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Abstract

The theory of approximation algorithms has had great success with combinatorial opti-
mization, where it is known that for a variety of problems, algorithms based on semidef-
inite programming are optimal under the unique games conjecture. In contrast, the ap-
proximability of most continuous optimization problems remains unresolved.

In this thesis we aim to extend the theory of approximation algorithms to a wide class
of continuous optimization problems captured by the injective tensor norm framework.
Given an order-d tensor T, and symmetric convex sets Cy, . .. Cy, the injective tensor norm
of T is defined as

sup (T, x! @ --- @ x%),

x'eC;
Injective tensor norm has manifestations across several branches of computer science,
optimization and analysis. To list some examples, it has connections to maximum singu-
lar value, max-cut, Grothendieck’s inequality, non-commutative Grothendieck inequality,
quantum information theory, k-XOR, refuting random constraint satisfaction problems,
tensor PCA, densest-k-subgraph, and small set expansion. So a general theory of its ap-
proximability promises to be of broad scope and applicability.

We study various important special cases of the problem (through the lens of convex
optimization and the sum of squares (S0S) hierarchy) and obtain the following results:

- We obtain the first NP-hardness of approximation results for hypercontractive norms.
Specifically, we prove inapproximability results for computing the p — g operator
norm (which is a special case of injective norm involving two convex sets) when
p <gand2 ¢ [p,q|. Towards the goal of obtaining strong inapproximability results
for2 — gnorm when g > 2, we give random label cover (for which polynomial level
SoS gaps are available) based hardness results for mixed norms, i.e., 2 — £4(¢,/) for
some 2 < g,q' < oo.

- We obtain improved approximation algorithms for computing the p — g operator
norm when p > 2 > g.

- We introduce the technique of weak decoupling inequalities and use it to analyze
the integrality gap of the SoS hierarchy for the maxima of various classes of polyno-
mials over the sphere, namely arbitrary polynomials, polynomials with non-negative
coefficients and sparse polynomials. We believe this technique is broadly applicable
and could find use beyond optimization over the sphere.

We also study how well higher levels of SoS approximate the maximum of a random
polynomial over the sphere ([RRS16] concurrently obtained a similar result).
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Chapter 1

Introduction

In this thesis we will be concerned with the computational approximability of the injective
tensor norm which given an order-d tensor T, and finite dimensional symmetric convex
sets (i.e., x € C<+= —x € () (Cyq,...C;is defined as

HT”Cl,Cd = Sup <T,xl ® e ® xd> .
xiEC,'

To be precise, we are interested in the existence (and inexistence) of approximation algo-
rithms with runtime polynomial in the dimension of each convex set C;.

The injective tensor norm is very expressive and has a multitude of manifestations
across branches of computer science, optimization, mathematics and physics. Many of
the questions of interest surrounding these special cases are related to its approximability
and inapproximability. To demonstrate this as well as to familiarize the reader with the
object, we list some special cases below

Maximum Singular Value. C; = Ball(¢}'), C, = Ball(4}).
This case corresponds to the maximum singular value of an m x n matrix which is
well known to be exactly computable.

Max Column Norm. C; = Ball(¢}}), C; = Ball(£7).
This corresponds to the maximum £+ norm of a column of an m x n matrix — again
exactly computable.

Grothendieck Inequality. C; = Ball(¢%), C, = Ball(/%).

Grothendieck’s famous inequality implies that the natural SDP relaxation for maxi-
mizing yT A x where y € (", x € (", yields a constant factor approximation to this
problem. This inequality has had a major impact on Banach space theory, computer
science and quantum mechanics. See [Pis12, Pis86], [KN11], [LST09] for surveys
on its applications to Banach space theory, combinatorial optimization and commu-
nication complexity respectively. Determining the precise value of Grothendieck’s
constant remains an outstanding open problem.



Max-Cut. C; = Ball(¢,), C, = Ball(¢Z), T Laplacian.
Maximizing the bilinear form of the Laplacian matrix of a graph on n vertices over
Ball(¢s) can be shown to be equivalent to the well studied combinatorial opti-
mization problem of finding the maximum sized cut in a graph. Goemans and
Williamson’s [GW95] .878 ... approximation algorithm for this problem popular-
ized the random hyperplane rounding algorithm and has since transformed the
tield of approximation algorithms.

Hypercontractive Norms. C; = Ball(£}'), C; = Ball(£}), p < g".

This corresponds to the operator norm of a linear operator mapping £}, to £7:. When
p < q* this is referred to as a Hypercontractive norm and is well studied in various
fields. It has connections to log-Sobolev inequalities [Gro14], certifying bounds on
small-set expansion [BBH"12] and soundness proofs in Hardness of Approxima-
tion. While hypercontractive norms are unlikely to be computationally tractable
(even O(1) approximations), establishing NP-Hardness of O(1)-approximating hy-
percontractive norms (and related promise versions) would have important impli-
cations in quantum information theory and may also shed light on some important
questions in hardness of approximation.

Non-Commutative Grothendieck Inequality. C; = Ball(Sz! "), C, = Ball(Sg2 ™).
Naor, Regev and Vidick [NRV13] made algorithmic Haagerup’s [Haa85] sharp ver-
sion of the non-commutative Grothendieck inequality (first established by Pisier [Pis78])
and used this to give approximation algorithms for robust principal component
analysis and a generalization of the orthogonal procrustes problem. Regev and
Vidick [RV15] showed how it can be used to bound the power of entanglement in
quantum XOR games.

Homogeneous Polynomial Optimization C; = --- = Cj.
It can be shown for symmetric tensors T that the injective norm is within a 20(4)
factor of maxycc, [(T, x®7)|. Therefore injective tensor norm is closely related to the
problem of maximizing (the magnitude) of a homogeneous degree-d polynomial
over a convex set. the expected suprema of a random homogeneous polynomial
over convex sets like the sphere and hypercube have been extensively studied in
the statistical physics community [ACT17].

Optimization over the hypercube. C; = ... C; = Ball(/%).
Here we note a connection to the fundamental constraint satisfaction problem XOR.
For any instance of d-XOR with m constraints there is a homogeneous multilinear
polynomial p with m non-zero monomials and degree-d such that the number of
constraints satisfied by an assignment x € {£1}" is precisely m /2 + p(x). Therefore
maximizing |p(x)| over {£1}" is precisely max{SAT(x), UNSAT(x)} — m/2 where
SAT(x) (resp. UNSAT(x)) denotes the number of satisfied (resp. unsatisfied) d-XOR
constraints. Thus injective norm can give an upper bound on the satisfiability of a
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d-XOR instance and indeed many refutation algorithms (predominantly for random
constraint satisfaction problems) exploit this connection.

Optimization over the sphere. C; = ...C; = Ball(/}).

Ford > 3, this is a generalization of the spectral norm of a matrix. A certain promise
variant of the problem is closely related to the quantum separability problem and
consequently its approximability has connections to long standing open problems
in quantum information theory. Optimization over the sphere also has connections
to hypercontractivity and small-set expansion via 2 — g norms, as well as to ten-
sor principal component analysis and tensor decomposition [BKS15, GM15, MR14,
HSS15]. The best approximation factor known for this case is polynomial in 7. It is
also very interesting from the perspective of inapproximability as it appears related
to fundamental barriers in the theory of hardness of approximation and perhaps to
inapproximability results of constraint satisfaction problems with very high density
(a density at which random instances fail to be hard).

Optimization over ¢;. C; = ...C; = Ball(¢]).

{1-optimization is closely related to optimization over the simplex and admits a
PTAS for fixed d. Approximation algorithms for simplex optimization have been
studied extensively in the optimization community [DK08] and have applications
to portfolio optimization, game theory and population dynamics.

So in addition to being a mathematically intriguing pursuit, a characterization of the ap-
proximability of injective tensor norm promises to be of broad scope and applicability. It
is then natural to ask the following questions:

Question.

1.
2.

How does the approximability depend on the geometry of Cy,...,Cy?

Can we determine the form of the best approximation factor (achieved by algorithms with poly-
nomial runtime) as a function of Cy,...,C4?

What do the optimal approximation algorithms look like?

What does the approximation/runtime tradeoff look like?

It is humbling how far this goal is from being achieved and there are yet many hurdles

to cross before we can hope for a complete answer to these questions. There is a good
deal of evidence in the combinatorial optimization community that convex programming
relaxations and the sum of squares hierarchy are closely related to answering questions
3 and 4 respectively. We give a brief summary of convex programming and the sum of
squares hierarchy in the next two sections.



1.1 Convex Programming Relaxations

An important paradigm from optimization theory is that a convex function f can be effi-
ciently minimized over a compact convex set K given access to an oracle for f and a mem-
bership oracle oracle for K (under some additional technical conditions — see [GLS12] for
a precise version of this statement ).

A popular approach to approximating the optimum of NP-Hard problems is to re-
lax the domain being optimized over to a convex domain; thus making the optimization
problem tractable. As an example, given a 0/1 integer program, one possible relaxation
is to allow values to now be real numbers in the interval [0, 1] or perhaps even vectors
(as is the case in semidefinite programming (SDP) relaxations). Surprisingly, for an over-
whelming majority of combinatorial optimization problems this method has produced
the best known polynomial time approximation algorithms. In fact a beautiful result of
Raghavendra [Rag08] establishes that assuming the unique games conjecture, a certain
semidefinite programming relaxation is the optimal polynomial time approximation al-
gorithm for a very wide class of problems known as constraint satisfaction problems.
Similar theorems are known for Grothendieck’s inequality [RS09] and strict constraint
satisfaction problems [KMTV11] (which include many covering-packing problems like
vertex cover).

This phenomenon suggests that similar statements might hold for continuous opti-
mization problems and more general convex programming relaxations than SDPs. How-
ever, the only such result (i.e. matching approximation and hardness factors) we are
aware of is [GRSW16] who established this for /,-subspace approximation and the prob-
lem of computing SUP| ||, <1 xTAx for p > 2. It would be very interesting to establish

such convex programming optimality statements for injective tensor norms.

1.2 Sum of Squares Hierarchy

Relaxation hierarchies are procedures to obtain a hierarchy of convex relaxations. The
convex relaxation obtained at each new level is stronger than that of the previous level
at the cost of being larger in size. In a typical hierarchy, the g-th level relaxation has size
n©W@. The first such hierarchy was given by Sherali and Adams [SA90] followed by Lo-
vasz and Schrijver [LS91], both based on linear programming. The sum of squares (SoS)
hierarchy is the strongest known convex programming hierarchy and there is consider-
able evidence in support of it achieving the right runtime vs. approximation trade-off for
constraint satisfaction problems. Since CSPs are closely related to polynomial optimiza-
tion over the hypercube it is reasonable to wonder if SoS might be the right hierarchy of
approximation algorithms for polynomial optimization over other convex sets — for in-
stance the sphere. Indeed, the SoS hierarchy of relaxations is defined precisely for the set
of polynomial optimization problems and so is one natural candidate for studying poly-
nomial optimization over convex sets that can be represented by polynomial constraints.
The SoS hierarchy also captures (upto a logarithm in the exponent of the runtime) all
known algorithmic results related to the HSEP problem from quantum information the-
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ory which can be viewed as a problem of obtaining additive approximations for degree-4
polynomial optimization over the sphere. The SoS hierarchy has also inspired new results
in tensor decomposition/PCA for random tensors which are closely related to polynomial
optimization over the sphere.

For these reasons and more, we will study the SoS hierarchy of relaxations for injec-
tive tensor norm (in the cases where it is well defined) as a means to predict the runtime
approximation tradeoff and as evidence of intractability in cases where hardness of ap-
proximation results are difficult to obtain.

1.3 Brief Summary of Contributions

We next give a brief summary of the contributions of this thesis. A reader interested in
perusing the document may skip this section and proceed to Chapter 2 and Chapter 10
where all results, related work and the relevant background are covered in detail.

- In Chapter 4 we obtain the first NP-hardness of approximation results for hypercontrac-
tive norms. Specifically, we prove inapproximability results for computing the p — g
operator norm when p < gand 2 ¢ [p,q].

- In Chapter 6 Towards the goal of obtaining strong inapproximability results for 2 — ¢
norm when g > 2, we give random label cover (for which polynomial level SoS gaps
are available) based hardness results for mixed norms, i.e., 2 — Kq(fq/) for some 2 <
q,9 < co.

- In Chapter 5 we obtain improved approximation algorithms for computing the p — ¢
operator norm when p > 2 > g.

- In Chapter 8 we introduce the technique of weak decoupling inequalities and use it to
analyze the integrality gap of the SoS hierarchy for the maxima of various classes of
polynomials over the sphere, namely arbitrary polynomials (improves on a result of
Doherty and Wehner [DW12] for ¢ < n), polynomials with non-negative coefficients
and sparse polynomials.

- In Chapter 8 we also prove in the context of optimization over the sphere that “robust”
integrality gaps for lower levels of a certain hierarchy of convex programs can be lifted
to give higher level integrality gaps. This hierarchy is closely related to the SoS hier-
archy but is possibly weaker. We hope that this method can find applications in other
settings and perhaps even be shown to work in the context of the SoS hierarchy.

- In Chapter 9 we show an upper bound on the integrality gap of q levels of SoS on
polynomials with random coefficients!. An interesting consequence of our result is that
random/spiked-random instances cannot provide super-polylog level SoS gaps for the
quantum Best Separable State problem.

'[RRS16] concurrently obtained slightly weaker bounds. However their bounds apply for the more
general model of random polynomials with a sparsity parameter.
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1.4 Chapter Credits

Chapter 4, Chapter 5, and Chapter 8 are based on joint works [BGG"18a, BGG"18b,
BGG™17] respectively, with Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee
and Madhur Tulsiani. Chapter 6 is based on unpublished joint work with the same au-
thors.

Chapter 9 is based on the joint work [BGL16] with Venkatesan Guruswami and Eui-
woong Lee.

1.5 Organization

We first provide a detailed exposition of our results in Chapter 2.

The rest of the document is then divided into two parts. The first part consists of
results for the degree-2 case. It begins with the necessary normed space preliminaries
(Chapter 3) which is followed by Chapter 4, Chapter 5, and Chapter 6 containing our
results for operator norms.

The second part consists of results for degree-3 and beyond over the sphere. It be-
gins with an SoS preliminaries chapter (Chapter 7) which is followed by our results for
optimization over the sphere in Chapters 8 and 9.

Finally, in Chapter 10 we discuss the approximability landscape in full generality and
also conclude with future directions and open problems.



Chapter 2

Detailed Results

In this chapter we specialize our discussion to the case of £, norms — an instructive case
which itself involves multiple non-trivial results and also forms the mould for our con-
jectures in the more general case. We discuss the case of general norms in Chapter 10.

21 /¢, — {; Operator Norms

Consider the problem of finding the £,—{; norm of a given matrix A € R"*" which is
defined as
|Allp—q :== max w.
P xern(oy Il

The quantity || Al|,—4 is a natural generalization of the well-studied spectral norm, which
corresponds to the case p = g = 2. For general p and g, this quantity computes the
maximum distortion (stretch) of the operator A from the normed space £}, to £5".

The case when p = o and q = 1 relates to the well known Grothendieck inequal-
ity [KN12, Pis12], where the goal is to maximize (y, Ax) subject to ||x]|co, [|[V]|e0 < 1. In
fact, via simple duality arguments, the general problem computing ||A|,—4 can be seen

to be equivalent to the following bilinear maximization problem (and to || AT ||+ ,+)
T
[Allp—q = max (y,Ax) = [[A"|g—p,
[x[[p<1
[yllgx <1

where p*, g* denote the dual norms of p and g, satisfying1/p+1/p* =1/q+1/9" = 1.

In Chapter 4 and Chapter 5 we study in detail, the algorithmic and complexity aspects
of £,—{; norm. While this may seem either esoteric or narrow in scope, it turns out
that resolving the £,— ¢, norm case is likely to have broad implications for the goal of
characterizing the norms that admit constant factor approximations. A celebrated result
of Maurey and Pisier states that every infinite dimensional Banach space X contains (1 +
g)-isomorphs of K’;X and KSX where px (resp. gx) is the modulus of Type (resp. Cotype)
of X. Indeed combining finitary quantitative analogues of this result with the hardness
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of certain £,— ¢; norm norms derived in Chapter 4 yields inappproximability results for
a broad class of norm sequences over IR". In addition to this, the £, case is connected to
well studied problems in other areas. We next describe these connections, prior work,
and our results in this context.

2.1.1 Hypercontractive norms, Small-Set Expansion, and Hardness.

p — q operator norms when p < g are collectively referred to as hypercontractive norms,
and have a special significance to the analysis of random walks, expansion and related
problems in hardness of approximation [Bis11, BBH"12]. The problem of computing
| A|l2—4 is also known to be equivalent to determining the maximum acceptance proba-
bility of a quantum protocol with multiple unentangled provers, and is related to several
problems in quantum information theory [HM13, BH15].

Bounds on hypercontractive norms of operators are also used to prove expansion of
small sets in graphs. Indeed, if f is the indicator function of set S of measure ¢ in a graph
with adjacency matrix A, then we have that for any p < g,

AR o Wl lAf
°O) =1 2t

> 1= || Allpsq - 817710,

It was proved by Barak et al. [BBH " 12] that the above connection to small-set expansion
can in fact be made two-sided for a special case of the 2— ¢ norm. They proved that to
resolve the promise version of the small-set expansion (SSE) problem, it suffices to distin-
guish the cases || A2, < ¢ Omin and [|Al[2—,5 > C - Opmin, where opyip is the least non-zero
singular value of A and C > ¢ > 1 are appropriately chosen constants based on the pa-
rameters of the SSE problem. Thus, the approximability of 2—g norm is closely related to
the small-set expansion problem. In particular, proving NP-hardness of approximating
2—g norm is (necessarily) an intermediate goal towards proving the Small-Set Expansion
Hypothesis of Raghavendra and Steurer [RS10].

However, relatively few algorithmic and hardness results are known for approxi-
mating hypercontractive norms. A result of Steinberg’s [Ste05] gives an upper bound

of O(max {m,n}*’1?®) on the approximation factor, for all p,q. For the case of 2—q
norm (for any q > 2), Barak et al. [BBH"12] give an approximation algorithm for the
promise version of the problem described above, running in time exp (O(n?/4)). They
also provide an additive approximation algorithm for 2—4 norm (where the error de-
pends on the 2—2 norm and 2—oco0 norm of A), which was extended to the 2—g norm
by Harrow and Montanaro [HM13]. Barak et al. also prove NP-hardness of approximat-
ing || A||2—4 within a factor of 1 4+ O(1/1°()), and hardness of approximating better than
exp O((log n)1/27¢) in quasi-polynomial time, assuming the Exponential Time Hypothe-
sis (ETH). This reduction was also used by Harrow, Natarajan and Wu [HNW16] to prove
that O(logn) levels of the Sum-of-Squares SDP hierarchy cannot approximate ||A|2_4
within any constant factor.



It is natural to ask if the bottleneck in proving (constant factor) hardness of approx-
imation for 2—g norm arises from the fact from the nature of the domain (the ¢, ball)
or from hypercontractive nature of the objective. As discussed in Section 9.5, all hyper-
contractive norms present a barrier for gadget reductions, since if a “true” solution x is
meant to encode the assignment to a (say) label cover problem with consistency checked
via local gadgets, then (for g > p), a “cheating solution” may make the value of ||Ax||,
very large by using a sparse x which does not carry any meaningful information about
the underlying label cover problem.

We show that (somewhat surprisingly) it is indeed possible to overcome the barrier
for gadget reductions for hypercontractive norms, when 2 < p < g (and by duality, for
any p < q < 2). This gives the first NP-hardness of approximation result for hyper-
contractive norms (under randomized reductions). Assuming ETH, this also rules out a

constant factor approximation algorithm that runs in 2"’ for some & := 5(p,q).

Theorem. For any p,qsuchthat1 < p < g <2o0r2 < p < g < ccand e > 0, there is no
polynomial time algorithm that approximates the p—rq norm of an n X n matrix within a factor

21081 ypless NP C BPTIME <2(105 ”)O(l)>. When q is an even integer, the same inapproxima-
bility result holds unless NP C DTIME <2(1°g ”)O(l)>

We also note that the operator A arising in our reduction satisfies oin(A) ~ 1 (and is
in fact a product of a carefully chosen projection and a scaled random Gaussian matrix).
For such an A, we prove the hardness of distinguishing ||Al|,~; < c and [|Al[,~3 > C,
for constants C > ¢ > 1. For the corresponding problem in the case of 2—g norm, Barak
et al. [BBH'12] gave a subexponential algorithm running in time exp (O(n2/1)) (which
works for every C > ¢ > 1). On the other hand, since the running time of our reduction is
n°W, we get that assuming ETH, no algorithm can distinguish the above cases for p—¢q

norm in time exp (n"(l/q)>, forany p < gwhen2 ¢ [p,q].

While the above results give some possible reductions for working with hypercon-
tractive norms, it remains an interesting problem to understand the role of the domain
as a barrier to proving hardness results for the 2—g norm problems. In fact, no hardness
results are available even for the more general problem of polynomial optimization over
the ¢, ball. We view the above theorem as providing some evidence that while hypercon-
tractive norms have been studied as a single class so far, the case when 2 € [p, q] may be
qualitatively different (with respect to techniques) from the case when 2 ¢ [p,g|. This is
indeed known to be true in the non-hypercontractive case with p > g. In fact, our results
are obtained via new hardness results for the case p > g, which we describe in a later
subsection.

Towards 2 — g Hardness. Strong inapproximability (SoS gaps or NP-hardness) results
for the hypercontractive 2 — g case remain elusive. Towards this goal, we consider the
class of 2 — X operator norms for exactly 2-convex norms X (see Section 3.6 for a def-
inition). This class of contains all hypercontractive 2 — g norms and moreover every
operator norm in this class faces the same gadget reduction barrier discussed earlier. In

10
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Figure 2.1: Upper and lower bounds for approximating ||A||,—4. Arrows indicate the re-
gion to which a boundary belongs and thicker shaded regions represent exact algorithms.
Our results are indicated by [*]. We omit UGC-based hardness results in the figure.

Chapter 6 we show that this barrier can be overcome for certain exactly 2-convex norms
(specifically mixed £, norms, i.e., £4({,) for q,q4" > 2) and give a reduction from random
label cover (for which polynomial level SoS gaps are available).

2.1.2 The non-hypercontractive case.

Several results are known in the case when p > ¢, and we summarize known results
for matrix norms in Figure 2.1, for both the hypercontractive and non-hypercontractive
cases. While the case of p = g = 2 corresponds to the spectral norm, the problem is also
easy when g = oo (or equivalently p = 1) since this corresponds to selecting the row of
A with the maximum £, norm. Note that in general, Figure 2.1 is symmetric about the
principal diagonal. Also note that if ||A]|,, is a hypercontractive norm (p < q) then
so is the equivalent || AT ||z« p+ (the hypercontractive and non-hypercontractive case are
separated by the non-principal diagonal).

As is apparent from the figure, the problem of approximating ||Al|,—, for p > g ad-
mits good approximations when 2 € [g, p], and is hard otherwise. For the case when 2 ¢
[g, p], an upper bound of O(max{m, n}?>/128) on the approximation ratio was proved by
Steinberg [Ste05]. Bhaskara and Vijayaraghavan [BV11] showed NP-hardness of approxi-

mation within any constant factor, and hardness of approximation within an O (2(102; ”)H>
factor for arbitrary ¢ > 0 assuming NP Z DTIME (2(1og n)0<1>>.

Determining the right constants in these approximations when 2 € [g, p] has been of

11



considerable interest in the analysis and optimization community. For the case of co—1
norm, Grothendieck’s theorem [Gro53] shows that the integrality gap of a semidefinite
programming (SDP) relaxation is bounded by a constant, and the (unknown) optimal
value is now called the Grothendieck constant K;. Krivine [Kri77] proved an upper
bound of 77/ (2In(1 +v/2)) = 1.782... on K, and it was later shown by Braverman
et al. that K¢ is strictly smaller than this bound. The best known lower bound on K is
about 1.676, due to (an unpublished manuscript of) Reeds [Ree91] (see also [KO09] for a
proof).

An upper bound of K¢ on the approximation factor also follows from the work of
Nesterov [Nes98] for any p > 2 > g. A later work of Steinberg [Ste05] also gave an
upper bound of min {’yp /Yar Vg / Ypr }, where 7, denotes pth norm of a standard normal
random variable (i.e., the p-th root of the p-th Gaussian moment). Note that Steinberg’s
bound is less than K¢ for some values of (p,q), in particular for all values of the form
(2,q) with g < 2 (and equivalently (p,2) for p > 2), where it equals 1/, (and 1/, for
(p,2)).

On the hardness side, Briét, Regev and Saket [BRS15] showed NP-hardness of 77/2 for
the co—1 norm, strengthening a hardness result of Khot and Naor based on the Unique
Games Conjecture (UGC) [KN09] (for a special case of the Grothendieck problem when
the matrix A is positive semidefinite). Assuming UGC, a hardness result matching Reeds’
lower bound was proved by Khot and O’Donnell [KO09], and hardness of approximating
within K was proved by Raghavendra and Steurer [RS09].

For a related problem known as the L,-Grothendieck problem, where the goal is to
maximize (x, Ax) for ||x||, < 1, results by Steinberg [Ste05] and Kindler, Schechtman
and Naor [KNS10] give an upper bound of 'y;z,, and a matching lower bound was proved
assuming UGC by [KNS10], which was strengthened to NP-hardness by Guruswami et al.
[GRSW16]. However, note that this problem is quadratic and not necessarily bilinear, and
is in general much harder than the Grothendieck problems considered here. In particular,
the case of p = co only admits an ®(log 1) approximation instead of K for the bilinear
version [AMMNO06, ABH05].

The Search For Optimal Constants and Optimal Rounding Algorithms. Determining
the right approximation ratio for these problems often leads to the development of round-
ing algorithms that apply much more broadly. For the Grothendieck problem, the goal
isto find y € R™ and x € R" with ||y||, ||X]|l < 1, and one considers the following
semidefinite relaxation:

maximize ) A;;- (ut,v) st
i,j

subjectto  |lulll <1, [|v/||]2 < 1 Vi€ [m],j € [n]
ul, ol € R™" Vi € [m],j € [n]
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By the bilinear nature of the problem above, it is clear that the optimal x,y can be taken
to have entries in {—1,1}. A bound on the approximation ratio! of the above program is
then obtained by designing a good “rounding” algorithm which maps the vectors u!, v/ to
values in {—1,1}. Krivine’s analysis [Kri77] corresponds to a rounding algorithm which
considers a random vector g ~ N (0, I+, ) and rounds to x,y defined as

y; == sgn (<¢(ui),g>) and x; := sgn (<1p(vj),g>),

for some appropriately chosen transformations ¢ and . This gives the following upper
bound on the approximation ratio of the above relaxation, and hence on the value of the
Grothendieck constant Kg:

-
sinh (1)

L
2 = 2

In(1+2)

Braverman et al. [BMMN13] show that the above bound can be strictly improved (by a
very small amount) using a two dimensional analogue of the above algorithm, where the
value y; is taken to be a function of the two dimensional projection ({¢(u'), g1), (¢(u'), g2))
for independent Gaussian vectors g1, g, € R”" (and similarly for x). Naor and Regev
[NR14] show that such schemes are optimal in the sense that it is possible to achieve
an approximation ratio arbitrarily close to the true (but unknown) value of K; by using
k-dimensional projections for a large (constant) k. A similar existential result was also
proved by Raghavendra and Steurer [RS09] who proved that the there exists a (slightly
different) rounding algorithm which can achieve the (unknown) approximation ratio K.

Ke <

For the case of arbitrary p > 2 > g, Nesterov [Nes98] considered the convex program
in Figure 2.2, denoted as CP(A), generalizing the one above. Note that since g* > 2

maximize Y A;;- (u',v) = <A, LIVT>
ij

subjectto ) |7 <1
ie[m)

Y05 <1

j€n]
ui’ ,Uj c lRm+n

u' (resp. ') is the i-th (resp. j-th) row of U (resp. V)

Figure 2.2: The relaxation CP(A) for approximating p—¢ norm of a matrix A € R™*".

and p > 2, the above program is convex in the entries of the Gram matrix of the vectors
{u'}iepm V{7 }]. c[n)- Although the stated bound in [Nes98] is slightly weaker (as it is
proved for a larger class of problems), the approximation ratio of the above relaxation can

1Since we will be dealing with problems where the optimal solution may not be integral, we will use the
term “approximation ratio” instead of “integrality gap”.
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Figure 2.3: A comparison of the bounds for approximating p— p* norm obtained from Krivine’s rounding
for K¢, Steinberg’s analysis, and our bound. While our analysis yields an improved bound for 4 < p < 66,
we believe that the rounding algorithm achieves an improved bound for all2 < p < co.

be shown to be bounded by K. By using the Krivine rounding scheme of considering the
sign of a random Gaussian projection (aka random hyperplane rounding) one can show
that Krivine’s upper bound on Kg still applies to the above problem.

Motivated by applications to robust optimization, Steinberg [Ste05] obtained an up-
per bound of min {7y,/7,, ¥4 /7p+} on the approximation factor. Note that while Stein-
berg’s bound is better (approaches 1) as p and g approach 2, it is unbounded when
p,q" — oo (as in the Grothendieck problem).

Based on the inapproximability result of factor 1/ (-, - 4) obtained in this work, it
is natural to ask if this is the “right form” of the approximation ratio. Indeed, this ratio is
7t/2 when p* = g = 1, which is the ratio obtained by Krivine’s rounding scheme, up to a
factor of In(1 + v/2). We extend Krivine’s result to all p > 2 > g as below.

Theorem. There exists a fixed constant ey < 0.00863 such that for all p > 2 > g, the approxi-
mation ratio of the convex relaxation CP(A) is upper bounded by

1+¢ 1 1+¢ 1

sinh (1) 77 In(1+v2) Yp 7

Perhaps more interestingly, the above theorem is proved via a generalization of hy-
perplane rounding, which we believe may be of independent interest. Indeed, for a given
collection of vectors w!, ..., w™ considered as rows of a matrix W, Gaussian hyperplane
rounding corresponds to taking the “rounded” solution y to be the

A ()

We consider the natural generalization to (say) ¢, norms, given by

y := argmax (y’,Wg)
ly'll-<1

_ (Sgn(<w5g>)-}<wi,8>‘r*_1> .
i€[m]

Iwglly-~!

r*
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We refer to y as the “Holder dual” of Wg, since the above rounding can be obtained by
viewing Wg as lying in the dual (¢,+) ball, and finding the y for which Holder’s inequality
is tight. Indeed, in the above language, Nesterov’s rounding corresponds to considering
the /, ball (hyperplane rounding). While Steinberg used a somewhat different relaxation,
the rounding there can be obtained by viewing Wg as lying in the primal (¢,) ball instead
of the dual one. In case of hyperplane rounding, the analysis is motivated by the identity
that for two unit vectors u and v, we have

E [sgn((g, 1)) -sgn((g,))] = = -sin"({x,0)).

We prove the appropriate extension of this identity to ¢, balls (and analyze the functions
arising there) which may also be of interest for other optimization problems over ¢, balls.

Hardness. We extend the hardness results of [BRS15] for the co — 1 and 2 — 1 norms
of a matrix to any p > 2 > g. The hardness factors obtained match the performance
of known algorithms (due to Steinberg [Ste05]) for the cases of 2 — g and p — 2, and
moreover almost match the algorithmic results in the more general case of p > 2 > g.

Theorem. For any p,q such that p > 2 > g and e > 0, it is NP-hard to approximate the p—q
norm within a factor 1/ (7yp+y4) — €.

2.2 Polynomial Optimization over the Sphere

In Chapter 8 and Chapter 9 we study the problem of optimizing homogeneous polynomi-
als over the unit sphere. Formally, given an n-variate degree-d homogeneous polynomial
f, the goal is to compute || f|| := sup,_ |f(x)|. For d > 3, it defines a natural higher-
order analogue of the eigenvalue problem for matrices. The problem also provides an
important testing ground for the development of new spectral and semidefinite program-
ming (SDP) techniques, and techniques developed in the context of this problem have had
applications to various other constrained settings [HLZ10, Lau09, Las09]. Besides being
a natural and fundamental problem in its own right, it has connections to widely studied
questions in many other areas, like the small set expansion hypothesis [BBH"12, BKS14],
tensor low-rank decomposition and tensor PCA [BKS15, GM15, MR14, HSS15], refutation
of random constraint satisfaction problems [RRS16] and planted clique [BV09].

Optimization over $"~! has been given much attention in the optimization commu-
nity, where for a fixed number of variables n and degree d of the polynomial, it is known
that the estimates produced by g levels a certain hierarchy of SDPs (Sum of Squares) get
arbitrarily close to the true optimal solution as g increases (see [Las09] for various ap-
plications). We refer the reader [dKL19, DW12, Fay04, dKLS14] for more information on
convergence results. These algorithms run in time 79, which is polynomial for con-
stant g. Unfortunately, known convergence results often give sub-optimal bounds when
q is sub-linear in 7.
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In computer science, much attention has been given to the sub-exponential runtime
regime (i.e. § < n) since many of the target applications such as SSE, QMA and refut-
ing random CSPs are of considerable interest in this regime. In addition to the polytime
n4/2=1_approximation for general polynomials [HL.Z10, So11], approximation guarantees
have been proved for several special cases including 2 — g norms [BBH"12], polynomi-
als with non-negative coefficients [BKS14], and some polynomials that arise in quantum
information theory [BKS17, BH13]. An outstanding open problem in quantum informa-
tion theory is settling the complexity of the best separable state problem (which can be
viewed as seeking a (1 + ¢)-approximation for maximizing a certain class of polynomials
over the sphere), and the sum of squares (SoS) hierarchy captures all known algorithms
for this problem upto a logarithm in the exponent [BKS14, BKS17]. The best known up-
per bound being /1 levels due to Barak, Kothari and Steurer [BKS17] and the best lower
bound being logn levels due to Harrow, Natarajan and Wu [HNW16]. Hence there is
considerable interest in understanding the approximation/runtime tradeoff (especially
in the sub-exponential regime).

In this thesis, we develop general techniques to design and analyze algorithms for
polynomial optimization over the sphere. The sphere constraint is one of the simplest
constraints for polynomial optimization and thus is a good testbed for techniques. In-
deed, we believe these techniques will also be useful in understanding polynomial opti-
mization for other constrained settings.

In addition to giving an analysis the problem for arbitrary polynomials, these tech-
niques can also be adapted to take advantage of the structure of the input polynomial,
yielding better approximations for several special cases such as polynomials with non-
negative coefficients, and sparse polynomials. Previous polynomial time algorithms for
polynomial optimization work by reducing the problem to diameter estimation in convex
bodies [So11] and seem unable to utilize structural information about the (class of) input
polynomials. Development of a method which can use such information was stated as an
open problem by Khot and Naor [KNO8] (in the context of /s, optimization).

Our approximation guarantees are with respect to the optimum at each level of the
SoS hierarchy. Such SDPs are the most natural tools to bound the optima of polynomial
optimization problems, and our results shed light on the efficacy of higher levels of the
SoS hierarchy to deliver better approximations to the optimum.

- In Chapter 8 we introduce a technique we refer to as “weak decoupling inequalities”
and use it to upper-bound the integrality gap of g levels of the SoS hierarchy for various
classes of polynomials over the sphere, namely arbitrary polynomials (when g < 1, our
result yields better bounds than those implied by convergence results [DW12, dKL19]?),
polynomials with non-negative coefficients and sparse polynomials:

Aribitrary. SoS; gets an (O(n)/q)%/>~! approximation.
Non-negative Coefficients. SoS; gets an (O(n)/ q)%/4=1/2 approximation.

Sparse. SoS; gets a \/m/q approximation where m is the sparsity.

2[dKL19] appeared after the publication of this work
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We believe that these techniques are applicable to much broader settings.

- In Chapter 8 we also prove for a certain hierarchy of relaxations for optimization over
the sphere that “robust” integrality gaps for lower levels of the hierarchy can be lifted to
integrality gaps for higher levels. This hierarchy is closely related to the SoS hierarchy
but is possibly weaker (in fact a majority of the works studying SoS and optimization
over the sphere can be seen as using only this weaker hierarchy). We give an exam-
ple application of this result by using it to show polynomial level integrality gaps (for
the aforementioned weaker hierarchy of relaxations) for optimizing non-negative coef-
ficient polynomials.®> We hope that this method can find applications in other settings
and perhaps even be shown to work in the context of the SoS hierarchy.

In Chapter 9, we show an upper bound on the integrality gap of g levels of SoS on
polynomials with random coefficients*. Specifically we show that SoS certifies an up-
per bound that is an (O(n)/q)%/4~1/2 approximation to the true value. An interesting
consequence of our result is that random/spiked-random instances cannot provide Best
Separable State gap instances for more than polylog levels of SoS.

3 Integrality gaps for polynomial levels of SoS are already known in the case of arbitrary polynomials
due to a result of Hopkins et al. [HKP*17]. More precisely, they show polynomial level integrality gaps for
polynomials with i.i.d. +1 random coefficients.

4[RRS16] concurrently obtained slightly weaker bounds. However their bounds apply for the more
general model of sparse random polynomials thereby finding applications to refutation of random CSPs.
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Part 11

Degree-2 (Operator Norms)
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Chapter 3

Preliminaries (Normed Spaces)

3.1 Vectors

Unless otherwise specified, vectors are assumed to be finite dimensional with real valued
coordinates. For a vector x € IR"”, we denote its i-th coordinate by x; (Chapter 5 is the only
exception to this wherein it is more convenient to think of vectors as functions and so the
notation x(i) is used).

We denote sequences of vectors with superscripts, e.g. x',x%,--- € R".

For x,y € R" we let (x, y) denote the inner product under the counting measure, i.e.,

(x,y)y ==Y x;-y;
i€[n]

For a scalar function f : R — R and x € R” we denote by f[x] € R" the vector obtained
by applying f to x entry-wise.

For a vector u, we use D,, to denote the diagonal matrix with the entries of u forming the
diagonal, and for a matrix M we use diag(M) to denote the vector of diagonal entries.

3.2 Norms

A function ||-||x from R" to the non-negative reals is called a norm if it satisfies
Subadditivity. ||x +y||x < ||x]|x + llyl x-

Absolute Homogeneity. ||c- x||x = |c| - ||x||x for any ¢ € R.

Positive Definiteness. ||x|/x = 0 implies x = 0.

We say a convex body K is symmetric if K = —K (i.e., x € K = —x € K). There is
a well known correspondence between norms and symmetric convex bodies. The map
from norms to symmetric convex bodies is referred to as the unit ball of the norm and is
defined as
Ball(X) := {x | |x]lx < 1}.
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The inverse map is known as the Minkowski functional and is defined as

:= inf t € K}.
x|l := inf{x/t € K)

The dual space of R" is R" itself. For a norm X and ¢ € R", the dual norm is defined as

I€]lx := sup (g, x)

x€Ball(X)

We will often consider families of normed spaces of increasing dimension, and we will
denote this by (X, ),en where X, is assumed to be a norm over R".

3.3 Ep Norms

For p > 1 and a vector x, we denote the counting ¢,-norm as ||x||, := (¥; |x;|")1/? (when
p = o itis defined as max;c/y |x;|)-

Forany p € [1, o], the dual norm of /, is £+, where p* is defined as satisfying the equality:
% + % = 1. Formally,

Fact 3.3.1. Forany p € [1,00], |||+ = SUP ¢ Ball(r,) (¢, x).

For p > 1, we define the p-th Gaussian norm of a standard gaussian g as

= E PIYr
=, [s])

3.4 Operator Norm

For a linear operator A mapping a normed space X over IR to normed space Y over R",
the operator norm is defined as the maximum amount that A stretches an X-unit vector
where stretch is measured according to Y i.e.,

A = max [||Ax X
Al = max A/ ]

We say two normed spaces X, Y are isomorphic (resp. isometric) to one another if there ex-
ists an invertible linear operator A : X — Y such that A and A~! have bounded operator
norm (resp. operator norm 1).! In the case where X = £, Y = ¢4, we'll use the shorthand
| Al|p—4 to denote the operator norm.

We next record the equivalence of operator norms with bilinear form maximization.

! Since any two norms over a finite dimensional space are isomorphic, this notion is only interesting in
infinite dimensional settings. The notion of isometry however remains interesting in the finite dimensional
setting.
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Fact 3.4.1. For any linear operator A : X — Y,

|Al|xoy = sup  sup (y,Ax) = [|AT||ysox-.

[Ylly=<1 [lx]|x<1
Proof. Using the fact that (y, Ax) = (x, ATy),

IAllxy = sup [|Ax]y = sup sup (y,Ax)= sup sup (x,A'y)

Ixlx<1 Ixlx<1 flylly-<1 Ixlx<1 yllys<1
= sup [[ATyllx- = [AT[lyox-- =
Iyl <1

Operator norms are submultiplicative in the following sense:

Fact 3.4.2. For any norms X, Y, Z, and linear operatorsC : X — Y, B: Y — Z,

”BCHX%Z = supM < HBHY%ZHCJCHY
o xllx T

= [[Cllx=ylIBlly=z-
x| x x [l x| x

3.5 Type and Cotype

The notions of Type and Cotype are powerful classification tools from Banach space the-
ory.

Definition 3.5.1. The Type-2 constant of a Banach space X, denoted by T(X), is the smallest
constant C such that for every finite sequence of vectors {x'} in X,

H;ErxiH] <C ‘/;HxiHZ

where e; is an independent Rademacher random variable. We say X is of Type-2 if To(X) < c0.?

E

Definition 3.5.2. The Cotype-2 constant of a Banach space X, denoted by C»(X), is the smallest
constant C such that for every finite sequence of vectors {x'} in X,

||zei-xl||] > < [Tl
1 1

where ¢; is an independent Rademacher random variable. We say X is of Cotype-2 if Co(X) < oo.

E

Remark 3.5.3.

2 T,(X) < oo is yet another property that is uninteresting in the finite dimensional setting since every
finite dimensional norm is of Type-2 by John’s theorem. However for a sequence of norms (X;)sen, the
dependence of T,(X,) on the dimension 7 is an interesting and useful property to track and statements
derived from Type-2 properties of infinite dimensional spaces can often be adapted to give quantitative
finite dimensional versions when considering a sequence of norms of growing dimension.
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- It is known that Co(X*) < To(X).
- It is known that for p > 2, we have Ty ({})) = 7yp (while C3({};) — o0 as n — o) and for

<2, C(f") = max 21/‘1_1/2,1/')/ (while To(¢") — o0 as n — o0).
q q q q

We say X is Type-2 (resp. Cotype-2) if Tr(X) < oo (resp. C2(X) < 00). To(X) and C(X)
can be regarded as measures of the “closeness” of X to a Hilbert space. Some notable
manifestations of this correspondence are:

- To(X) = C(X) = 1if and only if X is isometric to a Hilbert space.

- Kwapieni [Kwa72a]: X is of Type-2 and Cotype-2 if and only if it is isomorphic to a
Hilbert space.

- Figiel, Lindenstrauss and Milman [FLM77]: If X is a Banach space of Cotype-2,
then any n-dimensional subspace of X has an m = ((n)-dimensional subspace
with Banach-Mazur distance at most 2 from /5"

More generally one defines

Definition 3.5.4 (Type/Cotype). For 1 < p < 2, the Type-p constant of a normed space X,
denoted by T, (X), is the smallest constant C such that for every finite sequence of vectors {x'} in
X,

E

H;gi.fo] . (;w)””

where ¢; is an independent Rademacher random variable. X is said to have Type-p if T,(X) < co.

For 2 < q < oo, the Cotype-q constant of a normed space X, denoted by C,(X), is the smallest
constant C such that for every finite sequence of vectors {x'} in X,

E

1 1/q
sti-xlu] > = (zw) .
1 1

X is said to have Cotype-q if C4(X) < oo.

Any normed space X trivially is Type-1 and Cotype-co. It is easily checked that Type-
p implies Type-p’ for any p’ < p and Cotype-q implies Cotype-q’ for any q > 4. Let
px :=sup{p | Tp(X) < oo} and gx := inf{g | C4(X) < oo}. px (resp. gx) is referred to as
the modulus of Type (resp. Cotype).
Another example of the power of these notions in classifying Banach spaces is the cele-
brated MP+K theorem:

Theorem 3.5.5 (Maurey and Pisier + Krivine). Any infinite dimensional Banach space X con-
tains for any € > 0, (1 + €)-isomorphs of £, and £, of arbitrarily large dimension.
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3.6 p-convexity and g-concavity

The notions of p-convexity and g-concavity are well defined for a wide class of normed
spaces known as Banach lattices. In this document we only define these notions for finite
dimensional norms that are 1-unconditional in the elementary basis (i.e., those norms X
for which flipping the sign of an entry of x does not change the norm. We shall refer to
such norms as sign-invariant norms). Most of the statements we make in this context can
be readily extended to the case of norms admitting some 1-unconditional basis, but we
choose to fix the elementary basis in the interest of clarity. With respect to the goals of
this document, we believe most of the key insights are already manifest in the elementary
basis case.

Definition 3.6.1 (p-convexity /g-concavity). Let X be a sign-invariant norm over R". Then
for1 < p < oo the p-convexity constant of X, denoted by MP)(X), is the smallest constant C
such that for every finite sequence of vectors {x'} in X,

. Vp . p
[ZHx’H”] <c (anww)

X is said to be p-convex if MP)(X) < co. We will say X is exactly p-convex if M(P)(X) = 1.

For1 < g < oo, the g-concavity constant of X, denoted by Mg (X), is the smallest constant C
such that for every finite sequence of vectors {x'} in X,

' 1/q 1 ‘ 1/q
[D[xl]lq] 26'(2”?6’”‘7) .

1

X is said to be g-concave if M5)(X) < 0.
We will say X is exactly g-concave if M) (X) = 1.

Every sign-invariant norm is exactly 1-convex and co-concave.

For a sign-invariant norm X over R”, and any 0 < p < oo let X(P) denote the function
Il [x]|P||¥ P, XP) is referred to as the p-convexification of X. It is easily verified that

M) (XP)) = MM (X) and further that X(P) is an exactly p-convex sign-invariant norm
if and only if X is a sign-invariant norm (and therefore exactly 1-convex).

3.7 Convex Relaxation for Operator Norm

In this section we will see that there is a natural convex relaxation for a wide class of op-
erator norms. It is instructive to first consider the pertinent relaxation for Grothendieck’s
inequality. Recall the bilinear formulation of the problem wherein given an m x n matrix
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A, the goal is to maximize yT A x over ||y, || X||c < 1. One then considers the following
semidefinite programming relaxation:

maximize ) Aj;- (u,ol) st
i,j

subjectto  |lulll, <1, [|v/||]2 < 1 Vi€ [m],j € [n]
ul, ol € R™" Vi e [m],j € [n]

which is equivalent to

maximiz 1 0 4 Y W t
a €3 AT 0 || Wl X 5
Xii<1l Y;;<1
Y W
>_ mxXm nxn mXxn

where §"*™ is the set of m X m symmetric positive semidefinite matrices in IR"*"".

Nesterov [Nes98, NWY00]® and independently Naor and Schechtman* observed that if X
and Y* are exactly 2-convex, then there is a natural computable convex relaxation for the
bilinear formulation of X — Y operator norm. Recall the goal is to maximize y' A x over
lylly+, ||x]|x < 1. The relaxation which we will call CP(A) is as follows:

1 /[0 Al [ YW t
aximize 5 ATO , WTX S.T.

diag(X) € Ball(X(1/2)), diag(Y) € Ball(y*(1/?))
Y W mxm nxn mxn

For a vector s, let Ds denote the diagonal matrix with s as diagonal entries. Let X :=

(XW2yx ¥ .= (y*(1/2))* We can then define the dual program DP(A) as follows:

minimize (||s||y + [[t||x)/2 s.t
D; —A m n

|:—AT Dt:|t0, SGR,tGR.

Strong duality is satisfied, i.e. DP(A) = CP(A), and a proof can be found in [NWY00]

(see Lemma 13.2.2 and Theorem 13.2.3).

3 Nesterov uses the language of quadratic programming and appears not to have noticed the connections
to Banach space theory. In fact, it appears that Nesterov even gave yet another proof of an O(1) upper
bound on Grothendieck’s constant.

“personal communication
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3.8 Factorization of Linear Operators

Let X, Y, E be Banach spaces and let A : X — Y be a continuous linear operator. We say
that A factorizes through E if there exist continuous operators C: X —+ Eand B: E — Y
such that A = BC. Factorization theory has been a major topic of study in functional
analysis, going as far back as Grothendieck’s famous “Resume” [Gro53]. It has many
striking applications, like the isomorphic characterization of Hilbert spaces and L, spaces
due to Kwapieri [Kwa72a, Kwa72b], connections to type and cotype through the work of
Kwapier [Kwa72a], Rosenthal [Ros73], Maurey [Mau74] and Pisier [Pis80], connections
to Sidon sets through the work of Pisier [Pis86], characterization of weakly compact op-
erators due to Davis et al. [DFJP74], connections to the theory of p-summing operators
through the work of Grothendieck [Gro53], Pietsch [Pie67] and Lindenstrauss and Pel-
czynski [LP68].

Let ®(A) denote

®(A) = inf inf I X Bl
HBC=4  [|Allx-y
where the infimum runs over all Hilbert spaces H. We say A factorizes through a Hilbert
space if ®(A) < oco. Further, let

D(X,Y) = sip D(A)

where the supremum runs over continuous operators A : X — Y. As a quick example of
the power of factorization theorems, observe thatif I : X — X is the identity operator on a
Banach space X and ®(I) < oo, then X is isomorphic to a Hilbert space and moreover the
distortion (Banach-Mazur distance) is at most ®(I) (i.e., there exists an invertible operator
T : X — H for some Hilbert space H such that ||T||x .y - [|T ' ||z_x < ®(I)). In fact (as
observed by Maurey), Kwapieri gave an isomorphic characterization of Hilbert spaces
by proving a factorization theorem. Maurey observed that a more general factorization
result underlies Kwapieni’s work:

Theorem 3.8.1 (Kwapienn-Maurey). Let X be a Banach space of Type-2 and Y be a Banach
space of Cotype-2. Then any operator T : X — Y factorizes through a Hilbert space. Moreover
P(X,Y) < Tr(X)Ca(Y).

Surprisingly Grothendieck’s work which predates the work of Kwapieri and Maurey,
established that (¢, ¢1') < K¢ for all m,n € IN, which is not implied by the above
theorem since T, (/%) — oo as n — oo. Pisier [Pis80] unified the above results for the case
of approximable operators by proving the following:

Theorem 3.8.2 (Pisier). Let X,Y be Banach spaces such that X*,Y are of Cotype-2. Then any
approximable operator T : X — Y factorizes through a Hilbert space. Moreover
O(T) < (2C(X*)Ca(Y))2.

In the Chapter 5 we show that for any p*,q € [1,2],any m,n € N

(e, ) < 20

> m ’ CZ(EZ*) ’ Cz(gqm)
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which improves upon Pisier’s bound and for certain ranges of (p, q), improves upon K¢
as well as the bound of Kwapieni-Maurey.
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Chapter 4

Hardness results for p—g norm

In this chapter we prove NP-hardness results for approximating hypercontractive norms
(i.e., p—g norm when p < g). We show

Theorem 4.0.1. For any p,q such that1 < p < q < 2o0r2 < p < g < oo and a constant
c > 1, unless NP € BPP, no polytime algorithm approximates p—q norm within a factor of c.
The reduction runs in time n®r7 for 2 < p < q, where B, = poly(1/(1 — 7p+)).

We show that the above hardness can be strengthened to any constant factor via a
simple tensoring argument. In fact, this also shows that it is hard to approximate || A,
within almost polynomial factors unless NP is in randomized quasi-polynomial time.
This is the content of the following theorem.

Theorem 4.0.2. Forany p,qsuchthat1 <p < g <2o0r2 < p <gq <ocoande > 0, thereis no
polynomial time algorithm that approximates the p—q norm of an n X n matrix within a factor

218" unless NP € BPTIME (20087
bility result holds unless NP C DTIME (200% ”)O(l)>

)>. When q is an even integer, the same inapproxima-

En route to the above result, we also prove new results for the case when p > g with
2¢€qpl:
Theorem 4.0.3. For any p,q such that p > 2 > g and € > 0, it is NP-hard to approximate the
p—q norm within a factor 1/ (7yp+y,) — €.

where 7, denotes the 7' norm of a standard normal random variable, and p* := p/(p — 1)
is the dual norm of p.

Both Theorem 4.0.1 and Theorem 4.0.3 are consequences of a more technical theorem,
which proves hardness of approximating || A||2—,, for r < 2 (and hence || A||;+—; for r* >
2) while providing additional structure in the matrix A produced by the reduction. We
also show our methods can be used to provide a simple proof (albeit via randomized
reductions) of the 2((1og ') hardness for the non-hypercontractive case when 2 ¢ [g, p],
which was proved by [BV11].

See Fig. 2.1 for a pictorial summary of the hardness and algorithmic results in various
regimes.
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4.1 Proof Overview

The hardness of proving hardness for hypercontractive norms. Reductions for various
geometric problems use a “smooth” version of the Label Cover problem, composed with
long-code functions for the labels of the variables. In various reductions, including the
ones by Guruswami et al. [GRSW16] and Briét et al. [BRS15] (which we closely follow)
the solution vector x to the geometric problem consists of the Fourier coefficients of the
various long-code functions, with a “block” x; for each vertex of the label-cover instance.
The relevant geometric operation (transformation by the matrix A in our case) consists of
projecting to a space which enforces the consistency constraints derived from the label-
cover problem, on the Fourier coefficients of the encodings.

However, this strategy presents with two problems when designing reductions for
hypercontractive norms. Firstly, while projections maintain the £, norm of encodings cor-
responding to consistent labelings and reduce that of inconsistent ones, their behaviour
is harder to analyze for /, norms for p # 2. Secondly, the global objective of maximiz-
ing ||Ax||, is required to enforce different behavior within the blocks x;, than in the full
vector x. The block vectors x, in the solution corresponding to a satisfying assignment of
label cover are intended to be highly sparse, since they correspond to “dictator functions”
which have only one non-zero Fourier coefficient. This can be enforced in a test using the
fact that for a vector x, € R, ||x||; is a convex function of ||x,||, when p < g, and is
maximized for vectors with all the mass concentrated in a single coordinate. However,
a global objective function which tries to maximize Y, ||x,||Z, also achieves a high value
from global vectors x which concentrate all the mass on coordinates corresponding to few
vertices of the label cover instance, and do not carry any meaningful information about
assignments to the underlying label cover problem.

Since we can only check for a global objective which is the £; norm of some vector
involving coordinates from blocks across the entire instance, it is not clear how to enforce
local Fourier concentration (dictator functions for individual long codes) and global well-
distribution (meaningful information regarding assignments of most vertices) using the
same objective function. While the projector A also enforces a linear relation between the
block vectors x,, and x, for all edges (1, v) in the label cover instance, using this to ensure
well-distribution across blocks seems to require a very high density of constraints in the
label cover instance, and no hardness results are available in this regime.

Our reduction. We show that when 2 ¢ [p, g, it is possible to bypass the above issues
using hardness of || Al|>— as an intermediate (for r < 2). Note that since ||z||, is a concave
function of ||z||; in this case, the test favors vectors in which the mass is well-distributed
and thus solves the second issue. For this, we use local tests based on the Berry-Esséen
theorem (as in [GRSW16] and [BRS15]). Also, since the starting point now is the ¢, norm,
the effect of projections is easier to analyze. This reduction is discussed in Section 4.3.

By duality, we can interpret the above as a hardness result for ||Al[, > when p > 2
(using r = p*). We then convert this to a hardness result for p—¢q norm in the hyper-
contractive case by composing A with an “approximate isometry” B from {, — £, (i.e.,
Yy [|Byll; =~ |lyll2) since we can replace ||Ax|, with ||[BAx|[;. Milman’s version of the
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Dvoretzky theorem [Ver17] implies random operators to a sufficiently high dimensional
(n©@)) space satisfy this property, which then yields constant factor hardness results for
the p—g norm.

We also show that the hardness for hypercontractive norms can be amplified via ten-
soring. This was known previously for the 2—4 norm using an argument based on par-
allel repetition for QMA [HM13], and for the case of p = g [BV11]. We give a simple
argument based on convexity, which proves this for all p < g, but appears to have gone
unnoticed previously. The amplification is then used to prove hardness of approximation
within almost polynomial factors.

Non-hypercontractive norms. We also use the hardness of ||A||—, to obtain hardness
for the non-hypercontractive case of ||A||,; with ¢ < 2 < p, by using an operator that
“factorizes” through /5. In particular, we obtain hardness results for ||A||,—,2 and || A|2—,
(of factors 1/ ,+and 1/, respectively) using the reduction in Section 4.3. We then com-
bine these hardness results using additional properties of the operator A obtained in the
reduction, to obtain a hardness of factor (1/7,+) - (1/74) for the p—gnorm for p > 2 > gq.
The composition, as well as the hardness results for hypercontractive norms, are pre-
sented in Section 4.4.

We also obtain a simple proof of the 218 ")) hardness for the non-hypercontractive
case when 2 ¢ [g,p] (already proved by Bhaskara and Vijayaraghavan [BV11]) via an
approximate isometry argument as used in the hypercontractive case. In the hypercon-
tractive case, we started from a constant factor hardness of the p—2 norm and the same
factor for p—q norm using the fact that for a random Gaussian matrix B of appropriate
dimensions, we have ||Bx||; = || x||2 for all x. We then amplify the hardness via tensoring.
In the non-hypercontractive case, we start with a hardness for p—p norm (obtained via
the above isometry), which we first amplify via tensoring. We then apply another approx-
imate isometry result due to Schechtman [Sch87], which gives a samplable distribution D
over random matrices B such that with high probability over B, we have ||Bx||; =~ ||x||,
for all x.

We illustrate in this chapter how combining hardness for p—2 norm, with geometric
principles like duality, tensoring, composition and embedding yields strong results in
both the hypercontractive and non-hypercontractive regimes.

4.2 Preliminaries and Notation

For a vector x € R", exclusively this chapter we will use x(7) to denote its i-th coordinate
since in certain situations it will be convenient to think of vectors as functions. For p &
[1,00), we define |[|[|4, to denote the counting p-norm and |-||.,, to denote the expectation
p-norm,; i.e., for a vector x € R”,

1/p 1/p

. . 1 .
Ixlle, == { 2 @I and ||x|[, := B lx@PIVP =~} [x@
ie[n] i€[n]
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While ||-[|s, and |[x||, both denote the counting p-norm in this document, we will use
[||l¢, in this chapter to highlight the distinction between counting and expectation norms.
Clearly [|x|[,, = x|z, -n'/P. For p = oo, we define ||x||,, = |x||L. := maX;e(y, [x(i)]. We
will use p* to denote the ‘dual’ of p, i.e. p* = p/(p —1). Unless stated otherwise, we
usually work with [|-]|,,. We also define inner product (x,y) to denote the inner prod-
uct under the counting measure unless stated otherwise; i.e., for two vectors x,y € R”,

(0, y) = Yiep x(D)y(0).

4.2.1 Fourier Analysis

We introduce some basic facts about Fourier analysis of Boolean functions. Let R € IN be
a positive integer, and consider a function f : {+1}® — R. For any subset S C [R] let
Xs := [ lies xi- Then we can represent f as

flxr,..,xp) = Y F(S)- xs(x1,.. . xr), (4.1)
SCIR]

where R

f(S8) = Eycpanyr[f(x) - xs(x)] forall S C [R]. (4.2)
The Fourier transform refers to a linear operator F that maps f to f as defined as (4.2). We
interpret fas a 2R-dimensional vector whose coordinates are indexed by S C [R]. Endow
the expectation norm and the expectation norm to f and j?respectively; ie,
1/p

1/p
= x)|P an Fll, = £(S)|P
Ik, (xe{gl}RHﬂ >H> d W= | I 1769)

as well as the corresponding inner products (f,g) and (f,g) consistent with their 2-
norms. We also define the inverse Fourier transform FT to be a linear operator that maps

a given j?: 2R —» Rto f : {#1}R — R defined as in (4.1). We state the following well-
known facts from Fourier analysis.
Observation 4.2.1 (Parseval’s Theorem). Forany f : {£1}X = R, || f|lr, = [|Fflle,-

Observation 4.2.2. F and F! form an adjoint pair; i.e., forany f : {+1}R — Rand g : 2R — R,

(& Ff) = (F'g, f).
Observation 4.2.3. FTF is the identity operator.

In Section 4.3, we also consider a partial Fourier transform Fp that maps a given func-
tion f : {£1}R — R to a vector f : [R] — R defined as f(i) = E crinr[f(x) - xi] for
all i € [R]. It is the original Fourier transform where f is further projected to R coordi-
nates corresponding to linear coefficients. The partial inverse Fourier transform F} is a
transformation that maps a vector f : [R] — R to a function f : {£1}R — R as in (4.1) re-
stricted to S = {i} for some i € [R]. These partial transforms satisfy similar observations
as above: (1) || fllL, > lIFpflle,, @) |ELfll, = IIflle, (3) Fp and F form an adjoint pair,

and (4) (FLFp)f = f if and only if f is a linear function.
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4.2.2 Smooth Label Cover

An instance of Label Cover is given by a quadruple £ = (G, [R], [L],Z) that consists of
a regular connected graph G = (V,E), a label set [R] for some positive integer n, and
a collection £ = ((7e0, 7Tew) : € = (v,w) € E) of pairs of maps both from [R] to [L]
associated with the endpoints of the edges in E. Given a labeling ¢ : V — [R], we say
that an edge e = (v, w) € E is satisfied if m.,(0(v)) = mew(f(w)). Let OPT(L) be the
maximum fraction of satisfied edges by any labeling.

The following hardness result for Label Cover, given in [GRSW16], is a slight vari-
ant of the original construction due to [Kho02]. The theorem also describes the various
structural properties, including smoothness, that are identified by the hard instances.

Theorem 4.2.4. Forany ¢ > O0and ] € IN, there exist positive integers R = R(¢, J), L = L(¢, )
and D = D(§), and a Label Cover instance (G, [R], [L],X) as above such that

- (Hardness): It is NP-hard to distinguish between the following two cases:

— (Completeness): OPT(L) = 1.
— (Soundness): OPT(L) < ¢.

- (Structural Properties):

— (J-Smoothness): For every vertex v € V and distinct i,j € [R], we have

P [ﬂe,v(i) = ne,v(j)] <1/].

e:vece

— (D-to-1): For every vertex v € V, edge e € E incident on v, and i € [L], we have
|70, (i)| < D; that is at most D elements in [R] are mapped to the same element in
[L].

— (Weak Expansion): For any § > 0 and vertex set V! C V such that |V'| = 6 - |V|, the
number of edges among the vertices in |V'| is at least (6% /2)|E].

4.3 Hardness of 2—7 norm with r < 2

This section proves the following theorem that serves as a starting point of our hardness
results. The theorem is stated for the expectation norm for consistency with the current
literature, but the same statement holds for the counting norm, since if A is an n X n
matrix, ||Alls, s, = n'/""V2.||A||L,—1,. Note that the matrix A used in the reduction
below does not depend on r.

Theorem 4.3.1. For any € > 0, there is a polynomial time reduction that takes a 3-CNF formula
¢ and produces a symmetric matrix A € R with n = |¢|PoY(1/#) such that

- (Completeness) If ¢ is satisfiable, there exists x € R" with |x(i)| = 1 forall i € [n] and
Ax = x. In particular, |A||1,—1, > 1forall1 <r < oco.
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- (Soundness) ||A|lL,—1, < vr+€> 7 foralll <r <2

We adapt the proof by Briét, Regev and Saket for the hardness of 2 — 1 and co — 1
norms to prove the above theorem. A small difference is that, unlike their construction
which starts with a Fourier encoding of the long-code functions, we start with an eval-
uation table (to ensure that the resulting matrices are symmetric). We also analyze their
dictatorship tests for the case of fractional r.

4.3.1 Reduction and Completeness

Let £L = (G, [R],[L],X) be an instance of Label Cover with G = (V,E). In the rest of
this section, n = |V| and our reduction will construct a self-adjoint linear operator A :
RN — RN with N = |V|- 2R, which yields a symmetric N x N matrix representing A in
the standard basis. This section concerns the following four Hilbert spaces based on the
standard Fourier analysis composed with L.

1. Evaluation space R, Each function in this space is denoted by f : {+1}} —
R. The inner product is defined as (f,g) := E,cry13r[f(x)g(x)], which induces

[ fll2 == |Ifl|,- We also define ||f||., := E,[|f(x)|P]}/? in this space.

2. Fourier space RR. Each function in this space is denoted by ]? [ | = R. The inner
product is defined as (f, g) := Yic|r f( ) (i), which induces ||f]|, := I flle,-

3. Combined evaluation space RRY*2", Each function in this space is denoted by f : V x
{£1}R — R. The inner product is defined as (f, g) := Eyev[E e i1)r[f(v, x)g(v, x)]],
which induces ||f||, := ||f||1,- We also define |||, := Eq.[|f(v,x)[P]/7 in this
space.

4. Combined Fourier space RV*R, Each function in this space is denoted by f : V x
[R] — R. The inner product is defined as (f, g) := Eocv[Lic(r) £(v,i)g(v,1)], which

induces ||f||2, which is neither a counting nor an expectation norm.

Note that f € RY*2" and a vertex v € V induces fo € RR2" defined by fo(x) :=£(v, x), and
similarly f € RY*R and a vertex v € V induces fv € RR defined by fv( x) := f(v,x). As
defined in Section 4.2.1, we use the standard following (partial) Fourier transform F that

maps f € R2" to fe RR as follows. !

fli) = (FF)(i) == [xif (x)] - (4.3)

{il}R

The (partial) inverse Fourier transform F' that maps f eRRto f e R2" is defined by

fx) = (FT)(x) = Y xif (0)- (4.4)

i€[R]

'We use only linear Fourier coefficients in this work. F was defined as Fp in Section 4.2.1.
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This Fourier transform can be naturally extended to combined spaces by defining
F:f—fasf, »—>fvforallv e V. ThenFTmapsftofasfv — foforallv € V.

Finally, let P : RV*R — RY*R be the orthogonal projector to the following subspace
of the combined Fourier space:

i:{?elRVXR: Y A=Y fv()forall(uv)EEandie[L]}. (4.5)

jEou (D) j€men (i)
Our transformation A : RV*2% — RV*2" is defined by
A := (FT)PF. (4.6)

In other words, given f, we apply the Fourier transform for each v € V, project the com-
bined Fourier coefficients to L that checks the Label Cover consistency, and apply the in-
verse Fourier transform. Since P is a projector, A is self-adjoint by design.

We also note that a similar reduction that produces (FT)P was used in Guruswami et
al. [GRSW16] and Briét et al. [BRS15] for subspace approximation and Grothendieck-type
problems, and indeed this reduction suffices for Theorem 4.3.1 except the self-adjointness
and additional properties in the completeness case.

Completeness. We prove the following lemma for the completeness case. A simple
intuition is that if £ admits a good labeling, we can construct a f such that each f, is a

linear function and f is already in the subspace L. Therefore, each of Fourier transform,
projection to L, and inverse Fourier transform does not really change f.

Lemma 4.3.2 (Completeness). Let ¢ : V — [R] be a labeling that satisfies every edge of L.

There exists a function £ € RV*2" such that £(v, x) is either +1 or —1 forallv € V,x € {+1}R
and Af = f.

Proof. Let f(v,x) := x(,) foreveryv € V,x € {+1}R Consider f = Ff. For each vertex
velV, ?(v i) = fv( ) = 1ifi = {(v) and 0 otherwise. Since ¢ satisfies every edge
of £, € L and Pf = f. Finally, since each f, is a linear function, the partial inverse
Fourier transform FT satisfies (FT) fv = fy, which implies that (FT)f f. Therefore,
Af = (FTPF)f = f£. m

4.3.2 Soundness

We prove the following soundness lemma. This finishes the proof of Theorem 4.3.1
since Theorem 4.2.4 guarantees NP-hardness of Label Cover for arbitrarily small § > 0
and arbitrarily large | € IN.

Lemma 4.3.3 (Soundness). For every € > 0, there exist { > 0 (that determines D = D(()
as in Theorem 4.2.4) and | € IN such that if OPT(L) < ¢, L is D-to-1, and L is J-smooth,
Al L,—r, < vr+4e2 forevery 1 <r < 2.
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Proof. Let f € RV*2" be an arbitrary vector such that ||f||;, = 1. Let f = Ff, § = Lf,
and g = F'g so that g = (FTLF)f = Af. By Parseval’s theorem, | fo||¢, < ||fol|L, for all

v € Vand [[f||ls < ||f]|L, < 1. Since L is an orthogonal projection, ||g|l» < |[f]2 < 1. Fix
1 <r < 2and suppose

Il = E, [lgoll,] = 77+ 4" (47)

Use Lemma 4.5.2 to obtain § = d(¢) such that Hgvap > (vh+¢)]|8o HZZ implies |31, >
J(|8]le, forall 1 < p < 2 (so that 6 does not depend on r), and consider

Vo= {0 V: [Glly, > deand gols, < 1/). (48)

We prove the following lemma that lower bounds the size of Vj.

Lemma 4.3.4. For Vy C V defined as in (4.8), we have |Vy| > €2|V|.
Proof. The proof closely follows the proof of Lemma 3.4 of [BRS15]. Define the sets

Vi={0€V:|Glly, < deand |Gl < e},
Va={0€V: |Gl < deand |G, > €},
Va={veV:|gls,>1/¢}.

From (4.7), we have

Y llsoll, + X llsoll, + X llgoll, + X llsoll, = (vy +4)V]. (49)

veVy veVy veV, veV;

We bound the four sums on the left side of (4.9) individually. Parseval’s theorem and the
fact that r < 2 implies ||g»||1, < ||$o|lr, = |IS0]|¢,, and since ||y, < 1/efor every v € Vj,

the first sum in (4.9) can be bounded by

Y llgollf, < IVol/e (4.10)

veVy

Similarly, using the definition of V; the second sumin (4.9) is at most¢"|V|. By Lemma 4.5.2,
for each v € V5, we have [|go[|], < (77 +¢)([§0l},- Therefore, the third sum in (4.9) is
bounded as

Y lgell, < (i +e) ) 118l

veV, veV,
= (77 + &) [V2|Even, [[180l7,]
< (7 + €)|V2|]Evevz[||§v||%2]r/2 (By Jensen using r < 2)
Yoews 1180117\ "2
— (e val ()
V2

< (7 +e)|Va| AV (X Igl7, < X 1817, < VD)

veV, veV

34



< (9L +9)|V|. (4.11)

Finally, the fourth sum in (4.9) is bounded by

> llgollz, < 3 llgollz, (Since r < 2)

veEV; veEVs
=) 1% 17, (By Parseval’s theorem)

veVs

=) 1217212017,

veEV;

< T gl (111, > 1/eforv € Vs, and 7 <2)
veEV;

=" Y %ll7, <7V (4.12)
veV;

Combining the above with (4.9) yields

Vol > ¢ ) lgollL,

veVy
> & (o +42 V] = V] - (f + 0V =21V
> ' V| =€V, (4.13)
where the last inequality uses the fact that 27" >¢e > ¢l [

Therefore, |Vy| > €|V| and every vertex of v satisfies ||gol|s, > d¢ and |||, < 1/e.
Using only these two facts together with § € L, Briét et al. [BRS15] proved that if the
smoothness parameter | is large enough given other parameters, £ admits a labeling that
satisfies a significant fraction of edges.

Lemma 4.3.5 (Lemma 3.6 of [BRS15]). Let B := 6%¢3. There exists an absolute constant ¢’ > 0
such that if L is T-to-1 and T/ (c'e8*)-smooth for some T € N, there is a labeling that satisfies
at least 3 /1024 fraction of E.

This finishes the proof of Lemma 4.3.3 by setting ¢ := ¢28%/1024 and | := D(&)/(c'e8p*)
with D(¢) defined in Theorem 4.2.4. Given a 3-SAT formula, ¢, by the standard property
of Smooth Label Cover, the size of the reduction is |¢|OU/108(1/¢)) = |g|poly(1/¢), ]

4.4 Hardness of p—g norm

In this section, we prove the main results of the chapter. We prove Theorem 4.0.3 on
hardness of approximating p—g norm when p > 2 > g, and Theorem 4.0.2 on hardness
of approximating p—g norm when 2 < p < ¢q. By duality, the same hardness is implied
for the case of p < g < 2.
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Our result for p > 2 > g in Section 4.4.1 follows from Theorem 4.3.1 using additional
properties in the completeness case. For hypercontractive norms, we start by showing
constant factor hardness via reduction from p—2 norm (see Section 4.4.2), and then am-
plify the hardness factor by using the fact that all hypercontractive norms productivize
under Kronecker product, which we prove in Section 4.4.4.

441 Hardnessforp >2>g

We use Theorem 4.3.1 to prove hardness of p—g norm for p > 2 > g, which proves The-
orem 4.0.3.

Proof of Theorem 4.0.3: Fix p,q,and § > Osuch thatco > p > 2 > gand p > ¢q. Our goal
is to prove that p— g norm is NP-hard to approximate within a factor 1/ (7, + J). For
2—q norm for 1 < g < 2, Theorem 4.3.1 (with & < §'/(2-9) directly proves a hardness
ratio of 1/ (7, +€~1) = 1/ (7, + 6). By duality, it also gives an 1/ (7, + &) hardness for
p—2norm for p > 2.

For p—q norm for p > 2 > g, apply Theorem 4.3.1 with e = (¢/3)™ax(1/(2=p")1/(2=0q)),
It gives a polynomial time reduction that produces a symmetric matrix A € R"*" given
a 3-SAT formula ¢. Our instance for p—g norm is AAT = A2,

- (Completeness) If ¢ is satisfiable, there exists x € R" such that |x(i)| = 1 for all
i € [N] and Ax = x. Therefore, A>x = x and ||A?(|1, 1, > 1.

- (Soundness) If ¢ is not satisfiable,

HAHLp—>L2 = ||A||L2—>LP* < ’)’p* +€2—P* < ’)’p* +5/3, and
[AllLsr, < 1q+&7 7 < yy+6/3.

This implies that
14211y < Al Ll Allasry < (rpe +6/3)(7g +6/3) < 1pe7q +6.

This creates a gap of 1/ (v, + J) between the completeness and the soundness case.
The same gap holds for the counting norm since HAZng%gq = nl/9-1/p. ”AZHLp%Lq- n

4.4.2 Reduction from p—2 norm via Approximate Isometries

Let A € R"*" be a hard instance of p—2 norm. For any g > 1, if a matrix B € R"*"
satisfies ||Bx||,, = (1+0(1))|x||, for all x € R”, then [[BA|[p—q = (1 £0(1))[|Al[p-2.
Thus BA will serve as a hard instance for p—g norm if one can compute such a matrix B
efficiently. In fact, a consequence of the Dvoretzky-Milman theorem is that a sufficiently
tall random matrix B satisfies the aforementioned property with high probability. In other
words, for m = m(q,n) sufficiently large, a random linear operator from £} to (i’ is an
approximate isometry.
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To restate this from a geometric perspective, for m (g, n) sufficiently larger than n, a
random section of the unit ball in £§ is approximately isometric to the unit ball in /3. In
the interest of simplicity, we will instead state and use a corollary of the following matrix
deviation inequality due to Schechtman (see [Sch06], Chapter 11 in [Ver17]).

Theorem 4.4.1 (Schechtman [Sch06]). Let B be an m x n matrix with i.i.d. N(0,1) entries.
Let f : R™ — R be a positive-homogeneous and subadditive function, and let b be such that
fy) < bllylle, forally € R™. Then for any T C R",

sup |[f(Bx) —E[f(Bx)][ = O(b-¥(T) + t - rad(T))

xe

with probability at least 1 — e, where rad(T) is the radius of T, and (T) is the Gaussian
complexity of T defined as

Y(T):= E

§~N(OIy) | teT

sup !<g,t>\]

The above theorem is established by proving that the random process given by X, :=
f(Bx) — E[f(Bx)] has sub-gaussian increments with respect to L, and subsequently ap-
pealing to Talagrand’s Comparison tail bound.

We will apply this theorem with f(-) = ||-||s,, b = 1 and T being the unit ball under
[[ll¢,- We first state a known estimate of E[f(Bx)] = E[||Bx||,,] for any fixed x satisfying

|x|l,, = 1. Note that when ||x||,, = 1, Bx has the same distribution as an m-dimensional
random vector with i.i.d. N (0, 1) coordinates.

Theorem 4.4.2 (Biau and Mason [BM15]). Let X € R™ be a random vector with i.i.d. N'(0,1)
coordinates. Then for any q > 2,

E |[Xllg,] = m'/1- 7, + O(m(/DD).
We are now equipped to see that a tall random Gaussian matrix is an approximate
isometry (as a linear map from £; to £;') with high probability.

Corollary 4.4.3. Let B be an m x n matrix with i.i.d. N'(0,1) entries where m = w(n/?). Then
with probability at least 1 — e™", every vector x € IR" satisfies,

1Bxlle, = (L£0(1)) - m /7 g - |lx]ly,.

Proof. We apply Theorem 4.4.1 with function f being the £; norm, b = 1, and t = V.
Further we set T to be the ¢, unit sphere, which yields v(T) = ©(y/n) and rad(T) = 1.

Applying Theorem 4.4.2 yields that with probability at least 1 — ! =1 e ", for all x
with [|x||,, = 1, we have

1Ble, =m0 x| < |IBxlle, =B [IXIls,] | + B [1X]e, | = m'/7 7
< O(b-y(T) +t-rad(T) + m/D1)
<O(Vn+n+m/D-1y

< o(m!/1). u
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We thus obtain the desired constant factor hardness:

Proposition 4.4.4. Forany p > 2, 2 < g < oo and any € > 0, there is no polynomial time algo-
rithm that approximates p—q norm (and consequently q* — p* norm) within a factor of 1/ y,+ — €
unless NP  BPP.

Proof. By Corollary 4.4.3, for every n X n matrix A and a random m X n matrix B with
iid. V(0,1) entries (m = w(n9/?)), with probability at least 1 — e~", we have

IBAllg, e, = (LE£0(1)) - 7q - m' T [|Allg, -

Thus the reduction A — BA combined with p—2 norm hardness implied by Theo-
rem 4.3.1, yields the claim. n

The generality of the concentration of measure phenomenon underlying the proof of
the Dvoretzky-Milman theorem allows us to generalize Proposition 4.4.4, to obtain con-
stant factor hardness of maximizing various norms over the £, ball (p > 2). In this more
general version, the strength of our hardness assumption is dependent on the Gaussian
width of the dual of the norm being maximized. Its proof is identical to that of Proposi-
tion 4.4.4.

Theorem 4.4.5. Consider any p > 2,& > 0, and any family (fm)meN of positive-homogeneous
and subadditive functions where fy, : R™ — R. Let (by)men be such that fu,(y) < by - ||ly|le,
for all y and let N = N(n) be such that v.(fn) = w(by - \/n), where

v(fn)= B )[fN(g)]-

§~N(0,Iy

Then unless NP & BPTIME (N(n)), there is no polynomial time (1/v,+ — €)-approximation
algorithm for the problem of computing sup, xll,=1 fm(Ax), given an m x n matrix A.

4.4.3 Derandomized Reduction

In this section, we show how to derandomize the reduction in Proposition 4.4.4 to obtain
NP-hardness when g > 2 is an even integer and p > 2. Similarly to Section 4.4.2, given
A € R"" as a hard instance of p—2 norm, our strategy is to construct a matrix B € R"*"

and output BA as a hard instance of p—¢ norm.

Instead of requiring B to satisfy ||Bx[|;, = (1=£0(1))[x|/, for all x € R", we show
that | Bx|[ls, < (1+0(1))|[x]l, for all x € R" and |[Bx|[;, > (1 —o0(1))|[x||¢, when every
coordinate of x has the same absolute value. Since Theorem 4.3.1 ensures that [|A|/, s,
is achieved by x = Ax for such a well-spread x in the completeness case, BA serves as a

hard instance for p—¢ norm.

We use the following construction of g-wise independent sets to construct such a B
deterministically.
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Theorem 4.4.6 (Alon, Babai, and Itai [ABI86]). For any k € IN, one can compute a set S of
vectors in {£1}" of size O(n*/?), in time n°W), such that the vector random variable Y obtained

by sampling uniformly from S satisfies that for any I € ([Z}), the marginal distribution Y| is the
uniform distribution over {+1}X,

For a matrix B as above, a randomly chosen row behaves similarly to an n-dimensional
Rademacher random vector with respect to |||,

Corollary 4.4.7. Let R € R" be a vector random variable with i.i.d. Rademacher (£1) coordi-
nates. For any even integer q > 2, there is an m x n matrix B with m = O(n1/?), computable in
nO@) time, such that for all x € R", we have

|Bxllg, = m"T-E[(R,x)7) /9.

Proof. Let B be a matrix, the set of whose rows is precisely S. By Theorem 4.4.6,

Bl = X 0,07 =B LR )1 .

We use the following two results that will bound || BA[|4,, for the completeness case
and the soundness case respectively.

Theorem 4.4.8 (Stechkin [Ste61]). Let R € R" be a vector random variable with i.i.d. Rademacher
coordinates. Then for any q > 2 and any x € R" whose coordinates have the same absolute value,

E[(R,x)]"T=(1-0(1)) 1qllx]le.
Theorem 4.4.9 (Khintchine inequality [Haa81]). Let R € R" be a vector random variable with
i.i.d. Rademacher coordinates. Then for any q > 2 and any x € R",

E[(R,x)1M1 < 7q - [Ix]l,.
We finally prove the derandomimzed version of Proposition 4.4.4 for even g > 2.

Proposition 4.4.10. For any p > 2,¢ > 0, and any even integer q > 2, it is NP-hard to
approximate p—q norm within a factor of 1/ — €.

Proof. Apply Theorem 4.3.1 with r; < p* and ¢ < e. Given an instance ¢ of 3-SAT,
Theorem 4.3.1 produces a symmetric matrix A € R"*" in polynomial time as a hard
instance of p—2 norm. Our instance for p—¢ norm is BA where B is the m X n matrix
given by Corollary 4.4.7 with m = O(n1/2).

- (Completeness) If ¢ is satisfiable, there exists a vector x € {i\/iﬁ }" such that Ax = x.

So we have ||BAx|[,, = [[Bx||s, = (1 —0(1)) - m1/4 . ., where the last equality uses
Corollary 4.4.7 and Theorem 4.4.8. Thus ||BA||s, ., > (1 —0(1)) - m/ 1.y,

- (Soundness) If ¢ is not satisfiable, then for any x with ||x[|,, =1,
1BAX]|g, = m"/T-E[(R, Ax)T] VT <m'/7 -y, - || Ax]]e,
< m/4 . Vg - HAHé,,—Mz < mi/a. Vg - (’Yp* —g)

where the first inequality is a direct application of Theorem 4.4.9. n
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4.4.4 Hypercontractive Norms Productivize

We will next amplify our hardness results using the fact that hypercontractive norms
productivize under the natural operation of Kronecker or tensor product. Bhaskara and
Vijayraghavan [BV11] showed this for the special case of p = g and the Harrow and
Montanaro [HM13] showed this for 2—4 norm (via parallel repetition for QMA(2)). In
this section we prove this claim whenever p < g.

Theorem 4.4.11. Let A and B be my x ny and my X ny matrices respectively. Then for any
1< p<q<oo |[A@ Bl i, < IAll, s, - [Blle, s

Proof. We will begin with some notation. Let 4;,b; respectively denote the i-th and j-th
rows of A and B. Consider any z € RI"I*["2] satisfying Izlle, = 1. For k € [n], let
zx € R™ denote the vector given by z;(¢) := z(k, £). For j € [my], letz; € R™ denote the
vector given by Z;(k) := (b, zx). Finally, for k € [n1], let Ay := ||zk||§p and let v € R™2 be
the vector given by vi(j) := [zj(k)|F/ Ay

We begin by "peeling off” A:

l(A@ Bl = Llameb, 2l = LY |(,z))
joi

2]
= YlAzl]
]

< Al L, - LIzl
j
q AN
= Jalf .. X (IZ17)
]

In the special case of p = g, the proof ends here since the expression is a sum of terms
of the form || ByHZp and can thus be upper bounded term-wise by ||B HZP Sty ||z« | ZP which

sums to ||B|| Z e To handle the case of g > p, we will use a convexity argument:

_ qa’p
lal .- X (I%07)

J

qa/p
_ A, X (z |z,-<k)|ﬁ)

j

/ _ )
= 1Al g, 1Al (Z ()P = Aeoe())
/ . /
< AN S el (by convexity of |-|1/7 when g > p)
/
< JIAN L, - max ol
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It remains to show that HkaZ//p is precisely HszHZq / szHZp.
qarp

q/p
Zq/ﬁ

1 _
= Al L, -max-— - Y [5(R)]

] 5
= A7 L, max-— Y |(by, 20
oty M e 21

q
Bzl

q .
AN, - max o

= (Al ., - max
I P

< Jan

q
—ly '||13||€p4»£q
Thus we have established ||A ® B|[,, ¢, < [[All¢, ¢, - [[Bll¢, ¢, Lastly, the claim follows
by observing that the statement is equivalent to the statement obtained by replacing the

counting norms with expectation norms. u

We finally establish super constant NP-Hardness of approximating p—g norm, prov-
ing Theorem 4.0.2.

Proof of Theorem 4.0.2: Fix2 < p < g < oo. Proposition 4.4.4 states that there exists
¢ = ¢(p,q) > 1 such that any polynomial time algorithm approximating the p—¢ norm
of an n X n-matrix A within a factor of ¢ will imply NP C BPP. Using Theorem 4.4.11, for
any integer k € N and N = nf, any polynomial time algorithm approximating the p—q
norm of an N x N-matrix A®¥ within a factor of c* implies that NP admits a randomized
algorithm running in time poly(N) = n®%). Under NP ¢ BPP, any constant factor ap-
proximation algorithm is ruled out by setting k to be a sufficiently large constant. For any

1—e¢ N)

e > 0, setting k = logl/ ¢ rules out an approximation factor of ¢k = 20(°g unless

NP C BPTIME (210go“>”>.

By duality, the same statements hold for 1 < p < g < 2. When2 < p < gand gisan
even integer, all reductions become deterministic due to Proposition 4.4.10. [

4.4.5 A Simple Proof of Hardness for the Case 2 ¢ [g, p]

In this section, we show how to prove an almost-polynomial factor hardness for approx-
imating p—q norm in the non-hypercontractive case when 2 > p > g (and the case
p > q > 2 follows by duality). This result is already known from the work of Bhaskara
and Vijayaraghavan [BV11]. We show how to obtain a more modular proof, composing
our previous results with a simple embedding argument. However, while the reduction
in [BV11] was deterministic, we will only give a randomized reduction below.

As in [BV11], we start with a strong hardness for the p—p norm, obtained in Theo-
rem 4.0.2. While the reduction in [BV11] relied on special properties of the instance for
{p—{, norm, we can simply use the following embedding result of Schechtman [Sch87]
(phrased in a way convenient for our application).
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Theorem 4.4.12 (Schechtman [Sch87], Theorem 5). Let g < p < 2 and & > 0. Then, there ex-
ists a polynomial time samplable distribution D on random matrices in R™*" with m = Q,(n3),
such that with probability 1 — o(1), we have for every x € R", ||Bx|[,, = (1x¢) - [|x][,

In fact the distribution D is based on p-stable distributions. While the theorem in
[Sch87] does not mention the high probability bound or samplability, it is easy to modify
the proof to obtain there properties. We provide a proof sketch below for completeness.
We note that Schechtman obtains a stronger bound of O(n'*7/7) on the dimension m
of the £, space, which requires a more sophisticated argument using “Lewis weights”.
However, we only state weaker O(n®) bound above, which suffices for our purposes and
is easier to convert to a samplable distribution.

We first prove the following hardness result for approximating p—q norm in the
reverse-hypercontractive case, using Theorem 4.4.12.

Theorem 4.4.13. For any p,q suchthat1 < q < p <2o0r2 < q < p < coand e > 0, there
is no polynomial time algorithm that approximates the p—q norm of an n X n matrix within a

factor 218" ynless NP C BPTIME (200% ”)O<1)).

Proof. We consider the case 1 < g < p < 2 (the other case follows via duality). The-
orem 4.0.2 gives a reduction from SAT on n variables, approximating the p—p norm of
matrices A € RN*N with N = 200”9 yithin a factor 208 N)'™*, Sampling a matrix B
from the distribution D given by Theorem 4.4.12 (with dimension N) gives that it is also

(log N)' ¢

hard to approximate ||BA||,—4 =~ ||Al|p—p, within a factor 2 n

We now give a sketch of the proof of Theorem 4.4.12 including the samplability con-
dition. The key idea is to embed the space £}, into the infinite-dimensional space L, (for
0 < g < p < 2) using p-stable random variables. The corresponding subspace of L,
can then be embedded into £} if the random variables (elements of L;) constructed in the
previous space are bounded in L, norm. This is the content of the following claim.

Claim 4.4.14 (Schechtman [Sch87], Proposition 4). Let ¢ > 0 and ) be an efficiently samplable
probability space and let V be an n-dimensional subspace of Ly(CY), such that

M = sup {|[flle. | Ifl, SLFEV} < oo

Then there exists a polynomial time samplable distribution D over linear operators T : Ly(Q)) —
R™ for m = C(e,q) - n - M7 such that with probability 1 — o(1), we have that for every f € V,
ITflley = (L Ee) - (I fllL,.

Proof Sketch: The linear operator is simply defined by sampling x1,...,x; ~ () inde-
pendently, and taking

Tf = e (fGa) o fG) V-

The proof then follows by concentration bounds for L.-bounded random variables, and
a union bound over an epsilon net for the space V. g
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The problem then reduces to constructing an embedding of £}, into L, which is bounded
in Lo norm. While a simple embedding can be constructed using p-stable distributions,
Schechtman uses a clever reweighting argument to control the Lo, norm. We show below
that a simple truncation argument can also be used to obtain a somewhat crude bound on
the Lo norm, which suffices for our purposes and yields an easily samplable distribution.

We collect below the relevant facts about p-stable random variables needed for our
argument, which can be found in many well-known references, including [Ind06, AK06].

Fact 4.4.15. For all p € (0,2), there exist (normalized) p-stable random variables Z satisfying
the following properties:

1. For Zy,...,Z, iid copies of Z, and for all a € R", the random variable

al.Z1+...+an.Zn

S =
alle,

4

has distribution identical to Z.

2. Forall g < p, we have
1/
Cpq == IZll, = (E[|Z]]) "7 < .
3. There exists a constant Cy such that for all t > 0,

C
Pl|Z| >t < T”

4. Z can be sampled by choosing 6 €g [—mt/2,71/2], r €r [0,1], and taking

_ sin(pf) . (Cos((l —7) .9))(1—P)/P
(cos(0))/P In(1/7) '

We now define an embedding of £}, into L, with bounded Le,, using truncated p-stable
random variables. Let Z = (Z;,...,Z,) be a vector of iid p-stable random variables as
above, and let B be a parameter to be chosen later. We consider the random variables

AMZ) == Lziep) z)>py and Y = (1-A(Z))-Z = Lyyien |z/<B} " Z-
For all 2 € R", we define the (linear) embedding

(a,Y) (a,Z)

pla) = =L = W2 p(z).
CM Cp,q

(a,Z)
Cpa

By the properties of p-stable distributions, we know that [|(a, Z) /Cp,4l|1, = ||a|,, for all
a € R". By the following claim, we can choose B so that the second term only introduces
a small error.
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Claim 4.4.16. For all € > 0, there exists B = Op,q,g(nl/ P) such that for the embedding ¢ defined
above

le(@lle, = llalle,| < e lalls, -

Proof. By triangle inequality, it suffices to bound ||A(Z) - (a, Z)||, by - Cpq - [|a|¢,. Let
0 > 0 be such that (1+)-q < p. Using the fact that A(Z) is Boolean and Holder’s
inequality, we observe that

18(Z) (@, 2) 1, = (E[l{a2)["-8Z)])""
< (]E[ 5, 7) |10+ ]) 1/(g(1+9) (E [A(2)])% @0+9)

= Cp sy llalle, - (P[3i € [n] |Z;] > B])*/ 10+

C,\ o/ 1+9)
< Cp 140 - llalle, - <” . ﬁ)

Thus, choosing B = O, ,,(n!/?) such that

Cp(1+6)g . (n- CP>5/(4(1+5)) -

CPJI ﬁ

€
proves the claim. n

Using the value of B as above, we now observe a bound on ||¢(a)||r.,.

Claim 4.4.17. Let B = O, q(n'/P) be chosen as above. Then, we have that

M = sup { (@, V). | 4@, V)L, 1} = Oepg(n).

Proof. By the choice of B, we have that | {(a,Y)[|r, > (1 —¢€)[al|s,- Thus, we can assume
that [[a[|,, < 2. Holder’s inequality then gives for all such 4,

[{a, V)| < llalle, - [Ylles
< n'7V7 |, - B
<2.n"VpP.B = Og,pq(n),
which proves the claim. m

Using the above bound on M in Claim 4.4.14 gives a bound of m = Ogp,q(n7™!) =
Og,p,q(n%). Moreover, the distribution over embeddings is efficiently samplable, since it
obtained by truncating p-stable random variables. This completes the proof of Theo-
rem 4.4.12.
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4.5 Dictatorship Test

First we prove an implication of Berry-Esséen estimate for fractional moments (similar to
Lemma 3.3 of [GRSW16], see also [KNS10]).

Lemma 4.5.1. There exist universal constants c > 0and dg > 0 such that the following statement
is true. If Xy, - - , Xy, are bounded mdependent random variables with | X;| < 1, E[X;] = 0 for

i € [n],and Zle (1] E[X?] =1, Yic[n E[|Xi °] < 6 for some 0 < & < &y, then for every p > 1:

<]E

Now we state and prove the main lemma of this section:

n p

Y X

j=1

NI

)’7 <Yp- (1+c<5 (log (1/5)) >

Lemma 4.5.2. Let f : {£1}R — R be a linear function for some positive integer R € N and
f : [R] = R be its linear Fourier coefficients defined by

fi) = [xif (x)] -

xe{:l:l}R

Forall € > 0, there exists 6 > 0 such that if || f||L, > (7r + s)||j?||g2 then ||]?||g4 > 5||f||42for all
1<r<2

Proof. We will prove this lemma by the method of contradiction. Let us assume || f]| , <
Il ¢,, for J to be fixed later.

Let us define y; := HJJ;(\F) . Then, for all x € {—1,1}R,
&)

o = S
8lx): ie%]xl 4 £ 1le,

Let Z; = x; - y; be the random variable when x; is independently uniformly randomly
chosen from {—1,1}. Now

Y E[7] - ezf

ie[n] ]? ]
fol . Jfof Jfo]
< V@ FOl [fO] 1713,
Le[arl=1 i R e SR S

where the penultimate inequality follows from Cauchy-Schwarz ineqality.



Hence, by applying Lemma 4.5.1 on the random variables Z;, - - - , Z,, we get:

WAl _ o — G
7., 8l (1B s

1
= E Z;
("E{“}” [ 5 ] )
2 1\’
<9 | 1+co | log 5

- i Ve — Ve
We choose 6 > 0 small enough (since 1 < r < 2, setting § < — Gor/73log Z) — min(aolog ¥)

suffices) so that 6?(log })" < o For this choise of 4, we get: |||, < (71r+e¢) 1£1le, —a
contradiction. And hence the proof follows. n

Finally we prove Lemma 4.5.1:

Proof of Lemma 4.5.1: The proof is almost similar to that of Lemma 2.1 of [KNS10]. From
Berry-Esséen theorem (see [vB72] for the constant), we get that:

n

Y Xi

i=1

n
P >ul <Plg| > ul+2) B |[XI*] <Pl > u] +24,

i=1

for every u > 0 and where g ~ N (0,1). By Hoeffding’s lemma,

< 2e_2'f2

Y Xi| >t

ie[n]

p

for every t > 0. Combining the above observations, we get:
n
L Xi

n o0
Y Xi| | = / puP 1P
i=1 0 i—1
@ (o]
< / puP 1P [|g| > u) du + 25aP + 2/ Pup_le_2”2du
0 a

/2 ra 2 o 1
— — / upe—uz/Zdu + 25aP + ;_91 / Z%*lefzdz
7T Jo L 242

2 L +
:fy,;j— ;/ﬂ ubfe /zdu—|—25a”+l"<p2 a) ,

zu] du

where I'(-, -) is the upper incomplete gamma function and 4 is a large constant determined
later depending on é and p. The second term is bounded as

R Lt R S ) a2y P [ 2
/ uPe du =al" e +(p— 1)/ uP~“e du < al~'e + —2/ uPe du .
a

a a a
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aPHle— 2/2
1+a?—p *

Hence faoo uPe—"/2dy <

-1
We know, T'(p+1/2,x) — x'Te ¥ as x — co. We choose a = YTp log%. Hence there

exists &y so that for all small enough § < &y, we have T'(p+1/2,2a%) ~ 25 ap =152 < gaP
where the last inequality follows from the fact that 27129 > 1 (as p > 1). Putting all this
together, we get:

1 ) ab+le —a2/p p/2
5’”+F(p+ ) \/ = /upe /Zdu<<35ap—y/ o R, N ; c7p5(10g5> ,

where c is an absolute constant independent of a and p. This completes the proof of the
lemma. u
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Chapter 5

Algorithmic results for p— g norm

In this chapter we generalize Krivine’s Rounding algorithm for Grothendieck’s constant
to obtain improved approximation algorithms for p—q norm when p > 2 > g. Specifi-
cally we prove the following:

Theorem 5.0.1. There exists a fixed constant g < 0.00863 such that for all p > 2 > g, the
approximation ratio of the convex relaxation CP(A) is upper bounded by

1—|—€0 1 1—|—€0 1

sinh 1(1) 7% % In(1+v2) Y7

See Fig. 2.1 for a pictorial summary of the hardness and algorithmic results in various
regimes and see Fig. 2.3 for a plot comparing ours and known approximation algorithms
in the caseof p > 2 > g.

5.1 Proof overview

As discussed in Section 2.1.2, we consider Nesterov’s convex relaxation and generalize the
hyperplane rounding scheme using “Holder duals” of the Gaussian projections, instead
of taking the sign. Further as in Krivine’s rounding scheme, we apply this rounding to
a transformation of the convex relaxation’s solution. The nature of this transformation
depends on how the rounding procedure changes the correlation between two vectors.
Let u,v € RY be two unit vectors with (u,v) = p. Then, for g ~ N (0, Iy), (g, u) and
(g, v) are p-correlated Gaussian random variables. Hyperplane rounding then gives £1
valued random variables whose correlation is given by

2

b, [sgn(s1) -sgn(g2)] = - sin~!(p) .

The transformations ¢ and ¢ (to be applied to the vectors u and v) in Krivine’s scheme
are then chosen depending on the Taylor series for the sin function, which is the inverse
of function computed on the correlation. For the case of Holder-dual rounding, we prove
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the following generalization of the above identity

9-1, A PN S Ay AR A
JE [senten 7 senlee) g 1] = ol pean(1- D10 5062
where > F; denotes a hypergeometric function with the specified parameters. The proof of
the above identity combines simple tools from Hermite analysis with known integral rep-
resentations from the theory of special functions, and may be useful in other applications
of the rounding procedure.

Note that in the Grothendieck case, we have ’yp: = ’)/Z = v/2/m, and the remaining

part is simply the sin~! function. In the Krivine rounding scheme, the transformations ¢
and ¢ are chosen to satisfy (2/7) - sin™! ({(¢(u), ¥ (v))) = ¢ - (u,v), where the constant c
then governs the approximation ratio. The transformations ¢ (1) and ¢(v) taken to be of
the form ¢(u) = &5 ,a; - u®' such that

(p(u),9(v)) = c'-sin((u,0))  and  fo(u)l2= [lyp(0)] =1.

If f represents (a normalized version of) the function of p occurring in the identity above
(which is sin™! for hyperplane rounding), then the approximation ratio is governed by
the function 1 obtained by replacing every Taylor coefficient of f~! by its absolute value.
While £~ is simply the sin function (and thus # is the sinh function) in the Grothendieck
problem, no closed-form expressions are available for general p and g.

The task of understanding the approximation ratio thus reduces to the analytic task
of understanding the family of the functions / obtained for different values of p and g.
Concretely, the approximation ratio is given by the value 1/(h~1(1) - 74 7p+). At a high
level, we prove bounds on 1 ~!(1) by establishing properties of the Taylor coefficients of
the family of functions f —1 je., the family given by

{ffl | fp) :p~2F1<a1,b1;3/2;p2> , 1,01 € [0,1/2]} :

While in the cases considered earlier, the functions & are easy to determine in terms of
f ~1 via succinct formulae [Kri77, Haa81, AN04] or can be truncated after the cubic term
[NR14], neither of these are true for the family of functions we consider. Hypergeometric
functions are a rich and expressive class of functions, capturing many of the special func-
tions appearing in Mathematical Physics and various ensembles of orthogonal polynomi-
als. Due to this expressive power, the set of inverses is not well understood. In particular,
while the coefficients of f are monotone in p and g, this is not true for f 1. Moreover, the
rates of decay of the coefficients may range from inverse polynomial to super-exponential.
We analyze the coefficients of f~! using complex-analytic methods inspired by (but quite
different from) the work of Haagerup [Haa81] on bounding the complex Grothendieck
constant. The key technical challenge in our work is in arquing systematically about a family
of inverse hypergeometric functions which we address by developing methods to estimate
the values of a family of contour integrals.

While our methods only gives a bound of the form h~1(1) > sinh™1(1) /(1 + ¢9), we
believe this is an artifact of the analysis and the true bound should indeed be h~1(1) >
sinh 1 (1).
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5.2 Relation to Factorization Theory

Let X, Y be Banach spaces, and let A : X — Y be a continuous linear operator. As before,
the norm ||A||x_y is defined as

A
HAHX%Y — sup H xHY.
rex\joy 1¥lx

The operator A is said to be factorize through Hilbert space if the factorization constant of
A defined as

-||B
®d(A) := inf inf IClIx—a - By
H BC=A Al x=y
is bounded, where the infimum is taken over all Hilbert spaces H and all operators B :
H — Y and C : X — H. The factorization gap for spaces X and Y is then defined as

®(X,Y) := sup, P(A) where the supremum runs over all continuous operators A : X —
Y.

The theory of factorization of linear operators is a cornerstone of modern functional
analysis and has also found many applications outside the field (see [Pis86, AKO06] for
more information). An application to theoretical computer science was found by Tropp [Tro09]
who used the Grothendieck factorization [Gro53] to give an algorithmic version of a cel-
ebrated column subset selection result of Bourgain and Tzafriri [BT87].

As an almost immediate consequence of convex programming duality, our new algo-
rithmic results also imply some improved factorization results for (7, (7' (a similar obser-
vation was already made by Tropp [Tro09] in the special case of /7, £]" and for a slightly
different relaxation). We first state some classical factorization results, for which we will
use T»(X) and C»(X) to respectively denote the Type-2 and Cotype-2 constants of X. We
refer the interested reader to Section 3.8 for a more detailed description of factorization

theory as well as the relevant functional analysis preliminaries.

The Kwapien-Maurey [Kwa72a, Mau74] theorem states that for any pair of Banach
spaces X and Y
P(X,Y) < Tr(X) - Ca(Y).

However, Grothendieck’s result [Gro53] shows that a much better bound is possible in a
case where T,(X) is unbounded. In particular,

(leo/ 11') < Kg,

for all m,n € IN. Pisier [Pis80] showed that if X or Y satisfies the approximation property
(which is always satisfied by finite-dimensional spaces), then

(X,Y) < (2-Co(X*) - Cao(Y))

We show that the approximation ratio of Nesterov’s relaxation is in fact an upper bound
on the factorization gap for the spaces ¢}, and 7. Combined with our upper bound on the
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integrality gap, we show an improved bound on the factorization constant, i.e., for any
p>2>gand m,n € N, we have that for X = E’;,Y = 621

1+ ¢p
sinh (1)
where g9 < 0.00863 as before. This improves on Pisier’s bound for all p > 2 > g, and for
certain ranges of (p, q) it also improves upon K¢ and the bound of Kwapien-Maurey.

O(X,Y) <

(G(XT) - Ga(Y))

5.3 Approximability and Factorizability

Let (X,) and (Y;,) be sequences of Banach spaces such that X, is over the vector space
R" and Y;, is over the vector space R™. We shall say a pair of sequences ((Xy), (Y))
factorize if ®(X,, ;) is bounded by a constant independent of m and n. Similarly, we
shall say a pair of families ((Xy), (Yn)) are computationally approximable if there exists
a polynomial R(m, n), such that for every m,n € IN, there is an algorithm with runtime
R(m,n) approximating ||A|x,—y, within a constant independent of m and n (given an
oracle for computing the norms of vectors and a separation oracle for the unit balls of the
norms). We consider the natural question of characterizing the families of norms that are
approximable and their connection to factorizability and Cotype.

The pairs (p,q) for which (£3, (i) is known (resp. not known) to factorize, are pre-
cisely those pairs (p,q) which are known to be computationally approximable (resp.
inapproximable assuming hardness conjectures like P # NP and ETH). Moreover the
Hilbertian case which trivially satisfies factorizability, is also known to be computation-
ally approximable (with approximation factor 1).

It is tempting to ask whether the set of computationally approximable pairs includes
the set of factorizable pairs or the pairs for which X7, Y}, have bounded (independent of
m,n) Cotype-2 constant. Further yet, is there a connection between the approximation
factor and the factorization constant, or approximation factor and Cotype-2 constants (of
X}, and Y3;)? Our work gives some modest additional evidence towards such conjectures.
Such a result would give credibility to the appealing intuitive idea of the approximation
factor being dependent on the “distance” to a Hilbert space.

5.4 Notation

For p > 2 > g > 1, we will use the following notation: a := p* —1land b := g — 1. We
note thata, b € [0,1].

For an m x n matrix M (or vector, when n = 1). For a scalar function f, we define
fIM] to be the matrix with entries defined as (f[M]);; = f(M;;) fori € [m],j € [n]. For
vectors u,v € RY, we denote byuov e R! the entry-wise/Hadamard product of # and v.
We denote the concatenation of two vectors u and v by u @ v.

For a function f(T) = Y40 fi - T° defined as a power series, we denote by abs (f), the
function abs (f) (T) := Li=o |fi] - T
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5.5 Analyzing the Approximation Ratio via Rounding

We will show that CP(A) is a good approximation to ||Al[,—, by using an appropriate
generalization of Krivine’s rounding procedure. Before stating the generalized procedure,
we shall give a more detailed summary of Krivine’s procedure.

5.5.1 Krivine’s Rounding Procedure

Krivine’s procedure centers around the classical random hyperplane rounding. In this
context, we define the random hyperplane rounding procedure on an input pair of matri-
ces U € R™*, V € R"*! as outputting the vectors sgn[Ug] and sgn[Vg] where g € R’ is
a vector with i.i.d. standard Gaussian coordinates (f[v] denotes entry-wise application of
a scalar function f to a vector v. We use the same convention for matrices.). The so-called
Grothendieck identity states that for vectors u,v € RY,

EEEPI
E [sgn(g, u) - sgn(g,v)] = %

where i denotes u/||u[|2. This implies the following equality which we will call the hy-
perplane rounding identity:

in[avT
E [sgnlUg)sgnlvg)T] = 07V 1)

where for a matrix U, we use U to denote the matrix obtained by replacing the rows of U
by the corresponding unit (in ¢, norm) vectors. Krivine’s main observation is that for any
matrices U, V, there exist matrices ¢(U), (V) with unit vectors as rows, such that

~

() (V)T = sin[(7r/2) - c- UVT]

where ¢ = sinh™!(1) - 2/7. Taking U, V to be the optimal solution to CP(A), it follows
that

| Al = (A E [sgnlp(T) g] (sgn[(V)g])'] ) = (A,c-UVT) = c- CP(A).

The proof of Krivine’s observation follows from simulating the Taylor series of a scalar
function using inner products. We will now describe this more concretely.

Observation 5.5.1 (Krivine). Let f : [—1,1] — R be a scalar function satisfying f(p) =

Y k=1 fx 0F for an absolutely convergent series (fi). Let abs (f) (0) := Yis1 |fi| ¥ and further
for vectors u,v € RY of lo-length at most 1, let

SL(f,u) = (sgn(fi) Vi - 1) ® (sgn(f2) Vo u™?) @ (sgn(f3)V/fo - u™) @+
SR(f,Z)) = (\/ﬁ'v)@(\/JTZ’U@Q)@(\/E'U@?))@'--
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Then for any U € R™*!, V € R"™¢, S/ (f, VEF ) and Sg(f, NETE V) have {-unit vectors
as rows, and R R R

St(f,\/Cr-U) Sr(f, \/er - V) = fleg-UVT]
where S (f, W) for a matrix W, is applied to row-wise and c¢ := (abs (F)"H(1).

Proof. Using the facts (y' ® y?, > @ y*) = (y',y®) - (y*,y*) and
Wer,yPoyt) =) + i, y*), we have

- (SL(f,u), Sk(f,0)) = f({u,0))
- 1SL(f )12 = yfabs (f) (ul)3)

- 18R (£, 0)ll = \/abs (£) ([lo]3)

The claim follows. [ |

Before stating our full rounding procedure, we first discuss a natural generalization
of random hyperplane rounding, and much like in Krivine’s case this will guide the final
procedure.

5.5.2 Generalizing Random Hyperplane Rounding — Hélder Dual Round-
ing

Fix any convex bodies B; C R” and B, C RF. Suppose that we would like a strategy that
for given vectors y € R™, x € R", outputs j € By, ¥ € By so that yTAx = (A,yx") is
close to (A,yx!) for all A. A natural strategy is to take

(y,x) :== argmax <?5€T Y xT> = | argmax (y,y) , argmax (X, x)
(yvrf)eB1XBZ ?631 X€B;

In the special case where B is the unit /,, ball, there is a closed form for an optimal solution

to maxzcg (X, x), given by ‘I’p*(x)/HxHZ:A, where ¥, (x) := sgn[x] o |[x]|P"~1. Note that

for p = oo, this strategy recovers the random hyperplane rounding procedure. We shall

call this procedure, Gaussian Holder Dual Rounding or Holder Dual Rounding for short.

Just like earlier, we will first understand the effect of Holder Dual Rounding on a solu-
tion pair U, V. For p € [—1,1], let g ~p g2 denote p-correlated standard Gaussians, i.e.,

g1 = p g ++/1—p?gs where (g2,83) ~ N(0,I), and let

fab(0) = o, &

: [san(en)lzl sgn(ea) gl

We will work towards a better understanding of ﬁ,b(-) in later sections. For now note
that we have for vectors u,v € RY,

E [sgn(s,u) [(g,u)|" - sgnig, o) |(g, o) = llull5- [olls- fo,o((@,5)).
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Thus given matrices U, V, we obtain the following generalization of the hyperplane round-
ing identity for Holder Dual Rounding :

E [%,((Ug)) % (Ve])"] = Dyuy, [TV Dy - 62

5.5.3 Generalized Krivine Transformation and the Full Rounding Pro-
cedure

We are finally ready to state the generalized version of Krivine’s algorithm. At a high
level the algorithm simply applies Holder Dual Rounding to a transformed version of the
optimal convex program solution pair U, V. Analogous to Krivine’s algorithm, the trans-
formation is a type of “inverse” of Eq. (5.2).

(Inversion 1) Let (U, V) be the optimal solution to CP(A), and let (ui)ig[m] and (v/) jeln]
respectively denote the rows of U and V.

(Inversion 2) Letc,; := (abs (f;))_l(l) and let

a

P(U) = Dyyigy, .,y Stlaprv/eap - U),
9(V) = Duyey Sk VEa - V).
(Holder-Dual 1) Let g ~ N(0,1) be an infinite dimensional i.i.d. Gaussian vector.

(Holder-Dual 2) Return y := ¥y (¢(U) g)/[lp(U) g[|§ and x := ¥, (¥(V) 8) / [ (V) glI5--

Remark 5.5.2. Note that |¥,(X)||,+ = ||x||7~! and so the returned solution pair always lie on
the unit £y« and £, spheres respectively.

Remark 5.5.3. Like in [ANO4] the procedure above can be made algorithmic by observing that
there always exist @' (U) € R™"+1) gud ¢/ (V) € R™ ("+1) whose rows have the exact same

lengths and pairwise inner products as those of ¢(U) and (V') above. Moreover they can be
computed without explicitly computing ¢ (U) and (V') by obtaining the Gram decomposition of

abs (1) leap- VY] Fob(lcqp-TVT))
foaeap-VAT])  abs (o)) leap- VY]

and normalizing the rows of the decomposition according to the definition of ¢(-) and ¢(-) above.
The entries of M can be computed in polynomial time with exponentially (in m and n) good

accuracy by implementing the Taylor series of f;_; upto poly(m, n) terms (Taylor series inversion
can be done upto k terms in time poly(k)).

Remark 5.5.4. Note that the 2-norm of the i-th row (resp. j-th row) of @(U) (resp. P(V)) is
17" Cresp. o7 ]13"*).

M =

We commence the analysis by defining some convenient normalized functions and
we will also show that ¢, ;, above is well-defined.
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5.5.4 Auxiliary Functions

Let fp,4(p) := ﬁ,q(p)/('yg* 'yZ), Ea,b := abs (fa’;>, and h, j, := abs <fa_;> Also note
that by (0) = b (0)/ (7he vd)-

Well Definedness. By Lemma 5.7.7, f aj; (p) and h, ,(p) are well defined for p € [—-1,1].

By (M1) in Corollary 5.6.19, j?;_l = land hence i1, ,(1) > 1and h, ,(—1) < —1. Combin-
ing this with the fact that /1, ;(p) is continuous and strictly increasing on [—1, 1], implies
that i} (x) is well defined on [—1,1].

We can now proceed with the analysis.

5.5.5 1/(h, (1) - 7p7,) Bound on Approximation Factor

For any vector random variable X in a universe (), and scalar valued functions f; : O — R
and f; : QO — (0,00). Let A = E[f1(X)]/E[f2(X)]. Now we have

max fi(x) = A (%) = E[A(X) = A+ H(X)] =0
5 maxfi(x)/fa(x) 2 A =B [f(X)] /E [L(X)]

Thus we have

1Ay > E[(A, %(p(U)g) % (p(V)8)")] (A E[¥,(p(U)g) ¥y ($(V)8)T])
P = B[ Y (W) 8)lly - ¥ (0 (V) )]~ Ell¥% (W) g)llg - ¥ (V) 8)[I,] "

which allows us to consider the numerator and denominator separately. We begin by
proving the equality that the above algorithm was designed to satisfy:

Lemma 5.5.5. E[¥,(¢(U) g) ¥, (¥(V) g)T] = cyp- (UVT)

Proof.

E [%(o(U)g) ¥ (¥(V)g)]
= D(uin)sep  Jab (ISLUF b v/ - U) - SR (f /G- V)']) - Doy
(by Eq. (5.2) and Remark 5.5.4)
= D(if)ep " fob (Fap (€ap - UVTD]) - Doy
(by Observation 5.5.1)
_ ) Bavdl .
= Dl icpm  Cab UV Djoilly)
= cop-UVT [ |

jeln]

j€ln]
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It remains to upper bound the denominator which we do using a straightforward
convexity argument.

Lemma 5.5.6. E[||o(U) gllg - l¥(V) gl3:] < 75- 75 -

Proof.
E |lo(u)gll; - 1v(V) gl
- o1 1 1
< E[llp)gllf "]V E [lyp(v) glly] 7 G =1)

= E[lp@glf] " - E [lo(V)gl}: |7
1

r /9" 1/p
= | L B[NV, |u11/b)|q]] - [Z E |V (0, [o/]13/") P*]] (By Remark 5.5.4)
]

ze[nﬂ j€[n]
1/q9* 1/p
/b inp*/ /9" p*/
= Z 113 ] - [Z [ I A
i€ [m] j€ln]

- 1/q9* 1/p
= | X Il A X MEL
j€[n]

i€ [m]

= ’)’q Vo (feasibility of U, V) n

We are now ready to prove our approximation guarantee.

Lemma 5.5.7. Consider any1 < g <2 < p < 0. Then,

CP(A) B
Al e = V(1T (1)
Proof.
1] (A E[¥(o(U) g) ¥ (9(V) 8)"])
1 2 B p(0 gl - ¥ (907) 1]
_ (AE[(p(U) g) ¥y (9(V) 8))) emar
= EllpWel} - Tv(v) gl (by Remark 5.5.2)
_ Cab - </4, LIL7T> _—
~ Elle@)glly- Tw(v) gli.] (by Lemma 5.5.5)
- ob L) imali
~ Elll) g} w(v)gls.] (by optimality of U, V')
z M (by Lemma 5.5.6)

b
Tpr Vg
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i, 3(1) - CP(A)
Ty Vg
= I, 5(1) -7 74 - CP(A) .

We next begin the primary technical undertaking of this chapter, namely proving
upper bounds on h;}] (1).

5.6 Hypergeometric Representation of f, ,(x)

In this section, we show that f, ;(p) can be represented using the Gaussian hypergeomet-
ric function ,F;. The result of this section can be thought of as a generalization of the
so-called Grothendieck identity for hyperplane rounding which simply states that

7T

foolp) = 5 -, E_ [sen(g1)sgn(g2)] = sin™ (o)

We believe the result of this section and its proof technique to be of independent inter-
est in analyzing generalizations of hyperplane rounding to convex bodies other than the
hypercube.

Recall that £, ,(p) is defined as follows:

E [Sgn(gl)lgﬂ“Sgn(82)|gl|b
81~p 82

where s = p* —1and b = g — 1. Our starting point is the simple observation that the
above expectation can be viewed as the noise correlation (under the Gaussian measure)

of the functions f (@ (1) := sgnt- |7|? and f ) (1) := sgnt - |7|’. Elementary Hermite
analysis then implies that it suffices to understand the Hermite coefficients of f(*) and
£ individually, in order to understand the Taylor coefficients of f, . To understand the

Hermite coefficients of f (*) and f () individually, we use a generating function approach.
More specifically, we derive an integral representation for the generating function of the
(appropriately normalized) Hermite coefficients which fortunately turns out to be closely
related to a well studied special function called the parabolic cylinder function.

Before proceeding, we require some preliminaries.

5.6.1 Hermite Analysis Preliminaries

Let o denote the standard Gaussian probability distribution. For this section (and only
for this section), the (Gaussian) inner product for functions f,h € (R,y) — R is defined
as

(f,h>i=/Rf(T)~h(T)d7(T)— E [f(7)-h(7)].

N T~N(0,1)

Under this inner product there is a complete set of orthonormal polynomials (Hy)ien
defined below.

57



Definition 5.6.1. For a natural number k, then the k-th Hermite polynomial Hy : R — R

Any function f satisfying [ |f(7)|>dy(t) < oo has a Hermite expansion given by f =
Y=o fx - H where fi = (f Hy).

We have

Fact 5.6.2. Hy(7) is an even (resp. odd) function when k is even (resp. odd).

We also have the Plancherel Identity (as Hermite polynomials form an orthonormal
basis):

Fact 5.6.3. For two real valued functions f and h with Hermite coefficients ﬁ( and Ty, respectively,
we have: o
(fol) =} fie-huc.
k>0

The generating function of appropriately normalized Hermite polynomials satisfies
the following identity:

k
TA—A%/2 ) A
e = k§>0 H(71) Nk (5.3)

Similar to the noise operator in Fourier analysis, we define the corresponding noise
operator T, for Hermite analysis:

Definition 5.6.4. For p € [—1,1] and a real valued function f, we define the function T, f as:
T, = : 1—p%-0)dy(0)= E N .
1) = [ f (p-m+y1=020) drie) = _E_[7(7)]

Again similar to the case of Fourier analysis, the Hermite coefficients admit the fol-
lowing identity:

Fact 5.6.5. @k = ok ]?k

We recall that the f, ,(0) = Eg ~pg, [f@(gy) - f)(gy))], where f()(1) := sgn(T) -
7| for ¢ € {a,b}. As mentioned at the start of the section, we now note that f; ,(p) is the

noise correlation of f (@ and f(%). Thus we can relate the Taylor coefficients of f, ,(p), to
the Hermite coefficients of f () and f (t).

Claim 5.6.6 (Coefficients of f, ,(p)). For p € [~1,1], we have:

> > (b
Fonlp) = kzop”‘“ AR A
>

where j?l.(“) and j?].(b) are the i-th and j-th Hermite coefficients of f®) and f(), respectively.
Moreover, j?y({“) = fz,((b) = 0fork > 0.
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Proof. We observe that both fv(“) and f(b) are odd functions and hence Fact 5.6.2 implies
that ]?2,(;1) = fm({b) = 0forallk > 0-as f (@ (1) - Hy(7) is an odd function of .

forl) = E_[F(g1) FV(g2)]

81~P 82
=E |f“(g1) - T, f"(g1)] (Definition 5.6.4)
1
_ (F@,T, 7
=) J?k(a) (T f(b))k (Fact 5.6.3)
0
- k>zof2'(i)1 (Tp f(b))ZkH
_ 7 (a ~(b
=Y o2 (Fact5.6.5) . n
0

5.6.2 Hermite Coefficients of f(?) and f(*) via Parabolic Cylinder Func-
tions

In this subsection, we use the generating function of Hermite polynomials to to obtain an
integral representation for the generating function of the (v/k! normalized) odd Hermite

coefficients of f(?) (and similarly of f(?)) is closely related to a special function called
the parabolic cylinder function. We then use known facts about the relation between
parabolic cylinder functions and confluent hypergeometric functions, to show that the

Hermite coefficients of f(¢) can be obtained from the Taylor coefficients of a confluent
hypergeometric function.

Before we state and prove the main results of this subsection we need some prelimi-
naries:

Gamma, Hypergeometric and Parabolic Cylinder Function Preliminaries

For a natural number k and a real number 7, we denote the rising factorial as (7); :=
T-(t+1)---- (t+k—1). We now define the following fairly general classes of functions
and we later use them we obtain a Taylor series representation of f, (7).

Definition 5.6.7. The confluent hypergeometric function with parameters «, 3, and A as:

R e I
1F1(a,ﬁ,A)._;(ﬁ)k R

The (Gaussian) hypergeometric function is defined as follows:

Definition 5.6.8. The hypergeometric function with parameters w, «, B and A as:

oFi(w,a;B;A) = ;% %T
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Next we define the I" function:

Definition 5.6.9. For a real number T, we define:

The I function has the following property:

Fact 5.6.10 (Duplication Formula).

rr) T(t+1/2)
T(t) 22t/

We also note the relationship between I" and +,:

Fact 5.6.11. Forr € [0, c0),

272 (147
= E M = -T :
v E (sl = 221 ()

2
Proof.
V2 [ 2
IE r :_/ r, —g/Zd
gNN(OJ)UgH NG I8l e dg
2 B o | g2 ((r—1)/2 e
— ;.zw 1>/2./0 % e ¥ g dg

r/2
NG 2

Next, we record some facts about parabolic cylinder functions:
Fact 5.6.12 (12.5.1 of [Loz03]). Let U be the function defined as

2
e /4

U(a,A) := /oo a=1/2 o= (A2 gy
) 0

F(%thx

for all & such that R(a) > —% . The function U(«, £A) is a parabolic cylinder function and is a
standard solution to the differential equation: ‘flzT%’ — <%2 + lX) w = 0.

Next we quote the confluent hypergeometric representation of the parabolic cylinder
function U defined above:
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Fact 5.6.13 (12.4.1,12.2.6,12.2.7,12.7.12, and 12.7.13 of [L0z03]).

B VT A2/4 1 11 A2
u(a,A)_Za/Z—Fl/ﬁl,l"(%_i_%) -e -1P1 —§a+1, E,—?
3 3 A2
ou/2-1/4 . T (}I + %> 2 4’2" 2
Combining the previous two facts, we get the following;:
Corollary 5.6.14. For all real & > —%, we have:
T (L
/ pa—1/2 o —(HA?/2 31 \/El"(2+zx> - _§+1.1._/\_2
20/2+1/4.T (3 4 &) 2 4727 2
\/E -T <% + 0() o /\2

3 3
— AR —=4+—-, =z, —= | .
2a/2f1/4.r(411+%> 11( 2+4 2 2)

Generating Function of Hermite Coefficients and its Confluent Hypergeometric Rep-
resentation

Using the generating function of (appropriately normalized) Hermite polynomials, we
derive an integral representation for the generating function of the (appropriately nor-

malized) Hermite coefficients of f(“) (and similarly f(b )

Lemma 5.6.15. For ¢ € {a,b}, let ﬁ{(c) denote the k-th Hermite coefficient of f (1) :=
sgn (T) - |T|¢. Then we have the following identity:

A2k+1

-~

kg‘“/ﬂurl ! 1 \/_/ ;

Proof. We observe that for, f(c) is an odd function and hence Fact 5.6.2 implies that
FO(1) - Hy(7) is an odd function and f () (1) - Hyi,1(7) is an even function. This implies
for any k > 0, that f;]((c) = 0and

~ 1 [e) ) > o L
f21(<6421:E/wsgn(T)'Tc'szH(T)-e T/ZdT: /E/O TC'H2k+1(T)'e T/ZdT'

Thus we have

(T=A)?/2 _ o= (T+A)?/ )dr

/\2k+1 f )

[ )y / T e”T/2 Hy (1) . dt
T k=0 70 (2k+1)
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) S ) /\2k+1
=, /Z. / €. T /2 Z I3 0B € o e —; | (see below)
0

T k>0 (2k+1)!
- _\% /0 N RS S RO I T (by Eq. (5.3))
— \/% . /Oo TC . (e_(T_/\)Z/Z _ e-(T—'—/\)Z/Z) dT

T Jo

where the exchange of summation and integral in the second equality follows by Fu-
bini’s theorem. We include this routine verification for the sake of completeness. As a
consequence of Fubini’s theorem, if (fx : R — R) is a sequence of functions such that

Yis0 Jo 1fil < oo, then Yyso [5~ fe = fo k>0 fi - Now for any fixed k, we have
00 00 1/2 00 1/2
[ i < ([Enm) - ([Csokam) <<,

Setting fi(T) := T¢- e /2. Hyey1 (1) - A%/ /(2k + 1)! , we get that Yoo Jo il < 0.
This completes the proof. n

Finally using known results about parabolic cylinder functions, we are able to re-
late the aforementioned integral representation to a confluent hypergeometric function
(whose Taylor coefficients are known).

Lemma 5.6.16. For A € [—1,1] and real valued ¢ > —1, we have

L [® o —(r=A2/2  —(1+A)2)2 el l—c 3 A
m/{)r(e e >dT—’)/C+1)\1F1 K 5

Proof. We prove this by using the Corollary 5.6.14 with a = ¢ + 3. We note thata > —3
and 15 (-, =A%/ 2) is an even function of A. So combining the two, we get:

\/2n'2c/2 r(% 2
F(5+3 1-c 3 A2
— o1-9)/2, 23\/;> A F (TC;E;_?) (by Fact 5.6.10)
1-— A?
= 'yiﬂ-?t-ﬂ%( zc;g;_?) (by Fact5.6.11) H

5.6.3 Taylor Coefficients of ﬁ, »(x) and Hypergeometric Representation

By Claim 5.6.6, we are left with understanding the function whose power series is given
by a weighted coefficient-wise product of a certain pair of confluent hypergeometric func-
tions. This turns out to be precisely the Gaussian hypergeometric function, as we will see
below.
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Observation 5.6.17. Let f := [t¥]1Fy(a1,3/2,7) and by := [t¥] 1 F1(b1,3/2,7). Further let
g = fr - hg - (2k +1)1/4K. Then for p € [-1,1],

Y w0 = 2Fi(a1,b1;3/2;0).
k>0

Proof. The claim is equivalent to showing that px = (a1)x (b1)x/((3/2)k!). Since we
have fi = (a1)x/((3/2)xk!) and hy = (b1)x/((3/2)x k!), it is sufficient to show that (2k +
1)!/4% = (3/2) - k!. Indeed we have,

(2k+1)!=2F-k1-1-3.5---(2k+1)

We are finally equipped to put everything together.
Theorem 5.6.18. Forany a,b € (—1,00) and p € [—1, 1], we have

B 1 . ] l-al1-b 3 ,
furle) = e By senenle"swn(e)len”] = poah (50500500

It follows that the (2k + 1)-th Taylor coefficient of f, ,(p) is
((1—a)/2)x (1 —b)/2);
((3/2)x k) '

Proof. The claim follows by combining Claim 5.6.6, Lemmas 5.6.15 and 5.6.16, and Obser-
vation 5.6.17. |

This hypergeometric representation immediately yields some non-trivial coefficient
and monotonicity properties:

Corollary 5.6.19. For any a,b € [0, 1], the function f, j, : [—1,1] — R satisfies

(M1) [p] fo,p(p) =1 and [0%] fo,5(0) = (1—a)(1-D)/6.
(M2) All Taylor coefficients are non-negative. Thus f, ;(p) is increasing on [—1,1].

(M3) All Taylor coefficients are decreasing in a and in b. Thus for any fixed p € [—1,1], f, ,(p)
is decreasing in a and in b.

(M4) Note that f, ,(0) = 0 and by (M1) and (M2), f, (1) > 1. By continuity, f, ,([0,1])
contains [0,1]. Combining this with (M3) implies that for any fixed p € [0,1], f. ;(p) is
increasing in a and in b. ,
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5.7 sinh '(1)/(1+¢y) Bound on ha_}?(l)

In this section we show that p = o0, q = 1 (the Grothendieck case) is roughly the extremal
case for the value of h;}q(l), i.e.,, we show that forany 1 < g <2 < p < oo, ha_}?(l) >
sinh ™1 (1)/(1+ €) (recall that hy, HOES sinh~(1)). While we were unable to establish as
much, we conjecture that ha_i(l) > sinh~!(1). Section 5.7.1 details some of the challenges

involved in establishing that sinh~!(1) is the worst case, and presents our approach to
establish an approximate bound, which will be formally proved in Section 5.7.2.

5.7.1 Behavior of The Coefficients of fa_; (2).

Krivine’s upper bound on the real Grothendieck constant, Haagerup’s upper bound [Haa81]
on the complex Grothendieck constant and the work of Naor and Regev [NR14, BAOFV14]
on the optimality of Krivine schemes are all closely related to our work in that each of
the aforementioned papers needs to lower bound (abs (f~1))~!(1) for an appropriate
odd function f (the work of Briet et al. [BAOFV14] on the rank-constrained Grothendieck
problem is also a generalization of Krivine’s and Haagerup’s work, however they did
not derive a closed form upper bound on (abs (f~1)) (1) in their setting). In Krivine’s
setting f = sin™! x, implying (abs (f1))"! = sinh ™! and hence the bound is immedi-
ate. In our setting, as well as in [Haa81] and [NR14, BAOFV14], f is given by its Taylor
coefficients and is not known to have a closed form. In [NR14], all coefficients of f -1
subsequent to the third are negligible and so one doesn’t incur much loss by assuming
that abs (f~1) (p) = c1p + c30°. In [Haa81], the coefficient of p in f~1(p) is 1 and ev-
ery subsequent coefficient is negative, which implies that abs (1) (p) = 20 — f~1(p).
Note that if the odd coefficients of f~! are alternating in sign like in Krivine’s setting,
thenabs (f1) (p) = —i- f~!(ip). These structural properties of the coefficients help their
analyses.

In our setting there does not appear to be such a strong relation between (abs (f 1))
and f~!. Consider f(p) = fs4(p). For certain a € (0,1), the sign pattern of the coeffi-
cients of f~! is unlike that of [Haa81] or sinp. In fact empirical results suggest that the
odd coefficients of f alternate in sign up to some term K = K(a), and subsequently the co-
efficients are all non-positive (where K(a) — oo as a — 0), i.e., the sign pattern appears to
be interpolating between that of sin p and that of f ~1(p) in the case of Haagerup [Haa81].

Another source of difficulty is that for a fixed a, the coefficients of f~! (with and
without magnitude) are not necessarily monotone in k, and moreover for a fixed k, the
k-th coefficient of f~! is not necessarily monotone in 4.

A key part of our approach is noting that certain milder assumptions on the coeffi-
cients are sufficient to show that sinh ' (1) is the worst case. The proof crucially uses the
monotonicity of f; ,(p) in a and b. The conditions are as follows:

Let f. 1= [0"] fa_l} (p). Then
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(C1) f, ' < 1/k! if k (mod 4) = 1.
(C2) f, 1 <0 if k (mod 4) =3.

To be more precise, we were unable to establish that the above conditions hold for all k
(however we conjecture that it is true for all k), and instead use Mathematica to verify
it for the fist few coefficients. We additionally show that the coefficients of f t;; decay
exponentially. Combining this exponential decay with a robust version of the previously

advertised claim yields that i} (1) > sinh (1) /(1 + o).
We next proceed to prove the claim that the aforementioned conditions are sufficient
to show that sinh ™! (1) is the worst case. We will need the following definition. For an

odd positive integer ¢, let
here(t,0) := ) Ify |- o

k>t

Lemma 5.7.1. If t is an odd integer such that (C1) and (C2) are satisfied for all k < t, and
p= sinh_l(l — 2N,y (t,0)) for some & > p, then h, ,(p) < 1.

Proof. We have,

ha,b(0)
= Z |fk71‘ 'Pk
k>1
=—f(0) + k;max{kallo} A
= —fp(0) + KZM max{2f,",0} - p* + Igmax{2fk‘1,0}-9" (by (C2))
k mod 4=1
< —f;g(p) + 1<Zk:t max{2f, *,0} 05+ 2o (t,0)
k mod 4=1
< —faf,}(p) +sin(p) + sinh(p) + 2hen (L, 0) (by (C1))
< —f2(p) +sin(p) + 1+ 2(herr(t,p) — herr(£,6)) (p = sinh ' (1 = 2hers (,6)))
< —f,(p) +sin(p) +1 (p<9)
< —fo0(p) +sin(p) +1 (Corollary 5.6.19 : (M4))
=1 (fo,0(p) = sin(p))

Thus we obtain,

Theorem 5.7.2. Forany1 < q <2 < p < oo, leta := p* —1,b = q— 1. Then for any
m,n € Nand A € R™", CP(A)/||Allp—q < 1/(h,3(1)-vg7vp) and moreover

- hl—,}?(l) = ha—j(l) = 1.
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- h, (1) > sinh ™' (1)/(1+€9) where e = 0.00863,

Proof. The first inequality follows from Lemma 5.5.7. As for the next item, If p = 2 or
g =2 (ie,a=1orb = 1) we are trivially done since ha_i(p) = p in that case (since for
k>1, (0)r =0). So we may assume thata,b € [0,1).

We are left with proving the final part of the claim. Now using Mathematica we verify
(exactly)! that (C1) and (C2) are true for k < 29. Now let § = sinh™'(0.974203). Then

by Lemma 5.7.7 (which states that fk_1 decays exponentially and will be proven in the
subsequent section),

6.1831 %

1. gk <

herr (31, 6) k>Z31 f - d T S 0012891
Now by Lemma 5.7.1 we know /1 } (1) > sinh™ Y(1 - 2h¢,,(31,6)). Thus,

ha_lb(le) > sinh*1(0.974202) > sinh ! (1)/(1 +¢o) for g9 = 0.00863, which completes the
proof. m

5.7.2 Bounding Inverse Coefficients

In this section we prove that f,;1 decays as 1/ck for some ¢ = c(a,b) > 1, proving
Lemma 5.7.7. Throughout this section we assume 1 < p*,qg < 2,anda =p* -1, b=g9—-1
(i-e., a,b € [0,1)). Via the power series representation, f, ,(z) can be analytically contin-
ued to the unit complex disk. Let fa_; (z) be the inverse of f, ;(z) and recall f, ! denotes
its k-th Taylor coefficient.

We begin by stating a standard identity from complex analysis that provides a conve-
nient contour integral representation of the Taylor coefficients of the inverse of a function.
We include a proof for completeness.

Lemma 5.7.3 (Inversion Formula). There exists 6 > 0, such that for any odd k,

_ 2
fil=— ( L fap(2) de) (5.4)
where C; denotes the first quadrant quarter circle of radius § with counter-clockwise orientation.

Proof. Via the power series representation, f, ,(z) can be analytically continued to the
unit complex disk. Thus by inverse function theorem for holomorphic functions, there
exists &9 € (0,1] such that f, ,(z) has an analytic inverse in the open disk |z| < . So
for § € (0,00), f1,5(Cs) is a simple closed curve with winding number 1 (where C; is
the complex circle of radius § with the usual counter-clockwise orientation). Thus by
Cauchy’s integral formula we have

—1 !
T L P T

; w = ;
27t Jf, 4(Cs) wk 2mi Jc; fa,b(z)k+1

! We generated fk_1 as a polynomial in 4 and b and maximized it over 4, b € [0, 1] using the Mathematica
“Maximize” function which is exact for polynomials.
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where the second equality follows from substituting w = f, ,(z).

Now by Fact 5.7.5, z/f, ,(z)* is holomorphic on the open set |z| € (0,1), which
contains C;. Hence by the fundamental theorem of contour integration we have

d z _ Z- fa,(2) _ 1 1
/cﬁ (fa,bcz)k) =0 e T ke Ry

So we get,
1 1
-1 _ k . o~ —k
fk - ank f{Z b( ) dz - znk\s‘(/céfﬂ,b(z) dz)

where the second equality follows since f,;1 is purely real. Lastly, we complete the proof
of the claim by using the fact that for odd k, f, ,(z) ¥ is odd and that f, ,(z) = f, ;(Z). =

We next state a standard bound on the magnitude of a contour integral that we will
use in our analysis.

Fact 5.7.4 (ML-inequality). If f is a complex valued continuous function on a contour I and
|f(z)| is bounded by M for every z € T, then

where £(T) is the length of T.

Unfortunately the integrand in Eq. (5.4) can be very large for small §, and we can-
not use the ML-inequality as is. To fix this, we modify the contour of integration (using
Cauchy’s integral theorem) so that the imaginary part of the integral vanishes when re-
stricted to the sections close to the origin, and the integrand is small in magnitude on the
sections far from the origin (thus allowing us to use the ML-inequality). To do this we
will need some preliminaries.

fa,b(z) is defined on the closed complex unit disk. The domain is analytically ex-
tended to the region C \ ((—o0, —1) U (1, 00)), using the Euler-type integral representation
of the hypergeometric function.

1-b _ b\"!
.p(z) =B (T’1+§> -1(2)
where B(t, 12) is the beta function and

. 1 (1 )b/Z dt
I(Z) = Z/O t(1+b)/2 (1 _ZZt)(l a)/2’

Fact 5.7.5. For any ay > 0, 2F; (a1, by, ¢1,z) has no non-zero roots in the region C \ (1, 00). This
implies that if p* < 2, f.,(z) has no non-zero roots in the region C \ ((—oo, —1) U (1,00)).
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Figure 5.1: The Contour P(x, ¢)
A

We are now equipped to expand the contour. Our choice of contour is inspired by
that of Haagerup [Haa81] which he used in deriving an upper bound on the complex
Grothendieck constant. The contour we choose has some differences for technical reasons
related to the region to which hypergeometric functions can be analytically extended.
The analysis is quite different from that of Haagerup since the functions in consideration
behave differently. In fact the inverse function Haagerup considers has polynomially
decaying coefficients while the class of inverse functions we consider have coefficients
that have decay between exponential and factorial.

Observation 5.7.6 (Expanding Contour). Forany « > 1and e > 0, let P(«, €) be the four-part
curve (see Fig. 5.1) given by

the line segment 6 — (1 —¢),

the line segment (1 —¢) — (v/a — e+ i/¢) (henceforth referred to as Ly ),

the arc along C; starting at (\/a — € + iy/e) and ending at in (henceforth referred to as
Cie),

the line segment i — i0.

By Cauchy’s integral theorem, combining Lemma 5.7.3 with Fact 5.7.5 yields that for odd k,

-1 _ icx + —k
£ = nkd( /, AR

We will next see that the imaginary part of our contour integral vanishes on section
of P(u, ¢). Applying ML-inequality to the remainder of the contour, combined with lower
bounds on | fjb (z)| (proved below the fold in Section 5.7.2), allows us to derive an expo-

nentially decaying upper bound on |f, /.
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Lemma 5.7.7. Forany 1 < p*,q < 2, there exists ¢ > 0 such that

6.1831
-1 R
|fk | — k(l E)k

Proof. For a contour P, we define V(P) as

V(P) := % %(/Pf;b(z)_kdz)

As is evident from the integral representation, f;b(z) is purely imaginary if z is purely
imaginary, and as is evident from the power series, f, ;(z) is purely real if z lies on the
real interval [—1, 1]. This implies that V(6 — (1 —¢)) = V(ia — id) = 0.

Now combining Fact 5.7.4 (ML-inequality) with Lemma 5.7.9 and Lemma 5.7.12 (which
state that the integrand is small in magnitude over Cgf . and L¢ ¢ respectively), we get that
for sufficiently small ¢ > 0,

[V(P(6,8))| < [V(Cgo)l +1V(Lee)]
2 3w/2 2 6-1+0(Vf)
—nk (1+4+e)k 7k (14 e)k
6.1831
~ k(1+e)k

(taking e sufficiently small) W

Lower bounds on |7, (z)| Over C,/, and L,

In this section we show that for sufficiently small ¢, | f;b (z)| > 1 over Ly, (regardless
of the value of &, Lemma 5.7.12), and over C; . when « is a sufficiently large constant
(Lemma 5.7.9).

We will first show the claim for C,/, by relating |f ; »(2)] to |z|. While the asymptotic
behavior of hypergeometric functions for |z| — co has been extensively studied (see for
instance [Loz03]), it appears that our desired estimates aren’t immediate consequences of
prior work for two reasons. Firstly, we require relatively precise estimates for moderately
large but constant |z|. Secondly, due to the expressive power of hypergeometric functions,
the estimates we derive can only be true for hypergeometric functions parameterized in a
specific range. Indeed, our proof crucially uses the fact thata, b € [0,1). Our approach is
to use the Euler-type integral representation of f;b(z) which as a reminder to the reader
is as follows:

p(2) =B (17_%’1 + g) T

where B(x, y) is the beta function and

I@%_Zétwmm.@_gﬂ@mm'
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We start by making the simple observation that the integrand of I(z) is always in the
positive complex quadrant — an observation that will come in handy multiple times in
this section, in dismissing the possibility of cancellations. This is the part of our proof that
makes the most crucial use of the assumption that 0 < a < 1 (equivalently 1 < p* < 2).

Observation 5.7.8. Let z = re® be such that either one of the following two cases is satisfied:
(A) r<land 6 = 0.

(B) 6 € (0, 7t/2].

Then forany 0 <a < landanyt € RT,

Z
arg ((1 - tZZ)(l—a)/Z

Proof. The claim is clearly true when § = 0 and r < 1. Itis also clearly true when 68 = 77 /2.
Thus we may assume 6 € (0, 77/2).

) € 10,7t/2]

arg(z) € (0,71/2) = arg(—tz%) € (—-m,0) = S(—tz*) <0
= ¥(1—tz2) <0 = arg(l—tz%) € (—m,0)

Moreover since arg(—tz%) = 20 — 7t € (—m,0), we have arg(1 — tz?) > 20 — 7r. Thus we
have,

arg(1 — tz%) € (20 — 7,0) = arg ((1 - t22)<1—a>/2) e ((1—a)(0—7/2),0)
= arg (1/(1 - tzz)(l_“)/2> € (0,(1—a)(rt/2—8))
= arg (z/(1 - tzz)(l_”)/z) € (0,(1—a)(7t/2—8) +8) C (0,7/2) m
We now show |f ;“ b(z)| is large over Cz . The main idea is to move from a complex
integral to a real integral with little loss, and then estimate the real integral. To do this,

we use Observation 5.7.8 to argue that the magnitude of I(z) is within v/2 of the integral
of the magnitude of the integrand.

Lemma 5.7.9 (|f.", (z)| is large over C,, ). Assume a,b € [0,1) and consider any z € C with
|z| > 6. Then |f,,(2)] > 1.

Proof. We start with a useful substitution.
1 1—t)b/2 4t
I(z) = z/ ( )

- 0 s(1H0)/2. (1 — e2ifg)(1-a)/2

(Subst. s = r*t, where z = re?)

oy [T wa(s,0) - (1—s/r3)2ds
=T /o S+ (6-a)/2
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where

o0
(1/s — e2i0)(1-a)/2"

wWy(s,0) :==

We next exploit the observation that the integrand is always in the positive complex
quadrant by showing that |I(z)] is at most a factor of /2 away from the integral obtained
by replacing the integrand with its magnitude.

v

>

>

1(z)]

VR(E)2+3(1(2))2

(IR(I(z))| + |S(1(2))])/ V2 (Cauchy-Schwarz)
(R(I(2)) + 3(1(2)))/ V2 (by Observation 5.7.8)

) e /2\b/2
/ (R(wa(s, 0)) + S(wa(s, 0))) - d Sli{br—z)/z =

o /p2Y\b/2
/ (IR(wq(s,0))] + |S(wa(s,0))]) - (1 Sli{br—z)/z s (by Observation 5.7.8)

(1—s/r*)/2ds
\/E/O [wa(s,0)] - S+ (b—a)/2
_b/2 (1—s/r?)b2ds
\/§ 0 (1+1/5)(1—a)/2 Sl+(b—a)/2

(ol = {loll2)

We now break the integral into two parts and analyze them separately. We start by ana-
lyzing the part that’s large when b — 0.

_/ '(1—s/r2)b/2ds
\/_ 1—|—1/S (1—a)/2 gl+(b—a)/2

b/2
S / —s/r?)"/2ds
- Sl+ (b—a)/2
- 2/2.(1 —s/r2)0/2 ds
- 2/ Sl+b a/2
> — —_— (since s < 1?/2)
= 2\/—/ JSEN| bfa/ =

v

b mm{l ri=by /7 2/2 ds

min{r’ ,rb} log(r?/2)
22
log(r//2)
V2

v
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We now analyze the part that’s large when b — 1.

_/ . (1—s/r2)b/2ds
\/_ 1 +1/S (1—a)/ sl+(b—a)/2

_ —s/r2)0/2  ds
n \/‘/ (1+45)0- a/z S(H—b)/
r? \/1—1
> /r 1+b (sinces < 1)
0 sl
B -\/1—1/1’2
N 1-b

Combining the two estimates above yields that if r > V2,

— -1 b.\/1—1/12

fr@lz B (ot ) (VD) e vI-
a, 2 2 V2 1—b

Lastly, the proof follows by using the following estimate:

Fact 5.7.10. Via Mathematica, for 0 < b < 1 we have

B(ﬂ 14 b) . (log(6/\/§) +6 V1-1/62
V2 1-b

2 2
Remark 5.7.11. The preceding proof can be used to derive the precise asymptotic behavior of
.5, (2)| in r. Specifically, it grows as r*logr if a =b andas r™>{@b} if g £ b,

) > 1.003 |

We now show that |f.",(z)| > 1 over Ly.. To do this, it is insufficient to assume that
|z| > 1 since there exist points z (for instance z = i) of unit length such that |f ()] <1

To show the claim, we observe that |fF, (z)| is large when z is close to the real line and
use the fact that L, is close to the reai line. Formally, we show that if z is of length at
least 1 and is sufficiently close to the real line, | fj (z)] is close to f;r (1). Lastly, we use
the power series representation of the hypergeometric function to obtain a sufficiently
accurate lower bound on f‘;’rb(l).

Lemma 5.7.12 ( |f.", (z)| is large over Ly ¢ ). Assumea,b € [0,1) and consider any v > 1 —¢;.
Let e := (/&1 and z := 7y(1 + ie1). Then for €1 > 0 sufficiently small, |fF, (z)] > 1.

Proof. Below the fold we will show

e b/2 g
@) > (-0Wa) [ g i 55

But we know (LHS, RHS refer to Eq. (5.5))

1-b b\
B(T'1+§> -LHS = f;rb(z) and
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1-b b\
B T'1+§ ‘RHS — f,,(1) as 1 =0

Also by Corollary 5.6.19 : (M1), M2), f,,(1) > 14+ (1 —a)(1—5b)/6 > 1. Thus for &
sufficiently small, we must have |f.7, (z)| > 1.

We now show Eq. (5.5), by comparing integrands point-wise. To do this, we will
assume the following closeness estimate that we will prove below the fold:

1+ ig; _ 1-0(e)
R((]—S(1+i51)2)(1_a)/2> o (1—8)(1_‘1)/2. (56)

We will also need the following inequality. Since 7y > 1—¢; = 1—¢3, forany 0 < s <
1 — &5, we have

(1=s/7")"%> (1-0(e2)) - (1 —5)""2. (5.7)

Given, these estimates, we can complete the proof of Eq. (5.5) as follows:

R(I(z))

_r[:[ (1—1)%2dt

B Z/o tA+0)/2. (1 — t22)(1-a)/2

72 (1 _ s/,)/Z)b/Z ds
s(146)/2 . (1 — 5(1 4 igq)2)(1-9)/2

' 1—ep (1 _ S/,),?.)b/2 ds
> b
>R | 9(1+ Z51)/0 s(H0)/2. (1 — 5(1 + igq )2)(1-0)/2

. /qu ( 1+ igy ) (1—s/7*)"2ds
0

=R |41+ isl)/o ) (subst. s « 7°t)

) (by Observation 5.7.8)

(1 —5(1 +igq)2)(1-a)/2 s(1+b)/2
1—¢p (1 _ S/,),Z)b/z ds
b
Z (1 - 0(82)) ’ '}/ /0 S(1+b)/2 . (1 _ S)(l*&l)/z (by Eq (56))
1= (1—5)"2ds
> (1-06) || Jrsm (g — sy (by Eq. (57), 7> 1~ &1)

It remains to establish Eq. (5.6), which we will do by considering the numerator and
reciprocal of the denominator separately and subsequently using the fact that R(z1zp) =
R(z1)R(z2) — $(21)S(2z2). In doing this, we need to show that the respective real parts
are large and respective imaginary parts are small for which the following simple facts
will come in handy.

Fact 5.7.13. Let z = re' be such that Rz > 0 (i.e. —7/2 < 0 < 71/2). Then forany0 < a < 1,
R(1/z%) = cos(—aB) /r* = cos(af)/r* > cos(8)/r* = R(z)/r'**

Fact 5.7.14. Let z = re " be such that Rz > 0,3z < 0 (ie. 0 < 0 < 71/2). Then for any
0<ua<l,
I(1/2%) = sin(ab) /r* < sin(0)/r* = —(z) /r1T*
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We are now ready to prove the claimed properties of the reciprocal of the denominator
from Eq. (5.6). For any 0 < s <1 — ¢ we have,

1
R
((1 —s(1+ i€1)2)(1a)/2)
1
— 2isgq)(1-a)/2

((1—5—1—88%

R 1
(1—s)d-a)/2 (14se3/(1—s) —2ier /(1 —s))1-2)/2

1
> p—
( S) 1 El /2 (1 + O(g%/g%))@*ﬂ)/‘l (by Fact 5713, and 1 S Z 82)
_ 1-0(&3/€3)
( S)(l a)/2
1-— O(Sz)
(1 —5)(1-)/2 (5.8)
Similarly,
3 1
(1 — s+ se2 — 2isey ) (1-9)/2
_ 1 3 1
C (1—s)1-a)/2 (1+se2/(1—s) —2igy/(1—s))1-9)/2
281

< m (by Fact 5.7.14) (5.9)

Combining Eq. (5.8) and Eq. (5.9) with the fact that R(z1z2) = R(z1)R(z2) — S (z1)3(22)
yields,

R ( 1+igg ) _ 1-0(g)
(1—s(1+ie)2)1-0/2 ) (1—5)0-0)/2"
This completes the proof. .

Challenges of Proving (C1) and (C2) for all k

For certain values of a and b, the inequalities in (C1) and (C2) leave very little room for
error. In particular, when a = b = 0, (C1) holds at equality and (C2) has 1/k! additive
slack. In this special case, it would mean that one cannot analyze the contour integral (for
the k-th coefficient of fa_; (p)) by using ML-inequality on any section of the contour that is
within a distance of exp (k) from the origin. Analytic approaches would require extremely
precise estimates on the value of the contour integral on parts close to the origin. Other
challenges to naive approaches come from the lack of monotonicity properties for fk_1
(both in k and in a, b - see Section 5.7.1)
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5.8 Factorization of Linear Operators

In this section we will show that our approximation results imply improved bounds on
(05, (1) for certain values of p and g. (see Section 3.8 for a recap on factorization).

5.8.1 Integrality Gap Implies Factorization Upper Bound

Known upper bounds on ®(X,Y) involve Hahn-Banach separation arguments. In this
section we see that for a special class of Banach spaces admitting a convex program-
ming relaxation, ®(X,Y) is bounded by the integrality gap of the relaxation as an im-
mediate consequence of Convex programming duality (which of course uses a separa-
tion argument under the hood). A very similar observation had already been made by
Tropp [Tro09] in the special case of X = /7,Y = (" with a slightly different convex
program.

For norms X over R”, Y over R” and an operator A : X — Y, we define

D - ||B -ID
®5(A) ;= inf ID2lx~2 - [Bll2»2 - [|D1ll2y ®3(X,Y) := sup ®3(A)
D1BDy=A | Al x—y AXY

where the infimum runs over diagonal matrices D1, D; and B € R™*". Clearly, ®(A) <
®3(A) and therefore @(X,Y) < O3(X,Y).

Henceforth let X be exactly an exactly 2-convex norm over R"” and Y* be an exactly 2-
convex norm over R” (i.e., Y is exactly 2-concave). As was the approach of Grothendieck,
we give an upper bound on (X, Y) by giving an upper bound on ®3(X,Y), which we
do by showing

Lemma 5.8.1. Let X be an exactly 2-convex (sign-invariant) norm over R" and Y* be an exactly
2-convex (sign-invariant) norm over R™. Then forany A : X — Y, ®3(A) < DP(A)/||Allx-y-

Proof. Consider an optimal solution to DP(A). We will show

inf [D|lx~2+ [|Bll2wz - [ID1][2y < DP(A
DlBIBQ:AH 2llx52 - [[Bll22 - | D12y < DP(A)
T +
by taking Dy := DY'?, D, := D}/? and B := (D!/?) A (D}/?)" (where for a diago-

nal matrix D, D' only inverts the non-zero diagonal entries and zero-entries remain the
same). Note that s; = 0 (resp. t; = 0) implies the i-th row (resp. i-th column) of A is all
zeroes, since otherwise one can find a 2 x 2 principal submatrix (of the block matrix in
the relaxation) that is not PSD. This implies that D1BD; = A.

It remains to show that ||D;||x—2 - || Bll2=2 - [|[D1]l2—y < DP(A). Now we have,

ID}2llx2 = sup [D{2xlla= sup /(t,[x2) = sup (£, ®)| = /Iltllxas -

x€Ball(X) x€Ball(X) ¥€Ball(X(1/2))

Similarly, since ||D1l/2—y = ||D1]|y*—2 we have

[D1llys=2 < y/lIslly.arz -
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Thus it suffices to show ||B||>—2 < 1 since

D2l x2 - [[D1ll2y < \/||t||x<1/z> Mslly-ar2 < (lIsllysarz) + [t xar2)/2 = DP(A) .

We have,

DS _A
—
—AT Dy } =0
- ot ot
= <DS ) 0 { Ds _A} (DS > 0 0
t T t
1/2 —-A" D 1/2
] 0 (Dt/> t 0 (Dt/>
D§ _B >_ f — 1 m I 1 n
=| D, =0 or some 5 € {0,1}", t € {0,1}
! —B
= _ _BT I :| EO
= ||Bll2=2 <1 u

5.8.2 Improved Factorization Bounds for Certain (7}, (7

Let1 < g <2 < p < co. Then taking Fx to be the 62/2 unit ball and Fy to be the 621/2
unit ball, we have v/ Fx and v/ Fy are respectively the unit balls in ¢ and (7. Therefore
X and Y as defined above are the spaces £}, and £} respectively. Hence we obtain

Theorem 5.8.2 ({; — (7' factorization). If 1 < g <2 < p < oo, then for any m,n € N and
go = 0.00863,

1+ ¢ 1+¢g

(0,0 < < -Co (7)) - Ca(L7).

(G ty') < sinh '(1) -7~ 7, _ sinh (1) 2(lp) - Calty)

This improves upon Pisier’s bound and for a certain range of (p, q), improves upon Kg
as well as the bound of Kwapieni-Maurey.

Krivine and independently Nesterov[Nes98] observed that the integrality gap of CP(A)
for any pair of convex sets Fx, Fy is bounded by K¢ (Grothendieck’s constant). This pro-
vides a class of Banach space pairs for which K¢ is an upper bound on the factorization
constant. We include a proof for completeness.

5.8.3 K; Bound on Integrality Gap

In this subsection, we prove the observation that for exactly 2-convex X, Y*, the integrality
gap for X — Y operator norm is always bounded by K.

Lemma 5.8.3. Let X be an exactly 2-convex (sign-invariant) norm over R" and Y* be an exactly
2-convex (sign-invariant) norm over R™. Then forany A : X — Y, CP(A)/|Alx—y < Kg.
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Proof. Let B := } [ f?T Ig ] The main intuition of the proof is to decompose x € X as
x = |[x]]| o sgn [x] (Where o denotes Hadamard /entry-wise multiplication), and then use

Grothendieck’s inequality on sgn [x] and sgn [y]. Another simple observation is that for
any convex set F, the feasible set we optimize over is invariant under factoring out the
magnitudes of the diagonal entries. In other words,

{DaZDy:de/I[F]|NRLy, & =0, diag(X) =1}
—{X : diag(X) € F, X = 0} (5.10)

We will apply the above fact for 7 = Ball(X(1/2)) @ Ball(Y*(1/2)). Let X* denote X N RY,
(analogous for (Y*)™). Now simple algebraic manipulations yield

| Al x—y
— swp (Yo By
xeX, yeY*
— sup ((dyko)@(dxoax))TB ((dyooy) @ (dyooy))

dr€XT, ope{£1}",
dye(Y*)T, oye{£1}™

= sup (oy ® ‘Tx)T(Ddy@dx B Ddyaadx) (0 @ 0x)
dyeXT, ope{£1}",
dye(Y*)T, oye{£1}"
(1/Kg) - sup <Z , Da,ea, B Ddy@dx> (Grothendieck)

deeXt, dye(Y*)*,
Y: diag(X)=1, >0

= (1/Kg)- sup <Ddy®dx 2 Dy o4, B>
deeXt, dye(Y")F,
Y diag(X)=1, £>0

= (1/Kg)-CP(A) (by Eq. (5.10))

v
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Chapter 6

Hardness Results for 2 — (2-convex)
Norms

In this chapter we reduce from random label cover (admitting polynomial level SoS gaps)
to show polynomial factor gaps for certain 2 —(2-convex) operator norms (specifically
2 —(mixed £, norm)). Informally we show the following:

Theorem (informal). There exist constants ¢€,5,6',5",6 > 0, a family of random label cover
instances L that w.h.p. have satisfiability fraction at most 1/n°, and a family X, of exactly
2-convex norms such that if there exists an n® -approximation algorithm for 2— X, norm with
runtime R(n), then there exists an algorithm with runtime R(n®")) that can certify L is at most
1/n0 satisfiable w.h.p.

Moreover n?" levels of S0S w.h.p. cannot certify a bound better than 1 on the satisfiability of L.

6.1 Mixed Ep Norms

For a vector x € R[M*["2] we define the ¢, (¢,,) norm (or py(pz) for short) as

1/p1
p1/p2
Y. ( Y. |xi,j|p2) )
i€[n] N j€lny]

i.e., the p; norm aggregates the p, norms of each of the “buckets”.

If X = £y, (£y,) then X(1/2) is easily verified to be y,/2(Lp,/2) which is a sign invariant
norm as long as p1, p2 > 2. Thus p1(p2) is an exactly 2-convex norm whenever py, pp > 2
(see Section 3.6 for a reminder on 2-convexity). In this section we will give hardness
results for 2 — g(q’) where g > 2 is a constant very close to 2 and 2 < g’ < oo is some
large constant. Before we state our key technical theorem we first state some structural
assumptions on the label cover instances we reduce from.
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6.2 Structure of Label Cover
Let £ be a bipartite 2-CSP instance (i.e., each constraint involves a variable from each
side) with

- Variables U U V with |U| = |V| = n. They are A-regular. Let R be the label size.

- Let A € R"*" be its bipartite adjacency matrix (we allow parallel edges so A,
denotes the number of constraints containing u and v). A has exactly nA edges. Let
p = A/n be the “density” of this matrix. Then the largest singular value of A is A
with the all-ones vector as the corresponding left and right singular vectors. Let A
be the second largest singular value. We define E so that

-s(l5) () oo

where ||E||2 < A and ] is the all-ones matrix.

We are now ready to state our main technical result:

Theorem 6.2.1. Let L be a label cover instance as above and let g = 2 + €. Then for sufficiently
small ¢ > 0, there is a deterministic polynomial time reduction from L to a matrix A € RM™R*1R
such that

- 1A

7 (1)-sq(e0) = OPT(L).

- If L has value at most s, then || Al| g+ (1) q(c0) < & for any a satisfying A < a- p - n*/1/10
and o > (800s)1/7.

6.3 Reduction from Label Cover to || - |[;«(1)—q(c)

- Fix1/3>e>0andletqg=2+e¢.

- Given £, we produce a matrix A € R"®*"R where ((u,1), (v,j))’s entry is t where ¢
denotes the number of constraints that contain (1, v) and are satisfied by the assign-
ment u < i, v < j (i.e., the bipartite adjacency matrix of the label-extended graph
of L).

- Given ¥ € RIM*[R] let x* € RR be the vector defined as (x*); := x,;and let x € R"
be the vector defined as x,, := ||x*||;. We define y° € RR and y € R” similarly.

- We are reducing to the problem

[ Al g+ (1) =g(00) = sup x' Ay

11| 1) S M7l g (1) <1

where || X|| (1) == ||x][g+-
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proof of Theorem 6.2.1.

Completeness. Suppose L has a labeling that satisfies every constraint. Then let ¥ and
y be the indicator vectors of these labels, in which case x and y equal the all-ones vector,
and for every (u,v) € L (& Auy = 1), we have (x”)TZM,(yU) = 1, where A, , denotes
the (u,v)’th block submatrix of A. Thus we have

(x)TAy = nA.

Since ||X (1) = n'/7, the completeness value is at least

o =y

C .= nA/(nz/q*) — p.nzfz/q* — p.nZ/q.

Soundness. Fix X and y such that ||X|| (1) = [[¥[lg+(1) = 1 (which implies that [|x|[4 =
llyllg~ = 1). Since A has nonnegative entries, we may assume without loss of generality
that all entries of x¥ and ¥ are nonnegative.

Consider the randomized strategy where every vertex u € U is assigned a label i €
[R] with probability (x");/||x*||; independently of all other vertices and all vertices v € V
are assigned similarly according to y. Let B € R"*" be defined so that B, , denotes the
expected number of constraints involving (u, v) that are satisfied by this labeling strategy.
Then B has nonnegative entries and B, , < A, for all u,v. Assuming £ has sound-
ness s, we have
17B1 < s1TA1L.

Also by definition,

x! Ay = xTBy.

Let & < 1 be such that T Ay = xT By = c - «. Our goal is to prove that a goes to 0 with s.
Since xT Ay > xTBy = ¢ - wand |[|x||> < ||x||g- = 1 (same for y), we have

c-a < x" Ay = plxlllylls +x"Ey < pllxlillyll + A. (6.1)

Recall we assume that A < ¢-a/10. Then Eq. (6.1) implies
pllxlillyli >c-a/2=a-p-n?1/2.

Further since ||x||1, |||l < n'~Y7 = nl/9, we now have | x||1, ||y|l; > a-n'/7/2.

Let v = 20/43, and let x’ be such that x!, = x,, if x,, < 7/ n/9" and 0 otherwise. (Note
that if x is well-spread then x,, = 1/n/9" for all u.)
Claim 6.3.1.
1/q

n
1"l = [lx[l2 = T

Proof. Consider the vector (x — x’). Since (x — x'), = 0if x < y/n"/7 and (x — x'), = x,
otherwise, all nonzero entries of (x — x’) are at least o/n'/9". Since both x and x’ are

nonnegative, ||x — x|« < ||x||4+ < 1. Given the g*-norm bound and the lower bound on
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. . . . *
each nonzero entry, ||x — x’||; is maximized when each nonzero entry is equal to y/n!/1
* .
and there are n/< entries, so we have

xlls = 12l < e =2lly < (o /mT) - (n/97) = 0/ =
Since ||x||; > a - n'/7/2, substituting v = 20/a? in the above claim implies that
1]l = [lxlla (2 =2/ (a7 71)) = (1= a/10)||x]1,

and similarly ||y'|[y > (1 — a/10)||y||1. Again using the fact that ||x"||2, ||/||2 < 1 and the
spectral bound on E, we get

() Ay = plKlllly' = A > (1 —a/5)pllx]1llyl: — A.
Finally, we have

x Ay — ()T Ay < plixlhllyll +A = (1 = a/5)plxlllylh — A) = (a/5)plxll ]yl + 24,

The final quantity is at most ¢ - «/2 because p||x||1]|y|l1 < ¢ for any x,y with |/x|
|¥ll4+ = 1 and since we assumed A < ¢ - a/10.

q* —

Since x/, y’ are entrywise dominated by x,y, and B is dominated by A, and every
entry is nonnegative, x' By — (x")TBy’ < xTAy — (x')TAy’ < c-«a/2. Since x"By = c - a,
(x')TBy’ > c-a/2. Since each entry of x’ and y’ is bounded by y/n'/7, (n'/7 /~)x" and
(n'/9" /)y’ are dominated (entry-wise) by the all ones vectors. This implies that

1TB1L > (0?7 /9 c-a/2 =n?-p-a/(29%) = 1T AL - 47 /800.

Since the soundness of Label Cover implies 17B1 < s1T A1, this implies that our problem
has soundness at most « - ¢, where a = (800s)!/”. n

It is straightforward to check that we also obtain the following corollary:

Corollary 6.3.2. Let L be a label cover instance as above, let ¢ = 2 + e and let § > 0 be some con-
stant. Then for sufficiently small e > 0 and sufficiently large 2 < q' < oo, there is a deterministic
polynomial time reduction from L to a matrix A € R"™>"R gych that

- 1Al g+ ()= q(q) = OPT(L).

- if £ has value at most 1/n° and 10A/(p - nz/”’) < 1/1°, then
||Z||q*(q,*)%q(q,) < 1/n° for some constant &'.

We next define the distribution over label cover instances that we shall reduce from.
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6.4 Distribution over Label Cover Instances

We first define a map from point vs. line CSP instances to label cover instances. A con-
straint of the point vs. line predicate has arity k and alphabet [F; (the finite field of size k
where k is a prime power) and is defined as follows:

given shifts sg,...s,_1 € IFy, the constraint accepts an assignment xp,...xx_1 € Fy, if
there exist a,b € Fy such thata -i+ b = x; + s; for all i € Fy.

Given a point vs. line instance ¢, we generate a label cover instance £(¢) as follows:
- Let £’ be the label cover instance obtained as the constraint-variable game of ¢.

- We square L' to obtain L(¢): i.e., consider the CSP instance where the two sides are
both copies of V (say V; and V;) and we have a constraint (v, ') for each pair of
Label Cover constraints ((u,v), (1,v")). The new constraint is satisfied by a labeling
(£(v),£(v")) if there exists £(u) such that (¢(v),£(u)) and (¢(v"), £(u)) satisfy both
(u,0) and (u,?'). If B € R"2*"R denotes the bipartite adjacency matrix of the la-
bel extended graph of £/, then the bipartite adjacency matrix of the label extended

graph of £(¢) is precisely A = B' B.

Our final distribution over label cover instances as follows:

- Sample a random instance ¢ of the point vs. line CSP with O(n) constraints, where
we take the field size to be k = n° for a sufficiently small constant § > 0. More
specifically we sample O(n) random constraints where the subset of k participating
variables and the shifts are chosen uniformly at random for each constraint.

- L(g) is the random label cover instance. It is well known that OPT(L(¢)) = O(1/k)
w.h.p.

6.5 The Result

Before stating our main result we will describe the hardness assumption we make for
random label cover. This can be seen as an analogue of Feige’s Random 3-SAT hypothe-
sis [Fei02] and other related hypotheses [Ale03, AAM ™11, BKS12] that were used to derive
impressive hardness results. Informally, certifying an upper bound of (say) 0.99 w.h.p. on

OPT(L(¢)) requires time 2"’ where L(g) is the random label cover instance described
above. Formally,

Assumption 6.5.1 (Random Label Cover Hardness). For sufficiently small § > 0, there is no
2" runtime algorithm ALG mapping label cover instances to [0, 1] and satisfying

- for any point vs. line instance ¢, ALG(L(¢p)) > OPT(L(¢)).

- for a random label cover instance L(¢) defined as above,
Pr[ALG(L(¢)) <0.99] > 1—0(1).
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Remark. It has been established in [BCG"12] that the SoS hierarchy satisfies Assump-
tion 6.5.1. More precisely, upto n? levels of the SoS relaxation for the random label cover
instance £(¢) output a value of 1 w.h.p. (even though OPT(L(¢)) = O(1/k) w.h.p.).

Combining Corollary 6.3.2 with the fact that || BTB||x«,x = ||BT||3_, x (see Fact 3.4.2
for the non-trivial direction), we obtain our main result:

Theorem 6.5.2. Let g = 2 + &. Then for sufficiently small constants ¢,6"” > 0 and sufficiently
large 2 < q' < oo, there is a deterministic polynomial time reduction from (point vs. line) label

cover instances to matrices (L(¢) — B') such that
- for any point vs. line instance ¢, ||B ||2%q ) = OPT(L(¢)).

- for a random instance L(¢) defined as above, HB ”2—>q <1/n° wh.p.

Consequently there exists §' > 0, such that any 1/n®" -approximation algorithm for 2—q(q’)
norm with runtime 2" would violate Assumption 6.5.1.
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Optimizing Polynomials of Degree > 3
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Chapter 7

Additional Preliminaries
(Sum of Squares)

In Chapter 8 and Chapter 9 we give use the sum of squares hierarchy to obtain results
for polynomial optimization over the sphere. In this section we introduce the necessary
SoS preliminaries. Consequently the following preliminaries are relevant only to those
chapters.

7.1 Polynomials

We use R;[x] to denote the set of all homogeneous polynomials of degree (exactly) d.
Similarly, R} [x] is used to denote the set of polynomials with non-negative coefficients.
All polynomials considered in subsequent chapters will be n-variate and homogeneous
(with x denoting the set of n variables x1, ..., x;) unless otherwise stated.

A multi-index is defined as sequence & € IN". We use |«| to denote )/ ; a; and IN/}
(resp. INZ)) to denote the set of all multi-indices « with |a| = d (resp. |a| < d). Thus, a
polynomial f € R [x] can be expressed in terms of its coefficients as

f(x) = the]Ng foc - xt,

where x* is used to denote the monomial corresponding to a. A polynomial is multilinear
if « < 1 whenever f, # 0, where 1 denotes the multi-index 1”. We use the notation a” to
denote the vector (af,...,a},) for r € R. Exclusively in Chapter 8, with the exception of
absolute-value, any scalar function when applied to a vector/multi-index returns the vec-
tor obtained by applying the function entry-wise. We also use o to denote the Hadamard
(entry-wise) product of two vectors.

Sphere Maximization. For a homogeneous polynomial f, let fmax denote sup . _; f (x)
and let || f||> denote sup ., |f(x)].
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7.2 Matrices

For k € IN, we will consider n* x n¥ matrices M with real entries. All square matrices

considered in this document should be taken to be symmetric (unless otherwise stated).
We index entries of the matrix M as M[I, J] by tuples I, ] € [n]*.

Atuple I = (i, ..., i) naturally corresponds to a multi-index a(I) € IN} with |a(I)| =
k,ie. a(I)j = |{¢|i, = j}|. Foratuple I € [n]*, we define O(I) the set of all tuples | which
correspond to the same multi-index i.e., «(I) = a(]). Thus, any multi-index « € IN?, cor-

responds to an equivalence class in [1]¥. We also use O(«) to denote the class of all tuples
corresponding to a.

. T P . .
Note that a matrix of the form (x®¥) (x®¥)" has many additional symmetries, which
are also present in solutions to programs given by the SoS hierarchy. To capture this,
consider the following definition:

[SoS-Symmetry] A matrix M which satisfies M[I, J] = M[K, L] whenever a(I) +a(]) =
a(K) + «(L) is referred to as SoS-symmetric.
Remark. It is easily seen that every homogeneous polynomial has a unique SoS-Symmetric
matrix representation.

For a matrix M, we will henceforth use the shorthand || M||, to denote || M||2—;> (i.e., spec-
tral norm/maximum singular value).

7.3 Pseudoexpectations and Moment Matrices

Let R[x]<, be the vector space of polynomials with real coefficients in variables x =
(x1,...,%,), of degree at most q. For an even integer g, the degree-g pseudo-expectation
operator is a linear operator E : IR[x]<; — R such that

1. E[1] = 1 for the constant polynomial 1.
2. E[p1+ pa) = E[p1] + E [p2] for any polynomials py, p» € R[x]<q.
3. E [p?] = 0 for any polynomial p € R[x]<4/>.

The pseudo-expectation operator E can be described by a moment matrix M € RN<o2Neg2

defined as M[a, 8] = E [x*"P] fora, B € NZ, o

For each fixed t < q/2, we can also consider the principal minor of M indexed by
«,p € N7. This also defines a matrix M € RI1'*["" with M[I,]] = E [x"‘(l)”‘(])]. Note
that this new matrix M satisfies M[I, ]| = M[K, L] whenever a(I) + a(]) = a«(K) + «(L).

(] x [n]f

Recall that a matrix in R with this symmetry is said to be SoS-symmetric.

We will use the following facts about the operator E given by the SoS hierarchy.

Claim 7.3.1 (Pseudo-Cauchy-Schwarz [BKS14]). E [p1p2] < (E [p?] E [p3])Y/? forany p1, p2
of degree at most q/2.
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7.3.1 Constrained Pseudoexpectations

For a system of polynomial constraints C = {f; =0,..., f =0,91 >0,...,4 > 0}, we
say Ec is a pseudoexpectation operator respecting C, if in addition to the above condi-
tions, it also satisfies

1. Ec[p- fi] = 0,Vi € [m] and Vp such that deg(p - f;) < q.
2. Ec[p® Tlies 8] = 0,¥S C [1] and Vp such that deg(p? - [Ties 8i) < 7.

It is well-known that such constrained pseudoexpectation operators can be described as
solutions to semidefinite programs of size n°(4) [BS14, Lau09]. This hierarchy of semidef-
inite programs for increasing g is known as the SoS hierarchy.

7.4 Matrix Representations of Polynomials and relaxations

of || fl2

For a homogeneous polynomial  of even degree g, a matrix M;, € R is called
a matrix representation of h if (x®7/2)T . M, - x®7/2 = h(x) Vx € R". The following well
known fact will come in handy later.

[n]q/z>< Mq/z

Fact 7.4.1. For polynomials py, pa, let p1 = pa denote that py — p2 is a sum of squares. 1t is easy to
verify that if pq, p2 are homogeneous degree d polynomials and there exist matrix representations
My, and My, of p1 and p; respectively, such that My, — My, = 0, then py — p2 = 0.

Next we define a quantity that is closely related to our final relaxation:

A(h) = inf{ sup z' My, z

Iz]l2=1

M is a representation of h} . (7.1)

Clearly, hmax < A(h),i.e. A(h) is a relaxation of hmax. However, this does not imply that
A(h) is a relaxation of |||, since it can be the case that fimax 7 ||/1]|2. To remedy this, one
can instead consider /A (h2) which is a relaxation of ||i||», since (h?)max = ||#?||>. More
generally, for a degree-d homogeneous polynomial f and an integer g divisible by 2d, we
have the upper estimate

£l < a(p4) "

Let My € R™"**1"* denote the unique SoS-symmetric matrix representation of f. Figure
Fig. 7.1 gives the primal and dual forms of the relaxation computing A(f). It is easy to
check that strong duality holds in this case, since the solution Ec[x*] = (1/+/n)/4 for all
a € INZ , is strictly feasible and in the relative interior of the domain. Thus, the objective
values of the two programs are equal.
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Primal

A(f) = inf{

sup z Mz
Iz]=1

M € Symn®/2, (x®4/T. M. x®/2 = f(x) Vx € IR”}

Dual | Dual Il
maximize (Mg, X) maximize Ec[f]
subject to : Tr(X) =1 subject to : Ecisa degree-d
Xis SoS symmetric pseudoexpectation
Xz 0 Ec respects C = {Hng = 1}
Figure 7.1: Primal and dual forms for the relaxation computing A(f)
Primal

Ifllsp = jnf{HM”Z ‘ M € Symn®2, (x®/2)T . M. x®4/2 = f(x) Vx € Rn}

maximize

subject to :

IXlls, =1

Xis S0S symmetric

Figure 7.2: Primal and dual forms for the relaxation computing || f{|sp

We will also consider a weaker relaxation of ||f||>, which we denote by |/ f||sp. A
somewhat weaker version of this was used as the reference value in the work of [BKS14].

Figure Fig. 7.2 gives the primal and dual forms of this relaxation.

We will also need to consider constraint sets C = {||x||3 = 1,xf1 >0,...,xP» > 0}.
We refer to the non-negativity constraints here as moment non-negativity constraints. When
considering the maximum of E¢|f], for constraint sets C containing moments non-negativity
constraints in addition to ||x||53 = 1, we refer to the optimum value as Ac(f). Note that
the maximum is still taken over degree-d pseudoexpectations. Also, strong duality still

holds in this case since Ec[x%] = (1/+/1)/*l is still a strictly feasible solution.
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7.4.1 Properties of relaxations obtained from constrained pseudoexpec-
tations

We use the following claim, which is an easy consequence of the fact that the sum-of-
squares algorithm can produce a certificate of optimality (see [OZ13]). In particular,
if maxg_Ec[f] = Ac(f) for a degree-q; pseudoexpectation operator respecting C con-

taining ||x||% = 1 and moment non-negativity constraints for By, ..., B, then for every
A > Ac(f), wehave that A — f can be certified to be positive by showing that A — f & Z‘él.

Here Z(Cq 1 is the set of all expressions of the form
A=f =Y (Ix3-1)+ ¥ hsx)-[T+",
j SC ] ics
where each hg is a sum of squares of polynomials and the degree of each term is at most
q1-

Lemma 7.4.2. Let Ac(f) denote the maximum of Ec[f] over all degree-d pseudoexpectation
operators respecting C. Then, for a pseudoexpectation operator of degree d’ (respecting C) and
a polynomial p of degree at most (d' — d) /2, we have that

EC[P2 ‘f] < EC[}’Z} ~Ac(f) -
Proof. As described above, for any A > Ac(f), we can write A — f = gfor g € Zéd) . Since
the degree of each term in p? - ¢ is at most d’, we have by the properties of pseudoexpec-
tation operators (of degree d’) that

A-ﬁc[pz]—ﬁc[pz-f)} = Ec[zﬂz'(A—f)} = Ec[pz-g} > 0.
| ]

The following monotonicity claim for non-negative coefficient polynomials will come
in handy in later sections.

Lemma 7.4.3. Let C be a system of polynomial constraints containing {VB € IN",xf > 0}.
Then for any non-negative coefficient polynomials f and g of degree t, and such that f > ¢
(coefficient-wise, i.e. f — g has non-negative coefficients), we have Ac(f) > Ac(g).

Proof. For any pseudo-expectation operator E¢ respecting C, we have E¢[f — g] > 0 be-
cause of the moment non-negativity constraints and by linearity.

So let E¢ be a pseudo-expectation operator realizing Ac(g). Then we have,

Ac(f) > Ec[f] = Ec[g] + Ec[f — 8] = Ac(g) + Ec[f —g] > 0.
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Chapter 8

Worst Case Polynomial Optimization
over the Sphere

In this chapter, we study the problem of optimizing homogeneous polynomials over the
unit sphere. Formally, given an n-variate degree-d homogeneous polynomial f, the goal

is to compute

Il = sup [£(x). 51)

[[x[|=1

We develop general techniques to design and analyze algorithms for polynomial opti-
mization over the sphere. The sphere constraint is one of the simplest constraints for
polynomial optimization and thus is a good testbed for techniques. Indeed, we believe
these techniques will also be useful in understanding polynomial optimization for other
constrained settings.

8.1 Algorithmic Results

The following result shows that A (f4/ d)d/q approximates || f||> within polynomial fac-
tors, and also gives an algorithm to approximate || f||» with respect to the upper bound

A(f174) /1 In the statements below and the rest of this section, O4(+) and Q4(-) notations
hide 204 factors. Our algorithmic results are as follows:

Theorem 8.1.1. Let f be an n-variate homogeneous polynomial of degree-d, and let q < n be an
integer divisible by 2d. Then,

Arbitrary f: <A<fq/d>>d/q < Oy ((”/Q)d/2_1> [ £l
f with Non-neg. Coefficients: <AC <f‘7/d>>d/q < Oq4 ((n/q)d/4_1/2> [ £l
f with Sparsity m: <A<fq/d>>d/q < Od<\/m—/q> £l

(where Ac(-) is a a related efficiently computable quantity that we define in Section 7.4)
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Furthermore, there is a deterministic algorithm that runs in n°9) time and returns x such

that ( /d)d/q
A(f9
=2 5etn, 4,0))

where c(n,d,q) is (n/q)%?>71, (n/q)%*~1/2 and \/m/q respectively, for each of the above cases
(the inequality uses Ac(+) in the case of polynomials with non-negative coefficients).

Remark 8.1.2. Interestingly, our deterministic algorithms only involve computing the maxi-
mum eigenvectors of n°@ different matrices in R" ", and actually don’t require computing

A(f1 /d )d/q (even though this quantity can also be computed in n°\9) time by the sum-of-squares
SDP; see Section 8.2). The quantity A(f1/ d)d/q is only used in the analysis.

Remark 8.1.3. If m = nf“ for p < 1/3, then for all ¢ < n'~F, the \/m/q-approximation for
sparse polynomials is better than the (n/q)%/>~1 arbitrary polynomial approximation.

Remark 8.1.4. In cases where || f||2 = fmax (such as when d is odd or f has non-negative coeffi-
cients), the above result holds whenever q is even and divisible by d, instead of 2d.

A key technical ingredient en route establishing the above results is a method to re-
duce the problem for arbitrary polynomials to a list of multilinear polynomial problems
(over the same variable set). We believe this to be of independent interest, and describe
its context and abstract its consequence (Theorem 8.1.5) next.

Let M, be a matrix representation of a degree-q homogeneous polynomial g, and let
K = (I,]) € [n]9? x [n]?? have all distinct elements. Observe that there are g! distinct
entries of My including K across which, one can arbitrarily assign values and maintain
the property of representing g, as long as the sum across all ! entries remains the same
(specifically, this is the set of all permutations of K). In general for K' = (I’,]') € [n]7/? x
[1]9/2, we define the orbit of K’ denoted by O(K’), as the set of permutations of K’, i.e. the
number of entries to which ‘mass’ from M,[I’, J'] can be moved while still representing g.

As g increases, the orbit sizes of the entries increase, and to show better bounds on
A( fa/ d), one must exploit these additional "degrees of freedom" in representations of
f1/4. However, a big obstacle is that the orbit sizes of different entries can range anywhere
from 1 to gq!, two extremal examples being ((1,...1),(1,...1)) and ((1,...4/2),(q/2 +
1,...g)). This makes it hard to exploit the additional freedom afforded by growing g.
Observe that if ¢ were multilinear, all matrix entries corresponding to non-zero coeffi-
cients have a span of g! and indeed it turns out to be easier to analyze the approxima-
tion factor in the multilinear case as a function of g since the representations of g can be
highly symmetrized. However, we are still faced with the problem of f7/ being highly
non-multilinear. The natural symmetrization strategies that work well for multilinear
polynomials fail on general polynomials, which motivates the following result:

Theorem 8.1.5 (Informal version of Theorem 8.7.13). For even g, let g(x) be a degree-q homo-
geneous polynomial. Then there exist multilinear polynomials g1(x), ..., gm(x) of degree at most
q, such that

A(g) < 2000 . max A(gi)

Ig1l2 ie[m] [|8ill2
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By combining Theorem 8.1.5 (or an appropriate generalization) with the appropriate
analysis of the multilinear polynomials induced by f1/4, we obtain the aforementioned
results for various classes of polynomials.

Weak decoupling lemmas. A common approach for reducing to the multilinear case
is through more general “decoupling” or “polarization” lemmas (see e.g., Lemma 8.7.6),
which also have variety of applications in functional analysis and probability [DIPG12].
However, such methods increase the number of variables to g, which would completely
nullify any advantage obtained from the increased degrees of freedom.

Our proof of Theorem 8.1.5 (and its generalizations) requires only a decoupling with
somewhat weaker properties than given by the above lemmas. However, we need it to be
very efficient in the number of variables. In analogy with “weak regularity lemmas” in
combinatorics, which trade structural control for complexity of the approximating object,
we call these results “weak decoupling lemmas” (see Section 8.6.1 and Lemma 8.7.12).
They provide a milder form of decoupling but only increase the number of variables to
2n (independently of g).

We believe these could be more generally applicable; in particular to other constrained
settings of polynomial optimization as well as in the design of sub-exponential algo-
rithms. Our techniques might also be able to yield a full tradeoff between the number
of variables and quality of decoupling.

8.2 Connection to Sum-of-Squares hierarchy

The Sum of Squares Hierarchy (SoS) is one of the the most canonical and well-studied ap-
proaches to attack polynomial optimization problems. Algorithms based on this frame-
work are parameterized by the degree or level g of the SoS relaxation. For the case of op-
timization of a homogenous polynomial / of even degree q (with some matrix representa-
tion Mj) over the unit sphere, the level g SoS relaxes the non-convex program of maximiz-
ing (x®1/2)T . M, - x®9/2 = h(x) over x € R" with ||x|» = 1, to the semidefinite program
of maximizing Tr(MIX) over all positive semidefinite matrices X € RI""**[1"* with
Tr(X) = 1. (This is a relaxation because X = x®1/2(x®1/2)T is psd with Tr(X) = ||x||7.)

It is well known (see for instance [Lau09]) that the quantity A(h) from Eq. (7.1) is the
dual value of this SoS relaxation. Further, strong duality holds for the case of optimiza-
tion on the sphere and therefore A(h) equals the optimum of the SoS SDP and can be
computed in time 7°(4). (See Section 7.3 for more detailed SoS preliminaries.) In light
of this, our results from Theorem 8.1.1 can also be viewed as a convergence analysis of
the SoS hierarchy for optimization over the sphere, as a function of the number of levels
g. Such results are of significant interest in the optimization community, and have been
studied for example in [DW12, dKLS14] (see Section 8.3 for a comparison of results).

SoS Lower Bounds. While the approximation factors in our upper bounds of Theo-
rem 8.1.1 are modest, there is evidence to suggest that this is inherent.
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When £ is a degree-q polynomial with random i.i.d +1 coefficients, we will show in
q/4 q/4
Chapter 9 that there is a constant ¢ such that w.h.p. (W) < A(h) < <#> .On

the other hand, ||h]], < O(y/nqlogq) w.h.p. Thus the ratio between A(h) and ||h|2 can
be as large as Qg (n1/4-1/2),

Hopkins et al. [HKP*17] recently proved that degree-d polynomials with random
coefficients achieve a degree-q SoS gap of roughly (1/¢°1))#/4=1/2 (provided q > n* for

some constant ¢ > 0). This is also a lower bound on the ratio between A ( f1/ d)d/q and
|| f]l2 for the case of arbitrary polynomials. Note that this lower bound is roughly square
root of our upper bound from Theorem 8.1.1. Curiously, our upper bound for the case
of polynomials with non-negative coefficients essentially matches this lower bound for
random polynomials.

Non-Negative Coefficient Polynomials. In this chapter, we give a new lower bound
construction for the case of non-negative polynomials, To the best of out knowledge, the
only previous lower bound for this problem, was known through Nesterov’s reduction
[DKO08], which only rules out a PTAS. We give the following polynomially large lower
bound. The gap applies for random polynomials associated with a novel distribution of
4-uniform hypergraphs, and is analyzed using subgraph counts in a random graph.

Theorem 8.2.1. There exists an n variate degree-4 homogeneous polynomial f with non-negative
coefficients such that

Ifll2 < (ogm)°®  and  A(f) = Q(n'/).

For larger degree t, we prove an n%() gap between ||h|; and a quantity [|%|sp that is
closely related to A(h). Specifically, ||k||sp is defined by replacing the largest eigenvalue
of matrix representations My, of h in Eq. (7.1) by the spectral norm || M,||». (See Fig. 7.2 for
a formal definition.) Note that ||h|[s, > max{A(h),A(—h)}. Like A(-), || - ||sp suggests

a natural hierarchy of relaxations for the problem of approximating |//||,, obtained by
computing ||h9/* ||£;,q as the g-th level of the hierarchy.

We prove a lower bound of n1/2*/ (g - log n)o(q) on || f1/4||s, where f is as in Sec-
tion 8.9. This not only gives || - ||s; gaps for the degree-q optimization problem on polyno-

mials with non-negative coefficients, but also an 1'/¢/(glogn)°()) gap on higher levels
of the aforementioned || - [|s, hierarchy for optimizing degree-4 polynomials with non-
negative coefficients. Formally we show:

Theorem 8.2.2. Let g := f1/* where f is the degree-4 polynomial as in Section 8.9. Then

18 llsp nt/24
Igll2 — (qlogn)O@

Our lower bound on || f7/4||5, is based on a general tool that allows one to “lift” level-
4 || - ||sp gaps, that meet one additional condition, to higher levels. While we derive final
results only for the weaker relaxation || - ||s, the underlying structural result may prove
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useful in lifting SoS lower bounds (i.e. gaps for A(-)) as well. Recently, the insightful
pseudo-calibration approach [BHK'16] has provided a recipe to give higher level SoS
lower bounds for certain average-case problems. We believe our lifting result might simi-
larly be useful in the context of worst-case problems, where in order to get higher degree
lower bounds, it suffices to give lower bounds for constant degree SoS with some addi-
tional structural properties.

8.3 Related Work

Polynomial optimization is a vast area with several previous results. Below, we collect the
results most relevant for comparison with the ones in this chapter, grouped by the class
of polynomials. Please see the excellent monographs [Lau09, Las09] for a survey.

Arbitrary Polynomials. For general homogeneous polynomials of degree-d, an O, (nd / 21
approximation was given by He et al. [HLZ10], which was improved to O, ((1/ log n)d/2-1)
by So [Sol1]. The convergence of SDP hierarchies for polynomial optimization over the
sphere was analyzed by Faybusovich [Fay04] and Doherty and Wehner [DW12] and sub-
sequent to the publication of our work by deKlerk and Laurent [dKL19]. However, for

g < nlevels, these convergence results would only imply a weaker bound of (O(n)/q)%/2.

Thus, our results can be seen as giving a stronger interpolation between the poly-
nomial time algorithms obtained by [HLZ10, So11] and the exponential time algorithms
given by Q(n) levels of SoS, although the bounds obtained by [Fay04, DW12, dKL19] are
tighter (by a factor of 20(4)) for g = Q(n) levels.

For the case of arbitrary polynomials, we believe a tradeoff between running time and
approximation quality similar to ours can also be obtained by considering the tradeoffs
for the results of Brieden et al. [BGK"01] used by So [So11]. However, to the best of
our knowledge, this is not published. In particular, So uses the techniques of Khot and
Naor [KNO08] to reduce degree-d polynomial optimization to d — 2 instances of the prob-
lem of optimizing the ¢, diameter of a convex body. This is solved by [BGK'01], who
give an O((n/k)'/?) approximation in time 2¢ - n9(1). We believe this can be combined
with proof of So, to yield a O;((1n/ q)%/ 2-1) approximation in time 27. We note here that
the method of Khot and Naor [KNO08] cannot be improved further (up to polylog) for the
case d = 3 (see Section 8.12). Our results for the case of arbitrary polynomials show that
similar bounds can also be obtained by a very generic algorithm given by the SoS hier-
archy. Moreover, the general techniques developed here are versatile and demonstrably
applicable to various other cases (like polynomials with non-negative coefficients, sparse
polynomials, worst-case sparse PCA) where no alternate proofs are available. The tech-
niques of [KNO08, So11] are oblivious to the structure in the polynomials and it appears to
be unlikely that similar results can be obtained by using diameter estimation techniques.

Polynomials with Non-negative Coefficients. The case of polynomials with non-negative
coefficients was considered by Barak, Kelner, and Steurer [BKS14] who proved that the
relaxation obtained by Q(d® - log n1/¢?) levels of the SoS hierarchy provides an ¢ - || f|| ks
additive approximation to the quantity ||f||>. Here, the parameter we denote by || f||pxs
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corresponds to a relaxation for || f||, that is weaker than the one given by || f||sp.! Their re-
sults can be phrased as showing that a relaxation obtained by g levels of the SoS hierarchy
gives an approximation ratio of

, +(d3 .logn>1/2 I llBxs
q 1 £1l2

Motivated by connections to quantum information theory, they were interested in the
special case where || f||sxs/ || f||2 is bounded by a constant. However, this result does not
imply strong multiplicative approximations outside of this special case since in general
Il fllBks and || f||2 can be far apart. In particular, we are able to establish that there exist
polynomials f with non-neg. coefficients such that || f||zxs/||f|l2 > n?/?*. Moreover we
conjecture that the worst-case gap between || f||pxs and || f||2 for polynomials with non-
neg. coefficients is as large as Q;((1/d)?/*~1/2) (note that the conjectured (1/d)?/4-1/2
gap for non-negative coefficient polynomials is realizable using arbitrary polynomials,
i.e. we show in Chapter 9 that polynomials with i.i.d. £1 coefficients achieve this gap
w.h.p.).

Our results show that g levels of SOS gives an (n/q)%*~1/2 approximation to || f||

which has a better dependence on 4 and consequently, converges to a constant factor
approximation after Q(n) levels.

2-to-4 norm. It was proved in [BKS14] that for any matrix A, q levels of the SoS hierarchy
approximates || A3 ., within a factor of

1/2
1AII3_,4

Brandao and Harrow [BH15] also gave a nets based algorithm with runtime 29 that achieves
the same approximation as above. Here again, the cases of interest were those matrices
for which ||A[|3_,,]|Al13_,. and || A||5_,, are at most constant apart.

We would like to bring attention to an open problem in this line of work. It is not hard
to show that for an m x n matrix A with i.i.d. Gaussian entries, ||A]j5_., = O(m + n),
|Al3.,. = ©®(n), and ||Alj3 ., = ©(m + n?) which implies the worst case approximation
factor achieved above is Q)(n/,/7) when we take m = Q(n?).

Our result for arbitrary polynomials of degree-4, achieves an approximation factor of
O(n/q) after q levels of SoS which implies that the current best known approximation
2-to-4 norm is oblivious to the structure of the 2-to-4 polynomial and seems to suggest
that this problem can be better understood for arbitrary tall matrices. For instance, can
one get a \/m/q approximation for (m x n) matrices (note that [BH15] already implies
a \/m/g-approximation for all m, and our result implies a /m/g-approximation when
m = Q(n?)).

Random Polynomials. For the case when f is a degree-d homogeneous polynomial
with ii.d. random =1 coefficients the concurrent works [BGL16, RRS16] showed that

ISpecifically, | f||pxs minimizes the spectral norm over a smaller set of matrix representations of f than
|| fllsp which allows all matrix representations.
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degree-q SoS certifies an upper bound on |/ f||; that is with high probability at most
O((n/q)¥/*=1/2) .|| f||o. Curiously, this matches our approximation guarantee for the case
of arbitrary polynomials with non-negative coefficients. This problem was also studied for
the case of sparse random polynomials in [RRS16] motivated by applications to refuting
random CSPs.

8.4 Organization

We cover some preliminaries in Section 8.5 and provide an overview of our proofs and
techniques in Section 8.6. Chapter 7 provides details of various relaxations used in this
document, and their duals in terms of the Sum-of-Squares hierarchy. We first give a ba-
sic version of the reduction from general to multilinear polynomials in Section 8.7, which
only obtains a weaker result (without the additive term in the exponent). Section 8.8 gives
a generalization of this reduction, which yields Theorem 8.1.1. We prove an SoS lower
bound for degree-4 polynomials with non-negative coefficients in Section 8.9. In Sec-
tion 8.10, we provide a general technique for lifting lower bounds for the slightly weaker
relaxation given by || f|sp, to relaxation higher level relaxations.

8.5 Preliminaries and Notation

Definition 8.5.1 (Folded Polynomials). A degree-(dy,d,) folded polynomial f € (Ry,[x]) 4[]
is defined to be a polynomial of the form

flx) = ) falx) 2",

n
ocelNdl

where each fq(x) € Ry, [x] is a homogeneous polynomial of degree dy. Folded polynomials over
R are defined analogously.

- We refer to the polynomials f, as the folds of f and the terms x* as the monomials in f.

- A folded polynomial can also be used to define a degree dy + dy polynomial by multiplying
the monomials with the folds (as polynomials in R[x]). We refer to this polynomial in
R 4,14, [x] as the unfolding of f, and denote it by U(f).

- For a degree (d1,dy)-folded polynomial f and r € IN, we take f" to be a degree-(r - dy, v - dy)
folded polynomial, obtained by multiplying the folds as coefficients.

An additional operation on folded polynomials. We define the following operation
(and it’s folded counterpart) which in the case of a multilinear polynomial corresponds
(up to scaling) to the sum of a row of the SoS-symmetric matrix representation of the
polynomial. This will be useful in our result for non-negative polynomials.
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Definition 8.5.2 (Collapse). Let f € R;[x] be a polynomial. The k-collapse of f, denoted as
Cx(f) is the degree d — k polynomial g given by,

glx) =) & X" where gy =} fyia-

YENT_, a€N}

For a degree-(dy,dy) folded polynomial f, we define Ci(f) similarly as the degree-(d — k, dy)
folded polynomial g given by,

gx)= ), & (x)x" where 3= ) fria-

n n
TENG & a€NY

8.6 Overview of Proofs and Techniques

In the interest of clarity, we shall present all techniques for the special case where f is an
arbitrary degree-4 homogeneous polynomial. We shall further assume that || f|2 = fmax
just so that A(f) is a relaxation of || f||,. Summarily, the goal of this section is to give an
overview of an O(n/q)-approximation of || f||,, i.e.

A<fq/4>4/q <O0(n/q) | fl2

Many of the high level ideas remain the same when considering higher degree polynomi-
als and special classes like polynomials with non-negative coefficients, or sparse polyno-
mials.

8.6.1 Warmup: (1n%/g%)-Approximation

We begin with seeing how to analyze constant levels of the A(+) relaxation and will then
move onto higher levels in the next section. The level-4 relaxation actually achieves an n-
approximation, however we will start with n? as a warmup and cover the n-approximation
a few sections later.

n%-Approximation using level-4 relaxation

We shall establish that A(f) < O(n?) - || f|2. Let My be the SoS-symmetric representation
of f, let x; x;,x;,x;, be the monomial whose coefficient in f has the maximum magnitude,
and let B be the magnitude of this coefficient. Now by Gershgorin circle theorem, we
have A(f) < [[My[]2 < n?-B.

It remains to establish ||f||» = Q(B). To this end, define the decoupled polynomial
F(x,y,2,t) = (x@y)T - M- (z®t) and define the decoupled two-norm as

[Fll2 = sup f(x,y,z,t).
el Ayl Azl =1

97



It is well known that || f||2 = ©O(||F||2) (see Lemma 8.6.1). Thus, we have,

Ifl2 = QUFIL) = O (1F (e e en)l) = QB) = Q(A(f) /n) .
In order to better analyze A (f1/ 4)4/q we will need to introduce some new techniques.

(n%/q%)-Approximation Assuming Theorem 8.1.5

We will next show that A (f1/4) 4/q < 0(n?/g?) -||fll2 (for q divisible by 4). In fact, one can
show something stronger, namely that for every homogeneous polynomial g of degree-
g, A(g) < 2°@) . (n/q)7% . ||g|l» which clearly implies the above claim (also note that
for the target O(n?/g%)-approximation to || f||, losses of 2°(1) in the estimate of ||g||, are
negligible, while factors of the order g% are crucial).

Given the additional freedom in choice of representation (due to the polynomial hav-
ing higher degree), a first instinct would be to completely symmetrize, i.e. take the
SoS-symmetric representation of g, and indeed this works for multilinear g (see Theo-
rem 8.7.16 for details).

However, the above approach of taking the SoS-symmetric representation breaks
down when the polynomial is non-multilinear. To circumvent this issue, we employ The-
orem 8.1.5 which on combining with the aforementioned multilinear polynomial result,
yields that for every homogeneous polynomial ¢ of degree-q, A(g) < (1n/q)7?-||g||>. The
proofs of Theorem 8.1.5 and it’s generalizations (that will be required for the n/q approx-
imation), are quite non-trivial and are the most technically involved sections of our upper
bound results. We shall next give an outline of the proof of Theorem 8.1.5.

Reduction to Optimization of Multi-linear Polynomials

One of the main techniques we develop in this work, is a way of reducing the optimiza-
tion problem for general polynomials to that of multi-linear polynomials, which does not
increase the number of variables. While general techniques for reduction to the multi-linear
case have been widely used in the literature [KN08, HLZ10, So11] (known commonly
as decoupling/polarization techniques), these reduce the problem to optimizing a multi-
linear polynomial in 7 - d variables (when the given polynomial / is of degree d). Below
is one example:

Lemma 8.6.1 ([HLZ10]). Let A be a SoS-symmetric d-tensor and let h(x) := (A, x®4). Then
Ihll2 > 279 max i _1 (A, 21 @ @ xf).

Since we are interested in the improvement in approximation obtained by considering
f1/% for a large g, applying these would yield a multi-linear polynomial in 7 - g variables.
For our analysis, this increase in variables exactly cancels the advantage we obtain by
considering f1/4 instead of f (i.e., the advantage obtained by using g levels of the SoS
hierarchy).
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We can uniquely represent a homogeneous polynomial g of degree g as

q/2 q/2

glx) = ) X Gul(x) = ) ), ¥ Gulx) = ;)gr(X)/ (82)

la[<q/2 r=0|a|=r

where each Gy, is a multi-linear polynomial and g;(x) := Y-, x2% . Gy (x). We reduce
the problem to optimizing ||Go,||2 for each of the polynomials Gy,. More formally, we
show that A Al
(8) < max (Gau) 20(9) (8.3)
1gll2 ™ weNz, [|Gaull2

As a simple and immediate example of its applicability, Eq. (8.3) provides a simple proof
of a polytime constant factor approximation for optimization over the simplex (actually
this case is known to admit a PTAS [dKLP06, dKLS15]). Indeed, observe that a simplex
optimization problem for a degree-q/2 polynomial in the variable vector y can be reduced
to a sphere optimization by substituting y; = x?. Now since every variable present in
a monomial has even degree in that monomial, each Gy, is constant, which implies a
constant factor approximation (dependent on q) on applying Eq. (8.3).

Returning to our overview of the proof, note that given representations of each of
the polynomials Gy,, each of the polynomials g, can be represented as a block-diagonal
matrix with one block corresponding to each a. Combining this with triangle inequal-
ity and the fact that the maximum eigenvalue of a block-diagonal matrix is equal to the
maximum eigenvalue of one of the blocks, gives the following inequality:

A(g) < (14+4/2)- max A(Ga). (8.4)

ocE]NSW2

We can further strengthen Eq. (8.4) by averaging the "best" representation of G, over
|0(a)| diagonal-blocks which all correspond to x**. This is the content of Lemma 8.7.2

wherein we show A(G )
Alg) < (1 2). 20)
®) = (+a/2) 28 Tow)

(8.5)

Since |O(a)| can be as large as g9, the above strengthening is crucial. We then prove
the following inequality, which shows that the decomposition in Eq. (8.2) not only gives a
block-diagonal decomposition for matrix representations of g, but can in fact be thought
of as a “block-decomposition” of the tensor corresponding to g (with regards to comput-
ing ||g||2). Just as the maximum eigenvalue of a block-diagonal matrix is at least the
maximum eigenvalue of a block, we show that

- [G2ell2
lglls > 279@ . max .
§ N, [0(a)]

(8.6)

The above inequality together with Eq. (8.5), implies Eq. (8.3).
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Bounding ||¢||» via a new weak decoupling lemma

Recall that the expansion of g(x) in Eq. (8.2), contains the term x?* - G,,(x). The key part
of proving the bound in Eq. (8.6) is to show the following “weak decoupling” result for
x2% and Gy,.

Va o [lgle > max  y* - Gau(x)-27%W = max - |Gyl -27°0W.
Iyl=lixl=1 Jyl=1

The proof of Eq. (8.6) can then be completed by considering the unit vector y :=

va//lal,ie y = Yicp \/—\/% -e;. A careful calculation shows that y** > 2704) / |0(a)|

The primary difficulty in establishing the above decoupling is the possibility of can-
cellations. To see this, let x* be the vector realizing || Gy, ||2 and substitute z = (x* +y) into
g. Clearly, y** - Gy, (x*) is a term in the expansion of ¢(z), however there is no guarantee
that the other terms in the expansion don’t cancel out this value. To fix this our proof
relies on multiple delicate applications of the first-moment method, i.e. we consider a
complex vector random variable Z(x*,y) that is a function of x* and y, and argue about

E[lg(Z)]]-

The base case of &« = 0". We first consider the base case with &« = 0", where we define
y?* = 1. This amounts to showing that for every homogeneous polynomial & of degree t,
Ihll2 > w2 - 2790 where h,, is the restriction of / to it’s multilinear monomials.

which finishes the proof.

Given the optimizer x* of ||/1,,||2, let z be a random vector such that each Z; = x} with
probability p and Z; = 0 otherwise. Then, E[h(Z)] is a univariate degree-t polynomial
in p with the coefficient of p' equal to h,(x*). An application of Chebyshev’s extremal
polynomial inequality (Lemma 8.7.5) then gives that there exists a value of the probability
p such that

Inll2 = E[n(Z)[] = [ER2)]] = 270 [hu(x*)] = 270 ]2
For the case of general «, we first pass to the complex version of ||g||» defined as

Igllz = sup  [g(2)] .

zeC",||z]|=1

We use another averaging argument together with an application of the polarization
lemma (Lemma 8.6.1) to show that we do not loose much by considering ||g||$. In partic-

ular, [[gl2 < [Iglls < 29 ig]2.
The case of ¢ = ;. In this case, the problem reduces to showing that for all « € IN}' and
forally € 8" 1,
Ig-l5 > ™ [|Gaall2 - 270
Fix any « € IN}, and let w € C" be a complex vector random variable, such that w; is

an independent and uniformly random (2&; 4+ 1)-th root of unity. Let & be a random
(q — 2r + 1)-th root of unity, and let x* be the optimizer of ||Gy,|2- Let Z := woy + & - x*,
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where w o y denotes the coordinate-wise product. Observe that for any «’, ¢ such that
o[ =7, |7 =q—2r, v<1,

E

[1

0 otherwise

[Tw:-
i

.zzw] - {W-(x*)v if o =

By linearity, this implies E[[;w; - & - ¢,(Z)] = y** - Gou(x*). The claim then follows by
noting that
E

The general case. The two special cases considered here correspond to the cases when
we need to extract a specific g, (for r = 0), and when we need to extract a fixed a from a
given g,. The argument for the general case uses a combination of the arguments for both
these cases. Moreover, to get an O(n/q) approximation, we also need versions of such
decoupling lemmas for folded polynomials to take advantage of “easy substructures” as
described next.

Igrllz = Ellgr(2)[] = E E > y* - [|Gaall2.

Hwi -E-9r(2)

Hwi-E~gr(Z)

8.6.2 Exploiting Easy Substructures via Folding and Improved Approx-
imations

To obtain the desired n/g-approximation to || f||2, we need to use the fact that the problem
of optimizing quadratic polynomials can be solved in polynomial time, and moreover
that SoS captures this. More generally, in this section we consider the problem of getting
improved approximations when a polynomial contains "easy substructures". Itis not hard
to obtain improved guarantees when considering constant levels of SoS. The second main
technical contribution of our work is in giving sufficient conditions under which higher
levels of SoS improve on the approximation of constant levels of SoS, when considering
the optimization problem over polynomials containing "easy substructures".

As a warmup, we shall begin with seeing how to exploit easy substructures at con-
stant levels by considering the example of degree-4 polynomials that trivially "contain"
quadratics.

n-Approximation using Degree-4 SoS

Given a degree-4 homogeneous polynomial f (assume f is multilinear for simplicity), we
consider a degree-(2,2) folded polynomial &, whose unfolding yields f, chosen so that
max|jy =1 [[2(y)][2 = ©([|f|l2) (recall that an evaluation of a folded polynomial returns a
polynomial, i.e., for a fixed y, h(y) is a quadratic polynomial in the indeterminate x). Such
an h always exists and is not hard to find based on the SoS-symmetric representation of

f. Also recall, ~
h(x)= Y hg(x)-xP,
B|=2,p=<1

101



where each i p is a quadratic polynomial (the aforementioned phrase "easy substructures”
is referencing the folds: & p which are easy to optimize). Now by assumption we have,

> h A, = h 2.
||f||z_|mr:nz%<§1|| (B/V2)|)2 |ﬁ|r:n2?/>;§1|| gll2/

We then apply the block-matrix generalization of Gershgorin circle theorem to the SoS-
symmetric matrix representation of f to show that

A(F) < <n- h - n- hglls,
(f) <|lfllsp <mn mlr:nze}[>3<§1|| gllsp = n mgﬁgﬂ“ gll2

where the last step uses the fact that /g is a quadratic, and || - s, is a tight relaxation of
|| - ||2 for quadratics. This yields the desired n-approximation.

n/q-approximation using Degree-g SoS

Following the cue of the n? / g?>-approximation, we derive the desired 1 /4 bound by prov-
ing a folded-polynomial analogue of every claim in the previous section (including the
multilinear reduction tools), a notable difference being that when we consider a power
f1/% of f, we need to consider degree-(q — 2q/4,2q/4) folded polynomials, since we want
to use the fact that any product of q/4 quadratic polynomials is “easy” for SoS (in con-
trast to Section 8.6.2 where we only used the fact quadratic polynomials are easy for SoS).
We now state an abstraction of the general approach we use to leverage the tractability of
the folds.

Conditions for Exploiting "Easy Substructures" at Higher Levels of SoS. Letd := di +d»
and f := U(h) where h is a degree-(d1,d) folded polynomial that satisfies

sup [[h(y)ll2 = Oa(||f]l2) -
[yll=1

Implicit in Section 8.8, is the following theorem we believe to be of independent interest:

Theorem 8.6.2. Let h, f be as above, and let

= min{ﬁ;ﬁz) ’p(x) € span(}_zﬁ ’[5 € 1N22> }

Then for any q divisible by 2d, A(f‘?/d)d/q < O04(T-(n/q)m"2) || fll2-

In other words, if degree-dy SoS gives a good approximation for every polynomial
in the subspace spanned by the folds of &, then higher levels of SoS give an improving
approximation that exploits this. In this work, we only apply the above with I' = 1, where
exact optimization is easy for the space spanned by the folds.

While we focus on general polynomials for the overview, let us remark that in the case
of polynomials with non-negative coefficients, the approximation factor in Theorem 8.6.2
becomes Oy (3 - (1/9)1/4).
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8.6.3 Lower Bounds for Polynomials with Non-negative Coefficients
Degree-4 Lower Bound for Polynomials with Non-Negative Coefficients

We discuss some of the important ideas from the proof of Section 8.9. The lower bound

Alf)

in Chapter 9 proves T is large by considering a random polynomial f where each co-

efficient of f is an independent (Gaussian) random variable with bounded variance. The
most natural adaptation of the above strategy to degree-4 polynomials with non-negative
coefficients is to consider a random polynomial f where each coefficient f, is indepen-
dently sampled such that f, = 1 with probability p and f, = 0 with probability 1 — p.
However, this construction fails for every choice of p. If welet A € R **["* be the natural
matrix representation of f (i.e., each coefficient f, is distributed uniformly among the cor-
responding entries of A), the Perron-Frobenius theorem shows that ||A||; is less than the
maximum row sum max(O(n?p), 1) of M, which is also an upper bound on A(f). How-
ever, we can match this bound by (within constant factors) choosing x = (\/Lﬁ, e, \/LE)
when p > 1/n%. Also, when p < 1/n?%, we can take any a« with f, = 1 and set x; = 1/2
for all i with «; > 0, which achieves a value of 1/16.

We introduce another natural distribution of random non-negative polynomials that
bypasses this problem. Let G = (V, E) be a random graph drawn from the distribution
Gn,p (Where we choose p = n /% and V = [n]. Let C C () be the set of 4-cliques in G.
The polynomial f is defined as

flxy,...,xy) = Y X XXX,
{i1,io,i3,is}€C

Instead of trying @(n*) p-biased random bits, we use @(n?) of them. This limited in-
dependence bypasses the problem above, since the rows of A now have significantly
different row sums: @(n?p) rows that correspond to an edge of G will have row sum
@(n?p®), and all other rows will be zeros. Since these n?p rows (edges) are chosen in-

dependently from ([g]), they still reveal little information that can be exploited to find a
n-dimensional vector x with large f(x). However, the proof requires a careful analysis of
the trace method (to bound the spectral norm of an “error” matrix).

It is simple to prove that || f|ls, > O ( n2 p5> = Q(n'/%) by considering the Frobe-

nius norm of the n?p x n?p principal submatrix, over any matrix representation (indeed,
A is the minimizer). To prove A(f) > Q(n!/?), we construct a moment matrix M that is
SoS-symmetric, positive semidefinite, and has a large (M, A) (see the dual form of A(f) in
Chapter 7). It turns out that the n?p x n?p submatrix of A shares spectral properties of the

adjacency matrix of a random graph G,2,, 4, and taking M := ¢1A + ¢, for some identity-

like matrix | proves A(f) > Q(n'/®). An application of the trace method is needed to
bound c5.

To upper bound || f||2, we first observe that || f||2 is the same as the following natural
combinatorial problem up to an O(log4 n) factor: find four sets Sq,S,,S53,54 C V that
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maximize
|Cc(S1, 52,53, 54)

V/151115211S3]|S4]

where |C(S1, S2, S3, S4)| is the number of 4-cliques {vy,...,v4} of G withv; € S; fori =
1,...,4. The number of copies of a fixed subgraph H in Gy, ;, including its tail bound, has
been actively studied in probabilistic combinatorics [Vu01, KV04, JOR04, Chal2, DK12a,
DK12b, LZ16], though we are interested in bounding the 4-clique density of every 4-tuple
of subsets simultaneously. The previous results give a strong enough tail bound for a

union bound, to prove that the optimal value of the problem is O(n?p® - logo(l) n) when
|S1| = -+ = |S4|, but this strategy inherently does not work when the set sizes become
significantly different. However, we give a different analysis for the above asymmetric

case, showing that the optimum is still no more than O(n?p® - logo(l) n).

Lifting Stable Degree-4 Lower Bounds

For a degree-t (t even) homogeneous polynomial f, note that max{|A(f) |, |A(—f) |} is
a relaxation of || f||2. || f||sp is a slightly weaker (but still quite natural) relaxation of || f{|>
given by

| fllsp := inf{||[M]|2 | M isa matrix representation of f} .

As in the case of A(f), for a (say) degree-4 polynomial f, || f7/ 4\\;{ 7 gives a hierarchy of
relaxations for || f||2, for increasing values of 4.

We give an overview of a general method of “lifting” certain “stable” low degree
gaps for | - ||sp to gaps for higher levels with at most 7°!) loss in the gap. While we state
our techniques for lifting degree-4 gaps, all the ideas are readily generalized to higher
levels. We start with the observation that the dual of ||f||s, is given by the following
“nuclear norm” program. Here M the canonical matrix representation of f, and [|X|s, is
the Schatten 1-norm (nuclear norm) of X, which is the sum of it’s singular values.

maximize (Mg, X)
subject to : 1X|ls, =1
Xis 505 symmetric

Now let X be a solution realizing a gap of 6 between || f||s; and || f||2. We shall next see
how assuming reasonable conditions on X and My, one can show that || f1/4||s, /|| f1/%|
is at least 7/ /40,

In order to give a gap for the program corresponding to || f9/4|sp, a natural choice for

a solution is the symmetrized version of the matrix X*7/4 normalized by its Schatten-1
norm i.e., for Y = X®1/4 we take

S
- H;g—HSl where  YK] = B [Y[x(K)]] VK€ ]’
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To get a good gap, we are now left with showing that || Y*||s, is not too large. Note that
symmetrization can drastically change the spectrum of a matrix as for different permu-
tations 71, the matrices Y[K] := Y[rr(K)] can have very different ranks (while ||Y||r =
|[Y™||F). In particular, symmetrization can increase the maximum eigenvalue of a ma-
trix by polynomial factors, and thus one must carefully count the number of such large
eigenvalues in order to get a good upper bound on ||Y®|s,. Such an upper bound is a
consequence of a structural result about Y that we believe to be of independent interest.

To state the result, we will first need some notation. For a matrix M € ]R[”}2X [n]? let
T € R denote the tensor given by, T|[iy, ip, i3, is] = M][(i1,12), (i3,i4)]. Also for any non-
negative integers x, y satisfying x +y = 4, let M, € R denote the (rectangular)
matrix given by, M[(iy,...,ix), (ji,---jy)] = Tli1,...,ix,j1,...jy]. Let M € RI*[ pe a
degree-4 SoS-Symmetric matrix, let My 1= M3 ® My ® M; 3, let Mp := M3 ® M3, let
Mc := M and let Mp := Vec(M) Vec(M)" = My4 ® Myy.

We show (see Theorem 8.10.4) that (M®7/4)S can be written as the sum of 2°(7) terms

of the form:
C(a,bc,d) - P- (M3 ® M" © ME° ® M5?) - P

where 12a 4 8b + 4c + 84 = g, P is a matrix with spectral norm 1 and C(a,b,c,d) = 20(q),
This implies that controlling the spectrum of M4, Mg, M and Mp is sufficient to control
on the spectrum of (M®7/4)3,

Using this result with M := X, we are able to establish that if X satisfies the additional
condition of ||Xy3/|s, < 1 (note that we already know || X||s, < 1), then ||[Y®|s, = 20(0),
Thus Z realizes a (M?qﬂl, Y5) /200 gap for || f1/4||sp. On composing this result with the
degree-4 gap from the previous section, we obtain an || - ||s, gap of n1/%*/ (g - log 1)
for degree-q polynomials with non-neg. coefficients. We also show the g-th level | - |sp
gap for degree-4 polynomials with non-neg. coefficients is €)(n!/) /g°().

There are by now quite a few results giving near-tight lower bounds on the per-
formance of higher level SoS relaxations for average-case problems [BHK*16, KMOW17,
HKP*17]. However, there are few examples in the literature of matching SoS upper/lower
bounds on worst-case problems. We believe our lifting result might be especially useful in

such contexts, where in order to get higher degree lower bounds, it suffices to give stable
lower bounds for constant degree SoS.

8.7 Results for Polynomials in R;[x] and R} [x]

8.7.1 Reduction to Multilinear Polynomials

Lemma 8.7.1. Any homogeneous n-variate degree-d polynomial f(x) has a unique representation

of the form
Y By(x) - x™

ace]Ngd/z
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where for any & € N2, ,, Fay is a homogeneous multilinear degree-(d — 2|a|) polynomial.

We would like to approximate || f||2 by individually approximating ||Fa||» for each
multilinear polynomial F,,. This section will establish the soundness of this goal.

Upper Bounding A(f) in terms of A(F,)

We first bound A(f) in terms of MaXeeN?, , A(Fy). The basic intuition is that any matrix

T
My such that <x®(d/2)> - My - x®(/2) for all x (called a matrix representation of f) can be

written as a sum of matrices M; 7 for each t < d/2, each of which is block-diagonal matrix
with blocks corresponding to matrix representations of the polynomials Mp, for each «
with || = 2t.

Lemma 8.7.2. Consider any homogeneous n-variate degree-d polynomial f(x). We have,

max AlFan)
M) = a€NZ; o |0(a)|

(1+d/2)

Proof. We shall start by constructing an appropriate matrix representation My of f that
will give us the desired upper bound on A(f). To this end, for any « € INZ, ,, let Mp,,
be the matrix representation of F,, realizing A(F,). Forany 0 < t < d /2, we define
My 5y so that for any &« € N} and I € O(a), M, 1[I, 1] := Mp,, /|O(a)|, and M, 5 is zero
everywhere else. Now let My := } 1c(a/2) My ). As for validity of My as a representation
of f we have,

(Mf,x®d/2(x®d/2)T>: Z <M(t,f),x®d/2(x®d/2)T>
0<t<4
= YL (MyplL 1), x @D (22D Ty 20
€N, , 1€0(a) ,

= Y Y (M, 1@/l (1002 )Ty 20

B, 1 O
= Y a2 (M, x® /2D (22w Ty
ocelNgd/z

= Z Fpo (%) x"

a€NZ,
= f(x)

Now observe that M, r) is a block-diagonal matrix (up to simultaneous permutation
of it’s rows and columns). Thus we have || M ¢ || < maxueny ||Mp,[|/|0(a)|. Thus on
applying triangle inequality, we obtain || My|| < max (1+4d/2)||Mg,||/]0(a)| n

a€NZ

<d/2
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Lower Bounding || f||, in terms of || F,, || (non-negative coefficients)

We first bound || f||2 in terms of maXeeny, , [IF2q||l2, when every coefficient of f is non-

\f

Tal
ensures that ||y|2 < 2 and f(y) is large, since f(y) recovers a significant fraction (up to a
4) .10 ()| factor) of Fy, (x*).

negative. If x* is the optimizer of F,,, then 1t is easy to see that x* > 0. Setting y = x* +

Lemma 8.7.3. Let f(x) be a homogeneous n-variate degree-d polynomial with non-negative coef-
ficients. Consider any o € INZ, ,». Then

| Faa |2

1fll2 > m-

Proof. Consider any 0 <t < d/2,and any &« € IN}. Let x}; := argmax||F, |2 (note x; must
be non-negative). Let
It
yri= g + ye

Vi

and let x* := y*/||y*||. The second term is a unit vector since ||/a||3 = t. Thus |y*|| =

@(1) since y* is the sum of two unit vectors. This implies f(x*) > f(y*)/2°4). Now we
have,

fy )= ) Fp(y*) - (y*)?P (by Lemma 8.7.1)
PENZ )y
> B (y*) - (y*)* (by non-negativity of coefficients)
> B (y lt [T «f (y* > Ve entry-wise)
LeSupp « \/¥
1
> Fu(y*) 5 I &
2000 ¢! {eSupp «
o 1Lvesuppa ¢!
> b (y") %
1
> F ) —
= ) 20w o)
1
> Fou(X") s5me * is entry-wise at least x*
> Fou(x™) 2007 |0(a)] (y* is entry-wise at least x™)
_ [Pl
2007 0 (a)]
This completes the proof. n

Theorem 8.7.4. Consider any homogeneous n-variate degree-d polynomial f(x) with non-negative

coefficients. Then
A(f) < 20@) max A(Fau)
||f||2 aeNZ, ||F20¢||2
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Proof. Combining Lemma 8.7.2 and Lemma 8.7.3 yields the claim. n

We will next generalize Theorem 8.7.4 by proving a more general version of Lemma 8.7.3.

Lower Bounding || f||, in terms of || F,,||» (general case)

We lower bound ||f||2 in terms of ||F,||2 for all polynomials. We will first recollect and
establish some polynomial identities that will be used in the proof of the generalized
version of Lemma 8.7.3 (i.e. Lemma 8.7.11).

Polynomial Identities

Lemma 8.7.5 (Chebyshev’s Extremal Polynomial Inequality). Let p(x) be a univariate degree-
d polynomial and let cy be it’s leading coefficient. Then we have, maxyc(o 1] [p(x)| > 2[cq|/ 44,

Lemma 8.7.6 ((HLZ10]). Let x1,x2,...x% € R" be arbitrary, let A € R pe a SoS-symmetric
d-tensor, and let {1, . .., G4 be independent Rademacher random variables. Then

E|J]& (A @x'+ -+ &) | =dl (A @ @),

ie[d]

This lemma implies:

Lemma 8.7.7 ([HLZ10]). Let A be a SoS-symmetric d-tensor and let f(x) := (A, x®4). Then

1

Ifll2 > S5 max (Ax' @& ).
201 |xi|=1

Lemma 8.7.8. Let f be an n-variate degree-d homogeneous polynomial. Let || f||5 := max |f(2)],

HZ|| 1
then

s < st < 11
20(d) — = /2

Proof. Let A be the SoS-symmetric tensor representing f. Let z* = a* 4 ib* be the complex
unit vector realizing f(z*) = || f||5. Then we have,

f(z") = (A, (z5)%)
= (A, (a* +ib*)®4)
— 2 (A, ® Cf>

cl..cdefarib*}y  jeld]

= Re(f(z")) = Y AR - Y AR,
cl,...cte{a* b*}, j€ld] c,..cte{a* b*}, j€ld]
[{jlc/=b"}|%4=0 |{j|cf=b*}|%4=2
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mfz)= Y (AR - Y (AR
Cl,..iCdE{a*,b*}, j€ld] cl,...'cde{a*,b*}, j€ld]
[l =b}1%04=1 [{jlci=b}1%4=3

which implies that there exists ¢!, ..., c? € {a*,b*} such that | (A4, Qjeld) Y| > |Ifll5 /20
Lastly, applying Lemma 8.7.7 implies the claim. n

Some Probability Facts

Lemma 8.7.9. Let Xy, ... X be i.i.d. Bernoulli(p) random variables. Then for any ty,. .., t €
NN,
E[X]...X}}] = p.

Lemma 8.7.10. Let { be a uniformly random p-th root of unity. Then for any t € [p — 1],
E[Z'] = 0. Also, clearly E[CP] = 1.

We finally lower bound ||f||2 in terms of F,. Fix a € INZ, , and, let x* be the opti-
i <

mizer of Fp,. Setting y = x* + Jaf s in the non-negative coefficient case does not work
since terms from F,z may be negative. We bypass this issue by first lower bounding || f1|5
in terms of Fp, and using Lemma 8.7.8. For ||f||5, we use random roots of unity and
Bernoulli random variables, together with Lemma 8.7.5, to extract nonzero contribution
only from the monomials that are multiples of x* times multilinear parts.

Lemma 8.7.11. Let f(x) be a homogeneous n-variate degree-d polynomial. Then for any a €
e I
Faa|l2
>
I > S

Proof. Fix any any « € INZ, », let t := |a| and let k := d — 2t. For any i € [n], let {; be an
independent and uniformly randomly chosen (2&; + 1)-th root of unity, and let E be an
independent and uniformly randomly chosen (k + 1)-th root of unity.

Let X := argmax||Fy,|2. Let p € [0,1] be a parameter to be fixed later, let by, ..., b, be
i.i.d. Bernoulli(p) random variables, let { := ({y,...,(n), b := (by,...,by) and finally let

= 1 fova
z = & b02a+1ox—i— \/E .

Since ) yesuppa ¢ = t and roots of unity have magnitude one, z has length O(1). Now
consider any fixed v € {0,1}}. We have,

|: 20c+'y H gl]

= coefficient of Ek 11 @l.zai in E [22‘”7] (by Lemma 8.7.10)
i€[n]
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; o\ 20t
— coefficient of =k - H Cl.z”‘i in E [H <Cz" Vi ) b - X ) ]

icln) i) Vi 20+ 1

=] coefficientof 27 - in E
i€[n]

w . biex \2ti ,
(gi : \/\/; 4+ 5. —2021- +’1) (since ¥ € {0,1}})

ayt
=pF. I tTl‘ X (by Lemma 8.7.9)

i€Supp &
K
0.
_ k= i
=p"- X7 . T,-
icSupp &

Thus we have,

E [f(Z) =11 a]

YRR
BEN/ i€[n]

=Y f3-E 2B T4 (by Lemma 8.7.10)
BEN] i€[n]
B>2u

= Zszerw']E 22T 5. ng + Zf2w+7‘lE 2.8 ng
ye{0,1}} i ie[n| ] ’76%1\;7(’ i€[n]
v

[x]

= {;l}fzwrv-ﬂi 20+ | w 1—[[] gil + rip) (by Lemma 8.7.9)
rE10.1}; i ic|n

[1

where r(p) is some univariate pol{momial in p,s.t. deg(r) <k
o
_ o]
ve{0,1}} i€Supp &
a;
= pk - Fyu (%) H tTléz + r(p) (where deg(r) < k)
i€Supp a

Lastly we have,

Ifll2 > I flls - 270@ by Lemma 8.7.8
> max E[|f(z)]] - 27O (Il = 0(1))
p€(0,1]
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= max [E z) 8- Ci .270(d)
maxE ||/ -2 1 ]
> max |E |[f(z)-Z-[] & .270)
pelo1] ic[n]
Q;
> B (%) -T] % .270(d) (by Chebyshev: Lemma 8.7.5)
iESuppt);c l
e
— [Baalla -] T 2270
icSupp &
[F2ell2 —0(a)
> -2
10(a)]
This completes the proof. n

In fact, the proof of Lemma 8.7.11 yields a more general result:

Lemma 8.7.12 (Weak Decoupling). Let f(x) be a homogeneous n-variate degree-d polynomial.
Then for any o € INZ; , and any unit vector y,

fll2 = y* - |[Eaall2 - 270

We are finally able to establish the multilinear reduction result that is the focus of this
section.

Theorem 8.7.13. Let f(x) be a homogeneous n-variate degree-d (for even d) polynomial. Then

A(f) < 206 max A(Fow)
1£1l2 0N, [[Fal2

Proof. Combining Lemma 8.7.2 and Lemma 8.7.11 yields the claim. u

8.7.2 (n/q)%*-Approximation for Non-negative Coefficient Polynomi-
als

Theorem 8.7.14. Consider any homogeneous multilinear n-variate degree-d polynomial f(x)
with non-negative coefficients. We have,

A(f) o) '
< 2 —_—.
Ifll2 — di/4

Proof. Let M £ be the SoS-symmetric matrix representation of f. Let I = (iy,...,i42) €

[n]%/2 be the multi-index of any row of M £ with maximum row sum. Let S; for I € [n]4/2,
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denote the sum of the row I of M. By Perron-Frobenius theorem, [M¢| < S;-. Thus
A(f) < S

We next proceed to bound || f||> from below. To this end, let x* := y*/||y*|| where,

f._ 1

- 4+ Lze
7 \/ﬁ \/‘71/21'61*Z

Since f is multilinear, I* has all distinct elements, and so the second term in the definition
of y* is of unit length. Thus ||y*|| = @ (1), which implies that || f||, > f(x*) > f(y*)/20@.
Now we have,

fly*) = ((y*)®d/2)TMf (y*)®d/2
> L o2l MA1%92 (b i ity of M
= L (nd)d/4 €11y @ @ epay2) My (by non-negativity of My)
IcO(I*)
1 T nd/2
E *
-y 51
reoqr (nd)?/4
_ Sp+
= L ey

1eO(I*)

(by SoS-symmetry of My)

1S 74
_ (‘éf;))dil (|0(I")| = (d/2)! by multilinearity of f)
dits _ dVAA(f)
= ,d/490(d) = ,d/490(d)’

This completes the proof. n

Theorem 8.7.15. Let f(x) be a homogeneous n-variate degree-d polynomial with non-negative
coefficients. Then for any even q such that d divides q,

/d\yd/ d/4
(A(f977)) /A < 200) ”d N
1£1l2 g4/
Proof. Applying Theorem 8.7.4 to 1/ and combining this with Theorem 8.7.14 yields the
claim. n

8.7.3 (n/q)??-Approximation for General Polynomials

Theorem 8.7.16. Consider any homogeneous multilinear n-variate degree-d (for even d) polyno-
mial f(x). We have,

A(f) o) n?
< 20@) = __
Ifll2 — di/2
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Proof. Let M be the SoS-symmetric matrix representation of f, i.e.

fa(D)+a())
10(a(I) +a(]))|

By the Gershgorin circle theorem, we can bound ||M¢||,, and hence A(f) by n%/2 - (maxg | fg| /d!).
Here, we use the multilinearity of f. On the other hand for a multilinear polynomial, us-

ing x = B/+/|B] (where |B| = d by multilinearity), gives || f|» > d~%/2-|fg|. Thus, we

easily get

M¢[L ] =

nd/2
qd4/2 "

a2 0(d)
A(f) < TR AIfll2 = 2

Theorem 8.7.17. Let f(x) be a homogeneous n-variate degree-d polynomial, and assume that 2d
divides q. Then

N

1£1l2 g4/
Proof. Applying Theorem 8.7.13 to /% and combining this with Theorem 8.7.16 yields
the claim. -

8.7.4 /m/qg-Approximation for m-sparse polynomials

Lemma 8.7.18. Consider any homogeneous multilinear n-variate degree-d (for even d) polyno-
mial f(x) with m non-zero coefficients. We have,

A(f) o) /o
fl, =2 vm

Proof. Let M be the SoS-symmetric matrix representation of f, i.e.

MflL T = 15
Now A(f) < [IM¢]| < [[M¢[[r. Thus we have,

IMfllE = Y M{LTP

I,j€[n]?/2

2
= T
sty 10(B)]
fs
= Z -l
pe{o1};

m
< gy max|fp|
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On the other hand, since f is multilinear, using x = B/+/|B| (where |B| = d by multi-
linearity), implies || f||, > d~%/2 - | fg| for any B. This implies the claim. n

Theorem 8.7.19. Let f(x) be a homogeneous n-variate degree-d polynomial with m non-zero
coefficients, and assume that 2d divides q. Then

(A(J‘T;# < 20). fm7a.

Proof. Combining Theorem 8.7.13 and Lemma 8.7.18, yields that for any degree-g homo-
geneous polynomial g with sparsity 7, we have

(A(g)) < 200) /7.

Lastly, taking ¢ = f7/ and observing that the sparsity of g is at most (( q% )) implies the

claim. -

8.8 Weak Decoupling/Approximating 2-norms via Folding

8.8.1 Preliminaries

Recall that we call a folded polynomial multilinear if all its monomials are multilinear. In
particular, there’s no restriction on the folds of the polynomial.

Lemma 8.8.1 (Folded Analogue of Lemma 8.7.1).
Let (Rg,[x])a,[x] 5 f(x) := Lpen fp(x) - xP be a (dy,dy)-folded polynomial. f can be written
1
as
Z Fog(x) - x2&
a€NZy /2
where for any a € INZ; /», Fon(x) is a multilinear (dy — 2|a|, d2)-folded polynomial.

Proof. Simply consider the folded polynomial

Bu)= Y (B

’}/6{0,1}3172“”

where (B )y = quH—’y- [

8.8.2 Reduction to Multilinear Folded Polynomials

Here we will prove a generalized version of Lemma 8.7.2, which is a generalization in
two ways; firstly it allows for folds instead of just coefficients, and secondly it allows a
more general set of constraints than just the hypersphere since we will need to add some
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additional non-negativity constraints for the case of non-negative coefficient polynomials
(so that Ac() satisfies monotonicity over NNC polynomials which will come in handy
later).

Recall that A¢() is defined in Section 7.4 and that || f||2 and Ac(f) for a folded poly-
nomial f, are applied to the unfolding of f.

Relating Ac(f) to Ac(F)

Lemma 8.8.2 (Folded Analogue of Lemma 8.7.2).
Let C be a system of polynomial constraints of the form {||x||3 = 1} U C" where C' is a moment
non-negativity constraint set. Let f € (Ry,[x])4,[x] be a (dy, dy)-folded polynomial. We have,

AC(f) S m%X AC(PZK)
“ENgdl/z | ([X)|

(1+4d1/2)

Proof. Consider any degree-(d; + d;) pseudo-expectation operator Ec. We have,

Ec[f] = ZEC [sz(x) 'xm} (by Lemma 8.8.1)
"‘G]Ngdl/z
<Y Ec [xﬂ - Ac(Fa) (by Lemma 7.4.2)
"‘G]Ngdl/z

= Z Z EC :xz"‘} -Ac(an)

- ¥ ¥ Eefog] - Act)

< Y Y Ec|log)®] ﬁ%% (Ec|¥*] = 0)

E Ac(Fp)
- E O(a)|x**| - max —— 2
c[ Y. 10(a)] lﬁeNgdl/ZO(ﬁ)
. Ac(Fp)
4 PENZ, /2 10(B)]
Ac(F
= ) max M
0<t<% BENZy /2 10(B)]
Ac(Fzp)

= max ————2(1+dq{/2 ]
s, Top)] A/
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8.8.3 Relating Evaluations of f to Evaluations of F,

Here we would like to generalize Lemma 8.7.3 and Lemma 8.7.11 to allow folds, however
for technical reasons related to decoupling of the domain of the folds from the domain of
the monomials of a folded polynomial, we instead generalize claims implicit in the proofs
of Lemma 8.7.3 and Lemma 8.7.11.

Let f € (Rg,[x])4,[x] be a (d1,d)-folded polynomial. Recall that an evaluation of a
folded polynomial treats the folds as coefficients and only substitutes values in the mono-
mials of the folded polynomial. Thus for any fixed y € R", f(y) (sometimes denoted by
(f(v))(x) for contextual clarity) is a degree-d, polynomial in x, i.e. f(y) € Ry, [x].

Lemma 8.8.3 (Folded Analogue of Lemma 8.7.3).

Let f € (Rﬂx]) 4,1x] be a (dq, dy)-folded polynomial whose folds have non-negative coefficients.
Then for any a € ]Ng dy/2 and any y > 0,

V) s BB o
(e )

where the ordering is coefficient-wise.

Proof. Identical to the proof of Lemma 8.7.3. n

Lemma 8.8.4 (Folded Analogue of Lemma 8.7.11).
Let f € (Ry,[x])g,[x] be a (d1,da)-folded polynomial. Consider any « € INZ ./, and any y, and

let
! ob +\/EOC

2x + 1 A/ |a|

where E is an independent and uniformly randomly chosen (dq — 2|a| + 1)-th root of unity, and
forany i € [n], {; is an independent and uniformly randomly chosen (2a; + 1)-th root of unity,
and b; is an independent Bernoulli(p) random variable (p is an arbitrary parameter in |0,1]).
Then

z = E-yo

E|(f@) )-8 ]| = ph2e. EelWDE) poow oy
il o@)]

where r(p) is a univariate polynomial in p with degree less than dy — 2|«| (and whose coefficients
are in Ry, [x]).

Proof. This follows by going through the proof of Lemma 8.7.11 for every fixed x. n

8.8.4 Bounding Ac() of Multilinear Folded Polynomials

Here we bound Ac() of a multilinear folded polynomial in terms of properties of the
polynomial that are inspired by treating the folds as coefficients and generalizing the
coefficient-based approximations for regular (non-folded) polynomials from Theorem 8.7.16
and Theorem 8.7.14.
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General Folds: Bounding A() in terms of A() of the "worst" fold

Here we will give a folded analogue of the proof of Theorem 8.7.16 wherein we used
Gershgorin-Circle theorem to bound SOS value in terms of the max-magnitude-coefficient.

Lemma 8.8.5 (Folded Analogue of Gershgorin Circle Bound on Spectral Radius). For even
dy,dp, letd = dy +dy, let f € (Ry[x])4,[x] be a multilinear (dy,dy)-folded polynomial. We have,

dy/2

A(f) < 2001
(f) < i %aﬁd 1 llsp-
Proof. Since A(f) < | f||sp, it is sufficient to bound || f 5.
Let My be the matrix representation of f, realizing ||f||sp. Let My be an [n]

[n]%1/2 block matrix with [n]%2/2 x [n]%2/2 size blocks, where for any I,] € [n]%/2 the
block of M, at index (I, ]) is defined to be - - M . Clearly My (interpreted as an
f dq! fzx(I)Jrzx(]) f

di/2 5

[n]9/2 x [n]?/?) is a matrix representation of the unfolding of f since f is a multilinear
folded polynomial. Lastly, applying Block-Gershgorin circle theorem to My and upper
bounding the sum of spectral norms over a block row by 7%/ times the max term implies

the claim. ]

Non-Negative Coefficient Folds: Relating SoS Value to the SoS Value of the d;/2-
collapse

Observe that in the case of a multilinear degree-d polynomial, the d/2-collapse corre-
sponds (up to scaling) to the sum of a row of the SOS symmetric matrix representation of
the polynomial. We will next develop a folded analogue of the proof of Theorem 8.7.14
wherein we employed Perron-Frobenius theorem to bound SOS value in terms of the
d /2-collapse.

The proof here however, is quite a bit more subtle than in the general case above.
This is because one can apply the block-matrix analogue of Gershgorin theorem (due
to Feingold et al. [FV62]) to a matrix representation of the folded polynomial (whose
spectral norm is an upper bound on A()) in the general case. Loosely speaking, this
corresponds to bounding A(f) in terms of

max Z A(ffﬁ_g)

YOI e {0}y

where k = dy /2. This however is not enough in the nnc case as in order to win the 1/2 in
the exponent, one needs to relate Ac(f) to

max A frto |
ve{0,1}} (Ge{;,l};ﬁ’ 7+)
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This however, cannot go through Block-Gershgorin since it is not true that the spectral
norm of a non-negative block matrix is upper bounded by the max over rows of the spec-
tral norm of the sum of blocks in that row. It instead, can only be upper bounded by the
max over rows of the sum of spectral norms of the blocks in that row.

To get around this issue, we skip the intermediate step of bounding Ac(f) by the
spectral norm of a matrix and instead prove the desired relation directly through the
use of pseudoexpectation operators. This involved first finding a pseudo-expectation
based proof of Gershgorin/Perron-Frobenius bound on spectral radius that generalizes
to folded polynomials in the right way.

Lemma 8.8.6 (Folded analogue of Perron-Frobenius Bound on Spectral Radius). For even
dy =2k, let f € (Rjz[x]),h[x] be a multilinear (dy, dy)-folded polynomial whose folds have non-

negative coefficients. Let C be the system of polynomial constraints given by {||x||3 = 1,Vp €
Ngz,xﬁ > 0}. We have,

1
A < Ac(Q,) - —
clf) = max Acl8y) g
where ~
Sy (x) == C(f)y = Zf7+9(x)-
0<1—vy
QeINZ

Proof. Consider any pseudo-expectation operator Ec of degree at least d; + d,. Note that
since Ec satisfies {VB € IN”2,xﬁ > 0}, by linearity Ec must also satisfy {# > 0} for any
h e IR;; [x] - a fact we will use shortly.

Since f is a multilinear folded polynomial, fu is only defined when 0 < a < 1. If
a £ 1, we define f, := 0 We have,

Ec[f] =) _Ec [j_f,x x| (f is a multilinear folded polynomial)
txe{O,l}gl )
~ = 1 . .
= Z Z Ec | fa(t)+a()) -xIx]] T (by multilinearity)
el jeln "
~ [= )2 12 - _
< Y ) Ec fa(D+a() - W} : % (Ec satisfies fo > 0)
refnf el "
~ [ 1
= Y. Y Ec|fatta(n (XI)Z] I
Iefnf Jeff v
~ - 1
= Y Ec|(x)?* ) fa(D)+a()) T
€[}t JEln]t "
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k!

=) Ec (xl)z-Zj_fa(I)Jre T (by multilinearity)
e[}k o<1—a(I) 1
0Ny
~ T k!
= Y EBe|(D? gan| - 1
e - } 4!
T ()2 5 1
< Z Ec|(x") } -Ac (g“(1)> i (by Lemma 7.4.2)
remk - :
T 1 -
< Ec|(x")?] - Ac(Zy) = Ec|(x")?] >0
_E%k | (] - max Ac(@) (Bc|()?] > 0)
- 1
—E d| Ar(3.) - —
cllIxl'] - max Ac) g
_ 1
=0, ) -

We are finally equipped to prove the main results of this section.

8.8.5 (n/q)%4"1/2-Approximation for Non-negative Coefficient Polyno-
mials

Theorem 8.8.7. Consider any f € R [x] for d > 2, and any q divisible by 2d. Let C be the
system of polynomial constraints given by {||x||3 = 1,VB € N3, /ar xP > 0}. Then we have,

d/q _
Ac (fti/d) < 20 nd/4 1/2.
1Az~ g1z
Proof. Let h be any (d — 2,2)-folded polynomial whose unfolding yields f and whose
folds have non-negative coefficients and let s be the (7, 2q/d)-folded polynomial given by
h1/4 where g := (d — 2)q/d. Finally, consider any « € IN% s, and let Sy, be the multilinear
component of s as defined in Lemma 8.8.1. We will establish that for any v € {0,1}}
(where k :=74/2 — |a]),

2-0(1) . A, (mv)
(G/2 — |a)7/41al/2 |0 ()] - n/4-1al/2

which on combining with the application of Lemma 8.8.2 to s and its composition with
Lemma 8.8.6, yields the claim. To elaborate, we apply Lemma 8.8.2 to s with dy = q,d> =
fq/dtand then for every a € NZ, , we apply Lemma 8.8.6 with d; =7 — 2|al,dy =2q/4d,
o ge

A1 > (8.7)

Ac (C*/z—\oq(sza)w)
Ac(F17%) = Ac(s) <290 . max max — !
C(f ) cls) = weNL, yefonyt, (@72 = [a])!-]0(a)]
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which on combining with Eq. (8.7) yields the claim.

It remains to establish Eq. (8.7). So fix any &, 7y satisfying the above conditions. Let
= |a| and let k :=§/2 — |a|. Clearly || f|2 > f(y/|ly]]2) where y := a + z, and

1 x

Vil VET

and a is the unit vector that maximizes the quadratic polynomial
(h(z)) (x)-
Since ||y|l2 = O(1), || fll2 > f(v)/2°@). Now clearly by non-negativity we have,
fy) = (h(z))(a) = [1(2)]l2

Thus we have,

A1 > [l (h(2)) (x) 1474 -2
= || (z)"4(x)]| - 27O

= Ac (h(z)q / d(x)) .270@) (SOS exact on powered quadratics)
= Ac(s(z)(x)) - 2709
2—0(q)
> Ac <52a(1/\/ﬁ +v/ \/E)(X)) 10 (by Lemma 7.4.3 and Lemma 8.8.3)
N Ac (Ck(Ssz)'y> 2-0(q) oL 243 and
= K2 k2 | 0(a)] (by Lemma 7.4.3, an
Sz,x( NG \/_) Ci(S2a) coefficient-wise)
which completes the proof since we’ve established Eq. (8.7). n

8.8.6 (n/q)?? l-Approximation for General Polynomials
Theorem 8.8.8. Consider any f € R [x] for d > 2, and any q divisible by 2d. Then we have,

ad/q -
A(fq/ ) < H0) nd/2 1.
[ndlFa— q4/2-1

Proof. Let h be the unique (d — 2,2)-folded polynomial whose unfolding yields f and
such that for any g € IN//_,, the fold Eﬁ of h is equal up to scaling, to the quadratic form
of the corresponding (1 x 1) block of the SOS-symmetric matrix representation My of f.

That is, for any I, ] € [n]*/?71,s.t. a(I) +a(]) = B,

_ XML, J]x
"5 = o)
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Let s be the (7,2q/d)-folded polynomial given by h1/4 where § := (d — 2)q/d. Consider
any &« € NZ; , and 7y € {0, 1}%1—2|1X\’ and let S, be the multilinear component of s as
defined in Lemma 8.8.1. Below we will show,

279 [|(Saa) 4 llsp

(7 — 2[a])7/2 12 JO(a))|

A2 > 8.8)

which would complete the proof after applying Lemma 8.8.2 to s and composing the
result with Lemma 8.8.5. To elaborate, we apply Lemma 8.8.2 to s with dy =4,d> = 2q/d
and then for every « € INZ; , we apply Lemma 8.8.5 with dy = § —2[a[, d, = 2q/d, to get

S[X S
AUW>=M$<P@'mM max 1(S2a) llsp

B weNZyp v {01}, (7 — 2[af)T-2 - O ()|

which on combining with Eq. (8.8) yields the claim.
Fix any «, 7 satisfying the above conditions. Let k := § — 2. Let t := |a|, and let

1 1 Vaol

RV TS R

E is an independent and uniformly randomly chosen (k + 1)-th root of unity, and for
any i € [n], {; is an independent and uniformly randomly chosen (2&; + 1)-th root of
unity, and for any i € [n], b; is an independent Bernoulli(p) random variable (p is a

parameter that will be set later). By Lemma 8.7.7 and definition of /1, we see that for any
Yo Ifll5 = 11 ((y)) (%) [|3- Thus we have,

/d d
A3 = 11F71

[

zZ =

> || f1/4)| - 270@ (by Lemma 8.7.8)
> max E [Hh(z)q/d(x)uz} .270@ (by Lemma 8.7.7)
pelo1]
= plél[%)f] E [||h(z)‘7/d(x) ||Sp] 2700 (SOS exact on powered quadratics)

= max E [h<z>w<x> -E-H@-sp] 270
ie[n]

pel01]
> max ||[E h(z)”//d(x) W-Hgi .2—0(q)
pel0] ie[n] sp
= max ||E |(s(z))(x) & Hgi .2—0(q)
pel0l] i€[n] sp
— max || p*- (Sz,x(’)//\/E))(x) +r .270@)  (by Lemma 8.8.4, deg(r) < k
p P y &
pel0,1] |0(a)] 5



k (S2a)y(x)

= max || p err(p)

pel01]

1S20)2llsp  —0(+x)
= K2.]0(a)]

(Chebyshev Inequality - Lemma 8.7.5)

where the last inequality follows by the following argument: one would like to show that
there always exists p € [0,1] such that ||p* - Ig(x) + ... p* - ho(x)) ||sp > [[Tx(x) ||sp - 27O
So let p be such that |p* - u" Mo + ... p° - u" Moo| > |uTMyo| - 279%®) (such a p exists by
Chebyshev inequality) where My is the matrix representation of h(x) realizing ||/ ||sp
and u, v are the maximum singular vectors of My. My_1, ..., My are arbitrary matrix rep-
resentations of hy_1, . .. hg respectively. But pk M+ ... po - My is a matrix representation
of pX - hy+...p0 ho. Thus [|p* - kg + ... p° - holsp > [uT M| /27CW) = ||l ||sp - 27O,
This completes the proof as we’ve established Eq. (8.8). n

8.8.7 Algorithms

It is straightforward to extract algorithms from the proofs of Theorem 8.8.7 and Theo-
rem 8.8.8.

Non-negative coefficient polynomials

Let f be a degree-d polynomial with non-negative coefficients and let & be a (d — 2,2)-
folded polynomial whose unfolding yields f. Consider any g divisible by 2d and let 7 :=
(d — 2)q/d. Pick and return the best vector from the set

Ve o h(i+ Vi +L>(x)

1
{ﬁ—i—m—i—m—l—argmax \/ﬁ \/W \/m

n n
2 4 € Ny, 7 €Ny }

General Polynomials

Let f be a degree-d polynomial and let / be the unique (d — 2, 2)-folded polynomial whose
unfolding yields f and such that for any g € N”_,, the fold i p of I is equal up to scaling,
to the quadratic form of the corresponding (n x n) block of the SOS-symmetric matrix
representation My of f. Thatis, forany I, ] € [n]?/?71,s.t. a(I) +a(]) = B,

_ xTMg[L, J]x
falx) = fILT]
[0(B)]
Consider any g divisible by 2d and let 7 := (d — 2)g/d. Let the set S be defined by,

S {,_, 1 1 b + \/&OC B S Qk+1/ gi € 020(,'4-1/ b S {Oll}n/ }
= e — ’)/ O —20O
7] 20 +1 vara a € NZz 5 7 € {Orl}gfzw
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where (), denotes the set of p-th roots of unity. Pick and return the best vector from the
set

{e1-y+e2-argmax||(h(y) ()2 |y €S, e1 € [~(d=2),(@-2)], ez € [-2,2] }

Note that one need only search through all roots of unity vectors  supported on Supp 7y
and all {0, 1}-vectors b supported on Supp a. Lemma 8.7.7 can trivially be made construc-
tive in time 20(9). Lastly, to go from complexes to reals, Lemma 8.7.8 can trivially be made
constructive using 2°?) time. Thus the algorithm runs in time n°(%).

8.9 Constant Level Lower Bounds for Polynomials with Non-
negative Coefficients

Let G = (V, E) be a random graph drawn from the distribution G, for p > n=1/3. Let
C C (¥) be the set of 4-cliques in G. The polynomial f is defined as

f(xl,...,xn) = Z Xiy Xiy Xiz Xiy -
{i1/i2/i3/i4}ec

Clearly, f is multilinear and every coefficient of f is nonnegative. In this section, we prove
the following two lemmas that establish a polynomial gap between || f|» and A(f).

Lemma 8.9.1 (Soundness). With probability at least 1 — % over the choice of the graph G, we
have ||f|l> < n2p® - (logn)°W.

Lemma 8.9.2 (Completeness). With probability at least 1 — 1 over the choice of the graph G, we

have
1/2 .

A = a7 +F)

when p € [n~1/3,n=1/4).

Note that the gap between the two quantities if Q(n!/¢) when p = n~1/3, which is
the choice we make.

8.9.1 Upper Bound on ||f||

Reduction to counting shattered cliques

We say that an ordered 4-clique (i, ...,1s) is shattered by 4 disjoint sets Z, ..., Zy if for
each k € [4], iy € Z;. Let Yj,,..., Y], be the sets containing the coordinates iy, ...,is. Let

Ci denote the set of (ordered) 4-cliques in G, and let C5(Z1, Zy, Z3, Z4) denote the set of
cliques shattered by Z1, ..., Z4.

We reduce the problem of bounding || f||2, to counting shattered 4-cliques.
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Claim 8.9.3. There exist disjoint sets Z1,. .., Z4 C [n] such that

A 1/2
ICc(Z1, 2y, Z3, Z4)| > (H|Zk|> 'O((ll’)]g:rﬂrf)‘l)'

k=1

Proof. Let x* € S"~! be the vector that maximizes f. Without loss of generality, assume
that every coordinate of x* is nonnegative. Let y* be another unit vector defined as

.- (FH1/Vi)
lx* +1/vnll2

Since both x* and -L are unit vectors, the denominator is at most 2. This implies that

/i
fly*) > J%, and each coordinate of y* is at least ﬁﬁ For1 < j <log,n, let Y; be the set
Y, = {i el | 27 <y < z—<f—1>} .

The sets Y1, ..., Yiog, n partition [n]. Since 1 = Y y? > |Y;| - 27%, we have for each
J, |Y]| < 2%. Let Zy,Zy, Zs, and Z4 be pairwise disjoint random subsets of [n] chosen as
follows:

- Randomly partition each Y; to Yj 1, ..., Yj4 where each element of Y; is put into ex-
actly one of Yj 1, ..., Yj4 uniformly and independently.

- Sample rq, ..., r4 independently and randomly from {1, ...,log, n}.

- Fork=1,...,4,take Z; := Y, «

We use P to denote random partitions { (Yj1,...,Y;4) }je[log

choices 7y, ...,r4. Note that the events iy € Z; are independent for different k, and that
Z1,...,2Z4 are independent given P. Thus, we have

] and 7 to denote the random

1 ((iq,1o,13,14) is shattered [ 4
[(i1, 12, 13,14) ] _E H
Pr VIZ11122]1Z3] | Z4)]

9
T
(X
g
E

> E

4 _kzlrk | |Y]k‘ 4
— E ﬁ 1 _]l[ikey]k,k}

P e \lsn |
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ooy (L Lk € Y
E[H(lg Wl )]

! 1
(41ogn)* J}H%WMMA
> b ittt
N (410gn)4
= W Vi YinYiYi, -
Then, by linearity of expectation,
1Cc(Z1,22,25,74) 1 R
2 Sloemi YinYiYinYi
V2111221 |Z5] | Z4] (8logn)* ;| Z)GCG e
4!
~ (8logn)* S

4! 4!
> (6logn)* f(xT) = [6logm? 1fll2,

which proves the claim. n

We will show that with high probability, G satisfies the property that every four dis-
jointsets Z1, ..., Zy C V shatter at most O (\/|Z1 1Z2]]Z3]| Z4] - n?p® - (log n)o(1)> cliques,
proving Lemma 8.9.1.

Counting edges and triangles

For a vertex i € [n], we use N(i) to denote the set of vertices in the graph G. For ease

of notation, we use a < b to denote a < b - (log n)9), We first collect some simple
consequences of Chernoff bounds.

Claim 8.9.4. Let G ~ Gy,p withp > n~1/3, Then, with probability 1 — %, we have
- For all distinct i1,iy € [n], IN(i1) NN(i2)| < np?
- For all distinct i1, ip,i3 € [n], [N(i1) "N(i2) "N(i3)| < np’.

- Forall sets S1,5y C [n], |[E(S1,52)] < max{|S1||S2| p,|S1| + |S2|}-

~Y

We also need the following bound on the number of triangles shattered by three dis-
joint sets S1, Sp and S3, denoted by Ag(S1, Sz, S3). As for 4-cliques, a triangle is said to be
shattered if it has exactly one vertex in each the sets.
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Claim 8.9.5. Let G ~ Gy, with p > n~1/3. Then, with probability 1 — 1, for all disjoint sets
51,52, 83 C [n]

1/2
Ac(S1,52,85)| S ISal +[E(S1,8)]- (np®-Ial) .

Proof. With probability at least 1 — &, G satisfies the conclusion of Claim 8.9.4. Fix such
a G, and consider arbitrary subsets S1, Sy, S3 C V. Consider the bipartite graph H where
the left side vertices correspond to edges in E(Sy, Sz), the right side vertices correspond
to vertices in S3, and there is an edge from (i1,i2) € E(S1,S2) to i3 € S3 when both
(i1,13), (ip,i3) € E. Clearly, |Ag(S1, Sz, S3)| is equal to the number of edges in H.

Consider two different edges (i1, 12), (i],15) € E(S1,S2). These two edges are incident
on at least 3 distinct vertices, say {iy,i, i} }. Hence, the number of vertices i3 € [n] that
are adjacent to all {i1,ip,1},i5} in G is at most [N(i1) N N(i2) "N(i})| < np?. This gives
that the number of pairs triangles sharing a common vertex in S3 is at most |E(S1, S)|* -
np>(logn)°W.

Let dp(i3) denote the degree of a vertex i3 in H, and let A denote the number of
shattered triangles. Counting the above pairs of triangles using the degrees gives

)3 (dH(%)) < |E(S1,S2) P np®.
. 2
13653

An application of Cauchy-Schwarz gives
A= A-1S3] S ISs] - [E(S1, S2)* - mp?,

which proves the claim. n

Bounding 4-clique Density

Let G ~ Gy, be a graph satisfying the conclusions of Claims Claim 8.9.4 and Claim 8.9.5.
Let Sq,...,S4 C [n] be disjoint sets with sizes n1 < ny < n3 < ny. We consider two cases:
- Case 1: |[E(S1,S2)| S mympp
Note that each edge (i1,7) can only participate in at most |[N(71) N N(iy)| triangles,
and each triangle (i1,1y,13) can only be extended to at most [N(i1) N N(iz) N N(i3)]
4-cliques. Thus, Claim Claim 8.9.4 gives

ICc(S1,52,53,84)| < mymap -np?-np® < (n1n2n3n4)1/2-n2p6.
- Case 2: |E(51,52) 5 ny + np
Claim Claim 8.9.5 gives
1/2
|Ac(S1,52,53)| < n3+ (n1+mn2) - ("3'”173) ,
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which together with Claim Claim 8.9.4 implies

3/2
C6 (51,5253, 54)| S ma-mp® o+ (my +ma) -/ (mp?) 7"
Considering the first term, we note that
nz-np> < (nang)'/?-nPp® < (mngnang)'/? - n?p®,

since n3 < ng and n p3 > 1. Similarly, for the second term, we have

3/2 3/2
(ny + ny) -né/z- <np3> < 2(n2n3n4)1/2- (np3> < 2. (n1n2n3n4)1/2 -n2pS.

Combined with Claim Claim 8.9.3, this completes the proof of Lemma 8.9.1.

8.9.2 Lower Bound on A(f)

Recall that given a random graph G = ([n],E) drawn from the distribution G, p, the
polynomial f is defined as

f(xl,...,xn) = Z Xig Xip Xiz Xiyy
{i1/i2/i3/i4}ec

where C C ([Z]) is the set of 4-cliques in G. Let A € RI"**["* be the natural matrix
representation of 24f (corresponding to ordered copies of cliques) with

1 if{il,...,i4} eC

0 otherwise

Al i2), (i3,14)] = {

Let E’ C [n]? be the set of ordered edges i.e., (i1,i2) € E’ if and only if {i1,i»} € E. Note
that |E'| = 2m where m is the number of edges in G. All nonzero entries of A are contained
in the principal submatrix Ag:, formed by the rows and columns indexed by E'.

A simple lower bound on || f|[s,
We first give a simple proof that || f||s, > /n?p> with high probability.
Lemma 8.9.6. ||f|sp > Q(\/n2p°) = Q(n!/®) with high probability.

Proof. Consider any matrix representation M of 24f and its principal submatrix Mp:. It
is easy to observe that the Frobenius norm of M satisfies || Mg |2 > 24 |C|, minimized
when M = A. Since | Mg/||2 < |E| - || Ap'||3, we have that with high probability,

241C ntpb
Al > JAzle > ﬁ:su(—’?) - a(yer)

iy
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Lower bound for the stronger relaxation computing A(f)

nl/6
og2 n
to show a lower bound, we look at the dual SDP for computing A(f), which is a maxi-
mization problem over positive semidefinite, SoS-symmetric matrices M with Tr(M) = 1.

We exhibit such a matrix M € R *[7” for which the value of the objective (A, M) is large.
For large (A, M), one natural attempt is to take M to be A and modify it to satisfy other

conditions. Note that A is already SoS-symmetric. However, Tr(A) = 0, which implies
that the minimum eigenvalue is negative.

We now prove Lemma 8.9.2, which says that A(f) > ) with high probability. In order

Let Amin be the minimum eigenvalue of A, which is also the minimum eigenvalue of
Ap. Let Iy € R be such that I[(i1, i), (i1, i2)] = 11if (i1,i») € E’ and all other
entries are 0. Note that I is a diagonal matrix with Tr(Ig/) = 2m. Adding —Amin - Ipr to
A makes it positive semidefinite, so setting

A — AminIE’ A— /\minIE/ A+ |/\min| . IE/

Tr(A — AminlE) —2MAmin 2m - |/\min| 59)

makes sure that M is positive semidefinite, Tr(M) = 1, and (A,M) = 12l (each 4-

m'|/\min|
clique in C contributes 24). Since |C| = @(n*p®) and m = @(n?p) with high probability, if
|Amin| = O(np®/2), (A, M) = ® (n?p°/2), which is Q(n!/®) when p = Q(n=1/3).
The M defined in Eq. (8.9) does not directly work since it is not SoS-symmetric. How-
ever, the following claim proves that this issue can be fixed by losing a factor 2 in (A, M).

Claim 8.9.7. There exists M such that it is SoS-symmetric, positive semidefinite with Tr(M) = 1,
and (A, M) > 6lC]

m'|)\min‘ ’

Proof. Let Qp € R %[ be the matrix such that

- For (i1,12) € E', Qp[(i1,11), (i, i2)] = Qp/[(i2, 12), (11, 11)] = 1.
- Fori € [n], Qp[(i,i), (i,i)] = deg. (i), where deg (i) denotes the degree of i in G.

- All other entries are 0.

We claim that I + Qs is SoS-symmetric: (Igr + Qpr)[(i1, i2), (i3,14)] has a nonzero entry
if and only if iy = i, = i3 = i4 or two different numbers jj, j, appear exactly twice and
(j1,72) € E’ (in this case (I + Qpr)[(i1,12), (i3,i4)] = 1). Since A is SoS-symmetric, so
A+ [Amin| - (Ig + Q) is also SoS-symmetric.

It is easy to see that Qs is diagonally dominant, and hence positive semidefinite.
Since we already argued that A + |Amin| - Ipr is positive semidefinite, A + |Amin| - (Ipr +
Qp) is also positive semidefinite. Also, Tr(Qp/) = Yic|n degg (i) = 2m. Thus, we take

A4 Amin| - (Ip+Qp) A+ |Amin| - Ip
Tr(A+ [Amin| - (I + Qpr)) 4m - [Amin|
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By the above arguments, we have that M that is PSD, SoS-symmetric with Tr(M) = 1, and

6/C|
n - |/\min|

as desired. -

(AM) =

It only remains to bound Apin, which is the minimum eigenvalue of A and Ag/. For
p in the range [n~1/3,n71/4], we will show a bound of O(n*/2p*) below, which when
combined with the above claim, completes the proof of Lemma 8.9.2.

Bounding the smallest eigenvalue via the trace method

Our estimate |Amin| = O(np®/?) is based on the following observation: Ap is a 2m x 2m
random matrix where each row and column is expected to have @(n?p>) ones (the ex-
pected number of 4-cliques an edge participates in). An adjacency matrix of a random
graph with average degree d has a minimum eigenvalue —@(+/d), hence the estimate
|Amin| = O(np°/?). Even though Ap is not sampled from a typical random graph model
(and even E’ is a random variable), we will be able to prove the following weaker esti-
mate, which suffices for our purposes.

Lemma 8.9.8. With high probability over the choice of the graph G, we have
] O (n3/2 - p*) for p € [n1/3,n=1/4]
min| = O (n5/3 . p14/3) forpe [n_1/4, 1/2}

Proof. Instead of Ap/, we directly study A to bound Apin. For simplicity, we consider
the following matrix A, where each row and column is indexed by an unordered pair
{i,j} € ([g]), and A[{i1,ip}, {i3,is}] = 1if and only if iy, 1, i3,is form a 4-clique. A has
only zero entries in the rows or columns indexed by (i,7) for all i € [n], and for two pairs
i1 # ip and i3 # iy, we have

Al{ir, in}, {i3,is}] = [(i1,12), (i3, i4)] + A[ (i1, 12), (ia, i3)] }

(2, 11), (i3, 1a)] + Al(i2, 11), (ia, i3)] } -

>J>I>—\»l>|r—\

{A
{A
Therefore, |[Amin (A)] < 4- )/\mm K) ’ and it suffices to bound the minimum eigenvalue

~

of A. We consider the matrix N F:=A— p JE, where J EE IR( x5 is such that

1 if {il,iz}, {ig,i4} € E
0 otherwise '

Jel{in, i}, {is,ia}] = {
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Since J is a rank-1 matrix with a positive eigenvalue, the minimum eigenvalues of A and
Ng are the same. In summary, Ng is the following matrix.

1-— p4 if {il,iz,ig,i4} eC
Ne[{i1,io}, {i3,ia}] = § —p*  if {ir, iz, i3,ia} & Cbut {i1,ir}, {i3,ia} € E

0 otherwise

We use the trace method to bound ||NE||2, based on the observation that for every even

~ ~ 1/r
r € N, |INg||2 < (Tr ((NE)’>> . Fix an even r € IN. The expected value of the trace can
be represented as

r

]E[Tr((NE)r” — E Ne[I5, | = Y E I1

NE [Ik, IkJrl]]

where each I/ = {ijl., zé_} € (['21]) is an edge of the complete graph on n vertices (call it a
potential edge) and I'*! := I'.

Fix r potential edges IY,..., I lett:= I, NE[Ik, Ik+1], and consider E[t]. Let Eg :=
{I!,...,I"} be the set of distinct edges represented by I',...,I". Note that the expected
value is 0 if one of I/ does not become an edge. Therefore, E[t] = plFol . E[t | Ey C E].

Let D C [r] be the set of j € [r] such that all four vertices in I/ and /! are distinct i.e.,
D= {jel | {4 di"L"} =4}

Forj e [r]\ D, {zl,ié, ! ]H} cannot form a 4-clique, so given that I/, 1 € E, we have

NE[Ij, [t = —p* Forj € D, let Ej:= {{i{,171+1} {i]i,lfz"'l} {ié, l]1+1} {i2.11]2+1}} \ Eo

be the set of edges in the 4-clique created by {11, ié, 1]1+ A } except ones in Eg. Then

E[f] = plBl-E[t|Ey C E] = plfol. (—p*)y—IPI.E

[T Ne[f5, 1Y) | Eo € E] .
keD
Suppose there exists j € D such that |E;| = 4 and E; N (Ujepy(j3Ejr) = @. Then, given
that Eg C E, Ng[I/, 1] is independent of all § Ng[I¥, 1 , and
at Ey C Al ] is independent of a { El ] eD\(j} an
E [Ne[l, F*1][Eg C E| = p*(1—p")+(1—p")(—p*) = 0.

Therefore, E[t] = 0 unless for all j € D, either |E;| < 3 or there exists j/ € D\ {j} with
E]‘ N Ej/ # Q.

Let Ep := Ujep Ej- Note that Eg and Ep completely determines ¢. [E[t] can be written
as

p|E0| . (_p4)r7|D| ‘E H NE[Ik, Ik+1] ’ Eg CE

keD
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= plBol . (—p*)r=IPL. Y <plﬂ(1__,ﬁED%ﬂF.E

[T Ne[f*, ") |Eg CE,EpNE = PD

FQED keD
FCEp

where a(F) denotes the number of j € D with E;  F. Since Ep C FU (U]-:Ejgp E]-)) and
4a(F) + |F| > |Ep|, we have
EH]:rﬁdw_ﬁyﬂm.z:(ﬂﬂ@_pwm—m.u_pQWFNW_ﬁyGU
FCEp
p|E0\ . (p4)V*\D| .olEpl . p|ED\

IN

< o4, p4(V*D)+\E0|+|ED\ )

We now count the number of terms which contribute to the sum. Fix a graph H with r
labelled edges I',..., I" (possibly repeated) and g := q(H) vertices, without any isolated
vertex (so g < 2r). There are at most (g)r < (2r)2’ such graphs. Then IY,...,I', as edges

in ([g}), are determined by a map Vi — [n]. There are at most n7 such mappings.

Let Eg := Eo(H),D := D(H),E; := E;j(H),E’ := E'(H) be defined as before. Note
that E is set the edges of H. As observed before, the contribution from H is 0 if there
exists j € D such that |E;| = 4 and E; is disjoint from {E; } . Let H be the set of H

1)1 j j'5j'eD\{j}
that has nonzero contribution. Then,
r
E[Tr((Re))] = Z E | NelI*, 1"“]]
.1 ([”]) k=1
Z ni(H) . gr . 4(r=D(H))+[Eo(H)|+|Ep(H)|
HeH
(2r)% - max <nQ(H)24V . p4(7—D(H))+IEo(H)\+|ED(H)|)
HeH

IN

IN

We will prove the following bound on the maximum contribution of any H € H.
Claim 8.9.9. Let ‘H be defined as above. Then, for all H € H, we have

H) =D +HE(H)[HED(H)| < 2. By

where
. 372 P4 forp € [n_1/3,n_1/4}
P = 15/3 . P14/3 forp e [n_1/4,1/2] .

Using the above claim, we can bound E[Tr ( (N E) r)] as

E[Tr((Ne)")] < (87 max (naM) =PI HE(H) 1R
HeH
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< (8r)% -n?. B},
where B, is given by Claim Claim 8.9.9 for different ranges of p. By Markov’s inequality,
we get that with probability 1 — 1, we have Tr ( (NE) r) < (8r)* - n’ - B}, which gives
INEll2 < (8r)*- By -n®".

Choosing r = ©(log n) then proves the lemma. n

It remains to prove Claim Claim 8.9.9.

Analyzing contributing subgraphs

Recall that graphs H € H were constructed from edges {I 1., I"}, with edge I/ con-

sisting of vertices {i},i,}. Also, we define q(H) = |V(H)|. Moreover, we defined the
tollowing sets for graph H

Eo(H) := {I',...,I'} (counting only distinct edges)
D(H) := {jer] ‘ ]{i{,iﬁ,ii”,i@“}‘ — 4}
Ei(H) == {0 1, &) A 7 {8, 7} |\ Eo(H)
Ep(H) := |J Ej(H)

jeD

Moreover, the graph H is in H only if for every j € D, either |E;(H)| < 3 or there exists
j' € D\ {j} such that E;(H) N Ey(H) # @. Claim Claim 8.9.9 then follows from the
following combinatorial claim (taking b = log(1/p)/ logn).

Claim 8.9.10. Any graph H € H satisfies, for all b € [0,1/3]
q(H) < 2+b-(4(r = |D(H)|) + [Eo(H)| + [Ep(H)|) +c -1,

where c =5/3 —14b/3 forb € [0,1/4] and c =3/2 —4b forb € [1/4,1/3].

Proof. Fixagraph H € H. Letj =1,...,r, let Vi = {i]i,ijz'} . (i.e., the set of vertices

1<j<

covered by I',..., I/). Foreach j = 2,...,7,let v; := |Vj| — |V;_4| and classify the index j
to one of the following types.

- Type —1: I N II~! # @ (equivalently, j — 1 ¢ D).

- Type k (0 < k < 2): I/ and /! are disjoint, and v; = k (i.e, adding I/ introduces k
new vertices).
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Let Ty (—1 < k < 2) be the set of indices of Type k, and let t; := |T|. The number of
vertices g is bounded by

g <24+1-t14+0-tp+1-t1+2-tp = 2+1t_1+1 +2t.

Let H; be the graph with V; as vertices and edges

EH) = {1%.. Ul U E

keDN[j—1]

Forj =2,...,r letej = |E(H;j)| — |E(Hj_1)|. For an index j € T, adding two vertices

i}, i introduces at least 5 edges in Hj compared to H; 1 (i.e., six edges in the 4-clique on

{i]fl,i]*l,i]l,ijz} except =1, so ej > 5. Similarly, we get ¢; > 3 for each j € Tj.

The lemma is proved via the following charging argument. For each index j =
2,...,r, we get value b for each edge in H; \ H; 1 and get value c for the new index.
If j € T_1, we get an additional value of 4b. We give this value to vertices in V; \ V;_1. If
we do not give more value than we get and each vertex in V(H) \ V; gets more than 1,
this means

gq—2 < b-(|Eo|+ |Ep| +4(r—|D(H)|)) +c-r,

proving the claim. For example, if j is an index of Type 1, it gets a value at least 3b + ¢
and needs to give value 1, such a charging can be done if 3b 4+ ¢ > 1. Similarly, a type
0 vertex does not need to give any value and has a surplus. We will choose parameters
so that each j of types —1, 1 or 0 can distribute the value to vertices added in V; \ V;_;.
However, if j is an index of Type 2, it needs to distribute the value it gets (50 + ¢) to two
vertices, and we will allow it to be “compensated” by vertices of other types, which may
have a surplus.

Consider anindex j € T. The fact that j € T, guarantees that earlier edges I',..., /"1
are all vertex disjoint from I'. If later edges I/'*1,..., I" are all vertex disjoint from I/, then
|Ej—1| = 4 and E;  is disjoint from {Ej }icp\ fj_1}, and this means that H ¢ H. Thus,
there exists j/ > j such that I and I share an vertex. Take the smallest j/ > j, and say
that j' compensates j. Note that j' ¢ T».

We will allow a type 1 index to compensate at most one type 2 index, and a type -1
or 0 index to compensate at most two type 2 indices. We consider below the constraints
implied by each kind of compensation.

1. One Type 1 index j' compensates one Type 2 index j
vy +v; =3and ey +e; > 8 (5 from ej and 3 from ej). This is possible if 80 + 2¢ > 3.

2. One Type 0 index j' compensates one Type 2 index j
vi +vj=2and ey +e; > 5 (5 frome)). This is possible if 50 + 2¢ > 2.

3. One Type 0 index j' compensates two Type 2 indices j; and j (say j1 < j2).
There are two cases.
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(@) ey +ej +ej, > 11: vy +vj, +vj, = 4. This is possible if 116 + 3¢ > 4.

(b) ey +ej, +ej, = 10: since €y, j, = 5, this means that ey = 0.
First, we note that since j; is a type 2 index and j’ is the smallest index j such
that ' N [; # @, in the graph Hj/_;, vertices in I’ only have edges to vertices
in ['~1 and 11, Similarly, vertices in 172 only have edges to vertices in 121
and [2H1,

. . . . A . il .
Since I’ shares one vertex each with I/t and 2, let I = {1]1,112} with z]1 e mn
i ; i’ g . .

and i, € I”2. Since ey = 0 means that I/’ = {i1,i} was in Hy_;. However, this
is an edge between vertices in I/t and I’2. By the above argument, this is only
possible if j, = j; + 1. Also, since j’ is type 0 and 1" shares a vertex with 12, we
must have j > j, + 1 (otherwise j’ would be type -1).
Consider If/_l, which are vertex disjoint from both It and T2, Tf [/’ ~1 # -1
at least one edge between '~ and I was not in Hj:_q, contradicting the as-
sumption ey = 0. Therefore, I'=1 = [h-1, For the same reason, -1 = [+,
Thus, in particular, we have [2*! = [l Thus, j, + 1 is also a type 0 in-
dex. Moreover, it cannot compensate any previous index, since any such index
would already be compensated by j; — 1.

In this case we consider that [271 and I/’ jointly compensate j; and j. v +
Uj,+1+vj, +vj, =4andej, 1 + ey +ej +ej, > 10. Compensation is possible if
106 + 4¢ > 4.
4. One Type —1 index j' compensates one Type 2 index j.
v +v; <3 and ep+e>5 (5 from ej). Compensation is possible if 5b +4b + 2¢ > 2.

5. One Type —1 index j' compensates two Type 2 indices j, and j,

We have vy +vj, +v;, < 5and ey +e¢j, +¢;, > 10. Compensation is possible if
10b + 4b + 3¢ > 5.

Each index j of Type 2 is compensated by exactly one other index j'. We also require
indices of types 1 and —1 which do not compensate any other index, to have value at
least 1 (to account for the one vertex added). This is true if 3b +¢ > 1and 4b + ¢ > 1.

Aggregating the above conditions (and discarding the redundant ones), we take

3 50 4 11b 5 14b
C—ma"{i“*b'l‘?é—?é—T}

It is easy to check that the maximum is attained by ¢ = 5/3 — 14b/3 when b € [0,1/4]
and c =3/2 —4bwhenb € [1/4,1/3]. n
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8.10 Lifting || - ||s, lower bounds to higher levels

For a matrix B € RI™"*x "2

forany I,] € [n]7/?,

, let BS denote the matrix obtained by symmetrizing B, i.e.

1
B[]} = - Y BT
|0(a(I) + a(]))] (I +a(]')
=a(D)+a())
Equivalently, B® can be defined as follows:
BS _ l . Z B™
=

ES,
where for any K € [n]7, B"[K] := B[n(K)].

For a matrix M € R et T e RI"* denote the tensor given by, T|[iy, iy, i3,is4] =
M((iy,i2), (i3,i4)]. Also for any non-negative integers x, y satisfying x +y = 4, let M €
R denote the matrix given by, M[(i1,...,ix), (ji,---Jy)] = Tlit, .-, ix, j1,- - - jy]. We
will use the following result that we prove in Section 8.10.3.

Theorem 8.10.1 (Lifting “Stable" || - ||, Lower Bounds). Let M € R 51 pe g degree-4-
SOS-symmetric matrix satisfying

[Ml[s,, [Msalls, < 1.

Then for any q divisible by 4,
S
(2974) s, =200

8.10.1 Gap between || - ||;, and || - ||> for Non-Neg. Coefficient Polyno-
mials

Lemma 8.10.2. Consider any homogeneous polynomial g of even degree-t and let My € R X[

be its SoS-symmetric matrix representation. Then ||g||sp > || Mg||2/ || Mgl|s,-

Proof. We know by strong duality, that
18]lsp = max {(X, Myg) ‘ | X|ls, =1, XisSoS-Symmetric, X € R X[l } :

The claim follows by substituting X := M, /|| Mq||s, - n
Theorem 8.10.3. For any q divisible by 4 and f as defined in Section 8.9, we have that w.h.p.
||fq/4||5p = nt/24
1f77%ll2 — (qlogn)©@
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Proof. Let f be the degree-4 homogeneous polynomial as defined in Section 8.9 and let
M = My be its SoS-symmetric matrix representation. Let ¢ := f1/% and let M, be

its SoS-symmetric matrix representation. Thus My = (M®1/4)S and it is easily veri-
fied that w.h.p., |[M|% > Q(n*p®) = O(n?) and also | Mg|l% > Q((n*p®)a/4/g0@)) =
()(nq/Z/qO(q)),

It remains to estimate || M;||s, so that we may apply Lemma 8.10.2. Implicit, in the
proof of Lemma 8.9.8, is that wh.p. M has one eigenvalue of magnitude O(n%p) =
O(n%/3) and at most O(n%p) = O(n%/3) eigenvalues of magnitude O(n3/2p*) = O(n!/°).
Thus |M||s, = O(n'/®) wh.p. Now we have that |Mjslls, < V7 |Misllr = vn -
|M||F = O(1n%2) wh.p. Thus on applying Theorem 8.10.1 to M/O(n'/¢), we get that
| Mg]|s, /O (n'19/24) < 20(0) wh.p.

Thus, applying Lemma 8.10.2 yields the claim. n

8.10.2 Tetris Theorem

Let M € RI*XI pe o degree-4 SoS-Symmetric matrix, let M4 := M31 ® M4 ® M3, let
Mp = M31 ® My 3, let Mc := M and let Mp := Vec(M) Vec(M)T = Mops ® Myy. For
any permutation 7t € S,/ let T € 5, 4/2 denote the permutation that maps any i € [n]9/2

to 71(i). Alsolet P € ]R[ n?2x "2 denote the row-permutation matrix induced by the per-
mutation77. Let P := Y cs , Pr. Let R(a, b, c,d) := (c! 2212¢) (b! (2a + b)! 312725 (dl (a 4 d)14!17+24),
Define
M5 @ Mg @ ME° @ Mp!

R(a,b,c,d)
(M})® @ M5" @ ME“ ® Mg!

R(a,b,c,d)

S = {P-im(a,b,c,d) .pT ‘ 120+ 8b + 4c + 84 = q} U

M(a,b,c,d):=

M(a,b,c,d) :=

{P-3(a,b,cd)- P ’ 120+ 8b +4c+84 = q } .
Theorem 8.10.4. Let M € R’ pe g degree-4-SOS-symmetric matrix. Then

(q/arats Y o =y (Mo = q!~<M®W4)S (8.10)
MesM meSy

We shall prove this claim in Section 8.10.4 after first exploring its consequences.

8.10.3 Lifting Stable Degree-4 Lower Bounds

Theorem 8.10.5 (Lifting “Stable" || - ||s, Lower Bounds: Restatement of Theorem 8.10.1).
Let M € RIVXI pe g degree-4-SOS-symmetric matrix satisfying
IM][s,, S 1.
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Then for any q divisible by 4,
S
I(M974) )5, = 200

Proof. Implicit in the proof of Theorem 8.10.4 is the following:

gl <M®‘7/ 4) ’
(q/4)! - 419/4 ;- o y
= ) T Pl (M3 ® M5" ® MZ°® M3*) P,
12a+8b-+4c+8d=q R(El, b,c, d) 01,02€5;/2 ( . ( ) 2)
(g/4)t- 417/

+ R(a,b,c,d)

5 (e (0D e m o migee ) )
12a+8b+4c+8d=q

01,02 qu/2

(8.11)

First note that 4)!.4! ab,c,d) <2 since for any integers i, 7, k,
hat (q/ /4 /R (a,b,c,d) < 200 for any integers i, j, k, I
(i+j+k+D/3 k1) < 4Tk

Next note that |[Mo4||s, = ||M|[r < ||M]ls, < 1. Combining this with the fact that
[Mialls, | Mlls, < 1, we get that [|Malls,, [Malls,, [IMclls,, | Mplls, < 1, since ||X &
Ylls, = || Xl|ls, - [|Y]|s, for any (possibly rectangular) matrices X and Y. Further note that
Schatten 1-norm is invariant to multiplication by a permutation matrix. Thus the claim

follows by applying triangle inequality to the O;(g7) terms in Eq. (8.11). n

8.10.4 Proof of Tetris Theorem

We start with defining a hypergraphical matrix which will allow a more intuitive para-
phrasing of Theorem 8.10.4. By now, this is an important formalism in the context of
SoS, and closely-related objects have been defined in several works, including [DM15],
[RRS16], [BHK*16].

Hypergraphical Matrix

Definition 8.10.6. For symbolic sets L = {{1,... 44 },R = {r1,...71y,}, a d-uniform template-
hypergraph represented by (L, R, E), is a d-uniform hypergraph on vertex set L & R with E being
the set of hyperedges.

For I = (iy,...ig)[n]", ] = (j1,---Jq,) € [n]7, we also define a related object called edge-
set instantiation (and denoted by E(1, ])) as the set of size-d multisets induced by E on substi-
tuting ¢y = iy and ry = jy.

Remark. There is a subtle distinction between E and E(I, ) above, in that E is a set of
d-sets and E(I,]) is a set of size-d multisets (i.e. e € E(I, ]) can have repeated elements).
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Definition 8.10.7. Given an SoS-symmetric order-d tensor T and a d-uniform template-hypergraph
H = (L,R,E) with |L| = q1, |R| = g2, we define the d-uniform degree-(q1,q2) hypergraphical
matrix M (H) as

Mhyp H T

hyp
ecE(LJ)

forany I € [n]N,] € [n]7

In order to represent Theorem 8.10.4 in the language of hypergraphical matrices, we
first show how to represent M®7/4 and M%" ® M?b ® ME* ® M%d in this language.

Kronecker Products of Hypergraphical Matrices

We begin with the observation that the kronecker product of hypergraphical matrices
yields another hypergraphical matrix (corresponding to the "disjoint-union" of the template-

hypergraphs).

Definition 8.10.8. let H = (L,R,E), HL: (L_
q1,|R| = q2,|L'| = g3,|R'| = q4. Let H = (L,
01+ 43, |R| = g2 + qa, where & = 4; ift € [q1],
t € [qz]’ ?t = rilf th S [q2+11q2+q4]/ and E =
and H', which we denote by H& H'.

R’,E') be template-hypergraphs with |L| =
R, l_—?) be a template-hypergraph with |L| =
b = f, l‘ft € [11+1/q1+q3]/77t =71 lf
EWE'. We call H the disjoint-union of H
Observation 8.10.9. Let T be an SOS-symmetric order-d tensor and let H = (L,R,E), H' =
(L', R’, E") be template-hypergraphs. Then,

M}Typ(H) ® M;zryp(H,) = M;Iz—yp(H & H/)

Remark. Note that the disjoint-union operation on template-hypergraphs does not com-
mute, i.e. M}TYP(H WH') # M}TYP(H’ W H) (since kronecker-product does not commute).

Now consider a degree-4 SoS-symmetric matrix M (as in the statment of Theorem 8.10.4)
and let T be the SoS-symmetric tensor corresponding to M. Then for any x +y = 4 we
have that M, , = MT (Hx,y), where Hy, = (L, R, E) is the template-hypergraph satisfy-
ing L = {l1,...4:}, R = {r,...ry}and E = {{fy,... 4y, 11,...7,}}. Combining this ob-
servation with Observation 8.10.9 yields that M4 = M}-'l—yp(HA), Mp = M;—yp(HB), Mc =
ngp(Hc), Mp = M}TWP( Hp), where Hq := H31 W Hy4 W H31, Hp := H3y WHy3, He :=
Hy5, and Hp := HyoW Hp4. Lastly, another application of Observation 8.10.9 to the
above, yields

Observation 8.10.10. For a template-hypergraph H, let H*! denote Wee(r H. Then,

(1) M®q/4 MT (HUq/4)'

hyp
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(2) M3 ® M§® @ ME®@ M3? = M]

hyp(H(”/ b,c,d)) where

H(a,b,c,d) := H3" W HE v HE w HY?

For technical reasons we also define the following related template-hypergraph:
H(a,b,c,d) := HY W HY' w HE w HYY,
where H 4 is the template-hypergraph whose corresponding hypergraphical matrix is
ML,

To finish paraphrasing Theorem 8.10.4, we are left with studying the effect of permu-
tations on hypergraphical matrices - which is the content of the following section.

Hypergraphical Matrices under Permutation

Recall that for any matrix B € R [)72

B7[K] := B[rr(K)] where K € [n]1/2 x [n]1/2.

Also recall that for any permutation ¢ € S;/5, 7 € 5 42 denotes the permutation that
maps any i € [n]7/? to ¢(i) and also that P, € RMx1? denotes the [1]9/2 x [n]1/?
row-permutation matrix induced by the permutation c.

and 7w € S;, B is the matrix satisfying

We next define a permuted template hypergraph in order to capture how permuting
a hypergraphical matrix (in the senses above) can be seen as permutations of the vertex
set of the hypergraph.

[Permuted Template-Hypergraph] For any 7t € S, (even g), and a d-uniform template-
hypergraph H = (L, R, E) with |L| = |R| = q/2,let H® = (L', R/, E) denote the template-
hypergraph obtained by setting ¢; := k; and r; = kiz/» fort € [q/2], where K =
(ki,...k;) = m(L@ R).

Similarly for any 1,02 € S, /5, let H2 = (L', R/, E) denote the template-hypergraph
obtained by setting ¢} := 01 (¢;) and r; = 0 (r).

We then straightforwardly obtain

Observation 8.10.11. For any 7w € Sy, 01,02 € Sq /2, S0S-symmetric order-d tensor T and any
d-uniform template-hypergraph H,

(1) (ML, (H)) " =ML, (H")
(2) Poy - My, (H) - Py, = My, (H172)

Thus to prove Theorem 8.10.4, it remains to estabish

L Wg/4
—_— MT H q -
419/4 . (q/4)! ngq hyp(( 22 )"
_ _ T o
E L R(a,b,c,d) Y. My (H(a,b,c,d)2) +

12a+8b+4c+8d=q 09,09 eSq/z
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1

_ . T 7 01,07
R(a,b,c,d) >, My (H(a b, d)") (8.12)

12a+-8b+-4c+8d=q 01,02€54/2

We will establish this in the next section by comparing the template-hypergraphs gener-
ated (with multiplicities) in the LHS with those generated in the RHS.

Proof of Eq. (8.12)

We start with some definitions to track the template-hypergraphs generated in the LHS
and RHS of Eq. (8.12). For any 12a + 8b + 4c 4 8d = g, let

f(a/ b, C,d) = {H(ﬂ, b’ C’d)(Tl,(Tz

01,00 € Sq/z}

7:(”/ bcd):= {H(a, b,c,d)"12

01,00 € Sq/Z}
Hg/4
Fi={mihr |nes,}
Firstly, it is easily verified that whenever (a,b,c,d) # (a',V',c',d"), F(a,b,c,d)NF(a',V',c',d") =
¢, and that F(a,b,c,d) N F(a,b,c,d) = ¢. It is also easily verified that for any 12a + 8b +
4c+8d =g,and any H € F(a,b,c,d),
R(a,b,c,d) = H(al,az) €S2, \ H(a,b,c,d)" — HH
and for any H € F,
Hg/4
4/t (q/a) = [{mes, |(m4/ Y =H}|.
Thus in order to prove Eq. (8.12), it is sufficient to establish that

F = |§ (Flab,cd)wF(a,b,cd) (8.13)
12a+8b+4c+8d=q

It is sufficient to establish that

F< W (Fabcd)wF(ab,cd) (8.14)
120+8b-+4c+8d=q

since the other direction is straightforward. To this end, consider any H = (L, R,E) € F,
and for any x +y = 4, define

Sxy 1= Hee E ’|eﬂL| =x, [eNR| :y}’.
Now clearly H € F(a,b,c,d) iff

504 = 4 + d, 531 = 2a + b, 513 = b, S22 = C, 540 = d. (815)
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and H € F(a,b,c,d) iff
54,0 =qa+ d, 51,3 = 2a + b, 53,1 = b, Sz/z =, 50,4 = d (816)

Thus we need only find 124’ + 8V’ 4 4¢’ + 84" = ¢, such that Eq. (8.15) or Eq. (8.16) is
satisfied.

We will assume w.l.o.g. that sp4 > s49 and show that one can satisfy Eq. (8.15), since
if s(g4) < S(40), an identical argument allows one to show that Eq. (8.16) is satistiable.
So let d = sy0, ¢ = spp, V' = s13and a' = (s31 —s13)/2. Since H € F, it must
be true that 4s40 + 38371 + 289 + 5(1,3) = q/2. Thus, 124’ 4+ 80" + 4c’ + 84" = 8540 +
6531 + 4522 + 2513 = g as desired. We will next see that (a’,/,c’,d") and sy, satisfy
Eg. (8.15). We have by construction that sg0 = d’, sp0 = ¢/, 513 = b and s31 =24’ + V. It
remains to show that sp4 = a’ + d’. Now we know that 4s4 + 3531 + 2522 + 513 = 4/2
and 4sp 4 + 3s13 + 2522 + 531 = q/2. Subtracting the two equations yields sp4 — 549 =
(s31 —s13)/2. This implies @’ +d" = s40 + (s31 —513)/2 = spa, and furthermore it
implies that 4’ is non-negative since we assumed sg4 > s49. So Eq. (8.15) is satisfied.
Thus we have established Eq. (8.14), which completes the proof of Theorem 8.10.4.

8.11 Open problems

Our work makes progress on polynomial optimization based on new spectral techniques
for dealing with higher order matrix representations of polynomials. Several interest-
ing questions in the subject remain open, and below we collect some of the salient ones
brought to the fore by our work.

1. What is the largest possible ratio between A(f) and || f ||, for arbitrary homogeneous
polynomials of degree d? Recall that we have an upper bound of O4(n%/?2~1) and a
lower bound of O (n%/4~1/2), and closing this quadratic gap between these bounds
is an interesting challenge. Even a lower bound for || - ||s, that improves upon the

current Qy(n4/4=1/2) bound by polynomial factors would be very interesting.

2. A similar goal to pursue would be closing the gap between upper and lower bounds
for polynomials with non-negative coefficients.

3. We discussed two relaxations of ||11||; — A(h) which minimizes the maximum eigen-
value Amax(M},) over matrix representations M, of i, and ||h||s, which minimizes
the spectral norm ||Mjy||,. How far apart, if at all, can these quantities be for arbi-
trary polynomials /?

4. We studied three classes of polynomials: arbitrary, those with non-negative coeffi-
cients, and sparse. Are there other natural classes of polynomials for which we can
give improved SoS-based (or other) approximation algorithms? Can our techniques
be used in sub-exponential algorithms for special classes?
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5. Despite being such a natural problem for which known algorithms give weak poly-
nomially large approximation factors, the known NP-hardness results for polyno-
mial optimization over the unit sphere only rule out an FPTAS. Can one obtain
NP-hardness results for bigger approximation factors?

8.12 Oracle Lower Bound

Khot and Naor [KNO08] observed that the problem of maximizing a polynomial over unit
sphere can be reduced to computing diameter of centrally symmetric convex body. This
observation was also used by So [So11] later. We recall the reduction here: For a convex
set K, let K° denote the polar of K, i.e,, K° = {y : Vx € K(x,y) < 1}. For a degree-3
polynomial P(x,y,z) on 3n variables, let ||x||p = [|P(x,-,-)||sp where P(x,,-) is a degree-
2 restriction of P with x variables set. Let Bp = {x : ||x||p < 1}. From the definition of
polar and ||-|[sp, we have:

max P(x,y,z) = max||x||p
l[xll2, [yl ]|zll2<1 (:y,2) xele” |

= max||x||2
B

For general convex bodies, a lower bound for number of queries with “weak separa-
tion oracle” for approximating the diameter of the convex body was proved by Brieden
et al. [BGK'01] and later improved by Khot and Naor [KN08]. We recall the definition:

Definition 8.12.1. For a given a convex body P, a weak separation oracle A is an algorithm which
on input (x, €) behaves as following:

- If x € A+ €By, A accepts it.

- Else A outputs a vector c € Q" with ||c||c = 1 such that for all y such that y 4+ eB, C P
we have cTx + & > cTy.

Let K;,, be the convex set KS(Z) = conv (B} U {sv, —sv}), for unit vector v. Brieden et

al. [BGK'01] proved the following theorem:

Theorem 8.12.2. Let A be a randomized algorithm, for every convex set P, with access to a weak
separation oracle for P. Let K(n,s) = {K§Z)}MGS;71 U{BS}. If for every K € K(n,s) and

s = Y, we have:

. N{ 3
Pr|A(K) < diam(K) < TA(K) > 1

where diam (K) is the diameter of K, then A must use at least O(A2Y*/2) oracle queries for A €

[V2,vn/2].
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Using A = logn, we get that to get s = lgn approximation to diameter, A must

use super-polynomial number of queries to the weak separation oracle. We note that
this was later improved to give analogous lower bound on the number of queries for an

approximation factor 10’; — by Khot and Naor [KNO08].

Below, we show that the family of hard convex bodies considered by Brieden et al.
[BGK"01] can be realized as {B}}pcp by a family of polynomials P — which, in turn,

NG

logn
achievable using this approach, for the case of d = 3. For an unit vector u € Sg_l, let P,
be the polynomial defined as:

establishes a lower bound of )

on the approximation for polynomial optimization,

n
Py(x,y,z) = inyizl +5- (u'x)yuzn.
i—1

A matrix representation of P,(x, -, -), with rows indexed by y and columns indexed by z
variables is as follows:

¥ 0 ...0 0 I3 0 ... 0 0
xp 0 0 0 0 O .0 0
A, = oo : and so, ATA, = : :
Xpo1 0 ... 0 0 o 0 ...0 0
T ) T.12
xp, 0 ... 0 s-(u'x) 0 0 0 s2-|ulx|
This proves: |[x||p, = || Pu(x, ) llsp = | Aullsp = max{|[x]l2,s [uTx|}.

Let B = {x : |x|l, < 1}and C, = {x : s-|u’x| < 1}. We note that, B° = {y €
R"” : ||yl <1}and,C;, = {A-u : A € [—s,s]} =conv ((){—s-u,s-u}).

Next, we observe: Bp, = BN C,. It follows from De Morgan’s law of polars that:
By = (BNCy)® = conv (() B°UCy) = conv (() B U{—s-u,s-u}) = KS%) Finally, we
observe that for the polynomial Py = }_" ; x;y;z1, we have: Bp = IBJ.

Hence for polynomial Q € P = {P,}, esi—1 U {Py}, no randomized polynomial can

Vn

approximate diam By within factor e without using more than 22(?) number of queries.

Since the algorithm of Khot and Naor [KNO08] reduces the problem of optimizing polyno-
mial Q to computing diam(BBg), P shows that their analysis is almost tight.

8.13 Maximizing |f(x)| vs. f(x)

Let fmax denote supy,_ f (x). Note that for polynomials with odd-degree, we have
lfll2 = fmax. When the degree is even, a multiplicative approximation for fmax is not
possible since fmax may be 0 or even negative. Moreover, even when fmax is positive, any
constructive multiplicative approximation of fmax with a factor (say) B, can be turned into
a 1+ e approximation by considering f' = f — C - ||x||4, for C = (1 —€) - fmax (0ne can use
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binary search on the values of C and use the solution give by the constructive algorithm
to check).

An alternate notion considered in the literature [HLZ10, So11] is that of relative ap-
proximation where one bounds the ratio (A — fmin)/ (fmax — fmin) (known as a relative
approximation), where A is the estimate by the algorithm, and fp,in is defined analogously
to fmax. While this is notion is stronger than approximating || f||2 in some cases, one can
use a shift of f as in the example above (by C - fmin) to obtain a relative approximation

unless |fmax _fmir1| / |fmin’ = niw(l)-
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Chapter 9

Random Polynomial Optimization over
the Sphere

It is a well-known fact from random matrix theory that for an n x n matrix M whose
entries are i.i.d Rademacher or standard normal random variables, the maximum value
xT Mx taken by the associated quadratic form on the unit sphere ||x||> = 1, is @ (y/n) with
high probability. Further, this maximum value can be computed efficiently for any matrix,
as it equals the largest eigenvalue of (M + M7)/2, so one can also efficiently certify that
the maximum of a random quadratic form is at most O(y/n).

This chapter is motivated by the analogous question for tensors. Namely, given a
random order-d tensor .4 who entries are i.i.d random =+ entries, we would like to certify
an upper bound on the maximum value Amax := max|| =1 (A, x®d> taken by the tensor
on the unit sphere. This value is at most O;(/n) with high probability [TS14]. This
chapter is concerned with both positive and negative results on the efficacy of the SoS
hierarchy in approximately certifying the maxima of random tensors. We next state our
results formally.

9.1 Our Results

For an order-q tensor A € (IR")®4, the polynomial A(x) and its maximum on the sphere
Amax are defined as

A(x) == (A, x%)  Apax = sup A(x).

[[xl=1

When the entries of A are i.i.d Rademacher random variables (or i.i.d. Gaussians), it is
known that Amax S /7 - d - logd (see [TS14]). We will also use, for a polynomial g, gmax
to denote sup . _; §(x).

SoS degree = Polynomial Degree.

We study the performance of degree-q SoS on random tensors of order-q. The formal
definition and basic properties of SoS relaxations are presented in Chapter 7.
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Theorem 9.1.1. Forany even q < n,let A € (R")®1 be a g-tensor with independent, Rademacher
entries. With high probability, the value B of the degree-q SoS relaxation of Amax satisfies

/4—-1/2 /4—-1/2
—0(1q) . (E)q < B < 20@) . (E)q )
q Amax q

This improves upon the O(n9/4) upper bound by Montanari and Richard [MR14].
SoS Degree > Polynomial Degree.

Theorem 9.1.2. Let A € (R")®“ be a d-tensor with independent, Rademacher entries. Then for
any even q satisfying d < q < n, with high probability, the degree-q SoS certifies an upper bound

B on Amax where w.h.p.,
- d/4—1/2
B < O(n)
Amax  — q

Remark 9.1.3. Combining our upper bounds with the work of [HSS15] would yield improved
tensor-PCA guarantees on higher levels of SoS. Our techniques prove similar results for a more
general random model where each coefficient is independently sampled from a centred subgaussian
distribution. See the previous version of the paper [BGL16] for details.

Remark 9.1.4. Raghavendra, Rao, and Schramm [RRS16] have independently and concurrently
obtained similar (but weaker) results to Theorem 9.1.2 for random degree-d polynomials. Specifi-
cally, their upper bounds appear to require the assumption that the SoS level q must be less than

nl/ G (our result only assumes q < n). Further, they certify an upper bound that matches
Theorem 9.1.2 only when q < 2V1°8",

9.2 Related Work

Upper Bounds. Montanari and Richard [MR14] presented a n°@-time algorithm that

. . . [d/2] .
can certify that the optimal value of Amax for a random d-tensor is at most O(n 2 ) with

high probability. Hopkins, Shi, and Steurer [HSS15] improved it to O(n%) with the same
running time. They also asked how many levels of SoS are required to certify a bound of
n3/4=% ford = 3.

Our analysis asymptotically improves the aforementioned bound when g is growing
with n, and we prove an essentially matching lower bound (but only for the case g =
d). Secondly, we consider the case when d is fixed, and give improved results for the

performance of degree-q SoS (for large g), thus answering in part, a question posed by
Hopkins, Shi and Steurer [HSS15].

Raghavendra, Rao, and Schramm [RRS16] also prove results analogous to Theorem 9.1.2
for the case of sparse random polynomials (a model we do not consider in this work, and
which appears to pose additional technical difficulties). This implied upper bounds for re-
futing random instances of constraint satisfaction problems using higher levels of the SoS
hierarchy, which were shown to be tight via matching SoS lower bounds in [KMOW17].
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Lower Bounds. While we only give lower bounds for the case of g = d, subsequent to our
work, Hopkins et al. [HKP17] proved the following theorem, which gives lower bounds
for the case of g > d:

Theorem 9.2.1. Let f be a degree-d polynomial with i.i.d. gaussian coefficients. If there is some
constant € > 0 such that g > n®, then with high probability over f, the optimum of the level-q
SoS relaxation of fmax is at least

fmax : Qd<(1’l/qo(1))d/4fl/2> .

Note that this almost matches our upper bounds from Theorem 9.1.2, modulo the
exponent of q. For this same reason, the above result does not completely recover our
lower bound in Theorem 9.1.1 for the special case of g = d.

Results for worst-case tensors. In Chapter 8 that g-level SoS gives an (O(n)/q)%/?~1
approximation to ||.A||2 in the case of arbitrary d-tensors and an (O(n)/q)%/#~1/2 approx-
imation to Amax in the case of d-tensors with non-negative entries (for technical reasons
one can only approximate ||.A||2 = max{|Amax|, |Amin|} in the former case).

It is interesting to note that the approximation factor in the case of non-negative ten-
sors matches the approximation factor (upto polylogs) we achieve in the random case.
Additionally, the gap given by Theorem 9.1.1 for the case of random tensors provides the
best degree-q SoS gap for the problem of approximating the 2-norm of arbitrary g-tensors.
Hardness results for the arbitrary tensor 2-norm problem is an important pursuit due to
its connection to various problems for which subexponential algorithms are of interest.

9.3 Organization

In Section 9.5 we touch upon the main technical ingredients driving our work, and give an
overview of the proof of Theorem 9.1.2 and the lower bound in Theorem 9.1.1. We present
the proof of Theorem 9.1.2 for the case of even d in Section 9.6, with the more tricky odd
d case handled in Section 9.8. The lower bound on the value of SoS-hierarchy claimed
in Theorem 9.1.1 is proved in Theorem 9.7.7, and the upper bound in Theorem 9.1.1 also
follows based on some techniques in that section.

9.4 Notation and Preliminaries

SoS Relaxations for A .x.
Given an order-gq tensor A4, our degree-g SoS relaxation for Amax which we will henceforth
denote by SoS,(A(x)) is given by,

maximize EC[-A(X)]

subject to : Ec is a degree-g
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pseudoexpectation
Ec respects C = {||x||7 = 1}

Assuming g is divisible by 2d, we make an observation that is useful in our upper bounds:

. A(A(x)q/d>d/q 9.1)

Amax < S0S5(A(x)) < SoS;(A(x)"?)
where the second inequality follows from Pseudo-Cauchy-Scwarz, and the equality fol-
lows from strong duality of the programs given in Section 7.3.

Note. In the rest of this chapter, we will drop the subscript C of the pseudo-expectation
operator since throughout we only assume the hypersphere constraint.

9.5 Overview of our Methods

We now give a high level view of the two broad techniques driving this work, followed
by a more detailed overview of the proofs.

Higher Order Mass-Shifting. Our approach to upper bounds on a random low degree
(say d) polynomial £, is through exhibiting a matrix representation of f7/¢ that has small
operator norm. Such approaches had been used previously for low-degree SoS upper
bounds. However when the SoS degree is constant, the set of SoS symmetric positions is
also a constant and the usual approach is to shift all the mass towards the diagonal which
is of little consequence when the SoS-degree is low. In contrast, when the SoS-degree is
large, many non-trivial issues arise when shifting mass across SoS-symmetric positions,
as there are many permutations with very large operator norm. In our setting, mass-
shifting approaches like symmetrizing and diagonal-shifting fail quite spectacularly to
provide good upper bounds. For our upper bounds, we crucially exploit the existence
of "good permutations", and moreover that there are g7 - 2-°(4) such good permutations.
On averaging the representations corresponding to these good permutations, we obtain
a matrix that admits similar spectral preperties to those of a matrix with i.i.d. entries, and
with much lower variance (in most of the entries) compared to the naive representations.

Square Moments of Wigner Semicircle Distribution. Often when one is giving SoS
lower bounds, one has a linear functional that is not necessarily PSD and a natural ap-
proach is to fix it by adding a pseudo-expectation operator with large value on square
polynomials (under some normalization). Finding such operators however, is quite a
non-trivial task when the SoS-degree is growing. We show that if x1, ..., x,; are indepen-
dently drawn from the Wigner semicircle distribution, then for any polynomial p of any
degree, [E[p?] is large (with respect to the degree and coefficients of p). Our proof cru-
cially relies on knowledge of the Cholesky decomposition of the moment matrix of the
univariate Wigner distribution. This tool was useful to us in giving tight g-tensor lower
bounds, and we believe it to be generally useful for high degree SoS lower bounds.
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9.5.1 Overview of Upper Bound Proofs

Forevend,let A € R" be a d-tensor with i.i.d. +1 entries and let A € RIM"**M"? pe the
matrix flattening of A, i.e., A[l, J] = A[I @ ]| (recall that & denotes tuple concatenation).
Also let f(x) := A(x) = (A, x®9). Tt is well known that fmax < O(y/n-d -logd) with
high probability [TS14]. For such a polynomial f and any g divisible by d, in order to
establish Theorem 9.1.2, by Eq. (9.1) it is sufficient to prove that with high probability,

(A(fq/d>>d/q < é(ql_n—z/d)d/élz 6(g>d/41/2'fmax.

We give an overview of the proof. Let d = 4 for the sake of clarity of exposition.
To prove an upper bound on A(f 9/ %) using degree-q SoS (assume g is a multiple of 4),
we define a suitable matrix representation M := My € RIP 250172 of f1/4 and bound
| M||2. Since A(f) < (||M]|2)9/* for any representation M, a good upper bound on || M|,
certifies that A(f) is small.

One of the intuitive reasons taking a high power gives a better bound on the spectral
norm is that this creates more entries of the matrix that correspond to the same monomial,
and distributing the coefficient of this monomial equally among the corresponding entries
reduces variance (i.e., Var[X] is less than k - Var[X /k| for k > 1). In this regard, the most
natural representation M of f1/4 is the complete symmetrization.

Me[(ir, - igs2), (iayass- - - 1ig)]

1 . . ) .
= a ’ ZS A®q/4[(ln(1)/ SR Zrf(q/Z))/ (17T(t]/2-|—1)’ sy 17((11))]
t mESy

q/4

-y HA[ 2(2j=1)7 ir2j))r (g /242i-1), En(q/242)))]-

meSy j=1

However, || M.||2 turns out to be much larger than A(f), even when g = 8. One intu-
itive explanation is that M,, as a n* x n* matrix, contains a copy of Vec(A) Vec(A)", where
Vec(A) € R is the vector with Vec(A) [iy, iz, i, is] = A[(i1,12), (i3,14)]. Then Vec(A) is
a vector that witnesses ||M.|| > Q(n?), regardless of the randomness of f. Our final rep-
resentation ! is the following row-column independent symmetrization that simultaneously
respects the spectral structure of a random matrix A and reduces the variance. Our M is
given by

M[(ill L /iq/Z)l (jl/ s /]Q/Z)]
1

= . ®q/41(; . . .
= 5o Y APy i) Go()y - - rdo(ar2)]
(q/z)! TOES, /2 o

1 9/4
- . A ) . o .U .
@/2)° ng/zlﬂ r(2k—1)r Lre(2k) ) (o (2k—1)s Jo(2k) )]

lthe independent and concurrent work of [RRS16] uses the same representation
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To formally show || M|, = O(n//q)7* with high probability, we use the trace method

to show P
E [Tr(MP)] < QO(PqIng)u

7

qpq/S

where E[Tr(MP)] can be written as (let P! := 1)

E Y ﬁM[ﬂ, rh

.. Ire[n)1/2j=1

p q/4

2 H( Z HA 7r] (2k—1)” n(zk)) (IIH(—zlk 1)’ Ik?zlk))])

11,...,Ip j:l T, ]esq/Zk

Let E(Il, ..., IP) be the expectation value for I 1 .. I? in the right hand side. We study
E(I L L ) for each I L L by careful counting of the number of permutations on a
given sequence with possibly repeated entries. Forany I,. .., IF € [n]1/2, let# (I},...,IF)
denote the number of distinct elements of [n] that occur in [ L ...,I?, and for each s =
L...#(IY,...,IP),let ¢ € ({0} U [g/2])P denote the number of times that the jth small-
est element occurs in I1,...,IP. When E(I LN | P) # 0, it means that for some permu-
tations {77, 0;};, every term A[-,-] must appear even number of times. This implies that
the number of distinct elements in I%, ..., I? is at most half the maximal possible number
pq/2. This lemma proves the intuition via graph theoretic arguments.

Lemma9.5.1. IfE(I',...,IP) £0,#(I',...,I") < B + 1.

1 .. Sisatmost 2 . —(4/2))

U Tleep cit-c)!”
Furthermore, there are at most 20(P7) p?9/2 different choices of ¢, ..., ¢ that corresponds
to some I}, ..., IP. The following technical lemma bounds E(I LN | P) by careful count-
ing arguments.

The number of I, ..., I? that corresponds to a sequence c!,

5pq/8
Lemma 9.5.2. For any IN,...,IP, E(IY,...,IP) < 20(pq) 5322/8 [Teey) ..c;!.

Summing over all s and multiplying all possibilities,

pq/4+q/2 s 5pq/8
E[Tr(MP)] < Y (ZO(pq)PW/z) : (g ' ((q/z)!)p) ' <2O(pq) ZC’)PWS)

s=1
pq/8
= max 20(pq10gp) .. q
1<s<pq/4+q/2 s!

When g < n, the maximum occurs when s = pg/4 + /2, so E[Tr(MP)] < 20(pilogp) .
nPa/4+q/2

W as desired.
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9.5.2 Overview of Lower Bound Proofs

Let A, A, f be as in Section 9.5.1. To prove the lower bound in Theorem 9.1.1, we construct

a moment matrix M that is positive semidefinite, SoS-symmetric, Tr(M) = 1, and (A, M) >

d/4 . . .
2-0() . ZilW' At a high level, our construction is M := ¢;A + c;W for some cy, ¢, where

A contains entries of A only corresponding to the multilinear indices, averaged over all
SoS-symmetric positions. This gives a large inner product with A, SoS-symmetry, and
nice spectral properties even though it is not positive semidefinite. The most natural way
to make it positive semidefinite is adding a copy of the identity matrix, but this will again
break the SoS-symmetry.

Our main technical contribution here is the construction of W that acts like a SoS-
symmetrized identity. It has the minimum eigenvalue at least 3, while the trace being n/2 -
20(d), 50 the ratio of the average eigenvalue to the minimum eigenvalue is bounded above
by 204), which allows us to prove a tight lower bound. To the best of our knowledge, no
such bound was known for SoS-symmetric matrices except small values of d = 3, 4.

Given I, ] € [n]%/2, welet W[I, ]] := lE[x"‘(IH"‘U)], where x1, ..., x, are independently
sampled from the Wigner semicircle distribution, whose probability density function is the
semicircle f(x) = 2+/1— x2. Since E[x{] = 0if ¢ is odd and E[x?] = ﬁ(zf), which is
the (th Catalan number, each entry of W is bounded by 2°(4) and Tr(W) < n#/2.20(d),
To prove a lower bound on the minimum eigenvalue, we show that for any degree-/
polynomial p with m variables, E[p(x1,...,x,)?] is large by induction on ¢ and m. We
use another property of the Wigner semicircle distribution that if H € R(@+1)*(@+1) js the
univariate moment matrix of x; defined by H[i,j] = IE[xllﬂ ](0<ij<dyand H= (RT)R
is the Cholesky decomposition of H, R is an upper triangular matrix with 1’s on the main
diagonal. This nice Cholesky decomposition allows us to perform the induction on the
number of variables while the guarantee on the minimum eigenvalue is independent of
n.

9.6 Upper bounds for even degree tensors

Forevend,let A € R" be a d-tensor with i.i.d. +1 entries and let A € RIM"**M"? pe the

matrix flattening of A, i.e., A[I,]J] = A[I & ]] (recall that & denotes tuple concatenation).
Also let f(x) := A(x) = (A, x®%). With high probability fmax = O(y/n -d -logd). In this
section, we prove that for every g divisible by d, with high probability,

<A<fq/d>>d/q - CN)(ql_n—z/d)dM: 6(g)d/4_1/2-fmax,

To prove it, we use the following matrix representation M of f1/4, and show that || M||, <
- 5 \q/4

Oy ((%) ) Given a tuple I = (iy,...,i;), and an integer d that divides g4 and
1 < ¢ <gq/d, let I, be the d-tuple (I;_1)41,---,la) (i-e. if we divide I into q/d tuples
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of length d, I;,4 be the (-th tuple). Furthermore, given a tuple I = (iy,...,i;) € [1n]7 and
a permutation 7w € [n]9, let 7(I) be another g-tuple whose (th coordinate is 7t(iy). For
I,] € [n)72, M[I,]] is formally given by

AﬂLn=§; Y AS (1), 0())

TLOES /2
q/d

_ 1 Y HA (D)2 (0(J)) eyl

|
T noes,, =

We perform the trace method to bound ||M||. Let p be an even integer, that will be
eventually taken as @(log ). Tr(M) can be written as (let [P! := 1)

E[ v rnﬂﬁm]

LIPE| WM

q/d

p
[1C X TT A warz (@T))mar2)))

/=1 7T]',0’]'€Sq/2 m=1

= Z E
.. I

LetE(IY,...,IP) :=E [Hé’:l M[I!, 1*+1]], which is the expected value in the right hand
side. To analyze E(I Lo T ), we first introduce notions to classify I LS 1 depending
on their intersection patterns For any I',...,I7 € [n]1/2, let ¢, denote the k-th smallest

element in J {15} Foranyc!,...,c* € [q/2]", let
tj

{(I.l‘,...;lp) ’#(Il,...,lr’> =s, Vk € [s],£ € [p], ex appears cllf times in Ig}.

1

The following two observations on ¢+, ..., c¢° can be easily proved.
g yp

Observation 9.6.1. IfC(c!,...,c%) # ¢,

(@Y

| 1y sy’
S' H Céclnlcgn
Le(p]

Moreover,

H(cl,...,cS) e ([q/2)")°

C(ct,...,c%) # (p}‘ < 20(Pa)ypa/2,

The following lemma bounds E(I LS L. ) in terms of the corresponding cy, . . ., Cs.

Lemma 9.6.2. Consider any c',...,c* € [q/2]F and (I',...,IP) € C(c},...,c®). We have

1/2+1/2d
E(IL,...,1P) < 200 P

r 1y S|
< q1/2—1/2d cpl...cy!

Lelp]
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Proof. Consider any c!,...,c* € [g/2]P and (I',...,IF) € C(c},...,c*). We have

E(IY,...,IP)

=E ﬁ MII’, 1“1]]

/=1

p q/d

H H A md/Z/(n<I£+1))m;d/2]]

(=1 m=

:Z]E

usy (TJGSWZ

. HZHS(CZ!)Z .
= () 2

JEKEEO(I0)) gy

p q/d

E | TTTT Alnarz Kt o) 9.2)
{=1m=1

Thus, E(I,...,IP) is bounded by the number of choices for [, ..., J?, K, ..., K” such
that J*, K* € O(I") for each ¢ € [p], and E[[T}_ 1Hq/d []f;;d/z,Kg d/2” is nonzero.

Given J!,...,J7 and K!,...,KP?, consider the (pg/d)-tuple T where each coordinate
is indexed by (¢,m)c[p me[q/q) and has a d-tuple Ty, := (]fm/z) ® (Kﬁfdl/z) € Rlasa
value. Note that Y, , a(T,,)) = (201,...,20,) where o, is the number of occurences of

r € [n] in (pq/2)-tuple @)_,I. The fact that E[[T}_, HZ{jl Aljmds2 kmas2]] # 0 means
that every d-tuple occurs even number of times in T.
We count the number of (pq/d)-tuples T = (Tym) re[p)meq) that Lo m &(Tem) = (201,...,20n)
and every d-tuple occurs an even number of times. Let Q = (Qy,..., Qpg s24), R =
(R1,. .., Rpq/2q) be two (pq/2d)-tuples of d-tuples where for every d-tuple P, the number
of occurences of P is the same in Q and R, and qu/ 4 a(Qp) = qu/Zd (Ry) = (01,--.,0n).

At most 2P1/4 tuples T can be made by interleaving Q and R — for each (¢,m), choose Ty,
from the first unused d-tuple in either Q or R. Furthermore, every tuple T that meets our
condition can be constructed in this way.

Due to the condition }}7/ 9/24 a(Qy) = (01,...,0,), the number of choices for Q is at

most the number of different ways to permute I' & - - - @ I?, which is at most (pq/2)!/ [ne (€)1
where ¢ 1=} e[, ¢ form € [s]. For a fixed choice of Q, there are at most (pgq/2d)!

choices of R. Therefore, the number of choices for (J*, K’ € O(I"))

| with nonzero
expected value is at most

p

2) (pq)1/2+1/2d
opq/d . _(pq/2)! /24 =20(p) M)
Hme [s] ( ) (Pq ) Hme[s](cm)!
Combining with Eq. (9.2),
1/2+1/2d T, T1 (CS!)Z pl/2+1/2d
E(IL... 1P) < (zo<pq>W—_> . (é—e> < 90(pg) P ”
(Bt = (200 2ot ) Ui ) <27 gz 1111

as desired. -

Lemma 9.6.3. Forall I',...,IF € [n)¥/2 if E(I},...,IF) #0,#(I},...,IF) <

==

_|_

NI
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Proof. Note that E(IY,...,IP) #0 implies that there exist JY,...,JP,KY, ..., KP such that
J', K" € O(I') and every d-tuple occurs exactly even number of times in ((J}.;/,,) ®

m
(Kﬁdl/z))qu],me[q/d]' Consider the graph G = (V, E) defined by

vie U U {#)

lelp] kelq/2)

E= | {{]}nsz}{];K;}{]ﬁK;}}

me(q/2]

The even multiplicity condition implies that every element in E has even multiplicity and
consequently |E| < pg/4. We next show that E is the union of q/2 paths. To this end, we
construct G! € O(I'),..., G € O(I*) as follows:

1. Let G% := K?
2. For3 < /¢ < pdo:

Since G* € O(J'), there exists 7w € S5 s.t. 71(J*) = G.
Let G*1 .= (K1),

We observe that by construction,

U {5} (G 62} {orat))

me(q/2]

= U {{meb{a). )} =k
melq/2]

which establishes that E is a union of q/2 paths.

Now since E is the union of q/2 paths G has at most q/2 connected components, and
one needs to add at most q/2 — 1 edges make it connected, we have |V| < |E| + (/2 —
1)+1<pq/4+q/2.But#(I',...,IP) = |V|, which completes the proof. ]

Finally, E[Tr(MP)] can be bounded as follows.

E [Tr(MP)]

= Y EUI,...IP)

1L,..IP€[n]1/2

> Y. E(I,...1P) (by Lemma 9.6.3)
s€lpa/a+q/2] #(1,.,17)=s

> Y Y E(I',...,17)

s€lpq/4+q/2] ct,..,c5€lq/2]P (1L,..IP)eC(cl...c5)

> Y Y E(IY,...,1P)

s€lpq/4+q/2) c,..c5€lq/2)P (1L,...,IP)eC(cl...c)



S

s€[pq/4+q/2] cl,....c5€(q/2)P
(1/2+1/2d)pq

y 20 P TT clt...ct (by Eq. (9.2))
(L. IP)C(c1...c¥) q(1/2=1/2d)p0 i
S
< Z 20(p) n_' p(1+1/2d)p‘7q””7/2d (by Observation 9.6.1)
s€lpq/4+q/2] >
npa/4+q/2 B .
< Z 70(pq T p(1/2—|—1/2d)p1q(1/2 1/2d)pq (assuming g < 1)

s€lpq/4+q/2]
np/4+q/2 p(1+1/2d)w

< Y 20(pa)
selpq/ira/) q(1/471/2d)pq

< 20(p0) nba/4+q/2 p(1+1/2d)pq
- q(1/4—1/2d)pq

Choose p to be even and let p = O(logn). Applying Markov inequality shows that with
high probability,

<A<fq/d))d/q < (IIM[|2)"7 < (I [Tr(MP)))¥/1 = Od(”d/4 ;](;74%71132"’“/2> |

Thus we obtain

Theorem 9.6.4. For even d, let A € R be a d-tensor with i.i.d. +1 entries. Then for any even
q such that g < n, we have that with probability 1 — n®(),

505,(A(x)) < (%>d/41/2
Amax o q .

Remark. For the special case where g = d, we prove a stronger upper bound, namely
SoSy(A(x)) _ <o<n>)‘”“/2
Amax o q ’
the proof of which is implicit in the proofs of Lemma 9.7.5 and Lemma 9.7.6.

9.7 Proof of SoS Lower Bound in Theorem 9.1.1

For even ¢, let A € R be a g-tensor with i.i.d. £1 entries and let A € R X[ pe the
matrix flattening of A, i.e., A[l, ]| = A[I & ]] (recall that & denotes tuple concatenation).
Also let f(x) := A(x) = (A, x®7). This section proves the lower bound in Theorem 9.1.1,
by constructing a moment matrix M that is positive semidefinite, SoS-symmetric, Tr(M) =

1,and (A,M) > 2-0(q) . ZZ—;: In Section 9.7.1, we construct the matrix W that acts as a SoS-

symmetrized identity matrix. The moment matrix M is presented in Section 9.7.2.
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9.7.1 Wigner Moment Matrix

In this section, we construct an SoS-symmetric and positive semidefinite matrix W e
RNe2"Nas2 guch that Amin (W) / Tr (W) > 1/(29+1. |]NZ/2\), i.e. the ratio of the minimum

eigenvalue to the average eigenvalue is at least 1/27+1.

Theorem 9.7.1. For any positive integer n and any positive even integer q, there exists a matrix
W € RNo2Norz gy satisfies the following three properties: (1) W is degree-q SoS symmetric.

(2) The minimum eigenvalue of W is at least % (3) Each entry of W is in [0,27].

Theorem 9.7.1 is proved by explicitly constructing independent random variables
X1, ..., Xn such that for any n-variate polynomial p(x, ..., x,) of degree at most g, E[p?]
is bounded away from 0. The proof consists of three parts. The first part shows the exis-
tence of a desired distribution for one variable x;. The second part uses induction to prove

that E[p?] is bounded away from 0. The third part constructs W C R™N72 N2 from the
distribution defined.

Wigner Semicircle Distribution and Hankel Matrix. Let k be a positive integer. In this
part, the rows and columns of all (k4 1) x (k + 1) matrices are indexed by {0,1,...,k}.
Let Tbea (k+1) x (k+ 1) matrix where T[i,j] = 1if |i — j| = 1 and T[i, j] = 0 otherwise.
Let eg € R be such that (eg)g = 1 and (eg); = 0 for 1 < i < k. Let R € RK+1)x(k+1)
be defined by R := [e, Tey, TZey, ..., Tkeo]. Let Ry, ..., R; be the columns or R so that
R; = T'eg. It turns out that R is closely related to the number of ways to consistently put
parentheses. Given a string of parentheses ‘(" or “)’, we call it consistent if any prefix has at
least as many ‘(" as “)". For example, ((())( is consistent, but ())(( is not.

Claim 9.7.2. R[i, ] is the number of ways to place j parentheses ‘(" or *)" consistently so that there
are i more (" than *)’.

Proof. We proceed by the induction on j. When j = 0, R[0,0] = 1 and R[i,0] = 0 for all
i > 1. Assume the claim holds up to j — 1. By the definition R; = TR; ;.

- For i = 0, the last parenthesis must be the close parenthesis, so the definition
R[0,j] = R[1,j — 1] still measures the number of ways to place j parentheses with
equal number of ‘(" and “)".

- For i = k, the last parenthesis must be the open parenthesis, so the definition
R[k,j] = Rk —1,j — 1] still measures the number of ways to place j parentheses
with k more ‘(.

- For 0 < i < k, the definition of R gives R[i,j] = R[i —1,j — 1] + R[i +1,j — 1]. Since
R[i — 1, ] corresponds to placing ‘)" in the jth position and R[i + 1, j| corresponds to
placing ‘(" in the jth position, R[i, j] still measures the desired quantity.

This completes the induction and proves the claim. n
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Easy consequences of the above claim are (1) R[i,i] = 1forall0 < i < k,and R[i,j] =0
fori > j,and (2) R[i,j] = 0ifi+jisodd, and R[i,j] > 1ifi < jand i+ j is even.

Let H := (RT)R. Since R is upper triangular with 1’s on the main diagonal, H =
(RT)R gives the unique Cholesky decomposition, so H is positive definite. It is easy to
see that H[i, j| = (R;, R;) is the total number of ways to place i + j parentheses consistently
with the same number of ‘(" and ‘)’. Therefore, H|[i, j] = 0if i +jis odd, and if i + j is even
(let ! := 1), H[i, j] is the Ith Catalan number C; := 11%1(211) In particular, H[i, j] = HI[7, ']
foralli+j=i"+j. Such H is called a Hankel matrix.

Given a sequence of my = 1,mq,my, ... of real numbers, the Hamburger moment prob-
lem asks whether there exists a random variable W supported on R such that E[W!] = m;.
It is well-known that there exists a unique such W if for all k € IN, the Hankel matrix
H e RE+D*(+D) defined by H[i, j] := E[W'] is positive definite [Sim98]. Since our
construction of H € RED*(1) ensures its positive definiteness for any k € IN, there
exists a unique random variable W such that E[W'] = 0if i is odd, E[W'] = C ; if i is even.

It is known as the Wigner semicircle distribution with radius R = 2.

Remark 9.7.3. Some other distributions (e.g., Gaussian) will give an asymptotically weaker
bound. Let G be a standard Gaussian random variable. The quantitative difference comes from the

fact that E]W?] = C; = 11(¥) < 2! while E[G¥] = (21 — 1)1 > 20(log]),

Multivariate Distribution. Fixnandq. Letk = 1. Let H € REF* 1) be the Hankel
matrix defined as above, and W be a random variable sampled from the Wigner semicircle
distribution. Consider xy, ..., x, where each x; is an independent copy of % for some
large number N to be determined later. Our W is later defined to be W[a, B] = E[x**F]. N1
so that the effect of the normalization by N is eventually canceled, but large N is needed
to prove the induction that involves non-homogeneous polynomials.

We study E[p(x)?] for any n-variate (possibly non-homogeneous) polynomial p of
degree at most k. For a multivarite polynomial p = LN, pax®, define ¢, norm of p to
be ||plle, := VLap3 For0 < m < nand 0 < <k, let o(m,I) := inf, E[p(x)?] where
the infimum is taken over polynomials p such that ||p||,, = 1, deg(p) < I, and p depends
only on xq, ..., Xp.

Lemma 9.7.4. There exists N := N(n, k) such that c(m,1) > (1;]22%) forall 0 < m < nand
0<I<k

Proof. We prove the lemma by induction on m and I. When m = 0 or [ = 0, p becomes the
constant polynomial 1 or —1, so E[p?] = 1.

Fix m,I > 0 and a polynomial p = p(xy,...,x,) of degree at most I. Decompose
p= ZLO pix., where each p; does not depend on x,,. The degree of p; is at most | — i.

1 L.
IE[PZ]ZIE[(;)PZ-%)Z]Z Y. Elpip|E[xn].

0<ij<I
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Let ¥ = diag(1 ,N,...,#) e RUADXIHD | Let H € RADXUHD pe the submatrix

of H with the first / + 1 rows and columns. The rows and columns of (I +1) x (I +1)

matrices are still indexed by {0, ...,1}. Define R; € RUAD>x(+1) similarly from R, and r;

(0 < t < I) be the tth column of (R;)T. Note H; = (R))TR; = Y} _ori#]. Let H = ZH,Z

such that H'[i,j] = E[x 1+]] Finally, let P € RUFD*0+1) be defined such that PJi, j] :=
E[p;pj]. Then E[p?] is equal to

l
Tr(PH') = Tr(PZHX) = < Z rir) )
l 1 (rt)t41 (re)i\2
= EOE[(PtW thiygnr Tt PIW) B

where the last step follows from the fact that (r¢); = 0if j < t and (r;); = 1. Consider the
polynomial
(re)e41 ()

1
q = Piyg + P+l N S b 4 N

Since p; is of degree at most [ — i, g; is of degree at most | — t. Also recall that each entry
of R is bounded by 2*. By the triangle inequality,

1 r r K2k
iy = 7 (Do, = sl 9 bl ) ) = e (el = 57 ).

and L
1 2k2
o, = g Il - 25 ).

z
E[p*] = Y_E[q7]
t=0
z
>Y o(m—1,1—t) g,
t=0
z k
1 2k2
> Za(m —1,1—1t)- W(Hm“i - T)
_ —1) 1 2k2k
> Z sz N (HPtHez N )

(1—*”2—"1) l 2k2*
- N2 Z (||Pt||e2 - T)

Finally,

t=0
> (1 B mZ_;l) . (1 _ 2K22k)
- NZ N 7
Take N := 4nK22k so that (1 —2-1) . (1 — ZK2Y) > @ _m1 2K _ q_ ;. Thg
completes the induction and proves the lemma. n
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Construction of W. We now prove Theorem 9.7.1. Givenn and g, letk = %, and consider
random variables x1,...,x, above. Let W € RN:*Ni be such that for any o, B € INY,
W(a, B] = E[x*tP] . N%. By definition, W is degree-g SoS symmetric. Since each entry of W
corresponds to a monomial of degree exactly g and each x; is drawn independently from
the Wigner semicircle distribution, each entry of W is at most the 1th Catalan number
Cy < 21. For any unit vector p = (ps)seny € RNk, Lemma 9.7.4 shows p"Wp = E[p?] -

N2k > % where p also represents a degree-k homogeneous polynomial p(xy,...,x,) =
lee () pax®. Therefore, the minimum eigenvalue of W is at least %
k

9.7.2 Final Construction

For evend, let A € R be a g-tensor with i.i.d. £1 entries and let A € RM72X 17 pe the
matrix flattening of A, i.e., A[l, ]| = A[I @ ]] (recall that & denotes tuple concatenation).
Also let f(x) := A(x) = (A, x®). Our lower bound on fmax by is proved by constructing

a moment matrix M € IR[”]W2>< [n] 1/ that satisfies

Tr(M) = 1.

M = 0.

M is SoS-symmetric.

- (A,M) > 2700) . na/4/q1/4

where A e RMWx["? ig any matrix representation of f (SoS-symmetry of M ensures
(A, M) does not depend on the choice of A).

Let A be the SoS-symmetric matrix such that forany I = (iy, ..., iq/z) and | = (jy,... /jq/Z)/

q'

AL T = JM, if i1, ..., ig/2,j1,-- -, Jq 2 are all distinct.
0 otherwise.

We bound ||A||2 in two steps. Let Ag € R™No/2N5/2 be the quotient matrix of A defined by

AglB 7] = AILJI-\/10(B) - 10(7)],
where I, ] € [n]9/2 are such that 8 = «(I),v = a(]).

ni/4

Lemma 9.7.5. With high probability, |Ag|2 < 20 . et

Proof. Consider any y € RNz s t. |ly|| = 1. Since

yTAgy= Y AglB] s Yy
Btr<1
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Y e T AL \gwmw

p+r<1 a(I)+a(]) |0(B+7)]
=B+
VIOB)IO(y
- AlL T -y
Ijezq/Z /3+72§]1 0(B+7)] i
pro=
a(I)~+a(])

Soy! - KQ -y is a sum of independent random variables

Y. AlLJ]-cry

Lje[n]1

where each A[], ]] is independently sampled from the Rademacher distribution and

_ VOB
A DI T TR S

prr=
a(I)+a(])

Fixany I,] € [n]7? and let a := a(I) + (]). By Cauchy-Schwarz,

. o) < e
;= ('3+;_a ’O( )|2 ngr;,xyﬁ y’y = |O(D{) Z y'B Yy Cor
9.3)

since there are at most 20(9) choices of g and y with B+ = &, and |0(B)| - |0(7)| <
|O(a)|. Therefore, yT - Ag - y is the sum of independent random variables that are centred
and always lie in the interval [—1, +1]. Furthermore, by Eq. (9.3), the total variance is

2
Y. o Yo 2-o)] < 200. Yy yﬁ-yi = 200.( Y y%) _ 50(g)
Lje[n)a/? aeNZ BYENT BeN’

IN

The claim then follows from combining standard concentration bounds with a union

bound over a sufficiently fine net of the unit sphere in |]NZ sl < 20@) . ZZ—Z dimensions.
n

Lemma 9.7.6. For any SoS-symmetric A € R [ ALz < [1Agll:

Proof. For any u,v € R 5., |u|| = ||v]| =1, we have
ul Av

= ), AlLJuy

I,je[n]1/2

e VIOMTOM]
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/1)

- (), 1o
w2 VOO 1o loe)
(] gy 1) - (0] gy

VIO VI0@)]

= aTKQ b where a, :=

< [|Agl2llall - fIo]

1)2 1)2
gl | x Mowrt” |y Plow
P\ ad, 10WI 3o, [0()
q/2 q/2
< [1Aqll \/ L g2 \/ Y N2 (by Cauchy-Schwarz)
ocG]Ng/z oceIN;’/z

< [[Agllzllull - lloll = lAgll2-
|

The above two lemmas imply that ||Al|; < [[Ag|2 < 200 . 2254 Our moment matrix

M is defined by
" ocp\c nd/4 na/2 )’

where W is the direct extension of W constructed in Theorem 9.7.1 — W[, J] := W]a(I), «(])]
forall I, ] € [n]”// 2 and c1,c; = 29 that will be determined later.
We first consider the trace of M. The trace of A is 0 by design, and the trace of W is

n/2.200)_ Therefore, the trace of M can be made 1 by setting c; appropriately. Since both
A and W are SoS- symmetrlc so is M. Since E[W,A] =0 and for each I,] € [n]1/? with
i1, ig/2/J1,- - -, Jqs2 @ll distinct we have E[A[L, J]A[L, ]]] = q,, with high probability

1 1 gd/4 W o g+ nf gy n1/t
- . — . > 20(—q) . . 90(=q) .
(A M) c1 A (62 n3‘7/4A Tan )22 n34/4 g ? q1/*

It finally remains to show that M is positive semidefinite. Take an arbitrary vector v €
R, and let
p= 2 *pa= ) x”‘-( v m)
thINZ/Z :erN;’/z 1€[n)1/2:a(1)=u

be the associated polynomial. If p = 0, SoS-symmetry of M ensures vMo! = 0. Normalize
v so that ||p||s, = 1. First, consider another vector vy, € [n]9/? such that

a(I)

p . . . . .

(o)) = (I if iy, ..., 1,2 are all distinct.
0 otherwise.

Then
1

2 2 _
lonl3 < ¥ 7/ @/2)! = oy

n
DéGNq/z
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0 . : : " .
SO ||[om|2 < zqq—iz). Since A is SoS-symmetric, has the minimum eigenvalue at least —2°(7) .

/4 ) ) ) . .
ZZT' and has nonzero entries only on the rows and columns (iy, . .., I /2) with all different
entries,
ni/4

0T Av = (v,)TA(v,,) > 2700 . W.

n
q/2’
we choose one I € [n]7/? arbitrarily and set (vy,); = p. (all other (vy)[’s are 0). By
SoS-symmetry of W,

We finally compute v"Wo. Let v, € [1]7/2 be the vector where for each « € N

~ 1
0TWo = (v,)TW(vy) = pTWp > >
by Theorem 9.7.1. Therefore,

1 1 3q/4 W 1 1 ni/4 39/4 1 1
T T q 0(q) q

v - ) — . - . A_|_ .z;>_. _2 _—+__
M 1 (Cz n3‘7/4 n‘i/z) 1 (cz q3q/4 n3q/4 2 nq/2

by taking c, = 29(9). So M is positive semidefinite, and this finishes the proof of the lower
bound in Theorem 9.1.1

Thus we obtain,

Theorem 9.7.7 (Lower bound in Theorem 9.1.1). For even q < n, let A € R pe a g-tensor
with i.i.d. =1 entries. Then with probability 1 — n®(),

505, (A(x)) Q(n)\ 74172
el )

As a side note, observe that by applying Lemma 9.7.6 and the proof of Lemma 9.7.5 to the
SoS-symmetric matrix representation of f(x) = A(x) (instead of A), we obtain a stronger
SoS upper bound (by polylog factors) for the special case of d = g:

Theorem 9.7.8 (Upper bound in Theorem 9.1.1). For even q < n, let A € R be a g-tensor
with i.i.d. =1 entries. Then with probability 1 — n®(),

S0S,(A(x)) O(n)\"*12
) R

9.8 Upper bounds for Odd Degree Tensors

In the interest of clarity, in this section we shall prove Theorem 9.1.2 for the special case
of 3-tensors. The proof readily generalizes to the case of all odd degree-d tensors.
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9.8.1 Analysis Overview

Let A € RI"’ be a 3-tensor with i.i.d. uniform +1 entries. Assume /4 is a power of 2 as
this only changes our claims by constants. For ¢ € [n] let T/ be an n x n matrix with i.i.d.
uniform +1 entries, such that we have

fx) = (A, x®3) = Z x (xTTyx) = Y x, (xT Ty x).
Le(n]

Let Ty := (T, + TZ) /2. Following Hopkins et. al. [HSS15], let 7 := Y_j_; Ty ® Ty. Let
E € R ¥’ be the matrix such that E[(i,;’), (]5])] = T1(i,i),(j,j)] for any i,j € [n] and
E[(i,}), (k,1)] = 0 otherwise. Let E’ € RI"" *["" be the matrix such that E'[(i, ), (i,])] =
E[(i, i), (j, /)] + E[(j,}), (i,i)] for any i,j € [n] and E'[(7,]), (k,1)] = 0 otherwise.

Let T := T — E € R and A := T®4/4, Let g(x) := (x®2)T T x*2 and h(x) :=
(x®2)TEx®2 = (x®2)T E' x®2. Let E be the pseudo-expectation operator returned by the
program above.

We would like to show that there is some matrix representation B of A, such that
w.h.p. max, |- y!By is small. To this end, consider the following mass shift procedure
that we apply to A to get B:

1
(q/2)1?
_; Y
= OO0 g gy AT

(I),J'€0(J)

VI, ] € [n]"?, B[L]]:=

Y, Alr(D),e())]

TOES, /2

Below the fold we shall show that ||B||4/ 1=

the desired result since we have

|IB|2I—B >0

O(n?/2/ v/q) w.h.p. This is sufficient to obtain

= |IB|l2||x[|9 — (x®4/2,Bx®1/2) =0
= ||Bl2f|x[|7 — (x®2, T x®2)7/4 = 0
= |IBl2]|x[|7 = (g(x) — h(x))"* = 0
= E(g(x) ~ hx)"""] < Bl
= Elg(x) —h(x)] < |B[l;"? (Pseudo-Cauchy-Schwarz)
= E[g(x)] < |By/? +E[n(x)]
= E[g(x)] < |IB]ly7+5n (5n1—E = 0)
= E[g(x)] = O0n*?/ ).
Now E[f(x)] =E [ Y x (xTT, x)] (Following [HSS15])
Le[n]
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1/2
N 1/2
<E [HXHZ] E [ Y (T x)2] (Pseudo-Cauchy-Schwarz)

1/2
<E (xT'T, x)2] (Pseudo-Cauchy-Schwarz)

<E [<x®2,Tx®2>
g(x)]"? = O(n®4/q"4)

]1/2

I
i

9.8.2 Bounding || BH;M

Forany I',...,I7 € [n]1/2 let ¢; denote the k-th smallest element in |J{I f} and let
tj

Foranyc!,...,c* € [q/2]", let

C(ct...c%) =
{(11,...,179) ‘# (Il,...,IP> =5, Vk € [s],£ € [p], e appears ck times in Ig}

Observation 9.8.1.
H(cl,...,cs) € ([q/2)7)°
ifC(cl,...,cS) #+ ¢ then ’C(cl,...,cs)

c(ch,...,c%) # q;}) < 20(pa) ppas2

n o ((q/2))F

| X 1y S|
S [T ¢;t...cy!
Lelp]

IN

Lemma 9.8.2. Consider any c',...,c* € [q/2]F and (I',...,1P) € C(c,...,c*). We have

8 1
S
||cg!...c£!
p

E [B [11,12]13[12, 13] ...B[IP, 11” < 20(pa) ypa/8

Proof. Consider any c!,...,c* € [g/2]P and (I',...,IF) € C(c},...,c*). We have
E [B [11,12}13[12, 13} ...B[I?, 11H

1T iz, .51
) (g(;/z)!)Z;f ]1,K1€O(11)§]P,KP€O(IP)]E [A [jlle}A[IZIKS] "'A[]p' Kl”
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ch S|2'
((67/2) )

{1l {+110+1 {7l {+1 1 0+1 74 14 /+1 {+1
Y E|]] T[]ljz,[(1+ KE+ }T[]3]4,1<3+ KE* } ...T[]q/z_qu/z,quz 1Kq72]
Ve, JLK eO(10) | Lelp]

e / +1 (+1
~ (a2 L (ﬂ)]E [ 112 T []Zg—I'KZg 1} Ty [Izg'K ]

Ve, JEK €O telp] gelq/4] heln]
H C1!2. |2
- f( E/z) ) ‘x 2 Z IE H H Th(ﬂ,g) []gg I’Kggll} Th (4,g) []Zg/KEJrl}
020y, pekteo(1t) vegh(eg)el] | telp] g<la/4)
H C1|2' S|2
@, I Yo BT TT T [fheakah] T B o
Ve, JEKEeo(TY) g]SF[P]X[q/‘H re[n] (6,g)€Sr
HZC S|2 1 )
((q/Z)) ‘S(I,...,I )’ where (9.4)
S(IL,...,1P) :=
{(@ 0.k, (5150) | @ 01K € TT 0, U 1, KED) # U K57,
telp] telp] (elp]
U Su=[p] x [q/4], Vr € [n], I, (@é( It K£)> has only even multiplicity elements},
u€n|
and T, (eBg(ﬂ,Kﬂ)) = @ (U KLY Uhe KEY)

(£,8)€Sy

Thus it remains to estimate the size of S ( ..., 1 p). We begin with some notation. For a
tuple t and a subsequence t; of t, let t \ #; denote the subsequence of elements in ¢ that are
not in f1. For a tuple of 2-sets t = ({a1,b1},...,{am, bm}), let atomize(t) denote the tuple
(a1,b1,...,am,by) (We assume Vi, a; < b;). Observe that “atomize" is invertible.

For any (®(J*,K%), (S1...Sn)) € S(I,...,I7), observe that Zg, (®,(J,K*)) (which
is of length 2|S,|) contains a subsequence Ig, of length |S,|, such that multiset(Is,) =
multiset(Zs, (D,(J%, K")) \ Is,). Now we know

multiset (@r atomize (Is, (@g(]é/ K€)> >> = |_| multiset <]é &) K£>

Lelp]

= |_| multiset([e@ﬂ)
Lelp]

= multiset (D, atomize(Is,)) = multiset (@T atomize <Isr <EB€(]€, Kg)) \ Isr))
= || multiset([£>.

Celp]
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Thus, 37 € S, /2, 5.t. D, atomize(Is,) = n([l @D 1p> (9.5)

For tuples t, t/, let intrlv(t, ') denote the set of all tuples obtained by interleaving the ele-
mentsin t and t'. By Eq. (9.5), we obtain that for any (®,(J', K, (51...5,)) € S(Il, s, IP),

I € Spysa, 8.t Vr € [n], Jor € Sig), 5.t Ls, <€B£(]€, K€)> € intrlv(Is,, 0;(Ig)) (9.6)
where Is, = atomize ! (n(ll DD I"’))
Forany j € [s], letc/ := Yrelp] c]l;. Now since |intrlv(t, ')| < 211F17] by Eq. (9.6) we have
that for any W,,c( Su = [p] % [9/4],

#5150 = [{ @' K [@0 K, (51 500) € S(1.17) }]
§2PQ/4‘S|51|‘><...><‘S|sn|‘X’O<IlEB---€BIp>‘

/2)!
< 2P‘7/4|51|!...|sn|!% 9.7)

For any (®,(J",K’),(S1...Su)) € S(I',...,1P), observe that the even multiplicity
condition combined with the condition that ( ]fg_l,Kgll) # (]2g’ KZH) imply that for
each r € [n], |S;| # 1. Thus every non-empty S, has size at least 2, 1mplying that the
number of non-empty sets in Sy, ..., Sy is at most pg/8. Thus we have,

(:9(11,...,110)(

= Z #(S1,...,5n) (Sr=9gifr g U)
Uucinl,|uf<pq/8 uLgJUSu:[P]X[q/‘l]
= ) Y. Y. #(S1,...,5n) (s =0,S, = g@ifr g U)

Ucinl,|U|<pq/8 Yucusu=pq/4 |S:|=s, L+Ju5u=[p]X[q/4]
ue

< y #(51,...,5n)(p‘7/4>...(pq/4) (5, =0,S, = @ifr ¢ U)
UC[n),|U|<pq/8 Lucusu=pq/4 51 Sn

< Y onfAg _(1’7‘7/2)5 (pq/4) (pq/4> (by Eq. (9.7))
UcCn],|U|<pq/8 Yucusu=pq/4 L..ct 51 Sn

< Z ) O(pq —(1|q/2_)5' (pq)sl+...+sn (Sr —0,S, = ¢ iy g U)
UCn],|U|<pq/8 Yucusu=pq/4 :

/2

< 20(pq+|Ul) (f:q _)S' (pq)pq/4
Ucnl,|u|<pq/8 e

< Yy Yo 20(patUD (pq/2)! (pq)P?/4

_1' —s
welpq/8) UC[n),|U|=u c!...c’!

166



5 (1) QU
i€[pq/8] wjct...cl
< Z 20(pq+u)_ (PQ/Z) (pq)pq/zl

U 1| el
uelpq/8 U :

0 8 (pq/2)!  (pq)P1/®
< )L 220 (npg)? clr. .. ¢ ppa/8-ugH

ucpq/8
/2)0 (pg)* _
= [Z:/s] 2001 (npq)Pi/8 E(lr:q E)S' (F;iu) (since pg < n)
ue pq PR .

< Y 20(pq) (npq)Pq/S_(lpqi_)!
aelpass] c!...c!

/2)!
< 20(pa) (npq)pq/S%
~ E [B [11,12}13[12, 13} ...B[Ip 11H
(Pq/z) H£C1'2 . S|2
el et ((q/2).)
ch;!...c?
((q/2)1)%

8
- 1y S|
|

< 2P1% (npq)Pi/® (by Eq. (94))

< 2714 (npq)P1’® (pq/2)!

Lemma 9.8.3. Forallil,...,iP € [n]‘i/z, we have
1) E [B [11,12]13[12,13] ...B[I”,Il]] >0

(2) E[B[11,12]B[12,I3] [IP 11“7&0 - #(11,...,1P)§%+g

Proof. The first claim follows immediately on noting that one is taking expectation of a
polynomial of independent centered random variables with all coefficients positive.

For the second claim, note that E[B[I', I?|B[I?, I°] ... B[I?, I']] # Oimplies that S(I',...,I7) #
¢@. Therefore there exists ®,(J¢,K’) (where J*, K’ € O(I’)) and Wuepm Su = [p] % [9/4]
such that every element in @, Zs, (@e(J fK! )) has even multiplicity. The rest of the

proof follows from the same ideas as in the proof of Lemma 9.6.3. n
Lemma 9.8.4. 3218
4/ log” n
BT < 28 g .
Vi
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Proof. We proceed by trace method. (Note that since T is symmetric, so are A and B).
E [Tr(BF)]
- Y E[BLEBAP]. B[]
I,..Ire[n]1/2

_ 1 712 2 13 1
_ SG[M%W] # (ﬂl; )_SIE [B [1 1 ]B [1 1 ] ...B [IP, I H by Lemma 9.8.3

<

- ¥ Z > E[B|I"2B[2P|. BrI

s€lpg/4+q/2]) /2P (IL,..,IP)EC(cl...c5)

- ¥ y > E[B|I"2B|AP|. B

s€lpq/4+q/2] ! q/2p (IL,..,IP)eC(c)...c¥)

o
@
m
=

S

o

5pq/8
< ¥ Y Y 20 SE T el it by Eq (94)
s€lpq/4+q/2) c,...c5€[q/2P (IL,...1P)EC(cl...c5) q elp]
o) P8 08 pass
< Y, 2 (Pq)Tp pa/8gpal by Observation 9.8.1

s€lpq/4+q/2]
) pq/4+q/2+pq/8

Z 20(pq p
! /4+q/2—
s€lpq/4+q/2] sLqParIe

9pq/8,pq/8

IN

q? (since g < n)

n3pq/8+q/2 p9pq/8 ) n3pq/8+q/2 p9pq/8

< Y 20(pq) < 20(pg
s€lpq/4+q/2] grie qri’e

Choose p to be even and let p = @(logn). Now
Pr“\BH‘;/q > n3/2 log5n/\/§] < Pr[Tr(BP) > nE [Tr(BP)]] .
Applying Markov inequality completes the proof. n

Thus we obtain

Theorem 9.8.5. Let A € RI"’ be a 3-tensor with i.id. +1 entries. Then for any even q such that
q < n, we have that with probability 1 — n®(),

SoS;(A(x)) _ (%) e
Amax o q .
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Chapter 10

Future Directions and Perspectives on
the Approximability Landscape

10.1 Operator Norms

In this section we discuss operator norms between general normed spaces and strive
towards a characterization of their approximability. It will be convenient to have this
discussion in the bilinear maximization language i.e., the language of injective tensor
norms with two convex sets (Fact 3.4.1 shows how operator norms can be captured by
bilinear form maximization). Recall that in Chapter 1 we used || - ||c, c, to denote injective
tensor norm. We will abuse this notation and use || - || x,y to denote || - [|gan(x),Baii(y)-

We first formalize our goal. Let (X,),en and (Yi)men be sequences of norms over
R" and R™ respectively. For a pair of sequences (X,, Y;;) we shall say || - ||x, v, is com-
putationally approximable if there exists a family of poly-sized circuits approximating
SUP| [l 1y llvy, <1{y, Ax) within a constant independent of m and n (given an oracle for

computing the norms). We are interested in the following questions:

Question. For which pairs (X, Y ) is the injective tensor norm computationally approximable?
Can one connect the approximation factor to the geometry of Xy, Yin?

10.1.1 Approximability, Type and Cotype

Towards this characterization, evidence in the literature points to the powerful classi-
tication tools of Type and Cotype from functional analysis (see Section 3.5 for a quick
introduction to these notions). Below we list various pieces of evidence that inform our
conjectures for the approximability landscape:

- In the || - || on,em case there are constant factor approximation algorithms whenever
p,q > 2 (and whenever p = 1 or g = 1) and there is complexity theoretic evidence
that no constant factor approximation algorithm exists in the other regimes. Note
that when p,q > 2, C({}.), C2(£y.) are bounded by absolute constants.
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- Nesterov [Nes98] and Naor and Schechtman! independently observed that a natu-
ral computable convex programming relaxation has an integrality gap bounded by
Kg when X, Y are 1-unconditional norms with 2-convexity constant M @()y=1(@
rich class of norms). For a 1-unconditional norm X, the Cotype-2 constant Cp(X*) is
within a universal constant of M(?) (X) (see [LT13]). Thus if one extended the above
result to the case when M) (Xn), M (2) (Yo ) are constants independent of n, m, then
one would automatically obtain such a result for the case when Cotype-2 constants
of X}, Y,, are independent of n, m.

- Naor, Regev and Vidick [NRV13] algorithmicized Haagerup’s [Haa85] proof of the
non-commutative Grothendieck inequality to give a computable convex program-
ming relaxation with constant integrality gap for the case of X and Y being the
Schatten-co norm. This is an important new example as the Schatten-co norm is not
1-unconditional (more generally it isn’t a Banach lattice) but is also the dual of the
Schatten-1 norm that has Cotype-2 bounded by an absolute constant independent
of the dimension.

- In Section 3.8, Section 5.3 and Section 5.8 we see that factorization through Hilbert
space is closely connected to approximation algorithms based on convex program-
ming. Thus it is interesting to note that Pisier’s remarkably general factorization
theorem (see Section 5.8) applies whenever X*, Y* are Cotype-2.

Given the above, some natural questions are:

Question 1. If Co(X;;), Ca(Y,y,) = O(1) (i.e., independent of m, n), then is || - || x, y,, computa-
tionally approximable?

Question 2. Let Xy, Yy, be such that Ty(Xy), Ty(Yim) = O(1) for some p > 1 and either C5(X;;)
grows polynomially in n or Co(Y,;,) grows polynomially in m. Then can one rule out any constant
factor approximation to || - || x, v,, (ideally assuming no poly-sized family of circuits captures NP)?

Towards Question 2. As discussed in Section 2.1, combining quantitative finite dimen-
sional versions of the MP+K theorem (see Theorem 13.12 in [MS09] and [AMS85] for exam-
ples of such theorems) with hardness results of p — g operator norms yields quite general
hardness results in the spirit of Question 2. Recall from Section 2.1.1, that the only regime
of p — g norms for which we don’t yet have satisfactorily strong hardness results is the
case of 1 < p <2 < g < oo (and moreover it suffices to get hardness results for the 2 — g
case where g > 2). In all other regimes there is either a polynomial time constant factor
approximation algorithm or there is complexity theoretic evidence that constant factor
approximation requires time at least o’

Strong inapproximability (SoS gaps or NP-hardness) results for the hypercontractive
2 — g case remain elusive and are closely related to obtaining hardness for polynomial
maximization over the sphere as well as the quantum separability problem (relates to long
standing open problems in quantum information theory). Consider the class of 2 — X

!personal communication
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operator norms for exactly 2-convex norms X. This class of course contains all hyper-
contractive 2 — g norms and moreover every operator norm in this class faces the same
gadget reduction barrier discussed in Section 2.1.1. In Chapter 6 we show that this bar-
rier can be overcome for certain exactly 2-convex norms (specifically mixed £, norms, i.e.,
4(Ly) for q,q" > 2) and give a reduction from random label cover (for which polynomial
level SoS gaps are available).

10.2 Degree > 3

Our understanding of higher degree injective tensor norms is modest even in the special
case of optimization over /,. In fact there are many fundamental problems surrounding
optimization over /5.

10.2.1 Hardness over the Sphere and Dense CSPs

The problem of polynomial optimization has been studied over various compact sets
[Las09, DKO08], and it is natural to ask how well polynomial time algorithms can approx-
imate the optimum value over a given compact set (see [DK08] for a survey). While the
maximum of a degree-d polynomial over the simplex admits a PTAS for every fixed d
[dKLP06], the problem of optimizing even a degree 3 polynomial over the hypercube does
not admit any approximation better than exp((logn)!~¢) (for arbitrary ¢ > 0) assuming
NP cannot be solved in time exp((log7)°())) [HV04]. The approximability of polynomial
optimization on the sphere is poorly understood in comparison. Vertex based gadget re-
ductions from CSPs face the same sparse optimal solution issue discussed in Section 2.1.1
(see also Chapter 4 for more details). However, considering the family of constraint based
gadget reductions (i.e. replacing every arity-k constraint by a degree-k homogeneous gad-
get polynomial) exposes connections to an independently interesting question. For any
degree-k polynomial a necessary condition for having all optimizers (over the sphere) be-
ing well-spread is to have > 1n*/2 non-zero coefficients. This (and some further inspection
of constraint based gadget reductions) prompts the following question:

Question 3. Can one establish APX-hardness of dense arity-k CSPs (3> n*/2 constraints) over
alphabet size q with a sparse predicate (< q*/? satisfying assignments)?

10.2.2 Other Open Problems

There are still many intriguing questions to explore and the landscape is far from being
completely understood:

- SoS gaps/APX-Hardness for Best Separable State and APX-Hardness of maximizing
polynomials over the sphere.

- Are there subexponential (2”6) algorithms (via SoS) for operator norm problems (like
2—4 norm, Grothendieck, Max-Cut) like those already known for unique games?
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- Close the gap in the approximation achieved by g-levels of SoS for maximization over
the sphere. The upper bound from Chapter 8 is (1/4)%?~! and the best lower bound is
roughly (1/q°1))4/4=1/2 que to Hopkins et al. [HKP*17]. This is closely related to the
problem of obtaining d-XOR hard instances with maximum gap in the advantage term.

- The PTAS over the simplex due to DeKlerk, Laurent and Parillo [dKLP06] requires d? /2
levels of SoS. It is interesting to check if this can be improved to poly(d) /2. Resolving
this question negatively would also be interesting as there are reasons to believe it will
lead to improved inapproximability results for optimization over the sphere.
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