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Abstract
Multi-process systems control the behavior of everything from datacenters stor-

ing our information to banking systems managing money. Each one of these pro-
cesses has a prescribed role, their contract, that governs their behavior during the
joint computation. When a single process violates their communication contract,
the impact of this misbehavior can rapidly propagate through the system. This the-
sis develops techniques for dynamically monitoring expressive classes of concurrent
contracts. We provide multiple mechanisms to monitor contracts of increasing com-
plexity. In order to model message-passing concurrent computation, we use a session
type system. First, we present a method for dynamic monitoring and blame assign-
ment where communication contracts are expressed using session types. Second,
we describe contract-checking processes that handle stateful contracts that cannot
be expressed with a session type. These contract-checking processes are also able
to encode type refinements. Third, we encode dependent types in our system which
allow us to monitor complex invariants. Finally, we survey a number of other moni-
toring extensions including a mechanism to monitor deadlock.
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Chapter 1

Introduction

Multi-process systems control the behavior of everything from datacenters storing our infor-
mation to banking systems managing money. Each one of these processes has a prescribed role,
their contract, that governs their behavior during the joint computation. For example, in a crypto-
graphic protocol, one process may be responsible for factoring numbers, a second for encrypting
a message and a third for decrypting communication. The desired contract for the factoring pro-
cess confirms that an integer is correctly factored into two integer factors. Some contracts are
simple to monitor, for example, the fact that a process takes an integer as input and produces an
integer as output. In other cases, contacts can be significantly more difficult to validate. For in-
stance, checking that a sorted list has the same elements as the original list can be just as complex
as sorting the original list. Ensuring that a process correctly factors a given integer lies some-
where in the middle of the contract complexity spectrum. The goal of this thesis is to extend the
monitoring frontier to be able to handle a larger segment of the contract spectrum.

When a single process violates their communication contract, the impact of this misbehavior
can rapidly propagate through the system. Moreover, when the problem is eventually discovered,
determining which process is to blame for the contract breach can be a challenge. A rogue
factoring process could go unnoticed until a decryption went awry, leading to confusion about
whether the factoring, the decryption, or both were at fault. In order to maintain the integrity
of the system, it is necessary to not only abort the computation once incorrect behavior has
occured, but also to hold the correct party accountable. This thesis develops techniques to detect
and contain process misbehavior by dynamically monitoring violations of a process’ contract.

In functional languages, a contract for a function can be modeled as an expressive type that
places constraints on its arguments and return value [14]. Typically, as the function executes,
these constraints are checked dynamically. If a constraint is violated, the system will attempt to
assign blame to the party responsible for the contract violation. For example, if the argument of
the function does not meet the constraints encoded in the function type, the fault likely lies with
the caller of the function. Otherwise, if the return value is inconsistent with the function type,
the function itself is to blame. While significant research has been done on dynamic contract
checking in a sequential setting, concurrent computation presents an additional challenge.

In order to model concurrent computation, we use a session type system that was designed
by Toninho et al. [37]. Session types are based on a computational interpretation of linear logic,
which is a substructural logic that allows reasoning about resources within the logic itself. In
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this logic, all resources are ephemeral and are consumed with each step of the computation.
That is, we annotate each communication channel with a session type and as processes com-
municate over the channel by message passing, the type of the channel changes with every step
of the communication. This temporal structure allows us to model concurrent communication
protocols by imposing an ordering on the messages that flow through a given channel. Our type
system supports higher-order communication, where channels can delegate communication to
other channels. This property significantly complicates our monitoring infrastructure.

We can think of each channel’s session type as prescribing the communication contract on
that channel – for example, a session type could require that first an integer, z, be sent over a
channel, and then a response consisting of an integer x and an integer y be received. As each
integer is sent and received, the type of the channel is updated to reflect the current communica-
tion contract. However, a malicious process could replace the process that is supposed to send
the integer z with a process that sends some nefarious string over this channel instead. In this
situation, a monitor must detect that the communication contract has been breached and trigger
an alarm.

Thesis Statement: Session typed monitors give rise to novel techniques for dynamically
monitoring expressive classes of concurrent contracts and provide strong theoretical guarantees
(safety and transparency).

Our first contribution is to dynamically monitor that each channel’s communication contract
is being upheld. If a string is observed flowing through a channel that expects an integer, our
monitors will detect that the message is inconsistent with the channel’s type and raise an alarm.
We have designed a mechanism where monitors are placed on the communication channels. A
monitor observes messages that flow through its channel and ascertains whether the messages are
consistent with the channel’s contract. If the messages follow the protocol, the monitor lets them
through with no observable change to the computation. Otherwise, the monitor raises an alarm
and indicates which process or processes are to blame for the faulty messages. Our monitoring
mechanism is also able to handle higher-order communication, that is, when a channel decides
to delegate communication to another channel.

We now consider a more complicated contract that guarantees that the integer response z is
the product of the integers x and y. Monitoring this contract requires designing a system where
a monitor has access to the values of x and y in order to compute their product and compare
it with the integer z. In this thesis, we consider two orthogonal approaches for handling this
contract. One method involves designing an operational monitor that executes concurrently with
the factoring code and has the capacity to store all the integers it observes. The other tactic relies
on augmenting the session type system with dependency in order to express the relevant contract
within the type system.

The second contribution of this thesis is to develop partial identity monitors to handle a va-
riety of contracts. These monitors are processes that are able to maintain state and perform
calculations. This allows them to check complicated properties such as whether a list of paren-
thesis is matched or a list is in sorted order. The monitoring processes are observably equivalent
to the identity process, up to termination, thus ensuring transparency of our monitors. Our partial
identity monitors are also able to encode refinement contracts by checking whether a refinement
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from one type to another type causes a runtime error.
Our third contribution is to encode dependent types in our system which allows us to monitor

complex invariants. Monitoring dependent contracts is challenging because usual encodings of
dependent types involve sending proof objects through the system. These proof objects must
be generated and transmitted through the system, which requires significant infrastructure [25].
We provide a more lightweight approach by exploiting the fact that many proof objects are not
relevant to the rest of the computation [28]. Therefore, we can avoid sending the actual proof
object, but instead can check the condition encoded by the proof object dynamically.

The rest of this thesis is organized as follows. Chapter 2 provides background on session
types and contracts. Chapter 3 presents results on dynamic monitoring in an untrusted setting.
The work presented in this chapter is a reformulation and extension of a prior publication. [21].
Chapter 4 introduces partial identity monitors and examines key examples. Chapter 5 and Chap-
ter 6 explore the encoding of refinement and dependent types, respectively. The work described
in Chapter 4 and Chapter 5 are an expansion of a prior publication. [16]. Chapter 7 reviews
various monitoring extensions including a mechanism to monitor deadlock.

3
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Chapter 2

Background

In this chapter we first provide background for using session types to reason about concurrent
computation. We then provide examples of contract checking in a functional language and survey
recent work on contracts.

2.1 Session Types
Session types prescribe the communication behavior of message-passing concurrent processes.
We approach them here via their foundation in intuitionistic linear logic [6, 7, 34]. Building on
the Curry-Howard correspondence, the key idea is that an intuitionistic linear sequent

A1, . . . , An ` C

is interpreted as the interface to a process expression P . We label each of the antecedents with
a channel name ai and the succedent with a channel name c. The ai are the channels used and c
is the channel provided by P . Linearity requires that the process P provide a service on exactly
one channel c.

a1 : A1, . . . , an : An ` P :: (c : C)

We abbreviate the antecedents by the context ∆. All the channels ai and c must be distinct, and
bound variables may be silently renamed to preserve this invariant in the rules. Furthermore, the
antecedents are considered modulo exchange. Cut corresponds to parallel composition of two
processes that communicate along a private channel x, where P is the provider along x and Q
the client.

∆ ` P :: (x : A) x : A,∆′ ` Q :: (c : C)

∆,∆′ ` x:A← P ; Q :: (c : C)
cut

Operationally, the process x : A← P ; Q spawns P as a new process and continues as Q, where
P and Q communicate along a fresh channel a, which is substituted for x. We sometimes omit
the type A of x in the syntax when it is not relevant or can be inferred.

In order to define the operational semantics rigorously, we use multiset rewriting [8]. The
configuration of executing processes is described as a collection C of propositions proc(c, P )
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(process P is executing, providing along c) and msg(c,M) (message M is sent along c). All the
channels c provided by processes and messages in a configuration must be distinct.

To begin with, a cut just spawns a new process, and is in fact the only way new processes are
spawned. We describe a transition C −→ C ′ by defining how a subset of C can be rewritten to a
subset of C ′, possibly with a freshness condition that applies to all of C in order to guarantee the
uniqueness of each channel provided.

proc(c, x:A← P ; Q) −→ proc(a, [a/x]P ), proc(c, [a/x]Q) (a fresh)

Each of the connectives of linear logic then describes a particular kind of communication behav-
ior which we capture in similar rules. Before we move on to that, we consider the identity rule,
in logical form and operationally.

A ` A id
b : A ` a← b :: (a : A)

id
proc(a, a← b), C −→ [b/a]C

Operationally, it corresponds to identifying the channels a and b, which we implement by substi-
tuting b for a in the remainder C of the configuration (which we make explicit in this rule because
it is the only rule that substitutes into the entire configuration). The process offering a terminates.
We refer to a← b as forwarding since any messages along a are instead “forwarded” to b.

We consider each class of session type constructors, describing their process expression,
typing, and asynchronous operational semantics. The linear logical semantics can be recovered
by ignoring the process expressions and channels.

Internal and external choice Even though we distinguish a provider and its client, this distinc-
tion is orthogonal to the direction of communication: both may either send or receive along a
common private channel. Session typing guarantees that both sides will always agree on the
direction and kind of message that is sent or received, so our situation corresponds to so-called
binary session types [19].

First, the internal choice c : A⊕B requires the provider to send a token inl or inr along c and
continue as prescribed by type A or B, respectively. For convenience, we support n-ary labelled
choice ⊕{` : A`}`∈L where L is a set of labels. A process providing c : ⊕{` : A`}`∈L sends a
label k ∈ L along c and continues with type Ak. The client will operate dually, branching on a
label received along c.

k ∈ L ∆ ` P :: (c : Ak)

∆ ` c.k ; P :: (c : ⊕{` : A`}`∈L)
⊕R

∆, c : A` ` Q` :: (d : D) for every ` ∈ L
∆, c : ⊕{` : A`}`∈L ` case c (`⇒ Q`)`∈L :: (d : D)

⊕L

The operational semantics is somewhat tricky, because we communicate asynchronously. We
need to spawn a message carrying the label k, but we also need to make sure that the next message
send along the same channel does not overtake the first (which would violate session fidelity).
Sending a message therefore creates a fresh continuation channel c′ for further communication,
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which we substitute in the continuation of the process. Moreover, the recipient also switches to
this continuation channel after the message is received.

proc(c, c.k ; P ) −→ proc(c′, [c′/c]P ),msg(c, c.k ; c← c′) (c′ fresh)
msg(c, c.k ; c← c′), proc(d, case c (`⇒ Q`)`∈L) −→ proc(d, [c′/c]Qk)

It is interesting that the message along c, followed by its continuation c′ can be expressed as a
well-typed process expression using forwarding c.k ; c← c′. This pattern will work for all other
pairs of send/receive operations.

External choice reverses the roles of client and provider, both in the typing and the operational
rules. The typing and semantic rules are shown below.

∆ ` P` :: (c : A`) for every ` ∈ L
∆ ` case c (`⇒ P`)`∈L :: (c : N{` : A`}`∈L)

NR

k ∈ L ∆, c : Ak ` Q :: (d : D)

∆, c : N{` : A`}`∈L ` c.k ; Q :: (d : D)
NL

proc(d, c.k ; Q) −→ msg(c′, c.k ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, case c (`⇒ P`)`∈L),msg(c′, c.k ; c′ ← c) −→ proc(c′, [c′/c]Pk)

Sending and receiving channels Session types are higher-order in the sense that we can send
and receive channels along channels. Sending a channel is perhaps less intuitive from the logical
point of view, so we show that and just summarize the rules for receiving.

If we provide c : A ⊗ B, we send a channel a : A along c and continue as B. From the
typing perspective, it is a restricted form of the usual two-premise ⊗R rule by requiring the first
premise to be an identity. This restriction separates spawning of new processes from the sending
of channels.

∆ ` P :: (c : B)

∆, a : A ` send c a ; P :: (c : A⊗B)
⊗R∗

∆, x : A, c : B ` Q :: (d : D)

∆, c : A⊗B ` x← recv c ; Q :: (d : D)
⊗L

The operational rules follow the same patterns as the previous case.

proc(c, send c a ; P ) −→ proc(c′, [c′/c]P ),msg(c, send c a ; c← c′) (c′ fresh)
msg(c, send c a ; c← c′), proc(d, x← recv c ; Q) −→ proc(d, [c′/c][a/x]Q)

Receiving a channel (written as a linear implication A ( B) works symmetrically. The
typing and semantic rules are given below.

∆, x : A ` P :: (c : B)

∆ ` x← recv c ; P :: (c : A( B)
(R

∆, c : B ` Q :: (d : D)

∆, a : A, c : A( B ` send c a ; Q :: (d : D)
(L
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proc(d, send c a ; Q) −→ msg(c′, send c a ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, x← recv c ; P ),msg(c′, send c a ; c′ ← c) −→ proc(c′, [c′/c][a/x]P )

Termination We have already seen that a process can terminate by forwarding. Communication
along a channel ends explicitly when it has type 1 (the unit of⊗) and is closed. By linearity there
must be no antecedents in the right rule.

· ` close c :: (c : 1)
1R

∆ ` Q :: (d : D)

∆, c : 1 ` wait c ; Q :: (d : D)
1L

Since there cannot be any continuation, the message takes a simple form.

proc(c, close c) −→ msg(c, close c)
msg(c, close c), proc(d,wait c ; Q) −→ proc(d,Q)

Quantification First-order quantification over elements of domains such as integers, strings, or
booleans allows ordinary basic data values to be sent and received. At the moment, since we
have no type families indexed by values, the quantified variables cannot actually appear in their
scope. This will change in Section 5 so we anticipate this in these rules.

In order to track variables ranging over values, a new context Ψ is added to all judgments
and the preceding rules are modified accordingly. All value variables n declared in Ψ must be
distinct. Such variables are not linear, but can be arbitrarily reused, and are therefore propagated
to all premises in all rules. We write Ψ ` v : τ to check that value v has type τ in context Ψ.

Ψ ` v : τ Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c v ; P :: (c : ∃n:τ. A)
∃R

Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ. A ` n← recv c ; Q :: (d : D)
∃L

proc(c, send c v ; P ) −→ proc(c′, [c′/c]P ),msg(c, send c v ; c← c′) (c′ fresh)
msg(c, send c v ; c← c′), proc(d, n← recv c ; Q) −→ proc(d, [c′/c][v/n]Q)

The situation for universal quantification is symmetric. The typing and semantic rules are pro-
vided below.

Ψ, n:τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` n← recv c ; P :: (c : ∀n:τ. A)
∀R

Ψ ` v : τ Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n:τ. A ` send c v ; Q :: (d : D)
∀L

proc(d, send c v ; Q) −→ msg(c′, send c v ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, n← recv c ; P ),msg(c′, send c v ; c′ ← c) −→ proc(c′, [c′/c][v/n]P )

Processes may also make internal transitions while computing ordinary values, which we don’t
fully specify here. Such a transition would have the form

proc(c, P [e]) −→ proc(c, P [e′]) if e 7→ e′

8



where P [e] would denote a process with an ordinary value expression in evaluation position and
e 7→ e′ would represent a step of computation.

Shifts Finally, we come to shifts. The purpose of shifts is to track the direction of communication,
which simplifies monitoring. To make this explicit, we polarize the syntax and use so-called
shifts to change the direction of communication. For more detail, see Pfenning and Griffith [29].

Negative types A−, B− ::= N{` : A−` }`∈L | A+ ( B− | ∀n:τ. A− | ↑A+

Positive types A+, B+ ::= ⊕{` : A+
` }`∈L | A+ ⊗B+ | 1 | ∃n:τ. A+ | ↓A−

Types A,B,C,D ::= A− | A+

From the perspective of the provider, all negative types receive and all positive types send. It is
then clear that ↑Amust receive a shift message and then start sending, while ↓Amust send a shift
message and then start receiving. For this restricted form of shift, the logical rules are otherwise
uninformative. The semantics and the typing is given below.

proc(c, send c shift ; P ) −→ proc(c′, [c′/c]P ),msg(c, send c shift ; c← c′) (c′ fresh)
msg(c, send c shift ; c← c′), proc(d, shift← recv d ; Q) −→ proc(d, [c′/c]Q)

Ψ ; ∆ ` P :: (c : A−)

Ψ ; ∆ ` send c shift ; P :: (c : ↓A−)
↓R

Ψ ; ∆, c : A− ` Q :: (d : D)

Ψ ; ∆, c : ↓A− ` shift← recv c ; Q :: (d : D)
↓L

proc(d, send c shift ; Q) −→ msg(c′, send c shift ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, shift← recv c ; P ),msg(c′, send c shift ; c′ ← c) −→ proc(c′, [c′/c]P )

Ψ ; ∆ ` P :: (c : A+)

Ψ ; ∆ ` shift← recv c ; P :: (c : ↑A+)
↑R

Ψ ; ∆, c : A+ ` Q :: (d : D)

Ψ ; ∆, c : ↑A+ ` send c shift ; Q :: (d : D)
↑L

Recursive types Practical programming with session types requires them to be recursive, and
processes using them also must allow recursion. For example, lists with elements of type int can
be defined as the purely positive type list+.

list+ = ⊕{cons : ∃n:int.list+ ; nil : 1}
A provider of type c : list is required to send a sequence such as cons · v1 · cons · v2 · · · where
each vi is an integer. If it is finite, it must be terminated with nil · end where the end message is
shorthand for msg(c, close c). In the form of a grammer, we could write

From ::= cons · v · From | nil · end

A second example is a multiset (bag) of integers, where the interface allows inserting and
removing elements, and testing if it is empty. If the bag is empty when tested, the provider
terminates after responding with the empty label.

9



bag = N{insert : ∀n:int.bag− ;

remove : ∀n:int.bag− ;

is empty : ↑⊕{empty : 1 ; nonempty : ↓bag−}}

The protocol now describes the following grammar of exchanged messages, where To goes
to the provider, From comes from the provider, and v stands for integers.

To ::= insert · v · To | remove · v · To | is empty · shift · From
From ::= empty · end | nonempty · shift · To

For these protocols to be realized in this form and support rich subtyping and refinement types
without change of protocol, it is convenient for recursive types to be equirecursive. This means a
defined type such as list+ is viewed as equal to its definition ⊕{. . .} rather than isomorphic. For
this view to be consistent, we require type definitions to be contractive [15], that is, they need to
provide at least one send or receive interaction before recursing.

The most popular formalization of equirecursive types is to introduce an explicit µ-constructor.
For example,

list = µα.⊕{ cons : ∃n:int. α, nil : 1 }

with rules unrolling the type µα.A to [(µα.A)/α]A. An alternative (see, for example, Balzer
and Pfenning [3]) is to use an explicit definition just as we stated, for example, list and bag, and
consider the left-hand side equal to the right-hand side in our discourse. In typing, this works
without a hitch. When we consider subtyping explicitly, we need to make sure we view inference
systems on types as being defined co-inductively. Since a co-inductively defined judgment essen-
tially expresses the absence of a counterexample, this is exactly what we need for the operational
properties like progress, preservation, or absence of blame. We therefore adopt this view.

Recursive processes In addition to recursively defined types, we also need recursively defined
processes. We follow the general approach of Toninho et al. [37] for the integration of a (func-
tional) data layer into session-typed communication. A process can be named p, ascribed a type,
and be defined as follows.

p : ∀n1:τ1. . . . ∀nk:τk.{A← A1, . . . , Am}
x← p n1 . . . nk ← y1, . . . , ym = P

where we check (n1:τ1, . . . , nk:τk) ; (y1:A1, . . . , ym:Am) ` P :: (x : A)
We use such process definitions when spawning a new process with the syntax

c← p e1 . . . ek ← d1, . . . , dm ; Q

which we check with the rule

(Φ ` ei : τi)i∈{1,...,k} Θ = [e1/n1, . . . , ek/nk]
∆′ = [Θ](d1:A1, . . . , dm:Am) Φ ; ∆, c : [Θ]A ` Q :: (d : D)

Φ ; ∆,∆′ ` c← p e1 . . . ek ← d1, . . . , dm ; Q :: (d : D)
pdef

10



After evaluating the value arguments, the call consumes the channels dj (which will not be avail-
able to the continuation Q, due to linearity). We note that Θ is a sequence of substitutions
and the notation [Θ]A applies the sequence of subsitutions to the session type A. The con-
tinuation Q will then be the (sole) client of c and the new process providing c will execute
[c/x][d1/y1] . . . [dm/ym]P .

One more quick shorthand used in the examples: a tail-call c← p e← d in the definition of
a process that provides along c is expanded into c′ ← p e← d ; c← c′ for a fresh c′. Depending
on how forwarding is implemented, however, the expanded version may be less efficient than the
tail call [18].

Stopping computation Finally, in order to successfully monitor computation, we need the capa-
bility to assert conditions and stop the computation at particular points. We add assert statements
to check conditions on observable values and an abort action to stop computation. We tag the
assert and abort blocks with a label l which allows us to determine which assertion failed when
the computation aborts. The semantics are given below and the typing is in Figure 2.3.

proc(c, assert l True;Q) −→ proc(c,Q)
proc(c, assert l False;Q) −→ abort(l)
proc(c, abort l) −→ abort(l)

We overload the abort(l) notation to refer to both the semantic construct (as shown above) and
the process expression (used frequently in our examples in Section 5). Progress and preservation
were proven for the above system, with the exception of the abort and assert rules, in prior work
[29]. The additional proof cases do not change the proof significantly.

We summarize the process expressions in Figure 2.1, the semantic rules in Figure 2.2, and
the typing rules in Figure 2.3. The typing and semantic rules presented so far in this chapter
are restricted to contexts that consist of linear channels. In this setting, process communication
forms a tree at runtime because a client of a process must be the only client of that process. In
the next section, we will augment our system to support nonlinear channels.

Shared Channels So far in this chapter we have discussed a system where every process is
linear and provides a service along exactly one channel, but has the ability to be a client of mul-
tiple channels. This guarantees that there is exactly one channel between each pair of processes.
Consider the case of a web service with multiple clients. In this situation, it does not make sense
to have the web service be a linear process offering database services along a linear channel.
Rather, the web service should be encoded as a persistent resource that can be replicated to cre-
ate linear copies for linear clients to communicate with. We accomplish this “copying” by use of
shifts which shift between the unrestricted (persistent) and linear modalities.

Shared channels introduce some complications into the operational semantics since processes
offering along such channels may have multiple clients and are “replicating”. We restrict the
syntax so that there are no unrestricted propositions except for ↑ULA+

L which shifts from the linear
layer to the unrestricted layer. In this case, the only relevant operational rules are for identity,
cut, and the rules for up and down shifts. We start with the shift rules. In the substructural
operational semantics, any persistent proposition is preceded by an exponential modality (!).
When occurring on the left-hand side of a rule, the corresponding persistent proposition is not
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P,Q,R ::=
close c send end and terminate

| wait c ; Q recv end, continue with Q
| send c a ; Q send channel a along c, and continue as Q
| x← recv c ; Q receive a along c, continue as Q
| c.`j ; Q send `j along c, continue as Q
| case c of {`i ⇒ Qi}i recv `j along c, cont. as Qj

| send c v ; Q send value v along c, continue as Q
| n← recv c ; Q recv value v along c, continue as Q
| send c shift ; Q send shift along c, continue as Q
| shift← recv c ; Q receive shift along c, continue as Q
| x← P ; Q create new a, spawn P , continue as Q
| c← d connect c with d and terminate
| assert l p ; Q assert predicate p with label l and continue as Q
| abort l abort with label l

Figure 2.1: Process Expressions

consumed, but instead remains. When occurring on the right-hand side of a rule, a corresponding
persistent proposition is created in the state.

The two most interesting rules are downU
L s and upU

L r. When a down shift message is sent,
the persistent process providing a service on channel cU replaces the process which was provid-
ing a service on channel cL. When an up shift message is received, a fresh ephemeral process
proc(cL, P ) is spawned while the original persistent process continues to exist. The idU rule
looks different than its linear variant because forwarding between shared channels will always
be connected to a message process. Therefore, the forwarding rule simply updates the message.
Finally, the cut rule is similar to its linear analog with the caveat that the newly spawned process
is unrestricted. The semantics are given in Figure 2.4 and the typing is shown in Figure 2.5. The
most important feature of this typing judgement is that Φ ` P :: (xr : Ar) presupposes Φ ≥ r.
For example, in the cutU typing rule, the context Φ must be unrestricted while the context Φ′

could either be linear or unrestricted. We also assume that r ::= U | L where U > L.

2.2 Contracts for Functions
We root our discussion of contracts in a process-based setting by first reviewing how contracts
are defined and used in a functional setting. A contract for a function can be modeled by an ex-
pressive type that places constraints on the arguments and return value. As the function executes,
this contract is checked at runtime. For example, consider a function f where both the argument
and the return value must be positive. We first write the standard type:

f : int→ int

We can now define a more precise type posInt = {x : int | x > 0}. This type is a refinement
of the integer type and can be used to express the desired contract.
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f : posInt→ posInt

If an argument to f is not positive, then f ’s caller is blamed for the contract violation. Sym-
metrically, if f ’s result is not positive, the blame falls on f itself. Unfortunately, this simple
approach to contract checking fails to generalize to a higher-order setting. Consider the follow-
ing function:

g : (posInt→ posInt)→ posInt

The contract’s domain accepts functions that map positive integers to positive integers. The
contract’s range obliges g to produce positive numbers. The function g could be passed a function
f : posInt→ posInt which matches g’s domain or a function that has a stricter domain such as f :
posInt→ {x : posInt | x > 10}. The key insight here is that a contract checker cannot determine
if g’s argument meets its contract when g is called. It must wait until this argument, say the
function f , is applied to another argument to validate its contract. This notion of deferred contract
checking for higher-order functions, first introduced by Findler and Felleisen [14], allows the
contract checker to assign blame to the party that actually violated the contract. When performing
contract-checking for session-types in a higher-order setting (described in Section 3), we use a
similar approach.

Contracts are frequently used to prescribe the interactions between code typed with different
levels of precision. In an extreme case, contracts can be used to integrate code that is typed with
code that is untyped to ensure that dynamically-typed code maintains statically-typed invariants.
In this dissertation, we frequently use contracts to connect session types and refinements of those
types.

Wadler and Findler [39] define a type system with casts, called a blame calculus, where casts
represent contracts. In their system, a contract is modeled as a cast from a source type S to a
target type T with a blame label p. The source term s has type S while the whole term has type
T .

〈T ⇐ S〉ps

In this situation, blame is assigned to the label p when the term contained in the cast, s in this
example, fails to satisfy the contract associated with the cast. Conversely, the complement of p,
written p is blamed, when the context containing the cast fails to satisfy the contract. A cast will
be dynamically checked to validate whether a given value can be coerced to the required type.

Consider the following cast which takes a function with a domain and range of type int to a
more precise domain and range.

(〈posInt→ posInt⇐ int→ int〉p1f)x

When this cast is evaluated, it will be broken into two casts, one for the range and one for
the domain. The cast for the range of the function will attempt to cast the range of the source to
the range of the target as follows: 〈posInt⇐ int〉p1 . The cast for the domain of the function will
attempt to cast the domain of the target to the domain of the source as follows: 〈int⇐ posInt〉p1 .
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Preserving order for the range and reversing order for the domain is similar to the standard
approach to function subtyping which is covariant in the range and contravariant in the domain.

The range cast retains the blame label p1 because if this cast fails it is the fault of the function
f . For example, a function f that maps all integer inputs to the integer -1 will cause the cast to
fail and trigger the blame label. The blame label for the domain cast is the complement of the
original blame label p1 because if this cast fails, then it is the fault of the context for supplying an
invalid argument x to the function f . However, we note that the type checker will guarantee that
x has type posInt and the cast from posInt to int will always suceed. This means that the blame
label p1 will never be blamed. The only situation where blame can occur is if the range cast fails
to cast the less precise type int to the more precise type posInt with blame label p1.

Consider the following cast which takes a function with a domain and range of type posInt
to a less precise domain and range.

(〈int→ int⇐ posInt→ posInt〉p2f)x

As shown above, this cast will decompose into a cast for the range, 〈int ⇐ posInt〉p2 , and
domain, 〈posInt ⇐ int〉p2 , of the function. The range cast will always succeed, so the blame
label p2 will never be blamed. The only situation where blame can occur is if the domain cast
fails to cast the less precise type int to the more precise type posInt with blame label p2. In this
situation, the blame lies with the context containing the cast, as opposed to the cast itself.

In both of these instances, Wadler and Findler [39] prove that blame always lies with the
less-precisely typed code. When validating contracts expressed as type refinements, described in
Section 5, we prove a similar theorem. More comprehensive theorems about the correctness of
blame assignment have been proposed by Dimoulas et al. [10, 11]. Subsequent work on gradual
typing that considers systems with both static and dynamic typing also uses “blame always lies
with the less-precisely typed code” as a criteria for correctness. For instance, Ahmed et al. [2]
developed a blame calculus for a language that integrates parametric polymorphism with static
and dynamic typing. Fennell and Thiemann [13] proved a blame theorem for a linear lambda
calculus with type Dynamic. Most recently, Wadler [38] surveys the history of the blame calculus
and presents the latest developments. Keil and Thiemann [22] develop a blame assignment for
higher order contracts that includes intersection and union contracts. Siek et al. [31] develop
three calculi for gradual typing and relate them in an effort to unite the concepts of blame and
coercion. In the next chapter, we explore how we can adapt notions of blame assignment gleaned
from a functional setting to a session-typed setting.
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cut : proc(c, x:A← P ; Q)
−→ proc(a, [a/x]P ), proc(c, [a/x]Q) (a fresh)

plus s : proc(c, c.k ; P )
−→ proc(c′, [c′/c]P ),msg(c, c.k ; c← c′) (c′ fresh)

plus r : msg(c, c.k ; c← c′), proc(d, case c (`⇒ Q`)`∈L) −→ proc(d, [c′/c]Qk)

with s : proc(d, c.k ; Q)
−→ msg(c′, c.k ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)

with r : proc(c, case c (`⇒ P`)`∈L),msg(c′, c.k ; c′ ← c) −→ proc(c′, [c′/c]Pk)

tensor s : proc(c, send c a ; P )
−→ proc(c′, [c′/c]P ),msg(c, send c a ; c← c′) (c′ fresh)

tensor r : msg(c, send c a ; c← c′), proc(d, x← recv c ; Q) −→ proc(d, [c′/c][a/x]Q)

lolli s : proc(d, send c a ; Q)
−→ msg(c′, send c a ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)

lolli r : proc(c, x← recv c ; P ),msg(c′, send c a ; c′ ← c) −→ proc(c′, [c′/c][a/x]P )

close : proc(c, close c) −→ msg(c, close c)

wait : msg(c, close c), proc(d,wait c ; Q) −→ proc(d,Q)

exists s : proc(c, send c v ; P )
−→ proc(c′, [c′/c]P ),msg(c, send c v ; c← c′)

exists r : msg(c, send c v ; c← c′), proc(d, n← recv c ; Q) −→ proc(d, [c′/c][v/n]Q)

forall s : proc(d, send c v ; Q)
−→ msg(c′, send c v ; c′ ← c), proc(d, [c′/c]Q)

forall r : proc(c, n← recv c ; P ),msg(c′, send c v ; c′ ← c) −→ proc(c′, [c′/c][v/n]P )

down s : proc(c, send c shift ; P )
−→ proc(c′, [c′/c]P ),msg(c, send c shift ; c← c′) (c′ fresh)

down r : msg(c, send c shift ; c← c′), proc(d, shift← recv d ; Q) −→ proc(d, [c′/c]Q)

up s : proc(d, send d shift ; Q)
−→ msg(c′, send c shift ; c′ ← c), proc(d, [c′/c]Q)

up r : proc(c, shift← recv c ; P ),msg(c′, send c shift ; c′ ← c) −→ proc(c′, [c′/c]P )

assert f : proc(c, assert l False;Q) −→ abort(l)

assert s : proc(c, assert l True;Q) −→ proc(c,Q)

abort : proc(c, abort l) −→ abort(l)

Figure 2.2: Linear Process Semantics

15



Ψ ; b : A ` a← b :: (a : A)
id

Ψ ; ∆ ` P :: (x : A) x : A,∆′ ` Q :: (c : C)

Ψ ; ∆,∆′ ` x:A← P ; Q :: (c : C)
cut

Ψ ; ∆ ` P :: (c : A+)

Ψ ; ∆ ` shift← recv c ; P :: (c : ↑A+)
↑R

Ψ ; ∆, c : A+ ` Q :: (d : D)

Ψ ; ∆, c : ↑A+ ` send c shift ; Q :: (d : D)
↑L

Ψ ; ∆ ` P :: (c : A−)

Ψ ; ∆ ` send c shift ; P :: (c : ↓A−)
↓R

Ψ ; ∆, c : A− ` Q :: (d : D)

Ψ ; ∆, c : ↓A− ` shift← recv c ; Q :: (d : D)
↓L

· ` close c :: (c : 1)
1R

Ψ; ∆ ` Q :: (d : D)

Ψ; ∆, c : 1 ` wait c ; Q :: (d : D)
1L

Ψ ` v : τ Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c v ; P :: (c : ∃n:τ.A)
∃R

Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ.A ` n← recv c ; Q :: (d : D)
∃L

Ψ, n:τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` n← recv c ; P :: (c : ∀n:τ.A)
∀R

Ψ ` v : τ Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n:τ.A ` send c v ; Q :: (d : D)
∀L

Ψ ; ∆ ` P :: (c : B)

Ψ ; ∆, a : A ` send c a ; P :: (c : A⊗B)
⊗R

Ψ; ∆, x : A, c : B ` Q :: (d : D)

Ψ; ∆, c : A⊗B ` x← recv c ; Q :: (d : D)
⊗L

Ψ; ∆, x : A ` P :: (c : B)

Ψ; ∆ ` x← recv c ; P :: (c : A( B)
(R

Ψ ; ∆, c : B ` Q :: (d : D)

Ψ ; ∆, a : A, c : A( B ` send c a ; Q :: (d : D)
(L

Ψ; ∆ ` P` :: (c : A`) for every ` ∈ L

Ψ; ∆ ` case c (`⇒ P`)`∈L :: (c : N{` : A`}`∈L)
NR

k ∈ L Ψ; ∆, c : Ak ` Q :: (d : D)

Ψ; ∆, c : N{` : A`}`∈L ` c.k ; Q :: (d : D)
NL

k ∈ L Ψ; ∆ ` P :: (c : Ak)

Ψ; ∆ ` c.k ; P :: (c : ⊕{` : A`}`∈L)
⊕R

Ψ; ∆, c : A` ` Q` :: (d : D) for every ` ∈ L

Ψ; ∆, c : ⊕{` : A`}`∈L ` case c (`⇒ Q`)`∈L :: (d : D)
⊕L

Figure 2.3: Typing Linear Process Expressions
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upU
L s : proc(a, shift xL ← send cU ;Q)

−→ proc(a, [cL/xL]Q),msg(cL, shift xL ← send cU ; cL ← xL) (cL fresh)

upU
L r : msg(cL, shift xL ← send cU ; cL ← xL), !proc(cU , shift xL ← recv cU ;P )

−→ proc(cL, [cL/xL]P )

downU
L s : proc(cL, shift xU ← send cL;Q)

−→!proc(cU , [cU/xU ]Q),msg(cL, shift xU ← send cL; cU ← xU) (cU fresh)

downU
L r : msg(cU , shift xU ← send ck; cU ← xU), proc(a, shift xU ← recv cL;P )

−→ proc(a, [cU/xU ]P )

idU : msg(aL, shift xL ← send aU ; aL ← xL), !proc(aU , aU ← bU)
−→ msg(aL, shift xL ← send bU ; aL ← xL)

cutU : proc(c, xU ← P ;Q)
−→ proc(c, [aU/xU ]Q), !proc(aU , [cU/xU ]P ) (aU fresh)

Figure 2.4: Shared Process Semantics

Φ, yU :AU ` (xU ← yU) :: (xU :AU)
idU

Φ ≥ U ≥ r Φ ` P :: (xU :AU) Φ′, xU :AU ` Q :: (zr:C)

Φ,Φ′ ` (xU : A← P ; Q) :: (zr:C)
cutU

Φ ` P :: (xL:A+
L)

Φ ` (shift xL ← recv xU ; P ) :: (xU :↑ULA+
L)
↑R

Φ, xL:A+
L ` Q :: (zL:C)

Φ, xU :↑ULA+
L ` (shift xL ← send xU ; Q) :: (zL:C)

↑L

Φ ` Q :: (xU :A−U)

Φ ` (shift xU ← send xL ; Q) :: (xL:↓ULA−U)
↓R

Φ, xU :A−U ` P :: (zr:C)

Φ, xL:↓ULA−U ` (shift xU ← recv xL ; P ) :: (zr:C)
↓L

All judgments Φ ` P :: (xr : Ar) presuppose Φ ≥ r
Φ,Φ′ contexts allows unrestricted xU:AU to be shared between Φ and Φ′

Figure 2.5: Shared Process Typing
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Chapter 3

Session Types as Contracts

In a concurrent setting, there are two important reasons to consider dynamic monitoring of com-
munication. The first is that when spawning a new process, part of the execution of a program
now escapes immediate control of the original process. If the new process is compromised by
a malicious intruder, then incorrect yet unchecked messages can wreak havoc on the original
process. Second, session types allow us to safely connect communicating processes written in
a variety of different languages, as long as they (dynamically!) adhere to the session protocol
and basic data formats. Static checking would require having access to the internal code of these
diverse processes, which is impractical.

In this chapter, we present a model that dynamically monitors communication to enforce
adherence to session types in a higher-order setting. We place a monitor on each channel that
checks whether messages are consistent with the communication contract on that channel. If the
message is determined to violate the contract, the monitor raises an alarm. When an alarm is
raised, we are able to assign blame and prove one of an indicated set of possible culprits must
have been compromised. We are able to provide blame assignment in a higher-order setting
where channels pass channels of arbitrary type to other channels. We also prove that dynamic
monitoring does not change system behavior for well-typed processes.

3.1 Model

In this section, we discuss the adversary and trust model and explain the monitor design. We
then formally define the operational semantics for the monitoring mechanism and for the blame
assignment.

Trust Model We assume that processes are distributed across the network and communicate
with each other by message-passing. We assume that there is a secure (trusted) network layer
which ensures that messages are sent and received without error. In contrast, all processes are
untrusted; any process could be compromised by an attacker. We define an “attack” scenario
when a process deviates from its prescribed session type. We use runtime monitors to detect
such deviations and attribute blame to rogue processes.
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Monitor Capabilities We assume that the monitor can inspect communications between pro-
cesses to check session fidelity, but it cannot observe internal operations of the executing pro-
cesses. Only send, receive, spawn (cut), and forward (identity) requests can be seen by the
monitor. This design decision is important because it allows our monitoring techniques to be
applied in the situation where we make no assumptions about the internal structure of the com-
municating processes. The monitor is also trusted. We note that our monitor cannot detect when
linearity has been violated in the system, which means that a channel may have multiple clients
without the monitor’s knowledge. In our system, we do make the assumption that every channel
has a unique provider.

Monitors can raise alarms and assign blame when messages sent over channels are of the
wrong type, which we explain in detail below. If a protocol violation is detected and an alarm is
raised, the computation is aborted.

Adversary Capabilities We assume that channels are private in that only the processes at the
two endpoints of a channel can send to or receive from it. Further, channel names are capabilities
that are hard to forge. An attacker only knows the channel names that are given to it by the trusted
runtime (e.g., through spawning a new process).

We define the following transition rule (named havoc) to represent an attacker’s action of
taking control of a process. The attacker replaces the original process with one of the attacker’s
choice. However, the attacker cannot forge channel names, and therefore, the set of free channel
names in Q is a subset of that in P .

havoc : proc(c, P )⊗!(fn(P ) ⊇ fn(Q)) −→ proc(c,Q)

Finally, because processes are untrusted, they cannot raise an alarm.

Monitor Design First, we examine several possible design choices for the monitor and explain
our chosen design. Figure 3.1 illustrates multiple monitoring architectures. In this graphic, two
processes communicate over channel c by exchanging messages. Trusted monitoring compo-
nents have a grey background. We assume that process P is offering a service along channel a.
The monitor is tasked with mediating communication that flows through channel c. The first row
of the figure shows an architecture with no monitoring.

The second row of the figure shows a design where a partial identity process acts as the
monitor and mediates communication between the two processes. Here, the monitoring process
M relays messages between processes P and Q. Because process P is providing a service of
type A, the process proc(m,M) is a partial identity process from A to A. In this design, as
soon as a new process is spawned, an accompanying monitoring process is also generated. The
advantage of this design is that the monitor is a process defined within the same language as the
rest of the system. The drawback of this approach is that blame assignment becomes difficult.
We explore the benefits of this monitoring architecture in Chapter 4.

The third row of the figure demonstrates a design where a monitor is placed directly on
the communication channel c. The monitor keeps track of the type of the channel and checks
the message pattern. The advantage of this approach is that when a process attempts to send
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Figure 3.1: Monitoring Architectures

messages of the wrong type, the monitor will raise an alarm before the message reaches its
destination. This leads to more precise blame attribution than the first approach.

The last row of the figure presents a design where monitors are local to each process, which
may be beneficial in a mutually untrusting environment. When a process receives a message
from an untrusted source, its own monitor checks the messages before allowing the process to
have access to the messages. This approach fits the distributed model more naturally, as the mon-
itor is local to each process. However, this approach suffers from a similar problem as the partial
identity approach: the blame assignment is difficult. Moreover, since the monitoring infrastruc-
ture is distributed, a separate mechanism would be needed to somehow verify alarms and blame
processes which complicates the monitor design. After considering these different approaches,
we chose the approach that places monitors on the communication channels (shown in the third
row of the figure) because it is simple and provides relatively precise blame assignment. Next,
we define the formal monitor semantics.

Monitor Semantics We have two variations of the monitoring semantics that allow us to pro-
vide different levels of precision in our blame assignment based on the assumptions we make. In
the Verified-Spawn semantics, we assume that a spawned process can be statically typechecked
against a given type to ensure that its type matches the type of the channel it is being spawned
on. If the spawned processes is not well-typed, all computation aborts. If this check succeeds,
then we are able to immediately absolve the spawning process because our monitor has verified
that the spawned process adheres to its prescribed type. The ability to determine if a process
has come into existence with the right type allows us to provide more precise blame assignment.
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More specifically, once an alarm is raised, instead of having to concern ourselves with whether
a particular child process process may have been spawned incorrectly by the parent process, and
having to blame both the parent and the child processes, we can just blame the child process. In
the Unverified-Spawn semantics, we assume that we do not have access to the source code of a
process being spawned before it starts executing. This assumption is conservative and treats all
processes as black boxes. With these assumptions, our blame assignment consists of a set of pro-
cesses, where one of the indicated processes must have made a havoc transition and triggered the
alarm. Once an alarm is raised, we cannot assume that a child process was spawned correctly by
its parent, but rather we must place all of its ancestor processes into the blame set. This chapter
will focus on the Verified-Semantics; a discussion of the Unverified Semantics can be found in
Section 3.4.

We write m to denote message patterns. We define m � A to mean that a message pattern
m is compatible with type A. It describes the pattern of the message that a channel of type A
expects to receive (defined below).

ch(a) � A+ ⊗ B+ ch(a) � A+ ( B−

lab(labj) �⊕{labi : A+
i }i lab(labj) � N{labi : A−i }i

shift � ↓A− shift � ↑A+

shift � ↓ULAU shift � ↑ULAL
end � 1
v � ∀x.τ.A(x) if v : τ v � ∃x.τ.A(x) if v : τ

We augment the operational semantics presented in Section 2.1 (shown in Figure 2.2 and
Figure 2.4) to include monitor actions. The rules are shown in Figure 3.3. The monitoring
actions, denoted !(m) , check that the condition m is true. We use the predicate typecheck(P ::

x : A) to perform a static check that verifies that the process P is providing a service compatible
with the channel x of type A. The application of the havoc rule is an internal transition and is
not observable by the computation. The havoc rule contains a monitor condition, highlighted in
dark gray, that is used to prove properties of the monitor. When the havoc(a) action executes,
the channel a is added to the context H which tracks havoced channels.

In the id rule, the monitor checks that channels a and b have the same type. In the ida rule,
if any of the above conditions are not met, the system will raise an alarm. In the lolli s rule, the
monitor ensures that both the channels a and ci have the appropriate types. In order to make it
easier to track linear channel usage, the monitor also renames channel ci : A1 ( A2 to channel
ci+1 : A2 once the sending step of the computation is complete. Similarly, in the lolli r rule,
the monitor renames channel ci : A1 ( A2 to channel ci+1 : A2. In the cut rule, the monitor
validates the spawned process. If the conditions are met, a new process P is spawned on channel
a0. The spawning process continues to execute. In the cuta rule, if either the process P is of
the wrong type, or (denoted by the disjoint sum ⊕) P uses inappropriate channels, an alarm is
raised.

Monitoring Shared Channels The monitoring rules for shared channels are shown in Figure
3.4. In the cutU rule, the monitor checks that the spawned unrestricted process P is providing a
service compatible with the channel x of type A. In the upU

L s rule, the monitor ensures that the
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unrestricted channel cU has the appropriate type. In the downU
L s rule, the monitor ensures that

the linear channel cL has the appropriate type. We note that in the downU
L r rule, a new linear

process P is spawned.

Blame assignment When an alarm (alarm(a)) is raised, the monitor assigns blame to exactly
one process that provides a service along channel a. Informally, exactly that one process must
have “havoced”; otherwise, type preservation will ensure that no alarm is raised.

Though we rename channels at every step of the computation, we are able to blame a single
channel. This is the case because each time a channel ai is renamed, its index is incremented and
it is now called ai+1. Therefore, when channel ai is blamed, we can collapse all of the ai’s by
just erasing the index and just blame channel a.

CameraFun : {Cam}
c← CameraFun =

case c of
| take⇒ pm← recv c ;

case pm of
| once⇒ x← recv pm ; wait pm ; picH ← takePic ; send c picH ; c← CameraFun

ToSnap : {Snap← User ; Cam}
s← ToSnap← u, c =
c.take ; u.picPerm ;
case u of
| fail⇒ c.fail ; s← ToSnap← u, c
| succ⇒ c.succ ; s.share ; perm← recv u ; send c perm ;
picH ← recv c ; send s picH ; s← ToSnap← u, c

Figure 3.2: Snapchat

3.2 Examples
In this example, we illustrate monitoring with a mobile photosharing application, Snapchat,
that takes and shares a user’s photos and sends them to some remote entity. To take photos,
Snapchat needs to operate the camera. To prevent the Snapchat application from continu-
ously taking and sharing the user’s photos, the camera requires that the user grant Snapchat
permission every time Snapchat wants to take and share a photo. This example contains three
main processes: the Snapchat application process, the camera process, and the user process.

Types and Encoding We encode the expected behavior of each process as a session type dec-
laration below.
stype Cam = &{take : photoPerm

((picHandle⊗ Cam)}
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stype User = &{picPerm : ⊕{fail : User;
succ : photoPerm⊗ User}}

stype photoPerm = ⊕{once : ∃x : �Uok.1}
stype Snap = ⊕{share : picHandle⊗ Snap}

Camera After the client selects take, the camera process waits for the client to send a photo
permission channel (of type photoPerm). Upon receiving a channel pm, the camera process
receives a signature from the channel pm. In this example, the camera process does not validate
the signature of the permission by itself, but instead relies on the monitor to check the signature,
which we will explain when we discuss the monitoring scenarios. After the request succeeds and
the picture handle is sent, the camera process continues to offer a service of type Cam.

User When a process needs permission to access the camera, it communicates with the user
process and selects the picPerm label. If the user sends the fail label, the user process continues
to offer a service of type User, without granting its client permission to use the camera. If the
user process sends a succ label, it then spawns a new process that provides a service of type
photoPerm and sends the new process’ channel to its client. The type photoPerm is an internal
choice, labeled once. The newly spawned process first sends the label once, then sends a digital
signature of a token ok (of type ok) using the camera’s private key, before it terminates. The
digital signature serves as an unforgeable authentication token for a permission to access the
camera once.

The code snippet that corresponds to the permission process spawned by the user is given
below.

send pm once ;
send (sign K priv(U) ok) ;
close pm ;

The function sign will use the user’s private key to sign the abstract type ok. We assume that this
permission process has access to the user’s private key as it is spawned by the user process.

Snapchat The ToSnap process uses channel c to communicate with the camera process and
channel u to communicate with the user process and offers the picture sharing service along
channel s. The process first instructs the camera to take a picture and then asks the user process
for permission. If the user does not grant the permission, no picture is sent and the ToSnap
process continues to try and send a picture. If the user grants the permission, the ToSnap process
sends its client the label share. It then receives a channel connecting to a permission process
from the user, and forwards this channel to the camera. Finally, the ToSnap process receives a
picture handle from the camera, and sends it to ToSnap’s client.

The CameraFun and ToSnap processes are shown in Figure 3.2. The takePic process provides
access to the picture via a picture handle, which is also modeled by a channel.

Monitoring Scenarios We show two monitoring scenarios to demonstrate how our monitor
can detect violations of invariants specified by the session types. In these scenarios, an attacker
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tries to take pictures without being granted permissions required by the camera.

Scenario 1 The ToSnap process is compromised by an attacker. The havoced process does
not ask for permission from the user and instead of sending a permission to the camera, sends
an integer value (i.e. replacing lines perm ← recv u ; send c perm of the ToSnap process with
send c n).

The monitor on channel c is expecting a value of type PhotoPerm which should be a channel.
The monitor will try to typecheck the integer n as a channel and fail. It will then raise an alarm
(alarm(s)). Here, blame is assigned to one process, ToSnap (offering along channel s).

Scenario 2 Snapchat is again compromised. Instead of asking for permission, it tries to
spawn a permission process that will match the signature of an authentic permission process.
The desired signature is photoPerm = ⊕{once : ∃x : �Uok.1}. When this process is spawned,
the monitor will typecheck it against this signature. Because the Snapchat process does not have
the user’s key, it is unable to generate a process that will be able to send a value of type �Uok.
Therefore, the monitor will raise an alarm and assign blame to the ToSnap which is offering
a service along channel s. In the Unverified Spawn semantics, the blame assignment will be
different. We will return to this example in Section 3.4.

3.3 Metatheory
We identify three high-level properties that the monitor should satisfy: correctness of the blame
assignment, the fact that well-behaved processes are not blamed, and transparency of the monitor.

The correctness of the blame assignment is defined as follows. Let the context Ω be the
multiset of processes and messages describing the current state of computation. The context H
stores channels that have been havoced. Due to channel renaming, if ai ∈ H , then a ∈ H . We
write |= Ω : wf to denote that all the process and messages comprising the context Ω must be
typed using the typing rules in Figure 2.3 and Figure 2.5.
Definition 1 (Correctness of blame). A channel a is correct to be blamed w.r.t. the execution
trace T = Ω −→∗ Ω′, alarm(a) with |= Ω : wf if the process providing a service on ai where
i ∈ N has made a havoc transition in T .

The fact that our monitor assigns blame correctly (Definition 1) is a corollary of Theorem 1.
We now present the configuration typing in order to state the theorem. We assume that the

comma operator is associative with · as the unit. The context Λ can either be the context ∆ which
exclusively consists of linear channels, or the context Φ which can also contain unrestricted
channels.

We note that when typechecking H; Λ 
 proc(c, P ) the context Λ contains a mapping of
channels to their types as well as persistent monitor conditions such as !(c : A). However, when
the context Λ is used to typecheck a process such as Λ ` P :: (c : A) , we use the mapping of
channels to their types and do not duplicate the persistent conditions.

Λ = ∆ | Φ
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C = · | proc(c, P ) | msg(c, P ) | C1, C2

H; · 
 ·
H; Λ 
 C1 H; Λ 
 C2

H; Λ 
 C1, C2

Λ|fn(P ) ` P :: (c : Λ(c))

H; Λ 
 msg(c, P )

c 6∈ H Λ|fn(P ) ` P :: (c : Λ(c))

H; Λ 
 proc(c, P )

c ∈ H
H; Λ 
 proc(c, P )

Theorem 1 (Alarm).
1. If ∅; ·; · |= Ω and Ω, ∅,−→∗ Ω′;H; Λ then H; Λ |= Ω′

2. If ∅; ·; · |= Ω and Ω, ∅,−→∗ , H, alarm(a) then a ∈ H .
The above theorem states that from an initial configuration, a well-typed configuration can

make a series of transitions to either another well-formed configuration, or a state where an alarm
is raised on a process a that has been havoced.

Another corollary of Theorem 1 is that well-typed processes are not blamed: if the con-
figuration is well-formed and no process is compromised, then the monitor will not raise any
alarm. This is easy to prove because if there is an alarm associated with a, then a must be in H .
However, when no process havocs, H remains empty; a contradiction.

The correctness proof for the blame assignment is similar to that of a preservation proof. The
key lemma is Lemma 2, which states that if a well-typed configuration makes a transition, then
it either steps to another well-formed configuration, or an alarm is raised on a process a that
has been havoced. Using this lemma, we can prove Theorem 1 which considers a sequence of
transitions. The proof is done by induction on the length of the trace.
Lemma 2 (One-step alarm). If H; Λ 
 Ω and proc(ai, P ) ∈ Ω then either:

1. H,Ω,Λ→ H,Ω′,Λ′ and H; Λ′ 
 Ω′ or
2. H,Ω,Λ→ alarm(a) where a ∈ H and Λ|fn(P ) 6` proc(ai, P ) :: (a : Λ(a)).

Proof. We prove the lemma by examining each monitoring rule, inverting the typing configura-
tion and applying the typing rules. The proof cases for the linear and shared setting can be found
in Appendix A.3 and Appendix A.4 respectively.

Second, if all processes are well-typed to begin with and no process is compromised at run-
time, then the monitor should not raise an alarm. This property shows that a havoc transition is
necessary for the monitor to halt the execution and assign blame.
Theorem 3 (Well-typed configurations do not raise alarms). Given any T = Ω −→∗ Ω′ such
that |= Ω : wf and T does not contain any havoc transitions, there does not exist an a such that
alarm(a) ∈ Ω′.

Finally, the monitor should not change the behavior of well-typed processes. We write −→−
to denote the operational semantics without the monitor actions, and Ω− to denote a configuration
with the monitor artifacts erased. If the initial configuration is well-typed and no process is
compromised, then executing the configuration with and without the monitor should yield the
same result.
Theorem 4 (Monitor transparency).
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1. Given a trace T = Ω −→∗ Ω′ such that |= Ω : wf and T does not contain any havoc
transitions then Ω(−→−)∗Ω′−.

2. Given a trace T = Ω(−→−)∗Ω′ such that |= Ω : wf and T does not contain any havoc
transitions, then there exists a trace T ′ such that T ′ = Ω −→∗ Ω′−.

Our monitor is transparent; it does not alter the behavior of well-formed configurations. The
proof is done by examining how each monitor check is applied to well-formed configurations.
Since well-formed configurations do not have havoced processes (H is empty), all processes and
messages are well-typed. The fact that the monitor checks never fail can be obtained by inverting
the typing judgments of the relevant messages and processes.

We note that we define transparency in terms of traces – a trace observed in the monitored
semantics implies the same trace must be observed in the non-monited semantics. The first di-
rection of the implication states that for any trace without a havoc transition, executing the trace
without the monitoring actions will yield the same result as executing the trace with the moni-
tored actions. The second direction of the implication states that for any trace without a havoc
transition that is executed without the monitoring actions, there exists a trace augmented with the
monitoring actions that will yield the same result. A more fine grained approach to transparency
would consist of defining a bisimulation and requiring that a correspondence between the two
semantics be maintained for each individual step of a given trace.

3.4 The Unverified-Spawn Semantics
We now return to the Unverified-Spawn system mentioned previously in this chapter. In this
system, we cannot check that a newly spawned process is spawned at the correct type. The
Unverified-Spawn system described in this section is a reformulation of the system presented in
Jia et al [21].

Monitoring Rules The Unverified-Spawn system differs from the Verified-Spawn system only
in a few key monitoring rules. These rules are highlighted in Figure 3.5. The core difference
consists of needing a graph G to track when a process spawns another process. In the linear cut
rule, the monitor is not able to verify that the process P will adhere to the appropriate type, so
it adds the fresh linear channel a0 to the graph G. Similarly, in the unrestricted cutU rule, the
fresh unrestricted channel a0 is added to the graph G. The downU

k s rule creates a new persistent
process providing a service on the unrestricted channel cU which replaces the process providing
a service on the linear channel ck. This unrestricted channel is added to the graph G. The
most interesting rule is the upU

k r rule because usually monitoring conditions are only placed on
sending rules. However, in this case the persistent process providing a service on channel cU
spawns the linear process providing a service on channel ck. This linear channel is added to the
graph G. As before, the dark gray monitoring blocks are only used to prove the conditions of the
monitor.

Blame assignment To assign blame, the monitor maintains a graph data structure that records
process spawns throughout the execution of the entire system. We write G to denote the graph
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(defined below). The nodes in the graph, denotedN , are provider channel names. After a process
offering along channel a spawns a process offering along channel b, an edge a→sp b is added to
the graph. G is a set of trees.

Process graph G ::= (N,E)
Edges E ::= · | E, a→sp b

When an alarm (alarm(a)) is raised, the monitor assigns blame to all the direct ancestors of
a in the graph G. That is, we find the tree in G that contains a, and let c1 →sp c2 · · · cn →sp a be
the path in that tree from the root to a. Then, the processes in the set {c1, · · · , cn, a} are jointly
blamed. Informally, at least one of the processes in that set must have “havoced”; otherwise, type
preservation will ensure that no alarm is raised. We write |= Ω : wf to denote that all the process
and messages comprising the context Ω must be typed using the typing rules in Figure 2.3 and
Figure 2.5.

As an example, recall Scenario 2 descibed in Section 3.2. In this case, instead of asking for
permission, Snapchat (which is offering a service along channel s) tries to spawn a permission
process that will match the signature of an authentic permission process. The desired signature
is photoPerm = ⊕{once : ∃x : �Uok.1}. This spawn will succeed and spawn a new process:

proc(d, d.once ; send d (sign ok) ; close d)

At this point, the graph G is augmented with s →sp d. When the process d tries to send a
signature, because it does not have the user’s key, it cannot generate a value v such that v��Uok.
When the value (sign ok) is send over channel d, the monitor’s check fails and raises an alarm
(alarm(d)). The blame is assigned to the set {s, d} as G includes s→sp d, and s is the root.

Definition 2 (Correctness of blame – Unverified-Spawn Semantics). A set of channels N is
correct to be blamed w.r.t. the execution trace T = Ω −→∗ Ω′, alarm(ai) with |= Ω : wf if there
exists a channel b ∈ N such that the process providing a service on bi has made as made a havoc
transition in T .

The fact that our monitor assigns blame correctly (Definition 2) is a corollary of Theorem 5.
We now present an augmented version of the configuration typing described earlier in order

to state the theorem in the Unverified-Spawn setting. As before, the context H stores havoced
channels, and the context Λ can either be the context ∆ which exclusively consists of linear
channels, or the context Φ which can also contain unrestricted channels. In this configuration,
we need to add additional rules to be able to check whether a given channel is a descendant of a
havoced channel. We also add a rule to type a message process when the channel it is providing
on is havoced.

Λ = ∆ | Φ
C = · | proc(c, P ) | msg(c, P ) | C1, C2

a ∈ H
G ` a : havoc

∃a.G ` a : havoc ∧G(a)→sp b

G ` b : havoc
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G;H; · 
 ·
G;H; Λ 
 C1 G;H; Λ 
 C2

G;H; Λ 
 C1, C2

G 6` c : havoc Λ|fn(P ) ` P :: (c : Λ(c))

G;H; Λ 
 proc(c, P )

G ` c : havoc

G;H; Λ 
 proc(c, P )

G 6` c : havoc Λ|fn(P ) ` P :: (c : Λ(c))

G;H; Λ 
 msg(c, P )

G ` c : havoc

G;H; Λ 
 msg(c, P )

Theorem 5 (Alarm).
1. If ∅; ∅; · |= Ω and Ω, ∅, ∅ −→∗ Ω′;G;H then G;H; Λ |= Ω′

2. If ∅; ∅; · |= Ω and Ω, ∅, ∅ −→∗ , H, alarm(a) then a ∈ H .
The above theorem states that from an initial configuration, a well-typed configuration can

make a series of transitions to either another well-formed configuration, or a state where an alarm
is raised on a process a that has been havoced.

The correctness proof for the blame assignment is similar to that of a preservation proof. The
key lemma is Lemma 6, which states that if a well-typed configuration makes a transition, then
it either steps to another well-formed configuration, or an alarm is raised on a process a that
has been havoced. Using this lemma, we can prove Theorem 5 which considers a sequence of
transitions. The proof is done by induction on the length of the trace.
Lemma 6 (One-step alarm). If G;H; Λ 
 Ω and proc(ai, P ) ∈ Ω then either:

1. G;H,Ω,Λ→ G;H,Ω′,Λ′ and G;H; Λ′ 
 Ω′ or
2. G;H,Ω,Λ→ alarm(a) where a ∈ H and Λ|fn(P ) 6` proc(ai, P ) :: (a : Λ(a)).

Proof. We prove the lemma by examining each monitoring rule, inverting the typing configura-
tion and applying the typing rules. The proof cases can be found in Appendix A.6.

While the blame assigment is completely different for the Verified-Spawn and Unverified
Spawn systems, the proofs cases for Lemma 6 and Lemma 2 are remarkably similar. This is
the case because the differences in blame assignment (namely the addition of the graph G to
the system) are encapsulated in a few key monitoring rules and two different typing rules for
configurations.

3.5 Related Work
Compared to the body of work mentioned in Section 2.2, our work focuses on systems where
processes communicate with each other via message-passing. At a high-level, we can relate our
adversary model to the work on blame assignment as follows. Each process can be viewed as a
program written in dynamically typed language. Our monitor enforces the coercion of session
types by observing the communications between the processes. Our blame assignment always
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includes the compromised process. If we view the compromised process as a less-precisely-
typed program, our correctness of blame property is similar to the notion proposed in Wadler
and Findler [39]: blame always falls on less-precisely-typed programs.

The work most closely related to ours is on multi-party session types. Bocchi et al. [5] and
Chen et al. [9] assume a similar asynchronous message passing model as ours. Their monitor
architecture is also similar to ours; monitors are placed at the ends of the communication chan-
nels and monitor communication patterns. One key difference is that their monitors do not raise
alarms; instead, the monitors suppress bad messages and move on. Our monitors halt the execu-
tion and assign blame. Consequently, this work does not have theorems about blame assignment
which are central to our work. Using global types, their monitors can additionally enforce global
properties such as deadlock freedom, which our monitors cannot. Our work supports higher-
order processes, that is, processes that can spawn other processes and delegate communication
to other processes, while their work does not.

The recently-developed Whip system [41] addresses a similar problem our work, but does not
use session types. They use a dependent type system to implement a contract monitoring system
that can connect services written in different languages. Their system is also higher order, and
allows processes that are monitored by Whip to interact with unmonitored processes.
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(ci)
+ = ci+1

id : proc(a, a← b), C, !(a : A) , !(b : A) −→ [b/a]C

ida : proc(a, a← b), C, (6 ∃A. !(a : A) , !(b : A) ) −→ alarm(a)

cut : proc(c, x : A← P ;Q), !(typecheck(P :: x : A)) , !(fn(P ) ∩ fn(Q) = ∅ )

−→ proc(c, [a0/x]Q), proc(a0, [a0/x]P ), !(a0 : A) (a0 fresh)

cuta : proc(c, x : A← P ;Q), ( !(typecheck(P :: x 6: A)) ⊕ !(fn(P ) ∩ fn(Q) 6= ∅ )

−→ alarm(c)

lolli s : proc(d, send ci a;Q), !(ci : A1 ( A2) ), !(a : A1) )

−→ msg(c+
i , send ci a; c+

i ← ci), proc(d, [c+
i /ci]Q), !(c+

i : A2)

lolli sa : proc(d, send ci a;Q), (6 ∃A1. !(ci : A1 ( A2) , !(a : A1 )

−→ alarm(d)

lolli r : msg(c+
i , send ci a; c+

i ← ci), proc(ci, x← recv ci;P )
−→ proc(c+

i , [c
+
i /ci][a/x]P )

tensor s : proc(ci, send ci a;P ), !(ci : A1 ⊗ A2) , !(a : A1)

−→ msg(ci, send ci a; ci ← c+
i ), proc(c+

i , [c
+
i /ci]P ), !(c+

i : A2)

tensor sa : proc(ci, send ci a;P ), ( 6 ∃A1. !(ci : A1 ⊗ A2) , !(a : A1) )

−→ alarm(ci)

tensor r : msg(ci, send ci a; ci ← c+
i ), proc(d, x← recv ci;Q)

−→ proc(d, [c+
i /ci][a/x]Q)

one s : proc(a, close a), !(a : 1) −→ msg(a, close a)

one sa : proc(a, close a), !(a 6: 1) −→ alarm(a)

one r : msg(a, close a), proc(d,wait a;Q) −→ proc(d,Q)

alarmr : proc(c,m← recv a;R), !(a : A) , !(m 6B A) −→ alarm(c)

alarmr′ : proc(c,m← recv c;R), !(c : A) , !(m 6B A) −→ alarm(c)

havoc : proc(c, P ), !fn(P ) ⊇ fn(Q) −→ proc(c,Q), !(havoc(c))

Figure 3.3: Verified-Spawn Monitor Rules
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with s : proc(d, ci.k;Q), !(ci : &{` : A`}) , !(k B &{` : A`})
−→ proc(d, [c+

i /ci]Q),msg(c+
i , ci.k; c+

i ← ci), !(c+
i : Ak)

with sa : proc(d, ci.k;Q), ( !(ci 6: &{` : A`}) ⊕ !(k 6B &{` : A`}) ) −→ alarm(d)

with r : msg(c+
i , ci.k; c+

i ← ci), proc(ci, case ci{`⇒ P`}`∈L)
−→ proc(c+

i , [c
+
i /ci]Pk)

plus s : proc(ci, ci.k;P ), !(ci : ⊕{` : A`}) , !(k B ⊕{` : A`})
−→ msg(ci, ci.k; ci ← c+

i ), proc(c+
i , [c

+
i /ci]P ), !(c+

i : Ak)

plus sa : proc(ci, ci.k;P ), ( !(ci 6: ⊕{` : A`}) ⊕ !(k 6B ⊕{` : A`}) ) −→ alarm(ci)

plus r : msg(ci, ci.k; ci ← c+
i ), proc(d, case ci{`⇒ Q`}`∈L)

−→ proc(d, [c+
i /ci]Qk)

down s : proc(ci, send ci shift ; P ), !(ci :↓ A−)

−→ proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci shift ; ci ← c+

i ), !(c+
i : A−)

down sa : proc(ci, send ci shift ; P ), !(6 ∃A−.ci :↓ A−) −→ alarm(ci)

down r : msg(ci, send ci shift ; ci ← c+
i ), proc(d, shift← recv d ; Q)

−→ proc(d, [c+
i /ci]Q)

up s : proc(d, send ci shift ; Q), !(ci :↑ A+)

−→ msg(c+
i , send ci shift ; c+

i ← ci), proc(d, [c+
i /ci]Q), !(c+

i : A+)

up sa : proc(d, send ci shift ; Q), ( !(6 ∃.A+.ci :↑ A+) ) −→ alarm(d)

up r : proc(ci, shift← recv ci ; P ),msg(c+
i , send ci shift ; c+

i ← ci)
−→ proc(c+

i , [c
+
i /ci]P )

exists s : proc(ci, send ci v ; P ), !(ci : ∃n : τ.A) , !(v : τ)

−→ proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci v ; ci ← c+

i ), !(c+
i : [v/n]A)

exists sa : proc(ci, send ci v ; P ), (6 ∃τ. !(ci : ∃n : τ.A) , !(v : τ) ) −→ alarm(ci)

exists r : msg(ci, send ci v ; ci ← c+
i ), proc(d, n← recv ci ; Q)

−→ proc(d, [c+
i /ci][v/n]Q)

forall s : proc(d, send ci v ; Q), !(ci : ∀n : τ.A) , !(v : τ)

−→ msg(c+
i , send ci v ; c+

i ← ci), proc(d, [c+
i /ci]Q), !(c+

i : [v/n]A)

forall sa : proc(d, send ci v ; Q), (6 ∃τ. !(ci : ∀n : τ.A) , !(v : τ) ) −→ alarm(d)

forall r : proc(ci, n← recv ci ; P ),msg(c+
i , send ci v ; c+

i ← ci)
−→ proc(c+

i , [c
+
i /ci][v/n]P )

Figure 3.3: Verified-Spawn Monitor Rules (continued)
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upU
L s : proc(a, shift xL ← send cU ;Q), !(cU :↑UL A+

L) (cL fresh)

−→ proc(a, [cL/xL]Q),msg(cL, shift xL ← send cU ; cL ← xL), !(cL : A+
L)

upU
L sa : proc(a, shift xL ← send cU ;Q), !(cU 6:↑UL A+

L) −→ alarm(a)

upU
L r : msg(cL, shift xL ← send cU ; cL ← xL), !proc(cU , shift xL ← recv cU ;P )

−→ proc(cL, [cL/xL]P )

downU
L s : proc(cL, shift xU ← send cL;Q), !(cL :↓UL A−U) (cU fresh)

−→!proc(cU , [cU/xU ]Q),msg(cL, shift xU ← send cL; cU ← xU), !(cU : A−U)

downU
L sa : proc(cL; shift xU ← send cL;Q), !(cL 6:↓UL A−U) −→ alarm(cL)

downU
L r : msg(cL, shift xU ← send cL; cU ← xU), proc(a, shift xU ← recv cL;P )

−→ proc(a, [cU/xU ]P )

idU : msg(aL, shift xL ← send aU ; aL ← xL), !proc(aU , aU ← bU),

!(aU : A) , !(bU : A)

−→ msg(aL, shift xL ← send bU ; aL ← xL)

idUa : msg(aL, shift xL ← send aU ; aL ← xL), !proc(aU , aU ← bU),

6 ∃A.( !(aU : A) , !(bU : A) )

−→ alarm(aU)

cutU : proc(c, xU : A← P ;Q), !(typecheck(P :: xU : A))

−→ proc(c, [aU/xU ]Q), !proc(aU , [aU/xU ]P ) (aU fresh)

cutUa : proc(c, xU : A← P ;Q), !(typecheck(P :: xU 6: A)) −→ alarm(c)

Figure 3.4: Verified-Spawn Shared Monitor Rules

cut : proc(c, x : A← P ;Q)

−→ proc(c, [a0/x]Q), proc(a0, [a0/x]P ), !(G(c→sp a0)) (a0 fresh)

upU
k r : msg(ck, shift xk ← send cU ; ck ← xk), !proc(cU , shift xk ← recv cU ;P )

−→ proc(ck, [ck/xk]P ), !(G(cU →sp ck))

downU
k s : proc(ck, shift xU ← send ck;Q), !(ck : ↓Uk A−) (cU fresh)

−→!proc(cU , [cU/xU ]Q),msg(ck, shift xU ← send ck; cU ← xU),

!(G(ck →sp cU))

cutU : proc(c, xU : A← P ;Q) (aU fresh)

−→ proc(c, [aU/xU ]Q), !proc(aU , [aU/xU ]P ), !(G(c→sp aU))

Figure 3.5: Unverified-Spawn Monitor Rules Highlights (linear and shared)
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Chapter 4

Partial Identity Processes as Contracts

The previous chapter of this thesis presented contracts, specified as session types, that enforced
communication protocols between processes. In that setting, we assigned each channel a moni-
tor to detect whether messages observed along the channel adhere to the prescribed session type.
The monitor identified any deviant behavior exhibited by the communicating processes and trig-
gered alarms. However, contracts based solely on session types are inherently limited in their
expressive power. Many contracts that we would like to enforce cannot even be stated using
session types alone. As a simple example, consider a “factorization service” which may be sent
a (possibly large) integer x and is supposed to respond with a list of prime factors. Session types
can only express that the request is an integer and the response is a list of integers, which is
insufficient.

By generalizing the class of monitors beyond those derived from session types, we can en-
force, for example, that multiplying the numbers in the response yields the original integer x.
To handle these contracts, we have designed a model where our monitors execute as transparent
processes alongside the computation. They are able to maintain internal state which allows us
to check complex properties. These monitoring processes act as partial identities, which do not
affect the computation, except possibly raising an alarm, and merely observe the messages flow-
ing through the system. They then perform whatever computation is needed, for example, they
can compute the product of the factors, to determine whether the messages are consistent with
the contract. If the message violates the contract, they stop the computation. In this chapter, we
present a method for checking that monitors are truly partial identities, prove this method correct
and explore examples illustrating the breadth of contracts that our monitors can enforce.

4.1 Model

In this section, we explore and define what it means for a process to be a partial identity. This
definition, which provides structure to our monitoring processes, is the cornerstone of our model.

As a first simple example, let’s take a process that receives one positive integer n and factors
it into two integers p and q that are sent back where p ≤ q. The part of the specification that is
not enforced is that if n is not prime, p and q should be proper factors, but we at least enforce that
all numbers are positive and n = p ∗ q. Since a minimal number of shifts can be inferred during
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elaboration of the syntax [29], we suppress them in the examples presented in this chapter.

factor t = ∀n:int.∃p:int.∃q:int.1
factor monitor : {factor t← factor t}
c← factor monitor← d =
n← recv c ; assert l1 (n > 0) ; send d n ;
p← recv d ; assert l2 (p > 0) ; q ← recv d ; assert l3 (q > 0) ; assert l4 (p ≤ q) ;
assert l5 (n = p ∗ q) ; send c p ; send c q ; c← d

This is a one-time interaction (the session type factor t is not recursive), so the monitor ter-
minates. It terminates here by forwarding, but we could equally well have replaced it by its
identity-expanded version at type 1, which is wait d ; close c.

The contract could be invoked by the provider or by the client. Let’s consider how a provider
factor might invoke it. In this case, factor raw is a process that provides a factoring service on
channel c′. We assume that channel c′ will have the type factor t. The channel c′ is then passed to
the factor monitor process which yields a monitored factoring service on channel c. The provider
factor is now providing a monitored factoring service over the channel c.

factor : {factor t}
c← factor =
c′ ← factor raw ; c← factor monitor← c′

Buffering Values To check that factor monitor is a partial identity we need to track that p and
q are received from the provider, in this order. In general, for any received message, we need
to enter it into a message queue q and we need to check that the messages are passed on in the
correct order. We use the context Ψ to track values. As a first cut (to be generalized several
times), we write for negative types:

[q](b : B−) ; Ψ ` P :: (a : A−)

which expresses that the two endpoints of the monitor are a : A− and b : B− (both negative), and
we have already received the messages in queue q along channel a.

A monitor, at the top level, is defined with

mon : τ1 → . . .→ τn → {A← A}
a← mon x1 . . . xn ← b = P

where the xi are values. The body of the process P here is type-checked as one of (depending
on the polarity of A)

[ ](b : A−) ; Ψ ` P :: (a : A−) or (b : A+) ; Ψ ` P :: [ ](a : A+)

where Ψ = (x1:τ1) · · · (xn:τn).
In general, queues have the form q = m1 · · ·mn with

m ::= lk labels ⊕,N
| c channels ⊗,( | n values ∃,∀
| end close 1 | shift shifts ↑, ↓
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where m1 is the front of the queue and mn the back.
When the process P receives a message, we add it to the back of the queue q. We also need

to add it to the context Ψ to remember its type. In the factoring example τ = int.

[q · n](b : B) ; Ψ, n:τ ` P :: (a : A−)

[q](b : B) ; Ψ ` n← recv a ; P :: (a : ∀n:τ. A−)
∀R

Conversely, when we send along channel b the message must be equal to the one at the front of
the queue (and therefore it must be a variable). The value m remains in the context so it can be
reused for later assertion checks. However, it can never be sent again since it has been removed
from the queue.

[q](b : [m/n]B) ; Ψ,m:τ ` Q :: (a : A−)

[m · q](b : ∀n:τ. B) ; Ψ,m:τ ` send b m ; Q :: (a : A)−
∀L

All the other send and receive rules for negative types (∀, (, N) follow exactly the same
pattern. For positive types, a queue must be associated with the channel along which the monitor
provides (the succedent of the sequent judgment).

(b : B+) ; Ψ ` Q :: [q](a : A+)

Moreover, when end has been received along b the corresponding process has terminated and the
channel is closed, so we generalize the judgment to

ω ; Ψ ` Q :: [q](a : A+) with ω = · | (b : B).

The shift messages change the direction of communication. They therefore need to switch
between the two judgments and also ensure that the queue has been emptied before we switch
direction. The two rules for ↑, which appears in our factoring example, are provided below.

[q · shift](b : B−) ; Ψ ` P :: (a : A+)

[q](b : B−) ; Ψ ` shift← recv a ; P :: (a : ↑A+)
↑R

We notice that after receiving a shift, the channel a already changes polarity (we now have to
send along it), so we generalize the judgment, allowing the succedent to be either positive or
negative. And conversely for the other judgment.

[q](b : B−) ; Ψ ` P :: (a : A)
ω ; Ψ ` Q :: [q](a : A+) where ω = · | (b : B)

When we send the final shift, we initialize a new empty queue. Because the queue is empty the
two sides of the monitor must have the same type.

(b : B+) ; Ψ ` Q :: [ ](a : B+)

[shift](b : ↑B+) ; Ψ ` send b shift ; Q :: (a : B+)
↑L

The rules for forwarding are also straightforward. Both sides need to have the same type, and
the queue must be empty. As a consequence, the immediate forward is always a valid monitor at
a given type.

(b : A+) ; Ψ ` a← b :: [ ](a : A+)
id+

[ ](b : A−) ; Ψ ` a← b :: (a : A−)
id−
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Rule Summary The current rules allow us to communicate only along the channels a and b
that are being monitored. If we send channels along channels, however, these channels must be
recorded in the typing judgment, but we are not allowed to communicate along them directly. On
the other hand, if we spawn internal (local) channels, say, as auxiliary data structures, we should
be able to interact with them since such interactions are not externally observable. Our judgment
thus requires two additional contexts: Θ for channels internal to the monitor, and Γ for externally
visible channels that may be sent along the monitored channels. Our full judgments therefore are

[q](b : B−) ; Ψ ; Γ ; Θ ` P :: (a : A)
ω ; Ψ ; Γ ; Θ ` Q :: [q](a : A+) where ω = · | (b : B)

So far, it is given by the following rules

(∀` ∈ L) (b : B`) ; Ψ ; Γ ; Θ ` Q` :: [q · `](a : A+)

(b : ⊕{` : B`}`∈L) ; Ψ ; Γ ; Θ ` case b (`⇒ Q`)`∈L :: [q](a : A+)
⊕L

ω ; Ψ ; Γ ; Θ ` P :: [q](a : Bk) (k ∈ L)

ω ; Ψ ; Γ ; Θ ` a.k ; P :: [k · q](a : ⊕{` : B`}`∈L)
⊕R

(∀` ∈ L) [q · `](b : B) ; Ψ ; Γ ; Θ ` P` :: (a : A`)

[q](b : B) ; Ψ ; Γ ; Θ ` case a (`⇒ P`)`∈L :: (a : N{` : A`}`∈L)
NR

[q](b : Bk) ; Ψ ; Γ ; Θ ` P :: (a : A) (k ∈ L)

[k · q](b : ⊕{` : B`}`∈L) ; Ψ ; Γ ; Θ ` b.k ; P :: (a : A)
NL

(b : B) ; Ψ ; Γ, x:C ; Θ ` Q :: [q · x](a : A)

(b : C ⊗B) ; Ψ ; Γ ; Θ ` x← recv b ; Q :: [q](a : A)
⊗L

ω ; Ψ ; Γ ; Θ ` P :: [q](a : A)

ω ; Ψ ; Γ, x:C ; Θ ` send a x ; P :: [x · q](a : C ⊗ A)
⊗R∗

[q · x](b : B) ; Ψ ; Γ, x:C ; Θ ` P :: (a : A)

[q](b : B) ; Ψ ; Γ ; Θ ` x← recv a ; P :: (a : C ( A)
(R

[q](b : B) ; Ψ ; Γ ; Θ ` Q :: (a : A)

[x · q](b : C ( B) ; Ψ ; Γ, x:C ; Θ ` send b x ; Q :: (a : A)
(L∗

· ; Ψ ; Γ ; Θ ` Q :: [q · end](a : A)

(b : 1) ; Ψ ; Γ ; Θ ` wait b ; Q :: [q](a : A)
1L

· ; Ψ ; · ; · ` close a :: [end](a : 1)
1R

38



(b : B) ; Ψ, n:τ ; Γ ; Θ ` Q :: [q · n](a : A)

(b : ∃n:τ. B) ; Ψ ; Γ ; Θ ` n← recv b ; Q :: [q](a : A)
∃L

ω ; Ψ,m:τ ; Γ ; Θ ` P :: [q](a : [m/n]A)

ω ; Ψ,m:τ ; Γ ; Θ ` send a m ; P :: [m · q](a : ∃n:τ. A)
∃R

[q · n](b : B) ; Ψ, n:τ ; Γ ; Θ ` P :: (a : A−)

[q](b : B) ; Ψ ; Γ ; Θ ` n← recv a ; P :: (a : ∀n:τ. A−)
∀R

[q](b : [m/n]B) ; Ψ,m:τ ; Γ ; Θ ` P :: (a : A)

[m · q](b : ∀n:τ. B) ; Ψ,m:τ ; Γ ; Θ ` send b m ; Q :: (a : A)
∀L

(b : B−) ; Ψ ; Γ ; Θ ` Q :: [q · shift](a : A+)

(b : ↓B−) ; Ψ ; Γ ; Θ ` shift← recv b ; Q :: [q](a : A+)
↓L

[ ](b : A−) ; Ψ ; Γ ; Θ ` P :: (a : A−)

(b : A−) ; Ψ ; Γ ; Θ ` send a shift ; P :: [shift](a : ↓A−)
↓R

[q · shift](b : B−) ; Ψ ; Γ ; Θ ` P :: (a : A+)

[q](b : B−) ; Ψ ; Γ ; Θ ` shift← recv a ; P :: (a : ↑A+)
↑R

(b : B+) ; Ψ ; Γ ; Θ ` Q :: [ ](a : A+)

[shift](b : ↑B+) ; Ψ ; Γ ; Θ ` send b shift ; Q :: (a : A+)
↑L

(b : A+) ; Ψ ` a← b :: [ ](a : A+)
id+

[ ](b : A−) ; Ψ ` a← b :: (a : A−)
id−

Spawning New Processes The most complex part of checking that a process is a valid monitor
involves spawning new processes. As an example, consider the following implementation of a
binary tree:

tree = ∃x : int.tree⊗ tree⊗ 1

In this implementation, an interaction with the tree involves being sent an integer value, a
channel representing the left subtree and a channel representing the right subtree. When defining
a monitor to verify a property of the tree, monitors to handle the left and right subtrees would
need to be spawned.

In order to be able to spawn and use local (private) processes, we have introduced the (so far
unused) context Θ that tracks such channels. We use it here only in the following two rules:

Ψ ; Θ ` P :: (c : C) ω ; Ψ ; Γ ; Θ′, c:C ` Q :: [q](a : A+)

ω ; Ψ ; Γ ; Θ,Θ′ ` (c : C)← P ; Q :: [q](a : A+)
cut+

1

Ψ ; Θ ` P :: (c : C) [q](b : B−) ; Ψ ; Γ ; Θ′, c:C ` Q :: (a : A)

[q](b : B−) ; Ψ ; Γ ; Θ,Θ′ ` (c : C)← P ; Q :: (a : A)
cut−1
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The second premise (that is, the continuation of the monitor) remains the monitor, while the first
premise corresponds to a freshly spawned local process accessible through channel c. All the
ordinary left rules for sending or receiving along channels in Θ are also available for the two
monitor validity judgments. By the strong ownership discipline of intuitionistic session types,
none of this information can flow out of the monitor.

It is also possible for a single monitor to decompose into two monitors that operate concur-
rently, in sequence. In that case, the queue q may be split anywhere, as long as the intermediate
type has the right polarity. Note that Γ must be chosen to contain all channels in q2, while Γ′

must contain all channels in q1.

ω ; Ψ ; Γ ; Θ ` P :: [q2](c : C+) (c : C+) ; Ψ ; Γ′ ; Θ′ ` Q :: [q1](a : A+)

ω ; Ψ ; Γ,Γ′ ; Θ,Θ′ ` c : C+ ← P ; Q :: [q1 · q2](a : A+)
cut+

2

Why is this correct? The first messages sent along a will be the messages in q1. If we receive
messages along c in the meantime, they will be first the messages in q2 (since P is a monitor),
followed by any messages that P may have received along b if ω = (b : B). The second rule is
entirely symmetric, with the flow of messages in the opposite direction.

[q1](b : B−) ; Ψ ; Γ ; Θ ` P :: (c : C−) [q2](c : C−) ; Ψ′ ; Γ′ ; Θ′ ` Q :: (a : A)

[q1 · q2](b : B−) ; Ψ ; Γ,Γ′ ; Θ,Θ′ ` c : C− ← P ; Q :: (a : A)
cut−2

The next two rules allow a monitor to be attached to a channel x that is passed between a and
b. The monitored version of x is called x′, where x′ is chosen fresh. This apparently violates our
property that we pass on all messages exactly as received, because here we pass on a monitored
version of the original. However, if monitors are partial identities, then the original x and the
new x′ are indistinguishable (unless a necessary alarm is raised), which will be a tricky part of
the correctness proof.

(x : C+) ; Ψ ; · ; Θ ` P :: [ ](x′ : C+)
ω ; Ψ ; Γ, x′:C+ ; Θ′ ` Q :: [q1 · x′ · q2](a : A+)

ω ; Ψ ; Γ, x:C+ ; Θ,Θ′ ` x′ ← P ; Q :: [q1 · x · q2](a : A+)
cut++

3

[ ](x : C−) ; Ψ ; · ; Θ ` P :: (x′ : C−)
[q1 · x′ · q2](b : B−) ; Ψ ; Γ, x′:C− ; Θ′ ` Q :: (a : A)

[q1 · x · q2](b : B−) ; Ψ ; Γ ; Θ,Θ′ ` x′ ← P ; Q :: (a : A)
cut−−3

There are two more versions of these rules, depending on whether the types of x and the mon-
itored types are positive or negative. These rules play a critical role in monitoring higher-order
processes, because monitoring c : A+ ( B− may require us to monitor the continuation c : B−

(already covered) but also communication along the channel x : A+ received along c.
In actual programs, we mostly use cut x ← P ; Q in the form x ← p e ← d ; Q where p

is a defined process. The rules are completely analogous, except that for those rules that require
splitting a context in the conclusion, the arguments d will provide the split for us. When a new
sub-monitor is invoked in this way, we remember and eventually check that the process p must
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also be a partial identity process, unless we are already checking it. This has the effect that
recursively defined monitors with proper recursive calls are in fact allowed. This is important,
because monitors for recursive types usually have a recursive structure. An illustration of this
can be seen in pos mon in Figure 4.1.

4.2 Examples
In this section, we present a variety of monitoring processes that can enforce various contracts.
Our examples will mainly be concerned with lists where a list of integers is defined as

list = {cons : ∃x : int.list; nil : 1}

Any monitor that enforces a contract on a list must peel off each layer of the type one step at
a time (by sending or receiving over the channel as dictated by the type), perform the required
checks on values or labels, and then reconstruct the original type (again, by sending or receiving
as appropriate). All the examples described in this section can be verified to be partial identities
based on the definition presented in the previous section.

Refinement The simplest kind of monitoring process we can write is one that models a refine-
ment of an integer type (shown in Figure 4.1); for example, a process that checks whether every
element in the list is positive. This is a recursive process that receives the head of the list from
channel b, checks whether it is positive (if yes, it continues to the next value, if not it aborts), and
then sends the value along to reconstruct the monitored list over channel a.

pos mon : {list← list}
a← pos mon← b =

case b of
| nil⇒ a.nil ; wait b ; close a
| cons⇒ x← recv b ; assert l (x > 0) ; a.cons ; send a x ; a← pos mon← b

Figure 4.1: Positive Integer List Monitor

empty mon : {list← list}
a← empty mon← b =

case b of
| nil⇒ wait b ; a.nil ; close a
| cons⇒ abort l

nonempty mon : {list← list}
a← nonempty mon← b =

case b of
| nil⇒ abort l
| cons⇒ x← recv b ; a.cons ; send a x ; a← b

Figure 4.2: Nonempty and Empty List Monitors

Our monitors can also exploit information contained in the labels present in the external
and internal choices. We show two examples of monitors that model label refinement in Figure
4.2. The empty mon process checks whether the list offered over channel b is empty and aborts
if channel b sends the label cons. Similarly, the nonempty mon monitor checks whether the list
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offered over channel b is not empty and aborts if channel b sends the label nil. These two monitors
enforce refinements: {nil} ⊆ {nil, cons} and {cons} ⊆ {nil, cons}.
Monitors with internal state We now move beyond refinement contracts, and model contracts
that have to maintain some internal state. We first present a monitor that checks whether a set
of right and left parentheses match (shown in Figure 4.3). The match mon monitor uses its
internal state to push every left parenthesis it sees on its stack and to pop it off when it sees a
right parenthesis. For brevity, we model our list of parentheses by marking every left parenthesis
with a 1 and right parenthesis with a -1. So the sequence ()()) would look like 1,−1, 1,−1,−1.
As we can see, this is not a proper sequence of parentheses because adding all of the integer
representations does not yield 0. In a similar vein, we can implement a process that checks that
a tree is serialized correctly, which is related to recent work on context-free session types by
Thiemann and Vasconcelos [33].

We can also write a monitor that checks whether a given list is sorted in ascending order
(shown in Figure 4.4). The ascending mon monitor uses its internal state to enforce a lower
bound on subsequent elements of the list. In order to represent this bound, we add an option int
type to our language. This value can either be None if no bound has yet been set, or Some b if b
is the current bound.

match mon : int→ {list← list}
a← match mon count← b =

case b of
| nil⇒ assert l1(count = 0) ; a.nil ; wait b ; close a
| cons⇒ x← recv b ; a.cons ;

if (x = 1) then send a x ; a← match mon (count+ 1)← b
else if (x = −1) then assert l2 (count > 0) ; send a x ; a← match mon (count− 1)← b
else abort l3 //invalid input

Figure 4.3: Parenthesis Matching Monitor

ascending mon : option int→ {list← list}
m← ascending mon bound← n =

case n of
| nil⇒ m.nil ; wait n ; close m
| cons⇒ x← recv n ;

case bound of
| None⇒ m.cons ; send m x ; m← ascending mon (Some x)← n
| Some a⇒ assert l (x ≥ a) ; m.cons ; send m x ;
m← ascending mon (Some x)← n

Figure 4.4: Ascending Monitor

If the list is empty, there is no bound to check, so no contract failure can happen. If the list
is nonempty, we check to see if a bound has already been set. If not, we set the bound to be the
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first received element. If there is already a bound in place, then we check if the received element
is greater or equal to the bound. If it is not, then the list must be unsorted, so we abort with a
contract failure. We note that the input list n remains unchanged because every element that we
examine we pass along unchanged to m.

To take the above example one step further, assume we have an actual sorting procedure that
takes a stream of integers as input and produces a sorted list. We can use the ascending mon
process to verify that the elements of the output list are in sorted order. However, we still need to
verify that the elements in the output list are in fact a permutation of the elements that were sent to
the sorting procedure. Given a reasonable hash function h, we can write monitors to accomplish
this goal (shown in Figure 4.5). We first introduce the sorter type which is an external choice
with two options – next which receives an integer and continues behaving as a sorter, or done
which completes the sorting and returns a list. We can write a monitor sorter mon that hashes
each element as it is sent to the sorting procedure and keeps track of a running total of the sum
of the hashes. Once the sorting procedure has generated the resulting sorted list, we can use the
result mon to compute the hash of each element and subtract it from the total. After all of the
elements are received, the monitor checks that the total is 0 – if it is, with high probability, the
input stream and output list are permutations of each other. This example is an instance of result
checking and is inspired by Wasserman and Blum [40].

In order to provide a nonprobabalistic guarantee, we need to carry around an index associated
with each integer throughout the computation, so that we can verify that the two lists contain the
same indices and are therefore permutations of each other. Currently, our monitoring processes
do not maintain enough state to enforce these contracts because the monitoring process must
send and receive extra messages, just to verify the contract. We call these messages ghosts
because they are only used for contract-checking and cannot affect the actual computation taking
place. Integrating ghost messages into monitoring infrastructure poses significant theoretical
challenges – it is necessary to prove that ghost messages are transparent and do not influence
“real” computation.

result mon : int→ {list← list}
k ← result mon total← l =

case l of
| nil⇒ assert l (total = 0) ; k.nil ; wait a ; close k
| cons⇒ x← recv l ; k.cons ; send k x ; k ← result mon (total − h(x))← l

sorter : N{next : ∀n : int.sorter; done : list}
sorter mon : int→ {sorter← sorter}
a← sorter mon total← b =

case a of
| next⇒ x← recv a ; b.next ; send b x ; a← sorter mon (total + h(x))← b ;
| done⇒ b← result montotal← a

Figure 4.5: Result Checking Monitor

Mapper Finally, we can also define monitors that check higher-order contracts, such as a contract
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for a mapping function. Consider the mapper process shown in Figure 4.6 which receives an
integer, doubles it, sends it back and recurses. Looking at the code, we can see that any positive
integer that the mapper has processed will be strictly larger than the original integer. This contract
can be imposed on the mapper itself, which is done in the mapper mon process. This process
first examines each integer the mapper receives and asserts it is positive. If this precondition is
met, then the value is sent to the mapper and once the mapped value is received, an assertion
confirms that it is larger than the original input. We would like to monitor the mapper as it is
applied to the list l in the map process, so we write a wrapper process that starts a monitor on the
mapper m and passes the monitored mapper m′ to the map process. This higher-order example
concludes our example section.

mapper t = N{done : 1 ; next : ∀n : int.∃n : int.mapper t}
mapper proc : {mapper t}
m← mapper proc =

case m of
| done⇒ close m
| next⇒ x← recv m ; send m (2 ∗ x) ; m← mapper proc

mapper mon : {mapper t← mapper t}
n← mapper mon← m =

case n of
| done⇒ m.done ; wait m ; close n
| next⇒ x← recv n ; assert l1 (x > 0) //checks precondition
m.next ; send m x ; y ← recv m ; assert l2 (y > x) //checks postcondition
n.next ; send n y ; n← mapper mon← m

map : {list← mapper t ; list}
k ← map← m l =

case l of
| nil⇒ m.done ; k.nil ; wait l ; wait m ; close k
| cons⇒ x← recv l ; m.next ; send m x ; y ← recv m ;
k.cons ; send k y ; k ← map← m l

wrapper : {list← mapper t ; list}
k ← wrapper← m l =
m′ ← mapper mon← m; //run monitor
k ← map m′ l

Figure 4.6: Higher-Order Monitor

4.3 Metatheory
We prove that the partial-identity criterion presented in Section 4.1 guarantees that session-typed
monitoring processes are observationally equivalent to partial identity processes. A simplified
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version of the theorem is stated below (a more complete version and proof details can be found
in Gommerstadt et al [16]).

The notion of observational equivalence we need does not observe nontermination, that is, it
only compares messages that are actually received. Since messages can flow in two directions,
we need to observe messages that arrive at either end. We therefore do not require, as is typical
for a bisimulation, for the configurations to be in step with each other. In other words, if one
configuration takes a step, it is not necessarily the case that the other configuration also took a
step. Instead we say if both configurations send an externally visible message, then the messages
must be equivalent. For two configurations C1 and C2 we write C1 ∼ C2 for our notion of
observational equivalence.
Theorem 7 (Transparency). Let P be a process that adheres to the typing rules presented in
Section 4.1. Then, b : B ` proc(b, a← b) ∼ proc(a, P ) :: (a : A).

Proof Sketch. We prove the theorem by first defining a notion of observational equivalence for
messages. We then contruct a partial bisimulation. We note that this bisimulation is not standard
because the process P can terminate due to a failed assertion.

4.4 Related Work
Most closely related to our is the work by Disney et al. [12], which investigates behavioral
contracts that enforce temporal properties for modules. Our contracts (i.e., session types) enforce
temporal properties as well; the session types specify the order in which messages are sent and
received by the processes. Our contracts can also make use of internal state, as those of Disney
et al. do, but our system is concurrent, while their system does not consider concurrency.

Recently, Melgratti and Padovani have developed chaperone contracts for higher-order ses-
sion types [23]. Their work is based on a classic interpretation of session types, instead of an in-
tuitionistic one like ours; therefore, they do not handle spawning or forwarding processes. While
their contracts also inspect messages passed between processes, unlike ours, they cannot model
contracts which rely on the monitor making use of internal state (e.g., the parenthesis match-
ing). They proved a blame theorem relying on the notion of locally correct modules, which is a
semantic categorization of whether a module satisfies the contract. We did not prove a general
blame theorem; instead, we prove a somewhat standard safety theorem for cast-based contracts
(discussed in Chapter 5).

The Whip system [41] uses a dependent type system to implement a contract monitoring
system. However, Whip cannot handle stateful contracts. Another distinguishing feature of our
monitors is that they are partial identity processes encoded in the same language as the processes
to be monitored.
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Chapter 5

Refinement Types as Contracts

In the previous chapter, we introduced the notion of partial-identity monitors. The advantage
of this monitoring approach is its generality, which allows us to express a variety of contracts.
However, a drawback of this approach is that due to its generality, it is difficult to assign blame
when a contract has been breached. In this chapter, we restrict our partial-identity monitors to
model a particular category of contracts in order to provide blame assignment for this category.

That is, we show how to check refinement types dynamically using our partial-identity mon-
itors. We encode refinements as type casts, which allows processes to remain well-typed with
respect to the non-refinement type system (described in Section 2.1). These casts are translated
at run time to monitors that validate whether the cast expresses an appropriate refinement. If so,
the monitors behave as identity processes; otherwise, they raise an alarm and abort. We prove
that our translation generates monitors that are well-typed and that are valid partial identity pro-
cesses. For refinement contracts, we can also prove a safety theorem, analogous to the classic
“Well-typed Programs Can’t be Blamed” [39], stating that if a monitor enforces a contract that
casts from type A to type B, where A is a subtype of B, then this monitor will never raise an
alarm.

5.1 Model

Surface Language We first augment messages and processes to include casts as follows. We
write 〈A ⇐ B〉ρ to denote a cast from type B to type A, where ρ is a unique label for the cast.
The cast for values is written as (〈τ ⇐ τ ′〉ρ). In this section, we treat the types τ ′ and τ as
refinement types of the form {n:t | b}, where b is a boolean expression that expresses simple
properties of the value n. We express any unrefined type τ by writing {n : t | true} which is
compatible with earlier sections of this thesis.

P ::= · · · | x← 〈τ ⇐ τ ′〉ρ v ; Q | a← 〈A⇐ B〉ρ b

Both of the additional rules to type casts are shown below. We only allow casts between two
types that are compatible with each other (writtenA ∼ B), which is co-inductively defined based
on the structure of the types. The full definition is shown in Figure 5.1.
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A ∼ B

Ψ ; b : B ` a← 〈A⇐ B〉ρ b :: (a : A)
id cast

Ψ ` v : τ ′ Ψ, x : τ ; ∆ ` Q :: (c : C) τ ∼ τ ′

Ψ ; ∆ ` x← 〈τ ⇐ τ ′〉ρ v ; Q :: (c : C)
val cast

{n:t | b1} ∼ {n:t | b2}
base

1 ∼ 1
1

A ∼ A′ B ∼ B′

A⊗B ∼ A′ ⊗B′
⊗ A′ ∼ A B ∼ B′

A( B ∼ A′( B′
(

Ak ∼ A′k for all k ∈ I ∩ J

⊕{`k : Ak}k∈I ∼ ⊕{`k : A′k}k∈J
⊕

Ak ∼ A′k for all k ∈ I ∩ J

&{`k : Ak}k∈I ∼ &{`k : A′k}k∈J
&

A ∼ B

↓ A ∼ ↓ B
↓ A ∼ B

↑ A ∼ ↑ B
↑

A ∼ B τ1 ∼ τ2

∃n : τ1.A ∼ ∃n : τ2.B
∃

A ∼ B τ1 ∼ τ2

∀n : τ1.A ∼ ∀n : τ2.B
∀

Figure 5.1: Compatibility

Translation to Monitors At runtime, casts are translated into monitoring processes. A cast
a← 〈A⇐ B〉ρ b is implemented as a monitor. This monitor ensures that the process that offers
a service on channel b behaves according to the prescribed type A. Because of the typing rules,
we are assured that channel b must adhere to the type B.

Figure 5.2 is a summary of all the translation rules, except recursive types. The translation is
of the form: [[〈A ⇐ B〉ρ]]a,b = P , where A, B are types; the channels a and b are the offering
channel and monitoring channel (respectively) for the resulting monitoring process P ; and ρ is
the label of the monitor (i.e., the contract).

In a functional setting, when a cast fails, either the cast itself is blamed, or the environment
is blamed. That is, blame would be assigned to the label ρ if channel B could not be coerced
to to type A. Conversely, blame would be assigned to the label ρ if the channel b did not have
type B. In our setting, our typing rules will ensure that channel b will have type B making
the label ρ unecessary. Further, unlike in a functional setting where inputs are provided to a
function, communication between processes is bi-directional. While blame is always triggered
by processes sending messages to the monitor, our contracts may depend on a set of values
received from both processes, so it does not make sense to blame one party. Finally, consider the
case of forwarding where the processes at either end of the channel are behaving according to the
types (contracts) assigned to them, but the cast may connect two processes that have incompatible
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types. In this case, it is unfair to blame either one of the processes. Instead, we blame the label
of the failed contract.

one : [[〈1⇐ 1〉ρ]]a,b = wait b; close a

lolli : [[〈A1 ( A2 ⇐ B1 ( B2〉ρ]]a,b =
x← recv a ; y ← [[〈B1 ⇐ A1〉ρ]]y,x ← x ; send b y ; [[〈A2 ⇐ B2〉ρ]]a,b

tensor : [[〈A1 ⊗ A2 ⇐ B1 ⊗B2〉ρ]]a,b =
x← recv b ; y ← [[〈A1 ⇐ B1〉ρ]]y,x ← x ; send a y ; [[〈A2 ⇐ B2〉ρ]]a,b

forall : [[〈∀{n : t | e}. A⇐ ∀{n : t′ | e′}. B〉ρ]]a,b =
n← recv a ; assert ρ e′(n) ; send b n; [[〈A⇐ B〉ρ]]a,b

exists : [[〈∃{n : t | e}. A⇐ ∃{n : t′ | e′}. B〉ρ]]a,b =
n← recv b ; assert ρ e(n) ; send a n; [[〈A⇐ B〉ρ]]a,b

up : [[〈↑A⇐ ↑B〉ρ]]a,b =
shift← recv b ; send a shift ; [[〈A⇐ B〉ρ]]a,b

down : [[〈↓A⇐ ↓B〉ρ]]a,b =
shift← recv a ; send b shift ; [[〈A⇐ B〉ρ]]a,b

plus : [[〈⊕{` : A`}`∈I ⇐ ⊕{` : B`}`∈J〉ρ]]a,b =
case b (`⇒ Q`)`∈J
where ∀`, ` ∈ I ∩ J, a.` ; [[〈A` ⇐ B`〉ρ]]a,b = Q`

and ∀`, ` ∈ J ∧ ` /∈ I, Q` = abort ρ

with : [[〈N{` : A`}`∈I ⇐ N{` : B`}`∈J〉ρ]]a,b =
case a (`⇒ Q`)`∈I
where ∀`, ` ∈ I ∩ J, b.` ; [[〈A` ⇐ B`〉ρ]]a,b = Q`

and ∀`, ` ∈ I ∧ ` /∈ J, Q` = abort ρ

Figure 5.2: Cast Translation

The translation is defined following the structure of the types. The tensor rule generates a
process that first receives a channel (x) from the channel being monitored (b), then spawns a
new monitor to monitor x, making sure that it behaves as type A1. Then, it passes the new
monitor’s offering channel y to channel a. Finally, the monitor continues to monitor channel
b to make sure that it behaves as type A2. The lolli rule is similar to the tensor rule, except
that the monitor first receives a channel from its offering channel. Similar to the higher-order
function case, the argument position is contravariant, so the newly spawned monitor checks that
the received channel behaves as type B1. The exists rule generates a process that first receives
a value from the channel b, then checks the boolean condition e to validate the contract. The
forall rule is similar, except the argument position is contravariant, so the boolean expression e′

is checked on the offering channel a. The with rule generates a process that checks that all of the
external choices promised by the type N{` : A`}`∈I are offered by the process being monitored.
If a label in the set I is not implemented, then the monitor aborts with the label ρ. The plus
rule requires that, for internal choices, the monitor checks that the monitored process only offers
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choices within the labels in the set ⊕{` : A`}`∈I .
We translate casts with recursive types as follows. For each pair of compatible recursive

types A and B, we generate a unique monitor name f and record its type f : {A ← B} in a
context Σ. The translation algorithm needs to take additional arguments, including Σ to generate
and invoke the appropriate recursive process when needed. For instance, when generating the
monitor process for f : {list ← list}, we follow the rule for translating internal choices. For
[[〈list⇐ list〉ρ]]y,x we apply the exists rule in the translation to get y ← f ← x.

5.2 Examples
We present two examples – one for an integer refinement and one for a label refinement. Consider
the below cast:

〈∃n : int | n > 2.A⇐ ∃n : int | m > 0.B〉ρ

where channel a has type {∃n : int | n > 2.A} and channel b has type {∃n : int | m > 0.B}.
To validate this cast, we first receive the integer value from channel b. We then assert that this
value meets channel a’s refinement contract by checking if it is larger than two. We then send
this value along to channel a and continue checking the rest of the type. The monitor would look
like this:

[[〈{∃n : int|n > 2.A} ⇐ {∃m : int|m > 0.B}〉ρ]]a,b =
x← recv b ;
assert ρ (x > 2) ;
send a x ;
[[〈A⇐ B〉ρ]]a,b ;

Figure 5.3: Integer Cast Translation

We can also handle casts with label refinements like the following:

〈⊕{cons : ∃n : int.list} ⇐ ⊕{cons : ∃n : int.list; nil : 1}〉ρ

In this example, we have to case on the possible labels received from channel b. If the cons
label is received, we send the cons label along to channel a. Otherwise, we abort. In order for
this monitor to adhere to the partial identity criterion defined in the previous chapter, the type of
the monitoring process would be list← list.

[[〈⊕{cons : ∃n : int.list; nil : 1} ⇐ ⊕{cons : ∃n : int.list}〉ρ]]a,b =
case b of
| cons⇒ a.cons ; [[〈∃n : int.list⇐ ∃n : int.list〉ρ]]a,b
| nil⇒ abort ρ

Figure 5.4: Label Cast Translation
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Σ ` 1 ≤ 1
1

Σ ` A ≤ A′ Σ ` B ≤ B′

Σ ` A⊗B ≤ A′ ⊗B′
⊗

Σ ` A′ ≤ A Σ, B ≤ B′

Σ ` A( B ≤ A′( B′
(

Σ ` Ak ≤ A′k for k ∈ J J ⊆ I

Σ ` ⊕{`k : Ak}k∈J ≤ ⊕{`k : A′k}k∈I
⊕

Σ ` Ak ≤ A′k for k ∈ J I ⊆ J

Σ ` &{`k : Ak}k∈J ≤ &{`k : A′k}k∈I
&

Σ ` A ≤ B

Σ `↓ A ≤ ↓ B
↓

Σ ` A ≤ B

Σ `↑ A ≤ ↑ B
↑

Σ ` A ≤ B τ1 ≤ τ2

Σ ` ∃n : τ1.A ≤ ∃n : τ2.B
∃

Σ ` A ≤ B τ2 ≤ τ1

Σ ` ∀n : τ1.A ≤ ∀n : τ2.B
∀

Σ, A ≤ B ` def(A) ≤ def(B)

Σ ` A ≤ B
def

Σ, A ≤ B ` A ≤ B
cycle

∀v:t, [v/x]b1 7→∗ true implies [v/x]b2 7→∗ true

Σ ` {x:t | b1} ≤ {x:t | b2}
refine

Figure 5.5: Subtyping

5.3 Metatheory

We prove two formal properties of cast-based monitors: safety and transparency. We also prove
preservation in the presence of well-typed casts.

Because of the expressiveness of our contracts, a general safety (or blame) theorem is dif-
ficult to achieve. However, for cast-based contracts, we can prove that a cast which enforces a
subtyping relation, and the corresponding monitor, will not raise an alarm.

We first define our subtyping relation in Figure 5.5. In addition to the subtyping between
refinement types, we also include label subtyping for our session types. A process that offers
more external choices can always be used as a process that offers fewer external choices. Simi-
larly, a process that offers fewer internal choices can always be used as a process that offers more
internal choices (e.g., non-empty list can be used as a list). The subtyping rules for internal and
external choices are drawn from work by Gay and Hole [15]. For recursive types, we directly
examine their definitions. Therefore, the natural formulation of the rules would be coinductive.
However, to make our proofs simpler, we transform this coinductive judgement into an inductive
judgement. We proceed by adding a context Σ to track the subtyping information that has already
been encountered in order to model circular proofs.

Our safety theorem guarantees that well-typed casts do not raise alarms. The key is to show
that the monitor process generated from the translation algorithm in Figure 5.2 is well-typed
under a typing relation which guarantees that no abort(l) state can be reached.

We refer to the type system presented thus far in the thesis as T , where monitors that may
evaluate to abort(l) can be typed. We define a stronger type system S which consists of the rules
in T with the exception of the abort rule and we replace the assert rule with the assert strong
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rule. This new rule verifies that the condition b is true using the fact that the refinements are
stored in the context Ψ. The two type systems are summarized in Figure 5.6.
Theorem 8 (Refinement monitors are well-typed).

1. b : B `T [[〈A⇐ B〉ρ]]Ψa,b :: (a : A).
2. If B ≤ A, then b : B `S [[〈A⇐ B〉ρ]]Ψa,b :: (a : A).

Proof. The proof is by induction over the monitor translation rules. To prove (1) we use type
system T . To prove (2) we use type system T and the sub-typing relation to show that (a) for the
internal and external choice cases, no branches that include abort are generated; and (b) for the
forall and exists cases, the assert never fails (i.e., the assert strong rule applies). The proof cases
are presented in Appendix B.1.

As a corollary, we can show that when executing in a well-typed context, a monitor process
translated from a well-typed cast will never raise an alarm. To state the corollary, we present the
configuration typing. This configuration typing is similar to the one defined in Chapter 3, but
without a context to track havoced channels. We assume that the comma operator is associative
with · as the unit.

C = · | proc(c, P ) | msg(c, P ) | C1, C2

· 
 ·
∆ 
 C1 ∆ 
 C2

∆ 
 C1, C2

∆|fn(P ) `S P :: (c : ∆(c))

∆ 
 proc(c, P )

∆|fn(P ) `S P :: (c : ∆(c))

∆ 
 msg(c, P )

Corollary 1 (Well-typed casts cannot raise alarms). ∆ 
 C :: (b : B) and B ≤ A implies
C, proc(a, [[〈A⇐ B〉ρ]]a,b) 6−→∗ abort(ρ).

Proof. By Theorem 8 we have that Ψ ; b : B `S [[〈A⇐ B〉ρ]]Ψa,b :: (a : A). Type system S does
not allow aborts, so C, proc(a, [[〈A⇐ B〉ρ]]a,b) 6−→∗ abort(ρ).

Next, we prove that monitors translated from casts are partial identity processes.
Theorem 9 (Casts are transparent).
b : B ` proc(b, a← b) ∼ proc(a, [[〈A⇐ B〉ρ]]a,b) :: (a : A).

Proof. We just need to show that the translated process passes the partial identity checks. We
can show this by induction over the translation rules and by applying the rules in Section 4.1.
Some representative cases are shown in Appendix B.2.

Finally, we prove preservation for the system. Due to the assumption that any cast 〈A⇐ B〉ρ
will be well-typed (defined asB ≤ A), we have to define substitution rules (shown in Figure 5.7)
and prove a substitution lemma in the presence of subtyping. We define |E| to be the size of the
derivation of E.
Lemma 10 (Subtype-Substitution).

1. If E = Ψ; ∆, x : A ` P :: (c : C) and B ≤ A then for any fresh variable y : B we have
E ′ = Ψ; ∆, y : B ` [y : B/x : A]P :: (c : C) and |E| = |E ′|.

2. If E = Ψ, n : τ ; ∆ ` P :: (c : C) and τ ′ ≤ τ then for any fresh variable m : τ ′ we have
E ′ = Ψ,m : τ ′; ∆ ` [m : τ ′/n : τ ]P :: (c : C) and |E| = |E ′|
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3. If E = Ψ; ∆ ` P :: (x : A) and A ≤ B then for any fresh variable y : B we have
E ′ = Ψ; ∆ ` [y : B/x : A]P :: (y : B) and |E| = |E ′|.

Proof. We prove the lemma by inducting over the derivation of Ψ; ∆ ` P :: (c : C). We note
that we implicitly encode any channel c : A or value v : τ as 〈A⇐ A〉ρc : A and 〈τ ⇐ τ〉ρv : τ
respectively. Representative cases are provided in Appendix B.4.

We also augment the semantics presented in (Section 2.1) with types and casts as appropriate.
The typed semantics are shown in Figure 5.8.
Theorem 11 (Subtyping-Preservation). If ∆ 
 C and C −→ C ′ then ∆ 
 C ′.

Proof. We prove the theorem by examining the semantics, and invoking Lemma 10. The proof
cases are provided in Appendix B.6.

Proving preservation for this system was unexpectedly more challenging than proving the
safety and transparency theorems presented earlier in the section. The main challenge arose
when defining and proving a substitution lemma for a session-type system with subtyping. This
preservation proof concludes our metatheory section.

5.4 Related Work
Many of the contracts studied in the context of the lambda calculus [2, 10, 11, 14, 22, 38] are
based on refinement types. Our contracts are able to encode refinement-based contracts. Our
safety theorem supports Walder and Findler’s [39] claim that the less-precisely typed code is
always to blame. When we cast from a type to its supertype, the cast can never be at fault, and
remains well-typed. A cast can only be at fault when coercing a less-precise type to a more-
precise type. In this situation, we generate a monitor to validate the cast.

Recently, gradual typing for two-party session-type systems has been developed [20, 32].
Even though it is a different formalism, the way untyped processes are gradually typed at runtime
resembles how we monitor type casts. Because of dynamic session types, their system has to keep
track of the linear use of channels, which is not needed for our monitors.
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Both System T and S

Ψ ; b : A ` a← b :: (a : A)
id

Ψ ; ∆ ` P :: (x : A) x : A,∆′ ` Q :: (c : C)

Ψ ; ∆,∆′ ` x:A← P ; Q :: (c : C)
cut

Ψ ; ∆ ` P :: (c : A+)

Ψ ; ∆ ` shift← recv c ; P :: (c : ↑A+)
↑R

Ψ ; ∆, c : A+ ` Q :: (d : D)

Ψ ; ∆, c : ↑A+ ` send c shift ; Q :: (d : D)
↑L

Ψ ; ∆ ` P :: (c : A−)

Ψ ; ∆ ` send c shift ; P :: (c : ↓A−)
↓R

Ψ ; ∆, c : A− ` Q :: (d : D)

Ψ ; ∆, c : ↓A− ` shift← recv c ; Q :: (d : D)
↓L

· ` close c :: (c : 1)
1R

Ψ; ∆ ` Q :: (d : D)

Ψ; ∆, c : 1 ` wait c ; Q :: (d : D)
1L

Ψ ` v : τ Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c v ; P :: (c : ∃n:τ.A)
∃R

Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ.A ` n← recv c ; Q :: (d : D)
∃L

Ψ, n:τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` n← recv c ; P :: (c : ∀n:τ.A)
∀R

Ψ ` v : τ Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n:τ.A ` send c v ; Q :: (d : D)
∀L

Ψ ; ∆ ` P :: (c : B)

Ψ ; ∆, a : A ` send c a ; P :: (c : A⊗B)
⊗R

Ψ; ∆, x : A, c : B ` Q :: (d : D)

Ψ; ∆, c : A⊗B ` x← recv c ; Q :: (d : D)
⊗L

Ψ; ∆, x : A ` P :: (c : B)

Ψ; ∆ ` x← recv c ; P :: (c : A( B)
(R

Ψ ; ∆, c : B ` Q :: (d : D)

Ψ ; ∆, a : A, c : A( B ` send c a ; Q :: (d : D)
(L

Ψ; ∆ ` P` :: (c : A`) for every ` ∈ L

Ψ; ∆ ` case c (`⇒ P`)`∈L :: (c : N{` : A`}`∈L)
NR

k ∈ L Ψ; ∆, c : Ak ` Q :: (d : D)

Ψ; ∆, c : N{` : A`}`∈L ` c.k ; Q :: (d : D)
NL

k ∈ L Ψ; ∆ ` P :: (c : Ak)

Ψ; ∆ ` c.k ; P :: (c : ⊕{` : A`}`∈L)
⊕R

Ψ; ∆, c : A` ` Q` :: (d : D) for every ` ∈ L

Ψ; ∆, c : ⊕{` : A`}`∈L ` case c (`⇒ Q`)`∈L :: (d : D)
⊕L

Figure 5.6: System T and S Typing
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Both System T and S

Ψ ` v : τ ′ Ψ, x : τ ; ∆ ` Q :: (c : C) τ ∼ τ ′

Ψ ; ∆ ` x← 〈τ ⇐ τ ′〉ρ v ; Q :: (c : C)
val cast

A ∼ B

Ψ, b ; b : B ` a← 〈A⇐ B〉ρ b :: (a : A)
id cast

System T only

Ψ ` b : bool Ψ ; ∆ ` Q :: (x : A)

Ψ ; ∆ ` assert ρ b;Q :: (x : A)
assert

Ψ ; ∆ ` abort ρ :: (x : A)
abort

System S only

Ψ � b true Ψ ; ∆ ` Q :: (x : A)

Ψ ; ∆ ` assert ρ b;Q :: (x : A)
assert strong

Figure 5.6: System T and S Typing (continued)
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[c : C/b : B](proc(a, a← 〈A⇐ B〉ρ b)) = proc(a, a← 〈A⇐ C〉ρ c)
[c : C/a : A](proc(a, a← 〈A⇐ B〉ρ b)) = proc(c, c← 〈C ⇐ B〉ρ b)
[h : A′ ⊗B′/c : A⊗B]proc(d, x← recv c;Q) =

proc(d, g ← recv h; [h : B′/c : B][g : A′/x : A]Q)

[f : A′′ ⊗B′/c : A⊗B]proc(c, send c 〈A⇐ A′〉ρ (a : A′);P ) =
proc(f, send f 〈A′′ ⇐ A′〉ρ a ; [f : B′/c : B]P )

[h : A′( B′/c : A( B]proc(c, x← recv c;P ) =
proc(h, g ← recv h; [h : B′/c : B][g : A′/x : A]P )

[f : A′′( B/c : A( B]proc(d, send c 〈A⇐ A′〉ρ (a : A′);Q) =
proc(d, send f 〈A′′ ⇐ A′〉ρ a ; [f : B′/c : B]Q)

[f : ⊕{` : A′`}`∈L/c : ⊕{` : A`}`∈L]proc(d, case c (`⇒ Q`)`∈L) =
proc(d, case f (`⇒ [f : A′`/c : A`]Q`)`∈L)

[f : ⊕{` : A′`}`∈L/c : ⊕{` : A`}`∈L]proc(c, c.k;P ) = proc(f, f.k; [f : A′`/c : A`]P )

[f : N{` : A′`}`∈L/c : N{` : A`}`∈L]proc(d, c.k;Q) = proc(d, f.k; [f : A′`/A`]Q)

[f : N{` : A′`}`∈L/c : N{` : A`}`∈L]proc(c, case c (`⇒ P`)`∈L) =
proc(f, case f (`⇒ [f : A′`/c : A`]P`)`∈L))

[f : ∃n : τ ′.A′/c : ∃n : τ.A]proc(d, n← recv c;Q) =
proc(d,m← recvf ; [m : τ ′/n : τ ][f : A′/c : A]Q)

[f : ∃n : τ ′′.A′/c : ∃n : τ.A]proc(c, send c 〈τ ⇐ τ ′〉ρ (v : τ ′);P ) =
proc(f, send f 〈τ ′′ ⇐ τ ′〉ρ (v : τ ′); [f : A′/c : A]P )

[f : ∀n : τ ′′.A′/c : ∀n : τ.A]proc(d, send c 〈τ ⇐ τ ′〉ρ (v : τ ′);Q) =
proc(d, send f 〈τ ′′ ⇐ τ ′〉ρ(v : τ ′); [f : A′/c : A]Q)

[f : ∀n : τ ′.A′/c : ∀n : τ.A]proc(c, n← recv c;P ) =
proc(f,m← recvf ; [m : τ ′/n : τ ][f : A′/c : A] ; P

[f : ↓A′/c : ↓A]proc(c, send c shift;P ) = proc(f, send f shift; [f : A′/c : A]P )

[f : ↓A′/c : ↓A]proc(d, shift← recv d;Q) = proc(d, shift← recv d; [f : A′/c : A]Q)

[f : ↑A′/c : ↑A]proc(d, send d shift;Q) = proc(d, send d shift; [f : A′/c : A]Q)

[f : ↑A′/c : ↑A]proc(c, shift recv c;P ) = proc(f, shift recv f ; [f : A′/c : A]P )

[m : τ ′′/v : τ ′](proc(a, x← 〈τ ⇐ τ ′〉ρ v;Q) = proc(a, x← 〈τ ⇐ τ ′′〉ρ m;Q)

[k : A′′/a : A′]msg(c, send c 〈A⇐ A′〉ρa ; c← c′) = msg(c, send c 〈A⇐ A′′〉ρk ; c← c′)

[k : A′′/c : A]msg(c, send c 〈A⇐ A′〉ρa ; c← c′) = msg(k, send k 〈A′′ ⇐ A′〉ρa ; k ← c′)

[m : τ ′′/v : τ ′]msg(c, send c 〈τ ⇐ τ ′〉ρv ; c′ ← c) = msg(c, send c 〈τ ⇐ τ ′′〉ρm ; c′ ← c)

Figure 5.7: Substitution Rules
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id cast : proc(a, a← 〈A⇐ A′〉ρb), C −→ [b : A′/a : A]C
val cast : proc(a, x← 〈τ ′ ⇐ τ〉ρ v;Q) −→ proc(a,Q[v : τ ′/x : τ ])

cut : proc(c, x:A← 〈A⇐ A′〉ρ P ; Q)
−→ proc(a, [a : A′/x : A′]P ), proc(c, [a : A′/x : A]Q) (a fresh)

tensor s : proc(c, send c (a : A′) ; P )
−→ proc(c′, [c′ : B/c : B]P ),msg(c : B, send c 〈A⇐ A′〉ρa ; c← c′) (c′ fresh)

tensor r : msg(c : B, send c 〈A⇐ A′〉ρa ; c← c′), proc(d, (x : A)← recv c ; Q)
−→ proc(d, [c′ : B/c : B][a : A′/x : A]Q)

lolli s : proc(d, send c (a : A′) ; Q)
−→ msg(c′ : B, send c 〈A⇐ A′〉ρa ; c′ ← c), proc(d, [c′ : B/c : B]Q) (c′ fresh)

lolli r : proc(c, (x : A)← recv c ; P ),msg(c′ : B, send c 〈A⇐ A′〉ρa ; c′ ← c)
−→ proc(c′, [c′ : B/c : B][a : A′/x : A]P )

exists s : proc(c, send c (v : τ ′) ; P )
−→ proc(c′, [c′ : [v/n]A/c : [v/n]A]P ),
msg(c : [v/n]A, send c 〈τ ⇐ τ ′〉ρv ; c← c′)

exists r : msg(c : [v/n]A, send c 〈τ ⇐ τ ′〉ρv ; c← c′), proc(d, (n : τ)← recv c ; Q)
−→ proc(d, [c′ : A/c : A][v : τ ′/n : τ ]Q)

forall s : proc(d, send c (v : τ ′) ; Q)
−→ msg(c′ : [v/n]A, send c 〈τ ⇐ τ ′〉ρv ; c′ ← c),
proc(d, [c′ : [v/n]A/c : [v/n]A]Q)

forall r : proc(c, (n : τ)← recv c ; P ),msg(c′ : [v/n]A, send c 〈τ ⇐ τ ′〉ρv ; c′ ← c)
−→ proc(c′, [c′ : A/c : A][v : τ ′/n : τ ]P )

assert f : proc(c, assert l False;Q) −→ abort(l)

assert s : proc(c, assert l True;Q) −→ proc(c,Q)

Figure 5.8: Typed Semantics with Casts
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plus s : proc(c, c.k ; P )
−→ proc(c′, [c′ : Ak/c : Ak]P ),msg(c : Ak, c.k ; c← c′) (c′ fresh)

plus r : msg(c : Ak, c.k ; c← c′), proc(d, case c (`⇒ Q`)`∈L)
−→ proc(d, [c′ : A`/c : A`]Qk)

with s : proc(d, c.k ; Q)
−→ msg(c′ : Ak, c.k ; c′ ← c), proc(d, [c′ : Ak/c : Ak]Q) (c′ fresh)

with r : proc(c, case c (`⇒ P`)`∈L),msg(c′ : Ak, c.k ; c′ ← c)
−→ proc(c′, [c′ : A`/c : A`]Pk)

close : proc(c, close c) −→ msg(c : 1, close c)

wait : msg(c : 1, close c), proc(d,wait c ; Q) −→ proc(d,Q)

down s : proc(c, send c shift ; P )
−→ proc(c′, [c′ : A−/c : A−]P ),msg(c : A−, send c shift ; c← c′) (c′ fresh)

down r : msg(c : A−, send c shift ; c← c′), proc(d, shift← recv d ; Q)
−→ proc(d, [c′ : A−/c : A−]Q)

up s : proc(d, send d shift ; Q)
−→ msg(c′ : A+, send c shift ; c′ ← c), proc(d, [c′ : A+/c : A+]Q)

up r : proc(c, shift← recv c ; P ),msg(c′ : A+, send c shift ; c′ ← c)
−→ proc(c′, [c′ : A+/c : A+]P )

Figure 5.8: Typed Semantics with Casts (continued)

58



Chapter 6

Dependent Types as Contracts

While Chapter 5 discussed monitoring type refinements, a special case of dependent types, mon-
itoring arbitrary dependent types presents unique challenges. Dependent type theories, such as
Coq, Agda, and Nuprl, encode dependent types by integrating programs and proof objects. These
proof objects must be generated, communicated over the system, and verified. Although verify-
ing a proof object is analogous to type checking, transmitting proof objects requires significant
infrastructure [25]. Due to this challenge, an approach to dependent contract checking that avoids
communicating proof objects when possible is desirable. In certain cases, proof objects encode
constraints that are possible to validate at runtime, such as the fact that an integer is positive.
In these situations, it is unnecessary to send a proof object. We can only avoid sending a proof
object if the rest of the computation does not depend on it being sent. The concept of proof
irrelevance [28] captures the idea that some proofs play no computational role in the program. If
a proof object is irrelevant, we can avoid sending it and check the truth value of the proposition
directly. In this chapter, we encode dependent session types with proof objects [30, 36]. We then
integrate proof irrelevance into our type system and explore the class of properties that can be
monitored successfully. We also formalize a notion of erasure to verify that irrelevant terms do
not need to be communicated. Finally, we prove that blame assignment (as defined in Chapter 3)
remains correct with the addition of irrelevant terms and that our notion of erasure is correct.

6.1 Model

Proof irrelevance allows us to selectively hide portions of a proof or program. We express irrel-
evant expressions in our language by using the bracket operator, [v], meaning that there is a term
v that is irrelevant from a computational point of view. We add a new category of assumptions
x ÷ τ meaning that x stands for a term of type τ that is not computationally available. We then
extend our session types to include quantifiers over irrelevant types ∀x÷ τ.A and ∃x÷ τ.A. We
note that for ∀x÷ τ.A and ∃x÷ τ.A to be well-formed, x cannot appear in A.

A ::= ... | ∀x : τ.A(x) | ∃x : τ.A(x) | ∀x÷ τ.A | ∃x÷ τ.A

For example, consider the following type:
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∀x : int.∀p : (x > 0).∃y : int.∃q : (y > 0).1

This type models an interaction where the integer x is first received. Then, a proof p of the
fact that x is positive, is received. Next, the integer y is sent. Similarly, a proof q of the fact
that y is positive is sent. Finally, the interaction terminates. By looking at the proof objects,
we notice that they are not relevant to the rest of the computation. Moreover, given an integer,
it is possible to check whether it is positive directly, and sending a proof of its positivity is
unnecessary. Therefore, we can rewrite the type as follows:

∀x : int.∀p÷ [x > 0].∃y : int.∃q ÷ [y > 0].1

There are two irrelevant proof objects, [x > 0] and [y > 0], present in this type. Instead
of receiving an actual proof p of the fact that x is positive, the condition [x > 0] is checked
dynamically and a unit element [] is received instead. Similarly, the constraint that [y > 0] is
dynamically verified, and the unit element [] is sent.

We define the context Ψ to contain both standard assumptions of the form b : τ and irrelevant
assumptions of the form x÷ τ .

Ψ := · | Ψ, b÷ τ | Ψ, c : τ

The “irrelevant” proof objects must exist in the system for the purpose of type-checking, but
they cannot have a computational effect on the program. In order to facilitate this, the typing
rules must carefully ensure that hidden proofs are never required to compute something that is
itself not hidden. That is, computationally relevant portions cannot depend on computationally
irrelevant portions. For simplicity, we consider irrelevance only for messages to be exchanged,
not internally in the functional layer. We define a promotion operation on contexts that transforms
computationally irrelevant hypotheses into standard ones to account for type checking within the
bracket operator.
Definition 3 (Promotion).

(·)⊕ = · (Ψ, x : τ)⊕ = Ψ⊕, x : τ (Ψ, x÷ τ)⊕ = Ψ⊕, x : τ

The typing rules for both the relevant and irrelevant dependent process expressions are shown
in Figure 6.1. We note that in the ∃R[] and ∀L[] rules, the context Ψ is promoted to appropriately
typecheck the value v against the type τ . The type τ can be a base type (including a proof) or a
dependent type. Values include integers, booleans or proof objects.

τ := b | Πx : τ1.τ2 | Σx : τ1.τ2

v := true | false | n | p | . . .
In addition, we assume an underlying dependent type theory with the following properties:
• (Substitution) If Ψ1 ` v : τ1 and Ψ1, c : τ1,Ψ2 ` e : τ then Ψ1, [v/c]Ψ2 ` [v/c]e : [v/c]τ .
• (Weakening) If Ψ1 ` e : τ then Ψ1,Ψ2 ` e : τ .
• (Irrelevance) If Ψ1, c÷ τ ′,Ψ2 ` e : τ then Ψ1,Ψ2 ` e : τ .
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Ψ ` v : τ Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c v ; P :: (c : ∃n:τ.A)
∃R

Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ.A ` n← recv c ; Q :: (d : D)
∃L

Ψ, n:τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` n← recv c ; P :: (c : ∀n:τ.A)
∀R

Ψ ` v : τ Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n:τ.A ` send c v ; Q :: (d : D)
∀L

Ψ⊕ ` v : τ Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c [v] ; P :: (c : ∃n÷τ.A)
∃R[]

Ψ, n÷τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n÷τ.A ` [n]← recv c ; Q :: (d : D)
∃L[]

Ψ, n÷τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` [n]← recv c ; P :: (c : ∀n÷τ.A)
∀R[]

Ψ⊕ ` v : τ Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n÷τ.A ` send c [v] ; Q :: (d : D)
∀L[]

Figure 6.1: Typing Dependent Process Expressions

Monitoring Rules The monitoring rules for both the relevant and irrelevant dependent pro-
cesses are shown in Figure 6.3. There are two kinds of rules in our semantics, the first kind
handles relevant values and the second kind handles erased irrelevant values.

The first category (exists s, exists sa, exists r, forall s, forall sa, forall r) consists of monitoring
rules that are similar to those shown in Chapter 3. In these rules, the sent values are relevant. For
example, in the exists s rule, the monitor verifies that both the channel ci and the value v match
at type τ . If that is not the case, the exists sa rule fires, and triggers an alarm. We note that the
value v could be a proof object of some type φ. In that case, the monitor will verify that the proof
object matches the type φ. This ensures that the proof object corroborates the required condition.

The second category (exists s[], exists s a[], exists r[], forall s[], forall s a[], forall r[]) contains
rules that handle erased terms. For example, in the exists s[] rule, the monitor does not have
access to the value sent over channel ci so it cannot check that the value is of the appropriate
type. The only knowledge the monitor has is the type of the erased proof term φ which repre-
sents a condition. Using this type, the monitor will attempt to construct a proof p that will match
the type φ. If a proof cannot be found, then the exists s a[] rule executes, and raises an alarm.
As before, we assume that the monitor is a trusted component of the system and cannot generate
faulty proofs.

In order for our monitor to construct a proof of some proposition, it must be able to check if
the proposition is true or false. Some propositions, such as [x > 0], lie in a naturally decidable
fragment, such as Presburger arithmetic. However, other propositions, such as [is prime(x)],
cannot be expressed in Presburger arithmetic. Many of these propositions, including primality,
can be expressed in Peano arithmetic, which is undecidable in general. That is, while a procedure
to check primality can be written, an algorithm may not exist to check the truth value of every
proposition in this fragment. In this thesis, we call the propositions that can be expressed in
Presburger arithmetic “decidable” because there is an algorithm to determine if the proposition
is true or false, and we call the propositions that do not lie in this fragment “hard” because such
an algorithm may not exist. In our monitoring semantics, the type of the proof term φ must be
decidable.

The taxonomy of proof objects is summarized in Figure 6.2. When proof objects are decid-
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Figure 6.2: Proof Object Taxonomy

able (blue oval) our monitors can construct a proof in order to verify the desired condition. When
proof objects are irrelevant, but hard (green oval), our monitors will try to construct a proof and
may fail. When a proof cannot be generated, it is necessary to transmit the actual proof object,
even though the actual proof object may be irrelevant to the rest of the computation. In this
case, the sent proof will trigger one of the relevant monitoring rules. When a proof object is
transmitted, our monitors will check that the received proof produces the expected result.

6.2 Examples
In this section, we present examples of various conditions that can be encoded as irrelevant proof
objects. Our examples showcase conditions that can be validated by our monitors (proof objects
located in the blue oval in Figure 6.2) as well as those that cannot (proof objects located in the
green oval in Figure 6.2.

Factoring We first return to the factoring example, first presented in Section 4.1. We have a
process that receives one positive integer n and factors it into two integers p and q that are sent
back. We want to enforce the facts that n = p ∗ q, and p ≤ q. We write the factor t type as
follows:

factor t = ∀n : int.∀r ÷ [n > 0].∃p : int.∃q : int.∃s÷ [n = p ∗ q ∧ p ≤ q].1

In this example, because the specific values of n, p and q are known before the monitor needs
to verify the condition [n = p∗q∧p ≤ q], the check is decidable. That is, if n = 35, p = 5, q = 7,
then the condition becomes 35 = 5 ∗ 7 ∧ 5 ≤ 7 which is easily computed.

Let us now consider a different factoring implementation. In this implementation, we have
a process that receives one positive integer n and factors it into two integers. However, in this
implementation, the actual factors are not sent back, but instead a boolean acknowledgement of
success b is sent. We want to enforce that if the boolean b is true that n = p ∗ q and p ≤ q.

factor secret t = ∀n : int.∀r ÷ [n > 0].∃b : bool.∃s÷ [b ⊃ ∃p.∃q.n = p ∗ q ∧ p ≤ q].1

In this situation, the monitor does not have access to the factors p and q, only the original
integer n. Because of this, the condition [b ⊃ ∃p.∃q.n = p ∗ q ∧ p ≤ q] is hard. Even though
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this particular proof object is irrelevant, it cannot be checked dynamically. In order to check this
condition, an actual proof object will need to be sent.

Lists In Section 4.2 we provided monitors that check whether a list is empty or not. It is
frequently useful to go a step further and verify that a list has a certain length. To check this
contract, we could index a list by its length where list[l] has a length of l. We then express the
list type as follows:

list[l] = ⊕{nil : ∃r ÷ [l = 0].1;

cons : ∃s÷ [l > 0].∃q : int.list[l − 1]}

If the list is empty, the monitor will check that the length is indeed 0, and then the list will
terminate. If the list is nonempty, the monitor will check that the length is positive. The list will
then send the element y and continue to behave as a list, but now with the length decremented by
one element.

In Section 4.2, we also presented a partial identity monitor that verified whether a list was in
ascending order. Another method for validating this contract is to use a dependent type, where a
list[x] is indexed by a bound x on its elements. Using this type, a list will initially have a bound
of 0, list[0].

list[x] = ⊕{nil : 1;

cons : ∃y : int.∃p÷ [y ≥ x].list[y]}

In this encoding, if the list is nonempty, it will first send the element y. The monitor will then
dynamically check the condition that y ≥ x. Finally, it will continue behaving as a list, but it
will now be indexed with the bound y.

Now let us assume that we not only desire a list in ascending order, but one that also consists
of prime numbers. We can augment the type with the additional constraint as follows:

list[x] = ⊕{nil : 1;

cons : ∃y : int.∃p÷ [y ≥ x ∧ is prime(y)].list[y]}

Though we can encode the primality condition as a proof-irrelevent object, it is hard. In order
to enforce that the list consists of ascending primes, a primality-proving object will need to be
transmitted.

Trees We consider a binary tree implementation that is parametrized by two operations, split
and join [1]. In this implementation, all standard tree operations, such as insertion and deletion
are implemented in terms of the split and join functions. Consider the following type which
represents a tree:
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tree = &{split : ∀k : int.tree⊗ ∃l : bool.tree⊗ 1;

join : tree( tree⊗ 1}

If the split label is selected, an integer key is received. The implementation then splits the
original tree of height h into two trees: one that consists of all elements of the original tree that
are smaller than the given key (of height m), and one that consists of all elements of the original
tree that are larger than the given key (of height n). Both of these trees are sent, along with a
boolean value indicating whether the given key is in the tree. Finally, the process terminates. If
the join label is selected, then a tree of height v is received and merged into the original tree of
height h. The merged tree of height w is sent and then the process terminates.

In this implementation, we assume that trees are balanced, that is, a tree with x nodes has
a height of dlog(x + 1)e. We now consider the invariants we would like to enforce for this
implementation. First, we require that keys and heights must be nonnegative. This is encoded by
the irrelevant proof objects [k ≥ 0] and [v ≥ 0].

tree[h] = &{split : ∀k : int.∀p÷ [k ≥ 0].

∃m : int.tree[m]⊗ ∃q ÷ [0 ≤ m ≤ h].∃l : bool.

∃n : int.tree[n]⊗ ∃r ÷ [0 ≤ n ≤ h].1;

join : ∀v : int.tree[v]( ∀r ÷ [v ≥ 0].

∃w : int.tree[w]⊗ ∃s÷ [max(v, h) ≤ w ≤ v + h].1}

Second, we want to impose bounds on the heights of the trees created as a result of the
split and join processes. When a tree of height h is split, the resulting trees of height m and n
cannot have a height that is larger than that of the original tree, h. However, if the key being
split on is smaller or greater than all of the keys in the original tree, then the height of m or n,
respectively, could be 0. These bounds are expressed by the irrelevant proof objects [0 ≤ m ≤ h]
and [0 ≤ n ≤ h].

When a tree of height v is being joined to a tree of height h, the height of the resulting tree
w must be at least the height of the larger of the two trees being joined. In constrast, the height
of the resulting tree w cannot be larger than the sum of the heights of the two trees being joined.
This bound is represented by the irrelevant proof object [max(v, h) ≤ w ≤ v + h]. Because the
integer values k, h, m, n, v and w are all available to the monitor, the monitor is able to verify
all of the conditions in this example.

Let us consider the proof object [max(v, h) ≤ w ≤ v+ h]. While the upper bound v+ h, is a
correct upper bound, it is too conservative. In fact, because we assumed our trees to be balanced,
we can calculate a more accurate bound. Given that a balanced tree of height v has at most 2v−1
nodes, the resulting tree of height m can have at most (2v − 1 + 2h − 1) nodes. This means that
the height of the merged tree m is bounded by dlog(2v + 2h − 1)e. Unfortunately, the condition
[max(v, h) ≤ w ≤ dlog(2v + 2h − 1)e] is hard. Even though this proof object is irrelevant, it
cannot be checked dynamically. In order to enforce the more accurate bound, an actual proof
object will need to be sent.
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6.3 Metatheory
In this section we prove three theorems. We first show that blame is assigned correctly in the
presence of irrelevant terms. We then formalize a notion of erasure to verify that irrelevant terms
do not need to be communicated at the process level. Finally, we show that our notion of erasure
is correct and that erasure preserves the meanings of programs.

We first recall how blame assignment is defined in Chapter 3. Let the context Ω be the
multiset of processes and messages describing the current state of computation. We define the
context ∆ to map linear channels in the system to their types. We define the context H to store
channels that have been havoced. Due to channel renaming, if ai ∈ H , then a ∈ H . We write
|= Ω : wf to denote that the state Ω is well-typed. This well-typedness requires that all processes
and messages in Ω be typed using typing rules in Figure 6.1.

In order to prove that blame is assigned correctly, we state and prove a substitution lemma
that applies for irrelevant terms.
Lemma 12 (Irrelevant Substitution). If Ψ⊕ ` v : τ and Ψ, b ÷ τ ; ∆ ` Q :: (d : D) then
Ψ; [v/b]∆ ` [v/b]Q :: (d : [v/b]D).

Proof. We prove this lemma by induction on the derivation of Ψ, b ÷ τ ; ∆ ` Q :: (d : D). We
show the principal cases in Appendix C.1.

We now present the configuration typing in order to state the theorem. We assume that the
comma operator is associative with · as the unit.

C = · | proc(c, P ) | msg(c, P ) | C1, C2

H; · 
 ·
H; ∆ 
 C1 H; ∆ 
 C2

H; ∆ 
 C1, C2

∆|fn(P ) ` P :: (c : ∆(c))

H; ∆ 
 msg(c, P )

c 6∈ H ∆|fn(P ) ` P :: (c : ∆(c))

H; ∆ 
 proc(c, P )

c ∈ H
H; ∆ 
 proc(c, P )

Theorem 13 (Alarm).
1. If ∅; ·; · |= Ω and Ω, ∅,−→∗ Ω′;H; ∆ then H; ∆ |= Ω′

2. If ∅; ·; · |= Ω and Ω, ∅,−→∗ , H, alarm(a) then a ∈ H .
The above theorem states that from an initial configuration, a well-typed configuration can

make a series of transitions to either another well-formed configuration, or a state where an alarm
is raised on a process a that has been havoced.

The correctness proof for the blame assignment is similar to that of a preservation proof. The
key lemma is Lemma 14, which states that if a well-typed configuration makes a transition, then
it either steps to another well-formed configuration, or an alarm is raised on a process a that
has been havoced. Using this lemma, we can prove Theorem 13 which considers a sequence of
transitions. The proof is done by induction on the length of the trace.
Lemma 14 (One-step alarm). If H; ∆ 
 Ω and proc(ai, P ) ∈ Ω then either:

1. H,Ω,∆→ H,Ω′,∆′ and H; ∆′ 
 Ω′ or
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2. H,Ω,∆→ alarm(a) where a ∈ H and ∆|fn(P ) 6` proc(ai, P ) :: (a : ∆(a)).

Proof. We prove the lemma by examining each monitoring rule, inverting the typing configura-
tion and applying the typing rules. The proof cases can be found in Appendix C.2.

Now that we have augmented our system with irrelevant terms, the next step is to check that
irrelevant terms do not need to be communicated at the process level. We formalize this with a
notion of erasure that replaces computationally irrelevant terms by unit elements [] and irrelevant
types by the unit type 1.
Definition 4. We define erasure on configurations and contexts below. Erasure for types and
processes is defined in Figure 6.4.

·† = · (proc(c, P ))† = proc(c, P †) (msg(c, P ))† = msg(c, P †) (C1, C2)† = C†1, C
†
2

·† = · (Ψ, x : τ)† = Ψ†, x : τ † (Ψ, x÷ τ)† = Ψ† (∆, c : A)† = ∆†, c : A†

We begin by showing that our notion of erasure is correct. That is, if a process is well-typed
with respect to some type, than the erased version of that process must also be well-typed with
respect to the erased type.
Theorem 15 (Erasure Correctness). If Ψ,∆ ` P :: (z : A) then Ψ†,∆† ` P † :: (z : A†).

Proof. We prove this theorem by induction over the typing rules. The proof cases are shown in
Appendix C.3.

In order to show that erasure does not affect preservation, we need to show that substitution
of irrelevant terms and erasure of irrelevant terms commute. In order to facilitate this, we prove
a lemma that states if a process is well-typed with respect to some type given a context with an
irrelevant term, then an erased version of that process must be well typed with respect to the
erased type given the erased context.
Lemma 16 (Irrelevant Erasure). If Ψ⊕ ` v : τ and Ψ, n ÷ τ ; ∆ ` Q :: (d : D) then Ψ†; ∆† `
Q† :: (d : D†).

Proof. We prove this theorem by induction over the derivation of Ψ, n ÷ τ ; ∆ ` Q :: (d : D).
The proof cases are shown in Appendix C.4.

To show that erasure does not affect preservation, we are actually showing that erasure and
process evaluation commute. We define two configurations as being equal if they are comprised
of identical processes and messages.
Theorem 17 (Erasure Preservation).

1. If ·; Ω 
 C and C → C ′ then ∃C ′′ such that C† → C ′′ and (C ′)† = C ′′.
2. If ·; Ω;
 C, ·; Ω 
 C† and C† → C ′† then ∃C ′′ such that C → C ′′ and C ′ = C ′′.

Proof. We prove this theorem by induction over the operational semantics and by applying
Lemma 16. The proof cases are shown in Appendix C.5.
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6.4 Related Work
Because dependent types subsume refinement types, the related work described in Section 5.4 is
also relevant here. Greenberg et al. [17] survey the the literature on dependent contract checking,
which focuses on dependent functions, and compares the technical approaches. Most relevant
to our work is that of Ou et al. [27] who have developed a language where simply-typed and
dependently-typed code is integrated by using coersions. Each coercion is treated as a contract
and checked dynamically. Their coercions resemble the proof objects in our system which can
be used to integrate simply-typed and dependently-typed code.

Recently, Toninho and Yoshida [35] have presented data-dependent session types, which are
a version of dependent types that integrate dependent functions and session-typed processes.
Their type theory can express protocols where the choice of the next communication action can
depend on specific values of the received data. As an example, consider the below type:

∀x : int.if (x > 0)(∃y : int.1)(∃z : bool.1)

This type represents a process that receives the integer x and checks whether it is positive. If
it is, the process sends an integer y and then terminates. If not, the process sends a boolean z and
terminates. In our system, we can represent this interaction as follows:

∀x : int.⊕ {true : ∀p÷ [x > 0].∃y : int.1; false : ∀q ÷ [x ≤ 0].∃z : bool.1}

In our version, the if connective has been transformed into an internal choice with two op-
tions, true and false. The guard to the if has been converted into two proof irrelevant terms for
each branch of the if.

Along similar lines, Neykova et al. [26] design and implement a system for multiparty session
types that features interaction refinements. Interaction refinements allow them to refine types of
communicated messages and impose message dependent control flow. For example, they could
require that first process P sends an positive integer to process Q, and then process Q sends the
exact same integer to another process R. Our model is constrained to binary session types, but
we are able to express interaction refinements. While their work focuses on providing a practical
implementation in F#, our approach centers on theoretical guarantees.
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exists s : proc(ci, send ci v ; P ), !(ci : ∃n : τ.A) , !(v : τ)

−→ proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci v ; ci ← c+

i ), !(c+
i : [v/n]A)

exists sa : proc(ci, send ci v ; P ), (6 ∃τ. !(ci : ∃n : τ.A) , !(v : τ) ) −→ alarm(ci)

exists r : msg(ci, send ci v ; ci ← c+
i ), proc(d, n← recv ci ; Q)

−→ proc(d, [c+
i /ci][v/n]Q)

exists s[] : proc(ci, send ci [] ; P ), !(∃φ.∃p.ci : ∃n÷ φ.A), p : φ)

−→ proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci [v] ; ci ← c+

i ), !(c+
i : A)

exists s a[] : proc(ci, send ci [] ; P ), !¬(∃φ.∃p.ci : ∃n÷ φ.A), p : φ) −→ alarm(ci)

exists r[] : msg(ci, send ci [] ; ci ← c+
i ), proc(d, []← recv ci ; Q)

−→ proc(d, [c+
i /ci][v/n]Q)

forall s : proc(d, send ci v ; Q), !(ci : ∀n : τ.A) , !(v : τ)

−→ msg(c+
i , send ci v ; c+

i ← ci), proc(d, [c+
i /ci]Q), !(c+

i : [v/n]A)

forall sa : proc(d, send ci v ; Q), ( 6 ∃τ. !(ci : ∀n : τ.A) , !(v : τ) −→ alarm(d)

forall r : proc(ci, n← recv ci ; P ),msg(c+
i , send ci v ; c+

i ← ci)
−→ proc(c+

i , [c
+
i /ci][v/n]P )

forall s[] : proc(d, send ci [] ; Q), !(∃φ.∃p.ci : ∀n÷ φ.A), p : φ)

−→ msg(c+
i , send ci [v] ; c+

i ← ci), proc(d, [c+
i /ci]Q), !(c+

i : A)

forall s a[] : proc(d, send ci [] ; Q), !¬(∃φ.∃p.ci : ∀n÷ φ.A), p : φ) −→ alarm(d)

forall r[] : proc(ci, []← recv ci ; P ),msg(c+
i , send ci [] ; c+

i ← ci)
−→ proc(c+

i , [c
+
i /ci][v/n]P )

alarmr : proc(c,m← recv a;R), !(a : A) , !(m 6B A) −→ alarm(c)

alarmr′ : proc(c,m← recv c;R), !(c : A) , !(m 6B A) −→ alarm(c)

Figure 6.3: Dependent Monitor Rules
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(A⊗B)† = A† ⊗B† (A( B)† = A†( B†

N{` : A`}†`∈L = N{` : A†`}`∈L ⊕{` : A`}†`∈L = ⊕{` : A†`}`∈L
(∃n : τ.A)† = ∃n : τ.A† (∀n : τ.A)† = ∀n : τ.A†

(∃n÷ τ.A)† = ∃n÷ 1.A† (∀n÷ τ.A)† = ∀n÷ 1.A†

(↑A)† = ↑A† (↓A)† = ↓A†
1† = 1

(close c)† = close c (wait c ; Q)† = wait c ; Q†

(send c a ; Q)† = send c a ; Q† x← recv c ; Q†

(c.`j ; Q)† = c.`j ; Q† (send c v ; Q)† = send c v ; Q†

(n← recv c ; Q)† = n← recv c ; Q† (send c [v] ; Q)† = send c [] ; Q†

([n]← recv c ; Q)† = []← recv c ; Q† (send c shift ; Q)† = send c shift ; Q†

(shift← recv c ; Q)† = shift← recv c ; Q† (x← P ; Q)† = x← P † ; Q†

(c← d)† = c← d

(case c of {`i ⇒ Qi}i)† = case c of {`i ⇒ Q†i}i)

Figure 6.4: Erasure for Types and Processes
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Chapter 7

Miscellaneous Monitors

In this thesis, we have argued that session-typed monitors allow us to monitor a variety of differ-
ent classes of contracts. We have considered examples of contracts that are expressed as session
types, partial-identity processes, refinement types, and dependent types. With each class of con-
tract, we have provided a monitoring mechanism and shown it to be safe and transparent.

Throughout this thesis, we have returned to the example of factoring twice – once in Chapter
4 and once in Chapter 6. In the former case, we used a partial-identity monitor and in the latter
case we were able to express the desired contract using a dependent type. In order to monitor
our contracts, we made use of two approaches, shown in Figure 7.1. In the first approach, we
increased the complexity of our type system. We first implemented this design in Chapter 3
where used monitors to check that processes were adhering to their prescribed session-types. We
later augmented our system to handle proof objects in Chapter 6. In these settings, we were
able to prove strong blame theorems. In the second approach, we made our monitors more
powerful and increased their operational complexity. In Chapter 4 our monitors were fully-
fledged processes that had the ability to spawn other processes. While these monitors were
the most general and allowed us the most flexibility, proving a strong blame theorem proved
difficult. When we restricted our monitors to refinements in Chapter 5, we were able to prove a
safety theorem for that fragment. While refinements can be handled by partial identity monitors,
they can also be monitored with the dependent monitors described in Chapter 6.

Despite the variety of contracts presented in this thesis, there are still classes of contracts that
our monitors are not capable of validating. In this chapter, we discuss three types of monitors
that do not yet fit into our session-typed monitoring model.

7.1 Partial Identity Processes with Unrestricted Channels

We first recall the partial identity processes discussed in Chapter 4. As an example, let us consider
how to create a stream that consists of the bitwise logical disjunction (denoted ∨) of two streams
of bits, implemented on channels x and y. The first method involves defining a process that
examines each corresponding bit of x and y and then computes the resulting bit appropriately
to output on channel z. The second method uses the negation of logical or (denoted ↓) and the
following fact from propositional logic:
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Figure 7.1: Monitoring Summary

x ∨ y = (x ↓ y) ↓ (x ↓ y)

We note that the channels x and y cannot be linear in order to use the above property to
implement or using nor, because each of them is used twice. Let the standard implementation be
called or std, and the one using nor be called or nor. The implementation of or nor is shown in
Figure 7.2.

We would like to enforce the contract that the or nor process produces the same result as
or std process does. A monitor for this contract would need access to the channels x and y in
order to pass those channels along to the or std process. The monitor will also need to make use
of a process to check whether two streams of bits have the same bits (referred to as eq). The code
for this monitor is shown in Figure 7.2.

z ← or nor← x, y =
u← nor← x, y ;
z ← nor← u, u

z ← or mon← x, y, z′ =
z′′ ← or 1← x, y ;
z ← eq← z′, z′′

Figure 7.2: Or/Nor Monitor

Unfortunately, this monitor does not meet our criteria for a partial identity monitor because it
takes multiple channels as an argument, even though two of them are non-linear. The goal of this
future work is to investigate whether we can relax the partial identity rules to allow passing non-
linear channels as arguments to monitoring processes. This relaxation would allow us to model
another class of contracts, but would necessitate verifying that the changes do not jeopardize the
transparency property of our monitors.

72



7.2 Monitoring Information Flow
Another avenue of future work is monitoring 2-safety properties such as information flow in
this concurrent setting. In this setting, the contract we are looking to enforce is noninterference
which guarantees that low-security information cannot influence high-security information. We
are investigating the use of secure multiexecution to be able to run a process in both a high and
low setting to determine whether it breaks noninterference. We have built an initial prototype
of a secure multiexection engine which takes in a process, produces a low-security copy (where
all high security data is set to some default value) and a high-security copy and then given some
input runs the high-security and low-security copies concurrently. While secure-multiexecution
provides strong security guarantees, in practice it is inefficient because it requires every block
of code to be executed multiple times in parallel, once for each security level. Because we
are already working in a concurrent setting, we are interested in investigating whether secure
multiexecution can be implemented to have a lower performance overhead by taking advantage
of the existing concurrency in our system. The goal of this research direction is to produce of a
model of information flow enforcement in a concurrent process-based setting and prove that our
enforcement mechanism satisfies noninterference.

7.3 Monitoring Deadlock
In a purely linear setting, session-typed languages guarantee deadlock freedom. Unfortunately,
programs that rely on the use of shared resources cannot be expressed in this paradigm. The
shared channels introduced in Section 2.1 have a copying semantics and therefore do not allow
the sharing of mutable resources. Balzer and Pfenning [3] augment a session-typed language
with resource sharing by splitting the language into linear and shared layers with modal opera-
tors connecting the layers. They impose an acquire-release discipline on shared channels which
grants exclusive access to a process. This language is no longer deadlock-free, and deadlock can
arise when executing standard examples such the dining philosophers scenario. More specifi-
cally, acquire-release introduces nondeterminism into the languages because any one of multiple
clients trying to aquire a shared process could succeed.

Recently, Balzer et al [4] have developed a type system where types constrain the order of
resources that a process may acquire. This information is used to determine when cyclic de-
pendencies, which can lead to deadlock, occur. As a result, their system statically guarantees
deadlock freedom for session-typed languages with shared resources. We are currently work-
ing on designing a monitoring mechanism that can dynamically detect deadlock as the system
executes. Because deadlock is a global property, this mechanism involves monitors that must
communicate with each other to determine whether a process can get struck trying to acquire a
shared resource. Our prototype implementation uses the Mitchell-Merritt algoritm [24] to build
a graph of what process is waiting for another process to figure out when deadlock has occured.
The goal of this future work is to expand our prototype to model more examples and develop a
theory that underlies our monitoring infrastructure.
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Appendix A

Proof Cases

A.1 Verified Spawn Configuration Inversion Lemma
Lemma 18 (Configuration-Inversion).

1. IfH; Λ 
 C and C = C1, C2 where C2 = proc(c, P ) thenH; Λ 
 C1 andH; Λ 
 proc(c, P ).
2. IfH; Λ 
 C and C = C1, C2, C3 where C2 = msg(c, P ) and C3 = proc(d,Q) thenH; Λ 
 C1

and H; Λ 
 msg(c, P ) and H; Λ 
 proc(d,Q).
3. IfH; Λ 
 C and C = C1, C2, C3 where C2 = proc(c, P ) and C3 = msg(d,Q) thenH; Λ 
 C1

and H; Λ 
 proc(c, P ) and H; Λ 
 msg(d,Q).
4. If H; Λ 
 proc(c, P ) and c 6∈ H , then Λ|fnP ` P :: (c : Λ(c)).
5. If H; Λ 
 msg(c, P ) then Λ|fn(P ) ` P :: (c : Λ(c)).

Proof. By examining the configuration typing rules.

A.2 Freename Lemma
Lemma 19 (freename). If ∆|CH ` proc(c, P ) :: (c : ∆(c)) then fn(P ) = CH .

Proof. By induction over the structure of the typing judgement.
Case id
Let R = a← b. We have that ∆|CH = b. By the id rule, we see that fn(R) = b, which gives

us fn(R) = CH .

Case 1R
Let R = close c. We have that ∆|CH = ·. By the 1R rule, we see that fn(R) = ·, which gives

us fn(R) = CH .

Case 1L
Let R = wait c;Q. We have that ∆|CH = ∆|CH\c, c : 1. By I.H., fn(Q) = CH \ c. By the 1L

rule, we see that fn(R) = fn(Q) ∪ c, which gives us fn(R) = CH \ c ∪ c = CH .
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Case cut
Let R = x : A ← P ;Q. We have that ∆|CH = ∆|CH1 ,∆|CH2 . By I.H., fn(P ) = CH1

and fn(Q) = CH2 ∪ x. By the cut rule, we see that fn(R) = fn(P ) ∪ fn(Q) x, which gives us
fn(R) = CH1 ∪ CH2 ∪ x \ x = CH .

Case ⊗R
Let R = send c a;P . We have that ∆|CH = ∆|CH\a, a : A. By I.H., fn(P ) = CH \ a. By the

⊗R rule, fn(R) = fn(P ) ∪ a, which gives us fn(R) = fn(P ) ∪ a = CH \ a ∪ a = CH .

Case ⊗L
Let R = x ← recv c;Q. We have that ∆|CH = ∆|CH\c, c : A ⊗ B. By I.H., fn(Q) =

∆|CH\c∪c∪x. By the⊗L rule, fn(R) = fn(Q)\x, which gives us fn(R) = CH\c∪c∪x\x = CH .

Case(R
Let R = x ← recv c;P . By i.h, fn(P ) = CH ∪ x. By the(R rule, fn(R) = fn(P ) \ x,

which gives us fn(R) = CH ∪ x \ x = CH .

Case(L
Let R = send c a;Q. We have that ∆|CH = ∆CH\a\c, a : A, c : A( B. By I.H., fn(Q) =

CH\a\c∪c. By the(L rule, fn(R) = fn(Q)∪a, which gives us fn(R) = CH\a\c∪c∪a = CH .

Case ↑ R
Let R = shift ← recv c;P . By I.H., fn(P ) = CH . By the ↑R rule, fn(R) = fn(P ), which

gives us fn(R) = CH .
The cases for ↑ L, ↓ R, ↓ L are similar.

Case NR
LetR = c.k;Q. We have that ∆|CH = ∆|CH\c, c : &{` : A`}. By I.H., fn(Q) = CH \c∪c =

CH . By the NR rule, fn(R) = fn(P ) which gives us fn(R) = CH .
The cases for NL, ⊕R, ⊕L are similar.

Case ∃L
Let R = n ← recv c;Q. We have that ∆|CH = ∆CH\c, c : ∃n : τ.A. By i.h, fn(Q) =

CH \ c ∪ c = CH . By the ∃L rule, fn(R) = fn(Q) which gives us fn(R) = CH .
The cases for ∃R, ∀L, ∀R are similar.

A.3 Proof of lemma (one-step) for linear modality
Case id

We have proc(a, a ← b), C !(a : A) , !(b : A) −→ [b/a]C. By the configuration typing,
H; ∆ 
 proc(a, a← b; C) and H; ∆ 
 C.
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Subcase a 6∈ H .
By inversion of the configuration typing, ∆|b ` a← b :: (a : ∆(a)). From the id typing rule,

we see that b : ∆(a). Let ∆′ = [b : ∆(a)/a : ∆(a)]. We then have H; ∆′ 
 [b/a]C.

Subcase a ∈ H .
Using the fact that a : A and b : A we can define ∆′ as follows: ∆′ = [b : ∆(a)/a : ∆(a)].

We then have H; ∆′ 
 [b/a]C.

Case ida

We have proc(a, a ← b), C, ( 6 ∃A. !(a : A) , !(b : A) ). By the configuration typing, H; ∆ 

proc(a, a← b; C) and H; ∆ 
 C.

Subcase a 6∈ H .
By inversion of the configuration typing, ∆|b ` a← b :: (a : ∆(a)). By the id typing rule, we

have b : ∆(a) ` a← b :: (a : ∆(a)). If a 6: ∆(a) or b 6: ∆(a) then b : ∆(a) 6` a← b :: (a : ∆(a)).
This is a contradiction and because H; ∆ 
 proc(a, a← b), it must be the case that a ∈ H .

Subcase a ∈ H .
Assume ∆|b ` a ← b :: (a : ∆(a)). By the id rule, b : A ` a ← b :: (a : A). However,

this contradicts the fact that there does not exist an A such that a : A and b : A. Therefore,
∆|b 6` a← b :: (a : ∆(a)).

Case cut

We have proc(c, x : A ← P ;Q), !(typecheck(P :: x : A)) , !(fn(P ) ∩ fn(Q) = ∅ ) −→
proc(c, [a0/x]Q), proc(a0, [a0/x]P ), !(a0 : A) where a0 is fresh. By the configuration typing,
H; ∆ 
 proc(c, x : A← P ;Q).

Subcase c 6∈ H
By inversion of the configuration typing, ∆|fn(P )∪fn(Q) ` proc(c, x : A ← P ;Q). By inver-

sion of the cut typing rule, ∆|CH′ ` P :: (x : ∆(x)) and ∆|CH ` Q :: (c : ∆(c)). By the
Freename lemma, we know that CH ′ = fn(P ) and CH = fn(Q). Let ∆′ = [a0 : A/x : A]∆.
Let a0 : A, so by the substitution lemma we get ∆′|fn(P ) ` [a0 : A/x : A]P :: (a0 : ∆′(a0)))

and ∆′|fn(Q) ` [a0 : A/x : A]Q :: (c : ∆′(c)). Therefore, H; ∆′ 
 proc(c, [a0/x]Q) and
H; ∆′ 
 proc(a0, [a0/x]P ).

Subcase c ∈ H
Using the fact that P :: (x : A) we have ∆|fn(P ) ` P :: (x : ∆(a)). Let ∆′ = [a0 : A/x : A]∆.

We then have ∆′|fn(P ) ` [a0/x]P :: (x : ∆(a)) which gives us H; ∆′ 
 proc(a0, [a0/x]P ). Be-
cause c ∈ H , by the configuration typing, we have that H; ∆′ 
 proc(c, [a0/x]Q).

Case cuta
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We have proc(c, x : A ← P ;Q), ( !(typecheck(P :: x 6: A)) ⊕ !(fn(P ) ∩ fn(Q) 6= ∅ ) −→
alarm(c). By the configuration typing, H; ∆ 
 proc(c, x : A← P ;Q).

Subcase c 6∈ H .
By inversion of the configuration typing, ∆|fn(P )∪fn(Q) ` x : A ← P ;Q :: (c : ∆(c)). By

inversion of the cut typing rule, ∆|CH′ ` P :: (x : ∆(x))) and ∆|CH ` Q :: (c : ∆(c)). By the
Freename lemma, we know thatCH ′ = fn(P ) andCH = fn(Q). Because ∆ is a linear context, it
must be the case that fn(P ) ∩ fn(Q) = ∅. This means ∆|fn(P )∪fn(Q) 6` x : A← P ;Q :: (c : ∆(c))
which is a contradiction. If typecheck(P :: x 6: A) then ∆|fn(P ) 6` P :: (x : ∆(x))) and
∆|fn(P )∪fn(Q) 6` x : A ← P ;Q :: (c : ∆(c)). This is a contradiction, and because H; ∆ 

proc(c, x : A← P ;Q) it must be the case that c ∈ H .

Subcase c ∈ H
Assume ∆|fn(P )∪fn(Q) ` proc(c, x : A ← P ;Q) :: (c : ∆(c)). By inversion of the cut typ-

ing rule, ∆|CH′ ` P :: (x : ∆(x))) and ∆|CH ` Q :: (c : ∆(c)). By the Freename lemma,
we know that CH ′ = fn(P ) and CH = fn(Q). Because ∆ is a linear context, it must be
the case that fn(P ) ∩ fn(Q) = ∅. This means ∆|fn(P )∪fn(Q) 6` x : A ← P ;Q :: (c : ∆(c))
which is a contradiction. If typecheck(P :: x 6: A) then ∆|fn(P ) 6` P :: (x : ∆(x))) and
∆|fn(P )∪fn(Q) 6` x : A← P ;Q :: (c : ∆(c)).

Case lolli s
We have proc(d, send ci a;Q), !(ci : A1 ( A2) ), !(a : A1) ) −→ msg(c+

i , send ci a; c+
i ←

ci), proc(d, [c+
i /ci]Q), !(c+

i : A2) . By the configuration typing, H; ∆ 
 proc(d, send ci a;Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪a∪fn(Q) ` send ci a;Q :: (d : ∆(d)). By in-

version of the (L rule, we have ∆|ci∪fn(Q) ` Q :: (d : ∆(d)). By using the (L rule and
the id rule, we can type the message as follows: a : A1, ci : A2 ` send ci a; c+

i ← ci ::
(c+
i : A2). Let ∆′ = ∆ ∪ c+

i . We then have ∆′|fn(Q) ` [c+
i : A2/ci : A2]Q :: (d : ∆′(d))

and ∆′|a∪ci ` send ci a; c+
i ← ci) :: (c+

i : A2). Therefore, H; ∆′ 
 proc(d, [c+
i /ci]Q) and

H; ∆′ 
 msg(c+
i , send ci a; c+

i ← ci).

Subcase d ∈ H
Using the fact that a : A1, ci : A1 ( A2 and c+

i : A2 we can type the message as fol-
lows: a : A1, ci : A2 ` send ci a; c+

i ← ci :: (c+
i : A2). Let ∆′ = ∆ ∪ c+

i . We then have
∆′|a∪ci ` send ci a; c+

i ← ci :: (c+
i : A2). Therefore, H; ∆′ 
 msg(c+

i , send ci a; c+
i ← ci).

Because d ∈ H , by the configuration typing, we have that H; ∆′ 
 proc(d, [c+
i /ci]Q).

Case lolli sa
We have proc(d, send ci a;Q), ( 6 ∃A1. !(ci : A1 ( A2) , !(a : A1 ). By the configuration typ-

ing, H; ∆ 
 proc(d, send ci a;Q).

Subcase d 6∈ H .
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By inversion of the configuration typing, ∆|ci∪a∪fn(Q) ` send ci a;Q :: (d : ∆(d)). By the
(L rule, we have ∆|fn(Q), a : A1, ci : A1 ( A2 ` send ci a;Q :: (d : ∆(d)). If ci 6: A1 ( A2,
or a 6: A1 then ∆|ci∪a∪fn(Q) 6` send ci a;Q :: (d : ∆(d)). This is a contradiction, and because
H; ∆ 
 proc(d, send ci a;Q), it must be the case that d ∈ H .

Subcase d ∈ H .
Assume ∆|ci∪a∪fn(Q) ` send ci a;Q :: (d : ∆(d)). By the(L rule, ∆fn(Q), a : A1, ci : A1 (

A2 ` send ci a;Q :: (d : ∆(d)). However, this contradicts the fact there does not exist A1 such
that ci : A1 ( A2 and a : A1. Therefore, ∆|ci∪a∪fn(Q) 6` send ci a;Q :: (d : ∆(d)).

Case lollir
We have msg(c+

i , send ci a; c+
i ← ci), proc(ci, x← recv ci;P ) −→ proc(c+

i , [c
+
i /ci][a/x]P ).

By the configuration typing,H; ∆ 
 proc(ci, x← recv ci;P ) andH; ∆ 
 msg(c+
i , send ci a; c+

i ←
ci).

Subcase ci 6∈ H .
By inversion of the configuration typing, ∆|fn(P ) ` x ← recv ci;P :: (ci : ∆(ci)) and

∆ci∪a ` send ci a; c+
i ← ci :: (c+

i : ∆(c+
i )). Using the(R rule and the id rule, we can type the

message as follows: a : A1, ci : A2 ` send ci a; c+
i ← ci :: (c+

i : A2). By inversion of the(R
typing rule, we have that ∆|fn(P ), x : A1 ` P :: (ci : A2)). Let ∆′ = [c+

i : A2/ci : A2]∆ ∪ a. We
then have ∆′|fn∪a ` [c+

i /ci][a/x]P :: (c+
i : A2)). Therefore, H; ∆′ 
 proc(c+

i , [c
+
i /ci][a/x]P ).

Subcase ci ∈ H
Let ∆′ = ∆. Because ci ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(c+
i , [c

+
i /ci][a/x]P ).

Case tensor s

We have proc(ci, send ci a;P ), !(ci : A1 ⊗ A2) , !(a : A1) −→ msg(ci, send ci a; ci ←
c+
i ), proc(c+

i , [c
+
i /ci]P ), !(c+

i : A2) . By the configuration typing H; ∆ 
 proc(ci, send ci a;P ).

Subcase ci 6∈ H .
By inversion of the configuration typing, ∆|fn(P )∪a ` send ci a ; P :: (ci : ∆(ci)). By

inversion of the ⊗R rule, we have ∆|fn(P ) ` P :: (ci : A2). By using the ⊗R rule and
the id rule, we can type the message as follows: a : A1, c

+
i : A2 ` send ci a; ci ← c+

i ::
(ci : A2). Let ∆′ = ∆ ∪ c+

i . We then have ∆′|fn(P ) ` [c+
i : A2/ci : A2]P :: (c+

i : A2)

and ∆′|a∪c+i
` send ci a; ci ← c+

i :: (ci : A2). Therefore, H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ) and

H; ∆′ 
 msg(ci, send ci a; ci ← c+
i ).

Subcase ci ∈ H .
Using the fact that a : A1, c+

i : A2, and ci : A1 ⊗ A2 we can type the message as fol-
lows: a : A1, c

+
i : A2 ` send ci a; ci ← c+

i :: (ci : A2). Let ∆′ = ∆ ∪ c+
i . We then have

∆′|a∪c+i
` send ci a; ci ← c+

i :: (ci : A2). Therefore,H; ∆′ 
 msg(ci, send ci a; ci ← c+
i ). Be-
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cause ci ∈ H , by the configuration typing, we have H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ).

Case tensor sa
We have proc(ci, send ci a;P ), (6 ∃A1. !(ci : A1 ⊗ A2) , !(a : A1) ) −→ alarm(ci). By the con-
figuration typing H; ∆ 
 proc(ci, send ci a;P ).

Subcase ci 6∈ H .
By inversion of the configuration typing, ∆|fn(P )∪a ` send ci a ; P :: (ci : ∆(ci)). By

the ⊗R rule, we have ∆|fn(P ), a : A1 ` send ci a;P :: (ci : A1 ( A2). If ci 6: A1 ⊗ A2 or
a 6: A1 then ∆|fn(P )∪a 6` send ci a;P :: (ci : A1 ⊗ A2). This is a contradiction, and because
H; ∆ 
 proc(ci, send ci a;P ), it must be the case that ci ∈ H .

Subcase ci ∈ H .
Assume ∆|fn(P )∪a ` send ci a;P :: ∆(ci). By the ⊗R rule, ∆|fn(P ), a : A1 ` send ci a;P ::

(ci : A1 ⊗ A2). However, this contradicts the fact that there does not exists A1 such that
ci : A1 ⊗ A2 and a : A1. Therefore, ∆|fn(P )∪a 6` send ci a;P :: (ci : ∆(ci)).

Case tensor r
We have msg(ci, send ci a; ci ← c+

i , proc(d, x← recv ci;Q),
−→ proc(d, [c+

i /ci][a/x]Q). By the configuration typing H; ∆ 
 proc(d, x ← recv ci;Q) and
H; ∆ 
 msg(ci, send ci a; ci ← c+

i : ∆(ci).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` x ← recv ci;Q :: (d : ∆(d)) and

∆a∪c+i
` send ci a; ci ← c+

i :: (ci : ∆(ci)). Using the ⊗R and id typing rules we can type the
message as follows: a : A1, c

+
i : A2 ` send ci a; ci ← c+

i :: (ci : A2). By inversion of the ⊗L
typing rule, we have that ∆|fn(Q), x : A1 ` Q :: (d : ∆(d)). Let ∆′ = [c+

i : A2/ci : A2]∆∪ a. We
then have ∆′|fn(Q)∪a ` [c+

i /ci][a/x]Q :: (d : ∆(d)). Therefore, H; ∆′ 
 proc(d, [c+
i /ci][a/x]Q).

Subcase d ∈ H
Let ∆′ = ∆. Because ci ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(d, [c+
i /ci][a/x]Q).

Case one s
We have proc(a, close a), !(a : 1) −→ msg(a, close a). By the configuration typing, we

have H; ∆ 
 proc(a, close a).

Subcase a 6∈ H .
By inversion of the configuration typing, ∆|· ` close a :: (a : ∆(a)). By the 1R rule, we

have · ` close a :: (a : 1). Let ∆′ = ∆. We then have ∆′|· ` close a :: (a : 1). Therefore,
H; ∆′ 
 msg(a, close a).

Subcase a ∈ H .
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Using the fact that a : 1, we can type the message as follows: · ` close a :: (a : 1). Let
∆′ = ∆. We then have ∆′|· ` close a :: (a : ∆′(a)). Therefore, H; ∆′ 
 msg(a, close a).

Case one sa
We have proc(a, close a), !(a 6: 1) −→ alarm(a). By the configuration typing, we have

H; ∆ 
 proc(a, close a).

Subcase a 6∈ H .
By inversion of the configuration typing, ∆|· ` close a :: (a : ∆(a)). By the 1R rule, we have

· ` close a :: (a : 1). If a 6: 1, then · 6` close a :: (a : 1). This is a contradiction, and because
H; ∆ 
 proc(a, close a), it must be the case that a ∈ H .

Subcase a ∈ H .
Assume ∆|· ` close a :: (a : ∆(a)). By the 1R rule, it must be the case that a : 1. However,

this contradicts the fact that a 6: 1. Therefore, ∆|· 6` close a :: (a : ∆(a)).

Case one r
We have msg(a, close a), proc(d,wait a;Q) −→ proc(d,Q). By the configuration typing,

H; ∆ 
 proc(d,wait a;Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|a∪fn(Q) ` wait a;Q :: (d : ∆(d)). By inversion of

the 1L rule, ∆|fn(Q) ` Q :: (d : ∆(d)). Let ∆′ = ∆ \ a. We then have ∆|fn(Q) ` Q :: (d : ∆(d))
and H; ∆′ 
 proc(d,Q).

Subcase d ∈ H
Let ∆′ = ∆. Because d ∈ H , by the configuration typing, we have H; ∆′ 
 proc(d,Q).

Case alarmr

We have proc(c,m ← recv a;R), !(a : A) , !(m 6B A) −→ alarm(c). By the configuration
typing, H; ∆ 
 proc(c,m← recv a;R).

Subcase c 6∈ H
By inversion of the configuration typing, ∆|a∪fn(R) ` m ← recv a;R :: (c : ∆(c)). In order

to typecheck this process with any receiving rule, it must be the case that m B A which is a
contradiction. Therefore, ∆|a∪fn(R) 6` m← recv a;R :: (c : ∆(c)) and c ∈ H .

Subcase c ∈ H
Assume ∆|a∪fn(R) ` m ← recv a;R :: (c : ∆(c)). In order to typecheck this process

with any receiving rule, it must be the case that m B A which is a contradiction. Therefore,
∆|a∪fn(R) 6` m← recv a;R :: (c : ∆(c)) and c ∈ H .

Case alarm′r
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We have proc(c,m ← recv c;R), !(c : A) , !(m 6B A) −→ alarm(c). By the configuration
typing, H; ∆ 
 proc(c,m← recv c;R).

Subcase c 6∈ H
By inversion of the configuration typing, ∆|fn(R) ` m ← recv c;R :: (c : ∆(c)). In order

to typecheck this process with any receiving rule, it must be the case that m B A which is a
contradiction. Therefore, ∆|fn(R) 6` m← recv c;R :: (c : ∆(c)) and c ∈ H .

Subcase c ∈ H
Assume ∆|fn(R) ` m ← recv c;R :: (c : ∆(c)). In order to typecheck this process

with any receiving rule, it must be the case that m B A which is a contradiction. Therefore,
∆|fn(R) 6` m← recv c;R :: (c : ∆(c)) and c ∈ H .

Case down s

We have proc(ci, send ci shift ; P ), !(ci :↓ A−) −→ proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci shift ;

ci ← c+
i ), !(c+

i : A−) . By the configuration typing, H; ∆ 
 proc(ci, send ci shift ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` send ci shift;P :: (ci : ∆(ci)). By inver-

sion of the ↓ R rule, we have ∆|fn(P ) ` P :: (ci : A−). By using the ↓R and the id rule, we can
type the message as follows: c+

i : A− ` send ci shift ; ci ← c+
i :: (ci : A−). Let ∆′ = ∆ ∪ c+

i .
We then have ∆′|fn(P ) ` [c+

i /ci]P :: (c+
i : ∆(c+

i )) and ∆′|c+i
` send ci shift ; ci ← c+

i :: (ci : A−).

Therefore, H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ) and H; ∆′|c+i


 msg(ci, send ci shift ; ci ← c+
i ).

Subcase ci ∈ H
Using the fact that c+

i : A− and ci : ↓A− we can type the message as follows: c+
i : A− `

send ci shift ; ci ← c+
i :: (ci : A−). Let ∆′ = ∆ ∪ c+

i . We then have ∆′|c+i
` send ci shift ; ci ←

c+
i :: (ci : A−). Therefore, H; ∆′ 
 msg(ci, send ci shift ; ci ← c+

i ). Because ci ∈ H , by the
configuration typing, we have H; ∆′ 
 proc(c+

i , [c
+
i /ci]P ).

Case down sa
We have proc(ci, send ci shift ; P ), !(ci 6:↓ A−) −→ alarm(ci). By the configuration typing,

H; ∆ 
 proc(ci, send ci shift ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` send ci shift;P :: (ci : ∆(ci)). By the ↓R

rule, ∆|fn(P ) ` send ci shift;P :: (ci : ↓A−). If 6 ∃A.ci : ↓A− then ∆|fn(P ) 6` send ci shift;P ::
(ci : ∆(ci)). This is a contradiction, and because H; ∆ 
 proc(ci, send ci shift ; P ), it must be
the case that ci ∈ H .

Subcase ci ∈ H
Assume ∆|fn(P ) ` send ci shift;P :: (ci : ∆(ci)). By the ↓R rule, it must be the case that
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ci : ↓A− for some A. However, this contradicts the fact that there does not exist A such that
ci : ↓A−. Therefore, ∆|fn(P ) 6` send ci shift;P :: (ci : ∆(ci)).

Case down r

We have msg(ci, send ci shift ; ci ← c+
i ), proc(d, shift← recv d ; Q) −→ proc(d, [c+

i /ci]Q).
By the configuration typing, we have that H; ∆ 
 msg(ci, send ci shift ; ci ← c+

i ) and
H; ∆ 
 proc(d, shift← recv d ; Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|fn(Q) ` shift ← recv d ; Q) :: (d : ∆(d)) and

∆|c+i ` send ci shift ; ci ← c+
i :: (ci : ∆(ci)). By using the ↓R and the id rule, we can type the

message as follows: c+
i : A− ` send ci shift ; ci ← c+

i :: (ci : A−). By inversion of the ↓L
typing rule we have that ∆|fn(Q) ` Q :: (d : ∆(d)). Let ∆′ = [c+

i : A−/ci : A−]∆. We then have
that ∆′|fn(Q) ` [c+

i /ci]Q :: (d : ∆(d)). Therefore, H; ∆′ 
 proc(d, [c+
i /ci]Q).

Subcase d ∈ H
Let ∆′ = ∆. Because d ∈ H , by the configuration typing, we haveH; ∆′ 
 proc(d, [c+

i /ci]Q).

Case up s

We have proc(d, send ci shift ; Q), !(ci :↑ A+) −→ msg(c+
i , send ci shift ; c+

i ← ci),

proc(d, [c+
i /ci]Q), !(c+

i : A+) . By the configuration typing, H; ∆ 
 proc(d, send ci shift ; Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` send ci shift;Q :: d : ∆(d). By inver-

sion of the ↑ L rule, we have ∆|fn(Q) ` Q :: (d : ∆(d)). By using the ↑L and the id rule, we can
type the message as follows: ci : A+ ` send ci shift ; ci ← ci :: (ci : A+). Let ∆′ = ∆ ∪ c+

i .
We then have ∆′|c+i ∪fn(Q)

` [c+
i /ci]Q :: (d : ∆′(d)) and ∆′|ci ` send ci shift ; ci ← ci :: ∆′(ci)).

Therefore, H; ∆′ 
 proc(d, [c+
i /ci]Q) and H; ∆′ 
 msg(c+

i , send ci shift ; c+
i ← ci).

Subcase d ∈ H
Using the fact that c+

i : A+ and ci : ↑A+ we can type the message as follows: ci : A− `
send ci shift ; c+

i ← ci :: (c+
i : A−). Let ∆′ = ∆ ∪ c+

i . We then have ∆′|ci ` send ci shift ; c+
i ←

ci :: (c+
i : A+). Therefore, H; ∆′ 
 msg(ci, send ci shift ; c+

i ← ci). Because d ∈ H , by the
configuration typing, we have , H; ∆′ 
 proc(d, [c+

i /ci]Q).

Case up sa
We have proc(d, send ci shift ; Q), !(6 ∃.A+.ci :↑ A+) −→ alarm(d). By the configuration

typing, H; ∆ 
 proc(d, send ci shift ; Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` send ci shift ; Q :: (d : ∆(d)).

By the ↑L rule, ∆|fn(Q), ci : ↑A+ ` send ci shift;Q :: (d : ∆(d)). If 6 ∃A.ci↑A+ then
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∆|ci∪fn(Q) 6` send ci shift;Q :: (d : ∆(d)). This is a contradiction, and because H; ∆ 

proc(d, send ci shift ; Q), it must be the case that d ∈ H .

Subcase d ∈ H
Assume ∆|ci∪fn(Q) ` send ci shift ; Q :: (d : ∆(d)). By the ↑L rule, ∆|fn(Q), ci : ↑A+ `

send ci shift ; Q :: (d : ∆(d)). However, this contradicts the fact that there does not exist A such
that ci : ↑A+. Therefore, ∆|ci∪fn(Q) 6` send ci shift ; Q :: (d : ∆(d)).

Case up r
We have proc(ci, shift← recv ci ; P ),msg(c+

i , send ci shift ; c+
i ← ci) −→ proc(c+

i , [c
+
i /ci]P ).

By the configuration typing, we have that H; ∆ 
 msg(c+
i , send ci shift ; c+

i ← ci) and
H; ∆ 
 proc(ci, shift← recv ci ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` shift ← recv ci ; P :: (ci : ∆(ci)) and

∆|ci ` send ci shift ; c+
i ← ci :: (c+

i : ∆(c+
i )). By using the ↑L and the id rule, we can type

the message as follows: ci : A+ ` send ci shift ; c+
i ← ci :: (c+

i : A+). By inversion of the ↑R
typing rule we have that ∆|fn(P ) ` P :: (ci : A+). Let ∆′ = [c+

i : A+/ci : A+]∆. We then have
that ∆′|fn(P ) ` [c+

i /ci]P :: (c+
i : ∆′(c+

i )). Therefore, H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ).

Subcase ci ∈ H
Let ∆′ = ∆. Because ci ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ).

Case exists s
We have proc(ci, send ci v ; P ), !(ci : ∃n : τ.A) , !(v : τ) −→ proc(c+

i , [c
+
i /ci]P ),

msg(ci, send ci v ; ci ← c+
i ), !(c+

i : [v/n]A) . By the configuration typing,
H; ∆ 
 proc(ci, send ci v ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` send ci v ; P :: (ci : ∆(ci)). By inversion

of the ∃R rule, we have ∆|fn(P ) ` P :: (ci : ∆(ci)). By using the ∃R and the id rule, we can type
the message as follows: c+

i : [v/n]A ` send ci v ; ci ← c+
i :: (ci : ∃n : τ.A). Let ∆′ = ∆ ∪ c+

i .
We then have ∆′|fn(P ) ` [c+

i /ci]P :: (c+
i : ∆(c+

i )) and ∆′|c+i
` send ci v ; ci ← c+

i :: (ci : ∃n :

τ.A). Therefore, H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ) and H; ∆′|c+i


 msg(ci, send ci v ; ci ← c+
i ).

Subcase ci ∈ H
Using the fact that c+

i : [v/n]A and ci : ∃n : τ.A we can type the message as follows:
c+
i : [v/n]A ` send ci v ; ci ← c+

i :: (ci : ∃n : τ.A). Let ∆′ = ∆ ∪ c+
i . We then have

∆′|c+i
` send ci v ; ci ← c+

i :: (ci : ∃n : τ.A). Therefore, H; ∆′ 
 msg(ci, send ci v ; ci ← c+
i ).

Because ci ∈ H , by the configuration typing, we have H; ∆′ 
 proc(c+
i , CH, [c

+
i /ci]P ).

Case exists sa
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We have proc(ci, send ci v ; P ), ( 6 ∃τ. !(ci : ∃n : τ.A) , !(v : τ) ) −→ alarm(ci). By the con-
figuration typing, H; ∆ 
 proc(ci, send ci v ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` send ci v ; P :: (ci : ∆(ci)). By

the ∃R rule, ∆|fn(P ) ` send ci v;P :: (ci : ∃n : τ.A). If 6 ∃τ.ci : ∃n : τ.A, v : τ , then
∆|fn(P ) 6` send ci v;P :: (ci : ∃n : τ.A). This is a contradiction, and because H; ∆ 

proc(ci, send ci v ; P ), it must be the case that ci ∈ H .

Subcase ci ∈ H
Assume ∆|fn(P ) ` send ci v ; P :: (ci : ∆(ci)). By the ∃R rule, it must be the case that

ci : ∃n : τ.A for some τ . = However, this contradicts the fact that there does not exist τ such that
ci : ∃n : τ.A and v : τ . Therefore, ∆|fn(P ) 6` send ci v ; P :: (ci : ∆(ci)).

Case exists r

We have msg(ci, send ci v ; ci ← c+
i ), proc(d, n← recv ci ; Q) −→ proc(d, [c+

i /ci][v/n]Q).
By the configuration typing, we have that H; ∆ 
 msg(ci, send ci v ; ci ← c+

i ) and H; ∆ 

proc(d, n← recv ci ; Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` n ← recv ci ; Q :: (d : ∆(d)) and

∆c+i
` send ci v ; ci ← c+

i :: (ci : ∆(ci). By using the ∃R and the id rule, we can type the mes-
sage as follows: c+

i : [v/n]A ` send ci v ; ci ← c+
i :: (ci : ∃n : τ.A). By inversion of the ∃L typ-

ing rule we have that n : τ ; ∆|fn(Q) ` Q :: (d : ∆(d)). By inversion of the ∃R typing rule, we have
· ` v : τ . We now apply standard substitution to get: [v/n]∆|fn(Q) ` [v/n]Q :: (d : [v/n]∆(d)).
Let ∆′ = [c+

i : A−/ci : A−]∆ and ∆′|fn(Q) = [c+
i : A/ci : A][v : τ/n : τ ]∆|fn(Q). We then have

that ∆′|fn(Q) ` [c+
i /ci]Q :: (d : ∆(d)). Therefore, H; ∆′ 
 proc(d, [c+

i /ci]Q).

Subcase d ∈ H
Let ∆′ = ∆. Because d ∈ H , by the configuration typing, we haveH; ∆′ 
 proc(d, [c+

i /ci]Q).

Case forall s

We have proc(d, send ci v ; Q), !(ci : ∀n : τ.A) , !(v : τ) −→ msg(c+
i , send ci v ; c+

i ←
ci), proc(d, [c+

i /ci]Q), !(c+
i : [v/n]A) . By the configuration typing, H; ∆ 
 proc(d, send ci v ;

Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` send ci v ; Q :: (d : ∆(d)). By in-

version of the ∀L rule, we have ∆|fn(Q) ` Q :: (d : ∆(d)). By using the ∀L and the id rule, we
can type the message as follows: ci : ∀n : τ.A ` send ci v ; c+

i ← ci :: (c+
i : [v/n]A). Let

∆′ = ∆∪c+
i . We then have ∆′|c+i ∪fn(Q)

` [c+
i /ci]Q :: (d : ∆′(d)) and ∆′|ci ` send ci v ; c+

i ← ci ::

(c+
i : ∆′(c+

i )). Therefore, H; ∆′ 
 proc(d, [c+
i /ci]Q) andH; ∆′ 
 msg(c+

i , send ci v ; c+
i ← ci).
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Subcase d ∈ H
Using the fact that c+

i : [v/n]A and ci : ∀n : τ.A we can type the message as follows:
ci : ∀n : τ.A ` send ci v ; c+

i ← ci :: (c+
i : [v/n]A). Let ∆′ = ∆ ∪ c+

i . We then have
∆′|ci ` send ci v ; c+

i ← ci :: (c+
i : [v/n]A). Therefore, H; ∆′ 
 msg(c+

i , send ci v ; c+
i ← ci).

Because d ∈ H , by the configuration typing, we have H; ∆′ 
 proc(d, [c+
i /ci]Q).

Case forall sa
We have proc(d, send ci v ; Q), 6 ∃τ. !(ci : ∀n : τ.A) , !(v : τ) ) −→ alarm(d). By the con-

figuration typing, H; ∆ 
 proc(ci, send ci v ; P ).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` send ci v ; Q) :: (d : ∆(d)). By the

∀L rule, ∆|fn(Q), ci : ∀n : τ.A ` send ci v ; Q :: (d : ∆(d)). If 6 ∃τ.ci : ∀n : τ.A, v : τ ,
then ∆|ci∪fn(Q) 6` send ci v ; Q :: (d : ∆(d)). This is a contradiction, and because H; ∆ 

proc(d, send ci v ; Q), it must be the case d ∈ H .

Subcase d ∈ H
Assume ∆|ci∪fn(Q) ` send ci v ; Q :: (d : ∆(d)). By the ∀L rule, it must be the case that

ci : ∀n : τ.A for some τ . However, this contradicts the fact that there does not exist A such that
ci : ∀n : τ.A. Therefore, ∆|ci∪fn(Q) 6` send ci v ; Q) :: (d : ∆(d)).

Case forall r
We have proc(ci, n← recv ci ; P ),msg(c+

i , send ci v ; c+
i ← ci) −→ proc(c+

i , [c
+
i /ci][v/n]P ).

By the configuration typing, we have that H; ∆ 
 msg(c+
i , send ci v ; c+

i ← ci) and H; ∆ 

proc(ci, n← recv ci ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` n ← recv ci ; P :: (ci : ∆(ci)) and

∆|ci ` send ci v ; c+
i ← ci :: (ci : ∆(ci)). By the ∀L rule and the id rule, we can type the

message as follows: ci : ∀n : τ.A ` send ci v ; c+
i ← ci :: (c+

i : [v/n]A). By inversion of the ∀R
typing rule we have that n : τ ; ∆|fn(P ) ` P :: (ci : A). By inversion of the ∀L typing rule, we have
that · ` v : τ . We now apply standard substitution to get: [v/n]∆fn(P ) ` [v/n]P :: (ci : [v/n]A)).
Let ∆′ = [c+

i : A−/ci : A−]∆ and ∆′|fn(P ) = [c+
i : A/ci : A][v : τ/n : τ ]∆|fn(P ). We then have

that ∆′|fn(P ) ` [c+
i /ci][v/n]P :: (c+

i : ∆′(c+
i )). Therefore, H; ∆′ 
 proc(c+

i , [c
+
i /ci]P ).

Subcase ci ∈ H
Let ∆′ = ∆. Because ci ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(c+
i , [c

+
i /ci][v/n]P ).

Case havoc
We have proc(c, P ), !fn(P ) ⊇ fn(Q) −→ proc(c,Q), !(havoc(c)) . By the configuration

typing, we have that H; ∆ 
 proc(c, P ).
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Subcase c 6∈ H
Let ∆′ = ∆. Because havoc(c), by the configuration typing, we have H; ∆′ 
 proc(c,Q).

Subcase c ∈ H
Let ∆′ = ∆. Because c ∈ H , by the configuration typing, we have H; ∆′ 
 proc(c,Q).

Case with s
We have proc(d, ci.k;Q), !(ci : &{` : A`}) , !(k B &{` : A`}) −→ proc(d, [c+

i /ci]Q),

msg(c+
i , ci.k; c+

i ← ci), !(c+
i : Ak) . By the configuration typing, H; ∆ 
 proc(d, ci.k;Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` ci.k;Q :: (d : ∆(d)). By the inversion

of the NL rule, ∆|fn(Q) ` Q :: (d : ∆(d)). By using the NL and the id rule, we can type the
message as follows: ci : N{` : A`}`∈L ` ci.k; c+

i ← ci :: (c+
i : Ak). Let ∆′ = ∆ ∪ c+

i . We then
have ∆′|c+i ∪fn(Q)

` [c+
i /ci]Q :: (d : ∆′(d)) and ∆′|ci ` ci.k; c+

i ← ci :: (c+
i : ∆′(c+

i ). Therefore,

H; ∆′ 
 proc(d, [c+
i /ci]Q) : ∆′(d) and H; ∆′ 
 msg(c+

i , ci.k; c+
i ← ci) : ∆′(c+

i ).

Subcase d ∈ H
Because k B N{` : A`}`∈L, it must be the case that k ∈ L. Using that fact and that c+

i : Ak,
ci : N{` : A`}`∈L we can type the message as follows: ci : N{` : A`}`∈L ` ci.k; c+

i ← ci ::
(c+
i : Ak). Let ∆′ = ∆ ∪ c+

i . We then have ∆′|ci ` ci.k; c+
i ← ci :: (c+

i : Ak). There-
fore, H; ∆′ 
 msg(c+

i , ci.k; c+
i ← ci). Because d ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(d, [c+
i /ci]Q).

Case with sa
We have proc(d, ci.k;Q), ( !(ci 6: &{` : A`}) ⊕ !(k 6B &{` : A`}) ) −→ alarm(d). By the

configuration typing, H; ∆ 
 proc(d, ci.k;Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` ci.k;Q :: (d : ∆(d)). By the NL rule,

∆fn(Q), ci : N{` : A`}`∈L ` ci.k;Q :: (d : ∆(d)). By inversion of the NL rule, we have that
k ∈ L. If ci 6: N{` : A`}`∈L then ∆ci∪fn(Q) 6` ci.k;Q :: (d : ∆(d)). If k 6B N{` : A`}`∈L then
k 6∈ L which means that ∆|ci∪fn(Q) 6` ci.k;Q :: (d : ∆(d)). This is a contradiction, and because
H; ∆ 
 proc(d, ci.k;Q), it must be the case that d ∈ H .

Subcase d ∈ H
Assume ∆|ci∪fn(Q) ` ci.k;Q :: (d : ∆(d)). By the NL rule, we have that ∆fn(Q), ci : N{` :

A`}`∈L ` ci.k;Q :: (d : ∆(d)). However, this contradicts the fact that ci 6: N{` : A`}`∈L. By
inversion of the NL rule, it must also be the case that k ∈ L, which contradicts the fact that
k 6B N{` : A`}`∈L. Therefore, ∆|ci∪fn(Q) 6` ci.k;Q :: (d : ∆(d)).

Case with r
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We have msg(c+
i , ci.k; c+

i ← ci), proc(ci, case ci{` ⇒ P`}`∈L) −→ proc(c+
i , [c

+
i /ci]Pk). By

the configuration typing, H; ∆ 
 msg(c+
i , ci.k; c+

i ← ci) and H; ∆ 
 proc(ci, case ci{` ⇒
P`}`∈L).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` case ci{` ⇒ P`}`∈L :: (ci : ∆(ci)) and

∆|ci ` ci.k; c+
i ← ci :: (c+

i : ∆(c+
i )). By using the NL and the id rule, we can type the message

as follows: ci : N{` : A`}`∈L ` ci.k; c+
i ← ci :: (c+

i : Ak). By inversion of the NR typing
rule, we have that ∆|fn(P ) ` P` :: (ci : A`). Let ∆′ = [c+

i : Ak/ci : Ak]∆. We then have that
∆′|fn(P ) ` [c+

i /ci]Pk :: (c+
i : ∆′(c+

i )). Therefore, H; ∆′ 
 proc(c+
i , [c

+
i /ci]Pk).

Subcase ci ∈ H
Let ∆′ = ∆. Because ci ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(c+
i , [c

+
i /ci]Pk).

Case plus s

We have proc(ci, ci.k;P ), !(ci : ⊕{` : A`}) , !(k B ⊕{` : A`}) −→ msg(ci, ci.k; ci ← c+
i ),

proc(c+
i , [c

+
i /ci]P ), !(c+

i : Ak) . By the configuration typing, H; ∆ 
 proc(ci, ci.k;P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` ci.k;P :: (ci : ∆(ci)). By inversion of the

⊕R rule, ∆|fn(P ) ` P :: (c : ∆(ci)). By using the ⊕R and the id rule, we can type the message
as follows: c+

i : Ak ` ci.k; ci ← c+
i :: (ci : ⊕{` : A`}). Let ∆′ = ∆ ∪ c+

i . We then have
∆′|fn(P ) ` ci.k; [c+

i /ci]P :: (c+
i : ⊕{` : A`}) and ∆′

c+i
` ci.k; ci ← c+

i :: (ci : ⊕{` : A`}).

Therefore, H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ) and H; ∆′ 
 msg(ci, ci.k; ci ← c+

i ).

Subcase ci ∈ H
Because k B ⊕{` : A`}`∈L, it must be the case that k ∈ L. Using that fact and that c+

i : Ak,
ci : ⊕{` : A`}`∈L we can type the message as follows: c+

i : Ak ` ci.k; ci ← c+
i :: (ci : ⊕{` :

A`}). Let ∆′ = ∆ ∪ c+
i . We then have ∆′|c+i

` ci.k; ci ← c+
i :: (ci : ⊕{` : A`}). There-

fore, H; ∆′ 
 msg(ci, ci.k; ci ← c+
i ). Because d ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(c+
i , [c

+
i /ci]P )

Case plus sa
We have proc(ci, ci.k;P ), ( !(ci 6: ⊕{` : A`}) ⊕ !(k 6B ⊕{` : A`}) ) −→ alarm(ci). By the

configuration typing, H; ∆ 
 proc(ci, ci.k;P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` ci.k;P :: (ci : ∆(ci). By the ⊕R rule,

∆|fn(P ) ` ci.k;P :: (ci : ⊕{` : A`}). By inversion of the ⊕R rule, we have that k ∈ L. If
ci 6: N{` : A`}`∈L then ∆|fn(P ) 6` ci.k;P :: (ci : ⊕{` : A`}). If k 6B ⊕{` : A`}`∈L then ∆|fn(P ) 6`
ci.k;P :: (ci : ⊕{` : A`}). This is a contradiction, and because H; ∆ 
 proc(ci, ci.k;P ), it must
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be the case that ci ∈ H .

Subcase ci ∈ H
Assume ∆|fn(P ) ` ci.k;P :: (ci : ∆(ci). By the ⊕R rule, ∆|fn(P ) ` ci.k;P :: (ci : ⊕{` : A`}).

However, this contradicts the fact that ci 6: ⊕{` : A`}`∈L. By inversion of the ⊕R rule, it must
also be the case that k ∈ L, which contradicts the fact that k 6B ⊕{` : A`}`∈L. Therefore,
∆|fn(P ) 6` ci.k;P :: (ci : ⊕{` : A`}).

Case plus r
We have msg(ci, ci.k; ci ← c+

i ), proc(d, case ci{`⇒ Q`}`∈L) −→ proc(d, [c+
i /ci]Qk). By the

configuration typing, H; ∆ 
 msg(ci, ci.k; ci ← c+
i ) and H; ∆ 
 proc(d, case ci{`⇒ Q`}`∈L).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` case ci{` ⇒ Q`}`∈L :: (d : ∆(d)) and

∆|c+i ` ci.k; ci ← c+
i :: (ci : ⊕{` : A`}). By using the ⊕R and the id rule, we can type the

message as follows: c+
i : Ak ` ci.k; ci ← c+

i :: (ci : ⊕{` : A`}). By inversion of the ⊕L typing
rule, we have that ∆|fn(Q), ci : A` ` Q` :: (d : ∆(d)). Let ∆′ = [c+

i : Ak/ci : Ak]∆. We then
have that ∆′|fn(Q), c

+
i : Ak ` [c+

i /ci]Qk :: (d : ∆′(d)). Therefore, H; ∆′ 
 proc(d, [c+
i /ci]Qk).

Subcase d ∈ H
Let ∆′ = ∆. Because d ∈ H , by the configuration typing, we haveH; ∆′ 
 proc(d, [c+

i /ci]Qk)

A.4 Proof of lemma (one-step) for shared modality
Case upU

L s

We have proc(a, shift xL ← send cU ;Q), !(cU :↑UL A+
L) −→ proc(a, [cL/xL]Q),

msg(cL, shift xL ← send cU ; cL ← xL), !(cL : A+
L) . By the configuration typing, H; Φ 


proc(a, shift xL ← send cU ;Q).

Subcase a 6∈ H
By inversion of the configuration typing, Φ|xL∪fn(Q)∪cU ` shift xL ← send cU ;Q :: (a : Φ(a)).

By inversion of the ↑L rule, we have Φfn(Q), xL : A+
L ` Q :: (a : Φ(a)). By using the ↑L and

the id rule, we can type the message as follows: cU : ↑ULA+
L ` shift xL ← send cU ; cL ←

xL :: (cL : A+
L). Let Φ′ = [cL : A+

L/xL : A+
L ]Φ. We then have Φ′fn(Q)∪cL ` [cL : A+

L/xL :

A+
L ]Q :: (a : Φ′(a)) and Φ′|cU ` shift xL ← send cU ; cL ← xL :: (Φ′(cL). Therefore,

H; Φ 
 proc(a, [cL/xL]Q) and H; Φ 
 msg(cL, shift xL ← send cU ; cL ← xL).

Subcase a ∈ H
Using the fact that cU : ↑UL : A+

L and cL : ↑A+
L we can type the message as follows:

cU : ↑ULA+
L ` shift xL ← send cU ; cL ← xL :: (cL : A+

L). Let Φ′ = [cL : A+
L/xL :

A+
L ]Φ. We then have Φ′|cU ` shift xL ← send cU ; cL ← xL :: (Φ′(cL). Therefore, H; Φ 
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msg(cL, shift xL ← send cU ; cL ← xL). Because a ∈ H , by the configuration typing, we have ,
H; Φ′ 
 proc(a, [cL/xL]Q).

Case upU
L sa

We have proc(a, shift xL ← send cU ;Q), !(cu 6:↑UL A+
L) −→ alarm(a). By the configuration

typing, H; Φ 
 proc(a, shift xL ← send cU ;Q).

Subcase a 6∈ H
By inversion of the configuration typing, Φ|xL∪fn(Q)∪cU ` shift xL ← send cU ;Q :: (a :

Φ(a)). By the ↑L rule, cU : ↑ULA+
L ` shift xL ← send cU ;Q :: (Φ(a)). If cU 6: ↑ULA+

L

then cU : ↑UL 6` shift xL ← send cU ;Q :: (Φ(a)). This is a contradiction, and because
H; Φ 
 proc(a, shift xL ← send cU ;Q), it must be the case that a ∈ H .

Subcase a ∈ H
Assume Φ|xL∪fn(Q)∪cU ` shift xL ← send cU ;Q :: (a : Φ(a)). By the ↑L rule, cU : ↑UL `

shift xL ← send cU ;Q :: (Φ(a)). However, this contradicts the fact that cU 6: ↑ULA+
L . Therefore,

Φ|xL∪fn(Q) 6` shift xL ← send cU ;Q :: (a : Φ(a)).

Case upU
L r

We have msg(cL, shift xL ← send cU ; cL ← xL), !proc(cU , shift xL ← recv cU ;P ) −→
proc(cL, [cL/xL]P ). By the configuration typing, we have that H; Φ 
 msg(cL, shift xL ←
send cU ; cL ← xL) and H; Φ 
 proc(cU , shift xL ← recv cU ;P ).

Subcase cU 6∈ H
By inversion of the configuration typing, Φ|fn(P )∪xL ` shift xL ← recv cU ;P ) :: (cU : Φ(cU)

and Φ|cU ` shift xL ← send cU ; cL ← xL) :: (cL : Φ(cL). By using the ↑L and the id rule, we can
type the message as follows: cU : ↑ULA+

L ` shift xL ← send cU ; cL ← xL :: (cL : A+
L). By inver-

sion of the ↑L typing rule, we have that Φfn(P ) ` P :: (xL : A+
L). Let Φ′ = [cL : A+

L/xL : A+
L ]Φ.

We then have Φ′fn(P ) ` [cL/xL]P :: (cL : A+
L). Therefore, H; Φ′ 
 proc(cL, [cL/xL]P ).

Subcase cU ∈ H
Let Φ′ = Φ. Because cU ∈ H , by the configuration typing, we have

H; Φ′ 
 proc(cL, [cL/xL]P ).

Case downU
L s

We have proc(cL, shift xU ← send cL;Q), !(cL :↓UL A−U) −→!proc(cU , [cU/xU ]Q),

msg(cL, shift xU ← send cL; cU ← xU), !(cU : A−U) (cU fresh). By the configuration typing,
we have H; Φ 
 proc(cL, shift xU ← send cL;Q).

Subcase cL 6∈ H
By inversion of the configuration typing, Φ|xU∪fn(Q) ` shift xU ← send cL;Q :: (cL : Φ(cL)).

By inversion of the ↓ R rule, we have Φ|fn(Q) ` Q :: (xU : A−U). By using the ↓R and the idU

rule, we can type the message as follows: xU : A−U ` shift xU ← send cL; cU ← xU :: (cL :
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↓ULA−U). Let Φ′ = [cU : A−U/x
−
U ]Φ. We then have Φ′|fn(Q) ` [cU/xU ]Q :: (cU : Φ′(cU)) and

Φ′|xU ` shift xU ← send cL; cU ← xU :: (cL : Φ′(cL)). Therefore, H; Φ′ 
 proc(cU , [cU/xU ]Q)

and H; Φ′ 
 msg(cL, shift xU ← send cL; cU ← xU).

Subcase cL ∈ H
Using the fact that cL : ↓ULA−U and cU : A−U we can type the message as follows:xU :

A−U ` shift xU ← send cL; cU ← xU :: (cL : ↓ULA−U). Let Φ′ = [cU : A−U/x
−
U ]Φ. We

then have Φ′|xU ` shift xU ← send cL; cU ← xU :: (cL : Φ′(cL)). Therefore, H; Φ′ 

msg(cL, shift xU ← send cL; cU ← xU). Because cL ∈ H , by the configuration typing, we
have H; Φ′ 
 proc(cU , [cU/xU ]Q).

Case downU
L sa

We have proc(cL; shift xU ← send cL;Q), !(cL 6:↓UL A−U) −→ alarm(cL). By the configura-
tion typing, H; Φ 
 proc(cL; shift xU ← send cL;Q).

Subcase cL 6∈ H
By inversion of the configuration typing, Φ|xU∪fn(Q) ` shift xU ← send cL;Q :: (cL : Φ(cL)).

By the ↓R rule, Φ|xU∪fn(Q) ` shift xU ← send cL;Q :: (cL : ↓ULA−U). If cL 6:↓UL A−U then
Φ|xU∪fn(Q) 6` shift xU ← send cL;Q :: (cL : ↓ULA−U). This is a contradiction, and because
H; Φ 
 proc(cL; shift xU ← send cL;Q), it must be the case that cL ∈ H .

Subcase cL ∈ H
Assume Φ|xU∪fn(Q) ` shift xU ← send cL;Q :: (cL : Φ(cL)). However, this contradicts the

fact that cU 6: ↑ULA+
L . Therefore, Φ|xU∪fn(Q) 6` shift xU ← send cL;Q :: (cL : Φ(cL)).

Case downU
L r

We have msg(cL, shift xU ← send cL; cU ← xU), proc(a, shift xU ← recv cL;P ) −→
proc(a, [cU/xU ]P ). By the configuration typing we have that H; Φ 
 msg(cL, shift xU ←
send cL; cU ← xU) and H; Φ 
 proc(a, shift xU ← recv cL;P ).

Subcase a 6∈ H
By inversion of the configuration typing, Φ|fn(P )∪cL∪xU ` shift xU ← recv cL;P :: (a : Φ(a))

and Φ ` shift xU ← send cL; cU ← xU :: (cL : Φ(cL)). By using the ↓R and the idU rule,
we can type the message as follows: xU : A−U ` shift xU ← send cL; cU ← xU :: (cL :
↓ULA−U). By inversion of the ↓L typing rule we have that Φ|fn(Q)∪xU ` Q :: (a : Φ(a)). Let
Φ′ = [cU : A−U/xU : A−U ]Φ. We then have that Φ|fn(Q)∪cU ` [cU/xU ]Q :: (a : Φ(a)). Therefore,
H; Φ′ 
 proc(a, [cU/xU ]P ).

Subcase a ∈ H
Let Φ′ = Φ. Because a ∈ H , by the configuration typing, we haveH; Φ′ 
 proc(a, [cU/xU ]P ).

Case idU

We have msg(aL, shift xL ← send aU ; aL ← xL), !proc(aU , aU ← bU), !(aU : A) , !(bU : A)
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−→ msg(aL, shift xL ← send bU ; aL ← xL). By the configuration typing we have that H; Φ 

msg(aL, shift xL ← send aU ; aL ← xL) and H; Φ 
!proc(aU , aU ← bU).

Subcase aU 6∈ H
By inversion of the configuration typing, Φ|aU∪xL ` shift xL ← send aU ; aL ← xL :: (aL :

Φ(aL)) and Φ|bU ` aU ← bU :: (aU : Φ(aU)). Using the ↑L rule and the id rule, we can type
the message as follows: aU : ↑UL : A+

L ` shift xL ← send aU ; aL ← xL :: (aL : A+
L). By the

idU typing rule, we have that bU : ↑UL : A+
L ` aU ← bU :: (aU : ↑UL : A+

L). Let Φ′ = [bU : ↑UL :
A+
L/aU : ↑UL : A+

L ]Φ. We then have that Φ|bU ` shift xL ← send aU ; aL ← xL :: (aL : A+
L).

Therefore, H; Φ′ 
 msg(aL, shift xL ← send bU ; aL ← xL).

Subcase aU ∈ H
By inversion of the configuration typing, Φ|aU∪xL ` shift xL ← send aU ; aL ← xL :: (aL :

Φ(aL)). Using the ↑L rule and the id rule, we can type the message as follows: aU : ↑UL : A+
L `

shift xL ← send aU ; aL ← xL :: (aL : A+
L). Because aU : ↑UL : A+

L and bU : ↑UL : A+
L , let

Φ′ = [bU : ↑UL : A+
L/aU : ↑UL : A+

L ]Φ.We then have that Φ|bU ` shift xL ← send aU ; aL ← xL ::
(aL : A+

L). Therefore, H; Φ′ 
 msg(aL, shift xL ← send bU ; aL ← xL).

Case cutU
We have proc(c, xU : A← P ;Q), !(typecheck(P :: xU : A)) −→

proc(c, [aU/xU ]Q), !proc(aU , [aU/xU ]P ). By the configuration typing, H; Φ 
 proc(c, xU :
A← P ;Q).

Subcase c 6∈ H
By inversion of the configuration typing, Φ|fn(P )∪fn(Q) ` proc(c, x : A ← P ;Q). By in-

version of the cutU typing rule, Φ|CH′ ` P :: (x : Φ(x)) and Φ|CH ` Q :: (c : Φ(c)). By
the typing, we know that Φ|CH′ must be an unrestricted context and that fn(P ) ⊆ CH ′. Let
CH ′ = fn(P ) ∪ u1 where u1 is unrestricted. Because channel c could be linear or unrestricted,
we have CH = fn(Q) ∪ u2 where u2 is unrestricted. Let Φ′ = [aU : A/xU : A]Φ. Let
aU : A, so by the substitution lemma we get Φ′|fn(P ) ` [aU : A/xU : A]P :: (aU : Φ′(a0)))

and Φ′|fn(Q) ` [aU : A/x : A]Q :: (c : Φ′(c)). Therefore, H; Φ′ 
 proc(c, [aU/xU ]Q) and
H; Φ′ 
 proc(aU , [aU/xU ]P ).

Subcase c ∈ H
Using the fact that P :: (x : A) we have Φ|CH ` P :: (x : Φ(a)). Because xU is unrestricted,

we have CH = fn(P ) ∪ u1 where u1 is also unrestricted. Let Φ′ = [aU : A/xU : A]Φ. We then
have Φ′|fn(P ) ` [aU/xU ]P :: (x : Φ(a)) which gives us H; Φ′ 
 proc(aU , [aU/xU ]P ). Because
c ∈ H , by the configuration typing, we have that H; Φ′ 
 proc(c, [aU/xU ]Q).

Case cutUa

We have proc(c, xU : A ← P ;Q), !(typecheck(P :: x 6: A)) −→ alarm(c). By the configu-
ration typing, H; Φ 
 proc(c, x : A← P ;Q).
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Subcase c 6∈ H .
By inversion of the configuration typing, Φ|fn(P )∪fn(Q) ` x : A ← P ;Q :: (c : Φ(c)). By

inversion of the cut typing rule, Φ|CH′ ` P :: (x : Φ(x))) and Φ|CH ` Q :: (c : Φ(c)). By
the typing, we know that Φ|CH′ must be an unrestricted context and that fn(P ) ⊆ CH ′. Let
CH ′ = fn(P ) ∪ u1 where u1 is unrestricted. If typecheck(P :: x 6: A) then Φ|fn(P ) 6` P ::
(x : Φ(x))). This means that Φ|fn(P )∪u1 6` P :: (x : Φ(x)) and Φ|CH′ 6` P :: (x : Φ(x)).
Therefore, Φ|fn(P )∪fn(Q) 6` x : A ← P ;Q :: (c : Φ(c)). This is a contradiction, and because
H; Φ 
 proc(c, x : A← P ;Q) it must be the case that c ∈ H .

Subcase c ∈ H
We assume Φ|fn(P )∪fn(Q) ` x : A ← P ;Q :: (c : Φ(c)). By inversion of the cut typing rule,

Φ|CH′ ` P :: (x : Φ(x))) and Φ|CH ` Q :: (c : Φ(c)). By the typing, we know that Φ|CH′ must be
an unrestricted context and that fn(P ) ⊆ CH ′. Let CH ′ = fn(P ) ∪ u1 where u1 is unrestricted.
If typecheck(P :: x 6: A) then Φ|fn(P ) 6` P :: (x : Φ(x))). This means that Φ|fn(P )∪u1 6` P :: (x :
Φ(x)) and Φ|CH′ 6` P :: (x : Φ(x)). Therefore, Φ|fn(P )∪fn(Q) 6` x : A ← P ;Q :: (c : Φ(c)). This
is a contradiction and Φ|fn(P )∪fn(Q) 6` x : A← P ;Q :: (c : Φ(c)).

A.5 Unverified Spawn Configuration Inversion Lemma
Lemma 20 (Configuration-Inversion).

1. If G;H; Λ 
 C and C = C1, C2 where C2 = proc(c, P ) then G;H; Λ 
 C1 and G;H; Λ 

proc(c, P ).

2. If G;H; Λ 
 C and C = C1, C2, C3 where C2 = msg(c, P ) and C3 = proc(d,Q) then
G;H; Λ 
 C1 and G;H; Λ 
 msg(c, P ) and G;H; Λ 
 proc(d,Q).

3. If G;H; Λ 
 C and C = C1, C2, C3 where C2 = proc(c, P ) and C3 = msg(d,Q) then
G;H; Λ 
 C1 and G;H; Λ 
 proc(c, P ) and G;H; Λ 
 msg(d,Q).

4. If G;H; Λ 
 proc(c, P ) and G 6` c : havoc, then Λ|fnP ` P :: (c : Λ(c)).
5. If G;H; Λ 
 msg(c, P ) and G 6` c : havoc, then Λ|fn(P ) ` P :: (c : Λ(c)).

Proof. By examining the configuration typing rules.

A.6 Proof of lemma (one-step) for Unverified-Spawn Seman-
tics

Case cut
We have proc(c, x : A ← P ;Q) −→ proc(c, [a0/x]Q), proc(a0, [a0/x]P ), !(G(c→sp a0)) .

By the configuration typing, G;H; ∆ 
 proc(c, x : A← P ;Q).

Subcase c 6∈ H
By inversion of the configuration typing, ∆|fn(P )∪fn(Q) ` proc(c, x : A ← P ;Q). By inver-

sion of the cut typing rule, ∆|CH′ ` P :: (x : ∆(x)) and ∆|CH ` Q :: (c : ∆(c)). By the
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Freename lemma, we know that CH ′ = fn(P ) and CH = fn(Q). Let ∆′ = [a0 : A/x : A]∆.
Let a0 : A, so by the substitution lemma we get ∆′|fn(P ) ` [a0 : A/x : A]P :: (a0 : ∆′(a0)))

and ∆′|fn(Q) ` [a0 : A/x : A]Q :: (c : ∆′(c)). Therefore, G;H; ∆′ 
 proc(c, [a0/x]Q) and
G;H; ∆′ 
 proc(a0, [a0/x]P ).

Subcase c ∈ H
Because c ∈ H , we have that G ` c : havoc. Therefore, by the configuration typing, we

have that G;H; ∆′ 
 proc(c, [a0/x]Q). Because c ∈ H and G(c→sp a0), we have that G ` a0 :
havoc. Therefore, by the configuration typing, we have that G;H; ∆′ 
 proc(a0, [a0/x]P ).

Case cutU
We have proc(c, xU : A← P ;Q) −→ proc(c, [aU/xU ]Q), !proc(aU , [aU/xU ]P ),

!(G(c→sp aU)) . By the configuration typing, G;H; Φ 
 proc(c, xU : A← P ;Q).

Subcase c 6∈ H
By inversion of the configuration typing, Φ|fn(P )∪fn(Q) ` proc(c, x : A ← P ;Q). By in-

version of the cutU typing rule, Φ|CH′ ` P :: (x : Φ(x)) and Φ|CH ` Q :: (c : Φ(c)). By
the typing, we know that Φ|CH′ must be an unrestricted context and that fn(P ) ⊆ CH ′. Let
CH ′ = fn(P ) ∪ u1 where u1 is unrestricted. Because channel c could be linear or unrestricted,
we have CH = fn(Q) ∪ u2 where u2 is unrestricted. Let Φ′ = [aU : A/xU : A]Φ. Let
aU : A, so by the substitution lemma we get Φ′|fn(P ) ` [aU : A/xU : A]P :: (aU : Φ′(a0)))

and Φ′|fn(Q) ` [aU : A/x : A]Q :: (c : Φ′(c)). Therefore, G;H; Φ′ 
 proc(c, [aU/xU ]Q) and
G;H; Φ′ 
 proc(aU , [aU/xU ]P ).

Subcase c ∈ H
Because c ∈ H , we have that G ` c : havoc. Therefore, by the configuration typing, we have

that G;H; ∆′ 
 proc(c, [a0/xU ]Q). Because c ∈ H and G(c →sp aU), we have that G ` aU :
havoc. Therefore, by the configuration typing, we have that G;H; ∆′ 
 proc(aU , [aU/xU ]P ).

Case upU
L r

We have msg(cL, shift xL ← send cU ; cL ← xL), !proc(cU , shift xL ← recv cU ;P ) −→
proc(cL, [cL/xL]P ), !(G(cU →sp cL)) . By the configuration typing, we have that G;H; Φ 

msg(cL, shift xL ← send cU ; cL ← xL) and G;H; Φ 
 proc(cU , shift xL ← recv cU ;P ).

Subcase cU 6∈ H
By inversion of the configuration typing, Φ|fn(P )∪xL ` shift xL ← recv cU ;P ) :: (cU : Φ(cU)

and Φ|cU ` shift xL ← send cU ; cL ← xL) :: (cL : Φ(cL). By using the ↑L and the id rule, we can
type the message as follows: cU : ↑ULA+

L ` shift xL ← send cU ; cL ← xL :: (cL : A+
L). By inver-

sion of the ↑L typing rule, we have that Φfn(P ) ` P :: (xL : A+
L). Let Φ′ = [cL : A+

L/xL : A+
L ]Φ.

We then have Φ′fn(P ) ` [cL/xL]P :: (cL : A+
L). Therefore, G;H; Φ′ 
 proc(cL, [cL/xL]P ).

Subcase cU ∈ H
Because cU ∈ H and G(cU →sp ck), we have that G ` ck : havoc. Therefore, by the config-
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uration typing, we have that G;H; ∆′ 
 proc(ck, [ck/xk]P ).

Case downU
L s

We have proc(cL, shift xU ← send cL;Q), !(cL : ↓ULA−) −→!proc(cU , [cU/xU ]Q),

msg(cL, shift xU ← send cL; cU ← xU), !(G(cL →sp cU)) . By the configuration typing, we
have
G;H; Φ 
 proc(cL, shift xU ← send cL;Q).

Subcase cL 6∈ H
By inversion of the configuration typing, Φ|xU∪fn(Q) ` shift xU ← send cL;Q :: (cL : Φ(cL)).

By inversion of the ↓ R rule, we have Φ|fn(Q) ` Q :: (xU : A−U). By using the ↓R and the idU

rule, we can type the message as follows: xU : A−U ` shift xU ← send cL; cU ← xU :: (cL :
↓ULA−U). Let Φ′ = [cU : A−U/x

−
U ]Φ. We then have Φ′|fn(Q) ` [cU/xU ]Q :: (cU : Φ′(cU)) and

Φ′|xU ` shift xU ← send cL; cU ← xU :: (cL : Φ′(cL)). Therefore, H; Φ′ 
 proc(cU , [cU/xU ]Q)

and H; Φ′ 
 msg(cL, shift xU ← send cL; cU ← xU).

Subcase cL ∈ H
Because cL ∈ H and G(cL →sp cU), we have that G ` cL : havoc. Therefore, by the

configuration typing, we have that G;H; ∆′ 
 proc(cU , [cU/xU ]Q). Because cL ∈ H , we have
that G ` cL : havoc. Therefore, by the configuration typing, G;H; Φ 
 msg(cL, shift xU ←
send cL; cU ← xU).
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Appendix B

Refinement Proof Cases

B.1 Monitors are Well Typed
Case 1.

[[〈1⇐ 1〉ρ]]a,b = wait b; close a

This process is well-typed with respect to both S and T by applying the 1L and 1R rules.

Case(.

[[〈A1 ( A2 ⇐ B1 ( B2〉ρ]]a,b =

x← recv a ; y ← [[〈B1 ⇐ A1〉ρ]]y,x ← x ; send b y; ; [[〈A2 ⇐ B2〉ρ]]a,b
(1) By I.H, we know that E ′ = Ψ ; x : A1 `T [[〈B1 ⇐ A1〉ρ]]Ψy,x :: (y : B1) and E ′′ = Ψ ; b :

B2 `T [[〈A2 ⇐ B2〉ρ]]Ψa,b :: (a : A2). Apply the(L rule to E ′′ to typecheck the send. Then apply
the(R rule to typecheck the receive. Therefore, this process is well-typed with respect to T .

(2) We have that B1 ( B2 ≤ A1 ( A2. By subtyping, this means that A1 ≤ B1 and
B2 ≤ A2. By I.H., we know that E ′ = Ψ ; x : A1 `S [[〈B1 ⇐ A1〉ρ]]Ψy,x :: (y : B1) and
E ′′ = Ψ ; b : B2 `S [[〈A2 ⇐ B2〉ρ]]Ψa,b :: (a : A2). Apply the(L rule to E ′′ to typecheck the
send. Then apply the(R rule to typecheck the receive. Therefore, this process is well-typed
with respect to S.

Case ∀.

[[〈∀{n : τ | e}. A⇐ ∀{n : τ ′ | e′}. B〉ρ]]a,b =

n← recv a; ; assert ρ e′(x) ; send b x; [[〈A⇐ B〉ρ]]a,b
(1) By I.H, we know that E ′ = Ψ ; b : B `T [[〈A⇐ B〉ρ]]Ψa,b :: (a : A). Apply the ∀L rule to

E ′ to typecheck the send. Then, apply the assert rule to typecheck the assertion. Finally, apply
the ∀R rule to typecheck the receive. Therefore, this process is well-typed with respect to T .

(2) Because ∀{n : τ ′ | e′}.B ≤ ∀{n : τ ′ | e}.A we know that B ≤ A . By I.H., we know
that E ′ = Ψ ; b : B `S [[〈A ⇐ B〉ρ]]Ψa,b :: (a : A). Apply the ∀L rule to E ′ to typecheck the
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send. We now need to show that we can typecheck the assertion using the assert strong rule.
That is, we need to show that e′(x) is true. From the subtyping refine rule, we see that for
x : τ, [x/y]e 7→∗ true implies x : τ, [x/y]e′ 7→∗ true. Therefore, e′(x) is true and will not abort.
We then apply the assert strong rule to typecheck the assertion. Finally, apply the ∀R rule to
typecheck the receive. Therefore, this process is well-typed with respect to S.

Case ⊕.

[[〈⊕{` : A`}`∈I ⇐ ⊕{` : B`}`∈J〉ρ]]a,b = case b (`⇒ Q`)`∈I

where ∀`, ` ∈ I ∩ J, a.` ; [[〈A` ⇐ B`〉ρ]]a,b = Q`and ∀`, ` ∈ J ∧ ` /∈ I, Q` = abort ρ

(1) By I.H., we know that E ′ = Ψ ; b : B` `T [[〈A` ⇐ B`〉ρ]]Ψa,b :: (a : A`). Apply the ⊕R
rule to E ′ to typecheck sending the label a.`. Then apply the ⊕L rule to typecheck the case.
Thererefore, this process is well-typed with respect to T .

(2) Because ⊕{` : B`}`∈J ≤ ⊕{` : A`}`∈I we know that Bk ≤ Ak. By I.H., we know that
E ′ = Ψ ; b : B` `S [[〈A` ⇐ B`〉ρ]]Ψa,b :: (a : A`). Apply the ⊕R rule to E ′ to typecheck sending
the label a.`. Then apply the ⊕L rule to typecheck the case. From the subtyping, we also know
that J ⊆ I . This means that there does not exist an ` ∈ J ∧ l 6∈ I , and no abort branch will be
generated. Thererefore, this process is well-typed with respect to S.

B.2 Casts are Transparent

Case 1.

[[〈1⇐ 1〉ρ]]a,b = wait b; close a

Apply the 1R rule and then the 1L rule to get (b : 1); Ψ; ·; · ` wait b; close b :: [](a : 1).

Case ⊗.

[[〈A1 ⊗ A2 ⇐ B1 ⊗B2〉ρ]]a,b =

x← recv b ; y ← [[〈A1 ⇐ B1〉ρ]]y,x ← x ; send a y ; [[〈A2 ⇐ B2〉ρ]]a,b

We first apply the⊗L rule. We then apply the cut3++ rule which produces two premises. The
first premise is P = [[〈A1 ⇐ B1〉ρ]]y,x. By induction, we have a derivation for P . The second
premise is send a y ; [[〈A2 ⇐ B2〉ρ]]a,b. We then apply the ⊗R rule. Let Q = [[〈A2 ⇐ B2〉ρ]]a,b.
By induction, we have a derivation for Q and we are done.

Case ∃.

[[〈∃{n : τ | e}. A⇐ ∃{n : τ ′ | e′}. B〉ρ]]a,b = n← recv b ; assert ρ e(x) ; send a x; [[〈A⇐ B〉ρ]]a,b
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We first apply the ∃L rule. We then apply the ∃R rule, which produces a premise P = [[〈A⇐
B〉ρ]]a,b. By induction, we have a derivation for P and we are done.

Case N.

[[〈N{` : A`}`∈I ⇐ N{` : B`}`∈J〉ρ]]a,b = case a (`⇒ Q`)`∈I

where ∀`, ` ∈ I ∩ J, b.` ; [[〈A` ⇐ B`〉ρ]]a,b = Q` and ∀`, ` ∈ I ∧ ` /∈ J, Q` = abort ρ

We first apply the NL rule. We then apply the NR rule, which produces a premise P =
[[〈A` ⇐ B`〉ρ]]a,b. By induction, we have a derivation for P and we are done.

B.3 Subtype Inversion
Lemma 21 (Subtype-Inversion).

1. If τ ≤ 1 then τ = 1.
2. If 1 ≤ τ then τ = 1.
3. If τ ≤ A⊗B, then τ = C ⊗D for some types C and D.
4. If A⊗B ≤ τ , then τ = C ⊗D for some types C and D.
5. If A⊗B ≤ A′ ⊗B′ then A ≤ A′ and B ≤ B′.
6. If τ ≤ A( B, then τ = C ( D for some types C and D.
7. If A( B ≤ τ , then τ = C ( D for some types C and D.
8. If A( B ≤ A′( B′ then A′ ≤ A and B ≤ B′.
9. If τ ≤ ⊕{labk : Ak}k∈J then τ = ⊕{labm : Am}m∈I for some m and I and type Am.

10. If ⊕{labk : Ak}k∈J ≤ τ then τ = ⊕{labm : Am}m∈I for some m and I and type Am.
11. If ⊕{labk : Ak}k∈J ≤ ⊕{labk : A′k}k∈I then Ak ≤ A′k for k ∈ J and J ⊆ I .
12. If τ ≤ N{labk : Ak}k∈J then τ = N{labm : Am}m∈I for some m and I and type Am.
13. If N{labk : Ak}k∈J ≤ τ then τ = N{labm : Am}m∈I for some m and I and type Am.
14. If N{labk : Ak}k∈J ≤ N{labk : A′k}k∈I then Ak ≤ A′k for k ∈ J and I ⊆ J .
15. If τ ≤ ↓A then τ = ↓B for some type B.
16. If ↓A ≤ τ then τ = ↓B for some type B.
17. If ↓A ≤ ↓B then A ≤ B.
18. If τ ≤ ↑A then τ = ↑B for some type B.
19. If ↑A ≤ τ then τ = ↑B for some type B.
20. If ↑A ≤ ↑B then A ≤ B.
21. If τ ≤ ∃n : τ1.A then τ = ∃n : τ2.B for some types τ2 and B.
22. If ∃n : τ1.A ≤ τ then τ = ∃n : τ2.B for some types τ2 and B.
23. If ∃n : τ1.A ≤ ∃n : τ2.B then A ≤ B and τ1 ≤ τ2.
24. If τ ≤ ∀n : τ1.A then τ = ∀n : τ2.B for some types τ2 and B.
25. If ∀n : τ1.A ≤ τ then τ = ∀n : τ2.B for some types τ2 and B.
26. If ∀n : τ1.A ≤ ∀n : τ2.B then A ≤ B and τ2 ≤ τ1.
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Proof. Cases 1,2: by examining the subtyping rule for 1.
Cases 3,4,5: by examining the subtyping rule for ⊗.
Cases 6,7,8: by examining the subtyping rule for(.
Cases 9,10,11: by examining the subtyping rule for ⊕.
Cases 12,13,14: by examining the subtyping rule for N.
Cases 15,16,17: by examining the subtyping rule for ↓.
Cases 18,19,20: by examining the subtyping rule for ↑.
Cases 21,22,23: by examining the subtyping rule for ∃.
Cases 24,25,26: by examining the subtyping rule for ∀.

B.4 Subtype Substitution
Case id cast.

A ∼ A′

Ψ ; b : A′ ` a← 〈A⇐ A′〉ρ b :: (a : A)
id cast

Subcase left. We haveA′′ ≤ A′. Let g : A′′. When we perform the substitution [g : A′′/b : A′]
we update the cast 〈A⇐ A′〉ρ to 〈A⇐ A′′〉ρ. We then get Ψ; g : A′′ ` a← 〈A⇐ A′′〉ρg :: (a :
A) which matches our substitution rules.

Subcase right. We have A ≤ A′′. Let g : A′′. When we perform the substitution [g : A′′/b :
A′] we update the cast 〈A⇐ A′〉ρ to 〈A′′ ⇐ A′〉ρ. We then get Ψ; b : A′ ` g ← 〈A′′ ⇐ A′〉ρb ::
(g : A′′) which matches our substitution rules.

Case val cast.

Ψ ` v : τ ′ E ′ = Ψ, x : τ ; ∆ ` Q :: (c : C) τ ∼ τ ′

Ψ; ∆ ` x← 〈τ ⇐ τ ′〉ρ v;Q :: (c : C)
val cast

We have C ≤ C ′. Apply I.H. to E ′ to get E ′′. For some fresh g : C ′ we have E ′′ =
Ψ, x : τ ; ∆ ` [g : C ′/c : C]Q :: (g : C ′). Now apply the val cast rule to E ′′ to get
Ψ; ∆ ` x← 〈τ ⇐ τ ′〉ρv; [g : C ′/c : C]Q :: (g : C ′) which matches our substitution rules.

Case ⊕L.

E =

E ′ = Ψ; ∆, c : A` ` Q` :: (d : D) for every ` ∈ L
Ψ; ∆, c : ⊕{` : A`}`∈L ` case c (`⇒ Q`)`∈L :: (d : D)

⊕L

We have ⊕{` : A′`}`∈J ≤ ⊕{` : A`}`∈L. By subtyping, we have A′` ≤ A` for ` ∈ J, J ⊆ L.
Apply I.H. to E ′ to get E ′′. For any fresh f : A′` we have E ′′ = Ψ,∆, f : A′` ` [f : A′`/c :
A`]Q :: (d : D) for ` ∈ J . We then apply ⊕L to E ′′ to get Ψ; ∆, f : ⊕{` : A′l}`∈J `
case f l ⇒ [f : A′`/c : A`]Q :: (d : D). By our substitution rules, this is equivalent to
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Ψ; ∆, f : ⊕{` : A′l}`∈J ` [f : ⊕{` : A′`}/c : ⊕{` : A`}]case c l⇒ Q :: (d : D).

Case ⊕R.

E =

k ∈ L E ′ = Ψ; ∆ ` P :: (c : Ak)

Ψ; ∆ ` c.k ; P :: (c : ⊕{` : A`}`∈L)
⊕R

We have ⊕{` : A`}`∈J ≤ ⊕{` : A′`}`∈L. By subtyping, we have A` ≤ A′` for ` ∈ J, J ⊆ L.
Apply I.H. to E ′ to get E ′′. For any fresh f : A′k we have E ′′ = Ψ,∆ ` [f : A′k/c : Ak]P :: (f :
A′k). We then apply ⊕R to E ′′ to get Ψ; ∆ ` f.k; [f : A′k/c : Ak]P :: (f : ⊕{` : A′`}`∈L). By
our substitution rules, this is equivalent to Ψ; ∆ ` [f : ⊕{` : A′`}/c : ⊕{` : A`}]c.k;P :: (f :
⊕{` : A`}`∈L).

Case ∃L.

E =

E ′ = Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ. A ` n← recv c ; Q :: (d : D)
∃L

We have ∃n : τ ′.A′ ≤ ∃n : τ.A. By subtyping, we get that τ ′ ≤ τ and A′ ≤ A. Apply I.H. to
E ′ to get E ′′. For any fresh f : A′ we have E ′′ = Ψ, n : τ ; ∆, f : A′ ` [f : A′/c : A]Q :: (d : D).
By construction, |E ′| = |E ′′|, so we can apply I.H. to E ′′ to get E ′′′. For any fresh m : τ ′ we
have E ′′′ = Ψ,m : τ ′; ∆, f ′ : A′ ` [m : τ ′/n : τ ][f : A′/c : A]Q :: (d : D). We now apply ∃L to
E ′′′ to get Ψ; ∆, f : ∃m : τ ′.A′ ` m ← recv f ; [m : τ ′/n : τ ][f : A′/c : A]Q :: (d : D). By our
substitution rules, this is equivalent to Ψ; ∆, f : ∃m : τ ′.A′ ` [f : ∃n : τ ′.A′/c : ∃n : τ.A]n ←
recv c;Q :: (d : D).

Case ∃R.

E =

Ψ ` v : τ ′ E ′ = Ψ ; ∆ ` P :: (c : [v/n]A) τ ∼ τ ′

Ψ ; ∆ ` send c 〈τ ⇐ τ ′〉ρ v ; P :: (c : ∃n:τ. A)
∃R

We have ∃n : τ.A ≤ ∃n : τ ′′.A′. By subtyping, we have τ ≤ τ ′′ andA ≤ A′. Apply I.H. toE ′

to getE ′′. For any fresh f : A′ we haveE ′′ = Ψ; ∆ ` [f : [v/n]A′/c : [v/n]A]P :: (f : [v/n]A′).
Now apply ∃R to E ′′ to get Ψ,∆ ` send f 〈τ ⇐ τ ′〉ρv; [f : A′/c : A]P :: (f : ∃n : τ.A′). We
update the cast as follows: Ψ,∆ ` send f 〈τ ′′ ⇐ τ ′〉ρv; [f : A′/c : A]P :: (f : ∃n : τ ′′.A′).
By our substitution rules, this is equivalent to Ψ,∆ ` [f : ∃n : τ ′′.A′/c : ∃n : τ.A]send c 〈τ ⇐
τ ′〉ρv;P :: (f : ∃n : τ.A).

Case(L.

E =

E ′ = Ψ ; ∆, c : B ` Q :: (d : D) A ∼ A′

Ψ ; ∆, a : A′, c : A( B ` send c 〈A⇐ A′〉ρ a ; Q :: (d : D)
(L

Subcase principal. We have A′′ ( B ≤ A ( B′. By subtyping, we get A ≤ A′′ and
B′ ≤ B. Apply I.H. to E ′ to get E ′′. For any fresh f : B′ we have E ′′ = Ψ; ∆, f : B′ `
[f : B′/c : B]Q :: (d : D). Now apply (L to E ′′ to get Ψ; ∆, a : A′, f : A ( B′ `
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send f 〈A ⇐ A′〉ρ a; [f : B′/c : B]Q :: (d : D). We then update the cast as follows:
Ψ; ∆, a : A′, f : A ( B′ ` send f 〈A′′ ⇐ A′〉ρ a; [f : B′/c : B]Q :: (d : D). By our
substitution rules, this is equivalent to Ψ; ∆, a : A′, f : A′′ ( B′ ` [f : A′′ ( B′/c : A (
B]send c 〈A⇐ A′〉ρ a ; Q :: (d : D).

Subcase side. Let A′′ ≤ A′. We can update the cast as follows: Ψ ; ∆, a : A′′, c : A (
B ` send c 〈A ⇐ A′′〉ρ a ; Q :: (d : D). By our substitution rules, this is equivalent to
[a : A′′/a : A′]send c 〈A⇐ A′〉ρ a ; Q :: (d : D).

Case(R.

E =

E ′ = Ψ; ∆, x : A ` P :: (c : B)

Ψ; ∆ ` x← recv c ; P :: (c : A( B)
(R

We have A ( B ≤ A′ ( B′. By subtyping, we have A′ ≤ A and B ≤ B′. Apply I.H. to
E ′ to get E ′′. For any fresh f : C ′ we have E ′′ = Ψ; ∆, x : A ` [f : B′/c : B]P :: (f : B′). By
construction, we know that |E ′| = |E ′′|. So we now apply I.H. to E ′′ to get E ′′′. For any fresh
h : A′ we have E ′′′ = Ψ; ∆, h : A′ ` [h : A′/x : A][f : B′/c : B]P :: (f : B′). Now apply
(R to E ′′′ to get Ψ; ∆ ` h ← recv f ; [h : A′/x : A][f : B′/c : B]P :: (f : A′ ( B′). By our
substitution rules, this is equivalent to Ψ; ∆ ` [h : A′ ( B′/c : A( B](x← recv c;P ) :: (f :
A( B).

B.5 Configuration Inversion
Lemma 22 (Configuration-Inversion).

1. If ∆ 
 C and C = C1, C2 where C2 = proc(c, P ) then ∆ 
 C1 and ∆|fn(P ) 
 proc(c, P ).
2. If ∆ 
 C and C = C1, C2, C3 where C2 = msg(c, P ) and C3 = proc(d,Q) then ∆ 
 C1 and

∆|fn(P ) 
 msg(c, P ) and ∆|fn(P ) 
 proc(d,Q).
3. If ∆ 
 C and C = C1, C2, C3 where C2 = proc(c, P ) and C3 = msg(d,Q) then ∆ 
 C1 and

∆|fn(P ) 
 proc(c, P ) and ∆|fn(Q) 
 msg(d,Q).
4. If ∆ 
 proc(c, P ) then ∆|fn(P ) ` P :: (c : A).
5. If 
 msg(c, P ) then there ∆fn(Q) ` P :: (c : A).

Proof. By examining the configuration typing rules.

B.6 Preservation
Case id cast.

We have proc(a, a ← 〈A ⇐ A′〉ρb), C −→ [b : A′/a : A]C where A′ ≤ A. We know that
proc(a, a← b) is a client of exactly one process, which we can call proc(q,Q) ∈ C. This process
must be well typed. Let E ′ = ∆, x : A ` Q :: (q : C). Given A′ ≤ A, we then apply the subtype
substitution lemma to E ′. For a fresh b : A′ we then have ∆, b : A′ ` [b : A′/x : A]Q :: (q : C).
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Case val cast.
We have proc(a, x ← 〈τ ′ ⇐ τ〉ρ v;Q) −→ proc(a,Q[v : τ ′/x : τ ]). We need to show that

proc(a, [v : τ ′/x : τ ]Q) is well-typed. By inversion of val cast, we know that E ′ = x : τ ; ∆ `
Q :: (c : C) τ ∼ τ ′ is well-typed. Given that τ ′ ≤ τ , we can apply the subtype-substitution
lemma to E ′. For a fresh v : τ ′, we get that v : τ ′; ∆ ` [v : τ ′/x : τ ]Q :: (c : C).

Case cut.
We have proc(c, x:A← 〈A⇐ A′〉ρP ; Q) −→ proc(a, [a : A′/x : A′]P ), proc(c, [a : A′/x :

A]Q) (a fresh). We need to show that proc(a, [a : A′/x : A′]P ) is well-typed. By inversion
on cut, we have that E ′ =; ∆ ` P :: (x : A′) is well-typed. Given that A′ ≤ A′, we can apply
subtype-substitution to E ′. For a fresh a : A′, we have ∆ ` [a : A′/x : A′]P :: (a : A′). We
also need to show that proc(c, [a : A′/x : A]Q) is well-typed. By inversion on cut, we have
that E ′′ = x : A,∆′ ` Q :: (c : C) is well-typed. Given A′ ≤ A, we can apply the subtype-
substitution lemma to E ′′. For a fresh a : A′, we get a : A′,∆′ ` [a : A′/x : A]Q :: (c : C).

Case ⊗send.
We have proc(c, send c a ; P ) −→ proc(c′, [c′ : B/c : B]P ),msg(c, send c 〈A ⇐ A′〉ρ a ;

c ← c′) (c′ fresh). We need to show that proc(c, [c′ : B/c : B]P ) is well typed. By inversion
of ⊗R, we know that E ′ = ∆ ` P :: (c : B) is well typed. Given that B ≤ B, we can apply the
subtype-substitution lemma to E ′. For a fresh c′ : B, we have ∆ ` [c′ : B/c : B]P :: (c : B).
The message is well-typed because of the cast.

Case ⊗recv.
We have msg(c, send c 〈A ⇐ A′〉ρ a ; c ← c′), proc(d, x ← recv c ; Q) −→ proc(d, [c′ :

B/c : B][a : A′/x : A]Q). We need to show that proc(d, [c′ : B/c : B][a : A′/x : A]Q) is well-
typed given that A′ ≤ A. By inversion of ⊗L we know that E ′ = ∆, x : A, c : B ` Q :: (d : D)
is well-typed. We apply the subtype-substitution lemma to E ′ to get E ′′. For any fresh y : A′ we
have E ′′ = ∆, y : A′, c : B ` [y : A′/x : A]Q :: (d : D). Given that B ≤ B, we can apply
subtype-substitution to E ′′. For a fresh c′ : B, we have ∆, y : A′, c′ : B ` [c′ : B/c : B][y :
A′/x : A]Q :: (d : D).

Case Nsend.
We have proc(d, c.k ; Q) −→ msg(c′, c.k ; c′ ← c), proc(d, [c′ : Ak/c : Ak]Q) (c′ fresh).

We need to show that proc(d, [c′ : Ak/c : Ak]Q) are well-typed. By inversion on NL, we have
that E ′ = ∆, c : Ak ` Q :: (d : D) is well-typed. Given Ak ≤ Ak, we can apply subtype-
substitution to E ′. For a fresh c′ : Ak, we get ∆, c′ : Ak ` [c′ : Ak/c : Ak]Q :: (d : D). We also
have that c : N{` : A`}`∈L ` c.k ; c′ ← c :: (c′ : Ak) which types the message.

Case Nrecv.
We have proc(c, case c (` ⇒ P`)`∈L),msg(c′, c.k ; c′ ← c) −→ proc(c′, [c′ : A`/c : A`]Pk).

We need to show that proc(c′, [c′ : A`/c : A`]Pk) is well-typed. By inversion of NR, we know
that E ′ = ∆ ` P` :: (c : A`) is well-typed. Because A` ≤ A`, we can apply subtype-substitution
to E ′. For a fresh c′ : A`, we have ∆ ` [c′ : A`/c : A`]]Pk :: (c′ : A`).
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Case ∀send.
We have proc(d, send c v ; Q) −→ msg(c′, send c 〈τ ⇐ τ ′〉ρv ; c′ ← c), proc(d, [c′ :

[v/n]A/c : [v/n]A]Q). We need to show that proc(d, [c′ : [v/n]A/c : [v/n]A]Q) is well-typed.
By inversion of ∀L, we have that E ′ =; ∆, c : [v/n]A ` Q :: (d : D) is well-typed. Given that
[v/n]A ≤ [v/n]A, we can apply the subtype-substitution lemma to E ′. For a fresh c′ : [v/n]A,
we get ∆, c′ : [v/n]A ` [c : [v/n]A/c′ : [v/n]A]Q :: (d : D). The message is well-typed because
of the cast.

Case ∀recv.
We have proc(c, x ← recv c ; P ),msg(c′, send c 〈τ ⇐ τ ′〉ρv ; c′ ← c) −→ proc(c′, [c′ :

A/c : A][v : τ ′/n : τ ]P ). We need to show that proc(c′, [c′ : A/c : A][v : τ ′/n : τ ]P ) is
well-typed. By inversion of ∀R, we have that E ′ = n:τ ; ∆ ` P :: (c : A) is well-typed.
Because we have τ ′ ≤ τ , we can apply the subtype-substitution lemma to E ′ to get E ′′. For a
fresh v : τ ′ we have E ′′ = v:τ ′ ; ∆ ` [v : τ ′/n : τ ]P :: (c : A). Given A ≤ A we can apply the
subtype-substitution lemma to E ′′. For fresh c′ : A, we have v:τ ′ ; ∆ ` [c′ : A/c : A][v : τ ′/n :
τ ]P :: (c : A).
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Appendix C

Dependent Proof Cases

C.1 Irrelevant Substitution
Case id

Ψ, c÷ τ ; b : A ` a← b; (a : A)
id

We have Ψ⊕ ` v : τ . We want to show that Ψ; [v/c](b : A) ` [v/c](a ← b) :: (a : [v/c]A).
This simplifies to: Ψ; b : [v/c]A ` a ← b :: (a : [v/c]A). Let D = [v/c]A which gives us
Ψ; b : D ` a← b :: (a : D).

Case cut

E ′ = Ψ, b÷ τ ; ∆ ` P :: (x : A) E ′′ = Ψ, b÷ τ ;x : A,∆′ ` Q :: (c : C)

Ψ, b÷ τ ; ∆,∆′ ` x : A← P ;Q :: (c : C)
cut

We have that Ψ⊕ ` w : τ . We want to show that Ψ; [w/b]∆, [w/b]∆′ ` [w/b](x : A ←
P ;Q) :: (c : [w/b]C). We apply I.H. to E ′ to get: Ψ; [w/b]∆ ` [w/b]P :: (x : [w/b]A). We
apply induction to E ′′ to get: Ψ; [w/b](x : A,∆′) ` [w/b]Q :: (c : [w/b]C). We then apply the
cut rule to get: Ψ; [w/b]∆, [w/b]∆′ ` x : [w/b]A← [w/b]P ; [w/b]Q :: (c : [w/b]C).

Case ∃R

Ψ, b÷ τ ′ ` v : τ E ′ = Ψ, b÷ τ ′; ∆ ` P :: (c : [v/n]A)

Ψ, b÷ τ ′; ∆ ` send c v;P :: (c : ∃n : τ.A
∃R

We have that Ψ⊕ ` w : τ ′. We want to show that Ψ; [w/b]∆ ` [w/b](send c v;P ) :: (c :
[w/b]∃n : τ.A). We apply I.H. to E ′ to get Ψ; [w/b]∆ ` [w/b]P :: (c : [v/b][v/n]A). If
Ψ, b ÷ τ ′ ` v : τ , then by irrelevance, it must be the case that Ψ ` v : τ . We also note that b
cannot appear in v or τ . We then apply the ∃R rule to get: Ψ; [w/b]∆ ` send c v; [v/b]P ) :: (c :
∃n : τ.[v/b]A).

Case ∃L
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E ′ = Ψ, b÷ τ ′, n : τ ; ∆, c : A ` Q :: (d : D)

Ψ, b÷ τ ′; ∆, c : ∃n : τ.A ` n← recv c;Q :: (d : D)
∃L

We have that Ψ⊕ ` w : τ ′. We want to show that Ψ; [w/b](∆, c : ∃n : τ.A) ` [w/b](n ←
recv c;Q) :: (d : [w/b]D). By weakening, we have that Ψ⊕, n : τ ` w : τ ′. This is equivalent to
(Ψ, n : τ)⊕ ` w : τ ′. We apply I.H. to E ′ to get Ψ, n : τ ; [w/b]∆, c : [w/b]A ` [w/b]Q :: (d :
[w/b]D). We then apply the ∃L rule to get Ψ; [w/b]∆, c : ∃n : τ.[w/b]A ` n← recv c; [w/b]Q ::
(d : [w/b]D).

Case ∀L

Ψ, b÷ τ ′ ` v : τ E ′ = Ψ, b÷ τ ′; ∆, c : [v/n]A ` Q :: (d : D)

Ψ, b÷ τ ′; ∆, c : ∀n : τ.A ` send c v;Q :: (d : D)
∀L

We have that Ψ⊕ ` w : τ ′. We want to show that
Ψ; [w/b](∆, c : ∀n : τ.A) ` [w/b](send c v;Q) :: (d : [w/b]D)). We apply I.H. to E ′ to get
Ψ; [w/b]∆, c : [w/b][v/n]A ` [w/b]Q :: (d : [w/b]D). If Ψ, b ÷ τ ′ ` v : τ , then by irrelevance,
it must be the case that Ψ ` v : τ . We also note that b cannot appear in v or τ . We then apply the
∀L rule to get Ψ; [v/b]∆, c : ∀n : τ.[v/b]A ` send c v; [v/b]Q :: (d : [v/b]D).

Case ∀R

E ′ = Ψ, b÷ τ ′, n : τ ; ∆ ` P :: (c : A)

Ψ, b÷ τ ′; ∆ ` n← recv c;P :: (c : ∀n : τ.A)
∀R

We have that Ψ⊕ ` w : τ ′. We want to show that Ψ; [w/b]∆ ` [w/b](n ← recv c;P ) ::
(c : [w/b]∀n : τ.A). By weakening, we have that Ψ⊕, n : τ ` w : τ ′. This is equivalent to
(Ψ, n : τ)⊕ ` w : τ ′. We apply I.H. to E ′ to get Ψ, n : τ ; [w/b]∆ ` [w/b]P :: (c : [w/b]A). We
then apply the ∀R rule to get Ψ, [w/b]∆ ` n← recv c; [w/b]P :: (c : ∀n : τ.[w/b]A).

Case ∃R[]

(Ψ, b÷ τ ′)⊕ ` v : τ E ′ = Ψ, b÷ τ ′; ∆ ` P :: (c : [v/n]A)

Ψ, b÷ τ ′; ∆ ` send c [v];P :: (c : ∃n÷ τ.A)
∃R[]

We have that Ψ⊕ ` w : τ ′. We want to show that Ψ; [w/b]∆ ` [w/b](send c [v];P ) ::
(c : [w/b]∃n ÷ τ.A).. We apply I.H. to E ′ to get Ψ; [w/b]∆ ` [w/b]P :: (c : [w/b][v/n]A).
We have that (Ψ, b ÷ τ ′)⊕ ` v : τ which is equivalent to Ψ⊕, b : τ ′ ` v : τ . We now ap-
ply standard substitution to get Ψ⊕ ` [w/b]v : [w/b]τ . We then apply the ∃R[] rule to get
Ψ; [w/b]∆ ` send c [[w/b]v]; [w/b]P :: (c : ∃n÷ [w/b]τ.[w/b]A).

Case ∃L[]

E ′ = Ψ, b÷ τ ′, n÷ τ ; ∆, c : A ` Q :: (d : D)

Ψ, b÷ τ ; ∆, c : ∃n÷ τ.A ` [n]← recv c;Q :: (d : D)
∃L[]
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We have that Ψ⊕ ` w : τ ′. We want to show that Ψ; [w/b](∆, c : ∃n ÷ τ.A) ` [w/b]([n] ←
recv c;Q) :: (d : [w/b]D). By weakening, we have that Ψ⊕, n : τ ` w : τ ′. This is equiv-
alent to (Ψ, n ÷ τ)⊕ ` w : τ ′. We apply I.H. to E ′ to get Ψ, n ÷ τ ; [w/b]∆, c : [w/b]A `
[w/b]Q :: (d : [w/b]D). We then apply the ∃L[] rule to get Ψ; [w/b]∆, c : ∃n ÷ τ.[w/b]A `
[n]← recv c; [w/b]Q :: (d : [w/b]D).

Case ∀L[]

(Ψ, b÷ τ ′)⊕ ` v : τ E ′ = Ψ, b÷ τ ′; ∆, c : [v/n]A ` Q :: (d : D)

Ψ, b÷ τ ′; ∆, c : ∀n÷ τ.A ` send c [v];Q :: (d : D)
∀L[]

We have that Ψ⊕ ` w : τ ′. We want to show that
Ψ; [w/b](∆, c : ∀n ÷ τ.A) ` [w/b](send c [v];Q) :: (d : [w/b]D). We apply I.H. to E ′ to get
Ψ; [w/b]∆, c : [w/b][v/n]A ` [w/b]Q :: (d : [w/b]D). We have that (Ψ, b÷τ ′)⊕ ` v : τ which is
equivalent to Ψ⊕, b : τ ′ ` v : τ . We now apply standard substitution to get Ψ⊕ ` [w/b]v : [w/b]τ .
We then apply the ∀L[] rule to get Ψ; [w/b]∆, c : ∀n÷[w/b]τ.[w/b]A ` send c [[w/b]v]; [w/b]Q ::
(d : [w/b]D).

Case ∀R[]

E ′ = Ψ, b÷ τ ′, n÷ τ ; ∆ ` P :: (c : A)

Ψ, b÷ τ ′; ∆ ` [n]← recv c;P :: (c : ∀n÷ τ.A)
∀R[]

We have that Ψ⊕ ` w : τ ′. We want to show that Ψ; [w/b]∆ ` [w/b]([n] ← recv c;P ) ::
(c : [w/b]∀n ÷ τ.A). By weakening, we have that Ψ⊕, n : τ ` w : τ ′. This is equivalent to
(Ψ, n÷ τ)⊕ ` w : τ ′. We apply I.H. to E ′ to get Ψ, n÷ τ ; [w/b]∆ ` [w/b]P :: (c : [w/b]A). We
then apply the ∀R[] rule to get Ψ; [w/b]∆ ` [n]← recv c; [w/b]P :: (c : ∀n÷ τ.[w/b]A).

C.2 Proof of lemma (one-step)
Case exists s[]

We have proc(ci, send ci [] ; P ), !(∃φ.∃p.ci : ∃n÷ φ.A), p : φ) −→ proc(c+
i , [c

+
i /ci]P ),

msg(ci, send ci [] ; ci ← c+
i ), !(c+

i : A) . By the configuration typing,H; ∆ 
 proc(ci, send ci [] ;

P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` send ci [] ; P :: (ci : ∆(ci)). By inversion

of the ∃[]R rule, we have ∆|fn(P ) ` P :: (ci : ∆(ci)). By using the ∃[]R and the id rule, we can type
the message as follows: c+

i : A ` send ci [v] ; ci ← c+
i :: (ci : ∃n÷ φ.A). Let ∆′ = ∆ ∪ c+

i . We
then have ∆′|fn(P ) ` [c+

i /ci]P :: (c+
i : ∆(c+

i )) and ∆′|c+i
` send ci [v] ; ci ← c+

i :: (ci : ∃n÷φ.A).

Therefore, H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ) and H; ∆′|c+i


 msg(ci, send ci [] ; ci ← c+
i ).
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Subcase ci ∈ H
Using the fact that c+

i : A and ci : ∃n ÷ φ.A we can type the message as follows: c+
i : A `

send ci [v] ; ci ← c+
i :: (ci : ∃n ÷ φ.A). Let ∆′ = ∆ ∪ c+

i . We then have ∆′|c+i
` send ci [v] ;

ci ← c+
i :: (ci : ∃n ÷ φ.A). Therefore, H; ∆′ 
 msg(ci, send ci [] ; ci ← c+

i ). Because ci ∈ H ,
by the configuration typing, we have H; ∆′ 
 proc(c+

i , CH, [c
+
i /ci]P ).

Case exists s a[]

We have proc(ci, send ci [] ; P ), !¬(∃φ.∃p.ci : ∃n÷ φ.A), p : φ) −→ alarm(ci). By the
configuration typing, H; ∆ 
 proc(ci, send ci [] ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` send ci [v] ; P :: (ci : ∆(ci)). By

the ∃[]R rule, ∆|fn(P ) ` send ci [v];P :: (ci : ∃n ÷ φ.A). If ¬(∃φ.∃p.ci : ∃n ÷ φ.A), p : φ),
then ∆|fn(P ) 6` send ci [v];P :: (ci : ∃n ÷ φ.A). This is a contradiction, and because H; ∆ 

proc(ci, send ci [] ; P ), it must be the case that ci ∈ H .

Subcase ci ∈ H
Assume ∆|fn(P ) ` send ci [v] ; P :: (ci : ∆(ci)). By the ∃R rule, it must be the case that

ci : ∃n ÷ φ.A for some φ. However, this contradicts the fact that there does not exist φ and p
such that ci : ∃n÷ φ.A and p : φ. Therefore, ∆|fn(P ) 6` send ci [v] ; P :: (ci : ∆(ci)).

Case exists r[]

We have msg(ci, send ci [] ; ci ← c+
i ), proc(d, [] ← recv ci ; Q) −→ proc(d, [c+

i /ci]Q).
By the configuration typing, we have that H; ∆ 
 msg(ci, send ci [] ; ci ← c+

i ) and H; ∆ 

proc(d, []← recv ci ; Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` [v] ← recv ci ; Q :: (d : ∆(d))

and ∆c+i
` send ci [] ; ci ← c+

i :: (ci : ∆(ci). By using the ∃[]R and the id rule, we
can type the message as follows: c+

i : A ` send ci [v] ; ci ← c+
i :: (ci : ∃n ÷ τ.A).

By inversion of the ∃[]L typing rule we have that n ÷ τ ; ∆|fn(Q) ` Q :: (d : ∆(d)). By in-
version of the ∃[]R typing rule, we have · ` v : τ . We now apply Irrelevant Substitution
to get: ·; [v/n]∆|fn(Q) ` [v/n]Q :: (d : [v/n]∆(d)). Let ∆′ = [c+

i : A−/ci : A−]∆ and
∆′|fn(Q) = [c+

i : A/ci : A]∆|fn(Q). We then have that ·; ∆′|fn(Q) ` [c+
i /ci]Q :: (d : ∆(d)). There-

fore, H; ∆′ 
 proc(d, [c+
i /ci]Q).

Subcase d ∈ H
Let ∆′ = ∆. Because d ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(d, [c+
i /ci]Q).

Case forall s[]

We have proc(d, send ci [] ; Q), !(∃φ.∃p.ci : ∀n÷ φ.A), p : φ) −→ msg(c+
i , send ci [] ;
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c+
i ← ci), proc(d, [c+

i /ci]Q), !(c+
i : A) . By the configuration typing,

H; ∆ 
 proc(d, send ci [] ; Q).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` send ci [v] ; Q :: (d : ∆(d)). By inver-

sion of the ∀[] L rule, we have ∆|fn(Q) ` Q :: (d : ∆(d)). By using the ∀[]L and the id rule, we can
type the message as follows: ci : ∀n÷φ.A ` send ci [v] ; c+

i ← ci :: (c+
i : A). Let ∆′ = ∆∪ c+

i .
We then have ∆′|c+i ∪fn(Q)

` [c+
i /ci]Q :: (d : ∆′(d)) and ∆′|ci ` send ci [v] ; c+

i ← ci :: (c+
i :

∆′(c+
i )). Therefore, H; ∆′ 
 proc(d, [c+

i /ci]Q) and H; ∆′ 
 msg(c+
i , send ci [v] ; c+

i ← ci).

Subcase d ∈ H
Using the fact that c+

i : A and ci : ∀n ÷ φ.A we can type the message as follows: ci :
∀n÷φ.A ` send ci [v] ; c+

i ← ci :: (c+
i : A). Let ∆′ = ∆∪ c+

i . We then have ∆′|ci ` send ci [v] ;

c+
i ← ci :: (c+

i : A). Therefore, H; ∆′ 
 msg(c+
i , send ci [v] ; c+

i ← ci). Because d ∈ H , by the
configuration typing, we have H; ∆′ 
 proc(d, [c+

i /ci]Q).

Case forall s a[]

We have proc(d, send ci [] ; Q), !¬(∃φ.∃p.ci : ∀n÷ φ.A), p : φ) −→ alarm(d). By the con-
figuration typing, H; Ψ; ∆ 
 proc(ci, send ci [] ; P ).

Subcase d 6∈ H
By inversion of the configuration typing, ∆|ci∪fn(Q) ` send ci [v] ; Q) :: (d : ∆(d)). By the

∀[]L rule, ∆|fn(Q), ci : ∀n÷φ.A ` send ci [v] ; Q :: (d : ∆(d)). If ¬(∃φ.∃p.ci : ∀n÷φ.A), p : φ),
then ∆|ci∪fn(Q) 6` send ci [v] ; Q :: (d : ∆(d)). This is a contradiction, and because H; ∆ 

proc(d, send ci [v] ; Q), it must be the case d ∈ H .

Subcase d ∈ H
Assume Ψ; ∆|ci∪fn(Q) ` send ci [v] ; Q :: (d : ∆(d)). By the ∀L rule, it must be the case that

ci : ∃n ÷ φ.A for some φ. However, this contradicts the fact that there does not exist φ and p
such that ci : ∃n÷ φ and p : φ. Therefore, ∆|ci∪fn(Q) 6` send ci [v] ; Q) :: (d : ∆(d)).

Case forall r[]

We have proc(ci, []← recv ci ; P ),msg(c+
i , send ci [] ; c+

i ← ci) −→
proc(c+

i , [c
+
i /ci]P ). By the configuration typing, we have that H; ∆ 
 msg(c+

i , send ci [] ; c+
i ←

ci) and H; ∆ 
 proc(ci, []← recv ci ; P ).

Subcase ci 6∈ H
By inversion of the configuration typing, ∆|fn(P ) ` [n] ← recv ci ; P :: (ci : ∆(ci)) and

∆|ci ` send ci [v] ; c+
i ← ci :: (ci : ∆(ci)). By the ∀L rule and the id rule, we can type the mes-

sage as follows: ci : ∀n÷τ.A ` send ci [v] ; c+
i ← ci :: (c+

i : A). By inversion of the ∀[]R typing
rule we have that n÷ τ ; ∆|fn(P ) ` P :: (ci : A). By inversion of the ∀[]L typing rule, we have that
· ` v : τ . We now apply Irrelevant Substitution to get: ·; [v/n]∆fn(P ) ` [v/n]P :: (ci : [v/n]A)).
Let ∆′ = [c+

i : A−/ci : A−]∆ and ∆′|fn(P ) = [c+
i : A/ci : A]∆|fn(P ). We then have that
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·; ∆′|fn(P ) ` [c+
i /ci]P :: (c+

i : ∆′(c+
i )). Therefore, H; ∆′ 
 proc(c+

i , [c
+
i /ci]P ).

Subcase ci ∈ H
Let ∆′ = ∆. Because ci ∈ H , by the configuration typing, we have

H; ∆′ 
 proc(c+
i , [c

+
i /ci]P ).

C.3 Erasure Correctness
Case id

Ψ; b : A ` a← b :: (a : A)
id

We want to show that Ψ†; (b : A)† ` (a ← b)† :: (a : A†). This is equivalent to Ψ†; b : A† `
a← b :: (a : A†). Let Ψ′ = Ψ† and A′ = A†. We then have Ψ; b : A′ ` a← b :: (a : A′).

Case 1R

·; · ` close c :: (c : 1)
1R

We want to show that ·†; ·† ` (close c)† :: (c : 1†). This is equivalent to ·; · ` close c :: (c : 1).

Case 1L

E ′ = Ψ; ∆ ` Q :: (d : D)

Ψ; ∆, c : 1 ` wait c;Q :: (d : D)
1L

We want to show that Ψ†; (∆, c : 1)† ` (wait c;Q)† :: (d : D†). We apply I.H. to E ′ to get
Ψ†; ∆† ` Q† :: (d : D†). We then apply the 1L rule to get Ψ†; ∆†, c : 1 ` wait c;Q† :: (d : D†)
which is equivalent to Ψ†; ∆†, (c : 1)† ` (wait c;Q)† :: (d : D†).

Case cut

E ′ = Ψ; ∆ ` P :: (x : A) E ′′ = Ψ;x : A,∆′ ` Q :: (c : C)

E ′ = Ψ; ∆,∆′ ` x : A← P ;Q :: (c : C)
cut

We want to show that Ψ†; (∆,∆′)† ` (x : A← P ;Q)† :: (c : C†). We apply I.H. to E ′ to get
Ψ†; ∆† ` P † :: (x : A†). We apply I.H. to E ′′ to get Ψ†;x : A†,∆′† ` Q† :: (c : C†). We then
apply the cut rule to get Ψ†; ∆†,∆′† ` x : A† ← P †;Q† :: (c : C†).

Case NL

k ∈ L E ′ = Ψ; ∆, c : Ak ` Q :: (d : D)

Ψ; ∆, c : N{` : A`}`∈L ` c.k ; Q :: (d : D)
NL
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We want to show that Ψ†; (∆, c : N{` : A`}`∈L)† ` (c.k ; Q)† :: (d : D†). We ap-
ply I.H. to E ′ to get Ψ†; ∆†, c : A†k ` Q† :: (d : D†). We then apply the NL rule to get
Ψ†; ∆†, c : N{` : A†`}`∈L ` c.k ; Q† :: (d : D†) which is equivalent to Ψ†; ∆†, c : N{` : A`}†`∈L `
(c.k ; Q)† :: (d : D†).

Case NR

E ′ = Ψ; ∆ ` P` :: (c : A`) for every ` ∈ L
Ψ; ∆ ` case c (`⇒ P`)`∈L :: (c : N{` : A`}`∈L)

NR

We want to show that Ψ†; ∆† ` (case c (` ⇒ P`)`∈L)† :: (c : N{` : A`}†`∈L). We apply I.H.
to E ′ to get Ψ†; ∆† ` P †` :: (c : A†`). We then apply the NR rule to get Ψ†; ∆† ` case c (` ⇒
P †` )`∈L :: (c : N{` : A†`}`∈L) which is equivalent to Ψ†; ∆† ` (case c (`⇒ P`)`∈L)† :: (c : N{` :

A`}†`∈L).

We note that the ⊕L and ⊕R cases are similar.

Case(L

E ′ = Ψ ; ∆, c : B ` Q :: (d : D)

Ψ ; ∆, a : A, c : A( B ` send c a ; Q :: (d : D)
(L

We want to show that Ψ† ; (∆, a : A, c : A ( B)† ` (send c a ; Q)† :: (d : D†).
We apply I.H. to E ′ to get Ψ† ; (∆†, c : B† ` Q† :: (d : D†). We then apply the (L rule
to get Ψ† ; ∆†, a : A, c : A ( B† ` send c a ; Q† :: (d : D†). Let A = A†. We then
have Ψ† ; ∆†, a : A†, c : A† ( B† ` send c a ; Q† :: (d : D†) which is equivalent to
Ψ† ; ∆†, a : A†, (c : A( B)† ` (send c a ; Q)† :: (d : D†).

Case(R

E ′ = Ψ; ∆, x : A ` P :: (c : B)

Ψ; ∆ ` x← recv c ; P :: (c : A( B)
(R

We want to show that Ψ†; ∆† ` (x ← recv c ; P )† :: (c : (A ( B)†). We apply I.H. to E ′

to get Ψ†; ∆†, x : A† ` P † :: (c : B†). We then apply the(R rule to get Ψ†; ∆† ` x← recv c ;
P † :: (c : A†( B†) which is equivalent to Ψ†; ∆† ` (x← recv c ; P )† :: (c : (A( B)†).

Case ⊗L

E ′ = Ψ; ∆, x : A, c : B ` Q :: (d : D)

Ψ; ∆, c : A⊗B ` x← recv c ; Q :: (d : D)
⊗L

We want to show that Ψ†; (∆, c : A ⊗ B)† ` (x ← recv c ; Q)† :: (d : D†). We ap-
ply I.H. to E ′ to get Ψ†; ∆†, x : A†, c : B† ` Q† :: (d : D†). We then apply the ⊗L
rule to get Ψ†; ∆†, c : A† ⊗ B† ` x ← recv c ; Q† :: (d : D†) which is equivalent to
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Ψ†; ∆†, c : (A⊗B)† ` (x← recv c ; Q)† :: (d : D†).

Case ⊗R

E ′ = Ψ ; ∆ ` P :: (c : B)

Ψ ; ∆, a : A ` send c a ; P :: (c : A⊗B)
⊗R

We want to show that Ψ† ; (∆, a : A)† ` (send c a ; P0† :: (c : (A⊗B)†). We apply I.H. to
E ′ to get Ψ†; ∆† ` P † :: (c : B†). We then apply the ⊗R rule to get Ψ† ; ∆†, a : A ` send c a ;
P † :: (c : A⊗ B†). Let A = A†. We then have Ψ† ; ∆†, a : A† ` send c a ; P † :: (c : A† ⊗ B†)
which is equivalent to Ψ† ; ∆†, a : A† ` (send c a ; P )† :: ((c : A⊗B)†).

Case ↑R

E ′ = Ψ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` shift← recv c ; P :: (c : ↑A)
↑R

We want to show that Ψ† ; ∆† ` (shift ← recv c ; P †) :: (c : (↑A)†). We apply I.H. to E ′ to
get Ψ† ; ∆† ` P † :: (c : A†). We then apply the ↑R rule to get Ψ† ; ∆† ` shift ← recv c ; P † ::
(c : ↑A†) which is equivalent to Ψ† ; ∆† ` (shift← recv c ; P )† :: (c : (↑A)†).

Case ↑L

E ′ = Ψ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ↑A ` send c shift ; Q :: (d : D)
↑L

We want to show that Ψ† ; (∆†, c : ↑A)† ` (send c shift ; Q)† :: (d : D†). We ap-
ply I.H. to E ′ to get Ψ† ; ∆†, c : A† ` Q† :: (d : D†). We then apply the ↑L rule to get
Ψ† ; ∆†, c : ↑A† ` send c shift ; Q† :: (d : D†) which is equivalent to Ψ† ; ∆†, c : (↑A)† `
(send c shift ; Q)† :: (d : D†).

We note that the ↓R and ↓L cases are similar.

Case ∃R

Ψ ` v : τ E ′ = Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c v ; P :: (c : ∃n:τ. A)
∃R

We want to show that Ψ† ; ∆† ` (send c v ; P )† :: (c : (∃n:τ. A)†). We apply I.H. to E ′

to get Ψ† ; ∆† ` P † :: (c : ([v/n]A)†) which is equivalent to Ψ† ; ∆† ` P † :: (c : [v/n]A†).
Let Ψ = Ψ1,Ψ2 where Ψ1 and Ψ2 consists of the irrelevant and relevant expressions respec-
tively. We then have Ψ1,Ψ2 ` v : τ . By irrelevance, Ψ2 ` v : τ . By definition of era-
sure, Ψ† = (Ψ1,Ψ2)† = Ψ†1,Ψ

†
2 = Ψ†2. Therefore, we have Ψ† ` v : τ . We then ap-

ply the ∃R rule to get Ψ† ; ∆† ` send c v ; P † :: (c : ∃n:τ. A†) which is equivalent to
Ψ† ; ∆† ` (send c v ; P )† :: (c : ∃n:τ. A)†.
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Case ∃L

E ′ = Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ. A ` n← recv c ; Q :: (d : D)
∃L

We want to show that Ψ† ; (∆, c : ∃n:τ. A)† ` (n ← recv c ; Q)† :: (d : D†). We
apply I.H. to E ′ to get Ψ†, n:τ ; ∆†, c : A† ` Q† :: (d : D†). We then apply the ∃L
rule to get Ψ† ; ∆†, c : ∃n:τ. A† ` n ← recv c ; Q† :: (d : D†) which is equivalent to
Ψ† ; ∆†, c : (∃n:τ. A)† ` (n← recv c ; Q)† :: (d : D†).

Case ∀R

E ′ = Ψ, n:τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` n← recv c ; P :: (c : ∀n:τ. A)
∀R

We want to show that Ψ† ; ∆† ` (n ← recv c ; P )† :: (c : (∀n:τ. A)†). We apply I.H. to E ′

to get Ψ†, n:τ ; ∆† ` P † :: (c : A†). We then apply the ∀R rule to get Ψ† ; ∆† ` n ← recv c ;
P † :: (c : ∀n:τ. A†) which is equivalent to Ψ† ; ∆† ` (n← recv c ; P )† :: (c : (∀n:τ. A)†).

Case ∀L

Ψ ` v : τ E ′ = Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n:τ. A ` send c v ; Q :: (d : D)
∀L

We want to show that Ψ† ; (∆, c : ∀n:τ. A)† ` (send c v ; Q† :: (d : D†). We
apply I.H. to E ′ to get Ψ† ; ∆†, c : ([v/n]A†) ` Q† :: (d : D) which is equivalent to
Ψ† ; ∆†, c : [v/n]A† ` Q† :: (d : D). Let Ψ = Ψ1,Ψ2 where Ψ1 and Ψ2 consists of the
irrelevant and relevant expressions respectively. We then have Ψ1,Ψ2 ` v : τ . By irrelevance,
Ψ2 ` v : τ . By definition of erasure, Ψ† = (Ψ1,Ψ2)† = Ψ†1,Ψ

†
2 = Ψ†2. Therefore, we have

Ψ† ` v : τ . We then apply the ∀L rule to get Ψ† ; ∆†, c : ∀n:τ. A† ` send c v ; Q† :: (d : D†)
which is equivalent to Ψ† ; ∆†, c : (∀n:τ. A)† ` (send c v ; Q)† :: (d : D†).

Case ∃R[]

Ψ⊕ ` v : τ E ′ = Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c [v] ; P :: (c : ∃n÷τ. A)
∃R[]

We want to show that Ψ† ; ∆† ` (send c [v] ; P )† :: (c : (∃n÷τ. A)†). We apply I.H. to E ′

to get Ψ† ; ∆† ` P † :: (c : ([v/n]A)†) which is equivalent to Ψ† ; ∆† ` P † :: (c : [v/n]A†).
By definition of erasure, because the promoted context Ψ⊕ cannot contain irrelevant expressions,
we have that (Ψ⊕)† = Ψ⊕. We then apply the ∃R rule to get Ψ† ; ∆† ` send c [v] ; P † :: (c :
∃n ÷ τ.A†). Let τ = 1, which gives us Ψ† ; ∆† ` send c [] ; P † :: (c : ∃n ÷ 1.A†) which is
equivalent to Ψ† ; ∆† ` (send c [v] ; P )† :: (c : (∃n÷τ. A)†).

Case ∃L[]
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E ′ = Ψ, n÷τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n÷τ. A ` [n]← recv c ; Q :: (d : D)
∃L[]

We want to show that Ψ† ; (∆, c : ∃n÷τ. A)† ` ([n] ← recv c ; Q)† :: (d : D†). We apply
I.H. to E ′ to get Ψ†, (n÷τ)† ; ∆†, c : A† ` Q† :: (d : D†) which is equivalent to Ψ† ; ∆†, c :
A† ` Q† :: (d : D†). We then apply the ∃L[] rule to get Ψ† ; ∆†, c : ∃n÷ τ.A† ` [n] ← recv c ;
Q† :: (d : D†). Let τ = 1, which gives us Ψ† ; ∆†, c : ∃n÷ 1.A† ` [] ← recv c ; Q† :: (d : D†)
which is equivalent to Ψ† ; ∆†, c : (∃n÷τ. A)† ` ([n]← recv c ; Q)† :: (d : D†).

Case ∀R[]

E ′ = Ψ, n÷τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` [n]← recv c ; P :: (c : ∀n÷τ. A)
∀R[]

We want to show that Ψ† ; ∆† ` ([n] ← recv c ; P )† :: (c : (∀n÷τ. A)†). We apply I.H.
to E ′ to get Ψ†, (n÷τ)† ; ∆† ` P † :: (c : A†) which is equivalent to Ψ† ; ∆† ` P † :: (c : A†).
We then apply the ∀R[] rule to get Ψ† ; ∆† ` [n] ← recv c ; P † :: (c : ∃n ÷ τ.A†). Let
τ = 1, which gives us Ψ† ; ∆† ` [] ← recv c ; P † :: (c : ∃n ÷ 1.A†) which is equivalent to
Ψ† ; ∆† ` ([n]← recv c ; P )† :: (c : (∀n÷τ. A)†).

Case ∀L[]

Ψ⊕ ` v : τ E ′ = Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n÷τ. A ` send c [v] ; Q :: (d : D)
∀L[]

We want to show that Ψ† ; (∆, c : ∀n÷τ. A)† ` (send c [v] ; Q)† :: (d : D†). We
apply I.H. to E ′ to get Ψ† ; ∆†, c : ([v/n]A)† ` Q† :: (d : D†) which is equivalent to
Ψ† ; ∆†, c : [v/n]A† ` Q† :: (d : D†). By definition of erasure, because the promoted
context Ψ⊕ cannot contain irrelevant expressions, we have that (Ψ⊕)† = Ψ⊕. We then apply
the ∀L[] rule to get Ψ† ; ∆†, c : ∀n ÷ τ.A† ` send c [v] ; Q† :: (d : D†). Let τ = 1,
which gives us Ψ† ; ∆†, c : ∀n ÷ 1.A† ` send c [] ; Q† :: (d : D†) which is equivalent to
Ψ† ; ∆†, c : (∀n÷τ. A)† ` (send c [v] ; Q)† :: (d : D†).

C.4 Irrelevant Erasure
Case id

Ψ, c÷ τ ; b : A ` a← b :: (a : A)
id

We want to show that (Ψ, c ÷ τ)†; (b : A)† ` (a ← b)† :: (a : A†). This is equiv-
alent to Ψ†; b : A† ` a ← b :: (a : A†). Let Ψ′ = Ψ† and A′ = A†. We then have
Ψ′, b : A′ ` a← b :: (a : A′).
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Case cut

E1 = Ψ, b÷ τ ; ∆ ` P :: (x : A) E2 = Ψ, b÷ τ ;x : A,∆′ ` Q :: (c : C)

Ψ, b÷ τ ; ∆,∆′ ` x : A← P ;Q :: (c : C)
cut

We have that Ψ⊕ ` v : τ . We want to show that (Ψ, b ÷ τ)†; (∆,∆′)† ` (x : A ← P ;Q)† ::
(c : C†). This is equivalent to Ψ†; ∆†,∆′† ` x : A† ← P †;Q† :: (c : C†). We first apply I.H. to
E1 to get E3 = (Ψ, b ÷ τ)†; ∆† ` P † :: (x : A†) = Ψ†; ∆† ` P † :: (x : A†). We then apply I.H.
to E2 to get E4 = (Ψ, b ÷ τ)†; (x : A,∆′)† ` Q† :: (c : C†) = Ψ†;x : A†,∆′† ` Q† :: (c : C†).
We then apply the cut rule to E3 and E4 to get Ψ†; ∆†,∆′† ` x : A† ← P †;Q† :: (c : C†).

Case ∃R

Ψ, b÷ τ ′ ` v : τ E ′ = Ψ, b÷ τ ′; ∆ ` P :: (c : [v/n]A)

Ψ, b÷ τ ′; ∆ ` send c v;P :: (c : ∃n : τ.A)
∃R

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ ′)†; ∆† ` send c v;P † :: (c :
(∃n : τ.A)†). This is equivalent to Ψ†; ∆† ` send c v;P † :: (c : ∃n : τ.A†). We first ap-
ply I.H. to E ′ to get E ′′ = (Ψ, b ÷ τ ′)†; ∆† ` P † :: (c : [v/n]A†) = Ψ†; ∆† ` P † :: (c :
[v/n]A†). We know that Ψ, b ÷ τ ′ ` v : τ . Let Ψ = Ψ1,Ψ2 where Ψ1 contains assumptions
of the form a : τ and Ψ2 contains assumptions of the form b ÷ τ ′. By definition of erasure,
Ψ† = (Ψ1,Ψ2)† = Ψ†1,Ψ

†
2 = Ψ†1. Because Ψ1 only contains relevant assumptions, we have that

Ψ1 = Ψ†1. By irrelevance, Ψ1 ` v : τ , which gives us Ψ† ` v : τ . We now apply the ∃R rule to
get Ψ†; ∆† ` send c v;P † :: (c : ∃n : τ.A†).

Case ∃L

E ′ = Ψ, b÷ τ ′, n : τ ; ∆, c : A ` Q :: (d : D)

Ψ, b÷ τ ′; ∆, c : ∃n : τ.A ` n← recv c;Q :: (d : D)
∃L

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ ′)†; (∆, c : ∃n : τ.A)† ` n ←
recv c;Q† :: (d : D†). This is equivalent to Ψ†; ∆†, c : ∃n : τ.A†)† ` n← recv c;Q† :: (d : D†).
We apply I.H. to E ′ to get E ′′ = (Ψ, b ÷ τ ′, n : τ)†; (∆, c : A)† ` Q† :: (d : D†) = Ψ†, n :
τ ; ∆†, c : A† ` Q† :: (d : D†). We now apply the ∃L rule to get Ψ†; ∆†, c : ∃n : τ.A† ` n ←
recv c;Q† :: (d : D).

Case ∀L

Ψ, b÷ τ ′ ` v : τ E ′ = Ψ, b÷ τ ′; ∆, c : [v/n]A ` Q :: (d : D)

Ψ, b÷ τ ′; ∆, c : ∀n : τ.A ` send c v;Q :: (d : D)
∀L

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ ′)†; ∆†, c : ∀n : τ.A† `
send c v;Q† :: (d : D†). This is equivalent to Ψ†; ∆†, c : ∀n : τ.A† ` send c v;Q† :: (d : D†). We
first apply I.H. to E ′ to get E ′′ = (Ψ, b ÷ τ ′)†; (∆, c : [v/n]A)† ` Q† :: (d : D†) = Ψ†; ∆†, c :
[v/n]A† ` Q† :: (d : D†). We know that Ψ, b ÷ τ ′ ` v : τ . Let Ψ = Ψ1,Ψ2 where Ψ1 contains
assumptions of the form a : τ and Ψ2 contains assumptions of the form b ÷ τ ′. By definition of
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erasure, Ψ† = (Ψ1,Ψ2)† = Ψ†1,Ψ
†
2 = Ψ†1. Because Ψ1 only contains relevant assumptions, we

have that Ψ1 = Ψ†1. By irrelevance, Ψ1 ` v : τ , which gives us Ψ† ` v : τ . We now apply the
∀L rule to get Ψ†; ∆†, c : ∀n : τ.A† ` Q† :: (d : D†).

Case ∀R

E ′ = Ψ, b÷ τ ′, n : τ ; ∆ ` P :: (c : A)

Ψ, b÷ τ ′; ∆ ` n← recv c;P :: (c : ∀n : τ.A)
∀R

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ ′)†; ∆† ` n ← recv c;P † :: (c :
(∀n : τ.A)†). This is equivalent to Ψ†; ∆† ` n ← recv c;P † :: (c : ∀n : τ.A†). We apply I.H. to
E ′ to get E ′′ = (Ψ, b÷ τ ′, n : τ)†; ∆† ` P † :: (c : A†) = Ψ†, n : τ ; ∆† ` P † :: (c : A†). We now
apply the ∀R rule to get Ψ†; ∆† ` n← recv c;P † :: (c : ∀n : τ.A†).

Case ∃R[]

(Ψ, b÷ τ ′)⊕ ` v : τ E ′ = Ψ, b÷ τ ′; ∆ ` P :: (c : [v/n]A)

Ψ, b÷ τ ′; ∆ ` send c [v];P :: (c : ∃n÷ τ.A)
∃R[]

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ ′)†; ∆† ` send c [v];P † :: (c :
(∃n ÷ τ.A)†). This is equivalent to Ψ†; ∆† ` send c [v];P † :: (c : ∃n ÷ τ.A†). We first apply
I.H. to E ′ to get E ′′ = (Ψ, b ÷ τ ′)†; ∆† ` P † :: (c : [v/n]A†) = Ψ†; ∆† ` P † :: (c : [v/n]A†).
We have (Ψ, b ÷ τ ′)⊕ ` v : τ . This is equivalent to Ψ⊕, b : τ ′ ` v : τ . We apply standard
substitution to get Ψ⊕ ` [w/b]v : [w/b]τ . By definiton, erasing a promoted context leaves the
promoted context unchanged, so (Ψ⊕)† = Ψ⊕. We then have (Ψ⊕)† ` [w/b]v : [w/b]τ . We now
apply the ∃R[] rule to get Ψ†; ∆† ` send c [[w/b]v];P † :: (c : ∃n÷ [w/b]τ.A†). Let v′ = [w/b]v
and τ ′′ = [w/b]τ . We then have Ψ†; ∆† ` send c [v′];P † :: (c : ∃n÷ τ ′′.A†).

Case ∃L[]

E ′ = Ψ, b÷ τ ′, n÷ τ ; ∆, c : A ` Q :: (d : D)

Ψ, b÷ τ ; ∆, c : ∃n÷ τ.A ` [n]← recv c;Q :: (d : D)
∃L[]

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ)†; (∆, c : ∃n ÷ τ.A)† ` [n] ←
recv c;Q† :: (d : D†). This is equivalent to Ψ†; ∆†, c : ∃n÷ τ.A† ` [n]← recv c;Q† :: (d : D†).
We apply I.H. to E” to get E” = (Ψ, b ÷ τ ′, n ÷ τ)†; (∆, c : A)† ` Q† :: (d : D†) =
Ψ†, n÷ τ ; ∆†, c : A† ` Q† :: (d : D†). We now apply the ∃L[] rule to get Ψ†; ∆†, c : ∃n÷ τ.A `
[n]← recv c;Q† :: (d : D†).

Case ∀L[]

(Ψ, b÷ τ ′)⊕ ` v : τ E ′ = Ψ, b÷ τ ′; ∆, c : [v/n]A ` Q :: (d : D)

Ψ, b÷ τ ′; ∆, c : ∀n÷ τ.A ` send c [v];Q :: (d : D)
∀L[]

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ ′)†; (∆, c : ∀n ÷ τ.A)† `
send c [v];Q† :: (d : D†). This is equivalent to Ψ†; ∆†, c : ∀n÷ τ.A† ` send c [v];Q† :: (d : D†).
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We first apply I.H. to E ′ to get E ′′ = (Ψ, b ÷ τ ′)†; (∆, c : [v/n]A)† ` Q† :: (d : D†) =
Ψ†; ∆†, c : [v/n]A† ` Q† :: (d : D†). We have (Ψ, b ÷ τ ′)⊕ ` v : τ . This is equivalent to
Ψ⊕, b : τ ′ ` v : τ . We apply standard substitution to get Ψ⊕ ` [w/b]v : [w/b]τ . By definiton,
erasing a promoted context leaves the promoted context unchanged, so (Ψ⊕)† = Ψ⊕. We then
have (Ψ⊕)† ` [w/b]v : [w/b]τ .

We now apply the ∀L[] rule to get Ψ†; ∆†, c : ∀n÷[w/b]τ.A† ` send c [[w/b]v];Q† :: (d : D†).
Let v′ = [w/b]v and τ ′′ = [w/b]τ . We then have Ψ†; ∆†, c : ∀n ÷ τ ′′.A† ` send c [v];Q′† :: (d :
D†).

Case ∀R[]

E ′ = Ψ, b÷ τ ′, n÷ τ ; ∆ ` P :: (c : A)

Ψ, b÷ τ ′; ∆ ` [n]← recv c;P :: (c : ∀n÷ τ.A)
∀R[]

We have that Ψ⊕ ` w : τ ′. We want to show that (Ψ, b ÷ τ ′)†; ∆† ` [n] ← recv c;P † :: (c :
(∀n÷ τ.A)†). This is equivalent to Ψ†; ∆† ` [n]← recv c;P † :: (c : ∀n÷ τ.A†). We apply I.H.
to E ′ to get E ′′ = (Ψ, b÷ τ ′, n÷ τ)†; ∆† ` P † :: (c : A†) = Ψ†, n÷ τ ; ∆† ` P † :: (c : A†). We
then apply the ∀R[] to get Ψ†; ∆† ` [n]← recv c;P † :: (c : ∀n÷ τ.A†).

C.5 Erasure Preservation
Case forall s[]

1. We have proc(d, send ci [v] ; Q) −→ msg(c+
i , send ci [v] ; c+

i ← ci), proc(d, [c+
i /ci]Q).

LetC = proc(d, send ci [v] ; Q) andC ′ = msg(c+
i , send ci [v] ; c+

i ← ci), proc(d, [c+
i /ci]Q).

Let C ′′ = msg(c+
i , send ci [] ; c+

i ← ci), proc(d, [c+
i /ci]Q

†). We need to show that C† →
C ′′ and (C ′)† = C ′′. We have that C† = proc(d, send ci [v] ; Q)† = proc(d, send ci [] ;
Q†). By the forall s[] rule, proc(d, send ci [] ; Q†) −→ msg(c+

i , send ci [] ; c+
i ←

ci), proc(d, [c+
i /ci]Q

†), which gives usC† → C ′′. We have that (C ′)† = (msg(c+
i , send ci; [v];

c+
i ← ci), proc(d, [c+

i /ci]Q))† = (msg(c+
i , send ci; [v]; c+

i ← ci))
†, (proc(d, [c+

i /ci]Q))† =
msg(c+

i , (send ci [v]; c+
i ← ci)

†), proc(d, [c+
i /ci]Q

†) = msg(c+
i , send ci [] ; c+

i ← ci),
proc(d, [c+

i /ci]Q
†) = C ′′.

2. We have (proc(d, send ci [v] ; Q))† −→ (msg(c+
i , send ci [v] ; c+

i ← ci), proc(d, [c+
i /ci]Q))†.

Let C† = (proc(d, send ci [v] ; Q))† = proc(d, send ci [] ; Q†) and (C ′)† =
(msg(c+

i , sendci; [v] ; c+
i ← ci), proc(d, [c+

i /ci]Q))† = (msg(c+
i , send ci [v] ; c+

i ←
ci))

†, (proc(d, [c+
i /ci]Q))† = msg(c+

i , (send ci [v] ; c+
i ← ci)

†), proc(d, [c+
i /ci]Q

†) =
msg(c+

i , send ci [] ; c+
i ← ci), proc(d, [c+

i /ci]Q
†). Let C ′′ = msg(c+

i , send ci [v] ;
c+
i ← ci), proc(d, [c+

i /ci]Q). We need to show that C → C ′′ and C ′ = C ′′. We have
that C = proc(d, send ci [v] ; Q). By the forall s[] rule, proc(d, send ci [v] ; Q) −→
msg(c+

i , send ci [v] ; c+
i ← ci), proc(d, [c+

i /ci]Q), which gives us C → C ′′. We have that
C ′ = msg(c+

i , send ci [v] ; c+
i ← ci), proc(d, [c+

i /ci]Q) = C ′′.
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Case forall r[]

1. We have proc(ci, [n]← recv ci ; P ),msg(c+
i , send ci [v] ; c+

i ← ci) −→
proc(c+

i , [c
+
i /ci][v/n]P ). Let C = proc(ci, [n] ← recv ci ; P ),msg(c+

i , send ci [v] ;
c+
i ← ci) and C ′ = proc(c+

i , [c
+
i /ci][v/n]P ). Let C ′′ = proc(c+

i , [c
+
i /ci]P

†). We need
to show that C† → C ′′ and (C ′)† = C ′′. We have that C† = (proc(ci, [n] ← recv ci ;
P ),msg(c+

i , send ci [v] ; c+
i ← ci))

† = (proc(ci, [n]← recv ci ; P ))†, (msg(c+
i , send ci [v] ;

c+
i ← ci))

† = proc(ci, [] ← recv ci ; P †),msg(c+
i , send ci [] ; c+

i ← ci). By the forall r[]

rule, proc(ci, [] ← recv ci ; P †),msg(c+
i , send ci [] ; c+

i ← ci) −→ proc(c+
i , [c

+
i /ci]P ),

which gives us C† → C ′′. We have that (C ′)† = (proc(c+
i , [c

+
i /ci][v/n]P ))† =

proc(c+
i , [c

+
i /ci]([v/n]P )†). We have Ψ†; [c+

i /ci]([v/n]∆)† ` [c+
i /ci]([v/n]P )† :: (c+

i :
([v/n]A)†). Because ·; Ψ; Ω 
 C, we have ·; Ψ; Ω 
 proc(ci, [n] ← recv ci ; P ) and
·; Ψ; Ω 
 msg(c+

i , send ci [v] ; c+
i ← ci). Therefore, Ψ; ∆ ` [n] ← recv ci ; P :: (ci :

∀n ÷ τ.A) and Ψ; ∆ ` send ci [v] ; c+
i ← ci :: (c+

i : [v/n]A). By inversion of the
∀R[] and ∀L[] typing rules, we have Ψ, n ÷ τ ; ∆ ` P :: (ci : A) and Ψ⊕ ` v : τ . By
the Irrelevant Erasure lemma, Ψ†; ∆† ` P † :: (ci : A†). Substituting c+

i for ci, we get
Ψ†; [c+

i /ci]∆
† ` [c+

i /ci]P
† :: (c+

i : A†). We then have Ψ†; [c+
i /ci]∆ 
 proc(c+

i , [c
+
i /ci]P

†)
which is equivalent to C ′′.

2. We have (proc(ci, [n]← recv ci ; P ),msg(c+
i , send ci [v] ; c+

i ← ci))
† −→

(proc(c+
i , [c

+
i /ci][v/n]P ))†. Let C† = (proc(ci, [n] ← recv ci ; P ),msg(c+

i , send ci [v] ;
c+
i ← ci))

† = (proc(ci, [n] ← recv ci ; P ))†, (msg(c+
i , send ci [v] ; c+

i ← ci))
† =

proc(ci, []← recv ci ; P †),msg(c+
i , send ci [] ; c+

i ← ci) and (C ′)† =
(proc(c+

i , [c
+
i /ci][v/n]P ))†. Let C ′′ = proc(c+

i , [c
+
i /ci][v/n]P ). We need to show that

C → C ′′ andC ′ = C ′′. We have thatC = proc(ci, [n]← recv ci ; P ),msg(c+
i , send ci [v] ;

c+
i ← ci). By the forall r[] rule, proc(ci, [n] ← recv ci ; P ),msg(c+

i , send ci [v] ;
c+
i ← ci) −→ proc(c+

i , [c
+
i /ci][v/n]P ), which gives us C → C ′′. We have that C ′ =

proc(c+
i , [c

+
i /ci][v/n]P ) = C ′′.

Case exists s[]

1. We have proc(ci, send ci [v] ; P ) −→ proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci [v] ; ci ← c+

i ).
Let C = proc(ci, send ci [v] ; P ) and C ′ = msg(ci, send ci [v] ; ci ← c+

i ). Let
C = proc(ci, send ci [v] ; P ). Let C ′′ = proc(c+

i , [c
+
i /ci]P

†),msg(ci, send ci [] ; ci ← c+
i ).

We need to show that C† → C ′′ and (C ′)† = C ′′. We have that C† = (proc(ci, send ci [v] ;
P ))† = proc(ci, send ci [] ; P †). By the exists s[] rule, proc(ci, send ci [] ; P †) −→
proc(c+

i , [c
+
i /ci]P

†),msg(ci, send ci [] ; ci ← c+
i ), which gives us C† → C ′′. We have that

(C ′)† = (proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci [v] ; ci ← c+

i ))† = (proc(c+
i , [c

+
i /ci]P ))†,

(msg(ci, send ci [v] ; ci ← c+
i ))† = proc(c+

i , [c
+
i /ci]P

†),msg(ci, (send ci [v] ; ci ←
c+
i )†) = proc(c+

i , [c
+
i /ci]P

†),msg(ci, send ci [] ; ci ← c+
i ) = C ′′.

2. We have (proc(ci, send ci [v] ; P ))† −→ (proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci [v] ;

ci ← c+
i ))†. Let C† = (proc(ci, send ci [v] ; P ))† = proc(ci, send ci [v] ; P †) and

(C ′)† = (proc(c+
i , [c

+
i /ci]P ),msg(ci, send ci [v] ; ci ← c+

i ))† = (proc(c+
i , [c

+
i /ci]P ))†,

(msg(ci, send ci [v] ; ci ← c+
i ))† = proc(c+

i , [c
+
i /ci]P

†),msg(ci, (send ci [v] ; ci ←
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c+
i )†) = proc(c+

i , [c
+
i /ci]P

†),msg(ci, send ci [] ; ci ← c+
i ). Let C ′′ = proc(c+

i , [c
+
i /ci]P ),

msg(ci, send ci [v] ; ci ← c+
i ). We need to show that C → C ′′ and C ′ = C ′′. We have

that C = proc(ci, send ci [v] ; P ). By the exists s[] rule, proc(ci, send ci [v] ; P ) −→
proc(c+

i , [c
+
i /ci]P ),msg(ci, send ci [v] ; ci ← c+

i ), which gives us C → C ′′. We have that
C ′ = proc(c+

i , [c
+
i /ci]P ),msg(ci, send ci [v] ; ci ← c+

i ) = C ′′.

Case exists r[]

1. We have msg(ci, send ci [v] ; ci ← c+
i ), proc(d, [n]← recv ci ; Q) −→

proc(d, [c+
i /ci][v/n]Q). Let C = msg(ci, send ci [v] ; ci ← c+

i ), proc(d, [n]← recv ci ; Q)
and C ′ = proc(d, [c+

i /ci][v/n]Q). Let C ′′ = proc(d, [c+
i /ci]Q

†). We need to show
that C† → C ′′ and (C ′)† = C ′′. We have that C† = (msg(ci, send ci [v] ; ci ←
c+
i ), proc(d, [n] ← recv ci ; Q))† = (msg(ci, send ci [v] ; ci ← c+

i ))†, (proc(d, [n] ←
recv ci ; Q))† = msg(ci, send ci [] ; ci ← c+

i ), proc(d, [] ← recv ci ; Q†). By the exists r[]

rule, msg(ci, send ci [] ; ci ← c+
i ), proc(d, []← recv ci ; Q) −→ proc(d, [c+

i /ci]Q), which
gives us C† → C ′′. We have that (C ′)† = (proc(d, [c+

i /ci][v/n]Q))† =
proc(d, [c+

i /ci]([v/n]Q)†). We have Ψ†; [c+
i /ci]([v/n]∆)† ` [c+

i /ci]([v/n]Q)† :: (d :
([v/n]D)†). Because ·; Ψ; Ω 
 C, we have ·; Ψ; Ω 
 proc(d, [n] ← recv ci ; Q) and
·; Ψ; Ω 
 msg(ci, send ci [v] ; ci ← c+

i ). Therefore, Ψ; ∆, c : ∃n ÷ τ.A ` [n] ←
recv ci ; Q :: (d : D) and Ψ; ∆ ` send ci [v] ; ci ← c+

i :: (ci : [v/n]A). By inver-
sion of the ∃L[] and ∃R[] typing rules, we have Ψ, n ÷ τ ; ∆, ci : A ` Q :: (d : D) and
Ψ⊕ ` v : τ . By the Irrelevant Erasure lemma, Ψ†; ∆†, ci : A† ` Q† :: (d : D†). Sub-
stituting c+

i for ci, we get Ψ†; [c+
i /ci]∆

†, c+
i : A† ` [c+

i /ci]Q
† :: (d : D†). We then have

Ψ†; [c+
i /ci]∆, c

+
i : A† 
 proc(c+

i , [c
+
i /ci]Q

†) which is equivalent to C ′′.

2. We have (msg(ci, send ci [v] ; ci ← c+
i ), proc(d, [n]← recv ci ; Q))†

−→ (proc(d, [c+
i /ci][v/n]Q))†. Let C† = (msg(ci, send ci [v] ; ci ← c+

i ), proc(d, [n] ←
recv ci ; Q))† = (msg(ci, send ci [v] ; ci ← c+

i ))†, (proc(d, [n] ← recv ci ; Q))† =
msg(ci, send ci [] ; ci ← c+

i ), proc(d, []← recv ci ; Q†) and (C ′)† =
(proc(d, [c+

i /ci][v/n]Q))†. Let C ′′ = proc(d, [c+
i /ci][v/n]Q). We need to show that C →

C ′′ and C ′ = C ′′. We have that C = msg(ci, send ci [v] ; ci ← c+
i ), proc(d, [n] ←

recv ci ; Q). By the exists r[] rule, msg(ci, send ci [v] ; ci ← c+
i ), proc(d, [n] ←

recv ci ; Q) −→ proc(d, [c+
i /ci][v/n]Q), which gives us C → C ′′. We have that

C ′ = proc(d, [c+
i /ci][v/n]Q) = C ′′.
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