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Abstract

Spectral graph theory is the interplay between linear algebra and combinatorial
graph theory. Laplace’s equation and its discrete form, the Laplacian matrix, appear
ubiquitously in mathematical physics. Due to the recent discovery of very fast solvers
for these equations, they are also becoming increasingly useful in combinatorial opti-
mization, computer vision, computer graphics, and machine learning.

In this thesis, we develop highly efficient and parallelizable algorithms for solv-
ing linear systems involving graph Laplacian matrices. These solvers can also be
extended to symmetric diagonally dominant matrices and M -matrices, both of which
are closely related to graph Laplacians. Our algorithms build upon two decades of
progress on combinatorial preconditioning, which connects numerical and combinato-
rial algorithms through spectral graph theory. They in turn rely on tools from numeri-
cal analysis, metric embeddings, and random matrix theory.

We give two solver algorithms that take diametrically opposite approaches. The
first is motivated by combinatorial algorithms, and aims to gradually break the prob-
lem into several smaller ones. It represents major simplifications over previous solver
constructions, and has theoretical running time comparable to sorting. The second is
motivated by numerical analysis, and aims to rapidly improve the algebraic connectiv-
ity of the graph. It is the first highly efficient solver for Laplacian linear systems that
parallelizes almost completely.

Our results improve the performances of applications of fast linear system solvers
ranging from scientific computing to algorithmic graph theory. We also show that
these solvers can be used to address broad classes of image processing tasks, and give
some preliminary experimental results.
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Chapter 1

Introduction

Solving a system of linear equations is one of the oldest and possibly most studied computational
problems. There is evidence that humans have been solving linear systems to facilitate economic
activities over two thousand years ago. Over the past two hundred years, advances in physical
sciences, engineering, and statistics made linear system solvers a central topic of applied mathe-
matics. This popularity of solving linear systems as a subroutine is partly due to the existence of
efficient algorithms: small systems involving tens of variables can be solved reasonably fast even
by hand.

Over the last two decades, the digital revolution led to a wide variety of new applications for
linear system solvers. At the same time, improvements in sensor capabilities, storage devices, and
networks led to sharp increases in data sizes. Methods suitable for systems with a small number
of variables have proven to be challenging to scale to the large, sparse instances common in these
applications. As a result, the design of efficient linear system solvers remains a crucial algorithmic
problem.

Many of the newer applications model entities and their relationships as networks, also known
as graphs, and solve linear systems based on these networks. The resulting matrices are called
graph Laplacians, which we will formally define in the next section. This approach of extracting
information using graph Laplacians has been referred to as the Laplacian Paradigm [Ten10]. It has
been successfully applied to a growing number of areas including clustering, machine learning,
computer vision, and algorithmic graph theory. The main focus of this dissertation is the routine
at the heart of this paradigm: solvers for linear systems involving graph Laplacians.

1.1 Graphs and Linear Systems

One area where graph-based linear systems arise is the analysis of social networks. A social
network can be represented as a set of links connecting pairs of people; an example is shown in
Figure 1.1. In graph theoretic terms, the people correspond to vertices while the links correspond
to edges. Given such a network, a natural question to ask is how closely related two people are.
Purely graph-based methods may measure either the length of the shortest path or the maximum
number of disjoint paths between the two corresponding vertices. One way to take both measures
into account is to view the network as an electric circuit with each connection corresponding to
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Figure 1.1: Representing a social network as a graph.

an electrical wire (resistor). The electrical resistance between two vertices then gives a quantity
known as the effective resistance.

Intuition from electrical circuits suggests that shortening wires and duplicating wires can both
reduce resistance. Therefore effective resistance and its variants can be used as measures of con-
nectivity on networks, with lower resistance corresponding to being more closely connected. Sim-
ilar methods are applicable to a wide range of problems such as measuring the importance of
specific proteins in protein-protein interaction networks [MLZ+09] and the link prediction prob-
lem in social networks [LNK07]. However, as the electrical network is not physically available,
we can’t measure the effective resistance experimentally. We can, however, compute it by solving
a linear system.

To compute effective resistance, let us consider the more general problem of finding the volt-
ages at all the vertices given that 1 unit of current passes between two specific vertices. For no-
tational purposes it is more convenient to describe each resistor by its conductance, which is the
inverse of its resistive value and analogous to edge weight in the corresponding graph. The setting
of voltages at the vertices induces an electrical flow through the edges. There are two fundamental
principles governing this voltage setting and electrical flow:

• Kirchhoff’s law: With the exception of the vertices attached to the power source, the net
amount of current entering and leaving each vertex is 0.

• Ohm’s law: The current on an edge equals to the voltage difference between its endpoints
times the conductance of the resistor.

As an example, consider the resistive network with 3 vertices depicted in Figure 1.2. Suppose
we set the voltages at the three vertices to be x1, x2 and x3 respectively. By Ohm’s law we get that
the currents along the edges 1 → 2 and 1 → 3 are 1 · (x1 − x2) and 2 · (x1 − x3) respectively.

2
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Figure 1.2: A resistive electric network with resistors labeled by their conductances (f)

Therefore the amount of current that we need to inject into vertex 1 to maintain these voltages is:

1 · (x1 − x2) + 2 · (x1 − x3) = 3x1 − x2 − 2x3

Identities for the required current entering/leaving vertices 2 and 3 can also be derived similarly.
Therefore, if we want one unit of current to enter at vertex 1 and leave at vertex 3, the voltages
need to satisfy the following system of linear equations:

3x1 − 1x2 − 2x3 = 1

−1x1 + 2x2 − 1x3 = 0

−2x1 − 1x2 + 3x3 = −1

Ohm’s law gives that the voltage drop required to send 1 unit of current is the resistance.
Therefore, once we obtain the voltages, we can also compute the effective resistance. In our
example, a solution for the voltages is x1 = 2/5, x2 = 1/5, and x3 = 0, so the effective resistance
between vertices 1 and 3 is x1 − x3 = 2/5.

This model of the graph as a circuit is very much simplified from the point of view of circuit
theory. However, it demonstrates that problems on graphs can be closely associated with linear
systems. More generally, linear systems assume the form Ax = b where A is an n × n matrix
containing real numbers, b is an n × 1 column vector of real numbers, and x is an n × 1 column
vector of unknowns, also called variables. For example, the above linear system can be expressed
in matrix form as:  3 −1 −2

−1 2 −1
−2 −1 3

 x1

x2

x3

 =

 1
0
−1

 .
Note that each off-diagonal entry is the negation of the conductance between its two vertices,

and each diagonal entry is the sum of the conductances of all resistors incident to that vertex. Since
resistive networks are essentially undirected graphs with edge weights equaling conductance, this
type of matrix is known as a graph Laplacian. It is the fundamental object studied in spectral graph
theory, and can be defined as follows:

Definition 1.1.1 The graph Laplacian LG of a weighted graph G = (V,E,w) with n vertices is

3



an n× n matrix whose entries are:

∀u 6= v : LG,uv = −wuv

∀u : LG,uu =
∑
v 6=u

wuv

In numerical analysis, graph Laplacians belong to the category of Symmetric Diagonally Dominant
(SDD) matrices. These are a further generalization of graph Laplacians where the off-diagonal
entries can be positive. Also, the diagonal entry can exceed the total weight of the off-diagonal
entries, instead of having to be equal to it.

Definition 1.1.2 A symmetric matrix M is symmetric diagonally dominant (SDD) if:

∀i : Mii ≥
∑
j 6=i

|Mij|

Gremban and Miller [Gre96] showed that solving a symmetric diagonally dominant linear sys-
tem reduces to solving a graph Laplacian system with twice the size. This reduction is also
well-understood for approximate solvers [ST06], and in the presence of fixed point round-off er-
rors [KOSZ13]. A more intricate extension that solves systems involving M-matrices using Lapla-
cian solvers was also shown by Daitch and Spielman [DS07]. These reductions allow us to focus
on solving systems involving graph Laplacians for the rest of this thesis.

1.2 Related Work

Despite its long history, the problem of constructing fast linear system solvers is considered far
from being solved. The speed of algorithms is commonly measured in terms of the input size. In
the case of general linear systems on n variables, the matrix is of size n2. However, the sizes of
sparse matrices are better measured by the number of non-zero entries, denoted by m. The best
case scenario, which remains entirely consistent with our current understanding, is that any linear
system can be solved with O(m)1 operations.

Linear system solvers can be classified into two main categories: direct and iterative meth-
ods. Direct methods aim to modify the matrix to become the identity matrix using a sequence of
reversible operations. Inverses of these operations are then composed to form the inverse of the
matrix.

It’s fair to say that Gaussian elimination is the most well-known method for solving linear
systems. It runs in O(n3) time on an n × n matrix, and is a direct method. Strassen [Str69]
first demonstrated that this exponent of 3 is not tight, giving an algorithm that runs in O(nlog2 7)
time. Subsequently this exponent has been further decreased, with O(n2.3754) by Coppersmith and

1We use f(n) = O(g(n)) to denote f(n) ≤ c · g(n) when n ≥ n0 for some constants c and n0.
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Winograd [CW90] holding as the record for twenty years. Recently, further improvements were
made by Stothers [Sto10] and Vassilevska Williams [Wil12], with the latter takingO(n2.3727) time.
On a dense matrix with m ≈ n2, these algorithms can be viewed as taking between O(m3/2) and
O(m1.18) operations. However, for sparse matrices with n in the millions, a more crucial limiting
factor for direct algorithms is the need to compute and store a dense, Ω(n2) sized, inverse.

Iterative methods, on the other hand, generate a sequence of solution vectors that converge to
the solution. Most iterative methods only maintain a small number of length n vectors per step,
and perform matrix-vector multiplications in each iteration. This makes them more suitable for
solving the large sparse linear systems that are common in practice.

One of the most important iterative methods the conjugate gradient algorithm due to Lanc-
zos [Lan52], Hestenes, and Stiefel [HS52]. Assuming exact real arithmetic, this method takes
O(n) iterations to obtain an exact answer, giving a total cost of O(nm). However, this bound is
fragile in the presence of floating point round-off errors, and preconditioners are needed to drasti-
cally improve the performances of the conjugate algorithm. A more detailed treatment of iterative
methods can be found in books such as [Axe94].

Combinatorial preconditioning is a way to combine the best from both direct and iterative
methods. The combinatorial structure of graph Laplacians allows one to analyze iterative meth-
ods using graph theory. The first algorithms by Vaidya [Vai91] constructed preconditioners by
adding edges to a maximum weight spanning tree. These methods led to an O((dn)1.75) time al-
gorithm for graphs with maximum degree d, and an O((dn)1.2) time algorithm when the graph
is planar [Jos97]. Subsequently, methods of constructing preconditioners using Steiner trees have
also been investigated [GMZ94].

Subsequently, Boman and Hendrickson [BH01] made the crucial observation that it is better to
add edges to a different tree known as the low-stretch spanning tree. Such trees were first intro-
duced by Alon, Karp, Peleg, and West [AKPW95], and have been well-studied in the setting of
online algorithms and metric embeddings. Exploring this connection further led to the result by
Spielman and Teng [ST03], which runs in O(m1.31) time for general graphs. They also identified
spectral sparsification, the problem of finding a sparse equivalent of a dense graph, as the key sub-
routine needed for a better algorithm. Subsequently, they gave a spectral sparsification algorithm
that produces a nearly-linear sized sparsifiers in nearly linear time [ST08, ST06]. Incorporating it
into the previous solver framework led to the the first algorithm for solving Laplacian systems that
run in nearly-linear, or O(m logc n), time. Our sequential algorithm in Chapter 2 also builds upon
this framework.

Most direct methods can be parallelized [JáJ92], while the matrix-vector multiplications per-
formed in each step of iterative methods are also inherently parallel. The first parallel algorithm for
solving graph Laplacians with non-trivial parallel speedups was obtained in the setting of planar
graphs by Koutis and Miller [KM07]. It parallelizes the framework from the Spielman and Teng
algorithm, and was extended to general graphs by Blelloch et al. [BGK+13]. Our parallel algo-
rithm in Chapter 3 uses a different approach based primarily on spectral sparsification. Due to the
intricacies of measuring performances of parallel algorithms, we defer a more detailed discussion
of the related works on parallel algorithms to Chapter 3.
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Recently, an alternate approach for solvers was developed by Kelner et al. [KOSZ13]. They
replace the sparsification and recursive preconditioning framework with data structures, but retain
the low-stretch spanning trees. The non-recursive structure of this algorithm leads to a much more
direct analysis of its numerical stability in the unit cost RAM model. Subsequent improvements
by Lee and Sidford [LS13] led to a running time of about O(m log3/2 n).

1.3 Structure of This Thesis

This thesis presents two highly efficient algorithms for solving linear systems involving graph
Laplacians, and consequently SDD matrices. Both of these algorithms run in nearly-linear time.
That is, as the size of the input doubles, the running times of the algorithms increase by factors that
approach 2. These algorithms take diametrically opposite approaches, and can be read in any order.
However, both rely heavily on the connection between graph Laplacians and graphs. Readers more
familiar with combinatorial or graph theoretic algorithms might find the sequential algorithm in
Chapter 2 more natural, while the approach taken for the parallel algorithm in Chapter 3 is more
motivated by numerical analysis. As matrices are multi-dimensional generalizations of scalars, we
give a brief overview of our algorithms in the 1-dimensional case in Section 1.5, and introduce the
relevant linear algebraic tools in Section 1.6.

1.3.1 Sequential SDD Linear System Solver

Chapter 2 gives an algorithm that solves a SDD linear system with m non-zero entries to a rela-
tive error of ε in O(m log n log(1/ε)) time after spending O(m log n log log n) time preprocessing
it. It builds upon the recursive preconditioning framework by Spielman and Teng [ST06], which
reduces solving a linear system to solving several smaller systems. Our algorithm gives both an
improved routine for generating these smaller systems, and a more holistic view of the framework
that leads to a faster running time. It is based on two papers joint with Ioannis Koutis and Gary
Miller [KMP10, KMP11], as well as subsequent unpublished improvements joint with Gary Miller.

1.3.2 Stability of Recursive Preconditioning Under Round-off Errors

A common assumption made in most analyses of combinatorial preconditioning algorithms to date
is that all calculations are performed exactly. Actual computation involve numbers of bounded
length, which leads to round-off errors. For the recursive preconditioning framework, which our
algorithm in Chapter 2 is based on, an earlier analysis by Spielman and Teng [ST06] needed
to increase the lengths of numbers by a factor of Θ(log n) to guarantee convergence. This in
part motivated the algorithms by Kelner et al. [KOSZ13] and Lee and Sidford [LS13], which
are more numerically stable. In Section 2.6, we give a round-off error analysis of the recursive
preconditioning framework which incorporates many of our other improvements. We show that
theO(m log n log(1/ε)) time algorithm is numerically stable under similar assumptions: a constant
factor increase in the lengths of numbers is sufficient for convergence under fixed-point arithmetic.
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1.3.3 Parallel SDD Linear System Solver

Chapter 3 focuses on constructing nearly-linear work solver algorithms with better parallel per-
formances. It constructs a small number of sparse matrices whose product approximates the in-
verse. As matrix-vector multiplications are readily parallelizable, evaluating such a representa-
tion leads to a parallel solver algorithm. For a graph Laplacian with edge weights in the range
[1, U ], the algorithm computes a solution with a relative error of ε in O (logc(nU) log(1/ε)) depth
O (m logc(nU) log(1/ε)) work2 for some constant c. This result is joint with Dan Spielman and
has yet to be published.

Due to the relatively large logarithmic factors in the performances of this algorithm, we omit
analyzing its numerical stability in the belief that significant improvements and simplifications are
likely. Some possible directions for improvements are discussed in Chapter 6.

1.3.4 Graph Embeddings

At the core of our solver algorithms are routines that construct graphs that are similar to the input
graph. We will formalize this similarity, and describe relevant tools and algorithms in Section 1.6.
In our algorithms, such routines are often used along with an embedding of the graph into a tree.
Some modifications of known results are needed to obtain the strongest versions of our results in
Chapters 2 and 3. These modifications are presented in Chapter 4.

As the development of better tree embeddings is an active area of research, the presentation
aims for simplicity. It is based on two papers joint with Guy Blelloch, Anupam Gupta, Ioannis
Koutis, Gary Miller, Kanat Tangwongsan, and Shen Chen Xu [BGK+13, MPX13], as well as
unpublished improvements joint with Gary Miller and Shen Chen Xu.

1.3.5 Image Processing

The speed of SDD linear system solvers both in theory and in practice has led to many applications
using solvers as a subroutine. A short survey of these applications is in Section 1.4. In Chapter 5,
we focus on an area where combinatorial preconditioners are on the verge of entering practice:
image processing. We show that recent advances in graph theoretic algorithms can be used to
optimize a broad class of image processing objectives.

We formulate an optimization objective which we term the the grouped least squares objective
that’s applicable to many problems in computer vision. It also represents a smooth interpola-
tion between quadratic and linear minimization in undirected graphs. This connection allows us
to draw upon the approximate minimum cut algorithm by Christiano et al. [CKM+11] and de-
sign an algorithm for minimizing the grouped least squares objective. We also demonstrate the
practical feasibility of our approach by performing preliminary experiments on well-known image
processing examples. It is based on a paper joint with Hui Han Chin, Aleksander Ma̧dry, and Gary
Miller [CMMP13].

2Depth/work is a standard measure of the efficiency of parallel algorithms, with depth corresponding to the longest
chain of sequential dependencies and work corresponding to the number of operations performed.
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1.4 Applications

Because of the central role played by graph Laplacians in spectral graph theory and mathematical
physics, algorithmic applications of graph Laplacians predated, and in some sense motivated, the
design of more efficient solver algorithms. One of the earlier such results was by Tutte [Tut63]. He
embeds a 3-connected planar graph in the 2-D plane without edge crossings by solving two graph
Laplacian linear systems.

A more powerful object derived from the graph Laplacian is the principle eigenvector. Also
known as the Fiedler vector, its properties has been extensively studied in spectral graph the-
ory [Fie73, ST96, Chu97]. Along with the solver algorithm [ST06], Spielman and Teng showed
that a small number of calls to the solver allows one to compute a good approximation to this vec-
tor. An improved algorithm using matrix exponentials, which in turn relies on solving SDD linear
systems, was given by Orecchia et al. [OSV12]. Alon and Millman [AM85] showed that a discrete
variant of an inequality by Cheeger [Che70] gives bounds on the quality of the cut returned from
scanning this eigenvector. Such algorithms were introduced in the setting of image processing by
Shi and Malik [SM97], and is now one of the standard tools for clustering. It has a wide range of
applications in statistics, computer vision, and machine learning.

In numerical analysis, graph Laplacians have direct connections with elliptic finite element
methods. They approximate the solution to a variety of differential equations on meshes used
in applications such as collision modeling. These connections were made explicit by Boman et
al. [BHV08], who showed that when the underlying discretization of space (mesh) is well struc-
tured, the resulting linear system is algebraically close to a graph Laplacian, and can therefore be
solved using a few invocations to a solver for systems involving graph Laplacians.

The discovery of theoretically fast solvers for SDD linear systems [ST06] allowed their use
as primitives in designing graph algorithms. These solvers are the key subroutines of the fastest
known algorithms for a multitude of graph problems including:

• Computing balanced separators of graphs using matrix exponentials and heat-kernel random
walks by Orecchia et al. [OSV12].

• Generating spectral sparsifiers, which also act as cut-preserving sparsifiers by Spielman and
Srivastava [SS08]. Improvements to this algorithm for the case of dense graphs were also
given by Koutis et al. [KLP12].

• Finding minimum cost flows and generalized lossy flow by Daitch and Spielman [DS08].

• Computing maximum bipartite matchings (or more generally maximum flow in unit capacity
graphs) by Mądry [Mąd13].

• Approximating maximum flows in undirected graphs by Christiano et al. [CKM+11] and
Lee et al.[LRS13].

• Generating random spanning trees by Kelner and Ma̧dry [KM09a].
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Our solver algorithm from Chapter 2 leads to improved theoretical running times for all these
applications. Some of these algorithms can also be combined with parallel solvers. Somewhat
surprisingly, for graph optimization problems such as maximum flow, this leads to the best par-
allel algorithms whose operation count is comparable to the state-of-the-art sequential ones. This
connection was first observed by Blelloch et al. [BGK+13], and our algorithm from Chapter 3 also
improves these parallel algorithms.

One area where combinatorial preconditioning has already been used in practice is computer
vision. The lattice-like underlying connectivity structure allows for the construction of combina-
torial preconditioners under local sparsity assumptions. The presence of weights and extra edges
introduced by non-local methods also makes combinatorial preconditioning more suitable than
methods that assume uniformity. A code package known as the Combinatorial Multigrid (CMG)
Solver was shown to be applicable to a variety of image segmentation and denoising tasks by
Koutis et al. [KMST09], and to gradient in-painting by McCann and Pollard [MP08]. Our image
processing experiments in Chapter 5 were also performed using the CMG Solver package.

1.5 Solving Linear Systems

Many key ideas in our algorithms can be illustrated using the simplest SDD linear systems: the
1 × 1 matrix. Here we can omit linear algebraic notations and treat this entry as a scalar, `. As
`−1 is equivalent to the inverse of this matrix, our goal is to find `−1b without dividing by `. This
is a reasonable simplification from higher dimensions since a matrix-vector multiplication by A is
much less expensive than finding its inverse A−1. This goal can also be viewed as constructing a
routine that divides by ` using only multiplications.

For simplicity, first consider the situation where ` is close to 1, e.g.:

1

2
≤ ` ≤ 3

2

We can invoke an identity about geometric series that tells us that when 0 < ` < 2, 1/` equals the
following infinite sum known as a power series:

`−1 = 1/(1− (1− `))
= 1 + (1− `) + (1− `)2 + (1− `)3 + . . . (1.1)

Of course, computing an infinite sum is not possible. On the other hand, the first t terms forms
a polynomial and evaluating it may lead to a reasonable approximation. This can be done by either
computing (1− `)i in increasing order for all 0 ≤ i < t, or using Horner’s rule (see e.g. Chapter
2 of [CSRL01]). In either case, t multiplications suffices to evaluate the first t terms of this power
series.

This is the simplest example of an iterative method, which approximates the solution of a
linear system using a series of matrix-vector multiplications. Iterative methods form the main
framework of both of our sequential and parallel algorithms. This particular power series can also
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be interpreted as computing the stationary distribution of a random walk, and we will explore this
connection in more detail in Section 3.1.

The convergence of this type of method depends heavily on the value of 1 − `. The error of
using the first t terms is given by the tail of infinite power series:

(1− `)t + (1− `)t+1 + (1− `)t+2 + . . . (1.2)

= (1− `)t
(
1 + (1− `)1 + (1− `)2 + . . .

)
(1.3)

= (1− `)t `−1 (1.4)

If ` is in the range [1/2, 3/2], 1− ` is between [−1/2, 1/2] and (1− `)t approaches 0 geomet-
rically. Therefore evaluating a small number of terms of the power series given in Equation 1.1
leads to a good estimate. If we want an answer in the range [(1− ε) `−1b, (1 + ε) `−1b] for some
error ε > 0, it suffices to evaluate the first O (log (1/ε)) terms of this series.

On the other hand, convergence is not guaranteed when |1 − `| is larger than 1. Even if 1 − `
is between (−1, 1), convergence may be very slow. For example, if ` is 1

κ
for some large κ, the

definition of natural logarithm gives (1− `)κ ≈ 1
e
. That is, O(κ) steps are needed to decrease the

error of approximation by a constant factor.

Our two algorithms can be viewed as different approaches to accelerate this slow convergence.
We first describe the approach taken for the sequential algorithm presented in Chapter 2, which
obtains an ε-approximation in O (m log n log (1/ε)) time.

1.5.1 Preconditioning

Preconditioning can be viewed as a systematic way to leverage the fact that some linear systems are
easier to solve than others. In our restricted setting of dividing by scalars, this may not be the case
for computers. However, it is certainly true for the reader: because our number system is base 10,
it is much easier to divide a number by 0.1 (aka. multiply by 10). Consider the following situation
where the recurrence given above converges slowly: ` is between 0.01 and 0.1. Since 1− ` can be
as large as 0.99, about 100 iterations are needed to reduce the error by a constant factor. However,
suppose instead of computing `x = b, we try to solve (10`)x = 10b. The guarantees on ` gives
that 10` is between 0.1 and 1, which in turn upper bounds 1 − ` by 0.9. This means 10 iterations
now suffice to decrease the error by a constant factor, a tenfold speedup. This speedup comes at a
cost: we need to first multiply b by 10, and instead of computing 1−` we need to compute 1−10`.
This results in an extra division by 0.1 at each step, but in our model of base ten arithmetic with
scalars, it is much less expensive than most other operations.

The role that the value of 0.1 played is known as a preconditioner, and iterative methods in-
volving such preconditioners are known as preconditioned iterative method. The recurrence that
we showed earlier, unpreconditioned iterative methods, can be viewed as using the identity, 1 as a
preconditioner. From this perspective, the reason for the tenfold speedup is apparent: for the range
of ` that we are interested in, [0.01, 0.1], 0.1 is an estimate that’s better by a factor of ten when
compared to 1.
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In general, because A is a matrix, the preconditioner which we denote as B also needs to be a
matrix of the same dimension. As in the case with scalars, each step of a preconditioned iterative
method needs to solve a linear system involving B. Also, the number of iterations depends on the
quality of approximation of B to A. This leads to a pair of opposing goals for the construction of a
preconditioner:

• B needs to be similar to A.

• It is easier to solve linear systems of the form Bx = b′.

To illustrate the trade-off between these two goals, it is helpful to consider the two extreme
points that completely meets one of these two requirements. If B = A, then the two matrices are
identical and only one iteration is required. However, solving a system in B is identical to solving
a system in A. On the other hand, using the identity matrix I as the preconditioner makes it very
easy to solve, but the number of iterations may be large. Finding the right middle point between
these two conditions is a topic that’s central to numerical analysis (see e.g. [Axe94]).

Many existing methods for constructing preconditioners such as Jacobi iteration or Gauss-
Seidel iteration builds the preconditioner directly from the matrix A. In the early 90s, Vaidya
proposed a paradigm shift [Vai91] for generating preconditioners:

Since A = LG corresponds to some graphG, its preconditioner
should be the graph Laplacian of another graph H .

In other words, one way to generate a preconditioner for A is to generate a graph H based
on G, and let B = LH . Similarity between LG and LH can then be bounded using spectral
graph theory. This in turn allows one to draw connections to combinatorial graph theory and use
mappings between the edges of G and H to derive bounds.

These ideas were improved by Boman and Hendrickson [BH01], and brought to full fruition in
the first nearly-linear time solver by Spielman and Teng [ST06]. Our sequential solver algorithm
in Chapter 2 uses this framework with a few improvements. The main idea of this framework is to
find a graph H that’s similar to G, but is highly tree-like. This allows H to be reduced to a much
smaller graph using a limited version of Gaussian elimination. More specifically, G and H are
chosen so that:

• The preconditioned iterative method requires t iterations.

• The system that H reduces to is smaller by a factor of 2t.

This leads to a runtime recurrence of the following form:

T (m) = t
(
m+ T

(m
2t

))
(1.5)
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Where the term of m inside the bracket comes from the cost of performing matrix-vector multipli-
cations by A in each step, as well as the cost of reducing from H to the smaller system.

This runtime recurrence gives a total running time of O(mt). The call structure corresponding
to this type of recursive calls is known in the numerical analysis as a W -cycle, as illustrated in
Figure 1.3

m

m
4

m
4

m
16

m
16

m
16

m
16

Figure 1.3: Call structure of a 3-level W-cycle algorithm corresponding to the runtime recurrence
given in Equation 1.5 with t = 2. Each level makes 2 calls in succession to a problem that’s 4
times smaller.

Analyzing the graph approximations along with this call structure leads to the main result in
Chapter 2: a O(m log n log(1/ε)) time algorithm for computing answers within an approximation
of 1± ε.

1.5.2 Factorization

Our parallel algorithm is based on a faster way of evaluating the series given in Equation 1.1. As
we are solely concerned with this series, it is easier to denote 1− ` as α, by which the first t terms
of this series simplifies to the following sum:

1 + α + α2 + . . . αt−1

Consider evaluating one term αi. It can be done using i multiplications involving α. However, if
i is a power of 2, e.g. i = 2k for some k, we can user much fewer multiplications since α2k is the
square of α2k−1 . We can compute α2, α4, α8, . . . by repeatedly squaring the previous result, which
gives us α2k in k multiplications. It is a special case of the exponentiation by squaring (see e.g.
Chapter 31 of [CSRL01]), which allows us to evaluate any αi in O(log i) multiplications.

This shortened evaluation suggest that it might be possible to evaluate the entire sum of the
first t terms using a much smaller number of operations. This is indeed the case, and one way to

12



derive such a short form is to observe the result of multiplying 1 + α + . . . αt−1 by 1 + αt:(
1 + αt

) (
1 + α + . . . αt−1

)
= 1 + α + . . .+ αt−1

+ αt + αt+1 . . . α2t−1

= 1 + α + . . .+ α2t−1

In a single multiplication, we are able to double the number of terms of the power series that we
evaluate. An easy induction then gives that when t = 2k, the sum of the first t terms has a succinct
representation with k terms:

1 + α + . . . α2k−1 = (1 + α)
(
1 + α2

) (
1 + α4

)
. . .
(

1 + α2k−1
)

This gives an approach for evaluating the first t terms of the series from Equation 1.1 inO(log t)
matrix-vector multiplications. However, here our analogy between matrices and scalars breaks
down: the square of a sparse matrix may be very dense. Furthermore, directly computing the square
of a matrix requires matrix multiplication, for which the current best algorithm by Vassilevska-
Williams [Wil12] takes about O(n2.3727) time.

Our algorithms in Chapter 3 give a way to replace these dense matrices with sparse ones. We
first show that solving any graph Laplacian can be reduced to solving a linear system I −A such
that:

1. The power series given in Equation 1.1 converges to a constant error after a moderate (e.g.
poly (n)) number of terms.

2. Each term in the factorized form of the power series involving A has a sparse equivalent
with small error.

3. The error caused by replacing these terms with their approximations accumulate in a con-
trollable way.

The third requirement due to the fact that each step of the repeated squaring requires approx-
imation. Our approximation of A4 is based on approximating the square of our approximation to
A2. It is further complicated by the fact that matrices, unlike scalars, are non-commutative. Our
algorithm handles these issues by a modified factorization that’s able to handle the errors incurred
by successive matrix approximations. This leads to a slightly more complicated algebraic form
that doubles the number of matrix-vector multiplications. It multiplies by the matrix I + A both
before handing a vector off to routines involving the approximation to A2, and after receiving back
an answer from it. An example of a call structure involving 3 levels is shown in Figure 1.4 . When
viewed as a recursive algorithm, this is known as a V-cycle algorithm in the numerical analysis
literature.

One further complication arises due to the difference between scalars and matrices. The non-
commutativity of approximation matrices with original ones means that additional steps are needed
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to ensure symmetry of operators. When moving from terms involving A to A2, it performs matrix-
vector multiplications involving I + A both before and after evaluating the problem involving A2

(or more accurately its approximation).

m

m

m

Figure 1.4: Call structure of a 3-level V-cycle algorithm. Each level makes 1 calls to a problem of
comparable size. A small number of levels leads to a fast algorithm.

In terms of total number of operations performed, this algorithm is more expensive than the
W-cycle algorithm shown in Chapter 2. However, a k-level V-cycle algorithm only has a O(k) se-
quential dependency between the calls. As each call only performs matrix-vector multiplications,
this algorithm is highly parallel. The V-cycle call structure is also present in the tool of choice used
in numerical analysis for solving SDD linear systems: multigrid algorithms (see e.g. [BHM00]).
This connection suggests that further improvements in speed, or theoretical justifications for multi-
grid algorithms for SDD linear systems may be possible.

1.6 Matrices and Similarity

The overview in Section 1.5 used the one-dimensional special case of scalars as illustrative exam-
ples. Measuring similarity between n-dimensional matrices and vectors is more intricate. We need
to bound the convergence of power series involving matrices similar to the one involving scalars
in Equation 1.1. Also, as we’re working with vectors with multiple entries, converging towards a
solution vector also needs to be formalized. In this section we give some background on ways of
extending from scalars to matrices/vectors. All the results stated in this section are known tools
for analyzing spectral approximations, and some of the proofs are deferred to Appendix A. We
will distinguish between different types notationally as well: scalars will be denoted using regu-
lar lower case characters, matrices by capitalized bold symbols, and vectors by bold lower case
characters.

1.6.1 Spectral Decomposition

Spectral graph theory is partly named after the study of the spectral decomposition of the graph
Laplacian LG. Such decompositions exist for any symmetric matrix A. It expresses A as a sum
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of orthogonal matrices corresponding to its eigenspaces. These spaces are defined by eigen-
value/vectors pairs, (λ1,u1) . . . (λn,un) such that Aui = λiui. Furthermore, we may assume that
the vectors u1,u2 . . . un are orthonormal, that is:

uTi uj =

{
1 if i = j
0 otherwise

The decomposition of A can then be written as:

A =
n∑
i=1

λiuiuTi

The orthogonality of the eigenspaces means that many functions involving A such as multipli-
cation and inversion acts independently on the eigenspaces. When A is full rank, its inverse can be
written as:

A−1 =
n∑
i=1

1

λi
uiuTi

and when it’s not, this decomposition allows us to define the pseudoinverse. By rearranging the
eigenvalues, we may assume that the only zero eigenvalues are λ1 . . . λn−r where r is the rank of
the matrix (in case of the graph Laplacian of a connected graph, r = n− 1). The pseudoinverse is
then given by:

A† =
n∑

i=n−r+1

1

λi
uiuTi

This decomposition can also be extended to polynomials. Applying a polynomial p(x) =∑
a0 +a1x

1 +a2x
2 + . . .+adx

d to A leads to the matrix
∑
a0 +a1A +a2A2 + . . .+adAd. When

viewed using spectral decompositions, this matrix can also be viewed as applying the polynomial
to each of the eigenvalues.

Lemma 1.6.1 If p(x) is a polynomial, then:

p(A) =
n∑
i=1

p(λi)uiuTi

Therefore, if p(λi) approaches 1
λi

for all non-zero eigenvalues λi, then p(A) approaches A†

as well. This is the main motivation for the analogy to scalars given in Section 1.5. It means
that polynomials that work well for scalars, such as Equation 1.1, can be used on matrices whose
eigenvalues satisfy the same condition.
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1.6.2 Similarities Between Matrices and Algorithms

The way we treated p (A) as a matrix is a snapshot of a powerful way for analyzing numerical al-
gorithms. It was introduced by Spielman and Teng [ST06] to analyze the recursive preconditioning
framework. In general, many algorithms acting on b can be viewed as applying a series of linear
transformations to b. These transformations can in turn be viewed as matrix-vector multiplications,
with each operation corresponding to a matrix. For example, adding the second entry of a length 2
vector b to the first corresponds to evaluating:[

1 1
0 1

]
b

and swapping the two entries of a length 2 vector b corresponds to evaluating:[
0 1
1 0

]
b

A sequence of these operations can in turn be written as multiplying b by a series of matrices.
For example, swapping the two entries of b, then adding the second to the first can be written as:[

1 1
0 1

] [
0 1
1 0

]
b

In the absence of round-off errors, matrix products are associative. As a result, we may con-
ceptually multiply these matrices together to a single matrix, which in turn represents our entire
algorithm. For example, the two above operations is equivalent to evaluating:[

1 1
1 0

]
b

Most of our algorithms acting on an input b can be viewed as symmetric linear operators on b.
Such operators can in turn be represented by (possibly dense) matrices, which we’ll denote using Z
with various subscripts. Even though such an algorithm may not explicitly compute Z, running it
with b as input has the same effect as computing Zb. This allows us to directly bound the spectral
approximation ratios between Z and A†.

Measuring the similarity between two linear operators represented as matrices is more com-
plicated. The situation above with p (A) and A† is made simpler by the fact that their spectral
decompositions have the same eigenvectors. This additional structure is absent in most of our
matrix-approximation bounds. However, if we are comparing A against the zero matrix, any spec-
tral decomposition of A can also be used to give the zero matrix by setting all eigenvalues to 0.
This gives a generalization of non-negativity to matrices known as positive semi-definiteness.

Definition 1.6.2 (Positive Semi-definiteness) A matrix A is positive semi-definite if all its eigen-
values are non-negative.
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This definition extends to pairs of matrices A,B in the same way as scalars. The matrix general-
ization of ≤, �, can be defined as follows:

Definition 1.6.3 (Partial Ordering Among Matrices) A partial ordering � can be defined on
matrices by letting A � B if B− A is positive semi-definite.

We can now formally state the guarantees of the power series given in Equation 1.1 when all
eigenvalues of A are in a good range. The following proof is a simplified version of Richardson
iteration, more details on it can be found in Chapter 5.1. of [Axe94].

Lemma 1.6.4 If L is an n× n matrix with m non-zero entries where all eigenvalues are between
1
2

and 3
2
. Then for any ε > 0, there is an algorithm SOLVEL (b) that under exact arithmetic is a

symmetric linear operator in b and runs inO (m log (1/ε)) time. The matrix realizing this operator,
Z, satisfies:

(1− ε) L† � Z � (1 + ε) L†

Proof Our algorithm is to evaluate the first N = O (log (1/ε)) terms of the power series from
Equation 1.1. If we denote this polynomial as pN , then we have Z = pN (L). Its running time
follows from Horner’s rule (see e.g. Chapter 2 of [CSRL01]) and the cost of making one matrix-
vector multiplication in I− L.

We now show that Z spectrally approximates L†. Let a spectral decomposition of L be:

L =
n∑
i=1

λiuiuTi

Lemma 1.6.1 gives that applying pN to each eigenvalue also gives a spectral decomposition to Z:

Z =
n∑
i=1

pn (λi) uiuTi

Furthermore, the calculations that we performed in Section 1.5, specifically Equation 1.4 gives that
pn (λi) is a 1± ε approximation to 1

λi
:

(1− ε) 1

λi
≤ pn (λi) ≤ (1 + ε)

1

λi

This in turn implies the upper bound on Z:

(1 + ε) L† − Z =
n∑
i=1

(1 + ε)
1

λi
uiuTi −

n∑
i=1

pN (λi) uiuTi

=
n∑
i=1

(
(1 + ε)

1

λi
− pN (λi)

)
uiuTi
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This is a spectral decomposition of (1 + ε) L† − Z with all eigenvalues non-negative, therefore
Z � (1 + ε) L†. The LHS also follows similarity. �

Showing bounds of this form is our primary method of proving convergence of algorithms in
this thesis. Most of our analyses are simpler than the above proof as they invoke known results
on iterative methods as black-boxes. Proofs of these results on iterative methods are given in
Appendix D for completeness. The manipulations involving � that we make mostly rely on facts
that extends readily from scalars. We will make repeated use of the following two facts in our
algebraic manipulations.

Fact 1.6.5 If A, B are n× n positive semi-definite matrices such that A � B, then:

1. For any scalar α ≥ 0, αA � αB.

2. If A′ and B′ are also n× n positive semi-definite matrices such that A′ � B′, then A + A′ �
B + B′.

The composition of � under multiplication is more delicate. Unlike scalars, A � B and V
being positive semi-definite do not imply AV � BV. Instead, we will only use compositions
involving multiplications by matrices on both sides as follows:

Lemma 1.6.6 (Composition of Spectral Ordering) For any matrices V,A,B, if A � B, then
VTAV � VTBV

1.6.3 Error in Vectors

Viewing algorithms as linear operators and analyzing the corresponding matrices relies crucially
on the associativity of the operations performed. This property does not hold under round-off
errors: multiplying x by y and then dividing by y may result in an answer that’s different than
x. As a result, guarantees for numerical algorithms are often more commonly stated in terms of
the distance between the output and the exact answer. Our main results stated in Section 1.3 are
also in this form. Below we will formalize these measures of distance, and state the their close
connections to the operator approximations mentioned above.

One of the simplest ways of measuring the distance between two vectors x and x̄ is by their
Euclidean distance. Since distances are measured based on the difference between x and x̄, x− x̄,
we may assume x̄ = 0 without loss of generality. The Euclidean norm of x is

√
xTx, and can also

be written as
√

xT Ix where I is the identity matrix. Replacing this matrix by A leads to matrix
norms, which equals to xTAx.

Matrix norms are useful partly because they measure distances in ways aligned to the eigenspaces
of A. Replacing A by its spectral decomposition A gives:

xTAx =
∑
i

λixTuTi uix

=
∑
i

λi
(
xTu

)2
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When λi ≥ 0, this is analogous to the Euclidean norm with different weights on entries. Therefore,
positive semi-definite matrices such as SDD matrices leads to matrix norms. The A-norm distance
between two vectors x and y can then be written as:

‖x− x̄‖A =

√
(x− x̄)T A (x− x̄)

When A is positive semi-definite, the guarantees for algorithms for solving linear systems in A
are often stated in terms of the A-norm distance between x and x̄. We can show that the operator
based guarantees described above in Section 1.6.2 is a stronger condition than small distances in
the A-norm.

Lemma 1.6.7 If A is a symmetric positive semi-definite matrix and B is a matrix such that:

(1− ε) A† � B � (1 + ε) A†

then for any vector b = Ax̄, x = Bb satisfies:

‖x− x̄‖A ≤ ε ‖x̄‖A

We can also show that any solver algorithm with error < 1 can be improved into a 1± ε one by
iterating on it a small number of times. A variant of Richardson iteration similar to the one used in
the proof of Lemma 1.6.4 leads to the following black-box reduction to constant factor error:

Lemma 1.6.8 If A is a positive semi-definite matrix and SOLVEA is a routine such that for any
vector b = Ax̄, SOLVEA (b) returns a vector x such that:

‖x− x̄‖A ≤
1

2
‖x̄‖A

Then for any ε, there is an algorithm SOLVE′A such that any vector b = Ax̄, SOLVE′A (b) returns a
vector x such that:

‖x− x̄‖A ≤ ε ‖x̄‖A

by making O (log (1/ε)) calls to SOLVE′A and matrix-vector multiplications to A. Furthermore,
SOLVE′A is stable under round-off errors.

This means that obtaining an algorithm whose corresponding linear operator is a constant factor
approximation to the inverse suffices for a highly efficient solver. This is our main approach for
analyzing the convergence of solver algorithms in Chapters 2 and 3.

1.6.4 Graph Similarity

The running times and guarantees of our algorithms rely on bounds on spectral similarities between
matrices. There are several ways of generating spectrally close graphs, and a survey of them can
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be found in an article by Batson et al. [BSST13]. The conceptually simplest algorithm for spectral
sparsification is by Spielman and Srivastava [SS08]. This algorithm follows the sampling scheme
shown in Algorithm 1, which was first introduced in the construction of cut sparsifiers by Benczur
and Karger [BK96]

Algorithm 1 Graph Sampling Scheme

SAMPLE

Input: Graph G = (V,E,w), non-negative weight τ̃ e for each edge, error parameter ε.
Output: Graph H ′ = (V,E ′,w′).

1: for O(
∑

τ̃ log nε−2) iterations do
2: Pick an edge with probability proportional to its weight
3: Add a rescaled copy of the edge to the sampled graph
4: end for

This algorithm can be viewed as picking a number of edges from a distribution. These samples
are rescaled so that in expectation we obtain the same graph. Spielman and Srivastava [SS08]
showed the that for spectral approximations, the right probability to sample edges is weight times
effective resistance. Recall that the effective resistance of an edge e = uv is the voltage needed to
pass 1 unit of current from u to v. Formally the product of weight and effective resistance, τe can
be defined as:

τ e = wuvχ
T
uvL

†
Gχuv (1.6)

Where L†G is the pseudo-inverse of LG and χuv is the vector with −1 at vertex u and 1 at vertex
v. It was shown in [SS08] that if τ̃ are set close to τ , the resulting graph H is a sparsifier for G
with constant probability. This proof relied on matrix-Chernoff bounds shown independently by
Rudelson and Vershynin [RV07], Ahlswede and Winter [AW02], and improved by Tropp [Tro12].
Such bounds also play crucial roles in randomized numerical linear algebra algorithms, where the
values τe described above are known as statistical leverage scores [Mah11].

Koutis et al. [KMP10] observed that if τ̃ upper bounds τ entry-wise, H will still be a spar-
sifier. Subsequent improvements and simplifications of the proof have also been made by Ver-
shynin [Ver09] and Harvey [Har11]. To our knowledge, the strongest guarantees on this sampling
process in the graph setting is due to Kelner and Levin [KL11] and can be stated as follows:

Theorem 1.6.9 For any constant c, there exist a setting of constants in the sampling scheme shown
in Algorithm 1 such that for any weighted graph G = (V,E,w), upper bounds τ̃ ≥ τ , and
error parameter ε, the graph H given by the sampling process has O (

∑
e τ̃ e log nε−2) edges and

satisfies:

(1− ε)LG � LH � (1 + ε)LG

with probability at least 1− n−c
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A proof of this theorem, as well as extensions that simplify the presentation in Chapter 2 are
given in Appendix B. The (low) failure rate of this algorithm and its variants makes most of our
solver algorithms probabilistic. In general, we will refer to a success probability of 1 − n−c for
arbitrary c as “high probability”. As most of our algorithms rely on such sampling routines, we
will often state with high probability instead of bounding probabilities explicitly.

A key consequences of this sparsification algorithm can be obtained by combining it with
Foster’s theorem [Fos53].

Lemma 1.6.10 For any graph, the sum of weight times effective resistance over all edges is exactly
n− 1,

∑
e τ e = n− 1.

Combining Lemma 1.6.10 with Theorem 1.6.9 gives that for any graph G and any ε > 0,
there exists a graph H with O (n log nε−2) edges such that (1 − ε)LG � LH � (1 + ε)LG. In
other words, any dense graph has a sparse spectral equivalent. Obtained spectrally similar graphs
using upper bounds of these probabilities is a key part of our algorithms in Chapters 2 and 3. The
need to compute such upper bounds is also the main motivation for the embedding algorithms in
Chapter 4.
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Chapter 2

Nearly O(m log n) Time Solver

In this chapter we present sequential algorithms for solving SDD linear systems based on combi-
natorial preconditioning. Our algorithms can be viewed as both a speedup and simplification of
the algorithm by Spielman and Teng [ST06]. One of the key insights in this framework is that
finding similar graphs with fewer edges alone is sufficient for a fast algorithm. Specifically, if the
number of edges is n plus a lower order term, then the graph is ‘tree like’. Repeatedly performing
simple reduction steps along the tree reduces the graph to one whose size is proportional to the
number of off-tree edges. This need for edge reduction will also be the main driving goal behind
our presentation.

We will formalize the use of these smaller graphs, known as ultra-sparsifiers in Section 2.1, then
describe our algorithms in the rest of this chapter. To simplify presentation, we first present the
guarantees of our algorithm in the model where all arithmetic operations are exact. The numerical
stability of the algorithm is then analyzed in the fixed point arithmetic model in Section 2.6. The
main components of these algorithms appeared in two papers joint with Ioannis Koutis and Gary
Miller [KMP10, KMP11], while the improvements in Section 2.5 is joint with Gary Miller and
unpublished. Our result in the strongest form is as follows:

Theorem 2.0.1 Let L be an n × n graph Laplacian with m non-zero entries. We can preprocess
L in O (m log n log log n) time so that, with high probability, for any vector b = Lx̄, we can find
in O (m log n log(1/ε)) time a vector x satisfying ‖x− x̄‖L < ε ‖x̄‖L. Furthermore, if fixed point
arithmetic is used with the input given in unit lengthed words, O(1) sized words suffices for the the
output as well as all intermediate calculations.

When combined with the nearly-optimal construction of ultra-sparsifiers by Kolla et al. [KMST10],
our approach in Section 2.5 also implies solver algorithms that runs inO

(
m
√

log n log (1/ε)
)

time
for any vector b. We omit this extension as it requires quadratic preprocessing time using existing
techniques.

2.1 Reductions in Graph Size

Our starting point is an iterative method with improved parameters. Given graphs G and H and a
parameter κ such that LG � LH � κLG, a recurrence similar to Equation 1.1 allows us to solve a
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linear system involving LG to constant accuracy by solvingO(κ) ones involving LH . This iteration
count can be improved using Chebyshev iteration to O (

√
κ). Like Richardson iteration, it is well-

known in the numerical analysis literature [Saa03, Axe94]. The guarantees of Chebyshev iteration
under exact arithmetic can be stated as:

Lemma 2.1.1 (Preconditioned Chebyshev Iteration) There exists an algorithm PRECONCHEBY

such that for any symmetric positive semi-definite matrices A, B, and κ where

A � B � κA

any error tolerance 0 < ε ≤ 1/2, PRECONCHEBY(A,B, b, ε) in the exact arithmetic model is a
symmetric linear operator on b such that:

1. If Z is the matrix realizing this operator, then (1− ε)A† � Z � (1 + ε)A†

2. For any vector b, PRECONCHEBY(A,B, b, ε) takes N = O (
√
κ log (1/ε)) iterations, each

consisting of a matrix-vector multiplication by A, a solve involving B, and a constant number
of vector operations.

A proof of this Lemma is given in Appendix D.2 for completeness. Preconditioned Chebyshev
iteration will serve as the main driver of the algorithms in this chapter. It allows us to transform the
graph into a similar one which is sparse enough to be reduced by combinatorial transformations.

These transformations are equivalent to performing Gaussian elimination on vertices of degrees
1 and 2. In these limited settings however, this process has natural combinatorial interpretations.
We begin by describing a notion of reducibility that’s a combinatorial interpretations of partial
Cholesky factorization. This interpretation is necessary for some of the more intricate analyses
involving multiple elimination steps.

Definition 2.1.2 A graph G with mG edges is reducible to a graph H with mH edges if given any
solver algorithm SOLVEH corresponding to a symmetric linear operator on b such that:

• For any vector b, SOLVEH (b) runs in time T

• The matrix realizing this linear operator, ZH satisfies: L†H � ZH � κL†H

We can create in O(1) time a solver algorithm for LG, SOLVEG that is a symmetric linear operator
on b such that:

• For any vector b, SOLVEG (b) runs in time T +O (mG −mH)

• The matrix realizing this linear operator, ZG satisfies: L†G � ZG � κL†G

We will reduce graphs using the two rules below. They follow from standard analyses of partial
Cholesky factorization, and are proven in Appendix C for completeness.
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Lemma 2.1.3 LetG be a graph where vertex u has only one neighbor v. H is reducible to a graph
H that’s the same as G with vertex u and edge uv removed.

Lemma 2.1.4 Let G be a graph where vertex u has only two neighbors v1, v2 with edge weights
wuv1 and wuv2 respectively. G is reducible a graph H that’s the same as G except with vertex u
and edges uv1, uv2 removed and weight

wuv1wuv2

wuv1 + wuv2

=
1

1
wuv1

+ 1
wuv2

added to the edge between v1 and v2.

These two reduction steps can be applied exhaustively at a cost proportional to the size reduc-
tion. However, to simplify presentation, we will perform these reductions only along a (spanning)
tree. It leads to a guarantee similar to the more aggressive version: applying these tree reductions
greedily on graph with n vertices and m edges results in one with O(m − n) vertices and edges.
We will term this routine GREEDYELIMINATION.

Lemma 2.1.5 (Greedy Elimination) Given a graph G along with a spanning tree TG, there is a
routine GREEDYELIMINATION that performs the two elimination steps in Lemmas 2.1.3 and 2.1.4
on vertices that are incident to no off-tree edges and have degree at most 2. If G has n vertices
and m edges, GREEDYELIMINATION(G, TG) returns in O(m) time a graph H containing at most
7(m − n) vertices and edges along such that G is reducible to H , along with a spanning tree TH
of H formed by

Proof Note that each of the two operations affect a constant number of vertices, and removes the
corresponding low degree vertex. Therefore, one way to implement this algorithm in O(m) time
is to track the degrees of tree nodes, and maintain an event queue of low degree vertices.

We now bound the size of H . Let the number of off-tree edges be m′, and V ′ be the set of
vertices incident to some off tree edge, then |V ′| ≤ 2m′. The fact that none of the operations can
be applied means that all vertices in V (H) \ V ′ have degree at least 3. So the number of edges in
H is at least:

3

2
(nh − |V ′|) +m′

On the other hand, both the two reduction operations in Lemmas 2.1.3 and 2.1.4 preserves the fact
that T is a tree. So there can be at most nH − 1 tree edges in H , which means the total number of
edges is at most:

nH − 1 +m′ ≤ nH +m′
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Combining these two bounds gives:

3

2
(nH − |V ′|) +m′ ≤ nH +m′

3nH − 3|V ′| ≤ 2nH

nH ≤ 3|V ′| ≤ 6m′

Since the tree in H has nH − 1 edges, the number of edges can in turn be bounded by nH +m′ ≤
7m′. �

Therefore significant savings in running times can be obtained if G is tree-like. This motivated
the definition of ultra-sparsifiers, which are central to the solver framework by Spielman and Teng
[ST06]. The following is equivalent to Definition 1.1 of [ST06], but is graph theoretic and makes
the tree-like structure more explicit.

Definition 2.1.6 (Ultra-Sparsifiers) Given a graphG with n vertices andm edges, a (κ, h)-ultra-
sparsifier H is a graph on the same set of vertices such that:

• H consists of a spanning tree T along with hm
κ

off-tree edges.

• LG � LH � κLG.

Spielman and Teng showed that fast algorithms for constructing (κ, h)-ultra-sparsifiers leads
to solvers for SDD linear systems that run in O (mh log (1/ε)) time. At a high level this is because
Lemma 2.1.5 allows us to reduce solving a linear system on the ultra-sparsifier to one on a graph
of size O(hm

κ
) edges, while Lemma 2.6.3 puts the iteration count at κ. So the running time for

solving a system with m edges, T (m) follows a recurrence of the form:

T (m) ≤ O
(√

κ
)(

m+ T
(
hm

κ

))
Which is optimized by setting κ to about h2, and solves to T (m) = O (hm).

We will first show a construction of (κ,O(log2 n))-ultra-sparsifiers in Section 2.2, which by
themselves imply a solver that runs in about m5/4 time. In Section 2.3, we describe the recursive
preconditioner framework from [ST06] and show that it leads to a O(m log2 n log log n log(1/ε))
time solver. Then we optimize this framework together with our ultra-sparsification algorithm to
show an even faster algorithm in Section 2.5. This gives an algorithm for solving graph Laplacians
in O(m log n log(1/ε)) time.

2.2 Ultra-Sparsification Algorithm

As with the case of generating spectral sparsifiers, sampling by (upper bounds of) effective re-
sistance is also a natural approach for generating ultra-sparsifiers. However, to date obtaining
high quality estimates of effective resistances in nearly-linear time without using solvers remains
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an open problem. Our workaround to computing exact effective resistances relies on Rayleigh’s
monotonicity law.

Lemma 2.2.1 (Rayleigh’s Monotonicity Law) The effective resistance between two vertices does
not decrease when we remove edges from a graph.

This fact has a simple algebraic proof by the inequality (LG + LG′)
† � L†G as long as the

null space on both sides are the same. It’s also easy to check it in the extreme case. When edges
are removed so that two vertices are disconnected, the effective resistance between them becomes
infinite, which is at least any previous values.

Our use of Rayleigh’s monotonicity law will avoid extreme case, but just barely. We remove as
many edges as possible while keeping the graph connected. In other words, we will use resistive
values w.r.t. a single tree as upper bounds for the true effective resistance τe. Since there is only
one path connecting the end points of e in the tree, the resistance between its two end points is the
sum of the resistive values along this path.

An example of this calculation is shown in Figure2.1, where the tree that we calculate the
resistive value by is shown in bold.

4

5
2

2

Figure 2.1: The effective resistance RT (e) of the blue off-tree edge in the red tree is 1/4 + 1/5 +
1/2 = 0.95. Its stretch strT (e) = weRT (e) is (1/4 + 1/5 + 1/2)/(1/2) = 1.9

An edge’s weight times its effective resistance measured according to some tree can also be
defined as its stretch 1. This is a central notion in metric embedding literature [AKPW95] and has
been extensively studied [Bar96, Bar98, FRT04, EEST08, ABN08, AN12]. As a result, we will use
strT (e) as an alternate notation for this product of weight and tree effective resistance. Formally,
if the path between the end points of e is PT (e), the stretch of edge e is:

strT (e) =we

∑
e′∈PT (e)

re′

=we

∑
e′∈PT (e)

1

we′
(2.1)

We can also extend this notation to sets of edges, and use strT (EG) to denote this total stretch of
all edges in G. Since stretches are upper bounds for sampling probabilities, the guarantees of the
sampling procedure from Theorem 1.6.9 can be stated as:

1Formally, it equals to stretch in the graph where the length of an edge is the reciprocal of its weight. We will
formalize this in Chapter 4
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Lemma 2.2.2 There is an algorithm that takes a graph G = (V,EG,w) with n vertices and a
spanning tree and returns a graph H with n − 1 + O (strT (EG \ ET ) log n) edges such that with
high probability:

1

2
LG � LH �

3

2
LG

Note that the number of off-tree edges retained equals to O(log n) times their total stretch,
strT (EG \ ET ). As the stretch of an edge corresponds to the probability of it being sampled,
we need a tree where the total stretch to be as low as possible. Due to similar applications of
a tree with small total stretch in [ST06], algorithms generating them have received significant
interest [EEST08, ABN08, KMP11, AN12]. The current state of the art result is by Abraham and
Neiman [AN12]:

Theorem 2.2.3 There is an algorithm LOWSTRETCHTREE such that given a graphG = (V,E,w′),
LOWSTRETCHTREEG outputs a spanning tree T of G satisfying

∑
e∈E = O(m log n log log n) in

O(m log n log log n) time.

Combining Lemma 2.2.2 and Theorem 2.2.3 as stated gives H with O(m log2 n log log n)
edges, which is more edges than the number of edges in G. Of course, these ‘extra’ edges ex-
ist in the form of multi-edges, and the edge count in the resulting graph can still be bounded by m.
One way to see why direct sampling by stretch is not fruitful is to consider the case where all edges
in the graph have unit weight (and therefore unit resistance). Here the stretch of an edge cannot
be less than 1, which means the total estimates that we get is at least m. When combined with the
guarantees of the Sampling algorithm from Theorem 1.6.9, this leads to more edges (samples to be
precise) than we started with.

We remedy this issue by bringing in the parameter that we have yet to use: κ. Note that so far,
the sparsifiers that we generated are off only by a constant factor from G, while the definition of
ultra-sparsifiers allow for a difference of up to κ. We will incorporate this parameter in the simplest
way possible: scale up the tree by a factor of κ and applying this sampling algorithm. This leads
to the algorithm shown in Algorithm 2. The guarantees of this algorithm is as follows:

Algorithm 2 Ultra-sparsification Algorithm

ULTRASPARSIFY

Input: Graph G, spanning tree T , approximation factor κ
Output: Graph H

1: Let G′ be G with T scaled up by a factor of κ, and T ′ the scaled up version of T
2: Calculate τ̃ e = min{1, strT ′(e)} for all e /∈ T ′
3: return T ′ + SAMPLE(EG′ \ ET ′ , τ̃ )
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Theorem 2.2.4 (Ultra-Sparsifier Construction) There exists a setting of constants in ULTRA-
SPARSIFY such that given a graph G and a spanning tree T , ULTRASPARSIFY(G, T) returns in
O(m log n + strT (G) log2 n

κ
) time a graph H that is with high probability a

(
κ,O

(
strT (G)
m

log n
))

-ultra-sparsifier for G.

Proof Let G′ be the graph G with T scaled up by a factor of κ. We first bound the condition
number. Since the weight of an edge is increased by at most a factor of κ, we have G � G′ � κG.

Furthermore, because of the scaling, the effective resistance along the tree of each non-tree
edge decreased by a factor of κ. Thus for any off tree edge e, we have:

strT ′(e) =
1

κ
strT (e)

Summing over all edges gives:

strT ′(EG′ \ ET ′) ≤
1

κ
strT (EG \ ET )

Using Lemma 2.2.2, we can obtain a graphH with n vertices and n−1+ 1
κ
O (strT (EG \ ET ) log n)

edges such that with high probability:

1

2
LG′ � LH �

3

2
LG′

Chaining this with the relation between G and G′ gives:

LG � LG′ � 2LH � 3LG′ � 3κLG

For the running time, we need to first computed the effective resistance of each non-tree edge
by the tree. This can be done using the offline LCA algorithm [Tar79], which takes O (mα (m)) in
the pointer machine model. This is less than the first term in our bound. To perform each step of
the sampling process, we map each edge to an interval of [0, 1], and find the corresponding sample
in O(log n) time via. binary search. This gives the second term in our bound. �

Using this ultra-sparsification algorithm with κ = m1/2 log2 n log log n leads to a solver algo-
rithm that runs in about m5/4 time.

Lemma 2.2.5 In the exact floating arithmetic model, given a graph Laplacian for G with n ver-
tices and m edges, we can preprocess G in O (m log n log log n) time to obtain a solver algorithm
SOLVEG that’s a symmetric linear operator on b such that with high probability:

• For any vector b, SOLVEG (b) runs in O
(
m5/4 log n

√
log log n

)
time.

• If Z is a matrix realizing this operator, we have: 1
2
L†G � Z � 3

2
L†G
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Proof Consider the following two-level scheme: generate a (κ, h)-ultra-sparsifierH using Lemma 2.2.4,
reduce its size using the greedy elimination procedure given in Lemma 2.1.5 to obtain G1, and
compute an exact inverse of the smaller system.

SinceH has n vertices and n−1+hm
k

edges, the greedy elimination procedure from Lemma 2.1.5

gives that G1 has size O(hm
k

) vertices and edges. Therefore, the inverse of G1 has size O
((

hm
k

)2
)

and can be computed using matrix inversion in O
((

hm
k

)ω) time [Wil12].

Also, the condition number of κ implies that O(
√
κ) iterations are needed to obtain a solver for

LG. Each iteration consists of a matrix-vector multiplication involving LG, and a solve involving
LH . This gives a total running time of:

O

(
√
κ

(
m+

(
hm

κ

)2
)

+

(
hm

κ

)ω)
(2.2)

The inner term is optimized when κ = h
√
m, giving a total running time of:

O
(
h

1
2m

5
4 log(1/ε) +m

ω
2

)
(2.3)

The current best bound of ω ≈ 2.37 [Wil12] gives ω
2
< 5

4
, so the last term can be discarded.

Substituting in h = O(log2 n log log n) gives the stated running time. �

2.3 Recursive Preconditioning and Nearly-Linear Time Solvers

As alluded at the end of Section 2.1, the full potential of ultra-sparsifiers are realized when they are
applied in a recursive fashion. A main technical issue that needs to be resolved is that each level
of the recursion produces an approximate solution. This means that errors need to be propagated
up the levels of the recursion. As a result, it’s useful to list the systems involved in all layers of the
recursive calls in the form of G0 . . . Gd. To construct level i + 1 of this chain, we first construct a
(κi, h)-ultra-sparsifier for Gi, Hi+1. Then Gi+1 is obtained by performing greedy elimination on
Hi+1. This structure can be formalized via. the definition of a preconditioner chain.

Definition 2.3.1 (Preconditioning Chain) A preconditoining chain for a graph G is a sequence
of graphs {G = G0, H1, G1, . . . , Gd} along with size bounds {m0,m1, . . . ,md} and spectral
bounds {κ0, κ1, . . . , κd} such that:

1. LGi � LHi+1
� κiLGi for all 0 ≤ i ≤ d− 1 and κd = 1.

2. Gi = GREEDYELIMINATION(Hi) for all i ≥ 1.

3. The size of Gi is at most mi and md is smaller than a fixed constant.

The extra condition of κd = 1 is to ease the runtime analysis, since the number of matrix-
vector multiplies involving Gi also depends on κi. The preconditioning chain leads to recursive

30



algorithms for solving linear systems involving Gi. Preconditioned Chebyshev iteration allows us
to solve this system by making O(

√
κi) calls to solves involving Hi. This in turn leads to solves

involving Gi+1. This leads to the W-cycle algorithm described in Section 1.5.1. Its performance
can be described using the parameters of the preconditioning chain as follows:

Lemma 2.3.2 Given a preconditioning chain along with any error parameter ε, for each i there is
an algorithm SOLVEGi such that:

• For any vector b, SOLVEGi (b) runs in time: O
(∑d

i′=imi′
∏i′

j=i

√
crecκj

)
, where crec is an

absolute constant.

• SOLVEGi corresponds to a symmetric linear operator on b, and if ZGi is the matrix realizing
this operator, it satisfies: 1

2
L†Gi � ZGi � 3

2
L†Gi

Proof The proof is by induction backwards on the levels i. The case where i = d follows by the
assumption that md is smaller than a constant. Suppose the result is true for i + 1, then we have
an algorithm SOLVEGi+1

that’s a symmetric linear operator and its corresponding matrix ZGi+1

satisfies:

1

2
L†Gi+1

� ZGi+1
� 3

2
L†Gi+1

As Gi+1 was obtained by greedy elimination from Hi+1, Hi+1 is reducible to Gi+1. Therefore we
can obtain an algorithm SOLVEHi+1

corresponding to a matrix ZHi+1
such that:

1

2
L†Hi+1

� ZHi+1
� 3

2
L†Hi+1

2

3
LHi+1

� Z†Hi+1
� 2LHi+1

The definition of reducibility in Defintion 2.1.2 gives that computing ZHi+1
b for some vector b

takes time that’s O(mi −mi+1) = O(mi) more than the time of running SOLVEHi+1
. Invoking the

inductive hypothesis gives that SOLVEHi+1
runs in time:

O (mi) +
d∑

i′=i+1

mi′

i′∏
j=i+1

√
crecκj ≤ O(mi) +

d∑
i′=i+1

mi′

i′∏
j=i+1

√
crecκj

As LHi+1
satisfies LGi � LHi+1

� κiLGi , Z†Hi+1
also satisfies:

2

3
LGi � Z†Hi+1

� 2κiLGi

Therefore preconditioned Chebyshev iterations as given by Lemma 2.1.1 with A = LGi and
B = 3

2
Z†Hi+1

gives us a routine SOLVEGi meeting the required conditions. Its iteration count is
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O(
√

2
3
κi) = O(

√
κi). Furthermore, each solve involving B is equivalent to computing 2

3
ZHi+1

b′

for some vector b′. This is in turn equivalent to calling SOLVELHi+1
(b′). Substituting the running

time this routine gives a total running time of:

O (
√
κi)

(
O(mi) +

d∑
i′=i+1

mi′

i′∏
j=i+1

√
crecκj

)

= miO(
√
κi) +O(

√
κi) ·

d∑
i′=i+1

mi′

i′∏
j=i+1

√
crecκj

By choosing crec to be larger than the absolute constants and rearranging gives the total runtime.
�

This recursive framework was envisioned with ultra-sparsifiers in mind. Therefore, our ultra-
sparsification algorithm from Theorem 2.2.4 can readily substituted into it. By picking a uniform
κ at each level and rerunning the ultra-sparsification algorithm, we obtain the following result first
shown in [KMP10].

Lemma 2.3.3 In the exact arithmetic model, given a graph G with n vertices, m edges, and cor-
responding graph Laplacian LG. For any vector b = LGx̄ and and error ε > 0, we can find in
O(m log2 n log log n log(1/ε)) time a vector x such that with high probability:

‖x− x̄‖A ≤ ε ‖x̄‖A

Algorithm 3 Simple Preconditioning Chain Construction

BUILDCHAINSIMPLE

Input: Graph G.
Output: Preconditioning chain.

1: G0 := G
2: d = 0
3: Pick appropriate constants c and cstop.
4: while md > cstop do
5: TGd ← LOWSTRETCHTREE(Gd)
6: κd ← c log4 nd log log2 nd
7: Hd+1 ← ULTRASPARSIFY(Gd, TGd , κd)
8: Gd+1 ← GREEDYELIMINATION(Hd+1)
9: d← d+ 1

10: end while
11: return {G0, H1, G1, . . . Hd, Gd}, {κ0 . . . κd−1, 1}

Proof We will generate a preconditioning chain by calling the ultra-sparsifier on Gi and per-
forming greedy elimination until Gi is of constant size. Pseudocode of this algorithm is shown
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in Algorithm 3. Since we only made O(log n) calls to ULTRASPARSIFY, applying union bound
gives that these calls all succeed with high probability. If we let cu be the constant from the
ultra-sparsification algorithm from Theorem 2.2.4 and the low-stretch spanning tree from Theo-
rem 2.2.3, the the number of off-tree edges in Hi can be bounded by:

cu log2mi log logmi

c log4mi log log2mi

mi =
cu

c log2mi log logmi

mi

Since Gi+1 is obtained from Hi+1 using greedy elimination, its edge count can be bounded using
Lemma 2.1.5:

mi+1 ≤
7cu

c log2mi log logmi

mi

Applying this inductively gives;

mi ≤ m0

i−1∏
j=0

(
7cu

c1 log2 nj log log nj

)
Recall that the total work for SOLVE(G0) given by Lemma 2.3.2 is:

d∑
i=0

mi

i∏
j=0

√
crecκj

Invoking the bound on mi on each term allows us to bound them as:

mi

i∏
j=i

√
crecκj ≤ m0

i−1∏
j=0

(
7cu

c log2 nj log log nj

) i∏
j=0

√
crecκj

≤ m0

i−1∏
j=0

(
7cu

c log2 nj log log nj

) i∏
j=0

√
crecc log4 nj log log2 nj

= m0

√
crecc log4 ni log log2 ni

i−1∏
j=0

7cu

√
crecc log4 nj log log2 nj

c log2 nj log log nj


= m0

√
crecc log4 ni log log2 ni

i−1∏
j=0

(
7cu
√
crec√
c

)

So if we pick c such that c ≥ 100c2
ucrec, the last term can be bounded by

(
1
2

)i Also, since c and crec
are both constants and ni ≤ n, the first term can be bounded by O(log2 n log log n). So the overall
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work can be bounded by:

d∑
i=0

O(m log2 n log log n)

(
1

2

)i
As the terms are geometrically decreasing, this gives a total of O(m log2 n log log n). The runtime
needed to get to an accuracy of ε can then be obtained by converting error to vector form as shown
in Lemma 1.6.7, and reducing error by iterating using Lemma 1.6.8 �

2.4 Reuse, Recycle, and Reduce the Tree

We now show that a more holistic examination of the preconditioning chain leads to an even
faster algorithm. The key observation is that the previous low stretch spanning tree remains as
an extremely good tree in the ultrasparsifier. Here it is helpful to view both ULTRASPARSIFY and
GREEDYELIMINATION as returning a tree along with a graph. We first observe that if (H,TH) is
returned by ULTRASPARSIFY(G, TG, κ), the total stretch of H w.r.t TH is smaller by a factor of κ,
aka. strTG(G)/κ.

Lemma 2.4.1 If (H,TH) = TREEULTRASPARSIFY(G, TG, κ), then strTH (H) = strTG(G)/κ

Proof Let G′i be the graph formed by scaling up TG by a factor of κ in G. Let the new tree in this
graph be T ′G. By definition of stretch we have strTG′ (G

′) = strTG(G)/κ.

Now consider the effect of the sampling procedure used to obtain H from G′. Clearly the tree
is unchanged, TH = TG′ . When an edge e is picked, its weight is rescaled to its weight divided by
the probability of it being sampled, which is in turn proportional to its stretch times log n. So the
new weight is:

w′e =
we

pe

=
we

strTH (e)cs log n

=
we

weRTH (e)cs log n

=
1

RTH (e)cs log n

So the stretch of the edge when sampled is:

strTH (e′) = w′eRTH (e)

=
1

cs log n
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As the total number of edges sampled is csstrTH (G′) log n = cs log n
strTG (G)

κ
, we have strTH (H) =

strTG (G)

κ
. �

The other operation that we perform on the graphs is GREEDYELIMINATION. We next show
that it also does not increase the total stretch of the off-tree edges.

Lemma 2.4.2 Let (G, TG) := GREEDYELIMINATION(H,HT ), then:

strTG(G) = strTH (H)

Proof It suffices to show that for any off tree edge e, RTH (u, v) = RTG(u, v). Since the path
between the endpoints of e,PTG(e), along with e forms a cycle, none of the vertices can be removed
by the degree 1 vertex removal rule given by Lemma 2.1.3. Therefore, the only case to consider is
the degree 2 vertex removal rule given by Lemma 2.1.4. Here two adjacent edges e1 and e2 on the
path are replaced by an edge with weight:

1
1

we1
+ 1

we2

But the resistance of the new edge is precisely the sum of resistances of the two edges removed.
So the resistance of the path remains unchanged. �

This leads to an algorithm for building an improved chain by reusing the spanning trees from
one level to the next. Its pseudocode is given in Algorithm 4.

Algorithm 4 Preconditioning chain Construction

BUILDCHAIN

Input: Graph G, first stage reduction parameter κ0, subsequent reduction parameter c.
Output: Preconditioning chain.

1: Choose constant cstop
2: G0 ← G
3: TG0 ← LOWSTRETCHTREE(G0)
4: d = 0
5: while md > cstop do
6: Set κd to c if d > 0
7: (Hi+1, THd+1

)← ULTRASPARSIFY(Gd, TGd , κd)
8: (Gd+1, TGd+1

)← GREEDYELIMINATION(Hd+1, Td+1)
9: d← d+ 1

10: end while
11: return {G0, H1, G1, . . . Hd, Gd}, {κ0 . . . κd−1, 1}

By an argument almost analogous to the proof of the O
(
m log2 n log log n log(1/ε)

)
time al-

gorithm from Lemma 2.3.3, we can show a running time of O(m log n
√

log log n log(1/ε). This
was the main result shown in [KMP11].
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Lemma 2.4.3 If κ0 is set to log2 n log log n, and κi to c for a suitable constant c for all i ≥ 1, then
for any vector b, SOLVEG0 (b) runs in O(m log n

√
log log n) time.

Proof We first show that the sizes of mi are geometrically decreasing. Lemmas 2.4.1 and 2.4.2
gives:

strTGi+1
(Gi+1) ≤ 1

κi
strTGi (Gi)

Also, the size of the ultrasparsifier produced by ULTRASPARSIFY is directly dependent on stretch.
If we let cs denote the constant in Theorem 2.2.4, we can bound mi when i ≥ 1 by:

mi ≤ 7cs log n · strTGi−1
(Gi−1)

≤ 7cs log n · strTG0
(G0)

i−1∏
j=0

1

κj

Substituting this into the runtime bound given in Lemma 2.3.2 gives that the total runtime can be
bounded by:

d∑
i=0

mi

i∏
j=0

√
crecκj ≤ O(

√
κ0m) +

d∑
i=1

7cs log n · strTG0
(G0)

i−1∏
j=0

1

κj

i∏
j=0

√
crecκj

Since for all i ≥ 1, κi were set to c, this becomes:

= O(
√
κ0m) +

d∑
i=1

7cs log n · strTG0
(G0)

1

κ0

(
1

c

)i−1√
crecκ0 (

√
crecc)

i

= O(
√
κ0m) +

7cscrec
√
c log n · strTG0

(G0)
√
κ0

d∑
i=1

(√
crec
c

)i−1

An appropriate choice of constant c makes crec
c

less than 1, which in turn makes geometric series
involving

√
crec
c

sum to a constant. Also, our choice of κ0 = log2 n log log nmeans bothO(
√
κ0m)

and
7cs logn·strTG0

(G0)
√
κ0

evaluate to O
(
m log n

√
log log n

)
, completing the proof. �

2.5 Tighter Bound for High Stretch Edges

The analysis of the algorithm in the previous section is not tight w.r.t. high stretch edges. This
is because edges with stretch more than 1

logn
are treated as many samples when we construct our

ultrasparsifiers, even though they can be moved without change from G to H . When such bounds
are taken into account, we obtain the following slightly improved bound.
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Lemma 2.5.1 For any constant α > 1
2
, there is a choice of c such that a preconditioning chain

returned by BUILDCHAIN leads to routine SOLVEG0 with running time:

O(log n) ·

(
m+

∑
e

(
strT (e)

log n

)α)

Proof Similar to the proof of Lemma 2.4.3, the running time of SOLVE(G0) can be bounded by:

d∑
i=0

mi

i∏
j=0

√
crecκj =

√
crecκ0 ·

(
m+

d∑
i=0

mi (crecc)
i
2

)

The difference in our analysis is that mi is decomposed into terms per edge depending on its
stretch:

mi =
∑
e

min

{
1, log nstrT (e)

i−1∏
j=0

1

κj

}

=
∑
e

min

{
1,

strT (e)

log n

(
1

c

)i−1
}

Therefore the second term in the total cost can be rewritten as a summation per edge:

d∑
i=0

mi

i∏
j=0

√
crecκj =

∑
e

d∑
i=1

(crecc)
i
2 min

{
1,

strT (e)

log n

(
1

c

)i−1
}

Therefore it suffices to bound this sum for each edge individually. For the rest of this proof, we
will consider a single edge e. Let k be the value such that strT (e)

logn
is between ck−1 and ck. When

i ≤ k + 1, we can upper bound the term contained in min{·} by 1, and obtain:

k+1∑
i=1

(crecc)
i
2 min

{
1,

strT (e)

log n

(
1

c

)i−1
}
≤

k+1∑
i=1

(crecc)
i
2

=
(crecc)

k+2
2 − (crecc)

1
2

(crecc)
1
2 − 1

≤ (crecc)
k+2
2 Assuming crecc ≥ 4
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When i > k + 1, we have:

strT (e)

log n

(
1

c

)i−1

≤ ck
(

1

c

)i−1

=

(
1

c

)i−k−1

And the summation from i = k + 1 to d gives:

d∑
i=k+1

(crecc)
i
2 min

{
1,

strT (e)

log n

(
1

c

)i−1
}
≤

d∑
i=k+1

(crecc)
i
2

(
1

c

)i−k−1

= (crecc)
k+1
2

d−k−1∑
i=0

(crec
c

)i/2
Once again, by choosing c > 4crec, we have crec

c
≤ 1

4
, so the geometric series can be bounded by

O(1). Adding both of these two terms together gives:

d∑
i=1

(crecc)
i
2 min

{
1,

strT (e)

log n

(
1

c

)i−1
}
≤ O

(
(crecc)

k+2
2

)

For an appropriately large choice of c (e.g. c ≥ c
2

α− 1
2

rec ), we have:

(crecc)
1
2 ≤ cα

So we can in turn bound the work associated with e by:

O
(

(crecc)
k+2
2

)
≤ O

(
c(k+2)α

)
≤ O

((
strT (e)

log n

)α)
Where the last line follows from the assumption that ck−1 ≤ strT (e)

logn
and c being a constant. Sum-

ming over all edges then gives the total bound. �

This lemma shows that stretch under a different norm is more closely related to runtime of
recursive methods using Chebyshev iteration. In Section 4.4, specifically Claim 4.4.1, we sketch
O(m log n log log n) time algorithms for the construction of trees where the second parameter is
O(m):

Claim 4.4.1 Let α be any constant such that 0 ≤ α < 1. Given weighted graph G = (V,E,w),
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we can find in O (m log n log log n) time a spanning tree T such that:∑
e

(
strT (e)

log n

)α
≤ O(m)

This leads to preconditioning chains on which recursive preconditioning runs inO (m log n log (1/ε))
time, and gives the result stated in Theorem 2.0.1 in the exact arithmetic model.

2.6 Stability Under Fixed Point Arithmetic

We now show that our algorithm is stable under fixed-point arithmetic. Various models of round-
off errors are possible, and a discussion of such errors can be found in most books on numerical
analysis (e.g. Chapter 2 of [Hig02]). The model that we work under is fixed-point, which is
more restricted than the more realistic floating-point model. A number is then stored by keeping
a bounded number of digits both before and after the decimal point. This amount of digits, which
we assume is more than the number of digits that values of the input are given in, is also referred to
as a word in the unit-cost RAM model. Round-off errors in this model occur when the lower digits
are truncated after a computation. This can be viewed as perturbing the results of computations
additively by εm, which is known as the machine epsilon. To simplify our analysis, we will assume
such perturbations are worst-case.

Storing a fixed number of digits after the decimal point can also be viewed as keeping all
numbers involved as integers while keeping a common denominator. The connection between
fixed-point and integer arithmetic means that if the length of a number isW , arithmetic in numbers
of length O(W ) can be performed in O(1) time. Therefore, convergence using words of length
O(1) in some sense makes an algorithm stable under fixed-point arithmetic since its running time
only increases by a constant factor from the exact setting.

One of the major simplifications enabled by working with fixed point arithmetic is that we
can assume that our vectors are always orthogonal to the all ones vector. This is because as a
post-processing step, we can set the last entry to negation of the sum of all other entries. Since
the exact version of all of our intermediate vectors are also orthogonal to the all ones vector, the
extra distortion caused by this can be absorbed by decreasing the machine epsilon by a factor of
poly (n).

At the bottom level, one of the main sources of round-off errors are the linear-algebraic oper-
ations: matrix-vector multiplication, scaling a vector by a constant, and adding vectors. Here it is
convenient to represent this error as a vector, which we will denote using err. We will incorporate
round-off errors by showing that εm < 1/poly (U) suffices for convergence. Since the sizes of
all matrices and vectors are bounded by by poly (n) ≤ poly (U), we can instead let εm be the
bound on the magnitude of err, aka. ‖err‖2 ≤ εm. Furthermore, we will treat all vector scaling
operations as being performed with the exact value of the corresponding coefficient. This is done
by computing this coefficient to an accuracy inversely proportional to the maximum entry of the
vector times εm/poly (U). This represents a constant factor overhead in the amount of digits being
tracked.
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We will show that when edge weights are polynomially bounded, using O(1)-sized words for
all intermediate steps suffice for approximate solutions. This is done in two main steps: showing
that sufficiently small values of machine epsilon leads to a small cumulative error; and bounding
magnitude of all intermediate values using this assumption of small cumulative error. These two
steps correspond to bounding the number of digits needed after the decimal point, and in front of
it respectively.

The main difficulty of the first step is the propagation of errors in our recursive algorithm. The
main idea of our proof is to explicitly track all the error terms, and show that they increase by a
factor of poly (κi) when we move from level i+ 1 to level i. This suffices because the key fact that
the product of all κi in the preconditioning chain is poly (n). The second step of upper bounding
the magnitude of vectors is then done by proceeding down the preconditioning chain similarly.
Since our goal is to bound increases in error by poly (κi), we do not optimize for the exponent on
κi in our proofs. In fact, we often leave larger exponents in order to simplify presentation.

In the exact arithmetic setting, our analysis treats solver algorithms as symmetric linear opera-
tors and analyzed their corresponding matrices. One side-effect of this is that for a fixed precondi-
tioning chain (as defined in Definition 2.3.1), recursive preconditioning is viewed as a deterministic
process. 2 The introduction of adversarial round-off errors means that running recursive precon-
ditioning twice using the same chain on the same input may not even give the same result. As a
result, our proofs are based on bounding the deviation from this exact operator. We will make use
of the following definition captures both of these error parameters, as well as the running time.

Definition 2.6.1 An algorithm SOLVEA is an (ε, ε1, T )-solver for a positive semi-definite matrix A
if there exists a symmetric matrix Z such that:

1. (1− ε) A† � Z � (1 + ε)A†

2. For any vector b = Ax̄, SOLVEA(b) produces in time T a vector x such that:

‖x− Zb‖A ≤ ε1

Similar to the setting of exact arithmetic, we will refer to any matrix Z meeting these conditions
as a matrix approximating SOLVEA. When b is provided in a normalized form and the additive
error ε1 is significantly less than the minimum non-zero eigenvalue of A† (aka. the inverse of the
maximum eigenvalue of A), this also gives convergence in A norm.

Lemma 2.6.2 If the maximum eigenvalue of A, is at most εε−1
1 and SOLVEA is an (ε, ε1)-solver for

A. Then for a vector b = Ax̄ such that ‖b‖2 ≥ 1, x = SOLVEA (b) satisfies:

‖x− x̄‖A ≤ 2ε ‖x̄‖A

2Note on the other hand that the preconditioning chains is generated probabilistically, making the overall algorithm
probabilistic.
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Proof

Let Z be a matrix approximating SOLVEA. The triangle inequality allows us to decompose the
error into two terms:

‖x− x̄‖A ≤ ‖x− Zb‖A + ‖x̄− Zb‖A

The first term can be bounded by ε1 by the given condition. Lemma 1.6.7 allows us to bound
the second term by ε ‖x̄‖A.

We now need to lower bound ‖x̄‖A. Since b is in the column space of A, ‖x̄‖A = ‖b‖A† . The
bound on the maximum eigenvalue of A gives that the minimum non-zero eigenvalue of A† is at
least ε−1ε1. Combining these gives ‖b‖A† ≥ ε−1ε1 ‖b‖2 = ε−1ε1.

So both terms can be bounded in terms of relative error, giving the overall bound. �

We will use this definition to show that round-off errors accumulate in a controllable way in
recursive solvers that use the preconditioner chains given in Definition 2.3.1. There are three
sources of these errors: iterative methods, greedy elimination, and matrix-vector operations. For
iterative methods, a system in LGi is solved by solving O(

√
κi) systems in LHi+1

. In Appendix D,
we show the following bound on Chebyshev iteration with round-off errors:

Lemma 2.6.3 (Preconditioned Chebyshev Iteration) Given a positive semi-definite matrix A with
m non-zero entries and all non-zero eigenvalues between 1

λ
and λ, a positive semi-definite matrix

B such that A � B � κA, and a (0.2, ε1, T )-solver for B, SOLVEB. If εm < ε1
20κλ

, precon-
ditioned Chebyshev iteration gives a routine SOLVEA that is a (0.1, O(κε1), O(

√
κ(m+ T )))-

solver for A. Furthermore, all intermediate values in a call SOLVEA(b) have magnitude at most
O(
√
λ (‖b‖A† + κε1)) and the calls to SOLVEB involve vectors b′ such that ‖b′‖B† ≤ ‖b‖A† +

O (κε1).

To the systems involving LHi+1
are in turn solved by performing greedy elimination on it and

recursing on the result. In Appendix C, we prove the following guarantees about the greedy elim-
ination process. Note that the weights can fluctuate by a factor of n in a single iteration. For
example a unit weight path of length n with endpoints incident to off-tree edges becomes a single
edge of weight 1

n
. Therefore to avoid factors of nd = nO(logn), we will track the total resistance of

tree edges instead.

Lemma 2.6.4 (Greedy Elimination) LetG be a graph on n vertices with a spanning tree TG such
that the minimum resistance of a tree edge is at least rmin ≤ 1 and the total resistance is at most
rs ≥ 1. If εm ≤ rmin

3n3rs
, then running GREEDYELIMINATION onG and TG inO(m) time to produces

a graph H with a spanning tree TH such that:

1. The weights of all off tree edges are unchanged.

2. The resistance of an edge in TH is at least rmin and the total is at most 2rs.
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3. If a tree edge in TH has weight w̃e and its weight if exact arithmetic is used would be w̄e,
then 1

2
w̄e ≤ w̃e ≤ w̄e.

4. Given a routine SOLVELH that is a (ε, ε1, T )-solver for LH , we can obtain a routine SOLVELG
that is a (2ε, 2ε1, T +O(m))-solver for LG, Furthermore, for any vector b, SOLVELG makes
one call to SOLVELH with a vector b′ such that ‖b′‖L†H

≤ ‖b‖L†G
+ 1 and all intermediate

values are bounded by O(n3(rs + r−1
min)(‖b‖L†G

+ 1)).

Part 3 means that the preservation of stretch given in Lemma 2.4.2 still holds, albeit with
an extra constant. It can be checked that this leads to a constant factor increase in the runtime
bounds shown in Lemmas 2.4.3, and 2.5.1, assuming that the preconditioner chain is invoked in
the same way. To this end, we use the two Lemmas above to show a version of Lemma 2.3.2 that
incorporates round-off errors. To start an inductive argument for bounding round-off errors, we
first need to show that edge weights in all layers of the solver chain are polynomially bounded.
These weights are modified in three ways:

1. Scaling of the tree in ULTRASPARSIFY

2. Rescaling of sampled off-tree edges sampled in ULTRASPARSIFY.

3. Modification of edges weights by GREEDYELIMINATION.

Lemma 2.6.5 If all edge weights inG = G0 are in the range [1, U ] and εm ≤ 1
3
n−3U−1

∏d
i=0(2κi)

−1,
the requirements of Lemma C.2.5 are met in all calls to GREEDYELIMINATION during the con-
struction of the solver chain, and the weights of all tree edges in all levels of the preconditioning
chain can be bounded by

[
2−dn−2, U

∏d−1
i=1 κi

]
.

Proof We show by induction down the preconditioner chain that the minimum resistance in
Gi is at least

∏
j<i κ

−i
j U

−1, the total resistance is at most rs ≤ 2i−1n2, and the requirements of
Lemma C.2.5 are met when creating Gi for i ≥ 1. For the base case of i = 0 we have rmin ≥ U−1

and rs ≤ n2.

For the inductive step, note that the sampling procedure does not change the weight of tree
edges. Therefore the only changes in tree weights in Hi+1 are from scaling up the tree by a factor
of at most κi. This means that the minimum resistance in Hi+1 is bounded by

∏
j<i+1 κ

−i
j U

−1,
while the bound for total resistance still holds. Since κi ≥ 1, these two conditions along with the
bound on εm implies the requirement of εm ≤ rmin

3n3rs
by Lemma C.2.5. Its guarantees then gives that

the minimum resistance in Gi+1 is at least
∏d

i=1 κ
−i
i U

−1 while the total is at most 2im. Therefore
the inductive hypothesis holds for i+ 1 as well.

The lower bound for resistance gives the upper bound on edge weight. Also, the upper bound
on total resistance is also an upper bound on the resistance of a single edge. Taking its inverse
gives the lower bound on edge weights. �
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It remains to bound the weights of off-tree edges. The simplification to ULTRASPARSIFY of
keeping instead of sampling high stretch edges ensure that the weights of samples do not decrease.
The total edge weight also follows readily from the spectral guarantees obtained.

Lemma 2.6.6 If all edge weights inG = G0 are in the range [1, U ] and εm ≤ 1
3
n−3U−1

∏d
i=0(2κi)

−1,

then with high probability all edge weights in Gi are in the range
[
2−dn−2, n2U

∏d
i=0 (2κi)

]
.

Proof The lower bound on edge weights follows from the lower bound of tree edge weights from
Lemma 2.6.5 and the fact that weights of sampled off-tree weights do not decrease.

The upper bound for weights of tree edges is also given by Lemma 2.6.5 For the off-tree edges,
their total weight which is initially bounded by mU . If Hi+1 is an ultra-sparsifier for Gi, applying
the test vector χu to LG and LH gives that the weighted degree of each vertex increases by a
factor of at most κi. Therefore the total weight of off-tree edges increases by a factor of at most
κi from Gi to Hi+1 with high probability. These edge weights are then left unchanged by the
greedy elimination procedure. Hence the total weight of off-tree edges in any Gi can be bounded
by n2U

∏
j<i κj as well. �

The recursive nature of the solver makes it possible for errors accumulated to affect the magni-
tude of the vectors passed to subsequent calls. Therefore, we need to start with bounding the error,
or deviations in lower order bits.

Lemma 2.6.7 If all edge weights in G are in the range [1, U ] and εm ≤ n−3U−1
∏d

i=0(2κi)
−1,

there is a constant crec such that the routine SOLVEGi as given in Lemma 2.3.2 is a(
0.1, n2Uεm

∏i−1
j=0 κj20

∏d
j=i crecκ

2
j ,
∑d

j=imj

∏j
k=i crec

√
κk

)
-solver for LGi .

Proof The proof is by induction. For i = d, we can apply known results about the numerical
stability of Cholesky factorizations (e.g. Theorem 10.6 in [Hig02]). Since Gd has fixed size and
all edge weights in Gd fit into O(1) sized words, we can compute the answer up to round-off error.
Also, since the maximum edge weight of an edge in Gd is U

∏d
j=0 κj , the LGd-norm of this vector

is at most 20εm
∏d

j=0 κj

For the inductive step, assume that the inductive hypothesis holds for i + 1. Then there is a
(0.1, ε1, T ) solver for LGi+1

with:

ε1 = Uεm

i∏
j=0

κj

d∏
j=i+1

crecκ
2
j

T =
d∑
j=i

mj

j∏
k=i

SinceGi+1 is obtained fromHi+1 by greedy elimination, Lemma C.2.5 gives a routine SOLVELHi+1

that is a (0.2, 2ε1, O(mi) + T )-solver for LHi+1
.
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It remains to bound the effect of using preconditioned Chebyshev iteration obtain a solver
for LGi using SOLVELHi+1

. The bounds on edge weights in Gi given in Lemma 2.6.6 means

that the non-zero eigenvalues of LGi+1
are in the range

[
2−dn−3, n2U

∏d
i=0 (2κi)

]
Therefore λ =

n2U
∏d

i=0 (2κi) suffices as the eigenvalue bound needed for Lemma 2.6.3. It can also be checked
that our bound on εm satisfies εm ≤ ε1

20κλ
. Since LGi � LHi+1

� κLGi , preconditioned Chebyshev
iteration as stated in Lemma 2.6.3 gives SOLVELGi that is (0.1, O(κiε1), O(

√
κi(mi + T )))-solver

for LGi . By choosing crec to be larger than any of the constants in the O(·), these parameters can
be simplified to:

crecκiε1 = crecκiUεm

i∏
j=0

κj

d∏
j=i+1

crecκ
2
j

= crecκiUεm

i−1∏
j=0

κj

d∏
j=i

crecκ
2
j

crec
√
κi (mi + T ) = crec

√
κi)

(
mi +

d∑
j=i+1

mj

j∏
k=i

crec
√
κk

)

=
d∑
j=i

mj

j∏
k=i

crec
√
κk

Hence the inductive hypothesis holds for i as well. �

It remains to show that none of the values encountered in the intermediate steps are too large.
These values can be upper bounded using the assumption that overall error is not too large.

Lemma 2.6.8 If all edge weights inG = G0 are in the range [1, U ] and εm ≤ n−3U−1
∏d

i=1 c
−1
recκ

−2
i ,

then on input of any vector b, all intermediate values in a call to SOLVELG0
can be bounded by

O
(
n2U

(
‖b‖L†G

+ n
)∏d

i=0 crecκi

)
Proof The choice of εm satisfies the requirements of of Lemmas 2.6.3 and 2.1.5. It also implies
thatO(κiε1) ≤ 1 in all the invocations of preconditioned Chebyshev iteration. Therefore the vector
b passed to SOLVELGi and SOLVELHi all satisfy ‖b‖L†Gi

, ‖b‖L†Hi
≤ ‖b‖L†G

+ d ≤ ‖b‖L†G
+ n

The bounds of intermediate values then follows from the bounds on edge weights given in
Lemma 2.6.6 and Lemma 2.6.3 with λ = n2U

∏d
i=0(2κi) and Lemma 2.1.5 with rs ≤ 2dn2 and

r−1
min ≤ n2U

∏d
i=0(2κi). Also, the bounds on intermediate values of the last level follows from

known results on Cholesky factorization [Hig02] and the bounds on the input vectors. �

As κ1 = O(log2 n) and κi are constants for all i ≥ 2, their product is poly (n). Substituting
these values shows that the algorithm is stable when εm is bounded by 1/poly (U). This allows us
to bound the numerical precision of the algorithm from Theorem 2.0.1.
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Proof of Theorem 2.0.1: Let the word size be logU . That is, n,m, ε−1 ≤ U , and all entries in b
and weights in L are entries between 1 and U .

Note that since κ0 ≤ n, d = O (log n) and κi are constant for all i > 1,
∏d

i=0 κi is poly (U).

Therefore Lemma 2.6.7 gives that setting εm = poly (U−1) leads to aO
(

0.2, 0.2U−2,
∑d

i mi

∏d
j=i crec

√
κj

)
-

solver to L.

This choice of εm also meets the requirement of Lemma 2.6.8. Hence, the maximum magnitude
of a vector encountered is:

n2U
(
‖b‖L†Gi

+ n
) d∏
j=0

crecκj = poly (U) ‖b‖†LG

Since all entries of b are at most U , ‖b‖2 ≤
√
nU . As the graph is connected and all weights are

at least 1, the minimum eigenvalue of LGi is at least 1
n2 . So ‖b‖†LGi ≤ n3/2U = poly (U). Hence,

it suffices to keeping O(1) words both before and after the decimal point.

Therefore, O(1) sized words suffice and the total running time of the solver follows from
Lemma 2.5.1 and Claim 4.4.1. Furthermore, the maximum eigenvalue of LG0 can also be bounded
by nU = U2. Lemma 2.6.2 gives that the output x also satisfies: ‖x− x̄‖LG0

≤ 0.4 ‖x̄‖LG0
.

This meets the requirements of the Richardson iteration based error reduction routine given in
Lemma 1.6.8. Hence, iterating O (log (1/ε)) times gives the lower error guarantees. �
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Chapter 3

Polylog Depth, Nearly-Linear Work Solvers

The algorithm shown in Chapter 2 is a routine for solving SDD linear systems whose operation
count, or running time, is close to the size of the input. Fundamental linear algebraic primitives
such as matrix-vector multiplication and Gaussian elimination are inherently parallel. This means
that the speed of many linear algebraic algorithms can also be increased by dividing the work
among multiple processors or machines. Therefore, a natural question to ask is whether such
parallel speedups are also possible for nearly-linear time SDD linear system solvers.

Since the number of processors is independent of most other parameters, parallelism can be
quantified in a variety of ways. One way to measure the efficiency of a parallel algorithm is by
its depth and work. The number of operations performed by the algorithm, which is equivalent to
the sequential running time of the algorithm, is the work performed. On a single processor, this
is equivalent to the sequential runtime of the algorithm. The other parameter, depth, measures the
longest chain of sequential dependencies in the algorithm. This is known as the parallel time of
the algorithm, and is equivalent to the running time of the algorithm when there is an unbounded
number of processors. In this terminology, matrix-vector multiplication involving a matrix with m
non-zero entries has O(log n) depth and O(m) work; and Gaussian elimination can be parallelized
to O(log2 n) depth and O(n3) work.

Works in parallel algorithms has led to many routines that run in polylog depth, which is also
the case for the two routines described above. This in part led to the definition of the complexity
class NC, which contains algorithms that run in poly (log n) depth and poly (n) work. However,
the parallel speedup is also limited by number of processors, which rarely approaches the size of
the problem. As a result, it is often more important for parallel algorithms to be work-efficient, or
nearly so. That is, the work performed by the algorithm is similar to sequential algorithms, or is
within a small factor from it. A more in depth discussion of the various models of parallelism can
be found in surveys such as [Ble96].

A close examination of the recursive preconditioning framework from [ST06] shows that it can
be parallelized. Each recursive call performs a constant number of matrix-vector multiplications,
and an appropriate setting of constants can reduce the number of calls to about

√
m. To our knowl-

edge, this was first formally observed in the solver for planar graphs by Koutis and Miller [KM07].
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Their algorithm runs in O(n log(1/ε)) work and O(n1/6+α log(1/ε)) depth 1. Subsequently, a sim-
ilar observation was made for general graphs by Blelloch et al. [BGK+13], leading to a bound
of O(m logO(1) n log(1/ε)) work and O(m1/3+α log(1/ε)) depth. Both of these results focused on
efficiently constructing the recursive solver chain in parallel, and parallelized the solver itself in a
direct manner.

One additional modification was needed in these two algorithms to obtain a depth less than the
more direct

√
m bound mentioned above. Instead of terminating the recursion at constant sized

problems, they invert the system directly whenever the cost is low enough. The higher costs of
these steps are then offset by the slower growth of the recursive tree. The nearly m1/3 depth of the
Blelloch et al. algorithm [BGK+13] comes from applying Gaussian elimination. Specifically, an
n × n linear system can be preprocessed in O (poly (log n)) depth and O(n3) work to create an
inverse that can be evaluated in O (poly (log n)) depth and O(n2) work. The speedup to almost
n1/6depth by Koutis and Miller [KM07] relies on the existence of sparse representations of inverses
when the graph is planar. The nested dissection algorithm by Lipton et al. [LRT79] computes in
O (poly (log n)) depth andO(n3/2) work an inverse that can be evaluated inO (poly (log n)) depth
and O(n log n) work.

In terms of algorithmic cost, these sparse representations of inverses are essentially polylog
depth, nearly-linear work solver algorithms. Empirically, the gains obtained by using them are
often more pronounced. Only a small number of matrix-vector multiplications are needed to apply
such an inverse, while more intricate algorithms such as recursive preconditioning have larger
constant factors. As a result, sparse representations of inverses, or even dense inverses, are widely
used as base cases of recursions in solver algorithms. Therefore, a sparse representation of the
inverse would also be of value even if the preprocessing cost is higher.

One of the difficulties in obtaining a polylog depth, nearly-linear work algorithm is the need for
an approach different than recursive preconditioning with ultra-sparsifiers. This approach obtains a
nearly-linear running time by generating a chain of increasingly sparser graphs. The optimality of
Chebyshev iteration means that direct parallelizations are likely to result in poly (n) depth. Recent
works by Kelner et al. [KOSZ13] and Lee and Sidford [LS13] replaced the recursive calls with
data structures, leading to two-layer algorithms. However, their algorithms still use subgraphs as
preconditioners, and as stated have even higher sequential dependencies of Ω (m).

The call structure of recursive preconditioning is known in numerical analysis as the W-cycle.
The widely used multigrid methods on the other hand use a V-cycle call structure. The main dis-
tinction between these two call structures is that each recursive level in a W-cycle algorithms makes
several calls to the next, while in the V-cycle each level makes one call to the next. If the number
of levels is small, and each call only makes a small number of matrix-vector multiplications, the
parallelism of a V-cycle algorithm is evident. Our main result in this chapter is a V-cycle, polylog
depth, and nearly-linear work parallel solver for SDD :

Theorem 3.0.1 Given an n×n graph Laplacian L with m non-zero entries such that the ratio be-
tween maximum and minimum edge weights isU . In the concurrent read, concurrent write (CRCW)

1On planar graphs, m is bounded by O(n)
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parallel RAM (PRAM) model with exact arithmetic, we can preprocess L inO(log3(nU) log7/2 n+
log3(nU) log log(nU) log2 n) depth and O(m(log4(nU) log9/2 n + log5(nU) log3 n)) work such
that with high probability for any b = Lx̄ and ε, we can return in O(log (nU) log n log (1/ε))
depth and O(m log3 (nU) log n log (1/ε)) work a vector x such that ‖x− x̄‖L ≤ ε ‖x̄‖L.

3.1 Overview of Our Approach

Our algorithm aims to evaluate a factorization of a simplified version of the Richardson iteration.
Algebraically it can also be viewed as combining fast exponentiation with sparsification, and this
view is discussed in Subsection 1.5.2. On the other hand, a combinatorial interpretation is helpful
to understand the interaction of our algorithm with the various approximations that we introduce
in intermediate steps.

For simplicity, consider SDD matrices of the form I −A where A has the following special
structure:

1. Symmetric ∀i, j : Aij = Aji

2. All entries are positive, ∀i, j : Aij ≥ 0.

3. Each row and column sum to less than 1: ∀i :
∑

j Aij < 1.

It’s easy to check that I−A belongs to the class of SDD matrices. More specifically it is a graph
Laplacian plus a diagonal matrix so that the diagonal entries are 1. The general version of our
algorithm will work with SDDM matrices, which are graph Laplacians plus non-zero diagonal
matrices. It can be shown that graph Laplacians, and in turn SDD matrices, can be transformed
to SDDM matrices with similar properties. Furthermore, in Section 3.3 we will show that such
matrices can be normalized to ones with algebraic properties similar to I−A.

This special form allows us to interpret A as the transition matrix of a random walk. If we are
at vertex i, we will move to vertex j with probability Aij . Therefore, if the current probabilities of
being at vertices are given by the vector b, the probabilities after one step is:

Ab

Since the total probability of moving to other vertices is less than 1, this walk also terminates
with non-zero probability at each step. Therefore, the long-term behavior of such a walk from
any starting distribution is zero. We can obtain a non-trivial long term behavior by re-injecting
probabilities back into the vertices at each step. Specifically, if at each step we inject probabilities
given by the vector b into all vertices, the stationary distribution is:

b + Ab + A2b . . .

Since Aib→ 0 when i→∞, this stationary distribution is well defined. Therefore, we may also
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let it be x and solve for it, giving:

x = Ax + b
(I−A) x = b

x (I−A)−1 b

Therefore, computing the stationary distribution of this random walk is equivalent to solving the
SDD linear system I −A. In other words, one way to solve the system I −A is to simulate the
random walk given by A a large number of steps. This can be viewed as a combinatorial view of
the power series given in Equation 1.1, and has the same convergence properties. If the condition
number, or ratio between maximum and minimum eigenvalues, of I−A is κ, then evaluatingO(κ)
steps of the random walk suffices to give a good approximation to the answer.

One way to reduce the number of steps that needs to be evaluated is the observation that inject-
ing b at all vertices every step is equivalent to injecting b1 = Ab + b every other step. In between
these steps, two steps of the random walk can be taken. This is equivalent to a single step of the
random walk computed by A2. Therefore, the stationary distribution can also be computed by a
random walk with transition given by A1 = A2 and injects b1 every step.

The cost of computing b1 is linear in the number of entries in A. Therefore, this allows us to
reduce solving (I −A)x = b to solving a system in I −A2 = I −A1. Because A1 corresponds
to the two-step transition probabilities, it also has the same properties that A has: symmetric, non-
negative, and all rows/columns sum to less than 1. Furthermore, we can show that the condition
number of A1 is half that of A. This means that repeating this for O (log κ) iterations leads to a
well-conditioned matrix which can easily be solved in parallel. This is the main structure of our
iterative method.

The next obstacle in this approach is that A1 = A2 could be a dense matrix Even for the star
with vertices 2 . . . n connected to vertex 1, A2 is equivalent to the complete graph. As a result, we
will need to work sparse equivalents of A1. Here the observation that A2 also corresponds to the
probability of random walks is crucial. It implies that I −A1 is symmetric diagonally dominant,
and therefore has sparse equivalents. Solving such a sparse equivalent, e.g. I − Ã1 would in turn
lead us to similar solutions.

Although this line of reasoning is intuitive, it has one major technical issue: the approximation
I−Ã1 may no longer commute with I+A. Since the input to the recursive solve is b1 = (I−A) b,

we cannot bound the error of directly replacing (I−A1) with
(

I− Ã1

)−1

. Instead, the technical

components of our algorithm relies on the following different expression of (I−A)−1:

Fact 3.1.1

(I−A)−1 =
1

2

(
I + (I + A)

(
I−A2

)−1
(I + A)

)
This expression can be viewed as a symmetrized version of the two-step random walk shown

50



above. We will formalize its interaction with a chain of SDD matrices, each a sparsifier of the
next, in Section 3.2. We will also show how to reduce from general SDD matrices to ones with
properties similar to these random walk transition matrices. This establishes the existence of a
polylog depth, nearly-linear work solver chain, or in other words as sparse inverse representation.
However, as A2 may be a dense n×n matrix, the construction of such solver chains may still take
quadratic work.

The rest of this chapter then focuses on obtaining spectral sparsifiers efficiently in parallel. In
Section 3.3, we find a crude sparsifier of I−A whose size is only a factor of log n larger than A.
This allows us to invoke parallelizations of existing sparsification algorithms. and obtain a polylog
depth, nearly-linear work algorithm.

We then give an alternate algorithm with better guarantees for constructing these sparsifiers in
Section 3.4. It is based on reducing to smaller graphs using methods similar to the construction of
graph sparsifiers by Koutis et al. [KLP12]. This approach in turn relies on low stretch subgraphs
and low diameter decompositions, which we present in Chapter 4.

3.2 Parallel Solver

We now describe our solver algorithm in full detail. Instead of requiring A to have all rows/columns
sum to less than 1, we instead work under the condition that all its eigenvalues are strictly between
−1 and 1. We first formalize the definition of our sequence of approximations to I − A2 as a
parallel solver chain:

Definition 3.2.1 (Parallel Solver Chain) A parallel solver chain is a sequence of matrices A0,A1 . . .Ad

and a set of error bounds ε0 . . . εd−1 <
1
10

such that:

1. Each Ai is symmetric, and have all entries non-negative.

2. For each i < d we have (1− εi)
(
I−A2

i

)
� (I−Ai+1) � (1 + εi) (I−Ai).

3. All eigenvalues of Ad are in the range
[
−2

3
, 2

3

]
.

We first show that such a parallel solver chain leads to a parallel solver algorithm with depth
O(d · poly (log n)) and work proportional to the total number of non-zero entries. Our algorithm
using this chain makes critical use of the representation of (I−A)−1 mentioned in the overview:

Fact 3.1.1

(I−A)−1 =
1

2

(
I + (I + A)

(
I−A2

)−1
(I + A)

)
Proof Since A commutes with I, we have:(

I−A2
)

= (I−A) (I + A)
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inverting both sides using the fact that (AB)−1 = B−1A−1 allows us to rewrite the inverse term as:(
I−A2

)−1
= (I + A)−1 (I−A)−1

Substituting this in the right hand side of the required identity gives:

1

2

(
I + (1 + A)

(
I−A2

)−1
(I + A)

)
=

1

2

(
I + (I + A) (I + A)−1 (I−A)−1 (I + A)

)
=

1

2

(
I + (I−A)−1 (I + A)

)
Replacing I with I with (I−A)−1 (I−A) and collecting factors accordingly then gives:

1

2

(
I + (I + A)

(
I−A2

)−1
(I + A)

)
=

1

2

(
(I−A)−1 (I−A) + (I−A)−1 (I + A)

)
= (I−A)−1

�

Alternatively, this can be proven by diagonalizing A, and prove the equation for diagonal
matrices, where it in turn suffices to show it for scalars. It is algebraically identical to the proof
above, but gives a more intuitive reason why identities involving scalars 1 and α also hold for I
and A. The guarantees of our algorithm can be described by the following lemma:

Lemma 3.2.2 Given a parallel solver chain with d levels where Ai has nnz (Ai) ≥ n non-zero
entries. There is a routine SOLVEI−A0 that’s a symmetric linear operator in b such that:

• For any vector b, SOLVEI−A0(b) takes O (d log n) depth and O
(∑d

i=0 nnz(Ai)
)

work.

• If ZI−A0 is the symmetric matrix such that ZI−A0(b) = SOLVEI−A0(b), then:
∏d−1

i=0 (1 +

εi)
−1 (I−A0)−1 � ZI−A0 � 5

∏d−1
i=0 (1− εi)−1 (I−A0)−1

Proof The proof is by induction. For the base case of d = 0, all eigenvalues of A0 are in the
range

[
−2

3
, 2

3

]
. This in turn gives that all eigenvalues of I−A0 are in the range

[
1
3
, 5

3

]
and we have:

1

5
(I−A0) � 1

3
I � (I−A0)

(I−A0)−1 � 3I � 5 (I−A0)−1

Which means that the choice of ZI−A0 = 3I suffices.

For the inductive case, suppose the result is true for all parallel solver chains of length d − 1.
Note that A1 . . .Ad forms such a chain for A1. Therefore by the inductive hypothesis we have an

52



operator ZI−A1 such that:

d−1∏
i=1

(1 + εi)
−1 (I−A1)−1 � ZI−A1 � 5

d−1∏
i=1

(1− εi)−1 (I−A1)−1

In order to construct a solver for I − A0, we invoke the factorization given in Fact 3.1.1,
and replace

(
I−A2

0

)−1 with ZI−A1 . This leads to an algorithm SOLVEI−A0 that evaluates the
following linear operator:

ZI−A0 =
1

2
(I + (I + A0) ZI−A1 (I + A0))

SOLVEI−A0b then requires two matrix-vector multiplications involving I + A1, vector operations,
and one call to SOLVEI−A1(b). By the assumption that nnz (A0) ≥ n, these operations can be
done in O (log n) depth and O (nnz (A0)) work. Incorporating the cost of running SOLVEI−A1

given by the inductive hypothesis leads to the required depth/work bound.

It remains to bound the error. Here for simplicity we show the lower bound, and the upper
bound follows similarly. The guarantees of A1 gives

I−A1 � (1 + ε0)
(
I−A2

0

)
(1 + ε0)−1 (I−A2

0

)−1 � (I−A1)−1

Combining this with the inductive hypothesis gives:

(1 + ε0)−d
(
I−A2

0

)−1 � ZI−A1

The I+A1 terms on both sides of ZI−A1 allows us to compose this bound by invoking Lemma 1.6.6:

d−1∏
i=0

(1 + εi)
−1 (I + A0)

(
I−A2

0

)−1
(I + A0) � (I + A0) ZI−A1 (I + A0)

Since each (1 + ε)−1 ≤ 1, (1 + ε)−1 I � I as well. Adding these to both sides and dividing by two
then gives:

d−1∏
i=0

(1 + εi)
−1 1

2

(
I + (I + A0)

(
I−A2

0

)−1
(I + A0)

)
� 1

2
(I + (I + A0) ZI−A1 (I + A0))

By Fact 3.1.1, the LHS above is equal to
∏d−1

i=0 (1 + εi)
−1 (I−A0) while the RHS is ZI−A0 . Ap-

plying a similar argument for the upper bound then gives that the inductive hypothesis holds for d
as well. �

53



This shows that parallel solver chains readily lead to parallel algorithms with depth similar to
the depth of the solver chain. We can also show that when ε is sufficiently small, the spectrum
of Ai improves rapidly. This in turn implies that after a small number of levels, Ai meets the
conditions required for the last level. We first need to show that the range of eigenvalues do not
change much under spectral approximations.

Lemma 3.2.3 If A is a positive semi-definite matrix with eigenvalues in the range [λmin, λmax] and
B is a matrix such that (1 − ε)A � B � (1 + ε)A. Then all eigenvalues of B are in the range
[(1− ε)λmin, (1 + ε)λmax]

Proof The upper bound on eigenvalue implies that A � λmaxI. Therefore B � (1 + ε)A �
(1 + ε)λmaxI, and the maximum eigenvalue of B can be bounded by (1 + ε)λmax. The bound on
the minimum eigenvalue of B follows similarly. �

We can now analyze the effect of descending one step down the parallel solver chain, and show
that the eigenvalues of the next level improves by a constant factor.

Lemma 3.2.4 If for some εi < 1/10 we have:

(1− εi)
(
I−A2

i

)
� (I−Ai+1) � (1 + εi) (I−Ai)

and Ai has all eigenvalues in the range [−1 + λ, 1− λ]: Then all eigenvalues of Ai+1 are in the
range:

•
[
− 1

10
, 1− 4

3
λ
]

if λ ≤ 1
3
.

•
[
− 1

10
, 2

3

]
otherwise.

Proof Since all the eigenvalues of Ai are in the range [−1 + λ, 1− λ]. the eigenvalues of A2

are in the range [0, (1− λ)2].

When λ < 1
3
, we can use the fact that (1− t)2 ≤ 1− 5

3
t for all t ≤ 1

3
to reduce the upper bound

to:

(1− λ)2 ≤ 1− 5

3
λ

Therefore all eigenvalues of I−A2
i are in the range

[
5
3
λ, 1
]
. Combining this with the approximation

factor between I −A2
i and I −Ai+1 and Lemma 3.2.3 gives that all eigenvalues of I −Ai+1 are

in the range
[
(1− ε) 5

3
λ, 1 + ε

]
. By the assumption of ε < 1/10, this can in turn be bounded by[

3
2
λ, 11

10

]
. Subtracting off the I then gives the bound on the eigenvalues of Ai+1.

When λ ≥ 1
3
, 1 − λ ≤ 2

3
. So the eigenvalues of A2

i are in the range
[
0, 4

9

]
, and the ones for

I −A2
i are in the range

[
5
9
, 1
]
. Incorporating approximation bounds gives that the eigenvalues of

I −Ai+1 are in the range
[
(1− ε) 5

9
, 11

10

]
. Since ε < 1

10
, (1− ε) 5

9
≥ 1

2
> 1

3
. So all eigenvalues of

Ai+1 are between
[
− 1

10
, 2

3

]
.
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�

Applying this inductively gives that the depth of the chain can be bounded logarithmically in
the condition number of A.

Corollary 3.2.5 Given any matrix A with eigenvalues in the range
[
−1 + 1

κ
, 1− 1

κ

]
. A parallel

solver chain for I−A can be terminated at depth d = O (log κ).

Proof Applying Lemma 3.2.4 inductively gives that when i ≥ 1, the eigenvalues of Ai are in
the range

[
− 1

10
,max

{
2
3
, 1−

(
4
3

)i 1
κ

}]
.

For any κ, we have that once i > log 4
3
κ the above bound becomes

[
− 1

10
, 2

3

]
. This satisfies the

requirement of the last level of the parallel solver chain. So d = O (log κ) suffices. �

This gives a good bound on the depth of running parallel solver chains. It also means that as
long as the size of each Ai is reasonably small, the total amount of work is small. We next show
how to construct parallel solver chains for matrices that that are closely related to graph Laplacians.

3.3 Nearly-Linear Sized Parallel Solver Chains

In the overview in Section 3.1, the matrix A corresponds to the transition probability matrix of the
random walk. For a weighted graph, such a matrix can be defined by taking edges with probabilities
proportional to their weights. If the adjacency matrix is A, then the weighted degree of j is dj =∑

i Aij and the probability of moving from j to i is Aij
Djj

. Therefore, the more general version of the
random walk transition matrix is AD−1 where D is the diagonal matrix with weighted degrees.

It is possible to analyze our algorithm using this transition matrix, but as it is not symmetric,
the connection to matrix norms is not as direct. We will instead work with a more friendly form of
this matrix known as the normalized Laplacian. It is obtained by a applying a similarity transform
involving D−1/2, giving D−1/2AD−1/2. In our analysis it is easier to keep I − A full rank. As
a result, we also need to use a slight generalizations of graph Laplacians, SDDM and SDDM0

matrices.

Definition 3.3.1 A symmetric matrix M is SDDM0 if:

• All off-diagonal entries non-positive, Mij ≤ 0 for all i 6= j.

• All row/column sums non-negative, aka. Mii ≥
∑

j 6=i−Mij .

SDDM0 matrices are the subclass of SDD matrices where all off-diagonal entries are non-
positive. We can further restrict ourselves to SDDM matrices, which have the additional restriction
of being positive definite. Our analysis readily extends to SDDM0 matrices when the null space is
known. However, this restriction to full rank matrices significantly simplifies our analysis. We will
reduce SDD matrices to SDDM matrices by first reducing to graph Laplacians, then increasing the
diagonal slightly.
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The decomposition of a graph Laplacian into diagonal minus adjacency matrix also extends to
SDDM matrices. As the 2-step random walk can have self loops, we will allow A to have diagonal
entries as well. This leads to a variety of possible ways of splitting M into D−A. In the numerical
analysis literature, these splittings are closely related to choosing D as a preconditioner and are
well studied (see Chapter 6 of [Axe94]). We will instead use them to normalize A and create
A = D−1/2AD−1/2. We also need to generate a sparse equivalent of the two step transition matrix:

I−A2 = I− D−1/2AD−1/2D−1/2AD−1/2

= D−1/2
(
D− AD−1A

)
D−1/2

The key fact about this two-step transition matrix is:

Fact 3.3.2 If M is a SDDM matrix with splitting M = D − A, then M̂ = D − AD−1A is also a
SDDM matrix.

Proof It is clear that M̂ is symmetric, and all entries in AD−1A are non-negative. Therefore
therefore it suffices to check that M̂ is strictly diagonally dominant. Let Â denote AD−1A. Since
both A and D are non-negative, the entries of Â are also non-negative. Consider the sum of the
off-diagonal entries in row i. ∑

j

Âij =
∑
j

(
AD−1A

)
ij

=
∑
j

∑
k

AikD−1
kk Akj

=
∑
k

AikD−1
kk

(∑
j

Akj

)
≤
∑
k

Aik

≤ Dii

For the row/column where the diagonal entry is strictly dominant, the last inequality holds strictly
as well. The existence of at least one such row/column in M means that M̂ is also positive definite.
�

Due to the close connection between M̂ and graph Laplacians, it has a sparse equivalent. Fur-
thermore, we can show that a (scaled) version of this sparse equivalent also has a splitting that
involves D.

Lemma 3.3.3 If M̂ is a SDDM matrix with a splitting into D− Â and M̃ is another SDDM matrix
such that (1 − ε)M̂ � M̃ � M̂. Then M̃ has a splitting into D − Ã such that all the entries of
Ã are non-negative. Furthermore, if I − Â = D−1/2M̂D−1/2 and I − Ã = D−1/2M̃D−1/2 are
normalizations corresponding to these splittings, then (1− ε)(I− Ã) � (I− Ã) � I− Ã.
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Proof

Let D̃ be the diagonal of M̃. Since M̃ � M̂, we have χTi M̃χi ≤ χTi M̂χi for all indicator vectors
χi. Also, as Â ≥ 0, M̂ii ≤ Dii and D̃ = M̃ii ≤ Dii. Therefore, D − D̃ is a non-negative diagonal
matrix, so adding it to the negated off-diagonal entries of M̃, D̃ − M̃, gives the Ã that meets our
requirements. Applying composition of spectral bounds from Lemma 1.6.6 with V = D1/2 then
gives:

(1− ε) D−1/2M̂D−1/2 � D−1/2M̃D−1/2 � D−1/2M̂D−1/2

(1− ε)
(

I− Â
)
� I− Ã � I− Â

�

Therefore, we can focus on constructing a sparse equivalent of M̂. To do so, we need to
give parallel algorithms for spectral sparsification. However, some of the existing methods, such
as sparsification by effective resistance require access to a solver. Using such methods would
require recursing on a smaller graph (while incurring errors), leading to a more intricate algorithm
that we will show in Section 3.4. Using combinatorial methods leads to higher polylog factors,
but a conceptually simpler overall algorithm. It can be checked that the spectral sparsification
algorithm by Spielman and Teng [ST08], as well as subsequent improvements by Andersen et
al. [ACL06] and Andersen et al. [AP09] can run in polylog depth and nearly-linear work. The
approach of combining spanners of random subgraphs by Kapralov et al. [KP12] also appears to
be parallelizable. As our final bounds depend on a different approach with a smaller depth/work
bound, we will state these results without explicitly stating the exponent on log n and use logO(1) n
instead.

Lemma 3.3.4 Given an n × n SDDM matrix M with m non-zero entries and error parame-
ter ε, we can find in O

(
logO(1) n

)
depth and O

(
m logO(1) n

)
work a SDDM matrix M̃ with

O
(
n logO(1) nε−2

)
edges such that with high probability we have:

(1− ε) M � M̃ � (1 + ε) M

However, we cannot directly apply this Lemma to the graph Laplacian obtained from M̂ since it
may have quadratic size. For example, if A corresponds to a star graph with all vertices connected
to vertex 1, AD−1A will have all pairs of vertices connected since they can reach each other via.
vertex 1. As a result, we need to first generate a sparse matrix that’s similar to M̂. We do so by
noting that M̂ is the sum of a collection of complete graphs weighted by vertices.

AD−1A =
∑
i

D−1
ii AT

i∗Ai∗ (3.1)

This along with Fact 3.3.2 allows us to write M̂ as
∑

i Li + D′ where Li corresponds to the graph
with edge weights given by D−1

ii AT
i∗Ai∗ and D′ is a positive diagonal matrix. We can also calculate
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D′ explicitly in ways similar to the proof of Fact 3.3.2.

Although each Li can be dense, the number of vertices involved in it is still bounded by the
degree of vertex i. Therefore it suffices to efficiently generate spectral sparsifiers for Li. We will
do so using the sparsification routine given in Theorem 1.6.9. However, we also cannot compute
all edges and need to sample the edges implicitly from the distribution. Therefore, we need closed
forms for the weights and effective resistances of edges in Li.

Lemma 3.3.5 For two neighbors of i, j and k, the weight of the edge between j and k (j 6= k) in
Li is:

AijAik

Dii

and the effective resistance between j and k in Li is:

Dii

di

(
1

Aij

+
1

Aik

)
Where di is the total weight of edges incident to i,

∑
j 6=i Aij .

Proof The edge weights follows from the corresponding term in AT
i∗Ai∗. It can be checked that

when j 6= k, the vector:

xl =


0 if l 6= j, k

Dii
Aijdi

if l = j

− Dii
Aikdi

if l = k

Is a solution to Lix = ejk. As ejk is orthogonal to the null space of Li, it suffices to compute the
result using this vector:

eTjkL
+
i ejk = eTjkx

=
Dii

di

(
1

Aij

+
1

Aik

)
�

Therefore we can sample this star graph implicitly using sparsification by effective resistance as
given in Theorem 1.6.9. This leads a sparsifier for Li whose size is O(log nε−2) times the number
of neighbors of vertex i. Combining these forms the overall sparsifier.

Lemma 3.3.6 Given a SDDM matrix M = D − A corresponding to a graph with n vertices and
m edges, along with any parameter ε. Let M̂ = D − AD−1A. We can construct in O(log n)
depth O (m log n2ε−2) work a SDDM matrix M̃ corresponding to a graph on n vertices and

58



O(m log nε−2) edges such that:

(1− ε) M̃ � M̂ � (1 + ε) M̃

Proof We will apply the sparsification procedure given in Theorem 1.6.9 to each Li separately.
Let the degrees of the vertices be n1 . . . nn respectively. Lemma 3.3.5 gives that the sampling
probability of an edge jk in Li is:(

AijAik

Dii

)
· Dii

di

(
1

Aij

+
1

Aik

)
=

Aij + Aik

di

To sample this distribution, we can compute the total probability incident to each vertex j since the
only term to remove is k = j. Sampling this distribution gives j, and another sampling step then
gives us k. Therefore, we can samples the edges of Li at the cost of O (log n) per edge, and as the
samples are taken independently they can be done in parallel. The guarantees of Theorem 1.6.9
then gives that the resulting graph Laplacian L̃i has O(ni log nε−2) edges such that:

(1− ε) L̃i � Li � (1 + ε) L̃i

To put these together, note that M̂ is the sum of Li plus a positive diagonal matrix D′. The fact
that

∑
i ni = 2m gives the bound on the total number of edges. Since we can also compute the

degrees of each vertex j in Li explicitly, D′ can be obtained in in O(log n) depth and O(m + n)
work. Returning

∑
i L̃i + D′ then gives the sparsifier. �

Putting together this crude sparsification step and the sparsifiers given in Lemma 3.3.4 gives an
algorithm for constructing the next level of the solver chain from the current one.

Lemma 3.3.7 Given an n × n SDDM matrix M with m non-zero entries, splitting M = D − A
along with A = D−1/2AD−1/2, and any error parameter ε. We can find in O

(
logO(1) n

)
depth

and O
(
m logO(1) nε−2

)
work a SDDM matrix M̃ with O

(
n logO(1) nε−2

)
edges. Furthermore, M̃

has a splitting M̃ = D− Ã such that with high probability Ã = D−1/2ÃD−1/2 satisfies:

(1− ε)
(
I−A2

)
� I− Ã � (1 + ε)

(
I−A2

)

Proof Once again let Â denote AD−1A and M̂ = D−Â. Note that I−A = D−1/2
(

D− Â
)

D−1/2.

The crude sparsifier given in lemma 3.3.6 allows us to find inO
(

logO(1) n
)

depth andO
(
m logO(1) n

)
work M̃

′
with O

(
n logO(1) nε−2

)
non-zero entries such that:

(1− ε) M̂ � M̃
′ � (1 + ε) M̂
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The size of M̃
′

means that we can run the spectral sparsifier given in Lemma 3.3.4 on it in
O
(

logO(1) n
)

depth andO
(
m logO(1) nε−2

)
work. Let the resulting matrix be M̃

′′
. It hasO

(
n logO(1) nε−2

)
non-zero entries and satisfies:

(1− ε) M̃
′ � M̃

′′ � (1 + ε) M̃
′

Combining these identities, and letting M̃ = (1 + ε)−2 gives:

(1− ε)2 M̂ � M̃
′′ � (1 + ε)2 M̂

(1 + ε)−2 (1− ε)2 M̂ � M̃ � M̂

The coefficient can be simplified since (1 + ε)−1 ≥ 1 − ε, and (1− ε)4 ≥ 1 − 4ε. Replacing ε by
ε/4 and applying Lemma 3.3.3 then gives the required condition. �

This allows us to construct the parallel solver chains as given in Definition 3.2.1. It in turn
gives a version of our main result, Theorem 3.0.1, with a higher exponent of log n in both depth
and work.

Lemma 3.3.8 Given a connected graph Laplacian L with m non-zero entries such that the ratio
between maximum and minimum edge weights is U . We can preprocess L in O(log (nU) logO(1) n)
depth and O(m log3 (nU) logO(1) n) work such that with high probability for any ε > 0 we have
an algorithm SOLVEL that’s a symmetric linear operator in b such that:

• If ZL is the symmetric matrix such that ZLb = SOLVEL(b), then: (1− ε)L† � ZL � (1+ ε)L†

• Given any vector b, SOLVEL (b) runs in O(log (nU) logO(1) n log (1/ε)) depth and
O(m log3 (nU) logO(1) n log(1/ε)) work.

We first need to show that a SDDM matrix can be constructed from L by increasing the diagonal
slightly. To bound the eigenvalues of the resulting matrix, we need to invoke the Courant-Fischer
theorem:

Lemma 3.3.9 (Courant-Fischer Theorem) Let A be an n×n symmetric matrix with eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn. Then the minimum and maximum eigenvalues are given by:

λ1 = min
x6=0

xTAx
xTx

λn = max
x6=0

xTAx
xTx

Lemma 3.3.10 Given any graph Laplacian L with such that the ratio between maximum and min-
imum edge weights is U , we can create a SDDM matrix M such that:
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1. If Π is the projection onto the range space of L, aka. the space orthogonal to the all 1s
vector, then L � ΠMΠ � 2L

2. If M is directly split into D − A by taking its diagonal to be D, then all eigenvalues of
A = D−1/2AD−1/2 are in the range

[
−1 + 1

2n3U
, 1− 1

2n3U

]
.

Proof Without loss of generality we may assume that the edge weights in L to the range [1, U ].
Since L is connected, the minimum non-zero eigenvalue of L is at least 1

n2 . Therefore, 1
n2 Π � L

and M = L + 1
n2 I is a good approximation to L after projecting onto its rank space.

We now upper bound the eigenvalues of A using the Courant-Fischer Theorem given in Lemma 3.3.9.
For any vector x, by letting y = D−1/2x we have:

xTAx
xTx

=
yTAy
yTDy

Let D′ be the diagonal of the input Laplacian L, aka. D = D′ + 1
n2 I. Since L = D′ − A is

positive semi-definite, we have yTAy ≤ yTD′y. Also, since the degree of each vertex is at most
nU , yTD′y ≤ nUyTy. Combining these gives:

yTAy
yTDy

≤ yTD′y
yTD′y + 1

n2 yTy

≤ 1

1 + 1
n3U

≤ 1− 1

2n3U

The lower bound on the eigenvalues of A follows similarly from the positive-definiteness of the
positive Laplacian D′ + A. �

We also need preconditioned iterative methods to reduce the constant error to ±ε. Either pre-
conditioned Richardson or Chebyshev iteration can suffice here.

Lemma 2.1.1 (Preconditioned Chebyshev Iteration) There exists an algorithm PRECONCHEBY

such that for any symmetric positive semi-definite matrices A, B, and κ where

A � B � κA

any error tolerance 0 < ε ≤ 1/2, PRECONCHEBY(A,B, b, ε) in the exact arithmetic model is a
symmetric linear operator on b such that:

1. If Z is the matrix realizing this operator, then (1− ε)A† � Z � (1 + ε)A†

2. For any vector b, PRECONCHEBY(A,B, b, ε) takes N = O (
√
κ log (1/ε)) iterations, each

consisting of a matrix-vector multiplication by A, a solve involving B, and a constant number
of vector operations.
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Proof of Lemma 3.3.8:

Lemma 3.3.10 gives a SDDM matrix M such that L � ΠMΠ � 2L. Combining the eigenvalue
bound on A with Corollary 3.2.5 gives that a parallel solver chain for I−A has depth bounded by
d = O (log (n3U)) = O (log (nU)). We will construct such a chain with εi = 1

d
for some constant

c by invoking Lemma 3.3.7 d times.

Applying induction on the sizes of the sparsifiers produced gives that with high probability each
level after the first one hasO

(
n logO(1) ε−2

)
= O

(
n log2 (nU) logO(1)

)
edges. This in turn means

that the construction of each level can be done inO
(

logO(1) n
)

depth andO
(
m log2 (nU) logO(1) n

)
work, giving a total of O

(
log (nU) logO(1)

)
depth and O

(
m log3 (nU) logO(1) n

)
work. Also, the

size of the parallel solver chain can be bounded by O
(
m log3 (nU) logO(1)

)
This parallel solver chain can then be used by Lemma 3.2.2 to evaluate a linear operator ZI−A

such that:

(1 + ε)−d (I−A)−1 � ZI−A � 5(1− ε)−d (I−A)−1

and for any vector b, ZI−Ab can be evaluated by running SOLVEI−A(b) in O (d) depth and work
proportional to the size of the parallel solver chain. Since we set ε to 1

d
, (1 + ε)−d and (1 − ε)−d

can be bounded by constants, giving:

1

3
(I−A)−1 � ZI−A � 15 (I−A)−1

Since M = D1/2 (I−A) D1/2, applying Lemma 1.6.6 gives:

1

3
M−1 � D1/2ZI−AD1/2 � 15M−1

Finally, combining this with the guarantees on L and M gives:

1

6
L† � ΠD1/2ZI−AD1/2Π � 15L†

The error can then be reduced to±ε using preconditioned Chebyshev iteration as given in Lemma 2.1.1
with A = L and B = 15(ΠD1/2ZI−AD1/2Π)†. Matrix-vector multiplications involving A, Π and
D1/2 can be done inO (log n) depth andO (m) work. Therefore, the total depth/work is dominated
by the calls to SOLVEI−A, each requiringO (d) = O (log (nU)) depth andO

(
m log3 (nU) logO(1)

)
work. The O(log(1/ε)) iterations required by preconditioned Chebyshev iteration then gives the
total depth/work. �

62



3.4 Alternate Construction of Parallel Solver Chains

We now give a more efficient algorithm for constructing parallel solver chains. It performs the
spectral sparsification steps in ways similar to an algorithm by Koutis et al. [KLP12]. Specifi-
cally, it uses a solver for a spectrally close matrix to compute the sampling probabilities needed to
generate a sparsifier. This spectrally close matrix is in turn obtained using the ultra-sparsification
algorithm from Section 2.2, and therefore can be reduced to one of smaller size.

Since our goal is a polylog depth algorithm, we cannot perform all sparsification steps by
recursing on the ultra-sparsifiers. Instead, we only do so for one matrix in the parallel solver chain,
and reduce the solvers involving other matrices to it. This is done using the fact that I + Ai are
well-conditioned for all i ≥ 1. It allows us to apply polynomial approximations to factorizations
that are more direct than Fact 3.1.1.

The key step in constructing the parallel solver chain is sparsifing a SDDM matrix M. The
current state-of-the-art methods for constructing sparsifiers with the fewest edges is to sample by
effective resistance. This is described in Theorem 1.6.9, and the main algorithmic difficulty to
compute the sampling probabilities. This can be done by approximately solving a number of linear
systems involving M [SS08, KL11, KLP12]. When the approximate solver routine is viewed as a
black-box, these construction algorithms can be stated as:

Lemma 3.4.1 Given an n× n SDDM matrix M with m non-zero entries along with an algorithm
SOLVEM corresponding to a linear operator given by the matrix ZM such that 1

2
M−1 � ZM �

2M−1, and any error ε > 0. We can compute using O(log n) parallel calls to SOLVEM plus an
overhead of O(log n) depth and O(m log n) work a matrix M̃ with O (n log nε−2) non-zero entries
such that with high probability (1− ε) M � M̃ � M.

It’s worth mentioning that any constants in the spectral approximation between M−1 and ZM is
sufficient, and the ones above are picked for simplicity.

Our goal is to use this sparsification routine to generate the parallel solver chain given in Def-
inition 3.2.1. We first show that if we’re given an approximate solver for I − A1, we can con-
struct an approximate solver for I −A2

i . Our starting point is once again the identity 1 − α2 =

(1 + α) (1− α). Its inverse can be symmetrized by moving a factor of (1 + α)−1/2 to the right:(
1− α2

)−1
= (1 + α)−1/2 (1− α)−1 (1 + α)−1/2

We first show that there exists a low degree polynomial that gives a good approximation to (1 + α)−1/2,
the inverse square root of 1 + α.

Lemma 3.4.2 For any δ > 0, there exists a polynomial APXPWR− 1
2
(λ, δ) of degree O (1/δ) such

that for all α ∈ [−1/2, 1]:

(1− δ) (1 + α) ≤ APXPWR− 1
2
(α, δ) ≤ (1 + δ) (1 + α)−1/2

63



Proof Scaling 1 + α down by a factor of 2
3

and multiplying the result by
(

3
2

)1/2 still preserves
multiplicative approximations. Therefore it suffices to work under the different assumption of
1 + α ∈

[
1
3
, 4

3

]
, or |α| ≤ 2

3
. The Taylor expansion of f(α) = (1 + α)−1/2, or McLaurin series of

f(α) is:

f(α) = 1 +

(
−1

2

)
α +

1

2!

(
−1

2

)(
−3

2

)
α2 +

1

3!

(
−1

2

)(
−3

2

)(
−5

2

)
α3 + . . .

=
∞∑
j=0

(−1)j (2j)!

(j!)2 4j
αj

=
∞∑
j=0

(−1)j

4j

(
2j

j

)
αj

Since
(

2j
j

)
is one of the terms in the expansion o (1 + 1)2j = 4j , the magnitude of each

coefficient is at most 1. Therefore if we only take the first k terms, the additive error is at most:

∞∑
j=k

|x|j =
|x|j

1− |α|
(3.2)

Since |x| ≤ 2
3
, taking the O (log (1/δ)) terms gives an additive error is at most 0.1δ. We will let

this polynomial be APXPWR− 1
2
. Also, since 1 + x ≤ 2, (1 + α)−1/2 ≥ 2−1/2 ≥ 0.1. So this error

is a δ multiplicative error as well. �

Note that in terms of the original α, this is a polynomial in 2
3

(1 + α)−1 = 2
3
α− 1

3
. To evaluate

it, we can either recollect the coefficients, or simply incur a constant factor overhead. This bound
can be transferred to the matrix setting in a straight-forward manner using diagonalization.

Lemma 3.4.3 For any matrix A with all eigenvalues in the range
[
−1

2
, 1
]

and any δ > 0, there
exists a polynomial APXPWR− 1

2
(λ, δ) of degree O (1/δ) such that:

(1− δ)
(
I−A2

)−1 � APXPWR− 1
2
(A, δ) (I−A)−1 APXPWR− 1

2
(A, δ) � (1 + δ)

(
I−A2

)−1

Proof Let a diagonalization of A be UTΛU. Then
(
I−A2

)−1
= UT

(
I−Λ2

)−1 U while the
inner term becomes:

APXPWR− 1
2

(A, δ) (I−A)−1 APXPWR− 1
2

(A, δ)

= UTAPXPWR− 1
2

(Λ, δ) UUT (I−Λ)−1 UUTAPXPWR− 1
2

(Λ, δ) U

The definition of spectral decomposition gives UTU = I, removing these terms then simplifies this
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to:

UTAPXPWR− 1
2

(Λ, δ) (I−Λ)−1 APXPWR− 1
2

(Λ, δ) U

The middle term is a diagonal matrix, which means that the entries are operated on separately by
the polynomials. Furthermore, the eigenvalue bounds gives that all entries of Λ are in the range[
−1

2
, 1
]
. This allows us to apply Lemma 3.4.2 with δ/3 to obtain APXPWR− 1

2
such that.

(1− δ)
(
I−Λ2

)−1 � UTAPXPWR− 1
2

(Λ, δ) (I−Λ)−1 APXPWR− 1
2

(Λ, δ) U � (1 + δ)
(
I−Λ2

)−1

Applying the composition lemma from Lemma 1.6.6 then gives the result. �

The spectrum requirement precludes us from applying it to A0, whose spectrum may vary
greatly. On the other hand, all the layers after the first in a parallel solver chain have I + Ai well
conditioned. Applying this lemma recursively gives that a good approximate inverse to I − A1

leads to a good approximate inverse to I−Ai for any i ≥ 1.

Lemma 3.4.4 Let A0 . . .Ai be the first i + 1 levels of a parallel solver chain with ε1 . . . εi ≤ ε
4
.

Suppose SOLVEI−A1 is an algorithm corresponding to a symmetric linear operator given by the
matrix zI−A1 such that κmin (I−A1)−1 � ZI−A1 � κmax (I−A1)−1. Then for each i ≥ 1 we
have an algorithm SOLVEI−A2

i
corresponding to a symmetric linear operator on b such that:

1. If ZI−A2
i

is the matrix such that SOLVEI−A2
i
(b) = ZI−A2

i
, then κmin (1− ε)i

(
I−A2

i

)
�

ZI−A2
i
� κmax (1 + ε)i

(
I−A2

i

)
.

2. SOLVEI−A2
i
(b) makes one call to SOLVEI−A1 plus O (log (1/ε)) matrix-vector multiplica-

tions involving A1,A2 . . .Ai in sequential order.

Proof The proof is by induction on i. Lemma 3.2.4 gives that when i ≥ 1, the eigenvalues of Ai

are in the range [− 1
10
, 1]. Therefore Lemma 3.4.3 can be applied to all these matrices. If we use an

error δ = ε/4, we have:(
1− ε

4

) (
I−A2

i

)−1 � APXPWR− 1
2
(Ai,

ε

4
) (I−Ai)

−1 APXPWR− 1
2
(Ai,

ε

4
) �

(
1 +

ε

4

) (
I−A2

)−1

The base case of i = 1 then follows from applying Lemma 1.6.6.

For the inductive case, we first show the lower bound as the upper bound follows similarly. The
guarantees of the solver chain gives:

(1− εi−1) (I−Ai)
−1 �

(
I−A2

i−1

)−1

Composing this bound with APXPWR− 1
2

(
Ai,

ε
4

)
and substituting in the above bounds gives:(

1− ε

4

)
(1− εi−1)

(
I−A2

i

)−1 � APXPWR− 1
2

(
Ai,

ε

4

) (
I−A2

i−1

)−1 APXPWR− 1
2

(
Ai,

ε

4

)
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The fact that εi−1 ≤ ε
4

and
(
1− ε

4

)2 ≥ 1 − ε simplifies the LHS to (1− ε)
(
I−A2

i

)−1. The
induction hypothesis also gives the following guarantee for ZI−A2

i−1
:

κmin (1− ε)i−1 (I−A2
i−1

)−1 � ZI−A2
i−1

Composing it with APXPWR− 1
2

(
Ai,

ε
4

)
by Lemma 1.6.6 then gives:

κmin (1− ε)i−1 APXPWR− 1
2

(
Ai,

ε

4

) (
I−A2

i−1

)−1 APXPWR− 1
2

(
Ai,

ε

4

)
� APXPWR− 1

2

(
Ai,

ε

4

)
ZI−A2

i−1
APXPWR− 1

2

(
Ai,

ε

4

)
A spectral upper bound can also be obtained similarly. Therefore, it suffices for SOLVEI−A2

i
to eval-

uate APXPWR− 1
2

(
Ai,

ε
4

)
Z2

I−Ai−1
APXPWR− 1

2

(
Ai,

ε
4

)
. Lemma 3.4.2 gives that APXPWR− 1

2

(
Ai,

ε
4

)
can be evaluated usingO(log(1/ε)) matrix-vector multiplications involving Ai, while Z2

I−Ai−1
can

be evaluated by calling SOLVEI−Ai−1
. Combining the work/depth bounds of these operations gives

the inductive hypothesis for i as well. �

This means that an approximate inverse to I −A1 suffices for constructing the entire parallel
solver chain.

Lemma 3.4.5 Let I −A be a normalized n × n SDDM matrix with m non-zero entries and all
eigenvalues in the range [ 1

κ
, 2− 1

κ
], and A1 is the second level of a solver chain with A0 = A,ε0 =

1
10

and I −A1 has m1 non-zero entries. If we’re given a routine SOLVEI−A corresponding to a
matrix ZI−A such that ZI−Ab = SOLVEI−A(b) and 9

10
(I−A)−1 � ZI−A � 11

10
(I−A)−1. Then

we can construct the rest of the parallel solver chain so that for all i ≥ 1, εi = 1
c log κ

for some
constant c and the total size of the parallel solver chain isO(m+m1+n log3 κ log n). Furthermore,
the construction makes O(log κ) sequential batches of O(log n) parallel calls to SOLVEI−A1 plus
an overhead of O(log2 κ log log κ log n) depth and O(m1 log2 κ log n+ n log5 κ log3 n) work.

Proof We will show by induction that we can construct the levels of the solver chain along with
the corresponding SDDM matrices and splitting Mi = Di − Ai. The base case of i = 1 follows
from the first level of the parallel solver chain being given.

For the inductive case, suppose we have level i of the chain. Since Corollary 3.2.5 limits
the depth of the chain to O(log κ), i ≤ c′ log κ for some fixed constant c′. Therefore an appro-
priate choice of c gives (1 + 4

c log κ
)i 11

10
≤ 3

2
and (1 − 4

c log κ
)i 9

10
≥ 3

4
. Applying Lemma 3.4.4

then gives SOLVEI−A2
i

whose running time consists of one invocation of SOLVEI−A plus an over-
head of O(log κ log log κ + log n) depth and O(m1 + i · n log2 κ log log κ log n) ≤ O(m1 +
n log3 κ log log κ log n) work. Furthermore, SOLVEI−A2

i
(b) evaluates to a symmetric linear opera-

tor on b and if the matrix corresponds to this operator is ZI−A2
i
, then the guarantees of Lemma 3.4.4
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gives:

3

4

(
I−A2

i

)−1 � ZI−A2
i
� 3

2

(
I−A2

i

)−1

Then we can proceed in the same way as our proof of Lemma 3.3.7. Let the SDDM matrix
corresponding to I −Ai be Mi = Di − Ai. Let M̂ denote the SDDM matrix corresponding the
next level in the exact setting, M̂ = Di − AiD−1Ai. We first invoke Lemma 3.3.6 with error εi

4
to

generate a crude sparsifier of M̂, M̂
′
. The number of non-zeros in this matrix, m̂′i, can be bounded

by O(mi log nε−2). (
1− εi

4

)
M̂ � M̂′ �

(
1 +

εi
4

)
M̂

Since M = D−1/2
i (I −Ai)D−1/2

i , combining this with the guarantees of ZI−A2
i

and Lemma 1.6.6
gives: (

1− εi
4

) 3

4
M̂
′−1
� D1/2

i ZI−A2
i
D1/2
i �

(
1 +

εi
4

) 3

2
M̂
′−1

Since εi ≤ 1, this means that SOLVEI−A2
i

with multiplications by D1/2 before and after suffices as

an approximate solver of M̂
′
for the sparsification process provided in Lemma 3.4.1. Using it with

error εi
4

then gives Mi+1 that’s a sparsifier for M̂
′
, and in turn M̂. The splitting and normalization

are then given by Lemma 3.3.3. Therefore we can construct level i+ 1 of the solver chain as well.

This construction makes O(log n) calls to SOLVEI−A2
i

plus an overhead of O(log n) depth and
O(m̂′i log n) work. When i = 1, this work overhead is O(mi log2 κ log n), while when i > 1, it is
O(n log4 κ log3 n). Combining this with the O(log κ) bound on the number of levels and the costs
of the calls to SOLVEI−A2

i
then gives the total. �

It remains to obtain this approximate inverse for I−A1. We do so by reducing it to a smaller
system that’s spectrally close, and use an approximate inverse for that as an approximate inverse to
I−A1. To construct a parallel solver chain for that system, we need to in turn recurse on an even
smaller system. This leads to an algorithm that generates a sequence of matrices similar to the
sequential preconditioner chain given in Definition 2.3.1, with the main difference being that the
spectral conditions between levels are much more relaxed. This is because the solver for I−A(i+1)

is only used in the construction of the parallel solver chain for I−A(i).

Definition 3.4.6 A parallel solver construction chain for A is two sequences of matrices A(0) =

A,A(1), . . . ,A(l) and A(0)
1 ,A(1)

1 , . . . ,A(l−1), size boundsm(0),m(1), . . . ,m(l), approximation fac-
tor κapx, and bound on eigenvalues κ such that:

1. For all j < l, A(j)
1 is the first level of a parallel solver chains with A0 = A(j) and ε0 = 1

10
.

2. The number of non-zero entries in A(j) and A(j)
1 can be bounded by m(j) and O(m(j) log n)

respectively.
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3. For all j < l, m(j+1) ≤ 1
10
m(j) and m(l) is less than a fixed constant.

4. All eigenvalues of A(j) are in the range
[
−1 + 1

κ
, 1− 1

κ

]
.

5. If SOLVEI−A(j+1) is a routine corresponding to a matrix ZI−A(j+1) such that:

κmin(I−A(j+1))−1 � ZI−A(j+1) � κmax(I−A(j+1))−1

Then we can obtain a routine SOLVEI−A(j)
1

corresponding to a matrix ZI−A(j)
1

such that:

κmin

(
I−A(j)

1

)−1

� ZI−A(j)
1
� κapx · κmax

(
I−A(j)

1

)−1

and SOLVEI−A(i)
1

involves one call to SOLVEI−A(i+1) plus an overhead ofO(log n) depth and
O(mi log n) work.

Such a solver construction chain allows us to construct parallel solver chain backwards starting
from the last level.

Lemma 3.4.7 Given a parallel solver construction chain for A, we can obtain inO(
√
κapx log3 κ log n+

log3 κ log log κ log2 n) depth and O(m(
√
κapx log4 κ log2 n+log5 κ log3 n)) work a parallel solver

chain with A0 = A, total size O(m log3 κ log n), ε0 = 1
5
, and εi = 1

c log3 κ
for all i ≥ 1.

Proof We show by induction backwards on the levels j that we can build a parallel solver chain
with A0 = A(j), total size O(mi log3 κ log n), and the required errors in O(

√
κapx log2 κ log n +

log2 κ log log κ log2 n) depth and O(m(j)(
√
κapx log4 κ log2 n+ log5 κ log3 n)) work

The base case follows from mi being smaller than a fixed constant. For the inductive case,
suppose the result is true for j + 1. Then the inductive hypothesis gives parallel solver chain with
A(j+1)

0 = A(j+1) with total size sizeO(m log3 κ log n). Lemma 3.2.2 then gives a solver algorithm
SOLVEI−A(j+1) corresponding to a matrix ZI−A(j+1) such that

1

2

(
I−A(j+1)

)−1

� ZI−A(j+1) � 10
(

I−A(j+1)
)−1

and SOLVEI−A(j+1)(b) runs inO(log κ log n) depth andO(m(j+1) log3 κ log n) work. By the solver
conversion condition given as Part 5 of Definition 3.4.6, this leads a routine SOLVE′

I−A(j)
1

corre-

sponding to a matrix Z′
I−A(j)

1

such that:

1

2

(
I−A(j)

1

)−1

� Z′
I−A(j)

1

� 10κapx

(
I−A(j)

1

)−1

Preconditioned Chebyshev iteration as stated in Lemma 2.6.3 then allows us improve the quality of
this solver to any constant inO(

√
κapx) iterations. This gives a routine SOLVEI−A(j)

1
corresponding
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to a matrix Z′
I−A(j)

1

such that:

9

10

(
I−A(j)

1

)−1

� ZI−A(j)
1
� 11

10

(
I−A(j)

1

)−1

and for any vector b, SOLVEI−A(j)
1

(b) runs inO(
√
κapx log κ log n) depth andO(

√
κapx(m

(j) log n+

m(j+1) log3 κ log n)) ≤ O(
√
κapxm

(j) log3 κ log n) work. This routine meets the requirement of
Lemma 3.4.5, and thus we can construct the rest of the parallel solver chain with A(j)

0 = A(j). The
total work/depth can then be obtained by combining the number of calls made to SOLVEI−A(j)

1
(b)

and the work/depth overhead.

Summing over the log n levels of the construction chain and using the fact that mis are geo-
metrically decreasing gives the overall bounds.

�

Building the parallel solver construction chain is done using the following lemma:

Lemma 3.4.8 (Crude Sparsification) Given any weighted graph G = (V,E,w), and any param-
eter γ, we can find in O(γ−2 log3 n) depth and O(m log n) work a graph H on the same vertex set
with n− 1 + γm edges such that:

LG � LH � O
(
γ−2 log3 n

)
LG

The proof of this lemma requires the construction of low-stretch subgraphs, which in turn relies
on parallel low diameter partition schemes. We will give a detailed exposition of this in Chapter 4,
specifically Lemma 3.4.8 will be proven in Section 4.3. We also need to reduce LH to one of
size O (γm) using greedy-elimination. A parallelization of this procedure was given as Lemma 26
in [BGK+13].

Lemma 3.4.9 (Parallel Greedy Elimination) There is a procedure PARGREEDYELIMINATION

that given an n × n SDDM matrix M = D − A corresponding to a graph on n vertices and
m = n − 1 + m′ edges, produces with high probability in O(n + m) work and O(log n) depth a
factorization:

PTMP = UT

[
I 0T

0 M′
]

U

Where M′ is a SDDM matrix with at most O(m′) vertices and edges, P is a permutation matrix
and U is an upper triangular matrix such that:

• The lower-right n′ × n′ block of U corresponding to the entries in M′ is the identity matrix.

• The diagonal of M′ is at most the corresponding diagonal entries in PTMP.
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• Matrix-vector products with U, UT , U−1 and U−T can be computed in O(log n) depth and
O(n) work.

We need an additional bound on the effect on eigenvalues of this greedy elimination procedure.

Lemma 3.4.10 Let M′ be a matrix outputted by greedy elimination procedure given in Lemma 3.4.9
above, and let M′ = D′ − A′ be a splitting obtained by taking its diagonal. The minimum eigen-
value of the normalized matrix I −A′ = D′−1/2M′D′−1/2 is at least the minimum eigenvalue of
I−A = D−1/2MD−1/2.

Proof Since eigenvalues are invariant under simultaneous permutations of rows/columns, we
may assume during the rest of this proof that P = I. The Courant Fischer theorem given in
Lemma 3.3.9 gives that the minimum eigenvalue of I−A′ is:

min
x′

x′T (I−A′) x′

x′Tx′
= min

y′

y′TM′y′

y′D′y′

Similarly, for any vector y, yTMy
yDy gives an upper bound on the minimum eigenvalue of I − A.

Therefore, it suffices to show that for any vector y′, we can obtain a y with a smaller quotient.

For a vector y′, consider the vector:

y = U−1

[
0
y′

]
We have:

yTMy = yTUT

(
I 0T

0 M′
)

Uy

=

[
0
y′

]T [ I 0T

0 M′
] [

0
y′

]
= y′TM′y′

Also, since the U is the identity matrix in the lower-right block corresponding to M′, its inverse
is the identity in this block as well. Therefore the entries in y corresponding to y are the same.
Since D is non-negative and its entries corresponding to D′ are larger, we have yTDy ≥ y′D′y′.
Combining these gives:

yTMy
yTDy

≤ y′TM′y′

y′TD′y′

Therefore the minimum eigenvalue of I − A′ is greater or equal to the minimum eigenvalue of
I−A. �
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These two lemmas allows us to construct the entire sequence of sparsifiers needed to build the
parallel solver chain. Since we are incurring spectral distortions of O (poly (log n)) for O (log n)
steps, a direct calculation leads to a distortion of logO(logn) n to the spectrum. We can do better by
only controlling the minimum eigenvalue and using the fact that all eigenvalues of A are between
[−1, 1].

Lemma 3.4.11 If a SDDM matrix M with splitting D − A such that all eigenvalues of I −A are
at least λ, then the matrix M′ = (1 + λ) D− A satisfies:

1. All eigenvalues of A′ are in the range
[
−1 + λ, 1− 1

2
λ
]
.

2. 1
2

(I−A) � I−A′ � 2 (I−A).

Proof Normalizing M′ using the splitting (1 + λ) D− A gives:

A′ = ((1 + λ) D)−1/2 A ((1 + λ) D)−1/2

=
1

1 + λ
A

Since (−1 + λ) I � A � I, (−1 + λ) I � 1
1+λ

A � 1
1+λ

I. The lower eigenvalue of I −A′ is at
least λ and the upper eigenvalue is at most 1 + 1

1+λ
= 2− λ

1+λ
≤ 2− λ

2
since λ ≤ 1.

We now show the relation between I −A and I −A′. The LHS side follows from I − A′ �
1

1+λ
(I−A) and 1

1+λ
≥ 1

2
. The RHS can be obtained by adding the following two inequalities:

1

1 + λ
I−A′ = 1

1 + λ
(I−A)

� I−A
λ

1 + λ
I � λI � I−A

�

This method of adding a small identity matrix can also be used to increase the minimum eigen-
value of the matrix returned by the crude sparsification algorithm given in Lemma 3.4.8. This
process leads to the following size reduction step for constructing the next level of a parallel solver
construction chain.

Lemma 3.4.12 Given a SDDM matrix M with splitting D−A such that the minimum eigenvalue of
I−A is at least λ. For any parameter γ we can construct in O(m log n) work and O(γ−2 log3 n)
depth. a SDDM matrix M′ = D′ − A′ with γm vertices and edges such that:

1. The minimum eigenvalue of I−A′ is at least 1
2
λ.
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2. Suppose SOLVEI−A′ is a routine corresponding to a matrix ZI−A′ such that:

κmin (I−A′)−1 � ZI−A′ � κmax (I−A′)−1

Then we can obtain a routine SOLVEI−A corresponding to a matrix ZI−A such that:

κmin (I−A)−1 � ZI−A � O
(
γ−2 log3 n

)
· κmax (I−A)−1

and SOLVEI−A involves one call to SOLVEI−A′ plus an overhead of O(log n) depth and
O(n log n) work.

Proof Let G be the graph corresponding to A, DG its diagonal (aka. weighted degrees of A) and
D+ be D−DG, the extra diagonal elements in M. Applying Lemma 3.4.8 givesH with n−1+γm
edges such that

LG � LH � κapxLG

Where κapx = O
(
γ−2 log3 n

)
. The eigenvalue bound on A and the fact that −A � D gives

λD �M � 2D. Therefore if we let M̂ = D+ + LH + κapxλD, we have:

M � M̂ � κapxM + κapxλD

So M and M̂ are within a factor of 2κapx of each other. We now lower bound the minimum
eigenvalue of I − Â. Since LH � κapxLG, using the indicator vectors as test vectors gives DH �
κapxDG So we have:

D̂ � κapxDG + D+ + κapxλD
� 2κapxD Since λ ≤ 1

On the other hand since LH and D+ are both positive semi-definite, we also have κapxλD � M̂.
Hence 1

2
λD̂ �M and the minimum eigenvalue of I− Â is at least 1

2
λ.

We can then obtain M′ by the greedy elimination procedure given in Lemma 3.4.9 on M̂. A′
can be in turn be obtained by splitting M′ directly using its diagonal. The bound on its minimum
eigenvalue follows from Lemma 3.4.10.

For the conversion of solver guarantees, the factorization given by Lemma 3.4.9 gives:

PTM̂P = UT

[
I 0T

0 M′
]

U

M̂
−1

= PU−1

[
I 0T

0 M′−1

]
U−TPT

= PU−1

[
I 0T

0 D′−1/2 (I−A′)−1 D′−1/2

]
U−TPT
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Replacing (I−A′−1) by ZI−A′ gives the following approximate solver for M̂:

ZM̂ = PU−1

[
I 0T

0 D′−1/2ZI−A′D′−1/2

]
U−TPT

Applying Lemma 1.6.6 with V =

[
I 0T

0 D′−1/2

]
U−TD1/2 gives:

κminM̂
−1
� ZM̂ � κmaxM̂

−1

Inverting the spectral bounds between M and M̂ gives M−1 � 2κapxM̂
−1
� 2κapxM−1. Combining

this with the fact that (I−A)−1 = D1/2MD1/2 and applying Lemma 1.6.6 once again gives:

κminM−1 � 2κapxD1/2ZM̂D1/2 � 2κapx · κmaxM−1

Hence one possible linear operator to evaluate is:

ZI−A = 2κapxD1/2ZM̂D1/2

= 2κapxD1/2PU−1

[
I 0T

0 D′−1/2ZI−A′D′−1/2

]
U−TPTD1/2

Note that matrix-vector products involving P, PT , D1/2, D′−1/2 U−1, and U−T can all be evaluated
in O(log n) depth and O(n) work. Therefore we can obtain a routine SOLVEM̂ that evaluates the
linear operator given by ZM̂ using one call to SOLVEI−A′ plus an overhead of O(log n) depth and
O(n) work. �

Lemma 3.4.13 Given an n× n SDDM matrix M and splitting D− A such that all eigenvalues of
M(i) are in the range [−1 + 1

κ(0)
, 1− 1

κ(0)
]. We can construct in O

(
log5 n

)
depth and O (m log n)

work a parallel solver construction chain for A = D−1/2AD−1/2 with κapx = O
(
log5 n

)
and

κ ≤ mκ(0).

Proof Consider the following algorithm that sets A(0) = D−1/2AD−1/2 and iteratively generates
A(j) and spectrum bounds κ(j) until the size of A(j) is smaller than some constant.

• Let M(j) = D(j) − A(j) be the SDDM matrix corresponding to I−A(j).

• Compute an approximation to D(j)−A(j)D(j)−1A(j) using the square sparsifier in Lemma 3.3.6
with error ε0 = 1

10
, M(j)

1 .

• Set A(j)
1 to the splitting of M(j)

1 given by Lemma 3.3.3.

• Apply Lemma 3.4.12 to M(j)
1 with γ = 1/O (log n) for some suitable (fixed) constant. to

obtain M̃
(j+1)

with corresponding Ã(j+1)
.
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• Apply Lemma 3.4.11 to Ã(j+1)
with λ = 1

κ(j)
to create A(j+1). Set κ(j+1) to 4κ(j).

We first show that the size of A(j) decreases geometrically. Since ε0 was set to a constant,
the guarantee of Lemma 3.3.6 gives that A(j)

1 has O (m log n) edges. This meets the requirement
of Definition 3.4.6, and the spectral guarantees of A(j)

1 follows from Lemma 3.3.3. Also, the
guarantees of Lemma 3.4.8 then gives that M̃

(j)

1 has n − 1 + O (γm log n) edges, which is then
reduced to O (γm log n) via. greedy elimination. Therefore setting γ = 1/O (log n) for the right
choice of constants gives the desired reduction factor, which in turn implies l = O (log n).

The conversion of solver routines follows from Lemma 3.4.12 and the spectral guarantees of
Lemma 3.4.11. It remains to lower bound the spectrum of the normalized matrices generated.
Suppose all eigenvalue of A(j) are in the range

[
−1 + λ(j), 1− λ(j)

]
. Then Lemma 3.2.4 gives

that the minimum eigenvalue of I − A(j)
1 is at least λ(j). The guarantees of the size reduction

routine from Lemma 3.4.12 ensures that minimum eigenvalue of I− Ã(j+1)
is at least 1

2
λ(j). This

can only be further halved the routine from Lemma 3.4.11, so all eigenvalues of I −A(j+1) are
in the range [−1 + 1

4
λ(j), 1 − 1

4
λ(j)] and we can set κ(j+1) to 4κ(j). Since the sizes of the levels

decrease by factors of 10, κ ≤ m−1κ(0) suffices as an overall bound.

�

We can now put these together to prove the main result of this chapter.

Proof of Theorem 3.0.1: By Lemma 3.3.10, it suffices to solve a linear system I−A where all
eigenvalues of A are in the range

[
−1 + 1

2n3U
, 1− 1

2n3U

]
. We first build a parallel solver construc-

tion chain using Lemma 3.4.13 with κapx = O
(
log5 n

)
and κ = 2n5U in O

(
log5 n

)
depth and

O (m log n) work.

Invoking Lemma 3.4.7 then gives a parallel solver chain inO(
√
κapx log3 κ log n+log3 κ log log κ log2 n) =

O(log3 κ log7/2 n+ log3 κ log log κ log2 n) depth and O(m(
√
κapx log4 κ log2 n+ log5 κ log3 n)) =

O(m(log4 κ log9/2 n + log5 κ log3 n)) work. The resulting chain has total size O(m log3 κ log n).
Invoking this chain with Lemma 3.2.2 then gives the depth/work bounds for a solver with con-
stant relative error. This error can then be reduced using preconditioned iterative methods such as
Chebyshev iteration as stated in Lemma 2.1.1, and the resulting guarantee can also be converted
using Lemma 1.6.7. �

The factorization used in our construction should also extend to give solvers. The only addi-
tional step needed is to evaluate we evaluate the operator (I + A)1/2, which can be done in ways
similar to APXPWR. We omit presenting this since the resulting bound is are more than the variant
using the factorization given in Fact 3.1.1. However, we believe further developments of this ap-
proach may allow us to compute a wider range of functions based on the eigenvalues of the matrix,
such as matrix exponentials/logarithms, and log determinants.
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Chapter 4

Construction of Low-Stretch Subgraphs

The sparsifiers and preconditioners in the previous two chapters rely on upper bounding effective
resistances, or equivalently edge sampling probabilities, using a tree. These trees were first used
in subgraph preconditioners by Boman and Hendrickson [BH01], and played crucial roles in all
subsequent constructions. Due to connections to metric embeddings, these probabilities are often
known as stretch. In this view, both the graph and the tree can be viewed as defining metrics given
by their shortest path distance. For a tree T , we use distT (u, v)to denote the length of the shortest
path between vertices u and v in the tree. Using this notation the stretch of an edge e = uv can be
defined as:

Definition 4.0.1 Given a graph G = (V,E), edge lengths l, and a tree T , the stretch of an edge
e = uv is:

strT (e) =
distT (u, v)

le

In metric embedding definitions, the denominator term is often written as distG(u, v). These two
terms are equivalent when G is a metric, and this modification is needed since our input graphs
may not have this property.

Intuitively, strT (e) corresponds to the factor by which the edge e = uv is ‘stretched’ by rerout-
ing it into the tree. In comparison to our definition of stretch from Section 2.1, they are identical
in the unweighted setting since 1

we = 1. In the weighted case, they are equivalent by setting the
length of an edge to be the inverse of its weight.

le =
1

we

This change of variables is in some sense natural because weights correspond to conductance, and
it is the inverse of them, resistances, that are additive along tree paths.

The use of low stretch spanning trees and the exact stretch values in combinatorial precondi-
tioning is continuously evolving. They were first used as ways of explicitly rerouting the edges
by Boman and Hendrickson [BH01] and Spielman and Teng [ST06]. More recently, stretch has
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been used as sampling probabilities by Koutis et al. [KMP11] (see Chapter 2) and Kelner et
al. [KOSZ13]. One property of stretch remains the same in applications of low stretch embeddings
and is unlikely to change:

smaller total stretch = better performance.

Due to the direct dependency of solver running times on total stretch, and the relation to metric
embedding, algorithms for generating low stretch spanning trees have been extensively studied.
All the algorithms for generating low stretch spanning trees to date have two main components:
an inner loop that partitions the graph into pieces; and an outer loop that stitches these partitions
together to form a good spanning tree. The outer loops controls the overall flow of the algorithm,
as well as the form of the tree generated. As a result, they have been the main focus in almost
all the low-stretch spanning tree constructions to date. A brief overview of the trade-offs made in
these algorithms is in Section 4.1. Our improvements to this framework relies on the fact that for
the construction of sparsifiers, the stretch of a small fraction of edges can be very large. This is the
main insight in our parallel algorithm for constructing low stretch subgraphs in Section 4.3 as well
as low `1/2+α-moment spanning trees in Section 4.4.

The partition routines were first introduced in the setting of distributed algorithms by Awerbuch
et al. [Awe85, ALGP89]. Their aggregated bound across multiple iterations were improved by
Seymour [Sey95], but otherwise these subroutines have remained largely unchanged in various
low stretch embedding algorithms. One drawback of this routine is that it’s highly sequential: each
piece in the decomposition relies on the result of all previous ones. As a result, one of the main
components of the Blelloch et al. parallel solver algorithm [BGK+13] was an alternate parallel
decomposition scheme. In Section 4.2 we show a more refined version of this scheme that obtains
the same parameters as the sequential algorithm. The low stretch subgraph algorithm in Section 4.3
is a direct consequence of this algorithm and techniques introduced by Blelloch et al. [BGK+13].
However, in order to understand the goal of these decompositions, it is helpful to give a picture of
the overall algorithm.

4.1 Low Stretch Spanning Trees and Subgraphs

A direct approach for generating trees with small total stretch would be to find trees such that
every edge have small stretch. Unfortunately this is not possible for the simplest non-tree graph:
the cycle on n vertices as shown in Figure 4.1. As a tree contains n − 1 edges, each possible tree
omits one edge from the cycle. If all the edges on the cycle have the same weight, this edge then
has a stretch of n− 1 = Ω(n).

As a result, it is crucial that only the total stretch is small. Or in other words, the edges have
small stretch on average. This requirement is still significantly different than other definitions of
special spanning trees such as the minimum weight spanning tree. Here an illustrative example
is the

√
n ×
√
n square grid with unit edge weights shown in Figure 4.2. The tree on the left is

both a minimum spanning tree and a shortest path tree (under appropriate tie breaking schemes).
However, it leads to a high total stretch. For each vertical edge beyond the middle column, at least
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Figure 4.1: Cycle on n vertices. Any tree T can include only n− 1 of these edges. If the graph is
unweighted, the remaining edge has stretch n− 1.

√
n horizontal edges are needed to travel between its endpoints. Therefore its stretch is at least√
n. So the n/2 edges in the right half of the square grid contribute a total stretch of n1.5.

In the tree on the right, all edges along the middle row and column still have stretch O(
√
n).

However, the middle row and column only have O(
√
n) edges and so they contribute only O(n)

to the total stretch. Recall that all we need is a low total stretch, so a small number of high-stretch
edges is permitted. Having accounted for the edges in the middle row and column, the argument
can then be repeated on the 4 smaller subgraphs of size n/4 formed by removing the middle row
and column. These pieces have trees that are constructed similarly, leading to the recurrence

TotalStretch(n) = 4 · TotalStretch(n/4) +O(n).

which solves to TotalStretch(n) = O(n log n).

Figure 4.2: Two possible spanning trees of the unit weighted square grid, shown with red edges.
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A generalization of this type of trade-off, which keeps the number of high stretch edges small,
forms the basis of all low stretch spanning tree algorithms. Constructions of such trees for general
graphs were first proposed in the context of online algorithms by Alon et al. [AKPW95], leading
to the AKPW low stretch spanning trees. In these settings, a more crucial quantity is the expected
stretch of a single edge. This is a stronger requirement since applying linearity of expectation over
it also allows us to bound the total stretch. On the other hand, here it is not crucial for the tree
to be a spanning tree. As a result, subsequent works generated trees that are not necessarily sub-
trees, and the problem was more commonly formulated as embedding arbitrary metrics. A series
of results by Bartal [Bar96, Bar98], and Fakcharoenphol et al. [FRT04] led to an expected stretch
of O(log n) per edge, which was shown to be optimal by Alon et al. [AKPW95].

However, to date it’s only known how to use subtrees to generate sparsifiers and precondi-
tioners. The first nearly-linear time solver used the AKPW low stretch spanning trees, which
had O

(
m exp

(√
log n log log n

))
total stretch [ST06]. As a result, subsequent improvements

in SDD linear system solvers have often gone hand in hand with improvements in algorithms
for finding low stretch spanning trees. A series of works by Elkin et al. [EEST08], Abraham et
al. [ABN08] and Abraham and Neiman [AN12] led to sequential algorithms for finding trees with
O(m log n log log n) total stretch. The nearly m log n running time of the solver algorithm pre-
sented in Chapter 2 also made the runtime of finding the tree one of the bottlenecks. Koutis et
al. [KMP11] addressed this by modifying the Abraham et al. [ABN08] low stretch spanning tree
algorithm, giving a running time of O (n log n log log n+m log n). This modification is also used
in the current best low stretch spanning tree result by Abraham and Neiman [AN12], a nearly-
optimal total stretch of O (m log n log log n) in O (n log n log log n+m log n) time.

The situation is similar for parallel solvers. Finding a low stretch spanning tree is one of the
main technical components in the first nearly-linear work, sublinear depth algorithm by Blelloch
et al. [BGK+13]. The analysis of this algorithm utilized a quantity more specialized for solvers.
Because the tree is only used to reduce the number of edges by a small factor (a constant or
poly (log n)), it is acceptable for a small fraction of edges to have very high stretch. One way to
view this, as described in Section 2.5 is that edge’s sampling probability can be upper bounded by
1. Alternatively, they can be viewed as extra edges in addition to the tree, and the sum of them
forms a low stretch subgraph. One example of such a subgraph is shown in Figure 4.3.

For a grid, the number of edges of stretch s is about n/s. Therefore, if we treat all edges
of stretch more than poly (logn) as ‘extra’ edges, we obtain a total of n log n/poly (logn) =
n/poly (logn) extra edges. On the other hand, since stretches grow geometrically, there are only
log log n ‘groups’ with stretch less than poly (logn). As the total stretch from each such group is
O(n), their total is O(n log log n).

Another way to view this is that we begin by partitioning the grid into n0× n0 sized sub-grids,
and applying the recursive-C construction to each grid. The total stretch in each of these sub-grid

is n2
0 log n0, which when summed over the

(√
n

n0

)2

sub-grids gives O (n log n0). On the other hand,

the number of edges between them is O
(
n
n0

)
. Setting n0 = poly (log n) then gives both the total

stretch and number of extra edges.
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Figure 4.3: Low stretch spanning tree for the square grid (in red) with extra edges of high stretch
(narrower, in green). These edges can be viewed either as edges to be resolved later in the recursive
algorithm, or as forming a subgraph along with the tree

Blelloch et al. showed that including these extra edges leads to nearly-linear work solvers using
the AKPW low stretch spanning trees [BGK+13]. As such trees haveO

(
m exp

(√
log n log log n

))
total stretch, it suggests that higher stretch edges need to be accounted differently. The results in
this chapter are based around implications of such treatments of high stretch edges that are closely
related to the solvers shown in Chapters 2 and 3. Specifically we show:

1. A simplified version of the low stretch subgraph algorithm by Blelloch et al. [BGK+13] that
suffices for the parallel edge reduction component from Section 3.4. Here high stretch edges
are kept as extras, leading to subgraphs instead of spanning trees.

2. We show that slight modifications to the low stretch spanning tree algorithm by Abraham
and Neiman [AN12] meets the requirements of Lemma 2.5.1 for a O (m log n log (1/ε))
time solver. Here stretch is measured under a different function that’s smaller for higher
stretch values.

The low stretch subgraph routine shown in Section 4.3 also requires a partition routine known
as low (strong) diameter decomposition. Such routines are used at the core of most tree embedding
algorithms in ways similar to partitioning the grid into smaller ones. Parallel low (strong) diameter
decomposition algorithms were first introduced by Blelloch et al. [BGK+13]. We will start by
showing an improved version of it that obtains the same parameters as sequential algorithms.

4.2 Parallel Partition Routine

At the core of various low stretch embedding schemes are routines that partition the vertices of a
graph into low diameter subgraphs with few edges between them. Such routines are also used at the
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core for a number of algorithms such as: approximations to sparsest cut [LR99, She09]; construc-
tion of spanners [Coh98]; parallel approximations of shortest path in undirected graphs [Coh00].

In order to formally specify the diameter of a piece, it is crucial to emphasize the distinction
between weak and strong diameter. The diameter of a piece S ⊆ V can be defined in two ways,
weak and strong diameter. Both of them set diameter to the maximum length of a shortest path
between two vertices in S, while the difference is in the set of allowed paths. Strong diameter
restricts the shortest path between two vertices in S to only use vertices in S, while weak diameter
allows for shortcuts through vertices in V \S. The optimal tree metric embedding algorithm relies
on weak diameter [FRT04]. It has been parallelized with polylog work overhead by Blelloch et
al. [BGT12], although the total work remains quadratic.

A trend in algorithms that use weak diameter is that their running time tends to be super-linear.
This is also the case with many parallel algorithms for computing low diameter decompositions
such as the ones by Awerbuch et al. [ABCP92] and Linial and Sax [LS93] 1. To date, nearly-
linear work algorithms for finding tree embedding use strong diameter instead. While this leads
to more difficulties in bounding diameters, the overall work is easier to bound since each piece
certifies its own diameter, and therefore does not need to examine other pieces. For generating
low stretch spanning trees, strong diameter is also crucial because the final tree (which the graph
embeds into) is formed by combining the shortest path tree in each of the pieces. As a result, we
will use diameter of a piece to denote strong diameter, and define a low diameter decomposition
as follows:

Definition 4.2.1 Given an undirected, unweighted graph G = (V,E), a (β, d) decomposition is a
partition of V into subsets S1 . . . Sk such that:

• The (strong) diameter of each Si is at most d.

• The number of edges uv with vertices belonging to different pieces is at most βm.

A standard choice of parameters for such decompositions is (β,O( logn
β

)), which are in some sense
optimal. The simpler bottom-up schemes for constructing low stretch embeddings set β to log−c n
for some constant c. As a result, a dependency in β−1 in the depth of the decomposition algorithm
is acceptable. This makes the depth of these algorithms more than the NC algorithms for large
values of β. However, they suffice for the purpose of generating tree/subgraph embedding in
polylog depth, as well as low work parallel graph algorithms.

Obtaining these decompositions in the sequential setting can be done via. a process known as
ball growing. This process starts with a single vertex, and repeatedly adds the neighbors of the
current set into the set. It terminates when the number of edges on the boundary is less than a β
fraction of the edges within, which is equivalent to the piece having small conductance. Once the
first piece is found, the algorithm discards its vertices and repeats on the remaining graph. The final
bound of βm edges between the pieces can in turn be obtained by summing this bound over all

1The Linial and Sax algorithm [LS93] adapted to low diameter decompositions could be improved to
O (m · diameter) work
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the pieces. Using a consumption argument, one could prove that the diameter of a piece does not
exceed O( logn

β
). Because the depth can depend on 1/β, and the piece’s diameter can be bounded

by O( logn
β

), finding a single piece is easy to parallelize. However, the strong diameter requirement
means that we cannot start finding the second ball until we’re done finding the first. This leads
to a chain of sequential dependencies that may be as long as Ω(n), and is the main challenge in
obtaining a parallel decomposition algorithm.

An algorithm for low diameter decompositions was given by Blelloch et al. [BGK+13]. It
gave a

(
β,O

(
log4 n
β

))
decomposition in O( log3 n

β
) depth and O(m log2 n) work. This algorithm

showed that some of the ball growing steps can be performed simultaneously in parallel, leading
to balls which have small overlap. Then a randomly shifted shortest path routine is used to resolve
these overlaps. We will show an improved version of these ideas that combines these two steps
into a simple, global routine. This leads to a simple algorithm that picks random shifts in a more
intricate way and assigns vertices to pieces using one shortest path invocation. Our algorithm can
also be viewed as a parallel version of the probabilistic decompositions due to Bartal [Bar96]. It is
also related to a decomposition algorithm by Gupta and Talwar [GT13]. To describe our partition
scheme, we first need to define some notations.

4.2.1 Notations

We begin by stating some standard notations. Given a graph G, we use dist(u, v) to denote the
length of the shortest path from u to v. As with earlier works on tree embedding, we will pick a
special vertex in each piece, and use the distance to the farthest vertex from it as an estimate for the
diameter. This simplification can be made since the graph is undirected and the final bound allows
for constant factors (specifically 2). We will denote this special vertex the center of the piece, and
denote the piece centered at u using Su.

As the number of pieces in the final decomposition may be large (e.g. the line graph), a par-
allel algorithm needs to construct a number of pieces simultaneously. On the other hand, for
closely connected graphs such as the complete graph, a single piece may contain the entire graph.
As a result, if too many pieces are grown independently, the total work may become quadratic.
The decomposition algorithm from [BGK+13] addressed this trade-off by gradually increasing the
number of centers picked iteratively. It was motivated by the (β,W ) decompositions used in an
algorithm by Cohen for approximating shortest paths in undirected graphs [Coh00]. By running
iterations with gradually more centers, it can be shown that the resulting pieces at each iteration
have small overlap. This overlap is in turn resolved using a shifted shortest path algorithm, which
introduces shifts (denoted by δ) at the centers and assigns vertex v to Su that minimizes the shifted
distance:

dist−δ(u, v) = dist(u, v)− δu. (4.1)

It was shown that by picking shifts uniformly from a sufficiently large range, a (β,O( logc n
β

)) de-
composition can be obtained.

Our algorithm can be viewed as a more streamlined algorithm that combines these two compo-
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nents. The gradual increase in the number of centers can be emulated by adding a large step-like
increase to the shifts of centers picked in earlier iterations. Furthermore, the need to have expo-
nentially decreasing number of centers in the iterations suggests that the exponential distribution
can be used in place of the (locally) uniform distribution. This distribution has been well-studied,
and we will rely on some of its properties that are often used to estimate fault tolerance [Tri02].
For a parameter γ, this distribution is defined by the density function:

fExp(x, γ) =

{
γ exp(−γx) if x ≥ 0,
0 otherwise.

We will denote it using Exp(γ) and will also make use of its cumulative density function:

FExp(x, γ) = Pr [Exp(γ) ≤ x] =

{
1− exp(−γx) if x ≥ 0,
0 otherwise.

4.2.2 Partition Routine

We now describe our partition routine. Aside from being parallelizable, this routine can be viewed
as an alternative to the repeated ball-growing arguments used in sequential algorithms. Pseudocode
of a simplified version of our algorithm is shown in Algorithm 5. As states, it is a quadratic
algorithm. However, we will describe efficient versions of it in Sections 4.2.3.

Algorithm 5 Partition Algorithm Using Exponentially Shifted Shortest Paths
PARTITION

Input: Undirected, unweighted graph G = (V,E), parameter β and parameter d indicating failure
probability.
Output: (β,O(log n/β)) decomposition of G with probability at least 1− n−d.

1: For each vertex u, pick δu independently from Exp(β)
2: Compute Su by assigning each vertex v to the vertex that minimizes dist−δ(u, v), breaking ties

lexicographically
3: return {Su}

We start by showing that the assignment process readily leads to bounds on strong diameter.
Specifically, the strong diameter of Su can be measured using distances from u in the original
graph.

Lemma 4.2.2 If v ∈ Su and v′ is the last vertex on the shortest path from u to v, then v′ ∈ Su as
well.

Proof The proof is by contradiction, suppose v′ belongs to Su′ for some u′ 6= u. The fact that v′

is the vertex before v on the shortest path from u implies dist−δ(u, v) = dist−δ(u, v′) + 1. Also, as
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v′ is adjacent to v, we also have dist−δ(u′, v) ≤ dist−δ(u′, v′) + 1. Since v′ belongs to Su′ instead
of Su, we must have one of the following two cases:

1. v′ is strictly closer to u′ than u in terms of shifted distance. In this case we have dist−δ(u′, v′) <
dist−δ(u, v′), which when combined with the conditions above gives:

dist−δ(u′, v) ≤dist−δ(u′, v′) + 1

<dist−δ(u, v′) + 1

=dist−δ(u, v).

So v is strictly closer to u′ than u as well, which implies that v should not be assigned to Su.

2. The shifted distances are the same, and u′ is lexicographically earlier than u. Here a similar
calculation gives dist−δ(u′, v) ≤ dist−δ(u, v). If the inequality holds strictly, we are back to
the case above. In case of equality, the assumption that u′ is lexicographically earlier than u
means v should not be in Su as well.

�

Note that the second case is a zero probability event, and its proof is included to account for
roundings in implementations that we will describe in Section 4.2.3.

To bound the strong diameter of the pieces, it suffices to bound the distance from a vertex to
the center of the piece that it is assigned to. Since any vertex v ∈ Su could have been potentially
included in Sv, the shift value of the center δu serves as an upper bound on the distance to any
vertex in Su. Therefore, δmax = maxu δu serves as an upper bound for the diameter of each piece.

Lemma 4.2.3 Furthermore, with high probability, δu ≤ O( logn
β

) for all vertices u.

Our proof below proof closely following the presentation in Chapter 1.6. of [Fel71].

Proof By the cumulative distribution function of the exponential distribution, the probability of
δu ≥ (d+ 1) · lnn

β
is:

exp

(
−(d+ 1) · β lnn

β

)
= exp(−(d+ 1) lnn)

≤n−(d+1).

Applying union bound over the n vertices then gives the bound. �

The other property that we need to show is that few edges are between the pieces. We do so
by bounding the probability of two endpoints of an edge being assigned to two different pieces. In
order to keep symmetry in this argument, it is helpful to consider shifted distances from a vertex
to the midpoint of an edge. This slight generalization can be formalized by replacing an edge uv
with two length 1/2 edges, uw and wv. We first show that an edge’s end points can be in different
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pieces only if there are two different vertices whose shifted shortest path to its midpoint are within
1 of the minimum.

Lemma 4.2.4 Let uv be an edge with midpoint w such that when partitioned using shift values δ,
u ∈ Su′ and v ∈ Sv′ . Then both dist−δ(u′, w) and dist−δ(v′, w) are within 1 of the minimum shifted
distance to w.

Proof Let the pieces that contain u and v be Su′ and Sv′ respectively (u′ 6= v′). Let the minimizer
of dist−δ(x,w) be w′. Since w is distance 1/2 from both u and v, we have

dist−δ(w′, u), dist−δ(w′, v) ≤dist−δ(w′, w) + 1/2.

Suppose dist−δ(u′, w) > dist−δ(w′, w) + 1, then we have:

dist−δ(u′, u) ≥dist−δ(u′, w)− 1/2

>dist−δ(w′, w) + 1/2

≥dist−δ(w′, u),

a contradiction with u′ being the minimizer of dist−δ(x, u). The case with v follows similarly. �

An even more accurate characterization of this situation can be obtained using the additional
constraint that the shortest path from w′ to w must go through one of u or v. However, this
lemma suffices for abstracting the situation further to applying random decreases δ1, δ2 . . . δn to a
set of numbers d1 . . . dn corresponding to dist(x,w). We now turn our attention to analyzing the
probability of another shifted value being close to the minimum when shifts are picked from the
exponential distribution.

The memoryless property of the exponential distribution gives an intuitive way to bound this
probability. Instead of considering the vertices picking their shift values independently, consider
them as light bulbs with lifetime distributed according to Exp(β), and the dis indicate the time
each light bulb is being turned on. Then mini di − δi corresponds to the time when the last light
bulb burns out, and we want to bound the time between that and the second last. In this setting,
the memoryless property of exponentials gives that when the second to last light bulb fails, the
behavior of the last light bulb does not change and its lifetime after that point still follows the same
distribution. Therefore, the probability that the difference between these two is less than c can be
bounded using the cumulative distribution function:

1− exp(−cβ) ≈ 1− (1− cβ) (When cβ is small)
= cβ.

The only case that is not covered here is when the last light bulb has not been turned on yet when
the second last failed. However, in that case this probability can only be less. Below we give an
algebraic proof of this.
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Lemma 4.2.5 Let d1 ≤ . . . ≤ dn be arbitrary values and δ1 . . . δn be independent random vari-
ables picked from Exp(β). Then the probability that between the smallest and the second smallest
values of di − δi are within c of each other is at most O(βc).

Proof

Let E denote the number of indices i such that:

di − δi ≤ dj − δj + c ∀j.

For each vertex i, let Ei be an indicator variable for the event that:

di − δi ≤ dj − δj + c ∀j.

We will integrate over the value of t = di − δi. For a fixed value of t, Ei occurs if and only if
δj ≤ dj − t + c for each j. As the shift values are picked independently, we can multiply the
cumulative distribution functions for Exp(β) and get:

Pr [Ei]

=

∫ ∞
t=−∞

fExp(di − t, β)
∏
j 6=i

FExp(dj − t+ c, β)

When t > d1 + c, d1 − t + c < 0 and fExp(d1 − t, β) = FExp(d1 − t + c, β) = 0. So it suffices
to evaluate this integral up to t = d1 + c. Also, we may use exp(−βx) as an upper bound as
fExp(x, β), and arrive at:

Pr [Ei]

≤
∫ d1+c

t=−∞
β exp(−β(di − t))

∏
j 6=i

FExp(dj − t+ c)

≤
∫ d1+c

t=−∞
β exp(−β(di − t))

∏
j 6=i

(1− exp(−β(dj − t+ c))))
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We now bound E [E ] = E [
∑

i Ei]. By linearity of expectation we have:

E

[∑
i

Ei

]
≤
∑
i

∫ d1+c

t=−∞
β exp (−β(di − t))∏

j 6=i

(1− exp(−β(dj − (t− c))))

= exp(βc)

∫ d1+c

t=−∞
β
∑
i

exp (−β(di − t+ c))∏
j 6=i

(1− exp(−β(dj − t+ c)))

Observe that the expression being integrated is the derivative w.r.t. t of:

−
∏
i

(1− exp(−β(di − t+ c)))

Therefore we get:

E [E ] ≤− exp(βc)
∏
i

(1− exp(−β(di − t+ c)))

∣∣∣∣∣
t=d1+c

t=−∞

When t → −∞, −β(di − t + c) → −∞. Therefore exp(−β(di − t + c)) → 0, and the overall
product tends to − exp(βc).

When t = d1 + c, we have:

− exp(βc)
∏
i

(1− exp(−β(di − (d1 + c) + c)))

=− exp(βc)
∏
i

(1− exp(−β(di − d1)))

≤− exp(βc)
∏
i

(1− exp(0)) = 0 Since di ≥ d1

Combining these two gives E [E ] ≤ exp(βc).

By Markov’s inequality the probability of there being another vertex being within c of the
minimum is at most exp(βc)− 1 ≤ O(βc) for c = 1. �

Using this Lemma with c = 1 and applying linearity of expectation gives the bound on the
number of edges between pieces.

Corollary 4.2.6 The probability of an edge e = uv having u and v in different pieces is bounded
by O(β), and the expected number of edges between pieces is O(βm).
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4.2.3 Parallel Implementation in Unweighted Case

Our partition routine as described in Algorithm 5 requires computing dist−δ(u, v) for all pairs of
vertices u and v. Standard modifications allow us to simplify it to the form shown in Algorithm 6,
which computes BFS involving small integer distances.

Algorithm 6 Parallel Partition Algorithm
PARALLEL-PARTITION

Input: Undirected, unweighted graphG = (V,E), parameter 0 < β < 1 and parameter d indicating
failure probability.
Output: (β,O(log n/β)) decomposition of G with probability at least 1− n−d.

1: IN PARALLEL each vertex u picks δu independently from an exponential distribution with
mean 1/β.

2: IN PARALLEL compute δmax = max{δu | u ∈ V }
3: Perform PARALLEL BFS, with vertex u starting when the vertex at the head of the queue has

distance more than δmax − δu.
4: IN PARALLEL Assign each vertex u to point of origin of the shortest path that reached it in the

BFS.

The first observation is that the −δu shift at vertex u can be simulated by introducing a super
source swith distance−δu to each vertex u. Then if we compute single source shortest path from s
to all vertices, the component that v belongs to is given by the first vertex on the shortest path from
s to it. Two more observations are needed to transform this shortest path setup to a BFS. First, the
negative lengths on edges leaving s can be fixed by adding δmax = maxu δu to all these weights.
Second, note that the only edges with non-integral lengths are the ones leaving s. In this shortest
path algorithm, the only time that we need to examine the non-integer parts of lengths is when we
compare two distances whose integer parts are tied. So the fractional parts can be viewed as tie-
breakers for equal integer distances, and all distances with the same integer part can be processed
in parallel. We’ll show below that these tie breakers can also be replaced by a random permutation
of integers.

Therefore, the algorithm is equivalent to computing shortest path when all edge lengths are
integer, with an extra tie breaking rule for comparing distances. In order to use unweighted BFS,
it remains to handle the edges with non-unit lengths leaving s, and we do so by processing the
those edges in a delayed manner. An edge from s to v only causes v to be added to the BFS queue
when the frontier of the search has reached a distance larger than the length of that edge and v has
not been visited yet. So it suffices to check all vertices v with a length L edge to s when the BFS
frontier moves to distance L, and add the unvisited ones to that level.

The exact cost of running a parallel breadth first search depends on the model of parallelism.
There has been much practical work on such routines when the graph has small diameter [LS10,
BAP12, SB13]. For simplicity we will use the O(∆ log n) depth and O(m) work bound in the
PRAM model by Klein and Subramanian [KS97]. Here ∆ is the maximum distance that we run
the BFS to, and can be bounded by O( logn

β
). In the PRAM model, our result can be described by
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the following theorem:

Theorem 4.2.7 There is an algorithm PARTITION that takes an unweighted graph with n vertices,
m edges, a parameter β ≤ 1/2 and produces a (β,O( logn

β
)) decomposition in expected O( log2 n

β
)

depth and O(m) work.

Proof Consider running PARTITION using the BFS based implementation described above, and
repeating until we have an (β,O( logn

β
)) partition. Since the δus are generated independently, they

can be computed inO(n) work andO(1) depth in parallel. The rest of the running time comes from
assigning vertices to pieces using shifted shortest path. As the maximum distance from a vertex to
the center of its piece isO( logn

β
) (or we could stop the algorithm at this point), this BFS can be done

inO(m) work andO( log2 n
β

) depth using parallel BFS algorithms. The resulting decomposition can
also be verified in O(log n) depth and O(m) time.

It remains to bound the success probability of each iteration. Lemma 4.2.2 gives that the
shortest path from u to any v ∈ Su is contained in Su, so maxv∈Su dist(u, v) is an upper bound for
the strong diameter of each subset. For each vertex v ∈ Su, since dist−δ(v, v) = d(v, v) − δv ≤ 0
is a candidate, dist−δ(u, v) ≤ −δv. Lemma 4.2.3 then allows us to bound this value by O(log n/β)
with high probability. The expected number of edges between pieces follows from Corollary 4.2.6,
so with constant probability we meet both requirements of a (β,O( logn

β
)) partition. Therefore, we

are expected to iterate a constant number of times, giving the expected depth and work bounds. �

4.3 Parallel Construction of Low Stretch Subgraphs

We now give a parallel algorithm for constructing the low-stretch subgraphs needed for the low-
quality sparsifiers from Section 3.4. These subgraphs certify that most of the edges have small
stretch w.r.t. a forest. It computes this forest T ⊆ G along with stretch bounds of the edges that
do have small stretch w.r.t. T . It also identifies the edges whose stretch we cannot bound, aka. a
subset of “extra” edges Ē. In other words, it produces a vector ŝtr : E \ Ē → R+, for the stretch
of edges in E \ Ē.

In general, the exact values of stretches with respect to a forest T can be computed in parallel
using the tree contraction framework from [MR89], but having these upper bounds allows us to
simplify the presentation of our overall algorithm.

Our algorithm is directly motivated by the AKPW low-stretch spanning tree algorithm [AKPW95],
but is significantly simpler. As a motivating example, note that if all edges are unweighted, per-
forming one step of low diameter decompositions as given in Theorem 4.2.7 gives:

• O(βm) edges between the pieces

• All edges within pieces have stretch O(β−1 log n).

In order to handle varying weights, note that the diameter of pieces after one level of partition is
also O(β−1 log n). Therefore if all pieces are shrunk into vertices, the cost of traversing a vertex
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is identical to traversing an edge of weight O(β−1 log n). Therefore, we can consider all edges in
geometrically increasing buckets of weights, and at each level consider edges whose weights are
comparable to the diameter of our ‘vertices’.

Pseudocode of our algorithm for generating low stretch subgraphs is given in Algorithm 7 is
a crude version of the AKPW algorithm. In words, iteration t of Algorithm 7 looks at a graph
(V (t), E(t)) which is a minor of the original graph (because components were contracted in pre-
vious iterations, and because it only considers the edges in the first j weight classes). It uses
PARTITION(V (t), Et, γ) to decompose this graph into components such at most γ|Et| edges are
between pieces. These edges are then added to the list of extra edges Ē. Each such piece is then
shrunk into a single node while adding a BFS tree on that component to T , and the algorithm iter-
ates once again on the resulting graph. Adding these BFS trees maintains the invariant that the set
of original nodes that have been contracted into a (super-)node in the current graph are connected
in T . This means upon termination T is a forest.

Algorithm 7 Low-stretch Spanning Subgraph Algorithm

LSSG-AKPW
Input: Weighted graphG = (V,E,w) with n vertices, edge reduction factor γ. Routine PARTITION

that produces a (β, yβ−1)-low diameter decomposition for graphs with n vertices, where y is a
known parameter dependent on n (O (log n)).
Output: Forest T , extra edges Ē and upper bounds for stretch w.r.t. T , ŝtr for edges in E \ Ē.

Normalize the edges so that min{we : e ∈ E} = 1.
z ← 4yγ−1

Initialize T ← ∅, Ē ← ∅
Divide E into E1, E2, . . . , where Ei = {e ∈ E | we ∈ [zi−1, zi)}
for t = 1, 2, . . . , until the graph is exhausted do

Create E(t)
i from Ei by taking into account the contractions used to form V (t).

(C1, C2, . . . , Cp) = PARTITION((V (t), E
(t)
i ), z/4).

Add a BFS tree of each component Ci to T .
Set ŝtre to 2z2 for all edges with endpoints in the same piece
Add all edges with endpoints in different pieces to Ē
Create vertex set V (t+1) by contracting all edges within the components and removing all
self-loops (but keeping parallel edges).

end for
Output forest T , extra edges Ē and stretch upper bounds ŝtr.

We begin the analysis of the total stretch and running time by proving two useful facts:

Fact 4.3.1 ∣∣Ē∣∣ ≤ γ |E|
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Proof The guarantee of PARTITION gives that at most γ fraction of the edges of Et remain
between the pieces after iteration t. As these are the only edges added to Ē, summing over the
iterations gives the bound. �

Therefore, it suffices to bound the stretch of edges of E(t)
t that are contained in a single piece.

The hop radius of the piece can be bounded by yγ−1 ≤ z/4, and because all edges in Et have
weights within a factor of z of each other, there is hope that a O(z2) bound on stretch can suffice.
However, each vertex in Gt corresponds to a set of vertices in G, and distances between them are
omitted in this calculation. As a result, we need to start by bounding the weighted radius of each
of the pieces.

Fact 4.3.2 In iteration t, the weighted diameter of a component in the expanded-out graph is at
most zt+1.

Proof The proof is by induction on j. First, note that each of the clusters computed in any
iteration j has edge-count radius at most z/4. Now the base case j = 1 follows by noting that each
edge in E1 has weight less than z, giving a radius of at most z2/4 < zj+1. Now assume inductively
that the radius in iteration j − 1 is at most zj . Now any path with z/4 edges from the center to
some node in the contracted graph will pass through at most z/4 edges of weight at most zj , and
at most z/4 + 1 supernodes, each of which adds a distance of 2zj; hence, the new radius is at most
zj+1/4 + (z/4 + 1)2zj ≤ zj+1 as long as z ≥ 8. �

Coupling this with the lower bound on edge weights in bucket Et allows to prove that ŝtr in
fact upper bounds edge stretch:

Lemma 4.3.3 For any edge e, strT (e) ≤ ŝtr(e)

Proof Let e be an edge in Et which is contained in a piece contracted during iteration t The
initial partition gives w(e) > zt−1. By Fact 4.3.2, the path connecting the two endpoints of e in F
has distance at most 2zt+1. Thus, strT (e) ≤ 2zt+1/zt−1 = 2z2. �

Combining these facts means that LSSG-AKPW obtains a low-stretch subgraph with n −
1 + γm edges such that all off tree edges have stretch z2 = O

(
γ−2 log2 n

)
. A drawback of this

algorithm is that it performs log ∆ calls to PARTITION, where ∆ is the ratio between the maximum
and minimum edges weights in w. We next show that by ignoring some of the buckets, we can run
this algorithm on the bucketing scheme in parallel to reduce the depth.

4.3.1 Reducing Depth to Polylog

The depth of the LSSG-AKPW algorithm still depends on log ∆, and the reason is straightfor-
ward: the graph G(t) used in iteration t is built by taking G(1) and contracting edges in each
iteration—hence, it depends on all previous iterations. However, note that for edges that are lighter
by a factor of n can only affect the final stretch by a factor of 1/n. Therefore, if a significant
range of weight classes are empty, we can break this chain of dependencies. To create such empty
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weight classes, it suffices to identify edge classes totaling fewer than γm edges, and move them to
Ē directly.

Consider a graph G = (V,E,w) with edge weights w(e) ≥ 1, and let Ei(G) := {e ∈ E(G) |
w(e) ∈ [zi−1, zi)} be the weight classes. Then, G is called (γ, τ)-well-spaced if there is a set of
special weight classes {Ei(G)}i∈I such that for each i ∈ I , (a) there are at most γ weight classes
before the following special weight class min{i′ ∈ I ∪ {∞} | i′ > i}, and (b) the τ weight classes
Ei−1(G), Ei−2(G), . . . , Ei−τ (G) preceding i are all empty.

Lemma 4.3.4 Given any graphG = (V,E), τ ∈ Z+, and γ ≤ 1, there exists a graphG′ = (V,E ′)
which is (4τ/γ, τ)-well-spaced, and |E \E ′| ≤ γ · |E|. Moreover, G′ can be constructed in O(m)
work and O(log n) depth.

Proof Let δ = log ∆
log z

; note that the edge classes for G are E1, . . . , Eδ, some of which may be
empty. Denote by EJ the union ∪i∈JEi. We construct G′ as follows: Divide these edge classes
into disjoint groups J1, J2, . . . ⊆ [δ], where each group consists of dτ/γe consecutive classes.
Within a group Ji, by an averaging argument, there must be a range Li ⊆ Ji of τ consecutive
edge classes that contains at most a γ fraction of all the edges in this group, i.e., |ELi | ≤ γ · |EJi|
and |Li| ≥ τ . We form G′ by removing these the edges in all these groups Li’s from G, i.e.,
G′ = (V,E \ (∪iELi)). This removes only a γ fraction of all the edges of the graph.

We claim G′ is (4τ/γ, τ)-well-spaced. Indeed, if we remove the group Li, then we designate
the smallest j ∈ [δ] such that j > max{j′ ∈ Li} as a special bucket (if such a j exists). Since
we removed the edges in ELi , the second condition for being well-spaced follows. Moreover, the
number of buckets between a special bucket and the following one is at most

2dτ/γe − (τ − 1) ≤ 4τ/γ.

Finally, these computations can be done in O(m) work and O(log n) depth using standard tech-
niques such as the ones described in [JáJ92] and [Lei92]. �

Therefore, we will construct LSSGs separately on each of the intervals in parallel, and merge
the results together. This gives our main result for low-stretch subgraphs:

Theorem 4.3.5 (Low-Stretch Subgraphs) There is an algorithm LSSUBGRAPH(G, γ) that for
any weighted graph G = (V,E,w), and any parameter γ, finds a forest T and a subset of edges
Ē ⊆ E(G) along with upper bounds on stretch ŝtr for all edges e ∈ E(G) \ Ē such that

1. |Ē| ≤ O (γm).

2. For each edge e ∈ E(G) \ Ē, strT (e) ≤ ŝtre; and

3.
∑

e∈E(G)\Ē ŝtr(e) ≤ O
(
mγ−2 log2 n

)
,

Moreover, the procedure runs in O (m) work and O(γ−2 log3 n) depth.
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Proof We set τ = 3 log n and apply Lemma 4.3.4 to delete at most γm edges to form G′. This
leaves us with a (3 log nγ−1, 3 log n)-well-spaced graph G′.

For each special bucket i, we implicitly find the graph formed by contracting all edges in earlier
buckets. Then we run LSSG-AKPW on this graph consisting of edges until the next special
bucket. Afterwards, we add some of the extra edges to the forest so that its connected components
match the one that results from contracting all edges up until the next special bucket. The first
step can be done using a minimum spanning tree of the entire graph. The second step is done by
performing log nγ−1 iterations of PARTITION one after another, each involving a different set of
edges. Combining these over all edges givesO(m) work andO(γ−2 log3 n) depth. The final step is
akin to finding connected components, and can be done in O(m) work and O(log2 n) depth, which
is a lower order term.

To bound stretch, note that the bucketing scheme means that edges contracted have weight
at most z−3 logn ≤ n−2 times the weight of an edge processed in this batch. As the path in the
resulting tree contains at most n edges, these edges can result in an additive stretch of at most n−1.
So the total stretch can still be bounded by O

(
mγ−2 log2 n

)
.

Finally, the number of edges in Ē = Ē ′ ∪ (E(G) \E(G′)) is at most 2γm by summing the two
bounds. �

For different choices of parameters, this algorithm was used to to generate the AKPW low-
stretch spanning trees [AKPW95]. The resulting algorithm has a logarithmic dependency on ∆, as
well as an nε term. It was presented along with the first polylog depth low diameter decomposition
algorithms in [BGK+13], and can be found in more details in [Tan11].

This particular embedding is needed in Section 3.4 to reduce the number of edges in the graph.
Combining it with the ultrasparsifier construction gives the following crude sparsification:

Lemma 3.4.8 (Crude Sparsification) Given any weighted graph G = (V,E,w), and any param-
eter γ, we can find in O(γ−2 log3 n) depth and O(m log n) work a graph H on the same vertex set
with n− 1 + γm edges such that:

LG � LH � O
(
γ−2 log3 n

)
LG

The proof of this Lemma can be readily obtained by combining Theorem 4.3.5 with a paral-
lelization of the ultrasparsifiers from Theorem 2.2.4.

Theorem 2.2.4 (Ultra-Sparsifier Construction) There exists a setting of constants in ULTRA-
SPARSIFY such that given a graph G and a spanning tree T , ULTRASPARSIFY(G, T) returns in
O(m log n + strT (G) log2 n

κ
) time a graph H that is with high probability a

(
κ,O

(
strT (G)
m

log n
))

-ultra-sparsifier for G.

Proof of Lemma 3.4.8:
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Applying Theorem 4.3.5 with γ
2

gives set of extra edges Ē and a spanning tree T such that
strT (E \ Ē) ≤ mγ−2 log2 n. Since the sampling steps in ULTRASPARSIFY are performed inde-
pendently, it parallelizes to O

(
log2 n

)
depth without work overhead. Running it on E \ Ē for a κ

to be determined gives a graph H with n−1 + strT (E\Ē)
κ

log n = n−1 + 4γ−2 log3 n
κ

edges such that:

LG � LH � κLG

Adding Ē to H then leads to a graph with n − 1 +
(
γ
2

+ 4γ−2 log3 n
κ

)
m. Therefore if we set κ to

8γ−3 log3 n, the number of edges in this graph is n − 1 + γm. The bound between G and H also
follows from the guarantees of Theorem 2.2.4. �

4.4 Construction of low `α-stretch spanning trees

We now give a sketch for generating low stretch spanning tree that leads to theO (m log n log (1/ε))
time solver algorithm from Section 2.5. The construction of low stretch spanning trees received sig-
nificant attention due to their use in the nearly-linear time solvers for SDD linear systems [ST06].
The state of the art both in stretch and running time have been continuously improved [EEST08,
ABN08, AN12]. As a result, a self-contained presentation of modifications to the algorithm falls
outside of the scope of this thesis. Instead, we will sketch the necessary modifications needed for
obtaining a spanning tree with small `α stretch.

Claim 4.4.1 Let α be any constant such that 0 ≤ α < 1. Given weighted graph G = (V,E,w),
we can find in O (m log n log log n) time a spanning tree T such that:∑

e

(
strT (e)

log n

)α
≤ O(m)

To date, all algorithms that generate spanning trees with polylog average stretch rely on the
star-decomposition framework [EEST08, ABN08, AN12]. The framework, introduced by Elkin
et al. [EEST08], aims to partition into a graph into pieces whose diameters are smaller by a con-
stant factor. As a result, the diameter of the pieces, ∆ decreases geometrically. Furthermore,
contracting edges shorter than ∆

n3 ensures that each edge is only involved in O(log n) levels of
partitioning [EEST08]. The stretch bound of edges cut then relies on two steps:

1. Let Ecut be the set of edges between the pieces. One needs to show that
∑

e∈Ecut
1

we ≤
p·m
∆

,
where m is the number of edges involved.

2. The final diameter of the tree produced on a graph with diameter ∆ is O(∆).

The second step is the main focus in the recent advancements by Abraham et al. [ABN08, AN12].
Assuming this step, it’s easy to see that the total stretch can be bounded by O(p log nm). This
O(log n) factor from all the levels was reduced toO(log log n) using an approach by Seymour [Sey95].
However, using simpler schemes such as probabilistic decompositions [Bar96], one can obtain an
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algorithm with p = O(log n) that does not have the guarantees across all the layers. This leads
to a total stretch of O(m log2 n). However, probabilistic decompositions have the even stronger
property that an edge e with weight we is cut with probability at most:

we

∆
log n

We can show that as long as higher stretch values are discounted, this suffices for the required low
moment stretch.

Lemma 4.4.2 Let α be a constant that’s strictly less than 1. Consider an edge weight we and a
sequence of diameter values ∆1 . . .∆l such that ∆i ≥ ciwe log n for some constant c > 1. If e is
cut in the decomposition at level i with probability at most we

∆i
log n, then:

E
[(

strT (e)

log n

)α]
≤ O (1)

Proof By linearity of expectation, we can sum over all the levels:

E
[(

strT (e)

log n

)α]
=

l∑
i=1

(
O(∆i)

we log n

)α
Pr [e cut at level i]

≤
l∑

i=1

(
O(∆i)

we log n

)α we

∆i

log n

= O

(
l∑

i=1

(
we log n

∆i

)1−α
)

Note that due to the geometrical decrease in diameters, ∆i satisfies ∆i ≥ we log nci, or alterna-
tively we logn

∆i
≤ c−i. Substituting this gives:

E
[(

strT (e)

log n

)α]
≤ O

(
l∑

i=1

(
1

c1−α

)i)
= O (1)

�

Therefore replacing the more sophisticated decomposition schemes with probabilistic decom-
positions leads to spanning trees with low moment stretch. The running time of the algorithm
follows similarly to Section 7 of the algorithm by Abraham and Neiman [AN12].
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Chapter 5

Applications to Image Processing

In this chapter we show that SDD linear system solvers can be used as a subroutine to solve a wide
range of regression problems. These problems are motivated by the LASSO framework and have
applications in machine learning and computer vision. We show that most of these problems can
be formulated as a grouped least squares problem. Our main result shown in Section 5.4 is an
O
(
m4/3poly (ε−1)

)
time algorithm for computing (1 + ε)-approximate solutions to this formula-

tion. We also present some preliminary experiments using it on image processing tasks.

The problem of recovering a clear signal from noisy data is an important problem in signal
processing. One general approach to this problem is to formulate an objective based on required
properties of the answer, and then return its minimizer via optimization algorithms. The power
of this method was first demonstrated in image denoising, where the total variation minimization
approach by Rudin, Osher and Fatemi [ROF92] had much success. More recent works on sparse
recovery led to the theory of compressed sensing [Can06], which includes approaches such as
the least absolute shrinkage and selection operator (LASSO) objective due to Tibshirani [Tib96].
These objective functions have proven to be immensely powerful tools, applicable to problems in
signal processing, statistics, and computer vision. In the most general form, given vector y and a
matrix A, one seeks to minimize:

min
x
‖y− Ax‖2

2 (5.1)

subject to: ‖x‖1 ≤ c

It can be shown to be equivalent to the following by introducing a Lagrangian multiplier, λ:

min
x
‖y− Ax‖2

2 + λ ‖x‖1 (5.2)

Many of the algorithms used to minimize the LASSO objective in practice are first order meth-
ods [Nes07, BCG11], which update a sequence of solutions using well-defined vectors related to
the gradient. These methods converge well when the matrix A is well-structured. The formal def-
inition of this well-structuredness is closely related to the conditions required by the guarantees
given in the compressed sensing literature [Can06] for the recovery of a sparse signal. As a result,
these algorithms perform very well on problems where theoretical guarantees for solution quality
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are known. This good performance, combined with the simplicity of implementation, makes these
algorithms the method of choice for most problems.

However, LASSO-type approaches have also been successfully applied to larger classes of
problems. This has in turn led to the use of these algorithms on a much wider variety of prob-
lem instances. An important case is image denoising, where works on LASSO-type objectives
predates the compressed sensing literature [ROF92]. The matrices involved here are based on the
connectivity of the underlying pixel structure, which is often a

√
n×
√
n square mesh. Even in an

unweighted setting, these matrices tend to be ill-conditioned. In addition, the emergence of non-
local formulations that can connect arbitrary pairs of vertices in the graph also highlights the need
to handle problems that are traditionally considered ill-conditioned. We will show in Section 5.6
that the broadest definition of LASSO problems include well-studied problems from algorithmic
graph theory:

Fact 5.0.1 Both the s-t shortest path and s-t minimum cut problems in undirected graphs can be
solved by minimizing a LASSO objective.

Although linear time algorithms for unweighted shortest path are known, finding efficient par-
allel algorithms for this has been a long-standing open problem. The current state of the art parallel
algorithm for finding 1 + ε approximate solutions, due to Cohen [Coh00], is quite involved. Fur-
thermore, these reductions are readily parallelizable, efficient algorithms for LASSO minimization
would also lead to efficient parallel shortest path algorithms. This suggests that algorithms for
minimizing LASSO objectives, where each iteration uses simple, parallelizable operations, are
also difficult. Finding a minimum s-t cut with nearly-linear running time is also a long standing
open question in algorithm design. In fact, there are known hard instances where many algorithms
do exhibit their worst case behavior [JM93]. The difficulty of these problems and the non-linear
nature of the objective are two of the main challenges in obtaining fast run time guarantees.

Previous run time guarantees for minimizing LASSO objectives rely on general convex opti-
mization routines [BV04], which take at least Ω(n2) time. As the resolution of images are typically
at least 256× 256, this running time is prohibitive. As a result, when processing image streams or
videos in real time, gradient descent or filtering based approaches are typically used due to time
constraints, often at the cost of solution quality. The continuing increase in problem instance size,
due to higher resolution of streaming videos, or 3D medical images with billions of voxels, makes
the study of faster algorithms an increasingly important question.

While the connection between LASSO and graph problems gives us reasons to believe that
the difficulty of graph problems also exists in minimizing LASSO objectives, it also suggests that
techniques from algorithmic graph theory can be brought to bear. To this end, we draw upon recent
developments in algorithms for maximum flow [CKM+11] and minimum cost flow [DS08]. We
show that relatively direct modifications of these algorithms allows us to solve a generalization of
most LASSO objectives, which we term the grouped least squares problem. Our algorithm is
similar to convex optimization algorithms in that each iteration of it solves a quadratic minimiza-
tion problem, which is equivalent to solving a linear system. The speedup over previous algorithms
come from the existence of much faster solvers for graph related linear systems [ST06], although
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our approaches are also applicable to situations involving other underlying quadratic minimization
problems.

5.1 Background and Formulations

The formulation of our main problem is motivated by the total variation objective from image
denoising. This objective has its origin in the seminal work by Mumford and Shah [MS89]. There
are two conflicting goals in recovering a smooth image from a noisy one, namely that it must be
close to the original image, while having very little noise. The Mumford-Shah function models
the second constraint by imposing penalties for neighboring pixels that differ significantly. These
terms decrease with the removal of local distortions, offsetting the higher cost of moving further
away from the input. However, the minimization of this functional is computationally difficult and
subsequent works focused on minimizing functions that are close to it.

The total variation objective is defined for a discrete, pixel representation of the image and
measures noise using a smoothness term calculated from differences between neighboring pixels.
This objective leads naturally to a graph G = (V,E) corresponding to the image with pixels. The
original (noisy) image is given as a vertex labeling s, while the goal of the optimization problem
is to recover the ‘true’ image x, which is another set of vertex labels. The requirement of x being
close to s is quantified by ‖x− s‖2

2, which is the square of the `2 norm of the vector that’s identified
as noise. To this is added the smoothness term, which is a sum over absolute values of difference
between adjacent pixels’ labels:

‖x− s‖2
2 +

∑
(u,v)∈E

|xu − xv| (5.3)

This objective can be viewed as an instance of the fused LASSO objective [TSR+05]. As the
orientation of the underlying pixel grid is artificially imposed by the camera, this method can
introduce rotational bias in its output. One way to correct this bias is to group the differences of
each pixel with its 4 neighbors. For simplicity, we break symmetry by only consider the top and
right neighbors, giving terms of the form:√

(xu − xv)2 + (xu − xw)2 (5.4)

where v and w are the horizontal and vertical neighbor of u.

Our generalization of these objectives is based on the key observation that
√

(xu − xv)2 + (xu − xw)2

and |xu − xv| are both `2 norms of vectors consisting of differences of values between adjacent
pixels. Each such difference can be viewed as an edge in the underlying graph, and the grouping
gives a natural partition of the edges into disjoint sets S1 . . . Sk:

‖x− s‖2
2 +

∑
1≤i≤k

√ ∑
(u,v)∈Si

(xu − xv)2 (5.5)
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When each Si contain a single edge, this formulation is identical to the objective in Equation
5.3 since

√
(xu − xv)2 = |xu − xv|. To make the first term resemble the other terms in our

objective, we will take a square root of it – as we prove in Appendix 5.7, algorithms that give
exact minimizers for this variant still captures the original version of the problem. Also, the terms
inside the square roots can be written as quadratic positive semi-definite terms involving x. The
simplified problem now becomes:

‖x− s‖2 +
∑

1≤i≤k

√
xTLix (5.6)

We can also use ‖·‖Li to denote the norm induced by the PSD matrix Li, and rewrite each of the
later terms as ‖x‖Li . Fixed labels s1 . . . sk can also be introduced for each of the groups, with roles
similar to s (which becomes s0 in this notation). As the `2 norm is equivalent to the norm given by
the identity matrix, ‖x− s0‖2 is also a term of the form ‖x− si‖Li . These generalizations allows
us to define our main problem:

Definition 5.1.1 The grouped least squares problem is:

Input: n× n matrices L1 . . .Lk and fixed values s1 . . . sk ∈ Rn.

Output:
min

x
OBJ (x) =

∑
1≤i≤k

‖x− si‖Li

Note that this objective allows for the usual definition of LASSO involving terms of the form
|xu| by having one group for each such variable with si = 0. It is also related to group LASSO
[YL06], which incorporates similar assumptions about closer dependencies among some of the
terms. To our knowledge grouping has not been studied in conjunction with fused LASSO, al-
though many problems such as the ones listed in Section 5.2 require this generalization.

5.1.1 Quadratic Minimization and Solving Linear Systems

Our algorithmic approach to the group least squares problem crucially depends on solving a re-
lated quadratic minimization problem. Specifically, we solve linear systems involving a weighted
combination of the Li matrices. Let w1 . . .wk ∈ R+ denote weights, where wi is the weight on the
ith group. Then the quadratic minimization problem that we consider is:

min
x
OBJ 2(x,w) =

∑
1≤i≤k

1

wi

‖x− si‖2
Li (5.7)

We will use OPT2(w) to denote the minimum value that is attainable. This minimizer, x, can be
obtained using the following Lemma:
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Lemma 5.1.2 OBJ 2(x,w) is minimized for x such that(∑
1≤i≤k

1

wi

Li

)
x =

∑
1≤i≤k

1

wi

Lisi

Therefore the quadratic minimization problem reduces to a linear system solve involving
∑

i
1

wi
Li,

or
∑

i αiLi where α is an arbitrary set of positive coefficients. In general, this can be done inO(nω)
time where ω is the matrix multiplication constant [Str69, CW90, Wil12]. When Li is symmetric
diagonally dominant, which is the case for image applications and most graph problems, these
systems can be approximately solved to ε accuracy in Õ(m log(1/ε)) time 1, where m is the total
number of non-zero entries in the matrices [ST06, KMP11], and also in Õ(m1/3+θ log(1/ε)) par-
allel depth [BGK+13]. There has also been work on extending this type of approach to a wider
class of systems [AST09], with works on systems arising from well-spaced finite-element meshes
[BHV08], 2-D trusses [DS07], and certain types of quadratically coupled flows [KMP12]. For the
analysis of our algorithms, we treat this step as a black box with running time T (n,m). Further-
more, to simplify our presentation we assume that the solvers return exact answers, as errors can
be brought to polynomially small values with an extra O(log n) overhead. We believe analyses
similar to those performed in [CKM+11, KMP12] can be adapted if we use approximate solvers
instead of exact ones.

5.2 Applications

A variety of problems ranging from computer vision to statistics can be formulated as grouped least
squares. We describe some of them below, starting with classical problems from image processing.

5.2.1 Total Variation Minimization

As mentioned earlier, one of the earliest applications of these objectives was in the context of
image processing. More commonly known as total variation minimization in this setting [CS05],
various variants of the objective have been proposed with the anisotropic objective the same as
Equation 5.3 and the isotropic objective being the one shown in Equation 5.5.

Obtaining a unified algorithm for isotropic and anisotropic TV was one of the main motivations
for our work. Our results lead to an algorithm that approximately minimizes both variants in
Õ(m4/3ε−8/3) time. This guarantee does not rely on the underlying structure of the graph, so the
algorithm readily applicable to 3-D images or non-local models involving the addition of edges
across the image. However, when the neighborhoods are those of a 2-D image, a log n factor
speedup can be obtained by using the optimal solver for planar systems given in [KM07].

5.2.2 Denoising with Multiple Colors

Most works on image denoising deals with images where each pixel is described using a single
number corresponding to its intensity. A natural extension would be to colored images, where

1We use Õ(f(m)) to denote Õ(f(m) logc f(m)) for some constant c.
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each pixel has a set of c attributes (in the RGB case, c = 3). One possible analogue of |xi − xj|
in this case would be ||xi − xj||2, and this modification can be incorporated by replacing a cluster
involving a single edge with clusters over the c edges between the corresponding pixels.

This type of approach can be viewed as an instance of image reconstruction algorithms using
Markov random fields. Instead of labeling each vertex with a single attribute, a set of c attributes
are used instead and the correlation between vertices is represented using arbitrary PSD matrices.
When such matrices have bounded condition number, it was shown in [KMP12] that the result-
ing least squares problem can still be solved in nearly-linear time by preconditioning with SDD
matrices.

5.2.3 Poisson Image Editing

The Poisson Image Editing method of Perez, Gangnet and Blake [PGB03] is a popular method for
image blending. This method aims to minimize the difference between the gradient of the image
and a guidance field vector v. We show here that the grouped least square problem can be used
for minimizing objectives from this framework. The objective function as given in equation (6) of
[PGB03] is:

min
f |Ω

∑
(p,q)∩Ω6=∅

(fp − fq − vpq)2 , with fp = f ∗p ∀p ∈ ∂Ω

where Ω is the domain and ∂Ω is the boundary. It is mainly comprised of terms of the form:

(xp − xq − vpq)2

This term can be rewritten as ((xp−xq)− (vpq−0))2. So if we let si be the vector where si,p = vpq
and si,q = 0, and Li be the graph Laplacian for the edge connecting p and q, then the term equals
to ||x− si||2Li . The other terms on the boundary will have xq as a constant, leading to terms of the
form ||xi,p−si,p||22 where si,p = xq. Therefore the discrete Poisson problem of minimizing the sum
of these squares is an instance of the quadratic minimization problem as described in Section 5.1.1.
Perez et al. in Section 2 of their paper observed that these linear systems are sparse, symmetric
and positive definite. We make the additional observation here that the systems involved are also
symmetric diagonally dominant. The use of the grouped least squares framework also allows the
possibility of augmenting these objectives with additional L1 or L2 terms.

5.2.4 Clustering

Hocking et al. [HVBJ11] recently studied an approach for clustering points in d dimensional
space. Given a set of points x1 . . . xn ∈ Rd, one method that they proposed is the minimization of
the following objective function:

min
y1...yn∈Rd

n∑
i=1

||xi − yi||22 + λ
∑
ij

wij||yi − yj||2
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Where wij are weights indicating the association between items i and j. This problem can be
viewed in the grouped least squares framework by viewing each xi and yi as a list of d variables,
giving that the ||xi − yi||2 and ||yi − yj||2 terms can be represented using a cluster of d edges.
Hocking et al. used the Frank-Wolfe algorithm to minimize a relaxed form of this objective and
observed fast behavior in practice. In the grouped least squares framework, this problem is an
instance withO(n2) groups andO(dn2) edges. Combining with the observation that the underlying
quadratic optimization problems can be solved efficiently allows us to obtain an 1 + ε approximate
solution in Õ(dn8/3ε−8/3) time.

5.3 Related Algorithms

Due to the importance of optimization problems motivated by LASSO there has been much work
on efficient algorithms for minimizing the objectives described in Section 5.1. We briefly describe
some of the previous approaches for LASSO minimization below.

5.3.1 Second-order Cone Programming

To the best of our knowledge, the only algorithms that provide robust worst-case bounds for the
entire class of grouped least squares problems are based on applying tools from convex optimiza-
tion. In particular, it is known that interior point methods applied to these problems converge in
Õ(
√
k) iterations with each iterations requiring solving a linear system [BV04, GY04]. Unfor-

tunately, computing these solutions is computationally expensive – the best previous bound for
solving one of these systems is O(mω) where ω is the matrix multiplication exponent. This results
in a total running time of O(m1/2+ω), which in well structures situations can be lowered to O(m2).
However, for images with m in the millions, it is still cost-prohibitive.

5.3.2 Graph Cuts

For the anisotropic total variation objective shown in Equation 5.3, a minimizer can be found by
solving a large number of almost-exact maximum flow calls [DS06, KZ04]. Although the number
of iterations can be large, these works show that the number of problem instances that a pixel
can appear in is small. Combining this reduction with the fastest known exact algorithm for the
maximum flow problem by Goldberg and Rao [GR98] gives an algorithm that runs in Õ(m3/2)
time.

Both of these algorithms requires extracting the minimum cut in order to construct the problems
for subsequent iterations. As a result, it is not clear whether recent advances on fast approximations
of maximum flow and minimum s-t cuts [CKM+11] can be directly used as a black box with
these algorithms. Extending this approach to the non-linear isotropic objective also appears to be
difficult.

5.3.3 Iterative Reweighted Least Squares

An approach similar to convex optimization methods, but has much better observed rates of con-
vergence is the iterative reweighted least squares (IRLS) method. This method does a much more
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aggressive adjustment each iteration and to give good performances in practice [WR07].

5.3.4 First Order Methods

The method of choice in practice are first order methods such as [Nes07, BCG11]. Theoretically
these methods are known to converge rapidly when the objective function satisfies certain Lips-
chitz conditions. Many of the more recent works on first order methods focus on lowering the
dependency of ε under these conditions. As the grouped least squares problem is a significantly
more general formulation, this direction is somewhat different than our goals,

5.4 Approximating Grouped Least Squares Using Quadratic Minimization

We show an approximate algorithm for the grouped least squares problem. The analyses of the
algorithms is intricate, but is closely based on the approximate minimum cut algorithm given by
Christiano et al. [CKM+11]. It has better error dependencies, but also takes much more time for
moderate number of groups. Both of these algorithms can be viewed as reductions to the quadratic
minimization problems described in Section 5.1.1. As a result, they imply efficient algorithms for
problems where fast algorithms are known for the corresponding least squares problems.

Recall that the minimum s-t cut problem - equivalent to an `1-minimization problem - is a
special case of the grouped least squares problem where each edge belongs to its own group (i.e.,
k = m). As a result, it’s natural to extend the approach of [CKM+11] to the whole spectrum of
values of k by treating each group as an edge.

One view of the cut algorithm from [CKM+11] is that it places a weight on each group, and
minimizes a quadratic, or `2

2 problem involving terms of the from 1
wi
‖x− si‖2

Li . Their algorithm
then adjusts the weights based on the flow on each edge using the multiplicative weights update
framework [AHK05, LW94]. This flow is in turn obtained from the dual of the quadratic minimiza-
tion problem. We simplify this step by showing that the energy of the groups from the quadratic
minimization problems can be directly used. Pseudocode of the algorithm is shown in Algorithm
1.

The main difficulty of analyzing this algorithm is that the analysis of minimum s-t cut algo-
rithm of [CKM+11] relies strongly on the existence of a solution where x is either 0 or 1. Our
analysis extends this potential function into the fractional setting using a potential function based
on the Kulback-Liebler (KL) divergence [KL51]. To our knowledge the use of this potential with
multiplicative weights was first introduced by Freund and Schapire [FS99], and is common in
learning theory. This function can be viewed as measuring the KL-divergence between w(t)

i and
‖x̄− si‖Li over all groups, where x̄ an optimum solution to the grouped least squares problem.
This term, which we denote as DKL is:

DKL =
∑
i

‖x̄− si‖Li log

(
‖x̄− si‖Li

w(t)
i

)
(5.8)

One way to interpret this function is that ‖x− si‖Li and 1
wi
‖x− si‖2

Li are equal when wi =
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Algorithm 1 Algorithm for the approximate decision problem of whether there exist vertex poten-
tials with objective at most OPT

APPROXGROUPEDLEASTSQUARES

Input: PSD matrices L1 . . .Lk, fixed values s1 . . . sk for each group. Routine SOLVE for solving
linear systems, width parameter ρ and error bound ε.
Output: Vector x such that OBJ (x) ≤ (1 + 10ε)OPT.

1: Initialize w(0)
i = 1 for all 1 ≤ i ≤ k

2: N ← 10ρ log nε−2

3: for t = 1 . . . N do
4: µ(t−1) ←

∑
i w(t−1)

i

5: Use SOLVE as described in Lemma 5.1.2 to compute a minimizer for the quadratic mini-
mization problem where αi = 1

w(t−1)
i

. Let this solution be x(t)

6: Let λ(t) =
√
µ(t−1)OBJ 2(x(t)), where OBJ 2(x(t)) is the quadratic objective given in

Equation 5.7
7: Update the weight of each group:

w(t)
i ← w(t−1)

i +

(
ε
ρ

‖x(t)−si‖Li
λ(t)

+ 2ε2

kρ

)
µ(t−1)

8: end for
9: t̄← arg min0≤t≤N OBJ (x(t))

10: return x(t̄)

‖x− si‖Li . Therefore, this algorithm can be viewed as gradually adjusts the weights to become a
scaled copy of ‖x̄− si‖Li , andDKL serves a way to measure this difference. It can be simplified by
subtracting the constant term given by

∑
i ‖x̄− si‖Li log(‖x̄− si‖Li) and multiplying by−1/OPT.

This gives us our key potential function, ν(t):

ν(t) =
1

OPT

∑
i

‖x̄− si‖Li log(w(t)
i ) (5.9)

It’s worth noting that in the case of the cut algorithm, this function is identical to the potential func-
tion used in [CKM+11]. We show the convergence of our algorithm by proving that if the solution
produced in some iteration is far from optimal, ν(t) increases substantially. Upper bounding it with
a term related to the sum of weights, µ(t) allows us to prove convergence.

To simplify the analysis, we that all entries of s, the spectrum of Li, and OPT are polynomially
bounded in n. That is, there exist some constant d such that−nd ≤ si,u ≤ nd and n−dI �

∑
i Li �

ndI where A � B means B − A is PSD. Some of these assumptions can be relaxed via analyses
similar to Section 2 of [CKM+11].

Theorem 5.4.1 On input of an instance of OBJ with edges partitioned into k sets. If all parame-
ters polynomially bounded between n−d and nd, running APPROXGROUPEDLEASTSQUARES with
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ρ = 2k1/3ε−2/3 returns a solution x with such that OBJ (x) ≤ max{(1 + 10ε)OPT, n−d} where
OPT is the value of the optimum solution.

The additive n−d case is included to deal with the case where OPT = 0, or is close to it. We
believe it should be also possible to handle this case by restricting the condition number of

∑
i Li.

For readers familiar with the analysis of the Christiano et al. algorithm [CKM+11], the follow-
ing mapping of terminology in the analysis below might be useful:

• edge e→ group i.

• flow along edge e→ value of ‖x− si‖Li .

• weight on edge e→ weight of group i, wi.

• electrical flow problem→ quadratic minimization problem (defined in Section 5.1.1)

• total energy of electrical flow / effective resistance→OBJ 2(w).

We first show that if λ(t) as defined on Line 6 of Algorithm 1 is an upper bound for OBJ (x(t)).
This is crucial in its use the normalizing factor in our update step on Line 7.

Lemma 5.4.2 In all iterations we have:

OBJ (x(t)) ≤ λ(t)

Proof By the Cauchy-Schwarz inequality we have:

(λ(t))2 =

(∑
i

w(t−1)
i

)(∑
i

1

w(t−1)
i

∥∥x(t) − si
∥∥2

Li

)

≥

(∑
i

∥∥x(t) − si
∥∥

Li

)2

=OBJ (x(t))2 (5.10)

Taking square roots of both sides completes the proof. �

At a high level, the algorithm assigns weights wi for each group, and iteratively reweighs them
for N iterations. Recall that our key potential functions are µ(t) which is the sum of weights of all
groups, and:

ν(t) =
1

OPT

∑
i

‖x̄− si‖Li log(w(t)
i ) (5.11)
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Where x̄ is a solution such that OBJ (x̄) = OPT. We will show that if OBJ (x(t)), or in turn
λ(t) is large, then ν(t) increases at a rate substantially faster than log(µ(t)). These bounds, and the
relations between µ(t) and ν(t) are summarized below:

Lemma 5.4.3 1.

ν(t) ≤ log(µ(t)) (5.12)

2.

µ(t) ≤
(

1 +
ε(1 + 2ε)

ρ
t

)
µ(t−1) (5.13)

and

log(µ(t)) ≤ ε(1 + 2ε)

ρ
t+ log k (5.14)

3. If in iteration t, λ(t) ≥ (1 + 10ε)OPT and ‖x− si‖Li ≤ ρ
w(t−1)
i

µ(t−1)λ
(t) for all groups i, then:

νt ≥ ν(t−1) +
ε(1 + 9ε)

ρ
(5.15)

The relationship between the upper and lower potentials can be established using the fact that
wi is non-negative:

Proof of Lemma 5.4.3, Part 1:

ν(t) =
1

OPT

∑
i

‖x̄− si‖Li log(w(t)
i )

≤ 1

OPT

∑
i

‖x̄− si‖Li log

(∑
j

w(t)
j

)

= log(µ(t))

(
1

OPT

∑
i

‖x̄− si‖Li

)
≤ log(µ(t)) (5.16)

�

Part 2 follows directly from the local behavior of the log function:
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Proof of Lemma 5.4.3, Part 2: The update rules gives:

µ(t) =
∑
i

w(t)
i

=
∑
i

w(t−1)
i +

(
ε

ρ

∥∥x(t) − si
∥∥

Li
λ(t)

+
2ε2

kρ

)
µ(t−1) by update rule on Line 7

=µ(t−1) +
ε

ρ

∑
i

∥∥x(t) − si
∥∥

Li
λ(t)

µ(t−1) +
∑
i

2ε2

kρ
µ(t−1)

=µ(t−1) +
ε

ρ

OBJ (x(t))

λ(t)
µ(t−1) +

2ε2

ρ
µ(t−1)

≤µ(t−1) +
ε

ρ
µ(t−1) +

2ε2

ρ
µ(t−1) By Lemma 5.4.2

=

(
1 +

ε(1 + 2ε)

ρ

)
µ(t−1) (5.17)

Using the fact that 1 + x ≤ exp(x) when x ≥ 0 we get:

µ(t) ≤ exp

(
ε(1 + 2ε)

ρ

)
µ(t−1)

≤ exp

(
t
ε(1 + 2ε)

ρ

)
µ(0)

= exp

(
t
ε(1 + 2ε)

ρ

)
k

Taking logs of both sides gives Equation 5.14. �

This upper bound on the value of µt also allows us to show that the balancing rule keeps the
wtis reasonably balanced within a factor of k of each other. The following corollary can also be
obtained.

Corollary 5.4.4 The weights at iteration t satisfy w(t)
i ≥ ε

k
µ(t).

Proof

The proof is by induction on t. When t = 0 we have w(0)
i = 1, µ(0) = k and the claim follows
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from ε
k
k = ε < 1. When t > 1, we have:

w(t)
i ≥ w(t−1)

i +
2ε2

kρ
µ(t−1) By line 7

≥
(
ε

k
+

2ε2

kρ

)
µ(t−1) By the inductive hypothesis

=
ε

k

(
1 +

2ε

ρ

)
µ(t−1)

≥ ε

k

(
1 +

ε(1 + 2ε)

ρ

)
µ(t−1)

≥ ε

k
µ(t) By Lemma 5.4.3, Part 2 (5.18)

�

The proof of Part 3 is the key part of our analysis. The first order change of ν(t) is written as
a sum of products of Li norms, which we analyze via the fact that x(t) is the solution of a linear
system from the quadratic minimization problem.

Proof of Lemma 5.4.3, Part 3: We make use of the following known fact about the behavior of
the log function around 1:

Fact 5.4.5 If 0 ≤ x ≤ ε, then log(1 + x) ≥ (1− ε)x.

ν(t) − ν(t−1) =
1

OPT

∑
1≤i≤k

‖x̄− si‖Li log
(

w(t)
i

)
− 1

OPT

∑
1≤i≤k

‖x̄− si‖Li log
(

w(t−1)
i

)
By Equation 5.11

=
1

OPT

∑
1≤i≤k

‖x̄− si‖Li log

(
w(t)
i

w(t−1)
i

)

≥ 1

OPT

∑
1≤i≤k

‖x̄− si‖Li log

(
1 +

ε

ρ

∥∥x(t) − si
∥∥

Li
λ(t)

µ(t−1)

w(t−1)
i

)
By the update rule on line 7

≥ 1

OPT

∑
1≤i≤k

‖x̄− si‖Li
ε(1− ε)

ρ

∥∥x(t) − si
∥∥

Li
λ(t)

µ(t−1)

w(t−1)
i

By Fact 5.4.5

=
ε(1− ε)µ(t−1)

i

ρOPTλ(t)

∑
1≤i≤k

1

w(t−1)
i

‖x̄− si‖Li

∥∥x(t) − si
∥∥

Li
(5.19)
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Since Li forms a P.S.D norm, by the Cauchy-Schwarz inequality we have:

‖x̄− si‖Li

∥∥x(t) − si
∥∥

Li
≥ (x̄− si)TLi(x(t) − si)

=
∥∥x(t) − si

∥∥2

Li
+ (x̄− x)TLi(x(t) − si) (5.20)

Recall from Lemma 5.1.2 that since x(t) is the minimizer to OBJ 2(w(t−1)), we have:(∑
i

1

w(t−1)
i

Li

)
x(t) =

∑
i

1

w(t−1)
si (5.21)(∑

i

1

w(t−1)
i

Li

)
(x(t) − si) = 0 (5.22)

(x̄− x(t))T

(∑
i

1

w(t−1)
i

Li

)
(x(t) − si) = 0 (5.23)

Substituting this into Equation 5.19 gives:

ν(t) − ν(t−1) ≥ ε(1− ε)µ(t−1)
i

ρOPTλ(t)

∑
i

1

w(t−1)
i

∥∥x(t) − si
∥∥2

Li

=
ε(1− ε)
ρOPTλ(t)

µ(t−1)OBJ 2(w, x(t))

=
ε(1− ε)
ρOPTλ(t)

(λ(t))2 By definition of λ(t) on Line 6

≥ ε(1− ε)(1 + 10ε)

ρ
By assumption that λ(t) > (1 + 10ε)OPT

≥ ε(1 + 8ε)

ρ
(5.24)

Since the iteration count largely depends on ρ, it suffices to provide bounds for ρ over all the
iterations. The proof makes use of the following lemma about the properties of electrical flows,
which describes the behavior of modifying the weights of a group Si that has a large contribution
to the total energy. It can be viewed as a multiple-edge version of Lemma 2.6 of [CKM+11].

Lemma 5.4.6 Assume that ε2ρ2 < 1/10k and ε < 0.01 and let x(t−1) be the minimizer for

OBJ 2(w(t−1)). Suppose there is a group i such that
∥∥x(t−1) − si

∥∥
Li
≥ ρ

w(t−1)
i

µ(t−1)λ
(t), then

OPT2(w(t)) ≤ exp

(
−ε

2ρ2

2k

)
OPT2(w(t−1))

Proof
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We first show that group i contributes a significant portion to OBJ 2(w(t−1), x(t−1)). Squaring
both sides of the given condition gives:

∥∥x(t−1) − si
∥∥2

Li
≥ ρ2 (w(t−1)

i )2

(µ(t−1))2
(λ(t))2

= ρ2 (w(t−1)
i )2

(µ(t−1))2
µ(t−1)OBJ 2(w(t−1), x(t−1)) (5.25)

1

w(t−1)
i

∥∥x(t−1) − si
∥∥

Li
≥ ρ2 w(t−1)

i

µ(t−1)
OBJ 2(w(t−1), x(t−1))

≥ ερ2

k
OBJ 2(w(t−1), x(t−1)) By Corollary 5.4.4 (5.26)

Also, by the update rule we have w(t)
i ≥ (1 + ε)w(t−1)

i and w(t)
j ≥ w(t−1)

j for all 1 ≤ j ≤ k. So
we have:

OPT2(w(t)) ≤ OBJ 2(w(t), x(t−1))

= OBJ 2(w(t), x(t−1))− (1− 1

1 + ε
)
∥∥x(t−1) − si

∥∥2

Li

≤ OBJ 2(w(t), x(t−1))− ε

2

∥∥x(t−1) − si
∥∥2

Li

≤ OBJ 2(w(t), x(t−1))− ε2ρ2

2k
OBJ 2(w(t−1), x(t−1))

≤ exp

(
−ε

2ρ2

2k

)
OBJ 2(w(t−1), x(t−1)) (5.27)

�

This means the value of the quadratic minimization problem can be used as a second potential
function. We first show that it’s monotonic and establish rough bounds for it.

Lemma 5.4.7 OPT2(w(0)) ≤ n3d and OPT2(w(t)) is monotonically decreasing in t.

Proof By the assumption that the input is polynomially bounded we have that all entries of s
are at most nd and Li � ndI. Setting xu = 0 gives ‖x− si‖2 ≤ nd+1. Combining this with the
spectrum bound then gives ‖x− si‖Li ≤ n2d+1. Summing over all the groups gives the upper
bound.

The monotonicity of OPT2(w(t)) follows from the fact that all weights are decreasing. �

Combining this with the fact that OPT2(w(N)) is not low enough for termination gives our
bound on the total iteration count.
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Proof of Theorem 5.4.1: The proof is by contradiction. Suppose otherwise, sinceOBJ (x(N)) >
ε we have:

λ(N) ≥(1 + 10ε)n−d

≥ 2n−dOPT (5.28)√
µ(N)OPT2(w(t)) ≥ 2n−d (5.29)

OPT2(w(t)) ≥ 4

n−2dµ(N)
(5.30)

Which combined with OPT2(w(0)) ≤ n3d from Lemma 5.4.7 gives:

OPT2(w(0))

OPT2(w(N))
≤n5dµ(N) (5.31)

By Lemma 5.4.3 Part 2, we have:

log(µ(N)) ≤ ε(1 + ε)

ρ
N + log k

≤ ε(1 + ε)

ρ
10dρ log nε−2 + log n By choice of N = 10dρ log nε−2

= 10(1 + ε)ε−1 log n+ log n

≤ 10d(1 + 2ε)ε−1 log n when ε < 0.01 (5.32)

Combining with Lemma 5.4.6 implies that the number of iterations where
∥∥x(t−1) − si

∥∥
Li
≥

ρ
w(t−1)
i

µ(t−1)λ
(t) for i is at most:

log
(
µ(N)n5d

)
/

(
ε2ρ2

2k

)
= 10d(1 + 3ε)ε−1 log n/

(
2ε2/3

k1/3

)
By choice of ρ = 2k1/3ε−2/3

= 8dε−5/3k1/3 log n

= 4dε−1ρ log n ≤ εN (5.33)

This means that we have
∥∥x(t−1) − si

∥∥
Li
≤ ρ

w(t−1)
i

µ(t−1)λ
(t) for all 1 ≤ i ≤ k for at least (1 − ε)N

iterations and therefore by Lemma 5.4.3 Part 3:

ν(N) ≥ ν(0) +
ε(1 + 8ε)

ρ
(1− ε)N > µ(N) (5.34)

Giving a contradiction. �
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5.5 Evidence of Practical Feasibility

We performed a series of experiments using the algorithm described in Section 5.4 in order to
demonstrate its practical feasibility. Empirically, our running times are slower than the state of the
art methods, but are nonetheless reasonable. This suggests the need of further experimental works
on a more optimized version, which is outside of the scope of this paper.

The SDD linear systems that arise in the quadratic minimization problems were solved using
the combinatorial multigrid (CMG) solver [KM09b, KMT09]. One side observation confirmed by
these experiments is that for the sparse SDD linear systems that arise from image processing, the
CMG solver yields good results both in accuracy and running time.

5.5.1 Total Variational Denoising

Total Variational Denoising is the concept of applying Total Variational Minimization as denoising
process. This was pioneered by Rudin, Osher and Fatemi [ROF92] and is commonly known as the
ROF image model. Our formulation of the grouped least squares problems yields a simple way
to solve the ROF model and most of its variants. In Figure 5.1, we present a simple denoising
experiment using the standard image processing data set, ‘Lenna’. The main goal of the experi-
ment is to show that our algorithm is competitive in terms of accuracy, while having running times
comparable to first-order methods. On a 512× 512 grayscale image, we introduce Additive White
Gaussian Noise (AWGN) at a measured Signal to Noise Ratio (SNR) of 2. AWGN is the most com-
mon noise model in photon capturing sensors from consumer cameras to space satellites systems.
We compare the results produced by our algorithm with those by the Split Bregman algorithm from
[GO09] and the Gauss-Seidel variation of the fixed point algorithm from [MSX11]. These methods
minimize an objective with `2

2 fidelity term given in Equation 5.3 while we used the variant with
`2 fidelity shown in Equation 5.6. Also, the parameters in these algorithms were picked to give the
best results for the objective functions being minimized. As a result, for measuring the qualities of
output images we only use the `2 and `1 norms of pixel-wise differences with the original image.

Noisy Version Split Bregman Grouped Least Squares Fixed Point
29.29E3, 8.85E6 6.70E3, 1.89E6 5.99E3, 1.39E6 6.64E3, 1.87E6

Figure 5.1: Outputs of various denoising algorithms on image with AWGN noise. From left to
right: noisy version, Split Bregman [GO09], Fixed Point [MSX11], and Grouped Least Squares.
Errors listed below each figure from left to right are `2 and `1 norms of differences with the original.
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Our experiments were conducted on a single core 64-bit Intel(R) Xeon(R) E5440 CPU @
2.83GHz. The non-solver portion of the algorithm was implemented in Matlab(R). On images of
size 256 × 256, 512 × 512 and 1024 × 1024, the average running times are 2.31, 9.70 and 47.61
seconds respectively. These running times are noticeably slower than the state of the art. However,
on average only 45% of the total running time is from solving the SDD linear systems using the
CMG solver. The rest is mostly from reweighting edges and MATLAB function calls, which
should be much faster in more optimized versions. More importantly, in all of our experiments
the weights are observed to converge in under 15 iterations, even for larger images of size up to
3000× 3000.

5.5.2 Image Processing

As exemplified by the denoising with colors application discussed in Section 5.2.2, the grouped
least squares framework can be used for a wide range of image processing tasks. Some examples
of such applications are shown in Figure 5.2. Our denoising algorithm can be applied as a pre-
processing step to segmenting images of the retina obtained from Optical Coherence Tomography
(OCT) scans. Here the key is to preserve the sharpness between the nerve fiber layers and this is
achieve by using a `1 regularization term. Variations of this formulation allows one to emulate a
large variety of established image preprocessing applications. For example, introducing additional
`2 terms containing differences of neighboring pixels of a patch leads to the removal of boundaries,
giving an overall blurring effect. On our examples, this leads to results similar to methods that ap-
ply a filter over the image, such as Gaussian blurring. Introducing such effects using an objective
function has the advantage that it can be used in conjunction with other terms. By mixing and
matching penalty terms on the groups, we can preserve global features while favoring the removal
of small artifacts introduced by sensor noise.

An example of Poisson Image Editing mentioned in Section 5.2.3 are shown in Figure 5.3.
The application is seamless cloning as described in Section 3 of [PGB03], which aims to insert
complex objects into another image. Given two images, they are blended by solving the discrete
poisson equation based on a mix of their gradients and boundary values. We also added `2 con-
straints on different parts of the image to give a smoother result. The input consists of locations
of the foreground pictures over the background, along with boundaries (shown in red) around the
objects in the foreground. These rough boundaries makes the blending of surrounding textures the
main challenge, and our three examples (void/sky, sea/pool, snow/sand) are some representative
situations. These examples also show that our approaches can be extended to handle multichannel
images (RGB or multi-spectral) with only a few modifications.

5.6 Relations between Graph Problems and Minimizing LASSO Objectives

We now give formal proofs that show the shortest path problem is an instance of LASSO and the
minimum cut problem is an instance of fused-LASSO. Our proofs do not guarantee that the an-
swers returned are a single path or cut. In fact, when multiple solutions have the same value it’s
possible for our algorithm to return a linear combination of them. However, we can ensure that
the optimum solution is unique using the Isolation Lemma of Mulmuley, Vazarani and Vazarani
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OCT scan of retina Photo of room Newspaper

Global features Scan after preprocessing Decolored version

Figure 5.2: Applications to various image processing tasks. From left to right: image segmentation,
global feature extraction / blurring, and decoloring.

[MVV87] while only incurring polynomial increase in edge lengths/weights. This analysis is sim-
ilar to the one in Section 3.5 of [DS08] for finding a unique minimum cost flow, and is omitted
here.

We prove the two claims in Fact 5.0.1 about shortest path and minimum cut separately in
Lemmas 5.6.1 and 5.6.2.

Lemma 5.6.1 Given a s-t shortest path instance in an undirected graph where edge lengths l :
E → R+ are integers between 1 and nd. There is a LASSO minimization instance where all entries
are bounded by nO(d) such that the value of the LASSO minimizer is within 1 of the optimum answer.

Proof Our reductions rely crucially on the edge-vertex incidence matrix, which we denote using
∂. Entries of this matrix are defined as follows:

∂e,u =


−1 if u is the head of e
1 if u is the tail of e
0 otherwise

(5.35)
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Marked polar bear Polar Bear on Mars 2

Figure 5.3: Example of seamless cloning using Poisson Image Editing

We first show the reduction for shortest path. Then a path from s to t corresponds to a flow value
assigned to all edges, f : E → R such that ∂T f = χs,t. If we have another flow f′ corresponding to
any path from s to t, then this constraint can be written as:∥∥∂T f− χs,t

∥∥
2

=0 (5.36)∥∥∂T (f− f′)
∥∥

2
=0

‖f− f′‖∂∂T =0 (5.37)

The first constraint is closer to the classical LASSO problem while the last one is within our
definition of grouped least squares problem. The length of the path can then be written as

∑
e le|fe|.

Weighting these two terms together gives:

min
f
λ ‖f− f′‖2

∂∂T +
∑
e

le|fe| (5.38)

Where the maximum entry is bounded by max{nd, n2λ}. Clearly its objective is less than the
length of the shortest path, let this solution be f̄. Then since the total objective is at most nd+1, we
have that the maximum deviation between ∂T f̄ and χs,t is at most nd+1/λ. Then given a spanning
tree, each of these deviations can be routed to s or t at a cost of at most nd+1 per unit of flow.
Therefore we can obtain f′ such that ∂T f′ = χs,t whose objective is bigger by at most n2d+2/λ.
Therefore setting λ = n2d+2 guarantees that our objective is within 1 of the length of the shortest
path, while the maximum entry in the problem is bounded by nO(d). �

We now turn our attention to the minimum cut problem, which can be formulated as finding a
vertex labeling x(vert) where x(vert)

s = 0, x(vert)
t = 1 and the size of the cut,

∑
uv∈E |x

(vert)
u −x(vert)

v |.
Since the `1 term in the objective can incorporate single variables, we use an additional vector
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x(edge) to indicate differences along edges. The minimum cut problem then becomes minimizing
|x(edge)| subject to the constraint that x(edge) = ∂′x(vert)′+∂χt, where ∂′ and x(vert)′ are restricted to
vertices other than s and t and χt is the indicator vector that’s 1 on t. The equality constraints can
be handled similar to the shortest path problem by increasing the weights on the first term. One
other issue is that |x(vert)′ | also appears in the objective term, and we handle this by scaling down
x(vert)′ , or equivalently scaling up ∂′.

Lemma 5.6.2 Given a s-t minimum cut instance in an undirected graph where edge weights w :
E → R+ are integers between 1 and nd. There is a LASSO minimization instance where all entries
are bounded by nO(d) such that the value of the LASSO minimizer is within 1 of the minimum cut.

Proof

Consider the following objective, where λ1 and λ2 are set to nd+3 and n2:

λ1||λ2∂
′x(vert)′ + ∂χt − x(edge)||22 + |x(vert′)|1 + |x(edge)|1 (5.39)

Let x̄ be an optimum vertex labelling, then setting x(vert′) to the restriction of n−2x̄ on vertices
other than s and t and x(edge) to ∂x(vert) makes the first term 0. Since each entry of x̄ is between 0
and 1, the additive increase caused by |x(vert′)|1 is at most 1/n. Therefore this objective’s optimum
is at most 1/n more than the size of the minimum cut.

For the other direction, consider any solution x(vert)′ , x(edge)′ whose objective is at most 1/n
more than the size of the minimum cut. Since the edge weights are at most nd and s has degree at
most n, the total objective is at most nd+1 + 1. This gives:

||λ2∂
′x(vert)′ + ∂χt − x(edge)||22 ≤ n−1

||λ2∂
′x(vert)′ + ∂χt − x(edge)||1

≤||λ2∂
′x(vert)′ + ∂χt − x(edge)||2 ≤ n−1/2 (5.40)

Therefore changing x(edge) to λ2∂
′x(vert)′ + ∂χt increases the objective by at most n−1/2 < 1. This

gives a cut with weight within 1 of the objective value and completes the proof. �

We can also show a more direct connection between the minimum cut problem and the fused
LASSO objective, where each absolute value term may contain a linear combination of variables.
This formulation is closer to the total variation objective, and is also an instance of the problem
formulated in Definition 5.1.1 with each edge in a group.

Lemma 5.6.3 The minimum cut problem in undirected graphs can be written as an instance of the
fused LASSO objective.

Proof Given a graph G = (V,E) and edge weights p, the problem can be formulated as finding
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a vertex labeling x such that xs = 0, xt = 1 and minimizing:∑
uv∈E

puv|xu − xv| (5.41)

�

5.7 Other Variants

Although our formulation of OBJ as a sum of `2 objectives differs syntactically from some com-
mon formulations, we show below that the more common formulation involving quadratic, or `2

2,
fidelity term can be reduced to finding exact solutions toOBJ using 2 iterations of ternary search.
Most other formulations differs from our formulation in the fidelity term, but more commonly
have `1 smoothness terms as well. Since the anisotropic smoothness term is a special case of the
isotropic one, our discussion of the variations will assume anisotropic objectives.

5.7.1 `2
2 fidelity term

In practice, total variation objectives more commonly involve `2
2 fidelity terms. This term can be

written as ‖x− s0‖2
2, which corresponds to the norm defined by I = L0. This gives:

min
x

‖x− s0‖2
L0

+
∑

1≤i≤k

‖x− si‖Li

We can establish the value of ‖x− s0‖2
L0

separately by guessing it as a constraint. Since the t2 is
convex in t, the following optimization problem is convex in t as well:

min
x

∑
1≤i≤k

‖x− si‖Li ‖x− s0‖2
L0
≤ t2

Also, due to the convexity of t2, ternary searching on the minimizer of this plus t2 would allow us
to find the optimum solution by solving O(log n) instances of the above problem. Taking square
root of both sides of the ‖x− s0‖2

L0
≤ t2 condition and taking its Lagrangian relaxation gives:

min
x

max
λ≥0

k∑
i=1

‖x− si‖Li + λ(‖x− s0‖L0
− t)

Which by the min-max theorem is equivalent to:

max
λ≥0
−λt+

(
min

x

k∑
i=1

‖x− si‖Li + λ ‖x− s0‖L0

)

The term being minimized is identical to our formulation and its objective is convex in λ when
λ ≥ 0. Since −λt is linear, their sum is convex and another ternary search on λ suffices to
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optimize the overall objective.

5.7.2 `1 fidelity term

Another common objective function to minimize is where the fidelity term is also under `1 norm.
In this case the objective function becomes:

‖x− s0‖1 +
∑
i

∑
1≤i≤k

‖x− si‖Li

This can be rewritten as a special case of OBJ as:∑
u

√
(xu − su)2 +

∑
i

∑
1≤i≤k

‖x− si‖Li

Which gives, instead, a grouped least squares problem with n+ k groups.

5.8 Remarks

We believe that the ability of our algorithm to encompass many of the current image processing
algorithms represents a major advantage in practice. It allows the use of a common data structure
(the underlying graph) and subroutine (linear system solvers) for many different tasks in the im-
age processing pipeline. Theoretically, the grouped least squares problem is also interesting as it
represents an intermediate problem between linear and quadratic optimization.

The performances of our algorithms given in Section 5.4 depend on k, which is the number of
groups in the formulation given in Definition 5.1.1. Two settings of k are useful for understanding
the relation of the grouped least squares problem with other problems. When k = 1, the problem
becomes the electrical flow problem, and the running time of our algorithm is similar to directly
solving the linear system. This is also the case when there is a small (constant) number of groups.
The other extremum is when each edge belongs to its own group, aka. k = m. Here our approx-
imate algorithm is the same as the minimum s-t cut algorithm given in [CKM+11]. This means
although the problem with smaller number of groups is no longer captured by linear optimization,
the minimum s-t cut problem – that still falls within the framework of linear optimization – is in
some sense the hardest problem in this class. Therefore the grouped least squares problem is a
natural interpolation between the L1 and L2

2 optimization. Theoretical consequences of this in-
terpolation for undirected multicommodity flow [KMP12] and flows on separable graphs [MP13]
have been explored. However, these algorithms have been superceeded by subsequent works using
different approaches [KLOS13, She13].

The preliminary experimental results from Section 5.5 show that more aggressive reweightings
of edges lead to much faster convergence than what we showed for our two algorithms. Although
the running time from these experiments are slower than state of the art methods, we believe the
results suggest that more thorough experimental studies with better tuned algorithms are needed.
Also, the Mumford-Shah functional can be better approximated by non-convex functions [MS89].
Objectives as hinged loss often lead to better results in practice [RDVC+04], but few algorithmic
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guarantees are known for them. Designing algorithms with strong guarantees for minimizing these
objectives is an interesting direction for future work.
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Chapter 6

Conclusion and Open Problems

We showed highly efficient algorithms for solving symmetric diagonally dominant linear systems.
The ever increasing number of theoretical applications using these solvers as subroutines, as well
as extensive practical works on solving such systems makes the practicality of our approaches
a pressing question. Existing combinatorial preconditioning packages such as the combinatorial
multigrid solver [KMST09] have much in common with the algorithm from Chapter 2. This pack-
age performs well on many real world graphs such as the ones derived from images in Chapter 5.
Its performance are comparable to other methods such as LAPACK [ABB+99], algebraic multi-
grid packages, and recent solvers specialized for images by Krishnan et al. [KFS13]. However,
we believe several theoretical questions need to be addressed in order to bring the algorithms from
Chapters 2 and 3 closer to practice.

6.1 Low Stretch Spanning Trees

The main difficulty of implementing the algorithm from Chapter 2 is the difficulty of generating a
good low stretch subgraph/spanning tree. Although the algorithm for constructing these trees were
greatly simplified by Abraham and Neiman [AN12], their algorithm, as well as previous ones,
relied on a partition routine by Seymour [Sey95]. A close examination of these routines, as well as
the overall algorithm shows several parameters that needs to be set carefully. The running time of
the algorithm at Ω(n log n log log n) is also the overall runtime bottleneck when the graph is sparse
and ε is relatively large (e.g. constant). Their parallelization are also difficult due to performing
shortest path computations across the entire graph. As a result, results with sub-optimal parameters
(compared to sequential algorithms) such as the low stretch subgraph algorithm in Section 4.3 are
needed for the parallel algorithm.

The observation that higher stretch edges can be treated differently in Lemma 2.5.1 and Sec-
tion 4.4 represents a way to replace this routine with simpler low diameter decomposition routines
such as the one shown in Section 4.2.

The highest level structure in recent low stretch spanning tree algorithms is known as a star
decomposition. One of the main intricacies in this decomposition is the need to bound the overall
diameter growth incurred by subsequent recursive calls. This is in turn due to the need to bound
the stretch of edges cut, especially ones of much smaller weight. The use of `1/2+α moment means
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the contribution of such edges to total stretch is much smaller. As a result, closer examinations of
the scheme by Abraham and Neiman [AN12] in conjunction with such weights are likely to lead
to faster, simpler, and more practical algorithms for generating low stretch spanning trees.

6.2 Interaction between Iterative Methods and Sparsification

The routine central to the parallel algorithm from Chapter 3 is repeatedly squaring a matrix and
approximating it. The final error is in turn given by the product of these errors of approximation.
As a result, for k levels of this scheme, an error of O

(
1
k

)
is needed per step to ensure a constant

overall error. This results in a size increase by a factor of O (k2) in the sizes of the approximations.
In our algorithm, k was set to O (log (nU)) where U is the ratio between maximum and minimum
edge weights,. If this dependency can be replaced by a constant, the work of this algorithm will
reduce from O

(
n log n log3 (nU)

)
to O (n log n log (nU)), which is much closer to being feasible

in practice.

From the viewpoint of squaring a scalar and approximating the result at each step, the accu-
mulation of error is almost unavoidable. However, the final purpose of this accumulation is to
approximate the inverse. The algorithm can be viewed as trying to do two things at once: simulate
an iterative method given by an infinite power series; while maintaining the sparsity of the matrices
via. spectral sparsification. The former reduces error but increases problem size, while the later
does the opposite. The relatively direct manner in which we trade between these two is likely the
source of the accumulation of errors.

This leads to the question of whether a better middle ground is possible. Specifically, whether
it is possible to analyze iterative methods in conjunction with spectral sparsification. Our rudi-
mentary iterative method behaves very differently on eigenvalues based on their magnitude. In
numerical analysis, a useful technique is to analyze the eigenvalues instead of proving sweeping
bounds on the entire possible range (see e.g. [TB97]). These approaches are also related to the
construction of deterministic spectral sparsifiers with optimal parameters by Batson et al. [BSS09]
and Kolla et al. [KMST10]. Combining these approaches may lead to iterative methods where
errors from repeated sparsification accumulate in a more controllable manner.
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Appendix A

Deferred Proofs

We now formally prove some of the results stated in Section 1.6 about matrix norms, solver oper-
ators, and spectral approximation.

Lemma 1.6.1 If p(x) is a polynomial, then:

p(A) =
n∑
i=1

p(λi)uiuTi

Proof Since both sides are linear in the monomials, it suffices to prove the claim for monomials.
We show by induction that for any t,

At =
n∑
i=1

λtiuiu
T
i

The base case of t = 0 follows from Ui being an orthonormal basis. For the inductive case, suppose
the result is true for t, then writing At+1 = AtA and substituting the inductive hypothesis gives:

At+1 =

(
n∑
i=1

λtiuiu
T
i

)
A

=

(
n∑
i=1

λtiuiu
T
i

)(
n∑
i=1

λiuiuTi

)
A

=
n∑
i=1

n∑
j=1

λtiλjuiu
T
i ujuTj

Since ui form an orthonormal basis, the only non-zero terms are the ones with i = j. These terms
in turn leads to:

At+1 =
n∑
j=1

λt+1
i uiuTi
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So the inductive hypothesis holds for t+ 1 as well. �

Lemma 1.6.6 (Composition of Spectral Ordering) For any matrices V,A,B, if A � B, then
VTAV � VTBV

Proof For any vector x, if we let y = Vx, then we have:

xTVTAVx = yTAy
≤ yTBy By definition of A � B
= xTVTBVx

�

Lemma 1.6.7 If A is a symmetric positive semi-definite matrix and B is a matrix such that:

(1− ε) A† � B � (1 + ε) A†

then for any vector b = Ax̄, x = Bb satisfies:

‖x− x̄‖A ≤ ε ‖x̄‖A

Proof Applying Lemma 1.6.6 to both sides of the given condition with A1/2 gives:

(1− ε) Π � B � (1 + ε) Π

Where Π is the projection matrix onto the rank space of A. Rearranging the LHS of the error term
gives:

‖x̄− x‖2
A =

∥∥A†b− Bb
∥∥2

A

= bT
(
A† − B

)
A
(
A† − B

)
b

= bTA†1/2
(
Π− A1/2BA1/2

)2

A†1/2bT

Where A†1/2 is the 1/2 power of the pseudoinverse of A.

Note that the given condition implies that all eigenvalues of Π − A1/2BA1/2 are between −ε
and ε. Therefore

(
Π− A1/2BA1/2

)2

� ε2I and we have:

‖x̄− x‖2
A ≤ ε2bTA†1/2IA†1/2bT

= ε2bTA†b

= ε2
∥∥A†b

∥∥2

A = ε2 ‖x̄‖2
A

Taking square roots of both sides then gives the error bound. �
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Appendix B

Spectral Sparsification by Sampling

Before describing and proving the sparsification algorithms, we need to describe a way to decom-
pose a graph Laplacian into a sum of outer-products. Our basic building block is the indicator
vector χu, which is 1 in position u and 0 everywhere else. Then an edge e = uv can also corre-
spond to the vector χuv = χu−χv, which is 1 in u, −1 in v and zero everywhere else. This is one
row of the edge-vertex incidence matrix ∂, and the graph Laplacian for a graph G = (V,E,w) can
be written as:

LG =
∑
e=uv

weχuvχ
T
uv

Recall that the effective resistance of an edge, Re was defined as:

Re = χT
u,vL

†
Gχu,v

and its statistical leverage score is the product of this value and the weight of the edge:

τe = weRe

= χT
u,vL

†
Gχu,v

It was shown in [SS08] that if we sample each edge with probabilities csτe log nε−2 for some
absolute constant cs, the resulting graph is a 1 + ε-approximation. Their proof was based on a
matrix-concentration bound by Rudelson and Versynin [RV07], which can be viewed as a stronger
variant of an earlier result by Ahlswede and Winter [AW02]. This sampling scheme was used
in [KMP10] with one slight modification: instead of computingRe with respect to the entire graph,
an upper bound R′e was computed using an (artificially) heavy spanning tree. We will show the
following concentration bound that allows us to show the convergence of both of these processes.

Lemma B.0.1 Given n × n positive semi-definite matrices A =
∑m

i=1 yTi yi and B such that the
image space of A is contained in the image space of B, along with estimates τ̃i such that:

τ̃i ≥ yTi B†yi ∀1 ≤ i ≤ m
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Then for any error ε and any failure probability δ = n−d, there exists a constant cs such that if we
construct Ã using by repeating the following process N = cs lnnε−2 ‖τ̃i‖1 times (‖τ̃i‖1 is the total
of all the estimates):

• Pick index i′ with probability proportional to τ̃i

• Add ε2

cs lnnτ̃i
yiyTi to Ã

Then with probability at least 1− δ = 1− n−d, B satisfies:

A− ε (A + B) � Ã � A + ε (A + B)

The use of ln · instead of log · in the notation is for convenience of proof. For algorithmic
purposes they’re interchangeable with the use of a different constant cs. We will first show in
Section B.1 that Lemma B.0.1 implies the bounds on sparsification algorithms, and then prove this
concentration bound in Section B.2.

B.1 From Matrix Chernoff Bounds to Sparsification Guarantees

Both sparsification by effective resistance in Theorem 1.6.9 and sampling off-tree edges by stretch
in Lemma 2.2.2 are direct consequences of this concentration bound. We first give bounds for
sampling by effective resistance.

Proof of Theorem 1.6.9:

Consider applying Lemma B.0.1 with A = B = LG and error ε
8
. For each edge e, we map it to

the vector yi =
√

weχe. It can be checked that:

m∑
i=1

yiy
T
i =

m∑
i=1

weχeχ
T
e

= LG = A

Also, the definition of τi is identical to yTi B†yi. Therefore, if the resulting matrix given by the
sampling procedure is LH = Ã, we have with probability at least 1− n−d:(

1− ε

4

)
LG � LH �

(
1 +

ε

4

)
LH

Rescaling LH by (1 − ε
4
)−1 and using the fact that

(
1 + ε

4

) (
1− ε

4

)−1 ≤ 1 + ε gives the desired
bound. �

For sampling with stretch, it was formally shown in [SW09] that strT (e) = χT
e L†Tχe. So

applying the same concentration bound from Lemma B.0.1 except with A set to the off-tree edges
and B set to the tree gives the bound.

Proof of Lemma 2.2.2:
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Let LG\T denote the graph Laplacian for the off-tree edges. We invoke Lemma B.0.1 with
A = LG\T , B = LT , error 1

4
, and the same mapping of yis. For any edge e which is mapped to

index i, we have:

yTi B†yi = χT
e L†T

= strT (e)

Let the resulting graph be H \ T , we have with probability at least 1− n−d:

LG\T −
1

4
LG � LH\T � LG\T +

1

4
LG

Then if we set LH to LH\T + LT we have:

3

4
LG � LH �

5

4
LT

Therefore returning 4
3
LH satisfies the required bounds. �

In the rest of this Chapter we will prove Lemma B.0.1. Our presentation closely mirrors the
ones in [Ver09, Har11],

B.2 Proof of Concentration Bound

We now set forth proving Lemma B.0.1. We first show that it suffices to prove the claim for the
case where A + B = I.

Lemma B.2.1 Lemma B.0.1 restricted to the setting A+B = I implies the general version without
this restriction.

Proof Since the image spaces of A and B are contained in the image space of A + B, it suffices
to consider the case where A + B is full rank. This restriction also implies that B is full rank, as
we can use inverses in place of pseudoinverses in our proofs.

Consider a modified problem with Â = (A+B)−
1
2 A(A+B)−

1
2 and B̂ = (A+B)−

1
2 B(A+B)−

1
2 .

Then the decomposition of Â in turn becomes Â =
∑m

i=1 ŷTy where ŷ = (A + B)−
1
2 y.

Then Â + B̂ = (A + B)−
1
2 (A + B)(A + B)−

1
2 = I. And it suffices to check that both the

sampling process and required spectral bounds are equivalent. Both parts can be proven by direct
algebraic manipulations. For the sampling process, it suffices to check that the leverage scores are
same as before:

ŷT B̂
−1

ŷ = yT (A + B)−
1
2

(
(A + B)−

1
2 B(A + B)−

1
2

)−1

(A + B)−
1
2 yT

= yT (A + B)−
1
2 (A + B)

1
2 B−1(A + B)

1
2 (A + B)−

1
2 yT

= yTB−1y
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For the spectral conditions, we will only show the LHS sides are implied by each other, as the RHS
follows analogously. The Courant-Fischer theorem as stated in Lemma 3.3.9 gives A−ε (A + B) �∑m

i=1 siyiy
T
i if and only if for all vectors x ∈ Rn, we have:

xTAx− ε (A + B) x ≤ xT
(

m∑
i=1

siyiy
T
i

)
x

. Consider the reversible mapping x↔ x̂ = (A + B)
1
2 x. We have:

x̂T
(

m∑
i=1

siŷiŷ
T
i

)
x̂ =

m∑
i=1

six̂T ŷiŷ
T
i x̂ =

m∑
i=1

si

(
x̂T ŷi

)2

=
m∑
i=1

si

(
xT (A + B)

1
2 (A + B)−

1
2 yi
)2

=
m∑
i=1

si
(
xTyi

)2

Where the last equality follows from yi being in the image space of A and therefore B. Setting
si = 1 also gives that x̂T Âx̂ = xTAx. It remains to check that x̂T B̂x̂ = xTBx:

x̂T B̂
−1

x̂ = xT (A + B)
1
2 (A + B)−

1
2 B (A + B)−

1
2 B

1
2 x

= xTBx

�

Therefore from here and on we will assume that A + B = I. As A, B are positive semi-definite,
this also implies that A,B � I. We start of with some notations on the sampling procedure Let
the iterations be j = 1 . . . N and ij be the random variable corresponding to the rows picked in
iterations j. The final matrix generated by the procedure, Ã is a randomized matrix, and we will
denote it using the random variable Y . We will also use Yj to denote the random matrix added to
Ã in iteration j. We first check that the procedure returns A in expectation:

Lemma B.2.2

E
i1...iN

[Y ] = A
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Proof By linearity of expectation, it suffices to check that each sample’s expectation is 1
N

A.

E
ij

[Yj] =
m∑
i=1

Pr [ij = i]
ε2

cs lnnτ̃i
yiy

T
i

=
m∑
i=1

τ̃i
‖τ̃‖1

ε2

cs lnnτ̃i
yiy

T
i

=
m∑
i=1

ε2

cs lnn ‖τ̃‖1

yiy
T
i

=
1

N

m∑
i=1

yiy
T
i

�

Therefore, bounding the difference between Ã and A is essentially bounding the deviation of Y
from its expectation. Once again, we can measure this per iteration. At iteration j, letXj be random
variable corresponding to Yj − Eij [Yj]. Also, let S0 . . .SN be random variables corresponding to
the partial sums of the Xjs:

Sj =

j∑
j′=1

Xj′

Our goal is then to bound the spectral norm of: SN =
∑N

j=1Xi. For its maximum eigenvalue, our
goal is to measure the probability that:

Pr [λmax(Sn) > ε]

We will bound this probability by taking the exponential of Sn and bounding its trace. We have
the following for any multiplier δ:

Pr [λmax(Sn) > ε] ≤ Pr
[
tr
[
eδSn

]
> eδε

]
≤ e−δε E

i1...iN

[
tr
[
eδSn

]]
By Markov’s inequality (B.1)

The term inside the expectation is a the trace of a matrix exponential. It can be decomposed using
the following two facts:

1. Golden Thompson Inequality [Gol65, Tho65]:

tr
[
eA+B

]
≤ tr

[
eAeB

]
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2. Inequalities involving matrix norm and trace:

tr [UV] ≤ ‖U‖2 tr [V]

Lemma B.2.3

E
X1...Xn

[
tr
[
eδSn

]]
≤ n ·

N∏
j=1

∥∥∥E [Xj] eXj
∥∥∥

2

E
X1...Xn

[
tr
[
eδSn

]]
≤ E
X1...Xn

[
tr
[
eδXn · eδSn−1

]]
(by the Golden-Thompson inequality)

= E
X1...Xn−1

[
tr
[

E
Xn

[
eδXn · eδSn−1

]]]
By linearity of expectation

= E
X1...Xn−1

[
tr
[

E
Xn

[
eδXn

]
· eδSn−1

]]
By independence of Xn with X1 . . .Xn−1

≤ E
X1...Xn−1

[∥∥∥∥E
Xn

[
eδX\

]∥∥∥∥
2

· eδSn−1

]
since tr [UV] ≤ ‖U‖2 tr [V]

Applying this inductively to Xn−1 . . .X1 gives:

E
X1...Xn

[
tr
[
eδSn

]]
≤tr

[
eδS0

]
·
N∏
j=1

∥∥∥∥E
Xj

[
eδXj

]∥∥∥∥
2

≤n ·
N∏
j=1

∥∥∥∥E
Xj

[
eXj
]∥∥∥∥

2

Where the last line follows from S0 being the zero matrix. �

Therefore our goal now shifts to bounding
∥∥EXj

[
eXj
]∥∥

2
. Since the sampling process is inde-

pendent over the iterations, this value is the same for all 1 ≤ j ≤ N . The following fact can be
derived from the Taylor expansion of eλ when λ ≤ 1:

1 + λ ≤ eλ ≤ 1 + λ+ λ2

Turning this into matrix form gives that when −I � δXj � I:

I + δXj � eδXj � I + δXj + δ2X 2
j

To apply this bound, we need ‖Xj‖2 ≤ 1. This can be obtained from our setup as follows:
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Lemma B.2.4

− 1

N
I � Xj �

ε2

cs lnn
I

Proof It suffices to show this bound for any case of ij = i. Here we have:

Xj =
ε2

cs lnnτ̃i
yiy

T
i −

1

N
A

The LHS follows from A � I. For the RHS, it suffices to upper bound the Frobenius norm of
the first term. We have: ∥∥∥∥ ε2

cs lnnτ̃i
yiy

T
i

∥∥∥∥
F

=
ε2

cs lnnτ̃i
‖yi‖

2
2

Note that τ̃i ≥ YiB−1Yi. As B � I, B−1 � I and YiB−1Y ≥ ‖yi‖
2
2. Incorporating these gives:∥∥∥∥ ε2

cs lnnτ̃i
yiy

T
i

∥∥∥∥
F

≤ ε2

cs lnn ‖yi‖
2
2

‖yi‖
2
2

≤ ε2

cs lnn

�

Therefore, as long as δ is reasonably small, we can apply Taylor expansion and in turn bound
the spectral norm of X 2

j .

Lemma B.2.5 If δ ≤ cs lnnε−2, we have:∥∥∥∥E
ij

[
eδXj

]∥∥∥∥
2

≤ e
δ2ε2

Ncs lnn

Proof

Lemma B.2.4 gives that for any value of ij we have:

−I � δXj � I

Therefore we can apply Taylor expansion to obtain:

eδXj � I + δXj + δ2X 2
j
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Adding expectation and combining with Eij [Xi] = 0 gives:

E
ij

[
eδXj

]
� I + δ2 E

ij

[
X 2
j

]
So it remains to bound the term corresponding to the second moment:

E
ij

[
X 2
j

]
= E

ij

[(
Yj −

1

N
A
)2
]

= E
ij

[
Y2
j

]
− 1

N
A E

ij
[Yj] +

1

N2
A2

= E
ij

[
Y2
j

]
− 1

N2
A2 Since E

ij
[Yj] =

1

N
A

� E
ij

[
Y2
j

]
We then consider the value of Yj over choices of ij = i:

E
ij

[
Y2
j

]
=
∑
i

τ̃i
‖τ̃‖1

(
ε2

cs lnnτ̃i

)2

yiy
T
i yiy

T
i

=
ε2

Ncs lnn

∑
i

‖yi‖
2
2

τ̃i
yiy

T
i

� ε2

Ncs lnn
A � ε2

Ncs lnn
I

Substituting this and applying the LHS of the bound on eλ gives the result:∥∥∥∥E
ij

[
eδXj

]∥∥∥∥
2

≤ 1 +
ε2δ2

Ncs lnn

≤ e
ε2δ2

Ncs lnn

�

We can now combine things to give the overall bound.

Proof of Lemma B.0.1:
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Lemma B.2.3 along with the Markov inequality shown earlier gives:

Pr [λmax(Sn) > ε] ≤e−δε E
i1...iN

[
tr
[
eδSn

]]
From Equation B.1

≤e−δε · n · ·
N∏
i=1

eδ
2
∥∥∥E [Xj] eXj

∥∥∥
2

By Lemma B.2.3

≤e−δε · n ·
N∏
i=1

e
δ2ε2

cs lnnN By Lemma B.2.5

=elnn−δε+ δ2ε2

cs lnn

Setting δ = 1
2
ε−1cs lnn gives:

Pr [λmax(Sn) > ε] ≤ elnn− 1
2
cs lnn+ 1

4
cs lnn

=elnn− 1
4
cs lnn

Hence the choice of cs = 4(d + 2) suffices to give a probability of elnn−d lnn = n−d−1. Prob-
abilistic bound on the lower eigenvalue of Y follows similarly, and combining them via. union
bound gives the overall bound. �
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Appendix C

Partial Cholesky Factorization

We now prove the guarantees of the greedy elimination steps used in the sequential algorithm
in Chapter 2. These proofs can be found in most texts on numerical analysis (e.g. Chapter 9
of [Hig02]). However, we need to track additional parameters such as edge weights across log n
levels of recursive calls. As a result, most of the bounds below include more edge weight related
information in their statements.

Partial Cholesky factorization multiplies both sides of an equation by a lower triangular matrix.
To avoid confusion with graph Laplacians, we will instead denote these as transposes of upper-
triangular matrices, e.g. UT . Starting with the problem:

Ax = b

Left multiplying both sides by UT gives:

UTAx = Ub

To preserve symmetry, we insert U and U−1 between A and x:

UTAUU−1x = Ub(
UTAU

)
U−1x = UTb

Then the solution can be given by solving a linear system in B = UTAU.

U−1x =
(
UTAU

)†UTb
= B†UTb

x = UB†UTb

Errors also propagate naturally:

Lemma C.0.1 If U as given above has mu non-zero off-diagonal entries and ZB is a matrix such
that B† � ZB � κB†. Then ZA = UZBUT satisfies A† � ZA � κA†. Also, for any vector b, ZAb
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can be evaluated with an overhead of O(mu) to the cost of evaluating ZBb′.

Proof The approximation bound follows from A† = UB†UT and Lemma 1.6.6.

For the running time, since the diagonal entries of U form the identity, they incur no additional
cost if we keep the original vector. The running time overhead then corresponds to multiplying by
UT and then U. �

C.1 Partial Cholesky Factorization on Graph Laplacians

Both of our removal procedures for low-degree vertices can be viewed as special cases of partial
Cholesky factorization. The error and running time propagation of Lemma C.0.1 means it suffices
to exhibit lower-triangular matrices with a constant number of off-diagonal entries, and show their
effect on the combinatorial graph. We first consider the case of removing a vertex of degree 1.

Lemma 2.1.3 LetG be a graph where vertex u has only one neighbor v. H is reducible to a graph
H that’s the same as G with vertex u and edge uv removed.

Proof

Without loss of generality (by permuting rows/columns), we assume that this vertex corre-
sponds to row/column 1, and its neighbor is in row 2 and column 2. Then the matrix UT is:

1 0 0 . . . 0
1 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1


It can be checked that since the only non-zero entries in the first row/column are in row/column 2,
applying this matrix leads to exact cancellation. �

The case of pivoting out a degree 2 vertex can be done similarly.

Lemma 2.1.4 Let G be a graph where vertex u has only two neighbors v1, v2 with edge weights
wuv1 and wuv2 respectively. G is reducible a graph H that’s the same as G except with vertex u
and edges uv1, uv2 removed and weight

wuv1wuv2

wuv1 + wuv2

=
1

1
wuv1

+ 1
wuv2

added to the edge between v1 and v2.

Proof Without loss of generality suppose the two neighbors are 2 and 3 and the edge weights are
w12, w13, then UT is:
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
1 0 0 . . . 0

w12

w12+w13
1 0 . . . 0

w13

w12+w13
0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1


The only new off-diagonal entry affected by this is in row 2, column 3 and row 3, column 2. By
symmetry it suffices to check the change to row 2 column 3. Here it is the value of row 1, column
3 (w13) times the coefficient in row 2, column 1, which gives −w13

w12

w12+w13
. �

Pivoting out the first vertex leads to a lower-triangular matrix UT where the only non-zero off
diagonal entries are in the first column. Furthermore, these entries are edge weights divided by the
total weighted degree of the vertex removed, and can be viewed as the normalized edge weights.

The inverse of UT can also be described simply:

Lemma C.1.1 Given a lower triangular matrix of the form:

UT =


1 0 0 . . . 0
l2 1 0 . . . 0
l3 0 1 . . . 0
. . . . . . . . . . . . . . .
ln 0 0 . . . 1


Its inverse is:

U−T =


1 0 0 . . . 0
−l2 1 0 . . . 0
−l3 0 1 . . . 0
. . . . . . . . . . . . . . .
−ln 0 0 . . . 1


C.2 Errors Under Partial Cholesky Factorization

Errors in matrix norms propagate naturally under partial Cholesky factorizations.

Lemma C.2.1 Let B be the matrix obtained by applying partial Cholesky factorization to A:

B = UTAUT

For any vector x, we have:

‖x‖B = ‖Ux‖A
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Proof A direct substitution gives:

‖x‖2
B = xTBx

= xTUTAUx
= (xU)TA(Ux)

= ‖x‖2
A

�

This allows us to prove general statements regarding the numerical stability of partial Cholesky
factorizations. In numerical analysis, the stability of such instances are well-known [Hig02]. How-
ever, several technical issues need to be addressed for a complete proof. The main reason is that
floating point errors can occur in all the steps:

1. Finding LH from UTLGU.

2. Solves involving LH and the diagonal entry corresponding to u.

3. Multiplying vectors by UT and U−1.

Since the U involved in our computations only have a constant number of off-diagonal entries,
we can view operations involving U as a constant number of vector scaling/additions. This then
allows us to view U as an exact matrix with no round-off errors for our analysis. We first show that
the edge weights in the resulting graph Laplacian are close to the ones in the exact one. This step
is simpler when we view the partial Cholesky factorization process implicitly.

Lemma C.2.2 Given a graph G where the resistance of all edge weights are between rmin and
rmax, along with a vertex u of degree at most 2. Let H̄ correspond to the exact partial Cholesky
factorization with u removed. We can find in O(1) time H̃ whose edge weights approximate those
in H̄ within multiplicative error of ±6rmax

rmin
εm.

Proof

In the case of u having degree 1, we simply remove the edge between u and its neighbor, so the
bound on edge weights and total resistance holds in H . If u is degree 2, let the two edges incident
to u have weights w1 and w2 respectively. Then the weight of the new edge in the absence of
floating point error, L̄H , is: 1

1
w1

+ 1
w2

. If an additive error of εm is incurred at each step, the resulting

value can be upper bounded by:

1(
1

w1
− εm

)
+
(

1
w2
− εm

)
− εm

+ εm =
1

1
w1

+ 1
w2
− 3εm

+ εm

148



Since 1
wi
≥ rmin, each additive factor of εm incurs a multiplicative error of εm

rmin
. So the result can

be upper bounded by: (
1− 3

εm
rmin

)−1
1

1
w1

+ 1
w2

+ εm

As 1
w1
, 1

w2
≤ rmax, the exact result is at least 1

2rmax
. So the additive factor of εm equals to a

multiplicative factor of 2rmaxεm. Combining these two terms gives a total multiplicative distortion
of (1− 3 εm

rmin
)−1 + 2rmaxεm ≤ 6rmax

rmin
εm.

A lower bound on the resulting value can be obtained similarly. �

This allows us to bound the effect of round-off errors across all the elimination steps performed
during greedy elimination.

Lemma C.2.3 Let G be a graph on n vertices with a spanning tree TG such that the minimum
resistance of an edge is at least rmin and the total resistance is at most rs. Then if εm ≤ rmin

20nrmax
,

all intermediate graph/tree pairs during greedy elimination satisfies:

1. The weights of all off tree edges are unchanged.

2. The minimum resistance of an edge in TH is rmin and the total is at most 2rs.

3. If a tree edge in TH has weight we and its weight if exact arithmetic is used would be w̄e,
then 1

2
w̄e ≤ we ≤ w̄e.

Proof Note that aside from discarding edges, the other operation performed by greedy elimina-
tion is to sum the resistance of edges. Therefore, we can ensure that the resistance of the resulting
edge does not decrease. Also, Lemma C.2.2 gives that the total resistance can only increase by a
factor of 1 + 6rmax

rmin
εm ≤ 1 + 1

3n
. As there are at most n tree edges, the cumulative effect of this is

at most (1 + 1
3n

)n ≤ 2.

Also, note that the resistance of a single edge in H in the absence of round-off errors is the
sum of resistances of edges contracted to it. Therefore, the same analysis as total resistance is
applicable here. Inverting r̄e ≤ r̃e ≤ 2r̄e then gives the bound on edge weights. �

This approximation in edges also means that the resulting graph LH is spectrally very close to
the exact one, L̄H . Therefore we can show that a solver for LH leads to a solver for LG as well.

Lemma C.2.4 Let G be a graph where all edge weights are in the range [wmin, wmax] with wmin ≤
1 ≤ wmax. If εm ≤ wmin

10n3wmax
and H is obtained by performing partial Cholesky factorization on

a single vertex u in G. Given any (ε, ε1, T )-solver for LH , SOLVELH with 1
n
≤ ε, ε1 ≤ 1

2
, we can

obtain a
(
(1 + 1

3n
)ε, (1 + 1

3n
)ε1, T +O(1)

)
-solver for LG such that for any vector b, SOLVELG(b)

makes one call to SOLVELH (b′) with a vector b′ such that:

‖b′‖L†H
≤ ‖b‖L†G

+
n2

wmin

εm
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and the magnitude of entries in all intermediate vectors do not exceed 2n3(w−1
min + wmax) ‖b‖L†G

.

Proof

Let CG be the exact partial Cholesky factorization:

CG = UTLGU

=

[
du 0
0 LH̄

]
Where H̄ is the graph that would be produced by partial Cholesky factorization in the absence of
round-off errors. Then L†G = UC†GUT . We first show that SOLVELH readily leads to a solver for
CG. The exact inverse of CG is:

C†G =

[
d−1
u 0

0 L†H

]
Note that CG-norm is the sum of the entry-wise norm in du of the entry corresponding to u and the
LH-norm of the rest of the entries. Since all weights are at most wmax, du ≤ 2wmax. This means
that an absolute error of εm is at most 2wmaxεm in CG norm .

Also, Lemma C.2.2 gives that all edge weights in H are within a multiplicative factor of 1
n3

from those in H̄ . Therefore (1 − 1
n3 )LH̄ � LH � (1 + 1

n3 )LH̄ If ZLH is the matrix related to
SOLVELH , then (1 − 1

n3 )(1 − ε)L†
H̄
� ZLH � (1 + 1

n3 )(1 + ε)LH̄ . Also, the deviation term
may increase by a factor of 1 + 1

n3 due to the spectral difference between LH and LH̄ . Therefore
SOLVELH is a ((1 + 1

n3 )ε, (1 + 1
n3 )ε1, T ) solver for LH̄ .

Combining SOLVELH with the scalar inversion of du then gives a solver for CG, SOLVECG .
Since CG is block-diagonal, both the bound of approximate inverse operations and errors in CG-
norm can be measured separately. This gives a total deviation of up to (1 + 1

n3 )ε1 + 2wmaxεm ≤
(1 + 2

n3 )ε1 in CG-norm, while the approximation factor only comes from LH . Therefore SOLVECG
is a ((1 + 1

n3 )ε, (1 + 2
n3 )ε1, T + O(1)) solver for CG. Also, the only operation performed by

SOLVECG is to call SOLVELH on the part of the vector without u. The block-diagonal structure of
du and LH again gives that the LH norm of this vector is at most the CG-norm of the input vector.

It remains to turn SOLVECG into a solver for LG. Since L†G = UC†GUT , it suffices to bound the
errors of multiplying by UT and U.

Let ZCG be the linear operator corresponding to SOLVECG . Then combining the guarantees of
the algorithm with Lemma C.0.1 gives:(

1−
(

1 +
1

3n

)
ε

)
L†G � UZCGUT �

(
1 +

(
1 +

1

3n

)
ε

)
L†G

Therefore ZLG = UZCGUT suffices as the matrix related to SOLVELG . We now need to bound
the deviations caused by SOLVECG , as well as multiplications by UT and U. Let these three error
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vectors be err1, err2, and err3. Then the vector returned by SOLVELG is :

U
(
ZCG

(
UTb + err1

)
+ err2

)
+ err3

= UZCGUTb + UZCGerr1 + Uerr2 + err3

= ZLGb + UZCGerr1 + Uerr2 + err3

The first term is the error-free result, therefore it suffices to bound the LG norm of the three later
terms separately. Our assumptions about round-off errors gives ‖err1‖2 , ‖err3‖2 ≤ εm, and the
guarantees of SOLVECG shown above gives ‖err2‖CG ≤ (1 + 2

n3 )ε1. For err2, we have:

‖Uerr2‖LG =

√
errT2 UTLGUerr2

=
√

errT2 CGerr2

= ‖err2‖CG

≤
(

1 +
2

n3

)
ε1

For err3, since the maximum edge weight is at most wmax, the Frobenius norm, and in turn
2-norm of LG is at most wmax ≤ n2. So we have ‖err3‖LG ≤ n2wmaxεm ≤ 1

20n
ε1.

The only remaining term is ‖UZCGerr1‖LG The term can be rewritten as:

UZCGUTU−T err1 = ZLGU−T err1

The LG norm of it is then:∥∥ZLGU−T err1

∥∥2

LG
= (U−T err)TZLGLGZLG(U−T err)

A weaker version of the guarantees of ZLG then gives:∥∥ZLGU−T err1

∥∥2

LG
≤ 2

∥∥U−T err
∥∥2

ZLG

≤ 4
∥∥U−T err

∥∥2

L†G

Since G is connected by edges weighting at least wmin, the minimum non-zero eigenvalue of LG

is at least 1
n2U

. So L†G � 2n2

wmin
I. Also, since all entries in U are at most 1, the Frobenius norm

of U−TU−1 can be bounded by n. Combining these gives an upper bound of
√

4n3

wmin
εm ≤ 1

20n
ε1.

Therefore the total deviation can be bounded by (1 + 1
3n

)ε1.
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The vector passed to SOLVECG is vector is UTb + err1. Decomposing this using the triangle
inequality gives: ∥∥UTb + err1

∥∥
C†G
≤
∥∥UTb

∥∥
C†G

+ ‖err1‖C†

≤
∥∥UTb

∥∥
C†G

+
n2

wmin

εm

≤ ‖b‖L†G
+

n2

wmin

εm

Where the second last inequality follows bounding the minimum non-zero eigenvalue of CG by
1

n2wmin
. This also bounds the maximum entry of this vector.

These bounds in LG and L†G norms can be converted to bounds on magnitude of entries using
the `2 norm. The bounds on edge weights gives that all non-zero eigenvalues of LG are between
wmin

n2 and n2wmax. This immediately allows us to bound ‖b‖2 by n2wmax ‖b‖L†G
. Also, our guaran-

tees implies the output, x satisfies ‖x‖LG ≤ 2 ‖b‖L†G
. So the `2-norm of this vector can be bounded

by n2

wmin
‖b‖L†G

as well. This combined with bounds on ‖err3‖ and the Frobenius norm of U−1 then

gives bounds on the magnitudes of U(ZCG(UTb + err1) + err2) and ZCG(UTb + err1) as well. �

Applying this Lemma repeatedly gives the following guarantees of greedy elimination.

Lemma C.2.5 (Greedy Elimination) Let G be a graph on n vertices with a spanning tree TG
such that the minimum resistance of a tree edge is at least rmin ≤ 1 and the total resistance is at
most rs ≥ 1. If εm ≤ rmin

3n3rs
, then running GREEDYELIMINATION on G and TG in O(m) time to

produces a graph H with a spanning tree TH such that:

1. The weights of all off tree edges are unchanged.

2. The resistance of an edge in TH is at least rmin and the total is at most 2rs.

3. If a tree edge in TH has weight w̃e and its weight if exact arithmetic is used would be w̄e,
then 1

2
w̄e ≤ w̃e ≤ w̄e.

4. Given a routine SOLVELH that is a (ε, ε1, T )-solver for LH , we can obtain a routine SOLVELG
that is a (2ε, 2ε1, T +O(m))-solver for LG, Furthermore, for any vector b, SOLVELG makes
one call to SOLVELH with a vector b′ such that ‖b′‖L†H

≤ ‖b‖L†G
+ 1 and all intermediate

values are bounded by O(n3(rs + r−1
min)(‖b‖L†G

+ 1)).

Proof Let the sequence of graphs generated by the pivoting beG0 = G,G1 . . . Gk = H for some
k < n. Lemma C.2.3 gives that for all Gi the minimum resistance is at least rmin and the total is
at most 2rs. Therefore the minimum weight in any Gi is at least 1

2rs
and the maximum is at most

1
rmin

. Therefore the choice of εm meets the requirement for Lemma C.2.4. Since (1 + 1
3n

)n ≤ 2,
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a simple induction gives that SOLVELH leads to SOLVELG that is a (2ε, 2ε1, T + O(m)) solver for
LG.

Another induction down the chain gives that ‖b′‖L†Gi
≤ ‖b‖L†G

+ n3

wmin
εm. Our assumption on

εm gives that this is bounded by ‖b‖L†G
+ 1. Combining this with the bound of edge weights gives

the bound on the magnitudes of all intermediate values. �
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Appendix D

Iterative Methods

In this chapter we prove guarantees of iterative methods for completeness. Our precision analysis
is in the fixed-point model, and the necessary assumptions are stated at the start of Section 2.6.

D.1 Richardson Iteration

We now show Richardson iteration, which reduces the error from a constant to ε.

Lemma 1.6.8 If A is a positive semi-definite matrix and SOLVEA is a routine such that for any
vector b = Ax̄, SOLVEA (b) returns a vector x such that:

‖x− x̄‖A ≤
1

2
‖x̄‖A

Then for any ε, there is an algorithm SOLVE′A such that any vector b = Ax̄, SOLVE′A (b) returns a
vector x such that:

‖x− x̄‖A ≤ ε ‖x̄‖A

by making O (log (1/ε)) calls to SOLVE′A and matrix-vector multiplications to A. Furthermore,
SOLVE′A is stable under round-off errors.

The assumptions that we make about round-off errors are presented in detail in Section 2.6.
Specifically, any matrix/vector computations leads to an answer that differs from the true answer
by a vector whose magnitude is at most εm. Furthermore, we assume that b is normalized so that
‖b‖2 = 1, and at each step we project our solution vector onto the column space of A.

Let λ be a bound such that all non-zero eigenvalues of A are between 1
λ

and λ, We will show
convergence when εm ≤ ε

60λ4
.
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Proof Consider the following recurrence:

x0 = 0

xi+1 = xi −
1

4
SOLVEA (Axi − b)

Implementing this recurrence as given leads to two sources of additional round-off errors: com-
puting Axi−b, and subtracting the a scaled version of the output of SOLVEA from xi. If we denote
them as err(1)

i and err(2)
i , the result of our algorithm is then produced by the following recurrence:

x̃0 = 0

x̃i+1 = x̃i −
1

4
SOLVEA

(
Ax̃i − b + err(1)

i

)
+ err(2)

i

Also, at each iteration, we will check the value of ‖Ax̃i − b‖2 ≤
ε
λ2

and terminate if it is too
small. This is because the spectrum bounds on A gives that if ‖Ax̃i − b‖2 ≤

ε
λ2

, ‖x̃i − x̄‖A ≤
ε
λ

.
Since ‖b‖2 = 1, ‖x̄‖A = ‖b‖A† ≥

1
λ

and the answer meets the requirement. Therefore we may
work under the assumption that ‖Ax̃i − b‖2 ≥

ε
λ2

, which once again using spectral bounds on A
translates to ‖x̃i − x̄‖A ≥

ε
λ3

.

We will show that the error reduces geometrically over the iterations.

For the starting point of x̃0 = 0, we have:

‖x̃0 − x̄‖2
A = ‖0− x̄‖2

A

= ‖x̄‖2
A

We will then bound the change of the error from x̃i to x̃i+1. To simplify notation, we use ri to
denote Ax̃i − b, and ∆i to denote the difference, x̃i+1 − x̃i.

‖x̃i − x̄‖2
A − ‖x̃i+1 − x̄‖2

A = ‖x̃i − x̄‖2
A − ‖∆i + x̃i − x̄‖2

A (D.1)

= −2 (x̃i − x̄)T A∆i −∆T
i A∆i (D.2)

= −2(Ax̃i − b)T∆i −∆T
i A∆i (D.3)

= −2rTi ∆i −∆T
i A∆i (D.4)

We will upper bound this quantity by showing that −4∆i is close to x̄− x̃i. The guarantees of
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SOLVEA can be expressed as:∥∥∥SOLVEA

(
Ax̃i − b + err(1)

i

)
− A†

(
Ax̃i − b + err(1)

i

)∥∥∥
A
≤ 1

2

∥∥∥A†
(

Ax̃i − b + err(1)
i

)∥∥∥
A∥∥∥SOLVEA

(
Ax̃i − b + err(1)

i

)
− (x̃i − x̄)− A†err(1)

i

∥∥∥
A
≤ 1

2

∥∥∥x̃i − x̄ + A†err(1)
i

∥∥∥
A

Moving the A†err(1)
i term out of both sides using the triangle inequality, and incorporating in err(2)

i

then gives:∥∥∥SOLVEA

(
Ax̃i − b + err(1)

i

)
− (x̃i − x̄)

∥∥∥
A
≤ 1

2
‖x̃i − x̄‖A +

3

2

∥∥∥err(1)
i

∥∥∥
A†

‖−4∆i − (x̃i − x̄)‖A ≤
1

2
‖x̃i − x̄‖A +

3

2

∥∥∥err(1)
i

∥∥∥
A†

+ 4
∥∥∥err(2)

i

∥∥∥
A

Our bounds on round-off errors gives
∥∥∥err(1)

i

∥∥∥
2
,
∥∥∥err(2)

i

∥∥∥
2
≤ εm, Furthermore, the assumption

that all non-zero eigenavalues of A are between 1
λ

and λ gives A,A† � λ · I. Therefore the norms
of the two (additive) error terms can be bounded by 6λεm. By the assumption that ‖x̃i − x̄‖A ≥

ε
λ3

and εm ≤ ε
60λ4

, this translates to a multiplicative error of 1
10

, giving:

‖−4∆i − (x̃i − x̄)‖A ≤
3

5
‖x̃i − x̄‖A

Squaring both sides of it and and substituting in ri = Axi − b gives:

‖−4∆i − (x̃i − x̄)‖A ≤
3

5
‖xi − x̄‖A (D.5)

16∆T
i A∆i + 8rTi ∆i + ‖x̃i − x̄‖2

A ≤
9

25
‖x̃i − x̄‖2

A (D.6)

2rTi ∆i + 4∆T
i A∆i ≤ −

4

25
‖x̃i − x̄‖2

A (D.7)

Since A is positive semi-definite, ∆T
i A∆i ≥ 4∆T

i A∆i. Thus we have:

‖xi − x̄‖2
A − ‖xi+1 − x̄‖2

A ≥
4

25
‖xi − x̄‖2

A (D.8)

Rearranging and taking square roots of both sides gives:

‖xi+1 − x̄‖A ≤
√

1− 4

25
‖xi − x̄‖A (D.9)

Which means that unless the algorithm is terminated early, the error is decreasing geometrically at
a constant rate. Therefore in O (log (1/ε)) iterations it becomes less than ε.
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It remains to bound the magnitude of intermediate vectors. Note that the assumption of ‖b‖2 =

1 and assumption of on the eigenvalues of A gives ‖x̄‖A ≤
√
λ. The convergence condition shown

above gives ‖x̃i − x̄‖A ≤ ‖x̄‖A. The triangle inequality then gives ‖x̃i‖A ≤ 2 ‖x̄‖A ≤ 2
√
λ. By the

assumption that x̃i is projected into the column space of A at each step and the minimum non-zero
eigenvalue of A being is least 1

λ
, ‖x̃i‖2 �

√
λ ‖x̃i‖A. Therefore the maximum magnitude of the

entries in x̃i can be bounded by 2
√
λ.

For the intermediate steps, we have:

‖Ax̃i − b‖∞ ≤ ‖Ax̃i − b‖2

= ‖A(x̃i − x̄)‖2

≤
√
λ ‖x̃i − x̄‖A

≤ λ

Since the maximum magnitude of an entry in b is at most 1, the magnitude of entries in Ax̃i can
be bounded by λ + 1 ≤ 2λ. Also, the magnitude of the entries in intermediate vectors passed to
SOLVEA can be bounded by

∥∥∥A(x̃i − x̄) + err(1)
2

∥∥∥
2
≤ λ+ εm ≤ 2λ.

�

D.2 Chebyshev Iteration

As the name suggests, Chebyshev iteration is closely related with Chebyshev Polynomials. There
are two kinds of Chebyshev Polynomials, both defined by recurrences. Chebyshev polynomials of
the first kind, Tn(x) can be defined as:

T0(x) = 1

T1(x) = x

Ti+1(x) = 2xTi(x)− Ti−1(x)

Alternatively, Ti(x) can be characterized using the following closed from:

Ti(x) =

(
x−
√
x2 − 1

)i
+
(
x+
√
x2 − 1

)i
2

The following facts about Chebyshev polynomials of the first kind will be used to bound conver-
gence.

Fact D.2.1 If x = cos(θ), then

Tn(x) = cos(nθ)

This allows us to show that if |x| ≤ 1, |Tn(x)| ≤ 1. For proving convergence, we also need the
opposite statement for lower bounding Tn(x) when x is large.
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Fact D.2.2 If x = 1 + 1
κ

, then:

Ti(x) ≥ 1

2

(
x+
√
x2 − 1

)i
≥ 1

2

(
1 +

√
1 +

2

κ
− 1

)i

≥ 1

2

(
1 +

1√
κ

)i
We can also show that these terms are steadily inceasing:

Fact D.2.3 If i ≤ j and x ≥ 1, then Ti(x) ≥ 2Tj(x).

Proof x ≥ 1 implies 0 ≤ x−
√
x2 − 1 ≤ 1 and 1 ≤ x+

√
x2 − 1. Therefore:

Ti+1 (x) ≥
(
x+
√
x2 − 1

)i+1

2

≥
(
x+
√
x2 − 1

)i
2

≥ Ti (x)− 1

2

Fact D.2.2 also gives Ti+1(x) ≥ 1
2
. Combining these gives Ti(δ) ≥ 2Tj(δ). �

For bounding the extraneous error, we also need Chebyshev polynomials of the second kind.
These polynomials, given as Un(x), follow the same recurrence, but has a different base case:

U−1(x) = 0

U0(x) = 1

Ui+1(x) = 2xTi(x)− Ti−1(x)

These polynomials are related to Chebyshev polynomials of the first kind by the following identity:

Fact D.2.4

Ui(x) =

{
2
∑

j odd Tj(x) If i is odd
2
∑

j even Tj(x) If i is even

Throughout our presentation, we will apply both of these polynomials to matrices. Recall from
Lemma 1.6.1 the resulting linear operator equals to the one obtained by applying the polynomial
on each of the eigenvalues.
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We first show the convergence of Chebyshev iteration under exact arithmetic.

Lemma 2.1.1 (Preconditioned Chebyshev Iteration) There exists an algorithm PRECONCHEBY

such that for any symmetric positive semi-definite matrices A, B, and κ where

A � B � κA

any error tolerance 0 < ε ≤ 1/2, PRECONCHEBY(A,B, b, ε) in the exact arithmetic model is a
symmetric linear operator on b such that:

1. If Z is the matrix realizing this operator, then (1− ε)A† � Z � (1 + ε)A†

2. For any vector b, PRECONCHEBY(A,B, b, ε) takes N = O (
√
κ log (1/ε)) iterations, each

consisting of a matrix-vector multiplication by A, a solve involving B, and a constant number
of vector operations.

Preconditioned Chebyshev iteration is given by the following recurrence with δ set to 1 + 1
κ

:

Base case:

x0 = 0
x1 = B†b

Iteration:

yi+1 = B† (Axi − b)

xi+1 =
2δTi (δ)

Ti+1 (δ)

(
xi − yi+1

)
− Ti−1 (δ)

Ti+1 (δ)
xi−1

We first show that the residue, x̄− xi can be characterized in terms of Chebyshev polynomials.

Lemma D.2.5 Let x̄ = A†b. The result produced after i iterations of Chebyshev iteration under
exact arithmetic, xi satisfies:

Ti (δ) (x̄− xi) = A†1/2Ti
(
δ
(

I− A1/2B†A1/2
))

A1/2x̄

Proof The proof is by induction. The base case can be checked as follows:

x̄− x0 = x̄
= A†1/2A1/2x̄

x̄− x1 = x̄− B†b
= x̄− B†Ax̄

= A†1/2
(

I− A1/2B†A1/2
)

A1/2x̄

160



For the inductive case, the recurrence can be rearranged to give:

Ti+1 (δ) xi+1 = 2δTi (δ)
(
xi − yi+1

)
− Ti−1 (δ) (δ) xi−1

Recall from the definition of Chebyshev polynomials of the first kind that:

Ti+1 (δ) = 2 (δ)Ti (δ)− Ti−1 (δ)

So we can subtract both sides from Ti+1 (δ) x̄ to get:

Ti+1 (δ) (x̄− xi+1) = 2δTi (δ) (x̄i − xi + yi)− Ti−1 (δ) (x̄− xi−1)

The change, yi, can be viewed as computed by multiplying the difference at iteration i by B−1A:

yi+1 = B† (Axi − b)

= B† (Axi − Ax̄)

= B†A (xi − x̄)

Substituting this in gives:

Ti+1 (δ) (x̄− xi+1) = 2δTi (δ)
(
x̄− xi − B†A (x̄− xi)

)
− Ti−1 (δ) (x̄− xi−1)

= 2δTi (δ)
(
I− B†A

)
(x̄− xi)− Ti−1 (δ) (x̄− xi−1)

= 2δ
(
I− B†A

)
Ti (δ) (x̄− xi)− Ti−1 (δ) (x̄− xi−1)

Substituting in the inductive hypothesis then gives:

Ti+1 (δ) (x̄− xi+1)

= 2δ
(
I− B†A

)
A†1/2Ti

(
δ
(

I− A1/2B†A1/2
))

A1/2x̄− A†1/2Ti
(
δ
(

I− A1/2B†A1/2
))

A1/2x̄

= 2δA†1/2
(

I− A1/2B†A1/2
)
Ti

(
δ
(

I− A1/2B†A1/2
))

A1/2x̄− A†1/2Ti
(
δ
(

I− A1/2B†A1/2
))

A1/2x̄

= A†1/2Ti+1

(
δ
(

I− A1/2B†A1/2
))

A1/2x̄

�

Therefore to bound the error, it suffices to lower bound Ti (δ) as well as upper bounding the
effect of Ti

(
δ
(

I− A1/2B†A1/2
))

. The lower bound follows from Fact D.2.2, and we need to
show the upper bound:

Lemma D.2.6 If A � B � κA, we have for any i:∥∥∥Ti (δ (I− A
1
2 B†A

1
2

))∥∥∥
2
≤ 1
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Proof The given condition is equivalent to:

1

κ
A† � B† � A†

1

κ
I � 1

κ
A

1
2 B†A

1
2 � I

0 � I− 1

κ
A

1
2 B†A

1
2 �

(
1− 1

κ

)
I

Recall that δ = 1 + 1
κ

, so
(
1− 1

κ

)
δ ≤ 1 and:

0 � 1

δ

(
I− 1

κ
A

1
2 B†A

1
2

)
� I

Therefore, all eigenvalues of δ
(

I− A
1
2 B†A

1
2

)
are in the range [0, 1]. Applying the upper bound

for Chebyshev polynomials for values in this range then gives the result.

�

This allows us to prove the overall error bound

Proof of Lemma 2.1.1:

Let Zi be the linear operator corresponding to running preconditioned Chebyshev iteration
for i steps. In other words, xi = Zib. Since all terms the Chebyshev polynomial are of the form
B−1AB−1 . . .AB−1, the operator is symmetric. Therefore it suffices to show its spectral guarantees.
The goal condition of (1− ε)A† � Z � (1 + ε)A† is equivalent to:

(1− ε) I � A1/2ZA1/2 � (1 + ε) I
−εI � A1/2

(
Z− A†

)
A1/2 � εI∥∥∥A1/2

(
Z− A†

)
A1/2

∥∥∥
2
≤ ε

Since Lemma D.2.5 holds for any vector x, it can also be viewed as a statement about the
corresponding operators. As the input is b = Ax̄, the difference between xi and x̄ equals to
ZiAx̄− x̄.

ZiA− I =
1

Ti (δ)
A†1/2Ti

(
δ
(
I− B†A

))
A1/2

A1/2
(
Zi − A†

)
A1/2 =

1

Ti (δ)
Ti
(
δ
(
I− B†A

))
By Lemma D.2.6, the spectral norm of this operator can be bounded by 1

Ti( 1
δ )

. The lower

bound on Chebyshev polynomials from Fact D.2.2 gives that when i ≥ O(
√
κ log(1/ε)) for an

appropriate constant in the big-O, Ti(δ) ≥ 10ε−1. �
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D.3 Chebyshev Iteration with Round-off Errors

We now incorporate round-off errors in our analysis. There are two sources of such error here
errors from evaluating B†, and errors from vector additions and matrix-vector multiplications. Our
proof is based on showing that errors incurred at each step of Chebyshev iteration compound at a
rate polynomial to the iteration count.

In addition to showing that the total deviation is small, we also need to bound the norms of
vectors passed as input to SOLVEB. Our overall bound is as follows:

Lemma 2.6.3 (Preconditioned Chebyshev Iteration) Given a positive semi-definite matrix A with
m non-zero entries and all non-zero eigenvalues between 1

λ
and λ, a positive semi-definite matrix

B such that A � B � κA, and a (0.2, ε1, T )-solver for B, SOLVEB. If εm < ε1
20κλ

, precon-
ditioned Chebyshev iteration gives a routine SOLVEA that is a (0.1, O(κε1), O(

√
κ(m+ T )))-

solver for A. Furthermore, all intermediate values in a call SOLVEA(b) have magnitude at most
O(
√
λ (‖b‖A† + κε1)) and the calls to SOLVEB involve vectors b′ such that ‖b′‖B† ≤ ‖b‖A† +

O (κε1).

Consider the recurrence as Chebyshev iteration with a slightly less aggressive step and δ =
1 + 1

2κ
.

Base case:

x0 = 0

x1 =
1

2
SOLVEB (b)

Iteration:

xi+1 =
2δTi (δ)

Ti+1 (δ)

(
xi −

1

2
SOLVEB (Axi − b)

)
− Ti−1 (δ)

Ti+1 (δ)
xi−1

Let ZB be the matrix corresponding to SOLVEB. Then 0.8B† � ZB � 1.2B†. Combining this
with A � B � κB gives A � 2Z†B � 4κA. Therefore the ‘ideal’ iteration process similar to
Section D.2 would involve multiplying by 1

2
ZB at each iteration. It is more convenient to view this

algorithm as deviating from this process with a single error vector.

Lemma D.3.1 If εm ≤ ε1
20λκ

, then preconditioned Chebyshev iteration under round-off errors can
be described by the following recurrence where erri satisfies ‖erri‖A ≤ 9ε1.

x0 = 0

x1 =
1

2
SOLVEB (b) + err1

xi+1 =
2δTi (δ)

Ti+1 (δ)

(
xi −

1

2
ZB (Axi − b)

)
− Ti−1 (δ)

Ti+1 (δ)
xi−1 + erri
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Proof

The presence of round-off errors causes us to deviate from this in three places:

1. Errors from computing Ax− b.

2. Deviation between output of SOLVEB(b′) and ZBb′.

3. Errors from adding (rescaled) vectors.

We will denote these error vectors err(1)
i , err(2)

i ,err(3)
i respectively. The assumptions about round-

off error and guarantee of SOLVEB gives:
∥∥∥err(1)

i

∥∥∥
2
,
∥∥∥err(3)

i

∥∥∥
2
≤ εm and

∥∥∥err(2)
i

∥∥∥
B
≤ ε1. The

recurrence under round-off error then becomes:

x0 = 0

x̃1 = SOLVEBb + err(2)
1

x̃i+1 =
2δTi (δ)

Ti+1 (δ)

(
x̃i −

(
ZB

(
Ax̃i − b + err(1)

i

)
+ err(2)

i

))
− Ti−1 (δ)

Ti+1 (δ)
x̃i−1 + err(3)

i

Aggregating the errors in the iterative step gives:

x̃i+1 =
2δTi (δ)

Ti+1 (δ)
(x̃i − ZB (Ax̃i − b))− Ti−1 (δ)

Ti+1 (δ)
x̃i−1 −

2δTi (δ)

Ti+1 (δ)

(
Zerr(1)

i + err(2)
i

)
+ err(3)

i

So we can set erri to the trailing terms, and it suffices to bound its norm. We first bound the
coefficient in front of the first two terms. Since 1 ≤ δ ≤ 2, Fact D.2.3 gives that the coefficient
2δTi(δ)
Ti+1(δ)

is at most 4 · 2 ≤ 8. We can now bound the A-norm of the terms individually. Since the

maximum eigenvalue of A is λ,
∥∥∥err(3)

i

∥∥∥
A
≤ λεm. Also, since A � B,

∥∥∥err(2)
i

∥∥∥
A
≤
∥∥∥err(2)

i

∥∥∥
B
≤

ε1.
∥∥∥ZBerr(1)

i

∥∥∥
A

can be rewritten as
∥∥∥err(1)

i

∥∥∥
ZBAZB

. Since A � 2Z†B � 4κA, applying Lemma 1.6.6

gives ZBAZB � 2ZB. The spectrum of ZB can also be bounded using the given condition that
A† � λI, giving ZB � 2κλ and in turn

∥∥∥ZBerr(1)
i

∥∥∥
A
≤ 2κλεm. Combining these gives that the

total deviation is at most 16κλεm + 8ε1 + λεm ≤ 8ε1 + 17κλεm. This also serves as a bound for
the case of i = 1 where only the second error term is present. The assumption of εm ≤ ε1

20κλ
then

gives the overall bound. �

We will show that the deviations caused by erri accumulate in a controllable way. Specifically
we show that this accumulation is described precisely by Chebyshev polynomials of the second
kind. We will prove the following statement by induction:

Lemma D.3.2 The discrepancy between the approximate solution x̃i and the solution that would
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be obtained in the absence of round-off errors, xi, is:

Ti (δ) (x̃i − xi) =
i∑

j=1

Tj (δ) A†1/2Ui−j
(
δ
(

I− A1/2B−1A1/2
))

A1/2errj

Where Ui(x) is a Chebyshev polynomial of the second kind.

Proof The proof is by induction. The base case of i = 0 and i = 1 can be checked using the fact
that U0(x) = 1. The inductive case can be proven by isolating each of the errj terms and checking
that the coefficients satisfy the recurrence for Chebyshev polynomials of the second kind, which is
the same as the recurrence for Chebyshev polynomials of the first kind.

Ti+1 (δ) (x̃i+1 − xi+1)

= Ti+1 (δ) x̃i+1 − Ti+1 (δ) xi+1

= 2δTi (δ) (x̃i − ZB (Ax̃i − b))− Ti−1 (δ) x̃i−1 + Ti+1 (δ) erri+1

− (2δTi (δ) (xi − ZB (Axi − b))− Ti−1 (δ) xi−1)

= 2δTi (δ) (x̃i−1 − xi−1 − ZB (x̃i − xi))− Ti−1 (δ) A (x̃i−1 − xi−1) + Ti+1 (δ) erri+1

= 2δTi (δ) A†1/2
(

I− A1/2ZBA1/2
)

A1/2 (x̃i−1 − xi−1)− Ti−1 (δ) (x̃i−2 − xi−2) + Ti+1 (δ) erri+1

Substituting in the inductive hypothesis gives:

Ti+1 (δ) (x̃i+1 − xi+1)

= 2δA†1/2
(

I− A1/2B−1A1/2
)

A1/2A†1/2
i∑

j=1

Tj (δ)Ui−j

(
δ
(

I− A1/2B−1A1/2
))

A1/2errj

−
i−1∑
j=1

Tj (δ) A†1/2Ui−1−j

(
δ
(

I− A1/2B−1A1/2
))

A1/2errj + Ti+1 (δ) erri+1

As U−1(x) = 0, we can also include in the j = i term in the second summation:

Ti+1 (δ) (x̃i+1 − xi+1)

=
i∑

j=1

A†1/2
(

2δTj (δ)
(

I− A1/2B−1A1/2A
)
Ui−j

(
1

δ

(
I− B−1A

))
−Ui−j−1

(
δ
(

I− A1/2B−1A1/2
)))

A1/2errj + Ti+1 (δ) erri+1

=
i∑

j=1

Tj (δ) A†1/2Ui+1−j
(
δ
(
I− B−1A

))
A1/2errj + Ti (δ) A†1/2A1/2erri
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Since U0(x) = 1, U0

(
1
δ

(
I− A1/2B−1A1/2

))
= I, and we may multiply the last term by it.

Hence the inductive hypothesis holds for i+ 1 as well. �

Using this Lemma as well as the relations between the two kinds of Chebyshev polynomials
given in Fact D.2.4, we can prove that the error in the A-norm is amplified by at most poly (i).

Lemma D.3.3 The accumulation of errors after i iterations can be bounded by:

‖x̃i − xi‖A ≤
∑
j

8i ‖errj‖A

Proof By the bound on total error given in Lemma D.3.2 above, and the property of norms, we
have:

‖x̃i − xi‖A =
1

Ti (δ)

∥∥∥∥∥
i∑

j=1

Tj (δ) A†1/2Ui−j
(
δ
(

I− A1/2B−1A1/2
))

errj

∥∥∥∥∥
A

≤
∑
j

Tj (δ)

Ti (δ)

∥∥∥A†1/2Ui−j
(
δ
(

I− A1/2B−1A1/2
))

A1/2errj
∥∥∥

A

≤
∑
j

8
∥∥∥A†1/2Ui−j

(
δ
(

I− A1/2B−1A
))

A1/2errj
∥∥∥

A
By Fact D.2.3

Applying the decomposition of Ui(x) into a sum of Tj(x) from Fact D.2.4 gives:

∥∥∥A†1/2Ui−j
(
δ
(

I− A1/2B−1A1/2
))

A1/2errj
∥∥∥

A
≤

i−j∑
k=0

∥∥∥A†1/2Tk
(
δ
(

I− A1/2B−1A1/2
))

A1/2errj
∥∥∥

A

Once again we apply the shrinkage properties given in Lemma D.2.6 to each of the terms:∥∥∥A†1/2Tk
(
δ
(

I− A1/2B−1A1/2
))

A1/2errj
∥∥∥2

A

= errTj A1/2
(

I− A1/2B−1A1/2
)2

A1/2errj

≤ errTj Aerrj = ‖errj‖2
A

Taking square roots of both sides and summing gives the overall bound. �

Proof of Lemma 2.6.3: The properties of the exact linear operator follows from Lemma 2.1.1
and the condition that A† � 2Z1/2

B � 4κA†. The total deviation is given by Lemmas D.3.1 and D.3.3:

‖x̃i − xi‖A ≤
∑
j

8i ‖errj‖A

≤ i · 8i · 9ε1 ≤ O(κ)ε1

166



The vector passed to SOLVEB, at iteration i is:

b′ = Ax̃i − b + err(1)
i

= A (x̃i − x̄) + err(1)
i

Since
∥∥∥err(1)

i

∥∥∥
2
≤ εm and B � κA � κλ · I,

∥∥∥err(1)
i

∥∥∥
B
≤
√
κλεm ≤ ε1. It remains to bound the

B†-norm of A (x̃i − x̄) The condition A � B gives B† � A† and:

‖A (x̃i − x̄)‖B† =

√
(x̃i − x̄) AB†A (x̃i − x̄)

≤
√

(x̃i − x̄) AA†A (x̃i − x̄)

= ‖x̃i − x̄‖A

This can in turn be decomposed using the triangle inequality:

‖x̃i − x̄‖A ≤ ‖x̃i − xi‖A + ‖xi − x̄‖A

The first term was bounded above by O(κ)ε1, while the second term can be bounded by ‖b‖A† by
the convergence of exact Chebyshev iteration in Lemma 2.1.1. Combining these gives:

‖b′‖B† ≤ ‖b‖A† +O (κε1)

These bounds also allows us to bound the `2-norm, and in turn magnitudes entries of all inter-
mediate vectors. Then given assumption that all non-zero eigenvalues of A are between 1

λ
and λ

implies:

‖x̃i‖2 , ‖Ax̃i‖2 ≤
√
λ ‖x̃i‖A

≤
√
λ (‖x̃i − x̄‖A − x̄)

≤
√
λO (‖b‖A† + κε1)

‖b′‖2 ≤ ‖A (x̃i − x̄)‖2 +
∥∥∥err(1)

i

∥∥∥
2

≤
√
λ ‖x̃i − x̄‖A + εm

≤ O
(√

λ (‖b‖A† + κε1)
)

�
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