi , hcomr r ′

(Pathx .A(P0,P1))ψ
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ (Pathx .A(P0, P1))ψ [Ψ
′].

The left side equals 〈x〉(Ni 〈r
′/y〉@x); the result follows by Rule 4.51.

For coercion, let ψ : (Ψ′,y) → Ψ and M � M′ ∈ (Pathx .A(P0, P1))ψ 〈r/y〉 [Ψ
′]; show

coer r ′

y.(Pathx .A(P0,P1))ψ
(M)� coer r ′

y.(Pathx .A′(P ′0,P
′
1))ψ
(M′) ∈ (Pathx .A(P0, P1))ψ 〈r

′/y〉 [Ψ′]. Applying
Lemma 4.32 on both sides and then Rule 4.49, it su�ces to show

comr r ′

y.Aψ (M@x ;
−−−−−−−−−−−−−⇀
x = ε ↪→ y.Pεψ ) � comr r ′

y.A′ψ (M
′@x ;

−−−−−−−−−−−−−⇀
x = ε ↪→ y.P ′εψ ) ∈ Aψ 〈r

′/y〉 [Ψ′, x]

and (comy.Aψ )〈ε/x〉 � Pεψ 〈r
′/y〉 ∈ Aψ 〈r ′/y〉〈ε/x〉 [Ψ′]. By our hypotheses and Rule 4.50,

M@x �M′@x ∈ Aψ 〈r/y〉 [Ψ′, x], Pεψ �P ′εψ ∈ Aψ [Ψ′, x,y | x = ε], and Pεψ 〈r/y〉�M@x ∈
Aψ 〈r/y〉 [Ψ′, x | x = ε], so by Theorem 4.33, comy.Aψ � comy.A′ψ ∈ Aψ 〈r

′/y〉 [Ψ′, x] and
(comy.Aψ )〈ε/x〉 � Pεψ 〈r

′/y〉 ∈ Aψ 〈r ′/y〉〈ε/x〉 [Ψ′].
Finally, show that if r = r ′, coer r ′

y.(Pathx .A(P0,P1))ψ
(M) � M ∈ (Pathx .A(P0, P1))ψ 〈r

′/y〉 [Ψ′].
Again the left side equals 〈x〉(M@x), and Rule 4.51 completes the proof. �

The above proofs generalize straightforwardly to extension types (Section 3.5).

4.4.4 Equalities

For i ∈ {0, 1, . . . ,ω}, τ prei (Ψ, EqA(M,N ), EqA′(M
′,N ′), {(?,?) | M ∼ N ∈ α [Ψ]}) if and

only if A ∼ A′ ↓ α ∈ τ
pre
i [Ψ], Coh(α), M ∼ M′ ∈ α [Ψ], and N ∼ N ′ ∈ α [Ψ]; or

equivalently, τ prei |= (A � A′ typepre [Ψ]), τ
pre
i |= (M � M′ ∈ A [Ψ]), and τ prei |= (N � N ′ ∈

A [Ψ]). Relative to τ prei :

Rule 4.53 (Pretype formation). IfA�A′ typepre [Ψ],M �M′ ∈ A [Ψ], and N �N ′ ∈ A [Ψ],
then EqA(M,N ) � EqA′(M

′,N ′) typepre [Ψ].

Proof. Again, EqA(M,N ) ∼ EqA′(M
′,N ′) ↓ nEqA(M,N )o ∈ τ prei [Ψ] by EqA(M,N ) val�. To

see Coh(nEqA(M,N )o), suppose ψ : Ψ′ → Ψ and nEqA(M,N )oψ (?,?). Then Mψ � Nψ ∈
Aψ [Ψ′], and ? ∼ ? ∈ nEqA(M,N )oψ [Ψ] holds by ? val�. �
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Rule 4.54 (Introduction). IfM � N ∈ A [Ψ] then ? ∈ EqA(M,N ) [Ψ].

Proof. Immediate by Rule 4.53. �

Rule 4.55 (Elimination). If E ∈ EqA(M,N ) [Ψ] thenM � N ∈ A [Ψ].

Proof. Then nEqA(M,N )o⇓(E, E) so E ⇓ ? and M � N ∈ A [Ψ]. �

Rule 4.56 (Uniqueness). If E ∈ EqA(M,N ) [Ψ] then E � ? ∈ EqA(M,N ) [Ψ].

Proof. Immediate by Lemma 4.16. �

As we observed at the beginning of this chapter, equality types are not generally Kan,
because coercion in x .EqA(M,N ) requires all paths in A to be trivial. (In Chapter 5 we will
discuss the converse—if all paths in A are trivial in an appropriate sense, then x .EqA(M,N )
supports coercion.) On the other hand, one can always homogeneously compose:

hcomr r ′

EqA(M,N )
(M′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) := ?

because M′,N ′i equal ? by Rule 4.56.

4.4.5 Void

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan}, τκi (Ψ, void, void, {}). Relative to τκi :

Rule 4.57 (Pretype formation). void typepre [Ψ].

Proof. By void val�, void ∼ void ↓ nvoido ∈ τκi [Ψ] where every nvoidoΨ is empty;
Coh(nvoido) holds vacuously. �

Theorem 4.58 (Consistency). There is noM such thatM ∈ void [Ψ].

Proof. Suppose M ∈ void [Ψ]; then nvoido⇓Ψ(M,M), which is impossible. �

Theorem 4.58 implies the absurdity rule in Appendix A—if Γ � M ∈ void [Ψ] then
Γ � N ∈ A [Ψ]—because the premise only holds if no γ ∼ γ ′ ∈ Γ [Ψ] exist.

Rule 4.59 (Kan type formation). void typeKan [Ψ].

Proof. Each Kan condition supposes thatM�M′ ∈ void [Ψ′], and therefore holds vacuously
by Theorem 4.58. �
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4.4.6 Booleans

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan}, τκi (Ψ, bool, bool, {(true, true), (false, false)}). Rel-
ative to τκi :

Rule 4.60 (Pretype formation). bool typepre [Ψ].

Proof. Once again, bool ∼ bool ↓ nboolo ∈ τκi [Ψ] by bool val�. For Coh(nboolo), we
must show true ∼ true ∈ nboolo [Ψ] and false ∼ false ∈ nboolo [Ψ], which hold because
true val�, false val�, and for all Ψ′, nbooloΨ′(true, true) and nbooloΨ′(false, false). �

Rule 4.61 (Introduction). true ∈ bool [Ψ] and false ∈ bool [Ψ].

Proof. Immediate by Rule 4.60. �

Rule 4.62 (Elimination). If b : bool � A typepre [Ψ], M � M′ ∈ bool [Ψ], T � T ′ ∈
A[true/b] [Ψ], and F � F ′ ∈ A[false/b] [Ψ], then if(M ;T , F ) � if(M′;T ′, F ′) ∈ A[M/b] [Ψ].

Proof. Apply coherent expansion on the left with family {if(Mψ ;Tψ , Fψ ) | Mψ ⇓ Mψ }
Ψ′

ψ
.

We must show if(Mψ ;Tψ , Fψ ) � if((MidΨ)ψ ;Tψ , Fψ ) ∈ Aψ [Mψ/b] [Ψ′]. By the de�ni-
tion of nbooloΨ′, either Mψ = true or Mψ = false; in either case MidΨ = Mψ because
nboolo⇓Ψ′((MidΨ)ψ ,Mψ ). Suppose both equal true; show if(true;Tψ , Fψ ) ∈ Aψ [Mψ/b] [Ψ′].
By Lemma 4.32 andTψ ∈ Aψ [true/b] [Ψ′] (by hypothesis) it su�ces to show Aψ [Mψ/b] �
Aψ [true/b] typepre [Ψ

′], which follows from Mψ � true ∈ bool [Ψ′] (using Lemma 4.16).
The Mψ = false case is symmetric.

We conclude by Lemma 4.18 that if(M ;T , F ) � if(MidΨ ;T , F ) ∈ A[M/b] [Ψ]. By transi-
tivity, Lemma 4.16, and the same argument on the right, it su�ces to show if(MidΨ ;T , F ) �
if(M′idΨ ;T ′, F ′) ∈ A[MidΨ/b] [Ψ]. By M � M′ ∈ bool [Ψ], either MidΨ = M′idΨ = true or
MidΨ = M′idΨ = false, and in either case the result follows by Lemma 4.32. �

Our computational type theory (Appendix A) contains an untyped evaluation rule
(Lemma 4.16) and therefore satis�es canonicity. Unlike in Chapter 2, that rule applies only
to closed terms, because unstable evaluation does not commute with substitution.

Theorem4.63 (Canonicity I). IfM ∈ bool [Ψ] then eitherM ⇓ true andM�true ∈ bool [Ψ]
orM ⇓ false andM � false ∈ bool [Ψ]. Furthermore, the rules of Appendix A su�ce to derive

these equations.

Proof. By M ∼ M ∈ bool [Ψ] at idΨ, idΨ, either M ⇓ true or M ⇓ false; the desired equation
follows by Lemma 4.16 (a rule of Appendix A) and determinacy of evaluation. �

Rule 4.64 (Kan type formation). bool typeKan [Ψ].

Proof. For homogeneous composition, suppose that
−⇀
ξi is valid,
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1. M � M′ ∈ bool [Ψ′],

2. Ni � N ′j ∈ bool [Ψ
′,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ bool [Ψ′ | ξi] for any i; show

hcomr r ′

bool (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

bool (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ bool [Ψ′]. This is immediate by

Lemma 4.32 on both sides, because hcomr r ′

bool (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→� M and M � M′ ∈

bool [Ψ′]. By the same argument, when r = r ′, hcomr r ′

bool (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ bool [Ψ′].

Next, suppose ξi holds, and show hcomr r ′

bool (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ bool [Ψ′]. The
left equals M by Lemma 4.32, which by hypothesis equals Ni 〈r/y〉; therefore, it su�ces to
show Ni 〈r/y〉 � Ni 〈r

′/y〉 ∈ bool [Ψ′]. By Theorem 4.63, either Ni � true ∈ bool [Ψ′,y] or
Ni � false ∈ bool [Ψ′,y]; in both cases, Ni 〈r/y〉 � Ni 〈r

′/y〉 ∈ bool [Ψ′].
For coercion, show if M �M′ ∈ bool [Ψ′] that coer r ′

x .bool(M) � coer r ′

x .bool(M
′) ∈ bool [Ψ′].

This holds by Lemma 4.32 on both sides, because coer r ′

x .bool(M) 7−→� M and M � M′ ∈

bool [Ψ′]. By the same argument, when r = r ′, coer r ′

x .bool(M) � M ∈ bool [Ψ′]. �

4.4.7 Natural numbers

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan}, τκi (Ψ, nat, nat,NΨ) where N is the least context-
indexed relation with NΨ(z, z) and NΨ(s(M), s(M′)) whenever M ∼ M′ ∈ N [Ψ]. Relative
to τκi :

Rule 4.65 (Pretype formation). nat typepre [Ψ].

Proof. By nat val�, nat ∼ nat ↓ N ∈ τκi [Ψ]. To prove Coh(N), we must show z ∼ z ∈
N [Ψ′] (immediate by z val�) and s(M) ∼ s(M′) ∈ N [Ψ′] when M ∼ M′ ∈ N [Ψ′] (which
holds by s(M) val� and Mψ ∼ M′ψ ∈ N [Ψ′′] for allψ : Ψ′→ Ψ). �

Rule 4.66 (Introduction). z ∈ nat [Ψ] and ifM �M′ ∈ nat [Ψ] then s(M)� s(M′) ∈ nat [Ψ].

Proof. By Rule 4.65. �

Rule 4.67 (Elimination). If n :nat � A typepre [Ψ],M �M′ ∈ nat [Ψ], Z �Z ′ ∈ A[z/n] [Ψ],
and n :nat,a :A � S�S′ ∈ A[s(n)/n] [Ψ], then natrec(M ;Z ,n.a.S)�natrec(M′;Z ′,n.a.S′) ∈
A[M/n] [Ψ].

Proof. In essence, we “proceed by induction on − ∼ − ∈ N [−],” a relation obtained by
lifting the context-indexed relation

N := µR.({(Ψ, z, z)} ∪ {(Ψ, s(M), s(M′)) | M ∼ M′ ∈ R [Ψ]})
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from values to terms (via various interval substitutions). More precisely, we show (1) the
elimination rule lifts from values to terms, (2) the elimination rule holds for values, and
thus (3) the elimination rule holds for terms.

De�ne ΦΨ(M0,M
′
0) to hold when NΨ(M0,M

′
0) and for all n : nat � A typepre [Ψ],

Z�Z ′ ∈ A[z/n] [Ψ], andn:nat,a:A � S�S′ ∈ A[s(n)/n] [Ψ], we have natrec(M0;Z ,n.a.S)�
natrec(M′0;Z ′,n.a.S′) ∈ A[M0/n] [Ψ].

1. If M ∼ M′ ∈ Φ [Ψ] then the elimination rule holds for M,M′.
We have M ∼ M′ ∈ N [Ψ] by Φ ⊆ N and monotonicity of candidate judgments.
Apply coherent expansion to natrec(M ;Z ,n.a.S) at A[M/n] typepre [Ψ] with family
{natrec(Mψ ;Zψ ,n.a.Sψ ) | Mψ ⇓ Mψ }

Ψ′

ψ
. Then for all ψ : Ψ′ → Ψ we obtain

natrec(Mψ ;Zψ ,n.a.Sψ ) ∈ Aψ [Mψ /n] [Ψ
′] from Φ⇓Ψ(M,M

′) (by M ∼ M′ ∈ Φ [Ψ]). We
must show

natrec(Mψ ;Zψ ,n.a.Sψ ) � natrec((MidΨ)ψ ;Zψ ,n.a.Sψ ) ∈ Aψ [Mψ /n] [Ψ
′]

but by Lemma 4.15 and (MidΨ)ψ � Mψ ∈ nat [Ψ′] it su�ces to show these natrecs
are related by nAψ [Mψ /n]o⇓, which follows from Φ⇓Ψ′((MidΨ)ψ ,Mψ ).

2. If NΨ(M0,M
′
0) then ΦΨ(M0,M

′
0).

Let N be the function of which N is the least pre-�xed point; we prove Φ is also a
pre-�xed point of N (that is, N (Φ) ⊆ Φ). Suppose N (Φ)Ψ(M0,M

′
0). Then either:

a) M0 = M′0 = z.
Show natrec(z;Z ,n.a.S)�natrec(z;Z ′,n.a.S′) ∈ A[z/n] [Ψ], which is immediate
by Z � Z ′ ∈ A[z/n] [Ψ] and Lemma 4.32 on both sides.

b) M0 = s(M), M′0 = s(M′), and M ∼ M′ ∈ Φ [Ψ].
Show natrec(s(M);Z ,n.a.S) � natrec(s(M′);Z ′,n.a.S′) ∈ A[s(M)/n] [Ψ]. By
Lemma 4.32 on both sides, it su�ces to show

S[M/n][natrec(M ;Z ,n.a.S)/a]
� S′[M′/n][natrec(M′;Z ′,n.a.S′)/a] ∈ A[s(M)/n] [Ψ].

We have M � M′ ∈ nat [Ψ] and natrec(M ;Z ,n.a.S) � natrec(M′;Z ′,n.a.S′) ∈
A[M/n] [Ψ] by M ∼ M′ ∈ Φ [Ψ], so the result follows by n :nat,a :A � S �S′ ∈
A[s(n)/n] [Ψ].

3. Assume M ∼ M′ ∈ N [Ψ]; by monotonicity and N ⊆ Φ, M ∼ M′ ∈ Φ [Ψ]. Thus the
elimination rule holds for M,M′, completing the proof. �

Rule 4.68 (Kan type formation). nat typeKan [Ψ].
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Proof. Identical to Rule 4.64. �

The existence property also holds in our computational type theory (Appendix A),
following the same argument as in Idealized Nuprl (Theorem 2.42).

4.4.8 Circle

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan}, τκi (Ψ, S
1, S1,CΨ) where C is the least context-

indexed relation with:

1. CΨ(base, base),

2. C(Ψ,x)(loopx , loopx ), and

3. CΨ(hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni), hcomr r ′

S1 (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i )) whenever

a) r , r ′, ¬ξi for all i , and
−⇀
ξi is valid,

b) M ∼ M′ ∈ C [Ψ],

c) Niψ ∼ N ′jψ ∈ C [Ψ
′] for all i, j andψ : Ψ′→ (Ψ,y) satisfying ξi, ξj , and

d) Ni 〈r/y〉ψ ∼ Mψ ∈ C [Ψ′] for all i andψ : Ψ′→ Ψ satisfying ξi .

By S1 val� it is immediate that S1 ∼ S1 ↓ C ∈ τκi [Ψ]. Relative to τκi :

Lemma 4.69. If
−⇀
ξi is valid,

1. M ∼ M′ ∈ C [Ψ],

2. Niψ ∼ N ′jψ ∈ C [Ψ
′] for all i, j andψ : Ψ′→ (Ψ,y) satisfying ξi, ξj , and

3. Ni 〈r/y〉ψ ∼ Mψ ∈ C [Ψ′] for all i andψ : Ψ′→ Ψ satisfying ξi ,

then hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∼ hcomr r ′

S1 (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ C [Ψ].

Proof. Abbreviating the above hcoms L and R, we must show for any ψ1 : Ψ1 → Ψ and
ψ2 : Ψ2 → Ψ1 that Lψ1 ⇓ L1, Rψ1 ⇓ R1, and C⇓Ψ2

relates L1ψ2, Lψ1ψ2, R1ψ2, and Rψ1ψ2. We
proceed by cases on the �rst step taken by Lψ1 and Lψ1ψ2.

1. rψ1 = r
′ψ1.

Then Lψ1 7−→� Mψ1, Rψ1 7−→� M′ψ1, and the result follows from assumption (1).



Semantics of types 115

2. rψ1 , r ′ψ1, ξjψ1 holds (and ¬ξiψ1 for all i < j), and rψ1ψ2 = r
′ψ1ψ2.

Then Lψ1 7−→ Nj 〈r
′/y〉ψ1, Lψ1ψ2 7−→ Mψ1ψ2, Rψ1 7−→ N ′j 〈r

′/y〉ψ1, and Rψ1ψ2 7−→

M′ψ1ψ2. Because ψ1 satis�es ξj , by (2) and (3), Njψ1 ∼ N ′jψ1 ∈ C [Ψ1,y] and
Nj 〈r/y〉ψ1 ∼ Mψ1 ∈ C [Ψ1]. By the former at 〈r ′ψ1/y〉,ψ2, C⇓Ψ2

(Nj 〈r
′/y〉ψ1ψ2, L1ψ2)

and C⇓Ψ2
(L1ψ2,R1ψ2). By the latter atψ2, idΨ2 , C

⇓

Ψ2
(Nj 〈r/y〉ψ1ψ2,Mψ1ψ2); by transitiv-

ity and rψ1ψ2 = r
′ψ1ψ2 we have C⇓Ψ2

(L1ψ2, Lψ1ψ2). Finally, by (1), C⇓Ψ2
(Lψ1ψ2,Rψ1ψ2).

3. rψ1 , r ′ψ1, ξiψ1 holds (and this is the least such i), rψ1ψ2 , r ′ψ1ψ2, and ξjψ1ψ2 holds
(and this is the least such j ≤ i).
Then Lψ1 7−→ Ni 〈r

′/y〉ψ1, Lψ1ψ2 7−→ Nj 〈r
′/y〉ψ1ψ2, Rψ1 7−→ N ′i 〈r

′/y〉ψ1, and
Rψ1ψ2 7−→ N ′j 〈r

′/y〉ψ1ψ2. In this case, 〈r ′/y〉ψ1ψ2 satis�es ξi, ξj ; the result holds
because − ∼ − ∈ C [Ψ2] relates Ni 〈r

′/y〉ψ1ψ2, Nj 〈r
′/y〉ψ1ψ2, N ′i 〈r

′/y〉ψ1ψ2, and
N ′j 〈r

′/y〉ψ1ψ2.

4. rψ1 , r ′ψ1, ¬ξiψ1 for all i , and rψ1ψ2 = r
′ψ1ψ2.

Then Lψ1 val, Lψ1ψ2 7−→ Mψ1ψ2, Rψ1 val, and Rψ1ψ2 7−→ M′ψ1ψ2. In this case,
L1ψ2 = Lψ1ψ2 and R1ψ2 = Rψ1ψ2, so the result follows by (1).

5. rψ1 , r ′ψ1, ¬ξiψ1 for all i , rψ1ψ2 , r ′ψ1ψ2, and ξjψ1ψ2 holds (the least such j).
Then Lψ1 val, Lψ1ψ2 7−→ Nj 〈r

′/y〉ψ1ψ2, Rψ1 val, and Rψ1ψ2 7−→ N ′j 〈r
′/y〉ψ1ψ2. The

result follows because L1ψ2 = Lψ1ψ2, R1ψ2 = Rψ1ψ2, and because 〈r ′/y〉ψ1ψ2 satis�es
ξj , Nj 〈r

′/y〉ψ1ψ2 ∼ N ′j 〈r
′/y〉ψ1ψ2 ∈ C [Ψ2].

6. rψ1 , r ′ψ1, ¬ξiψ1 for all i , rψ1ψ2 , r ′ψ1ψ2, and ¬ξjψ1ψ2 for all j.
Then Lψ1 val, Lψ1ψ2 val, Rψ1 val, and Rψ1ψ2 val; it su�ces to show CΨ2(Lψ1ψ2,Rψ1ψ2).
We know

−−−−−⇀
ξiψ1ψ2 is valid and riψ1ψ2 , r ′iψ1ψ2 for all i , so the result follows immediately

by the third clause of the de�nition of C. �

Rule 4.70 (Pretype formation). S1 typepre [Ψ].

Proof. We must show Coh(C). There are three cases:

1. base ∼ base ∈ C [Ψ].
Immediate because base val�.

2. loopx ∼ loopx ∈ C [Ψ, x].

Letψ1 : Ψ1 → (Ψ, x) andψ2 : Ψ2 → Ψ1; show loopxψ1
⇓ M1 and C⇓Ψ2

(M1ψ2, loopxψ1ψ2
).

If xψ1 = ε then M1 = base, loopxψ1ψ2
7−→ base, and CΨ2(base, base). If instead

xψ1 = x′ and x′ψ2 = ε , then M1 = loopx ′, loopx ′ψ2
7−→ base, loopxψ1ψ2

7−→ base,
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and CΨ2(base, base). Otherwise, xψ1 = x′ and x′ψ2 = x′′, so M1 = loopx ′ and
CΨ2(loopx ′′, loopx ′′).

3. hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∼ hcomr r ′

S1 (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ C [Ψ] where. . .

This is a special case of Lemma 4.69 in which r , r ′ and ¬ξi for all i . �

Rule 4.71 (Introduction). base ∈ S1 [Ψ], loopε � base ∈ S1 [Ψ], and loopr ∈ S
1 [Ψ].

Proof. The �rst follows from Coh(C), the second from loopε 7−→� base and Lemma 4.32,
and the third from Coh(C) if r = x and Lemma 4.32 if r = ε . �

Rule 4.72 (Kan type formation). S1 typeKan [Ψ].

Proof. For homogeneous composition, suppose
−⇀
ξi is valid,

1. M � M′ ∈ S1 [Ψ′],

2. Ni � N ′j ∈ S
1 [Ψ′,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ S1 [Ψ′ | ξi] for any i; show

hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

S1 (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ S

1 [Ψ′], which is immediate by

Lemma 4.69. Next, we must show if r = r ′ that hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ S1 [Ψ′];

this is immediate by hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) 7−→� M and Lemma 4.32. Finally, show if ξi

holds that hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ S1 [Ψ′]. Each side is an element of S1, so

by Lemma 4.16 it su�ces to show C⇓Ψ′(hcom
r r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni),Ni 〈r

′/y〉). If r = r ′ then
hcom 7−→ M and the result follows by Ni 〈r/y〉 � M ∈ S1 [Ψ′ | ξi], because idΨ′ satis�es
ξi . Otherwise, let ξj be the �rst true equation. Then hcom 7−→ Nj 〈r

′/y〉 and the result
follows from Ni � Nj ∈ S

1 [Ψ′,y | ξi, ξj].
For coercion, suppose that M � M′ ∈ S1 [Ψ′] and show coer r ′

x .S1 (M) � coer r ′

x .S1 (M
′) ∈

S1 [Ψ′]. This is immediate by coer r ′

x .S1 (M) 7−→� M and Lemma 4.32 on both sides. Similarly,
if r = r ′ then coer r ′

x .S1 (M) � M ∈ S1 [Ψ′] by Lemma 4.32 on the left. �

Rule 4.73 (Computation).

1. If P ∈ B [Ψ] then S1
-elimc .A(base; P, x .L) � P ∈ B [Ψ].

2. If L ∈ B [Ψ, x] and L〈ε/x〉 � P ∈ B〈ε/x〉 [Ψ] for ε ∈ {0, 1}, S1
-elimc .A(loopr ; P, x .L) �

L〈r/x〉 ∈ B〈r/x〉 [Ψ].
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Proof. Like previous computation rules, part (1) is immediate by Lemma 4.32; in contrast,
part (2) holds only under certain typing hypotheses, and not by untyped computation.

If r = ε , part (2) holds by Lemma 4.32 and L〈ε/x〉 � P ∈ B〈ε/x〉 [Ψ]. If r = y, apply
coherent expansion to the left with {Pψ | yψ = ε}Ψ′

ψ
∪ {Lψ 〈z/x〉 | yψ = z}Ψ

′

ψ
. The idΨ

element of this family is L〈y/x〉; whenyψ = ε , L〈y/x〉ψ �Pψ ∈ B〈y/x〉ψ [Ψ′] (by 〈y/x〉ψ =
〈ε/x〉ψ ), and when yψ = z, L〈y/x〉ψ � Lψ 〈z/x〉 ∈ B〈y/x〉ψ [Ψ′] (by ψ 〈z/x〉 = 〈y/x〉ψ ).
Thus by Lemma 4.18, S1-elimc .A(loopy ; P, x .L) � L〈y/x〉 ∈ B〈y/x〉 [Ψ]. �

To prove the elimination rule, as in Rule 4.67, we proceed by induction on C, which
we de�ned in Section 4.2 as the least pre-�xed point of a function we will notate C . Our
inductive hypothesis ΦΨ(M0,M

′
0) holds when:

1. CΨ(M0,M
′
0) and

2. The elimination rule holds for M0 and M′0. That is: for all c :S1 � A�A′ typeKan [Ψ],
P � P ′ ∈ A[base/c] [Ψ], L � L′ ∈ A[loopx/c] [Ψ, x], and L〈ε/x〉 � P ∈ A[base/c] [Ψ]
for ε ∈ {0, 1}, S1-elimc .A(M0; P, x .L) � S1-elimc .A′(M

′
0; P ′, x .L′) ∈ A[M0/c] [Ψ].

Lemma 4.74. If M ∼ M′ ∈ Φ [Ψ] then whenever c : S1 � A � A′ typeKan [Ψ], P � P ′ ∈
A[base/c] [Ψ], L � L′ ∈ A[loopx/c] [Ψ, x], and L〈ε/x〉 � P ∈ A[base/c] [Ψ] for ε ∈ {0, 1},
S1
-elimc .A(M ; P, x .L) � S1

-elimc .A′(M
′; P ′, x .L′) ∈ A[M/c] [Ψ].

Proof. Apply coherent expansion to the left with family {S1-elimc .Aψ (Mψ ; Pψ , x .Lψ ) |
Mψ ⇓ Mψ }

Ψ′

ψ
, by showing that

S1-elimc .Aψ (Mψ ; Pψ , x .Lψ ) � S1-elimc .Aψ ((MidΨ)ψ ; Pψ , x .Lψ ) ∈ (A[M/c])ψ [Ψ′].

The left is an element of this type by ΦΨ′(Mψ ,Mψ ) andAψ [Mψ /c]�Aψ [Mψ/c] typeKan [Ψ
′]

(by Mψ � Mψ ∈ S1 [Ψ′]); the right is an element by ΦΨ(MidΨ,MidΨ) and A[MidΨ/c] �
A[M/c] typeKan [Ψ]. The equality follows by (MidΨ)ψ ⇓ M2, ΦΨ′(Mψ ,M2), and Lemma 4.16.
Thus, by Lemma 4.18, S1-elimc .A(M ; P, x .L) � S1-elimc .A(MidΨ ; P, x .L) ∈ A[M/c] [Ψ].

By a symmetric argument on the right, A[M/c] � A′[M′/c] typeKan [Ψ] (by M �
M′ ∈ S1 [Ψ]), and transitivity, it remains only to establish that S1-elimc .A(MidΨ ; P, x .L) �
S1-elimc .A′(M

′
idΨ

; P ′, x .L′) ∈ A[M/c] [Ψ]; this holds by ΦΨ(MidΨ,M
′
idΨ
) and A[MidΨ/c] �

A[M/c] typeKan [Ψ]. �

Lemma 4.75. If C(Φ)Ψ(M0,M
′
0) then ΦΨ(M0,M

′
0).

Proof. We must show that CΨ(M0,M
′
0), and that if c : S1 � A � A′ typeKan [Ψ], P � P ′ ∈

A[base/c] [Ψ], L � L′ ∈ A[loopx/c] [Ψ, x], and L〈ε/x〉 � P ∈ A[base/c] [Ψ] for ε ∈ {0, 1},
then S1-elimc .A(M0; P, x .L)�S1-elimc .A′(M

′
0; P ′, x .L′) ∈ A[M0/c] [Ψ]. There are three cases:
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1. C(Φ)Ψ(base, base).

Then CΨ(base, base) by de�nition, and the elimination rule holds by Lemma 4.32.

2. C(Φ)(Ψ,y)(loopy, loopy).

ThenC(Ψ,y)(loopy, loopy) by de�nition, and the elimination rule holds by Rule 4.73 on
both sides (setting B = A[loopx/c], and by A[loopx/c]〈ε/x〉 �A[base/c] typeKan [Ψ])
and L〈y/x〉 � L′〈y/x〉 ∈ A[loopy/c] [Ψ].

3. C(Φ)Ψ(hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni), hcomr r ′

S1 (M
′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i )) where

a) r , r ′, ¬ξi for all i , and
−⇀
ξi is valid,

b) M ∼ M′ ∈ Φ [Ψ],

c) Niψ ∼ N ′jψ ∈ Φ [Ψ
′] for all i, j andψ : Ψ′→ (Ψ,y) satisfying ξi, ξj , and

d) Ni 〈r/y〉ψ ∼ Mψ ∈ Φ [Ψ′] for all i andψ : Ψ′→ Ψ satisfying ξi .

By construction, Φ ⊆ C, so by monotonicity of candidate judgments, CΨ relates
the above hcoms. By Lemma 4.74 and M ∼ M′ ∈ Φ [Ψ], S1-elimc .A(M, . . .) �
S1-elimc .A′(M

′, . . .) ∈ A[M/c] [Ψ]. For all ψ satisfying ξi, ξj , Niψ ∼ N ′jψ ∈ Φ [Ψ′],
so by Lemma 4.74, S1-elimc .A(Ni, . . .) � S

1-elimc .A′(N
′
j , . . .) ∈ A[Ni/c] [Ψ,y | ξi, ξj].

Similarly, S1-elimc .A(M) � S
1-elimc .A(Ni 〈r/y〉) ∈ A[M/c] [Ψ | ξi].

Apply coherent expansion to S1-elimc .A(hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni); P, x .L) at type

A[hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)/c] typeKan [Ψ] with family:

S1-elimc .Aψ (Mψ ; Pψ , x .Lψ ) rψ = r ′ψ

S1-elimc .Aψ (Nj 〈r
′/y〉ψ ; Pψ , x .Lψ ) rψ , r ′ψ , least j s.t. ξjψ

comrψ r ′ψ
z.Aψ [F/c]

(S1-elimc .Aψ (Mψ ; Pψ , x .Lψ );
−−−−−−−−−−⇀
ξiψ ↪→ y.Ti) otherwise

F := hcomrψ z

S1 (Mψ ;
−−−−−−−−−−−−⇀
ξiψ ↪→ y.Niψ )

Ti := S1-elimc .Aψ (Niψ ; Pψ , x .Lψ )

We must check all three cross-cases, noting that idΨ falls in the third category above.
In the �rst case, when rψ = r ′ψ :

comrψ r ′ψ
z.Aψ [F/c]

(S1-elimc .Aψ (Mψ );
−−−−−−−−−−⇀
ξiψ ↪→ y.Ti) � S

1-elimc .Aψ (Mψ ) ∈ Aψ [hcomψ/c] [Ψ′]

This holds by Theorem 4.33, Aψ [hcomψ/c] = Aψ [F/c]〈r ′ψ/z〉, Aψ [F/c]〈r ′ψ/z〉 �
A[M/c]ψ typeKan [Ψ

′], and Aψ [F/c] � A[Ni 〈z/y〉/c]ψ typeKan [Ψ
′, z | ξiψ ]. In the
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second case, when rψ , r ′ψ , ξjψ holds, and ¬ξiψ for i < j:

comrψ r ′ψ
z.Aψ [F/c]

(S1-elimc .Aψ (Mψ );
−−−−−−−−−−⇀
ξiψ ↪→ y.Ti)

� S1-elimc .Aψ (Nj 〈r
′/y〉ψ ) ∈ Aψ [hcomψ/c] [Ψ′]

As before, this holds by Theorem 4.33. Finally, when rψ , r ′ψ and ¬ξiψ for all i:

comrψ r ′ψ
z.Aψ [F/c]

(S1-elimc .Aψ (Mψ );
−−−−−−−−−−⇀
ξiψ ↪→ y.Ti) ∈ Aψ [hcomψ/c] [Ψ′]

Once again this holds by Theorem 4.33. Therefore, by Lemma 4.18:

comr r ′

z.Aψ [F/c](S
1-elimc .A(M ; P, x .L);

−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.S1-elimc .A(Ni ; P, x .L))

� S1-elimc .A(hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni); P, x .L) ∈ A[hcom/c] [Ψ].

By transitivity and a symmetric argument on the right, it su�ces to show that two
coms are equal, which follows from Theorem 4.33. �

Rule 4.76 (Elimination). If c : S1 � A � A′ typeKan [Ψ], M � M′ ∈ S1 [Ψ], P � P ′ ∈
A[base/c] [Ψ], L � L′ ∈ A[loopx/c] [Ψ, x], and L〈ε/x〉 � P ∈ A[base/c] [Ψ] for ε ∈ {0, 1},
then S1

-elimc .A(M ; P, x .L) � S1
-elimc .A′(M

′; P ′, x .L′) ∈ A[M/c] [Ψ].

Proof. By Lemma 4.75, Φ is a pre-�xed point of C , and therefore C ⊆ Φ (because C is its
least pre-�xed point). By monotonicity of the candidate judgments, M ∼ M′ ∈ Φ [Ψ]; the
result follows from Lemma 4.74. �

By restricting homogeneous composition to valid shapes
−⇀
ξi , we obtain a sharper

canonicity result than Cohen et al. [CCHM18], in which 0-dimensional elements of higher
inductive types evaluate to constructors, not homogeneous compositions.

Theorem 4.77 (Canonicity II). IfM ∈ S1 [·] thenM ⇓ base andM�base ∈ S1 [·]; moreover,

the rules of Appendix A derive these equations.

Proof. By de�nition, C⇓· (M,M). The only generator of C· is base, because there exist no
valid shapes

−⇀
ξi with FI(

−⇀
ξi ) = · and ¬ξi for all i . (By De�nition 4.28, all valid shapes in an

empty interval context must contain either 0 = 0 or 1 = 1.) Therefore M ⇓ base, and the
desired equation follows by Lemma 4.16 (which is a rule of Appendix A) and determinacy
of evaluation. �
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4.4.9 V-types

Throughout this section, we use the following abbreviations:

Fiber(A,B, F ,M) := (a:A) × Path_.B(F a,M)

isContr(C) := (c:C) × ((c′:C) → Path_.C(c
′, c))

Equiv(A,B) := (f :A→ B) × ((b:B) → isContr(Fiber(A,B, f ,b)))

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan}, τκi ((Ψ, x),Vx (A,B, E),Vx (A
′,B′, E′),φ) if and

only if τκi |= (A � A′ typepre [Ψ, x | x = 0]), τκi |= (B � B′ typepre [Ψ, x]), τκi |= (E � E′ ∈
Equiv(A,B) [Ψ, x | x = 0]), and φ(Vinx (M,N ),Vinx (M′,N ′)) whenever

1. τκi |= (N � N ′ ∈ B [Ψ, x]),

2. τκi |= (M � M′ ∈ A [Ψ, x | x = 0]), and

3. τκi |= (fst(E)M � N ∈ B [Ψ, x | x = 0]).

(Note that τκi |= (Equiv(A,B) typepre [Ψ, x | x = 0]) by the formation, introduction, and
elimination rules for dependent functions, dependent pairs, and paths.) Relative to τκi :

Rule 4.78 (Pretype formation).

1. If A typepre [Ψ] then V0(A,B, E) � A typepre [Ψ].

2. If B typepre [Ψ] then V1(A,B, E) � B typepre [Ψ].

3. If A �A′ typepre [Ψ | r = 0], B � B′ typepre [Ψ], and E � E′ ∈ Equiv(A,B) [Ψ | r = 0],
then Vr (A,B, E) � Vr (A

′,B′, E′) typepre [Ψ].

Proof. Parts (1–2) hold by Lemma 4.32. For part (3), we must �rst show Vr (A,B, E) ∼
Vr (A

′,B′, E′) ↓ _ ∈ τκi [Ψ], which is to say that, abbreviating these terms L and R, for
all ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1, Lψ1 ⇓ L1, Rψ1 ⇓ R1, (τκi )

⇓(Ψ2, L1ψ2, Lψ1ψ2, _),
(τκi )

⇓(Ψ2,R1ψ2,Rψ1ψ2, _), and (τκi )
⇓(Ψ2, L1ψ2,R1ψ2, _). We proceed by cases on the �rst

step taken by Lψ1 and Lψ1ψ2.

1. rψ1 = 0.

Then Lψ1 7−→� Aψ1, Rψ1 7−→� A′ψ1, and the result follows byAψ1�A
′ψ1 typepre [Ψ1].

2. rψ1 = 1.

Then Lψ1 7−→� Bψ1, Rψ1 7−→� B′ψ1, and the result follows by B � B′ typepre [Ψ].
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3. rψ1 = x and rψ1ψ2 = 0.
Then Lψ1 val, Lψ1ψ2 7−→ Aψ1ψ2, Rψ1 val, Rψ1ψ2 7−→ A′ψ1ψ2, and the result follows
by Aψ1ψ2 � A′ψ1ψ2 typepre [Ψ2].

4. rψ1 = x and rψ1ψ2 = 1.
Then Lψ1 val, Lψ1ψ2 7−→ Bψ1ψ2, Rψ1 val, Rψ1ψ2 7−→ B′ψ1ψ2, and the result follows
by B � B′ typepre [Ψ].

5. rψ1 = x and rψ1ψ2 = x′.
Then Lψ1 val, Lψ1ψ2 val, Rψ1 val, Rψ1ψ2 val, and by Aψ1ψ2 �A

′ψ1ψ2 typepre [Ψ2 | x
′ =

0], Bψ1ψ2 � B′ψ1ψ2 typepre [Ψ2], and Eψ1ψ2 � E′ψ1ψ2 ∈ Equiv(Aψ1ψ2,Bψ1ψ2) [Ψ2 |

x′ = 0], we have τκi (Ψ2,Vx ′(Aψ1ψ2,Bψ1ψ2, Eψ1ψ2),Vx ′(A
′ψ1ψ2,B

′ψ1ψ2, E
′ψ1ψ2), _).

It remains only to prove Coh(nVr (A,B, E)o). For any ψ : Ψ′ → Ψ, suppose that
nVrψ (Aψ ,Bψ , Eψ )o(M0,N0), and show M0 ∼ N0 ∈ nVrψ (Aψ ,Bψ , Eψ )o [Ψ′]. If rψ = 0,
coherence follows from nV0(Aψ ,Bψ , Eψ )o = nAψo; if rψ = 1, coherence follows from
nV1(Aψ ,Bψ , Eψ )o = nBψo. Otherwise, nVx (Aψ ,Bψ , Eψ )o(Vinx (M,N ),Vinx (M′,N ′)), or
equivalently, N � N ′ ∈ Bψ [Ψ′], M �M′ ∈ Aψ [Ψ′ | x = 0], and fst(Eψ )M � N ∈ Bψ [Ψ′ |
x = 0]. We proceed by cases on the �rst step taken by theψ1 andψ1ψ2 instances of the left:

1. xψ1 = 0.
Then Lψ1 7−→� Mψ1, Rψ1 7−→� M′ψ1, and the result follows by nV0(Aψψ1, . . . )o =
nAψψ1o and Mψ1 � M′ψ1 ∈ Aψψ1 [Ψ1].

2. xψ1 = 1.
Then Lψ1 7−→� Nψ1, Rψ1 7−→� N ′ψ1, and the result follows by nV1(Aψψ1, . . . )o =
nBψψ1o and N � N ′ ∈ Bψ [Ψ′].

3. xψ1 = x′ and xψ1ψ2 = 0.
Then Lψ1 val, Lψ1ψ2 7−→ Mψ1ψ2, Rψ1 val, Rψ1ψ2 7−→ M′ψ1ψ2, and the result follows
by nV0(Aψψ1ψ2, . . . )o = nAψψ1ψ2o and Mψ1ψ2 � M′ψ1ψ2 ∈ Aψψ1ψ2 [Ψ2].

4. xψ1 = x′ and xψ1ψ2 = 1.
Then Lψ1 val, Lψ1ψ2 7−→ Nψ1ψ2, Rψ1 val, Rψ1ψ2 7−→ N ′ψ1ψ2, and the result follows
by nV1(Aψψ1ψ2, . . . )o = nBψψ1ψ2o and N � N ′ ∈ Bψ [Ψ′].

5. xψ1 = x′ and xψ1ψ2 = x′′.
Then Lψ1 val, Lψ1ψ2 val, Rψ1 val, Rψ1ψ2 val, and by Nψ1ψ2 � N ′ψ1ψ2 ∈ Bψψ1ψ2 [Ψ2],
Mψ1ψ2�M

′ψ1ψ2 ∈ Aψψ1ψ2 [Ψ2 | x
′′ = 0], and fst(Eψψ1ψ2)Mψ1ψ2�Nψ1ψ2 ∈ Bψ [Ψ2 |

x′′ = 0], nVx ′′(Aψψ1ψ2, . . . )o(Vinx ′′(Mψ1ψ2,Nψ1ψ2),Vinx ′′(M′ψ1ψ2,N
′ψ1ψ2)). �
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Rule 4.79 (Introduction).

1. IfM ∈ A [Ψ] then Vin0(M,N ) � M ∈ A [Ψ].

2. If N ∈ B [Ψ] then Vin1(M,N ) � N ∈ B [Ψ].

3. If M � M′ ∈ A [Ψ | r = 0], N � N ′ ∈ B [Ψ], E ∈ Equiv(A,B) [Ψ | r = 0], and
fst(E)M � N ∈ B [Ψ | r = 0], then Vinr (M,N ) � Vinr (M′,N ′) ∈ Vr (A,B, E) [Ψ].

Proof. Parts (1–2) hold by Lemma 4.32. For part (3), if r = 0 or r = 1, the result follows
from parts (1–2) and Rule 4.78. If r = x , the result is immediate by Coh(nVx (A,B, E)o). �
Rule 4.80 (Elimination).

1. IfM ∈ A [Ψ] and F ∈ A→ B [Ψ], then Vproj0(M, F ) � F M ∈ B [Ψ].

2. IfM ∈ B [Ψ] then Vproj1(M, F ) � M ∈ B [Ψ].

3. IfM �M′ ∈ Vr (A,B, E) [Ψ] and F � fst(E) ∈ A→ B [Ψ | r = 0], then Vprojr (M, F ) �
Vprojr (M

′, fst(E)) ∈ B [Ψ].

Proof. Parts (1–2) hold by Lemma 4.32. For part (3), if r = 0 or r = 1, the result follows
from parts (1–2), Rule 4.39, and Rule 4.78. If r = x , apply coherent expansion to the left
with family 

Fψ Mψ xψ = 0
Mψ xψ = 1
Nψ xψ = x′, Mψ ⇓ Vinx ′(Oψ ,Nψ )

where Oψ ∈ Aψ [Ψ′ | x′ = 0], Nψ ∈ Bψ [Ψ′], and fst(Eψ )Oψ � Nψ ∈ Bψ [Ψ
′ | x′ = 0]. First,

show that if xψ = 0, Fψ Mψ � (NidΨ)ψ ∈ Bψ [Ψ
′]. By Lemma 4.16, M � Vinx (OidΨ,NidΨ) ∈

Vx (A,B, E) [Ψ], so by Rule 4.79, Mψ � (OidΨ)ψ ∈ Aψ [Ψ
′]. By assumption, Fψ � fst(Eψ ) ∈

Aψ → Bψ [Ψ′]. This case is completed by Rule 4.39 and fst(Eψ ) (OidΨ)ψ � (NidΨ)ψ ∈
Bψ [Ψ′]. Next, show that if xψ = 1, Mψ � (NidΨ)ψ ∈ Bψ [Ψ′]. This case is immediate
by Rule 4.79 and M � Vinx (OidΨ,NidΨ) ∈ Vx (A,B, E) [Ψ] under ψ . Finally, show that
if xψ = x′, Nψ � (NidΨ)ψ ∈ Bψ [Ψ′]. By M ∈ Vx (A,B, E) [Ψ] under idΨ,ψ we have
nVx (A,B, E)oψ (Vinx ′(Oψ ,Nψ ),Vinx ′((OidΨ)ψ , (NidΨ)ψ )), completing this case.

By Lemma 4.18 we conclude Vprojx (M, F )�NidΨ ∈ B [Ψ], and by a symmetric argument,
Vprojx (M

′, fst(E))�N ′idΨ ∈ B [Ψ]. We complete the proof with transitivity and NidΨ�N
′
idΨ
∈

B [Ψ] by nVx (A,B, E)o(Vinx (OidΨ,NidΨ),Vinx (O
′
idΨ
,N ′idΨ)). �

Rule 4.81 (Computation). If M ∈ A [Ψ | r = 0], N ∈ B [Ψ], F ∈ A→ B [Ψ | r = 0], and
F M � N ∈ B [Ψ | r = 0], then Vprojr (Vinr (M,N ), F ) � N ∈ B [Ψ].
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Proof. If r = 0 then by Lemma 4.32 it su�ces to show F Vin0(M,N ) � N ∈ B [Ψ], which
follows from Rules 4.39 and 4.79 and our hypothesis F M � N ∈ B [Ψ]. If r = 1 the result
holds by Lemma 4.32. If r = x we apply coherent expansion to the left with family{

Fψ Vin0(Mψ ,Nψ ) xψ = 0
Nψ xψ = 1 or xψ = x′

If xψ = 0 then Fψ Vin0(Mψ ,Nψ ) � Nψ ∈ Bψ [Ψ′] by Rules 4.39 and 4.79 and F M � N ∈
B [Ψ | x = 0]. If xψ , 0 then Nψ ∈ Bψ [Ψ′] and the result follows by Lemma 4.18. �

Rule 4.82 (Uniqueness). If N ∈ Vr (A,B, E) [Ψ] and M � N ∈ A [Ψ | r = 0], then
Vinr (M,Vprojr (N , fst(E))) � N ∈ Vr (A,B, E) [Ψ].

Proof. If r = 0 or r = 1 the result is immediate by Lemma 4.32 and Rule 4.78. If r = x
then by Lemma 4.16, N � Vinx (M′, P ′) ∈ Vx (A,B, E) [Ψ] where M′ ∈ A [Ψ | x = 0],
P ′ ∈ B [Ψ], and fst(E) M′ � P ′ ∈ B [Ψ | x = 0]. By Rule 4.79 it su�ces to show that
M � M′ ∈ A [Ψ | x = 0], Vprojx (N , fst(E)) � P ′ ∈ B [Ψ], and fst(E) M′ � P ′ ∈ B [Ψ |
x = 0] (which is immediate). To show M � M′ ∈ A [Ψ | x = 0] it su�ces to prove
N � M′ ∈ A [Ψ | x = 0], which follows from N � Vinx (M′, P ′) ∈ Vx (A,B, E) [Ψ] and
Rules 4.78 and 4.79. To show Vprojx (N , fst(E)) � P ′ ∈ B [Ψ], by Rule 4.80 it su�ces to
check Vprojx (Vinx (M

′, P ′), fst(E)) � P ′ ∈ B [Ψ], which holds by Rule 4.81. �

Lemma 4.83. If A � A′ typeKan [Ψ | x = 0], B � B′ typeKan [Ψ], E � E′ ∈ Equiv(A,B) [Ψ |

x = 0],
−⇀
ξi is valid,

1. M � M′ ∈ Vx (A,B, E) [Ψ],

2. Ni � N ′j ∈ Vx (A,B, E) [Ψ,y | ξi, ξj] for any i, j, and

3. Ni 〈r/y〉 � M ∈ Vx (A,B, E) [Ψ | ξi] for any i ,

then

1. hcomr r ′

Vx (A,B,E)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

Vx (A′,B′,E ′)
(M′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ Vx (A,B, E) [Ψ];

2. if r = r ′ then hcomr r
Vx (A,B,E)

(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ Vx (A,B, E) [Ψ]; and

3. if ξi then hcomr r ′

Vx (A,B,E)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ Vx (A,B, E) [Ψ].
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Proof. For part (1), apply coherent expansion to hcomr r ′

Vx (A,B,E)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) with family

hcomrψ r ′ψ
Aψ

(Mψ ;
−−−−−−−−−−−−⇀
ξiψ ↪→ y.Niψ ) xψ = 0

hcomrψ r ′ψ
Bψ

(Mψ ;
−−−−−−−−−−−−⇀
ξiψ ↪→ y.Niψ ) xψ = 1

(Vinx (O 〈r ′/y〉, hcomr r ′

B (Vprojx (M, fst(E));
−⇀
T )))ψ xψ = x′

O := hcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)

−⇀
T :=

−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.Vprojx (Ni, fst(E)),
x = 0 ↪→ y.fst(E) O,

x = 1 ↪→ y.hcomr y
B (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)

Considerψ = idΨ. Using rules for dependent functions, dependent types, and univalence:

1. O ∈ A [Ψ,y | x = 0] andO 〈r/y〉 �M ∈ A [Ψ | x = 0] (by Vx (A,B, E)�A typepre [Ψ |
x = 0]).

2. Vprojx (M, fst(E)) ∈ B [Ψ] where Vprojx (M, fst(E)) � fst(E) M ∈ B [Ψ | x = 0] and
Vprojx (M, fst(E)) � M ∈ B [Ψ | x = 1].

3. Vprojx (Ni, fst(E)) � Vprojx (Nj, fst(E)) ∈ B [Ψ,y | ξi, ξj] and Vprojx (M, fst(E)) �
Vprojx (Ni 〈r/y〉, fst(E)) ∈ B [Ψ | ξi].

4. fst(E) O ∈ B [Ψ,y | x = 0], fst(E) O � Vprojx (Ni, fst(E)) ∈ B [Ψ,y | x = 0, ξi] (both
equal fst(E) Ni ), and fst(E) O 〈r/y〉 � Vprojx (M, fst(E)) ∈ B [Ψ | x = 0] (both equal
fst(E)M).

5. hcomr y
B (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ B [Ψ,y | x = 1] (by Vx (A,B, E) � B typepre [Ψ | x = 1]),

hcomr y
B (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) � Vprojx (Ni, fst(E)) ∈ B [Ψ,y | x = 1, ξi] (both equal Ni ),

and hcomr r
B (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) � Vprojx (M, fst(E)) ∈ B [Ψ | x = 1] (both equal M).

6. By the above, hcomr r ′

B (Vprojx (M, fst(E));
−⇀
T ) ∈ B [Ψ] and hcomB � fst(E)O 〈r ′/y〉 ∈

B [Ψ | x = 0], so Vinx (O 〈r ′/y〉, hcomr r ′

B (Vprojx (M, fst(E));
−⇀
T )) ∈ Vx (A,B, E) [Ψ].

When xψ = x′, coherence is immediate. When xψ = 0, Vin0(O 〈r
′ψ/y〉, . . . )�hcomAψ ∈

Aψ [Ψ′] as required. When xψ = 1, Vin1(. . . , hcom
rψ r ′ψ
Bψ

(. . . ;−⇀T )) � hcomBψ ∈ Bψ [Ψ
′]

as required. Part (1) follows by Lemma 4.18 and a symmetric argument on the right.
For part (2), show Vinx (O 〈r ′/y〉, hcomr r ′

B (Vprojx (M, fst(E));
−⇀
T ))�M ∈ Vx (A,B, E) [Ψ]

when r = r ′. By the above, Vinx (. . . ) � Vinx (M,Vprojx (M, fst(E))) ∈ Vx (A,B, E) [Ψ], so
the result follows by Rule 4.82.
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For part (3), we must show Vinx (O 〈r ′/y〉, hcomr r ′

B (Vprojx (M, fst(E));
−⇀
T ))�Ni 〈r

′/y〉 ∈
Vx (A,B, E) [Ψ]when ξi . But we have Vinx (. . . )�Vinx (Ni 〈r

′/y〉,Vprojx (Ni 〈r
′/y〉, fst(E))) ∈

Vx (A,B, E) [Ψ], so the result again follows by Rule 4.82. �

Lemma 4.84. If x , y,

1. A � A′ typeKan [Ψ,y | x = 0],

2. B � B′ typeKan [Ψ,y],

3. E � E′ ∈ Equiv(A,B) [Ψ,y | x = 0], and

4. M � M′ ∈ (Vx (A,B, E))〈r/y〉 [Ψ],

then

1. coer r ′

y.Vx (A,B,E)
(M) � coer r ′

y.Vx (A′,B′,E ′)
(M′) ∈ (Vx (A,B, E))〈r

′/y〉 [Ψ] and

2. coer r
y.Vx (A,B,E)

(M) � M ∈ (Vx (A,B, E))〈r/y〉 [Ψ].

Proof. We apply coherent expansion to coer r ′

y.Vx (A,B,E)
(M) with family



coerψ r ′ψ
y.Aψ

(Mψ ) xψ = 0
coerψ r ′ψ

y.Bψ
(Mψ ) xψ = 1

(Vinx (coer r ′

y.A (M), com
r r ′

y.B (Vprojx (M, fst(E〈r/y〉));
−⇀
T )))ψ xψ = x′

−⇀
T := x = 0 ↪→ y.fst(E) coer y

y.A (M),

x = 1 ↪→ y.coer y
y.B (M)

Considerψ = idΨ.

1. Vprojx (M, fst(E〈r/y〉)) ∈ B〈r/y〉 [Ψ] (by our hypothesis M ∈ Vx (A〈r/y〉, . . . ) [Ψ]),
with boundary Vprojx (M, fst(E〈r/y〉)) � fst(E〈r/y〉) M ∈ B〈r/y〉 [Ψ | x = 0] and
Vprojx (M, fst(E〈r/y〉)) � M ∈ B〈r/y〉 [Ψ | x = 1].

2. fst(E) coer y
y.A (M) ∈ B [Ψ,y | x = 0] because fst(E) ∈ A → B [Ψ,y | x = 0] and

coer y
y.A (M) ∈ A [Ψ,y | x = 0] (by M ∈ A〈r/y〉 [Ψ | x = 0]). Under 〈r/y〉 this

� fst(E〈r/y〉)M ∈ B〈r/y〉 [Ψ | x = 0].

3. coer y
y.B (M) ∈ B [Ψ,y | x = 1] (by M ∈ B〈r/y〉 [Ψ | x = 1]) and coer r

y.B (M) � M ∈

B〈r/y〉 [Ψ | x = 1].
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4. Therefore comy.B ∈ B〈r ′/y〉 [Ψ], comy.B � fst(E〈r ′/y〉) coer r ′

y.A (M) ∈ B〈r ′/y〉 [Ψ |

x = 0], and comy.B � coer r ′

y.B (M) ∈ B〈r
′/y〉 [Ψ | x = 1]. It follows that Vinx (. . . ) ∈

Vx (A〈r
′/y〉,B〈r ′/y〉, E〈r ′/y〉) [Ψ].

When xψ = x′, coherence is immediate. When xψ = 0, Vin0(coe
rψ r ′ψ
y.Aψ

(Mψ ), . . . ) �

coerψ r ′ψ
y.Aψ

(Mψ ) ∈ Aψ 〈r ′ψ/y〉 [Ψ′]. When xψ = 1, we have Vin1(. . . ) � coerψ r ′ψ
y.Bψ

(Mψ ) ∈

Bψ 〈r ′ψ/y〉 [Ψ′]. Part (1) follows by Lemma 4.18 and a symmetric argument on the right.
For part (2),

coer r
y.Vx (A,B,E)

(M) � Vinx (coer r
y.A (M), com

r r
y.B (Vprojx (M, fst(E〈r/y〉));

−⇀
T ))

� Vinx (M,Vprojx (M, fst(E〈r/y〉)))

� M ∈ (Vx (A,B, E))〈r/y〉 [Ψ]. �

Lemma 4.85. If

1. A � A′ typeKan [Ψ, x | x = 0],

2. B � B′ typeKan [Ψ, x],

3. E � E′ ∈ Equiv(A,B) [Ψ, x | x = 0], and

4. M � M′ ∈ (Vx (A,B, E))〈r/x〉 [Ψ],

then

1. coer r ′

x .Vx (A,B,E)
(M) � coer r ′

x .Vx (A′,B′,E ′)
(M′) ∈ (Vx (A,B, E))〈r

′/x〉 [Ψ] and

2. coer r
x .Vx (A,B,E)

(M) � M ∈ (Vx (A,B, E))〈r/x〉 [Ψ].

Proof. For part (1), by Lemma 4.32 on both sides, it su�ces to show (the binary form of)
Vinr ′(fst(O), P) ∈ (Vx (A,B, E))〈r

′/x〉 [Ψ], where

N := coer r ′

x .B (Vprojr (M, fst(E〈r/x〉)))

F := Fiber(A〈r ′/x〉,B〈r ′/x〉, fst(E〈r ′/x〉),N )

C := snd(E〈r ′/x〉) N

O := hcom1 0
F (fst(C); r = 0 ↪→ z.(snd(C) 〈M, 〈_〉(fst(E〈0/x〉)M)〉)@z, r = 1 ↪→ _.fst(C))

P := hcom1 0
B〈r ′/x〉(N ; r ′ = 0 ↪→ z.snd(O)@z, r ′ = 1 ↪→ _.N ,T )

T := r = r ′ ↪→ _.Vprojr (M, fst(E〈r/x〉))

1. N ∈ B〈r ′/x〉 [Ψ] by Vprojr (M, fst(E〈r/x〉)) ∈ B〈r/x〉 [Ψ].
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2. F typeKan [Ψ].

3. C ∈ isContr(F ) [Ψ | r ′ = 0] by snd(E) ∈ (b:B) → isContr(Fiber(A,B, fst(E),b)) [Ψ, x |
x = 0].

4. O ∈ F [Ψ | r ′ = 0] because

a) (snd(C) 〈M, 〈_〉(fst(E〈0/x〉)M)〉)@z ∈ F [Ψ, z | r ′ = 0, r = 0] because we have
snd(C) 〈M, . . . 〉 ∈ Path_.F (〈M, 〈_〉(fst(E〈0/x〉) M)〉, fst(C)) [Ψ | r ′ = 0, r = 0],
by

i. snd(C) ∈ (c′:F ) → Path_.F (c
′, fst(C)) [Ψ | r ′ = 0],

ii. M ∈ A〈0/x〉 [Ψ | r = 0] by (Vx (A,B, E))〈r/x〉�A〈0/x〉 typeKan [Ψ | r = 0],
iii. fst(E〈0/x〉)M ∈ B〈0/x〉 [Ψ | r = 0],
iv. 〈_〉(fst(E〈0/x〉) M) ∈ Path_.B〈0/x〉(fst(E〈0/x〉) M,N ) [Ψ | r ′ = 0, r = 0] by

N � fst(E〈0/x〉)M ∈ B〈0/x〉 [Ψ | r ′ = 0, r = 0], and
v. F � (a:A〈0/x〉) × Path_.B〈0/x〉(fst(E〈0/x〉) a,N ) typeKan [Ψ | r ′ = 0].

b) fst(C) ∈ F [Ψ | r ′ = 0], and

c) fst(C) � (snd(C) 〈M, . . . 〉)@1 ∈ F [Ψ | r ′ = 0, r = 0] by the right endpoint
speci�ed above.

5. P ∈ B〈r ′/x〉 [Ψ] because

a) snd(O)@z ∈ B〈r ′/x〉 [Ψ, z | r ′ = 0],

b) N ∈ B〈r ′/x〉 [Ψ | r ′ = 1],

c) Vprojr (M, fst(E〈r/x〉)) ∈ B〈r
′/x〉 [Ψ | r = r ′],

d) N ∈ B〈r ′/x〉 [Ψ],

e) N � snd(O)@1 ∈ B〈r ′/x〉 [Ψ | r ′ = 0] by the right endpoint speci�ed in F ,

f) N � Vprojr (M, fst(E〈r/x〉)) ∈ B〈r
′/x〉 [Ψ | r = r ′], and

g) snd(O)@z � Vprojr (M, fst(E〈r/x〉)) ∈ B〈r ′/x〉 [Ψ, z | r ′ = 0, r = r ′] because
O � (snd(C) 〈M, . . . 〉)@0� 〈M, 〈_〉(fst(E〈0/x〉)M)〉 (by r = 0 and the speci�ed
left endpoint) and thus snd(O)@z � fst(E〈0/x〉)M .

Then Vinr ′(fst(O), P) ∈ (Vx (A,B, E))〈r
′/x〉 [Ψ] because fst(O) ∈ A〈r ′/x〉 [Ψ | r ′ = 0],

P ∈ B〈r ′/x〉 [Ψ], and fst(E〈r ′/x〉) fst(O) � P ∈ B〈r ′/x〉 [Ψ | r ′ = 0] (by P � snd(O)@0 ∈
B〈r ′/x〉 [Ψ | r ′ = 0] and the speci�ed left endpoint), completing part (1).

Part (2) follows from Rule 4.82, P � Vprojr (M, fst(E〈r/x〉)) ∈ B〈r
′/x〉 [Ψ | r = r ′], and

fst(O) � M ∈ A〈r ′/x〉 [Ψ | r = r ′, r ′ = 0] (by O � (snd(C) 〈M, . . . 〉)@0 � 〈M, . . . 〉). �
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In the proof of Lemma 4.85, we include the r = 1 face of O and the r ′ = 1 face of P only
to ensure all compositions are valid; one could instead use ghcom (Theorem 4.34).

Rule 4.86 (Kan type formation).

1. If A typeKan [Ψ] then V0(A,B, E) � A typeKan [Ψ].

2. If B typeKan [Ψ] then V1(A,B, E) � B typeKan [Ψ].

3. IfA�A′ typeKan [Ψ | r = 0], B �B′ typeKan [Ψ], and E � E′ ∈ Equiv(A,B) [Ψ | r = 0],
then Vr (A,B, E) � Vr (A

′,B′, E′) typeKan [Ψ].

Proof. Parts (1–2) follow from Lemma 4.32. Part (3) requires homogeneous composition
and coercion; for homogeneous composition, suppose we are given ψ : Ψ′ → Ψ and a
valid composition scenario in Vrψ (Aψ ,Bψ , Eψ ). If rψ = 0 (resp., 1) then the composition
is in Aψ (resp., Bψ ) and homogeneous composition follows from Aψ � A′ψ typeKan [Ψ

′]

(resp., Bψ � B′ψ typeKan [Ψ
′]). Otherwise, rψ = x and homogeneous composition exists

by Lemma 4.83 at Aψ � A′ψ typeKan [Ψ
′ | x = 0], Bψ � B′ψ typeKan [Ψ

′], and Eψ � E′ψ ∈
Equiv(Aψ ,Bψ ) [Ψ′ | x = 0].

For coercion, supposeψ : (Ψ′, x) → Ψ and M �M′ ∈ (Vr (A,B, E))ψ 〈s/x〉 [Ψ
′]. If rψ = 0

(resp., 1), coercion follows from Aψ � A′ψ typeKan [Ψ
′, x] (resp., Bψ � B′ψ typeKan [Ψ

′, x]).
If rψ = x , coercion follows from Lemma 4.85; otherwise, it follows from Lemma 4.84. �

4.4.10 Compositions of pretypes

As discussed in Section 3.4, in order for the pretype universe (resp., Kan type universe) to
be Kan, we must equip homogeneous compositions of pretypes (resp., Kan types) with the
structure of a pretype (resp., Kan type). Let us say that A,

−−−−−−−−⇀
ξi ↪→ y.Bi and A′,

−−−−−−−−⇀
ξi ↪→ y.B′i are

(equal) pretype compositions r  r ′ whenever
−⇀
ξi is valid,

1. A � A′ typepre [Ψ],

2. Bi � B′j typepre [Ψ,y | ξi, ξj] for any i, j, and

3. Bi 〈r/y〉 � A typepre [Ψ | ξi] for any i .

For i ∈ {0, 1, . . . ,ω}, τ prei (Ψ, hcom
r r ′

U
pre
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi), hcomr r ′

U
pre
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i), {}) when

A,
−−−−−−−−⇀
ξi ↪→ y.Bi and A′,

−−−−−−−−⇀
ξi ↪→ y.B′i are equal pretype compositions r  r ′ relative to τ prei with

r , r ′ and ¬ξi for all i . Then, relative to τ prei :

Rule 4.87 (Pretype formation). If A,
−−−−−−−−⇀
ξi ↪→ y.Bi and A

′,
−−−−−−−−⇀
ξi ↪→ y.B′i are equal pretype compo-

sitions r  r ′, then
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1. hcomr r ′

U
pre
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) � hcomr r ′

U
pre
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i) typepre [Ψ],

2. if r = r ′ then hcomr r
U

pre
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) � A typepre [Ψ], and

3. if ξi then hcomr r ′

U
pre
k
(A;
−−−−−−⇀
ξi ↪→ Bi) � Bi 〈r

′/y〉 typepre [Ψ].

Proof. We abbreviate these hcomUpre
k

terms L and R. Part (2) holds by Lemma 4.32. For part
(3), if r = r ′, the result holds by Lemma 4.32 and Bi 〈r/y〉 � A typepre [Ψ | ξi]. Otherwise,
there is a least j such that ξj holds. Apply coherent expansion to L with family{

Aψ rψ = r ′ψ

Bj 〈r
′/y〉ψ rψ , r ′ψ , ξjψ , and ∀l < j .¬ξlψ .

If rψ = r ′ψ then Bj 〈r/y〉ψ � Aψ typepre [Ψ
′]. If rψ , r ′ψ , there is some least l such that

ξlψ ; then Bj 〈r
′/y〉ψ � Bl 〈r

′/y〉ψ typepre [Ψ
′]. By Lemma 4.17, L � Bj 〈r

′/y〉 typepre [Ψ], and
we complete part (3) with Bi 〈r

′/y〉 � Bj 〈r
′/y〉 typepre [Ψ].

For part (1), we conclude L ∼ R ↓ nLo ∈ τ prei [Ψ] by the same argument as in Lemma 4.69,
because the de�nition and operational semantics of hcomS1 and hcomUpre

k
are identical. To

see Coh(nLo), suppose nLoψ (M0,N0) for anyψ : Ψ′→ Ψ. If rψ = r ′ψ , coherence follows
by part (2); if ξiψ , coherence follows by part (3); otherwise, nLoψ is the empty relation,
which contradicts nLoψ (M0,N0). �

4.4.11 Compositions of Kan types

For i ∈ {0, 1, . . . ,ω} and κ ∈ {pre,Kan},

τκi (Ψ, hcom
r r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi), hcomr r ′

UKan
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i),φ)

when A,
−−−−−−−−⇀
ξi ↪→ y.Bi and A′,

−−−−−−−−⇀
ξi ↪→ y.B′i are equal pretype compositions r  r ′ relative

to τKani with r , r ′ and ¬ξi for all i , and φ(boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni), boxr r ′(M′;

−−−−−−−⇀
ξi ↪→ N ′i ))

whenever

1. τKani |= (M � M′ ∈ A [Ψ]),

2. τKani |= (Ni � N ′j ∈ Bi 〈r
′/y〉 [Ψ | ξi, ξj]) for all i, j, and

3. τKani |= (M � coer
′ r
y.Bi
(Ni) ∈ A [Ψ | ξi]) for all i .

Note that τ prei is closed under hcomUKan
k
(−) of types in τKani , because nhcomUKan

k
(−)o

is only value-coherent for Kan types, and we require τKani ⊆ τ
pre
i . In this section, we
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therefore prove rules relative only to Kan types in τKani ; in Section 4.4.12 we will show
that all pretypes in τKani are Kan. Let us say that A,

−−−−−−−−⇀
ξi ↪→ y.Bi and A′,

−−−−−−−−⇀
ξi ↪→ y.B′i are (equal)

Kan type compositions r  r ′ whenever
−⇀
ξi is valid,

1. A � A′ typeKan [Ψ],

2. Bi � B′j typeKan [Ψ,y | ξi, ξj] for any i, j, and

3. Bi 〈r/y〉 � A typeKan [Ψ | ξi] for any i .

Lemma 4.88. If A,
−−−−−−−−⇀
ξi ↪→ y.Bi and A

′,
−−−−−−−−⇀
ξi ↪→ y.B′i are equal Kan type compositions r  r ′,

then

1. hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) ∼ hcomr r ′

UKan
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i) ↓ _ ∈ τ

Kan
i [Ψ],

2. if r = r ′ then hcomr r
UKan

k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) � A typeKan [Ψ], and

3. if ξi then hcomr r ′

UKan
k
(A;
−−−−−−⇀
ξi ↪→ Bi) � Bi 〈r

′/y〉 typeKan [Ψ].

Proof. As in Rule 4.87, part (1) follows from the argument of Lemma 4.69. Part (2) holds
by Lemma 4.32. For part (3), if r = r ′, the result follows by Lemma 4.32 and Bi 〈r/y〉 �
A typeKan [Ψ | ξi]. Otherwise, there is a least j such that ξj holds. Apply coherent expansion
to the left with family{

Aψ rψ = r ′ψ

Bj 〈r
′/y〉ψ rψ , r ′ψ , ξjψ , and ∀l < j .¬ξlψ .

If rψ = r ′ψ then Bj 〈r/y〉ψ � Aψ typeKan [Ψ
′]. If rψ , r ′ψ , there is some least l ≤ j

such that ξlψ ; then Bj 〈r
′/y〉ψ � Bl 〈r

′/y〉ψ typeKan [Ψ
′]. By Lemma 4.31, hcomUKan

k
�

Bj 〈r
′/y〉 typeKan [Ψ], and part (3) follows by Bi 〈r

′/y〉 � Bj 〈r
′/y〉 typeKan [Ψ]. �

Lemma 4.89. If A,
−−−−−−−−⇀
ξi ↪→ y.Bi is a Kan type composition r  r ′,

1. M � M′ ∈ A [Ψ],

2. Ni � N ′j ∈ Bi 〈r
′/y〉 [Ψ | ξi, ξj] for any i, j, and

3. coer
′ r
y.Bi
(Ni) � M ∈ A [Ψ | ξi] for any i ,

then boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) ∼ boxr r ′(M′;

−−−−−−−⇀
ξi ↪→ N ′i ) ∈ nhcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi)o [Ψ].

Proof. We focus on the unary case; the binary case follows similarly. For anyψ1 : Ψ1 → Ψ

andψ2 : Ψ2 → Ψ1 we must show boxψ1 ⇓ X1 and nhcomo⇓
ψ1ψ2
(X1ψ2, boxψ1ψ2). We proceed

by cases on the �rst step taken by boxψ1 and boxψ1ψ2.
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1. rψ1 = r
′ψ1.

Then boxψ1 7−→� Mψ1, nhcomoψ1ψ2 = nAoψ1ψ2 by Lemma 4.88, and by M ∈ A [Ψ],
nAo⇓

ψ1ψ2
(X1ψ2,Mψ1ψ2).

2. rψ1 , r ′ψ1, ξjψ1 holds (where this is the least such j), and rψ1ψ2 = r
′ψ1ψ2.

Then boxψ1 7−→ Njψ1, boxψ1ψ2 7−→ Mψ1ψ2, and again nhcomoψ1ψ2 = nAoψ1ψ2 by
Lemma 4.88. By Bj 〈r

′/y〉ψ1ψ2 � Aψ1ψ2 typeKan [Ψ2] and Njψ1 ∈ Bj 〈r
′/y〉ψ1 [Ψ1]

at idΨ1,ψ2 we have nAo⇓
ψ1ψ2
(X1ψ2,Njψ1ψ2). We also have nAo⇓

ψ1ψ2
(Njψ1ψ2,Mψ1ψ2)

by (coer ′ r
y.Bj
(Nj))ψ1ψ2 � Mψ1ψ2 ∈ Aψ1ψ2 [Ψ2] and (coer ′ r

y.Bj
(Nj))ψ1ψ2 � Njψ1ψ2 ∈

Aψ1ψ2 [Ψ2]; the result follows by transitivity.

3. rψ1 , r ′ψ1, ξiψ1 holds (least such), rψ1ψ2 , r ′ψ1ψ2, and ξjψ1ψ2 holds (least such).
Then boxψ1 7−→ Niψ1, boxψ1ψ2 7−→ Njψ1ψ2, and nhcomoψ1ψ2 = nBi 〈r ′/y〉oψ1ψ2 by
Lemma 4.88. The result follows by Niψ1 ∈ Bi 〈r

′/y〉ψ1 [Ψ1] and Niψ1ψ2 � Njψ1ψ2 ∈

Bi 〈r
′/y〉ψ1ψ2 [Ψ2].

4. rψ1 , r ′ψ1, ¬ξiψ1 for all i , and rψ1ψ2 = r
′ψ1ψ2.

Then boxψ1 val, boxψ1ψ2 7−→ Mψ1ψ2, nhcomoψ1ψ2 = nAoψ1ψ2 by Lemma 4.88, and the
result follows by M ∈ A [Ψ].

5. rψ1 , r ′ψ1, ¬ξiψ1 for all i , rψ1ψ2 , r ′ψ1ψ2, and ξjψ1ψ2 holds (least such).
Then boxψ1 val, boxψ1ψ2 7−→ Njψ1ψ2, nhcomoψ1ψ2 = nBi 〈r ′/y〉oψ1ψ2 by Lemma 4.88,
and the result follows by Njψ1ψ2 ∈ Bi 〈r

′/y〉ψ1ψ2 [Ψ2].

6. rψ1 , r ′ψ1, ¬ξiψ1 for all i , and rψ1ψ2 , r ′ψ1ψ2, and ¬ξjψ1ψ2 for all j.
Then boxψ1 val and boxψ1ψ2 val; the result follows by the de�nition of nhcomo. �

Rule 4.90 (Pretype formation). If A,
−−−−−−−−⇀
ξi ↪→ y.Bi and A

′,
−−−−−−−−⇀
ξi ↪→ y.B′i are equal Kan type com-

positions r  r ′, then

1. hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) � hcomr r ′

UKan
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i) typepre [Ψ],

2. if r = r ′ then hcomr r
UKan

k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) � A typepre [Ψ], and

3. if ξi then hcomr r ′

UKan
k
(A;
−−−−−−⇀
ξi ↪→ Bi) � Bi 〈r

′/y〉 typepre [Ψ].

Proof. Parts (2–3) hold immediately by Lemma 4.88. For part (1), by Lemma 4.88 it su�ces
to show Coh(nhcomo). Let ψ : Ψ′ → Ψ and nhcomoψ (M0,N0). If rψ = r ′ψ then M0 ∼

N0 ∈ nhcomoψ [Ψ′] by nhcomoψ = nAoψ and Coh(nAo). If ξiψ holds for some i , then
M0 ∼ N0 ∈ nhcomoψ [Ψ′] by nhcomoψ = nBi 〈r ′/y〉ψo and Coh(nBi 〈r ′/y〉ψo). If rψ , r ′ψ
and ¬ξiψ for all i , then M0 and N0 are boxes and the result holds by Lemma 4.89. �



132 Cartesian cubical type theory

Rule 4.91 (Introduction). If A,
−−−−−−−−⇀
ξi ↪→ y.Bi is a Kan type composition r  r ′,

1. M � M′ ∈ A [Ψ],

2. Ni � N ′j ∈ Bi 〈r
′/y〉 [Ψ | ξi, ξj] for any i, j, and

3. coer
′ r
y.Bi
(Ni) � M ∈ A [Ψ | ξi] for any i ,

then

1. boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) � boxr r ′(M′;

−−−−−−−⇀
ξi ↪→ N ′i ) ∈ hcom

r r ′

UKan
l
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ];

2. if r = r ′ then boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) � M ∈ A [Ψ]; and

3. if ξi then boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) � Ni ∈ Bi 〈r

′/y〉 [Ψ].

Proof. Part (1) holds by Lemma 4.89 and Rule 4.90; part (2) holds by Lemma 4.32. For part
(3), if r = r ′, the result holds by Lemma 4.32. Otherwise, there is a least j such that ξj holds,
and we apply coherent expansion to the left with family{

Mψ rψ = r ′ψ

Nkψ rψ , r ′ψ , ξkψ , and ∀k′ < k .¬ξk ′ψ .

If rψ = r ′ψ then Mψ � Njψ ∈ Bi 〈r
′/y〉ψ [Ψ′] by Mψ � (coer

′ r
y.Bj
(Nj))ψ ∈ Aψ [Ψ′],

(coer
′ r
y.Bj
(Nj))ψ �Njψ ∈ Bi 〈r

′/y〉ψ [Ψ′], and Bi 〈r
′/y〉ψ �Aψ typeKan [Ψ

′]. If rψ , r ′ψ then
Nkψ �Njψ ∈ Bi 〈r

′/y〉ψ [Ψ′] by Nkψ �Njψ ∈ Bj 〈r
′/y〉ψ [Ψ′] and Biψ � Bjψ typeKan [Ψ

′,y].
Thus by Lemma 4.31 we have hcom � Nj ∈ Bi 〈r

′/y〉 [Ψ], and part (3) follows by Nj � Ni ∈

Bi 〈r
′/y〉 [Ψ]. �

Rule 4.92 (Elimination). If A,
−−−−−−−−⇀
ξi ↪→ y.Bi and A,

−−−−−−−−⇀
ξi ↪→ y.B′i are equal Kan type compositions

r  r ′ andM � M′ ∈ hcomr r ′

UKan
l
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ], then

1. caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) � caprfr ′(M′;

−−−−−−−−⇀
ξi ↪→ y.B′i) ∈ A [Ψ];

2. if r = r ′ then caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) � M ∈ A [Ψ]; and

3. if ξi then caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) � coer

′ r
y.Bi
(M) ∈ A [Ψ].

Proof. Part (2) holds by Lemma 4.32 and Rule 4.90. For part (3), if r = r ′ then the result
holds by part (2), Bi typeKan [Ψ,y], and Bi 〈r/y〉 � A typeKan [Ψ]. Otherwise, r , r ′ and
there is a least j such that ξj holds. Apply coherent expansion to the left with family{

Mψ rψ = r ′ψ

coer
′ψ rψ
y.Bkψ

(Mψ ) rψ , r ′ψ , ξkψ , and ∀i < k .¬ξiψ
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When rψ = r ′ψ , (coer ′ r
y.Bj
(M))ψ � Mψ ∈ Aψ [Ψ′] by M ∈ Bj 〈r

′/y〉 [Ψ] (by Rule 4.90),
Bj typeKan [Ψ,y], and Bj 〈r/y〉ψ �Aψ typeKan [Ψ

′]. When rψ , r ′ψ and ξkψ where k is the
least such, we have (coer ′ r

y.Bj
(M))ψ �coer

′ψ rψ
y.Bkψ

(Mψ ) ∈ Aψ [Ψ′] by Bjψ �Bkψ typeKan [Ψ
′,y]

and Bj 〈r/y〉ψ �Aψ typeKan [Ψ
′]. Thus cap � coer

′ r
y.Bj
(M) ∈ A [Ψ] by Lemma 4.18, and part

(3) follows by coer
′ r
y.Bj
(M) � coer

′ r
y.Bi
(M) ∈ A [Ψ].

For part (1), if r = r ′ or ξi then the result follows by parts (2–3). If r , r ′ and ¬ξi for all
i , then for anyψ : Ψ′→ Ψ, Mψ � boxr r ′(Oψ ;

−−−−−−−−−−⇀
ξiψ ↪→ Ni,ψ ) ∈ hcomψ [Ψ′] by Lemma 4.16.

Apply coherent expansion to the left with family
Mψ rψ = r ′ψ

coer
′ψ rψ
y.Bjψ

(Mψ ) rψ , r ′ψ , ξjψ , and ∀i < j .¬ξiψ

Oψ rψ , r ′ψ and ∀i .¬ξiψ
where Mψ ⇓ boxrψ r ′ψ (Oψ ;

−−−−−−−−−−⇀
ξiψ ↪→ Ni,ψ ).

When rψ = r ′ψ , Mψ � (OidΨ)ψ ∈ Aψ [Ψ′] by Mψ � boxψ ∈ hcomψ [Ψ′], hcomψ �
Aψ typeKan [Ψ

′] (by Rule 4.90), and boxψ � (OidΨ)ψ ∈ hcomψ [Ψ
′] (by Rule 4.91). When

rψ , r ′ψ and ξjψ where j is the least such, (OidΨ)ψ � coer
′ψ rψ
y.Bjψ

(Mψ ) ∈ Aψ [Ψ′] by
Mψ � (Nj,idΨ)ψ ∈ Bj 〈r

′/y〉ψ [Ψ′] (by Rules 4.90 and 4.91) and OidΨ � coer
′ r
y.Bj
(Nj,idΨ) ∈

A [Ψ | ξj]. When rψ , r ′ψ and ¬ξiψ for all i , (OidΨ)ψ � Oψ ∈ Aψ [Ψ] by

nhcomo((boxr r ′(OidΨ ;
−−−−−−−−−−⇀
ξi ↪→ Ni,idΨ))ψ , box

rψ r ′ψ (Oψ ;
−−−−−−−−−−⇀
ξiψ ↪→ Ni,ψ ))

(by M ∈ hcom [Ψ] at idΨ,ψ ). Therefore cap � OidΨ ∈ A [Ψ] by Lemma 4.18, and part (1)
follows by a symmetric argument on the right. �

Rule 4.93 (Computation). If A,
−−−−−−−−⇀
ξi ↪→ y.Bi is a Kan type composition r  r ′,

1. M � M′ ∈ A [Ψ],

2. Ni � N ′j ∈ Bi 〈r
′/y〉 [Ψ | ξi, ξj] for any i, j, and

3. coer
′ r
y.Bi
(Ni) � M ∈ A [Ψ | ξi] for any i ,

then caprfr ′(boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni);

−−−−−−−−⇀
ξi ↪→ y.Bi) � M ∈ A [Ψ].

Proof. Both terms are elements of A by Rules 4.91 and 4.93, so by Lemma 4.15 it su�ces
to show nAo⇓(cap,M). If r = r ′ then cap 7−→ box 7−→ M and nAo⇓(M,M). If r , r ′ and
ξi holds where i is the least such, then cap 7−→ coer

′ r
y.Bi
(box), and nAo⇓(coer ′ r

y.Bi
(box),M)

by box � Ni ∈ Bi 〈r
′/y〉 [Ψ] and coer

′ r
y.Bi
(Ni) � M ∈ A [Ψ]. If r , r ′ and ¬ξi for all i , then

cap 7−→ M and nAo⇓(M,M). �
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Rule 4.94 (Uniqueness). If A,
−−−−−−−−⇀
ξi ↪→ y.Bi is a Kan type composition r  r ′ and M ∈

hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ], then

boxr r ′(caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi);

−−−−−−−⇀
ξi ↪→ M) � M ∈ hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ].

Proof. By caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) ∈ A [Ψ] (by Rule 4.92), M ∈ Bi 〈r

′/y〉 [Ψ | ξi] (by
Rule 4.90), coer ′ r

y.Bi
(M) � cap ∈ A [Ψ | ξi] (by Rule 4.92), and Rule 4.91, box ∈ hcom [Ψ].

Thus, by Lemma 4.15 it su�ces to show nhcomo⇓(box,M). If r = r ′ then box 7−→ cap 7−→
M and nhcomo⇓(M,M). If r , r ′ and ξi , then box 7−→ M and nhcomo⇓(M,M). If r , r ′

and ¬ξi for all i , then M ⇓ boxr r ′(O ;
−−−−−−−⇀
ξi ↪→ Ni) and M � boxr r ′(O ;

−−−−−−−⇀
ξi ↪→ Ni) ∈ hcom [Ψ].

The result follows by transitivity and Rule 4.91:

1. caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) � O ∈ A [Ψ] by Lemma 4.15 and cap 7−→∗ O ,

2. M � Ni ∈ Bi 〈r
′/y〉 [Ψ | ξi] by M � boxr r ′(O ;

−−−−−−−⇀
ξi ↪→ Ni) ∈ hcom [Ψ] and Rule 4.91,

and

3. coer
′ r
y.Bi
(M) � caprfr ′(M ;

−−−−−−−−⇀
ξi ↪→ y.Bi) ∈ A [Ψ | ξi] by Rule 4.92 as before. �

Lemma 4.95. If A,
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj and A

′,
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.B′j are equal Kan type compositions

s  s′ and, writing H := hcoms s ′

UKan
k
(A;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj), if

−⇀
ξi is valid,

1. M � M′ ∈ H [Ψ],

2. Ni � N ′i ′ ∈ H [Ψ,y | ξi, ξi ′] for any i, i
′
, and

3. Ni 〈r/y〉 � M ∈ H [Ψ | ξi] for any i ,

then

1. hcomr r ′

H (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � hcomr r ′

hcoms s ′

UKan
k
(A′;
−−−−−−−−−−⇀
sj=s

′
j ↪→z.B′j )

(M′;
−−−−−−−−−⇀
ξi ↪→ y.N ′i ) ∈ H [Ψ];

2. if r = r ′ then hcomr r
H (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) � M ∈ H [Ψ]; and

3. if ξi then hcomr r ′

H (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) � Ni 〈r

′/y〉 ∈ H [Ψ].

Proof. If s = s′ or sj = s′j for some j , the results are immediate by parts (2–3) of Lemma 4.88.
Otherwise, s , s′ and sj , s′j for all j; apply coherent expansion to hcomH with the family
de�ned in Figure 4.4. Considerψ = idΨ.
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hcomrψ r ′ψ
Aψ

(Mψ ;
−−−−−−−−−−−−⇀
ξiψ ↪→ y.Niψ ) sψ = s′ψ

hcomrψ r ′ψ
Bj 〈s ′/z〉ψ

(Mψ ;
−−−−−−−−−−−−⇀
ξiψ ↪→ y.Niψ ) sψ , s′ψ , least sjψ = s′jψ

(boxs s ′(Q ;
−−−−−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ Pj 〈r

′/y〉))ψ sψ , s′ψ , ∀j .sjψ , s′jψ

Oi := capsfs ′(Ni ;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj)

Pj := hcomr y
Bj 〈s ′/z〉

(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)

Q := hcomr r ′

A (capsfs ′(M ;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj);

−⇀
T )

−⇀
T :=

−−−−−−−−−⇀
ξi ↪→ y.Oi,

−−−−−−−−−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ y.coes

′ s
z.Bj
(Pj),

s = s′ ↪→ y.hcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)

Figure 4.4: Family of reducts in Lemma 4.95.

1. Oi � Oi ′ ∈ A [Ψ,y | ξi, ξi ′] for all i, i′, by Ni � Ni ′ ∈ H [Ψ,y | ξi, ξi ′].

2. Pj � Pj ′ ∈ Bj 〈s
′/z〉 [Ψ,y | sj = s′j, sj ′ = s′j ′] for all j, j′, by H � Bj 〈s

′/z〉 typeKan [Ψ |
sj = s

′
j] and Bj 〈s

′/z〉 � Bj ′〈s
′/z〉 typeKan [Ψ | sj = s

′
j, sj ′ = s

′
j ′].

3. Q ∈ A [Ψ] by

a) Oi � Oi ′ ∈ A [Ψ,y | ξi, ξi ′] for all i, i′,
b) coes

′ s
z.Bj
(Pj) � coes

′ s
z.Bj ′
(Pj ′) ∈ A [Ψ,y | sj = s′j, sj ′ = s′j ′] for all j, j′, by Pj � Pj ′ ∈

Bj 〈s
′/z〉 [Ψ,y | sj = s′j, sj ′ = s′j ′], Bj � Bj ′ typeKan [Ψ, z | sj = s′j, sj ′ = s′j ′], and

Bj 〈s/z〉 � A typeKan [Ψ | sj = s
′
j],

c) hcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ,y | s = s

′] by H � A typeKan [Ψ | s = s
′],

d) capsfs ′(M ;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) ∈ A [Ψ] by M ∈ H [Ψ],

e) Oi 〈r/y〉 � capsfs ′(M ;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) ∈ A [Ψ | ξi] for all i , by Ni 〈r/y〉 � M ∈

H [Ψ | ξi],

f) coes
′ s
z.Bj
(Pj 〈r/y〉) � capsfs ′(M ;

−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) ∈ A [Ψ | sj = s′j] for all j, by

Pj 〈r/y〉 � M ∈ A [Ψ | sj = s′j] and capsfs ′(M ;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) � coes

′ s
z.Bj
(M) ∈

A [Ψ | sj = s
′
j],

g) hcomr r
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)� capsfs ′(M ;

−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) ∈ A [Ψ | s = s

′] because
both � M ,

h) Oi � coes
′ s
z.Bj
(Pj) ∈ A [Ψ,y | ξi, sj = s

′
j] for all i, j because both � coes

′ s
z.Bj
(Ni),
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i) Oi � hcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ,y | ξi, s = s

′] for all i because both � Ni ,
and

j) coes
′ s
z.Bj
(Pj) � hcomr y

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ,y | sj = s′j, s = s′] for all j,

by coes
′ s
z.Bj
(Pj) � hcomr y

Bj 〈s ′/z〉
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ,y | sj = s′j, s = s′] and

Bj 〈s
′/z〉 � A typeKan [Ψ | sj = s

′
j, s = s

′].

4. boxs s ′(Q ;
−−−−−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ Pj 〈r

′/y〉) ∈ H [Ψ] because Q ∈ A [Ψ], Pj 〈r ′/y〉 � Pj ′〈r
′/y〉 ∈

Bj 〈s
′/z〉 [Ψ | sj = s′j, sj ′ = s′j ′] for all j, j′, and coes

′ s
z.Bj
(Pj 〈r

′/y〉) � Q ∈ A [Ψ | sj = s′j]

for all j.

When sψ , s′ψ and sjψ , s′jψ for all j, coherence is immediate. When sψ = s′ψ ,

boxψ �Qψ �(hcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni))ψ . When sψ , s′ψ and sjψ = s′jψ for the least such j ,

boxψ �Pj 〈r ′/y〉ψ = (hcomr r ′

Bj 〈s ′/z〉
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni))ψ . By Lemma 4.18, hcomH �box ∈ H [Ψ];

part (1) follows by a symmetric argument on the right.
For part (2), if r = r ′ then Q � capsfs ′(M ;

−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) ∈ A [Ψ] and Pj 〈r

′/y〉 � M ∈

Bj 〈s
′/z〉 [Ψ | sj = s

′
j] for all j, so boxs s ′(Q ;

−−−−−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ Pj 〈r

′/y〉) � M ∈ H [Ψ] by Rule 4.94.

For part (3), if ξi then Q �Oi 〈r
′/y〉 = capsfs ′(Ni 〈r

′/y〉;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) and Pj 〈r

′/y〉 �
Ni 〈r

′/y〉 for all j, so box � Ni 〈r
′/y〉 ∈ H [Ψ] by Rule 4.94. �

Lemma 4.96. If A,
−−−−−−−−⇀
ξi ↪→ z.Bi and A

′,
−−−−−−−−⇀
ξi ↪→ z.B′i are equal Kan type compositions r  r ′ in

(Ψ, x) and, writing H := hcoms s ′

UKan
l
(A;
−−−−−−−−⇀
ξi ↪→ z.Bi), we haveM � M′ ∈ H 〈r/x〉 [Ψ], then

1. coer r ′

x .H (M) � coer r ′

x .hcoms s ′

UKan
l
(A′;
−−−−−−−⇀
ξi ↪→z.B′i )

(M′) ∈ H 〈r ′/x〉 [Ψ] and

2. if r = r ′ then coer r ′

x .H (M) � M ∈ H 〈r ′/x〉 [Ψ].

Proof. If s = s′ or ξi for some i , the results are immediate by parts (2–3) of Lemma 4.88.
Otherwise, s , s′ and ¬ξi for all i; apply coherent expansion to coer r ′

x .H (M) with the family
de�ned in Figure 4.5. Considerψ = idΨ.

1. Ni � Nj ∈ Bi [Ψ, x, z | ξi 〈r/x〉, ξj 〈r/x〉] for all i, j by M ∈ Bi 〈s
′/z〉〈r/x〉 [Ψ | ξi 〈r/x〉]

(by M ∈ H 〈r/x〉 [Ψ] andH �Bi 〈s′/z〉 typeKan [Ψ, x | ξi]) and Bi �Bj typeKan [Ψ, x, z |
ξi, ξj].

2. O ∈ A〈r/x〉 [Ψ, z] by

a) (capsfs ′(M ;
−−−−−−−−⇀
ξi ↪→ z.Bi))〈r/x〉 ∈ A〈r/x〉 [Ψ] by M ∈ H 〈r/x〉 [Ψ],
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coerψ r ′ψ
x .Aψ

(Mψ ) sψ = s′ψ

coerψ r ′ψ
x .Bi 〈s ′/z〉ψ

(Mψ ) sψ , s′ψ , least ξiψ

(boxs s ′(R;
−−−−−−−−−−−−⇀
ξi ↪→ Qi 〈s

′/z〉))〈r ′/x〉ψ sψ , s′ψ , ∀i .¬ξiψ
Ni := coes

′ z
z.Bi
(coer x

x .Bi 〈s ′/z〉
(M))

O := (hcoms ′ z
A (capsfs ′(M ;

−−−−−−−−⇀
ξi ↪→ z.Bi);

−−−−−−−−−−−−−−−−−⇀
ξi ↪→ z.coez s

z.Bi
(Ni)))〈r/x〉

P := gcomr r ′

x .A (O 〈s 〈r/x〉/z〉;
−−−−−−−−−−−−−−⇀
ξi ↪→ x .Ni 〈s/z〉|(x#ξi ),T )

T := s = s′ ↪→ x .coer x
x .A (M)|(x#s,s ′)

Qk := gcoms 〈r ′/x〉 z
z.Bk 〈r ′/x〉

(P ;
−−−−−−−−−−−−−−−⇀
ξi ↪→ z.Ni 〈r

′/x〉|(x#ξi ), r = r
′ ↪→ z.Nk 〈r

′/x〉)

R := hcoms s ′

A (P ;
−−−−−−−−−−−−−−−−−⇀
ξi ↪→ z.coez s

z.Bi
(Qi), r = r

′ ↪→ z.O)

Figure 4.5: Family of reducts in Lemma 4.96.

b) coez s 〈r/x〉
z.Bi 〈r/x〉

(Ni 〈r/x〉) � coez s 〈r/x〉
z.Bj 〈r/x〉

(Nj 〈r/x〉) ∈ A〈r/x〉 [Ψ, z | ξi 〈r/x〉, ξj 〈r/x〉]

for all i, j by Bi 〈s/z〉〈r/x〉 � A〈r/x〉 typeKan [Ψ | ξi 〈r/x〉], and

c) (capsfs ′(M ;
−−−−−−−−⇀
ξi ↪→ z.Bi))〈r/x〉�(coez s

z.Bi
(Ni))〈s

′/z〉〈r/x〉 ∈ A〈r/x〉 [Ψ | ξi 〈r/x〉]

for all i because cap〈r/x〉 � (coes
′ s
z.Bi
(M))〈r/x〉 ∈ A〈r/x〉 [Ψ | ξi 〈r/x〉] and

Ni 〈s
′/z〉〈r/x〉 � M ∈ Bi 〈s

′/z〉〈r/x〉 [Ψ | ξi 〈r/x〉].

3. P ∈ A〈r ′/x〉 [Ψ] by

a) O 〈s 〈r/x〉/z〉 ∈ A〈r/x〉 [Ψ],
b) Ni 〈s/z〉 � Nj 〈s/z〉 ∈ A [Ψ, x | ξi, ξj] for all i, j such that x # ξi, ξj by Ni 〈s/z〉 �

Nj 〈s/z〉 ∈ Bi 〈s/z〉 [Ψ, x | ξi 〈r/x〉, ξj 〈r/x〉] and Bi 〈s/z〉 � A typeKan [Ψ, x | ξi],
c) coer x

x .A (M) ∈ A [Ψ, x | s = s′] if x # s, s′ by H 〈r/x〉 � A〈r/x〉 typeKan [Ψ |
s 〈r/x〉 = s′〈r/x〉],

d) O 〈s 〈r/x〉/z〉 � Ni 〈s/z〉〈r/x〉 ∈ A〈r/x〉 [Ψ | ξi] for all i such that x # ξi by
O 〈s 〈r/x〉/z〉 � (coez s

z.Bi
(Ni))〈s/z〉〈r/x〉 �Ni 〈s/z〉〈r/x〉 ∈ A〈r/x〉 [Ψ | ξi 〈r/x〉],

e) O 〈s 〈r/x〉/z〉 � (coer x
x .A (M))〈r/x〉 ∈ A〈r/x〉 [Ψ | s = s′] if x # s, s′ because

O 〈s 〈r/x〉/z〉 = O 〈s/z〉 � cap〈r/x〉 � M ∈ A〈r/x〉 [Ψ | s = s′], and
f) Ni 〈s/z〉 � coer x

x .A (M) ∈ A [Ψ, x | ξi, s = s′] for all i such that x # ξi, s, s′
by Ni 〈s/z〉 � coer x

x .Bi 〈s ′/z〉
(M) ∈ Bi 〈s

′/z〉 [Ψ, x | ξi, s = s′] and Bi 〈s
′/z〉 �

A typeKan [Ψ, x | ξi, s = s
′].

4. Qk � Qk ′ ∈ Bk 〈r
′/x〉 [Ψ, z | ξk 〈r

′/x〉, ξk ′〈r
′/x〉] for all k,k′ by



138 Cartesian cubical type theory

a) P ∈ Bk 〈s/z〉〈r
′/x〉 [Ψ | ξk 〈r

′/x〉] by A � Bk 〈s/z〉 typeKan [Ψ, x | ξk],
b) Ni 〈r

′/x〉 � Nj 〈r
′/x〉 ∈ Bk 〈r

′/x〉 [Ψ, z | ξk 〈r
′/x〉, ξi, ξj] for all i, j such that

x # ξi, ξj by Ni � Nj ∈ Bi [Ψ, x, z | ξi, ξj] and Bi � Bk typeKan [Ψ, x, z | ξi, ξk],
c) Nk 〈r

′/x〉 � Nk ′〈r
′/x〉 ∈ Bk 〈r

′/x〉 [Ψ, z | ξk 〈r
′/x〉, ξk ′〈r

′/x〉],
d) P � Ni 〈s/z〉〈r

′/x〉 ∈ Bk 〈s/z〉〈r
′/x〉 [Ψ | ξk 〈r

′/x〉, ξi] for all i such that x # ξi by
P � Ni 〈s/z〉〈r

′/x〉 ∈ A〈r ′/x〉 [Ψ | ξi] and A〈r ′/x〉 � Bk 〈s/z〉〈r
′/x〉 typeKan [Ψ |

ξk 〈r
′/x〉],

e) P � Nk 〈s/z〉〈r
′/x〉 ∈ Bk 〈s/z〉〈r

′/x〉 [Ψ | ξk 〈r
′/x〉, r = r ′] by P �O 〈s 〈r/x〉/z〉 �

(coez s
z.Bk
(Nk))〈s 〈r/x〉/z〉〈r/x〉 ∈ A〈r

′/x〉 [Ψ | ξk 〈r
′/x〉, r = r ′], and

f) Ni 〈r
′/x〉 � Nk 〈r

′/x〉 ∈ Bk 〈r
′/x〉 [Ψ, z | ξk 〈r

′/x〉, ξi, r = r ′] for all i such that
x # ξi .

5. R〈r ′/x〉 ∈ A〈r ′/x〉 [Ψ] by

a) P ∈ A〈r ′/x〉 [Ψ],

b) coez s 〈r ′/x〉
z.Bi 〈r ′/x〉

(Qi) � coez s 〈r ′/x〉
z.Bj 〈r ′/x〉

(Qj) ∈ A〈r ′/x〉 [Ψ, z | ξi 〈r
′/x〉, ξj 〈r

′/x〉] for all
i, j by Bi � Bj typeKan [Ψ, z, x | ξi, ξj] and Bi 〈s/z〉〈r

′/x〉 � A〈r ′/x〉 typeKan [Ψ |
ξi 〈r

′/x〉],
c) O ∈ A〈r ′/x〉 [Ψ, z | r = r ′],
d) P�(coez s

z.Bi
(Qi))〈s/z〉〈r

′/x〉 ∈ A〈r ′/x〉 [Ψ | ξi 〈r
′/x〉] for all i byQi 〈s/z〉〈r

′/x〉�
P ∈ Bi 〈s/z〉〈r

′/x〉 [Ψ | ξi 〈r
′/x〉] and Bi 〈s/z〉〈r

′/x〉 � A〈r ′/x〉 typeKan [Ψ |
ξi 〈r

′/x〉],
e) P � O 〈s/z〉〈r ′/x〉 ∈ A〈r ′/x〉 [Ψ | r = r ′] by O 〈s/z〉〈r ′/x〉 = O 〈s 〈r ′/x〉/z〉, and
f) (coez s

z.Bi
(Qi))〈r

′/x〉 � O 〈r ′/x〉 ∈ A〈r ′/x〉 [Ψ, z | ξi 〈r
′/x〉, r = r ′] for all i by

O 〈r ′/x〉 = O � (coez s
z.Bi
(Ni))〈r/x〉 ∈ A〈r ′/x〉 [Ψ, z | ξi 〈r

′/x〉] and Qi 〈r
′/x〉 �

Ni 〈r
′/x〉 ∈ A〈r ′/x〉 [Ψ, z | ξi 〈r

′/x〉, r = r ′].

6. boxs 〈r
′/x〉 s ′〈r ′/x〉(R〈r ′/x〉;

−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r

′/x〉 ↪→ Qi 〈s
′〈r ′/x〉/z〉) ∈ H 〈r ′/x〉 [Ψ] by

a) R〈r ′/x〉 ∈ A〈r ′/x〉 [Ψ],
b) Qi 〈s

′〈r ′/x〉/z〉 � Qj 〈s
′〈r ′/x〉/z〉 ∈ Bi 〈s

′/z〉〈r ′/x〉 [Ψ | ξi 〈r
′/x〉, ξj 〈r

′/x〉] for all
i, j, and

c) (coes ′ s
z.Bi
(Qi 〈s

′/z〉))〈r ′/x〉 � R〈r ′/x〉 ∈ A〈r ′/x〉 [Ψ | ξi 〈r
′/x〉] for all i because

R〈r ′/x〉 � (coez s
z.Bi
(Qi))〈s

′/z〉〈r ′/x〉 ∈ A〈r ′/x〉 [Ψ | ξi 〈r
′/x〉].

Consider ψ : Ψ′ → Ψ. When sψ , s′ψ and ¬ξiψ for all i , coherence is immediate.
When sψ = s′ψ , then by s , s′, we must have x # s, s′ and thus s 〈r ′/x〉ψ = s′〈r ′/x〉ψ
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also. Thus box〈r ′/x〉ψ � R〈r ′/x〉ψ � P 〈r ′/x〉ψ � (coer x
x .A (M))〈r

′/x〉ψ ∈ A〈r ′/x〉 [Ψ′] as
required. When sψ , s′ψ and ξiψ for the least such i , again x # ξi and box〈r ′/x〉ψ �
Qi 〈s

′/z〉〈r ′/x〉ψ � Ni 〈s
′/z〉〈r ′/x〉ψ � (coer r ′

x .Bi 〈s ′/z〉
(M))ψ ∈ A〈r ′/x〉 [Ψ′]. By Lemma 4.18,

coer r ′

x .H (M) � box〈r ′/x〉 ∈ H 〈r ′/x〉 [Ψ]; part (1) follows by a symmetric argument.

For part (2), if r = r ′ then R〈r ′/x〉 � O 〈s′/z〉〈r ′/x〉 � (capsfs ′(M ;
−−−−−−−−⇀
ξi ↪→ z.Bi))〈r

′/x〉 ∈
A〈r ′/x〉 [Ψ] and Qi 〈s

′/z〉〈r ′/x〉 � Nk 〈s
′/z〉〈r ′/x〉 � M ∈ Bi 〈s

′/z〉〈r ′/x〉 [Ψ | ξi 〈r
′/x〉] for

all i , so box〈r ′/x〉 �M ∈ H 〈r ′/x〉 [Ψ] by Rule 4.94, and part (2) follows by transitivity. �

Rule 4.97 (Kan type formation). If A,
−−−−−−−−⇀
ξi ↪→ y.Bi and A′,

−−−−−−−−⇀
ξi ↪→ y.B′i are equal Kan type

compositions r  r ′, then

1. hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) � hcomr r ′

UKan
k
(A′;
−−−−−−−−⇀
ξi ↪→ y.B′i) typeKan [Ψ],

2. if r = r ′ then hcomr r
UKan

k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) � A typeKan [Ψ], and

3. if ξi then hcomr r ′

UKan
k
(A;
−−−−−−⇀
ξi ↪→ Bi) � Bi 〈r

′/y〉 typeKan [Ψ].

Proof. We already showed parts (2–3) in Lemma 4.88. For part (1), the hcom conditions
hold by Lemma 4.95 instantiated at allψ : Ψ′→ Ψ instances of this Kan type composition;
the coe conditions hold by Lemma 4.96 at theψ : (Ψ′, x) → Ψ instances. �

4.4.12 Universes

For i ∈ {0, 1, . . . } and j ∈ {i + 1, i + 2, . . . ,ω}:

τκ
′

j (Ψ,U
κ
i ,U

κ
i , {(A0,B0) | ∃φ.τ

κ
i (Ψ,A0,B0,φ)})

Rule 4.98 (Pretype formation). For i ∈ {0, 1, . . . } and j ∈ {i + 1, i + 2, . . . ,ω}, τκ ′j |=
(Uκ

i typepre [Ψ]).

Proof. We have Uκ
i ∼ U

κ
i ↓ nUκ

i o ∈ τκ
′

j [Ψ] by Uκ
i val� and the de�nition of τκ ′j . To

prove Coh(nUκ
i o), suppose that nUκ

i oΨ′(A0,B0) holds and show A0 ∼ B0 ∈ nUκ
i o [Ψ′].

Then τκi (Ψ
′,A0,B0,φ) for some φ, and thus A0 ∼ B0 ↓ α ∈ τ

κ
i [Ψ

′] for some α by the
value-coherence property of τκi (Theorem 4.9), completing our proof. �

Rule 4.99 (Cumulativity).

1. If τ
pre
ω |= (A � B ∈ Uκ

i [Ψ]) and i ≤ j then τ
pre
ω |= (A � B ∈ Uκ

j [Ψ]).

2. If τ
pre
ω |= (A � B ∈ UKan

i [Ψ]) then τ
pre
ω |= (A � B ∈ U

pre
i [Ψ]).
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Proof. For part (1), by Theorem 4.10, τκi ⊆ τκj and therefore nUκ
i o ⊆ nUκ

j o. The result
follows by monotonicity of the candidate judgments. For part (2), by Theorem 4.10,
τKani ⊆ τ

pre
i and the result follows similarly. �

As in Chapter 2, we have de�ned the elements ofUκ
i inductively; therefore, to see that

the elements ofUKan
i are Kan types we must induct on the de�nition of τKani .

Lemma 4.100. Let Φκ(τ ) = {(Ψ,A0,B0,φ) | τ |= (A0 � B0 typeκ [Ψ])}. If τ is a cubical type

system and A ∼ B ↓ α ∈ Φκ(τ ) [Ψ] then τ |= (A � B typeκ [Ψ]).

Proof. We apply coherent expansion to A with family {AΨ′

ψ
| Aψ ⇓ AΨ′

ψ
}Ψ
′

ψ
. By our hypothe-

sis atψ , idΨ′ we have τ |= (AΨ′

ψ
typeκ [Ψ

′]); we must show τ |= (AΨ′

ψ
� (AΨ

idΨ
)ψ typeκ [Ψ

′]).
Suppose κ = pre. We already know AΨ′

ψ
and (AΨ

idΨ
)ψ are pretypes, so by Lemma 4.14 it

su�ces to show that their values are equal pretypes, which follows from our hypothesis
at idΨ,ψ . Thus, by Lemma 4.17, τ |= (A � A0 typepre [Ψ]) where A ⇓ A0.

Suppose κ = Kan. Both AΨ′

ψ
and (AΨ

idΨ
)ψ are Kan, so by Lemma 4.30 it su�ces to show

their values under allψ ′ : Ψ′′→ Ψ′ are equally Kan, which follows from our hypothesis at
ψ ,ψ ′ and idΨ,ψψ ′. Thus, by Lemma 4.31, τ |= (A � A0 typeKan [Ψ]) where A ⇓ A0.

In each case, we similarly obtain τ |= (B � B0 typeκ [Ψ]) where B ⇓ B0, and the result
follows from τ |= (A0 � B0 typeκ [Ψ]) by our hypothesis at idΨ, idΨ. �

Lemma 4.101.

1. If τ
pre
ω |= (A � B ∈ UKan

i [Ψ]) then τKani |= (A � B typeKan [Ψ]).

2. If τ
pre
ω |= (A � B ∈ U

pre
i [Ψ]) then τ

pre
i |= (A � B typepre [Ψ]).

Proof. Let Φκi = {(Ψ,A0,B0,φ) | τ
κ
i |= (A0 � B0 typeκ [Ψ])}. Our proof proceeds by mutual

strong induction on i .

1. We show K(νi,Φ
Kan
i ) ⊆ ΦKan

i ; then τKani ⊆ ΦKan
i , so A ∼ B ↓ α ∈ ΦKan

i [Ψ], and part
(1) follows from Lemma 4.100. We check each type former separately. Suppose
Fun(ΦKan

i )(Ψ, (a:A) → B, (a:A′) → B′,φ). Then A ∼ A′ ↓ α ∈ ΦKan
i [Ψ], which

by Lemma 4.100 implies τKani |= (A � A′ typeKan [Ψ]); similarly, τKani |= (a : A �
B � B′ typeKan [Ψ]). By Rule 4.42, τKani |= ((a:A) → B � (a:A′) → B′ typeKan [Ψ]).
Other cases are similar except for universes, where we must show for j < i that
τKani |= (Uκ

j typeKan [Ψ]). To see that Upre
j admits homogeneous composition,

suppose we are given a composition scenario inUpre
j relative to τKani (and hence, by

monotonicity, relative also to τ preω ). By inductive hypothesis (2), this is a composition
of pretypes in τ

pre
j . By Rule 4.87, hcomUpre

j
of this scenario is a pretype in τ

pre
ω .

Therefore τKani |= (hcomUpre
j
∈ U

pre
j [Ψ]) as required. Composition inUKan

j follows
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by a similar argument, appealing instead to inductive hypothesis (1) and Rule 4.90.
Coercion for universes is immediate by coer r ′

x .Uκ
j
(A) 7−→� A.

2. We show P(νi, τ
Kan
i ,Φ

pre
i ) ⊆ Φ

pre
i ; then τ

pre
i ⊆ Φ

pre
i , and part (2) follows from

Lemma 4.100. Most cases are analogous to part (1), with a few exceptions: for
HKan, we appeal to inductive hypothesis (1) and Rule 4.90, and for UPre and UKan
we obtain τ prei |= (Uκ

j typepre [Ψ]) immediately for all j < i by Rule 4.98. �

Rule 4.102 (Elimination). If τ preω |= (A � B ∈ Uκ
i [Ψ]) then τ

pre
ω |= (A � B typeκ [Ψ]).

Proof. By Lemma 4.101, τκi |= (A � B typeκ [Ψ]); we obtain τ preω |= (A � B typeκ [Ψ]) from
τκi ⊆ τ

pre
ω (by Theorem 4.10) and monotonicity of the pretype and Kan type judgments. �

Rule 4.103 (Introduction). Relative to τ preω :

1. If A � A′ ∈ Uκ
i [Ψ] and a : A � B � B′ ∈ Uκ

i [Ψ] then (a:A) → B � (a:A′) → B′ ∈
Uκ

i [Ψ].

2. IfA�A′ ∈ Uκ
i [Ψ] and a :A � B �B′ ∈ Uκ

i [Ψ] then (a:A)×B � (a:A′)×B′ ∈ Uκ
i [Ψ].

3. If A � A′ ∈ Uκ
i [Ψ, x] and Pε � P ′ε ∈ A〈ε/x〉 [Ψ] for ε ∈ {0, 1}, then Pathx .A(P0, P1) �

Pathx .A′(P ′0, P
′
1) ∈ U

κ
i [Ψ].

4. If A � A′ ∈ U
pre
i [Ψ], M � M′ ∈ A [Ψ], and N � N ′ ∈ A [Ψ], then EqA(M,N ) �

EqA′(M
′,N ′) ∈ U

pre
i [Ψ].

5. void ∈ Uκ
i [Ψ].

6. bool ∈ Uκ
i [Ψ].

7. nat ∈ Uκ
i [Ψ].

8. S1 ∈ Uκ
i [Ψ].

9. If A � A′ ∈ Uκ
i [Ψ | r = 0], B � B′ ∈ Uκ

i [Ψ], and E � E′ ∈ Equiv(A,B) [Ψ | r = 0],
then Vr (A,B, E) � Vr (A

′,B′, E′) ∈ Uκ
i [Ψ].

10. If j > i thenUκ
i ∈ U

κ ′

j [Ψ].

Proof. We establish the presuppositions of parts (1–4) and (9) by Rule 4.102. In part (1),
for example, from Rule 4.102 and τ

pre
ω |= (A ∈ Uκ

j [Ψ]) we obtain the presupposition
τ
pre
ω |= (A typeκ [Ψ]) of τ preω |= (a : A � B � B′ ∈ Uκ

j [Ψ]).
For part (1), by τ preω |= (A � A′ ∈ Uκ

j [Ψ]) and Lemma 4.101, τκj |= (A � A′ typeκ [Ψ]).
By τ preω |= (a : A � B � B′ ∈ Uκ

j [Ψ]), Lemma 4.101, and the fact that τ preω and τκj give rise
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to equal nAo (by Theorem 4.10 and the unicity property of type systems), τκj |= (a : A �
B � B′ typeκ [Ψ]). Therefore, by Rule 4.36, (a:A) → B ∼ (a:A′) → B′ ↓ _ ∈ τκj [Ψ] and thus
(a:A) → B ∼ (a:A′) → B′ ∈ nUκ

j o [Ψ], completing part (1). Parts (2–10) are analogous. �

Rule 4.104 (Kan type formation). τ preω |= (Uκ
i typeKan [Ψ]).

Proof. By Rule 4.103, τ preω |= (Uκ
i ∈ U

Kan
i+1 [Ψ]); the result follows by Rule 4.102. �

Theorem 4.105 (Univalence). There exist terms ua� and uaβ� such that, relative to τ
pre
ω ,

and for all i ∈ {0, 1, . . . }:

ua� ∈ (A B:UKan
i ) → Equiv(A,B) → Path

_.UKan
i
(A,B) [·]

uaβ� ∈ (A B:UKan
i ) → (e:Equiv(A,B)) → (a:A) → Path_.B(coe0 1

x .(ua� e)@x (a), fst(e) a) [·]

Therefore, everyUKan
i is a univalent universe [Lic16].

Proof. De�ne:

ua� A B e := 〈x〉Vx (A,B, e)

uaβ� A B e a := 〈x〉coex 1
_.B (fst(e) a)

Using previously-proven rules, one can routinely verify the required typing judgments.
The only obstacle is to see that the left endpoint of uaβ� is correct, which requires unfolding
the de�nition of coercion in V-types. Using the variable names of Figure 4.2:

coe0 1
x .(ua� e)@x (a) � coe0 1

x .Vx (A,B,e)
(a)

� Vin1(fst(O), P)

� hcom1 0
B (N ; . . . , 1 = 1 ↪→ _.N , . . . )

� coe0 1
_.B (Vproj0(a, fst(e)))

� coe0 1
_.B (fst(e) a) ∈ B [·] �
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Conclusion

In the Univalent Foundations we accept Gödel’s results not simply
as correct ones but as natural ones. We know that any foundation
will be incomplete and we are not concerned with the impos-
sible task of �nding one complete foundation. Instead, we are
concerned with creating a practical foundation which we can
use now and establishing a process which can ensure a healthy
[growth] and transformation of this foundation in the future.

—Vladimir Voevodsky, Paul Bernays Lectures [Voe14, p. 3.22]

In this dissertation, we contribute a Cartesian cubical type theory which gives constructive
meaning to higher-dimensional concepts—univalence and higher inductive types—�rst
introduced in Book HoTT [UF13]. Cubical type theories are organized around interval

variables representing abstract hypercubes as syntax, and uniform Kan operations express-
ing closure properties of those hypercubes; compared to De Morgan cubical type theory
[CCHM18], our type theory has a simpler interval but more complex Kan operations.

We present our type theory through the lens of its computational semantics à la

Nuprl [All87], de�ning each type as a behavioral predicate on programs drawn from an
untyped λ-calculus augmented with interval variables and Kan operations. Because we
successfully reconstruct core features of Book HoTT, we argue that higher-dimensional

types classify higher-dimensional programs extensionally according to their behaviors. These
classi�cations match expectations—for instance, Boolean programs all evaluate to true or
false (Theorem 4.63). In fact, using a novel validity condition on Kan compositions, we
obtain a sharper characterization of programs of higher inductive type (Theorem 4.77)
than Cohen et al. [CCHM18].

The author’s collaborators have already built on results presented in this dissertation.
Cavallo and Harper [CH19a] extend our syntax and computational semantics with a
schema for indexed higher inductive types, including identity types, truncations, and many
other type formers. Separately, Cavallo and Harper [CH19b] extend our type theory with
internal parametricity primitives a�rming that type quanti�cation is uniform and not ad
hoc [Rey83]. Internal parametricity implies anti-classical principles such as the refutation
of the law of excluded middle, and may simplify di�cult coherence theorems for indexed
higher inductive types, such as associativity of smash products.

Although this dissertation adopts an operational perspective, Angiuli et al. [Ang+19]
show that the same constructions give rise to a denotational semantics of univalent type
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theory in Cartesian cubical sets. Cavallo, Mörtberg, and Swan [CMS19] have recently
generalized the Cartesian and De Morgan constructions, obtaining a denotational semantics
for univalent type theory that coincides with prior work when extended with diagonal
equations (x = z) or connections, respectively.

Our experiences developing the RedPRL [Ang+18] and redtt [Red18] proof assistants
have suggested various extensions to Chapter 4, including extension types (Section 3.5)
and a re�nement of our two-level system supporting hcom types, coe types, and discrete
Kan types in addition to pretypes and Kan types. Although we need both homogeneous
composition and coercion to recover weak identity elimination (as discussed in Section 3.2),
we can achieve a �ner analysis by considering types with only one of these operations.

For instance, homogeneous composition in (a:A) → B does not require both A and
B to be Kan as Appendix A suggests, but only that B admits homogeneous composition;
similarly, coercion in (a:A) → B requires only coercion in both A and B. In contrast,
coercion in Pathx .A(M,N ) does require A to admit both composition and coercion. Types
with only one of two Kan operations do arise in practice—notably, EqA(M,N ) always
admits homogeneous composition.

On the other hand, coercion in EqA(M,N ) implies that (a a′:A) → Path_.A(a,a
′) →

EqA(a,a
′), and is therefore impossible in general. It is, however, possible at types with

su�ciently trivial path structure—more precisely, types that are constant in all interval
variables, and whose elements are constant in all interval variables (De�nition 5.1). We call
such types discrete Kan; they are closed under standard type formers, including bool and
nat. We therefore obtain a systematic account of those types whose strict equality types
are Kan, an analysis lacking in previous two-level type theories [Voe13; ACK16; ACK17].

De�nition 5.1 (Discrete Kan types). A � B typedisc [Ψ], presupposing A � B typeKan [Ψ],
when for allψ1 : Ψ1 → Ψ andψ2,ψ

′
2 : Ψ2 → Ψ1,

1. Aψ1ψ2 � Bψ1ψ
′
2 typeKan [Ψ2] and

2. for all M ∈ Aψ1 [Ψ1], Mψ2 � Mψ ′2 ∈ Aψ1ψ2 [Ψ2].

We close with remarks on several core problems in dependent type theory.

Relation to spaces The Homotopy Type Theory book [UF13] establishes basic results of
algebraic topology for the axiomatic notion of space available in Book HoTT. At the time,
it was unclear how general this notion of space really was, and we had no models of many
higher inductive types. Much has changed since 2013. Shulman [Shu19] proves that most
of Book HoTT has models in all Grothendieck∞-toposes, which serve as general settings
for homotopy theory. Cubical type theories, in addition to giving constructive meaning to
univalence, provide models of parametrized higher inductive types [CHM18; CH19a].
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Despite various advantages of cubical type theories over Book HoTT, it remains un-
known whether cubical type theories yield the standard notion of space. One approach
to this problem is to formulate the uniform Kan operations of cubical type theory in the
language of Quillen model categories and establish a Quillen equivalence with simplicial
sets. The former has been completed for De Morgan cubes by Sattler [Sat17], for Cartesian
cubes by Coquand [Coq18] and Awodey [Awo19], and for both by Cavallo, Mörtberg, and
Swan [CMS19]. Unfortunately, the latter step of proving an equivalence fails for both De
Morgan and Cartesian cubes [Coq18]. But not all is lost: Awodey, Cavallo, Coquand, Riehl,
and Sattler have recently proposed equivariant uniform Kan operations, a variation of the
Cartesian Kan operations for which the equivalence holds.

Metatheoretic equality This dissertation wrestles with many notions of equality in
both object theory and metatheory. In Chapters 2 and 4, we de�ne typehood and member-
ship judgments that respect a powerful, type-sensitive equality judgment, using partial
equivalence relations de�ned directly on untyped λ-terms. In Chapter 4, typehood and
membership also respect interval substitutions, even though evaluation does not.

Although our consideration of untyped λ-terms is speci�c to computational semantics,
similar issues arise in standard canonicity proofs for intensional type theories. Huber’s
[Hub18] operational semantics is de�ned only on well-typed terms, but is nevertheless
�ner than judgmental equality; like us, he expends signi�cant e�ort proving that (on
well-typed terms) it commutes with interval substitution in an appropriate sense. In both
cases, one experiences a tension between the judgments of type theory, which respect
judgmental equality, and evaluation, which does not.

Resolving this tension, type theorists have recently developed canonicity and normal-
ization proofs that consider only well-typed terms modulo judgmental equality [Shu15;
Coq19; KHS19; SAG19]. These proofs use Artin gluing to construct proof-relevant logical
relations as a model of type theory qua algebraic structure. In gluing models for canonicity,

n· ` M : boolo := (M = true) + (M = false)

where n· ` true : boolo := inl ? and n· ` false : boolo := inr ?. One computes the value of
a closed Boolean M by reading the tag bit of nMo; disjointness of true and false follows
from inl ? , inr ? and the fact that n−o respects equality [Coq19].

We expect gluing techniques to be a particularly signi�cant advance for cubical type
theories [CHS19; SAG19], where they sidestep entirely the need to establish coherence of
evaluation and interval substitution, as in Chapter 4 and Huber [Hub18].

Transportational equality Most type theories describe two di�ering notions of equal-
ity, which Voevodsky [Voe16] calls substitutional and transportational. Substitutional
equalities are silent: elements can be replaced directly by their equals. In intensional
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type theories, substitutional equality is de�nitional, and includes computation rules for all
types and uniqueness rules for dependent function and pair types. In (Idealized) Nuprl, a
consequence of equality re�ection is that all provable equations are substitutional, as is
the case in standard (informal) mathematical practice.

Transportational equalities require coercions: properties of elements can be translated
into corresponding properties of their equals. In Book HoTT and many proof assistants,
all non-de�nitional equations are transportational, including mundane equations like the
laws of arithmetic. Because of dependency, these term-level coercions appear also in types,
causing headaches for users who must coerce between di�erent coercions, et cetera. But
such bureaucracy is necessary for the weaker notion of equality induced by univalence or
higher inductive types. Equalities generated by univalence, for instance, are necessarily
transportational because an element of A × B is not literally also an element of B ×A.

In the author’s opinion, there is still much more to understand about rich trans-
portational equality in type theory. First, univalence and higher inductive types have
countless applications beyond synthetic homotopy theory. Notably, they provide direct
type-theoretic constructions of quotients and free algebraic structures on sets [UF13, Sec-
tion 6.11]. In intensional type theories, such constructions previously required passing to
setoids [Hof95]. Extensional type theories are compatible with quotients [Ana+14], but
passing to a quotient A/R there erases information: one cannot recover a proof of R(a,b)
from an equality EqA/R(in(a), in(b)), a useful property known as e�ectivity [Mai99].1 These
basic applications of higher-dimensional structure have been investigated primarily in
non-cubical type theories [VAG+; Bau+17]; we suggest further experimentation in cubical
type theories, where these constructions are also computationally well-behaved.

In computer science, univalence establishes that type-theoretic constructions respect
equivalence, allowing for code reuse in both programming [VMA19] and proving [TTS18].
Higher inductive types realize the decades-old dream of data types with laws, or quotiented
algebraic data types [Tur85; BGW17], encode computational e�ects such as partiality
[ADK17], and capture abstract interfaces and their implementations [Ang+16]. Again,
many of these applications emerged before they could be realized in cubical programming
languages; we look forward to experimenting with them in cubical Agda and redtt.

Although homotopy type theorists primarily consider univalence and higher inductive
types, other transportational equalities are also useful in type theory. Birkedal et al.
[Bir+18] consider a cubical type theory with transportational equalities corresponding to
type isomorphisms in the topos of trees; these isomorphisms arise in the study of guarded
recursion, but can unfold in�nitely when added to type theory as substitutional equalities.
Finally, directed type theories, so named for their non-invertible transportational equalities,
have many potential applications: for mathematicians as a language for (∞, 1)-categories

1One can obtain e�ective quotients by adding axioms, but these lack any obvious computational
interpretation [Mai99, Section 5].
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[RS17], and for programming language theorists as a framework for de�ning languages
whose syntax automatically respects substitution [LH11]. We are hopeful that researchers
will develop a directed type theory with canonicity.

Substitutional equality Substitutional equality is a double-edged sword. On one hand,
type theories with strong substitutional equalities have more well-typed terms and fewer
coercions cluttering types; on the other hand, it is harder to establish judgments of such
type theories, because their terms and types omit more necessary steps of reasoning. It is
here that the constructive nature of type theory plays an essential role in practice, although
the speci�cs di�er signi�cantly between intensional and computational type theories.

Substitutional equality of intensional type theories is decidable by calculational means;
proof assistants can therefore always reconstruct the reason why a judgment holds, or
determine conclusively that it does not hold. In earlier theories, such as the calculus of
constructions, substitutional equality coincides with untyped β-conversion and is decided
by comparing normal forms [CH88]. Modern normalization by evaluation algorithms also
account for many type-sensitive equations, including uniqueness principles for dependent
function and pair types, by interleaving reduction and type-driven expansion [ACD07].

In type theories with equality re�ection, substitutional equality is not decidable; instead,
a proof assistant must at times appeal to users for equality reasoning. However, it is
essential for proof assistants to automate many substitutional equalities, lest users be
required to manually invoke all computation principles, congruence principles, unfoldings
of de�nitions, et cetera. Without any automation, substitutional equality takes on the
character of transportational equality—paradoxically, one must always coerce explicitly!

Indeed, users of modern Nuprl rely heavily on judgments being closed under arbitrary
contraction of β-redexes [How89; AR14], which removes typing obligations from computa-
tion and congruence principles but requires a non-standard semantics for open judgments
(see Section 2.6). Even so, Nuprl cannot β-reduce automatically: reduction may obfuscate
subgoals requiring user input, and may not even terminate!

Our experience in RedPRL has shown that the Nuprl approach is signi�cantly less
e�ective for cubical type theory, because necessary simpli�cation steps often engender
many typing obligations. For example, to replace hcom0 0

(a:A)→B(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) by M , users

must prove that (a:A) → B is a Kan type (and hence that B respects equality in A), that
M and every Ni are elements of (a:A) → B, and that M,Ni are pairwise equal where they
overlap. Unlike in Nuprl, only closed RedPRL judgments respect evaluation (Lemma 4.16),
a property su�cient for canonicity (Theorem 4.63) but not helpful to users of a proof
assistant, who typically work under hypotheses.

The author concludes that canonicity theorems are a standard measure of robustness
for substitutional equality of closed terms at base type, but say little about usability of
proof assistants, which is instead correlated with having good facilities for establishing
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substitutional equality of open terms and at higher type. The nature of such facilities is of
course highly sensitive to the choice of substitutional equality: Nuprl provides tactics for
untyped reduction, whereas Coq and Agda silently decide a weaker de�nitional equality.

As for cubical computational type theory, there are multiple paths forward. One is
to �nd modi�cations to our computational semantics justifying unstable reduction for
open terms in RedPRL, just as Nuprl relies on modi�cations to Martin-Löf’s meaning
explanations proposed by Allen [All87, Chapter 8] and Howe [How89].

Another possibility is to design an implementation strategy for equality re�ection that
does not rely on untyped reduction. The most promising work in this direction is the
Andromeda proof assistant [Bau+16], which aims to implement Voevodsky’s Homotopy
Type System [Voe13]. Andromeda uses bidirectional type checking modulo equational
queries that are implemented by algebraic e�ects and handlers [BP15]. However, most type
theorists consider equality re�ection unworkable, and often approximate it by postulating
function extensionality and uniqueness of identity proofs [Hof95].

A third approach, explored in redtt and Appendix B, is to regard our computational
semantics as the extraction semantics of an intensional calculus. In this approach, a natural
next step is to develop and prove correct a normalization by evaluation algorithm for
Cartesian cubical type theory; another is to add strict equality types to redtt. We have
already touched on multiple approaches suitable for two-level type theory: Nuprl’s (less
e�ective in the cubical setting), Andromeda’s (promising but not yet fully realized), and
even postulating axioms (which disrupts canonicity) [ACK16].

The author proposes another strict equality connective in XTT [SAG19], an intensional
cubical type theory with a strict variant of path types. Path types are already in many
ways an improvement on traditional identity types, which lack function extensionality
and do not directly express type-heterogeneous equations. In XTT, any two paths with
the same endpoints are moreover de�nitionally equal. Therefore, while equality is still
mediated by coercions, one never needs to mediate between two coercions. Although XTT
(and its forebear observational type theory [AMS07]) are not the end of the story [SAG19,
Section 2.3], we are optimistic about the future of type-theoretic equality connectives.

In closing, while the discourse around dependent type theory often centers on its
relative merits as a foundation of mathematics, the author �nds it di�cult to nominate
any one type theory for consideration. Instead, we suggest that type theories are more
akin to programming languages—certainly, some are more considered than others, but
there is no reason why one language should be ideal for all tasks. As Voevodsky [Voe14]
suggested, we should focus on practicality, not completeness, and rely on our experience
gained to inform our future type-theoretic endeavors.
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Computational-style rules

This appendix proposes rules for Cartesian cubical computational type theory. As discussed
in Section 2.4, computational type theories such as Nuprl [Con+85] and Idealized Nuprl
(Figure 2.4) are deductive systems for establishing judgments in a computational semantics,
characterized by their inclusion of equality re�ection and untyped computation rules.

Readers can experiment with Cartesian cubical computational type theory in the
RedPRL proof assistant [Ang+18].1 Notably, RedPRL derives less bene�t from untyped
computation rules than Nuprl: cubically-unstable evaluation is sound only in an empty
context (Lemma 4.16), and path endpoint projections (Rule 4.50) require typing information.

The judgments below were de�ned in Section 4.3, with the exception of ⇓, 7−→�, and
ψ : Ψ′→ Ψ, de�ned in Section 4.1. Contexts Ψ and Ξ are unordered, and equations in Ξ are
symmetric; κ ranges over {pre,Kan} and ε ranges over {0, 1}. Each rule is annotated with
the lemma containing its proof, and all judgments are relative to the cubical type system
τ
pre
ω de�ned in Section 4.2. We suppress ambient hypotheses in these rules for clarity;

every judgment implicitly contains additional hypotheses Γ except when speci�cally noted.
Metavariables marked with † abbreviate large terms de�ned in Figure 4.2.

Structural rules

A ∈ Uκ
i [Ψ]

a : A � a ∈ A [Ψ]
(4.23)

M � M′ ∈ B [Ψ] A ∈ Uκ
i [Ψ]

a : A � M � M′ ∈ B [Ψ]
(4.24)

M � M′ ∈ A [Ψ] ψ : Ψ′→ Ψ

Mψ � M′ψ ∈ Aψ [Ψ′]
(4.13)

M � M′ ∈ A [Ψ] A � A′ ∈ Uκ
i [Ψ]

M � M′ ∈ A′ [Ψ]
(4.12)

a : A � M � M′ ∈ B [Ψ] N � N ′ ∈ A [Ψ]

M[N /a] � M′[N ′/a] ∈ B[N /a] [Ψ]
(4.25)

M′ ∈ A [Ψ] M 7−→∗
�
M′

M � M′ ∈ A [Ψ]
(4.32)

· � M ∈ A [Ψ] M ⇓ M0

· � M � M0 ∈ A [Ψ]
(4.16)

1There are some discrepancies between this appendix and RedPRL: the latter interleaves term and
interval variables in a single context, and uses sequent calculus–style left rules rather than elimination rules.
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M � M′ ∈ A [Ψ]

M � M′ ∈ A [Ψ | ·]
(4.27)

M � M′ ∈ A [Ψ | Ξ]

M � M′ ∈ A [Ψ | Ξ, r = r ]
(4.27)

M � M′ ∈ A [Ψ | Ξ, 0 = 1]
(4.27)

M 〈r/x〉 � M′〈r/x〉 ∈ A〈r/x〉 [Ψ | Ξ〈r/x〉]

M � M′ ∈ A [Ψ, x | Ξ, x = r ]
(4.27)

Kan operations

(r = 0), (r = 1) ∈
−⇀
ξi

−⇀
ξi valid

(4.28)
(r = r ) ∈

−⇀
ξi

−⇀
ξi valid

(4.28)

A ∈ UKan
k [Ψ, x] M ∈ A〈r/x〉 [Ψ]

coer r ′

x .A (M) ∈ A〈r
′/x〉 [Ψ]

� M when r = r ′

(4.29)

−⇀
ξi valid
A ∈ UKan

k [Ψ]
M ∈ A [Ψ]

(∀i, j) Ni � Nj ∈ A [Ψ,y | ξi, ξj]
(∀i) Ni 〈r/y〉 � M ∈ A [Ψ | ξi]

hcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ]

�

{
M when r = r ′

Ni 〈r
′/y〉 when ξi

(4.29)

−⇀
ξi valid
A ∈ UKan

k [Ψ,y]
M ∈ A〈r/y〉 [Ψ]

(∀i, j) Ni � Nj ∈ A [Ψ,y | ξi, ξj]
(∀i) Ni 〈r/y〉 � M ∈ A〈r/y〉 [Ψ | ξi]

comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A〈r

′/y〉 [Ψ]

�

{
M when r = r ′

Ni 〈r
′/y〉 when ξi

(4.33)

A ∈ UKan
k [Ψ]

M ∈ A [Ψ]
(∀i, j) Ni � Nj ∈ A [Ψ,y | ξi, ξj]
(∀i) Ni 〈r/y〉 � M ∈ A [Ψ | ξi]

ghcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A [Ψ]

�

{
M when r = r ′

Ni 〈r
′/y〉 when ξi

(4.34)

A ∈ UKan
k [Ψ,y]

M ∈ A〈r/y〉 [Ψ]
(∀i, j) Ni � Nj ∈ A [Ψ,y | ξi, ξj]
(∀i) Ni 〈r/y〉 � M ∈ A〈r/y〉 [Ψ | ξi]

gcomr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) ∈ A〈r

′/y〉 [Ψ]

�

{
M when r = r ′

Ni 〈r
′/y〉 when ξi

(4.35)
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Other rules

A ∈ Uκ
i [Ψ] a : A � B ∈ Uκ

i [Ψ]

(a:A) → B ∈ Uκ
i [Ψ]

(4.36)
a : A � M ∈ B [Ψ]

λa.M ∈ (a:A) → B [Ψ]
(4.37)

M ∈ (a:A) → B [Ψ] N ∈ A [Ψ]

M N ∈ B[N /a] [Ψ]
(4.39)

M ∈ (a:A) → B [Ψ]

M � λa.M a ∈ (a:A) → B [Ψ]
(4.40)

A ∈ Uκ
i [Ψ] a : A � B ∈ Uκ

i [Ψ]

(a:A) × B ∈ Uκ
i [Ψ]

(4.43)

a : A � B ∈ Uκ
i [Ψ]

M ∈ A [Ψ] N ∈ B[M/a] [Ψ]

〈M,N 〉 ∈ (a:A) × B [Ψ]
(4.44)

P ∈ (a:A) × B [Ψ]
fst(P) ∈ A [Ψ]

(4.45)
P ∈ (a:A) × B [Ψ]

snd(P) ∈ B[fst(P)/a] [Ψ]
(4.45)

P ∈ (a:A) × B [Ψ]
P � 〈fst(P), snd(P)〉 ∈ (a:A) × B [Ψ]

(4.46)

A ∈ Uκ
i [Ψ, x]

P0 ∈ A〈0/x〉 [Ψ]
P1 ∈ A〈1/x〉 [Ψ]

Pathx .A(P0, P1) ∈ U
κ
i [Ψ]

(4.48)

M ∈ A [Ψ, x]
M 〈0/x〉 � P0 ∈ A〈0/x〉 [Ψ]
M 〈1/x〉 � P1 ∈ A〈1/x〉 [Ψ]
〈x〉M ∈ Pathx .A(P0, P1) [Ψ]

(4.49)

M ∈ Pathx .A(P0, P1) [Ψ]

M@r ∈ A〈r/x〉 [Ψ]
(4.50)

M ∈ Pathx .A(P0, P1) [Ψ]

M@ε � Pε ∈ A〈ε/x〉 [Ψ]
(4.50)

M ∈ Pathx .A(P0, P1) [Ψ]

M � 〈x〉(M@x) ∈ Pathx .A(P0, P1) [Ψ]
(4.51)

A ∈ U
pre
i [Ψ] M ∈ A [Ψ] N ∈ A [Ψ]

EqA(M,N ) ∈ U
pre
i [Ψ]

(4.53)
M � N ∈ A [Ψ]

? ∈ EqA(M,N ) [Ψ]
(4.54)

E ∈ EqA(M,N ) [Ψ]

M � N ∈ A [Ψ]
(4.55)

E ∈ EqA(M,N ) [Ψ]

E � ? ∈ EqA(M,N ) [Ψ]
(4.56)
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void ∈ Uκ
i [Ψ]

(4.57)
M ∈ void [Ψ]

N ∈ A [Ψ]
(4.58)

bool ∈ Uκ
i [Ψ]

(4.60)
true ∈ bool [Ψ]

(4.61)
false ∈ bool [Ψ]

(4.61)

b : bool � A ∈ Uκ
i [Ψ]

M ∈ bool [Ψ] T ∈ A[true/b] [Ψ] F ∈ A[false/b] [Ψ]

if(M ;T , F ) ∈ A[M/b] [Ψ]
(4.62)

nat ∈ Uκ
i [Ψ]

(4.65)
z ∈ nat [Ψ]

(4.66)
M ∈ nat [Ψ]

s(M) ∈ nat [Ψ]
(4.66)

n : nat � A ∈ Uκ
i [Ψ]

M ∈ nat [Ψ] Z ∈ A[z/n] [Ψ] n : nat,a : A � S ∈ A[s(n)/n] [Ψ]

natrec(M ;Z ,n.a.S) ∈ A[M/n] [Ψ]
(4.67)

S1 ∈ Uκ
i [Ψ]

(4.70)
base ∈ S1 [Ψ]

(4.71)
loopr ∈ S

1 [Ψ]
(4.71)

c : S1 � A ∈ UKan
i [Ψ]

M ∈ S1 [Ψ]
P ∈ A[base/c] [Ψ]
L ∈ A[loopx/c] [Ψ, x]

(∀ε) L〈ε/x〉 � P ∈ A[base/c] [Ψ]

S1-elimc .A(M ; P, x .L) ∈ A[M/c] [Ψ]
(4.76)

L ∈ B [Ψ, x] (∀ε) L〈ε/x〉 � P ∈ B〈ε/x〉 [Ψ]

S1-elimc .A(loopr ; P, x .L) � L〈r/x〉 ∈ B〈r/x〉 [Ψ]
(4.73)



153

c : S1 � A ∈ UKan
i [Ψ]

P ∈ A[base/c] [Ψ]
L ∈ A[loopx/c] [Ψ, x]

(∀ε) L〈ε/x〉 � P ∈ A[base/c] [Ψ]

−⇀
ξi valid
M ∈ S1 [Ψ]

(∀i, j) Ni � Nj ∈ S
1 [Ψ,y | ξi, ξj]

(∀i) Ni 〈r/y〉 � M ∈ S1 [Ψ | ξi]

S1-elimc .A(hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni); P, x .L)

� comr r ′

z.A[hcomr z
S1
(M ;
−−−−−−−−⇀
ξi ↪→y.Ni )/c]

(S1-elimc .A(M ; P, x .L);
−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.S1-elimc .A(Ni ; P, x .L))

∈ A[hcomr r ′

S1 (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)/c] [Ψ]

(4.75)

isContr(C) := (c:C) × ((c′:C) → Path_.C(c
′, c))

Equiv(A,B) := (f :A→ B) × ((b:B) → isContr((a:A) × Path_.B(f a,b)))

A ∈ Uκ
i [Ψ | r = 0]

B ∈ Uκ
i [Ψ]

E ∈ Equiv(A,B) [Ψ | r = 0]
Vr (A,B, E) ∈ U

κ
i [Ψ]

(4.78)

M ∈ A [Ψ | r = 0]
N ∈ B [Ψ]

E ∈ Equiv(A,B) [Ψ | r = 0]
fst(E)M � N ∈ B [Ψ | r = 0]
Vinr (M,N ) ∈ Vr (A,B, E) [Ψ]

(4.79)

M ∈ Vr (A,B, E) [Ψ]

Vprojr (M, fst(E)) ∈ B [Ψ]
(4.80)

M ∈ A [Ψ | r = 0]
N ∈ B [Ψ] F ∈ A→ B [Ψ | r = 0] F M � N ∈ B [Ψ | r = 0]

Vprojr (Vinr (M,N ), F ) � N ∈ B [Ψ]
(4.81)

N ∈ Vr (A,B, E) [Ψ]

Vinr (N ,Vprojr (N , fst(E))) � N ∈ Vr (A,B, E) [Ψ]
(4.82)

−⇀
ξi valid
M ∈ Vx (A,B, E) [Ψ]

(∀i, j) Ni � Nj ∈ Vx (A,B, E) [Ψ,y | ξi, ξj]
(∀i) Ni 〈r/y〉 � M ∈ Vx (A,B, E) [Ψ | ξi]

hcomr r ′

Vx (A,B,E)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)

� Vinx (O†〈r ′/y〉, hcomr r ′

B (Vprojx (M, fst(E));
−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.Vprojx (Ni, fst(E)),

−⇀
T †))

∈ Vx (A,B, E) [Ψ]

(4.83)
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A ∈ UKan
i [Ψ, x,y | x = 0] B ∈ UKan

i [Ψ, x,y]
E ∈ Equiv(A,B) [Ψ, x,y | x = 0] M ∈ Vx (A〈r/y〉,B〈r/y〉, E〈r/y〉) [Ψ, x]

coer r ′

y.Vx (A,B,E)
(M) � Vinx (coer r ′

y.A (M), com
r r ′

y.B (Vprojx (M, fst(E〈r/y〉));
−⇀
T †))

∈ Vx (A〈r
′/y〉,B〈r ′/y〉, E〈r ′/y〉) [Ψ, x]

(4.84)

i < j

Uκ
i ∈ U

κ ′

j [Ψ]
(4.103)

A ∈ Uκ
i [Ψ]

A ∈ Uκ
i+1 [Ψ]

(4.99)
A ∈ UKan

i [Ψ]

A ∈ U
pre
i [Ψ]

(4.99)

−⇀
ξi valid
A ∈ UKan

k [Ψ]

(∀i, j) Bi � Bj ∈ U
Kan
k [Ψ,y | ξi, ξj]

(∀i) Bi 〈r/y〉 � A ∈ UKan
k [Ψ | ξi]

M ∈ A [Ψ]
(∀i, j) Ni � Nj ∈ Bi 〈r

′/y〉 [Ψ | ξi, ξj]

(∀i) coer
′ r
y.Bi
(Ni) � M ∈ A [Ψ | ξi]

boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni) ∈ hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ]

� Ni when ξi

(4.91)

M ∈ hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ]

caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) ∈ A [Ψ]

� coer
′ r
y.Bi
(M) when ξi

(4.92)

−⇀
ξi valid
A ∈ UKan

k [Ψ]

(∀i, j) Bi � Bj ∈ U
Kan
k [Ψ,y | ξi, ξj]

(∀i) Bi 〈r/y〉 � A ∈ UKan
k [Ψ | ξi]

M ∈ A [Ψ]
(∀i, j) Ni � Nj ∈ Bi 〈r

′/y〉 [Ψ | ξi, ξj]

(∀i) coer
′ r
y.Bi
(Ni) � M ∈ A [Ψ | ξi]

caprfr ′(boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni);

−−−−−−−−⇀
ξi ↪→ y.Bi) � M ∈ A [Ψ]

(4.93)

M ∈ hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ]

boxr r ′(caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi);

−−−−−−−⇀
ξi ↪→ M) � M ∈ hcomr r ′

UKan
k
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [Ψ]

(4.94)



155

−−−−−⇀
ri = r

′
i valid

M ∈ hcoms s ′

UKan
k
(A;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) [Ψ]

(∀i, j) Ni � Nj ∈ hcoms s ′

UKan
k
(A;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) [Ψ,y | ri = r

′
i , rj = r

′
j ]

(∀i) Ni 〈r/y〉 � M ∈ hcoms s ′

UKan
k
(A;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) [Ψ | ri = r

′
i ]

hcomr r ′

hcoms s ′

UKan
k
(A;
−−−−−−−−−−⇀
sj=s

′
j ↪→z.Bj )

(M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) � boxs s ′(Q†;

−−−−−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ P†j 〈r

′/y〉)

∈ hcoms s ′

UKan
k
(A;
−−−−−−−−−−−−−⇀
sj = s

′
j ↪→ z.Bj) [Ψ]

(4.95)

−⇀
ξi valid
A ∈ UKan

k [Ψ, x]

(∀i, j) Bi � Bj ∈ U
Kan
k [Ψ, x, z | ξi, ξj]

(∀i) Bi 〈r/z〉 � A ∈ UKan
k [Ψ, x | ξi]

M ∈ hcoms 〈r/x〉 s ′〈r/x〉

UKan
k

(A〈r/x〉;
−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r/x〉 ↪→ z.Bi 〈r/x〉) [Ψ]

coer r ′

x .hcoms s ′

UKan
k
(A;
−−−−−−−⇀
ξi ↪→z.Bi )

(M) � boxs 〈r
′/x〉 s ′〈r ′/x〉(H†;

−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r

′/x〉 ↪→ Q†i 〈s
′〈r ′/x〉/z〉)

∈ hcoms 〈r ′/x〉 s ′〈r ′/x〉

UKan
k

(A〈r ′/x〉;
−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r

′/x〉 ↪→ z.Bi 〈r
′/x〉) [Ψ]

(4.96)





B
Intensional-style rules

This appendix proposes rules for intensional Cartesian cubical type theory. As discussed in
Section 2.4, intensional type theories, such as those implemented by Agda [Agda] and Coq
[Coq], are deductive systems whose equality judgments (and therefore, typing judgments)
admit decision procedures.1 We conjecture but have not proven decidability or even
canonicity for the system of rules below. Readers can experiment with similar intensional
Cartesian cubical type theories in the redtt proof assistant [Red18], and can consult
Angiuli et al. [Ang+19] for the denotational semantics of a related deductive system.

We intend these rules as a general reference for Cartesian cubical type theory, so we
have omitted pretypes (and hence, strict equality types) and our validity condition on
composition shapes (and hence, generalized composition). Conversely, we have added level
annotations to our typehood judgment [Coq19] and type annotations to elimination forms
(and an eliminator abort(−) for void), ensuring that our rules are generalized algebraic
and thus admit a category of models [Car86].

In order to admit decidable equality judgments, we have eliminated several instances
of equality re�ection. First, hcomr r ′

nat (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) must compute by recursion on M,Ni

rather than generically to M ; otherwise, whenever P : Path_.nat(P0, P1), the composition
hcom0 1

nat (P0; 0 = 0 ↪→ y.P@y) equals both P0 (by the rule for hcomnat) and P1 (by 0 = 0),
implying P0 = P1 judgmentally. Secondly, we omit the equality re�ection rule itself. In
the future, one might consider alternative formulations of strict equality compatible with
decidable judgmental equality; possibilities include observational type theory [AMS07],
XTT [SAG19], or even simply postulating an axiom for uniqueness of identity proofs (at
the expense of canonicity) [ACK16].

Judgments

The judgments of intensional Cartesian cubical type theory range over the syntactic
sorts presented in Figure B.1. Following XTT [SAG19], we gather interval variables and
constraints in a single context Ψ, now representing an object of the augmented Cartesian

cube category (which adjoins to � an initial object interpreting inconsistent contexts).

1. Ψ cube+ when Ψ is an augmented Cartesian cube.

2. Ψ | r : I, presupposing Ψ cube+, when r is an interval term in Ψ.
1Historically, intensional equality judgments were generated by β rules and decided by untyped means;

modern decision procedures are type-sensitive and admit various η rules [ACD07].
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Augmented cubes Ψ := · | Ψ, x | Ψ, ξ
Contexts Γ := · | Γ,a : A
Interval terms r , s := x | ε
Interval constants ε := 0 | 1
Interval equations ξ := r = r ′

Universe levels i, j := n ∈ N
Types A,B := (a:A) → B | (a:A) × B | Pathx .A(M,N ) | void | bool | nat

| S1 | Vr (A,B,M) | Typei
Terms M,N := λa.M | appa:A.B(M,N ) | 〈M,N 〉 | fsta:A.B(M) | snda:A.B(M)

| 〈x〉M | iappx .A(M, r ) | abortA(M) | true | false
| ifb .A(M ;N0,N1) | z | s(M) | natrecn.A(M ;N0,n.a.N1)

| base | loopr | S
1-elimc .A(M ;N0, x .N1) | Vinr (M,N )

| VprojA,Br (M,N ) | coer r ′

x .A (M) | hcom
r r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)

| comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) | boxr r ′

A,
−−−⇀
y.Bi
(M ;
−−−−−−−⇀
ξi ↪→ Ni)

| caprfr ′

A (M ;
−−−−−−−−⇀
ξi ↪→ y.Bi)

Figure B.1: Grammar of intensional Cartesian cubical type theory.

3. Ψ | r = r ′ : I, presupposing Ψ | r , r ′ : I, when r , r ′ are equal interval terms in Ψ.

4. Ψ | Γ ctx, presupposing Ψ cube+, when Γ is a context in Ψ.

5. Ψ | Γ ` A typei , presupposing Ψ | Γ ctx, when A is a type at level i in Γ.

6. Ψ | Γ ` A = B typei , presupposing Ψ | Γ ` A,B typei , when A,B are equal types.

7. Ψ | Γ ` M : A, presupposing Ψ | Γ ` A typei , when M is an element of A in Γ.

8. Ψ | Γ ` M = N : A, presupposing Ψ | Γ ` M,N : A, when M,N are equal elements.

In the following rules, we omit premises to equational rules, most type and term
annotations (writing M N for appa:A.B(M,N ), M@r for iappx .A(M, r ), et cetera), and all
congruence rules. Moreover, we adopt the following notations:

1. Ψ | Γ ` J abbreviates any typehood, membership, or equality judgment.

2. Ψ | Γ ` A typei [
−−−−−−⇀
ξi ↪→ Bi] abbreviates Ψ | Γ ` A typei and

−−−−−−−−−−−−−−−−−−−−⇀
Ψ, ξi | Γ ` A = B typei .

3. Ψ | Γ ` M : A [
−−−−−−−⇀
ξi ↪→ Ni] abbreviates Ψ | Γ ` M : A and

−−−−−−−−−−−−−−−−−−−⇀
Ψ, ξi | Γ ` M = Ni : A.
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Structural rules

· cube+

Ψ cube+

Ψ, x cube+

Ψ cube+ Ψ | r , r ′ : I
Ψ, r = r ′ cube+

Ψ | 0 : I Ψ | 1 : I
Ψ 3 x

Ψ | x : I
Ψ 3 r = r ′

Ψ | r = r ′ : I

Ψ cube+

Ψ | · ctx

Ψ | Γ ctx Ψ | Γ ` A typei
Ψ | Γ,a : A ctx

Γ 3 a : A
Ψ | Γ ` a : A

Ψ | 0 = 1 : I
Ψ | Γ ` J

Ψ | Γ ` A = A′ typei Ψ | Γ ` M : A
Ψ | Γ ` M : A′

Ψ | Γ ` A typei i < j

Ψ | Γ ` A typej

Ψ | Γ ` A typei
Ψ | Γ ` A : Typei

Ψ | Γ ` A : Typei
Ψ | Γ ` A typei

Ψ | Γ ` A = A′ typei
Ψ | Γ ` A = A′ : Typei

Ψ | Γ ` A = A′ : Typei
Ψ | Γ ` A = A′ typei

Kan operations

Ψ | r , r ′ : I Ψ, x | Γ ` A typei Ψ | Γ ` M : A〈r/x〉

Ψ | Γ ` coer r ′

x .A (M) : A〈r ′/x〉 [r = r ′ ↪→ M]

Ψ | r , r ′ : I Ψ | Γ ` M : A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, ξi,y | Γ ` Ni : A [y = r ↪→ M,

−−−−−−−⇀
ξj ↪→ Nj]

Ψ | Γ ` hcomr r ′

A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) : A [r = r ′ ↪→ M,

−−−−−−−−−−−−−⇀
ξi ↪→ Ni 〈r

′/y〉]

Ψ | r , r ′ : I Ψ,y | Γ ` A typek

Ψ | Γ ` M : A〈r/y〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, ξi,y | Γ ` Ni : A [y = r ↪→ M,

−−−−−−−⇀
ξj ↪→ Nj]

Ψ | Γ ` comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) : A〈r ′/y〉 [r = r ′ ↪→ M,

−−−−−−−−−−−−−⇀
ξi ↪→ Ni 〈r

′/y〉]

Ψ | Γ ` comr r ′

y.A (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) = hcomr r ′

A〈r ′/y〉(coe
r r ′

y.A (M);
−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.coey r ′

y.A (Ni)) : A〈r ′/y〉
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Other rules

Ψ | Γ ` A typei Ψ | Γ,a : A ` B typei
Ψ | Γ ` (a:A) → B typei

Ψ | Γ,a : A ` M : B
Ψ | Γ ` λa.M : (a:A) → B

Ψ | Γ ` M : (a:A) → B Ψ | Γ ` N : A
Ψ | Γ ` appa:A.B(M,N ) : B[N /a] Ψ | Γ ` (λa.M) N = M[N /a] : B[N /a]

Ψ | Γ ` M = λa.M a : (a:A) → B

Ψ | Γ ` coer r ′

x .(a:A)→B(M) = λa.coe
r r ′

x .B[coer ′ x
x .A (a)/a]

(M coer
′ r
x .A (a)) : (a:A〈r ′/x〉) → B〈r ′/x〉

Ψ | Γ ` hcomr r ′

(a:A)→B(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) = λa.hcomr r ′

B (M a;
−−−−−−−−−−⇀
ξi ↪→ y.Ni a) : (a:A) → B

Ψ | Γ ` A typei
Ψ | Γ,a : A ` B typei
Ψ | Γ ` (a:A) × B typei

Ψ | Γ,a : A ` B typei
Ψ | Γ ` M : A

Ψ | Γ ` N : B[M/a]
Ψ | Γ ` 〈M,N 〉 : (a:A) × B

Ψ | Γ ` M : (a:A) × B
Ψ | Γ ` fsta:A.B(M) : A

Ψ | Γ ` M : (a:A) × B
Ψ | Γ ` snda:A.B(M) : B[fst(M)/a] Ψ | Γ ` fst(〈M,N 〉) = M : A

Ψ | Γ ` snd(〈M,N 〉) = N : B[M/a] Ψ | Γ ` M = 〈fst(M), snd(M)〉 : (a:A) × B

M̃0[x] := coer x
x .A (fst(M))

Ψ | Γ ` coer r ′

x .(a:A)×B(M) = 〈M̃0[r
′], coer r ′

x .B[M̃0[x]/a]
(snd(M))〉 : (a:A〈r ′/x〉) × B〈r ′/x〉

M̃0[z] := hcomr z
A (fst(M);

−−−−−−−−−−−−−⇀
ξi ↪→ y.fst(Ni))

M̃1 := comr r ′

z.B[M̃0[z]/a]
(snd(M);

−−−−−−−−−−−−−−⇀
ξi ↪→ y.snd(Ni))

Ψ | Γ ` hcomr r ′

(a:A)×B(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) = 〈M̃0[r

′], M̃1〉 : (a:A) × B
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Ψ, x | Γ ` A typei
−−−−−−−−−−−−−−−−−−−−⇀
Ψ, x, x = ε | Γ ` Nε : A

Ψ | Γ ` Pathx .A(N0,N1) typei

Ψ, x | Γ ` M : A [−−−−−−−−−−⇀x = ε ↪→ Nε]

Ψ | Γ ` 〈x〉M : Pathx .A(N0,N1)

Ψ | r : I Ψ | Γ ` M : Pathx .A(N0,N1)

Ψ | Γ ` iappx .A(M, r ) : A〈r/x〉 [−−−−−−−−−−⇀r = ε ↪→ Nε] Ψ | Γ ` (〈x〉M)@r = M 〈r/x〉 : A〈r/x〉

Ψ | Γ ` M = 〈x〉(M@x) : Pathx .A(N0,N1)

M̃ := 〈x〉comr r ′

y.A (M@x ;−−−−−−−−−−−−⇀x = ε ↪→ y.Nε)

Ψ | Γ ` coer r ′

y.Pathx .A(N0,N1)
(M) = M̃ : Pathx .A〈r ′/y〉(N0〈r

′/y〉,N1〈r
′/y〉)

M̃ := 〈x〉hcomr r ′

A (M@x ;−−−−−−−−−−−−⇀x = ε ↪→ _.Nε,
−−−−−−−−−−−−⇀
ξi ↪→ y.Qi@x)

Ψ | Γ ` hcomr r ′

Pathx .A(N0,N1)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Qi) = M̃ : Pathx .A(N0,N1)

Ψ | Γ ` void typei

Ψ | Γ ` A typei Ψ | Γ ` M : void
Ψ | Γ ` abortA(M) : A

Ψ | Γ ` bool typei Ψ | Γ ` true : bool Ψ | Γ ` false : bool

Ψ | Γ,b : bool ` A typei
Ψ | Γ ` M : bool

Ψ | Γ ` N0 : A[true/b]
Ψ | Γ ` N1 : A[false/b]

Ψ | Γ ` ifb .A(M ;N0,N1) : A[M/b] Ψ | Γ ` if(true;N0,N1) = N0 : A[true/b]

Ψ | Γ ` if(false;N0,N1) = N1 : A[false/b] Ψ | Γ ` coer r ′

x .bool(M) = M : bool

Ψ | Γ ` hcomr r ′

bool (true;
−−−−−−−−−−⇀
ξi ↪→ y.true) = true : bool

Ψ | Γ ` hcomr r ′

bool (false;
−−−−−−−−−−−⇀
ξi ↪→ y.false) = false : bool
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Ψ | Γ ` nat typei Ψ | Γ ` z : nat
Ψ | Γ ` M : nat

Ψ | Γ ` s(M) : nat

Ψ | Γ,n : nat ` A typei
Ψ | Γ ` M : nat Ψ | Γ ` N0 : A[z/n] Ψ | Γ,n : nat,a : A ` N1 : A[s(n)/n]

Ψ | Γ ` natrecn.A(M ;N0,n.a.N1) : A[M/n]

Ψ | Γ ` natrec(z;N0,n.a.N1) = N0 : A[z/n]

Ψ | Γ ` natrec(s(M);N0,n.a.N1) = N1[M, natrec(M ;N0,n.a.N1)/n,a] : A[s(M)/n]

Ψ | Γ ` coer r ′

x .nat (M) = M : nat Ψ | Γ ` hcomr r ′

nat (z;
−−−−−−−⇀
ξi ↪→ y.z) = z : nat

Ψ | Γ ` hcomr r ′

nat (s(M);
−−−−−−−−−−−⇀
ξi ↪→ y.s(Ni)) = s(hcomr r ′

nat (M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni)) : nat

Ψ | Γ ` S1 typei Ψ | Γ ` base : S1

Ψ | r : I

Ψ | Γ ` loopr : S1 [
−−−−−−−−−−−−⇀
r = ε ↪→ base]

Ψ | Γ, c : S1 ` A typei
Ψ | Γ ` M : S1 Ψ | Γ ` N0 : A[base/c] Ψ, x | Γ ` N1 : A[loopx/c] [

−−−−−−−−−−−⇀
x = ε ↪→ N0]

Ψ | Γ ` S1-elimc .A(M ;N0, x .N1) : A[M/c]

Ψ | Γ ` coer r ′

x .S1 (M) = M : S1 Ψ | Γ ` S1-elimc .A(base;N0, x .N1) = N0 : A[base/c]

Ψ | Γ ` S1-elimc .A(loopr ;N0, x .N1) = N1〈r/x〉 : A[loopr/c]

M̃[z] := hcomr z
S1 (M ;

−−−−−−−−−⇀
ξi ↪→ y.Qi)

H̃ := comr r ′

z.A[M̃[z]/c]
(S1-elimc .A(M ;N0, x .N1);

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.S1-elimc .A(Qi ;N0, x .N1))

Ψ | Γ ` S1-elimc .A(M̃[r
′];N0, x .N1) = H̃ : A[M̃[r ′]/c]
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isContr(C) := (c:C) × ((c′:C) → Path_.C(c
′, c))

Equiv(A,B) := (f :A→ B) × ((b:B) → isContr((a:A) × Path_.B(f a,b)))

Ψ, r = 0 | Γ ` A typei Ψ | Γ ` B typei Ψ, r = 0 | Γ ` E : Equiv(A,B)
Ψ | Γ ` Vr (A,B, E) typei [r = 0 ↪→ A, r = 1 ↪→ B]

Ψ, r = 0 | Γ ` M : A
Ψ, r = 0 | Γ ` E : Equiv(A,B) Ψ | Γ ` N : B [r = 0 ↪→ fst(E)M]

Ψ | Γ ` Vinr (M,N ) : Vr (A,B, E) [r = 0 ↪→ M, r = 1 ↪→ N ]

Ψ | Γ ` M : Vr (A,B, E)

Ψ | Γ ` VprojA,Br (M, E) : B [r = 0 ↪→ fst(E)M, r = 1 ↪→ M]

Ψ | Γ ` Vprojr (Vinr (M,N ), E) = N : B Ψ | Γ ` Vinr (N ,Vprojr (N , E)) = N : Vr (A,B, E)

Ñ := coer r ′

x .B (Vprojr (M, E〈r/x〉))
F̃ := (a:A〈r ′/x〉) × Path_.B〈r ′/x〉(fst(E〈r ′/x〉) a, Ñ ) C̃ := snd(E〈r ′/x〉) Ñ
Õ := hcom1 0

F̃
(fst(C̃); r = 0 ↪→ z.(snd(C̃) 〈M, 〈_〉(fst(E〈0/x〉)M)〉)@z)

P̃ := hcom1 0
B〈r ′/x〉(Ñ ; r ′ = 0 ↪→ z.snd(Õ)@z, r = r ′ ↪→ _.Vprojr (M, E〈r/x〉))

Ψ | Γ ` coer r ′

x .Vx (A,B,E)
(M) = Vinr ′(fst(Õ), P̃) : Vr ′(A〈r

′/x〉,B〈r ′/x〉, E〈r ′/x〉)

T̃ := x = 0 ↪→ y.fst(E) coer y
y.A (M), x = 1 ↪→ y.coer y

y.B (M)

C̃ := Vinx (coer r ′

y.A (M), com
r r ′

y.B (Vprojx (M, E〈r/y〉); T̃ ))

Ψ | Γ ` coer r ′

y.Vx (A,B,E)
(M) = C̃ : Vx (A〈r

′/y〉,B〈r ′/y〉, E〈r ′/y〉)

Õ[y] := hcomr y
A (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)

T̃ := x = 0 ↪→ y.fst(E) Õ[y], x = 1 ↪→ y.hcomr y
B (M ;

−−−−−−−−−⇀
ξi ↪→ y.Ni)

H̃ := Vinx (Õ[r ′], hcomr r ′

B (Vprojx (M, E);
−−−−−−−−−−−−−−−−−−−⇀
ξi ↪→ y.Vprojx (Ni, E), T̃ ))

Ψ | Γ ` hcomr r ′

Vx (A,B,E)
(M ;
−−−−−−−−−⇀
ξi ↪→ y.Ni) = H̃ : Vx (A,B, E)

i < j

Ψ | Γ ` Typei typej Ψ | Γ ` coer r ′

x .Typei
(A) = A : Typei
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Ψ | r , r ′ : I Ψ | Γ ` A : Typek
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, ξi,y | Γ ` Bi : Typek [y = r ↪→ A,

−−−−−−−⇀
ξj ↪→ Bj]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, ξi | Γ ` Ni : Bi 〈r ′/y〉 [

−−−−−−−⇀
ξj ↪→ Nj] Ψ | Γ ` M : A [

−−−−−−−−−−−−−−−−⇀
ξi ↪→ coer

′ r
y.Bi
(Ni)]

Ψ | Γ ` boxr r ′

A,
−−−⇀
y.Bi
(M ;
−−−−−−−⇀
ξi ↪→ Ni) : hcomr r ′

Typek
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi) [r = r

′ ↪→ M,
−−−−−−−⇀
ξi ↪→ Ni]

Ψ | Γ ` M : hcomr r ′

Typek
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi)

Ψ | Γ ` caprfr ′

A (M ;
−−−−−−−−⇀
ξi ↪→ y.Bi) : A [r = r ′ ↪→ M,

−−−−−−−−−−−−−−−−⇀
ξi ↪→ coer

′ r
y.Bi
(M)]

Ψ | Γ ` caprfr ′(boxr r ′(M ;
−−−−−−−⇀
ξi ↪→ Ni);

−−−−−−−−⇀
ξi ↪→ y.Bi) = M : A

Ψ | Γ ` boxr r ′(caprfr ′(M ;
−−−−−−−−⇀
ξi ↪→ y.Bi);

−−−−−−−⇀
ξi ↪→ M) = M : hcomr r ′

Typek
(A;
−−−−−−−−⇀
ξi ↪→ y.Bi)

Ñi[w, z] := coes
′〈w/x〉 z
z.Bi 〈w/x〉

(coer w
x .Bi 〈s ′/z〉

(M))

T̃ :=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r/x〉 ↪→ z.coez s 〈r/x〉

z.Bi 〈r/x〉
(coes

′〈r/x〉 z
z.Bi 〈r/x〉

(M))

Õ[z] := hcoms ′〈r/x〉 z
A〈r/x〉

(caps 〈r/x〉fs ′〈r/x〉(M ;
−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r/x〉 ↪→ z.Bi 〈r/x〉); T̃ )

P̃ := comr r ′

x .A (Õ[s 〈r/x〉];
−−−−−−−−−−−−−−⇀
ξi ↪→ x .Ñi[x, s]|(x#ξi ), s = s

′ ↪→ x .coer x
x .A (M)|(x#s,s ′))

Q̃k[z] := coms 〈r ′/x〉 z
z.Bk 〈r ′/x〉

(P̃ ;
−−−−−−−−−−−−−−⇀
ξi ↪→ z.Ñi[r

′, z]|(x#ξi ), r = r
′ ↪→ z.coes

′〈r ′/x〉 z
z.Bk 〈r ′/x〉

(M))

H̃ := hcoms 〈r ′/x〉 s ′〈r ′/x〉
A〈r ′/x〉

(P̃ ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r

′/x〉 ↪→ z.coez s 〈r ′/x〉
z.Bi 〈r ′/x〉

(Q̃i[z]), r = r
′ ↪→ z.Õ[z])

C̃ := boxs 〈r
′/x〉 s ′〈r ′/x〉(H̃ ;

−−−−−−−−−−−−−−−−−−−−−−⇀
ξi 〈r

′/x〉 ↪→ Q̃i[s
′〈r ′/x〉])

Ψ | Γ ` coer r ′

x .hcoms s ′
Typej
(A;
−−−−−−−⇀
ξi ↪→z.Bi )

(M) = C̃ : (hcoms s ′

Typej
(A;
−−−−−−−−⇀
ξi ↪→ z.Bi))〈r

′/x〉

Õi := capsfs ′(Ni ;
−−−−−−−−⇀
ξj ↪→ z.Bj) P̃j[y] := hcomr y

Bj 〈s ′/z〉
(M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni)

T̃ :=
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Õi,

−−−−−−−−−−−−−−−−−−−−⇀
ξj ↪→ y.coes

′ s
z.Bj
(P̃j[y]), s = s

′ ↪→ y.hcomr y
A (M ;

−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni)

Q̃ := hcomr r ′

A (capsfs ′(M ;
−−−−−−−−⇀
ξj ↪→ z.Bj); T̃ ) H̃ := boxs s ′(Q̃ ;

−−−−−−−−−−⇀
ξj ↪→ P̃j[r

′])

Ψ | Γ ` hcomr r ′

hcoms s ′
Typek

(A;
−−−−−−−⇀
ξ j ↪→z.Bj )

(M ;
−−−−−−−−−−−−−⇀
ri = r

′
i ↪→ y.Ni) = H̃ : hcoms s ′

Typek
(A;
−−−−−−−−⇀
ξj ↪→ z.Bj)
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