
A Logical Foundation for Session-based Concurrent
Computation

Bernardo Parente Coutinho Fernandes Toninho

May 2015
CMU-CS-15-109

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
&

Departamento de Informática,
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Abstract

Linear logic has long been heralded for its potential of providing a logical basis for concurrency. While over
the years many research attempts were made in this regard, a Curry-Howard correspondence between linear
logic and concurrent computation was only found recently, bridging the proof theory of linear logic and
session-typed process calculus. Building upon this work, we have developed a theory of intuitionistic linear
logic as a logical foundation for session-based concurrent computation, exploring several concurrency re-
lated phenomena such as value-dependent session types and polymorphic sessions within our logical frame-
work in an arguably clean and elegant way, establishing with relative ease strong typing guarantees due to
the logical basis, which ensure the fundamental properties of type preservation and global progress, entail-
ing the absence of deadlocks in communication. We develop a general purpose concurrent programming
language based on the logical interpretation, combining functional programming with a concurrent, session-
based process layer through the form of a contextual monad, preserving our strong typing guarantees of type
preservation and deadlock-freedom in the presence of general recursion and higher-order process communi-
cation. We introduce a notion of linear logical relations for session typed concurrent processes, developing
an arguably uniform technique for reasoning about sophisticated properties of session-based concurrent
computation such as termination or equivalence based on our logical approach, further supporting our goal
of establishing intuitionistic linear logic as a logical foundation for session-based concurrency.
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Chapter 1

Introduction

Over the years, computation systems have evolved from monolithic single-threaded machines to concurrent
and distributed environments with multiple communicating threads of execution, for which writing correct
programs becomes substantially harder than in the more traditional sequential setting. These difficulties
arise as a result of several issues, fundamental to the nature of concurrent and distributed programming,
such as: the many possible interleavings of executions, making programs hard to test and debug; resource
management, since often concurrent programs must interact with (local or remote) resources in an orderly
fashion, which inherently introduce constraints in the level of concurrency and parallelism a program can
have; and coordination, since the multiple execution flows are intended to work together to produce some
ultimate goal or result, and therefore must proceed in a coordinated effort.

Concurrency theory often tackles these challenges through abstract language-based models of concur-
rency, such as process calculi, which allow for reasoning about concurrent computation in a precise way,
enabling the study of the behavior and interactions of complex concurrent systems. Much like the history
of research surrounding the λ-calculus, a significant research effort has been made to develop type systems
for concurrent calculi (the most pervasive being the π-calculus) that, by disciplining concurrency, impose
desirable properties on well-typed programs such as deadlock-freedom or absence of race conditions.

However, unlike the (typed) λ-calculus which has historically been known to have a deep connection
with intuitionistic logic, commonly known as the Curry-Howard correspondence, no equivalent connection
was established between the π-calculus and logic until quite recently. One may then wonder why is such a
connection important, given that process calculi have been studied since the early 1980s, with the π-calculus
being established as the lingua franca of interleaving concurrency calculi in the early 1990s, and given the
extensive body of work that has been developed based on these calculi, despite the lack of foundations based
on logic.

The benefits of a logical foundation in the style of Curry-Howard for interleaving concurrency are var-
ious: on one hand, it entails a form of canonicity of the considered calculus by connecting it with proof
theory and logic. Pragmatically, a logical foundation opens up the possibility of employing established
techniques from logic to the field of concurrency theory, potentially providing elegant new means of reason-
ing and representing concurrent phenomena, which in turn enable the development of techniques to ensure
stronger correctness and reliability of concurrent software. Fundamentally, a logical foundation allows for
a compositional and incremental study of new language features, since the grounding in logic ensures that
such extensions do not harm previously obtained results. This dissertation seeks to support the following:

1



2 CHAPTER 1. INTRODUCTION

Thesis Statement: Linear logic, specifically in its intuitionistic formulation, is a suitable logical foun-
dation for message-passing concurrent computation, providing an elegant framework in which to express
and reason about a multitude of naturally occurring phenomena in such a concurrent setting.

1.1 Modelling Message-Passing Concurrency

Concurrency is often divided into two large models: shared-memory concurrency and message-passing con-
currency. The former enables communication between concurrent entities through modification of memory
locations that are shared between the entities; whereas in the latter the various concurrently executing com-
ponents communicate by exchanging messages, either synchronously or asynchronously.

Understanding and reasoning about concurrency is ongoing work in the research community. In partic-
ular, many language based techniques have been developed over the years for both models of concurrency.
For shared-memory concurrency, the premier techniques are those related to (concurrent) separation logic
[56], which enables formal reasoning about memory configurations that may be shared between multiple
entities. For message-passing concurrency, which is the focus of this work, the most well developed and
studied techniques are arguably those of process calculi [19, 68]. Process calculi are a family of formal lan-
guage that enable the precise description of concurrent systems, dubbed processes, by modelling interaction
through communication across an abstract notion of communication channels. An important and appeal-
ing feature of process calculi is their mathematical and algebraic nature: processes can be manipulated via
certain algebraic laws, which also enable formal reasoning about process behavior [70, 72, 50].

While many such calculi have been developed over the years, the de facto standard process calculus is
arguably the π-calculus [68, 52], a language that allows modelling of concurrent systems that communicate
over channels that may themselves be generated dynamically and passed in communication. Typically,
the π-calculus also includes replication (i.e. the ability to spawn an arbitrary number of parallel copies of
a process), which combined with channel generation and passing makes the language a Turing complete
model of concurrent, message-passing computation. Many variants of the π-calculus have been developed
in the literature (a comprehensive study can be found in [68]), tailored to the study of specific features such
as asynchronous communication, higher-order process communication [53], security protocol modelling
[1], among many others.

We now give a brief introduction to a π-calculus, the syntax of which is given in Fig. 1.1 (for purposes
that will be made clear in Chapter 2, we extend the typical π-calculus syntax with a forwarder [x ↔ y]
reminiscent of the forwarders used in the internal mobility π-calculus [67], or explicit fusions of [57]).
The so-called static fragment of the π-calculus consists of the inactive process 0; the parallel composition
operator P | Q, which composes in parallel processes P and Q; and the scope restriction (νy)P , binding
channel y in P . The communication primitives are the output and input prefixed processes, x〈y〉.P , which
sends channel y along x and x(y).P which inputs along x and binds the received channel to y in P . We
restrict general unbounded replication to an input-guarded form !x(y).P , denoting a process that waits
for inputs on x and subsequently spawns a replica of P when such an input takes place. The channel
forwarding construct [x↔ y] equates the two channel names x and y. We also consider (binary) guarded
choice x.case(P,Q) and the two corresponding selection constructs x.inl;P , which selects the left branch,
and x.inr;P , which selects the right branch.

For any process P , we denote the set of free names of P by fn(P ). A process is closed if it does not
contain free occurrences of names. We identify processes up to consistent renaming of bound names, writing
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P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P
!x(y).P | [x↔y] | x.inl;P | x.inr;P | x.case(P,Q)

Figure 1.1: π-calculus Syntax.

≡α for this congruence. We write P{x/y} for the process obtained from P by capture avoiding substitution
of x for y in P .

The operational semantics of the π-calculus are usually presented in two forms: reduction semantics,
which describe how processes react internally; and labelled transition semantics, which specify how pro-
cesses may interact with their environment. Both semantics are defined up-to a congruence ≡ which ex-
presses basic structural identities of processes, dubbed structural congruence.

Definition 1 (Structural Congruence). Structural congruence (P ≡ Q), is the least congruence relation on
processes such that

P | 0 ≡ P (S0) P ≡α Q⇒ P ≡ Q (Sα)
P | Q ≡ Q | P (S|C) P | (Q | R) ≡ (P | Q) | R (S|A)
(νx)0 ≡ 0 (Sν0) x 6∈ fn(P )⇒ P | (νx)Q ≡ (νx)(P | Q) (Sν|)
(νx)(νy)P ≡ (νy)(νx)P (Sνν) [x↔ y] ≡ [y ↔ x] (S↔)

Definition 2 (Reduction). Reduction (P → Q), is the binary relation on processes defined by:

x〈y〉.Q | x.(z)P → Q | P{y/z} (RC)
x〈y〉.Q | !x.(z)P → Q | P{y/z} | !x.(z)P (R!)
x.inl;P | x.case(Q,R)→ P | Q (RL)
x.inr;P | x.case(Q,R)→ P | R (RR)
Q→ Q′ ⇒ P | Q→ P | Q′ (R|)
P → Q⇒ (νy)P → (νy)Q (Rν)
(νx)(P | [x↔ y])→ P{y/x} (x 6= y) (R↔)
P ≡ P ′ ∧ P ′ → Q′ ∧Q′ ≡ Q⇒ P → Q (R≡)

We adopt the so-called early transition system for the π-calculus [68] extended with the appropriate
labels and transition rules for the choice constructs. A transition P α→ Q denotes that process P may evolve
to process Q by performing the action represented by the label α. Transition labels are given by

α ::= x〈y〉 | x(y) | (νy)x〈y〉 | x.inl | x.inr | x.inl | x.inr | τ

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-actions, respectively the
output x〈y〉 and bound output (νy)x〈y〉 actions, and the left/ right selections x.inl and x.inr. The bound
output (νy)x〈y〉 denotes extrusion of a fresh name y along (channel) x. Internal action is denoted by τ . In
general an action α (α) requires a matching α (α) in the environment to enable progress, as specified by the
transition rules. For a label α, we define the sets fn(α) and bn(α) of free and bound names, respectively, as
follows: in x〈y〉 and x(y) both x and y are free; in x.inl , x.inr , x.inl , and x.inr , x is free; in (νy)x〈y〉, x
is free and y is bound. We denote by s(α) the subject of α (e.g., x in x〈y〉).
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P
α→ Q

(νy)P
α→ (νy)Q

(res)
P

α→ Q

P | R α→ Q | R
(par)

P
α→ P ′ Q

α→ Q′

P | Q τ→ P ′ | Q′
(com)

P
(νy)x〈y〉→ P ′ Q

x(y)→ Q′

P | Q τ→ (νy)(P ′ | Q′)
(close)

P
x〈y〉→ Q

(νy)P
(νy)x〈y〉→ Q

(open) x〈y〉.P x〈y〉→ P (out)

x(y).P
x(z)→ P{z/y} (in) !x(y).P

x(z)→ P{z/y} | !x(y).P (rep) x.inl;P
x.inl→ P (lout)

x.inr;P
x.inr→ P (rout) x.case(P,Q)

x.inl→ P (lin) x.case(P,Q)
x.inr→ Q (rin)

(νx)(P | [x↔ y])
τ→ P{y/x} (link)

Figure 1.2: π-calculus Labeled Transition System.

Definition 3 (Labeled Transition System). The relation labeled transition (P α→ Q) is defined by the rules
in Figure 6.1, subject to the side conditions: in rule (res), we require y 6∈ fn(α); in rule (par), we require
bn(α) ∩ fn(R) = ∅; in rule (close), we require y 6∈ fn(Q); in rule (link), we require x 6= y. We omit the
symmetric versions of rules (par), (com), (close) and (link).

We can make precise the relation between reduction and τ -labeled transition [68], and closure of labeled
transitions under ≡ as follows. We write ρ1ρ2 for relation composition (e.g., τ→≡).

Proposition 1.

1. If P ≡ α→ Q, then P α→≡ Q

2. P → Q iff P τ→≡ Q.

As in the history of the λ-calculus, many type systems for the π-calculus have been developed over the
years. The goal of these type systems is to discipline communication in some way as to avoid certain kinds of
errors. While the early type systems for the π-calculus focused on assigning types to values communicated
on channels (e.g. the type of channel c states that only integers can be communicated along c), and on
assigning input and output capabilities to channels (e.g. process P can only send integers on channel c
and process Q can only receive), arguably the most important family of type systems developed for the
π-calculus are session types.

1.2 π-calculus and Session Types

The core idea of session types is to structure communication between processes around the concept of a
session. A (binary) session consists of a description of the interactive behavior between two components
of a concurrent system, with an intrinsic notion of duality: When one component sends, the other receives;
when one component offers a choice, the other chooses. Another crucial point is that a session is stateful
insofar as it is meant to evolve over time (e.g. “input an integer and afterwards output a string”) until all its
codified behavior is carried out. A session type [41, 43] codifies the intended session that must take place
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A,B,C ::= A( B input channel of type A and continue as B
| A⊗B output fresh channel of type A and continue as B
| 1 terminate
| A&B offer choice between A and B
| A⊕B provide either A or B
| !A provide replicable session of type A

Figure 1.3: Session Types

over a given communication channel at the type level, equating type checking with a high-level form of
communication protocol compliance checking.

The communication idioms that are typically captured in session types are input and output behavior,
choice and selection, replication and recursive behavior. It is also common for session type systems to have
a form of session delegation (i.e. delegating a session to another process via communication). Moreover,
session types can provide additional guarantees on system behavior than just adhering to the ascribed ses-
sions, such as deadlock absence and liveness [26]. We present a syntax for session types in Fig. 1.3, as well
as the intended meaning of each type constructor. We use a slightly different syntax than that of the original
literature on session types [41, 43], which conveniently matches the syntax of propositions in (intuitionistic)
linear logic. We make this connection precise in Chapters 2 and 3.

While session types are indeed a powerful tool for the structuring of communication-centric programs,
their theory is fairly complex, especially in systems that guarantee the absence of deadlocks, which require
sophisticated causality tracking mechanisms. Another issue that arises in the original theory of session types
is that it is often unclear how to consider new primitives or language features without harming the previously
established soundness results. Moreover, the behavioral theory (in the sense of behavioral equivalence) of
session typed systems is also quite intricate, requiring sophisticated bisimilarities which are hard to reason
about, and from a technical standpoint, for which establishing the desirable property of contextuality or
congruence (i.e. equivalence in any context) is a challenging endeavour.

1.3 Curry-Howard Correspondence

At the beginning of Chapter 1 we mentioned en passant the connection of typed λ-calculus and intuitionistic
logic, commonly known as the Curry-Howard correspondence, and the historical lack of such a connection
between the π-calculus and logic (until the recent work of [16]). For the sake of completeness, we briefly
detail the key idea behind this correspondence and its significance.

The Curry-Howard correspondence consists of an identification between formal proof calculi and type
systems for models of computation. Historically, this connection was first identified by Haskell Curry [23]
and William Howard [44]. The former [23] observed that the types of the combinators of combinatory
logic corresponded to the axiom schemes of Hilbert-style deduction systems for implication. The latter
[44] observed that the proof system known as natural deduction for implicational intuitionistic logic could
be directly interpreted as a typed variant of the λ-calculus, identifying implication with the simply-typed
λ-calculus’ arrow type and the dynamics of proof simplification with evaluation of λ-terms.

While we refrain from the full technical details of this correspondence, the key insight is the idea of
identifying proofs in logic as programs in the λ-calculus, and vice-versa, thus giving rise to the fundamental
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concepts of proofs-as-programs and programs-as-proofs (a somewhat comprehensive survey can be found
in [82]). The basic correspondence identified by Curry and Howard enabled the development of a new class
of formal systems designed to act as both a proof system and as a typed programming language, such as
Martin-Löf’s intuitionistic type theory [49] and Coquand’s Calculus of Constructions [22].

Moreover, the basis of this interpretation has been shown to scale well beyond the identification of im-
plication and the function type of the λ-calculus, enabling an entire body of research devoted to identifying
the computational meaning of extensions to systems of natural deduction such as Girard’s System F [35] as
a language of second-order propositional logic; modal necessity and possibility as staged computation [24]
and monadic types for effects [80], among others. Dually, it also becomes possible to identify the logical
meaning of computational phenomena.

Thus, in light of the substantial advances in functional type theories based on the Curry-Howard corre-
spondence, the benefits of such a correspondence for concurrent languages become apparent. Notably, such
a connection enables a new logically motivated approach to concurrency theory, as well as the compositional
and incremental study of concurrency related phenomena, providing new techniques to ensure correctness
and reliability of concurrent software.

1.4 Linear Logic and Concurrency

In the concurrency theory community, linearity has played a key role in the development of typing systems
for the π-calculus. Linearity was used in early type systems for the π-calculus [47] as a way of ensuring
certain desirable properties. Ideas from linear logic also played a key role in the development of session
types, as acknowledged by Honda [41, 43].

Girard’s linear logic [36] arises as an effort to marry the dualities of classical logic and the constructive
nature of intuitionistic logic by rejecting the so-called structural laws of weakening (“I need not use all
assumptions in a proof”) and contraction (“If I assume something, I can use it multiple times”). Proof
theoretically, this simple restriction turns out to have profound consequences in the meaning of logical
connectives. Moreover, the resulting logic is one where assumptions are no longer persistent immutable
objects but rather resources that interact, transform and are consumed during inference. Linear logic divides
conjunction into two forms, which in linear logic terminology are called additive (usually dubbed “with”,
written &) and multiplicative (dubbed “tensor”, and written ⊗), depending on how resources are used to
prove the conjunction. Additive conjunction denotes a pair of resources where one must choose which of
the elements of the pair one will use, although the available resources must be able to realize (i.e. prove)
both elements. Multiplicative conjunction denotes a pair of resources where both resources must be used,
since the available resources simultaneously realize both elements and all resources must be consumed in
a valid inference (due to the absence of weakening and contraction). In classical linear logic there is also
a similar separation in disjunction, while in the intuitionistic setting we only have additive disjunction ⊕
which denotes an alternative between two resources (we defer from a precise formulation of linear logic for
now).

The idea of propositions as mutable resources that evolve independently over the course of logical infer-
ence sparked interest in using linear logic as a logic of concurrent computation. This idea was first explored
in the work of Abramsky et. al [3], which developed a computational interpretation of linear logic proofs,
identifying them with programs in a linear λ-calculus with parallel composition. In his work, Abramsky
gives a faithful proof term assignment to classical linear logic sequent calculus, identifying proof compo-
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sition with parallel composition. This proofs-as-processes interpretation was further refined by Bellin and
Scott [8], which mapped classical linear logic proofs to processes in the synchronous π-calculus with prefix
commutation as a structural process identity. Similar efforts were developed more recently in [42], connect-
ing polarised proof-nets with an (I/O) typed π-calculus, and in [28] which develops ludics as a model for
the finitary linear π-calculus. However, none of these interpretations provided a true Curry-Howard corre-
spondence insofar as they either did not identify a type system for which linear logic propositions served
as type constructors (lacking the propositions-as-types part of the correspondence); or develop a connection
with only a very particular formulation of linear logic (such as polarised proof-nets).

Given the predominant role of session types as a typing system for the π-calculus and their inherent
notion of evolving state, in hindsight, its connections with linear logic seem almost inescapable. However,
it wasn’t until the recent work of Caires and Pfenning [16] that this connection was made precise. The
work of [16] develops a Curry-Howard correspondence between session types and intuitionistic linear logic,
identifying (typed) processes with proofs, session types with linear logic propositions and process reduction
with proof reduction. Following the discovery in the context of intuitionistic linear logic, classical versions
of this correspondence have also been described [81, 18].

1.5 Session-based Concurrency and Curry-Howard

While we have briefly mentioned some of the conceptual benefits of a correspondence in the style of Curry-
Howard for session-based concurrency in the previous sections, it is important to also emphasize some of
the more pragmatic considerations that can result from the exploration and development of such a corre-
spondence, going beyond the more foundational or theoretical benefits that follow from a robust logical
foundation for concurrent calculi.

The identification of computation with proof reduction inherently bestows upon computation the good
theoretical properties of proof reduction. Crucially, as discussed in [16], it enables a very natural and
clean account of a form of global progress for session-typed concurrent processes, entailing the absence of
deadlocks – “communication never gets stuck” – in typed communication protocols. Additionally, logical
soundness entails that proof reduction is a finite procedure, which in turn enables us to potentially ensure
that typed communication is not only deadlock-free but also terminating, a historically challenging property
to establish in the literature.

Moreover, as the logical foundation scales beyond simple (session) types to account for more advanced
typing disciplines such as polymorphism and coinductive types (mirroring the developments of Curry-
Howard for functional calculi), we are expected to preserve such key properties, enabling the development
of session-based concurrent programming languages where deadlocks are excluded as part of the typing
discipline, even in the presence of sophisticated features such as mobile or polymorphic code.

1.6 Contributions

The three parts of this dissertation aim to support three fundamental aspects of our central thesis of using
linear logic as a logical foundation for message-passing concurrent computation: (1) the development and
usage of linear logic as a logical foundation for session-based concurrency, able to account for multiple
relevant concurrency-theoretic phenomena; (2) the ability of using the logical interpretation as the basis for
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a concurrent programming language that cleanly integrates functional and session-based concurrent pro-
gramming; and (3), developing effective techniques for reasoning about concurrent programs based on this
logical foundation.

1.6.1 A Logical Foundation for Session-Based Concurrency

The first major contribution of Part I of the dissertation is the reformulation and refinement of the foun-
dational work of [16], connecting linear logic and session types, which we use in this dissertation as a
basis to explain and justify phenomena that arise naturally in message-passing concurrency, developing the
idea of using linear logic as a logical foundation for message-passing concurrent computation in general.
The second major contribution is the scaling of the interpretation of [16] beyond the confines of simple
session types (and even the π-calculus), being able to also account for richer and more sophisticated phe-
nomena such as dependent session types [75] and parametric polymorphism [17], all the while doing so
in a technically elegant way and preserving the fundamental type safety properties of session fidelity and
global progress, ensuring the safety of typed communication disciplines. While claims of elegance are by
their very nature subjective, we believe it is possible to support these claims by showing how naturally and
easily the interpretation can account for these phenomena that traditionally require quite intricate technical
developments.

More precisely, in Chapter 2 we develop the interpretation of linear logic as session types that serves as
the basis for the dissertation. The interpretation diverges from that of [16] in that it does not commit to the
π-calculus a priori, developing a proof term assignment that can be used as a language for session-typed
communication, but also maintaining its connections to the π-calculus. The goal of this “dual” develop-
ment, amongst other technical considerations, is to further emphasize that the connection of linear logic and
session-typed concurrency goes beyond that of having a π-calculus syntax and semantics. While we may
use the π-calculus assignment when it is convenient to do so (and in fact we do precisely this in Part III),
we are not necessarily tied to the π-calculus. This adds additional flexibility to the interpretation since it
enables a form of “back and forth” reasoning between π-calculus and the faithful proof term assignment
that is quite natural in proofs-as-programs approaches. We make the connections between the two term
assignments precise in Section 2.4.1, as well as develop the metatheory for our assignment (Section 2.4),
establishing properties of type preservation and global progress.

In Chapter 3 we show how to scale the interpretation to account for more sophisticated concurrent
phenomena by developing the concepts of value dependent session types (Section 3.1) and parametric poly-
morphism (Section 3.5) as they arise by considering first and second-order intuitionistic linear logic, respec-
tively. These are natural extensions to the interpretation that provide a previously unattainable degree of
expressiveness within a uniform framework. Moreover, the logical nature of the development ensures that
type preservation and global progress uniformly extend to these richer settings.

We note that the interpretation generalizes beyond these two particular cases. For instance, in [76] the in-
terpretation is used to give a logically motivated account of parallel evaluation strategies on λ-terms through
canonical embeddings of intuitionistic logic in linear logic. One remarkable result is that the resulting em-
beddings induce a form of sharing (as in futures, relaxing the sequentiality constraints of call-by-value and
call-by-need) and copying (as in call-by-name) parallel evaluation strategies on λ-terms, the latter being
reminiscent of Milner’s original embedding of the λ-calculus in the π-calculus [51].
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1.6.2 Towards a Concurrent Programming Language

A logical foundation must also provide the means of expressing concurrent computation in a natural way
that preserves the good properties one obtains from logic. We defend this idea in Part II of the dissertation
by developing the basis of a concurrent programming language that combines functional and session-based
concurrent programs via a monadic embedding of session-typed process expressions in a λ-calculus (Chap-
ter 4). One interesting consequence of this embedding is that it allows for process expressions to send,
receive and execute other process expressions (Section 4.4), in the sense of higher-order processes [68],
preserving the property of deadlock-freedom by typing (Section 4.5), a key open problem before this work.

For practicality and expressiveness, we consider the addition of general recursive types to the language
(Section 4.2), breaking the connection with logic in that it introduces potentially divergent computations,
but enabling us to showcase a wider range of interesting programs. To recover the connections with logic,
in Chapter 5 we restrict general recursive types to coinductive session types, informally arguing for non-
divergence of computation through the introduction of syntactic restrictions on recursive process definitions
(the formal argument is developed in Part III), similar to those used in dependently typed programming
languages with recursion such as Coq [74] and Agda [55], but with additional subtleties due to the concurrent
nature of the language.

1.6.3 Reasoning Techniques

Another fundamental strength of a logical foundation for concurrent computation lies in its capacity to pro-
vide both the ability to express and also reason about such computations. To this end, we develop in Part III
of the dissertation a theory of linear logical relations on the π-calculus assignment for the interpretation
(Chapter 6), developing both unary (Section 6.1) and binary (Section 6.2) relations for the polymorphic
and coinductive settings, which consists of a restricted form of the language of Chapter 4, following the
principles of Chapter 5. We show how these relations can be applied to develop interesting results such
as termination of well-typed processes in the considered settings, and concepts such as a notion of logical
equivalence.

In Chapter 7, we develop applications of the linear logical relations framework, showing that our notion
of logical equivalence is sound and complete with respect to the traditional process calculus equivalence of
(typed) barbed congruence and may be used to perform reasoning on polymorphic processes in the style of
parametricity for polymorphic functional languages (Section 7.1). We also develop the concept of session
type isomorphisms (Section 7.2), a form of type compatibility or equivalence. Finally, in Section 7.3, by
appealing to our notion of logical equivalence, we show how to give a concurrent justification for the proof
conversions that arise in the process of cut elimination in the proof theory of linear logic, thus giving a full
account of the proof-theoretic transformations of cut elimination within our framework.
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Chapter 2

Linear Logic and Session Types

In this chapter, we develop the connections of propositional linear logic and session types, developing a
concurrent proof term assignment to linear logic proofs that corresponds to a session-typed π-calculus.
We begin with a brief introduction of the formalism of linear logic and the judgmental methodology used
throughout this dissertation. We also introduce the concept of substructural operational semantics [62]
which we use to give a semantics to our proof term assignment and later (Part II) to our programming
language.

The main goal of this chapter is to develop and motivate the basis of the logical foundation for session-
typed concurrent computation. To this end, our development of a concurrent proof term assignment for
intuitionistic linear logic does not directly use π-calculus terms (as the work of [16]) but rather a fully
syntax driven term assignment, faithfully matching the dynamics of proofs, all the while being consistent
with the original π-calculus assignment. The specifics and the reasoning behind this new assignment are
detailed in Section 2.2. The term assignment is developed incrementally in Section 2.3, with a full summary
in Section 2.5 for reference. Some examples are discussed in Section 2.3.5. Finally, we establish the
fundamental metatheoretical properties of our development in Section 2.4. Specifically, we make precise the
correspondence between our term assignment and the π-calculus assignment and establish type preservation
and global progress results, entailing a notion of session fidelity and deadlock-freedom.

2.1 Linear Logic and the Judgmental Methodology

In Section 1.4 we gave an informal description of the key ideas of linear logic and its connections to session-
based concurrency. Here, we make the formalism of linear logic precise so that we may then carry out our
concurrent term assignment to the rules of intuitionistic linear logic.

As we have mentioned, linear logic arises as an effort to marry the dualities of classical logic and the
constructive nature of intuitionistic logic. However, the key aspect of linear logic that interests us is the idea
that logical propositions are stateful, insofar as they may be seen as mutable resources that evolve, interact
and are consumed during logical inference. Thus, linear logic treats evidence as ephemeral resources –
using a resource consumes it, making it unavailable for further use. While linear logic can be presented
in both classical and intuitionistic form, we opt for the intuitionistic formalism since it has a more natural
correspondence with our intuition of resources and resource usage. Moreover, as we will see later on (Part
II), intuitionistic linear logic seems to be more amenable to integration in a λ-calculus based functional

13
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A,B,C ::= 1 | A( B | A⊗B | A&B | A⊕B | !A

Figure 2.1: Intuitionistic Linear Logic Propositions

language (itself connected to intuitionistic logic).
Seeing as linear logic is a logic of resources and their usage disciplines, linear logic propositions can be

seen as resource combinators that specify how certain kinds of resources are meant to be used. Propositions
(referred to by A,B,C – Fig. 2.1) in linear logic can be divided into three categories, depending on the
discipline they impose on resource usage: the multiplicative fragment, containing 1, A ⊗ B and A ( B;
the additive fragment, containing A & B and A ⊕ B; and the exponential fragment, containing !A. The
multiplicative unit 1 is the distinguished proposition which denotes no information – no resources are used
to provide this resource. Linear implication A ( B denotes a form of resource transformation, where
a resource A is transformed into resource B. Multiplicative conjunction A ⊗ B encodes simultaneous
availability of resources A and B. Additive conjunction A&B denotes the alternative availability of A and
B (i.e., each is available but not both simultaneously). Additive disjunction A ⊕ B denotes the availability
either A or B (i.e., only one is made available). Finally, the exponential !A encodes the availability of an
arbitrary number of instances of the resource A.

Our presentation of linear logic consists of a sequent calculus, corresponding closely to Barber’s dual
intuitionistic linear logic [7], but also to Chang et al.’s judgmental analysis of intuitionistic linear logic [21].
Our main judgment is written ∆ ` A, where ∆ is a multiset of (linear) resources that are fully consumed
to offer resource A. We write · for the empty context. Following [21], the exponential !A internalizes
validity in the logic – proofs of A using no linear resources, requiring an additional context of unrestricted
or exponential resources Γ and the generalization of the judgment to Γ; ∆ ` A, where the resources in Γ
need not be used.

In sequent calculus, the meanings of propositions are defined by so-called right and left rules (referring
to the position of the principal proposition relative to the turnstyle in the rule). A right rule defines how
to prove a given proposition, or in resource terminology, how to offer a resource. Dually, left rules define
how to use an assumption of a particular proposition, or how to use an ambient resource. Sequent calculus
also includes so-called structural rules, which do not pertain to specific propositions but to the proof system
as a whole, namely the cut rule, which defines how to reason about a proof using lemmas, or how to
construct auxiliary resources which are then consumed; and the identity rule, which specifies the conditions
under which a linear assumption may discharge a proof obligation, or how an ambient resource may be
offered outright. Historically, sequent calculus proof systems include cut and identity rules (and also explicit
exchange, weakening and contraction rules as needed), which can a posteriori shown to be redundant via
cut elimination and identity expansion. Alternatively (as in [21]), cut and identity may be omitted from the
proof system and then shown as admissible principles of proof. We opt for the former since we wish to
be able to express composition as primitive in the framework and reason explicitly about the computational
content of proofs as defined by their dynamics during the cut elimination procedure.

To fully account for the exponential in our judgmental style of presentation, beyond the additional con-
text region Γ, we also require two additional rules: an exponential cut principle, which specifies how to
compose proofs that manipulate persistent resources; and a copy rule, which specifies how to use a persis-
tent resource.
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The rules of linear logic are presented in full detail in Section 2.3, where we develop the session-based
concurrent term assignment to linear logic proofs and its correspondence to π-calculus processes. The
major guiding principle for this assignment is the computational reading of the cut elimination procedure,
which simplifies the composition of two proofs to a composition of smaller proofs. At the level of the proof
term assignment, this simplification or reduction procedure serves as the main guiding principle for the
operational semantics of terms (and of processes).

As a way of crystallizing the resource interpretation of linear logic and its potential for a session-based
concurrent interpretation, consider the following valid linear judgment A( B,B ( C,A ` C. Accord-
ing to the informal description above, the linear implication A ( B can be seen as a form of resource
transformation: provide it with a resource A to produce a resource B. Given this reading, it is relatively
easy to see why the judgment is valid: we wish to provide the resource C by making full use of resources
A ( B, B ( C and A. To do this, we use the resource A in combination with the linear implication
A ( B, consuming the A and producing B, which we then provide to the implication B ( C to finally
obtain C. While this resource manipulation reading of inference seems reasonable, where does the session-
based concurrency come from? The key intuition consists of viewing a proposition as a denotation of the
state of an interactive behavior (a session), and that such a behavior is resource-like, where we can view
the interplay of the various interactive behaviors as concurrent interactions specified by the logical meaning
of the propositional connectives. Thus, appealing to this session-based reading of linear logic propositions,
A ( B stands for the type of an object that implements the interaction of receiving a behavior A to then
produce the behavior B.

From a session-based concurrent point of view, we may interpret the judgmentA( B,B( C,A ` C
as follows: in an environment composed of three independent interactive behaviors offered by, say, P , Q
and R, where P provides a behavior of type A ( B, Q one of type B ( C and R one of type A, we
can make use of these interactive behaviors to provide a behavior C. As will see later on, the realizer for
this behavior C must therefore consist of plugging together R and P by sending P some information, after
which S will be able to connect P with Q to obtain C.

Foreshadowing our future developments, we can extract from the inference of A( B,B( C,A ` C
the code for the concurrent process S as follows – we assign types to channel names along which commu-
nication takes place and take some syntactic liberties for readability at this stage in the presentation:

x:A( B, y:B( C, z:A ` S :: w:C where S = output x z; output y x; output w y

The code for S captures the intuition behind the expected behavior of the process that transforms the avail-
able behaviors into an offer of C. It begins by linking z with x, sending the former along x. We are now in
a setting where x is offering B and thus we send it to y which ultimately results in the C we were seeking.
Moreover, provided with the appropriate processes P , Q and R (extractable from linear logic proofs), we
can account for the closed concurrent system made up of the four processes executing concurrently (again,
modulo some syntactic conveniences):

` new x, y, z.(P ‖ Q ‖ R ‖ S) :: w:C where

` P :: x:A( B ` Q :: y:B( C ` R :: z:A

As will be made clear throughout our presentation, this rather simple and arguably intuitive reading of
linear logic turns out to provide an incredibly rich and flexible framework for defining and reasoning about
session-based, message-passing programs.



16 CHAPTER 2. LINEAR LOGIC AND SESSION TYPES

2.2 Preliminaries

In this section we present some introductory remarks that are crucial for the full development of the
logical interpretation of Section 2.3.

We point out the fundamental difference in approach to the foundational work of [16] on the connection
of linear logic and session types. We opt for a different formulation of this logical interpretation for both
stylistic purposes and to address a few shortcomings of the original interpretation. First, we use linear for-
warders as an explicit proof term for the identity rule, which is not addressed in [16] (such a construct was
first proposed for the interpretation in [75]). Secondly, we use a different assignment for the exponentials
of linear logic (in line with [25, 77]), which matches proof reductions with process reductions in a faithful
way. The final and perhaps most important distinction is that the rules we present are all syntax driven, not
using the π-calculus proof term assignment outright (which requires typing up-to structural congruence).
This proof term assignment forms a basis for a concurrent, session-typed language that can be mapped to
session-typed π-calculus processes in a way that is consistent with the interpretation of [16], but that does
not require structural congruence for typing nor for the operational semantics, by using a technique called
substructural operational semantics [62] (SSOS in the sequel). We refer to these proof terms as process ex-
pressions, in opposition to π-calculus terms which I refer to simply as processes. Thus, our assignment does
not require the explicit representation of the π-calculus ν-binder in the syntax, nor the explicit commutativ-
ity of parallel composition in the operational semantics, which are artefacts that permeate the foundational
work of [16] and so require the extensive use of structural congruence of process terms for technical rea-
sons. However, there are situations where using π-calculus terms and structural congruence turn out to be
technically convenient, and abandoning the π-calculus outright would diminish the claims of providing a
true logical foundation of session-based concurrent computation.

In our presentation we develop the proof term assignment in tandem with the π-calculus term assignment
but without placing added emphasis on one or the other, enabling reasoning with techniques from proof
theory and process calculi (and as we will see, combinations of both) and further emphasizing the back-
and-forth from language to logic that pervades the works exploring logical correspondences in the sense of
Curry-Howard. The presentation also explores the idea of identifying a process by the channel along which
it offers its session behavior. This concept is quite important from a language design perspective (since it
defines precise boundaries on the notion of a process), but is harder to justify in the π-calculus assignment.
The identification of processes by a single channel further justifies the use of intuitionistic linear logic over
classical linear logic, for which a correspondence with session types may also be developed (viz. [18, 81]),
but where the classical nature of the system makes such an identification rather non-obvious.

2.2.1 Substructural Operational Semantics

As mentioned above, we define the operational semantics of process expressions in the form of a substruc-
tural operational semantics (SSOS) [62]. For the reader unfamiliar with this style of presentation, it consists
of a compositional specification of the operational semantics by defining a predicate on the expressions of
the language, through rules akin to those of multiset rewriting [20], where the pattern to the left of the( ar-
row (not to be confused with our object language usage of( as a type) describes a state which is consumed
and transformed into the one to the right. The pattern on the right is typically made up of several predicates,
which are grouped using a ⊗. The SSOS framework allows us to generate fresh names through existential
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quantification and crucially does not require an explicit formulation of structural congruence, as one would
expect when defining the typical operational semantics for process calculi-like languages. This is due to the
fact that the metatheory of SSOS is based on ordered logic programming where exchange is implicit for the
linear fragment of the theory. In the remainder of this document we only make use of the linear fragment of
SSOS.

To exemplify, we develop a simple SSOS specification of a destination-passing semantics for a linear
λ-calculus using three linear predicates: eval M d which denotes a λ-term M that is to be evaluated on
destination d; return V d, denoting the return of value V to destination d; and cont x F w, which waits
on a value from destination x to carry out F and pass the result to w. Fresh destinations can be generated
through existential quantification.

To evaluate function application M N we immediately start the evaluation of M to a fresh destination x
and generate a continuation which waits for the evaluation of M before proceeding:

eval (M N) d( {∃x.eval M x⊗ cont x ( N) d}

Since λ-expressions do not trigger evaluation, they are returned as values:

eval (λy.M) d( {return (λy.M) d}

When a returned function meets its continuation, we may evaluate its body by instantiating the destination
of the argument accordingly:

return (λy.M) d⊗ cont x ( N) w( {∃z.eval (M{z/y}) w ⊗ eval N z}

When we encounter a variable we have to wait for its value, forwarding it to the target destination:

eval x w( {cont x w}

Finally, when a continuation waits for the return of a value, we return it on the destination of the continuation:

return v x⊗ cont x w( {return v w}

It is straightforward to see how these five rules combined define a rewriting system for evaluating linear
λ-calculus terms using destinations (more examples can be found in [62], making full use of the ordered
nature of the framework). We note that the operational semantics specified above are identical to futures, in
the sense that evaluation of a function body and its argument can proceed in parallel.

To develop the SSOS for our language of process expressions we rely on the following two predicates
(these will be extended further as we proceed in the presentation): the linear proposition execP denotes
the state of a linear process expression P and !execP denotes the state of a persistent process (which must
always be a replicating input).

We use Ω −→ Ω′ to refer to a single multiset rewriting, according to the specified SSOS rules, from
execution state Ω to execution state Ω′. As usual, we use −→+ and −→∗ for the transitive and reflexive
transitive closures of −→. We write −→n to denote a sequence of n rewrite steps and −→n,m to denote a
sequence of n or m rewrite steps.
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2.3 Propositional Linear Logic

We now develop our concurrent interpretation of intuitionistic linear logic, going through each sequent
calculus rule and giving it both a π-calculus and a corresponding process expression assignment. For the
rules of linear logic and our process expression assignment we employ the judgment Γ; ∆ ` A and Γ; ∆ `
P :: z:A, respectively, whereas for the π-calculus assignment we use the judgment Γ; ∆ ⇒ P :: z:A. We
note that typing for π-calculus processes is defined modulo structural congruence. For both assignments,
we consistently label unrestricted and linear assumptions with channel names (u, v, w for the former and
x, y, z for the latter) and we single out the distinguished right-hand side channel z, the channel along which
process expression (or π-calculus process) P offers the behavior A when composed with processes offering
the behaviors specified in Γ and ∆ on the appropriate channels. We tacitly assume that all channel names in
Γ, ∆ and z are distinct.

The operational semantics of both assignments are driven by the principal cut reduction (when corre-
sponding left and right rules of a connective meet in a cut) in linear logic. For the π-calculus assignment
they match the expect reduction semantics modulo structural congruence, whereas for the process expression
assignment, as discussed above, we introduce the semantics in SSOS-style, avoiding the use of structural
congruence and explicit ν-binders.

2.3.1 Judgmental Rules

We begin our development with the basic judgmental principles of linear logic, namely the cut and identity
principles (additional judgmental principles are required to justify the exponential !, but we leave those for
the interpretation of the exponential). In linear logic a cut consists of a principle of proof composition,
where some resources are used to prove a proposition A (also known as the cut formula) and the remainder
are used to prove some proposition C, under the assumption that a proof of A exists:

Γ; ∆1 ` A Γ; ∆2, A ` C
Γ; ∆1,∆2 ` C

(CUT)

At the level of process expressions and π-calculus processes, this is interpreted as a form of composition
(we write Px to denote that x occurs in P , writing Px′ to denote the consistent renaming of x to x′ in P ):

Γ; ∆1 ` Px :: x:A Γ; ∆2, x:A ` Qx :: z:C

Γ; ∆1,∆2 ` new x.(Px‖Qx) :: z:C
(CUT)

Note how x is bound in Q, since it is the only term which can actually make use of the session behavior A
offered by P . Operationally, we make use of the following SSOS rule to capture the parallel composition
nature of a cut:

(CUT) exec(new x.(Px‖Qx))( {∃x′.exec(Px′)⊗ exec(Qx′)}

The rule transforms the process expression assigned to a cut into the parallel execution of the two underlying
process expressions, sharing a fresh name x′ generated by the existential quantifier. In the π-calculus this
corresponds to parallel composition plus name restriction:

Γ; ∆1 ` P :: x:A Γ; ∆2, x:A ` Q :: z:C

Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C
(CUT)
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The ν-binder for x is necessary to ensure that the channel x is shared only between P and Q. To determine
the correct operational behavior for our constructs we use as a guiding principle the computational content
of the proof of cut elimination in linear logic. In particular, we consider the cut reduction steps when a right
rule is cut with a left rule of a particular connective (also known as a principal cut).

The identity principle of linear logic states that we may use an assumption A to prove A, provided it is
our only remaining (linear) resource in order to ensure linearity:

Γ;A ` A
(ID)

To develop the process expression assignment we must consider the rule above at the level sessions: we
have access to an ambient session x that offers A and we wish to use it to offer A outright along channel z.
Thus, the natural interpretation is to forward communication between the two channels z and x:

Γ;x:A ` fwd z x :: z:A
(ID)

or in the π-calculus syntax of Fig. 1.1,

Γ;x:A⇒ [x↔ z] :: z:A
(ID)

If we consider what happens during cut elimination we can see that a cut against identity simply erases the
identity (but in a setting where we have labels attached to terms and assumptions, this requires renaming):

Γ; ∆1,∆2 ` Px :: x:A Γ;x:A ` fwd z x :: z:A
(ID)

Γ; ∆1,∆2 ` new x.(Px ‖ fwd z x) :: z:A
(CUT)

=⇒ Γ; ∆1,∆2 ` P{z/x} :: z:A

Another cut reduction arises when the identity is in the left premise of the cut:

Γ; y:A ` fwd x y :: x:A
(ID)

Γ; ∆2, x:A ` Px :: z:C

Γ; y:A,∆2 ` new x.(fwd x y ‖ Px) :: z:A
(CUT)

=⇒ Γ; y:A,∆2 ` P{y/x} :: z:C

Thus the SSOS rule for forwarding simply equates the two channel names:

(FWD) exec (fwdx z)( {x = z}

The corresponding π-calculus reduction is:

(νx)(P | [x↔ z]) −→ P{z/x}



20 CHAPTER 2. LINEAR LOGIC AND SESSION TYPES

2.3.2 Multiplicatives

Multiplicative conjunction A⊗B denotes the simultaneous availability of both A and B, where both A and
B are intended to be used. Thus, to offer A⊗B we must split our linear resources in two parts, one used to
provide A and the other to provide B:

Γ; ∆1 ` A Γ; ∆2 ` B
Γ; ∆1,∆2 ` A⊗B

(⊗R)

As highlighted in Fig. 1.3, the session type A⊗B denotes an output of a (fresh) session channel that offers
A and a change of state to offer B along the original channel. The process expression assignment is:

Γ; ∆1 ` Py :: y:A Γ; ∆2 ` Q :: z:B

Γ; ∆1,∆2 ` output z (y.Py);Q :: z:A⊗B
(⊗R)

We thus have a process expression which can be identified by the channel z, along which an output of a
fresh session channel is offered. The intended session behavior A for this fresh channel is implemented by
the process expression P (note that y occurs free in P but not in the output process expression nor in Q),
whereas the continuation Q offers z:B, independently. Using A ⊗ B warrants the use of both A and B, as
captured in the following left rule:

Γ; ∆, A,B ` C
Γ; ∆, A⊗B ` C

(⊗L)

At the process expression level, using a session that offers an output naturally consists of performing an
input:

Γ; ∆, y:A, x:B ` Ry :: z:C

Γ; ∆, x:A⊗B ` y ← input x;Ry :: z:C
(⊗L)

The process expression consists of an input along the ambient session channel x, which is of type A ⊗ B
and therefore outputs a fresh channel that offersA, which is bound to y in the continuationR. Moreover, the
state of x changes after the input is performed, now offering B. The π-calculus process assignment consists
of a bound output and an input for the right and left rules, respectively:

Γ; ∆1 ⇒ P :: y:A Γ; ∆2 ⇒ Q :: z:B

Γ; ∆1,∆2 ⇒ (νy)z〈y〉.(P | Q) :: z:A⊗B
(⊗R)

Γ; ∆, y:A, x:B ⇒ R :: z:C

Γ; ∆, x:A⊗B ⇒ x(y).R :: z:C
(⊗L)

To determine the correct operational behavior of our process expression assignment, we examine the prin-
cipal cut reduction for ⊗, which justifies the intuitive semantics of input and output:

Γ; ∆1 ` P :: y:A Γ; ∆2 ` Q :: x:B

Γ; ∆1,∆2 ` output x (y.Py);Q :: x:A⊗B
(⊗R)

Γ; ∆3, y:A, x:B ` R :: z:C

Γ; ∆3, x:A⊗B ` y ← input x;R :: z:C
(⊗L)

Γ; ∆1,∆2,∆3 ` new x.((output x (y.Py);Q) ‖ y ← input x;R) :: z:C
(CUT)



2.3. PROPOSITIONAL LINEAR LOGIC 21

=⇒
Γ; ∆1 ` Q :: x:B

Γ; ∆2 ` P :: y:A Γ; ∆3, y:A, x:B ` R :: z:C

Γ; ∆2,∆3, x:B ` new y.(P ‖ R) :: z:C
(CUT)

Γ; ∆1,∆2,∆3 ` new x.(Q ‖ new y.(P ‖ R)) :: z:C
(CUT)

The output (⊗R) synchronizes with the input (⊗L), after which we have a composition of three process
expressions: P offering session A along the fresh channel, the continuation Q offering session B and the
continuation R that uses both to provide C, resulting in the following SSOS rule:

(SCOM) exec (outputx (y.Py);Q)⊗ exec (y ← inputx;Ry)( {∃y′. exec (Py′)⊗ exec (Q)⊗ exec (Ry′)}

The rule above specifies that whenever an input and an output action of the form above are available on
the same channel, the communication fires and, after generating a fresh channel y′, we transition to a state
where the three appropriate continuations execute concurrently (with P and R sharing the fresh channel y′

for communication).
At the level of π-calculus processes, this results in the familiar synchronization rule of reduction seman-

tics:
(νy)x〈y〉.P | x(z).Q −→ (νy)(P | R{y/z})

For the reader familiar with linear logic, it might seem somewhat odd that ⊗ which is a commutative
operator is given a seemingly non-commutative interpretation. In the proof theory of linear logic, the com-
mutative nature of ⊗ is made precise via a type isomorphism between A⊗B and B⊗A. In our assignment
a similar argument can be developed by appealing to observational equivalence. A precise notion of obser-
vational equivalence (and session type isomorphism) is deferred to Part III, where the necessary technical
tools are developed. However, we highlight that it is the case that given a session of type A ⊗ B we can
produce a realizer that offers B ⊗A and vice-versa, such that the composition of the two is observationally
equivalent to the identity.

The remaining multiplicative is linear implicationA( B, which can be seen as a resource transformer:
given an A it will consume it to produce a B. To offer A ( B we simply need to be able to offer B by
using A. Dually, to use A( B we must provide a proof of A, which justifies the use of B.

Γ; ∆, A ` B
Γ; ∆ ` A( B

((R)
Γ; ∆1 ` A Γ; ∆2, B ` C

Γ; ∆1,∆2, A( B ` C
((L)

The proof term assignment for linear implication is dual to that of multiplicative conjunction. To offer a
session of type x:A ( B we need to input a session channel of type A along x, which then enables the
continuation to offer a session of type x:B. Using such a session requires the dual action, consisting of an
output of a fresh session channel that offers A, which then warrants using x as a session of type B.

Γ; ∆, x:A ` Px :: z:B

Γ; ∆ ` x← input z;Px :: z:A( B
((R)

Γ; ∆1 ` Q :: y:A Γ; ∆2, x:B ` R :: z:C

Γ; ∆1,∆2, x:A( B ` output x (y.Qy);R :: z:C
((L)

The π-calculus process assignment follows the expected lines:

Γ; ∆, x:A⇒ P :: z:B

Γ; ∆⇒ z(x).P :: z:A( B
((R)
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Γ; ∆1 ⇒ Q :: y:A Γ; ∆2, x:B ⇒ R :: z:C

Γ; ∆1,∆2, x:A( B ⇒ (νy)x〈y〉.(Q | R) :: z:C
((L)

The proof reduction obtained via cut elimination matches that of ⊗, and results in the same operational
semantics.

Finally, we consider the multiplicative unit of linear logic, written 1. Offering 1 requires no linear
resources and so its corresponding right rule may only be applied with an empty linear context. Using 1
also adds no extra linear resources, and so we obtain the following rules:

Γ; · ` 1
(1R)

Γ; ∆,1 ` C
Γ; ∆ ` C

(1L)

Thus, a session channel of type 1 denotes a session channel that is to be terminated, after which no sub-
sequent communication is allowed. We explicitly signal this termination by closing the communication
channel through a specialized process expression written close. Dually, since our language is synchronous,
we must wait for ambient sessions of type 1 to close:

Γ; · ` close z :: z:1
(1R)

Γ; ∆ ` Q :: z:C

Γ; ∆, x:1 ` wait x;Q :: z:C
(1L)

Since no such primitives exist in the π-calculus, we can simply use a form of nullary communication for the
multiplicative unit assignment:

Γ; · ⇒ z〈〉.0 :: z:1
(1R)

Γ; ∆⇒ Q :: z:C

Γ; ∆, x:1⇒ x().Q :: z:C
(1L)

As before, our guiding principle of appealing to principal cut reductions validates the informally expected
behavior of the process expression constructs specified above (as well as for the synchronization step on
π-calculus processes):

Γ; · ` close x :: x:1
(1R)

Γ; ∆ ` Q :: z:C

Γ; ∆, x:1 ` wait x;Q :: z:C
(1L)

Γ; ∆ ` new x.(close x ‖ (wait x;Q)) :: z:C
(CUT)

=⇒ Γ; ∆ ` Q :: z:C

The SSOS rule that captures this behavior is:

(CLOSE) exec (closex)⊗ exec (waitx;P )( {exec (P )}

Essentially, whenever a session closure operation meets a process waiting for the same session channel to
close, the appropriate continuation is allowed to execute. The associated reduction rule on π-calculus terms
is just the usual communication rule.

2.3.3 Additives

Additive conjunction in linear logic A & B denotes the ability to offer either A or B. That is, the available
resources must be able to provide A and must also be able to provide B, but not both simultaneously (as
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opposed to ⊗ which requires both to be available). Therefore, we offer A&B by being able to offer A and
B, without splitting the context:

Γ; ∆ ` A Γ; ∆ ` B
Γ; ∆ ` A&B

(&R)

To use A & B, unlike A ⊗ B where we are warranted in using both A and B, we must chose which of the
two resources will be used:

Γ; ∆, A ` C
Γ; ∆, A&B ` C

(&L1)
Γ; ∆, B ` C

Γ; ∆, A&B ` C
(&L2)

Thus, A & B denotes a form of alternative session behavior where a choice between the two behaviors A
and B is offered.

Γ; ∆ ` P :: z:A Γ; ∆ ` Q :: z:B

Γ; ∆ ` z.case(P,Q) :: z:A&B
(&R)

The process expression above waits on session channel z for a choice between the left or right branches,
which respectively offer z:A and z:B. Using such a process expression is achieved by performing the
appropriate selections:

Γ; ∆, x:A ` R :: z:C

Γ; ∆, x:A&B ` x.inl;R :: z:C
(&L1)

Γ; ∆, x:B ` R :: z:C

Γ; ∆, x:A&B ` x.inr;R :: z:C
(&L2)

The π-calculus process assignment coincides precisely with the process expression assignment above.
The two principal cut reductions (one for each right-left rule pair) capture the expected behavior of

choice and selection:

Γ; ∆1 ` P :: x:A Γ; ∆1 ` Q :: x:B

Γ; ∆1 ` x.case(P,Q) :: x:A&B
(&R)

Γ; ∆2, x:A ` R :: z:C

Γ; ∆2, x:A&B ` x.inl;R :: z:C
(&L1)

Γ; ∆1,∆2 ` new x.(x.case(P,Q) ‖ (x.inl;R)) :: z:C
(CUT)

=⇒
Γ; ∆1 ` P :: x:A Γ; ∆2, x:A ` R :: z:C

Γ; ∆1,∆2 ` new x.(P ‖ R) :: z:C
(CUT)

Resulting in the following SSOS rule (omitting the obvious rule for the right-branch selection):

(CHOICE) exec (x.inl;P )⊗ exec (x.case(Q,R))( {exec (P )⊗ exec (Q)}

The reduction rules induced on π-calculus terms are those expected for guarded binary choice:

x.case(P,Q) | x.inl;R −→ P | R
x.case(P,Q) | x.inr;R −→ Q | R

Additive disjunction A ⊕ B denotes an internal choice between A or B, in that offering A ⊕ B only
requires being able to offer eitherA orB, but not necessarily both unlike additive conjunction. In this sense,
additive disjunction is dual to additive conjunction: the “choice” is made when offering A ⊕ B, and using
A⊕B requires being prepared for both possible outcomes:

Γ; ∆ ` A
Γ; ∆ ` A⊕B

(⊕R1)
Γ; ∆ ` B

Γ; ∆ ` A⊕B
(⊕R2)

Γ; ∆, A ` C Γ; ∆, B ` C
Γ; ∆, A⊕B ` C

(⊕L)
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The duality between⊕ and & is also made explicit by the process expression assignment (and the π-calculus
process assignment):

Γ; ∆ ` P :: z:A

Γ; ∆ ` z.inl;P :: z:A⊕B
(⊕R1)

Γ; ∆ ` P :: z:B

Γ; ∆ ` z.inr;P :: z:A⊕B
(⊕R2)

Γ; ∆, x:A ` Q :: z:C Γ; ∆, x:B ` R :: z:C

Γ; ∆, x:A⊕B ` x.case(Q,R) :: z:C
(⊕L)

The proof reductions obtained in cut elimination are identical to the cases for additive conjunction and so
are omitted for brevity.

2.3.4 Exponential

To allow for controlled forms of weakening and contraction in linear logic Girard introduced the exponential
!A, denoting a propositionAwhich need not satisfy linearity and can be weakened and contracted in a proof,
thus being able to be used in an unrestricted way. In the formulation of linear logic presented here, using
distinct contexts for unrestricted and linear propositions, we require additional judgmental principles. To
ensure cut elimination, we need an additional cut principle that given an unrestricted proposition, places it
in the unrestricted context (we write · for the empty context). Moreover, we need a copy rule that enables
the use of unrestricted propositions:

Γ; · ` A Γ, A; ∆ ` C
Γ; ∆ ` C

(cut!)
Γ, A; ∆, A ` C

Γ, A; ∆ ` C
(copy)

At the level of session types, persistent or unrestricted sessions consist of replicated services that may be
used an arbitrary number of times. The process expression assignment to the unrestricted version of cut
consists of a replicated input that guards the process expression P implementing the persistent session
behavior (which therefore cannot use any linear sessions), composed with the process expression Q that can
use the replicated session. Such uses are accomplished by triggering a copy the replicated session, which
binds a fresh session channel x that will be used for communication with the replicated instance.

Γ; · ` Px :: x:A Γ, u:A; ∆ ` Q!u :: z:C

Γ; ∆ ` new !u.(x← input !u Px ‖ Q!u) :: z:C
(cut!)

Γ, u:A; ∆, x:A ` Rx :: z:C

Γ, u:A; ∆ ` x← copy !u;Rx :: z:C
(copy)

For the π-calculus assignment, the unrestricted cut essentially consists of a combination of replicated input
and parallel composition, whereas the copy rule consists of a (bound) output:

Γ; · ⇒ P :: x:A Γ, u:A; ∆⇒ Q :: z:C

Γ; ∆⇒ (νu)(!u(x).P | Q) :: z:C
(cut!)

Γ, u:A; ∆, x:A⇒ R :: z:C

Γ, u:A; ∆⇒ (νx)u〈x〉.R :: z:C
(copy)
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During cut elimination, when a persistent cut meets an instance of the copy rule, we generate a (linear) cut.
We show this below, using process expressions:

Γ; · ` Px :: x:A

Γ, u:A; ∆, x:A ` Qx :: z:C

Γ, A; ∆ ` x← copy !u;Qx :: z:C
(copy)

Γ; ∆ ` new !u.(x← input !u Px ‖ (x← copy !u;Qx)) :: z:C
(cut!)

=⇒
Γ; · ` Px :: x:A

Γ, A; · ` Px :: x:A Γ, u:A; ∆, x:A ` Qx :: z:C

Γ, A; ∆ ` new x.(Px ‖ Qx) :: z:C
(cut)

Γ; ∆ ` new !u.(x← input !u Px ‖ (new x.(P ;Q))) :: z:C
(cut!)

The reduction above formally captures the intuitive meaning of spawning a replica of the persistent session
offered by P , which is then composed accordingly with the continuation Q.

(UCUT) exec (new !u.(x← input !u Px;Q))( {∃!u.!exec(x← input !u Px)⊗ exec(Q!u)}
(COPY) !exec (x← input !u;Px)⊗ exec (x← copy !u;Qx)( {∃c′. exec(Pc′)⊗ exec(Qc′)}

The rule (UCUT) takes a persistent cut and sets up the replicated input required to execute the persistent
session implemented by P . Note the usage of !exec to indicate that the input is in fact replicated. The rule
(COPY) defines how to use such a replicated input, triggering a replica which executes in parallel with the
appropriate continuation Q, sharing a fresh session channel for subsequent communication. The persistent
nature of the replicated input ensures that further replication of P is always possible.

For the π-calculus processes we obtain the following:

!u(x).P | (νx)u〈x〉.Q −→ !u(x).P | (νx)(P | Q)

Having justified the necessary judgmental principles, we now consider the exponential !A. Offering !A
means that we must be able to realize A an arbitrary number of times and thus we must commit to not using
any linear resources in order to apply the !R rule, since these must be used exactly once. To use !A, we
simply need to move A to the appropriate unrestricted context, allowing it to be copied an arbitrary number
of times.

Γ; · ` A
Γ; · ` !A

(!R)
Γ, A; ∆ ` C
Γ; ∆, !A ` C

(!L)

The session interpretation of !A is of a session offering the behavior A in a persistent fashion. Thus, the
process expression assignment for !A is:

Γ; · ` Px :: x:A

Γ; · ` output z !(x.Px) :: z:!A
(!R)

Γ, u:A; ∆ ` Q!u :: z:C

Γ; ∆, x:!A ` !u← input x;Q!u :: z:C
(!L)

The process expression for the !R rule performs an output of a (fresh) persistent session channel along z,
after which its continuation will be prepared to receive requests along this channel by spawning new copies
of P as required. Dually, the process expression for the !L rule inputs the persistent session channel along
which such requests will be performed by Q.
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For π-calculus process assignment, we offer a session of type !A by performing the same output as in
the process expression assignment, but we must make the replicated input explicit in the rules:

Γ; · ⇒ P :: x:A

Γ; · ⇒ (νu)z〈u〉.!u(x).P :: z:!A
(!R)

Γ, u:A; ∆⇒ Q :: z:C

Γ; ∆, x:!A⇒ x(u).Q :: z:C
(!L)

The proof reduction we obtain from cut elimination is given below (using process expressions):

Γ; · ` Py :: y:A

Γ; · ` output x !(y.P ) :: x:!A

Γ, u:A; ∆ ` Q!u :: z:C

Γ; ∆, x:!A ` !u← input x;Q!u :: z:C

Γ; ∆ ` new x.(output x !(y.Py) ‖ (!u← input x;Q!u)) :: z:C
(CUT)

=⇒
Γ; · ` Py :: y:A Γ, u:A; ∆ ` Q!u :: z:C

Γ; ∆ ` new !u.(y ← input !u Py ‖ Q!u)
(cut!)

Essentially, the cut is transformed into an unrestricted cut which then allows for the reductions of instances
of the copy rule as previously shown. The SSOS rule that captures this behavior is:

(REPL) exec (outputx !(y.Py))⊗ exec (!u← inputx;Q!u)( {exec (new !u.(y ← input !u Py ‖ Q!u))}

The associated π-calculus reduction rule is just an input/output synchronization. It should be noted that the
term assignment for the exponential and its associated judgmental principles differs from that of [16]. In
[16], the !L rule was silent at the level of processes and so despite there being a proof reduction in the proof
theory, no matching process reduction applied. In the assignment given above this is no longer the case
and so we obtain a tighter logical correspondence by forcing reductions on terms to match the (principal)
reductions from the proof theory.

2.3.5 Examples

We now present some brief examples showcasing the basic interpretation of linear logic proofs as concurrent
processes.

A File Storage Service

We consider a simple file storage service to illustrate the basic communication features of our interpretation.
We want to encode a service which is able to receive files and serve as a form of persistent storage. To this
end, the service must first receive a file and then offer a persistent service that outputs the stored file. We
may encode this communication protocol with the following type (for illustration purposes, we use file as
an abstraction of a persistent data type representing a file):

DBox , file( !(file⊗ 1)

The type DBox specifies the required interaction from the perspective of the service: input a file and then
persistently offer its output, encoding the file storage. A process expression offering such a service is (given
that a file represents persistent data, we allow its usage while offering a persistent session directly):

Server , f ← input c; output c !(y.output y f ; close y) :: c:DBox
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Clients of the service must then behave accordingly: given access to the DBox service along a channel c,
they may send it a file, after which they can acess the stored file arbitrarily often via a persistent (replicated)
session u:

Client , output c thesis.pdf; !u← input c;P

In the Client process expression above, we send to the DBox service the thesis.pdf file and then receive
the handle u to the persistent session along which we may receive the file arbitrarily often. We abstract
away this behavior in process expression P , which we assume to offer some type z:C. Using cut, we may
compose the client and the DBox service accordingly:

` Server :: c:DBox c:DBox ` Client :: z:C

` new c.(Server ‖ Client) :: z:C

On the Commutativity of Multiplicative Conjunction

While our interpretation of multiplicative conjunction appears to be non-commutative insofar as A ⊗ B
denotes a session which sends a channel that offers A and continues as B, we can produce a process that
coerces an ambient session of typeA⊗B toB⊗A by simply considering the process expression assignment
to the proof of A⊗B ` B ⊗A, given below (omitting the empty unrestricted context region):

B ` B
ID

A ` A
ID

A,B ` B ⊗A
⊗R

A⊗B ` B ⊗A
⊗L

x:B ` fwd x′ x :: x′:B y:A ` fwd z y :: z:A

y:A, x:B ` output z (x′.fwd x′ x); fwd z y :: z:B ⊗A
x:A⊗B ` y ← input x; output z (x′.fwd x′ x); fwd z y :: z:B ⊗A

Intuitively, the process expression above acts as a mediator between the ambient session channel xwhich
offers the behavior A ⊗ B and the users of z which expect the behavior B ⊗ A. Thus, we first input from
x the channel (bound to y) which offers the behavior A, after which x will now offer B. In this state, we
fulfil our contract of offering B ⊗ A by outputting along z a fresh name (bound to x′) and then forwarding
between x:B and x′ and y:A and z.

In Section 7.2 we formally establish that indeed A⊗B and B ⊗A are isomorphic, by showing how the
composition of the coercions of A⊗B and B ⊗A are observationally equivalent to the identity.

Embedding a Linear λ-calculus

One of the advantages of working within the realm of proof theory is that we obtain several interesting
results “for free”, by reinterpreting known proof-theoretic results using our concurrent term assignment.

One such result is an embedding of the linear λ-calculus which is obtained by considering the canonical
proof theoretic translation of linear natural deduction (whose term assignment is the linear λ-calculus) to a
sequent calculus (for which we have our process expression assignment). Intuitively, the translation maps
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introduction forms to the respective sequent calculus right rules, whereas the elimination forms are mapped
to instances of the cut rule with the respective left rules. We write JMKz for the translation of the linear
λ-term M into a process expression P which implements the appropriate session behavior along z. The full
details for this embedding can be found in [76], making use of the π-calculus assignment to linear sequents.

We consider a linear λ-calculus with the linear function space and the exponential !M , with its respective
elimination form let !u = M in N where the unrestricted variable u is bound inN (multiplicative or additive
pairs and sums are just as easily embedded in our concurrent process expressions but are omitted).

Definition 4 (The J·Kz Embedding).

JxKz , fwd z x

JuKz , x← copy !u; fwd z x

Jλ̂x.MKz , x← input z; JMKz
JM NKz , new x.(JMKx | (output x (y.JNKy); fwd z x))

J!MKz , output z !(x.JMKx)

Jlet !u = M in NKz , new x.(JMKx | !u← input x; JNKz)

We can understand the translation by considering the execution of a translated β-redex (we write −→
for the state transformation generated by applying a single SSOS rule and −→∗ for its reflexive transitive
closure):

J(λ̂x.M) NKz = new x′.((x← input x′; JMKx′) ‖ (output x′ (y.JNKy); fwd z x′))

exec(new x′.((x← input x′; JMKx′) ‖ (output x′ (y.JNKy); fwd z x′))) −→∗ ∃y.exec JMKz ⊗ exec JNKy

As expected, the execution of the process expression embedding of a β-redex will execute the embedding
of the function body M in parallel with the embedding of the argument N , sharing a local communication
channel y.

2.4 Metatheoretical Properties

One of the most important reasons for developing a correspondence between proofs and programs is that sev-
eral properties of interest follow naturally from logical soundness. First, we note that a simulation between
the reduction dynamics of proofs, as given by principal cut elimination steps, and our process expression
assignment is immediate (c.f. [18] for the π-calculus assignment). In the interpretation developed above,
the two fundamental properties that follow from logical soundness are type preservation or session fidelity,
and progress or deadlock-freedom. We can formulate the two properties formally using either the π-calculus
and the process expression term assignment.

2.4.1 Correspondence of process expressions and π-calculus processes

We now make precise the informal correspondence between the process expression assignment and the
π-calculus process assignment to linear logic proofs.

At a purely syntactic level, the correspondence is rather straightforward since we need only match the
process expression assignment of each rule to its corresponding π-calculus process assignment. We write
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P  Q̂

new x.(P ‖ Q)  (νx)(P̂ | Q̂)

x← input z;Qx  z(x).Q̂x
output z (y.Py);Q  (νy)z〈y〉.(P̂y | Q̂)
close z  z〈〉.0
wait z;P  z().P̂

z.case(P,Q)  z.case(P̂ , Q̂)

z.inl;P  z.inl; P̂

z.inr;P  z.inr; P̂

new !u.(x← input !u Px ‖ Q!u)  (νu)(!u(x).P̂x | Q̂u)

x← copy !u;Rx  (νx)u〈x〉.R̂x
output z !(x.Px)  (νu)z〈u〉.!u(x).P̂x
!u← input z;Q!u  z(u).Q̂u
fwd x y  [x↔ y]

Figure 2.2: Translation from Process Expressions to π-calculus Processes

P  Q̂ to denote that the well-typed process expression P translates to the π-calculus process Q̂. More
precisely, we translate typing derivations of process expressions to session typing derivations of π-calculus
processes, following [16, 75].

Definition 5 (Translation from Process Expressions to π-calculus Processes). Well-typed process expression
P translates to the π-calculus process Q̂, written P  Q̂ according to the rules of Fig. 2.2.

We can thus state the following static correspondence theorem, relating typed process expressions with
typed π-calculus processes.

Theorem 1 (Static Correspondence - Process Expressions to π-calculus). If Γ; ∆ ` P :: z:A then there
exists a π-calculus process Q̂ such that P  Q̂ with Γ; ∆⇒ Q̂ :: z:A.

Proof. By induction on typing.

This correspondence applies in both directions, in the sense that we may identify a typed π-calculus
process that corresponds to a typed process expression (following Theorem 1), and conversely, we can
identify a typed process expression that corresponds to a typed π-calculus process using the inverse of
the translation presented in Def. 5, obtained by reading the table of Fig. 2.2 from right to left (we refer
to this relation as  −1). We note that since typing on π-calculus processes is defined modulo structural
congruence, the translation  −1 is not unique. In general, many (structurally equivalent) processes are
mapped to the same process expression.

Theorem 2 (Static Correspondence - π-calculus to Process Expressions). If Γ; ∆ ⇒ P :: z:A then there
exists a process expression Q̂ such that P  −1 Q̂ with Γ; ∆ ` Q̂ :: z:A.

Proof. Induction on typing.
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Identifying SSOS States with π-calculus Processes

To establish an operational correspondence between SSOS execution and π-calculus process reduction we
must be able to identify SSOS execution states with π-calculus processes outright.

This mapping of execution states and π-calculus processes takes into account the fact that the global
execution state can itself be typed by tracking the individual typing of individual process expressions, al-
lowing us to appeal to our translation of process expressions to π-calculus processes. We first annotate each
execP with the channel z along which P offers its output and its type A. This exploits the observation that
every process offers a session along exactly one channel, and for every channel there is exactly one process
providing a session along it. This extended form is written execP z A. The SSOS rules given above can be
updated in a straightforward fashion, and the original rules can be recovered by erasure. The annotations
fix the role of every channel in a communication as either offered or used, and we can check if the whole
process state Ω is well-typed according to a signature of linear channels ∆ and unrestricted channels Γ.

We can type an execution state using the following rules:

Γ; ∆1 |= Ω :: x:A Γ; ∆2, x:A ` P :: z:C

Γ; ∆1,∆2 |= Ω, exec P z C :: z:C

Γ, u:A; ∆ |= Ω :: z:C Γ; · ` P :: x:A

Γ; ∆ |= Ω, !exec (x← input !u;P ) !u A :: z:C

Γ; · |= (·) :: ∅

Thus, given a typed execution state in the sense specified above we can extract from it a π-calculus
process via the following rules:

Γ; ∆1 |= Ω Ω̂ :: x:A Γ; ∆2, x:A ` P  P̂ :: z:C

Γ; ∆1,∆2 |= Ω, exec P z C  (νx)(Ω̂ | P̂ ) :: z:C

Γ, u:A; ∆ |= Ω Ω̂ :: z:C Γ; · ` P  P̂ :: x:A

Γ; ∆ |= Ω, !exec (x← input !u;P ) !u A (νu)(!u(x).P̂ | Ω̂) :: z:C

Γ; · |= (·) 0 :: ∅

Theorem 3. If Γ; ∆ |= Ω :: z:A and Ω Ω̂ then Γ; ∆⇒ Ω̂ :: z:A.

Proof. Straightforward induction, noting that typing for π-calculus processes is modulo structural congru-
ence.

Having lifted the translation procedure to execution states we can precisely state the operational corre-
spondence between process expression executions and π-calculus reductions.

Theorem 4 (Simulation of SSOS Executions). Let Γ; ∆ ` P :: z:A, with exec P z A −→1,2 Ω. We have
that P  P̂ , such that the following holds:

(i) Either, P̂ −→ Q, for some Q, with Ω ≡ Q

(ii) Or, Ω Q, for some Q, such that P̂ ≡ Q.
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Proof. We proceed by induction on typing. In order for the execution of P to produce an execution state
that reduces, it must necessarily consist of a cut (linear or persistent). Since all execution of cuts generate
an SSOS step that is not matched by a π-calculus process reduction, we need to consider what may happen
to an execution state after this first mismatched reduction.

In a linear cut, this reduction results in an execution state Ω with the shape (for some Q,R,B, x):

exec Q x B, exec R z A

If the cut is not a principal cut (or an identity cut), Q and R cannot synchronize, although additional execu-
tion steps may be possible due to other cuts that are now exposed at the top-level of Q or R.

By the definition of P  P̂ , we have that P̂ = (νx)(Q̂ | R̂). If neither exec Q x B nor exec R z A
trigger execution steps, we have that Ω ≡ (νx)(Q̂ | R̂), satisfying (ii).

If exec Q x B can trigger an execution step to some state Ω′, then by i.h. we know that either (i)
Q̂ −→ Q′ with Ω′  ≡ Q′ or (ii) Ω′  Q′ with Q̂ ≡ Q′. In the either case we immediately satisfy (i) or
(ii), respectively. The case when exec R z A executes is identical.

If the cut is a principal cut (or an identity cut) then Ω −→ Ω′ such that the two process expressions
have synchronized (through the firing of one of the synchronization rules, or the renaming rule). In this
case, observe that (νx)(Q̂ | R̂) −→ P ′, where Q̂ and R̂ have also synchronized (since there is a one-to-one
correspondence with the SSOS rules). It is then immediate that Ω′  S such that S ≡ P ′ via appropriate
α-conversion and applications of scope extrusion (appropriate typings may be extracted from the typed
reductions of the previous section).

In an unrestricted cut the cases are the identical, except the process expression on the left premise of the
cut cannot produce any executions (nor corresponding π-reductions) outright.

Theorem 5 (Simulation of π-calculus Reduction). Let Γ; ∆ ⇒ P :: z:A with P −→ Q. We have that
P  −1 P̂ such that exec P̂ z A −→+ Ω with Ω ≡ Q.

Proof. We proceed by induction on typing, considering the cases where process P may exhibit a reduction.
By inversion we know that the last rule must be a cut and thus P ≡ (νx)(P1 | P2) for some P1, P2, x.
Observe that P̂ = new x.(P̂1 ‖ P̂2).

If the cut is a linear cut, then one possibility is that its a principal cut and so we have that P −→ P ′ via a
synchronization between P1 and P2. Observe that

exec (new x.(P̂1 ‖ P̂2)) z A −→ exec P̂1 x B, exec P̂2 z A = Ω′

for some B and existentially quantified x. By inversion we know that Ω′ −→ Ω′′ by the appropriate typed
SSOS synchronization rule, with Ω′′  ≡ P ′.

If the top-level cut is not a principal cut then the reduction must arise due to another (principal) cut in
either P1 or P2. Assume (νx)(P1 | P2) −→ (νx)(P ′1 | P2) = Q with P1 −→ P ′1. By i.h. we know that
exec P̂1 x B −→+ Ω1 with Ω1  ≡ P ′1. Since exec (new x.(P̂1 ‖ P̂2)) z A −→ exec P̂1 x B ⊗
exec P̂2 z A −→+ Ω1 ⊗ exec P̂2 z A, with Ω1  ≡ P ′1, it follows that Ω1 ⊗ exec P̂2 z A  ≡ (νx)(P ′1 |
P2). For reductions in P2 the reasoning is identical.

In an unrestricted cut, the reasoning is identical except that no internal reductions in P1 are possible (nor
corresponding executions in the SSOS states).
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Theorems 4 and 5 precisely identify the correspondence between π-calculus reductions and process
expression executions via the SSOS framework. Theorem 4 captures the fact that SSOS executions produce
some additional administrative steps when compared to the π-calculus reduction semantics, characterizing
these intermediate execution states accordingly.

Intuitively, the process expressions that correspond to the assignment of the cut rules always trigger
an execution step that decomposes into the two underlying process expressions executing in parallel (rules
(CUT) and (UCUT) of the SSOS), identifying the syntactic parallel composition construct with the meta-level
composition of SSOS, whereas no such step is present on the π-calculus reductions (rather, the process states
before and after a rewrite originating from either rules map to structurally equivalent processes). Thus,
execution steps in the SSOS may arise due to these breakdowns of parallel compositions, which are not
matched by process reductions but rather identified outright with the process in the image of the translation,
up-to structural congruence (case (ii) of Thrm. 4), or due to actual synchronizations according to the SSOS
specification for each principal cut, which are matched one-to-one with the π-calculus reduction semantics
(case (i) of Thrm. 4). The lifting of  to execution states identifies the SSOS-level parallel composition
(the ⊗) with π-calculus composition.

Theorem 5 identifies a single π-calculus reduction with the multiple SSOS execution steps necessary to
identify the corresponding process expression (due to rules (CUT) and (UCUT), which have no corresponding
π-calculus reductions and may fire repeatedly due to nested occurrences).

2.4.2 Type Preservation

Having established the correspondence between the process expression assignment and the π-calculus pro-
cess assignment, we now develop a type preservation result for the π-calculus assignment (which naturally
maps back to the process expression language).

Up to this point we have mostly focused on the process expression assignment due to its positive aspects:
the lack of a need for reasoning up-to structural congruence, no explicit ν-binders in the syntax and a clear
distinction between syntax and semantics which are defined in terms of SSOS rules. While type preservation
(and progress) can easily be developed for the process expression assignment by appealing to reductions on
(typed) execution states (viz. [77]), which are intrinsically typed, we present our development for the π-
calculus assignment mainly for two reasons: on one hand, reduction in the π-calculus is untyped and we
wish to also develop type preservation (and later on, progress) without going through the intrinsically typed
reductions of the process expression assignment, which include some administrative reductions that are
absent from the π-calculus semantics; secondly, and more importantly, our technical development in Part III
turns out to be more conveniently expressed using the technical devices of the π-calculus (specifically,
labelled transitions) and so for the sake of uniformity of presentation we opt to also develop these results for
the π-calculus assignment.

Our development of type preservation, which follows that of [16], relies on a series of reduction lem-
mas relating process reductions with the proof reduction obtained via composition through the cut rules,
appealing to the labelled transition semantics of Fig. 6.1.

Lemma 1 (Reduction Lemma - ⊗). Assume

(a) Γ; ∆1 ⇒ P :: x:A⊗B with P
(νy)x〈y〉−−−−−→ P ′
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(b) Γ; ∆2, x:A⊗B ⇒ Q :: z:C with Q
x(y)−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

Proof. By simultaneous induction on typing for P and Q. The possible cases for typing P are ⊗R, cut and
cut!. The possible cases for typing Q are ⊗L, cut, and cut!.

Case: P from ⊗R and Q from ⊗L

P = (νy)(x〈y〉. (P y1 | P x2 ))
(νy)x〈y〉→ (νy)(P y1 | P x2 ) = P ′x By inversion

Qz = x(y).Q′z
x(y)→ Q′z By inversion

(νx)(P | Q) = (νx)((νy)(x〈y〉. (P y1 | P x2 )) | x(y).Q′z)
−→ (νy)(P y1 | (νx)(P x2 | Q′z)) By principal cut reduction

(νy)(P y1 | (νx)(P x2 | Q′z)) ≡ (νx)(νy)(P y1 | P x2 | Q′z) = R
Γ; ∆1,∆1 ⇒ R :: z:C by typing

Case: P from cut and Q arbitrary.

P x2
(νy)x〈y〉→ P ′x2 with

P = (νn)(Pn1 | P x2 )
(νy)x〈y〉→ (νn)(Pn1 | P ′x2 ) = P ′x By inversion

(νx)(P | Q) = (νx)((νn)(Pn1 | P x2 ) | Q)
≡ (νn)(Pn1 | (νx)(P x2 | Q)) by ≡
Γ; ∆1,∆2 ⇒ (νx)(P ′x2 | Q′z) :: z:C (1) by i.h.
(νn)(Pn1 | (νx)(P x2 | Q)) −→ (νn)(Pn1 | (νx)(P ′x2 | Q′z)) by cut reduction
(νn)(Pn1 | (νx)(P ′x2 | Q′z)) ≡ (νx)(νn)(Pn1 | P ′x2 | Q′z) = R by ≡
Γ; ∆1,∆2 ⇒ R :: z:C by typing and (1).

Case: P from cut! and Q arbitrary.

P x2
(νy)x〈y〉→ P ′x2 with

P = (νu)((!u(n).Pn1 ) | P x2 )
(νy)x〈y〉→ (νu)((!u(n).Pn1 ) | P ′x2 ) = P ′x By inversion

(νx)(P | Q) = (νx)((νu)((!u(n).Pn1 ) | P x2 ) | Q)
≡ (νu)(!u(n).Pn1 | (νx)(P x2 | Q)) By ≡
Γ; ∆1,∆2 ⇒ (νx)(P ′x2 | Q′z) :: z:C (1) By i.h.

(νu)(!u(n).Pn1 | (νx)(P x2 | Q)) −→ (νu)(!u(n).Pn1 | (νx)(P ′x2 | Q′z)) by cut reduction
≡ (νx)((νu)((!u(n).Pn1 ) | P ′x2 ) | Q′z) = R by ≡
Γ; ∆1,∆2 ⇒ R :: z:C by typing and (1)
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Case: Q from cut with Q = (νn)(Qn1 | Qz2) and x ∈ fn(Q1).

Qn1
x(y)→ Q′n1 with

Q = (νn)(Qn1 | Qz2)
x(y)→ (νn)(Q′n1 | Qz2) By inversion

(νx)(P | Q) = (νx)(P | ((νn)(Qn1 | Qz2)))
≡ (νn)((νx)(P | Qn1 ) | Qz2) By ≡ since x 6∈ fn(Q2)
Γ; ∆1,∆

∗ ⇒ (νx)(P ′x | Q′n1 ) :: n:D (1) By i.h. for some D
(νn)((νx)(P | Qn1 ) | Qz2) −→ (νn)((νx)(P ′x | Q′n1 ) | Qz2) by cut reduction
≡ (νx)(P ′x | (νn)(Q′n1 | Qz2)) = R
Γ; ∆1,∆2 ⇒ R :: z:C by typing and (1)

Case: Q from cut with Q = (νn)(Qn1 | Qz2) and x ∈ fn(Q2).

Qz2
x(y)→ Q′z2 with

Q = (νn)(Qn1 | Qz2)
x(y)→ (νn)(Qn1 | Q′z2 ) by inversion

(νx)(P | Q) = (νx)(P | ((νn)(Qn1 | Qz2)))
≡ (νn)(Qn1 | (νx)(P | Qz2)) By ≡ since x 6∈ fn(Q1)
Γ; ∆1,∆

∗ ⇒ (νx)(P ′x | Q′z2 ) :: z:C (1) By i.h.
(νn)(Qn1 | (νx)(P | Qz2)) −→ (νn)(Qn1 | (νx)(P ′x | Q′z2 )) by cut reduction
≡ (νx)(P ′x | (νn)(Qn1 | Q′z2 )) = R
Γ; ∆1,∆2 ⇒ R :: z:C by typing and (1).

Case: Q from cut!

Q = (νu)((!u(n).Qn1 ) | Qz2) by inversion
x ∈ FV (Qz2) by inversion

Qz2
x(y)→ Q′z2 with

(νu)((!u(n).Qn1 ) | Qz2)
x(y)→ (νu)((!u(n).Qn1 ) | Q′z2 ) By inversion

(νx)(P | Q) = (νx)(P | (νu)((!u(n).Qn1 ) | Qz2))
≡ (νu)((!u(n).Qn1 ) | (νx)(P | Qz2)) by ≡
Γ; ∆1,∆2 ⇒ (νx)(P ′ | Q′z2 ) :: z:C (1) by i.h.
(νu)((!u(n).Qn1 ) | (νx)(P | Qz2)) −→ (νu)((!u(n).Qn1 ) | (νx)(P ′ | Q′z2 ))

by cut reduction
≡ (νx)(P ′x | (νu)((!u(n).Qn1 ) | Q′z2 )) = R
Γ; ∆1,∆2 ⇒ R :: z:C by typing and (1).

Lemma 1 above characterizes the fact that a process P that is prepared to offer the session behavior
A ⊗ B along x may interact with a process Q that is prepared to use the given session behavior such
that the corresponding process continuations remain well-typed, according to the ascribed typings. The
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following series of Lemmas follows the same line of reasoning, characterizing the interactive behavior
between processes that offer and use a given session type. The proofs follow from the same reasoning as the
proof above (the crucial case is that of the principal cut reduction, the rest follow by i.h.) and are omitted
for conciseness.

Lemma 2 (Reduction Lemma -(). Assume

(a) Γ; ∆1 ⇒ P :: x:A( B with P
x(y)−−→ P ′

(b) Γ; ∆2, x:A( B ⇒ Q :: z:C with Q
(νy)x〈y〉−−−−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

Lemma 3 (Reduction Lemma - 1). Assume

(a) Γ; ∆1 ⇒ P :: x:1 with P
x〈〉−−→ P ′

(b) Γ; ∆2, x:1⇒ Q :: z:C with Q
x()−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

Lemma 4 (Reduction Lemma - &1). Assume

(a) Γ; ∆1 ⇒ P :: x:A&B with P x.inl−−→ P ′

(b) Γ; ∆2, x:A&B ⇒ Q :: z:C with Q x.inl−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

Lemma 5 (Reduction Lemma - &2). Assume

(a) Γ; ∆1 ⇒ P :: x:A&B with P x.inr−−−→ P ′

(b) Γ; ∆2, x:A&B ⇒ Q :: z:C with Q x.inr−−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

Lemma 6 (Reduction Lemma - ⊕1). Assume



36 CHAPTER 2. LINEAR LOGIC AND SESSION TYPES

(a) Γ; ∆1 ⇒ P :: x:A⊕B with P x.inl−−→ P ′

(b) Γ; ∆2, x:A⊕B ⇒ Q :: z:C with Q x.inl−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

Lemma 7 (Reduction Lemma - ⊕2). Assume

(a) Γ; ∆1 ⇒ P :: x:A⊕B with P x.inr−−−→ P ′

(b) Γ; ∆2, x:A⊕B ⇒ Q :: z:C with Q x.inr−−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

Lemma 8 (Reduction Lemma - !). Assume

(a) Γ; ∆1 ⇒ P :: x:!A with P
(νu)x〈u〉−−−−−→ P ′

(b) Γ; ∆2, x:!A⇒ Q :: z:C with Q
x(u)−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νu)(P ′ | Q′) ≡ R such that Γ; ∆1,∆2 ⇒ R :: z:C

We also require a reduction lemma that characterizes process behavior for persistent sessions. Given
a process P that offers behavior y:A without using any linear resources and a process Q that can make
use of a persistent behavior u:A by performing the appropriate output action that will synchronize with
the replicated input associated with persistent sessions, we may characterize the interaction between P and
Q by identifying the appropriate well-typed process that results from the spawning of the replica of P : a
composition of the persistent service P (replicated under an input guard), with a replica P composed with
the continuation Q′, both sharing the linear channel y.

Lemma 9 (Reduction Lemma - cut!). Assume

(a) Γ; · ⇒ P :: y:A

(b) Γ, u:A; ∆⇒ Q :: z:C with Q
(νy)u〈y〉−−−−−→ Q′

Then:

(c) (νu)(!u(y).P | Q) −→ (νu)(!u(y).P | R), for some R ≡ (νy)(P | Q′)

(d) Γ, u:A; ∆⇒ R :: z:C
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Finally, we characterize the action labels that can be offered by processes offering or using a given
session type as follows in Lemma 40.

Lemma 10. Let Γ; ∆⇒ P :: x:C.

1. If P α→ Q and s(α) = x and C = 1 then α = x〈〉

2. If P α→ Q and s(α) = y and y : 1 ∈ ∆ then α = y().

3. If P α→ Q and s(α) = x and C = A⊗B then α = (νy)x〈y〉.

4. If P α→ Q and s(α) = y and y : A⊗B ∈ ∆ then α = y(z).

5. If P α→ Q and s(α) = x and C = A( B then α = x(y).

6. If P α→ Q and s(α) = y and y : A( B ∈ ∆ then α = (νz)y〈z〉.

7. If P α→ Q and s(α) = x and C = A&B then α = x.inl or α = x.inr .

8. If P α→ Q and s(α) = y and y : A&B ∈ ∆ then α = y.inl or α = y.inr .

9. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr .

10. If P α→ Q and s(α) = y and y : A⊕B ∈ ∆ then α = y.inl or α = y.inr .

11. If P α→ Q and s(α) = x and C = !A then α = (νu)x〈u〉.

12. If P α→ Q and s(α) = y and y : !A ∈ ∆ then α = y(u).

13. If P α→ Q and s(α) = u and u : A ∈ Γ then α = (νz)u〈z〉.

Proof. See Appendix A.1

Having established the necessary reduction lemmas, we may now show the desired subject reduction, or
type preservation property, which states that process reductions preserve typing.

Theorem 6 (Type Preservation). If Γ; ∆⇒ P :: z:A and P −→ Q then Γ; ∆⇒ Q :: z:A.

Proof. By induction on the typing of P .
The possible cases are when the last typing rule is cut or cut!. In all other cases P cannot offer a

reduction step.

Case: P from cut!

P ≡ (νu)(!u(w).P1 | P2)
Γ; · ⇒ P1 :: w:C
Γ, w:C; ∆ ` P2 :: z:A by inversion
From P → Q either
(1) P2 → Q2 and Q = (νu)(!u(w).P1 | Q2)
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(2) P2
(νw)u〈w〉−−−−−−→ Q2 and Q = (νu)(!u(w).P1 | (νw)(P1 | Q2))

Subcase (1):
Γ, w:C; ∆⇒ Q2 :: z:A by i.h.
P −→ (νu)(!u(w).P1 | Q2) = Q
Γ; ∆ ` Q :: z:A by cut!

Subcase (2):
(νu)(!u(w).P1 | P2) −→ (νu)(!u(w).P1 | R) with R ≡ (νw)(P1 | Q2)
Γ, w:C; ∆⇒ R :: z:A by Lemma 9
Γ; ∆⇒ Q :: z:A by cut!

Case: P from cut

P ≡ (νx)(P1 | P2)
∆ = (∆1,∆2)
Γ; ∆1 ⇒ P1 :: x:C
Γ; ∆2, x:C ⇒ P2 :: z:A by inversion
Since P → Q there are four subcases:
(1) P1 → Q1 and Q = (νx)(Q1 | P2)
(2) P2 → Q2 and Q = (νx)(P1 | Q2)

(3) P1
α→ Q1 and P2

α→ Q2

(4) P1
α→ Q1 and P2

α→ Q2

Subcase (1): P1 → Q1

Γ; ∆1 ⇒ Q1 :: x:C by i.h.
(νx)(P1 | P2) −→ (νx)(Q1 | P2) by reduction
Γ; ∆ ` (νx)(Q1 | P2) :: z:A by cut

Subcase (2): P2 → Q2

Symmetric to Subcase (1).
Subcase (3): P1

α→ Q1 and P2
α→ Q2

Subsubcase: C = 1
not possible

Subsubcase: C = C1 & C2

α = x.inl or α = x.inr By Lemma 40
P −→ R for some R
Γ; ∆⇒ R :: z : A
with R ≡ (νx)(Q1 | Q2) = Q by Lemmas 4 and 5

Subsubcase: C = C1 ⊕ C2

not possible

Subsubcase: C = C1 ⊗ C2

not possible

Subsubcase: C = C1 ( C2
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α = x(y) and α = (νy)x〈y〉 By Lemma 40
P −→ R for some R
Γ; ∆⇒ R :: z : A
with R ≡ (νx)(νy)(Q1 | Q2) = Q by Lemma 2

Subsubcase: C = !C1

not possible

Subcase (4): P1
α→ Q1 and P2

α→ Q2

Subsubcase: C = 1

α = x〈〉 and α = x() By Lemma 40
P −→ R for some R
Γ; ∆⇒ R :: z:A
with R ≡ (νx)(Q1 | Q2) = Q by Lemma 3

Subsubcase: C = C1 & C2

not possible

Subsubcase: C = C1 ⊕ C2

α = x.inl or α = x.inr By Lemma 40
P −→ R for some R
Γ; ∆⇒ R :: z:A
with R ≡ (νx)(Q1 | Q2) = Q by Lemmas 6 and 7

Subsubcase: C = C1 ⊗ C2

α = (νy)x〈y〉 and α = x(y) By Lemma 40
P −→ R for some R
Γ; ∆⇒ R :: z : A
with R ≡ (νx)(νy)(Q1 | Q2) = Q by Lemma 1

Subsubcase: C = C1 ( C2

not possible

Subsubcase: C = !C1

α = (νu)x〈u〉 and α = x(u) By Lemma 40
P −→ R for some R
Γ; ∆ ` R :: z : A
with R ≡ (νx)(νy)(Q1 | Q2) = Q by Lemma 8

Notice how Theorem 6 entails session fidelity, in the sense that a well-typed process is guaranteed to
adhere to ascribed session behavior throughout its execution. Moreover, we can straightforwardly combine
type preservation for the π-calculus assignment with the static and operational correspondence results for
the process expression assignment, obtaining type preservation (and session fidelity) for both assignments
outright.
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2.4.3 Global Progress

In this section we establish the result of global progress (i.e., progress for multiple sessions) for the π-
calculus assignment. Traditional session type systems typically fail to enforce a strong notion of progress
[43, 31], or require extraneous techniques to ensure progress such as well-founded ordering on interaction
events [46, 26]. In our work, the logical basis for our type systems intrinsically ensures that well-typed
process compositions can always make progress, insofar as that they can either produce internal reductions,
await for interaction from the environment as specified by their offered session type, or simply have no
behavior left to offer (i.e., a terminated session).

In order to establish our global progress property, we first require the notion of a live process, defined
below.

Definition 6 (Live Process). A process P is considered live, written live(P ), if and only if the following
holds:

live(P ) , P ≡ (νn)(π.Q | R) for some π.Q,R, n

where π.Q is a non-replicated guarded process with π 6= x〈〉 for any x.

Our definition of a live process intuitively captures the shape of a process that has not yet fully carried
out its intended session, and thus still has some sub-process π.Q which is guarded by an action that is not
terminating a session, composed with some process R which may potentially synchronize with the prefix π
(or with some other prefix in Q), make progress outright or consist of terminated persistent sessions (these
are implemented by input-guarded replicated processes and so are never fully consumed).

We first establish the following contextual progress property, from which Theorem 7 follows as a corol-
lary.

Lemma 11 (Contextual Progress). Let Γ; ∆ ⇒ P :: z:C. If live(P ) then there is Q such that one of the
following holds:

(a) P → Q,

(b) P α→ Q for some α where s(α) ∈ z,Γ,∆

Proof. By induction on the typing of P . In all right and left rules we satisfy condition (b) immediately
with s(α) = z for right rules and s(α) = x ∈ ∆ for left rules. For the copy rule we satisfy (b) with
s(α) = u ∈ Γ. The interesting cases are those pertaining to cut and cut!.

Case: cut

∆ = ∆1,∆2

Γ; ∆1 ⇒ P1 :: x:A
Γ; ∆2, x : A⇒ P2 :: z:C
P ≡ (νx)(P1 | P2) by inversion
live(P1) or live(P2) since live(P )

Case (1): live(P1) and live(P2).
There is P ′1 such that either P1 → P ′1, or P1

α1→ P ′1
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for some α1 with s(α1) ∈ x,Γ,∆1

There is P ′2 such that either P2 → P ′2, or P2
α2→ P ′2

for some α2 with s(α2) ∈ x,Γ,∆2, z. by i.h.

Subcase (0.1): P1 → P ′1 or P2 → P ′2
P → Q [satisfying (a)]

Subcase (1.1): s(α1) 6= x

P
α1→ Q ≡ (νx)(P ′1 | P2) with α1 ∈ Γ,∆ [satisfying (b)]

Subcase (1.2): s(α2) 6= x

P
α2→ Q ≡ (νx)(P1 | P ′2) with α2 ∈ z,Γ,∆ [satisfying (b)]

Subcase (1.3): s(α1) = s(α2) = x
α2 = α1 By Lemma 40
P → Q with Q ≡ (νx)(νy)(P ′1 | P ′2) or Q ≡ (νx)(P ′1 | P ′2) [satisfying (a)]

Case (2): not live(P1) and live(P2)

There is P ′2 such that either P2 → P ′2, or P2
α2→ P ′2

for some α2 with s(α2) ∈ x,Γ,∆2, z by i.h.

Subcase (2.1): P2 → P ′2
P → Q with Q ≡ (νx)(P1 | P ′2) [satisfying (a)]

Subcase (2.2): P2
α2→ P ′2

Subcase (2.2.1): s(α2) 6= x

P
α2→ Q with Q ≡ (νx)(P1 | P ′2) [satisfying (b)]

Subcase (2.2.2): s(α2) = x
P1 ≡ (νy)(!x(w).R′1 | R′′1) or P1 ≡ [y ↔ x], for some y ∈ ∆1,
or P1 ≡ (νy)(x〈〉.0 | R′1), with x:1 ∈ ∆2

Subcase (2.2.2.1): P1 ≡ (νy)(!x(w).R′1 | R′′1)
Impossible, since not live(P1) would imply P1 ≡ (νy)(!x(w).R′1 | R′′1),
which cannot be the case since x is linear.

Subcase (2.2.2.2): P1 ≡ [y ↔ x], for some y ∈ ∆1.
P −→ Q with Q ≡ P2{y/x}
Subcase (2.2.2.3): P1 ≡ (νy)(x〈〉.0 | R′1), with x:1 ∈ ∆2

α2 = x() by Lemma 40
P −→ Q with Q ≡ (νx)((νy)R′1 | P ′2) [satisfying (a)]

Case (3): live(P1) and not live(P2)

There is P ′1 such that either P1 → P ′1, or P1
α1→ P ′1

for some α1 with s(α1) ∈ Γ,∆1, x by i.h.
Subcase (3.1): P1 → P ′1
P → Q with Q ≡ (νx)(P ′1 | P2) [satisfying (a)]

Subcase (3.1): P1
α1→ P ′1

for some α1 with s(α1) ∈ Γ,∆1, x
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Subcase (3.1.1) s(α1) = x
P2 ≡ (νy)(!x(w).R′1 | R′′1) or P2 ≡ [x↔ z] or P2 ≡ (νy)(x〈〉.0 | R′1), with x:1
Subcase (3.1.1.1):
Impossible, since not live(P2) would imply P2 ≡ (νy)(!x(w).R′1 | R′′1),
which cannot be the case since x is linear.
Subcase (3.1.1.2):
P → Q with Q ≡ P1{z/x} [satisfying (a)]
Subcase (3.1.1.3):
Impossible since then P2 would have to be live to consume x:1.

Case: cut!

Γ; · ⇒ P1 :: y:A
Γ, u:A; ∆⇒ P2 :: z:C
P ≡ (νu)(!u(y).P1 | P2) by inversion
live(P2) since live(P )

There is P ′2 such that either P2 → P ′2, or P2
α2→ P ′2

for some α2 with s(α2) ∈ u,Γ,∆, z by i.h.

Subcase (1): P2 → P ′2
P → Q with Q ≡ (νu)(!u(y).P1 | P ′2) [satisfying (a)]

Subcase (2): P2
α2→ P ′2

Subcase (2.1): s(α2) 6= u

P
α2→ Q with Q ≡ (νu)(!u(y).P1 | P ′2)

where s(α2) ∈ Γ,∆, z [satisfying (b)]
Subcase (2.2): s(α2) = u

P2
(νy)u〈y〉→ P ′2 By Lemma 40

!u(y).P1
u(y)→ (P1 | !u(y).P1)

P → Q with Q ≡ (νx)(νy)(P1 | !u(y).P1 | P ′2) [satisfying (a)]

Having characterized the conditions under which a live process may reduce or interact with its environ-
ment in Lemma 11, our global progress result follows as a corollary by considering a closed live process
offering behavior 1. Note that such a process, in order to satisfy the liveness criteria and offer x:1, must be
made up of the composition of potentially multiple processes via cut and cut!.

Theorem 7 (Global Progress). Let ·; · ⇒ P :: x:1. If live(P ) then there is Q such that P → Q.

Proof. From Lemma 11 we know that P −→ Q or P α−→ Q for some α where s(α) = x, since the linear and
unrestricted context regions are empty. However, since live(P ) we know that no such α may exist and so
P −→ Q.

A key aspect of global progress is that it entails deadlock freedom of well-typed processes (and conse-
quently of well-typed process expressions) insofar as a well-typed process (resp. process expression) that is
still meant to offer some behavior will be guaranteed by typing to do so.
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2.5 Summary and Further Discussion

In this chapter we have developed the basis for our concurrent interpretation of linear logic as a concur-
rent programming language by developing a faithful assignment of concurrent process expressions to the
rules of (intuitionistic) linear logic, for which the corresponding operational semantics is given as an SSOS
specification that follows the computational content of the cut elimination proof. Moreover, we develop a
π-calculus process assignment for the same logic, following [16], opting for a more logically faithful inter-
pretation compared to that of [16]. For reference, we give in Fig. 2.3 a full summary of the typing rules for
the process expression assignment; and in Fig. 2.4 the complete set of SSOS rules that define the operational
semantics of process expressions.

We have developed a correspondence result between both the static and operational semantics of the
process expression assignment and the π-calculus assignment (Section 2.4.1) and established type preserva-
tion (Section 2.4.2) and global progress (Section 2.4.3) results for our interpretation, which follow from the
logical soundness of the framework.

We note that our assignment for the multiplicative unit entails process action, unlike that of [16] which
has no associated observable action for either the multiplicative unit 1 nor for the assignment for the ex-
ponential. In their assignment, the 1R rule simply consists of the inactive process 0, whereas the 1L rule
has no associated prefix, meaning that the associated proof reduction has no matching process reduction.
This makes it so that processes that use and offer a channel of type 1 effectively never interact and so their
composition is a form of independent parallel composition akin to the mix rule of linear logic, which is not
directly expressible in our interpretation without modifying the assignment for the unit (this is consistent
with the judgmental analysis of linear logic of [21]). Similarly, their assignment for the exponential (input-
guarded replication for !R and silent renaming between the linear and unrestricted channel for !L) makes it
so that the proof reduction from a linear cut of ! to a cut! has no associated process reduction.

At a technical level, this requires a more specialized treatment of 1 and ! in the proofs of type preser-
vation and progress and their associated auxiliary lemmas, whereas our assignment for these connectives
(which comes at the expense of reduced levels of parallelism) allows for a uniform treatment of all connec-
tives in the proofs.
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Γ; ∆1 ` Px :: x:A Γ; ∆2, x:A ` Qx :: z:C

Γ; ∆1,∆2 ` new x.(Px‖Qx) :: z:C
(CUT)

Γ;x:A ` fwd z x :: z:A
(ID)

Γ; ∆1 ` Py :: y:A Γ; ∆2 ` Q :: z:B

Γ; ∆1,∆2 ` output z (y.Py);Q :: z:A⊗B
(⊗R)

Γ; ∆, y:A, x:B ` Ry :: z:C

Γ; ∆, x:A⊗B ` y ← input x;Ry :: z:C
(⊗L)

Γ; ∆, x:A ` Px :: z:B

Γ; ∆ ` x← input z;Px :: z:A( B
((R)

Γ; ∆1 ` Q :: y:A Γ; ∆2, x:B ` R :: z:C

Γ; ∆1,∆2, x:A( B ` output x (y.Qy);R :: z:C
((L)

Γ; · ` close z :: z:1
(1R)

Γ; ∆ ` Q :: z:C

Γ; ∆, x:1 ` wait x;Q :: z:C
(1L)

Γ; ∆ ` P :: z:A Γ; ∆ ` Q :: z:B

Γ; ∆ ` z.case(P,Q) :: z:A&B
(&R)

Γ; ∆, x:A ` R :: z:C

Γ; ∆, x:A&B ` x.inl;R :: z:C
(&L1)

Γ; ∆, x:B ` R :: z:C

Γ; ∆, x:A&B ` x.inr;R :: z:C
(&L2)

Γ; ∆ ` P :: z:A

Γ; ∆ ` z.inl;P :: z:A⊕B
(⊕R1)

Γ; ∆ ` P :: z:B

Γ; ∆ ` z.inr;P :: z:A⊕B
(⊕R2)

Γ; ∆, x:A ` Q :: z:C Γ; ∆, x:B ` R :: z:C

Γ; ∆, x:A⊕B ` x.case(Q,R) :: z:C
(⊕L)

Γ; · ` Px :: x:A Γ, u:A; ∆ ` Q!u :: z:C

Γ; ∆ ` new !u.(x← input !u Px ‖ Q!u) :: z:C
(cut!)

Γ, u:A; ∆, x:A ` Rx :: z:C

Γ, u:A; ∆ ` x← copy !u;Rx :: z:C
(copy)

Γ; · ` Px :: x:A

Γ; · ` output z !(x.Px) :: z:!A
(!R)

Γ, u:A; ∆ ` Q!u :: z:C

Γ; ∆, x:!A ` !u← input x;Q!u :: z:C
(!L)

Figure 2.3: Process Expression Assignment for Intuitionistic Linear Logic
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(CUT) exec(new x.(Px‖Qx))( {∃x′.exec(Px′)⊗ exec(Qx′)}

(FWD) exec (fwdx z)( {x = z}

(SCOM) exec (outputx (y.Py);Q)⊗ exec (y ← inputx;Ry)( {∃y′. exec (Py′)⊗ exec (Q)⊗ exec (Ry′)}

(CLOSE) exec (closex)⊗ exec (waitx;P )( {exec (P )}

(CHOICE1) exec (x.inl;P )⊗ exec (x.case(Q,R))( {exec (P )⊗ exec (Q)}

(CHOICE2) exec (x.inr;P )⊗ exec (x.case(Q,R))( {exec (P )⊗ exec (Q)}

(UCUT) exec (new !u.(x← input !u Px;Q))( {∃!u.!exec(x← input !u Px)⊗ exec(Q!u)}

(COPY) !exec (x← input !u;Px)⊗ exec (x← copy !u;Qx)( {∃c′. exec(Pc′)⊗ exec(Qc′)}

(REPL) exec (outputx !(y.Py))⊗ exec (!u← inputx;Q!u)( {exec (new !u.(y ← input !u Py ‖ Q!u))}

Figure 2.4: Process Expression SSOS Rules
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Chapter 3

Beyond Propositional Linear Logic

In this chapter we aim to support the more general claim that linear logic can indeed be used as a suit-
able foundation for message-passing concurrent computation by extending the connection beyond the basic
session typing discipline of Chapter 2. Specifically, we account for the idea of value-dependent session
types, that is, session types that may depend on the values exchanged during communication, and paramet-
ric polymorphism (in the sense of Reynolds [65, 64]) at the level of session types. The former allows us
to express richer properties within the type structure by considering first-order linear logic, describing not
just the interactive behavior of systems but also constraints and properties of the values exchanged during
communication. Moreover, our logically grounded framework enables us to express a high-level form of
proof-carrying code in a concurrent setting, where programs may exchange proof certificates that attest for
the validity of the properties asserted in types. As we will see, we achieve this by also incorporating proof
irrelevance and modal affirmation into our term language.

Polymorphism is a concept that has been explored in the session-type community but usually viewed
from the subtyping perspective [31] (while some systems do indeed have ideas close to parametric poly-
morphism, they are either not applied directly to session types [10] or they do not develop the same results
we are able to, given our logical foundation). Here we explore polymorphism in the sense of System F by
studying the concurrent interpretation of second-order linear logic.

We highlight these two particular extensions to the basic interpretation of [16], although others are
possible, ranging from asynchronous process communication [25] to parallel evaluation strategies for λ-
calculus terms [76]. The key point we seek to establish is that our framework is not only rich enough to
explain a wide range of relevant concurrent phenomena, but also that it enables us to do so in a clean and
elegant way, where the technical development is greatly simplified when compared to existing (non-logically
based) approaches. Moreover, we can study these phenomena in a compositional way insofar as we remain
within the boundaries of logic, that is, we can develop these extensions independently from each other,
provided we ensure that the underlying logical foundation is sound.

3.1 First-Order Linear Logic and Value-Dependent Session Types

In the context of λ-calculus and the Curry-Howard correspondence, when we move from intuitionistic
propositional logic to the first-order setting we obtain a dependently typed λ-calculus [40]. While the idea
of dependent types can seem superficially simple (types that can depend on terms of the language), the gain

47
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in expressive power is known to be far from trivial, providing the ability to write sophisticated theorems as
types, for which the proofs are the inhabitants of the type. In this regard, dependent type theories have been
studied to great lengths, both for the more theoretical aspects regarding the foundations of mathematics but
also for the more pragmatical aspects of correctness by typing that dependent types enable.

In the area of session typed communication, dependent types in the sense described above are virtually
non-existant. While some notions of dependent session types exist, they do not carry with them the richness
associated with dependent types in the sense of type theory, either because they are designed with a very
specific goal in mind (such as [85], where dependencies appear as indices that parameterize session types
w.r.t the number of messages exchanged or the number of principals involved in a protocol) or simply
because the appropriate logical basis has eluded the research community for a long time.

We consider a form of dependent session types that is closer to the notion of dependent types in func-
tional type theories, where session types may depend on (or be indexed by) terms of a functional type theory
such as LF [40] or the Calculus of Constructions [22]. We achieve this by considering the first-order quanti-
fiers of linear logic where the domain of quantification is itself a (functional) dependent type theory. In this
sense, it is not a full dependent session type theory since we introduce a separation between the index lan-
guage and the language of session types, but it already greatly enhances the expressive power of traditional
session-typed languages.

3.1.1 Universal and Existential First-Order Quantification

To develop our logically driven concept of value-dependent session types, we consider the sequent calculus
rules for (first-order) universal and existential quantification in linear logic, where the domain is quantifica-
tion is an unspecified typed λ-calculus:

Ψ, x:τ ; Γ; ∆ ` A
Ψ; Γ; ∆ ` ∀x:τ.A

(∀R)
Ψ `M : τ Ψ; Γ; ∆, A{M/x} ` C

Ψ; Γ; ∆,∀x:τ.A ` C
(∀L)

To justify the quantification scheme above (besides extending the language of propositions to include the
quantifiers), we extend our basic judgment to Ψ; Γ; ∆ ` A, where Ψ is a context region that tracks the term
variables introduced by quantification. We also need an additional judgment for the domain of quantification,
written Ψ ` M :τ , which allows us to assert that M witnesses τ for the purposes of providing a witness to
quantifiers.

What should then be the concurrent interpretation of universal quantification? Let us consider the prin-
cipal cut reduction:

Ψ, x:τ ; Γ; ∆1 ` A
Ψ; Γ; ∆1 ` ∀x:τ.A

(∀R)
Ψ `M :τ Ψ; Γ; ∆2, A{M/x} ` C

Ψ; Γ; ∆, ∀x:τ.A ` C
(∀L)

Γ; ∆1,∆2 ` C
(CUT)

=⇒
Ψ; Γ; ∆1 ` A{M/x} Ψ; Γ; ∆2, A{M/x} ` C

Ψ; Γ; ∆1,∆2 ` C
(CUT)

We require a substitution principle that combines the judgment Ψ ` M :τ with the premise of the (∀R)
rule to obtain the left premise of the reduced cut. From a concurrency perspective, this hints that the term
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assignment for the right rule should have an input flavor. Compatibly, the left rule must be an output:

Ψ, x:τ ; Γ; ∆ ` P :: z:A

Ψ; Γ; ∆ ` x← input z;P :: z:∀x:τ.A
(∀R)

Ψ `M : τ Ψ; Γ; ∆, y:A{M/x} ` Q :: z:C

Ψ; Γ; ∆, y:∀x:τ.A ` output y M ;Q :: z:C
(∀L)

Thus, we identify quantification with communication of terms of a (functional) type theory. Existential
quantification is dual. The right rule consists of an output, whereas the left rule is an input:

Ψ `M : τ Ψ; Γ; ∆ ` P :: z:A{M/x}
Ψ; Γ; ∆ ` output y M ;P :: z:∃x:τ.A

(∃R)
Ψ, x:τ ; Γ; ∆, y:A ` Q :: z:C

Ψ; Γ; ∆, y:∃x:τ.A ` x← input y;P :: z:C
(∃L)

One crucial concept is that we do not restrict a priori what the particular type theory which defines the
domain of quantification should be, only requiring it to adhere to basic soundness properties of type safety,
and that it remain separate from the linear portion of our framework (although this type theory can itself be
linear).

The interested reader may wonder whether or not a type conversion rule is needed in our theory, given
that functional terms may appear in linear propositions through quantification. It turns out that this is not
the case since the occurrences of functional terms are restricted to the types of quantifiers, and so we may
reflect back to type conversion in the functional language as needed. Consider for instance the following
session type, describing a session that outputs a natural number and then outputs its successor (assuming a
dependent encoding of successors),

T , ∃x:nat.∃y:succ(x).1

We can produce a session of type z:T as follows, appealing to an ambient (dependently-typed) function that
given a natural number produces its sucessor:

s:Πn:nat.succ(n) ` s(1 + 1) : succ(2) s:Πn:nat.succ(n); ·; · ` close z :: z:1
(1R)

s:Πn:nat.succ(n); ·; · ` output z (s(1 + 1)); close z :: z:∃y:succ(2).1
(∃R)

s:Πn:nat.succ(n); ·; · ` output z 2; output z (s(1 + 1)); close z :: z:T
(∃R)

In the typing above we only need type conversion of the functional theory to show,

s:Πn:nat.succ(n) ` s(1 + 1) : succ(2)

is a valid judgment. No other instances of type conversion are in general required.
To give an SSOS to term-passing we require the ability to evaluate functional terms. The persistent

predicate !stepM N expresses that the functional term M reduces in a single step to term N without using
linear resources. The persistent predicate !value N identifies that term N is a value (cannot be reduced
further). The evaluation of functional terms is a usual call-by-value semantics. We thus obtain the following
SSOS rules:

(VRED) exec (output c M ;P )⊗ !stepM N ( {exec (output c N ;P )}

(VCOM) exec (output c V ;P )⊗ exec (x← input c;Qx)⊗ !valueV ( {exec (P )⊗ exec (QV )}



50 CHAPTER 3. BEYOND PROPOSITIONAL LINEAR LOGIC

The π-calculus process assignment requires an extension of the calculus with the functional term lan-
guage, whose terms are then exchanged between processes during communication:

Ψ, x:τ ; Γ; ∆⇒ P :: z:A

Ψ; Γ; ∆⇒ z(x).P :: z:∀x:τ.A
(∀R)

Ψ `M : τ Ψ; Γ; ∆, y:A{M/x} ⇒ Q :: z:C

Ψ; Γ; ∆, y:∀x:τ.A⇒ y〈M〉.Q :: z:C
(∀L)

Ψ `M : τ Ψ; Γ; ∆⇒ P :: z:A{M/x}
Ψ; Γ; ∆⇒ y〈M〉.P :: z:∃x:τ.A

(∃R)
Ψ, x:τ ; Γ; ∆, y:A⇒ Q :: z:C

Ψ; Γ; ∆, y:∃x:τ.A⇒ y(x).P :: z:C
(∃L)

The reduction rule is the expected synchronization between term inputs and outputs:

x〈M〉.P | x(y).Q −→ P | Q{M/y}

This simple extension to our framework enables us to specify substantially richer types than those found
in traditional session type systems since we may now refer to the communicated values in the types, and
moreover, if we use a dependent type theory as the term language, we can also effectively state properties of
these values and exchange proof objects that witness these properties, establishing a high-level framework
of concurrent proof-carrying code.

3.2 Example

Consider the following session type, commonly expressible in session typed languages (we write τ ⊃ A
and τ ∧A as shorthand for ∀x:τ.A and ∃x:τ.A, where x does not occur in A):

Indexer , file ⊃ (file ∧ 1)

The type Indexer above is intended to specify an indexing service. Clients of this service send it a docu-
ment and expect to receive back an indexed version of the document. However, the type only specifies the
communication behavior of receiving and sending back a file, the indexing portion of the service (its actual
functionality) is not captured at all in the type specification.

This effectively means that any service that receives and sends files adheres to the specification of
Indexer, which is clearly intended to be more precise. For instance, the process expression PingPong be-
low, which simply receives and sends back the same file, satisfies the specification (i.e.,· ` PingPong ::
x:Indexer):

PingPong , f ← input x; output x f ; close x

This is especially problematic in a distributed setting, where not all code is available for inspection and so
such a general specification is clearly not sufficient.

If we employ dependent session types, we can make the specification more precise by not only specifying
that the sent and received files have to be, for instance, PDF files, but we can also specify that the file sent
by the indexer has to “agree” with the received one, in the sense that it is, in fact, its indexed version:

Indexerdep , ∀f :file.∀p:pdf(f).∃g:file.∃q1:pdf(g).∃q2:agree(f, g).1

The revised version of the indexer type Indexerdep now specifies a service that will receive a file f , a proof
object p certifying that f is indeed a pdf, and will then send back a file g, a proof object certifying g as a
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I , f ← input x; p← input x;
let g = genIndex(f, p) in
output x (π1 (g)); output x (π2 (g));
output x (π3 (g)); close x

where

funIndexer , Πf :file.Πp:pdf(f).Σ(g:file, q1:pdf(g), q2:agree(f, g))

Indexerdep , ∀f :file.∀p:pdf(f).∃g:file.∃q1:pdf(g).∃q2:agree(f, g).1

with
genIndex : funIndexer; ·; · ` I :: x:Indexerdep

Figure 3.1: A PDF Indexer

pdf file and also a proof object that certifies that g and f are in agreement. A process expression I satisfying
this specification is given in Fig. 3.1 (we use a let-binding in the expression syntax for conciseness). In
the example we make full use of the functional type theory in the quantification domain, where the process
expression I makes use of an auxiliary function genIndex which is itself dependently typed. The type,

funIndexer , Πf :file.Πp:pdf(f).Σ(g:file, q1:pdf(g), q2:agree(f, g))

makes use of the dependent product type (the Π-type from Martin-Löf type theory [49]) and of a dependent
triple (a curried Σ-type) to specify a function that given a file f and a proof object that encodes the fact that
f is a pdf file produces a triple containing a file g, a proof object encoding the fact that g is indeed a pdf file
and a proof object q2 which encodes the fact that g is the indexed version of f .

This much more precise specification provides very strong guarantees to the users of the indexing ser-
vice, which are not feasibly expressible without this form of (value) dependent session types.

3.3 Metatheoretical Properties

Following the development of Section 2.4, we extend the type preservation and global progress results of
our framework to include the value-dependent type constructors.

The logical nature of our framework makes it so that the technical development is fully compositional:
extending our previous results to account for the new connectives only requires us to consider the new rules
and principles, enabling a clean account of the language features under consideration.

3.3.1 Correspondence between process expressions and π-calculus processes

Extending the correspondence between process expressions and π-calculus processes is straightforward,
provided we enforce a call-by-value communication discipline on processes such that the synchronization
between sending and receiving a functional term may only fire after the term has reduced to a value. We
thus extend the reduction semantics of Def. 2 with the following rules:

M −→M ′

x〈M〉.P −→ x〈M ′〉.P
V is a value

x〈V 〉.P | x(y).Q −→ P | Q{V/x}
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The translation from process expressions to processes  is extended with the expected two clauses,
matching the appropriate term communication actions.

P  Q̂

x← input y;P  y(x).P̂

output y M ;P  y〈M〉.P̂

Having extended the appropriate definitions accordingly, we can establish the analogues of the theorems
of Section 2.4.1. All the proofs are straightforward extensions, taking into account the new typing rules and
reduction/execution rules.

Theorem 8 (Static Correspondence - Process Expressions to π-calculus). If Ψ; Γ; ∆ ` P :: z:A then there
exists a π-calculus process Q̂ such that P  Q̂ with Ψ; Γ; ∆⇒ Q̂ :: z:A.

Theorem 9 (Static Correspondence - π-calculus to Process Expressions). If Ψ; Γ; ∆⇒ P :: z:A then there
exists a process expression Q̂ such that P  −1 Q̂ with Ψ; Γ; ∆ ` Q̂ :: z:A.

Theorem 10 (Simulation of SSOS Executions). Let Ψ; Γ; ∆ ` P :: z:A, with exec P z A −→1,2 Ω. We
have that P  P̂ , such that the following holds:

(i) Either, P̂ −→ Q, for some Q, with Ω ≡ Q

(ii) Or, Ω Q, for some Q, such that P̂ ≡ Q.

Theorem 11 (Simulation of π-calculus Reduction). Let Ψ; Γ; ∆ ⇒ P :: z:A with P −→ Q. We have that
P  −1 P̂ such that exec P̂ z A −→+ Ω with Ω ≡ Q.

3.3.2 Type Preservation

Following the development of Section 2.4.2, we first show a reduction lemma for each of the new type
constructors, identifying the synchronization behavior of processes according to their observed actions,
under parallel composition. To this end we must also extend the labelled transition semantics (Def. 3) of the
π-calculus with the appropriate action labels and transitions for term communication (where V is a value):

α ::= · · · | x〈V 〉 | x(V )

M −→M ′

x〈M〉.P τ−→ x〈M ′〉.P
(TEVAL)

x〈V 〉.P x〈V 〉−−−→ P (VOUT) x(y).P
x(V )−−−→ P{V/y} (VIN)

The proofs for Lemmas 13 and 14 follow along the same principles of the previous reduction lemmas,
but they require a lemma accounting for the substitution of (functional) terms in processes. We postulate
that type-preserving substitution holds for values in the functional layer outright.

Lemma 12. If Ψ ` V :τ and Ψ, x : τ ; Γ; ∆⇒ P :: z:C then Ψ; Γ; ∆⇒ P{V/x} :: z:C

Proof. By induction on the structure of typing for P . All cases follow directly from the i.h. or due to
weakening with the exception of ∃R and ∀L, where we appeal to the value substitution postulate of the
functional layer, after which the result follows by i.h.
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Lemma 13 (Reduction Lemma - ∀). Assume

(a) Ψ; Γ; ∆1 ⇒ P :: x:∀y:τ.A with P
x(V )−−−→ P ′ and Ψ ` V :τ

(b) Ψ; Γ; ∆2, x:∀y:τ.A⇒ Q :: z:C with Q
x〈V 〉−−−→ Q′ and Ψ ` V :τ

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ψ; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. See Appendix A.2.

Lemma 14 (Reduction Lemma - ∃). Assume

(a) Ψ; Γ; ∆1 ⇒ P :: x:∃y:τ.A with P
x〈V 〉−−−→ P ′ and Ψ ` V :τ

(b) Ψ; Γ; ∆2, x:∃y:τ.A⇒ Q :: z:C with Q
x(V )−−−→ Q′ and Ψ ` V :τ

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ψ; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. See Appendix A.2.

Before generalizing our type preservation result to account for value dependent session types, we must
first extend Lemma 40 with the additional clauses pertaining to the new types (clauses 14-17 below).

Lemma 15. Let Ψ; Γ; ∆⇒ P :: x:C.

1. If P α→ Q and s(α) = x and C = 1 then α = x〈〉

2. If P α→ Q and s(α) = y and y : 1 ∈ ∆ then α = y().

3. If P α→ Q and s(α) = x and C = A⊗B then α = (νy)x〈y〉.

4. If P α→ Q and s(α) = y and y : A⊗B ∈ ∆ then α = y(z).

5. If P α→ Q and s(α) = x and C = A( B then α = x(y).

6. If P α→ Q and s(α) = y and y : A( B ∈ ∆ then α = (νz)y〈z〉.

7. If P α→ Q and s(α) = x and C = A&B then α = x.inl or α = x.inr .

8. If P α→ Q and s(α) = y and y : A&B ∈ ∆ then α = y.inl or α = y.inr .

9. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr .

10. If P α→ Q and s(α) = y and y : A⊕B ∈ ∆ then α = y.inl or α = y.inr .

11. If P α→ Q and s(α) = x and C = !A then α = (νu)x〈u〉.
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12. If P α→ Q and s(α) = y and y : !A ∈ ∆ then α = y(u).

13. If P α→ Q and s(α) = u and u:A ∈ Γ then α = (νy)u〈y〉.

14. If P α−→ Q and s(α) = x and C = ∀y:τ.A then α = x(V ).

15. If P α−→ Q and s(α) = y and y:∀z:τ.A ∈ ∆ then α = y〈V 〉.

16. If P α−→ Q and s(α) = x and C = ∃y:τ.A then α = x〈V 〉.

17. If P α−→ Q and s(α) = y and y:∃z:τ.A ∈ ∆ then α = y(V ).

We may now extend our type preservation result accordingly.

Theorem 12 (Type Preservation). If Ψ; Γ; ∆⇒ P :: x:A and P −→ Q then Ψ; Γ; ∆⇒ Q :: x:A

Proof. By induction on typing. As in Theorem 6, when the last rule is an instance of cut, we appeal to the
appropriate reduction lemmas for the given cut formula. In this setting we have two new sub-cases, one
pertaining to a principal cut where the involved type is ∀x:τ.B and another where the type is ∃x:τ.B, each
following from Lemmas 13 and 14, respectively. The rest of the proof is as before.

An important consequence of type preservation in the presence of dependent types is that the property
of session fidelity also entails that all properties of exchanged data asserted in types in our framework are
always ensured to hold during execution.

3.3.3 Global Progress

Establishing global progress with the two new type constructors turns out to be rather straightforward, given
the formal framework setup in Section 2.4.3.

The definition of a live process is unchanged, and thus we need only update the contextual progress and
global progress statements to account for the new typing context and reductions of terms in the functional
type theory (for which progress is assumed implicitly).

Lemma 16 (Progress - Functional Layer). If Ψ `M :τ then M −→M ′ or M is a value.

Lemma 17 (Contextual Progress). Let Ψ; Γ; ∆⇒ P :: z:C. If live(P ) then there is Q such that one of the
following holds:

(a) P −→ Q

(b) P α−→ Q for some α where s(α) ∈ z,Γ,∆

Proof. The proof is as that of Lemma 11.

Theorem 13 (Global Progress). Let ·; ·; · ⇒ P :: x:1. If live(P ) then there is Q such that P −→ Q.

We have thus established both type preservation and global progress properties in the value dependent
session-typed setting. One key observation is that considering new, much more expressive typing schemes
does not require a total reworking of the theoretical framework, provided we remain within the realm of the
logical interpretation. Rather, re-establishing the type safety results follows naturally as a consequence of
the strong logical foundation.
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3.4 Value-Dependent Session Types – Proof Irrelevance and Affirmation

While dependent session types provide additional guarantees on the properties of data exchanged during
communication, these guarantees come at the price of explicit exchanges of proof objects that certify these
properties. For instance, in the type Indexerdep clients must not only send the file but also a proof object
that certifies that it is a valid PDF file. While in the abstract this may be desirable, in practice it can be the
case that some proof objects need not be communicated, either because the properties are easily decidable
or because of some trust relationship established between the communicating parties. These pragmatic
considerations can also fall under the scope of our framework, again by appealing to our solid logical
underpinnings.

3.4.1 Proof Irrelevance

To account for the idea of potentially omitting certain proof objects, we require the type theory that makes
up the quantification domain to include a proof irrelevance modality.

Proof irrelevance [6, 61] is a technique that allows us to selectively hide portions of a proof (and by the
proofs-as-programs principle, portions of a program). The intuition is that these “irrelevant” proof objects
are required to exist for the purpose of type-checking, but they must have no bearing on the computational
outcome of the program. This means that typing must ensure that these hidden proofs are never required to
compute something that is not itself hidden. We internalize proof irrelevance in our functional type theory
by requiring a modal type constructor, [τ ] (read bracket τ ), meaning that there is a term of type τ , but the
term is deemed irrelevant from a computational point of view.

Operationally, terms of type [τ ] must be present during type-checking, but may consistently be erased
at runtime and therefore their communication omitted, since by construction they have no computationally
relevant content. For instance, a version of the indexing service that now uses proof irrelevance in order not
to require the communication of proofs can be:

Indexer[] , ∀f :file.∀p:[pdf(f)].∃g:file.∃q1:[pdf(g)].∃q2:[agree(f, g)].1

A service of type Indexer[] is still required to satisfy the constraints imposed by Indexerdep, and so all the
proof objects must exist for type-checking purposes, but they need not be communicated at runtime.

We can give a precise meaning to [τ ] by adding a new introduction form for terms, written [M ], meaning
that M will not be available computationally. We also add a new class of assumptions x÷τ , meaning that
x stands for a term of type τ that is not computationally available. Following the style of [61], we define a
promotion operation on contexts that transforms computationally irrelevant hypotheses into ordinary ones:

(·)⊕ , ·
(Ψ, x:τ)⊕ , Ψ⊕, x:τ

(Ψ, x÷τ)⊕ , Ψ⊕, x:τ

We can then define the introduction and elimination forms of proof irrelevant terms:

Ψ⊕ `M :τ

Ψ ` [M ]:[τ ]
([]I)

Ψ `M :[τ ] Ψ, x÷τ ` N :τ ′

Ψ ` let [x] = M in N :τ ′
([]E)

And the appropriate substitution principle for the new hypothesis form:
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Theorem 14 (Irrelevant Substitution). If Ψ⊕ `M :τ and Ψ, x÷τ,Ψ′ ` N : τ ′ then Ψ,Ψ′ ` N{M/x}:τ ′.

Proof. By structural induction on the derivation of Ψ, x÷τ,Ψ′ ` N : τ ′.

These rules guarantee that a variable of the form x ÷ τ can only be used in terms that are irrelevant (in
the technical sense). In such terms, we are allowed to refer to all variables, including the irrelevant ones,
since the term is not intended to be available at runtime. Terms of bracket type can still be used through the
let-binding shown above, but the bound variable x is tagged with the irrelevant hypothesis form, to maintain
the invariant that no relevant term can use irrelevant variables in a computational manner.

While any type that is tagged with the proof irrelevance modality denotes the type of a computationally
irrelevant term, the introduction form for [τ ] essentially contains an actual term of type τ , which is then still
communicated. We can prevent this by defining an operation † that, given a well-typed process expression,
erases all terms of bracket type and replaces them with unit elements. Let the unit type of the functional lan-
guage be denoted by unit, with the single inhabitant 〈〉. Since we do not specify the complete type structure
of the types of the functional type theory, we will assume, for illustration purposes, that the functional layer
has function types τ1 ⊃ τ2 and pairs τ1 × τ2. The key aspect is that † preserves the type structure for all
types except for bracketed types, which are replaced consistently with unit. We thus define † on contexts,
types, processes and terms according to the rules of Fig. 3.2, and we can establish the following correctness
result.

Theorem 15 (Correctness of Erasure). If Ψ; Γ; ∆ ` P :: z:A then Ψ†; Γ†; ∆† ` P † :: z:A†.

Proof. Straightforward, by induction on the typing derivation. Note that in the case for the let-binding for
bracket types we rely on irrelevant substitution (Theorem 14) and on the fact that the variable [x] can only
occur in a bracketed term (which is itself replaced by 〈〉 in †).

The erasure is designed to be applied conceptually after we have ensured that a process expression is
well-typed (and therefore abides by whatever specification is defined in its type), but before the code is
actually executed. Thus, the erasure is safe because we know that all properties ensured by typing still hold.
After performing the erasure †, we can make use of type isomorphisms (Fig. 3.3) to completely erase the
communication actions of elements of unit type, thus removing the communication overhead of the proof
objects in the original process expression.

At the level of session types we have yet to develop the technical machinery necessary to make precise
the notion of a type isomorphism (see Section 7.2). Informally, the isomorphisms of Fig. 3.3 capture the
fact that despite the types specifying different behaviors, it is possible to coerce back-and-forth between
the types without any “loss of information”. It is easy to see why, informally, this is the case: consider
the type x:∀y:unit.A, denoting a process expression which is meant to receive a value of type unit (the
unit element) along x, and continue as A. We can easily construct a process expression that mediates
between channel x and the external world through channel z:A, by first sending the unit element along x
and then forwarding between x and z (this is only possible since unit has a single canonical inhabitant).
Similarly, given a session of type x:A we construct a mediator between x and the external world at channel
z:∀y:unit.A by first performing a “dummy” input along z and then forwarding between the two channels.
A similar argument can be made for the existentially quantified type.
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(∆, x:A)† , ∆†, x:A†

(Γ, x:A)† , Γ†, x:A†

(Ψ, x:τ)† , Ψ†, x:τ †

(Ψ, x÷τ)† , Ψ†

1† , 1

(A( B)† , A†( B†

(A⊗B)† , A† ⊗B†
(A⊕B)† , A† ⊕B†
(A&B)† , A† &B†

(!A)† , !A†

(∀x:τ.A)† , ∀x:τ †.A†

(∃x:τ.A)† , ∃x:τ †.A†

(τ1 ⊃ τ2)† , τ †1 ⊃ τ
†
2

(τ1 × τ2)† , τ †1 × τ
†
2

[τ ]† , unit

unit† , unit

(close z)† , close z

(wait x;Q)† , wait x;Q†

(new x.(P ‖ Q))† , new x.(P † ‖ Q†)
(output z (y.P );Q)† , (output z (y.P †);Q†)

(y ← input x;R)† , y ← input x;R†

(new !u.(x← input !u P ‖ Q))† , new !u.(x← input !u P † ‖ Q†)
(x.case(P,Q))† , x.case(P †, Q†)

(x.inl;P )† , x.inl;P †

(x.inr;P )† , x.inr;P †

(x← copy !u;R)† , x← copy !u;R†

(output x !(y.P ))† , output x !(y.P †)

(!u← input x;P )† , !u← input x;P †

(output x M ;P )† , output x M †;P †

(fwd x y)† , fwd x y

[M ]† , 〈〉
(λx.M)† , λx.M †

〈M,N〉† , 〈M †, N †〉
(let [x] = M in N)† , N †

Figure 3.2: Type-Directed Proof Erasure.

∀x:unit.A ∼= A
∃x:unit.A ∼= A

unit×A ∼= A
unit ⊃ A ∼= A

Figure 3.3: Type Isomorphisms for Erasure.
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3.4.2 Affirmation

While we have developed a way of explicitly exchanging and omitting proof objects during execution, it is
often the case that what is required in practice lies somewhere between the two extremes of this spectrum:
we want to avoid the communication overhead of exchanging proof objects, but do not necessarily want to
completely omit them outright, instead demanding some signed certificate for the existence of the proof,
whose validity should in principle be easier to check. For example, when we download a large application
we may be willing to trust its safety if it is digitally signed by a reputable vendor. On the other hand, if we
are downloading and running a piece of Javascript code embedded in a web page, we may insist on some
explicit proof that it is safe and adheres to our security policy. The key to making such trade-offs explicit
in session types is a notion of affirmation (in the sense of [30]) of propositions and proofs by principals.
Such affirmations can be realized through explicit digital signatures on proofs by principals, based on some
underlying public key infrastructure.

The basic idea is to consider an additional modality in the term language that states that some principal
K asserts (or affirms) the existence of a proof of some property τ , written ♦Kτ . Terms of this type would in
practice be generated by performing a digital signature on the actual proof object that witnesses τ . Formally,
we have the new judgment of affirmation [30] by a principal K, written as Ψ ` M :K τ (K affirms that M
has type τ ). The rule that defines it is

Ψ `M : τ
Ψ ` 〈M :τ〉K :K τ

affirm

The notation 〈M :τ〉K literally refers to a certificate that M has type τ , signed by K. We internalize this
judgment in the functional type theory with a new principal-indexed family of modal operators ♦Kτ . It is
defined by the following two rules:

Ψ `M :K τ

Ψ `M : ♦Kτ
♦I

Ψ `M : ♦Kτ Ψ, x:τ ` N :K σ

Ψ ` let 〈x:τ〉K = M in N :K σ
♦E

Such an affirmation may seem redundant: after all, the certificate contains the term which can be type-
checked. However, checking a digitally signed certificate may be faster than checking the validity of a proof,
so we may speed up the system if we trust K’s signature. More importantly, if we have proof irrelevance,
and some parts of the proof have been erased, then we have in general no way to reconstruct the original
proofs. In this case we must trust the signing principal K to accept the τ as true, because we cannot be
sure if K played by the rules and did indeed have a proof. Therefore, in general, the affirmation of τ by K
is weaker than the truth of τ , for which we demand explicit evidence. Conversely, when τ is true K can
always sign it and be considered as “playing by the rules”.

We can now add these signed certificates to our running example:

Indexer♦ , ∀f :file.∀p:[pdf(f)].∃g:file.∃q1:[pdf(g)].∃q2:♦I [agree(f, g)].1

While we still do not require the communication of the proof objects that assert the files are actually PDFs,
the type Indexer♦ now specifies that a digitally signed (by principal I) certificate of the agreement of the
sent and received files is communicated back to the client of the service. The combination of both proof
irrelevance and affirmation is crucial: the type ♦I [agree(f, g)] denotes a proof relevant object q2 which is an
affirmation (and thus digitally signed) by principal I of a proof irrelevant object, asserting the agreement of



3.5. SECOND-ORDER LINEAR LOGIC AND POLYMORPHIC SESSION TYPES 59

f and g. Thus, the object q2 may not contain the actual proof object and is in principle substantially smaller
and easier to check.

This once again showcases the strengths of having a robust logical foundation, which not only allows
us to move from session types to value dependent session types in a relatively straightforward way, while
preserving the desirable properties of session fidelity (which in the dependent case also entails the validity
of the properties expressed in the dependencies) and deadlock freedom, but also enables us to incorporate
known logical concepts such as proof irrelevance and affirmation in our concurrent, session-typed setting.

These extensions provide a clean account of high-level concepts such as proof-carrying code with var-
ious refined levels of trust: we may not trust the used services at all, and demand that proofs of all the
properties be communicated; we may trust the services completely (or check that the properties hold our-
selves) by omitting proofs at runtime; or we may appeal to some trusted third party to digitally sign objects
that certify the existence of proof objects witnessing the desired properties.

3.5 Second-Order Linear Logic and Polymorphic Session Types

When considering concurrent message-passing systems, it is rather straightforward to consider polymor-
phism at the data level, that is, systems that admit polymorphism on the data values exchanged in communi-
cation. It is less common to consider polymorphism at the behavioral level (in the sense of communication
protocols), or behavioral genericity. This form of genericity is particularly important since it allows systems
to be generic with respect to arbitrary communication protocols, which may be known and instantiated only
at runtime. For instance, critical web applications often involve dynamic reconfiguration of communication
interfaces/protocols (e.g. replacing a service provider), which should be transparent to clients. To this end,
these applications should be conceived as generic with respect to such interfaces/protocols. Another com-
mon scenario is that of “cloud-based” services, which acquire computing resources when demand is high
and release them as they are no longer needed. These scaling policies require the services to be generic with
respect to their underlying coordination protocols, which may depend on the system’s architecture at a given
time.

In the realm of concurrent processes, polymorphism was first studied by Turner [78], in the context of
a simply-typed π-calculus. Berger et al. [10] were the first to study a π-calculus with parametric poly-
morphism based on universal and existential quantification over types. However, in the context of session
types, polymorphism has mainly been developed as bounded polymorphism [31, 33], which is controlled via
subtyping. This form of polymorphism is sufficient to capture data-level genericity but not behavioral gener-
icity. True parametric polymorphism for session types in the sense of Reynolds was proposed by Wadler
[81] for a language based on classical linear logic, but without the associated reasoning techniques that arise
by the study of parametricity which is done in Part III.

By making use of our linear logic foundation for message-passing concurrency, we can give a rather
clean account of polymorphism in the sense of behavioral genericity by considering a concurrent interpreta-
tion of second-order linear logic, exploring a correspondence along the lines of that between the polymor-
phic λ-calculus [35, 64] and second-order intuitionistic logic.

Our formulation of second-order linear logic uses a specialized context region for type variables intro-
duced by second-order quantification (which we write Ω) and an additional judgment Ω ` A type stating
that A is a well-formed type (or proposition) with free variables registered in Ω. Thus the main judgment is
now Ω; Γ; ∆ ` A. The rules that define the well-formedness judgment are straightforward and thus omitted.
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The rules for (second-order) universal and existential quantification are:

Ω, X; Γ; ∆ ` A
Ω; Γ; ∆ ` ∀X.A

(∀2R)
Ω ` B type Ω; Γ; ∆, A{B/X} ` C

Ω; Γ; ∆,∀X.A ` C
(∀2L)

Ω ` B type Ω; Γ; ∆ ` A{B/X}
Ω; Γ; ∆ ` ∃X.A

(∃2R)
Ω, X; Γ; ∆, A ` C
Ω; Γ; ∆, ∃X.A ` C

(∃2L)

Proving a universally quantified proposition ∀X.A simply requires us to prove the proposition A without
assuming any specifics on the type variable, whereas using a universally quantified proposition requires us to
form a valid proposition B which then warrants the use of A{B/X}. The existential is dual. We note that,
since we impose only type well-formedness in quantifier witnesses, the form of quantification implemented
by these rules is impredicative (i.e.,the type variable X in ∀X.A may be instantiated with ∀X.A).

Much like in the concurrent interpretation of the first-order quantifiers of Section 3.1, the second-order
quantifiers also have an input/output flavor. However, instead of exchanging data values, we exchange
session types. This essentially means that the process expression assignment (and π-calculus assignment)
for second-order quantification enables an expressive form of abstract protocol communication.

Ω, X; Γ; ∆ ` P :: z:A

Ω; Γ; ∆ ` X ← input z;P :: z:∀X.A
(∀2R)

(∀2L)

Ω ` B type Ω; Γ; ∆, x:A{B/X} ` Q :: z:C

Ω; Γ; ∆, x:∀X.A ` output x B;Q :: z:C

Ω ` B type Ω; Γ; ∆ ` P :: z:A{B/X}
Ω; Γ; ∆ ` output z B;P :: z:∃X.A

(∃2R)

(∃2L)

Ω, X; Γ; ∆, x:A ` Q :: z:C

Ω; Γ; ∆, x:∃X.A ` X ← input x;Q :: z:C

As before, the intuitive semantics of the assignment are justified by the following cut reduction:

Ω, X; Γ; ∆ ` P :: x:A

Ω; Γ; ∆ ` X ← input z;P :: x:∀X.A
(∀2R)

Ω ` B type Ω; Γ; ∆, x:A{B/X} ` Q :: z:C

Ω; Γ; ∆, x:∀X.A ` output x B;Q :: z:C
(∀2L)

Ω; Γ; ∆ ` new x.((X ← input x;P ) ‖ (output x B;Q)) :: z:C
(CUT)

=⇒
Ω; Γ; ∆ ` P{B/X} :: x:A{B/X} Ω; Γ; ∆, x:A{B/X} ` Q :: z:C

Ω; Γ; ∆ ` new x.(← P{B/X} ‖ Q) :: z:C
(CUT)

Which results in the following SSOS rule:

(TCOM) exec (output c B;P )⊗ exec (X ← input c;QX)( {exec (P )⊗ exec (QB)}

The π-calculus assignment mimics the process expression assignment, requiring an extension of the
π-calculus with the ability to communicate session types:

Ω, X; Γ; ∆⇒ P :: z:A

Ω; Γ; ∆⇒ z(X).P :: z:∀X.A
(∀2R)

Ω ` B type Ω; Γ; ∆, x:A{B/X} ⇒ Q :: z:C

Ω; Γ; ∆, x:∀X.A⇒ x〈B〉.Q :: z:C
(∀2L)

Ω ` B type Ω; Γ; ∆⇒ P :: z:A{B/X}
Ω; Γ; ∆⇒ z〈B〉.P :: z:∃X.A

(∃2R)
Ω, X; Γ; ∆, x:A⇒ Q :: z:C

Ω; Γ; ∆, x:∃X.A⇒ x(X).Q :: z:C
(∃2L)
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3.5.1 Example

Consider the following session type:

CloudServer , ∀X.!(api( X)( !X

The CloudServer type represents a simple interface for a cloud-based application server. In our theory,
this is the session type of a system which first inputs an arbitrary type (say GMaps); then inputs a shared
service of type api ( GMaps. Each instance of this service yields a session that when provided with the
implementation of an API will provide a behavior of type GMaps; finally becoming a persistent (shared)
server of type GMaps. Our application server is meant to interact with developers that, by building upon the
services it offers, implement their own applications. In our framework, the dependency between the cloud
server and applications may be expressed by the typing judgment

· ; x:CloudServer ` DrpBox :: z:dbox

Intuitively, the judgment above states that to offer behavior dbox on z, the file hosting service represented
by process DrpBox relies on a linear behavior described by type CloudServer provided on x (no persis-
tent behaviors are required). The crucial role of behavioral genericity should be clear from the following
observation: to support interaction with developers such as DrpBox—which implement all kinds of behav-
iors, such as dbox above—any process realizing type CloudServer should necessarily be generic on such
expected behaviors, which is precisely what we accomplish here through our logical foundation.

A natural question to ask is whether or not a theory of parametricity as that for the polymorphic λ-
calculus exists in our setting, given our development of impredicative polymorphism in a way related to
that present in the work of Reynolds [65]. We answer positively to this question in Part III, developing a
theory of parametricity for polymorphic session types as well as the natural notion of equivalence that arises
from parametricity (Section 6.2.2), showing it coincides with the familiar process calculus notion of (typed)
barbed congruence in Chapter 7.

3.6 Metatheoretical Properties

As was the case for our study of first-order linear logic as a (value) dependent session-typed language, we
revisit the analysis of the correspondence between process expressions and the π-calculus, type preservation
and global progress, now in the presence of polymorphic sessions.

3.6.1 Correspondence between process expressions and π-calculus processes

As before, we must define a translation between our polymorphic process expressions and a polymorphic π-
calculus (i.e.,a π-calculus with type input and output prefixes). The reduction semantics of this polymorphic
π-calculus consist of those in Def. 2, extended with the following reduction rule (whereA is a session type):

z〈A〉.P | z(X).Q −→ P | Q{A/X}

The labelled transition semantics (Def. 3) are extended accordingly, with the type output and input action
labels and the respective transitions:

α ::= · · · | x〈A〉 | x(A)
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x〈A〉.P x〈A〉−−−→ P (TOUT) x(Y ).P
x(A)−−−→ P{A/Y } (TIN)

The translation from process expressions to processes is extended accordingly:

P  Q̂

X ← input y;P  y(X).P̂

output y A;P  y〈A〉.P̂

Again, since we have a strict one-to-one correspondence between the π-calculus reduction rule and
the SSOS rule, revisiting the static and dynamic correspondence results is straightforward (we write Θ for
process expression execution states to avoid confusion with the new typing context Ω).

Theorem 16 (Static Correspondence - Process Expressions to π-calculus). If Ω; Γ; ∆ ` P :: z:A then there
exists a π-calculus process Q̂ such that P  Q̂ with Ω; Γ; ∆⇒ Q̂ :: z:A.

Theorem 17 (Static Correspondence - π-calculus to Process Expressions). If Ω; Γ; ∆⇒ P :: z:A then there
exists a process expression Q̂ such that P  −1 Q̂ with Ω; Γ; ∆ ` Q̂ :: z:A.

Theorem 18 (Simulation of SSOS Executions). Let Ω; Γ; ∆ ` P :: z:A, with exec P z A −→1,2 Θ. We
have that P  P̂ , such that the following holds:

(i) Either, P̂ −→ Q, for some Q, with Θ ≡ Q

(ii) Or, Θ Q, for some Q, such that P̂ ≡ Q.

Theorem 19 (Simulation of π-calculus Reduction). Let Ω; Γ; ∆ ⇒ P :: z:A with P −→ Q. We have that
P  −1 P̂ such that exec P̂ z A −→+ Θ with Θ ≡ Q.

3.6.2 Type Preservation

As before, we first establish a reduction lemma for the polymorphic universal and existential types, with the
caveat that the type in the action labels is well-formed in the appropriate context.

Lemma 18 (Reduction Lemma - ∀2). Assume

(a) Ω; Γ; ∆1 ⇒ P :: x:∀X.A with P
x(B)−−−→ P ′ and Ω ` B type

(b) Ω; Γ; ∆2, x:∀X.A⇒ Q :: z:C with Q
x〈B〉−−−→ Q′ and Ω ` B type

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ω; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. See Appendix A.3.

Lemma 19 (Reduction Lemma - ∃2). Assume

(a) Ω; Γ; ∆1 ⇒ P :: x:∃X.A with P
x〈B〉−−−→ P ′ and Ω ` B type
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(b) Ω; Γ; ∆2, x:∃X.A⇒ Q :: z:C with Q
x(B)−−−→ Q′ and Ω ` B type

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ω; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. See Appendix A.3.

Following the lines of the reformulation of Lemma 40 to Lemma 15, we can characterize the action
labels as a result of the polymorphic typing. For the sake of not being overly redundant, we omit the
reformulation of this lemma, noting that offering a polymorphic universal entails a type input action and
using a polymorphic universal entails a type output action (the dual holds for the polymorphic existential).
We can now extend the type preservation result as before.

Theorem 20 (Type Preservation). If Ω; Γ; ∆⇒ P :: x:A and P −→ Q then Ω; Γ; ∆⇒ Q :: x:A

Proof. By induction on typing. As in Theorem 6, when the last rule is an instance of cut, we appeal to the
appropriate reduction lemmas for the given cut formula. In this setting we have two new sub-cases, one
pertaining to a principal cut where the involved type is ∀X.B and another where the type is ∃X.B, each
following from Lemmas 18 and 19, respectively, as in Theorem 12. The remainder of the proof follows as
before.

3.6.3 Global Progress

Unsurprisingly, our framework is robust enough to account for progress in our new polymorphic session-
typed setting. The technical development follows the same pattern as before: we first establish a contextual
progress lemma that characterizes precisely the behavior of typed, live processes, from which our global
progress result follows.

Lemma 20 (Contextual Progress). Let Ω; Γ; ∆⇒ P :: z:C. If live(P ) then there is Q such that one of the
following holds:

(a) P −→ Q

(b) P α−→ Q for some α where s(α) ∈ z,Γ,∆

Proof. The proof is as that of Lemma 11.

Theorem 21 (Global Progress). Let ·; ·; · ⇒ P :: x:1. If live(P ) then there is Q such that P −→ Q.

3.7 Summary and Further Discussion

In this chapter we have further justified our use of linear logic as a logical foundation for message-passing
concurrent computation by going beyond propositional linear logic (Chapter 2) and studying concurrent
interpretations of both first-order and second-order intuitionistic linear logic as (value) dependent session
types and polymorphic session types, respectively, as a testament of the flexibility of our logically grounded
approach. We have also considered extensions of the dependently-typed framework with proof irrelevance
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and modal affirmation to account for notions of trust and (abstract) digital proof certificates, in order to
further solidify the modularity of our logical foundation.

Our particular choice of first and second-order linear logic arose from an attempt to mimic the Curry-
Howard correspondence between typed λ-calculi and intuitionistic logic.

For the first-order case, we have opted for a stratification between the concurrent layer (linear logic) and
the type indices, thus providing a form of value dependencies which express rich properties of exchanged
data at the interface level, an important extension when considering concurrent and distributed settings.

In the second-order setting, our development mimics rather closely that of the polymorphic λ-calculus,
except we replace type abstraction with session-type (or protocol) communication. It is often the case in
polymorphic λ-calculi that the explicit representation of types in the syntax is avoided as much as possible
for the sake of convenience. We opt for an opposite approach given our concurrent setting: we make explicit
the behavioral type abstractions by having process expressions exchange these behavioral descriptions as
first-order values, which is not only reasonable but realistic when we consider scenarios of logically and
physically distributed agents needing to agree on the behavioral protocols they are meant to subsequently
adhere to.



Part II

Towards a Concurrent Programming
Language
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Our development up to this point focused on providing logically motivated accounts of relevant concur-
rent phenomena. Here we take a different approach and exploit its ability to express concurrent computation
to develop a simple yet powerful session-based concurrent programming language based on the process ex-
pression assignment developed in the previous sections, encapsulating process expressions in a contextual
monad embedded in a λ-calculus.

Clearly this is not the first concurrent programming language with session types. Many such languages
have been proposed over the years [32, 43, 38, 12]. The key aspect that is lacking from such languages
is a true logical foundation, with the exception of Wadler’s GV [81]. This makes the metatheory of such
languages substantially more intricate, and often the properties obtained “for free” due to logic cannot
easily be replicated in their setting. The key difference between the language developed here and that of
[81] is that we combine functions and concurrency through monadic encapsulation, whereas GV provides
no such separation. This entails that the entirety of GV is itself linear, whereas the language developed
here is not. Another significant difference between the two approaches is that the underlying type theory
of GV is classical, whereas ours is intuitionistic. Monads are intuitionistic in their logical form [29], which
therefore makes the intuitionistic form of linear logic a particularly good candidate for a monadic integration
of functional and concurrent computation based on a Curry-Howard correspondence. We believe our natural
examples demonstrate this clearly.

We note that our language is mostly concerned with the concurrent nature of computation, rather than
the issues that arise when considering distribution of actual executing code. We believe it should be possible
to give a precise account of both concurrency and explicit distribution of running code by exploring ideas
of hybrid or modal logic in the context of our linear framework, similar to that of [54], where worlds in the
sense of modal logic are considered as sites where computation may take place. One of the key aspects of
our development that seems to align itself with this idea is the identification of running processes with the
channel along which they offer their intended behavior, which provide a delimited running object that may
in principle be located in one of these sites.
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Chapter 4

Contextual Monadic Encapsulation of
Concurrency

The process expression assignment developed throughout this document enables us to write expressive con-
current behavior, but raises some issues when viewed as a proper programming language. In particular, it
is not immediately obvious how to fully and uniformly incorporate the system into a complete functional
calculus to support higher-order, message-passing concurrent computation. Moreover, its not clear how sig-
nificantly our session-based (typed) communication restricts the kinds of programs we are allowed to write,
or how easy it is to fully combine functional and concurrent computation while preserving the ability to
reason about programs in the two paradigms.

To address this challenge we use a contextual monad to encapsulate open concurrent computations,
which can be passed as arguments in functional computation but also communicated between processes
in the style of higher-order processes, providing a uniform integration of both higher-order functions and
concurrent computation. For expressiveness and practicality, we allow the construction of recursive process
expressions, which is a common motif in realistic applications.

The key idea that motivates the use of our contextual monad is that we can identify an open process
expression as a sort of “black box”: if we compose it with process expressions implementing the sessions
required by the open process expression, it will provide a session channel along which it implements its
specified behavior. If we attempt to simply integrate process expressions and functional terms outright, it is
unclear how to treat session channels combined with ordinary functional variables. One potential solution
is to map channels to ordinary functional variables, forcing the entire language to be linear, which is a
significant departure from typical approaches. Moreover, even if linear variables are supported, it is unclear
how to restrict their occurrences so they are properly localized with respect to the structure of running
processes. Thus, our solution consists of isolating process expressions from functional terms in such a way
that each process expression is bundled with all channels (both linear and shared) it uses and the one that it
offers.

69
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τ, σ ::= τ → σ | . . . | ∀t. τ | µt. τ | t (ordinary functional types)
| {ai:Ai ` a:A} process offering A along channel a,

using channels ai offering Ai

A,B,C ::= τ ⊃ A input value of type τ and continue as A
| τ ∧A output value of type τ and continue as A
| A( B input channel of type A and continue as B
| A⊗B output fresh channel of type A and continue as B
| 1 terminate
| &{lj :Aj} offer choice between lj and continue as Aj
| ⊕{lj :Aj} provide one of the lj and continue as Aj
| !A provide replicable service A
| νX.A | X recursive session type

Figure 4.1: The Syntax of Types

4.1 Typing and Language Syntax

The type structure of the language is given in Fig. 4.1, separating the types from the functional language,
written τ, σ from session types, written A,B,C. The most significant type is the contextual monadic type
{ai:Ai ` a:A}, which types monadic values that encapsulate session-based concurrency in the λ-calculus.
The idea is that a value of type {ai:Ai ` a:A} denotes a process expression that offers the session A
along channel a, when provided with sessions a1:A1 through an:An (we write {a:A} when the context
regions are empty). The language of session types is basically the one presented in the previous sections of
this document, with the ability to send and receive values of functional type (essentially a non-dependent
version of ∀ and ∃ from Section 3.1), with n-ary labelled versions of the choice and selection types and
with recursive session types. One subtle point is that since monadic terms are seen as opaque functional
values, they can be sent and received by process expressions, resulting in a setting that is reminiscent of
higher-order processes in the sense of [68].

Our language appeals to two typing judgments, one for functional terms which we write Ψ 
 M :τ ,
where M is a functional term and Ψ a context of functional variables; and another for process expressions
Ψ; Γ; ∆ ` P :: z:A, as before. For convenience of notation, we use ∆ = lin(ai:Ai) to denote that the
context ∆ consists of the linear channels ci:Ai in ai:Ai; and Γ = shd(ai:Ai) to state that Γ consists of the
unrestricted channels !ui:Ai in ai:Ai.

To construct a value of monadic type, we introduce a monadic constructor, typed as follows:

∆ = lin(ai:Ai) Γ = shd(ai:Ai) Ψ; Γ; ∆ ` P :: c:A

Ψ 
 c← {Pc,ai} ← ai:Ai : {ai:Ai ` c:A}
{ }I

We thus embed process expressions within the functional language. A term of monadic type consists of
a process expression, specifying a channel name along which it offers its session and those it requires to
be able to offer said session. Typing a monadic value requires that the underlying process expression be
well-typed according to this specification.
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To use a value of monadic type, we extend the process expression language with a form of contextual
monadic composition (in Haskell terminology, with a monadic bind):

∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ 
M : {ai:Ai ` c:A} Ψ; Γ; ∆′, c:A ` Qc :: d:D

Ψ; Γ; ∆,∆′ ` c←M ← ai;Qc :: d:D
{ }E

Thus, only process expressions may actually “unwrap” monadic values, which are opaque values from the
perspective of the functional language. In a monadic composition, the monadic term M is provided with
the channels ai required to run the underlying process expression. When the evaluation of M produces
the actual monadic value, it is composed in parallel with the process expression Q, sharing a fresh session
channel along which the two processes may interact.

The SSOS rule for monadic composition is:

exec (c←M ← ai;Qc)⊗ !evalM (c← {Pc,ai} ← ai)( {∃c′. exec (Pc′,ai)⊗ exec (Qc′)}

Executing a monadic composition evaluates M to a value of the appropriate form, which must contain a
process expression P . We then create a fresh channel c′ and execute Pc′,ai itself, in parallel with Qc′ . In the
underlying value of M , the channels c and ai are all bound names, so we rename them implicitly to match
the interface of M in the monadic composition.

One interesting aspect of monadic composition is that it subsumes the process composition constructs
presented in the previous sections (proof-theoretically this is justified by the fact that monadic composition
effectively reduces to a cut). Given this fact, in our language we omit the previous process composition
constructs and enable composition only through the monad.

On the Monadic Nature of the Monad We have dubbed our construction that embedding session-based
concurrency in a functional calculus a contextual monad. In general, a monad consists of a type constructor
supporting two operations usually dubbed return and bind. The return operation allows for terms of the
language to be made into monadic objects. The bind operation is a form of composition, which unwraps a
monadic object and injects its underlying value into another. These operations are expected to satisfy certain
natural equational laws: return is both a left and right unit for bind, with the latter also being associative.

However, from a category-theoretic perspective, monads are endomorphic constructions so it is not
immediately obvious that our construct, bridging two different languages1 does indeed form a monad. While
a proper categorical analysis of our construct is beyond the scope of this work, we point the interested
reader to the work of Altenkirch et al. [5] on so-called relative monads, which are monadic constructions
for functors that are not endomorphic, and to the work of Benton [9] which defines a pair of functors which
form an adjunction between intuitionistic and linear calculi.

Informally, we argue for the monadic-like structure and behavior of our construction (as an endomor-
phism) by considering the type {c:τ ∧ 1}; a return function of type τ → {c:τ ∧ 1}; which given an M
element of type τ constructs a process expression that outputsM and terminates; and a bind function of type
{c:τ ∧ 1} → (τ → {d:σ ∧ 1}) → {d:σ ∧ 1}, which given a monadic object P : {c:τ ∧ 1} and a function
f : τ → {d:σ ∧ 1} produces a process expression that first executes P , inputting from it a value M of type
τ , enabling the execution of f applied to M , which we then forward to d satisfying the type of bind.

1It is known that simply-typed λ-calculus with βη-equivalence is the internal language of cartesian closed categories, whereas
linear typing disciplines of λ-calculus are associated with closed symmetric monoidal categories.
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It is easy to informally see that these two functions satisfy the monad laws: bind (return V ) f results in
a process expression that is observably identical to f V , since that is precisely what bind does, modulo some
internal steps (left unit); bind P return results in a process expression that behaves identically to P , given
the resulting process will run P , receive from it some value τ which is then passed to the return function,
constructing a process expression that behaves as P (right unit). Associativity of bind is straightforward.

Process Expression Constructors The remainder of the constructs of the language that pertain to the con-
current layer are those of our process expression language, with a few minor conveniences. Value input and
output uses the same constructs for the first-order quantifiers of Section 3.1, but without type dependencies.
The choice and selection constructs are generalized to their n-ary labelled version, and so we have:

Ψ; Γ; ∆ ` P1 :: c:A1 . . . Ψ; Γ; ∆ ` Pk :: c:Ak

Ψ; Γ; ∆ ` case c of lj ⇒ Pj :: c: & {lj : Aj}
&R

Ψ; Γ; ∆, c:Aj ` P :: d:D

Ψ; Γ; ∆, c: & {lj : Aj} ` c.lj ;P :: d:D
&L

The rules for ⊕ are dual, using the same syntax.
The full typing rules for process expressions and the contextual monad are given in Fig. 4.2. Given that

monadic composition subsumes direct process expression composition, we distinguish between linear and
shared composition through rules {}E and {}E!. The latter, reminiscent of a persistent cut, requires that
the monadic expression only make use of shared channels and offer a shared channel !u, which is used in Q
accordingly (via copy). The operational semantics for this form of composition will execute the underlying
process expression by placing an input-guarded replication prefix, identical to the operational behavior of
cut! of the previous sections. The remainder of the constructs of the language follow precisely the typing
schemas we have presented earlier. We highlight the rules for value communication (those pertaining to ∧
and ⊃) which mimic the rules for ∀ and ∃ of Section 3.1 but without the type dependencies.

4.2 Recursion

The reader may then wonder how can recursive session types be inhabited if we do not extend the process
expression language with a recursor or the typical fold and unfold constructs. Indeed, our process expression
language does not have a way to internally define recursive behavior. Instead, we enable the definition
of recursive process expressions through recursion in the functional language combined with the monad,
expressed with a fixpoint construct which is typed as follows:

∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ, F :τ → {ai:Ai ` c:νX.A}, x:τ ; Γ; ∆ ` P :: c:A{νX.A/X}
Ψ 
 (fix F x = c← {P} ← ai:Ai) : τ → {ai:Ai ` c:νX.A}

The fixpoint construct above allows us to define a recursive process expression parameterized by a functional
argument of type τ , for convenience. To type such a fixpoint, we must be able to type the underlying process
expression in the appropriate context, offering the unfolded recursive type, where F stands for the recursive
definition itself and x for the parameter.
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∆ = lin(ai:Ai) Γ = shd(ai:Ai) Ψ; Γ; ∆ ` P :: c:A

Ψ 
 c← {Pc,ai} ← ai:Ai : {ai:Ai ` c:A}
{ }I

∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ 
M : {ai:Ai ` c:A} Ψ; Γ; ∆′, c:A ` Qc :: d:D

Ψ; Γ; ∆,∆′ ` c←M ← ai;Qc :: d:D
{ }E

Γ ⊆ !ui:Bi Ψ 
M : {!ui:Bi ` !u:A} Ψ; Γ, u:A; ∆ ` Q!u :: c:C

Ψ; Γ; ∆ ` !u←M ← !ui;Q!u :: c:C
{ }E!

Ψ 
M : τ Ψ; Γ; ∆ ` P :: c:A

Ψ; Γ; ∆ ` output c M ;P :: c:τ ∧A ∧R

Ψ, x:τ ; Γ; ∆, c:A ` Qx :: d:D

Ψ; Γ; ∆, c:τ ∧A ` x← input c;Qx :: d:D
∧L

Ψ, x:τ ; Γ; ∆ ` Qx :: c:A

Ψ; Γ; ∆ ` x← input c;Qx :: c:τ ⊃ A ⊃R

Ψ 
M : τ Ψ; ∆, c:A ` P :: d:D

Ψ; Γ; ∆, c:τ ⊃ A ` output c M ;P :: d:D
⊃L

Ψ; Γ; · ` close c :: c:1
1R

Ψ; Γ; ∆ ` P :: d:D

Ψ; Γ; ∆, c:1 ` wait c;P :: d:D
1L

Ψ; Γ; ∆ ` Pd :: d:A Ψ; Γ; ∆′ ` Q :: c:B

Ψ; Γ; ∆,∆′ ` output c (d.Pd);Q :: c:A⊗B ⊗R

Ψ; Γ; ∆, d:A, c:B ` Rd :: e:E

Ψ; Γ; ∆, c:A⊗B ` d← input c;Rd :: e:E
⊗L

Ψ; Γ; ∆, d:A ` Rd :: c:B

Ψ; Γ; ∆ ` d← input c;Rd :: c : A( B
(R

Ψ; Γ; ∆ ` Pd :: d:A Ψ; Γ; ∆′, c:B ` Q :: e:E

Ψ; Γ; ∆,∆′, c:A( B ` output c (d.Pd);Q :: e:E
(L

Ψ; Γ; · ` Pd :: d:A

Ψ; Γ; · ` output c !(d.Pd) :: c:!A
!R

Γ, u:A; ∆ ` Qu :: d:D

Γ; ∆, c:!A ` !u← input c;Qu :: d:D
!L

Ψ; Γ; d:A ` fwd c d :: c:A
id

Ψ; Γ, u:A; ∆, c:A ` Qc :: d:D

Ψ; Γ, u:A; ∆ ` c← copy !u;Qc :: d:D
copy

Figure 4.2: Typing Process Expressions and the Contextual Monad.
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At the level of process expressions, we have an equi-recursive left rule for recursive types that silently
unfolds the recursive type:

Ψ; Γ; ∆, d:A{νX.A/X} ` P :: c:C

Ψ; Γ; ∆, d:νX.A ` P :: c:C
νL

The operational semantics of the fixpoint simply consist of the unfolding of the recursive definition to a
λ-abstraction that produces a monadic value when given the appropriate functional parameter, instantiating
the recursive occurrence appropriately.

!eval (fix F x = c← {P} ← ai:Ai) (λx.c← {P{(fix F x = c← {P} ← ai:Ai)/F}} ← ai:Ai)

To clarify our take on recursive process expression definitions, consider the following session type that
encodes an infinite stream of integers (for convenience, we assume a type definition mechanism in the style
of ML or Haskell, distinguishing between functional and session type definitions with type and stype,
respectively):

stype intStream = nu X.int /\ X

In order to produce such a stream, we write a recursive function producing a process expression:

nats : int -> {c:intStream}
c <- nats x =
{ output c x

c’ <- nats (x+1)
fwd c c’ }

This an example of a (recursive) function definition that produces a process expression. We take some
liberties with the syntax of these definitions for readability. In particular, we list interface channels on the
left-hand side of the definition and omit the explicit fixpoint construct. We also omit the semicolon that
separates actions from their process expression continuation, using a new line for readability.

Since the recursive call must be accomplished via monadic composition, it will execute a new process
expression offering along a fresh channel c’. Both for conciseness of notation and efficiency we provide
a short-hand: if a tail-call of the recursive function provides a new channel which is then forwarded to the
original offering channel, we can reuse the name directly, making the last line of the function above simply
c <- nats (x+1). Superficially, it looks as if, for example, calling nats 0 might produce an infinite
loop. However, given that communication in our language is synchronous, the output will block until a
matching consumer inputs the numbers.

To showcase the flexibility of the contextual nature of the monad, we now construct a stream transducer.
As an example, we write a filter that takes a stream of integers and produces a stream of integers, retaining
only those satisfying a given predicate q : int → bool. In the code below we use a case analysis construct
in the expression language for conciseness of presentation (this is easily encoded via case analysis in the
functional layer, at the cost of added redundancy in the process expression definition).

filter : (int -> bool) -> { c:intStream |- d:intStream }
d <- filter q <- c =
{ x <- input c
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M,N ::= λx:τ.Mx |M N | . . . (usual functional constructs)
| a← {Pa,ai} ← a1, . . . , an process providing a, using a1, . . . , an

P,Q ::= a←M ← a1, . . . , an;Pa compose process computed by M
in parallel with Pa, communicating
along fresh channel a

| x← input c;Qx input a value x along channel c
| output c M ;P output value of M along channel c

| d← input c;Qd input channel d along channel c
| output c (d.Pd);Q output a fresh channel d along c

| close c close channel c and terminate
| wait c;P wait for closure of c

| output c !(d.Pd) output a replicable d along c and terminate
| !u← input c;Q!u input shared channel u along c

| case c of lj ⇒ Pj branch on selection of lj along c
| c.lj ;P select label lj along c

| c← copy !u;Pc spawn a copy of !u along c

| fwd c1 c2 forward between c1 and c2

Figure 4.3: Language Syntax.

case q x
of true => output d x

d <- filter q <- c
| false => d <- filter q <- c }

Note that the filter function is recursive, but is not a valid coinductive definition unless we can show that
filter will be true for infinitely many elements of the stream.

To review, we summarize the syntax of our language in Fig 4.3. As we have previously mentioned, an
important aspect of our monadic integration is that it enables process expressions to be communicated as
values by other process expressions. We showcase this feature (among others) in Section 4.3 below.

4.3 Examples

In this section we present three examples to showcase the expressiveness and flexibility of our concurrent
programming language. We will show how to define two different implementations of stacks using monadic
processes and how our logical foundation enables the development of simple and arguably elegant pro-
grams. Secondly, we will describe the implementation of a binary counter as a network of communicating
processes. Finally, we present a high-level implementation of an “app store”, showcasing the ability of send-
ing, receiving and executing process expressions (in the sense of higher-order process calculi), contrasting
previous work where only purely functional values could be exchanged in communication [75].
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For simplicity and readability we take some syntactic freedoms in the examples below. We write
Or {...} as concrete syntax for ⊕{. . . }; t => s as concrete syntax for t ⊃ s; t /\ s as concrete
syntax for t∧ s; and Choice {...} as concrete syntax for &{. . .}. We will also assume some basic data
types in the functional layer for convenience (such as unit, naturals, lists, data polymorphism, etc.).

4.3.1 Stacks

We begin by defining the type for a stack session type:

stype Stack t = Choice {push: t => Stack t
pop: Or {none: unit /\ Stack t

some:t /\ Stack t}
dealloc: 1}

The Stack recursive type denotes a channel along which a process offers the choice between three oper-
ations: push, which will then expect the input of an element that will be the new top of the stack; pop,
which outputs either the top element or unit (if the stack is empty); and dealloc, which fully deallocates
the stack and thus has type 1.

We present two distinct implementations of type Stack: stack1 makes use of functional lists to
maintain the stack; the second implementation stack2, more interestingly, makes use of a process version
of a list to implement the stack as a network of communicating processes.

stack1 : list t -> {c:Stack t}
c <- stack1 nil = | c <- stack1 (v::l) =
{ case c of { case c of

push => v <- input c push => v’ <- input c
c <- stack1 (v::nil) c <- stack1 (v’::v::l)

pop => c.none pop => c.some
output c () output c v
c <- stack1 nil c <- stack1 l

dealloc => close c } dealloc => close c }

The code above consists of a function, taking a list and producing a monadic object indexed by the given
list. We define the function by branching on the structure of the list, as usual. We can, for instance, create
an empty stack by calling stack1 with the empty list.

To produce our second implementation of a stack, we first define a concurrent implementation of a list.
We start with the specification of the session types.

A process expression of type List can either behave as the empty list (i.e. offer no behavior) or as a
list with a head and a tail, modelled by the output of the head element of the list, followed by the output of
a fresh channel consisting of the handle to the tail list process. For convenience and generality, the session
type employs data polymorphism in the elements maintained in the list.

stype List t = Or {nil: 1, cons: t => (List t * 1)}

We can now define two functions, Nil and Cons: the first produces a process expression that corre-
sponds to the empty list and the second, given a value v of type t will produce a process expression that
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deallocList : unit -> {l:List t |- c:1}
c <- deallocList () <- l =
{ case l of

nil => wait l
close c

cons => v <- input l
l’ <- input l
wait l
c <- deallocList () <- l’ }

Figure 4.4: List Deallocation.

expects to interact with a channel l denoting a list of t’s, such that it will implement, along channel c, a
new list with v as its head.

Nil : unit -> {c:List t} Cons : t -> {l:List t |- c:List t}
c <- Nil () = c <- Cons v <- l =
{ c.nil { c.cons
close c output c v

} output c (l’. fwd l l’)
close c }

Note that the Cons function, after sending the cons label along channel c and outputting v, it will output
a fresh channel l’ that is meant to represent the tail of the list, which is actually present along channel l.
Thus, the function will also spawn a process expression that will forward between l and l’.

Having defined a concurrent implementation of a list, we may now use it to define our second implemen-
tation of a concurrent stack. We begin by defining a function deallocList (Fig. 4.4), whose purpose is
to fully terminate a process network implementing a list. This entails recursively consuming the list session
and terminating it.
We define our second stack implementation by making use of the Cons, Nil and deallocList func-
tions. Thus, function stack2 produces a monadic stack process with a process network implementing the
list itself (Fig. 4.5). The monadic process expression specified in Fig. 4.5 begins by offering the three stack
operations: push, pop and dealloc. The first inputs along the stack channel the element that is to be
pushed onto the stack and calls on the Cons function to produce a monadic expression that appends to the
list session l the new element, binding the resulting list process to l′ and making a recursive call. The pop
case needs to branch on whether or not the list session l encodes the empty list. If such is the case (nil), it
waits for the termination of l, signals that the stack is empty and calls upon the Nil function to reconstruct
an empty list for the recursive call; if not (cons), it inputs the element from the list session and the contin-
uation list l′. It then outputs the received element and proceeds recursively. Finally, deallocList calls
out to the list deallocation function.

4.3.2 A Binary Counter

As in our stack example above, we begin with the interface type:
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stack2 : unit -> {l:List t |- c:Stack t }
c <- stack2 () <- l =
{ case c of
push => v <- input c

l’ <- Cons v <- l
c <- stack2 <- l’

pop => case l of
nil => wait l

c.none
output c ()
l’ <- Nil ()
c <- stack2 () <- l’

cons => v <- input l
l’ <- input l
wait l
c.some
output c v
c <- stack2 () <- l’

dealloc => c <- deallocList () <- l }

Figure 4.5: A Concurrent Stack Implementation.

stype Counter = Choice {inc: Counter
val: nat /\ Counter
halt: 1}

The Counter session type provides three operations: an inc operation, which increments its internal state;
a val operation, which just outputs the counter’s current value and a halt operation which terminates the
counter.

One way to implement such a counter is through a network of communicating processes, each storing
a single bit of the bit string that encodes the value of the counter. We do this by defining two mutually
recursive functions epsilon and bit. The former encodes the empty bit string, abiding to the counter
interface. Notably, in the inc branch, a new bit process is spawned with value 1. To do this, we make
a recursive call to the epsilon function, bound to channel d, and then simply call the bit function with
argument 1, also providing it with the channel d.

The bit function (Fig. 4.6) encodes an actual bit element of the bit string. It takes a number as an
argument which is the 1 or 0 value of the bit and constructs a process expression that provides the counter
interface along channel c by having access to the process encoding the previous bit in the string along
channel d.
A bit b outputs the counter value by polling the previous bit for its counter value n and then outputting
2n+ b. This invariant ensures an adequate binary encoding of the counter. Termination triggers the cascade
termination of all bits by sending a termination message to the previous bit, waiting on the channel and then
terminating. The increment case simply recurses with value 1 if the bit is 0; otherwise it sends an increment
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bit : nat -> {d:Counter |- c:Counter}
c <- bit b <- d =
{ case c of

inc => case b of
0 => c <- bit 1 <- d
1 => d.inc

c <- bit 0 <- d
val => d.val

n <- input d
output c (2*n+b)
c <- bit b <- d

halt => d.halt
wait d
close c }

epsilon : unit -> {c:Counter}
c <- epsilon () =
{ case c of

inc => d <- epsilon ()
c <- bit 1 <- d

val => output c 0
c <- epsilon ()

halt => close c }

Figure 4.6: A Bit Counter Network.
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message to the previous bit to encode the carry and recurses with value 0.

4.3.3 An App Store

Consider an App Store service that sells applications to its customers. These applications are not necessarily
functional programs, in that they may communicate with the outside world.

In our example, the store offers a variety of different applications, themselves concurrent programs that
rely on a remote API. Each store instance sends its client the application of choice as a monadic object and
then terminates. The client can then run the application (in this scenario, all applications rely on a remote
API, but the weather application also relies on a GPS module). The session types for the app. store and
the weather app. are as follows:

stype Weather = Or{sun:Weather , rain:Weather , cloudy:Weather}
stype AppStore = !Choice{weather: payInfo =>

{d:API,g:GPS |- c:Weather} /\ 1,
travel: payInfo =>

{d:API |- c:Travel} /\ 1,
game: payInfo =>

{d:API |- c:Game} /\ 1}

The App Store service is represented as a replicated session since each Client-Store interaction is a
separate, independent session with a finite behavior, even though the store itself is a persistent service that
can be accessed by an arbitrary number of clients. On the other hand, the weather application offers a
recursive session that can continuously inform the client of the current weather conditions.

Below we show the code for a client that downloads and runs the weather application, by appealing
to some library function to enable its GPS module and then plugging all the components together (the GPS
module interface along channel g, the API on channel d and the application itself, bound to w) and executing
the received application through monadic composition.

ActivateGPS : unit -> {g:GPS}
WeatherClient : unit -> {!u:AppStore,d:API |- c:Weather}
c <- WeatherClient () <- !u,d = { s <- copy !u

s.weather
w <- input s
wait s
g <- ActivateGPS ()
c <- w <- d,g }

This simple example shows how cleanly we can integrate communication and execution of open, process
expressions in our language. It is relatively easy to extend this example to more complex communication
interfaces.

4.4 Connection to Higher-Order π-calculus

As the example of Section 4.3.3 shows, our language can easily encode process passing. Thus, the connec-
tion of our language with a variant of the π-calculus can only be achieved via a π-calculus with higher-order
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∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ

Ψ; Γ; ∆⇒ P :: c:A....
Ψ 
M : {ai:Ai ` c:A} Ψ; Γ; ∆′, c:A⇒ Q :: z:C

Ψ; Γ; ∆,∆′ ⇒ spawn(M ; ai;Q) :: z:C
=⇒

Ψ; Γ; ∆⇒ P :: c:A Ψ; Γ; ∆′, c:A⇒ Q :: z:C

Ψ; Γ; ∆,∆′ ⇒ (νc)(P | Q) :: z:C
cut

Figure 4.7: Monadic Composition as Cut

process features. The higher-order features of the calculus rely on the ability to communicate and execute
processes as monadic values, using a dedicated construct which we dub spawn, similar to run in [53] or b?c
in the higher-order calculi of [68].

The spawn π-calculus primitive allows for the execution of monadic values and is written as
spawn(M ; a1, . . . , an; a.P ), where a1, . . . , an denote the ambient channels required for the execution of
the process expression underlying M , and a the channel that will be generated for the interactions with P ,
allowing for the execution of higher-order code. The operational semantics of spawn consists of evaluating
M to a monadic value of the form a ← {Q} ← d1, . . . , dn and then composing Q in parallel with P ,
sharing a fresh name a, where d1 through dn in Q are instantiated with the channels a1 through an. The
typing rule is virtually identical to that of monadic composition. The typing rule for the spawn construct is:

∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ 
M : {ai:Ai ` a:A} Ψ; Γ; ∆′, a:A⇒ Q :: z:C

Ψ; Γ; ∆,∆′ ⇒ spawn(M ; ai; a.Q) :: z:C
(SPAWN)

Operationally, the reduction rule for spawn matches precisely the SSOS rule for monadic composition,
considering a big-step semantics for λ-terms since that is the strategy encoded in SSOS for convenience.
We recall that λ-terms are evaluated using a call-by-value strategy and that monadic objects are values of
the language.

spawn(c← {P} ← b; a; c.Q) −→ (νc)(P{a/b} | Q)

Using the cut rule we can justify the typing rule for spawn, shown pictorially in Fig. 4.7. Executing
spawn(M ; ai; a.Q) results in the parallel composition of Q with the process underlying M , sharing a local
name a. This composition under a name restriction matches precisely with the cut rule.

We thus develop a mapping from the process expressions of our language to higher-order processes (in
the sense described above) with term passing (as in the π-calculus of Section 3.3.1).

The translation from process expressions to processes  is extended with the following clause for
monadic composition:

P  Q̂

a←M ← a1, . . . , an;Pa  spawn(M ; a1, . . . , an; a.P̂a)

As before, our strict one-to-one correspondence of between π-calculus reduction rule and the SSOS rule
greatly simplifies the connection between the two languages.

Theorem 22 (Static Correspondence - Process Expressions to π-calculus). If Ψ; Γ; ∆ ` P :: z:A then there
exists a π-calculus process Q̂ such that P  Q̂ with Ψ; Γ; ∆⇒ Q̂ :: z:A.
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Theorem 23 (Static Correspondence - π-calculus to Process Expressions). If Ψ; Γ; ∆ ⇒ P :: z:A then
there exists a process expression Q̂ such that P  −1 Q̂ with Ψ; Γ; ∆ ` Q̂ :: z:A.

The simulation results for execution of process expressions and π-calculus reduction follow naturally.

Theorem 24 (Simulation of SSOS Executions). Let Ψ; Γ; ∆ ` P :: z:A, with exec P z A −→1,2 Θ. We
have that P  P̂ , such that the following holds:

(i) Either, P̂ −→ Q, for some Q, with Ω ≡ Q

(ii) Or, Ω Q, for some Q, such that P̂ ≡ Q.

Theorem 25 (Simulation of π-calculus Reduction). Let Ψ; Γ; ∆ ⇒ P :: z:A with P −→ Q. We have that
P  −1 P̂ such that exec P̂ z A −→+ Ω with Ω ≡ Q.

4.5 Metatheoretical Properties

In this section we study the standard metatheoretical properties of type preservation and global progress for
our language.

We note that from the perspective of the functional language, an encapsulated process expression is a
value and is not executed. Instead, functional programs can be used to construct concurrent programs which
can be executed at the top-level, or with a special built-in construct such as run, which would have type

run : {c:1} -> unit

Not accidentally, this is analogous to Haskell’s I/O monad [60].

4.5.1 Type Preservation

In the metatheoretical developments of previous sections we have established type preservation and progress
for the π-calculus mapping of our logical interpretation. We can develop similar arguments for our language,
adapting the reduction lemmas of Section 3.3.2 for ∀ and ∃ to our non-dependent versions (⊃ and ∧, respec-
tively):

Lemma 21 (Reduction Lemma - ⊃). Assume

(a) Ψ; Γ; ∆1 ⇒ P :: x:τ ⊃ A with P
x(V )−−−→ P ′ and Ψ 
 V :τ

(b) Ψ; Γ; ∆2, x:τ ⊃ A⇒ Q :: z:C with Q
x〈V 〉−−−→ Q′ and Ψ 
 V :τ

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ψ; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. The proof follow exactly the schema of the proof of Lemma 13, except there is no type dependency.

Lemma 22 (Reduction Lemma - ∧). Assume
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(a) Ψ; Γ; ∆1 ⇒ P :: x:τ ∧A with P
x〈V 〉−−−→ P ′ and Ψ ` V :τ

(b) Ψ; Γ; ∆2, x:τ ∧A⇒ Q :: z:C with Q
x(V )−−−→ Q′ and Ψ ` V :τ

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ψ; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. The proof follow exactly the schema of the proof of Lemma 14, except there is no type dependency.

Before establishing type preservation, we must establish that process reductions generated by the spawn
construct preserve typing.

Lemma 23. Assume

(a) Ψ; Γ; ∆⇒ spawn(V ; a1, . . . , an; a.P ) :: z:C, where V is a value.

(b) spawn(V ; a1, . . . , an; a.P ) −→ Q

Then:

(c) Ψ; Γ; ∆⇒ Q :: z:C

Proof. From (a) and inversion we know that the only possible reduction is:

spawn(c← {R} ← b; a1, . . . , an; a.P ) −→ (νc)(R{a/b} | P )

for some R. We also know that ∆ = ∆1,∆2 such that Ψ; Γ; ∆1 ⇒ R{a/b} :: c:A, for some A and that
Ψ; Γ; ∆2, c:A⇒ P :: z:C. We conclude by the cut rule.

We can thus show the following type preservation theorem.

Theorem 26 (Type Preservation).

(a) If Ψ 
M :τ and M −→M ′ then Ψ 
M ′:τ

(b) If Ψ; Γ; ∆⇒ P :: z:C and P −→ P ′ then Ψ; Γ; ∆⇒ P ′ :: z:C

Proof. By simultaneous induction on typing. The cases for (a) are standard in the literature, with the
exception of the case for the fixpoint construct which appeals to the i.h. (b).

The cases for process expressions, that is, those pertaining to (b), follow similarly to the proof of type
preservation for the extension with value dependent session types (Theorem 12) with two new cases for
spawn, one where the reduction is generated by evaluating the functional term M (which follows by i.h.
(a)) and another where the functional term is already a value and the reduction transforms spawn into a
parallel composition, which follows by Lemma 23.
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4.5.2 Global Progress

To establish a global progress result for the language we must extend the definition of a live process to
account for the spawn construct.

Definition 7 (Live Process). A process P is considered live, written live(P ), if and only if the following
holds:

live(P ) , P ≡ (νn(π.Q | R) for some π.Q,R, n
or P ≡ (νn)(spawn(M ;x;S) | R) for some M,x, S,R, n

where π.Q is a non-replicated guarded process with π 6= x〈〉 for any x.

In essence, the spawn construct always denotes a potential for further action and thus must be accounted
as a form of live process.

Global progress is established in a similar way to that of Section 3.3.3, but where progress in both
functional and concurrent layers are intertwined.

Lemma 24 (Contextual Progress).

(i) Let Ψ; Γ; ∆⇒ P :: z:C. If live(P ) then there is Q such that one of the following holds:

(a) P −→ Q

(b) P α−→ Q for some α where s(α) ∈ z,Γ,∆

(ii) Let Ψ 
M :τ then either M is a value or M −→M ′

Proof. By simultaneous induction on typing.

Our global progress property follows from Lemma 24 as before, holding even in the presence of higher-
order process passing and recursion in the sense described above, a previously open problem.

Theorem 27 (Global Progress). Let ·; ·; · ⇒ P :: x:1. If live(P ) then there is Q such that P −→ Q.



Chapter 5

Reconciliation with Logic

The language developed in the first sections of Chapter 4 departs from the full connection with linear logic
through the inclusion of potentially divergent behavior (i.e. non-terminating internal, unobservable com-
putations) in programs, which is inherently inconsistent with logical soundness. A practical consequence
of this disconnect is that plugging together subsystems, e.g. as a result of dynamic channel passing or of
linking downloaded (higher-order) code to local services as in the example of Section 4.3.3, may result in a
system actually unable to offer its intended services due to divergent behavior, even if the component sub-
systems are well-typed and divergence-free, that is, the language no longer has the property of compositional
non-divergence.

To recover the connections with logic and restore compositional non-divergence, while maintaining a
reasonable degree of expressiveness, we restrict general recursive session types to their logically sound
version of coinductive session types by eliminating general recursion and replacing it with corecursion (i.e.
recursion that ensures productivity of the coinductive definition). We achieve this by putting in place certain
syntactic constraints on the recursive definitions.

The nature of the syntactic constraints we impose on general recursion is in its essence similar to those
used in dependently-typed programming languages such as Agda [55] or the language of the Coq proof assis-
tant [74], however, the concurrent nature of process expressions introduces some interesting considerations.
For instance, in the following:

P : int -> {c:intStream}
c <- P n = { output c n

c’ <- P (n+1)
x <- input c’
fwd c c’ }

we have the definition of an integer stream that given an integer nwill output it along channel c. Afterwards,
a recursive call is made that is bound to a local channel c’. We then input from c’ and conclude by forward-
ing between the two channels. It turns out that this seemingly simple recursive definition is not productive.
A process interacting with P, after receiving the first integer would trigger an infinite sequence of internal
actions in P. This argues that even seemingly harmless recursive definitions can introduce divergence in
non-obvious ways.

To fully address the problem, we must first consider the meaning of productivity in our concurrent
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setting. The intuitive idea of productivity is that there must always be a finite sequence of internal actions
between each observable action. In our setting, the observable actions are those on the session channel
that is being offered, while internal actions are those generated through interactions with ambient sessions.
Given our definition of productivity, a natural restriction is to require an action on the channel being offered
before performing the recursive call (i.e. the recursive call must be guarded by a visible action). Thus, the
definition,

c <- S n = { output c n
c <- S (n+1)}

satisfies the guardedness condition and is in fact a valid coinductive definition of an increasing stream of
integers. This is identical to the guardedness conditions imposed in Coq [34]. However, guardedness alone
is not sufficient to ensure productivity. Consider our initial definition:

c <- P n = { output c n
c’ <- P (n+1)
x <- input c’
fwd c c’}

While guardedness is satisfied, the definition is not productive. A process interacting with P will be able to
observe the first output action, but no other actions are visible since they are consumed within P by the input
action that follows the recursive call. In essence, P destroys its own productivity by internally interacting
with the recursive call.

The problematic definition above leads us to consider restrictions on what may happen after a recursive
call, which turn out to be somewhat subtle. For instance, we may impose that recursion be either terminal
(i.e. the continuation must be a forwarder) or that after it an action on the observable channel must be
performed, before interactions with the recursive call are allowed. While such a restriction indeed excludes
the definition of P, it is insufficient:

c <- P’ n = { output c n
c’ <- P’ (n+1)
output c n
x <- input c’
y <- input c’
fwd c c’}

The definition above diverges after the two outputs, essentially for the same reason P diverges. One could
explore even more intricate restrictions, for instance imposing that the continuation be itself a process ex-
pression satisfying guardedness and moreover offering an action before interacting with its ambient context.
Not only would this be a rather ad-hoc attempt, it is also not sufficient to ensure productivity.

Thus, our syntactic restrictions that ensure productivity are the combination of both guardedness and a
condition we dub co-regular recursion, that is, we disallow interactions with recursive calls within corecur-
sive definitions. To this end, we impose that process expressions that are composed with corecursive calls
(via the monadic composition construct) may not communicate with the corecursive call, although they may
themselves perform other actions.
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To further crystallise our argument, we illustrate the execution behavior of the ill-behaved process ex-
pression P above, when composed with a process expression that consumes its initial input:

exec(P (0))⊗ exec(x← input c;Q) −→
exec(c′ ← P (1);x← input c′; fwd c c′)⊗ exec(Q) −→

∃c′. exec(P (1)c′)⊗ exec(x← input c′; fwd c c′)⊗ exec(Q) −→ . . .

As we described, we eventually reach a configuration where the output produced by recursive calls is in-
ternally consumed by a corresponding input, resulting in an infinitely repeating pattern of internal behavior
that never actually reaches the executing process expression Q.

5.0.3 Guardedness and Co-regular Recursion by Typing

It turns out that we may impose both guardedness and co-regular recursion via a rather simple restriction on
the typing rule for (co)recursive definitions. Recall our initial typing rule for recursive definitions:

∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ, F :τ → {ai:Ai ` c:νX.A}, x:τ ; Γ; ∆ ` P :: c:A{νX.A/X}
Ψ 
 (fix F x = c← {P} ← ai:Ai) : τ → {ai:Ai ` c:νX.A}

In the rule above, as we have argued previously, nothing requires P to produce any observable action
specified in the session type A nor do we restrict the way in which P may use the recursive occurrence F .

To ensure guardedness, we first introduce a standard strict positivity restriction on recursive types νX.A.
This restriction does not by itself ensure guardedness, since even if νX.A is strictly positive the body of the
corecursive definition may simply appeal to the recursive call and produce no action. We thus impose an
additional constraint by modifying the typing rule for corecursive definitions as follows:

∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ, F :τ → {ai:Ai ` c:X}, x:τ ; Γ; ∆ ` P :: c:A(X)

Ψ 
 (fix F x = c← {P} ← ai:Ai) : τ → {ai:Ai ` c:νX.A}
(COREC)

Notice the subtle differences between the two rules: we now maintain the type offered by P as the open
session type A(X) and the type for F no longer mentions the offered type c:νX.A but rather only c:X .
Intuitively, what this accomplishes is that P must necessarily produce a single “unrolling” of the behavior
A, and at any point while typing P all offers of the recursive type variable X must be satisfied via monadic
composition with the recursive occurrence F (since the only way to offer X is via F ). Moreover, consider
what happens when we compose a process expression Q with the recursion variable F , such as:

c← F x← a1, . . . , an;Q

The process expression Q above is able to use a channel c typed with the specification of F x, which is
c:X . Thus, Q cannot in fact interact with the recursive call in a destructive way such as those argued above.
In fact, all that Q may do with this channel is forward it (although Q itself may produce many different
behaviors by using other channels).

We thus make the informal case that combining the new typing rule for corecursive definitions with the
strict positivity requirement on recursive session types ensures that non-divergent processes are excluded by
typing: corecursive process expression definitions must produce some observable action as specified by the
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strictly positive recursive session type before appealing to the recursive call, since the type of the recursive
call does not specify any behavior whatsoever. This also forbids destructive interactions with the recursive
call since, from the perspective of a process expression that is composed with the recursive occurrence, it
does not have access to any behavior that it may use. It is relatively easy to see how all the problematic
recursive definitions given above are excluded by this new typing scheme. For instance, the definition,

c <- P n = { output c n
c’ <- P (n+1)
x <- input c’
fwd c c’}

where P could conceivably by typed with c:νX.nat ∧X , will fail to type since the input action:
x <- input c’ is not well-typed since the channel c′ cannot be used for inputs (it is typed with X). The
definition of P’ fails to type for similar reasons.

While we have informally argued that well-typed programs in our language never produce internally
divergent behavior, in order to formally obtain this result we must develop reasoning techniques that go
beyond those used to establish type preservation and progress. More precisely, we develop a theory of
linear logical relations that enables us to show non-divergence of well-typed programs, as well as setting
up a framework to reason about program (and process expression) equivalence. We give an account of this
development in Part III, Section 6.1.2.

However, one case that has yet to be made is what is the cost of these restrictions in terms of expressive-
ness. What kind of programs are we now able to write, in the presence of this restricted form of recursion?
While we are obviously restricting the space of valid programs, we argue that the expressiveness of the
resulting programming language is not overly constrained via an extended example, consisting of an alter-
native implementation of the bit counter example of Section 4.3.2 that adheres to the necessary restrictions
to ensure non-divergence.

5.0.4 Coregular Recursion and Expressiveness - Revisiting the Binary Counter

Our goal is to implement a coinductive counter protocol offering three operations: we can poll the counter
for its current integer value; we can increment the counter value and we can terminate the counter. The
protocol is encoded via the following session type,

Counter = Choice(val:int /\ Counter, inc:Counter, halt:1}

Our implementation of Counter consists of a network of communicating processes, each process node
encoding a single bit of the binary representation of the counter value in little endian form (we can think
of the leftmost process in the network as representing the least significative bit). These network nodes
communicate with their two adjacent bit representations, whereas the top level coordinator for the counter
communicates with the most significant bit process (and with the client), spawning new bits as needed. The
protocol for the nodes is thus given by the following session type:

CImpl = Choice{val:int => int /\ CImpl,
inc:Or{carry:CImpl, done:CImpl}, halt:1}
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The protocol is as follows: to compute the integer value of the bit network, each node expects to input the
integer value of the node to its right (i.e. the more significant bit), update this value with its own contribution
and propagate it down the bit network. When the last bit is reached, the final value is sent back through the
network to the client. To increment the value of the counter, given the little endian representation, we must
propagate the increment command down the network to the least significant bit, which will flip its value and
either send a carry or a done message up the chain, flipping the bits as needed (a 1 bit receiving carry
will flip and propagate carry, whereas a 0 bit will flip and send done, signalling no more bits need to be
flipped). If the top level coordinator receives a carry message we must generate a new bit node. The type
and code for the node process is given below. Notice how Node is a valid coinductive definition: recursive
calls are guarded by an action on n and coregular.

Node : int -> {x:CImpl |- n:CImpl}
n <- Node b <- x = { case n of

val => x.val
m <- input n
output x (2*m+b)
m <- input x
output n m
n <- Node b <- x

inc => x.inc
case x of
carry => if (b=1) then

n.carry
n <- Node 0 <- x
else
n.done
n <- Node 1 <- x

done => n <- Node b <- x
halt => x.halt

wait x
close n}

The coordinator process interfaces between the clients and the bit network, generating new bit nodes as
needed. Again, we note that Coord meets our criteria of a valid coinductive definition.

Coord : unit -> {x:CImpl |- z:Counter}
z <- Coord () <- x = { case z of

val => x.val
output x 0
n <- input x
output z n
z <- Coord () <- x

inc => x.inc
case x of
carry => n <- Node 1 <- x
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z <- Coord () <- n
done => z <- Coord () <- x

halt => x.halt
wait x
close z}

The only remaining component is the representation of the empty bit string epsilon, which will be
a closed process expression of type x:Impl, implement the “base cases” of the protocol. For polling the
value, it just ping pongs the received value. For incrementing, it just signals the carry message. We can
then put the Counter system together by composing epsilon and Coord.

epsilon:unit -> {x:CImpl}
x <- epsilon () = { case x of

val => n <- input x
output x n
x <- epsilon ()

inc => x.carry
x <- epsilon ()

halt => close x}
z <- Counter = { x <- epsilon ()

z <- Coord () <- x}

This example exhibits a more general pattern, where we have an interface protocol (in this case Counter)
that is then implemented by a lower level protocol through some network of processes (CImpl), similar to
abstract data types and implementation types, but here from the perspective of a concurrent communication
protocol.

5.1 Further Discussion

In the previous two chapters we have developed a programming language based on our logical interpreta-
tion of linear logic as concurrent process expressions by encapsulating linearity (and concurrency) inside a
contextual monad in a functional programming language akin to a λ-calculus, for which we have shown a
type safety result in the form of type preservation and global progress for both the functional and concurrent
layers.

The development of the language itself posed a series of design challenges, some of which we now
discuss in further detail.

Contextuality of the Monad As we have shown throughout this chapter, the contextual nature of the
monad provides us with a way to directly represent open process expressions in our language.

The advantages of having the monad be contextual, instead of simply allowing us to form closed process
expressions, is easily seen in our examples of Section 4.3, where not only the monadic types provide a much
more accurate description of the process expression interface (since they specify both the dependencies
and the offered behavior, as made clear in the App Store example of Section 4.3.3), but also for a cleaner
construction of modular code. For instance, in the bit counter of Section 4.3.2 we can cleanly separate the
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definition of the “empty” bit counter epsilon from the definition of a bit node in the network, connected
to its left and right neighbours in the chain. This is only made possible precisely due to the contextual nature
of the monad, since otherwise we would only be able to specify closed process expressions.

We note that it is not even clear how we could represent bit from Section 4.3.2 only using closed pro-
cess expressions. While we could conceivably pass the neighbouring bit as a functional monadic argument
to bit, to then be explicitly composed in the body of the definition via monadic composition, and effected
upon by the recursive definition, we would then have to reconstruct this effected neighbouring bit as a closed
monadic object to pass as an argument to the recursive call, which if possible would be a rather unnatural
programming pattern.

Even in the very simple case of our stream filter, a similar problem arises if we were to make the
definition as a closed process expression: we would attempt to write a function filter q P, where q is
the filter predicate and P the process expression that stands for the stream that we wish to filter. When we
filter an element from P and wish to make the recursive call, how can we refer to the new state of P as a
closed monadic expression that may be passed as an argument to the recursive call? Again, it is not obvious
how this may be done without opting for a contextual version of the monad, where we refer to open process
expressions directly.

Recursion and the Monad While general recursion is a natural feature in a more realistic programming
language, readers may find it somewhat odd that we choose to incorporate recursive process definition via a
functional recursor threaded through the contextual monad. The main justification for this particular design
choice is that when considering a functional programming language, recursive definitions are usually taken
as a given. While we could have simply added a recursor to the process expression language outright (in
fact, we do just that in Chapter 6 since it makes formally reasoning about coinductive types and corecursive
definitions technically simpler), we would be in a situation where we could write recursive process defini-
tions in two distinct, yet arguably equivalent, ways: through functional-level recursion, threaded through
the monad; and through process-level recursion. We believe this design choice would add a substantial deal
of redundancy to the language. Alternatively we could restrict functional-recursion to completely avoid the
monad, but in the presence of higher-order functions this seems to be a cumbersome “solution”.

Thus, we opted to exclude recursion as a primitive process construct and simply include it as an explicit
functional-level recursor that threads through the contextual monad as a compromise between these issues.

Synchronous Communication Another crucial design challenge is the nature of communication in the
language. Given that our logical interpretation follows a pattern of synchronous communication, it is only
natural to also adopt synchronous communication in our programming language (noting the work of [25]
where an asynchronous interpretation of linear logic is developed). This design choice also makes reasoning
about recursive definitions simpler: since communication actions are blocking, recursive calls will typically
block until a matching action is presented (with the caveats discussed in Chapter 5).

In principle, it should be possible to develop an asynchronous version of our concurrent programming
language following a similar design, although additional care is needed in the interactions with recursion.

Increasing Parallelism As we have previously discussed, it is possible to give an interpretation of the
multiplicative unit 1 that increases the parallelism of process expressions by making the assignment silent,
thus allowing for independent process expression composition. Alternatively, we could safely make the
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session closing and waiting actions asynchronous since they are the last actions on the given session. We
mostly opted for a design closer to our fully synchronous logical interpretation of the previous chapters for
the sake of uniformity, although it is conceivable that the increased parallelism generated by this alternative
assignment should be present as an option in a real implementation of our language.

Distributed Computation We have mostly dealt with design issues pertaining to the integration of con-
current and functional computation and have not really addressed design issues that appear when we con-
sider distributed computation, that is, the possibility of code executing at a remote site. Although our
language has a natural degree of modularity (via the functional layer) that is amenable to a distributed im-
plementation, there are fundamental design challenges that need to be studied in a distributed setting, namely
the potential for remote code to not adhere to its static specification (since in principle we do not have access
to remote source code). To this end, dynamic monitoring techniques that interpose between the trusted local
code (which we can ensure type-checks) and the external running code would need to be developed, in order
to ensure the correct behavior of the distributed system. Moreover, the actual access to remote objects is
not primitive in the language we have presented, and methods for acquiring a remote session in a way that
preserves typing would need to be considered.



Part III

Reasoning Techniques
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In Part I of this document, we have mostly been concerned with connecting logic and concurrent com-
putation by identifying concurrent phenomena that can be justified using our linear logical foundation, or
dually, logical aspects that can be given a concurrent interpretation.

As we have argued from the start, a true logical foundation must also be able to provide us with tech-
niques for reasoning about concurrent computation, not just be able to give them a logically consistent
semantics. This is of paramount importance since reasoning about concurrent computation is notoriously
hard. For instance, even establishing a seemingly simple property such as progress in traditional session
types [26] already requires sophisticated technical machinery, whereas in this logical interpretation we ob-
tain this property, roughly, “for free” [18, 75, 58]. More sophisticated and important properties such as
termination [83] and confluence pose even harder challenges (no such results even exist for traditional ses-
sion type systems). One of the existing main issues is the lack of a uniform proof technique that is robust
enough to handle all these properties of interest in the face of a variety of different formalisms and languages
of session types.

Beyond the actual formal machinery required to prove such properties, if we consider the techniques
commonly used to reason about concurrent behavior we typically rely on behavioral equivalence techniques
such as bisimulations [84, 70]. In a typed setting, it turns out to be somewhat challenging to develop
bisimulations that are consistent with the canonical notion of behavioral (or observational) equivalence of
barbed congruence. This is even more so the case in the higher-order setting [66, 71]. Moreover, these
bisimulations are very specifically tuned to the particular language being considered and while common
patterns arise, there is no unified framework that guides the development of these bisimulations.

We attempt to address these issues by developing a theory of linear logical relations. We apply the
ideas of logical relations to our concurrent interpretation of linear logic, developing a rich framework which
enables reasoning about concurrent programs in a uniform way, allowing us to establish sophisticated prop-
erties such as termination and confluence in a very natural and uniform way. The logical foundation also al-
lows us to extend the linear logical relations beyond simple session types, also accounting for polymorphism
and coinductive session types. Moreover, beyond serving as a general proof technique for session-typed pro-
grams, our linear logical relations, when extended to the binary case, naturally arise as typed bisimulations
which we can show to coincide with barbed congruence in the polymorphic and simply-typed settings.
These results establish linear logical relations as a general reasoning technique for concurrent session-typed
computation, providing the remaining missing feature that supports our claim of linear logic as a foundation
of message passing computation.

The main goal of this Part is to establish the generality and applicability of our theory of linear logical
relations as an effective tool for establishing sophisticated properties and reasoning about concurrent pro-
grams. We seek to accomplish this by developing the concept of linear logical relations for the session-typed
π-calculus that coincides with our concurrent interpretation of linear logic. We introduce the unary (or pred-
icate) and binary (or relational) formulations of the technique for the polymorphic and coinductive settings.
For the development of the binary version of the logical relations, we also introduce the canonical notion
of (typed) observational equivalence for π-calculus of barbed congruence. Moreover, we present several
applications of the logical relations technique, showing how they can be used to prove termination, reason
about session type isomorphisms and observational equivalence in our typed settings.
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Chapter 6

Linear Logical Relations

We develop our theory of linear logical relations by building on the well-known reducibility candidates tech-
nique of Girard [37]. The general outline of the development consists of defining a notion of reducibility
candidate at a given type, which is a predicate on well-typed terms satisfying some crucial closure condi-
tions. Given this definition, we can then define a logical predicate on well-typed terms by induction on the
type (more precisely, first on the size of the typing contexts and then on the right-hand-side typing).

We highlight that our linear logical relations are defined on (typed) π-calculus processes. The reasoning
behind this is twofold: first, it more directly enables us to explore the connections of our logical relations to
usual process calculi techniques of bisimulations and barbed congruence, providing a more familiar setting
in which to explore these ideas; secondly, it allows us to more deeply explore the π-calculus term assignment
and take advantage of certain features that turn out to be technically convenient such as labelled transitions.
The reason why labelled transitions are particularly convenient is because they allow us to reason about
the observable behavior of a process as it interacts along its distinguished session channel, allowing for a
systematic treatment of closed processes (while such a transition system could be defined for our SSOS,
it already exists for the π-calculus assignment and so there’s no reason to avoid it). To maintain this as a
self-contained chapter, we reiterate the early labelled transition system for π-calculus processes in Fig. 6.1.

One interesting aspect of our development is how cleanly it matches the kind of logical relations argu-
ments typically defined for λ-calculi. In particular, the conditions imposed by our definition of reducibility
candidate are fundamentally the same.

6.1 Unary Logical Relations

We now present the unary logical relation that enables us to show termination by defining, as expected, a
logical predicate on typed processes. We develop the logical relation for both the impredicative polymorphic
(Section 3.5) and coinductive settings (a restricted version of the calculus underlying Chapter 4), showcasing
the main technical aspects of the development – a logical relation equipped with some form of mappings
that treat type variables as appropriate for the particular setting under consideration.

While we have also developed a logical relation for a variant of the basic logical interpretation of Chap-
ter 2 (see [58]), its original formulation was not general enough to allow for extensions to the richer settings
analyzed here, insofar as we did not employ the reducibility candidates technique which is crucial in the
development for the general case. We refrain from presenting the logical relation (in both unary and binary
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(out)

x〈y〉.P x〈y〉−−→ P

(in)

x(y).P
x(z)−−→ P{z/y}

(outT)

x〈A〉.P x〈A〉−−−→ P

(inT)

x(Y ).P
x(B)−−−→ P{B/Y }

(id)
(νx)([x↔y] | P )

τ−→ P{y/x}

(par)
P

α−→ Q

P | R α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q τ−→ P ′ | Q′

(res)
P

α−→ Q

(νy)P
α−→ (νy)Q

(rep)

!x(y).P
x(z)−−→ P{z/y} | !x(y).P

(open)

P
x〈y〉−−→ Q

(νy)P
(νy)x〈y〉−−−−−→ Q

(close)

P
(νy)x〈y〉−−−−−→ P ′ Q

x(y)−−→ Q′

P | Q τ−→ (νy)(P ′ | Q′)

(lout)

x.inl;P
x.inl−−−→ P

(rout)

x.inr;P
x.inr−−−→ P

(lin)

x.case(P,Q)
x.inl−−−→ P

(rin)

x.case(P,Q)
x.inr−−−→ Q

Figure 6.1: π-calculus Labeled Transition System.

formulations) for the basic propositional setting since it is subsumed by the development for the polymorphic
setting. The same results apply to the propositional formulation as a special case.

Before addressing the details of the logical relation, we introduce some preliminary definitions, notation
and the overall structure of our formal development in the remainder of this Chapter. We state that a process
P terminates (written P ⇓) if there is no infinite reduction sequence starting with P . We write P 6−→ to
denote that no reductions starting from P are possible. We write =⇒ (resp. α

=⇒) for the reflexive transitive
closure of reduction (resp. labelled transitions) on π-calculus processes. We often use the terminology “the
meaning of type A” or “the interpretation of type A”, by which we mean the collection of processes that
inhabit the logical relation at type A.

The logical predicates use the following extension to structural congruence (Def. 1) with the so-called
sharpened replication axioms [68].

Definition 8. We write ≡! for the least congruence relation on processes which results from extending
structural congruence ≡ with the following axioms:

1. (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))

2. (νu)(!u(y).P | (νv)(!v(z).Q | R)) ≡! (νv)((!v(z).(νu)(!u(y).P | Q)) | (νu)(!u(y).P | R))

3. (νu)(!u(y).Q | P ) ≡! P if u 6∈ fn(P )

The relation ≡! allows us to properly “split” processes: axioms (1) and (2) represent the distribution of
shared servers among processes, while (3) formalizes the garbage collection of shared servers which can
no longer be invoked by any process. It is worth noticing that ≡! expresses sound behavioral equivalences
in our typed setting (specific instantiations are discussed in Section 7.3, pertaining to proof conversions
involving cut!), insofar as (1) expresses the fact that in a closed system, a replicated process with two clients
is indistinguishable from two copies of the replicated process, one assigned to each client; (2) expresses
the fact in a closed system, usages of different replicated processes can be distributed, including when such
usages are themselves done by replicated processes; (3) expresses the fact that in a setting where u is no
longer used, no observable outcome can come from using such a session and so we may discard it.

We now state some auxiliary properties regarding extended structural congruence, reduction and labelled
transitions which are useful for our development.
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Proposition 2. Let P and Q be well-typed processes:

1. If P → P ′ and P ≡! Q then there is Q′ such that Q→ Q′ and P ′ ≡! Q
′.

2. If P α→ P ′ and P ≡! Q then there is Q′ such that Q α→ Q′ and P ′ ≡! Q
′.

Proposition 3. If P ⇓ and P ≡! Q then Q ⇓.

We now define the notion of a reducibility candidate at a given type: this is a predicate on well-typed
processes which satisfies some crucial closure conditions. As in Girard’s proof, the idea is that one of the
particular candidates is the “true” logical predicate. Below and henceforth, · ⇒ P :: z:A stands for a process
P which is well-typed under the empty typing environment.

Definition 9 (Reducibility Candidate). Given a typeA and a name z, a reducibility candidate at z:A, written
R[z:A], is a predicate on all processes P such that · ` P :: z:A and satisfy the following:

(1) If P ∈ R[z:A] then P ⇓.

(2) If P ∈ R[z:A] and P =⇒ P ′ then P ′ ∈ R[z:A].

(3) If for all Pi such that P =⇒ Pi we have Pi ∈ R[z:A] then P ∈ R[z:A].

As in the functional case, the properties required for our reducibility candidates are termination (1),
closure under reduction (2), and closure under backward reduction (or a form of head expansion) (3).

Given the definition of reducibility candidate we then define our logical predicate as an inductive defi-
nition. Intuitively, the logical predicate captures the behavior of processes as induced by typing. This way,
e.g., the meaning of type z:∀X.A is that it specifies a process that after inputing an (arbitrary) type B,
produces a process of type z:A{B/X}.

The overall structure of the logical relation can be broken down into two steps: the first step, which we
dub as the inductive case, considers typed processes with a non-empty left-hand side typing context and
proceeds through well-typed composition with closed processes in the logical predicate (thus making the
left-hand side contexts smaller); the second step, which we dub as the base case, is defined inductively on
the right-hand side type, considering processes with an empty left-hand typing context and characterizing
the observable process behavior that is specified by the offered session type. Again, we explore the insight
of identifying a process with the channel along which it offers its behavior. In the following two sections we
develop the logical predicate for the polymorphic and coinductive settings.

6.1.1 Logical Predicate for Polymorphic Session Types

As we consider impredicative polymorphism, the main technical issue is that A{B/X} may be larger than
∀X.A, for any reasonable measure of size, thus disallowing more straightforward inductive definitions of the
base case of the logical predicate. We solve this technical issue in the same way as in the strong normaliza-
tion proof for System F, by considering open types and parameterizing the logical predicate with mappings
from type variables to types and from type variables to reducibility candidates at the appropriate types. This
idea of a parameterized predicate is quite useful in the general case, not only for the polymorphism setting
but also, as we will see, for the coinductive setting.
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It is instructive to compare the key differences between our development and the notion of logical re-
lation for functional languages with impredicative polymorphism, such as System F. In that context, types
are assigned to terms and thus one maintains a mapping from type variables to reducibility candidates at the
appropriate types. In our setting, since types are assigned to channel names, we need the ability to refer to
reducibility candidates at a given type at channel names which are yet to be determined. Therefore, when
we quantify over types and reducibility candidates at that type, intuitively, we need to “delay” the choice
of the actual name along which the candidate must offer the session type, since we cannot determine the
identity of this name at the point where the quantification is made. A reducibility candidate at type A which
is “delayed” in this sense is denoted as R[−:A], where ‘−’ stands for a name that is to be instantiated. It is
easy to see why this technical device is necessary by considering the polymorphic identity type,

Id , z:∀X.X ( X

If we wish to inductively characterize the behavior of a process offering such a type, we seek to quantify
over all types B that may instantiate X and all reducibility candidates at the type B, however, we cannot
fix the channel name along which processes inhabiting this candidate predicate offer their behavior as z
(the only “known” channel name at this point) since a process offering type Id will input a type (say B),
input a fresh session channel (say x) that offers the behavior x:B, and then proceed as z:B. Therefore, to
appropriately characterize this behavior at the open type z:X ( X using our logical predicate, we must be
prepared to identify the interpretation of the type variable X with candidates at channel names that are not
necessarily the name being offered.

For the reader concerned with foundational issues that may lurk in the background of this slightly non-
standard presentation, note that we are still in the same realm (outside of PA2) as in Girard’s original proof.
Quoting [37]:

“We seek to use “all possible” axioms of comprehension, or at least a large class of them. [...] to interpret
the universal quantification scheme t U , we have to substitute in the definition of reducibility candidate for
t, not an arbitrary candidate, but the one we get by induction on the construction of U . So we must be able to
define a set of terms of type U by a formula, and this uses the comprehension scheme in an essential way.”

In our setting, intuitively, we characterize a set of terms of type U by a slightly different, yet just as
reasonable formula, making use of comprehension in a similar way.

For this particular setting of polymorphism, the logical predicate is parameterized by two mappings, ω
and η. Given a context of type variables Ω, we write ω : Ω to denote that ω is an assignment of closed types
to variables in Ω. We write ω[X 7→ A] to denote the extension of ω with a new mapping of X to A. We use
a similar notation for extensions of η. We write ω̂(P ) (resp. ω̂(A)) to denote the simultaneous application
of the mapping ω to free type-variables in P (resp. in A). We write η : ω to denote that η is an assignment
of “delayed” reducibility candidates, to type variables in Ω (at the types specified in ω).

The logical predicate itself is defined as a sequent-indexed family of process predicates: a set of pro-
cesses T ωη [Γ; ∆ ⇒ T ] satisfying some conditions is assigned to any sequent of the form Ω; Γ; ∆ ⇒ T ,
provided both ω:Ω and η:ω. As mentioned above, the predicate is defined inductively on the structure of
the sequents: the base case considers sequents with an empty left-hand side typing (abbreviated T ωη [T ]),
whereas the inductive case considers arbitrary typing contexts and relies on typed principles for process
composition.

Definition 10 (Logical Predicate - Inductive Case). For any sequent Ω; Γ; ∆ ⇒ T with a non-empty left
hand side environment, we define T ωη [Γ; ∆ ⇒ T ] (with ω : Ω and η : ω) as the set of processes inductively
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defined as follows:

P ∈T ωη [Γ; y:A,∆⇒ T ] iff ∀R ∈ T ωη [y:A].(νy)(ω̂(R) | ω̂(P )) ∈ T ωη [Γ; ∆⇒ T ]

P ∈T ωη [u:A,Γ; ∆⇒ T ] iff ∀R ∈ T ωη [y:A].(νu)(!u(y).ω̂(R) | ω̂(P )) ∈ T ωη [Γ; ∆⇒ T ]

Definition 10 above enables us to focus on closed processes by inductively “closing out” open processes
according to the proper composition forms. While the definition above is specific to the polymorphic case
due to the ω and η mappings, it exhibits a general pattern in our framework where we take an open well-
typed process and “close it” by composition with closed processes in the predicate at the appropriate type,
allowing us to focus on the behavior of closed processes, which takes place on the channel along which they
offer a session.

The definition of the predicate for closed processes captures the behavior of a well-typed process, as
specified by the session it is offering. We do this by appealing to the appropriate labelled transitions of the
π-calculus. For instance, to define the logical predicate for processes offering a session of type z:A ( B
we specify that such a process must be able to input a channel y along z such that the resulting process P ′,
when composed with a process Q that offers A along y (in the predicate), is in the predicate at the type z:B,
which is precisely the meaning of a session of type A ( B. Similarly, the predicate at type z:1 specifies
that the process must be able to signal the session closure (by producing the observable z〈〉) and transition to
a process that is structurally equivalent (under the extended notion of structural equivalence which “garbage
collects” replicated processes that are no longer used) to the inactive process.

To specify the predicate at type z:A ⊗ B we identify the observable output of a fresh name y along z,
after which we must be able to decompose the resulting process (using the extended structural congruence
≡!) into two parts: one which will be in the predicate at type y:A and another in the predicate at z:B.

The interpretation of the exponential type z:!A identifies the fact that processes must be able to output
a fresh (unrestricted) name u, after which a replicated input is offered on this channel, whose continuation
must be a process in the logical predicate at type A.

The interpretations of the choice and branching types z:A&B and z:A⊕B characterize the alternative
nature of these sessions. Processes must be able to exhibit the appropriate selection actions, resulting in
processes in the predicate at the selected type.

Type variables are accounted for in the predicate by appealing to the appropriate mappings. In the case
for polymorphism this simply means looking up the η mapping for the particular type variable, instantiating
the channel name accordingly. Thus, we define the predicate at type z:∀X.A by quantifying over all types
and over all candidates at the given type, such that a process offering z:∀X.A must be able to input any type
B and have its continuation be in the predicate at z:A, with the mappings extended accordingly. The case
for the existential is dual. This quantification over all types and candidates matches precisely the logical
relations argument for impredicative polymorphism in the functional setting. The formal definition of the
base case for the logical predicate is given in Definition 11.

Definition 11 (Logical Predicate - Base Case). For any session type A and channel z, the logical predicate
T ωη [z:A] is inductively defined by the set of all processes P such that · ⇒ ω̂(P ) :: z:ω̂(A) and satisfy the
conditions in Figure 6.2.

As usual in developments of logical relation arguments, the main burden of proof lies in showing that all
well-typed terms (in this case, processes) are in the logical predicate at the appropriate type. To show this
we require a series of auxiliary results which we now detail.
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P ∈ T ωη [z:X] iff P ∈ η(X)(z)

P ∈ T ωη [z:1] iff ∀P ′.(P z〈〉
=⇒ P ′ ∧ P ′ 6−→)⇒ P ′ ≡! 0

P ∈ T ωη [z:A( B] iff ∀P ′y.(P z(y)
=⇒ P ′)⇒ ∀Q ∈ T ωη [y:A].(νy)(P ′ | Q) ∈ T ωη [z:B]

P ∈ T ωη [z:A⊗B] iff ∀P ′y.(P (νy)z〈y〉
=⇒ P ′)⇒

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ T ωη [y:A] ∧ P2 ∈ T ωη [z:B])

P ∈ T ωη [z:!A] iff ∀P ′.(P (νu)z〈u〉
=⇒ P ′)⇒ ∃P1.(P

′ ≡! !u(y).P1 ∧ P1 ∈ T ωη [y:A])

P ∈ T ωη [z:A&B] iff (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ T ωη [z:A])∧

(∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ T ωη [z:B])

P ∈ T ωη [z:A⊕B] iff (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ T ωη [z:A])∧

(∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ T ωη [z:B])

P ∈ T ωη [z:∀X.A] iff (∀B,P ′,R[−:B]. (B type ∧ P z(B)
=⇒ P ′)⇒ P ′ ∈ T ω[X 7→B]

η[X 7→R[−:B]][z:A])

P ∈ T ωη [z:∃X.A] iff (∃B,R[−:B].(B type ∧ P z〈B〉
=⇒ P ′)⇒ P ′ ∈ T ω[X 7→B]

η[X 7→R[−:B]][z:A])

Figure 6.2: Logical predicate (base case).

In proofs, it will be useful to have “logical representatives” of the dependencies specified in the left-hand
side typing. We write Ω . Γ (resp. Ω .∆) to denote that the types occurring in Γ (resp. ∆) are well-formed
wrt the type variables declared in Ω (resp. ∆).

Definition 12. Let Γ = u1:B1, . . . , uk:Bk, and ∆ = x1:A1, . . . , xn:An be a non-linear and a linear
typing environment, respectively, such that Ω . ∆ and Ω . Γ, for some Ω. Letting I = {1, . . . , k} and
J = {1, . . . , n}, ω : Ω, η : ω, we define the sets of processes Cω,ηΓ and Cω,η∆ as:

Cω,ηΓ

def
=
{∏
i∈I

!ui(yi).ω̂(Ri) | Ri ∈ T ωη [yi:Bi]
}

Cω,η∆

def
=
{∏
j∈J

ω̂(Qj) | Qj ∈ T ωη [xj :Aj ]
}

Proposition 4. Let Γ and ∆ be a non-linear and a linear typing environment, respectively, such that Ω . Γ
and Ω .∆, for some Ω. Assuming ω : Ω and η : ω, then for all Q ∈ Cω,ηΓ and for all R ∈ Cω,η∆ , we have Q ⇓
and R ⇓. Moreover, Q 6−→.

The following lemma formalizes the purpose of “logical representatives”: it allows us to move from
predicates for sequents with non empty left-hand side typings to predicates with an empty left-hand side
typing, provided processes have been appropriately closed. We write x̃ to denote a sequence of distinct
names x1, . . . , xn.

Lemma 25. Let P be a process such that Ω; Γ; ∆ ⇒ P :: T , with Γ = u1:B1, . . . , uk:Bk and ∆ =
x1:A1, . . . , xn:An, with Ω .∆, Ω . Γ, ω : Ω, and η : ω.
We have: P ∈ T ωη [Γ; ∆⇒ T ] iff ∀Q ∈ Cω,ηΓ , ∀R ∈ Cω,η∆ , (νũ, x̃)(P | Q | R) ∈ T ωη [T ].

Proof. Straightforward from Def. 10 and 12.
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The key first step in our proof is to show that our logical predicate satisfies the closure conditions that
define our notion of a reducibility candidate at a given type.

Theorem 28 (The Logical Predicate is a Reducibility Candidate). If Ω ` A type, ω : Ω, and η : ω then
T ωη [z:A] is a reducibility candidate at z:ω̂(A).

Proof. By induction on the structure of A; see Appendix A.4.1 for details.

Given that our logical predicate manipulates open types, giving them meaning by instantiating the type
variables according to the mappings ω and η, we show a compositionality result that relates the predicate
at an open type A with a free type variable X (with the appropriate mappings) to the predicate at the
instantiated version of A.

Theorem 29 (Compositionality). For any well-formed type B, the following holds:

P ∈ T ω[X 7→ω̂(B)]
η[X 7→T ωη [−:B]][x:A] iff P ∈ T ωη [x:A{B/X}]

Proof. By induction on the structure of A.

Case: A = X

P ∈ T ω[X 7→ω̂(B)]
η[X 7→T ωη [−:B]][x:X] assumption

P ∈ η[X 7→ T ωη [z:B]](X)(x) by Def. 11
P ∈ T ωη [x:B] by Def. of η

P ∈ T ωη [x:B] assumption
T.S: P ∈ T ω[X 7→ω̂(B)]

η[X 7→T ωη [−:B]][x:X]

S.T.S: P ∈ T ωη [x:B] follows by assumption

Case: A = ∀Y.A1

P ∈ T ω[X 7→ω̂(B)]
η[X 7→T ωη [−:B]][x:∀X.A1] by assumption

∀C,P ′,R[− : C]. (C type ∧ P x(C)
=⇒ P ′)⇒ P ′ ∈ T ω[X 7→ω̂(B),Y 7→C]

η[X 7→T ωη [−:B],Y 7→R[−:C]][x:A1] by Def. 11

Choose P ′ arbitrarily, such that P
x(C)
=⇒ P ′, for any C type and R[−:C]:

P ′ ∈ T ω[Y 7→C]
η[Y 7→R[−:C]][x:A1{B/X}] by i.h.

P ∈ T ωη [x:∀X.A1{B/X}] by Def. 11, satisfying⇒

P ∈ T ωη [x:∀Y.A1{B/X}] by assumption

∀C,P ′,R[− : C]. (C type ∧ P x(C)
=⇒ P ′)⇒ P ′ ∈ T ω[Y 7→C]

η[Y 7→R[−:C]][x:A1{B/X}] by Def. 11

Choose P ′ arbitrarily, such that P
x(C)
=⇒ P ′, for any C type and R[−:C]:

P ′ ∈ T ω[X 7→ω̂(B),Y 7→C]
η[X 7→T ωη [−:B],Y 7→R[−:C]][x:A1] by i.h

P ∈ T ω[X 7→ω̂(B)]
η[X 7→T ωη [−:B]][x:∀X.A1] by Def. 11, satisfying⇐
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All other cases are similar to the above, following by a straightforward induction.

The following lemma captures the fact that, for any well-formed type A, we may consistently move
from the predicate at z:A to the predicate at x:A by renaming z to x at the process level (provided x is not
free in the process structure).

Lemma 26 (Renaming). Let A be a well-formed type. If P ∈ T ωη [z:A] and x 6∈ fn(P ) then P{x/z} ∈
T ωη [x:A].

Proof. Immediate from the definition of the logical predicate.

Finally, we show that we may discard mappings to type variables when they are not used in a type.

Lemma 27 (Strengthening). If P ∈ T ω[X 7→B]
η[X 7→R[−:B]][x:A] and X 6∈ fv(A) then P ∈ T ωη [x : A]

Proof. Straightforward by induction on A.

Having established all the necessary auxiliary results we can now show the so-called fundamental the-
orem of logical relations, stating that any well-typed process is in the logical predicate at the appropriate
typing.

Theorem 30 (Fundamental Theorem). If Ω; Γ; ∆ ⇒ P :: T then, for all ω : Ω and η : ω, we have that
ω̂(P ) ∈ T ωη [Γ; ∆⇒ T ].

Proof. By induction on typing. We show here the cases that pertain to polymorphism and to forwarding.
In each case, we appeal to Lemma 25 and show that every M = (νũ, x̃)(P | G | D) with G ∈ Cω,ηΓ and
D ∈ Cω,η∆ is in T ωη [T ].

Case (T∀R2): Ω; Γ; ∆⇒ z(X).P :: z:∀X.A

Ω, X; Γ; ∆⇒ P :: z:A by inversion
ω̂(P ){B/X} ∈ T ω′η′ [Γ; ∆⇒ z:A] by i.h.,

for some B, ω′ = ω[X 7→ B] and η′ = η[X 7→ R[− : B]]

Pick any G ∈ Cω
′,η′

Γ , D ∈ Cω
′,η′

∆ :
G ⇓, G 6−→, D ⇓ by Prop. 4
(νũ, x̃)(ω̂(P ){B/X} | G | D) ∈ T ω′η′ [z:A] (a) by Lemma 25
S.T.S: M = (νũ, x̃)(ω̂(z(X).P ) | G | D) ∈ T ωη [z:∀X.A]

M
z(B)
=⇒ (νũ, x̃)(ω̂(P ){B/X} | G | D′) = M1

M1 ∈ T ω
′

η′ [z:A] by (a) and forward closure
M ∈ T ω′η′ [z:∀X.A] by Def. 11
M ∈ T ωη [z:∀X.A] by Lemma 27

Case (T∀L2): Ω; Γ; ∆, x : ∀X.A⇒ x〈B〉.P :: T
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Ω ` B type by inversion
Ω; Γ; ∆, x : A{B/X} ⇒ P :: T by inversion
ω̂(P ) ∈ T ωη [Γ; ∆, x : A{B/X} ⇒ T ] by i.h.
Pick any G ∈ Cω,ηΓ , D ∈ Cω,η∆ :
G ⇓, G 6−→, D ⇓ by Prop. 4
(νũ, x̃)(ω̂(P ) | G | D | T ωη [x : A{B/X}]) ∈ T ωη [T ] (a) by Lemma 25
S.T.S: (νũ, x̃, x)(ω̂(x〈B〉.P ) | G | D | T ωη [x : ∀X.A]) ∈ T ωη [T ]

Pick R ∈ T ωη [x:∀X.A]

S.T.S: M = (νũ, x̃, x)(x〈ω̂(B)〉.ω̂(P )) | G | D | R) ∈ T ωη [T ]

R
x(ω̂(B))

=⇒ R′ by Theorem 28
∀R[− : ω̂(B)].R′ ∈ T ω[X 7→ω̂(B)]

η[X 7→R[−:ω̂(B)]][x:A] by Def. 11

R′ ∈ T ω[X 7→ω̂(B)]
η[X 7→T ωη [−:B]][x:A] by Theorem 28

R′ ∈ T ωη [x:A{B/X}] by Theorem 29
M =⇒ (νũ, x̃, x)(ω̂(P )) | G | D′ | R′) = M1

M1 ∈ T ωη [T ] by (a) and forward closure
M ∈ T ωη [T ] by backward closure

Case (T∃R2): Ω; Γ; ∆⇒ z〈B〉.P :: z:∃X.A

Ω; Γ; ∆⇒ P :: z:A{B/X} by inversion
Ω ` B type by inversion
ω̂(P ) ∈ T ωη [Γ; ∆⇒ z:A{B/X}] by i.h.
Pick any G ∈ Cω,ηΓ , D ∈ Cω,η∆ :
G ⇓, G 6−→, D ⇓ by Prop. 4
M1 = (νũ, x̃)(ω̂(P ) | G | D) ∈ T ωη [z:A{B/X}] (a) by Lemma 25
S.T.S: (νũ, x̃)(ω̂(z〈B〉.P ) | G | D) ∈ T ωη [z:∃X.A]

S.T.S: M = (νũ, x̃)(z〈ω̂(B)〉.ω̂(P ) | G | D) ∈ T ωη [z:∃X.A]

S.T.S: ∃C.R[−:C].(C type ∧M z〈C〉
=⇒ P ′)⇒ P ′ ∈ T ω[X 7→C]

η[X 7→R[−:C][z:A]

S.T.S: ∃C.R[− : C].(C type ∧M z〈C〉
=⇒ P ′)⇒ P ′ ∈ T ωη [z:A{C/X}] (b) by Theorem 29

Pick C = ω̂(B) and R[− : C] as T ωη [− : ω̂(B)]

M
z(ω̂(B))

=⇒ (νũ, x̃)(ω̂(P ) | G | D′)
M1 =⇒ (νũ, x̃)(ω̂(P ) | G | D′)
(νũ, x̃)(ω̂(P ) | G | D′) ∈ T ωη [z:A{B/X}] by forward closure, satisfying (b)

Case (T∃L2): Ω; Γ; ∆, x : ∃X.A⇒ x(X).P :: T

Ω, X; Γ; ∆, x:A⇒ P :: T by inversion
ω̂(P ){B/X} ∈ T ω′η′ [Γ; ∆, x:A⇒ T ] by i.h.,

for some B, ω′ = ω[X 7→ B] and η′ = η[X 7→ R[−:B]]
Pick any G ∈ Cω,ηΓ , D ∈ Cω,η∆ :
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G ⇓, G 6−→, D ⇓ by Prop. 4
(νũ, x̃, x)(ω̂(P ){B/X} | G | D | T ω′η′ [x:A]) ∈ T ω′η′ [T ] (a) by Lemma 25
Pick R′ ∈ T ω′η′ [x:A]:
(νũ, x̃, x)(ω̂(P ){B/X} | G | D | R′) ∈ T ω′η′ [T ] (b) by (a)
S.T.S: (νũ, x̃, x)(x(X).ω̂(P ) | G | D | T ωη [x:∃X.A]) ∈ T ωη [T ]

Pick R = x〈B〉.R′

R
x〈B〉
=⇒ R′ and R′ ∈ T ω′η′ [x:A]

R ∈ T ωη [x:∃X.A] by Def. 11
S.T.S: M = (νũ, x̃, x)(x(X).ω̂(P ) | G | D | R) ∈ T ωη [T ]

M =⇒ (νũ, x̃, x)(ω̂(P ){B/X} | G | D | R′) ∈ T ω′η′ [T ] (c) by (b)
M ∈ T ω′η′ [T ] by backward closure and (c)
M ∈ T ωη [T ] by Lemma 27

Case (Tid): Ω; Γ;x:A⇒ [x↔ z] :: z:A

Pick any G ∈ Cω,ηΓ :
G ⇓, G 6−→ by Prop. 4
D ∈ T ωη [x:A] (a)
S.T.S: M = (νũ, x)([x↔ z] | G | D) ∈ T ωη [z:A]

M −→ (νũ)(G{z/x} | D{z/x}) ≡! D{z/x} = M ′ (b) since x 6∈ fn(G)
M ′ ∈ T ωη [z:A] (c) by (a) and Lemma 26
M ∈ T ωη [z:A] (d) by (b), (c), and backward closure
[x↔ z] ∈ T ωη [Γ;x : A⇒ z : A] by (d) and Lemma 25

It follows immediately from the fundamental theorem that well-typed processes are terminating.

Theorem 31 (Termination). If Ω; Γ; ∆⇒ P :: T then ω̂(P ) ⇓, for every ω : Ω.

6.1.2 Logical Predicate for Coinductive Session Types

One of the key advantages of the logical relations framework that we have presented in the previous section
is its uniformity in accounting for several different formulations of session types. We make this explicit by
giving an account of a logical predicate for coinductive session types in a language similar to the higher-
order process calculus of Chapter 4 with corecursive definitions. To distinguish between the predicate for
polymorphic session types and coinductive session types, here we use the notation Lω[x:A].

Unlike the language of Chapter 4 which includes recursive definitions as a feature of the functional
layer of the language, we instead opt for a π-calculus with a native recursor. This simplifies the technical
challenges of having to thread recursive process definitions through the functional language via the monad
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and enables us to focus more precisely on the concurrent layer of the language. As we have already dis-
cussed, recursion is orthogonal to the specifics of the monadic embedding, which is directly related to the
higher-order features of the process calculus.

Thus, the process calculus we consider in this section contains a combination of the term-passing fea-
tures of the π-calculus used in Section 3.1, the higher-order features of the calculus of Section 4.4 and a
form of recursion.

A Higher-Order Process Calculus with Corecursion

To maintain the presentation as self-contained as possible, we summarize here the syntax and typing rules
for this π-calculus, with an emphasis on the rules for typing corecursive definitions. The syntax of processes
is given below and follows that of previous formulations of π-calculi in this document:

M,N ::= . . . (basic data constructors)
P,Q ::= x〈M〉.P | x(y).P | x〈y〉.P | (νy)P | !x(y).P | P |Q | spawn(M ; ai; a.Q)

| x.case(lj ⇒ Pj) | x.li;P | (corec X(y).P ) c | X(c) | [x↔ y] | 0

We highlight our parametrized corecursion operator (corec X(y).P ) c, enabling corecursive process def-
initions (the variables y are bound in P ). The parameters are used to instantiate channels (and values) in
recursive calls accordingly.

The operational semantics (both reduction and labelled transitions) for (channel and data) communica-
tion, branching and replication is as in previous sections. We highlight only the labelled transition rule for
corecursion, which is given a silent (unfolding) transition semantics and the equivalent reduction semantics:

(corec X(y).P ) c
τ−→ P{c/y}{(corec X(y).P )/X}

The typing rules for our π-calculus processes are given in Fig. 6.3, summarizing the process typing rules
that we have seen throughout this document in Sections 3.1 (non-dependent versions of ∀ and ∃) and 4.4 and
containing the typing rules for corecursive process definitions, which introduce a small modification to the
typing judgment, written as Ψ; Γ; ∆ ⇒η P :: z:A. The judgment denotes that process P offers the session
behavior A along channel z, when composed with the (linear) session behaviors specified in ∆, with the
(unrestricted) session behaviors specified in Γ and where η is a mapping from (corecursive) type variables
to the typing contexts under which the definition is be well-formed (in order to preserve linearity).

To make clearer the use of the mapping η, let us now consider the right rule for coinductive sessions,
which types (parameterized) corecursive process definitions:

Ψ; Γ; ∆⇒η′ P :: c:A η′ = η[X(y) 7→ Ψ; Γ; ∆⇒ c:νY.A]

Ψ; Γ; ∆⇒η (corec X(y).P{y/z}) z :: c:νY.A
(νR)

In the rule above, process P may use the recursion variable X and refer to the parameter list y, which is
instantiated with the list of (distinct) names z which may occur in Ψ,∆,Γ, c or functional values (for which
we assume an implicit sorting, for simplicity). Moreover, we keep track of the contexts Ψ, Γ and ∆ in which
the corecursive definition is made, the channel name along which the coinductive behavior is offered and
the type associated with the corecursive behavior, by extending the mapping η with a binding for X with
the appropriate information.
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This is necessary because, intuitively, each occurrence of the corecursion variable stands for P itself
(modulo the parameter instantiations) and therefore we must check that the necessary ambient session be-
haviors are available for P to execute in a type correct way, respecting linearity. P itself simply offers
along channel c the session behavior A (which is an open type). To type the corecursion variable we use the
following rule:

η(X(y)) = Ψ; Γ; ∆⇒ d:νY.A ρ = {z/y}
ρ(Ψ); ρ(Γ); ρ(∆)⇒η X(z) :: ρ(d):Y

(VAR)

We type a process corecursion variable X by looking up in η the binding for X , which references the
typing environments Ψ, Γ and ∆ under which the corecursive definition is well-defined, the coinductive type
associated with the corecursive behavior and the channel name d along which the behavior is offered. The
corecursion variable X is typed with the type variable Y if the parameter instantiation is able to satisfy the
typing signature (by renaming available linear and unrestricted resources and term variables and matching
them with the specification of Ψ, Γ and ∆). We also allow for the offered session channel to be a parameter
of the corecursion. Finally, the left rule for coinductive session types silently unfolds the type:

Ψ; Γ; ∆, c:A{νX.A/X} ⇒η Q :: d:D

Ψ; Γ; ∆, c:νX.A⇒η Q :: d:D
(νL)

The three rules discussed above play the role of the alternative typing rules for recursion presented in
Chapter 5, where the mapping η and the rule for corecursion variables mimic the contextual aspect of the
monad. To illustrate our corecursor, we can encode an ascending stream of naturals, starting at 0, as:

nats , (corec X(n, c).c〈n〉.X(n+ 1, c)) 0 c

with the following typing derivation:

· 
 0 : nat

η(X(n, c)) = ·; ·; · ⇒ c:νY.nat ∧ Y
·; ·; · ⇒η X(1, c) :: c:Y

(VAR)

·; ·; · ⇒η c〈0〉.X(1, c) :: c:nat ∧ Y ∧R
η = X(n, c) 7→ (·; ·; · ⇒ c:νY.nat ∧ Y )

·; ·; · ⇒ (corec X(n, c).c〈n〉.X(n+ 1, c)) 0 c :: c:νY.nat ∧ Y

The Logical Predicate

Since our calculus also includes λ-terms, we must define the usual notion of candidate and logical predicate
for these functional terms, including for terms of monadic type. This makes the definition of the logical
predicate mutually inductive, given that we need to simultaneously define the predicate for processes and λ-
terms (we appeal to the functional predicate in the cases of value communication and to the process predicate
in the case for the contextual monadic type). For λ-terms, we specify only the cases for the monadic type.

The particulars of the logical predicate for the coinductive setting essentially consist of the way in which
we handle type variables and, naturally, the definition of the logical predicate for coinductive session types.
Unlike in the polymorphic setting, where a type variable could be instantiated with any type, a type variable
in a coinductive session type always stands for the coinductive session type itself. Thus, we no longer need
to track which particular type we are instantiating a type variable with and only need to extend the predicate
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(∧R)

Ψ 
M :τ Ψ; Γ; ∆⇒η P :: c:A

Ψ; Γ; ∆⇒η c〈M〉.P :: c:τ ∧A

(∧L)

Ψ, x:τ ; Γ; ∆, c:A⇒η Q :: d:D

Ψ; Γ; ∆, c:τ ∧A⇒η c(x).Q :: d:D

(⊃R)

Ψ, x:τ ; Γ; ∆⇒η P :: c:A

Ψ; Γ; ∆⇒η c(x).P :: c:τ ⊃ A

(⊃L)

Ψ 
M :τ Ψ; Γ; ∆, c:A⇒η Q :: d:D

Ψ; Γ; ∆, c:τ ⊃ A⇒η c〈M〉.Q :: d:D
(1L)

Ψ; Γ; ∆⇒η P :: d:D

Ψ; Γ; ∆, c:1⇒η c().P :: d:D

(⊗R)

Ψ; Γ; ∆1 ⇒η P1 :: x:A Ψ; Γ; ∆2 ⇒η P2 :: c:B

Ψ; Γ; ∆1,∆2 ⇒η (νx)c〈x〉.(P1 | P2) :: c:A⊗B
(⊗L)

Ψ; Γ; ∆, x:A, c:B ⇒η Q :: d:D

Ψ; Γ; ∆, c:A⊗B ⇒η c(x).Q :: d:D

((R)

Ψ; Γ; ∆, x:A⇒η P :: c:B

Ψ; Γ; ∆⇒η c(x).P :: c:A( B

((L)

Ψ; Γ; ∆1 ⇒η Q1 :: x:A Ψ; Γ; ∆2, c:B ⇒η Q2 :: d:D

Ψ; Γ; ∆1,∆2, c:A( B ⇒η (νx)c〈x〉.(Q1 | Q2) :: d:D

(1R)

Ψ; Γ; · ⇒η c〈〉.0 :: c:1

(!R)

Ψ; Γ; · ⇒η P :: x:A

Ψ; Γ; · ⇒η (νu)c〈u〉.!u(x).P :: c:!A

(!L)

Ψ; Γ, u:A; ∆⇒η P :: d:D

Ψ; Γ; ∆, c:!A⇒η c(u).P :: d:D

(COPY)
Ψ; Γ, u:A; ∆, x:A⇒η P :: d:D

Ψ; Γ, u:A; ∆⇒η (νx)u〈x〉.P :: d:D

(⊕R)

Ψ; Γ; ∆⇒η P :: c:Ai

Ψ; Γ; ∆⇒η c.li;P :: c:⊕ {lj :Aj}
(⊕L)

Ψ; Γ; ∆, c:A1 ⇒η Q1 :: d:D . . . Ψ; Γ; ∆, c:An ⇒η Qn :: d:D

Ψ; Γ; ∆, c:⊕ {lj :Aj} ⇒η c.case(lj ⇒ Qj) :: d:D

(&R)

Ψ; Γ; ∆⇒η P1 :: c:A1 . . . Ψ; Γ; ∆⇒η Pn :: c:An

Ψ; Γ; ∆⇒η c.case(lj ⇒ Pj) :: c: & {lj :Aj}

(&L)

Ψ; Γ; ∆, c:Ai ⇒η Q :: d:D

Ψ; Γ; ∆, c: & {lj :Aj} ⇒η c.li;Q :: d:D

(νL)

Ψ; Γ; ∆, c:A{νX.A/X} ⇒η Q :: d:D

Ψ; Γ; ∆, c:νX.A⇒η Q :: d:D

(VAR)
η(X(y)) = Ψ; Γ; ∆⇒ d:νY.A ρ = {z/y}

ρ(Ψ); ρ(Γ); ρ(∆)⇒η X(z) :: ρ(d):Y

(νR)

Ψ; Γ; ∆⇒η′ P :: c:A η′ = η[X(y) 7→ Ψ; Γ; ∆⇒ c:νY.A]

Ψ; Γ; ∆⇒η (corec X(y).P{y/z}) z :: c:νY.A

(ID)

Ψ; Γ; d:A⇒η [d↔ c] :: c:A

(CUT)
Ψ; Γ; ∆1 ⇒η P :: x:A Ψ; Γ; ∆2, x:A⇒η Q :: d:D

Ψ; Γ; ∆1,∆2 ⇒η (νx)(P | Q) :: d:D

(CUT!)
Ψ; Γ; · ⇒η P :: x:A Ψ; Γ, u:A; ∆⇒ Q :: d:D

Ψ; Γ; ∆⇒η (νu)(!u(x).P | Q) :: d:D
(SPAWN)
∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ 
M : {ai:Ai ` a:A} Ψ; Γ; ∆′, a:A⇒η Q :: z:C

Ψ; Γ; ∆,∆′ ⇒η spawn(M ; ai; a.Q) :: z:C

Figure 6.3: Typing Rules for Higher-Order Processes
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with a single mapping ω, which maps type variables to reducibility candidates (at the appropriate type),
encoding the unfolding of the coinductive type in the logical predicate itself.

The definition of candidate for λ-terms is the expected one, essentially consisting of a functional ana-
logue of Definition 9 (which is unchanged for processes), requiring well-typedness, closure under reduction
and head expansion. The logical predicate, as before, is defined inductively on types. The only presented
clause in the functional case is that for the contextual monadic type, which requires terms to reduce to a
monadic value that is in the (process-level) predicate at the appropriate type:

Lω[{a:Ai ⇒ c:A}] , {M |M =⇒ c← {P} ← a and P ∈ Lω[shd(a:Ai); lin(a:Ai)⇒∅ c:A]}

For processes, the significant cases are those that pertain to type variables and coinductive session types
in the inductive base case. We refer to R[−:A] below as the collection of all sets of reducibility candidates
at (closed) type A. We state that the mapping ω is compatible with the mapping η if for each binding in η of
the form X 7→ Ψ; Γ; ∆⇒ c:νY.A, ω maps Y to L[c:νY.A].

Definition 13 (Logical Predicate - Open Processes). Given Ψ; Γ; ∆ ⇒η T with a non-empty left hand
side environment, we define Lω[Ψ; Γ; ∆ ⇒ T ], where ω is a mapping from type variables to reducibility
candidates compatible with η, as the set of processes inductively defined as:

P ∈ Lω[Ψ, x:τ ; Γ; ∆⇒η T ] iff ∀M ∈ L[τ ].P{M/x} ∈ Lω[Ψ; Γ; ∆⇒η T ]
P ∈ Lω[Γ; ∆, y:A⇒η T ] iff ∀R ∈ Lω[y:A].(νy)(R | P ) ∈ Lω[Γ; ∆⇒η T ]
P ∈ Lω[Γ, u:A; ∆⇒η T ] iff ∀R ∈ Lω[y:A].(νu)(!u(y).R | P ) ∈ Lω[Γ; ∆⇒η T ]

The definition of the logical interpretation for open processes inductively composes an open process with
the appropriate witnesses in the logical interpretation at the types specified in the three contexts, following
the development of the previous section.

Definition 14 (Logical Predicate - Closed Processes). For any type T = z:A we define Lω[T ] as the set of
all processes P such that P ⇓ and ·; ·; · ⇒η P :: T satisfying the rules of Fig. 6.4.

We define the logical interpretation of a coinductive session type νX.A as the union of all reducibility
candidates Ψ of the appropriate coinductive type that are in the predicate for (open) type A, when X is
mapped to Ψ itself. The technical definition is somewhat intricate, but the key observation is that for open
types, we may view our logical predicate as a mapping between sets of reducibility candidates, of which the
interpretation for coinductive session types turns out to be a greatest fixpoint.

In order to show the fundamental theorem of logical relations for coinductive session types, we must
first establish the fixpoint property mentioned above. More precisely, we define an operator φA(s) from and
to reducibility candidates at the open type A via the logical predicate at the type.

Before establishing the fixpoint property, we show that our logical predicate is a reducibility candidate
(as before).

Theorem 32 (Logical Predicate is a Reducibility Candidate). The following statements hold:

• L[τ ] ⊆ R[τ ].

• Lω[z:A] ⊆ R[z:A]
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Lω[z:νX.A] ,
⋃
{Ψ ∈ R[−:νX.A] | Ψ ⊆ Lω[X 7→Ψ][z:A]}

Lω[z:X] , ω(X)(z)

Lω[z:1] , {P | ∀P ′.(P z〈〉
=⇒ P ′ ∧ P ′ 6−→)⇒ P ′ ≡! 0}

Lω[z:A( B] , {P | ∀P ′y.(P z(y)
=⇒ P ′)⇒ ∀Q ∈ Lω[y:A].(νy)(P ′ | Q) ∈ Lω[z:B]}

Lω[z:A⊗B] , {P | ∀P ′y.(P (νy)z〈y〉
=⇒ P ′)⇒

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ Lω[y:A] ∧ P2 ∈ Lω[z:B])}

Lω[z:!A] , {P | ∀P ′.(P (νu)z〈u〉
=⇒ P ′)⇒ ∃P1.(P

′ ≡! !z(y).P1 ∧ P1 ∈ Lω[y:A])}
Lω[z: & {li ⇒ Ai}] , {P |

∧
i (∀P ′.(P z.li=⇒ P ′)⇒ P ′ ∈ Lω[z:Ai])}

Lω[z:⊕ {li ⇒ Ai}] , {P |
∧
i (∀P ′.(P z.li=⇒ P ′)⇒ P ′ ∈ Lω[z:Ai])}

Lω[z:τ ∧A] , {P | ∀P ′.(P z〈M〉
=⇒ P ′)⇒ (M ∈ L[τ ] ∧ P ′ ∈ Lω[z:A])}

Lω[z:τ ⊃ A] , {P | ∀P ′,M.(M ∈ L[τ ] ∧ P z(M)
=⇒ P ′)⇒ P ′ ∈ Lω[z:A]}

Figure 6.4: Logical Predicate for Coinductive Session Types - Closed Processes

Proof. The proof proceeds by simultaneous induction on τ and A due to the dependencies between the two
language layers. Note that since all terms in L[τ ] are terminating and well-typed by definition, we only need
to establish points (3) and (4). The proof is identical to that of Theorem 28, so we show only the new cases.

Case: τ = {a:Ai ` c:A}
Let M ∈ Lω[{a:Ai ` c:A}], if M −→M ′, by definition we know that since M =⇒ a← {P} ← ai
with P ∈ L[shd(a:Ai); lin(a:Ai) ` c:A], M ′ =⇒ a← {P} ← ai and so (3) is satisfied.

Let M ∈ Lω[{a:Ai ` c:A}] and M0 −→ M . Since M0 −→ M =⇒ a ← {P} ← ai, with
P ∈ L[shd(a:Ai); lin(a:Ai) ` c:A], we have that M0 ∈ Lω[{a:Ai ` c:A}], satisfying (4).

Case: A = νX.A′

P ∈ Lω[z:νX.A′] is defined as the union of all sets ψ of reducibility candidates at type A satisfying
ψ ⊆ Lω[X 7→ψ][z:A′], since these by definition satisfy the required conditions, their union must also
satisfy the conditions, and we are done.

Definition 15. Let νX.A be a strictly positive type. We define the operator φA : R[− : A]→ R[− : A] as:

φA(s) , Lω[X 7→s][z:A]

To show that the interpretation for coinductive session types is a greatest fixpoint of this operator, we
must first establish a monotonicity property.

Lemma 28 (Monotonicity of φA). The operator φA is monotonic, that is, s ⊆ s′ implies φA(s) ⊆ φA(s′),
for any s and s′ in R[−:A].
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Proof. If X is not free in X then φA(s) = φA(s′) and so the condition holds. If X is free in A, we proceed
by induction on A (we write ω′ for ω extended with a mapping for X with s or s′).

Case: A = X

Lω′ [z:X] = ω′(X) by definition
φA(s) = s and φA(s′) = s′ and so φA(s) ⊆ φA(s′) by assumption

Case: A = νY.A′

Lω′ [z:νY.A′] =
⋃
{φ ∈ R[−:νY.A′] | φ ⊆ Lω′[Y 7→φ][z:A′]} by definition

Lω[X 7→s,Y 7→φ][z:A′] ⊆ Lω[X 7→s′,Y 7→φ][z:A′] by i.h.
To show: Lω[X 7→s][z:νY.A′] ⊆ Lω[X 7→s′][z:νY.A′]

S.T.S:
⋃
{φ ∈ R | φ ⊆ Lω[X 7→s,Y 7→φ][z:A′]} ⊆

⋃
{φ ∈ R | φ ⊆ Lω[X 7→s′,Y 7→φ][z:A′]}

Let S =
⋃
{φ ∈ R | φ ⊆ Lω[X 7→s,Y 7→φ][z:A′]}

S is the largestR[−:z:νY.A′] contained in Lω[X 7→s,Y 7→φ][z:A′] by union
Let S′ =

⋃
{φ ∈ R | φ ⊆ Lω[X 7→s′,Y 7→φ][z:A′]}

S′ is the largestR[−:z:νY.A′] contained in Lω[X 7→s′,Y 7→φ][z:A′] by union
S′ ⊆ Lω[X 7→s′,Y 7→φ][z:A′] by the reasoning above
S ⊆ Lω[X 7→s,Y 7→φ][z:A′] by the reasoning above
S ⊆ Lω[X 7→s′,Y 7→φ][z:A′] using the i.h. and transitivity
Since S′ is the largest such set, S ⊆ S′

Remaining cases follow straightforwardly from the i.h.

Theorem 33 (Greatest Fixpoint). Lω[z:νX.A] is a greatest fixpoint of φA.

Proof.

Let G = Lω[νX.A]
To show:φA(G) = G
First, we show G ⊆ φA(G):
If P ∈ G then P ∈ Ψ for some Ψ ∈ R[−:A] such that Ψ ⊆ Lω[X 7→Ψ][z:A] by def.
Ψ ⊆ Lω[X 7→Ψ][z:A] by definition
Ψ ⊆ G G is the union of all such Ψ

Ψ ⊆ Lω[X 7→G][z:A] = φA(G) by monotonicity and transitivity
P ∈ φA(G) by the reasoning above
G ⊆ φA(G) since P ∈ G implies P ∈ φA(G)

φA(G) = Lω[X 7→G][z:A] ⊆ Lω[X 7→φA(G)][z:A] by monotonicity
φA(G) ⊆ Lω[z:µX.A] = G since G is the union of all Ψ s.t. Ψ ⊆ Lω[X 7→Ψ][z:A]

If ψ ∈ R[−:νX.A] verifies ψ = Lω[X 7→ψ][A] then ψ ⊆ G, so G is a greatest fixpoint.
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Having characterized the interpretation of coinductive session types, we now characterize the compo-
sitional nature of substitution of type variables in types with our interpretation of open types. For this we
require the following theorem, reminiscent of Theorem 29 for the polymorphic setting.

Theorem 34. Let νX.A be a well formed type:

P ∈ Lω[z:A{νX.A/X}] iff P ∈ Lω[X 7→Lω [−:νX.A]][z:A]

Proof. By induction on the structure A.

Case: A = X

P ∈ Lω[z:X{νX.A/X}] assumption
P ∈ Lω[z:νX.A] by substitution
Lω[X 7→Lω [−:νX.A]][z:X] = Lω[z:νX.A] by definition

P ∈ Lω[X 7→Lω [−:µX.A]][z:X] assumption
P ∈ Lω[z:νX.A] by definition

Case: A = νY.A′

P ∈ Lω[z:νY.A′{νX.A/X}] assumption
To show: P ∈ Lω[X 7→Lω [−:νX.A]][z:νY.A′]

P ∈ ∪{ψ ∈ R | ψ ⊆ Lω[Y 7→ψ][z:A′{νX.A/X}]} by definition
P ∈ Lω[X 7→Lω [−:νX.A],Y 7→Lω [−:νY.A′]][z:A′] by i.h.
P ∈ Lω[X 7→Lω [−:νX.A]][z:νY.A′] by the fixpoint property

Other cases are identical to the one above, or just follow directly from definitions and the i.h.

We make use of the technique of employing process representatives of contexts, as done in the develop-
ment of the previous section (Def. 12, Prop. 4 and Lemma 25), but accounting for the terms that may occur
in processes.

Definition 16. Let Γ = u1:B1, . . . , uk:Bk and ∆ = x1:A1, . . . , xn:An be a non-linear and linear typing
environment respectively, Ψ = x1:τ1, . . . , xl:τl a term typing environment and ψ any substitution compatible
with Ψ, mapping any variable xi ∈ Ψ to an arbitrary term in the logical predicate L[τi]. Let ω be a mapping
in the sense above. Letting I = {1, . . . , k} and J = {1, . . . , n}, we define the sets of processes CωΓ,Ψ and
Cω∆,Ψ as:

CωΓ,Ψ
def
=
{∏
i∈I

!ui(yi).ψ̂(Ri) | Ri ∈ Lω[yi:Bi]
}

Cω∆,Ψ
def
=
{∏
j∈J

ψ̂(Qj) | Qj ∈ Lω[xj :Aj ]
}
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Proposition 5. Let Γ and ∆ be a non-linear and a linear typing environment, respectively. For allQ ∈ CωΓ,Ψ
and for all R ∈ Cω∆,Ψ we have Q ⇓ and R ⇓. Moreover, Q 6−→

Theorem 35. Let Ψ; Γ; ∆⇒η P :: T , with G = u1:B1, . . . , uk:Bk and ∆ = x1:A1, . . . , xn:An. We have:
ψ̂(P ) ∈ Lω[Γ; ∆⇒ T ] iff ∀Q ∈ CωΓ,Ψ, ∀R ∈ Cω∆,Ψ, (νu, x)(P | Q | R) ∈ Lω[T ].

Proof. Straightforward from the definition of the inductive case of the logical predicate and Def. 6.1.2.

The following renaming lemma is fundamental for our proof of the fundamental theorem, specifically
in the coinductive case.

Lemma 29 (Renaming). Let A be a well-formed type. If P ∈ Lω[z:A] and x 6∈ fn(P ) then P{x/z} ∈
Lω[x:A].

Proof. Immediate from the definition of the logical predicate.

We can now show the fundamental theorem of logical relations for our language of coinductive session
types. Before going into the details of the proof, we outline its fundamental points. The main burden
of proof, beyond the cases that are fundamentally identical to the proof of the Theorem 30, are the cases
pertaining to the νR and νL rules. The case for the νL rule makes crucial use of the fixpoint and unrolling
properties, whereas the case for νR requires us to proceed by coinduction: we produce a set of processes
CP , containing our recursive definition P , show that CP is a reducibility candidate at νX.A and that CP ⊆
Lω[X 7→CP ][z:A]. This is a sufficient condition since we know thatL[c:νX.A] is the largest such set. Showing
that CP satisfies this condition relies crucially on coregular recursion and guardedness.

Theorem 36 (Fundamental Theorem). If Ψ 
 M :τ and Ψ; Γ; ∆ ⇒η P :: z:A then for any mapping ψ
s.t. x:τ0 ∈ Ψ iff ψ(x) ⊆ L[τ0], for any mapping ω consistent with η and for any mapping ρ s.t. X 7→
Ψ0; Γ0; ∆0 ⇒ c0:νZ.B ∈ η iff ρ(X) ⊆ Lω[Ψ0; Γ0; ∆0 ⇒ c0:νZ.B] we have that ψ̂(M) ⊆ L[τ ] and
ψ̂(ρ̂(P )) ⊆ Lω[Ψ; Γ; ∆⇒ z:A].

Proof. The proof proceeds by mutual induction on the given typing derivation. We show only the new cases
pertaining to coinductive types, variables and the spawn construct.

Case:
Ψ; Γ; ∆, x:A{νX.A/X} ⇒η P :: T

Ψ; Γ; ∆, x:νX.A⇒η P :: T
νL

ψ̂(ρ̂(P )) ∈ Lω[Γ; ∆, x:νX.A⇒ T ] by i.h.
Pick any G ∈ CΨ

Γ , D ∈ CΨ
∆:

(νu, x)(ψ̂(ρ̂(P )) | G | D | Lω[x:A{νX.A/X}]) ∈ Lω[T ] by Theorem 35.
S.T.S: (νu, x)(ψ̂(ρ̂(P )) | G | D | Lω[x:νX.A]) ∈ Lω[T ]
Pick R ∈ Lω[x:νX.A]:
S.T.S: (νu, x)(ψ̂(ρ̂(P )) | G | D | R) ∈ Lω[T ]

R ∈ Lω[X 7→Lω [x:νX.A]][x:A] by fixpoint theorem
R ∈ Lω[x:A{νX.A/X}] by Thrm. 34
(νu, x)(ψ̂(ρ̂(P )) | G | D | R) ∈ Lω[T ] by the statement above and the i.h.
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Case:

(SPAWN)
∆ = lin(ai:Ai) shd(ai:Ai) ⊆ Γ Ψ 
M : {ai:Ai ⇒ c:A} Ψ; Γ; ∆′, c:A⇒ P :: d:C

Ψ; Γ; ∆,∆′ ⇒ spawn(M ; ai; c.P ) :: z:C

Pick any G ∈ CΨ
Γ , D′ ∈ CΨ

∆′ , D ∈ CΨ
∆:

S.T.S.: (νu, y, x)(G | D | D′ | spawn(ψ̂(M); c.ψ̂(ρ̂(P )))) ∈ L[d:C] by Theorem 35
ψ̂(ρ̂(P )) ∈ L[Γ; ∆′, c:A ` d:C] by i.h.
Pick any Q ∈ L[c:A]:
(νu, x, c)(ψ̂(ρ̂(P )) | G | D′ | Q) ∈ L[d:C] by Theorem 35.
ψ̂(M) ∈ L[{Γ; ∆⇒ c:A}] by i.h.
ψ̂(M) =⇒ c← {R} ← d with R ∈ L[Γ; ∆ ` c:A] by definition
(νu, y)(G | D | R) ∈ L[c:A] by Theorem 35.
(νu, x, c)(ψ̂(ρ̂(P )) | G | D′ | D | R) ∈ L[d:C] by the statement above.
(νu, y, x)(G | D | D′ | spawn(ψ̂(M); c.ψ̂(ρ̂(P )))) =⇒ (νu, x, c)(ψ̂(ρ̂(P )) | G | D′ | D | R)

by the operational semantics
(νu, y, x)(G | D | D′ | spawn(ψ̂(M); c.ψ̂(ρ̂(P )))) ∈ L[d:C]

by closure under⇒

Case:
(VAR)
η(X(y)) = Ψ; Γ; ∆⇒ d:νY.A ρ′ = {z/y}
ρ′(Ψ); ρ′(Γ); ρ′(∆)⇒η X(z) :: ρ′(d):Y

Follows directly from ω being compatible with η and the definition of ρ.

Case:
(νR)

Ψ; Γ; ∆⇒η′ P :: c:A η′ = η[X(y) 7→ Ψ; Γ; ∆⇒ c:νY.A]

Ψ; Γ; ∆⇒η (corec X(y).P{y/z}) z :: c:νY.A

Let Q = (corec X(y).P{y/z}) z.
Pick any G ∈ CΨ

Γ , D ∈ CΨ
∆:

S.T.S: (νu, x)(ψ̂(ρ̂(Q)) | G | D) ∈ Lω[c:νY.A] by Theorem 35.
ψ̂(ρ̂′(P )) ∈ Lω′ [Ψ; Γ; ∆⇒ c:A] for some ω′ compatible with η′, ρ′ compatible with η′

by i.h.
(νu, x)(ψ̂(ρ′(P )) | G | D) ∈ Lω′ [c:A] by Theorem 35.
We proceed by coinduction:
We define a set C(−) ∈ R[−:νY.A] such that C(c) ⊆ Lω[Y 7→C][c:A] and show:
(νu, x)(ψ̂(ρ̂(Q)) | G | D) ∈ C(c), concluding the proof.
For any compatible ψ,
Let C1 = ∀R ∈ CΨ

Γ , S ∈ CΨ
∆.U ≡ (νa)(R | S | ψ̂(ρ̂(Q)))
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Let C2 = (U ∈ R[−:νY.A] ∧ U ⇒ (νa)(R | S | ψ̂(ρ̂(Q))))

Let C3 = ((νa)(R | S | ψ̂(ρ̂(Q)))⇒ U ∧ U ∈ R[−:νY.A])
Let C = {U | C1 ∨ C2 ∨ C3}
S.T.S.: C(−) ∈ R[−:νY.A] and C(c) ⊆ Lω[Y 7→C][c:A]
Showing C ∈ R[−:νY.A]:
(1) If U ∈ C then⇒η U :: c:νY.A, for some c.

Either U ∈ R[−:νX.A], or U ≡ (νa)(R | S | ψ̂(ρ̂(Q)))
(2) If Q ∈ C then Q ⇓
∀R ∈ CΨ

Γ , S ∈ CΨ
∆.(νa)(R | S | ψ̂(ρ̂(Q))) ⇓

we know that the shape of P ensures a guarding action before the recursion. Moreover,
ψ̂(ρ̂′(P )) ∈ Lω′ [Ψ; Γ; ∆⇒ c:A] by i.h., thus up to the recursive unfolding the process is in L

Any other U ∈ C is inR[−:νY.A] outright and so Q ⇓
(3) If U ∈ C and U ⇒ U ′ then U ′ ∈ C
The only case that does not follow directly from C2 and C3 is the recursive unfolding
of (νa)(R | S | ψ̂(ρ̂(Q)))

(νa)(R | S | ψ̂(ρ̂(Q))) −→ (νa(R | S | ψ̂(ρ̂(P{Q/X(y)}))) by red. semantics
(νa(R | S | ψ̂(ρ̂(P{Q/X(y)}))) ⇓

ψ̂(ρ̂′(P )) ∈ Lω′ [Ψ; Γ; ∆⇒ c:A], moreover, typing enforces guardedness in P ,
so a blocking action on c must take place before the distinction between ψ̂(ρ̂′(P ))

and the recursive unfolding.
(4) If for all Ui such that U ⇒ Ui we have Ui ∈ C then U ∈ C

trivial by C2 and C3

Showing C ⊆ Lω[X 7→C][c:A]:
S.T.S.: (νa)(R | S | ψ̂(ρ̂(Q))) ∈ Lω[Y 7→C][c:A] by def. of C
(νa)(R | S | ψ̂(ρ̂′(P ))) ∈ Lω′ [c:A] by Theorem 35, and the i.h.
Thus the crucial points are those in which the two processes above differ, which are the
occurrences of the recursion variable. By typing we know that the recursion variable X
can only typed by Y , and that in P there must be a guarding action on c before the
recursive behavior is available on a channel, since νY.A is non-trivial and strictly positive.

Proceeding by induction on A, the interesting case is when A = Y , where in the
unfolding of ψ̂(ρ̂(Q)) we reach the point where X is substituted by ψ̂(ρ̂(Q)),
and we must show that the process is in Lω[Y 7→C][x:Y ] = C(x) for some x,
which follows by definition of C and Lemma 29.

As before, it follows as a corollary from the fundamental theorem that well-typed processes do not
diverge, even in the presence of coinductive session types. As we have discussed in Chapter 5, the presence
of general recursive definitions and the potential for divergence introduces substantial challenges when
reasoning about a complex system, since in the general case termination is not a compositional property:
given two non-divergent processes, their composition and subsequent interactions can easily result in a
system that diverges and produces little or no useful (observable) behavior. This is even more apparent in
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the presence of higher-order code mobility, where the highly dynamic nature of systems can easily introduce
non-divergence in seemingly harmless process definitions.

Our termination result shows that the restrictions to the type system introduced above, when moving
from general recursion to corecursion, are sufficient to ensure that well-typed processes enjoy a strong form
of safety, since any well-typed process is statically guaranteed to be able to fulfil its specified protocol: no di-
vergence can be introduced, nor can any deadlocks occur. Moreover, in our typed setting these properties are
compositional, ensuring that any (well-typed) process composition produces a deadlock-free, non-divergent
program.

These results showcase the power of our linear logical relations framework, where by developing a
relatively similar logical predicate for polymorphic and coinductive session types and establishing that well-
typed processes inhabit the predicate naturally entails a property of interest (in this case, termination) that
is not straightforward to establish using more traditional proof techniques [83]. We note that while our
emphasis here was on termination, the techniques developed in the sections above can be adapted to establish
other properties expressible as predicates such as confluence [59].

In Chapter 7 we take this idea further by developing different applications of linear logical relations
and the properties they entail. Before doing so, we introduce the natural next step in our framework of
linear logical relations: the relational or binary version of the development, where instead of developing a
proof technique to establish unary properties of typed processes, we seek to establish relational properties
of processes (such as observational equivalence) and thus develop a lifting of our unary predicate to its
arguably natural binary version.

6.2 Binary Logical Relations

As we have argued at the beginning of this part of the dissertation, one of the advantages of the framework
of linear logical relations is that not only can it be used as a proof technique to show rather non-trivial
properties such as termination but it also enables us to reason about program (or process) equivalence by
considering the binary case of the logical relation, that is, lifting from a predicate on processes to a binary
relation.

As we show in Section 6.2.2, we may use our binary logical relation for the polymorphic setting to
develop a form of relational parametricity in the sense of Reynolds’ abstraction theorem [65], a concept
which was previously unexplored in session typed settings. Moreover, the equivalence relation that arises
from the move to the binary setting turns out to coincide with the canonical notion of (typed) observational
equivalence on π-calculus processes, commonly known as barbed congruence.

In Section 6.2.3 we introduce the variant of our binary logical relation for the coinductive setting of
Section 6.1.2 without higher-order features and show the relational equivalent of the fundamental theorem
of logical relations for this language (i.e. well-typed processes are related to themselves via the logical
relation).

Before going into the details of our development, we first introduce the canonical notion of observational
equivalence in process calculi known as barbed congruence, naturally extended to our typed setting.
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6.2.1 Typed Barbed Congruence

A fundamental topic of study in process calculi is the notion of observational equivalence: when do two
processes behave virtually “the same way”? To answer this question we need to determine what it means
for process behavior to be the same.

Typically, for two processes to be deemed observationally equivalent they must be able to produce the
same set of actions such that they are indistinguishable from each other in any admissible process context.

The canonical notion of contextual equivalence in concurrency theory is that of barbed congruence.
Barbed congruence consists of a binary relation on processes that relies on the notion of a barb. A barb is
the most basic observable on the behavior of processes, consisting simply of taking an action on a channel.
For instance, the process x〈M〉.P has an (output) barb on x. Typically we distinguish between different
kinds of barbs for convenience (e.g. output, input and selection).

Given the notion of a barb, there is a natural definition of barbed equivalence: two processes are barbed
equivalent if they have the same barbs. Since we are interested in the so-called weak variants of equivalence
(those that ignore differences at the level of internal actions), we can define weak barbed equivalence as
an extension of barbed equivalence that is closed under reduction, that is, if P is weak barbed equivalent
to Q then not only do they have the same barbs, but also every reduction of P is matched by zero or more
reduction in Q (and vice-versa). Finally, we want our definition of observational equivalence to capture the
intuition that two processes deemed observationally equivalent cannot be distinguished from one another.
This is made precise by defining barbed congruence (written ∼=) as the closure of weak barbed equivalence
under any process context, that is, given a process with a “hole” which can be instantiated (i.e. a context),
two processes are deemed barbed congruent if they are weak barbed equivalent when placed in any context.
In a typed setting, we restrict our attention to processes of the same type, and to well-formed (according to
typing) process contexts.

Formally, barbed congruence is defined as the largest equivalence relation on processes that is (i) closed
under internal actions; (ii) preserves barbs; and is (iii) contextual. We now make these three desiderata
formally precise, extending barbed congruence to our typed-setting through a notion of type-respecting
relations. Below, we use⇒ to range over sequents of the form Γ; ∆⇒ T . The definitions below pertain to
the polymorphic setting. We shall adapt them later for the coinductive case.

Definition 17 (Type-respecting relations). A (binary) type-respecting relation over processes, written {R⇒}⇒,
is defined as a family of relations over processes indexed by⇒. We often writeR to refer to the whole family.
Also, we write Ω; Γ; ∆⇒ P RQ ::T to mean that

(i) Ω; Γ; ∆⇒ P :: T and Ω; Γ; ∆⇒ Q :: T ,

(ii) (P,Q) ∈ RΩ;Γ;∆⇒T .

We also need to define what constitutes a type-respecting equivalence relation. In what follows, we
assume type-respecting relations and omit the adjective “type-respecting”.

Definition 18. A relationR is said to be

• Reflexive, if Ω; Γ; ∆⇒ P :: T implies Ω; Γ; ∆⇒ P RP ::T ;

• Symmetric, if Ω; Γ; ∆⇒ P RQ ::T implies Ω; Γ; ∆⇒ QRP ::T ;
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• Transitive, Ω; Γ; ∆⇒ P RP ′ ::T and Ω; Γ; ∆⇒ P ′RQ ::T imply Ω; Γ; ∆⇒ P RQ ::T .

Moreover,R is said to be an equivalence if it is reflexive, symmetric, and transitive.

We can now define the three desiderata for barbed congruence: τ -closed, barb preserving and contextu-
ality.

Definition 19 (τ -closed). A relationR is τ -closed if Ω; Γ; ∆⇒ PRQ :: T and P −→ P ′ imply there exists
a Q′ such that Q =⇒ Q′ and Ω; Γ; ∆⇒ P ′RQ′ :: T .

The following definition of observability predicates, or barbs, extends the classical presentation with the
observables for type input and output:

Definition 20 (Barbs). Given a name x, let Ox = {x, x, x.inl, x.inr, x.inl, x.inr} be the set of basic observ-
ables under x. Given a well-typed process P , we write:

• barb(P, x), if P
(νy)x〈y〉−−−−−→ P ′;

• barb(P, x), if P
x〈〉−−→ P ′

• barb(P, x), if P
x〈A〉−−−→ P ′, for some A,P ′;

• barb(P, x), if P
x(A)−−−→ P ′, for some A,P ′;

• barb(P, x), if P
x(y)−−→ P ′, for some y, P ′;

• barb(P, x), if P
x()−−→ P ′, for some P ′;

• barb(P, α), if P α−→ P ′, for some P ′ and α ∈ Ox \ {x, x}.

Given some o ∈ Ox, we write wbarb(P, o) if there exists a P ′ such that P =⇒ P ′ and barb(P ′, o) holds.

Definition 21 (Barb preserving relation). A relation R is barb preserving if, for every name x, Ω; Γ; ∆ ⇒
PRQ :: T and barb(P, o) imply wbarb(Q, o), for any o ∈ Ox.

To define contextuality, we introduce a natural notion of (typed) process contexts. Intuitively, a context is
a process that contains one hole, noted •. Holes are typed: a hole can only be filled with a process matching
its type. We shall use K,K ′, . . . for ranging over properly defined contexts, in the sense given below. We
rely on left- and right-hand side typings for defining contexts and their properties precisely. We consider
contexts with exactly one hole, but our definitions are easy to generalize. We define an extension of the
syntax of processes with •. We also extend sequents, as follows:

H; Ω; Γ; ∆⇒ K :: S

H contains a description of a hole occurring in (context) K: we have that •Ω;Γ;∆⇒T ; Ω; Γ; ∆′ ⇒ K :: S is
the type of a context K whose hole is to be substituted by some process P such that Γ; ∆ ⇒ P :: T . As a
result of the substitution, we obtain process Ω; Γ; ∆′ ⇒ K[P ] :: S. Since we consider at most one hole, H
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is either empty or has exactly one element. If H is empty then K is a process and we obtain its typing via
the usual typing rules. We write Ω; Γ; ∆⇒ R :: T rather than ·; Ω; Γ; ∆⇒ R :: T . The definition of typed
contexts is completed by extending the type system with the following two rules:

•Ω;Γ;∆⇒T ; Ω; Γ; ∆⇒ • :: T
Thole

Ω; Γ; ∆⇒ R :: T •Ω;Γ;∆⇒T ; Ω; Γ; ∆′ ⇒ K :: S

Ω; Γ; ∆′ ⇒ K[R] :: S
Tfill

Rule (Thole) allows us to introduce holes into typed contexts. In rule (Tfill), R is a process (it does not
have any holes), and K is a context with a hole of type Ω; Γ; ∆ ⇒ T . The substitution of occurrences of •
in K with R, noted K[R] is sound as long as the typings of R coincide with those declared inH for K.

Definition 22 (Contextuality). A relationR is contextual if it satisfies the conditions in Figure 6.5.

Having made precise the necessary conditions, we can now formally define typed barbed congruence:

Definition 23 (Typed Barbed Congruence). Typed barbed congruence, noted ∼=, is the largest equivalence
on well-typed processes that is τ -closed, barb preserving, and contextual.

Given the definitions above, it is easy to see why it is not straightforward to determine if two processes
are indeed barbed congruent (and so, observationally equivalent), since we are quantifying over all possible
typed process contexts. The typical approach is to devise a sound and complete proof technique for barbed
congruence that does not rely on explicit checking of all contexts. This is usually achieved by defining some
bisimulation on processes and then showing it to be a congruence, which is not a straightforward task in
general.

6.2.2 Logical Equivalence for Polymorphic Session Types

We now address the problem of identifying a proof technique for observational equivalence in a polymorphic
setting using our framework of linear logical relations. In the functional setting, we typically define a notion
of observational equivalence that is analogous to the idea of barbed congruence and then develop a notion of
logical equivalence, obtained by extending the unary logical predicate to the binary case, that characterizes
observational equivalence. Moreover, in the polymorphic setting this logical equivalence also captures the
idea of parametricity. It turns out that a similar development can be achieved in our polymorphic session-
typed setting. The techniques developed here can also be directly applied to the propositional setting of
Section 2.3, with the obvious changes to the formalism (omitting polymorphic types and related constructs).
We do not pursue such a development here since our logical equivalence for polymorphic session types
subsumes the simpler propositional case (we point the interested reader to [58] for a theory of linear logical
relations for the propositional case, although formulated in a slightly different way – not using the candidates
technique – that does not generalize to the polymorphic setting).

To move to a binary or relational version of our logical predicate, we first need the notion of an equiv-
alence candidate which is the binary analogue of a reducibility candidate, consisting of of a binary relation
on typed processes that is closed under barbed congruence.

Definition 24 (Equivalence Candidate). Let A,B be types. An equivalence candidate R at z:A and z:B,
noted R :: z:A⇔B, is a binary relation on processes such that, for every (P,Q) ∈ R :: z:A⇔B both
· ⇒ P :: z:A and · ⇒ Q :: z:B hold, together with the following conditions:
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A relationR is contextual if

0. Ω; Γ; ∆⇒ P RQ :: y:A and Ω; Γ; y:A⇒ [y↔z] :: z:A imply
Ω; Γ; ∆⇒ (νy)(P | [y↔z])R (νy)(Q | [y↔z]) :: z:A

1. Ω; Γ; ∆, y:A⇒ P RQ :: x:B implies Ω; Γ; ∆⇒ x(y).P Rx(y).Q :: x:A( B

2. Ω; Γ; ∆⇒ P RQ :: T implies Ω; Γ; ∆, x:1⇒ x().P Rx().Q :: T

3. Ω; Γ; ∆⇒ P RQ :: y:A and Ω; Γ; ∆′ ⇒ SRT :: x:B imply
Ω; Γ; ∆,∆′ ⇒ (νy)x〈y〉.(P | S)R (νy)x〈y〉.(Q | T ) :: x:A⊗B

4. Ω; Γ; ∆′ ⇒ P RQ :: x:B and Ω; Γ; ∆′ ⇒ SRT :: y:B imply
Ω; Γ; ∆,∆′ ⇒ (νy)x〈y〉.(S | P )R (νy)x〈y〉.(T | Q) :: x:A⊗B

5. Ω; Γ; ∆⇒ P RQ :: x:A and Ω; Γ; ∆′ ⇒ SRT :: x:B imply
Ω; Γ; ∆⇒ x.case(P, S)Rx.case(Q,T ) :: x:A&B

6. Ω; Γ; ∆⇒ P RQ :: x:B and Ω; Γ; ∆′ ⇒ SRT :: x:A imply
Ω; Γ; ∆⇒ x.case(S, P )Rx.case(T,Q) :: x:A&B

7. Ω; Γ; ∆⇒ P RQ :: x:A implies Ω; Γ; ∆⇒ x.inl;P Rx.inl;Q :: x:A⊕B

8. Ω; Γ; ∆⇒ P RQ :: x:B implies Ω; Γ; ∆⇒ x.inr;P Rx.inr;Q :: x:A⊕B

9. Ω; Γ; ∆⇒ P RQ :: x:A and Ω; Γ; ∆′, x:A⇒ SRH :: T imply
Ω; Γ; ∆,∆′ ⇒ (νx)(P | S)R (νx)(Q | H) :: T

10. Ω; Γ; ∆, x:A⇒ P RQ :: T and Ω; Γ; ∆′ ⇒ SRH :: x:A imply
Ω; Γ; ∆,∆′ ⇒ (νx)(S | P )R (νx)(H | Q) :: T

11. Ω; Γ; · ⇒ P RQ :: y:A and Ω; Γ, u:A; ∆⇒ SRH :: T imply
Ω; Γ; ∆⇒ (νu)(!u(y).P | S)R (νu)(!u(y).Q | H) :: T

12. Ω; Γ, u:A; ∆⇒ P RQ :: T and Ω; Γ; · ⇒ SRH :: y:A and imply
Ω; Γ; ∆⇒ (νu)(!u(y).S | P )R (νu)(!u(y).H | Q) :: T

13. Ω; Γ, u:A; ∆⇒ P RQ :: T implies Ω; Γ; ∆, x:!A⇒ x(u).P Rx(u).Q :: T

14. Ω; Γ; · ⇒ P RQ :: y:A implies Ω; Γ; · ⇒ (νu)x〈u〉.!u(y).P R (νu)x〈u〉.!u(y).Q :: x:!A

15. Ω; Γ; ∆, y:A, x:B ⇒ P RQ :: T implies Ω; Γ; ∆, x:A⊗B ⇒ x(y).P Rx(y).Q :: T

16. Ω; Γ; ∆⇒ P RQ :: y:A and Ω; Γ; ∆′, x:B ⇒ SRH :: T imply
Ω; Γ; ∆,∆′, x:A( B ⇒ (νy)x〈y〉.(P | S)R (νy)x〈y〉.(Q | H) :: T

17. Ω; Γ; ∆, x:B ⇒ P RQ :: T and Ω; Γ; ∆′ ⇒ SRH :: y:A imply
Ω; Γ; ∆,∆′, x:A( B ⇒ (νy)x〈y〉.(P | S)R (νy)x〈y〉.(Q | H) :: T

18. Ω; Γ, u:A; ∆, y:A⇒ P RQ :: T implies Ω; Γ, u:A; ∆⇒ (νy)u〈y〉.P R (νy)u〈y〉.Q :: T

19. Ω; Γ; ∆, x:A⇒ P RQ :: T and Ω; Γ; ∆, x:B ⇒ SRH :: T imply
Ω; Γ; ∆, x:A⊕B ⇒ x.case(P, S)Rx.case(Q,H) :: T

20. Ω; Γ; ∆, x:B ⇒ P RQ :: T and Ω; Γ; ∆, x:A⇒ SRH :: T imply
Ω; Γ; ∆, x:A⊕B ⇒ x.case(S, P )Rx.case(H,Q) :: T

21. Ω; Γ; ∆, x:A⇒ P RQ :: T implies Ω; Γ; ∆, x:A&B ⇒ x.inl;P Rx.inl;Q :: T

22. Ω; Γ; ∆, x:B ⇒ P RQ :: T implies Ω; Γ; ∆, x:A&B ⇒ x.inr;P Rx.inr;Q :: T

23. Ω, X; Γ; ∆⇒ P RQ :: z:A implies Ω; Γ; ∆⇒ z(X).P R z(X).Q :: z:∀X.A

24. Ω; Γ; ∆⇒ P RQ :: z:A{B/X} and Ω⇒ B type imply Ω; Γ; ∆⇒ z〈B〉.P R z〈B〉.Q :: z:∃X.A

25. Ω; Γ; ∆, x : A{B/X} ⇒ P RQ :: T and Ω⇒ B type imply
Ω; Γ; ∆, x : ∀X.A⇒ x〈B〉.P Rx〈B〉.Q :: T

26. Ω, X; Γ; ∆, x : A⇒ P RQ :: T implies Ω; Γ; ∆, x : ∃X.A⇒ x(X).P Rx(X).Q :: T

Figure 6.5: Conditions for Contextual Type-Respecting Relations
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1. If (P,Q) ∈ R :: z:A⇔B, · ` P ∼= P ′ :: z:A, and · ` Q ∼= Q′ :: z:B then (P ′, Q′) ∈ R :: z:A⇔B.

2. If (P,Q) ∈ R :: z:A⇔ B then, for all P0 such that P0 =⇒ P , we have (P0, Q) ∈ R :: z:A⇔ B.
Similarly for Q: If (P,Q) ∈ R :: z:A⇔B then, for all Q0 such that Q0 =⇒ Q then (P,Q0) ∈ R ::
z:A⇔B.

We often write (P,Q) ∈ R :: z:A⇔B as P RQ :: z:A⇔B.

Given this notion of candidate we define logical equivalence by defining the binary version of the logical
predicate of Section 6.1.1, written Γ; ∆ ⇒ P ≈L Q :: T [η : ω⇔ ω′], where both P and Q are typed in
the same contexts and right-hand side typing, ω and ω′ are as before, mappings from type variables to types
(the former applied to P and the latter to Q) and η is now a mapping from type variables to equivalence
candidates that respects ω and ω′ (written η : ω⇔ω′). Just as before, we follow the same idea of inductively
closing open processes to then focus on the behavior of closed processes as defined by their right-hand side
typings.

Definition 25 (Logical Equivalence - Inductive Case). Let Γ,∆ be non empty typing environments. Given
the sequent Ω; Γ; ∆⇒ T , the binary relation on processes Γ; ∆⇒ P ≈L Q :: T [η : ω⇔ω′] (with ω, ω′ : Ω
and η : ω⇔ω′) is inductively defined as:

Γ; ∆, y : A⇒ P ≈L Q :: T [η : ω⇔ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω′],
Γ; ∆⇒ (νy)(ω̂(P ) | ω̂(R1)) ≈L (νy)(ω̂′(Q) | ω̂′(R2)) :: T [η : ω⇔ω′]

Γ, u : A; ∆⇒ P ≈L Q :: T [η : ω⇔ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω′],
Γ; ∆⇒ (νy)(ω̂(P ) | !u(y).ω̂(R1)) ≈L (νy)(ω̂′(Q) | !u(y).ω̂′(R2)) :: T [η : ω⇔ω′]

While the formalism seems quite verbose, the underlying ideas are straightforward generalizations of the
logical predicate we previously introduced. For instance, in the logical predicate of Section 6.1.1, the case
for z:A( B was defined as being able to observe an input action z(x) on a process, for which the resulting
continuation, when composed with any process in the predicate at type x:A would be in the predicate at type
z:B. The definition of logical equivalence follows exactly this pattern: two processes P and Q are logically
equivalent at type z:A ( B when we are able to match an input action z(x) in P with an input action
z(x) in Q, such that for any logically equivalent processes R1 and R2 at type x:A, the continuations, when
composed respectively with R1 and R2 will be logically equivalent at type z:B. The remaining cases follow
a similar generalization pattern. The precise definition is given below (Definition 26).

Definition 26 (Logical Equivalence - Base Case). Given a type A and mappings ω, ω′, η, we define logical
equivalence, noted P ≈L Q :: z:A[η : ω ⇔ ω′], as the largest binary relation containing all pairs of
processes (P,Q) such that (i) · ⇒ ω̂(P ) :: z:ω̂(A); (ii) · ⇒ ω̂′(Q) :: z:ω̂′(A); and (iii) satisfies the
conditions in Figure 6.6.

We can now setup the formalism required to show the fundamental theorem of logical relations in this
binary setting: any well-typed process is logically equivalent to itself. We begin by establishing our logical
relation as one of the equivalence candidates, as we did before for the unary case.

Lemma 30. Suppose P ≈L Q :: z:A[η : ω ↔ ω′]. If, for any P0, we have P0 =⇒ P then P0 ≈L Q ::
z:A[η : ω ↔ ω′]. Also: if, for any Q0, we have Q0 =⇒ Q then P ≈L Q0 :: z:A[η : ω ↔ ω′].

Proof. By induction on the structure of A, relying on Type Preservation (Theorem 20) and the definition of
η.
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P ≈L Q :: z:X[η : ω⇔ω′] iff (P,Q) ∈ η(X)(z)

P ≈L Q :: z:1[η : ω⇔ω′] iff ∀P ′, Q′. (P
z〈〉
=⇒ P ′ ∧ P ′ 6−→ ∧ Q z〈〉

=⇒ Q′ ∧Q′ 6−→)⇒
(P ′ ≡! 0 ∧Q′ ≡! 0)

P ≈L Q :: z:A( B[η : ω⇔ω′] iff ∀P ′, y. (P
z(y)
=⇒ P ′)⇒ ∃Q′.Q z(y)

=⇒ Q′ s.t.

∀R1, R2. R1 ≈L R2 :: y:A[η : ω⇔ω′]

(νy)(P ′ | R1) ≈L (νy)(Q′ | R2) :: z:B[η : ω⇔ω′]

P ≈L Q :: z:A⊗B[η : ω⇔ω′] iff ∀P ′, y. (P
(νy)z〈y〉

=⇒ P ′)⇒ ∃Q′.Q (νy)z〈y〉
=⇒ Q′ s.t.

∃P1, P2, Q1, Q2.P
′ ≡! P1 | P2 ∧Q′ ≡! Q1 | Q2 ∧

P1 ≈L Q1 :: y:A[η : ω⇔ω′] ∧ P2 ≈L Q2 :: z:B[η : ω⇔ω′]

P ≈L Q :: z:!A[η : ω⇔ω′] iff ∀P ′. (P
(νu)z〈u〉

=⇒ P ′)⇒ ∃Q′, P1, Q1, y.Q
(νu)z〈u〉

=⇒ Q′ ∧
P ′ ≡! !u(y).P1 ∧Q′ ≡! !u(y).Q1 ∧ P1 ≈L Q1 :: y:A[η : ω⇔ω′]

P ≈L Q :: z:A&B[η : ω⇔ω′] iff

(∀P ′.(P z.inl
=⇒ P ′) ⇒ ∃Q′.(Q z.inl

=⇒ Q′ ∧ P ′ ≈L Q
′ :: z:A[η : ω⇔ω′])) ∧

(∀P ′.(P z.inr
=⇒ P ′) ⇒ ∃Q′.(Q z.inr

=⇒ Q′ ∧ P ′ ≈L Q
′ :: z:B[η : ω⇔ω′]))

P ≈L Q :: z:A⊕B[η : ω⇔ω′] iff

(∀P ′.(P z.inl
=⇒ P ′) ⇒ ∃Q′.(Q z.inl

=⇒ Q′ ∧ P ′ ≈L Q
′ :: z:A[η : ω⇔ω′])) ∧

(∀P ′.(P z.inr
=⇒ P ′) ⇒ ∃Q′.(Q z.inr

=⇒ Q′ ∧ P ′ ≈L Q
′ :: z:B[η : ω⇔ω′]))

P ≈L Q :: z:∀X.A[η : ω⇔ω′] iff ∀B1, B2, P
′,R :: −:B1⇔B2. (P

z(B1)
=⇒ P ′)⇒

∃Q′.Q z(B2)
=⇒ Q′, P ′ ≈L Q′ :: z:A[η[X 7→ R] : ω[X 7→ B1]⇔ω′[X 7→ B2]]

P ≈L Q :: z:∃X.A[η : ω⇔ω′] iff ∃B1, B2,R :: −:B1⇔B2. (P
z〈B〉
=⇒ P ′)⇒

∃Q′.Q z〈B〉
=⇒ Q′, P ′ ≈L Q′ :: z:A[η[X 7→ R] : ω[X 7→ B1]⇔ω′[X 7→ B2]]

Figure 6.6: Logical Equivalence for Polymorphic Session Types (base case).

Lemma 31. Suppose P ≈L Q :: z:A[η : ω ↔ ω′]. If · ⇒ P ∼= P ′ :: z:ω̂(A) and · ⇒ Q ∼= Q′ :: z:ω̂′(A)
then P ′ ≈L Q

′ :: z:A[η : ω ↔ ω′].

Proof. By induction on the structure of A, using contextuality of ∼=.

Theorem 37 (Logical Equivalence is an Equivalence Candidate). Relation P ≈L Q :: z:A[η : ω ↔ ω′] is
an equivalence candidate at z:ω̂(A) and z:ω̂′(A), in the sense of Definition 24.

Proof. Follows from Lemmas 30 and 31.

The following is a generalization of Lemma 31:

Lemma 32. Suppose Γ; ∆⇒ P ≈L Q :: z:A[η : ω ↔ ω′]. If Γ; ∆⇒ P ∼= P ′ :: z:ω̂(A) and Γ; ∆⇒ Q ∼=
Q′ :: z:ω̂′(A) then Γ; ∆⇒ P ′ ≈L Q

′ :: z:A[η : ω ↔ ω′].
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Proof. By induction on the combined size of Γ and ∆, following Definition 25 and Theorem 37; the base
case uses Lemma 31.

As established earlier for the unary case, we require a compositionality theorem that characterizes the
substitutions encoded by the mappings η and ω. The proof follows closely that of Theorem 29.

Theorem 38 (Compositionality). Let B be any well-formed type. Then, P ≈L Q :: z:A{B/X}[η : ω ⇔ ω′]
if and only if

P ≈L Q :: z:A[η[X 7→ R] : ω[X 7→ ω̂(B)]↔ ω′[X 7→ ω̂′(B)]]

whereR :: −:ω̂(B)⇔ ω̂′(B) stands for logical equivalence (cf. Definition 26).

Proof. By induction on the structure of A, relying on Definition 26.

In the proof of the fundamental theorem it is convenient to use process representatives for left-hand side
contexts as before.

Definition 27. Let Γ = u1:B1, . . . , uk:Bk, and ∆ = x1:A1, . . . , xn:An be a non-linear and a linear
typing environment, respectively, such that Ω . ∆ and Ω . Γ, for some Ω. Letting I = {1, . . . , k} and
J = {1, . . . , n}, ω, ω′ : Ω, η : ω ⇔ ω′, we define the sets of pairs of processes Cω,ω

′,η
Γ and Cω,ω

′,η
∆ as:

Cω,ω
′,η

Γ

def
=
{∏
i∈I

(!ui(yi).ω̂(Ri), !ui(yi).ω̂′(Si)) | Ri ≈L Si :: yi:Bi[η[ω ⇔ ω′]]
}

Cω,ω
′,η

∆

def
=
{∏
j∈J

(ω̂(Qj), ω̂′(Uj)) | Qj ≈L Uj :: xj :Aj [η[ω ⇔ ω′]]
}

Lemma 33. Let P and Q be processes such that Ω; Γ; ∆ ⇒ P :: T , Ω; Γ; ∆ ⇒ Q :: T with Γ =
u1:B1, . . . , uk:Bk and ∆ = x1:A1, . . . , xn:An, with Ω .∆, Ω . Γ, ω, ω′ : Ω, and η : ω ⇔ ω′. We have:

Γ; ∆⇒ P ≈L Q :: T [η[ω ⇔ ω′]] iff ∀(R1, R2) ∈ Cω,ω
′,η

Γ , ∀(S1, S2) ∈ Cω,ω
′,η

∆ ,

(νũ, x̃)(P | R1 | S1) ≈L (νũ, x̃)(Q | R2 | S2) :: T [η[ω ⇔ ω′]]

Proof. Straightforward from Def. 25 and 27.

In the proof of the fundamental theorem, we exploit termination of well-typed processes to ensure that
actions can be matched with finite weak transitions.

Theorem 39 (Fundamental Theorem – Parametricity). If Ω; Γ; ∆ ⇒ P :: z:A then, for all ω, ω′ : Ω and
η : ω ↔ ω′, we have

Γ; ∆⇒ ω̂(P ) ≈L ω̂′(P ) :: z:A[η : ω ↔ ω′]

Proof. By induction on typing, exploiting termination, and Theorems 37 and 38.

Case (T∀R2): Ω; Γ; ∆⇒ z(X).P :: z:∀X.A
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Ω, X; Γ; ∆⇒ P :: z:A by inversion
Let ω1 = ω[X 7→ B], ω2 = ω′[X 7→ B] and η1 = η[X 7→ R :: −:B] for some B.
Γ; ∆⇒ ω̂1(P ){B/X} ≈L ω̂2(P ){B/X} :: z:A[η1:ω1 ⇔ ω2] by i.h.
Pick any (G1, G2) ∈ Cω1,ω2,η1

Γ , (D1, D2) ∈ Cω1,ω2,η1
∆ :

(νũ, x̃)(ω̂1(P ){B/X} | G1 | D1) ≈L (νũ, x̃)(ω̂2(P ){B/X} | G2 | D2) :: z:A[η[ω1 ⇔ ω2]]
(a) by Lemma 37

z(X).ω̂(P )
z(B)−−−→ ω̂(P ){B/X} by l.t.s

S.T.S.: (νũ, x̃)(z(X).ω̂(P ) | G1 | D1) ≈L (νũ, x̃)(z(X).ω̂′(P ) | G2 | D2) :: z:∀X.A[η : ω ⇔ ω′]
by Lemma 37 and strengthening

(νũ, x̃)(z(X).ω̂′(P ) | G1 | D1)
z(B)
=⇒ (νũ, x̃)(ω̂′(P ) | G2 | D′2) by l.t.s

(νũ, x̃)(ω̂1(P ){B/X} | G1 | D1) ≈L (νũ, x̃)(ω̂2(P ){B/X} | G2 | D′2) :: z:A[η[ω1 ⇔ ω2]]
by (a) and forward closure

(νũ, x̃)(z(X).ω̂(P ) | G | D) ≈L (νũ, x̃)(z(X).ω̂′(P ) | G | D) :: z:∀X.A[η : ω ⇔ ω′]
by Def. 26 and strengthening

Case (T∀L2): Ω; Γ; ∆, x:∀X.A⇒ x〈B〉.P :: T

Ω ` B type by inversion
Ω; Γ; ∆, x:A{B/X} ⇒ P :: T by inversion
Γ; ∆, x:A{B/X} ⇒ ω̂(P ) ≈L ω̂′(P ) :: T [η : ω =⇒ ω′] (a) by i.h.
Pick any (G1, G2) ∈ Cω,ω

′,η
Γ and (D1, D2) ∈ Cω,ω

′,η
∆ , R1 ≈L R2 :: x:A{B/X}[η : ω ⇔ ω′]:

(νũ, x̃)(ω̂(P ) | R1 | D | G) ≈L (νũ, x̃)(ω̂′(P ) | R2 | D | G) :: T [η : ω ⇔ ω′]
(b) by (a) Lemma 37

Pick S1, S2 such that S1 ≈L S2 :: x:∀X.A[η : ω ⇔ ω′]:
S.T.S: (νũ, x̃)(ω̂(x〈B〉.P ) | G | D | S1) ≈L (νũ, x̃)(ω̂′(x〈B〉.P ) | G | D | S2) :: T [η : ω ⇔ ω′]

S1
x(ω̂(B))

=⇒ S′1 , S2
x(ω̂′(B))

=⇒ S′2
∀R :: −:B ⇔ B.S′1 ≈L S

′
2 :: x:A[η[X 7→ R] : ω[X 7→ B]⇔ ω′[X 7→ B]] by Def. 26

S′1 ≈L S
′
2 :: x:A[η[X 7→ ≈L] : ω[X 7→ B]⇔ ω′[X 7→ B]] by Theorem 37

S′1 ≈L S
′
2 :: x:A{B/X}[η : ω ⇔ ω′] by Theorem 38

(νũ, x̃)(ω̂(x〈B〉.P ) | G | D | S1) =⇒ (νũ, x̃)(ω̂(P ) | G | D′ | S′1) = M1

(νũ, x̃)(ω̂′(x〈B〉.P ) | G | D | S2) =⇒ (νũ, x̃)(ω̂′(P ) | G | D′ | S′2) = M2

M1 ≈L M2 :: T [η : ω ⇔ ω′] by (b) and forward closure
(νũ, x̃)(ω̂(x〈B〉.P ) | G | D | S1) ≈L (νũ, x̃)(ω̂′(x〈B〉.P ) | G | D | S2) :: T [η : ω ⇔ ω′]

by backward closure

Remaining cases follow a similar pattern.

We have thus established the fundamental theorem of logical relations for our polymorphic session-
typed setting, which entails a form of parametricity in the sense of Reynolds [65], a previously unknown
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result for session-typed languages. Notice how the proof follows quite closely the structure of the unary
case, making a case for the generality of the approach.

In Section 7.1 we use this result to directly reason about polymorphic processes, where we also show
that our logical equivalence turns out to be sound and complete with respect to typed barbed congruence,
serving as a proof technique for the canonical notion of observational equivalence in process calculi.

6.2.3 Logical Equivalence for Coinductive Session Types

We now devote our attention to developing a suitable notion of logical equivalence (in the sense of 6.2.2)
for our calculus with coinductive session types.

To simplify the development, we restrict the process calculus of Section 6.1.2 to not include higher-order
process passing features, nor term communication. The reasoning behind this restriction is that in order to
give a full account of logical equivalence for the full calculus we would need to specify a suitable notion
of equivalence for the functional layer. Given that monadic objects are terms of the functional language
that cannot be observed within the functional layer itself, we would thus need to account for equivalence of
monadic objects potentially through barbed congruence, which would itself need to appeal to equivalence
of the functional language. It is not immediately obvious how to develop a reasonable notion of observation
equivalence under these constraints.

While the formalization of such a development is of interest, given that it would arguably produce
a notion of equivalence for higher-order processes (for which reasoning about equivalence is particularly
challenging [71, 66]), it would lead us too far astray in our development. Moreover, the higher-order features
and coinductive definitions are rather orthogonal features. Thus, we compromise and focus solely on the
latter in the development of this section. We discuss how to extend the development to account for higher-
order features in Section 6.3.

We begin by revisiting our definition of typed barbed congruence. The definition of type-respecting
relations (Def. 17) is modified in the obvious way, referring the typing judgment Γ; ∆⇒η P :: T . Similarly
for definitions 18 and 19 of an equivalence relation and tau-closedness. Our notion of a barb (Def. 20) is also
straightforwardly adapted by omitting the clauses for type input and output and generalizing binary labelled
choice to n-ary labelled choice. Contextuality (Def. 22) is updated to account for the process contexts
generated by the typing rules for corecursive process definitions. In essence, we update Fig. 6.5 by erasing
the typing context for type variables Ω, updating clauses 19 through 22 to account for n-ary choice and
selection, omitting clauses 23 through 26 pertaining to polymorphism and adding the following clauses:

1. Γ; ∆, c:A{νX.A/X} ⇒η P RQ :: T implies Γ; ∆, c:νX.A⇒η P RQ :: T

2. Γ; ∆⇒η′ P RQ :: c:A with η′ = η[X(y) 7→ Γ; ∆⇒ c:νY.A] implies

Γ; ∆⇒η ((corec X(y).P{y/z}) z)R(corec X(y).Q{y/z}) z) :: c:νY.A

With the appropriate redefinition of barbed congruence in place, we are now in a position to define
logical equivalence for coinductive session types. We begin with the updated version of an equivalence
candidate.

Definition 28 (Equivalence Candidate). Let A be a session type. An equivalence candidateR at z:A, noted
R :: z:A is a binary relation on processes such that, for every (P,Q) ∈ R :: z:A both · ⇒ P :: z:A and
· ⇒ Q :: z:A hold, together with the following conditions:
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1. If (P,Q) ∈ R :: z:A, · ` P ∼= P ′ :: z:A, and · ` Q ∼= Q′ :: z:A then (P ′, Q′) ∈ R :: z:A.

2. If (P,Q) ∈ R :: z:A then, for all P0 such that P0 =⇒ P , we have (P0, Q) ∈ R :: z:A. Similarly for Q:
If (P,Q) ∈ R :: z:A then, for all Q0 such that Q0 =⇒ Q then (P,Q0) ∈ R :: z:A.

We often write (P,Q) ∈ R :: z:A as P RQ :: z:A.

In analogy with the unary case, we write R :: −:A for the collection of all equivalence candidates at
type A. As in the case for polymorphism, we define logical equivalence by defining the binary version of
the logical predicate of Section 6.1.2, written Γ; ∆ ⇒η P ≈L Q :: T [ω] where P and Q are typed in the
same contexts and right-hand side typing and ω is a mapping from type variables to equivalence candidates
(compatible with η). As before, we follow the same outline of separating the cases of open processes and
closed processes. Note that, unlike in the case for polymorphism, we do not need to maintain two separate
mappings for type variables since the instantiations are the same in the typings of the two processes in the
relation.

Definition 29 (Logical Equivalence - Inductive Case). Let Γ,∆ be non empty typing environments. Given
the sequent Γ; ∆ ⇒η T , the binary relation on processes Γ; ∆ ⇒ P ≈L Q :: T [ω], where ω is compatible
with η is is inductively defined as:

Γ; ∆, y : A⇒η P ≈L Q :: T [ω] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[ω],
Γ; ∆⇒ (νy)(P | R1) ≈L (νy)(Q | R2) :: T [ω]

Γ, u : A; ∆⇒η P ≈L Q :: T [ω] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[ω],
Γ; ∆⇒η (νy)(P | !u(y).R1) ≈L (νy)(Q | !u(y).R2) :: T [ω]

The base case consists of the natural generalization of the unary version of the logical relation to the
binary setting. For brevity we omit the cases for the additives (& and ⊕).

Definition 30 (Logical Equivalence - Base Case). Given a type A and mappings ω, η we define logical
equivalence, noted P ≈L Q :: z:A[ω], as the largest binary relation containing all pairs of processes (P,Q)
such that (i) · ⇒η P :: z:A; (ii) · ⇒η Q :: z:A; and (iii) satisfies the conditions in Figure 6.7.

We now show the appropriate auxiliary results in order to establish the fundamental theorem of logical
relations for equivalence in the presence of coinductive session types. As before, we show that logical
equivalence is an equivalence candidate by showing it satisfies the appropriate closure conditions. We then
establish a greatest fixpoint property for the interpretation of coinductive session types and after defining
the convenient notion of process representatives for contexts, we are in a position to show the fundamental
theorem.

Lemma 34. Suppose P ≈L Q :: z:A[ω]. If, for any P0, we have P0 =⇒ P then P0 ≈L Q :: z:A[ω]. Also:
if, for any Q0, we have Q0 =⇒ Q then P ≈L Q0 :: z:A[ω].

Proof. By induction on the structure of A, relying on Type Preservation and the definition of ω.

Lemma 35. Suppose P ≈L Q :: z:A[ω]. If · ⇒ P ∼= P ′ :: z:A and · ⇒ Q ∼= Q′ :: z:A then P ′ ≈L Q
′ ::

z:A[ω].

Proof. By induction on the structure of A, using contextuality of ∼=.
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P ≈L Q :: z:X[ω] iff (P,Q) ∈ ω(X)(z)

P ≈L Q :: z:1[ω] iff ∀P ′, Q′. (P
z〈〉
=⇒ P ′ ∧ P ′ 6−→ ∧ Q z〈〉

=⇒ Q′ ∧Q′ 6−→)⇒
(P ′ ≡! 0 ∧Q′ ≡! 0)

P ≈L Q :: z:A( B[ω] iff ∀P ′, y. (P
z(y)
=⇒ P ′)⇒ ∃Q′.Q z(y)

=⇒ Q′ s.t.

∀R1, R2. R1 ≈L R2 :: y:A[ω]

(νy)(P ′ | R1) ≈L (νy)(Q′ | R2) :: z:B[ω]

P ≈L Q :: z:A⊗B[ω] iff ∀P ′, y. (P
(νy)z〈y〉

=⇒ P ′)⇒ ∃Q′.Q (νy)z〈y〉
=⇒ Q′ s.t.

∃P1, P2, Q1, Q2.P
′ ≡! P1 | P2 ∧Q′ ≡! Q1 | Q2 ∧

P1 ≈L Q1 :: y:A[ω] ∧ P2 ≈L Q2 :: z:B[ω]

P ≈L Q :: z:!A[ω] iff ∀P ′. (P
(νu)z〈u〉

=⇒ P ′)⇒ ∃Q′, P1, Q1, y.Q
(νu)z〈u〉

=⇒ Q′ ∧
P ′ ≡! !u(y).P1 ∧Q′ ≡! !u(y).Q1 ∧ P1 ≈L Q1 :: y:A[ω]

P ≈L Q :: z:νX.A[ω] iff (P,Q) ∈
⋃
{Ψ ∈ R :: −:νX.A | Ψ ⊆ · ≈L · :: z:A[ω[X 7→ Ψ]]}

Figure 6.7: Logical Equivalence for Coinductive Session Types (base case) – abridged.

Theorem 40 (Logical Equivalence is an Equivalence Candidate). Relation P ≈L Q :: z:A[ω] is an equiva-
lence candidate at z:A in the sense of Definition 28.

Proof. Follows from Lemmas 34 and 35.

To establish the fixpoint property we define a similar operator to that of Def. 15.

Definition 31. Let νX.A be a strictly positive session type. We define the operator φA : R :: − : A→ R ::
− : A as:

φA(s) , · ≈L · :: z:A[ω[X 7→ s]]

We first show the monotonicity of φA. The proof is identical to that of Lemma 28.

Lemma 36 (Monotonicity of φA). The operator φA is monotonic, that is, s ⊆ s′ implies φA(s) ⊆ φA(s′),
for any s and s′ in R :: −:A.

Proof. By induction on A.

The greatest fixpoint property follows as before.

Theorem 41 (Greatest Fixpoint). · ≈L · :: z:νX.A[ω] is a greatest fixpoint of φA.

Theorem 42. Let νX.A be a well-formed type:

P ≈L Q :: z:A{νX.A/X}[ω] iff P ≈L Q :: z:A[ω[X 7→ · ≈L · :: −:νX.A[ω]]]

Proof. By induction on A.
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Finally, we define the adequate notion of context representatives for this setting, which we may then use
in the proof of the fundamental theorem.

Definition 32. Let Γ = u1:B1, . . . , uk:Bk, and ∆ = x1:A1, . . . , xn:An be a non-linear and a linear typing
environment, respectively. Letting I = {1, . . . , k} and J = {1, . . . , n}, with ω a mapping in the sense
above. We define the sets of pairs of processes CωΓ and Cω∆ as:

CωΓ
def
=
{∏
i∈I

(!ui(yi).Ri, !ui(yi).Si) | Ri ≈L Si :: yi:Bi[ω]
}

Cω∆
def
=
{∏
j∈J

(Qj , Uj) | Qj ≈L Uj :: xj :Aj [ω]
}

Lemma 37. LetP andQ be processes such that Γ; ∆⇒η P :: T , Γ; ∆⇒η Q :: T with Γ = u1:B1, . . . , uk:Bk
and ∆ = x1:A1, . . . , xn:An, with ω compatible with η. We have:

Γ; ∆⇒ P ≈L Q :: T [ω] iff ∀(R1, R2) ∈ CωΓ ,∀(S1, S2) ∈ Cω∆,

(νũ, x̃)(P | R1 | S1) ≈L (νũ, x̃)(Q | R2 | S2) :: T [ω]

Proof. Straightforward from Def. 29 and 32.

The fundamental theorem of logical relations states that any well-typed process is logically equivalent
to itself. The closure conditions pertaining to η (also present in the unary case) are necessary to maintain
the inductive invariants for coinductive definitions.

Theorem 43 (Fundamental Theorem). If Γ; ∆ ⇒η P :: z:A then for any mapping ω consistent with η and
for any mapping ρ such that X 7→ Γ0; ∆0 ⇒ c0:νZ.B ∈ η iff ρ(X) ⊆ Γ0; ∆0 ⇒ · ≈L · :: c0:νZ.B[ω] we
have that Γ; ∆⇒ ρ̂(P ) ≈L ρ̂(P ) :: z:A[ω].

Proof. By induction on typing. The proof is analogous to the unary case. The crucial case is the one where
the last rule is νR, where we again proceed by coinduction, exploiting termination of well-typed processes
to ensure that actions can be matched with finite weak transitions.

We define a set C of pairs of processes, containing the corecursive definition and its unfolding, closed
under the reduction, expansion and typed barbed congruence, such that it satisfies the equivalence candidate
criteria at type νX.A. We then show that this set satisfies the property C ⊆ · ≈L · :: z:A[ω[X 7→ C]].

As in the proof of Theorem 36, we make crucial use of the fact that process-level recursion can only be
typed with the type variable rule, combined with guardedness and the inductive hypothesis to establish the
property above.

The key insight is that since no internal interaction with recursive calls is allowed, we eventually result in
a process that is by definition included in C – the recursive process itself, modulo renamings. This property
would not hold otherwise, since it would be possible for internal actions to disrupt the recursive call such
that it would not be possible to consistently construct a set C with the necessary properties.

We have thus showed that our notion of logical equivalence for coinductively typed processes is sound
with respect to typing insofar as any typed process is guaranteed to be equivalent to itself. Moreover, since
logical equivalent is consistent with typed barbed congruence by construction, we may use this relation as a
sound proof technique for reasoning about the observable behavior of typed processes.
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6.3 Further Discussion

In this chapter we have developed our theory of linear logical relations as it applies to polymorphic and
coinductive session types, noting that the theory applies directly to the simpler propositional setting of
Chapter 2. We have presented formulations of the logical relations in both unary (predicate) and binary (re-
lational) form, as a means of establishing properties of typed processes that may be expressed as predicates
or binary relations. In particular, we have explored the idea of using the technique to establish termination
and a form of process behavioral equivalence.

As we have seen throughout this chapter, our framework of linear logical relations naturally lends itself
to generalization up to richer settings, seeing as we can maintain the overall structure of the development
in a way that is consistent with the basic propositional type structure, impredicative polymorphism and
coinductive session types (in both unary and binary formulations). This is made possible by the linear
logic foundation that underlies our typing disciplines, enabling the development of this sophisticated proof
technique in a natural and, arguably, uniform way.

A fundamental outcome of our linear logical relations framework is that it provides us with a flexible
tool for reasoning about various forms of typed concurrent computation in a relatively straightforward way.
Not only can we apply it in various typed settings, but it also enables us to establish a wide range of proper-
ties such as termination, equivalence or confluence (the latter is discussed in [59]), which have historically
required much more sophisticated technical developments (typically hard to generalize across different lan-
guages or typing disciplines) or been outright absent from the literature (such as our parametricity result –
Theorem 39 – for polymorphic session types).

Higher-Order Process Passing As we have mentioned at the start of Section 6.2.3, we have developed
logical equivalence for coinductive session types in the absence of higher-order process passing features
that were present in the language of Section 6.1.2 for the sake of technical simplicity. We sketch how to
potentially extend the development to also account for the higher-order features. The key technical challenge
is that the two-layer system of Section 6.1.2 requires us to reason about equivalence of both processes and
(functional) terms, in a scenario where the functional language also embeds the process layer through the
contextual monad.

For the functional layer, one way of developing observational equivalence is by considering a base type
of answers to serve as the outcome of a computation in a distinguishable way. We would then define a notion
of contextuality for functional terms and define observational equivalence by appealing to contexts of the
“answer type”. However, the functional language also includes monadic objects which cannot be discrimi-
nated within the functional language itself, but rather via the process-level spawn construct, so it is not at all
clear how this approach of considering a type for answers would provide a consistent account of observa-
tional equivalence of monadic expressions (which cannot be inspected within the functional language itself).
In principle, observational equivalence of monadic expressions should reduce to observational equivalence
(i.e., typed barbed congruence) of processes. The key issue lies in the fact that barbed congruence would
need to play the role of “observing” monadic objects, potentially also appealing to equivalence of functional
terms. This mutual dependency makes defining reasonable notions of equivalence not at all obvious.

However, provided an hypothetically suitable notion of observational equivalence that integrates the
two language layers, the definition of the logical equivalence should follow in a relatively straightforward
way: for logical equivalence of monadic terms, appeal to logical equivalence of the underlying process; for
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logical equivalence of term input τ ⊃ A and output τ ∧ A, appeal to the logical equivalence at the type τ
accordingly.

Limitations and Potential Solutions While we have argued for our claim of uniformity and applicability
of our framework, we note that our technique suffers from a similar limitation to that of logical relations for
languages based on the λ-calculus, insofar as they may only be applied to so-called total languages, that is,
languages without non-terminating programs.

There are multiple ways of addressing this challenge: the work developed in this chapter attempts to
push the application boundaries of the formalism by giving an account of coinductive types, which encode
the potential for infinite behavior in a non-divergent way that is amenable to a logical relations interpre-
tation. This approach has natural limitations, since not only must we outright exclude any programs that
include divergence but we must also eliminate programs that, despite being non-divergent, do not satisfy the
criteria put in place to ensure termination (this is unavoidable since termination and productivity are unde-
cidable problems in the general case). A way to potentially alleviate the latter is to develop more general
admissibility criteria, for instance using type-based termination techniques [2, 39]. However, it is not clear
how to map these techniques to our concurrent setting given that types describe behavior that is produced by
processes rather than data that is constructed or inspected by functions. Type-based termination methods for
functional languages typically use type annotations to place a (lower or upper) bound on the size of “values”
of a given type. While this is perfectly reasonable when types describe data, it is not obvious how to apply
this technique to processes and their behavior.

An alternative approach to that pursued in this thesis is to follow a different path altogether: instead
of placing constraints on the language to “fit” the the formalism, we may extend the formalism to “fit” the
language, naturally losing guarantees in the process. An example of this are so-called step-indexed logical
relations for languages with non-termination [4], which are able to relate programs up-to a certain number
of steps (thus the step-indexed prefix). Naturally, this technique cannot be used to ensure termination and is
typically used to reason about a form of equivalence (or even simpler properties such as type safety).

Developing a step-indexed model in our setting can prove to be somewhat challenging from a technical
perspective, given that step-indexed models typically conflate all non-terminating terms at a given type. This
is natural in a functional setting where observables are the final values generated by evaluation, and thus no
observable can be produced from a non-terminating term. In a process setting, observables are much more
fine-grained insofar as we care about the interactive behavior of processes during their computation (even if
it does not terminate) and not on a notion of final outcome per se. Therefore, conflating all non-terminating
processes at a given type would result in a notion of equivalence that is unsatisfactory.
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Chapter 7

Applications of Linear Logical Relations

In this chapter we continue to support our claims of using our logical foundation as a way to account for
interesting phenomena of concurrent computation by developing applications of the linear logical relations
techniques of the previous chapter to give an account of a few interesting aspects of concurrent computation.

In particular, we explore observational equivalence of processes. More precisely, we show that our
notion of logical equivalence of the previous chapter may be used as a sound and complete proof technique
for (typed) barbed congruence and show how to use it to reason about behaviorally equivalent processes.
Moreover, we exploit the parametricity result of Section 6.2.2 to reason about the shape of processes in a
way identical to that of the so-called “theorems for free” obtained from parametricity in System F [79].

Another interesting application of our framework of linear logical relations pertains to the familiar proof-
theoretic concept of type isomorphisms, applied to session types (Section 7.2). In a concurrent setting, type
isomorphisms are of particular interest since they describe a form of equivalence of behavior of processes
offering different session types. Since session types are essentially communication protocol specifications,
we can view session type isomorphisms as a form of equivalence between communication protocols which
can be exploited for different purposes: develop coercions between related types; at some level, to optimize
communication by considering simpler yet equivalent, or isomorphic, versions of types, etc.

Finally, we attempt to come full circle with respect to our concurrent interpretation of linear logic and
show how the commuting conversions that arise during cut elimination, which do not correspond to reduc-
tions in our interpretation, can be explained via observational equivalences.

7.1 Behavioral Equivalence

One of the fundamental areas of study in concurrency theory is that of behavioral theory of concurrent
processes, which addresses the issues related to behavioral characteristics of concurrent programs: how do
we reason about the behavior of processes? under what circumstances can we consider that processes have
the same behavior? what is an appropriate description of “behavior”?

All these questions have produced a vast collection of answers and proposed solutions. As we have
mentioned in Section 6.2.1, the canonical notion of observational equivalence in process calculi is that of
weak barbed congruence: a relation on processes that requires processes to exhibit the same (weak) barbs
(actions along channels) in any context.

133
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The main problem with barbed congruence is that despite being a reasonable notion of observational
equivalence, it is hard to reason about in practice due to its quite “generous” definition, quantifying over all
contexts and all process actions. Thus, the common approach is to develop some form of proof technique
that is both sound and complete with respect to barbed congruence (and so, observational equivalence) and
also arguably easier to reason about directly.

It turns out that in our logically based, well-typed setting, the logical equivalence obtained in Sec-
tion 6.2.2 by generalizing our linear logical relations to the predicate setting characterizes barbed congru-
ence and is thus a suitable proof technique for reasoning about observational equivalence of well-typed
processes.

Lemma 38. Logical equivalence (cf. Definition 25) is a contextual relation, in the sense of Definition 22.

Proof. By induction on the clauses of Definition 22.

Lemma 39. If P ≈L Q :: z:A[∅ : ∅ ↔ ∅] then · ` P ∼= Q :: z:A

Proof. Immediate from Lemma 31 (which ensures that ≈L respects ∼=) and reflexivity of ∼=.

Theorem 44 (≈L implies ∼= - Soundness). If Γ; ∆ ⇒ P ≈L Q :: z:A[η : ω ↔ ω′] holds for any ω, ω′ : Ω
and η : ω ↔ ω′, then Ω; Γ; ∆⇒ P ∼= Q :: z:A

Proof. Follows by contextuality of ≈L (Lemma 38), which allows us to simplify the analysis to the case of
an empty left-hand side typing environment. In that point, the thesis follows by Lemma 39.

Theorem 45 (∼= implies ≈L - Completeness). If Ω; Γ; ∆⇒ P ∼= Q :: z:A then Γ; ∆⇒ P ≈L Q :: z:A[η :
ω ↔ ω′] for some ω, ω′ : Ω and η : ω ↔ ω′.

Proof. Follows by combining Theorem 39 and Lemma 32.

Theorems 44 and 45 then ensure:

Theorem 46 (Logical Equivalence and Barbed Congruence coincide). Relations ≈L and ∼= coincide for
well-typed processes.

While the results above apply directly to polymorphic session types, it is immediate that this coincidence
of logical equivalence and barbed congruence holds for the simple propositional setting as well.

7.1.1 Using Parametricity

We now illustrate a relatively simple application of our parametricity result for reasoning about concurrent
polymorphic processes. For the sake of argument, we are interested in studying a restaurant finding system;
such an application is expected to rely on some maps application, to be uploaded to a cloud server (c.f. the
example of Section 3.5.1).

In our example, we would like to consider two different implementations of the system, each one rely-
ing on a different maps service. We assume that the two implementations will comply with the expected
specification for the restaurant service, even if each one uses a different maps service (denoted by closed
types AMaps and GMaps). This assumption may be precisely expressed by the judgment

(7.1) s:!(api( X)( !X ⇒ C1 ≈L C2 :: z:rest[ηr : ω1⇔ω2]
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where ηr(X) = R, ω1(X) = AMaps, and ω2(X) = GMaps, where R is an equivalence candidate that
relates AMaps and GMaps, i.e., R : AMaps⇔ GMaps. The type of the restaurant finding application is
denoted rest; it does not involve type variableX . Also, we assumeX does not occur in the implementations
C1, C2. Intuitively, the above captures the fact that C1 and C2 are similar “up to” the relationR.

By exploiting the shape of type CloudServer, we can ensure that any process S such that · ⇒ S ::
s:CloudServer behaves uniformly, offering the same generic behavior to its clients. That is to say, once the
server is instantiated with an uploaded application, the behavior of the resulting system will depend only on
the type provided by the application. Recall the polymorphic type of our cloud server:

CloudServer , ∀X.!(api ( X) ( !X

Based on the form of this type and combining inversion on typing and termination (Theorem 31), there is a
process SBody such that

(7.2) S
s(X)−−−→ SBody X; ·; · ⇒ SBody :: s:!(api( X)( !X

hold. By parametricity (Theorem 39) on (7.2), we obtain

· ⇒ ω̂(SBody) ≈L ω̂
′(SBody) :: s:!(api( X)( !X[η : ω⇔ω′]

for any ω, ω′, and η. In particular, it holds for the ηr, ω1 and ω2 defined above:

(7.3) · ⇒ ω̂1(SBody) ≈L ω̂2(SBody) :: s:!(api( X)( !X[ηr : ω1⇔ω2]

By Definition 25, the formal relationship between C1 and C2 given by (7.1) implies

· ⇒ (νs)(ω̂1(R1) | C1) ≈L (νs)(ω̂2(R2) | C2) :: z:rest[ηr : ω1⇔ω2]

for any R1, R2 such that R1 ≈L R2 :: s:!(api( X)( !X[ηr : ω1⇔ω2]. In particular, it holds for the two
processes related in (7.3) above. Combining these two facts, we have:

· ⇒ (νs)(ω̂1(SBody) | C1) ≈L (νs)(ω̂2(SBody) | C2) :: z:rest[ηr : ω1⇔ω2]

Since rest does not involve X , using Theorem 38 we actually have:

(7.4) · ⇒ (νs)(ω̂1(SBody) | C1) ≈L (νs)(ω̂2(SBody) | C2) :: z:rest[∅ : ∅⇔∅]

Now, given (7.4), and using backward closure of ≈L under reductions (possible because of Theorem 37 and
Definition 24), we obtain:

· ⇒ (νs)(S | s〈AMaps〉.C1) ≈L (νs)(S | s〈GMaps〉.C2) :: z:rest[∅ : ∅⇔∅]

Then, using Corollary 46, we finally have

· ⇒ (νs)(S | s〈AMaps〉.C1) ∼= (νs)(S | s〈GMaps〉.C2) :: z:rest

This simple, yet illustrative example shows how one may use our parametricity results to reason about
the observable behavior of concurrent systems that interact under a polymorphic behavioral typing disci-
pline. This style of reasoning is reminiscent of the so-called “theorems for free” reasoning using para-
metricity in System F [79], which provides a formal and precise justification for the intuitive concept that
typing (especially in the polymorphic setting) combined with linearity introduces such strong constraints
on the shape of processes that we can determine the observable behavior of processes very precisely by
reasoning directly about their session typings.
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7.2 Session Type Isomorphisms

In type theory, types A and B are called isomorphic if there are morphisms πA of B ` A and πB of A ` B
which compose to the identity in both ways—see, e.g., [27]. For instance, in typed λ-calculus the types A×
B andB×A (for any typeA andB) are isomorphic since we can construct termsM = λx:A×B.〈π2x, π1x〉
and N = λx:B × A.〈π2x, π1x〉, respectively of types A × B → B × A and B × A → A × B, such that
both compositions λx:B×A.(M (N x)) and λx:A×B.(N (M x)) are equivalent (up to βη-conversion) to
the identity λx:B ×A.x and λx:A×B.x.

We adapt this notion to our setting, by using proofs (processes) as morphisms, and by using logical
equivalence to account for isomorphisms in linear logic. Given a sequence of names x̃ = x1, . . . , xn, below
we write P 〈x̃〉 to denote a process such that fn(P ) = {x1, . . . , xn}.

Definition 33 (Type Isomorphism). Two (session) types A and B are called isomorphic, noted A ' B, if,
for any names x, y, z, there exist processes P 〈x,y〉 and Q〈y,x〉 such that:

(i) · ;x:A⇒ P 〈x,y〉 :: y:B;

(ii) · ; y:B ⇒ Q〈y,x〉 :: x:A;

(iii) · ;x:A⇒ (νy)(P 〈x,y〉 | Q〈y,z〉) ≈L [x↔z] :: z:A; and

(iv) · ; y:B ⇒ (νx)(Q〈y,x〉 | P 〈x,z〉) ≈L [y↔z] :: z:B.

Intuitively, if A,B are service specifications then by establishing A ' B one can claim that having A is
as good as having B, given that we can construct one from the other using an isomorphism. Isomorphisms
in linear logic can then be used to simplify/transform concurrent service interfaces. Moreover, they help
validate our interpretation with respect to basic linear logic principles. As an example, let us consider
multiplicative conjunction ⊗. A basic linear logic principle is A⊗B ` B⊗A. Our interpretation of A⊗B
may appear asymmetric as, in general, a channel of type A⊗B is not typable by B⊗A. Theorem 47 below
states the symmetric nature of ⊗ as a type isomorphism: symmetry is realized by a process which coerces
any session of type A⊗B to a session of type B ⊗A.

Theorem 47. Let A,B, and C be any type. Then the following hold:
(i) A⊗B ' B ⊗A

(ii) A⊗ (B ⊗ C) ' (A⊗B)⊗ C
(iii) A( (B( C) ' (A⊗B)( C
(iv) A⊗ 1 ' A
(v) 1( A ' A

(vi) (A⊕B)( C ' (A( C) & (B( C)
(vii) !(A&B) ' !A⊗!B

Proof. We give details for the proof of (i) above. We check conditions (i)-(iv) of Def. 33 for processes
P 〈x,y〉, Q〈y,x〉 defined as

P 〈x,y〉 = x(u).(νn)y〈n〉.([x↔n] | [u↔y])

Q〈y,x〉 = y(w).(νm)x〈m〉.([y↔m] | [w↔x])
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Checking (i)-(ii), i.e., · ;x:A⊗B ⇒ P 〈x,y〉::y:B ⊗A and · ; y:B ⊗A⇒ Q〈y,x〉::x:A⊗B is easy; rule (id)
ensures that both typings hold for any A,B. We sketch only the proof of (iii); the proof of (iv) is analogous.
Let M = (νy)(P 〈x,y〉 | Q〈y,z〉) and N = [x↔ z]; we need to show · ;x:A ⊗ B ⇒ M ≈LN :: z:A ⊗ B.
We thus have to show that for any R1 ≈L R2 :: x:A⊗ B, we have⇒ (νx)(R1 | M) ≈L (νx)(R2 | N) ::
z:A⊗B.

Let (νx)(R1 | M) = S1 and (νx)(R2 | N) = S2. We first observe that since R1 ≈L R2 ::
x:A ⊗ B, combined with termination, type preservation and progress, we know that S1 −→ (νx, u)(R′1 |
(νy)((νn)y〈n〉.([x↔n] | [u↔y]) | y(w).(νm)z〈m〉.([y↔m] | [w↔z])) =⇒ (νx)(R′1 | (νm)z〈m〉.

([u ↔ m] | [x ↔ z])), such that R2
(νu)x〈u〉

=⇒ R′2 where R′1 ≡! T1 | T2 and R′2 ≡! U1 | U2 such that
T1 ≈L U1 :: u:A and T2 ≈L U2 :: x:B. We conclude by observing that (νx)(R′1 | (νm)z〈m〉.([u ↔ m] |

[x ↔ z]))
(νm)z〈m〉

=⇒ R′1{m/u, z/x}, (νx)(R2 | N) −→ R2{z/x} and α-converting u in R2 to m. Since we
know that ≈L is preserved under renaming, we are done.

The type isomorphisms listed above are among those known of linear logic, which given our very close
correspondence with the proof theory of linear logic is perhaps not surprising. We note that we do not
exhaustively list all isomorphisms for the sake of conciseness (e.g. both & and ⊕ are also associative).

Beyond the proof-theoretic implications of type isomorphisms, it is instructive to consider the kinds of
coercions they imply at the process level. The case of session type isomorphism (i), for which we produce
the appropriate witnesses in the proof detailed above, requires a sort of “criss-cross” coercion, where taking
a session of type x:A ⊗ B to one of type y:B ⊗ A entails receiving the session of type u:A from x (which
is now offering B) and then sending, say, z along y, after which we link z with x and y with u.

Another interesting isomorphism is (iii) above, which specifies a natural form of currying and uncur-
rying: a session that is meant to receive a session of type A followed by another of type B to then proceed
as C can be coerced to a session that instead receives one of type A ⊗ B and then proceeds as C. We do
this by considering x:A ( (B ( C), to be coerced to y:(A ⊗ B) ( C. We will first input along y a
session u:A ⊗ B, from which we may consume an output to obtain z:A and u:B. These two channels are
then sent (via fresh output followed by forwarding) to x, at which point we may forward between x to y.
It is relatively easy to see how to implement the coercion in the converse direction (i.e. input the A and B
sessions, construct a session A⊗B, send it to the ambient session and forward). An interesting application
of this isomorphism is that it enables us to, at the interface level, replace two inputs (the A followed by the
B) with a single input (provided we do some additional work internally).

Finally, consider the perhaps peculiar looking isomorphism (vi), which identifies coercions between
sessions of type T1 = (A⊕ B)( C and T2 = (A( C) & (B ( C). The former denotes the capability
to input a session that will either behave as A or B, which is then used to produce the behavior C. The latter
denotes the capability to offer a choice between a session that inputs A to produce C and the ability to input
B to produce C. Superficially, these appear to be very different session behaviors, but turn out to be easily
coerced from one to the other: Consider a session x:T1 to be coerced to y:T2. We begin by offering the
choice between the two alternatives. For the left branch, we input along y a session z:A which we can use
to send to x (by constructing the appropriate session) and then forward between x and y. The right branch
is identical.

This isomorphism codifies the following informal intuition: Imagine you wish to implement a service
whose sole aim is to offer some behavior C by receiving some payment from its clients. Since you wish to
provide a flexible service, you specify that clients are able to choose between two payment methods, say, A
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and B. Therefore, you want to expose to the world a service of type (A ⊕ B) ( C. However, you wish
to organize the internal structure of your service such that you define payment “handlers” individually, that
is, you specify a handler for payment method A and another for payment method B. By appealing to the
session coercions above, you can mediate between these two quite different (yet isomorphic) representations
of the same abstract service.

7.3 Soundness of Proof Conversions

One of the key guiding principles in our concurrent interpretation of linear logic (Chapters 2 and 3) is the
identification of proof reduction with process expression (and π-calculus process) reduction. In proof theory,
proof reduction in this sense is generated from the computational contents of the proof of cut admissibility
(or cut elimination from a proof system with a cut rule). Throughout our development, we have repeatedly
derived the appropriate reduction semantics of our language constructs from inspection of the proof reduc-
tion that arises when we attempt to simplify, or reduce, a cut of a right and a left rule of a given connective (a
principal cut). However, the computational process of cut elimination is not just that of single-step reduction
but of full normalization: where a single reduction eliminates one cut; cut elimination, as the name entails,
removes all instances of cut from a given proof.

To achieve this, cut elimination must include not only the one-step reductions that arise from a cut of
a right and a left rule on the same connective, but also a series of other computational steps that permute
cuts upwards in a proof. These steps, generally known as commuting conversions, are necessary to produce
a full normalization procedure since in general we are not forced to immediately use an assumption that is
introduced by a cut. Consider, for instance, the following (unnatural, yet valid) proof:

A&B ` B &A

A ` A
B &A ` A

(&L2)

1, B &A ` A
(1L)

A&B,1 ` A
(cut)

The instance of the cut rule above introduces B&A (we omit the proof of A&B ` B&A for conciseness)
in the right premise, but instead of applying the &L2 rule immediately, we first apply the 1L rule to consume
the 1 from the context. Thus, this does not consist of a principal cut. For cut elimination to hold, we must
be able to push the cut upwards in the derivation as follows:

A&B ` B &A

A ` A
B &A ` A

(&L2)

A&B ` A
(cut)

A&B,1 ` A
(1L)

In the proof above, we have pushed the instance of cut upwards in the derivation, first applying the 1L rule.
This new proof can then be simplified further by applying the appropriate cut reduction under the instance
of the 1L rule.

This form of proof transformation is present throughout the entirety of the cut elimination procedure, but
up to this point has no justification in our concurrent interpretation of linear logic. Indeed, if we consider the
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process expression assignment for these proof transformations, not only are the process expressions quite
different but their relationship is not immediately obvious. In the two proofs above we have the following
process expression assignment (where x:A&B ` P :: w:B &A):

x:A&B, y:1 ` new w.(P ‖ wait y;w.inr; fwd z w) :: z:A

x:A&B, y:1 ` wait y; new w.(P ‖ w.inr; fwd z w) :: z:A

The process expression for the first proof consists of a parallel composition of two processes expressions,
whereas the expression for the second first waits on y before proceeding with the parallel composition.
Superficially, it would seem as if the behavior of the two process expression is quite different and thus there
is no apparent connection between the two, despite the fact that they correspond to linear logic proofs that
are related via a proof conversion in cut elimination.

It turns out that we can give a suitable justification to this notion of proof conversion in our concurrent
framework by appealing to observational equivalence, via our notion of logical equivalence. It may strike
the reader as somewhat odd that the two process expressions above result in observationally equivalent
behaviors, but the key insight is the fact that they are open process expressions which produce equivalent
behaviors when placed in the appropriate (typed) contexts. If we compose the given process expressions
with others offering sessions x:A & B and y:1, the end result consists of two closed process expression,
both offering z:A. Since we can only observe behavior along session channel z, we cannot distinguish the
two closed processes due to the fact that the apparent mismatch in the order of actions occurs as internal
reductions which are not visible.

Proof Conversions We now make the informal argument above precise. We begin by formally introducing
the proof transformations that arise in cut-elimination which are not identified by reductions on process
expressions or permutations in execution states (the latter consist of permutations of multiple instances of
the cut rule), which we denote as proof conversions. For conciseness and notational convenience due to the
fact that logical equivalence is defined on π-calculus processes, we illustrate proof conversions directly on π-
calculus processes. It is straightforward to map them back to their original process expressions. Moreover,
we illustrate only the conversions of the propositional setting of Chapter 2, although similar reasoning
applies to proof conversions from other settings.

Proof conversions induce a congruence on typed processes, which we denote 'c. Figure 7.1 presents
a sample of process equalities extracted from them, for the sake of conciseness; the full list can be found
in A.5. Each equality P 'c Q in the figure is associated to appropriate right- and left-hand side typings;
this way, e.g., equality (7.18) in Figure 7.1—related to two applications of rule (⊗L) —could be stated as

Γ; ∆, x:A⊗B, z:C ⊗D ⇒ x(y).z(w).P 'c z(w).x(y).P :: T

where Γ and ∆ are typing contexts, A,B,C,D are types, and T is a right-hand side typing. For the sake
of conciseness, we omit the full typings, emphasizing the differences in the concurrent assignment of the
proofs.

As we have argued above, proof conversions describe the interplay of two rules in a type-preserving
way: regardless of the order in which the two rules are applied, they lead to typing derivations with the same
right- and left-hand side typings, but with syntactically differing assignments.
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(νx)(P | (νy)z〈y〉.(Q | R)) 'c (νy)z〈y〉.((νx)(P | Q) | R)(7.5)

(νx)(P | y(z).Q) 'c y(z).(νx)(P | Q)(7.6)

(νx)(P | y.inl;Q) 'c y.inl; (νx)(P | Q)(7.7)

(νx)(P | (νy)u〈y〉.Q) 'c (νy)u〈y〉.(νx)(P | Q)(7.8)

(νx)(P | y.case(Q,R)) 'c y.case((νx)(P | Q), (νx)(P | R))(7.9)

(νu)(!u(y).P | z〈〉.0) 'c z〈〉.0(7.10)

(νu)(!u(y).P |(νz)x〈z〉.(Q |R)) 'c (νz)x〈z〉.
(
(νu)(!u(y).P |Q) |(νu)(!u(y).P |R)

)
(7.11)

(νu)((!u(y).P ) | y(z).Q) 'c y(z).(νu)((!u(y).P ) | Q)(7.12)

(νu)((!u(z).P ) | y.inl;Q) 'c y.inl; (νu)((!u(z).P ) | Q)(7.13)

(νu)(!u(z).P | y.case(Q,R)) 'c y.case
(
(νu)(!u(z).P | Q), (νu)(!u(z).P | R)

)
(7.14)

(νu)(!u(y).P | !x(z).Q) 'c !x(z).(νu)(!u(y). | Q)(7.15)

(νu)(!u(y).P | (νy)v〈y〉.Q) 'c (νy)v〈y〉.(νu)(!u(y).P | Q))(7.16)

(νw)z〈w〉.(R | (νy)x〈y〉.(P | Q)) 'c (νy)x〈y〉.(P | (νw)z〈w〉.(R | Q))(7.17)

x(y).z(w).P 'c z(w).x(y).P(7.18)

Figure 7.1: A sample of process equalities induced by proof conversions

Definition 34 (Proof Conversions). We define 'c as the least congruence on processes induced by the
equalities in Figures A.1, A.2, A.3, and A.4.

We separate proof conversions into five classes, denoted (A)–(E):

(A) Permutations between rule (cut) and a right or left rule. This class of conversions represents the inter-
action of a process offering a session C on x, with some process requiring such a session (as illustrated
in the example above where we commute a cut with the 1L rule); this process varies according to the
particular rule considered. As an example, the following inference represents the interplay of rules
((L) and (cut):

Γ; ∆1 ⇒ P :: x:C

Γ; ∆2, x:C ⇒ Q :: z:A Γ; ∆3, y:B ⇒ R :: T

Γ; ∆2,∆3, x:C, y:A( B ⇒ (νz)y〈z〉.(Q | R) :: T
((L)

Γ; ∆, y:A( B ⇒ (νx)(P | (νz)y〈z〉.(Q | R)) :: T
(cut)

where ∆ = ∆1,∆2,∆3. Permutability is justified by the following inference:

Γ; ∆1 ⇒ P :: x:C Γ; ∆2, x:C ⇒ Q :: z:A

Γ; ∆1,∆2 ⇒ (νx)(P | Q) :: z:A
(cut)

Γ; ∆3, y:B ⇒ R :: T

Γ; ∆, y:A( B ⇒ (νz)y〈z〉.((νx)(P | Q) | R) :: T
((L)

This class of permutations is given by the equalities in Fig. A.1.

(B) Permutations between rule (cut) and a left rule. In contrast to permutations in class (A), this class
of conversions represents the interaction of a process requiring a session C on x, with some process
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offering such a session. This distinction is due to the shape of rule (cut). To see the difference with the
permutations in class (A), consider the inferences given above with those for the permutation below,
which also concerns rules ((L) and (Tcut). Letting ∆ = ∆1,∆2,∆3, we have:

Γ; ∆1 ⇒ P :: z:A Γ; ∆2, y:B ⇒ Q :: x:C

Γ; ∆1,∆2, y:A( B ⇒ (νz)y〈z〉.(P | Q) :: x:C
((L)

Γ; ∆3, x:C ` R :: T

Γ; ∆, y:A( B ⇒ (νx)((νz)y〈z〉.(P | Q) | R) :: T
(cut)

Permutability is then justified by the following inference:

Γ; ∆1 ⇒ P :: z:A

Γ; ∆2, y:B ⇒ Q :: x:C Γ; ∆3, x:C ⇒ R :: T

Γ; ∆2,∆3, y:B ⇒ (νx)(Q | R) :: T
(cut)

Γ; ∆, y:A( B ⇒ (νz)y〈z〉.(P | (νx)(Q | R)) :: T
((L)

This class of permutations is given by the equalities in Fig. A.1.

(C) Permutations between rule (cut!) and a right or left rule. This class of permutations is analogous to
the classes (A) and (B), but considering rule (cut!) instead of (cut). As an example, the following
permutation concerns the interplay of rule (cut!) with rule (⊕R1):

Γ; · ⇒ P :: y:C Γ, u:C; ∆⇒ Q :: z:A

Γ; ∆⇒ (νu)(!u(y).P | Q) :: z:A
(cut!)

Γ; ∆⇒ z.inl; (νu)(!u(y).P | Q) :: z:A⊕B (⊕R1)

Then, permutability is justified by the following inference:

Γ; · ⇒ P :: y:C

Γ, u:C; ∆⇒ Q :: z:A

Γ, u:C; ∆⇒ z.inl;Q :: z:A⊕B (⊕R1)

Γ; ∆⇒ (νu)(!u(y).P | z.inl;Q) :: z:A⊕B (cut!)

This class of permutations is given by the equalities in Fig. A.2.

(D) Permutations between two left rules. Classes (A)–(C) consider permutations in which one of the in-
volved rules is some form of cut. Permutations which do not involve cuts are also possible; they rep-
resent type-preserving transformations for prefixes corresponding to independent (i.e. non-interfering)
sessions. We consider permutations involving two left rules. As an example, the permutation below
concerns the interplay of rule (⊕L) with rule (⊗L):

Γ; ∆, z:C, x:B, y:A⇒ P :: T

Γ; ∆, z:C, x:A⊗B ⇒ x(y).P :: T
(⊗L)

Γ; ∆, z:D,x:B, y:A⇒ P :: T

Γ; ∆, z:D,x:A⊗B ⇒ x(y).Q :: T
(⊗L)

Γ; ∆, z:C ⊕D,x:A⊗B ⇒ z.case(x(y).P, x(y).Q) :: T
(⊕L)

Permutability is justified by the following inference:

Γ; ∆, z:C, x:B, y:A⇒ P :: T Γ; ∆, z:D,x:B, y:A⇒ P :: T

Γ; ∆, z:C ⊕D,x:B, y:A⇒ z.case(P,Q) :: T
(⊕L)

Γ; ∆, z:C ⊕D,x:A⊗B ⇒ x(y).z.case(P,Q) :: T
(⊕L)

This class is given by the equalities in Fig. A.3.
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(E) Permutations between a left and a right rule. This class of permutations also involves rules acting on
two independent sessions: one rule acts on the left-hand side of the derivation while the other acts on
the right-hand side. As an example, the permutation below concerns the interplay of rules (&L1) and
(⊗R):

Γ; ∆1, z:C ⇒ P :: y:A Γ; ∆2 ⇒ Q :: x:B

Γ; ∆, z:C ⇒ (νy)x〈y〉.(P | Q) :: x:A⊗B (⊗R)

Γ; ∆, z:C &D ⇒ z.inl; (νy)x〈y〉.(P | Q) :: x:A⊗B (&L1)

where ∆ = ∆1,∆2. Permutability is justified by the inference:

Γ; ∆1, z:C ⇒ P :: z:A

Γ; ∆, z:C &D ⇒ z.inl;P :: y:A
(&L1)

Γ; ∆2 ⇒ Q :: x:B

Γ; ∆, z:C &D ⇒ (νy)x〈y〉.(z.inl;P | Q) :: x:A⊗B (⊗R)

This class is given by the equalities in Fig. A.4.

Having fully presented the notion of proof conversions, we show that the congruence 'c induced on
processes by proof conversions is sound with respect to logical equivalence, and thus observational equiva-
lence.

Again, the key insight is that the equalities generated by 'c concern open processes, where we are
able to permute certain actions in a type-safe way due to the fact that, once placed in the appropriate typed
contexts, the permuted actions are not observable. This can be readily seen, for instance, in the equation,

Γ; ∆, x:A⊗B, z:C ⊗D ⇒ x(y).z(w).P 'c z(w).x(y).P :: v:E

which allows for two input prefixes along independent ambient session to be commuted. When we consider
the two processes placed in the appropriate contexts, the actions along session channels x and z are not
visible, only those along v, therefore making it reasonable to commute the two input prefixes.

Theorem 48 (Soundness of Proof Conversions). Let P,Q be processes such that:

(i) Γ; ∆⇒ P :: z:A,

(ii) Γ; ∆⇒ Q :: z:A and,

(iii) P 'c Q.

We have that Γ; ∆⇒ P ≈L Q :: z:A[∅ : ∅ ⇔ ∅]

Proof. By case analysis on proof conversions. We exploit termination of well-typed processes to ensure that
actions can be matched with finite weak transitions.

We detail the case for the first proof conversion in Figure A.1 —see A.5.1 for other cases. This proof
conversion corresponds to the interplay of rules (⊗R) and (cut). We have to show that Γ; ∆⇒ M ≈L N ::
z:A⊗B[∅ : ∅ ⇔ ∅] where

∆ = ∆1,∆2,∆3 Γ; ∆1 ⇒ P1 :: x:C Γ; ∆2, x:C ⇒ P2 :: y:A Γ; ∆3 ⇒ P3 :: z:B(7.19)

M = (νx)(P1 | (νy)z〈y〉.(P2 | P3)) N = (νy)z〈y〉.((νx)(P1 | P2) | P3)
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By Lemma 37 we have to show that for any (R1, R2) ∈ CΓ and any (S1, S2) ∈ C∆ we have:

(νx̃, ũ)(R1 | S1 |M) ≈L (νx̃, ũ)(R2 | S2 | N) :: z:A⊗B

Suppose (νx̃, ũ)(R1 | S1 |M)
(νy)z〈y〉

=⇒ M1. By construction we know that no internal actions can occur
in R1. Before observing the output along z the only possible internal actions can come from S1 or P1. In
the former case, we can match those actions with reductions from S2 (due to forward closure) and we thus
have:

(νx̃, ũ)(R1 | S1 |M) =⇒ (νx̃, ũ)(R1 | S′1 |M)
(νy)z〈y〉−−−−−→ (νx̃, ũ)(R1 | S′1 | (νx)(P1 | P2 | P3))

(νx̃, ũ)(R2 | S2 | N) =⇒ (νx̃, ũ)(R2 | S′2 | N)
(νy)z〈y〉−−−−−→ (νx̃, ũ)(R2 | S′2 | (νx)(P1 | P2 | P3))

Where we may conclude by appealing to parametricity and observing that any subsequent reductions can be
matched by the two processes. In the latter case we have:

(νx̃, ũ)(R1 | S1 | (νx)(P1 | (νy)z〈y〉.(P2 | P3))) =⇒

(νx̃, ũ)(R1 | S1 | (νx)(P ′1 | (νy)z〈y〉.(P2 | P3)))

(νy)z〈y〉−−−−−→ (νx̃, ũ)(R1 | S1 | (νx)(P ′1 | (P2 | P3)))

which we match as follows:

(νx̃, ũ)(R2 | S2 | N)
(νy)z〈y〉−−−−−→ (νx̃, ũ)(R2 | S2 | (νx)(P1 | P2 | P3)) =⇒

(νx̃, ũ)(R2 | S2 | (νx)(P ′1 | P2 | P3))

As before, we may conclude by appealing to parametricity and observing that any subsequent reductions
can be matched by the two processes. The case where reductions occur in both S1 and P1 are handled by
matching reductions in S2, observing the output and then matching the reductions in P1.

We have thus shown that the proof transformations that arise in the cut elimination procedure can be
given a reasonable concurrent justification in our framework: principal cut reductions are mapped to pro-
cess (expression) reductions; proof conversions consist of sound behavioral equivalence principles, shown
using our linear logical relations technique; finally, permutations of multiple instances of cut correspond im-
mediately with structural congruence ≡ (or, at the level of process expressions, with permutations in SSOS
execution states).

7.4 Further Discussion

In this chapter we have developed three applications of our linear logical relations framework: We have
shown that logical equivalence characterizes observational equivalence in the polymorphic (and proposi-
tional) settings – Section 7.1, using it to reason about the observable behavior of processes by analyzing
their ascribed session typings in the style of reasoning using parametricity that may be performed for Sys-
tem F.
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We developed a notion of session type isomorphism (Section 7.2), appealing to our logical equiva-
lence, which entails a form of specification equivalence insofar as it is possible to define coercion processes
between isomorphic session types that compose in both directions into a process that is observationally
equivalent to the identity forwarder, mimicking the notion of type isomorphism from type theory.

Finally, we established the soundness of a class of proof transformations that arise during the cut elim-
ination procedure in linear logic when considered in our concurrent setting (Section 7.3), by showing that
the congruence induced on processes by these proof transformations is sound with respect to logical equiv-
alence, and thus, observational equivalence.

The latter is a particularly important result since it further solidifies our claim of having a robust logical
foundation for concurrent computation by being able to give an appropriate concurrent account of the en-
tirety of cut elimination based on reduction (and structural congruence in the π-calculus setting) and on a
notion of logical equivalence, extracted from our linear logical relations framework, which serves as a proof
technique for observational equivalence.

We highlight the fact that while logical relations for concurrent / process calculi settings have been
explored in the literature, for instance in the works of Sangiorgi [69], Caires [15], and Boudol [14], they had
never before been developed for session-typed settings and thus the kind of applications developed in this
chapter are typically not found in other works on session types.

Other Applications While we have focused on the three applications mentioned above, it is possible to use
our linear logical relations technique to establish other properties of concurrent computation. For instance,
in [59] we use a similar technique to establish a confluence property of well-typed π-calculus processes.

In the sections above we have mostly restricted our attention to the polymorphic and propositional
settings. As we mention in the discussion of Chapter 6, given that the behavioral theory of higher-order
process calculi (in the sense of process passing) is particularly intricate, it would be of interest to explore a
suitable notion of logical equivalence in that setting.

Another interesting development would be to consider the behavioral theory of an asynchronous process
expression assignment (c.f. [25]) and how it relates to observational equivalence in the synchronous setting.



Chapter 8

Conclusion

This document has been developed with the intent of supporting the thesis:
Thesis Statement: Linear logic, specifically in its intuitionistic formulation, is a suitable logical foun-

dation for message-passing concurrent computation, providing an elegant framework in which to express
and reason about a multitude of naturally occurring phenomena in such a concurrent setting.

To support this thesis we have developed a basic interpretation of propositional linear logic as a session-
typed concurrent language (Chapter 2) and expanded this interpretation to both the first and second-order
settings (Chapter 3), providing logically based accounts of value dependent and polymorphic session types,
the former of which we have also combined with notions of proof irrelevance and affirmation to give a
high-level account of proof-carrying code in a concurrent, session based setting. We have carried out this
development using a novel process expression assignment to the rules of linear logic sequent calculus in
tandem with a related π-calculus process assignment. A remarkable aspect of the logical interpretation is
how straightforward it is to account for new language constructs and features in a uniform way. Moreover,
we make use of the good properties of the underlying logic to produce a strong type safety result entailing
both session fidelity and global progress (entailing deadlock-freedom of well-typed programs) in a techni-
cally simple, and arguably elegant way, scaling from the basic propositional interpretation to the first and
second-order settings.

To further support the concept of intuitionistic linear logic as a logical foundation for session-based
concurrency, we make use of the interpretation as the basis for a programming language combining session-
based concurrency and functional programming using a contextual monad (Chapter 4), resulting in an ex-
pressive language that supports higher-order concurrency (viz. higher-order process calculi) and general
recursion, with session fidelity and deadlock freedom by typing. We also study the necessary restrictions to
general recursion that re-establish the connections with logic by eliminating divergence from the language.

Finally, in an effort to support the thesis that our linear logical foundation provides us with an elegant
and general framework for reasoning about session-based concurrency, we develop a theory of linear logical
relations (Chapter 6) for session typed π-calculus processes that can be used as a uniform proof technique
to establish sophisticated properties such as termination and confluence when developed as a logical pred-
icate, as well as provide behavioral reasoning techniques by developing a notion of logical equivalence on
processes when considered in the relational setting. Moreover, we develop applications of the linear log-
ical relations framework to reason about concurrent session-typed computation (Chapter 7), showing that
logical equivalence is a sound and complete proof technique for the canonical notion of observational equiv-
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alence in a typed π-calculus setting, which we use to perform parametricity-style reasoning on polymorphic
processes. We also develop the concept of a session type isomorphism, in analogy to the notion of type iso-
morphism in type theory, which mapped to our concurrent setting entails a form of protocol compatibility
or equivalence. Our final application of logical equivalence is to establish that our concurrent interpretation
of linear logic is fully compatible with the proof-theoretic notion of cut elimination, showing that all proof
transformations that arise in cut elimination, when mapped to transformations of concurrent processes, are
sound with respect to logical equivalence.

8.1 Related Work

We now go over some works in the literature that are related to the developments present in this document.
While Girard himself foreshadowed the connections of linear logic and concurrency, the first work to

flesh out the technical details of this connection is that of Abramsky [3], relating (classical) linear logic
to a λ-calculus with parallel composition. This interpretation was later refined by Belin and Scott [8] to a
π-calculus with non-standard prefix commutations as structural identities, necessary to fully capture all the
commuting conversions of linear logic. We may broadly characterize these as applications of the π-calculus
as a convenient language for analyzing linear logic proof objects, while our aim is to develop the linear
propositions-as-types paradigm as a foundation for session-based concurrency.

The explicit connection to session types was first developed by Caires and Pfenning [16], proposing a
correspondence in the sense of Curry-Howard but not identifying all proof conversions of linear logic as
process reductions (and thus not requiring the prefix commutations of the work of Belin and Scott). This
correspondence was developed further in [16, 17], accounting for value dependent types and parametric
polymorphism in the sense presented in this document; in [76], developing concurrent evaluation strategies
for λ-calculus as they arise from the mapping of the translation of linear to intuitionistic logic to the process
setting; and also in [25], accounting for asynchronous communication and also a slightly different, more
logically faithful term assignment. It is the synchronous version of this assignment that serves as a basis
for the development in this document. The work of Wadler [81] also develops a correspondence of linear
logic and session types, in the classical setting, which results in a language and associated formalisms quite
different from our own.

Our exploration of the concept of value-dependent session types is related to the work of [12], which
encodes logical assertions on exchanged data into the session type itself. Our development provides a new
account of dependent session types [13] that is completely grounded in logic, and is free from special-
purpose technical machinery that is usually required in this setting. From the point of view of dependently
typed languages with concurrency, perhaps the most significantly related is the work on F star, a distributed
functional programming language [73]. F star does not directly employ session types, but they can be
encoded in the language. In the non-dependently typed setting, Wadler’s GV [81] (based on a language
by Gay and Vasconcelos [32]) is quite close to our integration of functional and concurrent programming.
However, GV is itself linear since it does not separate the functional and the concurrent components of the
language through a monad as we do.

Polymorphism for process calculi has been studied extensively in the literature. However, our work
seems to be the first developing termination and relational parametricity results for polymorphic session
types, by relying solely on linear logic principles. Turner [78] investigated a form of polymorphism based
only on existential quantification for a simply-typed π-calculus (roughly, the discipline in which types of
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names describe the objects they can carry). In processes, polymorphism is expressed as explicit type pa-
rameters in input/output prefixes: messages are composed of a type and values of that type, and so type
variables are relevant at the level of messages. Sangiorgi and Pierce [63] proposed a behavioral theory
for Turner’s framework. Neither of these works address termination of well-typed processes nor studies
relational parametricity. Building on [63], Jeffrey and Rathke [45] show that weak bisimulation is fully ab-
stract for observational equivalence for an asynchronous polymorphic π-calculus with name equality testing.
Berger et al. [10, 11] proposed a polymorphic π-calculus with both universal and existential quantification.
The type system considered in [10, 11] is very different from ours, relying on a combination of linearity,
so-called action types, and duality principles.

The usage of logical relations (or closely related techniques) in the context of concurrency and process
calculi has been investigated by Berger, Honda, and Yoshida [10, 83, 11], Sangiorgi [69], Caires [15], and
Boudol [14]. None of these works consider session types, nor are grounded in a logical interpretation as ours,
and thus differ substantially from our developments. Boudol [14] relies on the classical realizability tech-
nique (together with a type and effect system) to establish termination in a higher-order imperative language.
Caires [15] proposes a semantic approach to showing soundness for type systems for concurrency, by relying
on a spatial logic interpretation of behavioral types. The works by Yoshida, Berger, Honda [83] and by San-
giorgi [69], aim at identifying terminating fragments of the π-calculus by using types, relying on arguments
based on logical relations. While the connection of logical relations and typed observational equivalences is
particular to our work, we can identify in the literature the behavioral equivalences for binary session-typed
processes of [48]. The work studies the behavioral theory of a π-calculus with asynchronous, event-based
binary session communication, capturing the distinction between order-preserving communications (those
inside already established connections) and non-order-preserving communications (those outside such con-
nections). The behavioral theory in [48] accounts for principles for prefix commutation that are similar to
those induced by our proof conversions.

8.2 Future Work

In this section we summarize the most potentially promising topics for further research, exploiting the
logical foundation and language framework set out in this dissertation. We are by no means extensive in this
discussion, but rather point out the major research topics.

Concurrent Type Theory Perhaps the most important avenue for future investigation on a more theoreti-
cal setting is the development of a general type theory for concurrent session-based computation, generaliz-
ing our value-dependent session types to a fully dependent setting and potentially integrating our contextual
monadic construction as a way of connecting the two language layers. As is usually the case in dependent
type theories, the crux of this development lies in a suitable notion of definitional equality of types, terms
and process expressions, which in principle should be decidable yet expressive enough to enable reasoning
on language terms in the style of functional type theories. Another crucial point is the interplay of defini-
tional equality with coinductive definitions (and proofs by coinduction), which play a predominant role in
reasoning about concurrent computation in general. It would be also interesting to explore more permissive
techniques for ensuring productivity of coinductive definitions in our setting.
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Linear Logical Relations for Languages without Termination As we have briefly discussed in Sec-
tion 6.3, our linear logical relations framework can only be applied to languages without divergence. In
order to provide general reasoning techniques for session-typed languages with general recursion we would
likely need to develop step-indexed formulations of our logical relations formalism. At this point, it is not
obvious how to adapt the step-indexed formalisms of functional and imperative programming languages to
a setting with concurrency, nor what kind of equivalences and properties we would be able to effectively
characterize with such an approach.

Towards a Realistic Language Implementation From a more pragmatical point of view, our concurrent
session-based programming language provides us with many potentially interesting avenues of research.
The language focuses on the integration of synchronous concurrent processes that adhere to a session typing
discipline with a λ-calculus, but does not provide us with ways of expressing (logical or physical) distribu-
tion of code. Conceptually, it is conceivable that an account of distributed code can be given by considering
ideas from hybrid or modal logic, but at a practical level we would need to develop a suite of monitoring
and dynamic verification techniques to ensure good properties of distributed code (which is, in general, not
available for typechecking purposes). This naturally leads to the development of blame assignment mecha-
nisms for breakages of the typing discipline by misbehaving (or malicious) components. A combination of
these techniques with the (value) dependent session types of Section 3.1 would be particularly interesting as
a highly expressive distributed language.

Moreover, when moving towards realistic implementations of our language we would need to deal with
the fact that real-world communication is asynchronous by nature. This would require a conceptual ex-
tension of the asynchronous interpretation of intuitionistic linear logic of [25] to our language setting, for
which the behavioral theory and associated reasoning techniques have yet to be developed. Furthermore, it
is likely that we would also need to provide with a higher degree of parallelism, as argued in Section 5.1,
for the sake of efficiency, as well as relaxed linearity constraints for usability by a general audience (for
instance, considering affine typing disciplines).
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Proofs

A.1 Inversion Lemma

Lemma 40. Let Γ; ∆⇒ P :: x:C.

1. If P α→ Q and s(α) = x and C = 1 then α = x〈〉

2. If P α→ Q and s(α) = y and y : 1 ∈ ∆ then α = y().

3. If P α→ Q and s(α) = x and C = A⊗B then α = (νy)x〈y〉.

4. If P α→ Q and s(α) = y and y : A⊗B ∈ ∆ then α = y(z).

5. If P α→ Q and s(α) = x and C = A( B then α = x(y).

6. If P α→ Q and s(α) = y and y : A( B ∈ ∆ then α = (νz)y〈z〉.

7. If P α→ Q and s(α) = x and C = A&B then α = x.inl or α = x.inr .

8. If P α→ Q and s(α) = y and y : A&B ∈ ∆ then α = y.inl or α = y.inr .

9. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr .

10. If P α→ Q and s(α) = y and y : A⊕B ∈ ∆ then α = y.inl or α = y.inr .

11. If P α→ Q and s(α) = x and C = !A then α = (νu)x〈u〉.

12. If P α→ Q and s(α) = y and y : !A ∈ ∆ then α = y(u).

13. If P α→ Q and s(α) = u and u : A ∈ Γ then α = (νz)u〈z〉.

Proof. By induction on typing.

1. If P α→ Q and s(α) = x and C = 1 then α = x〈〉

Case: 1R
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α = x〈〉 by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

α = x〈〉 by i.h. and x 6∈ fn(P1)

Case: cut! with P ≡ (νu)(P1 | P2)

α = x〈〉 by i.h.

Case: All other rules do not have s(α) = x and C = 1

2. If P α→ Q and s(α) = y and y : 1 ∈ ∆ then α = y().

Case: 1L

α = y() by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

Subcase: y ∈ ∆1

α = y() by i.h. on y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y() by i.h. and y 6∈ fn(P1)

Case: cut! with P ≡ (νu)(P1 | P2)

α = y() by i.h.

3. If P α→ Q and s(α) = x and C = A⊗B then α = (νy)x〈y〉

Case: ⊗R

α = (νy)x〈y〉 by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

α = (νy)x〈y〉 by i.h. x 6∈ fn(P1)

Case: cut! with P ≡ (νu)(P1 | P2)

α = (νy)x〈y〉 by i.h.

Case: All other rules do not have s(α) = x and C = A⊗B

4. If P α→ Q and s(α) = y and y : A⊗B ∈ ∆ then α = y(z)

Case: ⊗L

α = y(z) by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)
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Subcase: y ∈ ∆1

α = y(z) by i.h. and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y(z) by i.h. and y 6∈ fn(P1)

Case: cut! with P ≡ (νw)(P1 | P2)

α = y(z) by i.h.

5. If P α→ Q and s(α) = x and C = A( B then α = x(y)

Case: (R

α = x(y) by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

α = x(y) by i.h. and x 6∈ fn(P1)

Case: cut! with P ≡ (νu)(P1 | P2)

α = x(y) by i.h.

Case: All other rules do not have s(α) = x and C = A( B

6. If P α→ Q and s(α) = y and y : A( B ∈ ∆ then α = (νz)y〈z〉

Case: (L

α = (νz)y〈z〉 by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

Subcase: y ∈ ∆1

α = (νz)y〈z〉 by i.h. and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = (νz)y〈z〉 by i.h. and y 6∈ fn(P1)

Case: cut! with P ≡ (νw)(P1 | P2)

α = (νz)y〈z〉 by i.h. on D2

7. If P α→ Q and s(α) = x and C = A&B then α = x.inl or α = x.inr

Case: &R

α = x.inl or α = x.inr by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

α = x.inl or α = x.inr by i.h. and x 6∈ fn(P1)
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Case: cut! with P ≡ (νu)(P1 | P2)

α = x.inl or α = x.inr by i.h.

Case: All other rules do not have s(α) = x and C = A&B

8. If P α→ Q and s(α) = y and y : A&B ∈ ∆ then α = y.inl or α = y.inr

Case: &L1

α = y.inl by the l.t.s

Case: &L2

α = y.inr by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

Subcase: y ∈ ∆1

α = y.inl or α = y.inr by i.h. and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y.inl or α = y.inr by i.h. and y 6∈ fn(P1)

Case: cut! with P ≡ (νu)(P1 | P2)

α = y.inl or α = y.inr by i.h.

9. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr

Case: ⊕R1

α = x.inl by the l.t.s

Case: ⊕R2

α = x.inr by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

α = x.inl or α = x.inr by i.h. and x 6∈ fn(P1)

Case: cut! with P ≡ (νu)(P1 | P2)

α = x.inl or α = x.inr by i.h.

Case: All other rules do not have s(α) = x and C = A⊕B

10. If P α→ Q and s(α) = y and y : A⊕B ∈ ∆ then α = y.inl or α = y.inr

Case: ⊕L

α = y.inl or α = y.inr by the l.t.s
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Case: cut with P ≡ (νw)(P1 | P2)

Subcase: y ∈ ∆1

α = y.inl or α = y.inr by i.h. and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y.inl or α = y.inr by i.h. and y 6∈ fn(P1)

Case: cut! with P ≡ (νu)(P1 | P2)

α = y.inl or α = y.inr by i.h.

11. If P α→ Q and s(α) = x and C = !A then α = (νu)x〈u〉

Case: !R

α = (νu)x〈u〉 by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

α = (νu)x〈u〉 by i.h. and x 6∈ fn(P1)

Case: cut! with P ≡ (νv)(P1 | P2)

α = (νu)x〈u〉 by i.h.

Case: All other rules do not have s(α) = x and C = !A

12. If P α→ Q and s(α) = y and y : !A ∈ ∆ then α = y(u).

Case: cut with P ≡ (νw)(P1 | P2)

Subcase: y ∈ ∆1

α = y(u) by i.h. and y 6∈ fn(P2)
Subcase: y ∈ ∆2

α = y(u) by i.h. and y 6∈ fn(P1)

Case: cut! with P ≡ (νw)(P1 | P2)

α = y(u) by i.h.

13. If P α→ Q and s(α) = u and u : A ∈ Γ then α = (νz)u〈z〉.

Case: copy

α = (νz)u〈z〉 by the l.t.s

Case: cut with P ≡ (νw)(P1 | P2)

α = (νz)u〈z〉 by i.h.
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Case: cut! with P ≡ (νv)(P1 | P2)

α = (νz)u〈z〉 by i.h.

A.2 Reduction Lemmas - Value Dependent Session Types

Lemma 41 (Reduction Lemma - ∀). Assume

(a) Ψ; Γ; ∆1 ⇒ P :: x:∀y:τ.A with P
x(V )−−−→ P ′

(b) Ψ; Γ; ∆2, x:∀y:τ.A⇒ Q :: z:C with Q
x〈V 〉−−−→ Q′

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ψ; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. By simultaneous induction on the typing of P and Q. The possible cases for the typing of P are ∀R,
cut and cut!. The possible cases for Q are ∀L, cut and cut!.

Case: P from ∀R and Q from ∀L.

P ≡ x(y).P1 and E ≡ x〈V 〉.Q1

(νx)(x(y).P1 | x〈V 〉.Q1) −→ (νx)(P1{N/y} | Q1) by principal cut reduction
Ψ; Γ; ∆1 ⇒ P1{N/y} :: A{N/y} by Lemma 12
Ψ; Γ; ∆2, x:A{N/y} ⇒ Q1 :: z:C by inversion
Γ; ∆1,∆2 ⇒ R :: z:C by cut.

Other cases are identical to the proof of Lemma 1.

Lemma 42 (Reduction Lemma - ∃). Assume

(a) Ψ; Γ; ∆1 ⇒ P :: x:∃y:τ.A with P
x〈V 〉−−−→ P ′ and Ψ ` V :τ

(b) Ψ; Γ; ∆2, x:∃y:τ.A⇒ Q :: z:C with Q
x(V )−−−→ Q′ and Ψ ` V :τ

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ψ; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. By simultaneous induction on the typing of P and Q. The possible cases for the typing of P are ∃R,
cut and cut!. The possible cases for Q are ∃L, cut and cut!.

Case: P from ∃R and Q from ∃L.
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P ≡ x〈V 〉.P1 and Q ≡ x(y).Q1

(νx)(x〈V 〉.P1 | x(y).Q1) −→ (νx)(P1 | Q1{V/y}) by principal cut reduction
Ψ; Γ; ∆2, x:A{N/y} ⇒ Q1{N/y} :: z:C by Lemma 12
Ψ; Γ; ∆1 ⇒ P1 :: x:A{V/y} by inversion
Γ; ∆1,∆2 ⇒ R :: z:C by cut.

Other cases are identical to the proof of Lemma 1.

A.3 Reduction Lemmas - Polymorphic Session Types

Lemma 43 (Reduction Lemma - ∀2). Assume

(a) Ω; Γ; ∆1 ⇒ P :: x:∀X.A with P
x(B)−−−→ P ′ and Ω ` B type

(b) Ω; Γ; ∆2, x:∀X.A⇒ Q :: z:C with Q
x〈B〉−−−→ Q′ and Ω ` B type

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ω; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. By simultaneous induction on typing for P and Q. The possible cases for P are ∀R2, cut and cut!.
The possible cases for Q are ∀L2, cut and cut!.

Case: P from ∀R2 and Q from ∀L2

P ≡ x(X).P1 and Q ≡ x〈B〉.Q1

(νx)(x(X).P1 | x〈B〉.Q1) −→ (νx)(P1{B/X} | Q1) by principal cut reduction
Ω; Γ; ∆1 ⇒ P1{B/X} :: x:A{B/X} by substitution
Ω; Γ; ∆2, x:A{B/X} ⇒ Q1 :: z:C by inversion
Ω; Γ; ∆1,∆2 ⇒ R :: z:C by cut.

Other cases are identical to the proof of Lemma 1.

Lemma 44 (Reduction Lemma - ∃2). Assume

(a) Ω; Γ; ∆1 ⇒ P :: x:∃X.A with P
x〈B〉−−−→ P ′ and Ω ` B type

(b) Ω; Γ; ∆2, x:∃X.A⇒ Q :: z:C with Q
x(B)−−−→ Q′ and Ω ` B type

Then:

(c) (νx)(P | Q) −→ (νx)(P ′ | Q′) ≡ R such that Ω; Γ; ∆1,∆2 ⇒ R :: z:C

Proof. By simultaneous induction on typing for P and Q. The possible cases for P are ∃R2, cut and cut!.
The possible cases for Q are ∃L2, cut and cut!.
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Case: P from ∃R2 and Q from ∃L2

P ≡ x〈B〉.P1 and Q ≡ x(X).Q1

(νx)(x〈B〉.P1 | x(X).Q1) −→ (νx)(P1 | Q1{B/X}) by principal cut reduction
Ω; Γ; ∆2, x:A{B/X} ⇒ Q1{B/X} :: z:C by substitution
Ω; Γ; ∆1,⇒ P1 :: x:A{B/X} by inversion
Ω; Γ; ∆1,∆2 ⇒ R :: z:C by cut.

Other cases are identical to the proof of Lemma 1.

A.4 Logical Predicate for Polymorphic Session Types

A.4.1 Proof of Theorem 28

Proof. We proceed by induction on the structure of the type A.

Case: A = X

P ∈ η(X)(z) by Def.
Result follows by Def. of η(X)(z).

Case: A = A1 ( A2

T.S: If for all Pi such that P =⇒ Pi we have Pi ∈ T ωη [z:A1 ( A2] then
P ∈ T ωη [z:A1 ( A2]

S.T.S: ∀P ′′y.(P z(y)
=⇒ P ′′)⇒ ∀Q ∈ T ωη [y : A].(νy)(P ′′ | Q) ∈ T ωη [z:B]

∀P ′′y.(Pi
z(y)
=⇒ P ′′)⇒ ∀Q ∈ T ωη [y : A].(νy)(P ′′ | Q) ∈ T ωη [z:B] (a) by Def. 11

P =⇒ Pi
z(y)
=⇒ P ′′ by assumption and Def.

P
z(y)
=⇒ P ′′ (b) by the reasoning above

∀Q ∈ T ωη [y : A].(νy)(P ′′ | Q) ∈ T ωη [z:B] (c) by (a) and (b)
P ∈ T ωη [z:A1 ( A2] by (c), satisfying (3)

T.S: If P ∈ T ωη [z:A1 ( A2] then P ⇓ P z(y)
=⇒ P ′ (a) by assumption, for some P ′

∀Q ∈ T ωη [y : A].(νy)(P ′ | Q) ∈ T ωη [z:B] by (a) and P ∈ T ωη [z:A1 ( A2]

Q ⇓ by i.h.
(νy)(P ′ | Q) ⇓ (b) by i.h.
P ′ ⇓ (c) by (b)
P ⇓ by (c) and (a), satisfying (2)
T.S.: If P ∈ T ωη [z:A1 ( A2] and P =⇒ P ′ then P ′ ∈ T ωη [z:A1 ( A2]

Follows directly from definition of weak transition.

Case: A = A1 ⊗A2

Similar to above.
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Case: A = A1 &A2

Similar to above.

Case: A = A1 ⊕A2

Similar to above.

Case: A = !A1

Similar to above.

Case: A = ∀X.A1

T.S: If for all Pi such that P =⇒ Pi we have Pi ∈ T ωη [z:∀X.A1] then
P ∈ T ωη [z:∀X.A1]

S.T.S: ∀B,P ′,R[w : B]. (B type ∧ P z(B)
=⇒ P ′)⇒ P ′ ∈ T ω[X 7→B]

η[X 7→R[w:B]][z:A])

∀B,P ′,R[w : B]. (B type ∧ Pi
z(B)
=⇒ P ′)⇒ P ′ ∈ T ω[X 7→B]

η[X 7→R[w:B]][z:A])

(a) by Def. of Pi ∈ T ωη [z:∀X.A1]

P =⇒ Pi
z(B)
=⇒ P ′ (b) by assumption and (a)

P
z(B)
=⇒ P ′ (c)

P ′ ∈ T ω[X 7→B]
η[X 7→R[w:B]][z:A] (d) by (a) and (b)

P ∈ T ωη [z:∀X.A1] by (c) and (d), satisfying (3)
T.S: If P ∈ T ωη [z:∀X.A1] then P ⇓
∀B,P ′,R[w : B]. (B type ∧ P z(B)

=⇒ P ′)⇒ P ′ ∈ T ω[X 7→B]
η[X 7→R[w:B]][z:A]) (a) by Def. 11

P
z(B)
=⇒ P ′ (b) for some P ′, B

P ′ ∈ T ω[X 7→B]
η[X 7→R[w:B]][z:A] by (a) and (b)

P ′ ⇓ (c) by i.h.
P ⇓ by (b) and (c), satisfying (2)
T.S.: If P ∈ T ωη [z:∀X.A1] and P =⇒ P ′ then P ′ ∈ T ωη [z:∀X.A1]

Follows directly from definition of weak transition.

A.5 Proof Conversions

Definition 35 (Proof Conversions). We define 'c as the least congruence on processes induced by the
process equalities in Figures A.1, A.2, A.3, and A.4.

We note that not all permutations are sound nor are possible. In particular, for permutability of two
inference rules to be sound, one of them has to be a left rule; the permutation of two right rules leads
to unsound transformations. In the figures, we consider only combinations with rule (&L1); permutations
involving (&L2) are easily derivable. For conciseness, we omit permutations involving rule (1L), given that
it can permute with all rules (promoting or demoting the dummy input prefix accordingly). For readability
purposes, we use the common shorthand z〈y〉.P to denote the bound-output (νy)z〈y〉.P .
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Γ; ∆⇒ (νx)(P | z〈y〉.(Q | R)) 'c z〈y〉.((νx)(P | Q) | R) :: z:A⊗B(A-1)
Γ; ∆⇒ (νx)(P | z〈y〉.(Q | R)) 'c z〈y〉.(Q | (νx)(P | R)) :: z:A⊗B(A-2)

Γ; ∆, y:A⊗B ⇒ (νx)(P | y(z).Q) 'c y(z).(νx)(P | Q) :: T(A-3)
Γ; ∆, y:A⊗B ⇒ (νx)(y(z).P | Q) 'c y(z).(νx)(P | Q) :: T(A-4)

Γ; ∆⇒ (νx)(P | z(y).Q) 'c z(y).(νx)(P | Q) :: z:A( B(A-5)
Γ; ∆, y:A( B ⇒ (νx)(P | y〈z〉.(Q | R)) 'c y〈z〉.((νx)(P | Q) | R) :: T(A-6)
Γ; ∆, y:A( B ⇒ (νx)(P | y〈z〉.(Q | R)) 'c y〈z〉.(Q | (νx)(P | R)) :: T(A-7)
Γ; ∆, y:A( B ⇒ (νx)(y〈z〉.(Q | P ) | R) 'c y〈z〉.(Q | (νx)(P | R)) :: T(A-8)

Γ; ∆⇒ (νx)(P | z.case(Q,R)) 'c
z.case((νx)(P | Q), (νx)(P | R)) :: z:A&B(A-9)

Γ; ∆, y:A&B ⇒ (νx)(P | y.inl;Q) 'c y.inl; (νx)(P | Q) :: T(A-10)
Γ; ∆, y:A&B ⇒ (νx)(P | y.inr;R) 'c y.inr; (νx)(P | R) :: T(A-11)

Γ; ∆⇒ (νx)(P | z.inl;Q) 'c z.inl; (νx)(P | Q) :: z:A⊕B(A-12)
Γ; ∆⇒ (νx)(P | z.inr;R) 'c z.inr; (νx)(P | R) :: z:A⊕B(A-13)

Γ; ∆, y:A⊕B ⇒ (νx)(P | y.case(Q,R)) 'c
y.case((νx)(P | Q), (νx)(P | R)) :: T(A-14)

Γ, u:A; ∆⇒ (νx)(P | u〈y〉.Q) 'c u〈y〉.(νx)(P | Q) :: T(A-15)
Γ; ∆, y:A⊗B ⇒ (νx)(y(z).P | R) 'c y(z).(νx)(P | R) :: T(B-1)

Γ; ∆, y:A( B ⇒ (νx)(y〈z〉.(P | Q) | R) 'c y〈z〉.(P | (νx)(Q | R)) :: T(B-2)
Γ; ∆, y:A&B ⇒ (νx)(y.inl;P | R) 'c y.inl; (νx)(P | R) :: T(B-3)
Γ; ∆, y:A&B ⇒ (νx)(y.inr;P | R) 'c y.inr; (νx)(P | R) :: T(B-4)
Γ; ∆, y:A⊕B ⇒ (νx)(y.case(P,Q) | R) 'c

y.case((νx)(P | R), (νx)(Q | R)) :: T(B-5)
Γ, u:A; ∆⇒ (νx)(u〈y〉.P | R) 'c u〈y〉.(νx)(P | R) :: T(B-6)
Γ, u:A; ∆⇒ (νx)(P | u〈y〉.R) 'c u〈y〉.(νx)(P | R) :: T(B-7)

Figure A.1: Process equalities induced by proof conversions: Classes (A) and (B)
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Γ; · ⇒ (νu)((!u(y).P ) | z〈〉.0) 'c z〈〉.0 :: z:1(C-1)
Γ; ∆⇒ (νu)((!u(y).P ) | x〈z〉.(Q | R)) 'c

x〈z〉.((νu)((!u(y).P ) | Q) | (νu)((!u(y).P ) | R)) :: x:A⊗B(C-2)
Γ; ∆, y:A⊗B ⇒ (νu)((!u(y).P ) | y(z).Q) 'c y(z).(νu)((!u(y).P ) | Q) :: T(C-3)

Γ; ∆⇒ (νu)(!u(y).P | z(y).Q) 'c z(y).(νu)(!u(y).P | Q) :: z:A( B(C-4)
Γ; ∆, y:A( B ⇒ (νu)((!u(w).P ) | y〈z〉.(Q | R)) 'c

y〈z〉.(((νu)(!u(w).P | Q) | (νu)((!u(w).P ) | R))) :: T(C-5)
Γ; ∆⇒ (νu)((!u(y).P ) | z.case(Q,R)) 'c

z.case((νu)((!u(y).P ) | Q), (νu)((!u(y).P ) | R))::z:A&B(C-6)
Γ; ∆, y:A&B ⇒ (νu)(!u(z).P | y.inl;Q) 'c y.inl; (νu)(!u(z).P | Q) :: T(C-7)
Γ; ∆, y:A&B ⇒ (νu)(!u(z).P | y.inr;R) 'c y.inr; (νu)(!u(z).P | R) :: T(C-8)

Γ; ∆⇒ (νu)(!u(y).P | z.inl;Q) 'c
z.inl; (νu)(!u(y).P | Q) :: z:A⊕B(C-9)

Γ; ∆⇒ (νu)(!u(y).P | z.inr;R) 'c
z.inr; (νu)(!u(y).P | R) :: z:A⊕B(C-10)

Γ; ∆, y:A⊕B ⇒ (νu)(!u(z).P | y.case(Q,R)) 'c
y.case((νu)(!u(z).P | Q), (νu)(!u(z).P | R)) :: T(C-11)

Γ; ∆⇒ (νu)(!u(y).P | !x(z).Q) 'c !x(z).(νu)(!u(y).P | Q) :: x:!A(C-12)
Γ; ∆⇒ (νu)(!u(y).P | v〈y〉.Q) 'c v〈y〉.(νu)(!u(y).P | Q)) :: T(C-13)

Figure A.2: Process equalities induced by proof conversions: Class (C)
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Γ; ∆, x:A⊗B, z:C ⊗D ⇒ x(y).z(w).P 'c z(w).x(y).P :: T(D-1)
Γ; ∆, z:D( C, x:A( B ⇒ z〈w〉.(R | x〈y〉.(P | Q)) 'c

x〈y〉.(P | z〈w〉.(R | Q)) :: T(D-2)
Γ; ∆, z:D( C, x:A( B ⇒ z〈w〉.(R | x〈y〉.(P | Q)) 'c

x〈y〉.(z〈w〉.(R | P ) | Q) :: T(D-3)
Γ; ∆, w:C ( D,x:A⊗B ⇒ w〈z〉.(Q | x(y).P ) 'c x(y).w〈z〉.(Q | P ) :: T(D-4)
Γ; ∆, w:C ( D,x:A⊗B ⇒ w〈z〉.(x(y).P | Q) 'c x(y).w〈z〉.(P | Q) :: T(D-5)

Γ, u:A, v:C; ∆⇒ u〈y〉.v〈x〉.P 'c v〈x〉.u〈y〉.P :: T(D-6)
Γ, u:C; ∆, x:A( B ⇒ u〈z〉.x〈y〉.(P | Q) 'c x〈y〉.(u〈z〉.P | Q) :: T(D-7)
Γ, u:C; ∆, x:A( B ⇒ u〈z〉.x〈y〉.(P | Q) 'c x〈y〉.(P | u〈z〉.Q) :: T(D-8)
Γ, u:A; ∆, z:C ⊗D ⇒ u〈y〉.z(w).P 'c z(w).u〈y〉.P :: T(D-9)

Γ; ∆, x:A⊕B, y:C ⊕D ⇒ y.case(x.case(P1, Q1), x.case(P2, Q2)) 'c
x.case(y.case(P1, P2), y.case(Q1, Q2)) :: T(D-10)

Γ, u:C; ∆, x:A⊕B ⇒ u〈z〉.x.case(P,Q) 'c x.case(u〈z〉.P , u〈z〉.Q) :: T(D-11)
Γ; ∆, w:A( E, z:C ⊕D ⇒ z.case(w〈y〉.(P | R1) , w〈y〉.(P | R2)) 'c

w〈y〉.(P | z.case(R1, R2)) :: T(D-12)
Γ; ∆, z:C ⊕D,x:A⊗B ⇒ z.case(x(y).P, x(y).Q) 'c x(y).z.case(P,Q) :: T(D-13)
Γ; ∆, x:A&B, y:C &D ⇒ x.inl; y.inl;P 'c y.inl;x.inl;P :: T(D-14)
Γ; ∆, x:A⊕B, y:C &D ⇒ x.case(y.inl;P, y.inl;Q) 'c

y.inl;x.case(P,Q) :: T(D-15)
Γ, u:C; ∆, z:A&B ⇒ z.inl;u〈y〉.P 'c u〈y〉.z.inl;P :: T(D-16)

Γ; ∆, z:C &D,x:A( B ⇒ z.inl;x〈y〉.(P | Q) 'c x〈y〉.(z.inl;P | Q) :: T(D-17)
Γ; ∆, z:C &D,x:A( B ⇒ z.inl;x〈y〉.(P | Q) 'c x〈y〉.(P | z.inl;Q) :: T(D-18)
Γ; ∆, z:C &D,x:A⊗B ⇒ z.inl;x(y).P 'c x(y).z.inl;P :: T(D-19)

Figure A.3: Process equalities induced by proof conversions: Class (D).
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Γ; ∆, z:C &D ⇒z.inl;x〈y〉.(P | Q) 'c x〈y〉.(P | z.inl;Q) :: x:A⊗B(E-1)
Γ; ∆, z:C &D ⇒z.inl;x〈y〉.(P | Q) 'c x〈y〉.(z.inl;P | Q) :: x:A⊗B(E-2)
Γ; ∆, z:D ⊕ E ⇒z.case(x〈y〉.(P1 | Q) , x〈y〉.(P2 | Q)) 'c

x〈y〉.(Q | z.case(P1 , P2)) :: x:A⊗B(E-3)
Γ; ∆, z:D ⊕ E ⇒z.case(x〈y〉.(Q | P1) , x〈y〉.(Q | P2)) 'c

x〈y〉.(z.case(P1 , P2) | Q) :: x:A⊗B(E-4)
Γ, u:C; ∆⇒u〈w〉.x〈y〉.(P | Q) 'c x〈y〉.(u〈w〉.P | Q) :: x:A⊗B(E-5)
Γ, u:C; ∆⇒u〈w〉.x〈y〉.(P | Q) 'c x〈y〉.(P | u〈w〉.Q) :: x:A⊗B(E-6)

Γ; ∆, w:C ( D ⇒w〈z〉.(R | x〈y〉.(P | Q)) 'c
x〈y〉.(P | w〈z〉.(R | Q)) :: x:A⊗B(E-7)

Γ; ∆, x:C ( D ⇒z〈y〉.(x〈w〉.(P | Q) | R) 'c
x〈w〉.(P | z〈y〉.(R | Q)) :: z:A⊗B(E-8)

Γ; ∆, z:C ⊗D ⇒z(w).x〈y〉.(P | Q) 'c x〈y〉.(z(w).P | Q) :: x:A⊗B(E-9)
Γ; ∆, z:C ⊗D ⇒z(w).x〈y〉.(P | Q) 'c x〈y〉.(P | z(w).Q) :: x:A⊗B(E-10)
Γ; ∆, z:C &D ⇒z.inl;x(y).P 'c x(y).z.inl;P :: x:A( B(E-11)
Γ; ∆, z:C ⊕D ⇒x(y).z.case(P,Q) 'c z.case(x(y).P , x(y).Q) :: x:A( B(E-12)

Γ, u:C; ∆⇒u〈w〉.x(y).P 'c x(y).u〈w〉.P :: x:A( B(E-13)
Γ; ∆, w:C ( D ⇒w〈z〉.(R | x(y).P )) 'c x(y).w〈z〉.(R | P )) :: x:A( B(E-14)

Γ; ∆, z:C ⊗D ⇒x(y).z(w).P 'c z(w).x(y).P :: x:A( B(E-15)
Γ; ∆, y:C &D ⇒y.inl;x.case(P,Q) 'c x.case(y.inl;P , y.inl;Q) :: x:A&B(E-16)
Γ; ∆, y:C ⊕D ⇒x.case(y.case(P1, Q1), y.case(P2, Q2)) 'c

y.case(x.case(P1, P2), x.case(Q1, Q2)) :: x:A&B(E-17)
Γ;u:A; ∆⇒x.case(u〈y〉.P , u〈y〉.Q) 'c u〈y〉.x.case(P,Q) :: x:A&B(E-18)

Γ; ∆, z:C ( D ⇒z〈y〉.(R | x.case(P,Q)) 'c
x.case(z〈y〉.(R | P ) , z〈y〉.(R | Q)) :: x:A&B(E-19)

Γ; ∆, x:A⊗B ⇒z.case(x(y).P , x(y).Q) 'c x(y).z.case(P,Q) :: z:C &D(E-20)
Γ; ∆, y:C &D ⇒y.inl;x.inl;P 'c x.inl; y.inl;P :: x:A⊕B(E-21)
Γ; ∆, y:A⊕B ⇒x.inl; y.case(P,Q) 'c y.case(x.inl;P, x.inl;Q) :: x:A⊕B(E-22)

Γ;u:A; ∆⇒x.inl;u〈y〉.P 'c u〈y〉.x.inl;P :: x:A⊕B(E-23)
Γ; ∆, z:D( C ⇒z〈y〉.(Q | x.inl;P ) 'c x.inl; z〈y〉.(Q | P ) :: x:A⊕B(E-24)
Γ; ∆, x:A⊗B ⇒x(y).z.inl;P 'c z.inl;x(y).P :: z:C ⊕D(E-25)

Γ; ∆, x:!C ⇒z〈y〉.(x(u).P | Q) 'c (x(u).z〈y〉.(P | Q)) :: z:A⊗B(E-26)
Γ; ∆, x:!C ⇒z〈y〉.(P | x(u).Q) 'c x(u).z〈y〉.(P | Q)) :: z:A⊗B(E-27)

Figure A.4: Process equalities induced by proof conversions: Class (E).
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A.5.1 Additional cases for the Proof of Theorem 48

We repeat the theorem statement and detail some additional cases, complementing the proof given in the
main document.

Theorem 49 (Soundness of Proof Conversions). Let P,Q be processes such that:

(i) Γ; ∆⇒ P :: z:A,

(ii) Γ; ∆⇒ Q :: z:A and,

(iii) P 'c Q.

We have that Γ; ∆⇒ P ≈L Q :: z:A[∅ : ∅ ⇔ ∅]

Proof. We detail the cases of proof conversions A-4 (cf. Figure A.1), and C-11 (cf. Figure A.2).

Proof conversion A-4
We have that

Γ; ∆, y:A⊗B ⇒ (νx)(P1 | y(z).P2) :: T

Γ; ∆, y:A⊗B ⇒ y(z).(νx)(P1 | P2) :: T

with

(A.1) Γ; ∆1 ⇒ P1 :: x:C Γ; ∆2, x:C, z:A, y:B ⇒ P2 :: T

and ∆ = ∆1,∆2. Let M = (νx)(P1 | y(z).P2) and N = y(z).(νx)(P1 | P2).

By Lemma 37 we have to show that for any (R1, R2) ∈ CΓ, any (S1, S2) ∈ C∆ and any Q1 ≈L Q2 ::
y:A⊗B we have:

(νx̃, ũ)(R1 | S1 | Q1 |M) ≈L (νx̃, ũ)(R2 | S2 | Q2 | N) :: T

Suppose Q1
(νz)y〈z〉

=⇒ Q′1. We know that Q2
(νz)y〈z〉

=⇒ Q′2, such that the continuations can be structurally
decomposed (via ≡!) into logically equivalent processes at z:A and y:B. We consider how the syn-
chronization of Q1 and M can take place: we may have weak internal transitions from S1, Q1 or P1.
Weak internal transitions of Q1 can always be matched by those of Q2. Weak internal transitions of
S1 can similarly be matched by S2. Weak internal transitions of P1 inN are blocked. Synchronization
between S1 and P1 is possible, which cannot be matched outright between S2 and P1 due to the input
prefix. Let us consider this latter case:

(νx̃, ũ)(R1 | S1 | Q1 | (νx)(P1 | y(z).P2)) =⇒ (νx̃, ũ)(R1 | S′1 | Q1 | (νx)(P ′1 | y(z).P2))

=⇒ (νx̃, ũ)(R1 | S′1 | Q′1 | (νx)(P ′1 | P2))

(νx̃, ũ)(R2 | S2 | Q2 | y(z).(νx)(P1 | P2)) =⇒ (νx̃, ũ)(R2 | S′2 | Q2 | y(z).(νx)(P1 | P2))

=⇒ (νx̃, ũ)(R2 | S′2 | Q′2 | (νx)(P ′1 | P2))

In essence, we “delay” the weak transitions that result from synchronizations between S1 and P1 until
after the output from Q2. We can conclude the proof by parametricity, backward closure (and forward
closure for reductions of P1). The other weak internal transition combinations follow accordingly.
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Proof conversion C-11

We have that

Γ; ∆, y:A⊕B ⇒ (νu)((!u(z).P1) | y.case(P2, P3)) :: T

Γ; ∆, y:A⊕B ⇒ y.case((νu)((!u(z).P1) | P2), (νu)((!u(z).P1) | P3)) :: T

with

(A.2) Γ; · ⇒ P1 :: z:C Γ, u:C; ∆1, y:A⇒ P2 :: T Γ, u:C; ∆2, y:B ⇒ P3 :: T

and ∆ = ∆1,∆2.

Let M = (νu)((!u(z).P1) | y.case(P2, P3)) and

N = y.case((νu)((!u(z).P1) | P2), (νu)((!u(z).P1) | P3)).

By Lemma 37 we have to show that for any (R1, R2) ∈ CΓ, any (S1, S2) ∈ C∆ and any Q1 ≈L Q2 ::
y:A⊕B we have:

(νx̃, ũ)(R1 | S1 | Q1 |M) ≈L (νx̃, ũ)(R2 | S2 | Q2 | N) :: T

Suppose Q1
y.inl
=⇒ Q′1. We know that Q2

y.inl
=⇒ Q′2 such that Q′1 ≈L Q

′
2 :: y:A. No internal actions are

possible in R1. All internal transitions from S1 can be matched by S2 and synchronizations between
S1 and P2 or P3 are blocked before the synchronization with Q1. Similarly for S2. We thus have,

(νx̃, ũ)(R1 | S1 | Q1 | (νu)((!u(z).P1) | y.case(P2, P3))) =⇒

(νx̃, ũ)(R1 | S′1 | Q′1 | (νu)((!u(z).P1) | P2))

(νx̃, ũ)(R2 | S2 | Q2 | y.case((νu)((!u(z).P1) | P2), (νu)((!u(z).P1) | P3))) =⇒

(νx̃, ũ)(R2 | S′2 | Q′2 | (νu)((!u(z).P1) | P2))

We can conclude the proof by appealing to parametricity and backward closure. Other possibilities for

internal action follow by similar reasoning, appealing to forward closure. The case where Q1
y.inr
=⇒ Q′1

is identical to the above.
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