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Abstract

The challenge this thesis addresses is to speed up the development
of concurrent programs by increasing the efficiency with which concurrent
programs can be tested and consequently evolved. The goal of this thesis is to
generate methods and tools that help software engineers increase confidence
in the correct operation of their programs. To achieve this goal, this thesis
advocates testing of concurrent software using a systematic approach capable
of enumerating possible executions of a concurrent program.

The practicality of the systematic testing approach is demonstrated by
presenting a novel software infrastructure that repeatedly executes a program
test, controlling the order in which concurrent events happen so that different
behaviors can be explored across different test executions. By doing so,
systematic testing circumvents the limitations of traditional ad-hoc testing,
which relies on chance to discover concurrency errors.

However, the idea of systematic testing alone does not quite solve the
problem of concurrent software testing. The combinatorial nature of the
number of ways in which concurrent events of a program can execute causes
an explosion of the number of possible interleavings of these events, a
problem referred to as state space explosion.

To address the state space explosion problem, this thesis studies tech-
niques for quantifying the extent of state space explosion and explores
several directions for mitigating state space explosion: parallel state space
exploration, restricted runtime scheduling, and abstraction reduction. In
the course of its research exploration, this thesis pushes the practical limits
of systematic testing by orders of magnitude, scaling systematic testing to
real-world programs of unprecedented complexity.
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Chapter 1

Introduction

1.1 Problem Motivation and Scope

The sum of the computational power of the 500 most powerful computers in the world
has been doubling every 15 months for the past 20 years reaching 223 Petaflop/s in 2013
(Figure 1.1). Notably, this trend has continued in spite of the silicon industry reaching
the CPU frequency wall, an obstacle that has been overcome by massive parallelization
and distribution of computation: from single processors to symmetric multiprocessing
(SMP) to massive parallel processing (MPP) to cluster computers (Figure 1.2). To
leverage the computational power of such architectures, computer programs have
undergone a similar transition: from sequential to concurrent computation.

Figure 1.1: Evolution of Top500 Performance [102]

Unfortunately, the transition from sequential to concurrent programs unleashed
not only the power of concurrent processing but also the terror of concurrency errors.
Unlike sequential programs, whose behavior is determined by their inputs, concurrent
programs behavior can additionally depend on the relative speed of concurrently
executing threads. The concurrent nature of the computation leads to a combinatorial
explosion of the number of ways in which concurrent events of a program can execute.

1



Figure 1.2: Evolution of Top500 Architectures [102]

This has proven a challenge for software engineers, who may overlook concurrency
errors as they fail to fathom all scenarios in which their program can possibly execute.

Although software testing research has made great leaps forward, making use of
techniques such as symbolic execution [83], it has struggled to generate methods and
tools that would help software engineers build increasingly complex programs that
keep up with the performance trends of new computing architectures. In particular,
most of the existing concurrent software is still tested using ad-hoc methods, collectively
referred to as stress testing [56], which rely on chance when it comes to discovering
concurrency errors. Because of the absence of a high confidence testing mechanism,
software engineers are reluctant to make changes to stable versions of their programs,
slowing down the rate at which software evolves.

The challenge this thesis addresses is to speed up the development of concurrent
programs by increasing the efficiency with which concurrent programs can be tested and
consequently evolved. The goal of this thesis is to generate methods and tools that help
software engineers increase confidence in the correct operation of their programs. To
achieve this goal, this thesis advocates testing of concurrent software using a systematic
approach capable of enumerating possible executions of a concurrent program.

1.2 Thesis Statement

“Existing concurrent software can be tested in a systematic and scalable fashion using testing
infrastructure which controls nondeterminism and mitigates state space explosion.”

On a theoretical level, given a program, one can view its set of possible behaviors
as a random variable X and ad-hoc testing as a method for sampling observations
from the probabilistic distribution of X. In case there exists an erroneous program
behavior and ad-hoc testing executes concurrent events in a way that reveals the error
with probability p, then, assuming independence of individual samples, ad-hoc testing
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is expected to discover the erroneous behavior using p−1 samples. In other words,
ad-hoc testing is good at detecting likely errors, but ineffective at discovering corner
case errors that occur with very low probability. Further, if the probability distribution
of the random variable X is uniform, then ad-hoc testing is expected to encounter
all behaviors using O(n log n) samples [22], where n represents the total number of
possible program behaviors. Unfortunately, probabilistic distributions of real-world
program behaviors are highly non-uniform, rendering ad-hoc testing an inefficient
mechanism for exploring the state space of possible program behaviors.

This thesis focuses on an alternative approach to testing of concurrent programs,
which avoids the aforementioned shortcomings of ad-hoc testing. This approach,
known as systematic testing, controls the order in which concurrent events of a program
happen in order to guarantee that different executions of the same test explore different
interleavings of concurrent events. By doing so, systematic testing circumvents the
limitations of ad-hoc testing. In particular, unlike ad-hoc testing, systematic testing is
guaranteed to encounter all interleavings of concurrent events using n samples, where
n represents the total number of possible interleavings of concurrent events.

However, reducing the number of samples required to enumerate all interleavings
of concurrent events down to its theoretical minimum does not quite solve the problem
of concurrent software testing. The combinatorial nature of the number of ways in
which concurrent events of a program can execute causes an explosion of the number
of possible interleavings of these events, a problem referred to as state space explosion.
For a typical real-world program, the number of all possible interleavings of concurrent
events can exceed the estimated number of atoms in the universe (1078 – 1082), rendering
exhaustive enumeration of all interleavings impossible.

To address the state space explosion problem in the context of concurrent software
testing, this thesis first studies techniques for quantifying the extent of state space
explosion and then explores several directions for mitigating state space explosion:
parallel state space exploration, restricted runtime scheduling, and abstraction reduction.
In the course of its research exploration, this thesis pushes the practical limits of
systematic testing by orders of magnitude, scaling systematic testing to real-world
programs of unprecedented complexity.

1.3 Thesis Contributions

This thesis makes several contributions. First, this thesis presents a novel software
infrastructure for systematic testing of real-world programs and uses this infrastructure
as a vehicle to drive forward its research on systematic testing. The infrastructure enables
systematic testing of unmodified binaries of concurrent programs and implements state
of the art algorithms for mitigating state space explosion.

Second, this thesis pioneers research on estimating the extent of state space explosion,
a problem referred to as state space estimation. In particular, this thesis presents a number
of techniques that create and refine an estimate of the number of thread interleavings
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as the space of all possible thread interleavings is being explored. Further, this thesis
demonstrates the benefits of state space estimation by using it to implement intelligent
policies for allocation of scarce resources to a collection of systematic tests.

Third, this thesis demonstrates how to extend an inherently sequential state of the
art algorithm for exploration of the space of all possible thread interleavings [51] to
parallel execution on a large computational cluster. This effort results in a scalable
version of the algorithm that achieves strong scaling on computer clusters consisting
of up to one thousand of machines, speeding up the exploration of a set of thread
interleavings by several orders of magnitude.

Fourth, this thesis explores integration of systematic testing with techniques for
restricted runtime scheduling. In particular, this thesis presents an eco-system created by
integrating its software infrastructure with a novel deterministic and stable multithread-
ing thread runtime [39], which reduces the number of possible thread interleavings.
There is synergy between systematic testing and restricted runtime scheduling: system-
atic testing helps to check the set of thread interleavings that are allowed by the restricted
scheduler, while the restricted scheduler reduces the number of thread interleavings
systematic testing needs to check.

Fifth, this thesis demonstrates how modeling program behavior at higher levels of
abstraction, referred to as abstraction reduction, mitigates the extent of state space explo-
sion. In general, the granularity of events interleaved by a thread interleaving can range
from machine instructions to high-level function calls. Abstraction reduction mimics the
behavior of software engineers that trust implementations of common coordination and
communication libraries, such as POSIX threads (pthreads) [120] or Message Passing
Interface (MPI) [103]. In particular, abstraction reduction treats common coordination
and communication events as atomic, shifting the focus of systematic testing from
testing the internals of common coordination and communication libraries to testing
the programs that use them.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 covers both the theoretical and
practical foundations this thesis builds upon. Chapter 3 presents the software infrastruc-
ture developed in support of the research carried out by this thesis. Chapter 4 presents
the design, implementation, and evaluation of mechanisms for state space estimation
and resource allocation policies based on state space estimates. Chapter 5 presents the
design, implementation, and evaluation of an algorithm for parallel exploration of a set
of thread interleavings. Chapter 6 presents the design, implementation, and evaluation
of an eco-system formed by integrating our systematic testing infrastructure with a
restricted runtime scheduling system. Chapter 7 presents the design, implementation,
and evaluation of an approach that leverages abstraction to mitigate state space explo-
sion. Chapter 8 provides an overview of related work and Chapter 9 discusses future
work and draws conclusions.
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Chapter 2

Systematic Testing Background

This chapter first describes state of the art algorithms for systematic testing (§2.1),
focusing on algorithms pertinent to systematic testing of concurrent programs, and
then presents an overview of the evolution of tools for systematic testing of concurrent
programs (§2.2).

2.1 Theory

To gain confidence in the correct operation of a concurrent program through testing,
a software engineer must verify as many program behaviors as possible in the time
allotted for testing. The first step towards effective testing of a concurrent program is
the ability to evaluate different scenarios in which concurrent events of the program
may occur. The next step is then achieving efficiency through automation of the testing
process, which should avoid evaluation of redundant or infeasible outcomes and at the
same time fully utilize the available computational resources.

Traditional approaches to testing concurrent programs fail to meet these criteria.
Ad-hoc approaches such as stress testing [56] evaluate a program using a range of tests.
The intent of a stress test, typically either a large collection of concurrent stimuli or a
small one repeated many times, is to drive a program into as many different scenarios
as possible. However, stress testing is not guaranteed to exercise all possible scenarios.

To achieve better coverage, researchers have developed and evolved exhaustive
approaches such as theorem proving [31, 43, 49, 95, 125] or model checking [14, 33,
35, 72]. Although these approaches have the potential to provide guarantees about all
possible scenarios, their practicality is limited by the false positives and false negatives
generally introduced during modeling [9], the expert knowledge needed to prove
theorems about the program [84], or the effort needed to create and verify accurate
models of existing software and update these models as the software changes [24].

In parallel with the above exhaustive approaches, research in software verifica-
tion [61, 71] have produced practical tools for systematic testing of concurrent software.
Unlike stress testing, systematic testing is able to enumerate different scenarios and
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unlike the above exhaustive approaches, systematic testing operates over the actual
implementation, striking a balance between coverage and practicality.

The idea behind systematic testing is to systematically resolve nondeterminism,
enumerating different scenarios the program under test could experience. The sources
of nondeterminism can be divided into two broad categories: scheduling nondeterminism
and input nondeterminism.

Scheduling nondeterminism arises in concurrent programs when the relative speed
of concurrently executing threads of computation can affect the program behavior, while
input nondeterminism arises in both sequential and concurrent programs when program
behavior depends on program inputs. Systematic testing of scheduling nondeterminism
and input nondeterminism are two orthogonal problems.

This thesis is concerned with systematic testing of scheduling nondeterminism and
the theory presented in the remainder of this section assumes that scheduling is the only
source of nondeterminism. Obviously, this is rarely the case for real-world programs
whose behavior can depend on a plethora of inputs such as user data, file contents, or
timing. Chapter 3 describes how our infrastructure for systematic testing of concurrent
programs addresses input nondeterminism.

The remainder of this section gives an overview of stateful exploration [71, 105],
stateless exploration [61], partial order reduction (POR) [60], and dynamic partial order
reduction (DPOR) [51], state of the art algorithms for systematic testing of concurrent
programs.

2.1.1 Stateful Exploration

Stateful exploration [12, 71, 105] is a technique that targets systematic testing of nonde-
terministic programs. The goal of stateful exploration is to explore the state space of
possible program states by systematically resolving program nondeterminism, explicitly
recording program states to avoid re-visitation and to guarantee completeness.

Algorithm 1 gives a high-level overview of stateful exploration. To keep track of the
exploration progress, stateful exploration maintains two collections of program states.
The visited collection records program states that have been visited, while the reachable
collection records program states that are known to be reachable.

The program states contained in the visited and reachable collections are stored
explicitly: for traditional hardware architectures, a program state thus consists of
the relevant context stored in the hardware registers, main memory, and on disk.
To navigate a program to a particular program state (Algorithm 1, Line 6), stateful
exploration simply loads the previously stored context.

The Children(node) function (Algorithm 1, Line 7) resumes execution from the
program state node. Once a nondeterministic choice is encountered, a set of program
states corresponding to all possible outcomes of the choice is returned.

The main drawback of stateful exploration is that for real-world programs, explicitly
storing the program states can require considerable space [29, 105, 165], which limits the
size of the state space that can be fully explored. To mitigate this problem, researchers
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Algorithm 1 StatefulExploration(root)
Require: root is the initial program state.
Ensure: All program states reachable from root are explored.

1: visited← NewSet

2: reachable← NewSet

3: Insert(root, reachable)
4: while visited 6= reachable do
5: node← an arbitrary element of reachable \ visited
6: navigate execution to node
7: for all child ∈ Children(node) do
8: if child 6∈ reachable then
9: Insert(child, reachable)

10: end if
11: end for
12: Insert(node, visited)
13: end while

have devised a number of schemes such as compression and hashing [71], selective
caching [13], or parallel processing [27].

In spite of the advances in stateful exploration, the majority of practical tools for
systematic testing for concurrent programs [61, 82, 107, 160, 163] are based on an
alternative approach called stateless exploration.

2.1.2 Stateless Exploration

Stateless exploration [61] is a technique that targets systematic testing, particularly
suitable for systematic testing of concurrent programs. Although stateless exploration
pursues the same goal as stateful exploration, stateless exploration does not store
program states explicitly. Instead, stateless exploration represents a program state
implicitly using the sequence of nondeterministic choices that lead to the program state
from the initial program state.

To keep track of the exploration progress, stateless exploration abstractly represents
the state space of different program states using an execution tree. Nodes of the execution
tree represent nondeterministic choices and edges of the execution tree represent
program state transitions. A path from the root of the tree to a leaf then uniquely
encodes a program execution as a sequence of nondeterministic choices.

Abstractly, enumerating the branches of the execution tree corresponds to an enu-
meration of different sequences of program state transitions. Notably, the set of explored
branches of a partially explored execution tree identifies which sequences of program
state transitions have been explored. Further, the information collected by past execu-
tions can be used to generate schedules that describe in what order to sequence program
state transitions of future executions in order to explore new parts of the state space.
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Algorithm 2 StatelessExploration(root)
Require: root is the initial program state.
Ensure: All program states reachable from root are explored.

1: frontier← NewStack

2: Push({root}, frontier)
3: while frontier not empty do
4: while Top(frontier) not empty do
5: node← an arbitrary element of Top(frontier)
6: remove node from Top(frontier)
7: navigate execution to node
8: if Children(node) not empty then
9: Push(Children(node), frontier)

10: end if
11: end while
12: Pop(frontier)
13: end while

Algorithm 2 gives a high-level overview of stateless exploration. The algorithm
maintains an exploration frontier, represented as a stack of sets of nodes, and uses
depth-first search to explore the execution tree. Depth-first search is used to achieve
space complexity that is linear in the depth of the execution tree.

To navigate a program to a particular program state (Algorithm 2, Line 7), stateless
exploration recreates the initial program state and then carries out the sequence of
nondeterministic choices identified by the execution tree. The Children(node) function
(Algorithm 2, Line 8) behaves the same as before.

The main drawback of stateless exploration is that different sequences of nondeter-
ministic choices can represent identical concrete program states, resulting in redundant
exploration. To address this problem, stateless exploration is typically augmented with
state space reduction techniques [51, 60].

2.1.3 Partial Order Reduction

Partial order reduction (POR) [60] is a technique that targets efficient systematic testing
of concurrent programs. The goal of POR is to reduce the inefficiency of state space
exploration resulting from exploration of equivalent program states.

Algorithm 3 gives a high-level overview of stateless exploration based on partial
order reduction. Similar to stateless exploration, the partial order reduction algorithm
maintains an exploration frontier, represented as a stack of sets of nodes, and uses
depth-first search to explore the execution tree.

The PersistentSet(node) function (Algorithm 3, Line 3) uses static analysis to
identify what subtrees of the execution tree need to be explored. In particular, it inputs
a node of the execution tree and outputs a subset of the Children(node) set that needs
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Algorithm 3 PartialOrderReduction(root)
Require: root is the initial program state.
Ensure: All non-equivalent program states reachable from root are explored.

1: procedure DepthFirstSearch(root, frontier)
2: remove node from Top(frontier)
3: if PersistentSet(node) not empty then
4: Push(PersistentSet(node), frontier)
5: for all child ∈ Top(frontier) do
6: navigate execution to child
7: DepthFirstSearch(child, frontier)
8: end for
9: Pop(frontier)

10: end if
11: end procedure
12: frontier← NewStack

13: Push({root}, frontier)
14: DepthFirstSearch(root, frontier)

to be explored in order to explore all non-equivalent sequences of program states; two
sequences of program states are considered equivalent, if using them to evaluate a
program property yields the same result. Further details behind the computation
of the PersistentSet function are unnecessary for understanding the content of this
thesis are omitted for brevity. The interested reader is referred to Godefroid’s seminal
treatment [60].

The main drawback of partial order reduction is that static analysis of complex
programs is often costly or infeasible and results in larger than necessary persistent sets.
To address this problem, static analysis can be replaced with dynamic analysis [51].

2.1.4 Dynamic Partial Order Reduction

Dynamic partial order reduction (DPOR) [51] is a technique that targets efficient state
space exploration. The goal of DPOR is to reduce the inefficiency of partial order
reduction resulting from the use of static analysis. Namely, when stateless exploration
explores the execution tree, DPOR relies on dynamic analysis to decide how to augment
the existing exploration frontier.

Algorithm 4 gives a high-level overview of stateless exploration based on dynamic
partial order reduction. Similar to stateless exploration, the dynamic partial order
reduction algorithm maintains an exploration frontier, represented as a stack of sets of
nodes, and uses depth-first search to explore the execution tree.

The UpdateFrontier(frontier, node) function (Algorithm 4, Line 3) uses dynamic
analysis to identify which subtrees of the execution tree need to be explored. In
particular, the function inputs the current exploration frontier and the current node and
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Algorithm 4 DynamicPartialOrderReduction(root)
Require: root is the initial program state.
Ensure: All non-equivalent program states reachable from root are explored.

1: procedure DepthFirstSearch(root, frontier)
2: remove node from Top(frontier)
3: UpdateFrontier(frontier, node)
4: if Children(node) not empty then
5: child← arbitrary element of Children(node)
6: Push({child}, frontier)
7: for all child ∈ Top(frontier) do
8: navigate execution to child
9: DepthFirstSearch(child, frontier)

10: end for
11: Pop(frontier)
12: end if
13: end procedure
14: frontier← NewStack

15: Push({root}, frontier)
16: DepthFirstSearch(root, frontier)

computes the happens-before [88] and dependence [60] relations between the transitions
on the path leading to the current node. This information is then used to infer which
nodes need to be added to the exploration frontier in order to explore all non-equivalent
sequences of program states. Unlike the PersistentSet function, the UpdateFrontier

function can add nodes to an arbitrary set of the exploration frontier stack, an aspect of
DPOR that prevents straightforward parallelization of the execution tree exploration
(cf. Chapter 5). Further details of the computation of the UpdateFrontier function are
unnecessary for understanding the content of this thesis are omitted for brevity. The
interested reader is referred to the original DPOR paper [51].

2.2 Practice
Research in software verification has produced a number of tools for systematic testing
of concurrent programs including VeriSoft [61, 62], CMC [105], FiSC [164, 165], eX-
plode [163], MaceMC [82], ISP [118, 148], CHESS [106, 107], MoDist [160], dBug [135,
136, 137], and ETA [138].

All of the these tools are built around the same idea: for a given concurrent program
and its initial program state, systematically and automatically enumerate different
scheduling scenarios searching for errors. What differentiates these tools is 1) the
operating systems and programming languages they target, 2) the techniques they use
for exploring and reducing the state space of possible scenarios, 3) the type of properties
they check for, and 4) the effort needed to deploy the tool.
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Table 2.1 presents an overview of the key attributes of these tools. The tool column
lists the tools in a chronological order. The operating system column identifies what
operating systems, if any, is the tool restricted to. The asterisk character is used when
the tool works independently of the operating system. The programming language

column identifies what programming languages, if any, is the tool restricted to. The
asterisk character is used when the tool works independently of the programming
language. The state space exploration column identifies what type of state space
exploration the tool uses. The state space reduction column identifies what type of
state space reduction the tool uses. The properties checked column identifies what
properties the tool checks for. In particular, this column specifies if the tool checks
for 1) user-provided propositions in addition to generic propositions and 2) temporal
propositions [99] in addition to other propositions. Finally, the deployment effort

column identifies the effort needed to deployment the tool.
The remainder of this section offers a summary of all of these tools with the exception

of dBug and ETA. The dBug and ETA tools were built by this thesis author in support
of the research carried out by this thesis and are described in detail in Chapter 3.

2.2.1 VeriSoft

The first practical tool for systematic testing of concurrent programs – VeriSoft [61] –
was developed by Patrice Godefroid in 1997. VeriSoft can explore different serializations
of concurrent library function calls of multithreaded C and C++ programs and requires
manual instrumentation of the program. Since its creation in 1997, VeriSoft has been
successfully applied to prove safety properties and to find bugs in a number of programs
ranging from critical components of a telephone switch [63] to complete releases of
call-processing software [30].

2.2.2 CMC

In 2002, a research group at Stanford developed the C Model Checker (CMC) [105],
which can explore different serializations of event handlers in C and C++ programs.
CMC was the first systematic testing tool to introduce fault injection as a mechanism to
test the error handling of corner case scenarios. The main conceptual difference between
VeriSoft and CMC is the state space exploration technique. VeriSoft only stores the
initial state and possibly re-explores parts of the state space, while CMC stores every
intermediate state, which allows for faster state space traversal. Anecdotally, VeriSoft
typically runs out of time, while CMC typically runs out of memory. The evaluation
of CMC [105] checked three implementations of the AODV networking protocol [117],
finding a total of 40 bugs.
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2.2.3 FiSC

In 2004, the same group at Stanford used CMC as the foundation for building the FiSC
tool [165] for systematic testing of Linux file systems. The key idea behind FiSC is to
enumerate different ways in which concurrent file system operations can modify data
and meta-data and simulate system crashes at arbitrary time points, searching for file
system inconsistencies. Similar to CMC, FiSC uses a stateful approach, encoding each
concrete state as a collection of hashed chunks of the concrete state in order to decrease
memory footprint of each state. The evaluation of FiSC [165] checked three file systems
– ext3, JFS, and ReiserFS – and found serious bugs in all of them, 32 in total.

2.2.4 eXplode

In 2006, the same group at Stanford created the eXplode tool [163] for systematic
testing of arbitrary storage systems. Unlike FiSC, which inherited the stateful nature
of its exploration from CMC, eXplode embraces stateless exploration, which “lead to
orders of magnitude reduction in complexity and effort in using eXplode as opposed to
FiSC”. Notably, eXplode is able to check storage systems without requiring their source
code. The extensive evaluation of eXplode [163] checked three version control systems,
Berkeley DB [108], an NFS implementation [132], ten file systems, a RAID system [116],
and the VMware GSX virtual machine, finding bugs in all of them, 36 in total.

2.2.5 MaceMC

In 2007, a group at UCSD created the programming language Mace [81], geared towards
designing distributed programs, and the systematic testing tool MaceMC [82], for
verifying Mace designs. The Mace programming language groups events into Mace
transitions and MaceMC then uses this abstraction to systematically explore different
serializations of concurrent transitions. A unique feature of MaceMC enabled by the
co-design of a programming language and a testing tool is that it can check for both
safety and bounded liveness properties. A number of distributed programs including
peer-to-peer systems Chord [145] and Pastry [126] were re-implemented in Mace. The
evaluation of MaceMC [82] checked Mace implementations of four different programs
and found a total of 51 bugs.

2.2.6 ISP

In 2007, a collaboration between the University of Utah and Argonne National Labo-
ratories was started that eventually resulted in the ISP tool [118, 147] for systematic
testing of MPI programs [103]. The tool replaces key MPI communication primitives
with wrappers that are used to control the order in which MPI primitives execute.
The systematic testing is deployed via a link-time interposition. The evaluation of
ISP [118, 147] checked four MPI programs and found bugs in all of them.
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2.2.7 CHESS

In 2008, researchers from Microsoft Research Redmond designed the CHESS tool [107],
which explores different serializations of memory accesses in a multithreaded program.
CHESS uses run-time interposition and thus does not require any source code modifica-
tions. This feature greatly simplifies the integration of CHESS into the testing process.
The evaluation of CHESS [107] checked eight different programs ranging from process
management libraries to a distributed execution engine to a research operating system,
finding bugs in all of them, 27 in total.

2.2.8 MoDist

In 2009, a combined effort of researchers from research labs and universities in both the
United States and China lead to the creation of the systematic testing tool MoDist [160].
The MoDist project combined ideas from previous work to deliver a tool capable of
systematic exploration of different serializations of concurrent system calls in multi-
threaded and distributed Windows programs. Similar to CHESS, MoDist does not
require source code modifications. However, instead of using run-time interposition,
MoDist relies on binary instrumentation of Windows API provided by Box [68]. MoDist
evaluation [160] checked three distributed programs – the replication extension of Berke-
ley DB [108], a production implementation of the Paxos protocol [89], and a prototype
of a primary-backup replication protocol – and found a total of 35 bugs.

This list of success stories demonstrates that there is momentum in advancing sys-
tematic testing of concurrent programs and provides evidence that systematic testing
tools are effective at finding errors. The success of the above tools stems from sophisti-
cated techniques for mitigating the combinatorial explosion of the number of possible
program states of a concurrent program.

Interestingly, none of the previous work actually attempts to measure how bad the
state space explosion problem actually is. In cases where systematic testing fails to
exhaust the state space, the absence of a state space size estimate poses a challenge to
quantifying the benefits of the test results. To address this problem, Chapter 4 describes
and evaluates techniques for estimating the size of the stateless exploration space. Our
evaluation on a wide range of concurrent programs provides evidence of the extent of
state space explosion.

The rest of the thesis then presents research that aims to push the practical limits of
systematic testing. Chapter 5 presents a novel algorithm [139] for state space exploration
that scales extremely well, enabling stateless exploration for large computer clusters.
Chapters 6 and 7 show how restricted runtime scheduling [39] and abstraction [38]
help to alleviate the state space explosion problem.
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Chapter 3

Systematic Testing Infrastructure

This chapter describes two tools built in support of the research carried out by this thesis.
The ETA tool (§3.1) targets systematic testing of scheduling nondeterminism in multi-
threaded components of the Omega cluster management system [129], while the dBug
tool (§3.2) targets systematic testing of scheduling nondeterminism in multithreaded
and distributed programs of POSIX-compliant operating systems [119].

To enable systematic testing of scheduling nondeterminism, both dBug and ETA
need to address common challenges. Consequently, the presentation of ETA and dBug
follows a common pattern. First, the presentation introduces a formal model used for
representing executions of target programs. The reason for defining these models is to
provide a formal framework for describing the happens-before [88] and dependence [60]
relations between program state transitions. These relations are computed by both
tools in order to enable efficient state space exploration based on dynamic partial order
reduction [51]. Second, the presentation discusses the mechanisms the tools use to
control input and scheduling nondeterminism and implement state space exploration.
Finally, the presentation highlights notable aspect of the respective implementations.

3.1 ETA

This section describes ETA [138], a tool for systematic testing of multithreaded com-
ponents of the Omega cluster management system [129]. In particular, §3.1.1 defines
a model for representing multithreaded components of Omega, which embrace the
actors programming paradigm [2], and §3.1.2 describes ETA’s implementation and its
integration with pre-existing testing infrastructure.

3.1.1 Program Model

Conceptually, an actor program consists of a set of actors, each of which has its own
private state, a public queue for receiving messages, and a set of handlers for processing
of queued messages. The only way two actors can communicate is by sending messages
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to one another. Further, each individual actor is sequential, repeatedly invoking
handlers to process queued messages. Processing of a message is assumed never
to block indefinitely and can both modify the private state of the actor processing
the message and push new messages on queues of other actors. An actor program
realizes parallelism by concurrently executing handlers of different actors. The following
definition formalizes the notion of an actor program.

Definition 3.1.1. An n-actor program M is a tuple of actors (A1, . . . , An), where for
i ∈ {1, . . . , n} an actor Ai is in turn a tuple (Qi, Li, ∆i) consisting of a set Qi of queue states,
a set Li of local states, and a transition function ∆i : Messages× Li → (Q1× . . .×Qn)× Li.
A queue state qi ∈ Qi is a finite sequence (m1, . . . , mk) ∈ Messagesk of messages.

Note that the above definition intentionally leaves several terms undefined. The set
Messages is assumed to be an abstract representation of the set of messages actors use
to communicate. In particular, the inputs and outputs of the actor program are encoded
as messages. The sets L1, . . . , Ln are assumed to be an abstract representation of the
local state of each actor and the transition functions ∆1, . . . , ∆n are assumed to be an
abstract representation of the handlers invoked to process queued messages.

Next, a state of an actor program is defined as a vector of pairs of local and queue
states belonging to the actors of the actor program.

Definition 3.1.2. Let M be an n-actor program. A state of M is defined as a tuple
((q1, l1), . . . , (qn, ln)) ∈ (Q1 × L1) × . . . × (Qn × Ln). Further, a state of M can be in-
spected using the following projections:
• actor : ((Q1 × L1) × . . . × (Qn × Ln)) × {1, . . . , n} → ⋃n

i=1(Qi × Li), a function
such that actor(((q1, l1), . . . , (qn, ln)), i) = (qi, li)

• queue :
⋃n

i=1(Qi × Li)→
⋃n

i=1 Qi, a function such that queue(qi, li) = qi
• local :

⋃n
i=1(Qi × Li)→

⋃n
i=1 Li, a function such that local(qi, li) = li

Next, the transition function of an actor program is defined as a combination of the
transition functions of the actor program actors. In particular, the formal model of an
actor program transitions between states by choosing an actor with a non-empty queue,
removing a message from the queue of that actor, and invoking the corresponding
message handler. By the nature of the transition function, the invoked message handler
can append messages to a message queue of any actor, but it can only change the local
state of the actor invoking the handler.

Definition 3.1.3. Let M be an n-actor program. The transition function of M is a
function ∆M : (Q1 × L1) × . . . × (Qn × Ln) × {1, . . . , n} → {⊥} ∪ ((Q1 × L1) × . . . ×
(Qn × Ln)) such that ∆M((q1, l1), . . . , (qn, ln), i) equals ⊥ if qi is empty. Otherwise,
∆M((q1, l1), . . . , (qn, ln), i) equals ((q1 ◦ q′1, l1), . . . , (tail(qi) ◦ q′i, l′i), . . . , (qn ◦ q′n, ln)) where
q′1, . . . , q′n and l′i are such that ∆i(head(qi), li) = ((q′1, . . . , q′n), l′i).

Next, an execution of an actor program is defined as a sequence of states. Further,
this sequence is identified with 1) an index sequence that encodes the order in which
actors process messages along the execution and 2) the sequence of messages processed
along the execution.
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Definition 3.1.4. Let M be an n-actor program, ∆M its transition function, and s
its state. An execution of M from s is a finite sequence α = (s0, . . . , sk) of states
of M such that s = s0 and there exists an index sequence I(α) = (i0, . . . , ik−1) ∈
{1, . . . , n}k such that sj+1 = ∆M(sj, ij) for all j ∈ {0, . . . , k − 1}. Further, the mes-
sage sequence M(α) = (m0, . . . , mk−1) ∈ Messagesk is a sequence of messages such that
mj = head(queue(actor(sj, ij))) for j ∈ {0, . . . , k− 1} and M(α) is used to denote the set
{m0, . . . , mk−1}.

Next, the happens-before [88] and dependence relations [60] are defined to track
causality and interactions between messages. These relations are necessary in order to
adapt the dynamic partial order reduction algorithm (DPOR) [51] to actor programs. In
other words, the happens-before relation is a transitive closure of the causal order in
which 1) an actor processes messages, 2) a message handler creates new messages.

Definition 3.1.5. Let α = (s0, . . . , sk) be an execution, I(α) = (i0, . . . , ik−1) its index
sequence, and M(α) = (m0, . . . , mk−1) its message sequence. The happens-before relation
 α⊆ M(α)×M(α) is the smallest relation that satisfies the following conditions:

• for all j, l ∈ {0, . . . , k− 1}: if j < l and ij = il, then mj  α ml
• for all j ∈ {0, . . . , k − 1}: if ∆ij(mj, local(actor(sj, ij))) = ((q′1, . . . , q′n), l′), then

mj  α m′j for all m′j ∈
⋃n

i=1 q′i
• for all j1, j2, j3 ∈ {0, . . . , k− 1}: if mj1  α mj2 and mj2  α mj3 , then mj1  α mj3

Definition 3.1.6. Let α = (s0, . . . , sk) be an execution, I(α) = (i0, . . . , ik−1) its in-
dex sequence, and M(α) = (m0, . . . , mk−1) its message sequence. A dependence re-
lation is a relation Dα ⊆ M(α) × M(α) such that for all j1, j2 ∈ {0, . . . , k − 1}: if
there exists i ∈ {1, . . . , n} such that ∆ij1

(mj1 , local(actor(sj1 , ij1))) = ((q1, . . . , qn), l),
∆ij2

(mj2 , local(actor(sj2 , ij2))) = ((q′1, . . . , q′n), l′), and qi and q′i are a non-empty sequence,
then Dα(mj1 , mj2).

The motivation behind the definition of dependence is to identify pairs of messages
with possibly non-commutative effects. In particular, if Dα(m1, m2), then in the course
of the execution α, handling of messages m1 and m2 adds messages to overlapping sets
of message queues and the order in which messages m1 and m2 are handled may affect
the outcome of the actor program.

Note that the above definition of dependence produces a valid dependence rela-
tion [60] but not necessarily a minimal one. Thus, the dependence relation computed
based on Definition 3.1.6 may be an over-approximation of the true dependence. In
contrast to that, the happens-before relation computed based on Definition 3.1.5 may be
an under-approximation of the true causality.

The nature of the DPOR algorithm justifies such approximations. The smaller the
dependence relation is and the larger the happens-before relation is, the more states the
DPOR algorithm can reduce. As long as the dependence relation does not fail to relate
any messages that are in fact dependent, and the happens-before relation does not relate
any messages that are in fact concurrent, the DPOR algorithm will work correctly.
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In practice, one aims to strike a balance between accurate identification of de-
pendence and causality and the overhead of doing so. The above definitions of the
happens-before and dependence relations are crafted so that these relations can be easily
computed at runtime, avoiding the need for static analysis or program annotations.

3.1.2 Implementation

The runtime of Omega actor programs controls the order in which messages are
handled through an actor manager. In production, the actor manager is multithreaded,
concurrently processing messages from different message queues. In contrast to that,
when testing Omega’s actor programs, a sequential actor manager that enables fine-
grained control of message ordering is used instead. This approach to testing relies
on the assumption that the actor managers used in production and in testing are
functionally equivalent.

To enable systematic testing of Omega actor programs, ETA implements a new
exploratory actor manager. Similar to the default actor manager for testing, the exploratory
actor manager serializes the handling of concurrent messages. Unlike the default actor
manager for testing, which is deterministic, different executions of the same actor
program test under the exploratory actor manager can explore different message orders
and program states.

Exploration

To explore different program states, ETA repeatedly executes the same test and uses
stateless exploration to navigate the state space. In other words, ETA runs the actual
actor program but, with the exception of the current program state, it does not store the
program states explicitly. Instead, program states are represented implicitly using index
sequences of executions that lead to them.

The program states revealed by test executions are recorded and stored in an execution
tree, with nodes implicitly representing program states and edges representing index
sequence elements. Initially, the exploration holds no knowledge about the structure of
the execution tree and as new message sequences are explored, the execution tree is
gradually unfolded.

An execution of an actor program test in ETA uses the execution tree to generate
an index sequence which identifies a node of the execution tree exploration frontier
to explore next. The exploratory actor manager then uses this index sequence to
steer the execution towards this node. Once this node is reached, the exploratory
actor manager switches to round-robin scheduling, recording its decisions. Once the
test execution completes (or times out), ETA processes the explored message sequence,
computing the happens-before relation (cf. Definition 3.1.5) and the dependence relation
(cf. Definition 3.1.6), and uses the DPOR algorithm (cf. Section 2.1.4) to update the
exploration frontier.
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Nondeterminism

In order for ETA to navigate the execution tree, the message queue identifiers of the
Omega actors runtime must be identical across different test executions (property of the
actors library), and identical index sequences must produce identical message queues
contents across different test executions (property of the actor program and its test).

To accomplish the latter, ETA needs to make sure that message ordering is indeed
the only source of nondeterminism. Otherwise, the exploratory actor manager might
not be able to deterministically replay previously explored message orders, which is
necessary for stateless exploration. To meet this requirement, ETA uses deterministic
seeds for pseudo-random number generators and deterministic mock implementations
of nondeterministic components of the environment such as RPC servers.

The broader notion is to treat all nondeterminism as messages but only explore the
ones the user considers most pertinent. This notion could be implemented as a more
general exploratory manager that controls the different sources of nondeterminism. The
main advantage of a more general exploratory manager is its ability to test interactions
between the different sources of nondeterminism. The main disadvantage is the ad-
ditional combinatorial explosion of the number of possible interactions, impeding the
ability of the more general exploratory manager to investigate all interactions. Given
the size of the state spaces of actor program tests in the Omega test suite (see Chapter 4),
ETA focuses on message ordering only.

Deployment

The ultimate goal of systematic testing is to help software engineers to test their
programs better. Keeping this goal in mind, ETA is designed to smoothly integrate with
the infrastructure for testing Omega actor programs.

Typically, an Omega actor program test sets up some initial state and then repeatedly
uses the Omega actors library API to either trigger message handling or to inspect the
current program state for errors. The message handling triggers can instruct the actor
manager to handle one message or to continue handling messages until a temporal
property [99] becomes true (or there are no messages left).

To automate the testing process, Omega uses the Google Test framework [66]. This
framework provides a number of test macros through which a software engineer
describes a unit test and the framework then executes these tests and reports the results.
To add support for systematic testing into the existing infrastructure for testing Omega,
the Google Test framework was extended by this thesis author with new test macros,
one for each original test macro, that can be used as drop-in replacements for the
original Google Test macros. By default the new test macros behave identically to their
Google Test counterparts, executing the body of the test macro once. However, if the
test is executed with a special command-line flag, systematic testing is used, repeatedly
executing the body of the test until the execution tree representing the state space of the
test body is fully explored or a timeout is reached.
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Runtime Estimation

For traditional tests, runtime can be estimated using a back of the envelope analysis
based on the program design and hardware architecture. In contrast, the runtime
of systematic tests depends largely on the interaction between 1) the combinatorial
explosion of the number of ways in which concurrent events of the test can execute and
2) the realized state space reduction. This quality of systematic tests makes estimation
of their runtime challenging. In fact, prior to ETA, no systematic testing tool had the
capability to estimate the runtime of its tests.

The absence of runtime estimates leads to ad-hoc and possibly inefficient allocations
of scarce testing resources. Recognizing this shortcoming of existing systematic testing
tools, ETA implements a novel technique for runtime estimation (cf. Chapter 4). This
technique predicts runtimes for systematic Omega tests and enables efficient allocation
of testing resources.

Parallel State Space Exploration

In addition to the traditional sequential implementation of the DPOR algorithm, ETA
implements a novel scalable version of the DPOR algorithm (cf. Chapter 5), which ex-
plores the state space of possible program states concurrently using a number of parallel
test executions. Although concurrent exploration of the execution tree seems straight-
forward at first sight, a naive implementation may result in redundant exploration [167]
and working out the details in the context of DPOR requires some care.

ETA’s scalable implementation of the DPOR algorithm enables concurrent explo-
ration of systematic Omega tests using Google data centers [65]. The technique achieves
strong scaling and pushes the practical limits of systematic testing by orders of magni-
tude.

3.2 dBug

This section describes dBug [135, 137], a tool for systematic testing of multithreaded and
distributed programs of POSIX-compliant operating systems [119]. Unlike ETA, dBug
is publicly available [135] and is not restricted to a particular programming language.
The motivation behind creating dBug is not only to provide a platform for carrying
out systematic testing research, but also to provide a practical tool that can be used for
systematic testing of a wide range of existing programs.

Similar to the presentation of ETA, the presentation of dBug first describes a formal
framework used by dBug to model concurrent programs (§ 3.2.1) and then discusses
notable aspects of dBug’s design (§ 3.2.2) and implementation (§ 3.2.3).
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3.2.1 Program Model

This subsection defines a formal framework for modeling real-world concurrent pro-
grams. Similar to the framework used by ETA, the purpose of this framework is to
capture causality and dependence between program state transitions so that dBug can
implement efficient state space exploration based on dynamic partial order reduction
(DPOR) [51]. Unlike the framework used by ETA, the framework used by dBug is not
tailored to a specific programming paradigm and is capable of modeling concurrent
programs at different levels of abstraction.
Definition 3.2.1. An abstract state s is an element of the S = GS × P(Identifiers× LS)
universe, where GS : GO → Values is the global state function that assigns values to
global objects GO, Identifiers is a set of thread identifiers, LS : LO → Values is the local state
function that assigns values to local objects LO, and P(X) denotes the power set of X.
Given an abstract state s, it can be inspected using the following projections:
• global : S→ GS, a function such that global((g, {(id1, l1), . . . , (idn, ln)})) = g
• local : S× Identifiers→ {⊥} ∪ LS, a function such that:

local((g, {(id1, l1), . . . , (idn, ln)}), id) =

{
li if id = idi

⊥ otherwise

Definition 3.2.2. An abstract program is a tuple P = (S, ∆, Φ), where S is a set of
abstract states, ∆ ⊆ S× S is a transition relation, with elements referred to as transitions,
and Φ : ∆→ P(GO)×P(GO)×P(Identifiers×P(LO)) is an abstract footprint function.
Further, given an abstract program P, it can be inspected using the following projections:
• threads : ∆→ P(Identifiers), a function such that threads((s, s′)) = {id | there exist

gr, gw ∈ P(GO), id1, . . . , idn ∈ Identifiers, l1, . . . , ln ∈ P(LO), and i ∈ {1, . . . , n}
such that Φ((s, s′)) = (gr, gw, {(id1, l1), . . . , (idn, ln)}) and id = idi}

• readset : ∆→ P(GO), a function such that readset((s, s′)) = gr such that Φ((s, s′)) =
(gr, gw, {(id1, l1), . . . , (idn, ln)}) for some gw ∈ P(GO), id1, . . . , idn ∈ Identifiers, and
l1, . . . , ln ∈ P(LO)

• writeset : ∆ → P(GO), a function such that writeset((s, s′)) = gw such that
Φ((s, s′)) = (gr, gw, {(id1, l1), . . . , (idn, ln)}) for some gr ∈ P(GO), id1, . . . , idn ∈
Identifiers, and l1, . . . , ln ∈ P(LO)

Note that the above definitions intentionally leave several terms undefined. The set
GO is assumed to be an abstract representation of the objects shared among the threads,
the LO set is assumed to be an abstract representation of the local objects of each thread,
the Values set is assumed to be a set of values the global and local objects can take on,
and the Identifiers set is assumed to be a set of unique thread identifiers. The transition
relation ∆ abstracts actual program transitions and the abstract footprint function Φ
abstracts how global and local objects are accessed.

The motivation behind the above definitions is to formalize a mechanism that makes
it possible to model concurrent programs at different levels of abstraction captured by
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1 #include <pthread.h>
2 #include <stdio.h>
3

4 int x = 0;
5

6 void *foo(void *args) {
7 x++;
8 return NULL;
9 }

10

11 int main(int argc, char **argv) {
12 pthread_t tid;
13 pthread_create(&tid, NULL, foo, NULL);
14 x++;
15 pthread_join(tid, NULL);
16 assert(x == 2);
17 return 0;
18 }

Figure 3.1: Concurrent Memory Access Example - Source Code

the choice of global and local objects. The following paragraphs illustrate the above
abstract definitions on concrete examples.

Example 1. Consider the C program depicted in Figure 3.1. This program spawns a
thread and then concurrently increments a global variable x from both threads. To
abstractly model the state space of possible program states, one can set GS to consist of
assignments to the variable x, LS to consist of control flow locations identified by source
code line numbers, and Identifiers to consist of identifiers {parent, child}. The state space
generated by this abstraction is depicted as a graph in Figure 3.2. The nodes represent
abstract program states and the edges represent abstract program transitions, labeled by
values of the threads, writeset, and readset functions respectively. This example illustrates
1) how to abstractly model program states of a concrete program, 2) how to model
scheduling nondeterminism using a transition relation, and 3) how to model the effects
of program transitions using the abstract footprint function. Note that choosing line
numbers, as opposed to instruction register values, as the abstraction for control flow
locations produces a model that does not contain a program state that witnesses the
data race feasible when executing the program on hardware that does not increment x
atomically.

Example 2. Consider the MPI [103] program depicted in Figure 3.3. When MPI creates
two instances of this program, the instances exchange a message. To abstractly model
the state space of possible program states, one can set GS to consist of possible contents
of the buffer MPI uses to transfer a message, LS to consist of MPI function invocations
identified by source code line numbers, and Identifiers to consist of identifiers {p0, p1}.
The state space generated by this abstraction is depicted as a graph in Figure 3.4. The
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({x:0}, {(parent, {12})})

exit

({x:0}, {(parent, {13})})

{parent}, {}, {}

({x:0}, {(parent, {14}), (child, {7})})

{parent, child}, {}, {}

({x:1}, {(parent, {15}), (child, {7})})

{parent}, {x}, {x}

({x:1}, {(parent, {14}), (child, {8}})

{child}, {x}, {x}

({x:2}, {(parent, {15}), (child, {8})})

{child}, {x}, {x}

({x:1}, {(parent, {14})})

{child}, {}, {}

({x:2}, {(parent, {15}), (child, {8}})

{parent}, {x}, {x}

({x:2}, {(parent, {15})})

{child}, {}, {}

({x:2}, {(parent, {16})})

{parent}, {}, {}

({x:2}, {(parent, {17})})

{parent}, {}, {}

{parent}, {}, {}

{parent}, {x}, {x} {child}, {}, {}

Figure 3.2: Concurrent Memory Access Example - State Space

nodes represent abstract program states and the edges represent abstract transitions,
labeled by values of the threads, writeset, and readset functions respectively. This example
illustrates how to model nondeterminism in the MPI specification – messages can be
exchanged synchronously or asynchronously – using a transition relation.

Examples 1 and 2 together illustrate how the formalism introduced by Defini-
tions 3.2.1 and 3.2.2 enables modeling concurrent programs at different level of abstrac-
tion. Note that the level of abstraction affects the complexity and precision of program
analysis. The more details are abstracted away, the smaller the number of program
states to analyze but the lower the precision with which the program is analyzed. The
key to effective program analysis is to strike a balance between these two opposing
goals: avoiding omission of important program behaviors or creation of overly detailed
models that are too large to be analyzed [24]. dBug approaches this problem by offering
different levels of abstraction at which it can model concurrent programs (cf. Chapter 7).
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1 #include <mpi.h>
2 #include <stdio.h>
3 #include <string.h>
4

5 #define SIZE 32
6

7 int main(int argc, char **argv) {
8 char message[SIZE];
9 int myrank;

10 MPI_Init(&argc, &argv);
11 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
12 if (myrank == 0) {
13 snprintf(message, SIZE, "Hello!");
14 MPI_Send(message, strlen(message) + 1, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
15 }
16 if (myrank == 1) {
17 MPI_Status status;
18 MPI_Recv(message, SIZE, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &status);
19 printf("%s\n", message);
20 }
21 MPI_Finalize();
22 return 0;
23 }

Figure 3.3: MPI Communication Example - Source Code

Given a level of abstraction, dBug uses sequences of abstract states to model concrete
executions of a concurrent program and state space exploration based on the DPOR
algorithm to explore different scenarios allowed by scheduling nondeterminism. Similar
to the presentation of actor programs, definitions of the happens-before and dependence
relations are necessary to adapt the DPOR algorithm for abstract programs.

Definition 3.2.3. Let P = (S, ∆, Φ) be an abstract program and s ∈ S an abstract state.
An execution of P from s is defined as a finite sequence α = (s0, . . . , sk) of abstract states
of S such that s = s0 and for all i ∈ {0, . . . , k− 1} : (si, si+1) ∈ ∆. ∆α is used to denote
the set {(si, si+1) | i ∈ {0, . . . , k− 1}}.

To compute the happens-before relation for executions of abstract programs, dBug
uses a clock function that for each thread and global object maintains a vector of the most
recently observed values of logical time of each thread. In particular, when a thread or a
global object is involved in an abstract program transition, the clock function updates the
vector of the logical time values maintained by this thread or global object as follows.
First, the most recently observed values of all threads and global objects involved in
the same abstract program transition are joined and then each thread involved in an
abstract program transitions advances its own logical time by one.

Definition 3.2.4. Let P = (S, ∆, Φ) be an abstract program, GO its set of global objects,
and α = (s0, . . . , sk) its execution. The clock function clock : S × (Identifiers ∪ GO) ×
Identifiers→N is a function that meets the following conditions:
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({buffer:""}, {(p0, {10}), (p1, {10})})

exit

({buffer:""}, {(p0, {11}), (p1, {11})})

{p0, p1}, {}, {}

({buffer:""}, {(p0, {14}), (p1, {11})})

{p0}, {}, {}

({buffer:""}, {(p0, {11}), (p1, {18})})

{p1}, {}, {}
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{p0}, {buffer}, {}
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{p1}, {}, {} {p0}, {}, {}
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{p0, p1}, {buffer}, {buffer}

{p1}, {buffer}, {buffer}

{p0, p1}, {}, {}

Figure 3.4: MPI Communication Example - State Space

1. for all g ∈ GO and id, id′ ∈ Identifiers : clock(s0, id, id′) = clock(s0, g, id′) = 0
2. for all id1, id2 ∈ Identifiers and i ∈ {1, . . . , k} :

clock(si, id1, id2) =


join(id2, si−1, si) + 1 if id1 ∈ threads(si−1, si) and id1 = id2

join(id2, si−1, si) if id1 ∈ threads(si−1, si) and id1 6= id2

clock(si−1, id1, id2) otherwise

3. for all g ∈ GO, id ∈ Identifiers, and i ∈ {1, . . . , k} :

clock(si, g, id) =

{
join(id, si−1, si) g ∈ writeset(si−1, si)

clock(si−1, g, id) otherwise

where join(id, s, s′) = max{{clock(s, id′, id) | id′ ∈ threads(s, s′)} ∪
{clock(s, g, id) | g ∈ (readset(s, s′) ∪writeset(s, s′))}}.

Definition 3.2.5. Let P = (S, ∆, Φ) be an abstract program and α = (s0, . . . , sk) its
execution. The happens-before relation α⊆ ∆α × ∆α is a binary relation that meets the
following condition: for all (si, s′i), (sj, s′j) ∈ ∆α : (si, s′i) α (sj, s′j) if and only if for all
idi ∈ threads(si, s′i) and idj ∈ threads(sj, s′j) :
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Figure 3.5: Concurrent Memory Address Example - Execution

1. for all id ∈ Identifiers : clock(si, idi, id) ≤ clock(sj, idj, id) and

2. there exists id ∈ Identifiers such that clock(si, idi, id) < clock(sj, idj, id).

Further, when a pair of transitions is not related through the happens-before relation,
the transitions are called concurrent.
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Example 3. Consider again the C program depicted in Figure 3.1 and its execution
depicted in Figure 3.5, which annotates each abstract state with appropriate values of
the clock function. The first argument of the clock function is identified by the abstract
state each annotation table is attached to and the second and the third argument are
identified by the column and the row of each annotation table respectively. Notably, this
example illustrates how logical time is propagated through transitions that modify local
state of multiple threads or the global state. The transitions of the depicted execution α
are numbered and the values of the clock function can be used to compute the happens-
before relation α= {(1, 2), (2, 3), (3, 5), (3, 6), (4, 5), (6, 7), (7, 8)}+, where X+ denotes
the transitive closure of X. Note that the transitions 3 and 4 both increment the global
variable x and are not causally ordered by α. Consequently, although the abstract state
space does not contain an abstract state that witnesses the data race feasible in practice,
the happens-before relation  α along with the abstract footprint function Φ can be
used to detect the data race. Further, note that since the abstract program does not keep
track of the status of the child thread as part of the global state, the happens-before
relation α fails to capture the causality implied by joining the child thread from the
parent thread. In other words, the happens-before relation of the abstract program is in
general an under-approximation of the true causality between program transitions.

Next, a dependence relation [60] between transitions of an abstract program execu-
tion is defined to track transitions with non-commutative effects.

Definition 3.2.6. Let P = (S, ∆, Φ) be an abstract program and α = (s0, . . . , sk) its
execution. The dependence relation Dα ⊆ ∆α × ∆α is a binary relation such that for all
(si, s′i), (sj, s′j) ∈ ∆α : ((si, s′i), (sj, s′j)) ∈ Dα if any of the following conditions is true:

1. writeset(si, s′i) and writeset(sj, s′j) are not disjoint

2. readset(si, s′i) and writeset(sj, s′j) are not disjoint

3. writeset(si, s′i) and readset(sj, s′j) are not disjoint

4. threads(si, s′i) and threads(sj, s′j) are not disjoint
Further, when a pair of transitions is related through the dependence relation, the
transitions are called dependent.

Unlike the dependence relation for actor programs (Definition 3.1.6), the dependence
relation for abstract programs (Definition 3.2.6) can fail to relate transitions with non-
commutative effects. This can happen when the state modified by both transitions has
been abstracted away. Note that this is not a shortcoming of the above definition. If
the abstract program modeled every bit of the concrete program state, the dependence
relation would likely relate every pair of program transitions. After all, every program
transition modifies the contents of the instruction register. Consequently, the DPOR
algorithm would fail to achieve any reduction, rendering the systematic testing approach
impractical for any real-world program. Instead, the abstraction of the concrete program
state identifies state pertinent to the inspection of the desired program behavior. The
dependence relation computed based on Definition 3.2.6 simply represents a mechanism
that passes this information onto the DPOR algorithm.
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Figure 3.6: Concurrent Memory Address Example - Execution Tree

In practice, dBug executes the concrete program and the DPOR algorithm im-
plemented in dBug inspects an abstraction of this execution, searching for pairs of
transitions that are both concurrent and dependent. A pair of such transitions suggests
that the transitions could execute in either order and the effects of the transitions
may not be commutative, possibly affecting the outcome of the test. When the DPOR
algorithm encounters a pair of such transitions, the exploration frontier of the DPOR
algorithm is updated to make sure that all permutations of concurrent and dependent
transitions are eventually explored.

Example 4. Consider again the C program depicted in Figure 3.1. The execution
tree depicted in Figure 3.6 illustrates the use of the DPOR algorithm to explore the
abstract state space depicted in Figure 3.2. Let us assume that the DPOR algorithm first
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explores the execution corresponding to the leftmost branch of the execution tree. This
happens to be the same execution as depicted in Figure 3.5. In Example 3, we found
out that the transitions 3 and 4 are concurrent. Comparing their abstract footprints
reveals that they are also dependent. Consequently, the DPOR algorithm infers that
it is necessary to explore an execution that permutates these two transitions. Let us
assume that to that end, the DPOR algorithm explores the execution corresponding to
the middle branch of the execution tree depicted in Figure 3.6. The DPOR algorithm
then examines this execution and finds out that transitions 4 and 3 are concurrent and
dependent. Consequently, the DPOR algorithm infers that it is necessary to explore
an execution that permutates these two transitions. As this has already happened,
the DPOR algorithm finishes the exploration. Notably, the DPOR algorithm avoids
exploration of the rightmost branch of the execution tree depicted in Figure 3.6.

3.2.2 Design

The goal of dBug is to enable systematic testing of multithreaded and distributed
programs. To this end, dBug needs to be able to monitor the program state, to control
the order of concurrent program transitions, and to deterministically replay parts of
program executions. These three requirements map to the design of the following
dBug components. The interposition layer is responsible for monitoring the program
state and controlling the execution of program transitions. The arbiter is responsible for
maintaining the abstract program state, identifying what transitions can be executed
next, and scheduling these transitions. The explorer is responsible for exploring the state
space of abstract program states.

Interposition Layer

The interposition layer monitors a concrete program execution for events that affect
the abstract state maintained by the arbiter. When a thread is about to execute such an
event, the interposition layer intercepts this event, suspends the execution of the thread,
and informs the arbiter about this event. At some later point, the arbiter instructs the
interposition layer to resume execution of the suspended thread.

The interposition layer receives its name from the mechanism intended for its
deployment. As Figure 3.7 suggests, an interposition layer is assumed to exist between
the program and the environment in which the program runs, providing a mechanism
to monitor and control the interactions of the program and the environment.

Arbiter

The arbiter uses a client-server architecture (Figure 3.8) to collect information about
the abstract state of the program through the events intercepted by the interposition
layer. To control scheduling nondeterminism, the arbiter waits until all threads cease
execution either by trapping into the interposition layer or simply terminating. The

29



Program

Environment

dBug Interposition Layer 

Figure 3.7: Monitoring Program Behavior with dBug Interposition Layer

arbiter then enumerates all transitions that are possible from the current abstract state
and selects one of them. The selected transitions identifies one or more threads whose
execution is then resumed. This process is repeated until all threads terminate or a
stopping condition, such as reaching a deadlock, is encountered.

Explorer

To explore the space of possible abstract states of a program test, the explorer repeatedly
starts an instance of the arbiter and the program test with the interposition layer in place
and waits for the program test to finish. Once the program test finishes, the explorer
collects information about the sequence of abstract states explored by the arbiter. This
information is used to represent the state space as an execution tree and to compute the
happens-before relation and the dependence relation in order to explore the execution
tree using the DPOR algorithm. Once an execution is processed by the explorer, an
unexplored node on the exploration frontier is identified and used to create a schedule
for the arbiter which will steer the next execution towards unexplored parts of the state
space. Figure 3.9 illustrates how, over time, the explorer communicates with different
instances of the arbiter, while exploring the execution tree.

3.2.3 Implementation

Interposition Mechanism

In the course of dBug’s lifetime, several mechanisms for the implementation of the inter-
position layer have been experimented with. For example, early dBug prototypes [136]
relied on manual source code annotations. This process was time consuming, error-
prone, and required access to and understanding of the program source code.

To avoid these problems, the mechanism has since evolved to its current form [135,
137] that relies on runtime interposition on dynamically linked symbols. This mecha-
nism is well aligned with dBug’s goal to offer systematic testing at different levels of
abstraction, which are provided by the function prototypes of the interposed functions.
Further, runtime interposition avoids the need for having access to the program source
code and works irrespective of the choice of programming language.

The main drawback of using runtime interposition is its inability to track memory
accesses, limiting the precision of program abstraction and analysis. Although tracking
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Figure 3.9: Exploring Execution Tree with dBug Explorer

of memory accesses is possible with alternative approaches to runtime interposition
such as dynamic instrumentation [98] and virtualization [11, 28], tracking memory
accesses has its own drawbacks. Namely, modeling concurrent program transitions at
the granularity of (shared) memory accesses exacerbates the combinatorial explosion of
the number of scenarios to explore. In addition to that, using technology for tracking
memory accesses imposes a runtime overhead on program execution and this overhead
reduces the rate at which systematic testing explores the state space. Given the extent
of the combinatorial explosion without considering memory accesses (see Chapters 6
and 7), dBug chooses to avoid tracking of memory accesses, leaving the job of searching
for low-level data races to tools such as Eraser [128], RaceTrack [169], and PACER [25].
The analysis carried out by these tools is orthogonal to systematic testing and thus can
be used in combination with systematic testing to increase its precision.
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Default Abstraction

The default abstraction dBug uses to model program execution is the POSIX inter-
face [119]. Using this abstraction has several advantages. It is shared by all programs
of POSIX-compliant operating systems and the libraries that implement the POSIX
interface typically use dynamic linking, enabling runtime interposition. Consequently,
using the POSIX interface as the default abstraction allows dBug to target a wide
range of programs without the need to access or modify their source code. In practice,
applications of dBug reported in this thesis are done in the context of the operating
system Linux.

In the POSIX abstraction, the global state keeps track of the following objects:
threads, processes, barriers, condition variables, mutexes, read-write locks, semaphores,
spinlocks, epoll descriptors, pipe descriptors, file descriptors, and socket descriptors.
The local state of each thread consists of its call stack and dBug keeps track of the
values of the clock function using a vector clock [123]. A detailed list of POSIX interface
functions that dBug interposes on can be found in Appendix A.

Exploration

To explore the space of possible abstract program states, dBug controls the order in
which program threads execute concurrent program transitions. To this end, dBug
keeps track of all program threads, maintaining this information as part of the global
state and updating the global state when relevant POSIX interface invocations, such as
pthread_create() or fork(), are encountered. Being knowledgeable of the set of
all program threads allows dBug to recognize when the program reaches a quiescent state
when all program threads have either terminated or trapped into the dBug interposition
layer. When a quiescent state is reached, the program waits for the dBug arbiter to
make a scheduling decision.

The dBug arbiter repeatedly waits for the program to reach a quiescent state,
enumerates all program transitions possible from that state, selects one of the program
transitions, and resumes execution of the threads that participate in that transition. This
process is repeated until the program terminates or a stopping condition, such as a
deadlock, is encountered. Note that the algorithm that the dBug arbiter uses to schedule
program transitions relies on the absence of busy waiting. If a thread can run indefinitely
without trapping into the interposition layer, the program might never reach a quiescent
state. To identify busy waiting, dBug uses a timeout and reports the backtrace of suspect
threads, effectively enforcing a programming discipline where threads yield the CPU
through functions such as sleep(), sched_yield(), or poll().

Once the dBug arbiter reaches a terminal state, it sends a description of the sequence
of program transitions it explored and all the alternative scheduling choices it has
encountered to the dBug explorer. The dBug explorer then maps the explored sequence
of program transitions to a branch of the execution tree and marks it as explored.
The description of program transitions contains logical clock timestamps and abstract
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footprints that the dBug explorer uses to compute the happens-before and dependence
relations over the set of program transitions. This information is in turn used by
dBug’s implementation of the DPOR algorithm to update the exploration frontier of the
execution tree, identifying nodes of the exploration frontier that need to be explored to
guarantee that all permutations of concurrent and dependent program state transitions
are explored.

Next, the dBug explorer identifies a node of the exploration frontier to explore next.
This node represents a sequence of scheduling choices that has not been previously
explored. The initial program state is then recreated, either by simply starting the
program anew or through a user-provided initialization function, and the dBug arbiter
is told what scheduling choices to make to steer the execution towards the previously
identified node of the exploration frontier.

An important prerequisite of systematic testing is that the identification of scheduling
choices needs to be consistent across different program executions. To this end, dBug
uses deterministic numbering of threads, which is possible because dBug controls the
order in which threads are created. Further, dBug’s implementation follows a strict
programming discipline to make sure that identical scheduling choices result in identical
abstract program states across different program executions.

The programming discipline dictates that the dBug arbiter models each event it
interposes on using three functions – preschedule, test, and execute – that cannot block
and execute atomically with respect to one another. The following paragraphs detail
these functions and Figure 3.10 illustrates the typical operation of the dBug arbiter.

The preschedule function is used to update the global state when the correspond-
ing event is originally intercepted. For example, the preschedule function of the
pthread_barrier_wait(b) event updates the number of waiters of the barrier
b, while the preschedule function of the pthread_cond_wait(c,m) event updates the
state of the mutex m. The programming discipline requires that the effects different
preschedule functions have on the global state are commutative.

The test function is used to inspect the global state and to determine what pro-
gram transitions containing the corresponding event are possible. The test func-
tion computes a set of program transitions, each containing its abstract footprint
and a seed that can be used to reproduce the nondeterministic choices made in the
course of creating this program transition. For example, the test function of the
pthread_barrier_wait(b) event checks if the actual number and target number
of waiters of the barrier b match and if so, generates n program transitions, one per
waiter, returning PTHREAD_BARRIER_SERIAL_THREAD from different waiters (see
pthread_barrier_wait() man pages for details). The programming discipline
requires that no test function modifies the global state.

The execute function is used to model the effect that executing the corresponding
event has on the global state. It inputs a program transition seed and uses it to reproduce
any nondeterministic choices in accordance with the choices made by the test function
that generated this program transition. When a program transition involves multiple
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Figure 3.10: Arbiter Execution Example

events, the programming discipline requires that their respective execute functions are
executed in a deterministic order.

In summary, the programming discipline of dBug arbiter makes sure that dBug
does not introduce any nondeterminism into the process of enumerating and executing
program transitions. Its key properties are that 1) different preschedule functions are
commutative, 2) no test function is allowed to modify the global state, and 3) execute
functions are executed in a deterministic order.
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Nondeterminism

A separate concern that dBug needs to address in order to enable deterministic replay
is the input nondeterminism coming from the operating system. In general, a program
can input values through the functions it interposes on and these values can depend
on factors external to the program. For example, the value of the getpid() function,
which returns an integer identifier of a process, depends on the context in which the
program runs, while the value of the time() function, which returns the number of
seconds since January 1st 1970, depends on the time of the function invocation. If the
program logic depends on these values, then different program executions that use the
same scheduling choices could eventually diverge. To address this problem, dBug uses
three different mechanisms: direct record-replay, indirect record-replay, and time travel.

The direct record-replay mechanism builds on previous work [55, 127] that records
outcomes of system calls to enable deterministic replay of program execution. The
difference in the context of dBug is that a program transitions from a replay phase to a
record phase in the course of its execution. This transition occurs when the program
execution finishes replaying scheduling choices identified by the dBug explorer, reaching
the execution tree exploration frontier. This mechanism is used for functions, such
as the random() function or the read() function when reading from /dev/random,
that generate transient variable values.

Example 5. Figure 3.11 depicts an example of direct record-replay execution. Initially,
the execution tree exploration frontier maintained by dBug consists of the initial program
state represented by the node A. The underlying program is then executed and the
explored sequence of scheduling choices is modeled as the branch A-B-C-D. In the

35



A

B

EC

D F

fork() = 42

waitpid(42, …)

waitpid(42, …) 

OS pid
255

dBug pid
42

A-B-E-F indirection map
OS pid
128

dBug pid
42

A-B-E-F indirection map

Figure 3.12: Indirect Record-Replay Mechanism Example

course of the execution, two calls to the random() function are encountered and their
outcome is recorded in the execution tree. The DPOR algorithm is then used to add
important alternative scheduling choices, such as the node E, to the execution tree
exploration frontier. A new program execution is then started, steering the execution
towards the node E and the explored sequence of scheduling choices is modeled as the
branch A-B-E-F. In the course of this execution, two calls to the random() function
are encountered again. In contrast to the first execution, the outcome of the first call
is replayed using the outcome recorded in the first execution. The execution then
continues replaying scheduling choices identified by the dBug explorer until it reaches
the program state represented by the node B and then transitions from the replay phase
to the record phase. From that point the execution continues to explore an arbitrary
sequence of scheduling choices. When the second call to the random() function is
encountered, its outcome is recorded.

The direct record-replay mechanism may fail when the outcome of one interposed
function persists in the program environment and can be later used as an input of
another interposed function. The problematic scenario occurs when the outcome of
the first function call is replayed and then the second function call uses this outcome
to look up information in the environment. Since dBug does not control the state of
the environment, the look up may fail. To address this problem, dBug uses the indirect
record-replay mechanism. This mechanism maintains an indirection map that translates
environment values to deterministically generated unique values, which are used for
the purpose of record-replay. When these deterministic values are used as an input to
an interposed function, dBug uses the indirection map to translate these values back
to their environmental counterpart. This mechanism is used for values that serve as
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Figure 3.13: Time Travel Mechanism Example

environmental handles such as process identifiers of functions fork() and waitpid()
or socket descriptors of functions socket() and send().

Example 6. Figure 3.12 depicts an example of indirect record-replay. Similar to Exam-
ple 5, this example explores two executions, replaying some scheduling choices in the
course of the second execution. The first execution follows a call to the fork() function
with a call to the waitpid() function. The true outcome of the fork() function,
process identifier 128, is assigned the deterministic value of 42, which is recorded
and returned to the child process. When the waitpid() function later uses 42 as an
input argument, the dBug interposition layer replaces this value with its environmental
counterpart 128. The second execution also follows a call to the fork() function with
a call to the waitpid() function. In contrast to the first execution, when the second
execution encounters the fork() function call, its true outcome, process identifier
255, is assigned the deterministic value of 42, replayed from the first execution. When
the waitpid() function uses 42 as an input argument, the dBug interposition layers
replaces this value with its environmental counterpart 255.

Although input nondeterminism stemming from functions that return absolute time
values can be handled by the direct record-replay mechanism, the use of the mechanism
can result in unlikely timing scenarios. For example, consider a program that uses a pair
of calls to the gettimeofday() function, one at the beginning of its execution and
one at the end of its execution, to measure its runtime. The use of direct record-replay
will result in the outcome of the first call in the first execution being replayed in all
of the subsequent executions, while the outcome of the second call will be generated
anew in every execution. Consequently, the runtime measurements will grow more and
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more skewed with each explored execution. To address this problem, dBug uses the
time travel mechanism, which for each node of the execution tree keeps track of the time
the node was first encountered, referred to as the creation time. Similar to the previous
mechanisms, the time travel mechanism uses a replay phase and a record phase. The
replay phase is identical to the replay phase of direct record-replay and the transition
to the record phase occurs when the program execution finishes replaying scheduling
choices identified by the dBug explorer. When the transitions happens, the creation time
of the execution tree node corresponding to the current program state is compared to
the current time and their difference is subtracted from outcomes of all subsequent calls
to absolute time functions. This mechanism is used for values of functions that return
absolute time values such the gettimeofday() function or the time() function.
Example 7. Figure 3.13 depicts an example of time travel. Similar to Examples 5 and 6,
this example explores two executions, replaying some scheduling choices in the course
of the second execution. In addition to depicting the execution tree, the figure also
depicts two dashed lines that record the progression of absolute time in the course of
the two executions. The first execution makes two calls to the time() function and
their outcome is simply recorded and returned to the caller. The second execution also
makes two calls to the time() function. In contrast to the first execution, the outcome
of the first call is replayed using the recorded value, returning the value 5. When the
node B is encountered, the time travel mechanism recognizes that it is about to cross
the exploration frontier and computes the difference between 50, the current time, and
10, the first time the node B was encountered. This difference is then subtracted from
the second call to the time() function, producing the value 15, instead of the value
55. By doing so, the time travel mechanism tricks every execution into thinking they
started at the same time.

Interface Modeling

To extend dBug to support interposition of new events, for example when adding
support for a new level of abstraction (cf. Chapter 7), several steps are necessary. First,
one needs to implement wrappers that allow the dBug interposition layer to intercept
these events when they are about to occur. Second, one needs to extend the RPC
interface of the dBug arbiter with methods that control scheduling of the intercepted
events. When an event is intercepted, the dBug interposition layer issues a blocking RPC
to the dBug arbiter containing information about the intercepted event. The RPC returns
when the dBug arbiter decides to schedule the intercepted event for execution. Third,
one needs to extend the dBug arbiter with the preschedule, test, and execute functions
that model the semantics of the intercepted events.

By and large, extending dBug with support for one event requires over one hundred
lines of new code spread across different source files. Unsurprisingly, this process is
time consuming, limiting the rate at which the support for new events and existing
events can be added and modified respectively. To address this problem, dBug uses a
custom code generator to generate the dBug interposition layer wrappers source code
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<type> ::= list<type> | <primitive>
<primitive> ::= boolean | integer | string | event

Figure 3.14: Type Grammar of dBug Object Models

and the dBug arbiter RPC interface automatically from the prototypes of the interposed
events. The RPC interface implementation is in turn generated from the dBug arbiter
RPC interface using Apache Thrift [5].

In addition, dBug offers a modeling language that can be used to describe the objects
maintained as part of the global state and the effect interposed events have on the global
state. This modeling language comes with a compiler that uses the object and event
models written in this language to automatically generate parts of the dBug arbiter
source code, including the preschedule, test, and execute functions.

The objects are modeled as records consisting of fields that have a name and a type.
The types recognized by dBug are summarized by the grammar presented in Figure 3.14.
The grammar defines four primitive types: boolean, integer, string, and event.
The first three represent the standard data types, while the event type represents event
identifiers. In addition to the primitive types, the grammar defines the list<type>
type that represents lists of typed elements.

The events are modeled as state machines that input typed values and always execute
two transitions on their way from their initial state to their final state. The first transition
models the effect of the preschedule function, while the second transition models the
effect of the execute function. Each transition is labeled by a guard that identifies the
global states in which this transition is enabled and an action that describes the effect
this transition has on the global state. Further, the second transition is also labeled with
the return value to use for the event.

The guards and actions recognized by dBug are summarized by the grammars
presented in Figures 3.15 and 3.16 respectively. The object terminal represents
different types of objects defined by the object models. The id terminal represents
identifiers of the state machine input values. The field terminal represents the different
object fields defined by the object models. The integer terminal represents an integer.
The event terminal represents an identifier of this event. The tid terminal represents
an identifier of the thread that intercepted this event. The exists(object(id))
guard checks if the object identified by the given object type and identifier exists. The
empty(object(id).field) guard checks if the list identified by the given object
type, identifier, and field is empty. The contains(object(id).field, <value>)
guard checks if the list identified by the given object type, identifier, and field contains
the given value. The length(object(id).field) value equals the length of the list
identified by the given object type, identifier, and field. The create(object(<ids>))
action creates a new object given the object type and a list of constructor arguments.
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<guard> ::= <guard> and <proposition> | <proposition>
<proposition> ::= not(<proposition>)

| exists(object(id))
| empty(object(id).field)
| contains(object(id).field, <value>)
| <expression> == <expression>
| <expression> > <expression>
| <expression> < <expression>
| <expression>

<expression> ::= <expression> + <value>
| <expression> - <value>
| <value>

<value> ::= length(object(id).field)
| object(id).field
| id
| integer
| event
| tid

Figure 3.15: Guard Grammar of dBug Event Models

The delete(object(id)) action deletes an existing object identified by the given
object type and identifier. The enqueue(object(id).field, <value>) action
adds the given value to the front of the list identified by the given object type, identifier,
and field. The remove(object(id).field, <value>) action removes all elements
whose values matches the given value from the list identified by the given object
type, identifier, and field. The dequeue((object(id).field) action removes the
last element of the list identified by the given object type, identifier, and field. The
empty((object(id).field) action removes all elements of the list identified by
the given object type, identifier, and field. The warning(string) action generates a
warning message using the given string.

To illustrate the modeling language in action, Figures 3.17, 3.18, 3.19, 3.20, and 3.21
depict the event models for the events of the pthreads spinlock interface. Note that
these figures are generated automatically from the event models using our compiler.

In addition to the pthreads spinlock interface, the modeling language was used to
model the pthreads barrier, condition variable, mutex, and read-write lock interfaces.
The object and events models resulting from this effort along with the prototypes of the
events dBug intercepts amount to 3,229 lines of data. This data is used to automatically
generate 48,761 out of 73,359 lines (over 66%) of dBug’s source code.
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<action> ::= <statements>
<statements> ::= <statements>; <statement> | <statement>
<statement> ::= create(object(<ids>))

| delete(object(id))
| enqueue(object(id).field, <value>)
| remove(object(id).field, <value>)
| dequeue(object(id).field)
| empty(object(id).field)
| warning(string)
| object(id).field = <expression>

<expression> ::= <expression> + <value>
| <expression> - <value>
| <value>

<value> ::= object(id).field
| id
| integer
| event
| tid

<ids> ::= <ids>, id | id

Figure 3.16: Action Grammar of dBug Event Models

init

invalid

guard: not(exists(Spin(id))) 
 action: warning(’Spin lock does not exist.’);

busy

guard: not(Spin(id).state == 0) 
 action: warning(’Spin lock is in use.’);

schedule

guard:  
 action: 

final

guard:  
 action:  

 return: EINVAL

guard:  
 action:  

 return: EBUSY

guard: exists(Spin(id)) 
 action: delete(Spin(id)); 

 return: 0

Figure 3.17: Event Model of pthread_spin_destroy(id)

State Space Estimation

Similar to ETA, dBug recognizes the importance of estimating test complexity and
implements a technique that estimates the number thread interleavings that dBug
examines in the course of a systematic test. In particular, to estimate the size of a
partially explored execution tree, dBug uses a technique based on the weighted backtrack
estimator [80] (cf. Chapter 4). The technique treats the set of explored branches as
a sample of the entire execution tree assuming uniform distribution over edges and
computes the estimate as the number of explored branches divided by the aggregated
probability the branches are explored by a random exploration.
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init

busy

guard: exists(Spin(id)) 
 action: warning(’Spin lock already exists.’);

schedule

guard:  
 action: 

final

guard:  
 action:  

 return: EBUSY

guard: not(exists(Spin(id))) 
 action: create(Spin(id)); 

 return: 0

Figure 3.18: Event Model of pthread_spin_init(id)

init

invalid

guard: not(exists(Spin(id))) 
 action: warning(’Spin lock does not exist.’);

deadlock

guard: exists(Spin(id)) and Spin(id).state == 1 and Spin(id).owner == tid 
 action: warning(’Spin lock already held.’);

schedule

guard:  
 action: 

final

guard:  
 action:  

 return: EINVAL

guard:  
 action:  

 return: EDEADLK

guard: exists(Spin(id)) and Spin(id).state == 0 
 action: Spin(id).state = 1; Spin(id).owner = tid; 

 return: 0

Figure 3.19: Event Model of pthread_spin_lock(id)

init

invalid

guard: not(exists(Spin(id))) 
 action: warning(’Spin lock does not exist.’);

deadlock

guard: exists(Spin(id)) and Spin(id).state == 1 and Spin(id).owner == tid 
 action: warning(’Spin lock already held.’);

schedule

guard:  
 action: 

final

guard:  
 action:  

 return: EINVAL

guard:  
 action:  

 return: EDEADLK

guard: exists(Spin(id)) and Spin(id).state == 0 
 action: Spin(id).state = 1; Spin(id).owner = tid; 

 return: 0

guard: exists(Spin(id)) and Spin(id).state == 1 
 action:  

 return: EBUSY

Figure 3.20: Event Model of pthread_spin_trylock(id)

init

invalid

guard: not(exists(Spin(id))) 
 action: warning(’Spin lock does not exist.’);

permission

guard: Spin(id).state == 0 
 action: warning(’Spin lock is not locked.’);

guard: not(Spin(id).owner == tid) 
 action: warning(’Spin lock is not owned by the caller.’);

schedule

guard:  
 action: 

final

guard:  
 action:  

 return: EINVAL

guard:  
 action:  

 return: EPERM

guard: exists(Spin(id)) and Spin(id).state == 1 
 action: Spin(id).state = 0; Spin(id).owner = 0; 

 return: 0

Figure 3.21: Event Model of pthread_spin_unlock(id)
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Chapter 4

State Space Estimation

Over the course of the past 15 years, research advances in systematic testing of concur-
rent programs [61, 82, 107, 160, 163, 165] have made the approach practical and easy
to adopt. As systematic testing moves into wider practice, becoming a part of testing
infrastructures of large-scale system developers [107, 138], new practical challenges are
emerging. For example, when resources available for systematic testing are scarce, one
needs to solve the problem of efficient allocation of resources to a collection of tests.

Real-world test suites, such as the one targeted by ETA [138], consist of hundreds of
tests of varied complexity. In the context of systematic testing of concurrent programs,
it is reasonable to assume that the resources available for running these tests are not
always sufficient to complete all tests in the time allotted for testing. In such cases,
high-level testing objectives, such as maximizing the number of completed tests or achieving
even coverage across tests can be used to drive allocation of testing resources. Mapping
these high-level testing objectives into working allocation mechanisms is an important,
practical, and yet unaddressed problem.

This chapter proposes a solution to this problem based on estimation of the length
of the state space exploration carried out by systematic tests. As discussed in Chapter 2,
most systematic testing implementations [61, 82, 137, 160] use stateless exploration,
recording the different executions encountered during a test in an execution tree. Under
this abstraction, the problem of test length estimation can be formulated as the problem
of estimating the length of execution tree exploration. Besides offering a measure of test
complexity, the estimates can be also used to implement resource allocation policies.

The estimation techniques presented in this chapter can be characterized as online
– updating the estimate as the exploration makes progress through the state space –
and passive – not mandating a particular order in which the exploration proceeds. The
benefit of online estimation is that the estimate can be refined as new information about
the state space is gathered, while the benefit of passive estimation is that it can be
combined with any exploration strategy. Furthermore, passive estimation techniques
can be evaluated using exploration traces. To enable verification of the results presented
in this chapter, our evaluation uses a publicly available collection of exploration traces
from a real-world deployment at Google [140].
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This chapter makes the following contributions. First, building on research on search
tree size estimation [80], this chapter presents techniques for estimating the length
of a systematic test. Second, this chapter demonstrates the practicality of test length
estimation by using it to implement several resource allocation policies. Third, this
chapter uses a collection of exploration traces from a real-world deployment to evaluate
1) the accuracy of the presented estimation techniques and 2) the efficiency of the
presented resource allocation policies.

The rest of this chapter is organized as follows. Section 4.1 describes the syntax and
semantics of exploration traces. Section 4.2 presents 1) techniques for estimating the
length of systematic tests and 2) policies for resource allocation based on test length
estimates. Section 4.3 describes a collection of exploration traces [140] and uses these
traces to evaluate the accuracy of the presented estimation techniques and the efficiency
of the presented resource allocation policies. Section 4.4 discusses related work and
Section 4.5 draws conclusions.

4.1 Background
The estimation techniques presented in this chapter are passive, not mandating a
particular order in which the exploration proceeds. Consequently, the problem of
estimation of the length of a systematic test can be described using the abstraction of an
exploration trace, which identifies events pertinent to the estimation.
An exploration trace is a sequence of events, where an event is one of the following:

1. AddNode x y – A node x with parent y is added to the execution tree.

2. Explore x – Node x is scheduled for exploration.

3. Transition x – Exploration transitions to node x.

4. Start – Exploration of a new execution is started from the root node.

5. End t – Exploration of the current execution has finished after t time units.

Example 8. Figure 4.1 depicts an execution tree and Figure 4.2 depicts a trace of its
exploration. Initially, the root node 0 is added and scheduled for exploration. Next,
an execution is started from the root node. The children 1, 2, and 3 of the root node
are added and the child 1 is scheduled for exploration. The execution then transitions
to node 1. The children 4 and 5 of node 1 are added and the child 4 is scheduled for
exploration. The execution transitions to node 4. The child 6 of node 4 is added and
scheduled for exploration. The execution transitions to node 6. For the sake of this
example, let us assume that the exploration then infers that node 3 needs to be explored
and schedules it for exploration. This concludes exploration of the current execution,
requiring a total of, for example, 0.42 time units. Next, a new execution is started from
the root node. The second execution steers towards node 3 and explores a branch in its
subtree, requiring a total of, for example, 0.29 time units, concluding the exploration.
Note that nodes 2, 5, and 8 are never explored because the exploration inferred they
will not produce new interleavings of concurrent and dependent events.
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0

1 2 3

4 5 7 8

6 9

Figure 4.1: Execution Tree Example

0 AddNode 0 -
1 Explore 0
2 Start
3 AddNode 1 0
4 AddNode 2 0
5 AddNode 3 0
6 Explore 1
7 Transition 1
8 AddNode 4 1
9 AddNode 5 1

10 Explore 4
11 Transition 4
12 AddNode 6 4
13 Explore 6

14 Transition 6
15 Explore 3
16 End 0.42
17 Start
18 Transition 3
19 AddNode 7 3
20 AddNode 8 3
21 Explore 7
22 Transition 7
23 AddNode 9 7
24 Explore 9
25 Transition 9
26 End 0.29

Figure 4.2: Exploration Trace Example

4.2 Methods

This section presents a number of techniques for estimating the length of an exploration
carried out by the dynamic partial order reduction (DPOR) [51] algorithm. Notably,
each execution explored by the DPOR algorithm starts from the initial state of the
program (root node of the execution tree) and ends in some final state of the program
(a leaf node of the execution tree). An estimation technique can thus be described as an
algorithm that operates over an exploration trace described in Section 4.1. In particular,
a sequential scan of an exploration trace can be used to simulate gradual exploration of
the execution tree, maintaining the exploration status of each node.

The presentation of the estimation techniques is divided into three logical compo-
nents. First, the strategy component is used to determine how to treat nodes of the
execution tree that have not been scheduled for exploration yet. Second, the estimator
component is used to determine how to combine a strategy and the exploration infor-
mation gathered so far to compute an intermediate estimate. Third, the fit component is
used to aggregate the sequence of intermediate estimates computed so far to produce
the final estimate.

4.2.1 Strategies
In general, the DPOR algorithm does not explore all subtrees of an execution tree
because it may identify exploration of some parts of the execution tree as redundant.
Further, the information about which subtrees need to be explored is revealed only as
the exploration makes its way through the state space. The first step towards estimating
the length of an exploration, it thus to determine what portions of a partially explored
execution tree will be eventually explored.
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To this end, this chapter considers three strategies for computing the function F :
V → P(V), which for a node v of a partially explored execution tree, estimates the set
of children of node v that the strategy expects to schedule for exploration in the future.
Consequently, at any point of the exploration, the function F can be used to identify the
subset of nodes of a partially explored execution tree that the strategy believes will be
eventually explored.

1. Oracle – Assumes perfect knowledge about which nodes will be explored. The
function F is computed by pre-processing the exploration trace. This strategy is
infeasible in practice but this chapter considers it for comparison purposes.

2. Lazy – Assumes that a node will not be explored unless it has been already
scheduled for exploration. In other words, F(v) = ∅ for all nodes v.

3. Eager – Assumes that a node will be explored unless the exploration has finished
exploring its parent without scheduling the node for exploration. In other words,
F(v) is equal to the set of children of node v that are yet to be scheduled for
exploration if the exploration of the subtree of v has not finished and ∅ otherwise.

Space and Time Complexity

The oracle strategy, which is used for benchmarking purposes only, requires linear
pre-processing time and has O(n) space overhead, where n is the size of the execution
tree. The lazy and the eager strategies have no overhead.

4.2.2 Estimators

After a strategy is used to determine which parts of a partially explored execution tree
will be explored, this information is passed onto an estimator, responsible for producing
an intermediate estimate. This chapter considers two different estimators based on
previous work [80]: the weighted backtrack estimator and the recursive estimator.

Weighted Backtrack Estimator

The weighted backtrack estimator (WBE) is an online variant of Knuth’s offline tech-
nique [85] for tree size estimation. WBE uses the length of each explored branch
weighted by the probability it is explored by a random exploration (assuming uniform
distribution over edges) to predict the size of the tree. To adapt WBE to exploration
length estimation, the length of each branch is replaced with the time used to explore it.
Formally, WBE updates its estimate every time the DPOR algorithm explores a branch,
setting the estimate to:

estimate =
∑

b∈B
t(b)

∑
b∈B

p(b)

where B is the set of explored branches, t(b) is the time used to explore a branch, and
p(b) is the probability of exploring the branch, presented next.
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For a branch b = (v1, . . . , vn), where vi is the i-th node along the branch b, the
probability p(b) is defined as:

n−1

∏
i=1

1
|E(vi)|+ |S(vi)|+ |F(vi)|

where E(vi) is the set of explored children of node vi, S(vi) is the set of children of node
vi scheduled for exploration, and F(vi) is determined by the strategy (cf. Section 4.2.1).

Recursive Estimator

The recursive estimator (RE) is an online technique that estimates the size of an un-
explored subtree using the arithmetic mean of the estimated sizes of its (partially)
explored siblings. To adapt RE to exploration length estimation, the size of each subtree
is replaced with the time used to explore it. Formally, when the DPOR algorithm
explores a branch b = (v1, . . . , vn), RE updates the exploration length estimate for every
node along the branch b in a bottom-up manner, setting the estimate to:

estimate(vi) =


(

1 + |S(vi)|+|F(vi)|
|E(vi)|

)
×
(

∑
v∈E(vi)

estimate(v)

)
if i 6= n

t(b) if i = n

where E(vi), S(vi), and F(vi) have the same meaning as above and t(b) is the time used
to explore the branch b.

Space and Time Complexity

The WBE estimate needs to be updated upon two events: 1) when a new branch is
explored and 2) when a node is scheduled for exploration. To avoid recomputation of
all of the values p(b) and t(b) for each update of the estimate, one can store, for each
node v of the execution tree, the sums:

∑
b∈B(v)

p(b) and ∑
b∈B(v)

t(b)

where B(v) is the set of explored branches that contain the node v.
When a new branch is explored, the aggregate probability and time values make it

possible to update the WBE estimate by updating only the values for the nodes along the
current branch. Note that although the time complexity of updating the WBE estimate
for a new branch is linear in the depth of the execution tree, this time complexity is
amortized over the time used to explore the branch to a constant.

When a new node is scheduled for exploration, the aggregate probability and time
values of the nodes along the exploration frontier need to be updated. The time
complexity of this operation is O(d), where d is the depth of the execution tree. Unlike
exploring a new branch, the cost associated with updating the estimate when a node is
scheduled for exploration does not have constant amortized complexity. In practice, the
worst case scenario is rare and our evaluation did not experience significant overhead.
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In contrast to the WBE estimate, the RE estimate needs to be updated only when a
new branch is explored. The time complexity of this operation is linear in the depth of
the execution tree but amortizes to O(1) over the time used to explore the branch.

4.2.3 Fits

As the exploration progresses, new and presumably more accurate intermediate esti-
mates are computed. Previous work [80] considers the intermediate estimates produced
at distinct time points in isolation, using only the latest estimate for decision making.
In comparison, this chapter treats the intermediate estimates as a progression, fitting it
with a function f (t) and using the solution of the equation f (t) = t as the final estimate.

Both intuition and experience suggests that the exploration length estimates can
be initially inaccurate but over the course of an exploration converge to the correct
value. Consequently, this chapter uses a method to interpolate the progression of
estimates over time. The interpolation method is based on the Marquardt-Levenberg
algorithm [90, 100] for weighted non-linear least-square fitting. The algorithm is used to
find the values for coefficients of the function that best fits the sequence of intermediate
estimates. To reflect the increasing confidence in estimates over time, the least-square
fitting is weighted, using t as the weight for an estimate at time t. This chapter considers
four different fitting functions:

1. Empty function: This scheme does no fitting. Instead, it emulates previous
work [80], using the latest intermediate estimate as the final estimate.

2. Constant function: f (t) = c. The advantage of using a constant function is that the
final estimate computed by solving the equation f (t) = t is guaranteed to be a
positive number. The disadvantage of using a constant function is that it does not
detect trends.

3. Linear function: f (t) = a ∗ t + b. The advantage of using a linear function is its
ability to detect linear trends in the sequence of intermediate estimates. However,
in pathological cases, the final estimate computed by solving the equation f (t) = t
might be a negative number.

4. Logarithmic function: f (t) = a ∗ ln(t) + b. The advantage of using a logarithmic
function is its ability to detect non-linear trends in the sequence of intermediate
estimates. However, in pathological cases, the equation f (t) = t might have no
solution, preventing computation of the final estimate.

Space and Time Complexity

The space and time complexity of fitting the empty function is O(1). The space
complexity of fitting the other functions is linear in the length of the sequence being
fitted. As for the time complexity, the Marquardt-Levenberg algorithm uses a hill
climbing technique. A single iteration of the algorithm is linear in the length of the
sequence being fitted. The number of iterations is potentially unbounded and depends
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on the desired precision. In other words, fitting a function every time a new intermediate
estimate results in time complexity that is quadratic in the length of the sequence being
fitted. For long sequences of intermediate estimates, this overhead can be reduced by
employing reservoir sampling [154], which maintains a constant-size set of random
samples of the sequence of intermediate estimates.

4.2.4 Resource Allocation Policies

A test suite of a large-scale system under development is expected to consist of many
systematic tests of varied complexity. It is not unreasonable to expect that the resources
available for running these tests are not always sufficient to complete all tests in the
time allotted for testing. This subsection describes how to use test length estimation to
map testing objectives to effective policies for allocation of scarce testing resources.

All policies maintain a priority queue of systematic tests used to identify which
systematic test to advance next. After a systematic test is identified, a new branch of its
execution tree is explored, and its estimate and priority queue position are updated.
This process is repeated for as long as there are unfinished systematic tests and the time
allotted for testing has not expired. Different testing objectives are distinguished by the
function used for ordering the elements of the priority queue. In particular, this chapter
considers two different testing objectives:

1. Maximize the number of completed tests: This objective is motivated by the guarantee
realized upon completion of a systematic test. For this objective, elements of
the priority queue are ordered by their estimated time to completion, which is
computed by subtracting the elapsed time from the test length estimate. In other
words, the resource allocation follows the “shortest remaining time first” policy.

2. Achieve even coverage across tests: This objective is motivated by allocating testing
resources proportionally to the length of each systematic test. For this objective,
elements of the priority queue are ordered by their estimated progress, which is
computed by dividing the elapsed time by the test length estimate. In other words,
the resource allocation follows the “smallest coverage first” policy.

Space and Time Complexity

The space complexity of maintaining a priority queue is O(k), where k is the number of
systematic tests. The time complexity of identifying the top element of a priority queue
is O(1) and the time complexity of updating the value of the top element is O(log k).

4.3 Evaluation

The goal of this section is to evaluate 1) the accuracy of the estimation techniques and
2) the efficiency of resource allocation mechanisms described in Section 4.2.
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To this end, this section uses a set of 10 exploration traces recently released by
Google [140]. The evaluation uses a trace simulator that reads these traces, simulates
the exploration of the execution tree, and computes an intermediate estimate every
time a branch of the execution tree is explored. Additionally, the evaluation uses an
implementation of the Marquardt-Levenberg algorithm that inputs a progression of
intermediate estimates and a function template and computes what function coefficients
to use to fit the function template with the progression.

4.3.1 Exploration Traces

The set of exploration traces used for our evaluation is summarized in Table 4.1. The
table identifies the name of a test, the number of nodes of its execution tree, the number
of branches of its execution tree, and the total time used at Google for the exploration.
The unit of time is abstract as the timing of the exploration traces has been scaled by a
magic constant during the trace anonymization process [140].

Test Name # Nodes # Branches Time

Resource(2) 110 8 2.42
Resource(3) 4,914 279 86.15
Resource(4) 248,408 12,054 4,438.54
Scheduling(6) 29,578 720 250.80
Scheduling(7) 237,528 5,040 1,956.32
Scheduling(8) 2,142,164 40,320 19,868.90
Store(3,3,7) 20,577 924 392.78
Store(3,3,8) 88,386 3,790 1,715.49
Store(3,3,9) 230,747 9,230 2,613.85
TLP 4,201,044 27,200 24,197.60

Table 4.1: Test Statistics

The Resource(x) tests are representative of a class of tests that evaluate interactions
of x different users that acquire and release resources from a pool of x resources. The
Scheduling(x) tests are representative of a class of tests that evaluate handling of x
concurrent scheduling requests. The Store(x, y, z) tests are representative of a class
of tests that evaluate interactions of x users of a distributed key-value store with y
front-end nodes and z back-end nodes. Finally, the TLP test is representative of a class
of tests that perform scheduling work.

4.3.2 Accuracy Evaluation

To evaluate estimation accuracy, an exploration is advanced for some time, generating
intermediate estimates using different combinations of strategies and estimators. The
intermediate estimate progression is then fitted by the various fit functions and the
solutions of the f (t) = t equations are compared to the known correct value.
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The experiment collected progressions of intermediate estimates computed during
simulation of the exploration traces Resource(4), Scheduling(8), Store(3,3,9), and
TLP, which are representative of the full set. For each test, the complete progression of
intermediate estimates was collected for all six possible combinations of the oracle, lazy,
and eager strategies and the weighted backtrack and recursive estimators. For each
progression, the empty, constant, linear, and logarithmic fits were then computed using
the initial 1%, 5%, and 25% of the progression.

Figure 4.3 depicts the results of the experiment. Given the correct value correct, the
accuracy of the estimate estimate is computed as follows:

accuracy(correct, estimate) =
{

100 ∗ (correct/estimate)% if estimate > correct
100 ∗ (estimate/correct)% otherwise

For example, if the correct value is 100, then the accuracy of the estimate 50 is 50%,
while the accuracy of the estimate 400 is 25%. In other words, the above measure
of accuracy does not distinguish between under-estimation and over-estimation, a
provision used to simplify the presentation.

Figure 4.3 consists of three bar graphs, one for each percentage at which the fit was
computed. Each of the bar graphs depicts the accuracy achieved for the 96 different
combinations of a test, a strategy, an estimator, and a fit, with the results clustered by fit
and test. Note that the vertical axis depicting the accuracy is in logarithmic scale. In
some cases, the application of a fit did not generate a positive solution for the estimate
and in such cases the bar is missing.

Strategy Comparison

The evaluation indicates that, unlike the eager strategy, the lazy strategy is consistent
with the oracle strategy. In other words, the lazy and the oracle strategies tend to agree
on which children will be explored in the future; in fact, in the case of the Scheduling

tests and the TLP test, the lazy strategy and the oracle strategy are indistinguishable.
At the same time the evaluation indicates that the the oracle strategy does not always
produce the most accurate results. Surprisingly, the eager strategy occasionally produces
the most accurate results. The poor performance of estimation techniques based on the
oracle strategy is attributed to under-estimation introduced by the estimators and fits,
which the eager strategy compensates for with its over-estimation.

Estimator Comparison

The evaluation does not indicate that either of the two estimators consistently outper-
forms the other one. The weighted backtrack estimator, however, produces estimates
that are, except for two cases, within an order of magnitude of the correct value. This
cannot be said about the recursive estimator. This makes the weighted backtrack
estimator more a robust choice.
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Fit Comparison

The linear fit often fails to generate a positive solution, which makes it unreliable.
Comparing the empty fit to the constant fit, the empty fit produces equivalent or better
results in most of the cases, which confirms our intuition that the intermediate estimates
grow more accurate with time. The logarithmic fit generates a solution in all but two
cases, and compared to the empty fit, produces equivalent or better results.
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e+w+e 62.11% 75.19% 93.46% 55.87% 68.97%
l+r+e 16.95% 86.21% 16.45% 9.24% 16.69%
l+r+l 48.78% N/A 75.19% 27.70% 42.92%
l+w+l 14.03% 89.29% 52.91% 13.18% 22.57%

Table 4.2: Accuracy of Best Techniques after 1%

e+w+e 45.66% 80.65% 91.74% 84.03% 69.93%
l+r+e 30.68% 92.59% 94.34% 15.22% 33.44%
l+r+l 63.69% 87.72% 40.82% 23.42% 42.37%
l+w+l 51.02% 94.34% 41.15% 23.58% 41.32%

Table 4.3: Accuracy of Best Techniques after 5%

e+w+e 42.19% 85.47% 59.17% 74.07% 60.61%
l+r+e 66.67% 99.01% 97.09% 47.39% 70.92%
l+r+l 93.46% 90.91% 91.74% 85.47% 90.09%
l+w+l 85.47% 95.24% 60.61% 62.50% 72.99%

Table 4.4: Accuracy of Best Techniques after 25%

Overall Comparison

To analyze the overall accuracy, Tables 4.2, 4.3, and 4.4 take a closer look at the best-
performing techniques, reporting the accuracy after 1%, 5%, and 25% of the exploration
respectively. The acronyms in the Technique column have the following meaning:
e+w+e stands for the eager strategy, the weighted backtrack estimator, and the empty
fit, l+r+e stands for the lazy strategy, the recursive estimator, and the empty fit, l+r+l

stands for the lazy strategy, the recursive estimator, and the logarithmic fit, and l+w+l

stands for the lazy strategy, the weighted backtrack estimator, and the logarithmic fit.
Interestingly, the accuracy of the e+w+e technique does not improve over time,

while the accuracy of the other techniques do. To understand this phenomenon better,
Figure 4.4 depicts the progression of intermediate estimates over time for selected
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Figure 4.4: Evolution of Intermediate Estimates Over Time
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tests and best-performing techniques. Each graph also includes a horizontal line that
identifies the correct value.

Figure 4.4 reveals that the intermediate estimates based on the eager estimator can
change quickly over time, which suggests that the accuracy of estimation techniques
based on the combination of the eager strategy and the empty fit can be sensitive to the
time at which their estimates are computed. Further, note that eager strategy typically
results in over-estimation, while the lazy strategy typically results in under-estimation.

In summary, many techniques examined in this chapter consistently achieve average
accuracy above 60% after exploring as little as 1% of the state space. At first glance
the e+w+e technique seems to be the best but further investigation suggests the l+w+l

technique is a more robust choice. This conclusion is based on two facts: 1) the accuracy
of fitting a logarithm to a progression of intermediate estimates generated by the
combination of the lazy strategy and weighted backtrack estimator and 2) the resilience
of the logarithmic fit to spikes and drops in the progression of intermediate estimates.

4.3.3 Efficiency Evaluation

This subsection evaluates the potential of test length estimation to help implement allo-
cation policies that target the two testing objectives described in Section 4.2: maximizing
the number of completed tests and achieving even coverage.

Maximizing # of Completed Tests

To evaluate how well test length estimation techniques help in maximizing the number
of completed tests, a resource allocation simulator was created. This simulator maintains
a priority queue that tracks the remaining time estimated for each exploration trace and
a scheduler that uses the previously described trace simulator to advance exploration in
the order dictated by the priority queue.

The evaluation examines all combinations of the weighted backtrack and recursive
estimators and the oracle, eager and lazy strategies. However, given the frequency of
estimate computation in this experiment, only the empty fit is considered in order to
limit the simulation duration.

For the sake of comparison, two additional allocation policies are examined: 1) a
round-robin policy, which selects the next test to advance using round-robin, representing
a baseline approach commonly used in practice, and 2) an optimal policy, which knows
the true length of each tests and executes tests from the shortest to the longest.

Lastly, the allocation simulator was provided with unlimited time and, for each
estimation technique, recorded the time at which the 10 different exploration traces are
completed. In other words, instead of using a fixed time budget, the recorded data can
be used to derive the results for an arbitrary fixed time budget.

Figure 4.5 presents a bar graph, which for each allocation policy plots the time
needed to complete a certain number of tests. The horizontal axis shows the number
of completed tests, while the vertical axis shows time units on a logarithmic scale.
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Figure 4.5: Maximizing # of Completed Tests

Completed re-eager re-lazy wbe-eager wbe-lazy optimal

1 0.29 0.29 0.29 0.29 0.08
2 0.38 0.09 0.09 0.09 0.08
3 0.30 0.20 0.13 0.20 0.13
4 8.08 0.24 0.22 0.25 0.22
5 2.58 0.27 0.23 0.31 0.21
6 2.03 0.49 1.82 0.50 0.30
7 1.47 0.45 2.00 0.46 0.30
8 1.24 0.46 1.79 0.48 0.40
9 1.11 0.73 1.10 0.73 0.64

10 1.00 1.00 1.00 1.00 1.00
Mean 1.85 0.42 0.87 0.43 0.34

Table 4.5: Performance of Allocation Algorithms

Note that the measurement is oblivious to the order in which the tests finish and only
compares the times required by different algorithms to complete a certain number tests.

The experiment results indicate that the policies that incorporate the eager strategy
tend to perform poorly and, in some cases, need more time to complete a certain number
of tests than the round-robin policy. In contrast to that, the policies that incorporate the
oracle and the lazy strategies match the performance of the optimal policy, requiring
a fraction of the time required by the round-robin policy to complete first few tests.
Further, the experiment results indicate than in the context of this experiment, the choice
of the estimator is not significant.

Table 4.5 reports the fractions of the time required by the best performing algorithms
with respect to the baseline round-robin policy. The rows report these fractions for
each possible number of completed tests and the last row reports their arithmetic mean.
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These numbers indicate that the policies based on a combination of the lazy strategy,
either of the two estimators, and the empty fit, reduce the time needed by the baseline
round-robin policy to complete a certain number of tests by 2.38× on average, coming
close to the optimal value of 2.94×.

Achieving Even Coverage

To evaluate how well test length estimation techniques help in achieving even coverage
across the test suite, the resource allocation simulator from the previous subsection was
modified to order elements of its priority queue by the estimated coverage instead of
the estimated remaining time.

Similarly to the previous experiment, all combinations of the strategies, the estima-
tors, and the empty fit were examined and a baseline was modeled using a policy based
on the round-robin order. In contrast to the previous experiment, a scarcity of testing
resources was simulated by setting the time budget to 5, 000 time units, representing
10% of the time needed to fully explore all tests.

For each test, the experiment measured the coverage error computed as the relative
difference between the realized and even coverage. Formally, let timesum be sum of the
actual runtimes of all tests in a test suite and timebudget ≤ timesum be the time allotted
for testing, then even coverage equals:

even =
timebudget

timesum

Further, let time f ull(t) be the time needed to fully explore the test t and timeexplored(t)
be the time spent exploring the test t, then the realized coverage of the test t equals:

realized(t) =
timeexplored(t)

time f ull(t)

and the coverage error of the realized coverage realized(t) with respect to the even
coverage even, denoted error(realized(t), even) is defined as:

error(realized(t), even) =
{

realized(t)/even if even > realized(t)
even/realized(t) otherwise

For example, if the target even coverage is 10%, then the coverage error of the
realized coverage 5% is 2, while the coverage error of the realized coverage 40% is
4. In other words, the above measure of coverage error does not distinguish between
falling short of and exceeding the target even coverage, a provision used to simplify the
presentation.

Figure 4.6 depicts a bar graph, which for each test contains a cluster of the coverage
errors achieved by each allocation policy. The horizontal axis identifies the test cluster,
while the vertical axis plots the coverage error.
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Figure 4.6: Achieving Even Coverage

Test round-robin re-eager re-lazy wbe-eager wbe-lazy

Resource(2) 11.11 1.36 1.36 1.36 1.36
Resource(3) 11.11 2.77 3.26 2.77 4.05
Resource(4) 1.31 3.17 1.51 1.80 2.87
Scheduling(6) 11.11 1.35 1.96 1.38 2.09
Scheduling(7) 3.19 1.13 1.92 1.23 2.02
Scheduling(8) 2.59 1.12 2.00 1.33 2.07
Store(3,3,7) 11.11 1.61 1.59 1.22 1.20
Store(3,3,8) 4.12 2.01 2.00 1.35 1.15
Store(3,3,9) 2.35 1.78 1.75 1.01 1.22
TLP 1.67 1.71 8.15 1.71 7.12
Mean 5.97 1.80 2.55 1.52 2.51

Table 4.6: Coverage Error of Allocation Algorithms

The experiment results indicate that the policies that incorporate the oracle and lazy
strategies tend to perform poorly and in some cases achieve even higher coverage error
than the baseline policy. In contrast to that, the policies based on the eager strategy often
produce the best result. Further, the policies that incorporate the weighted backtrack
estimator tend to perform better than those that incorporate the recursive estimator.

Table 4.6 compares the coverage errors of the best-performing policies to the coverage
error achieved by the baseline round-robin policy. The rows report the coverage errors
for individual tests and the last row reports their arithmetic mean. The experiment
indicates that the best allocation policy is based on a combination of the eager strategy,
the weighted backtrack estimator, and the empty fit, and this policy reduces the average
coverage error of the baseline round-robin policy from 5.97 down to 1.5.
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4.4 Related Work

State Space Estimation

This chapter adapts work on estimating search tree size by Kilby et al. [80] to the
problem of estimating tree exploration length. In their evaluation, Kilby et al. present
the accuracy of their estimation techniques achieved during exploration of search trees
corresponding to both decision and optimization problems.

Similar to our work, the techniques of Kilby et al. can be described as online and
passive. However, in contrast to search tree size estimation, our techniques have to
address the dynamic nature of the DPOR algorithm. Nonetheless, comparing the
accuracy of our estimation techniques to Kilby et al. estimation techniques on search
trees, our techniques perform equally well on a harder problem.

Taleghani and Atlee [146] studied the problem of state space coverage estimation for
explicit-state model checking. Their solution is based on Monte Carlo techniques and
complements state space exploration with random walks to estimate the ratio between
visited and unvisited states. They implemented their technique for the Java PathFinder
(JPF) [153] model checker and used a collection of Java programs for evaluation.

In contrast to our work, the technique of Taleghani and Atlee is limited to stateful
approaches and can be described as offline and active. More precisely, the estimate
is computed at the end of the exploration and the computation relies on a particular
exploration strategy. Although Taleghani and Atlee do not explicitly mention whether
their experiments were carried out in the context of state space reduction, since JPF
supports it, we assume they were. If that is the case, our technique performs equally
well on a similar problem but does not rely a specific exploration algorithm.

Resource Allocation

Dynamic allocation of resources to a collection of independent tasks is both a well
studied theoretical problem [150] and a practical problem addressed by a range of
systems ranging from batch schedulers such as the Maui scheduler [77] to platforms for
sharing resources in a data center [69, 129].

While in practice [69, 77, 129] tasks are usually running concurrently on a cluster,
this paper uses a simple model that schedules tasks sequentially. This simplification
is justified by the unique nature of the execution tree exploration, which typically
consists of many executions of the same test. Recording progress of each exploration
using an execution tree enables fine-grained interleaving of concurrent explorations.
In addition, different executions of the same test can be explored in parallel, enabling
linear speed-up [139] (cf. Chapter 5). Representing a cluster of machines as a sequence
of machine cycles is a reasonable abstraction of a large set of small independent tasks.

Another unique aspect of resource allocation among systematic tests is how value
is measured. In general, value of a task accrues when it finishes, which is reflected
in scheduling objectives that minimize average task latency [77] or maximize task
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throughput [150]. In contrast, for systematic tests, value could accrue as state space
is being covered, which is reflected in a scheduling policies that allocate resources
proportionally to the estimated test length.

Interestingly, the problem of deciding which systematic test to advance next is
similar to the problem of multi-armed bandit [151]. In short, a multi-armed bandit
problem for a gambler is to decide which arm of an n-slot machine to pull to maximize
his total reward in a series of trials. To bridge the research on multi-armed bandits with
our work, one needs to define a reward function for systematic tests. The search for
such a function is an interesting avenue for future work.

4.5 Conclusions

This chapter presents a solution to the problem of allocating scarce resources to a
collection of systematic tests. The solution comes in the form of different allocation
policies based on techniques for estimating the length of a systematic test.

In the context of this chapter, an estimation technique consists of three logical
components a strategy, an estimator, and a fit. This chapter has considered three
strategies: eager, oracle (infeasible in practice), and lazy; two estimators: weighted
backtrack and recursive; and four fits: empty, constant, linear, and logarithmic.

The evaluation of the different combinations of these components reveals that the
overall average accuracy of our best estimation techniques is upwards of 60% after
exploring as little as 1% of the state space. To further improve the estimation accuracy,
future work could take advantage of common structural properties, such as the power-
law of random networks graphs [10], of execution trees.

Besides evaluating the accuracy of estimation techniques, this chapter also investi-
gated the ability of these techniques to map a testing objective to a policy for allocating
scarce resources to a collection of systematic tests. Two testing objectives were consid-
ered: 1) maximizing the number of completed tests and 2) achieving even coverage
across different tests. For each of these objectives an allocation policy parametrized
by an estimation technique was designed and its performance evaluated against the
performance of a baseline policy.

The experimental evaluation of these allocation policies revealed that while the lazy
strategy outperformed the eager strategy at meeting the first testing objective, the eager
strategy outperformed the lazy strategy at meeting the second testing objective. This
indicates that the lazy strategy achieves better accuracy when estimating the absolute
length of an individual test, while the eager strategy achieves better accuracy when
estimating the ratio between lengths of different tests.

Further, the evaluation demonstrated that, for the testing objectives considered in
this chapter, the allocation policies based on test length estimation improve on the
round-robin policy. Future work along these lines could experiment with other testing
objectives, such as maximizing the number of bugs found, which is not consider in this
chapter since the exploration traces from Google do not contain such information.
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Chapter 5

Parallel State Space Exploration

This chapter presents a new method for distributed systematic testing of concurrent
programs, which pushes the limits of systematic testing to an unprecedented scale.
The approach presented here is based on a novel exploration algorithm that 1) enables
trading space complexity for parallelism, 2) achieves load-balancing through time-
slicing, 3) provides fault tolerance, a mandatory aspect of scalability, 4) scales to more
than a thousand parallel workers, and 5) is guaranteed to avoid redundant exploration.

The rest of the chapter is organized as follows. Section 5.1 discusses previous work
on distributed systematic testing. Section 5.2 presents a novel exploration algorithm
and details its use for distributed systematic testing at scale. Section 5.3 presents an
experimental evaluation. Section 5.4 discusses related work and Section 5.5 draws
conclusions.

5.1 Background

This section summarizes distributed dynamic partial order reduction (distributed
DPOR) [51, 167], a state of the art algorithm for distributed systematic testing of
concurrent programs.

Distributed DPOR targets concurrent exploration of branches of the execution tree.
The goal of distributed DPOR is to offset the combinatorial explosion of possible
permutations of concurrent events through parallel processing.

Parallelization of execution tree exploration seems straightforward: assign different
parts of the execution tree to different workers and explore the execution tree concurrently.
However, as pointed out by Yang et al. [167], such a parallelization suffers from two
problems. First, due to the non-local nature in which the DPOR algorithm updates the
exploration frontier (cf. Section 2.1.4), different workers may end up exploring identical
parts of the state space. Second, since the sizes of the different parts of the execution
tree are not known in advance, load-balancing is needed to enable linear speedup.

To address these two problems, Yang et al. [167] proposed two heuristics. Their
first heuristic modifies DPOR’s lazy addition of nodes to the exploration frontier [51]
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so that nodes are added to the exploration frontier eagerly instead. As evidenced by
their experiments, replacing lazy addition with eager addition mitigates the problem
of redundant exploration of identical parts of the execution tree by different workers.
Their second heuristic assumes the existence of a centralized load-balancer that workers
can contact in case they believe they have too much work on their hands and would
like to offload some of the work. The centralized load-balancer keeps track of which
workers are idle and which workers are active and facilitates offloading of work from
active to idle workers.

5.2 Methods

While scaling DPOR to a large cluster at Google [139], several shortcomings of the
previous work [167] were identified. First, at large scale, distributed exploration must
be able to cope with failures of worker processes or machines. Although Yang et
al. [167] suggest how fault tolerance could be implemented, they do not quantify how
their envisioned support for fault tolerance would affect scalability. Second, although
the out-of-band centralized load-balancer of Yang et al. renders the communication
overhead negligible, it is not clear whether the centralized approach can be used to
support additional features, such as fault tolerance and state space size estimation,
without becoming a bottleneck. Third, the load-balancing of Yang et al. uses a heuristic
based on a threshold to offload work from active to idle workers. It is likely that for
different programs and different numbers of workers, different threshold values should
be used. However, Yang et al. provide no insight into the problem of selecting a good
threshold. Fourth, their DPOR modification for avoiding redundant exploration is a
heuristic, not a guarantee.

This section presents an alternative design for distributed DPOR. The design is
centralized and uses a single master and n workers to explore the execution tree.
Despite its centralized nature, our experiments show that the design scales to more than
a thousand workers. Unlike previous work [167], the design can tolerate worker faults,
is guaranteed to avoid redundant exploration, and is based on a novel exploration
algorithm that allows 1) trading off space complexity for parallelism and 2) efficient
load-balancing through time-slicing.

5.2.1 Partitioned Depth-First Search

The key advantage of using depth-first search for the exploration carried out by the
DPOR algorithm (cf. Section 2.1.4) is its favorable space complexity [61]. This fact
is the main reason why the bottleneck of state space exploration in existing tools for
systematic testing of concurrent programs [51, 107, 137, 160] is the CPU speed and not
the memory size. This is hardly surprising given that the time complexity of the DPOR
algorithm based on depth-first search exploration is linear in the size of the execution
tree and quadratic in its depth, while its space complexity is linear in its depth.

62



To enable parallel processing, Yang et al. [167] depart from the strict depth-first
search nature of state space exploration. Instead, the execution tree is explored using
a collection of possibly overlapping depth-first searches and the exploration order is
determined by a load-balancing heuristic, which uses an ad-hoc threshold to evenly
distribute unexplored subtrees of the execution tree across the worker fleet.

The design presented here uses a novel exploration algorithm, called n-partitioned
depth-first search, which relaxes the strict depth-first search nature of traditional state
space exploration in a controlled manner and, unlike traditional depth-first search, is
amenable to parallelization.

The main difference between depth-first search and n-partitioned depth-first search
is that the exploration frontier of the new algorithm is partitioned into up to n frontier
fragments and the new algorithm explores each fragment using the traditional depth-first
search, interleaving exploration of different fragments.

For the sake of the presentation, a sequential version of the DPOR algorithm based
on the n-partitioned depth-first search is first presented as Algorithm 5. The algorithm
maintains an exploration frontier, represented as a set of up to n stacks of sets of
nodes. The elements of the exploration frontier are referred to as fragments and together
they form a partitioning of the exploration frontier. The execution tree is explored
by interleaving depth-first search exploration of frontier fragments. The algorithm
implements this idea by repeating two steps – Partition and Explore – until the
execution tree is explored.

During the Partition step, the current frontier is inspected to see whether existing
frontier fragments should be and can be further partitioned. A new frontier fragment
should be created in case there is less than n frontier fragments. A new frontier fragment
can be created if there exists a frontier fragment with at least two nodes.

The Explore step is given one of the frontier fragments and uses depth-first search
to explore the next edge of the subtree induced by the selected frontier fragment (the
subtree that contains all ancestors and descendants of the nodes contained in the selected
frontier fragment). The UpdateFrontier(frontier, fragment, node) function operates in a
similar fashion to the UpdateFrontier(frontier, node) function described in Chapter 2.
The main distinction is that after the new version of the function identifies which nodes
are to be added to the exploration frontier using the DPOR algorithm, these nodes are
added to the current frontier fragment only if they are not already present in some
other fragment. This way, the set of sets of nodes contained in each fragment remains
a partitioning of the exploration frontier – an invariant maintained throughout our
exploration that helps our design to avoid redundant exploration.

5.2.2 Parallelization

This subsection describes how to efficiently parallelize Algorithm 5. First, observe that
the presence or absence of the Partition step in the body of the main loop of the
algorithm has no effect on the correctness of the algorithm. This allows us to sequence
several Explore steps together, which hints at possible distribution of the exploration.
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Algorithm 5 SequentialScalableDynamicPartialOrderReduction(n, root)
Require: n is a positive integer and root is the initial program state.
Ensure: All program states reachable from root are explored.

1: procedure Partition(frontier, n)
2: if Size(frontier) = n then
3: return
4: end if
5: for all fragment ∈ frontier do
6: while Size(frontier) < n and Size(fragment) > 1 do
7: node← an arbitrary element of a set contained in fragment
8: remove node from fragment
9: new-fragment← a new frontier fragment for node

10: Insert(new-fragment, frontier)
11: end while
12: end for
13: end procedure
14: procedure Explore(node, fragment, frontier)
15: remove node from Top(fragment)
16: UpdateFrontier(frontier, fragment, node)
17: if Children(node) not empty then
18: child← arbitrary element of Children(node)
19: Push({child}, fragment)
20: navigate execution to child
21: end if
22: pop empty sets from the fragment stack
23: end procedure
24: frontier← NewSet

25: Insert(Push({root}, NewStack), frontier)
26: while Size(frontier) > 0 do
27: Partition(frontier, n)
28: fragment← an arbitrary element of frontier
29: node← an arbitrary element of Top(fragment)
30: Explore(node, fragment, frontier)
31: if Size(fragment) = 0 then
32: Remove(fragment, frontier)
33: end if
34: end while

Namely, one could spawn concurrent workers and use them to carry out sequences
of Explore steps over different frontier fragments. However, a straightforward im-
plementation of this idea would require synchronization when concurrent workers
access and update the exploration frontier, which is shared by all workers. The trick to
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Algorithm 6 DistributedScalableDynamicPartialOrderReduction(n, budget, root)
Require: n is a positive integer, budget is a time budget for worker exploration, and root

is the initial program state.
Ensure: All program states reachable from root are explored.

1: procedure ExploreCallback(old-fragment, new-fragment, frontier)
2: replace old-fragment of frontier with new-fragment
3: mark new-fragment as unassigned
4: signal main exploration loop
5: end procedure
6: procedure ExploreLoop(fragment, budget, frontier)
7: start-time← GetTime

8: repeat
9: node← an arbitrary element of Top(fragment)

10: Explore(node, fragment, frontier)
11: until (GetTime− start-time > budget) or (Size(fragment) = 0)
12: end procedure
13: frontier← NewSet

14: Insert(Push(root, NewStack), frontier)
15: while Size(frontier) > 0 do
16: Partition(frontier, n)
17: while exists an idle worker and an unassigned frontier fragment do
18: fragment← an arbitrary unassigned element of frontier
19: Spawn(ExploreLoop, fragment, budget, ExploreCallback)
20: end while
21: wait until signaled by ExploreCallback

22: end while

overcome this obstacle to efficient parallelization is to give each worker a private copy
of the execution tree. As pointed out by Yang et al. [167], such a copy can be concisely
represented using the depth-first search stack of the frontier fragment to be explored.

A worker can then repeatedly invoke the Explore function over (a copy of) the
assigned frontier fragment. Once the worker either completes the exploration of the
assigned frontier fragment or it exceeds the time allotted for its exploration, it reports
back with the results of the exploration. The exploration progress can be concisely
represented using the original and the final state of the depth-first search stack of the
assigned frontier fragment.

Algorithm 6 presents a high-level approximation of the actual implementation of our
design for scalable DPOR. The implementation operates with the concept of fragment
assignment. When a frontier fragment is created, it is unassigned. Later, a fragment
becomes assigned to a particular worker through the invocation of the Spawn function.
When the worker finishes its exploration, or exhausts the time budget assigned for
exploration, it reports back the results, and the fragment assigned to this worker
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becomes unassigned again. The results of worker exploration are mapped back to the
“master” copy of the execution tree using the ExploreCallback callback function. The
time budget for worker exploration is used to achieve load-balancing through time-
slicing, which is explained in Section 5.2.4. Further, Section 5.2.5 describes a mechanism
to resolve conflicting concurrent updates. The Partition function behaves identically
to the original one, but it partitions unassigned fragments only.

Algorithm 6 presents the pseudo-code of the ExploreLoop function, which is exe-
cuted by a worker. The Explore function is identical to the one used in the sequential
version of the algorithm but the f rontier argument uses a copy of the frontier that con-
tains only the nodes needed to further the exploration of the assigned frontier fragment.
The workers are started through the Spawn function which creates a private copy of a
part of the execution tree. Structuring the concurrent exploration in this fashion enables
both multithreaded and multiprocess implementations of our design.

Since our goal has been to scale the DPOR algorithm to thousands of workers, each
worker is implemented as an RPC server running as a separate process. The Spawn func-
tion issues an asynchronous RPC request that triggers invocation of the ExploreLoop

function with the appropriate arguments at the RPC server of the worker. The response
to the RPC request is then handled asynchronously by the ExploreCallback function,
which maps the result of the worker exploration into the master copy of the execution
tree and prompts another iteration of the main loop of Algorithm 6.

5.2.3 Fault Tolerance

As is commonly done in large distributed applications [32, 57], failure of one out of
thousands of nodes will be common [52] and must be handled gracefully, but failure of
just one particular node is infrequent enough to be dealt with using re-execution. In
accordance with this practice, our design assumes that the master, which is running the
main loop of Algorithm 6, will not fail. The workers on the other hand are expected to
fail and the exploration can tolerate such events.

In particular, an RPC request issued by the master to a worker RPC server uses
a deadline to decide whether the worker has failed. The value of the deadline is set
proportionally larger than the value of the worker time budget. When the deadline
expires without an RPC response arriving, the master assumes that the worker has
failed and unassigns the frontier fragment originally assigned to the failed worker.
Other workers are then able to be assigned its exploration.

5.2.4 Load-balancing

The key to high utilization of a worker fleet is effective load-balancing. To achieve
load-balancing, our design time-slices frontier fragments among available workers. The
availability of frontier fragments is impacted by two factors.

The first factor is the upper bound n on the number of frontier fragments that
the distributed exploration creates. This parameter determines the size of the pool of
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Figure 5.1: Fixed Time Budget Exploration
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Figure 5.2: Variable Time Budget Exploration

available work units. The higher this number, the higher the memory requirements of
the master but the higher the opportunity for parallelism. In our experience, setting n
to twice the number of workers works well. Studying dynamic scaling of the number of
frontier fragments is an interesting avenue for future work.

The second factor is the size of the time slice used for worker exploration. Smaller
time slices lead to more frequent generation of new fragments but this elasticity comes at
the cost of higher communication overhead. Our initial design used a fixed time budget,
choosing the value of 10 seconds to balance elasticity and communication overhead.
However, the initial evaluation of our prototype made us realize that a variable time
budget is more appropriate for large worker fleets.

In particular, as the number of workers in a fixed budget scheme increases, a gap
between the realized and the ideal speed up opens up. Our intuition led us to believe
this could be caused by periods of time during which the exploration has insufficient
number of frontier fragments to keep all workers busy. To study this problem, the
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master was modified to keep track of the number of active workers over the course
of an exploration. Figure 5.1 plots this information for one of our test programs on a
configuration with 1, 024 workers and an upper bound of 2, 048 frontier fragments. The
figure is representative of other measurements at such a scale.

One can identify three phases of the exploration. In the first phase, the number
of active workers gradually increases over 100 seconds until there is enough frontier
fragments to keep all workers busy. In the second phase, all workers are constantly kept
busy. In the third phase, the number of active workers gradually decreases to zero over
100 seconds. Ideally, the first and the third phase should be as short as possible in order
to minimize the inefficiency resulting from not fully utilizing the available worker fleet.

To this aim, one can switch from a fixed time budget to a variable time budget. In
particular, if the exploration is configured to use a time budget b, the master actually
uses fractions of b proportional to the number of active workers. For example, the first
worker will receive a budget of b

n , where n is the number of workers. When half of
the workers are active, the next worker to be assigned work will receive a budget of b

2 .
The scaling of the time budget is intended to reduce the time before the master has the
opportunity to re-partition and load-balance and thus to reduce the duration of the first
and the third phase.

Figure 5.2 plots the number of active workers over time for the optimized implemen-
tation for the same test as Figure 5.1. For this test, switching to a variable time budget
reduced the exploration length from 655 seconds down to 527 seconds. Similar runtime
improvements have been achieved for other tests.

5.2.5 Avoiding Redundant Exploration
For clarity of presentation, Algorithm 6 omits a provision that prevents concurrent
workers from exploring overlapping portions of the execution tree. This could happen
when two workers make concurrent UpdateFrontier calls and add identical nodes to
their frontier fragment copies.

To avoid this problem, our implementation introduces the concept of node ownership.
A worker exclusively owns a node if it is contained in the original frontier fragment
assigned to the worker, or if the node is a descendant of a node that the worker owns.
All other nodes are assumed to be shared with other workers and the node ownership
restricts which nodes a worker may explore.

In particular, the depth-first search exploration of a worker is allowed to operate only
over nodes that the worker owns. When it encounters a shared node during its explo-
ration, the worker terminates its exploration and sends an RPC response to the master
indicating which nodes of the frontier fragment are shared. The ExploreCallback

function checks the status of the newly discovered shared nodes. If a newly discovered
shared node is not part of some other frontier fragment, the node is added to the master
copy of the currently processed frontier fragment (ownership is claimed). Otherwise,
the ownership of the node has been already claimed and the node is not added to the
master copy of the currently processed frontier fragment.
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Although this provision could in theory lead to increased communication overhead
and decreased worker fleet utilization, our experiments indicate that in practice the
provision does not affect performance.

5.3 Evaluation

To evaluate the design presented is Section 5.2, a prototype of the design was imple-
mented as part ETA [139], a tool developed for systematic testing of multithreaded
components of the Omega cluster management system [129]. These components are
written using a library based on the actors paradigm [2]. To exercise different concur-
rency scenarios, ETA systematically enumerates different orders in which messages
between actors can be delivered.

5.3.1 Experimental Setup

The evaluation used instances of tests from the Omega test suite that exercise fun-
damental functionality of core components of the cluster management system. The
Resource(x) test is representative of a class of actor program tests that evaluate interac-
tions of x different users that acquire and release resources from a pool of x resources.
The Scheduling(x) test is representative of a class of actor program tests that evaluate
interactions of x users issuing concurrent scheduling requests. The Store(x,y,z) test is
representative of a class of actor program tests that evaluate interactions of x users of a
distributed key-value store with y front-end nodes and z back-end nodes.

Unless stated otherwise, each measurement presented in the remainder of this
section presents a complete exploration of the given test and the results report the
mean and the standard deviation of three repetitions of the exploration. Lastly, all
experiments were carried out inside of a Google data center [65] using stock hardware
and running each process on a separate virtual machine.

5.3.2 Faults

First, the evaluation focused on the ability of the implementation to handle worker
failures. To that end, the implementation was extended with an option to inject an RPC
fault with a certain probability. When an RPC fault is injected, the master fails to receive
the RPC response from a worker and waits for the RPC deadline to expire instead.

Our experiments demonstrated that the runtime increases proportionally to the
geometric progression of repeated RPC failures. For example, when RPCs have a 50%
chance of failing, the runtime doubles. Since in actual deployments of ETA, RPCs fail
with probability well under 1% [52], our support for fault tolerance is practical.
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Figure 5.3: Scalability Results for Resource(6)
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Figure 5.4: Scalability Results for Scheduling(10)
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Figure 5.5: Scalability Results for Store(12,3,3)

5.3.3 Scalability

To measure the scalability of the implementation, the time needed to complete an explo-
ration by a sequential implementation of the DPOR algorithm was compared against
the time needed to complete the same exploration by our distributed implementation.
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Configurations with 32, 64, 128, 256, 512, and 1, 024 workers were considered and the
algorithm was used to explore the Resource(6), Store(12,3,3), and Scheduling(10)
instances of actor program tests; their parameters were chosen to stimulate interesting
state space sizes. The time budget b of each worker exploration was set to 10 seconds
and the target number of frontier fragments was set to twice the number of workers.

The results of Resource(6), Store(12,3,3), and Scheduling(10) experiments are
presented in Figures 5.3, 5.4, and 5.5. Due to the magnitude of the state spaces being
explored – 18.5 million, 21 million, and 3.6 million branches respectively – the runtime
of the sequential algorithm was extrapolated using a partial run to 209, 215, and 126
hours respectively. The graphs visualize the speedup over the extrapolated runtime of
the sequential algorithm and compare it to the ideal speedup. These results evidence
strong scaling of our implementation of the DPOR algorithm at a large scale. The largest
configuration uses 1, 024 workers and our implementation achieves speedup that ranges
between 760× and 920×.

5.3.4 Theoretical Limits

Finally, our evaluation focused on projecting the theoretical scalability limits of our
implementation. To this end, the memory and CPU requirements of the master – the
obvious bottleneck in our centralized design – were measured and projected.

Memory Requirements: The memory overhead is dominated by the cost to store
the master copy of the exploration frontier. To estimate the overhead, the amount of
memory allocated for the nodes of the execution tree and the exploration frontier data
structures was measured over the course of an exploration. For the Scheduling(10)
test on a configuration with 1, 024 workers and an upper bound of 2, 048 frontier
fragments, the peak amount of the allocated memory was less than 4 MBs. This number
is representative of results for other tests at such a scale. Thus, for the current computer
architectures, the typical memory systems support scaling to millions of workers.

CPU requirements: With 1024 workers and a 10-second time budget, the master is
expected to issue around 100 RPC requests and to process around 100 RPC responses
every second. For such a load, the stock hardware running exclusively the master
process experienced peak CPU utilization under 20%. Consequently, for the current
computer architectures, the CPU requirements scale to around 5, 000 workers. To scale
our implementation beyond that, one can proportionally increase the time budget,
upgrade to better hardware, or optimize the software stack. For instance, one could
replace the master with a hierarchy of masters.

5.4 Related Work

Algorithms

Dwyer et al. [45] presented a parallel algorithm that explores the state space using a
number of independent randomized depth-first searches to decrease the time needed to
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locate an error. In comparison, our parallelization of systematic testing aims to cover
the full state space faster.

The work of Staats and Pǎsǎreanu [143] targets parallelization of symbolic execution
using randomness and static partitioning. The parallelization presented in this chapter
is systematic and uses dynamic partitioning.

Tools

Inspect [166] is a tool for systematic testing of pthreads C programs that implements
the distributed DPOR [167] discussed in Section 5.1. Unlike our work, the Inspect tool
does not support fault tolerance, is not guaranteed to avoid redundant exploration, and
has not been demonstrated to scale beyond 64 workers.

DeMeter [67] provides a framework for extending existing sequential model check-
ers [82, 160] with a parallel and distributed exploration engine. Similar to our work, the
framework focuses on efficient state space exploration of concurrent programs. Unlike
our work, the design has not been thoroughly described or analyzed and has been only
demonstrated to scale up to 32 workers.

Cloud9 [27] is a parallel engine for symbolic execution of sequential programs.
In comparison to our work, the state space being explored is the space of possible
programs inputs, not schedules. Systematic enumeration of different program inputs is
an orthogonal problem to the one addressed by this chapter.

Parallelization of software verification was also investigated in the context of explicit
state space model checkers such as MurPhi [144], DiVinE [12], or SWARM [73]. Stateful
exploration is less common in implementation-level model checkers as storing a program
state explicitly becomes prohibitively expensive.

5.5 Conclusions

This chapter presented a technique that improves the state of the art of scalable tech-
niques for systematic testing of concurrent programs. Our design for distributed DPOR
enables the exploitation of a large scale cluster for the purpose of systematic testing.
At the core of the design lies a novel exploration algorithm, n-partitioned depth-first
search, which has proven to be essential for scaling our design to thousands of workers.

Unlike previous work [167], our design provides support for fault tolerance, a
mandatory aspect of scalability, and is guaranteed to avoid redundant exploration of
identical parts of the state space by different workers. Further, our implementation and
deployment in a real-world system at scale has demonstrated that the design achieves
almost linear speed up for up to 1, 024 workers. Lastly, theoretical analysis of our
design discussed its scalability limits and proposed solutions for scaling the design for
next-generation computer clusters.
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Chapter 6

Restricted Runtime Scheduling

Our accelerating computational demand and the rise of multicore hardware have made
multithreaded programs increasingly pervasive and critical. Yet, these programs remain
extremely difficult to write, test, analyze, debug, and verify. A key reason is that, for
decades, the contract between developers and thread runtimes has favored performance
over correctness. In this contract, developers use synchronizations to coordinate threads,
while thread runtimes can use any of the exponentially many thread interleavings, or
schedules, compliant with the synchronizations. This large number of possible schedules
make it more likely that the runtime finds an efficient schedule for a workload. However,
ensuring that all schedules are correct is extremely challenging, and a single missed
schedule may surface in the least expected moment, triggering concurrency errors
responsible for possibly critical failures [91, 97, 122].

To simplify testing, debugging, record-replay, and program behavior replication, a
number of recent systems [7, 15, 17, 18, 39, 40, 41, 42, 109] aim to flip this performance-
correctness trade-off through restricted runtime scheduling, an approach that dramatically
limits the number of schedules an execution of a multithreaded program may use.

Restricted runtime scheduling is orthogonal to systematic testing but there is synergy
between the two approaches. Restricted runtime scheduling reduces the number of
schedules systematic testing needs to check, while systematic testing ascertains that the
schedules allowed by restricted runtime scheduling have all been tested.

The goal of this chapter is to demonstrate and quantify the benefits of combining
restricted runtime scheduling with systematic testing. To this end, this chapter presents
an ecosystem formed by combining dBug with Parrot [39], an implementation of
restricted runtime scheduling for POSIX-compliant operating systems. The state space
estimation of dBug is then used to contrast the number of schedules dBug needs to
check under nondeterministic scheduling to the number of schedules dBug needs to
check under Parrot’s restricted runtime scheduling.

The rest of this chapter is organized as follows. Section 6.1 provides an overview
of restricted runtime scheduling. Section 6.2 describes the integration of dBug and
Parrot. Section 6.3 presents the evaluation results, Section 6.4 discusses related work,
and Section 6.5 draws conclusions.
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Figure 6.1: Nondeterministic Multithreading
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Figure 6.2: Deterministic Multithreading

6.1 Background

This section first presents an evolution of restricted runtime scheduling techniques
(§6.1.1) and then describes Parrot [39], an implementation of restricted runtime schedul-
ing for POSIX-compliant operating systems (§6.1.2).

6.1.1 Techniques
To drive performance of multithreaded programs, traditional thread runtimes are
allowed to choose any of the exponentially many schedules compliant with thread
synchronizations multithreaded programs use. This approach, referred to as nondeter-
ministic multithreading, allows many-to-many mapping between program inputs and
schedules as depicted in Figure 6.1. The nondeterministic nature of runtime scheduling
makes completing the astronomical amount of testing of multithreading infeasible.

In contrast to nondeterministic multithreading, deterministic multithreading (DMT) [7,
15, 17, 18, 40, 41, 42, 109] reduces the number of allowed schedules by deterministically
mapping each input to a schedule as depicted in Figure 6.2. Thus, with DMT, executions
of the same program on the same input and hardware always exhibit the same behavior.

Although DMT enables replication of program behavior, it does not reduce the
testing burden as much as one might expect. The reason for this shortcoming of DMT
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Figure 6.3: Deterministic Stable Multithreading
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Figure 6.4: Nondeterministic Stable Multithreading

is that different inputs can be mapped to different schedules, disguising scheduling
nondeterminism as input nondeterminism. To address this problem, DMT can be
complemented with stable multithreading (SMT) [7, 17, 18, 40, 41] that reduces the set of
schedules for all inputs by mapping similar inputs to the same schedule as depicted in
Figure 6.3. This approach considerably reduces the number of allowed schedules and
the effort needed to test a program.

While combining DMT with SMT makes testing of multithreaded programs easier,
mapping many inputs to the same schedule can lead to artificial serialization of concur-
rent computation, resulting in performance loss [17, 40, 41]. To address this problem,
recent work [39, 161, 162] advocates the use of SMT that may be nondeterministic but
keeps the amount of nondeterminism small, resulting in a many-to-few mapping as
depicted in Figure 6.4. Nondeterministic SMT balances performance and testability by
allowing the runtime to choose an efficient schedule from a set of schedules based on
the current timing, while keeping the set of allowed schedules small in order to reduce
the effort needed to check all schedules.

6.1.2 Parrot
Parrot [39] is an implementation of nondeterministic SMT for POSIX-compliant oper-
ating systems. Similar to dBug, it uses runtime interposition to intercept and order
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void soft_barrier_init(int size, void *key, int timeout);
void soft_barrier_wait(void *key);
void pcs_enter();
void pcs_exit();

Figure 6.5: Performance Hints API

invocations of the POSIX interface. Unlike dBug, which serializes the program transi-
tions delimited by POSIX interface invocations, Parrot only serializes POSIX interface
invocations themselves, overlapping computation that happens in between. Further,
Parrot only orders pthreads synchronizations [120].

To this end, Parrot maintains a run queue that identifies program threads that can
make progress and a wait queue that identifies program threads that are blocked. By
default, Parrot uses deterministic SMT, scheduling pthreads synchronizations invoked
by threads on the run queue in a round-robin fashion. In addition to that, Parrot exports
a simple API, referred to as performance hints, through which programs can override the
default scheduling policy of Parrot, possibly resulting in nondeterministic SMT. Parrot
supports two types of hints – soft barriers and performance-critical sections – and their API
is depicted in Figure 6.5.

A soft barrier can be used to express co-scheduling intent [112]. In that sense, it acts
as a traditional barrier. The difference between a soft barrier and a traditional barrier
is that a soft barrier can time out. The reason for allowing a soft barrier to time out is
to address situations where the programmer cannot accurately predict the number of
threads that would join the soft barrier. The timeout argument specifies the maximum
number of Parrot’s scheduling decisions a soft barrier waits before deterministically
releasing all waiting threads. The ability to time out makes a soft barrier more robust
to developer mistakes than a traditional barrier because schedulers cannot ignore a
traditional barrier [44].

A performance-critical section can be used to identify a code region that the sched-
uler should execute as quickly as possible. To this end, Parrot schedules pthreads
synchronizations inside of a performance-critical section as soon as possible, overriding
the default round-robin scheduling policy. Thus, unlike a soft barrier, a performance-
critical section can result in nondeterministic scheduling. However, in contrast to
traditional nondeterministic multithreading that uses nondeterministic scheduling by
default, performance-critical sections allow developers to explicitly identify code regions
that benefit from nondeterministic scheduling for improved performance.

Figure 6.6 illustrates the mechanism Parrot uses for controlling scheduling of thread
synchronizations. Similar to dBug’s interposition layer, Parrot intercepts invocations of
the pthreads synchronizations and schedules them in a round-robin order. This order
can be overridden by performance hints. Soft barriers steer Parrot’s scheduler towards
a more efficient schedule without introducing nondeterminism, while performance-

76



Program

Environment

Parrot Interposition Layer

Figure 6.6: Controlling Thread Scheduling with Parrot Interposition Layer

1 #include <pthread.h>
2 #include <stdio.h>
3

4 pthread_mutex_t mutex;
5 int x = 0;
6

7 void *foo(void *args) {
8 pthread_mutex_lock(&mutex);
9 x++;

10 pthread_mutex_unlock(&mutex);
11 return NULL;
12 }
13

14 int main(int argc, char **argv) {
15 pthread_t tid;
16 pthread_mutex_create(&mutex, NULL);
17 pthread_create(&tid, NULL, foo, NULL);
18 pthread_mutex_lock(&mutex);
19 x++;
20 pthread_mutex_unlock(&mutex);
21 pthread_join(tid, NULL);
22 pthread_mutex_destroy(&mutex);
23 assert(x == 2);
24 return 0;
25 }

Figure 6.7: Concurrent pthreads Synchronizations - Source Code

critical sections temporarily exclude some threads from Parrot’s scheduling, introducing
nondeterminism by allowing multiple schedules.

Example 9. To illustrate Parrot’s operation, let us consider the example program de-
picted in Figure 6.7. In this example, a thread spawns a child thread and both of
the threads then use a mutex to protect their concurrent updates to a global variable.
When executed with Parrot, Parrot intercepts invocations of POSIX interface functions,
internally maintaining a run queue and a wait queue and controlling the order in
which pthreads synchronizations happen. Figure 6.8 depicts the sequence of abstract
program states explored by Parrot. Each state identifies the value of the global variable
x and the control flow position of both threads. After the child thread is created, the run
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Figure 6.8: Concurrent pthreads Synchronizations - Parrot Execution

queue contains both the parent thread and the child thread. Traditionally, the OS sched-
uler could schedule the pthreads synchronization of either of the two threads next.
In contrast to that, Parrot suspends execution of both threads and uses a deterministic
round-robin policy to determine that the parent thread should be scheduled first. Note
that Parrot understand the semantics of pthreads synchronizations and updates the
run queue and wait queue accordingly. For example, when the parent thread acquires
the mutex, the child thread is moved from the run queue to the wait queue.

Note that Parrot assumes that no thread whose synchronizations are ordered by
Parrot’s scheduler can block outside of Parrot. Obviously, this assumption does not hold
for real-world programs that use inter-process synchronizations that may block, such as
poll(), select(), or epoll_wait(). To account for inter-process synchronizations,
Parrot treats their invocations as if they were included in a performance-critical section,
effectively excluding them from Parrot’s scheduling algorithm.
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Figure 6.9: Layering of Parrot and dBug Interposition

6.2 Methods

The idea behind nondeterministic SMT is to improve testability of multithreaded pro-
grams without hurting performance. To demonstrate that this idea translates to practice,
this section presents an integration of Parrot, an implementation of nondeterminis-
tic SMT, and dBug, a systematic testing tool. The restricted runtime scheduling of
Parrot reduces the number of schedules multithreaded programs can use. However,
performance-critical hints or invocations of inter-process synchronizations can still act as
a source of scheduling nondeterminism. Consequently, dBug is used to systematically
enumerate the reduced set of schedules allowed by Parrot.

6.2.1 Interposition Layering

Parrot and dBug are both implemented using a similar concept: use runtime interposi-
tion to intercept and order invocations of the POSIX interface. The key insight to their
integration is that for the purpose of systematic testing, Parrot can be viewed as part
of the multithreaded program. This insight is captured by the layered design of the
integration depicted in Figure 6.9, which combines the interposition of Parrot and dBug
depicted in Figures 6.6 and 3.7 respectively.

A naive layering of Parrot and dBug may, however, introduce artificial deadlocks. To
understand why this might happen, let us consider the execution depicted in Figure 6.8
but this time with dBug in the picture. When Parrot reaches the state in which both
the parent thread and the child thread are on the run queue, it uses its deterministic
round-robin policy to schedule the synchronization of the parent thread first, moving
the child thread to the wait queue. This synchronization is then intercepted by dBug
but, following its scheduling policy, dBug will not make a scheduling decision until
it intercepts an event of the child thread. At this point, the parent thread is blocked
in dBug waiting for Parrot to make progress and the child thread is blocked in Parrot
waiting for dBug to make progress. The crux of this problem is that dBug does not
know what threads are blocked in Parrot.
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void thread_waiting();
void thread_running(pthread_t tid);

Figure 6.10: Thread Status API

6.2.2 Scheduling Coordination

To overcome this problem, dBug was extended with an interface that Parrot (or any
other program for that matter) can use to inform dBug that 1) the execution of a
running thread has been suspended, or 2) the execution of a suspended thread has
been resumed. This interface is depicted in Figure 6.10. The thread_waiting()
function can be used to inform dBug that the calling thread is going to be suspended,
while the thread_running() function can be used to inform dBug that the thread
identified by the tid argument is going to be resumed. Further, the scheduling
algorithm of the dBug arbiter was modified to treat threads that have invoked the
thread_waiting() function as quiesced until they are referenced by an invocation
of the thread_running() function. The implementation of the new interface and the
scheduling algorithm modification required less than 50 lines of code. Finally, Parrot
was annotated with calls to the new dBug interface to match the movement of threads
between Parrot’s run queue and wait queue, requiring less than 20 lines of code. With
the new interface and annotations in place, the layering interposition of Parrot and
dBug works seamlessly.

6.3 Evaluation

To quantify the benefits of integrating restricted runtime scheduling with systematic
testing, our integration of Parrot and dBug was evaluated on a diverse set of 108
workloads [39]. This set includes 55 real-world workloads based on the following
programs:

• bdb, a widely used database library [108]
• openldap, a server implementing the Lightweight Directory Access Protocol [110]
• redis, a fast key-value data store server [124]
• mplayer, a popular media encoder, decoder, and player [104]
• pbzip2, a parallel compression utility [59]
• pfscan, a parallel grep-like utility [113]
• aget, a parallel file download utility [1]
• 33 parallel C++ STL algorithm implementations [53, 142]
• 14 parallel image processing utilities in the ImageMagick software suite [76]
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Further, this set also includes 53 workloads from four widely used benchmark suites:

• 15 workloads from PARSEC [21]
• 14 workloads from Phoenix [168]
• 14 workloads from SPLASH-2x [20, 141]
• 10 workloads from NPB [8]

No workloads from these benchmark suites were excluded from our considera-
tion to avoid biasing our results. The benchmark suites cover a number of different
programming languages, including C, C++, and Fortran, and a plethora of different
parallel programming models and idioms such as pthreads [120], OpenMP [111], data
partition, fork-join, pipeline, map-reduce, and work-pile.

6.3.1 Experimental Setup

The evaluation used a 2.80 GHz dual-socket hex-core Intel Xeon with 24 cores and 64
GB memory running Ubuntu 12.04.

The bdb workload is based on a popular benchmark bench3n [4], which does fine-
grained, highly concurrent transactions. The openldap and redis workloads are both
based on benchmarks included in their distribution. The mplayer workload is based
on its utility mencoder, transcoding a 255 MB video from MP4 to AVI. For pbzip2,
one workload compresses a 145 MB binary file and another workload decompresses
the compressed version of this file. The pfscan workload searches for the keyword
return in 16K files contained in /usr/include on our evaluation machine. The
aget workload downloads a 656 MB file from a local web server. All ImageMagick
workloads use a 33 MB JPG file as an input. All 33 parallel STL algorithms use integer
vectors with 256M elements. Workloads from the PARSEC, Phoenix, SPLASH-2x, and
NPB benchmark suites used the smallest configuration of these workloads. In particular,
all workloads in our evaluation used two to four threads.

All multiprocess client-server workloads (openldap, redis, and aget) use a
simple binary that drives the workload. This binary first starts the server process, next
it starts the client process, next it waits for the client process to terminate, and finally it
kills the server process, which concludes the workload.

Note that using relatively small inputs and a small number of threads produces a
lower bound on the number of schedules of workloads with more threads and larger
inputs. Our measurements (§ 6.3.2) show that even for these relatively small workloads,
the extent of state space explosion is considerable and the benefits of combining
restricted runtime scheduling with systematic testing far exceed the benefits of any
other practical state space reduction technique [51, 67].

All programs were compiled using gcc -O2. To support OpenMP programs such
as parallel STL algorithms and NPB, the GNU libgomp implementation of OpenMP
was used. Five programs use ad-hoc synchronization [159], and sched_yield was
added to their busy-wait loops to make these programs work with Parrot and dBug.
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Finally, the evaluation used the performance hints added by authors of Parrot [39].
Of all 108 programs, 18 have reasonable overhead with the default Parrot schedule,
requiring no hints. 81 programs need a total of 87 lines of soft barrier hints: 43 need
only 4 lines of generic soft barrier hints in libgomp, and 38 need program-specific soft
barrier hints. These programs enjoy both determinism and reasonable performance.
Only 9 programs need a total of 22 lines of performance-critical hints, introducing
isolated scheduling nondeterminism to achieve good performance.

6.3.2 Results

The results of our evaluation are divided into two groups. The first group contains
96 workloads for which Parrot uses only one schedule. These are all multithreaded
workloads that either use no hints or soft barrier hints only. The second group contains
12 workloads for which Parrot uses multiple schedules. These are all multiprocess
workloads (aget, openldap, and redis) and all multithreaded workloads that use
performance-critical hints.

Single Schedule Workloads

The first group of workloads does not require dBug to be used for testing as the only
schedule allowed by Parrot can be exercised by simply running the workload in Parrot.
Nevertheless, to estimate the state space reduction realized by Parrot, all 96 workloads
were tested with dBug without using Parrot. In particular, dBug repeatedly executed
each workload until it enumerated all schedules or the time out of 24 hours was reached
in which case dBug’s state space estimation based on the lazy strategy, the weighted-
backtrack estimator, and the empty fit (cf. Chapter 4) was used to estimate the time
needed to explore all possible schedules.

Figure 6.11 depicts the results of this experiment. The vertical axis plots the runtime
of systematic enumeration of all schedules of the workloads identified by the horizontal
axis. The workloads whose schedules could be exhaustively enumerated in 24 hours
are identified by green color, while the workloads whose schedules could not be
exhaustively enumerated in 24 hours are identified by red color. The dotted horizontal
line identifies one machine day and the solid horizontal line identifies the one machine
year of the sum of Top500 supercomputers [102]. The graph shows results for 95 out
of the 96 workloads for which Parrot uses only one schedule. Notably, the graph is
missing a result for the SPLASH-2x volrend workload. This workload causes dBug to
run out of memory trying to represent a single branch of the execution tree with more
than 57M nodes.

The results for the first group of workloads offer two insights. First, using Parrot
increases the number of workloads whose schedules can be exhaustively enumerated
from 46 to 96. Second, the state space reduction realized by combining dBug with Parrot
ranges up to 10100,000 and can be expected to be even more dramatic for programs with
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Workload dBug dBug + Parrot Time

partition 1.37× 107 8, 194 307s
partial_sort 1.37× 107 8, 194 307s
nth_element 1.35× 107 8, 224 309s
pfscan 2.43× 102117 32, 268 1, 201s
redis 1.26× 108 9.11× 107 -
aget 2.05× 1017 5.11× 1010 -
fmm 1.25× 1078 2.14× 1054 -
cholesky 1.81× 10371 5.99× 10152 -
fluidanimate 2.72× 10218 2.64× 10218 -
openldap 2.40× 102795 5.70× 101048 -
raytrace 1.08× 1013863 3.68× 1013755 -

Table 6.1: Estimated Runtime of Systematic Tests

larger inputs and more threads. This reduction greatly surpasses all previous methods
for state space reduction of systematic testing tools [51, 67].

Multiple Schedules Workloads

The second group of workloads requires dBug to be used for testing as the workloads
from this group can exercise any of the multiple schedules allowed by Parrot. Each
workload from this group was tested using dBug both with and without Parrot to
quantify and contrast the extent of state space explosion. In particular, dBug repeated
execution of each workload until it enumerated all of its schedules or the time out of
24 hours was reached in which case dBug’s state space estimation based on the lazy
strategy, the weighted-backtrack estimator, and the empty fit (cf. Chapter 4) was used
to estimate the time needed to explore all possible schedules.

Table 6.1 details the individual results for all 12 workloads from the second group
except for the NPB ua for which dBug runs out of memory trying to represent a single
branch of the execution tree with more than 127M nodes. The first column identifies
the workload, the second column identifies the estimated number of schedules when
the workload is run without Parrot, the third column identifies the estimated number
of schedules when the workload is run with Parrot, and the fourth column reports the
time it took dBug to exhaustively enumerate all schedules allowed by Parrot, where the
value ’-’ identifies that dBug timed out after 24 hours.

The results for the second group of workloads show that using Parrot helps dBug
exhaustively enumerate schedules for 4 of the 12 workloads. For another 5 of the
remaining 8 workloads, using Parrot reduces the estimated number of schedules by
many orders of magnitude but the resulting state space is still too large to be fully
explored by one machine in 24 hours. In the case of multithreaded workloads, the
large number of schedules stems from nondeterminism in scheduling intra-process
synchronizations within performance-critical sections. In the case of multiprocess
workloads, the large number of schedules stems from nondeterminism in scheduling
inter-process communication.
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All in all, combining restricted runtime scheduling with systematic testing greatly
reduces the number of schedules systematic testing needs to check, increasing the
number of workloads dBug can exhaustively check from 46 to 100 (out of 108).

6.4 Related Work

DMT and SMT Systems

Unlike Parrot, several prior systems are not backward-compatible because they re-
quire new hardware [42], new language [23], or new programming model and OS [7].
Among backward-compatible systems, some DMT systems, including Kendo [109],
CoreDet [15], and CoreDet-related systems [16, 75], improve performance by bal-
ancing each thread’s load with low-level instruction counts. As mentioned in the
introduction of this chapter, DMT systems benefit behavior replication but do not solve
the testing problem.

Prior deterministic SMT systems reduce the testing effort in addition to providing
determinism. However, they lack a mechanism through which developers could tune
their performance and require either heavyweight techniques or unrealistic assumptions.
Grace [18] requires fork-join parallelism. Tern [41] and Peregrine [40] record and
reuse schedules. Execution recording can slow down the execution by an order of
magnitude, and computing schedules from recorded executions relies on sophisticated
source code analysis. DThreads [17] stabilizes schedules by ignoring load imbalance
among threads, so it is prone to the serialization problem explained in Section 6.1.

State Space Reduction

Combining dBug with Parrot greatly reduces the number of schedules that need to be
checked, as such this approach bears similarity to state space reduction techniques [51,
61, 67] which soundly reduce the state space to mitigate the state space explosion
problem of model checking. Partial order reduction [51, 61] has been the main reduction
technique for systematic testing tools [137, 160], including dBug and is discussed in
detail in Chapter 2 of this thesis. Recently, researchers have proposed dynamic interface
reduction [67] that checks loosely coupled components separately, avoiding expensive
global exploration of all components. However, this technique has yet to be shown to
work well for tightly coupled components such as threads frequently communicating
via synchronizations and shared memory.

Using restricted runtime scheduling offers three advantages over previous reduction
techniques: (1) it is conceptually simpler because it does not rely on behavioral equiva-
lence to reduce the state space; (2) in the absence of performance-critical sections and
inter-process synchronizations, it remains effective as the checked system scales; and
(3) it works orthogonal to existing state space reduction techniques [51, 61, 67] used
in systematic testing. Thus, it can be combined with existing reduction techniques to
reduce the state space caused by nondeterministic SMT.
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Concurrency

Automatic mutual exclusion (AME) assumes all shared memory is implicitly protected
and allows advanced developers the flexibility to remove protection. It thus shares a
similar high-level philosophy with restricted runtime scheduling. The differences is that,
unlike restricted runtime scheduling, AME has only been implemented in simulation.

Restricted runtime scheduling is orthogonal to much prior work on concurrency error
detection [46, 96, 128, 169, 170], diagnosis [114, 115, 130], and correction [78, 79, 157, 158].
By reducing the number of schedules, restricted runtime scheduling potentially benefits
all of these techniques.

6.5 Conclusions

In conclusion, this chapter presented an integration of restricted runtime scheduling
with systematic testing. To this end, dBug was integrated with Parrot, an implementation
of restricted runtime scheduling for POSIX-compliant operating systems. Parrot offers a
new contract to developers: by default, it schedules synchronizations using round-robin,
greatly reducing the number of possible schedules; when the default schedules are
slow, it allows developers to use performance hints to improve performance by allowing
additional schedules to be used. This contract benefits testing that only needs to focus
on schedules allowed by Parrot. This benefit has been demonstrated by using dBug to
thoroughly check Parrot’s schedules. Results on a diverse set of 108 programs show
using Parrot reduces the testing effort required of dBug by many orders of magnitude.
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Chapter 7

Abstraction Reduction

Abstraction is an age-old technique used in formal verification [38] to combat state
space explosion. This chapter demonstrates that lifting the default abstraction of dBug
to match higher-level coordination interfaces can be used to reduce the number of
schedules systematic testing needs to check.

The reduction is realized by focusing only on the ordering of the higher-level
coordination primitives instead of the ordering of the lower-level POSIX interface
primitives that implement the higher-level coordination primitives. In other words,
abstraction reduction focuses systematic testing on checking whether a concurrent
program uses a higher-level coordination interface correctly, assuming or independently
testing that the implementation of the interface matches its specification.

To evaluate the benefits of abstraction reduction, dBug was extended with support
for intercepting and modeling events of the message-passing interface (MPI) [103],
an interface widely used in the high-performance computing community. Programs
from the NAS Parallel Benchmarks (NPB) suite [8] were then used to quantify and
contrast the number of schedules dBug needs to check with and without abstraction
reduction and how varying the coordination interface used for implementing program
functionality between OpenMP [111] and MPI affects its testability.

The rest of this chapter is organized as follows. Section 7.1 provides the background
necessary for understanding abstraction reduction. Section 7.2 describes the design
and implementation of systematic testing of MPI through dBug. Section 7.3 evaluates
our implementation, contrasting the number of schedules of both OpenMP and MPI
implementations of programs from the NPB benchmark suite [8]. Section 7.4 discusses
related work and Section 7.5 draws conclusions.

7.1 Background

The main advantage of using POSIX interface [119] as the default abstraction for
modeling executions of concurrent programs is that it enables systematic testing of a
wide range of programs across different programming languages.
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Figure 7.1: Interposition based on Default Abstraction
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Figure 7.2: Interposition based on Custom Abstraction

The main drawback of the default abstraction is that if a program uses a higher-
level interface, such as Apache Thrift [5], Java [6], MPI [103], or Python [149], that is
itself implemented using the POSIX interface, then systematic testing based on the
default abstraction will control and order scheduling nondeterminism in both the
program and the implementation of the higher-level interface, a scenario illustrated
in Figure 7.1. For higher-level interfaces with complex implementations, even simple
programs can experience considerable state space explosion. For example, using the
mpich implementation of the MPI specification, dBug equipped with dynamic partial
order reduction estimated the number of interleavings of concurrent POSIX interface
invocations for a trivial MPI program, which uses two processes and contains no logic
besides MPI initialization and finalization of both processes, to be on the order of 10107.
This is more than the estimated number of the atoms in the universe.

To avoid the state space explosion stemming from the scheduling nondeterminism in
the implementation of a higher-level interface, one can assume that the implementation
of the higher-level interface is correct. Equipped with this assumption, systematic
testing tools can intercept and model invocations of the higher-level interface primitives,
abstracting away the details of the interface implementation, a scenario is illustrated
in Figure 7.2. The benefit of using a custom abstraction lies in reducing the number
of schedules systematic testing needs to consider, focusing systematic testing on the
interactions of a program with the higher-level interface as opposed to interactions an
implementation of the higher-level interface with the POSIX interface. The drawback
of using a custom abstraction is the effort required to provide support for systematic
testing of the higher-level interface [147, 155].

88



Specification Model

Implementation

Figure 7.3: Different Representations of Interface Behaviors

Notably, modeling a specification of an interface instead of testing its implementation
is prone to human error. As Figure 7.3 suggests, a specification, an implementation, and
a model each define a set of behaviors that the interface can exhibit. Ideally, these three
definitions match.

In practice, however, for reasons such as performance or backward compatibility,
implementations may choose to exclude behaviors included in the specification or
include behaviors excluded from the specification. For example, the specification of
the pthread_cond_signal() function mandates that if any threads are blocked on
the specified condition variable, the function unblocks at least one of the threads. To
achieve fairness, an implementation of the conditional variables interface may choose to
wake up the thread that has been waiting the longest. However, for some programs, this
implementation might allow only a subset of the behaviors allowed by the specification.

Systematic testing based on abstraction creates its own model of an interface, defin-
ing a set of behaviors that an interface can exhibit, and uses this model to repre-
sent concrete program executions that use an implementation of the interface. If
the model is inaccurate, the inaccuracies can manifest as behaviors allowed by the
model but not by the specification or vice versa. For example, the specification of the
pthread_barrier_wait() function mandates that when the required number of
threads have called the function, a non-zero constant will be returned to one of the
threads and zero will be returned to all remaining threads. If a model does not capture
this nondeterminism, its application may fail to detect program errors.
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7.2 Methods

To explore the idea of abstraction reduction, dBug was extended with support for
the message-passing interface (MPI) [103]. In particular, the dBug interposition layer
was modified to intercept invocations of MPI primitives and the dBug arbiter was
modified to model and schedule execution of these invocations. The remainder of this
section first describes the design considerations related to implementing support for
systematic testing of MPI in dBug (§7.2.1) and then highlights notable aspects of our
implementation of this design (§7.2.2).

7.2.1 Design

An important design decision to consider when extending dBug with support for
MPI, or any other interface, is whether to use dBug only as a scheduler, delegating
interposed events to an existing implementation of the interface, or whether to use dBug
to implement the interface program logic, replacing an existing implementation. The
advantage of delegation is that it avoids 1) the effort needed to implement the interface
program logic inside of dBug and 2) the risk of inaccurately mapping the specification
of the interface to an implementation. The disadvantage of delegation is that it may
limit the control dBug has over scheduling of program threads and the outcome of the
interposed events. The delegation and replacement approaches to implementing MPI
program logic are depicted in Figure 7.4 (a) and Figure 7.4 (b) respectively.

Our experience with implementing support for POSIX interface in dBug suggests that
delegation is appropriate for program logic that does affect thread scheduling, such as
I/O operations, but program logic that affects thread scheduling should be implemented
in dBug. For instance, dBug implements the program logic for synchronization events
such as waitpid() or epoll_wait(), while execution of non-synchronization events,
such as fork() or send(), are delegated to the libc library [92].

A challenge for dBug’s support for MPI is that, as a programming convenience, many
MPI primitives mix synchronization and non-synchronization program logic. On one
hand, these primitives should be implemented by dBug to retain control over scheduling
of program threads. On the other hand, having to implement non-synchronization
logic, such as data movement and transformation for the rich set of MPI data types
and operations, in order to systematically test concurrency seems counter-intuitive and
unnecessarily elaborate.

To resolve this problem, our design chooses to layer dBug on top of an existing
implementation of the MPI specification. However, instead of simply delegating complex
MPI primitives that mix synchronization and non-synchronization program logic to
the existing implementation, our design decomposes these primitives into a set of
synchronization and non-synchronization operations. The synchronization operations
are then implemented in dBug, while the non-synchronization operations are delegated
to the existing implementation. The decomposition approach to implementing MPI
program logic is depicted in Figure 7.4 (c).
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Figure 7.4: Different Approaches to Implementing MPI Program Logic

7.2.2 Implementation

To enable systematic testing of MPI, the dBug interposition layer intercepts invocations
of MPI primitives and the dBug arbiter models and schedules execution of these invoca-
tions. In particular, the global state maintained by dBug contains objects representing
MPI message queues, collective communication operations, and MPI process ranks. The
remainder of this section describes notable aspects of our implementation. A detailed
list of MPI primitives that dBug interposes on can be found in Appendix B.

Deterministic Process Naming

To facilitate communication between different processes of an MPI program, the MPI
specification defines process ranks that are used to identify processes in the context of a
communicator. Communicators provide scope for group communication and prevent
communication conflicts. The MPI specification defines a default global communicator
that can used to identify and communicate with any process spawned by the same MPI
program launch.

When an MPI program starts, each of its processes calls the MPI_Init() function
that acts as a barrier and, among other things, assigns the calling process a global
communicator process rank. This process rank is then typically used to identify what
program logic a particular MPI process should execute (cf. Figure 3.3).

To enable deterministic replay, dBug assigns deterministic thread identifiers to
threads when they are created and uses these identifiers to identify threads across
different executions. Since the program logic of MPI processes is generally determined
by their global process rank, it is important for the mapping between dBug thread
identifiers and MPI process ranks to stay the same across different executions.
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However, the global process ranks are assigned by the MPI_Init() function which
cannot be decomposed into simpler MPI primitives and our design requires its invo-
cations are delegated to an existing implementation of MPI. Fortunately, the global
communicator the MPI_Init() function creates can be overridden. In particular, after
the MPI_Init() function assigns the original global process ranks, dBug creates a
separate global communicator, with ranks ordered according to its deterministic thread
identifiers, and uses this communicator in place of the default one.

Nondeterministic Message Matching

One of the sources of nondeterminism in the MPI specification is the point-to-point
communication between MPI processes. To receive a message from a particular sender,
an MPI process may call the MPI_Recv() function, identifying the sender from which
to receive a message. However, this function also allows a wildcard in place of a sender
identifier, expressing the intent to receive a message from any sender. Although the
MPI specification mandates that messages sent from the same sender are received in the
order they were sent, messages sent from different senders can be received in any order.

To account for this nondeterminism, dBug keeps track of the content of all MPI
message queues and the test function component (cf. Section 3.2.3) of the MPI_Recv()
function model computes all possible matches of a wildcard invocation. When the dBug
arbiter makes a scheduling decision involving a wildcard invocation, the intended match
is communicated back to the dBug interposition layer. The dBug interposition layer
then delegates invocation of the MPI_Recv() function to an existing implementation
of MPI, replacing the wildcard with identifier of the match.

Non-blocking Communication Primitives

In addition to traditional blocking communication, the MPI specification facilitates
latency hiding by offering non-blocking versions of all communication primitives. For
example, the MPI_Irecv() function is a non-blocking version of the MPI_Recv()
function. Instead of blocking until a message is received, it returns immediately,
providing a handle that can be used to check for completion.

To retain control over scheduling of MPI operations and matching of MPI messages,
dBug decomposes the program logic of non-blocking communication primitives. When
the dBug interposition layer intercepts an invocation of a non-blocking communication
primitive, it internally spawns a thread that waits to be scheduled by the dBug arbiter
and then invokes a blocking version of the communication primitive. Once the child
thread is spawned, the parent thread returns a handle that can be used to check whether
the internally spawned thread has terminated.

The MPI specification offers both blocking and non-blocking primitives for check-
ing whether an invocation of a non-blocking communication primitive has completed.
The MPI_Wait(), MPI_Waitall(), MPI_Waitany(), and MPI_Waitsome() func-
tions are blocking and the MPI_Test(), MPI_Testall(), MPI_Testany(), and
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MPI_Testsome() functions are their non-blocking counterparts. In general, the func-
tions that check for completion can return one of several values and the corresponding
test function components of the dBug arbiter model this nondeterminism and enumerate
all possibilities.

Collective Communication Primitives

Besides point-to-point communication primitives, the MPI standard also specifies a
number of convenience primitives for collective communication. These primitives
operate over a collection of processes and represent typical communication patterns.
Based on the communication pattern, these primitives can be divided into four groups:

• all-to-all primitives move data between every pair of processes involved in the
communication

• all-to-one primitives move data from all processes involved in the communication
to one distinct process

• one-to-all primitives move data from one distinct process to all processes involved
in the communication

• scan primitives move data between processes involved in the communication in
the increasing order of their process rank

As far as synchronization is concerned, the all-to-all primitives are effectively a
barrier and the scan primitives are a serialization. In other words, scheduling of these
primitives is deterministic. In contrast to that, the all-to-one and one-to-all primitives
allow a number a scheduling scenarios. For all-to-one primitives the only requirement
is that the process receiving data returns after all other processes invoke the primitive,
while for one-to-all primitives the only requirement is that the process sending data
invokes the primitive before all other processes return. Consequently, all-to-one and
one-to-all primitives involving n processes can execute in (n− 1)! ways.

However, simply delegating the all-to-one and one-to-all primitives to an existing
implementation of MPI does not work. In general, an implementation of MPI may
choose to introduce additional synchronization, which prevents simple delegation from
begin able to exercise all possible scenarios. To avoid this problem, the dBug interposi-
tion layer decomposes these primitives to a collection of point-to-point communication
primitives. The point-to-point communication primitives are delegated to an existing
implementation of MPI, while dBug implements the necessary synchronization.

7.3 Evaluation

To evaluate the benefits of using a custom abstraction of a higher-level interface, our
implementation of support for MPI in dBug was evaluated using 8 benchmarks from
the NAS Parallel Benchmarks (NPB) [8] suite.
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Our benchmark selection was driven by the fact that NPB contains both MPI and
OpenMP [111] implementations. OpenMP is an API for shared-memory parallel pro-
gramming and its specification defines a collection of compiler directives that can be
used for parallel execution of otherwise sequential code. Typically, OpenMP imple-
mentations translate these compiler directives to pthreads invocations, which enables
systematic testing of OpenMP programs in dBug. Our choice of benchmarks thus
allowed us to contrast the results for custom abstraction of MPI programs against the
default abstraction of both MPI and OpenMP programs.

The benchmarks selected for our evaluation are summarized in Table 7.1. For each
benchmark, the table lists an identifier, a short description, the programming language
of the benchmark, and the lines of code of the MPI and OpenMP implementations.

Identifier Description Language MPI OpenMP
BT block tri-diagonal solver Fortran 9,348 5,295
CG conjugate gradient Fortran 1,878 1,262
EP embarrassingly parallel Fortran 368 297
FT discrete 3D fast Fourier transform Fortran 2,172 1,206
IS integer sort C 1,150 1,058

LU lower-upper Gauss-Seidel solver Fortran 5,797 5,403
MG multi-grid on a sequence of meshes Fortran 2,641 1,533
SP scalar penta-diagonal solver Fortran 5,036 3,385

Table 7.1: Overview of NAS Parallel Benchmarks

7.3.1 Experimental Setup

Our evaluation was carried out using Susitna nodes from PRObE [58]. A Susitna node
is configured with 64 cores (quad socket, 2.1 GHz 16-core AMD Opteron), and 128
GB of memory. Our experiments used Ubuntu 12.04, the mpich library version 3.0.4
as the MPI implementation, the GNU libgomp library version 3.1 as the OpenMP
implementation, and NPB version 3.3.1.

The NPB benchmarks come with several input configurations. Our experiments used
the “S” configuration, representing a small instance, for all the benchmarks. Even for
small instances, the extent of state space explosion is considerable and the effort needed
to check large instances stretches beyond the practical limits of existing systematic
testing tools. The BT and SP benchmarks were run using four threads because their
MPI implementation requires the number of threads to be a square number. All other
benchmarks were run with two threads.

For each benchmark, dBug was used to systematically explore different interleav-
ings of interposed events using a number of different configurations. The OpenMP
implementation was tested using the default abstraction and the MPI implementation
was tested using both the default and custom abstraction. To evaluate the interaction
between abstraction reduction and dynamic partial order reduction (DPOR) [51], all
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Figure 7.5: Contrasting Custom and Default Abstraction

our experiments were carried out both with DPOR enabled and disabled. Finally,
each configuration was run in dBug until all interleavings were explored or a 24-hour
timeout was reached, in which case dBug used the lazy strategy, the weighted-backtrack
estimator, and the empty fit (cf. Chapter 4) to estimate the total runtime.

7.3.2 Results

The results of our experiments are presented as graphs in Figures 7.5 and 7.6. The
horizontal axes of these graphs identify the benchmark and the reduction configuration.
The log-scale vertical axes of these graphs identify the runtime. Red values represent
runtime estimates for experiments that timed out after 24 hours, while green values
represent actual runtimes for experiments that finished in less than 24 hours.

Figure 7.5 presents a comparison of the default and custom abstraction of MPI
programs. These results demonstrate that combining custom abstraction and DPOR
is able to reduce the number of interleavings of interposed events to a set that can be
exhaustively enumerated for 6 out of 8 benchmarks. As it turns out, the semantics of MPI
primitives used by these benchmarks allow only interleavings that are all considered
equivalent by DPOR, thus reducing the state space down to a single equivalence
class. This compelling result highlights the synergy between abstraction reduction and
dynamic partial order reduction.
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Figure 7.6: Contrasting MPI and OpenMP

Figure 7.6 presents a comparison of the custom abstraction of MPI programs and
the default abstraction of OpenMP programs. This comparison reveals that using a
higher-level interface to implement program logic in combination with abstraction
reduction can help systematic testing tools thoroughly check the program logic. For
OpenMP implementations, which libgomp implements through pthreads primitives,
using dBug with DPOR fails to avoid state space explosion of possible interleavings of
pthreads primitives for any of the benchmarks. In contrast, for MPI implementations,
using dBug with abstraction reduction and DPOR avoids state space explosion of
possible interleavings of MPI primitives for 6 out of 8 of the benchmarks.

7.4 Related Work
Abstraction

The seminal abstract interpretation paper by Cousot and Cousot [38] provides a formal
framework for describing program abstractions and establishes conditions under which
a program property can be studied using a program abstraction. Our approach to
systematic testing of scheduling nondeterminism can be thought of as abstract interpre-
tation of programs. A key aspect of the abstractions used in our work is that they model
the state necessary for controlling input and scheduling nondeterminism, enabling for
deterministic replay and systematic state space exploration.
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The work of Kurshan [86] demonstrates how complex systems may be abstractly
modeled as a collection of many small state machines. This concept is similar to our
work that essentially views each intercepted interface event as a simple state machine
that interacts with other events through an abstraction of the global state.

Clarke et al. study abstraction interpretation in the context of model checking [34]
and demonstrate that combining abstraction with symbolic representation [26] can
scale hardware verification to designs with up to 101300 states. In contrast to model
checking, our work checks behaviors of the actual programs and uses abstraction to
group interleavings of concrete program transitions into equivalence classes.

Tools

Given the widespread popularity of MPI in the high-performance computing commu-
nity, it is not surprising that a fair amount of research has focused on helping software
engineers to test and debug MPI programs.

The Umpire tool [152] uses the MPI profiling layer to monitor an execution of
an MPI program and check this execution for a set of correctness properties. The
mechanism Umpire uses to monitor a program execution is similar to the one used
by the dBug interposition layer. In contrast to our work, Umpire does not control
scheduling nondeterminism in program executions or enumerate different scheduling
scenarios.

The MPI-SPIN tool [133] is an MPI extension of the stateful model checker SPIN [72].
The main drawback of MPI-SPIN is that, although SPIN supports a subset of C, in
general, engineers that want to check their MPI programs with MPI-SPIN need to create
Promela [70] models of their MPI programs.

The TASS toolkit [134] is a suite of integrated tools to model and formally analyze
parallel programs. Notably, TASS uses symbolic expressions to represent program
inputs and, similar to other symbolic execution tools [27, 29], systematically enumerates
non-equivalent inputs. Compared to our work, TASS only supports programs written
in a subset of C, limiting the scope of its applicability for testing of MPI programs.

The ISP tool [118, 147, 148] is in spirit very similar to dBug’s support for MPI. The
main difference is that ISP has only been demonstrated to work on toy examples [147]
and supports a small subset of all MPI primitives. Further, its authors argue that
the standard happens-before relation [88] and dynamic partial order reduction [51]
are inapplicable to MPI programs, furnishing ISP with custom alternatives to these
time-tested techniques.

The DAMPI tool [155, 156] is a successor of the ISP tool, inheriting most of its
limitations. The main innovation of DAMPI is that it offers parallel exploration capa-
bilities and better, yet still non-standard, happens-before tracking. In contrast to ISP,
the evaluation of DAMPI demonstrates feasibility of systematic testing for complex
MPI programs. However, lacking the ability to change levels of abstraction or estimate
length of systematic tests, DAMPI’s evaluation focuses on measuring runtime overhead.
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7.5 Conclusions

This chapter explored the potential of abstraction to help mitigate state space explosion
stemming from scheduling nondeterminism. The key insight of this chapter is that the
boundary between a program and its environment separates the program logic to be
tested by systematic testing from the program logic of library services that are assumed
to be independently tested. Using this insight, this chapter studied the effects of treating
an implementation of a higher-level inter-process communication interface as a part of
the environment as opposed to a part of the program.

In particular, this chapter explored this idea by implementing and evaluating ab-
straction reduction for the message-passing interface (MPI) [103], an inter-process
communication interface widely used in the high-performance computing community.
To this end, our systematic testing tool dBug was extended with support for intercepting
and modeling events at the MPI level of abstraction. The NAS Parallel Benchmarks
(NPB) suite [8] was then used to contrast the extent of state space explosion for system-
atic testing based on the POSIX interface abstraction to the MPI abstraction. In addition,
both MPI and OpenMP implementations of NPB benchmarks were considered, enabling
a comparison between different programming abstractions.

Our experimental results confirmed our intuition that using abstraction helps to
mitigate state space explosion stemming from scheduling nondeterminism. What was
surprising was the extent of the realized reduction; for the benchmarks considered
in our evaluation the reduction ranged between 10106 and 101773. Our evaluation also
generated evidence of synergy between abstraction reduction and dynamic partial
order reduction [51]. Namely, the combination of these two reduction techniques
correctly infers that for 6 out of 8 of the benchmarks considered by our evaluation, all
interleavings of the interposed events can be grouped into a single equivalence class.
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Chapter 8

Related Work

While the previous chapters discussed work closely related to the research undertaken
by each chapter, this chapter provides a broader view, helping to place the sum of
the research carried out by this thesis in the context of related work. To this end, the
subject of this thesis is characterized as “systematic testing of distributed and multithreaded
programs using dynamic analysis and stateless exploration to check for safety properties”
and this characterization is used to identify dimensions for comparison to related work.

8.1 Testing / Offline Debugging / Online Debugging

An important concern of distributed and multithreaded programs, not addressed in this
thesis, is how to handle faults that are detected when the program is already deployed.
An important requirement for these methods is that they add only negligible overhead
to the runtime of a program. Offline debugging meets this requirement by using a
lightweight mechanism for recording a compact log of key execution events. The idea
behind logging these events is to enable a deterministic replay and analysis of possibly
faulty executions offline. For instance, the WiDS checker [94] achieves deterministic
replay through program annotation, while the Friday tool [54] uses the liblog [55]
infrastructure to provide for deterministic replay of unmodified distributed programs.
More recently, Altekar et al. [3] have shown how to enable deterministic replay for
multiprocessor architectures.

In contrast to offline debugging, online debugging analyzes the execution of a
program while the program is running. For instance, the D3S [93] project uses binary
instrumentation in Box [68] to extend legacy distributed and multithreaded programs
with filters that stream execution information to a background checker that monitors
correct execution of the program and can check for system-wide invariants.

In comparison to debugging, the methods and tools presented in this thesis are
intended to be used for in-house software testing before the software is deployed.
Notably, instead of simply monitoring an execution, systematic testing methods strive
to achieve good coverage by systematically exploring different behaviors of the system.
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8.2 Distributed / Multithreaded / Sequential Programs

Advances in testing and verification of sequential programs permeate the history of
computer science. Early work by King [83] identified the value of symbolic execution
as a mechanism for systematically generating test cases that explores distinct branches
and paths of a computer program. This mechanism prompted the creation of symbolic
evaluation tools such as Dissect as early as 1977 [74]. In recent years, researchers
have exploited advancements in automated constraint solving and proven automated
high-coverage testing of unmodified sequential programs to be not only feasible, but
also practical [27, 29, 64, 131].

Systematic testing of multithreaded programs was pioneered by Godefroid in his
work on VeriSoft [61, 62]. Interestingly, VeriSoft also contained experimental support
for remote processes that communicated with a centralized scheduler using a local
proxy process. To the best of our knowledge, this constitutes the first attempt at
systematic testing of distributed and multithreaded programs. More recently, the CHESS
tool [107] implemented systematic testing for unmodified multithreaded Windows-
specific programs.

Though in theory both multithreaded and distributed program are concurrent
systems, in practice the methods for systematic testing of each are far from identical.
First, unlike a multithreaded program that runs in the context of a single process and
operating system, a distributed program generally has no centralized entity that would
already hold a global view of the program state. Second, multithreaded programs
typically coordinate via shared state, while distributed program often coordinate via
both shared state and message passing. The latter difference plays an important role in
methods for systematic testing of unmodified programs, which in the case of distributed
programs need to account for additional communication and coordination primitives.

Systematic testing of unmodified distributed programs was first investigated in detail
by the MaceMC [82] tool. The limitation of MaceMC is that it only handles programs
written in the Mace [81] programming language. More recently, the MoDist [160] tool
extended the same concept to unmodified legacy distributed programs written for the
Windows platform. The MoDist tool relies on automated instrumentation of Windows
API [68] and uses this instrumentation to explore different execution orders, inject faults,
and simulate timeouts.

The methods and tools presented in this thesis push the limits of previous approaches
in several directions. State space estimation enables quantification of systematic testing
progress and coverage, parallel state space exploration scales systematic testing to large
computational clusters, and restricted runtime scheduling and abstraction reductions
scale systematic testing to more complex programs. Further, dBug enables systematic
testing irrespective of programming languages and instruction sets. The only prerequi-
site of dBug is that the underlying system is POSIX-compliant and supports runtime
interposition. Once this prerequisite is met, one can use dBug to systematically test
unmodified binaries of any program.
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8.3 Dynamic / Static Analysis

In general, certain programming concepts such as pointer arithmetic, function pointers,
or library calls, all of which are used frequently in systems code, represent obstacles
for the use of static analysis tools. These obstacles are typically overcome by making
assumptions about the programming language and constructs of the system, the en-
vironment in which the systems runs, or both. Unlike static analysis tools, dynamic
analysis tools do not make assumptions about either the system or the environment.
Instead, the dynamic analysis runs the actual system within some specific environment.
The advantage of a dynamic analysis is that it observes an actual behavior of the sys-
tem. The disadvantage is that its observations are made in the context of a specific
environment.

Static analysis of programs for concurrency faults has been an active area of research
for decades. A notable recent research effort produced the HAVOC tool [87] for
automatic detection of faults in multithreaded C programs. To combat the state space
explosion, the exploration algorithm of HAVOC explores possible context-switching
scenarios only to a certain depth – a technique known as context-bounding [106]. The tool
has been used to find faults in Windows device drivers. Interestingly, the experiments
required a creation of a model of the Windows operating system environment.

Besides detecting faults, static analyses are also used to prevent faults by providing
compile time guarantees. For example, Engler et al. [47] have demonstrated how to write
system-specific checks that prevent certain types of faults from happening. Reflecting
on their experience a decade later [19], the authors identified the ability to avoid false
positives as the most important step towards practicality of static analysis.

The methods and tools presented in this thesis refrain from the use of static analysis
in order to avoid false positives and programming language dependency.

8.4 Stateless / Stateful Search

All systematic testing tools need a mechanism for navigating the space of possible
program states. While going forward can be achieved by simply executing instructions
of the program, going backward is not as straightforward and one needs to store the
program state. In principle, this can be achieved either by storing the state explicitly
(stateful search), or implicitly as a sequence of nondeterministic choices leading to the
state from some previous state (stateless search) – trading space for time. A separate
concern of the stateless approach is the need to reconstruct the initial state.

Examples of methods implementing the stateful search include the C Model Checker
(CMC) [105], the FiSC tool [165], or the KLEE tool [29]. These tools store a portion
of the in-memory and on-disk state so that they can later reconstruct this state. In
contrast to that, the stateless search was first proposed in VeriSoft [61] and later adopted
by the CHESS [107] verification tool. Both of these tools assume the existence of an
initialization function that reconstructs the initial state.
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The advantage of the stateful approach is the speed of state reconstruction at the
expense of the space needed to store the information needed for the reconstruction. The
advantage of the stateless approach is the small space requirement needed to store a
state at the cost of needing to replay part of the execution. Notably, stateful searches
typically first run out of memory, while stateless searches typically first run out of time.
Finally, some tools such as the SPIN model checker [71] try to balance the time and
space requirements by combining the stateful and the stateless approaches.

Similar to VeriSoft, the methods presented in this thesis use a stateless exploration
and assume existence of a mechanism that sets up the initial exploration state.

8.5 Safety / Liveness / Data Race Checkers

Informally, a safety property is defined to be a property that can be violated by a finite
execution of a program, while a liveness property is defined to be a property that can
only be violated by an infinite execution of a program. A data race occurs when two or
more threads perform non-commutative data operations concurrently. Although many
data races are intentional or benign, some data races can corrupt the program state or
lead to a crash [122].

With the exception of MaceMC [82], execution-based checkers search for violation of
safety properties only. The reason for this is that the checking of an unmodified legacy
program for liveness properties is generally undecidable [121]. Although there has been
some progress on automated proving of liveness properties [36, 37], the state of the art
methods do not scale to the size and complexity of unmodified legacy programs.

Given the wide-spread occurrence of data races, a number of tools focus on detection,
avoidance, and prediction of data races dating. Notable early work on data race
detection includes Mellor-Crummey’s on-the-fly detection of data races in fork-join
programs [101] and Eraser [128], a tool for detecting data races in legacy programs.
Further research in this space produced both static [46] and dynamic [25, 50, 169]
methods for detecting data races. Many of these tools make use of the happens-before
relation [88], a powerful mechanism for reasoning about concurrent program events. The
improvements in data race detection tools tend to reduced both the false positive rate
and the runtime overhead. Recently, a light-weight form of memory access sampling [48]
has been shown to be effective at detecting data races in the Windows operating system
kernel.

The methods and tools presented in this thesis focus on safety properties and, for the
reasons discussed in Chapter 3, dBug considers program transitions at the granularity of
function call interleavings. Consequently, the methods and tools presented in this thesis
focus on coarse-grained concurrency errors such as deadlocks or incorrect uses of an
API. Fortunately, many of the existing data race checkers [25, 128, 169] are compatible
with systematic testing of dBug and can be use to increase its precision.
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Chapter 9

Conclusions

This thesis makes two important points: 1) it demonstrates the practicality of the
systematic approach to testing of concurrent programs, and 2) it quantifies and advances
the practical limits of systematic testing of concurrent programs.

The practicality of the systematic testing approach is demonstrated by presenting
two tools. ETA [138] is a tool that targets systematic testing of components of the Omega
cluster management system [129], while dBug [137] is a tool that targets systematic
testing of unmodified binaries of concurrent programs written for POSIX-compliant
operating systems. These tools were used to systematically test over 100 different
concurrent programs written in a number of languages, including C, C++, and Fortran,
spanning a range of programming paradigms, such as actors [2], pthreads [120],
OpenMP [111], and MPI [103].

To measure and advance the practical limits of systematic testing, this thesis presents
novel results in several research directions ranging from state space estimation to
parallel state space exploration to state space reduction.

To measure the extent of state space explosion, this thesis pioneers research on state
space estimation of systematic tests, presenting a number of techniques that can be used
for predicting the length of a systematic test. The techniques are independent of the
exploration algorithm and thus compatible with a wide range of existing systematic
testing tools. The techniques have been implemented in both ETA and dBug and used
to estimate the extent of state space explosion for over 100 different programs. The
evaluation of these techniques demonstrated that the techniques achieve good accuracy
and that the they can be used to drive efficient allocation of testing resources.

To speed up long-running systematic tests, this thesis improves on previous work on
efficient state space exploration algorithms, enabling systematic testing on large scale
computational clusters. In particular, our scalable implementation of dynamic partial
order reduction [139], a state of the art algorithm for efficient state space exploration,
has been demonstrated to achieve strong scaling on a cluster of over 1,000 machines,
exploring millions of different test executions in a matter of minutes.

To mitigate state space explosion for multithreaded programs, this thesis combines
systematic testing with restricted runtime scheduling. To this end, dBug has been
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integrated with Parrot, an implementation of restricted runtime scheduling for POSIX-
compliant operating systems [39]. The integration takes advantage of modular design of
both of the tools and is accomplished through a simple coordination API. The end result
demonstrates the synergy between systematic testing and restricted runtime scheduling.
Systematic testing checks the schedules allowed by restricted runtime scheduling, while
restricted runtime scheduling reduces the number of schedules systematic testing needs
to check. Arguably, the state space reduction accomplished by combining systematic
testing with restricted runtime scheduling represents a leap forward in combating the
state space explosion problem. Notably, unlike previous work [51, 67], this reduction
technique scales to many threads and long test executions.

To mitigate state space explosion for multiprocess programs, this thesis makes use
of abstraction and demonstrates how high-level inter-process coordination APIs such
as MPI [103] can be used to soundly abstract executions of multiprocess programs,
reducing the number of abstract program states that need to be examined. To demon-
strate the practical potential of reduction through abstraction, dBug has been extended
with support for MPI. Our evaluation shows that abstraction reduction is orthogonal
to other reduction techniques, such as dynamic partial order reduction [51], and their
combination helps to thoroughly test multiprocess programs.

As for future work, there are several directions in which the research exploration
carried out by this thesis could be followed up. First, given the value provided by state
space estimates, it would be interesting to see if their accuracy can be improved by
adopting a machine learning approach that learns the typical structure of execution trees
of real-world programs over time. Second, given the benefit of combining systematic
testing with restricted runtime scheduling of intra-process synchronizations, it would be
interesting to see whether a similar path could be taken for restricted runtime scheduling
of inter-processes synchronizations. The main challenge of this research direction is
the creation of a practical runtime for deterministic and stable multiprocessing. Third,
given the wide spectrum of possible execution tree exploration strategies, it would be
interesting to carry out a study that considers a sizable set of concurrent programs
and contrasts different exploration strategies using metrics such as time and space
complexity, estimate accuracy convergence, and bug coverage.

In conclusion, this thesis provides strong evidence in support of its statement
that existing concurrent software can be tested in a scalable and systematic fashion
using testing infrastructure which controls nondeterminism and mitigates state space
explosion.
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Appendix A

dBug and POSIX

The following list enumerates 92 functions from the POSIX interface [119] for which
dBug implements non-trivial handlers:

• Barriers:

pthread_barrier_init

pthread_barrier_destroy

pthread_barrier_wait

• Condition Variables:

pthread_cond_broadcast

pthread_cond_destroy

pthread_cond_init

pthread_cond_signal

pthread_cond_timedwait

pthread_cond_wait

• I/O Functions:

accept

bind

close

dup

dup2

epoll_create

epoll_create1

epoll_ctl

epoll_wait

fcntl

listen

open

pipe

poll

read

readv

recv

recvfrom

send

sendto

select

socket
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socketpair

unlink

write

writev

• Mutexes:

pthread_mutex_destroy

pthread_mutex_init

pthread_mutex_lock

pthread_mutex_timedlock

pthread_mutex_trylock

pthread_mutex_unlock

• Non-reentrant Functions:

gethostbyaddr

gethostbyname

inet_ntoa

strtok

• Processes:

execl

execv

execle

execve

execlp

execvp

exit

_exit

fork

posix_spawn

posix_spawnp

setpgid

setpgrp

wait

waitpid

• Read-write Locks:

pthread_rwlock_destroy

pthread_rwlock_init

pthread_rwlock_rwlock

pthread_rwlock_tryrdlock

pthread_rwlock_timedrdlock

pthread_rwlock_timedwrlock

pthread_rwlock_trywrlock

pthread_rwlock_unlock

pthread_rwlock_wrlock

• Scheduling and Time:

clock

gettimeofday

nanosleep

sleep

usleep

sched_yield

time
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• Semaphores:

sem_close

sem_destroy

sem_init

sem_open

sem_post

sem_unlink

sem_wait

• Spin Locks:

pthread_spin_destroy

pthread_spin_init

pthread_spin_lock

pthread_spin_trylock

pthread_spin_unlock

• Threads:

pthread_cancel

pthread_create

pthread_detach

pthread_exit

pthread_join
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Appendix B

dBug and MPI

The following list enumerates 58 functions from the MPI standard [103] for which dBug
implements non-trivial handlers:

• Collective Communication:

MPI_Allgather

MPI_Allgatherv

MPI_Allreduce

MPI_Alltoall

MPI_Alltoallv

MPI_Alltoallw

MPI_Barrier

MPI_Bcast

MPI_Exscan

MPI_Gather

MPI_Gatherv

MPI_Reduce

MPI_Reduce_scatter

MPI_Reduce_scatter_block

MPI_Scan

MPI_Scatter

MPI_Scatterv

• Communicator Management:

MPI_Cart_sub

MPI_Comm_compare

MPI_Comm_create_group

MPI_Comm_dup

MPI_Comm_dup_with_info

MPI_Comm_free

MPI_Comm_group

MPI_Comm_split

MPI_Comm_split_type
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• Non-Blocking Point-To-Point Communication:

MPI_Ibsend

MPI_Imrecv

MPI_Improbe

MPI_Iprobe

MPI_Irecv

MPI_Irsend

MPI_Isend

MPI_Issend

MPI_Request_free

MPI_Test

MPI_Test_all

MPI_Test_any

MPI_Test_some

MPI_Wait

MPI_Wait_all

MPI_Wait_any

MPI_Wait_some

• Point-To-Point Communication:

MPI_Bsend

MPI_Buffer_detach

MPI_Mprobe

MPI_Mrecv

MPI_Probe

MPI_Recv

MPI_Rsend

MPI_Send

MPI_Send_recv

MPI_Send_recv_replace

MPI_Ssend

• Process Management:

MPI_Finalize

MPI_Init

MPI_Init_thread
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[39] Heming Cui, Jiří Šimša, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng
Yang, Garth Gibson, and Randy Bryant. PARROT: A Practical Runtime for
Deterministic, Stable, and Reliable Threads. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP ’13), 2013. [Cited on pages 4, 14,
73, 74, 75, 80, 82, and 104.]

[40] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng Yang.
Efficient Deterministic Multithreading through Schedule Relaxation. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP ’11), 2011. [Cited
on pages 73, 74, 75, and 85.]

[41] Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. Stable Deterministic

114



Multithreading through Schedule Memoization. In Proceedings of the 9th USENIX
Symposium on Operating System Design and Implementation (OSDI ’10), October 2010.
[Cited on pages 73, 74, 75, and 85.]

[42] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS
’09), pages 85–96, New York, NY, USA, 2009. ACM. [Cited on pages 73, 74, and 85.]

[43] David A. Duffy. Principles of Automated Theorem Proving. Wiley, 1991. [Cited on
page 5.]

[44] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Effective Distributed
Scheduling of Parallel Workloads. In Proceedings of the 1996 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS ’96), pages 25–36, New York, NY, USA, 1996. ACM. [Cited on page 76.]

[45] Matthew B. Dwyer, Sebastian Elbaum, Suzette Person, and Rahul Purandare.
Parallel Randomized State-Space Search. In Proceedings of the 29th International
Conference on Software Engineering (ICSE ’07), pages 3–12, Washington, DC, USA,
2007. IEEE Computer Society. [Cited on page 71.]

[46] Dawson Engler and Ken Ashcraft. RacerX: Effective, Static Detection of Race
Conditions and Deadlocks. SIGOPS Operating Systems Review, 37:237–252, October
2003. [Cited on pages 86 and 102.]

[47] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking Sys-
tem Rules Using System-Specific, Programmer-Written Compiler Extensions. In
Proceedings of the 4th USENIX Symposium on Operating System Design and Imple-
mentation (OSDI ’00), pages 1–1, Berkeley, CA, USA, 2000. USENIX Association.
[Cited on page 101.]

[48] John Erickson, Madanlal Musuvathi, Sebastian Bruckhardt, and Kirk Olynyk.
Effective Data-Race Detection for the Kernel. In Proceedings of the 9th USENIX
Symposium on Operating System Design and Implementation (OSDI ’10), Berkeley,
CA, USA, 2010. USENIX Association. [Cited on page 102.]

[49] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer, 2012.
[Cited on page 5.]

[50] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09), pages 121–133, New
York, NY, USA, 2009. ACM. [Cited on page 102.]

[51] Cormac Flanagan and Patrice Godefroid. Dynamic Partial Order Reduction for
Model Checking Software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages (POPL ’05), pages 110–121, New
York, NY, USA, 2005. ACM. [Cited on pages 4, 6, 8, 9, 10, 15, 17, 21, 45, 61, 62, 81,
84, 85, 94, 97, 98, and 104.]

115



[52] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In Proceedings of the 9th USENIX Symposium on
Operating System Design and Implementation (OSDI ’10), pages 1–7, Berkeley, CA,
USA, 2010. USENIX Association. [Cited on pages 66 and 69.]

[53] Leonor Frias and Johannes Singler. Parallelization of bulk operations for stl
dictionaries. In Euro-Par 2007 Workshops: Parallel Processing, pages 49–58, Berlin,
Heidelberg, 2008. Springer-Verlag. [Cited on page 80.]

[54] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica.
Friday: Global Comprehension for Distributed Replay. In Proceedings of the 4th
USENIX Conference on Networked Systems Design and Implementation (NSDI ’07),
2007. [Cited on page 99.]

[55] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay Debug-
ging for Distributed Applications. In Proceedings of the 11th USENIX Annual
Technical Conference (USENIX ’06), pages 27–27, Berkeley, CA, USA, 2006. USENIX
Association. [Cited on pages 35 and 99.]

[56] David Gelperin and Bill Hetzel. The Growth of Software Testing. Communications
of ACM, 31(6):687–695, 1988. [Cited on pages 2 and 5.]

[57] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
SIGOPS Operating Systems Review, 37(5):29–43, 2003. [Cited on page 66.]

[58] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt Lloyd. PRObE: A
Thousand-Node Experimental Cluster for Computer Systems Research. ;login:,
38(3):37–39, June 2013. [Cited on page 94.]

[59] Jeff Gilchrist. Parallel BZIP2 [online]. 2011. URL: http://compression.ca/
pbzip2/. [Cited on page 80.]

[60] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem. Springer-Verlag, 1996. [Cited on
pages 6, 8, 9, 10, 15, 17, and 27.]

[61] Patrice Godefroid. Model Checking for Programming Languages using VeriSoft.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’97), pages 174–186. ACM, 1997. [Cited on pages 5,
6, 7, 10, 11, 12, 43, 62, 85, 100, and 101.]

[62] Patrice Godefroid. Software Model Checking: The VeriSoft Approach. Formal
Methods in System Design, 26(2):77–101, 2005. [Cited on pages 10 and 100.]

[63] Patrice Godefroid, Robert S. Hanmer, and Lalita Jategaonkar Jagadeesan. Model
Checking Without a Model: An Analysis of the Heart-Beat Monitor of a Telephone
Switch Using VeriSoft. In Proceedings of ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’98), pages 124–133, 1998. [Cited on page 12.]

[64] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated

116

http://compression.ca/pbzip2/
http://compression.ca/pbzip2/


Random Testing. In Proceedings of the 26th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’05), pages 213–223, New York,
NY, USA, 2005. ACM. [Cited on page 100.]

[65] Google Data Centers [online]. 2013. URL: http://www.google.com/about/
datacenters/. [Cited on pages 20 and 69.]

[66] Google Test [online]. 2013. URL: http://code.google.com/p/
googletest/. [Cited on page 19.]

[67] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao
Zhang. Practical Software Model Checking via Dynamic Interface Reduction. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP ’11),
pages 265–278, New York, NY, USA, 2011. ACM. [Cited on pages 72, 81, 84, 85,
and 104.]

[68] Zhenyu Guo, Xi Wang, Xuezheng Liu, Wei Lin, and Zheng Zhang. BOX: Icing
the APIs. Technical Report MSR-TR-2008-03, Microsoft Research, 2008. [Cited on
pages 14, 99, and 100.]

[69] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation (NSDI ’11), Berkeley,
CA, USA, 2011. USENIX Association. [Cited on page 59.]

[70] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991. [Cited on page 97.]

[71] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997. [Cited on pages 5, 6, 7, and 102.]

[72] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2004. [Cited on pages 5 and 97.]

[73] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm Verification Techniques.
IEEE Transactions on Software Engineering, 37:845–857, 2011. [Cited on page 72.]

[74] William E. Howden. Symbolic Testing and the DISSECT Symbolic Evaluation
System. IEEE Transactions on Software Engineering, 3:266–278, July 1977. [Cited on
page 100.]

[75] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. DDOS: Taming
Nondeterminism in Distributed Systems. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’13), pages 499–508, New York, NY, USA, 2013. ACM. [Cited on page 85.]

[76] ImageMagick [online]. 2013. URL: http://www.imagemagick.org. [Cited on
page 80.]

[77] David B. Jackson, Quinn Snell, and Mark J. Clement. Core Algorithms of the
Maui Scheduler. In Proceedings of the 7th International Workshop on Job Scheduling

117

http://www.google.com/about/datacenters/
http://www.google.com/about/datacenters/
http://code.google.com/p/googletest/
http://code.google.com/p/googletest/
http://www.imagemagick.org


Strategies for Parallel Processing (JSSPP ’01), pages 87–102, London, UK, UK, 2001.
Springer-Verlag. [Cited on page 59.]

[78] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Automated
Concurrency-Bug Fixing. In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), pages 221–236, Berkeley, CA, USA,
2012. USENIX Association. [Cited on page 86.]

[79] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. Deadlock
Immunity: Enabling Systems to Defend Against Deadlocks. In Proceedings of the
8th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’08),
pages 295–308, Berkeley, CA, USA, 2008. USENIX Association. [Cited on page 86.]

[80] Philip Kilby, John K. Slaney, Sylvie Thiébaux, and Toby Walsh. Estimating Search
Tree Size. In Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI ’06), pages 1014–1019, 2006. [Cited on pages 41, 44, 46, 48, and 59.]

[81] Charles E. Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M.
Vahdat. Mace: Language Support for Building Distributed Systems. In Proceed-
ings of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’07), pages 179–188, 2007. [Cited on pages 11, 13, and 100.]

[82] Charles E. Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life, Death,
and the Critical Transition: Finding Liveness Bugs in Systems Code. In Proceedings
of the 4th USENIX Conference on Networked Systems Design and Implementation (NSDI
’07), 2007. [Cited on pages 7, 10, 11, 13, 43, 72, 100, and 102.]

[83] James C. King. Symbolic Execution and Program Testing. Communications of ACM,
19:385–394, July 1976. [Cited on pages 2 and 100.]

[84] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
Verification of an OS Kernel. In Proceedings of 22nd ACM Symposium on Operating
Systems Principles (SOSP ’09), pages 207–220. ACM, 2009. [Cited on page 5.]

[85] Donald E. Knuth. Estimating the Efficiency of Backtrack Programs. Mathematics
of Computation, 29(129):121–136, 1975. [Cited on page 46.]

[86] Robert P. Kurshan. Analysis of Discrete Event Coordination. In Proceedings on
Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, pages
414–453, New York, NY, USA, 1990. Springer-Verlag. [Cited on page 97.]

[87] Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamarić. Static and Precise
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