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Abstract

Increasingly available mobile devices (e.g., mobile robots, smart phones) are becoming
more intelligent in their ability to autonomously perform tasks for users. However, when
deployed in complex human environments, these devices still face many sensing, reason-
ing, and actuation limitations. To overcome limitations, we propose symbiotic relation-
ships as those in which the device can request help from humans in the environment while
it performs tasks for them. Because the devices are performing tasks for humans, humans
have incentive to help the device complete its tasks effectively. However, they may not
always be available or willing to help. We introduce human-centered planning to model
and reason about humans in the environment in addition to their own state and goals to
determine how to act and whether, who, and how to seek help.

The thesis first contributes an understanding of what and how to model humans in the
environment through user studies. We first evaluate whether attributes such as availability
and interruptibility affect willingness to help. Then, we contribute to the understanding
of how to ask humans for help to increase the accuracy of their responses. We show
that providing humans with device context, classification prediction and uncertainty, and
additional feedback all increase the accuracy of human responses to device questions.
Finally, we contribute algorithms to learn these models both through surveys and online
while the device is performing tasks.

The thesis then introduces human-centered conditional, deliberative, and replanning
algorithms that use models of humans. We contribute conditional plans that include asking
actions to enable devices to perform tasks that they could not otherwise perform. We then
contribute a human-centered deliberative planner for a robot to use to determine which
navigational path to take that minimizes its uncertainty and maximizes the likelihood of
finding available human helpers. Finally, we contribute a replanning algorithm for a robot
to determine which helper to have travel to help in a particular location, such as elevators
or kitchens.

Through extensive experiments and deployments, in particular with a mobile service
robot, this thesis shows that human-centered algorithms trade off task performance with
costs of asking and interrupting human helpers increase functionality while maintaining
usability.
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Chapter 1

Introduction

Intelligent devices, such as mobile phones and robots, are increasingly available to au-
tonomously perform tasks for us in our environments. These devices sense the environ-
ment around them, predict their state within the environment, plan which actions would
result in them completing their tasks, and then take those actions autonomously. How-
ever, when deployed in complex human environments, intelligent devices still face many
limitations in performing tasks for humans.

We view device limitations as roughly divided into two categories - reasoning uncer-
tainty and sensing/actuation limitations. A device with reasoning uncertainty senses the
environment, but may not always be able to accurately determine its state or which action
to perform. A device with sensing or actuation limitations does not have a sensor or actua-
tor capable of performing an action necessary for its tasks. While a device may overcome
its reasoning uncertainty and perform its tasks autonomously, a device with sensing or
actuation limitations requires intervention to sense or perform the action for it.

In order to perform tasks in human environments and overcome these limitations dur-
ing autonomous deployment, devices are typically constrained to tasks that they can per-
form completely and environments in which they have little uncertainty. Instead, this thesis
argues that:

Intelligent devices can plan and execute tasks with reasoning uncertainty
and sensing/actuation limitations using models of human helpers to deter-
mine whether, how, and who to proactively ask for help during execution.

Because the devices are performing tasks for humans, the humans have incentive to
help the device overcome its limitations to complete its tasks effectively. We define sym-
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biotic relationships as those in which the device asks for help from humans in the envi-
ronment while acting autonomously to perform tasks for them. In particular, the help can
come in two forms:

• Overcoming Sensing/Action Limitations - the human performs an action for the
device;

• Reducing Reasoning Uncertainty - the human increases the device’s ability to exe-
cute the state-action policy;

While a robot could reduce its reasoning uncertainty and learn to perform tasks it requests
help for, we do not expect any robot to be able to overcome sensing or actuation limitations
autonomously. For example, a robot without arms cannot ever lift a cup of coffee. Through
asking for help, a device with limitations can complete tasks that it could not otherwise
perform.

Rather than limiting devices’ tasks to those that only include actions that devices can
perform autonomously, we instead contribute algorithms that reason about, plan for, and
overcome device limitations by proactively asking humans in the environment for help. As
often as possible, the device senses and acts autonomously. However, when a device has
reasoning uncertainty that will affect its task performance, we contribute algorithms for it
to ask a human to indicate its state or which action it should take. When a device’s task
requires an action that it does not have the capability to perform, we contribute algorithms
for it to ask a human to perform that action for it.

In addition to increasing task completion, we believe that the successful deployment of
devices with limitations also depends on the usability of their requests for help. Humans
may not always be available to help their devices. While existing algorithms have taken
advantage of humans in order to accomplish tasks, they do not take into account the timing
(e.g., availability, interaction history) and human cost (e.g., interruption, time to help)
which can affect the algorithms’ deployability. This thesis introduces human-centered
planning as an approach to determining which actions and help interactions to perform
around humans during deployment, including whether, how, and who to ask for help.

The key to our human-centered planning approach is that we model humans as sensors
and actuators that can be queried for information probabilistically and at a cost. Just as
other sensors or actuators may be available at different times and with different accuracies,
so are humans. Similarly, just as sensors and actuators have different associated costs of
power or startup time, humans have different costs of interruption and about of time they
are willing to help. This thesis argues that although humans are not oracles, they can be
modeled and included in plans to help devices complete tasks.
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Our human-centered algorithms model both the humans’ states in the environment
(e.g., availability and interruption), the device’s own state (e.g., location, capabilities, and
uncertainty) and task goals. Then, they autonomously choose the device’s best actions
by trading off the costs and benefits of different actions based on the joint human-device
state. The thesis contributes both the formal method of developing human-centered plan-
ning algorithms and the evaluation of our human-centered planning approach on multiple
devices, performing multiple and different tasks, for multiple types of human helpers in
simulation and real deployments.

1.1 Human-Centered Planning Approach

In our human-centered planning approach, a device reasons about humans in the environ-
ment in addition to its own state and goals to determine which actions to take. In particular,
it incorporates models of human state and interaction actions into its model of the envi-
ronment with its own state and actions. Using this combined human-device model, our
planning algorithms can proactively weigh the costs and benefits of different actions and
interactions in different states to determine an action plan. Because the actions are based
on both the human state and the device’s state, the planner optimizes not only the task
goals but also usability during deployment.

This thesis contributes a formal approach to human-centered planning that focuses on
building human models that accurately represent the tradeoffs that humans make when
interacting with their intelligent devices in the environment. We take a three step approach
to human-centered planning in order to increase the likelihood that it is both usable and
deployable (Figure 1.1). We first perform studies to understand how humans can help de-
vices. The resulting models of humans and help are used in planning algorithms along with
the device’s own state to determine the best action policy. The action policy is deployed in
the environment to trade off task goals with usability. The results of the deployment can
then be fed back to improve the planning algorithm.

What human state should be modeled?

Rather than naı̈vely determining what factors affect whether humans will help devices,
this thesis contributes studies of humans interacting with intelligent devices to understand
how the human state affect their willingness to help the device overcome its limitations.
Our studies include surveys, in-lab experiments, and remote-controlled in-situ experiments
depending on the potential model requirements. We use the results of the studies to deter-
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Figure 1.1: This thesis contributes a three step human-centered approach to planning for
limitations.

mine what human state to model and then develop algorithms to predict this human state
and use it as input into the human-centered planning algorithms.

How can the human state models be incorporated into deployable planners?

There have been many proposed models of device state (e.g., location) and uncertainty
which, along with device actions, can be solved to find the optimal action policy. How-
ever, they are often not scalable for devices that act in large environments. This thesis
contributes decision-theoretic algorithms that trade off costs and benefits of performing
actions and interactions for help and that model large numbers of humans in environ-
ments. We demonstrate that our algorithms perform tasks with higher reward or lower
task completion time than those that do not model humans or assume that they are always
willing to help.

Additionally, while we know which state to model, it can be difficult to learn human
models prior to deployment. We contribute an active learning algorithm to learn human
models in only a few survey questions and show that it can also be extended to learning
multi-utility cost functions such as those needed for our planning algorithms’ tradeoffs.
We also contribute an algorithm to learn human models online while the device is de-
ployed. Because solving for optimal policies is NP-hard, our learning algorithm only
recomputes the policy when there is a statistically significant change in the human model.

How do human-centered plans affect the device’s deployment?

While we are able to show in simulation that our human-centered planners choose better
actions than other algorithms, we also test how they plan and act under real environment,
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non-laboratory conditions. Additionally, we use the results from our deployments as feed-
back to refine our planners to improve task performance.

We apply our three-step human-centered planning approach on two different devices with
limitations, as we describe next.

1.2 Devices and Limitations

The thesis introduces human-centered planning algorithms to improve the task perfor-
mance and usability of two intelligent devices - a smart phone and a mobile robot. While
these devices seem very different, they each have sensors and can predict their state and
the state of humans around them, determine which actions to take (e.g., when to ring aloud
or where to navigate), and execute them. We will demonstrate that both smart phones and
robots can use our human-centered algorithms to perform tasks for humans while over-
coming their limitations.

1.2.1 Smart Phones

Smart phones are becoming increasing ubiquitous in our environments. Smart phones
have a variety of sensors that applications can use to sense the environment and human
users, such as accelerometers, GPS, and microphones. Additionally, phone makers also
provide in-code access to other information about the user and contacts (i.e., by phone or
text message), such as the user’s contact list, favorites list, and calendar. Table ?? lists the
sensor and other data that we had access to on Google Android phones in this work.

Limitations: Despite the sensors and information that smart phones can access and the
ability to autonomously change ring tone volume, they do not autonomously do so. In-
stead, they still require their users to set phone volume. Several research studies have
shown that users often forget to set their phone volume, causing embarrassing interrup-
tions and missed calls for the user (Milewski and Smith (2000); Toninelli et al. (2008)).
However, even if smart phones did model volume preferences, they would have reasoning
uncertainty about whether to ring aloud or silently and possibly change volume incorrectly
at times.

This thesis contributes a smart phone application that senses the phone user’s state
(e.g., GPS and accelerometer readings) and autonomously sets phone volume according
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to a user-personalized volume action policy. It learns the personalized policy using our
human-centered planning approach in which the phone asks questions “Would you like
your phone to ring out loud?” when the benefit of asking the question to learn a better
volume policy outweighs the cost of interruption. By asking for help, the phone learns
new preferences and reduces uncertainty over time.

Models of Human Helpers: We focus on phone users’ willingness to help their phone
learn their personalized volume policy. The requests for volume preferences may happen at
inopportune times exactly when they do not want to be interrupted by their phone ringing.
Additionally, each person’s preferences to answer questions may differ. Some users may
never want to answer questions at work while other may. We model users’ personalized
preferences of when to ask questions.

1.2.2 CoBot - Autonomous Mobile Service Robot

Our robots, all named CoBot (Fig. 1.2(a)), are capable of autonomous localization and
navigation in our 9-floor building environment as well as dialog with humans. Each has
a laptop with screen that people can use to interact with the robot while it performs tasks
autonomously in our building. Tasks for the robot include traveling to offices, delivering
messages or mail, and transporting objects from one office to another.

Limitations: Like many robots, CoBot has limitations. CoBot has high localization
uncertainty in large open spaces (Fig. 1.2(b) - darker grey areas indicate more uncer-
tainty) Biswas and Veloso (2010); Biswas, Coltin, and Veloso (2011). Commonly, robots
with localization uncertainty autonomously overcome it by stopping to collect more sensor
data and sometimes backtracking along its path. This thesis contributes two novel human-
centered path planning algorithms that trade off localization uncertainty and human avail-
ability and interruption costs to determine where to navigate and when to proactively ask
for help.

CoBot also has actuation limitations. CoBot does not have arms or the ability to ma-
nipulate objects to push chairs out of the way, pick up the mail to give to the building
occupants, pour coffee, or push elevator buttons to travel between the building floors. In
order to accomplish tasks that require these actions, CoBot must ask for help from some-
one in the environment. Rather than depending on human supervisors to watch the robot
and perform these actions, this thesis contributes human-centered algorithms to model hu-
mans in the environment and determine who to proactively ask for help. Because these
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(a) The CoBot Robot (b) Areas of Uncertainty

Figure 1.2: (a) CoBot performs tasks in our multi-floor building but has actuation limi-
tations and (b) localization uncertainty (the darker the grey the more uncertainty in that
location) Biswas and Veloso (2010); Biswas, Coltin, and Veloso (2011).

actions are often spatially-situated in the environment at particular locations, the algo-
rithms tradeoff task completion time with human interruption cost and travel distance to
determine who to ask for help.

Models of Human Helpers: This thesis focuses people’s willingness to help the robot
with different limitations. These requests for help take different amounts of time to answer
and some require people to travel down the hallway to perform the requested help. We
model two types of humans in the environment as helpers - device users who are near the
robot and receive task benefit and environment occupants of buildings who have predefined
work spaces and conduct work that requires that they be present in the environment over a
period of time but not monitor the robot’s progress.

1.3 Evaluation

In order to demonstrate that our human-centered planning algorithms effectively plan for
human interaction during autonomous deployments, we measure task performance and
usability metrics and compare them against planners that do not model humans or that
model humans as always available and willing to help.
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Task Performance: Because devices are expected to perform tasks, we measure task
performance to understand how our human-centered algorithms plan for and complete
tasks compared to other algorithms. We measure number of tasks completed and task
completion time during deployment. Particularly, for requests for help, we measure the
number of autonomous versus assisted tasks, number of asked and answered questions
(these numbers may be different), and the number of replans during execution.

Usability: We argue that our interactive intelligent devices must also be usable as they
perform tasks for us. We measure the perceived benefit of the device compared to the cost
of answering questions, the response accuracy and frequency, and human annoyance and
willingness to answer questions over time.

We demonstrate that our human-centered planning algorithms perform more tasks total
and with less uncertainty than algorithms that do not ask for help. Additionally, we show
that our algorithms are more usable than those that ask for help but do not model their
human helpers.

1.4 Thesis Assumptions

This thesis and the algorithms in it assume that models of humans are stationary during
planning and execution time. In other words, we assume that the granularity of tasks is
short enough that humans will not change their availability or interruption level in that
time. While we do have time-dependent models in which availability changes throughout
the day, they do not account for within-task changes. Fine-grained time-dependent models
require accurate predictors of these changes (requiring a lot of data each minute of the day).
Then, planning algorithms that employ these models exponentially increase planning time
to consider different actions that take different amounts of time. While our algorithms
can handle these models, we do not employ them in this thesis due to the practicality of
collecting such data.

However, the thesis does not assume that humans do not change their preferences over
time. We employ learning algorithms to capture human preferences and state over time
including becoming more or less accurate or available during the deployment of the device.

We discuss directions to reduce the stationarity assumption in the Future Work Chapter.
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1.5 Thesis Overview

This thesis is organized into two parts - Human-Centered Planning Algorithms and Stud-
ies of Human Helpers. We first contribute our human-centered conditional (Chapter 2),
deliberative (Chapter 3) and replanning (Chapter 4) algorithms and the models of human
state they use to determine whether, how, and who to ask for help (summarized in Ta-
ble 1.1). These algorithms assume that we have precomputed states that can be used in
planning and execution. In the second half of the thesis, we contribute studies of humans
that demonstrate the need for modeling each of the human state attributes used in the algo-
rithms (summarized in Table 1.2) as well as novel algorithms to learn these attributes from
humans in the environments. In particular, the thesis contributes validation of the models
used in the human-centered algorithms through user studies of what models to develop
(Chapter 5), how to ask for help to improve response accuracy (Chapter 6), and how to
learn these models (Chapter 7).

Human-Centered Algorithms: We divide our contributed algorithms along two dimen-
sions - the type of help that the device must ask for and the type of human that the device
has access to request help from (Table 1.1. When a device with reasoning uncertainty or
actuation limitations asks for help from its user (i.e., those who are nearby or benefitting
from the device’s task), it uses a human-centered conditional plan that weighs the cost and
incentive for the user to answer to determine whether to ask (Chapter 2). If the user does
not see incentive to answer or if there is a high cost to answering, they may abandon the
device rather than helping it.

When there is no human nearby, we contribute algorithms for a device to instead ask
for help from environment occupants (i.e., those who are in the environment but do not
directly benefit from the current task). Our human-centered algorithms to request help
from occupants weigh the costs of asking each person to determine who to request help
from. If the device has reasoning uncertainty, the our human-centered deliberative planner
plans actions that minimize the uncertainty while also maximizing the likelihood that there
will be a person nearby who is willing to help (Chapter 3). For actuation limitations, our
algorithm must determine who to ask and where to navigate (Chapter 4).

Studies of Human Helpers: After contributing our human-centered algorithms that de-
pend on models of human state, we then contribute several demonstrations, through studies
of human helpers, that our used state attributes do indeed affect likelihood, cost, and accu-
racy of humans responding (Table 1.2). Additionally, these studies validate our hypotheses
that models of humans are important in making devices that require help deployable. In
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Type of State Reasoning Action Reasoning Actuation
Human Uncertainty Uncertainty Limitation
Device User Conditional Plan: Conditional Plan: Conditional Plan:

Ask when uncertain Ask when benefit Ask at help
of asking is location and send
greater than cost timeout email

Human State Model: Human State Model: Human State Model:
- Help Type - Accuracy - Interruption
- Availability - Cost of Help - Cost of Help
- Cost of Help - Incentive to Answer - Incentive to Answer

Environment Deliberative Planning Algorithm: Replanning Algorithm:
Occupant Determine where to navigate and who to ask Determine who to ask

Human State Model: Human State Model:
- Availability - Help Type
- Accuracy - Availability
- Cost of Help - Cost of Help

- Incentive to Answer
- Interruptibility
- Expertise
- Distance to Help Location
- Frequency of Questions
- Recency of Last Question

Table 1.1: This thesis contributes conditional, deliberative, and replanning algorithms to
determine whether, how, and who to ask for help with reasoning uncertainty and actuation
limitations.

order to understand which state attributes affect both user and environment occupant will-
ingness to help devices, we performed surveys and in-situ experiments (Chapter 5). In or-
der to understand how devices can affect the accuracy of helper responses, we performed a
series of in-lab studies (Chapter 6). Last, we contribute algorithms to learn helper models
both with surveys and online while the device is performing tasks (Chapter 7).

Contributions: This thesis makes the following contributions:

• A symbiotic approach for devices to ask humans for help to overcome limitations
during tasks;

• A human-centered planning approach in which we study how humans interact with

10



Human State Attribute Study Chapter
Help Type Chapter 5

Interruptibility Chapter 5
Distance to Help Location Chapter 5
Frequency of Questions Chapter 5

Recency of Last Question Chapter 5
Incentive to Answer Chapter 5

Availability Chapter 5 and 7
Cost of Help Chapter 5 and 7

Accuracy/Expertise Chapter 6 and 7

Table 1.2: This thesis validates each of the human attributes used in our human-centered
algorithms through user studies. These attributes are used in combination in our human-
centered planning algorithms.

devices, and then use those models of humans in planning algorithms;

• A classification of two types of help (reasoning uncertainty and actuation limita-
tions) that devices need and two types of humans (device users and environment
occupants) that devices can request help from;

• Human-centered planning algorithms (conditional, deliberative, and replanning) that
model human helpers to plan device actions;

• An increased understanding of our two types of human helpers and how their human
state affects their willingness to respond to device questions through multiple survey,
in-lab, and in situ studies;

• Learning algorithms for capturing personalized models of human states during de-
ployment for use in the planning algorithms;

• Use of human-centered planning algorithms to determine whether, how, and who to
ask for help;

• Validation of the human-centered planning algorithms in simulation and deployment
in the environment against both naı̈ve models of humans that assume availability and
accuracy as well as state-of-the-art algorithms that do not model humans;
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Chapter 2

Conditional Planning with Device Users

We define three types of people that intelligent devices interact with while completing
their tasks - device users, environment occupants, and bystanders. Device users receive
direct benefit from the tasks that the devices are performing. These people interact with
devices to request tasks, are near the devices as they are performing the tasks, and are the
ones who determine and confirm whether the task has been completed. While users may
also help devices complete their tasks, devices like robots may act autonomously without
a user and may still need help. In these cases, environment occupants who are located in
offices or spatially-situated in specific locations can help (e.g., CoBot requires actuation
help in the kitchen and at the elevator). Finally, there are other bystanders who interact
with devices in the environment. They may be interested in what the device is doing or
testing it to understand its capabilities.

In this chapter, we contribute conditional plans for devices to use to perform tasks that
include interactions with each of these types of humans. First, we contribute conditional
plans for completing each of CoBot’s user-requested tasks in our multi-floor building. The
tasks each require device user interaction to confirm their completion in addition to other
possible interactions such as speaking messages and transporting objects from one location
to another. The navigational plans for each task also include interaction with device users,
environment occupants, or bystanders to use the elevator. These interactions must occur in
order for tasks to be completed effectively. Finally, they also include possible interactions
with bystanders along the way who may be interested in CoBot.

Second, we contribute a human-centered conditional planner for CoBot that requests
help to reduce uncertainty and actuation limitations while navigating. This planner as-
sumes that there is a device user being escorted by the robot to meetings in the building.
We model the user as a helper in a symbiotic relationship with incentive to help in order
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for the task to be completed and to receive other benefits from the robot such as learning
about the building and receiving coffee. However, they also have a cost of help associated
with the number of questions asked. The planner chooses the best plan that minimizes
costs and maximizes incentives to help while asking when the localization uncertainty
exceeds a threshold.

Finally, we contribute a human-centered conditional planner for a smart phone to learn
to reduce uncertainty about when it should ring and when it should be on silent mode. By
trading off the personalized costs of help (interruption) and incentives to help (misclassi-
fication of volume later) of the phone’s user, the algorithm determines when to ask for the
user’s volume preferences. We demonstrate that when users have a high cost of help, the
algorithm correctly chooses to ask infrequently at the cost of higher volume error. When
users have a low cost of help, the algorithm learns a very accurate volume classifier with
few interruptions to the user. We show that our human-centered algorithm is more usable
than other algorithms that do not model the user tradeoffs, in addition to building accurate
volume classifiers.

2.1 Conditional Planning for Robot Tasks

CoBot performs several autonomous tasks for users in our building environment including:

• Go To Room - navigate to a designated room;

• Transport Object - navigate to pick up an object at a room and transport it to another
room;

• Escort Person - navigate from the elevator to a room with a person;

• Visitor Companion - escort a person to each meeting on a schedule;

• Telepresence - navigate to locations that a remote user designates (Coltin et al.
(2011));

In order to complete these tasks, CoBot must localize and navigate autonomously (Biswas
and Veloso (2010); Biswas, Coltin, and Veloso (2011)) and interact with users, environ-
ment occupants, and bystanders in the environment. Figure 2.1 shows the interaction of
picking up a folder from a room with the user.

We contribute conditional planners for CoBot that include both autonomous actions
and interactions to model the control flow for each task. A flow diagram bests represent
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Figure 2.1: CoBot stops at a room to pick up a folder before navigating autonomously to
drop it off (Biswas and Veloso (2010); Biswas, Coltin, and Veloso (2011)).

these conditional plans. Figure 2.2 shows the plan for escorting a visitor (device user) from
one room to another. It requires one question to confirm the visitor’s identity at the pickup
location and other to signify that the visitor has reached their destination. The transport
object task is similar to the escort task except that rather than confirming visitor identity,
it asks a person to place an object in its basket (pictured in Figure 2.1).

Note that as the plan executes, it is reevaluated to determine if localization uncertainty
questions are required. These localization questions are of the form “Can you point to
where we are on this map?” and the pixel values from the click are translated into (x,y)
coordinates for the robot to use to relocalize. This localization help is described further in
Chapter 6 - localization study experiments with humans.

Figure 2.3 is a more specific conditional plan for executing the “navigate to destina-
tion” action between different floors of the building (found in the escort plan). Because
CoBot does not have manipulators to press elevator buttons or vision algorithms to detect
which the robot is on, it must ask for help to overcome these actuation limitations. When
CoBot arrives at the elevator, it first asks to press the appropriate up/down button (See
Figure 2.4). Then, it asks which elevator is open and going in that direction and navigates
into that elevator. Finally, in the elevator, it asks to identify when it is on the correct floor
and exits at the correct time. If it finds that it exited on the incorrect floor, it replans to
navigate back to the elevator and try again.
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Figure 2.2: In order to escort a visitor to a destination, CoBot confirms their identity, then
navigates with them to the destination, and finally confirms that it has completed its task.
It asks for localization help if it is uncertain of its location.

Importantly, without including these help interactions in the task plan, CoBot would
not be able to complete any task that requires elevator use. In the escort task or others
with device users, the user helps the robot use the elevator because he/she also needs to
use it and therefore there is low cost of helping. In the escort task, the visitor would
not be able to be escorted by the robot if they do not help CoBot use the elevator. In
other autonomous tasks where the robot is traveling alone, it needs to seek help from
environment occupants to overcome actuation limitations. The conditional plan for using
the elevator waits for a response at the elevator. We performed a study of elevator use and
found that one person uses the elevator every 5-10 minutes depending on the floor of the
building. Spending 10 minutes just waiting at the elevator will delay task performance and
therefore usability for task requestors and users. Chapter 4 describes a deployment of the
conditional plan to further illustrate this finding and then contributes a novel replanning
algorithm to proactively navigate to environment occupants in offices for help to reduce
the waiting time at the elevator.

Finally, as CoBot is navigating, it may encounter bystanders along the way. It knows
that there are bystanders around when its path is blocked. At these times, CoBot re-
peats “Please excuse me” to the bystander to indicate that it needs to continue forward to
complete its task. CoBot also has a button on its interface for bystanders to press while
blocking the path to hear that CoBot “performs tasks on the 6th, 7th, 8th, and 9th floors.
You can go online to schedule tasks for me [it] to perform” (Figure 2.5) We prefer that
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Figure 2.3: CoBot does not have manipulators or sensors to use the elevator but can nav-
igate autonomously. It executes a series of ask actions in between navigation motion
commands.

(a) Pressing the down button (b) Indicating the
open elevator

(c) Holding the door open

Figure 2.4: Humans help CoBot use the elevator.
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Figure 2.5: Bystanders can press the large button in the user interface on CoBot to learn
more about its capabilities.

CoBot continue navigating to complete its task rather than stop for the bystanders in order
to maintain high task performance and usability for task users.

To summarize, CoBot’s conditional plans assume that there are people in the environ-
ment willing to help (device users, environment occupants, or bystanders). These helpers
are in symbiotic relationships with their devices with incentives to help complete tasks
and costs of help when they are interrupted. These plans assume that there is always an
incentive for someone to help because otherwise CoBot could not be deployed to com-
plete tasks for anyone. Additionally, they assume there is a static cost of asking a question
and minimize the number of questions asked. For reasoning uncertainty help, CoBot only
asks for localization help when it is very uncertain and it always attempts to perform au-
tonomously before requesting help. For actuation help, CoBot must ask for help every
time it needs to use the elevator.

2.2 Reducing Localization Uncertainty with Robot Users

In the previous section, we created static conditional plans to complete tasks and assumed
that helpers always had incentive to help because otherwise no task could be completed.
However, the Visitor-Companion (Escort) Task is extendable to provide more services to
visitors as it escorts them to meetings throughout the day. In this section, we formally de-
fine this extended Visitor-Companion Task with states (Table 2.1) and actions (Table 2.2)
from the robot’s perspective. This formalism is written in the Planning Domain Definition
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Language (PDDL) (Ghallab et al. (1998)) with extensions1. Because the robot does not
know the actions the human can perform, we do not model them in the task. We then
contribute our human-centered conditional planning algorithm that models all of the in-
centives and costs for the visitor to help based on all previous actions in the day in order
to determine which actions to perform. The algorithm aims to act as autonomously as
possible to reduce the costs of help while satisfying the visitor’s and task goals.

2.2.1 Visitor-Companion Task Definition

In this Visitor-Companion Task, we allow the robot to provide information about particu-
lar locations during navigation, provide coffee during meetings, and answer other visitor
requests. In order to perform the Visitor-Companion Task, CoBot must maintain state
about where it is currently located, which meetings have already been attended, and what
other tasks it has already performed such as informing the visitor about interesting loca-
tions along the way to meetings. Using the state information as preconditions or predicate
true/false conditions that must be met in order for the robot to be able to perform the action,
CoBot can determine which actions to take to satisfy task goal predicates.

States and Actions: While the robot maintains state mostly about itself and the actions
it has performed, it also maintains some state about the visitor in order to evaluate the
visitor’s costs and benefits when deciding which action to take (Table 2.1). The robot
chooses actions that maximize the benefits and minimize the costs to the visitor (Table 2.2).

We divide the actions into categories - asynchronous (in italics: Execute, Inform, Ask,
Request) and synchronous (Respond, Process-Response, Process-Request, Notify). While
the asynchronous actions can happen whenever the preconditions are met, the synchronous
actions require a communication action (Table 2.3) be performed before they can be in-
voked and affect the state of the visitor. Both humans and the robot can perform both
asynchronous and synchronous actions, asking/requesting and offering help to benefit each
other.

Asynchronously, the robot can inform visitor about different locations such as labs
that might be of particular interest. These interesting locations are initialized at the start
of a visitor’s day with the still-interesting state. When the robot is at a location
that it knows about but hasn’t already talked about, it can inform the visitor with action

1The extension that we propose is the “prob-or” operator in listing the effect of an action. When an
action :action a1 has effect :effect (prob-or e1 e2), it indicates that the effect of the action
is either e1 or e2 with probabilities unknown a-priori. The action a1 has to internally decide on the effect.
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Agent State Predicate Description
Robot (robot-at-loc ?loc) the robot’s current location is ?loc
Robot (known-loc ?loc) the robot knows about location ?loc
Robot (still-interesting ?type ?info) the visitor does not know about info

(type = who, where, when, location)
Robot (schedule ?loc1 ?loc2) the visitor’s schedule includes the

transition from ?loc1 to ?loc2
Robot (nav-target ?loc) the robot’s current navigation target location
Robot (success ?action) the robot successfully completed ?action

(navigate, open-door, put-coffee)
Robot (failed ?action ?why) failed ?action for reason ?why (whereAmI,

openDoors, or getCoffee)
Robot (next-to-robot ?human) a human is next to the robot
Robot (asked ?human ?ques) asked a human for ?ques (?ques =

whereAmI, openDoors, or getCoffee)
Robot (h-responded ?human ?ques ?ans) human responded to question with answer
Robot (visitor-requested-info ?type) visitor requested info about the next meeting

or location
Robot (visitor-requested-act ?act) visitor requested the coffee or an email

(act = reqCoffee or emailLate)
Robot (notify-completed ?act) robot notified the visitor that it completed

the request
Visitor (visited-loc ?loc) the visitor’s visited ?loc for a meeting
Visitor (late ?loc) the visitor was late to meeting at ?loc
Visitor (visitor-informed ?type ?info) the visitor was informed about info
Visitor (req-satisfied ?act) the visitor’s request was satisfied

Table 2.1: The Visitor-Companion robot’s state predicates and the predicates it holds for
the visitor’s state. Predicates are true/false variables.
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Action Type Actor Action(Parameters) Description
(→ Actee)

Execute robot nextMeeting(?loc) robot gives next meeting ?loc
navigate(?loc) robot moves to ?loc
open-door robot opens the door in front of it
push-button robot picks up coffee (to carry)

Inform robot inform-loc(?loc) robot informs visitor about ?loc
→ visitor inform-meet(?type ?info) robot informs visitor about meeting

Ask robot ask(?ques, ?action) robot asks human ?ques
→ human (e.g., whereAmI, push-button)

Respond human respond(?ques) visitor responds to the robot
→ robot

Process- robot process-loc(?ans) robot processes visitor’s loc answer
Response process-act(?ques ?ans) robot processes visitor’s action

(e.g., button-press)
Request visitor request-info(?type) visitor requests info

→ robot request-act(?act) visitor requests a robot action
Process- robot proc-req-info(?type) processes request about meeting
Request proc-req-act(?act) robot processes request for action
Notify robot notify-IAmThere(?loc) ?loc arrival notification

→ visitor notify-done(?act) task completion notification

Table 2.2: Visitor-Companion robot and visitor’s actions. Action types in italics are ac-
tions the agents perform asynchronously. The visitor both requests help and responds to
the robot’s questions (in bold).

Comm. Action Effect Description
Type
Speak ask asked human is asked for help

proc-req-info visitor-informed visitor is informed of meeting info.
inform-loc visitor-informed visitor is informed of the location
inform-meet visitor-informed visitor is informed of meeting information
notify-IAmThere visited-loc visitor’s location is updated
notify-done(?act) req-satisfied visitor’s request has been satisfied

Email proc-req-act(?act) req-satisfied meeting host emailed about lateness

Table 2.3: The Visitor-Companion robot communicates with humans in several ways.
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Action Parameters Preconditions Effects
inform-loc ?loc - location (known-loc ?loc), (visitor-informed ?loc),

(still-interesting ?loc), (not (still-interesting ?loc))
(robot-at-loc ?loc)

navigate ?loc - location (nav-target ?loc) (robot-at-loc ?loc) or
(failed nav whereAmI)

ask ?ques - question, (failed ?action ?ques) (asked ?ques)
?action - action

notify-IAmThere ?loc - location (robot-at-loc ?loc) (visited-loc ?loc)

Table 2.4: CoBot models actions with preconditions and effects to determine its action.

inform-loc (See Table 2.4 for preconditions and effects).

The robot can navigate past these different locations around the building using the
nav-target state to maintain knowledge of where it is going. This autonomous action as
well as push-button include an action completion uncertainty or probability of failure
based on the robot’s limitations (discussed later), which can result in either a success or
failure.

Based on the failure (e.g., localization error from navigate), the robot can ask a
human nearby for help. When the visitor responds to a location question, the robot pro-
cesses the response and updates its location information to continue moving. Otherwise,
the robot waits for the action to be taken, updates its state, and continues with its plan.
Finally, when the robot arrives at meeting location with the visitor, it notifies him that he
has arrived with the notify-IAmThere action.

Uncertainty: Unlike socially embedded learning (Asoh et al. (1997)) or other algo-
rithms in which the robot’s task is only to ask questions while learning, we expect the
agents to perform tasks autonomously when possible. The robot should ask for help only
when it lacks the ability to perform some action. In order to model these limitations, some
actions have both success and failure effects that happen according to uncertainty - the
probability of failure p. If there is no chance of completing an action, p = 1. For example,
if the robot does not have arms, there is no change it could perform push-button itself.
These actions will always result in failure and the robot will always request help from a hu-
man near the coffee maker with action (ask ’’Please press the up button.’’

push-button). When p < 1, the robot may not complete an action successfully due to
the reasoning uncertainty in the robot models. For example, in the navigate action, the
robot may be uncertain of its location which contributes its successful completion.

22



Given these states and actions, our human-centered conditional planning algorithm will
determine which actions to take.

2.2.2 Human-Centered Algorithm

One could use any planning algorithm to search for all of the sequences of actions that
satisfy the Visitor-Companion task goals of taking visitors to their meetings. The plan
is conditional because it depends on the precondition predicates being true in order to
perform the next action in the sequence. If they are not true, then some other sequence of
actions is performed.

There may be many conditional plans that equally satisfy the constraints of the plan,
but not all of them are human-centered. In order to determine the best human-centered
plan, we define costs and benefits that a robot may have on their state. Formally, we define
a cost as a pair 〈s, c〉 where s =(and (pred-i)) the combination of state predicates and c
is the cost of s being satisfied. The cost is incurred each time the state is satisfied. For
example, the visitor may not want to be late to any meeting. In this case, we model this
with the cost that the visitor has not requested the robot to email a meeting host about his
lateness:

〈(and (visitor-requested-act emailLate)

(late loc)),clate〉

The visitor expects a drink shortly after requesting it, so there is a cost of not receiving
it:

〈(and (visitor-requested-act drink)

(not (req-satisfied drink))), cdrink〉

Additionally, the visitor might assign a cost each time he is asked and responds to
question:

〈(and (h-responded visitor ?ques)

(asked visitor ?ques)), cask〉

If these state predicates are ever true, the robot incur a cost of c. Using these costs,
the robot can choose the best plan, the best action, or the best time to take an action that
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minimizes the cost to the visitor. While the robot may not always be able to avoid asking
for help, for example, it can ask raise the threshold of how uncertain it is to avoid asking
questions if it may be able to perform the action itself. Additionally, it can perform more
benefits for the visitor to incentivize the visitor to help and decrease the impact of the cost
on the task. The plan with the lowest cost is the one that is executed for the visitor.

In summary, we have enumerated states and actions for a Visitor-Companion robot to
create a symbiotic relationship with a human. The robot performs tasks for the visitor,
helping him move between his meetings and satisfying other requests like informing him
about locations in the building. In cases when the robot has limitations, the visitor helps
the robot with the expectation that the robot completes the plan to his satisfaction with a
minimal cost. In Chapter 5, we present a study that demonstrates the need for modeling
both costs and benefits of visitors to determine whether to ask them for help.

2.3 Reducing Volume Uncertainty for Phone Users

In order to study the deployability of human-centered conditional planning algorithms that
model the costs and benefits of device users to determine whether to ask them for help,
we focused on smart phone applications. Unlike the Visitor Companion task in which the
device user is assigned a robot for a few hours, many people carry smart phones around
with them all the time. This platform gives us the opportunity to study the effects of
human-centered planning algorithms over weeks rather than hours.

We focus on the particular problem of learning smart phone users’ personalized prefer-
ences for when their phone rings and buzzes and beeps and when it should be silent. While
users can characterize their own preferences by changing phone modes (e.g., ring, vibrate,
silent) to avoid unwanted phone calls (Toninelli et al. (2008)), they often forget to set and
reset their phone modes, resulting in unwanted interruptions or potentially missing impor-
tant calls, or SMS or calendar notifications due to silent notifications (Milewski and Smith
(2000)). With a model of users’ preferences for interruption, a phone could automatically
set its volume to avoid inappropriate interruptions and important missed calls.

Phones today offer a variety of sensors such as accelerometers, microphones, and GPS
that can be leveraged to classify a user’s context and interruptibility preferences. Studies
have shown that human interruption in offices can be captured accurately by simple sensors
such as these (Horvitz and Apacible (2003); Fogarty et al. (2005)), and other studies have
found that users decide whether to answer their phones based on their activity, location,
and who is calling all of which are becoming more observable using current phone sensors
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(Ho and Intille (2005); Khalil and Connelly (2005); Krishnan (2008)).

We contribute an autonomous phone volume changer which determines whether to
ring or be on silent using a logistic regression (LR) classifier. We use LR because of
its computational speed and efficiency on small platforms such as phones. The LR model
distinguishes between two “classes” of interruption preferences - those in which the phone
should audibly ring (LOUD = 1) and those in which it should not (SILENT = 0) - using
the features F defined in Table ??. In particular, for a new situation with features F , LR
calculates the probability of those features being labeled as LOUD as:

p(LOUD|F ) =
1

1 + exp(w0 +
∑
wiFi)

(2.1)

If the probability p(LOUD|F ) is greater than 0.5, then the prediction is LOUD. Otherwise,
the prediction is SILENT.

The classifier defines the weights wi by minimizing differences (errors) between the
labels yj of personalized volume preferences and the classifier’s predicted label Y j for
each training example j. However, while it is possible for machine learning researchers
to collect data and build classifiers that apply to all users in some applications, it is infea-
sible for creating personalized preference models such as those for interruption because
different people have different preferences. Additionally, because users often forget to
change their phone volumes, their current volume settings are not an accurate indication
of their actual volume preferences and the labels cannot be captured automatically as in
(Faulring et al. (2010)) to learn email classifiers. Horvitz et. al’s BayesPhone learned
models of phone users’ interruption preferences offline in a survey but asked for clarifi-
cation of users’ interruptibility online when determining phone volume during execution
Horvitz et al. (2005). While BayesPhone was successful at modeling interruption costs
and changing phone volume, Kern and Schiele argue that if the mobile device could use
experience sampling (Csikszentmihalyi and Larson (1987); Shadbolt and Burton (1989))
to elicit preferences while the user is using the device, the resulting classifiers would be
more accurate (Kern and Schiele (2006)).

In this section, we contribute our human-centered conditional planning algorithm to
elicit volume preferences through experience sampling from phone users in a usable way.
We use the phone volume preferences to train our LR classifier and additionally test the
accuracy of final learned classifier.
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2.3.1 Human-Centered Conditional Planning Algorithm

Experience sampling was originally introduced to intentionally interrupt study participants
in order to have them make notes about their current situations (Csikszentmihalyi and
Larson (1987)). These interruptions could happen at regular or random intervals with the
expectation that participants would be more accurate in describing their current situations
in the moment rather than later during interviews. Rather than depend on users to define
their preferences before our study or recall them each evening, we use this approach to
collect user preferences for training volume classifiers.

We want to use experience sampling to build and train personalized preference clas-
sifiers for mobile phone users without affecting the usability of our application. Unlike
traditional experience sampling techniques in which the participant should be interrupted,
we are interested in minimizing this interruption so that users are more likely to answer the
questions over time (Scollon, Kim-Prieto, and Diener (2003)). Several techniques includ-
ing Random Sampling and Uncertainty Sampling have been proposed for when to collect
accurate data from users. However while some focused on minimizing the questions, they
do not guarantee that questions minimize interruption.

Random Sampling: In random sampling, the decision to elicit the user’s preferences
is made irrespective of the classifier that is being built or the user who is responding (e.g.,
McFarlane (1999)). It is likely that a preference may be asked for the same or very sim-
ilar situations multiple times, making some of the elicitations extraneous. However, this
sampler ensures that the there is a broad set of data to train a classifier with.

In our implementation of this technique, we would like to collect preferences approxi-
mately 1/3 of the time when the phone rings. To decide when to ask, the sampler uses the
conditional plan that generates a random number p between 0 and 1 and asks if p < 0.3.

Uncertainty-Based Sampling: Unlike random sampling, uncertainty sampling builds
the preference classifier using the data collected so far and then decides whether to ask for
a new preference based on the classifier prediction (Cohn, Atlas, and Ladner (1994); Lewis
and Catlett (1994)). The goal of uncertainty-based sampling is to reduce the number of
labeled preferences by only asking in situations that have not previously been encountered.
If a new situation is encountered, it may benefit the classifier to get the user’s preferences
in order to classify it correctly in the future. However, if a similar situation was already
encountered, the user should not have to provide their preferences again.

Specifically, classifiers such as LR, output a real value p between 0 and 1 rather than
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the binary 0/1 classification with the rule that if p < threshold of 0.5, then predict 0,
otherwise predict 1. We use p(LOUD|F ), defined above, as our uncertainty measure p,
where LOUD is defined as 1. The closer to 0.5, the less certain the classifier is of the
user’s actual preference and the less likely it is that there is a previously labeled situation
that is similar to the current one. In our implementation of this technique, the sampler
uses the conditional plan that asks for the user’s volume preference if the current classifier
outputs 0.3 ≤ p ≤ 0.7.

Human-Centered Sampling Kapoor and Horvitz proposed a decision-theoretic sam-
pling approach that trades off an interruption cost of helping and a future cost of misclas-
sification (an incentive to help now) to limit the number of questions (Kapoor and Horvitz
(2008)). When the uncertainty is high, this technique trades off a predefined cost of asking
A (a user’s cost of help) with the cost of misclassification M (user’s incentive to help)
with the aim of minimizing the cost of helping as well as classification error. If the cost
of asking is higher than the cost of misclassification, the assumption is that the user is
busy. If the cost of misclassification is higher, the assumption is that he is more willing
to answer. Concretely, the conditional plan for the decision-theoretic sampler asks for a
user’s volume preference if M > A.

However, their costs are not personalized for each person. Some users may have very
high cost of misclassification and therefore may be much more willing to answer questions
to train an accurate classifier or vice versa. By more accurately estimating these costs
and incentives for each user, we argue that it is possible to create a more personalized
asking mechanism that is more usable for each user. We contribute our human-centered
conditional planner that uses the decision-theoretic sampling technique with personalized
costs and incentives that are learned for each person. We will compare the usability and
accuracy of our augmented human-centered experience sampling approach against the
other experience sampling techniques.

2.3.2 Experiment

In order to understand the impact of our human-centered conditional planning algorithm
on the usability of experience sampling and the accuracy of the resulting phone volume
classifier, we designed a four-week experiment. Participants in the study were given our
phone application, which learned their volume preferences and actually changed the vol-
ume of the phone based on learned classifiers. The application used one of three experience
sampling algorithms - random, uncertainty, or decision-theoretic sampling - which asked
them about their interruptibility preferences for each of the notification types, and used
those preferences to train the volume classifiers.
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Study Design and Procedure In order to capture the personalized cost (interruption)
and incentive (classifier misclassification) to help train volume classifiers, we first dis-
tributed surveys to twenty participants (survey described further in Chapter 5 and pre-
sented in Appendix) who had Android version 2.0 or higher phones. We learned 3 cost
and incentive models for each participant - one for call ring volume, one for SMS text
message volume, and one for calendar notification volume. Upon completion of the sur-
veys, we used a linear regression model to learn personalized cost and incentive models
for each participant (details described in Chapter 7). These models were saved in a text
file on the participants’ phones.

With the personalized models loaded on their phone with the applications, participants
were told about the features that the application monitored and that it logged the features
of each incoming notification, the classifier’s prediction, and labels into a text file that
we would collect once the study was complete. In addition to answering the applica-
tion’s questions, they were asked to fill out nightly online surveys on their phone about
the accuracy of the three classifiers each day as well as the application’s usability. In to-
tal, they were asked to train three classifiers for their application, providing their volume
preferences when asked, for two weeks and then test the resulting models for another two
weeks, each night filling out usability surveys.

Participants were randomly but evenly assigned to one of four conditions - including
two for human-centered sampling - which determined the conditional of when to ask for
their volume preferences. Because the two human-centered conditions were not signif-
icantly different, we do not discuss the details here. For the details on the differences
between the two human-centered conditions, see (Rosenthal, Dey, and Veloso (2011)).

• Random Sampling

• Uncertainty Sampling

• Human-Centered Sampling

Because user preferences varied so greatly across participants, we did not test Decision-
Theoretic (DT) sampling with a non-personalized cost of help model. Additionally, we do
not test Kapoor and Horvitz’s DT-dynamic condition (shown to be most accurate in highly
changing domains) because we assume that users’ preferences remain constant over the
four weeks of the study.

Participants were asked to keep the application running at all times during the 4 weeks
of the study and were notified via email if the application quit at any time. After two
weeks, the application automatically switched from training mode, which asked users for
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preferences but did not change the phone volume, to testing mode, which used the predic-
tion to turn on or off the volume of the phone for each type of notification. One participant
left the study after the training phase because of a family emergency that required her to
hear her phone all the time. After four weeks, researchers paid the participants $80, re-
moved the application and collected the logs that were written to the phone over the course
of the study.

Measures and Analysis: We measure four dependent variables: the number of ques-
tions asked, the accuracy of the classifier (collected each night over the 4 weeks) and the
annoyance of both the asking and misclassification (the incentive to help the phone). The
classifier accuracy is measured by comparing the classifier’s predictions and the user’s
actual preferences collected from nightly surveys. We compare the experience sampling
techniques using a repeated measures ANOVA of the accuracy, number and timeliness of
responses over time. We collected annoyance ratings in the nightly surveys, but because
participants did not have any other condition to compare to, they all rated their application
as usable. Instead, we asked participants during their final interviews to recall specific sit-
uations when their application interrupted them, when the volume was incorrect as well as
any other general impressions that they had about the application. We used these findings
to distinguish the different sampling techniques.

2.3.3 Results

Overall, we found our human-centered conditional plan had a significant effect on the
number of questions that participants were asked and the usability and accuracy of the ap-
plication. Participants in both human-centered conditions reported that they were overall
very satisfied with the timeliness of their questions and the resulting models were more
accurate for most of the participants compared to the participants in random and uncer-
tainty sampling conditions. We find that human-centered plan participants who predicted
they would have high interruption costs had lower accuracy because they were asked fewer
questions, but that we can use participants’ survey results to add more training examples
and increase the accuracy.

Number and Timeliness of Questions Participants received an average of 285 (min 32,
max 717) phone calls, SMS notifications, and calendar alarms during the 14-day training
period and received an average of 13 (s.d. 9.1), 41 (s.d. 59), and 3.2 (s.d. 5.8) questions
respectively over the same period of time. Participants received far more SMS messages
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than phone calls and calendar alarms and the number of questions about them reflects this
difference.

We compared the number of questions that participants received in each condition of
the study for each type of notification (phone call, SMS message, calendar alarm) using
a repeated measures test to understand whether the number of questions decreased over
time and differed between conditions. We found that, for phone calls, both day of train-
ing (F [13, 195] = 4.67, p < 0.01) and condition (F [3, 15] = 4.95, p = 0.01) played
a role in the number of questions participants received, but there was no interaction ef-
fect (F [39, 195] = 1.0, p > 0.05). For SMS messages, there was high variability in the
number of questions by participant mainly because some participants received many more
text messages than others so we found that there was only a significant effect of day of
training on the number of questions (F [13, 195] = 3.55, p < 0.01). There were no sig-
nificant effects on the calendar alarms as all participants received very few questions to
learn an accurate classifier. Next, we analyzed the specific effects that the training day and
experimental condition had on the number of questions.

A Tukey HSD test on the day of training for each of the phone and SMS messages
showed that participants received statistically significantly more questions on days 1 and
2 (mean phone 2.33, SMS 6.96) compared to each of days 5-14 (all phone means less than
1.0 questions per day, SMS means less than 2.5). After day 2, the number of questions
decreased for both phone and SMS notifications (2.6). The drop in notifications in the
random condition is not significant.

Interestingly, a Tukey HSD test on the experimental condition for phone calls showed
that one of the two Human-Centered Sampling conditions resulted in a statistically higher
number of questions (mean 1.6 questions per day) compared to Uncertainty sampling
(mean .47 questions) and the second Human-Centered Sampling condition (mean 0.65
questions). There was no statistical difference between Random sampling (mean 0.96)
and any other condition. Upon further investigation, we found that 4/5 participants in the
first Human-Centered condition reported low estimated costs of asking and were willing
to answer questions - each had an average cost of less than 4 out of 7 - compared to only
2/5 with low costs of asking in the other condition. When we add an extra independent
variable representing a binary high or low cost of asking in our analysis, we find (as ex-
pected) that participants in both Human-Centered conditions who indicated they had a low
cost of asking were asked statistically significantly more questions per day compared to
those with a high cost - on average 1.45 compared to 0.52 (F[1,6] = 6.51, p ¡ 0.05). This
cost accounts for the differences in these two conditions.

Despite the higher number of questions for 6 out of 10 of the Human-Centered con-
dition participants, all participants in this condition reported that they were very satisfied
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Figure 2.6: As the classifier uncertainty decreased through training, the number of ques-
tions decreased for Uncertainty and both Human-Centered conditions. However, it did
not decrease for Human-Centered participants who said they were willing to answer more
questions to increase accuracy.

with the timeliness of the experience sampling questions. Many participants in the random
and uncertainty sampling conditions said they “eventually got used to the questions” but
were annoyed by them before that. This indicates that human-centered models had the
effect we intended, in reducing the number of questions when users had high interrup-
tion costs and asking at more appropriate times for all participants including those who
received questions everyday.

Accuracy: Thirteen out of nineteen participants reported at the end of the study that
they were happy with the accuracy of their application. Three requested to see the ap-
plication in the Android app store to download again. The accuracies of the conditions
were 0.83 (s.d. 0.1) for random sampling, 0.85 (s.d. 0.1) for uncertainty, 0.88 (s.d. 0.22)
for the human-centered sampling. The difference in accuracy between conditions is not
statistically significant.

We combine the Human-Centered conditions to show the differences in accuracy be-
tween the 6 participants with low costs of asking compared to the 4 with high costs (Fig-
ure 2.7). Three of the four high cost participants in the Human-Centered conditions had
accuracy lower than 0.8 for phone calls and text messages (mean 0.66, s.d. 0.16) com-
pared to an average accuracy of 0.98 for participants with low cost of asking. Our human-
centered samplers with personalized cost and incentive models are capable of very high
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Figure 2.7: Participants with low costs of asking in Human-Centered conditions had the
highest accuracy classifiers for each notification type (mean 0.99, 0.97, 1.00 respectively).
Three participants in the Human-Centered conditions had high costs of asking because
they were not asked enough questions to create accurate classifiers.

accuracy when users are willing to answer questions. The experience samplers with high
costs could not identify enough situations to ask but maintain usability, and the lack of
labeled training data resulted in low accuracy for these classifiers.

In an effort to create more accurate classifiers for three participants with high costs
of asking, we examined the participants’ survey responses to understand if their predic-
tions were accurate. One participant’s schedule and corresponding volume preferences
changed after providing survey responses and the training period. Because the participant
did not anticipate these changes, a classifier trained on these survey responses could not
have been accurate. For the two other participants, however, the survey responses would
have increased the classifier accuracy. For example, one participant’s classifier turned the
volume off in the evenings when he was relaxing causing him to miss many phone calls
and text messages. The human-centered sampler never asked for his preferences in this
situation in order to preserve usability. If the classifier had used his single response to the
survey that he did want his phone to ring and beep - his accuracy would have increased
from 75% to over 92%. We conclude that we can use participants’ survey responses as
additional training data for inaccurate classifiers.

In summary, participants in human-centered conditions reported that they were very sat-
isfied with the timeliness of the questions they were asked compared to the participants
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who received random and uncertainty sampling. The resulting models were more accurate
for most of the participants in these conditions as well. However, some human-centered
sampling participants received fewer questions than others due to their high cost models
and this affected the accuracy of their classifiers. We find that in most cases we can use
participants’ survey responses to increase the accuracy of the classifiers when they have
high interruption costs.

2.4 Discussion

In our human-centered conditional planning algorithms, we contributed two techniques for
evaluating the cost and incentive for devices to take asking actions - on the robot by finding
a low cost plan and on the phone by finding times when the user has more benefit than
cost. On the phone in particular, we then deployed the algorithm for several weeks and
compared the accuracy and usability of three different experience sampling algorithms.
We found that our human-centered sampling with personalized cost and incentive to help
models was most accurate and asked questions at the most appropriate times. Next we
address some of the phone participants’ difficulties and suggestions that they made after
using our application for four weeks.

Modeling Costs and Incentives: Our main assumption in using experience sampling
was that participants have difficulty predicting their volume preferences in advance, but
that we could use prior predictions to approximate their costs and incentives for helping
in different situations. We found that overall, this approach was very successful in main-
taining very high accuracy while limiting the interruptions at inappropriate times. We
conclude that we were able to use the cost and incentive survey responses to build an
accurate model of the phone users. However, our surveys were very long and repetitive.
Chapter 7 details the approach to learning the phone models from the survey data as well
as a novel approach to learning from shorter surveys.

Asking for Training Examples: Thirteen participants out of twenty preferred answer-
ing questions over time and thought their in situ responses were more accurate than their
survey predictions. Three more thought a combination of surveys and experience sam-
pling would be most accurate. Participants who preferred the questions reported that they
liked that “it prompted me because it made me think of what I’m doing now” and that is
hard to do before using it. This finding mirrors other experience sampling findings that
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participants answer more accurately in the moment, but contradict other HCI arguments
that users should not be interrupted to train classifiers (Faulring et al. (2010)).

Participants who received few questions and therefore poorly trained classifiers said
that they would have been willing to answer more questions if they were told that their
costs affected the classifier accuracy. A visualization, for example, showing the costs of
interruption and the average resulting accuracy could allow participants to see the results
of their tradeoffs concretely before using the application in the future.

Volume Preferences Change over Time: We also found that participants’ volume pref-
erences changed throughout the study. Participants started new routines in the middle of
the study - either starting classes or their kids started new activities. Because they had
already started or even completed the training of their classifier, they could not reverse
or change the previous responses and their classification accuracy suffered. Participants
reported at the end of the study that they wanted to change or start the training over be-
cause they had such different preferences. As a result, we argue that applications should
continue asking and employ lifelong learning techniques such as forgetting (Kapoor and
Horvitz (2007)) or at least allow users to change their preferences to maintain accuracy as
they drift or schedules change over time. We discuss this more in future work.

Need for Intelligibility: In addition to helping users understand the questions they were
being asked (described further in Chapter 6), intelligibility of the learned volume classifier
itself became a big issue for our participants as their phone applications transitioned to
testing mode. Uncertain of what their classifiers had learned, many participants emailed
the authors asking how to find out what they should do if their classifiers learned the wrong
thing. We argue that offering a “what if” interface (in which participants could have set
different features to see the resulting prediction, Lim, Dey, and Avrahami (2009)) could
have reduced some of the uncertainty and lack of control that users felt during testing
mode in our study. Users could check that their classifiers make accurate predictions and
provide extra examples for those situations in which it does not.

Participants also requested an interface in which they could see and change the rules
that were generated for their classifier, especially if it was consistently wrong about a set
of situations. We found that the classifiers were most overconfident in the uncertainty
sampling condition and if users could adjust the classifiers during both training and testing
phases, it could have reduced the potential errors and helped identify opportunities for the
sampler to request more preference data. One student participant, for example, said that
his classifier learned to turn his ringer off too early in the evening and this could have been
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easily resolved if he could have set the time feature. However, it is often difficult to show
the rules of a classifier in a simplified way.

2.5 Chapter Summary

In this chapter, we have contributed human-centered conditional planning algorithms that
model costs and incentives of users to help devices overcome limitations. We first enu-
merated robot and human’s states and the robot’s actions to complete its task of escorting
users such as building visitors to a schedule of meetings during the day. We then con-
tribute a human-centered conditional plan to determine when to ask for help to overcome
limitations during the task. While the robot plans what actions to take, it also computes
the cost of help of the many possible satisfying plans to determine which is least costly for
the user.

Second, we contribute a human-centered conditional plan to determine when to ask
phone users for their volume preferences. We introduced a human-centered experience
sampling technique that asks users to predict their costs and incentives to help train their
volume classifier. We deployed our volume application to learn users’ preferences over 2
weeks and test the resulting classifier for 2 weeks, comparing the usability and accuracy of
our experience sampling technique against other traditional techniques. We demonstrated
that our human-centered conditional planning algorithm learns accurate classifiers while
interrupting users for their volume preferences few times.
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Chapter 3

Deliberative Planning with Environment
Occupants

We have contributed conditional planners to determine whether devices should ask from
help from device users as they execute with reasoning uncertainty and actuation limita-
tions. However, CoBot in particular will not always be near device users when it requires
help. Instead, we realize that as a robot navigates down an office corridor, it may pass
by people who could provide it additional observations to help it perform its tasks - en-
vironment occupants. This chapter contributes a probabilistic deliberative planner that
determines which navigational path to take, given that it has localization reasoning uncer-
tainty and environment occupants with varying characteristics that are located in different
areas of the building.

In particular, when CoBot must travel autonomously from one location to another, it
plans its path. CoBot may receive different observations about its location along different
paths and as a result may have localization uncertainty along each. In order to over-
come this uncertainty, as in the previous chapter, CoBot can either continue navigating
autonomously or can stop and ask for help from environment occupants. The help serves
as an observation and is an indication of the (x, y) location of the robot. Given the new
observation, CoBot becomes more certain of its location and continue navigating.

However, just as different paths may have different likelihoods of localization uncer-
tainty, we find that environment occupants in different locations may not always be avail-
able to help or provide accurate help (details in Chapters 5 and 6). They each may also
have a cost of helping in terms of the annoyance of interrupting the human and the time
it takes for them to respond. A robot that executes optimal actions without taking into ac-
count availability, accuracy, and cost of human help may fail to receive observations when
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it needs them and may fail to perform tasks and navigate successfully.

Towards the goal of planning when needing help, we introduce Human Observation
Provider POMDPs (HOP-POMDPs) as a framework for reasoning about the locations
and limitations of environment occupants as well as device limitations to determine the
optimal navigation policy. This framework hinges on the idea that humans are like sensors
and actuators that can be queried at a cost and with varying accuracy and availability.
By modeling humans as observation providers like sensors and actuators, we reduce the
complexity of modeling humans as full agents without assuming that they are oracles and
always available.

3.1 Humans as Observation Providers

We first formalize the state of environment occupants who may provide observations to
improve reasoning uncertainty (Rosenthal and Veloso (2011); Rosenthal, Veloso, and Dey
(2011)). In particular, we will model the probability of a robot receiving an observation
from an occupant in terms of the human’s availability, accuracy, location, and cost of help.

Location: We assume that environment occupants are located in a particular known lo-
cation in the environment (e.g., an office), and can only help the robot from that location.
When the robot is in state s it can only ask for help from the human hs in the same state.
While hs in an office location represents a single person, hs in a kitchen or public area
represents the type of people who may be at that location at any time.

Availability: Because occupants are not directly benefitting from the robot at the time
of execution, they may be busy with meetings or other activities and they may not be in
their office or public area at all. We define availability of an environment occupant as their
response rate. This availability represents both how often they provide an observation
how often they perform an action that results in a different observation (e.g., pressing
buttons for the elevator or putting objects on the robot to deliver). This probability actually
combines whether occupant is in the office and whether they were busy in their office or
not, because the robot only needs to know how often they respond. For the remainder of
this chapter, we assume that humans are helping with localization help, although this can
be easily extended by adding additional observations for action limitation help.

Concretely, as a result of taking the ask action aask from state s, the robot receives an
observation o from the occupant human hs. We define availability αs as the probability that
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a human provides a non-null observation o in a particular state s: 0 ≤ αs ≤ 1. Receiving
the observation onull is equivalent to receiving no observation or timing out waiting for
an answer from that occupant (i.e., the occupant was unavailable). If there is no occupant
ever available in particular state, then αs = 0.

When the occupant is available, it provides an observation o 6= onull:∑
o 6=onull

p(o|s, aask) = αs (3.1)

When the occupant is not available, we say it results in observation onull:

p(onull|s, aask) = 1− αs (3.2)

The probability of providing any observation
∑

o p(o|s, ask) = 1. However, the observa-
tion o that an available occupant provides may or may not be accurate.

Accuracy: When human occupant hs responds to the action aask with observation o 6=
onull, the probability that he correctly responds with an observation representing his state
s - os - depends on his accuracy ηs. If the occupant is not accurate, he responds with a
different state observation os′ . The more accurate the human hs, the more likely they are
to provide a true observation os.

Formally, we define the accuracy ηs of occupant hs as the probability of providing os
given that they provide any observation at all o 6= onull (their availability αs).

ηs =
p(os|s, aask)∑

o 6=onull
p(o|s, aask)

=
p(os|s, aask)

αs
(3.3)

Cost of Help: While robot researchers and supervisors are generally willing to answer an
unlimited number of questions, we find that environment occupants have a cost of helping.
The cost of help may be in terms of the time it takes to answer the question and the cost of
interruption, limiting the number of questions that should be asked Armstrong-Crews and
Veloso (2007).

Let λs denote the cost of help from hs. These costs vary for each person, but are
assumed to be known at planning time. The cost for querying the human if they answer
with a non-null observation o 6= onull is

R(s, aask, s, o) = −λs (3.4)
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In our experiments, our robot receives no reward if the person does not respond,
R(s, aask, s, onull) = 0, because we assume that they were not bothered by a request that
the do not answer. We will show that because there is no negative reward for not respond-
ing, the policy will favor asking less available but less costly occupants rather than asking
more available but more costly ones.

Next, we use these definitions to introduce Human Observation Provider POMDPs
(HOP-POMDPs) to plan device actions based on both reasoning uncertainty and the envi-
ronment occupant models. We then introduce algorithms to solve and find a policy for the
HOP-POMDP and to execute that policy.

3.2 HOP-POMDP:
Human as Observation Providers POMDP

Goal-directed action policies in uncertain environments have primarily been modeled us-
ing Partially Observable Markov Decision Processes (POMDPs) (Schmidt-Rohr et al.
(2008); Karami, Jeanpierre, and Mouaddib (2009); Armstrong-Crews and Veloso (2007)).
To briefly review, POMDPs (Kaelbling, Littman, and Cassandra (1998a)) are represented
as the tuple {S,A,O,Ω, T, R} of states S, actions A, observations O and the functions:

• Ω(o, s, a) : O×S ×A - observation function, likelihood of observation o in state s
after taking action a

• T (s, a, s′) : S × A × S - transition function, likelihood of transition from state s
with action a to new state s′

• R(s, a, s′, o) : S × A × S × O - reward function, reward received for transitioning
from s to s′ with action a

In particular, we are interested in modeling environment occupant requests for help
within the POMDP framework. Prior work on modeling humans has focused on Multi-
Agent POMDPs that combine the possible states of the robot R, human H , and the en-
vironment E to form a new POMDP representing the task for both the human and robot
(e.g., Schmidt-Rohr et al. (2008); Karami, Jeanpierre, and Mouaddib (2009)). These mod-
els represent the human as an agent in the robot’s environment that it can interact with.
However, multi-agent POMDPs have increased complexity in terms of their exponentially
larger state spaces which are less tractable to solve.
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Additionally, information provider “oracles” who are always available and accurate
have also been considered to reduce uncertainty in POMDPs. Oracular POMDPs (OPOMDPs)
plan for needing help to reduce uncertainty, modeling the oracle states separately from the
robot’s states (Armstrong-Crews and Veloso (2007)). OPOMDPs assume that there is an
always-available oracle that can be queried for observations from any of the robot’s states
at a constant cost of helping, λ. The robot executes the best non-asking for help policy
(the QMDP policy, Littman, Cassandra, and Kaelbling (1995)) unless the cost of helping
is lower than the cost of executing under uncertainty. However, we will show that taking
into account occupant’s accuracy, availability, and cost of help is important in determining
the optimal action policy.

3.2.1 HOP-POMDP Formalization

We define the Human as Observation Provider POMDP (HOP-POMDP) to model envi-
ronment occupants’ availability, accuracy, and cost of help within the robot’s own state,
increasing the tractability of solving optimal policies for them while still taking them into
account at planning time.

Let HOP-POMDP be {Λ,S, α, η,A,O,Ω, T, R}. where

• Λ - the cost of helping defined for each environment occupant

• α - the availability defined for each environment occupant

• η - the accuracy defined for each environment occupant

• A = A ∪ {aask} - autonomous actions and an ask action

• O = O∪{∀s, os}∪onull - autonomous observations, a human observation per state,
and a null observation

• T (s, aask, s) = 1 - self-transition for asking actions

Specifically, let hs be the human in state s with availability αs, accuracy ηs, and cost of
being asked λs. Our observation function Ω and reward function R reflect the occupants.
Remaining rewards, observations, and transitions are defined as in any POMDP. We rely
on traditional POMDP solvers for generating policies for HOP-POMDPs.

Unlike Multi-Agent POMDPs, our humans are not modeled in the states of the HOP-
POMDP, significantly reducing the number of states and increases the feasibility of solving
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the HOP-POMDP policies. Additionally, unlike OPOMDPs, the humans in the environ-
ment do have varying availability and cost of helping. Because our model includes these
limitations, unlike other approaches that query for help during execution, a robot using
our model can plan its policy to take these limitations into account and determine how to
navigate and who to ask for observations.

3.2.2 Assumptions: Humans vs. Noisy Sensors

While we rely on traditional POMDP solvers, the execution of HOP-POMDP policies
is non-standard. In particular, POMDP execution assumes that actions and observations
are probabilistic due to noisy sensors and actuators. However, when a robot arrives at
their location, the occupant is either available to answer or is not. While we define the
availability as the probability of providing observations, this is not completely true. When
humans are available, we assume they always provide observations. Querying the human
multiple times (as is common in POMDPs to overcome sensor noise) will not result in an
occupant becoming available.

When planning, the robot should take into account the likelihood of receiving a re-
sponse based on availability. However, when executing, the robot should sense the avail-
ability of the human while executing so that it does not query the occupant repeatedly wait-
ing for him to become available. We contribute an algorithm for avoiding multiple queries
during the execution of our HOP-POMDP model. In particular, we use the QMDP action
which chooses the best non-asking action (Kaelbling, Littman, and Cassandra (1998a))
(like OPOMDPs, Armstrong-Crews and Veloso (2007)) when the ask action fails.

3.2.3 HOP-POMDP Policies

There have been many proposed algorithms to solve the state-action policy for the POMDP
(Aberdeen (2003)), and HOP-POMDPs can be solved with any general POMDP policy
solver that allows for pure information gathering actions (actions with no state change,
only observations). Those that do not include pure information gathering actions such as
heuristic MDP solvers (e.g., QMDP ) will not include aask actions in their policies, because
they assume complete observability and thus that the robot should never need to ask for
help. Intuitively, we can roughly divide policy solutions into two categories:

1. A robot could assume that the best navigational path will contain available humans
(as OPOMDPs do), or
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2. A robot could also take actions to move towards areas where help is more likely and
less costly while navigating to the goal.

Optimal POMDP solvers can be used to solve our HOP-POMDP policies and will take
into account occupant availability, accuracy, and the cost of helping using our observation
function. However, it has been shown that solving POMDPs optimally is PSPACE-HARD
(Papadimitriou and Tsisiklis (1987); Madani (2000)).

A heuristic MDP solver for a HOP-POMDP such as JIV for OPOMDPs (Armstrong-
Crews and Veloso (2007)), does not take into account the human observation provider
availability and accuracy when planning paths. The JIV algorithm uses the QMDP policy
to determine how to act without asking, and during execution tests whether there is an
information gain in getting an observation to reduce localization uncertainty (if the value
of asking vh the occupant for the true state is greater than the value of acting autonomously
- QMDP value). The algorithm can be solved more tractably, finding the best path and
asking along the way when it has high localization uncertainty.

We are interested in understanding the availability and cost of help parameters that
would cause the two different solvers to create different policies, in order to understand
when it is possible to use the more tractable solution. We will compare adapted OPOMDP
JIV policies with optimal HOP-POMDP policies on a benchmark task and in our real-
world environment.

3.2.4 Policy Execution

Before comparing the policies, we first must address the difference that humans do not
answer probabilistically as typical sensor observations do. When executing heuristic or
optimal HOP-POMDP policies, the robot must sense the availability of the humans. We
assume that this can be done at the time of the ask query. The occupant is available if
the observation os′ is provided and is not available if onull is given. In real world exper-
iments, the robot received onull if the human did not respond with os′ within 30 seconds
(discussed further in Chapter 5). If a human is not available, it is not feasible to execute
aask repeatedly until os is received because availability will not change immediately.

Therefore, when the policy specifies aask but onull is received on first query, policy
execution should specify a different action. In our implementation, our policy executes
the QMDP policy action that chooses the best non-asking action to avoid querying a hu-
man that is unavailable. This change in policy when humans are not available can also be
implemented in the JIV algorithm for OPOMDPs (Algorithm 1). We adapt the JIV algo-
rithm - EXECUTE JIV - to include occupant availability modeled in HOP-POMDPs and
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Algorithm 1 EXECUTE JIV(HOP-POMDP)
// Solve the underlying MDP

(QMDP , V MDP )← SOLVE MDP(S,A, T, R)
// Initialize the belief

b← b0
loop
// Find the best MDP action given

// the current belief

(vs, as)← BEST QMDP ACTION(b,A, V MDP )
// Determine the Information Value

// of asking a human

vh ← ρ(b, ask) + γ ∗ V JIV

// Ask a human if available and

// value of asking is greater than acting

if αs and vh > vs then
b← true state

else
b← τ(b, as)

end if
end loop

determine the cost of help using the belief reward function ρ.

ρ(b, aask) =
∑
s

−b(s)λs (3.5)

and tries only once to ask before executing another action

ask if αs and vh > vs (3.6)

While it is possible that the robot could leave state s after asking once and return to
the same state soon after, we believe this is valid compared to asking continually without
trying a different path as it is possible for the occupant to become available since the robot
left the state.

We next compare these algorithms in terms of their acting and querying policies and
their final reward during execution.
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3.3 Experiments

In order to understand the differences between the oracle OPOMDP and optimal HOP-
POMDP policies when tested on humans with limited availability and varying costs of
helping, we compare the EXECUTE JIV Algorithm to the execution of a policy solved
using the Witness algorithm (Kaelbling, Littman, and Cassandra (1998a)) implemented by
Cassandra and distributed online (Cassandra (2011)). For the purposes of our example,
the JIV heuristic OPOMDP solver plans identical policies compared to optimal OPOMDP
solvers.

We created a benchmark HOP-POMDP with two routes to two goal states and system-
atically varied the cost of helping each of two environment occupants, the cost of traveling
to each occupant, and their availabilities and executed the policies to understand how the
reward differs.

Our benchmark HOP-POMDP contains 5 states and 2 actions with two humans h2 and
h3 (in states 2 and 3) and two final states (4 and 5) (Figure 3.1).The robot starts at state 1
and chooses to take action B or C, where

T (1, B, 2) = 0.75 T (1, B, 3) = 0.25

T (1, C, 2) = 0.25 T (1, C, 3) = 0.75

The robot can then take action B or C from states 2 and 3 to states 4 or 5, where

T (2, B, 4) = 1.0 T (2, C, 5) = 1.0

T (3, B, 5) = 1.0 T (3, C, 4) = 1.0

However, the reward for state 4 is -10 and the reward for state 5 is +10. To be consistent
with previous OPOMDP work, our benchmark requires the robot to ask for help to receive
an observation and it receives no observations (onull) except when it does ask for help. The
robot has the opportunity to ask for help in states 2 and 3 to determine its state and ensure
it receives +10 by choosing the correct action (action C from state 2 and action B from
state 3).

In our experiments, we varied the availability of each human 0 ≤ α2, α3 ≤ 1 in
increments of 0.1, the cost of help λ2 and the cost of traveling to state 2 R(1, B, 2, ∗) each
with the values in Table 3.1 while keeping λ3 = 1 and R(1, C, 3, ∗) = 1. Note that we did
not also vary the occupant accuracy as the OPOMDP assumes that occupants are always
accurate. We do show how to learn both availability and accuracy for HOP-POMDPs in
Chapter 7.
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Figure 3.1: We varied the availability and cost of helping humans at states 2 and 3 along
with the cost of traveling from state 1 to each of 2 and 3.

Cost of help and cost of traveling to state 2
0.125 0.25 0.5 1.0 2.0 4.0 8.0

Table 3.1: We varied the cost of help h2 and the cost of traveling to state 2 with the same
values.

We, then, created a HOP-POMDP for our building based on observed availabilities
collected previously to show how the two algorithms perform in practice on larger state
spaces.

3.4 Experiment Results

3.4.1 Benchmark Policy

In total, we tested a simulated robot navigating using 5929 combinations of cost of travel-
ing, availability, and cost of helping to understand the differences between the OPOMDP
and optimal HOP-POMDP policies. We compare the policy in state 1 (taking action B or
C), whether the occupant is queried for an observation, and the average collected reward
over 1000 executions of each policy. As discussed in the previous section, we limited
the robot to only a single attempt to ask a question per execution - the robot could not
continually query the same human until they provided an observation.
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State 1 - Optimal Policy for α2 = 1.0 and α3 = 0.0
cost of cost of traveling to state 2
help fromh2 0.125 0.25 0.5 1.0 2.0 4.0 8.0
0.125 B B B C C C C
0.25 B B B C C C C
0.5 B B B C C C C
1.0 B B C C C C C
2.0 C C C C C C C
4.0 C C C C C C C
8.0 C C C C C C C

Table 3.2: Although α2 = 1.0 and α3 = 0.0, the optimal HOP-POMDP policy chooses
action C when the costs of helping for h2 and the cost of traveling to h2 are high.

Policy in State 1 As expected, the OPOMDP policy always chooses the shortest path,
taking action C in state 1 whenR(1, B, 2, ∗) < R(1, C, 3, ∗) irrespective of the availability
of the occupants. It expects to always be able to find an available occupant along this path.
The optimal HOP-POMDP policy is different from the OPOMDP policy in 39.67% of the
tests because it takes into account who is available and their costs of help.

Interestingly, as occupant h2 becomes more available, the optimal HOP-POMDP pol-
icy chooses action B less often than the OPOMDP policy because the cost of helping is
taken into account. For example, at the most extreme when α2 = 1.0 and α3 = 0.0, the
policy chooses B in only the cases when the cost of help and traveling to state 2 are less
than those to state 3 (Table 3.2). The HOP-POMDP policy tries to ask the less expensive
human even if they are less likely to be available because there is no cost for failing to ask
a human but the cost is high for asking someone who does not want to be asked. If there
was a cost of help when the occupant did not answer, the policy would likely change.

Deciding Whether to Ask: We find that the OPOMDP policy queries the occupant in
state 2 or 3 after executing the action B at all times except when the cost of help h2 is
8.0 and the cost of traveling to state 2 is ≤ the cost of traveling to state 3 (Table 3.3). In
other words, the OPOMDP policy does not ask when it has taken action B and the cost of
helping for occupant h2 is very high.

The optimal HOP-POMDP policy indicates that the robot should ask for help when
one or both of the occupants has availability α > 0.1. This, again, is because there is no
penalty for asking if a human does not respond. It is worth trying to ask for an observation
when there is any chance someone is available.
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States 2 and 3 - OPOMDP Policy for Asking ∀α2, α3

cost of cost of traveling to state 2
help for h2 0.125 0.25 0.5 1.0 2.0 4.0 8.0
0.125 Y Y Y Y Y Y Y
0.25 Y Y Y Y Y Y Y
0.5 Y Y Y Y Y Y Y
1.0 Y Y Y Y Y Y Y
2.0 Y Y Y Y Y Y Y
4.0 Y Y Y Y Y Y Y
8.0 N N N N Y Y Y

Table 3.3: Based on the cost of help and the cost of traveling to the human, the policy
determines that it should not ask (N) when the cost of helping is 8 and the cost of traveling
is ≤ 1.

Average Reward: Finally, we compare the average reward received using the OPOMDP
policy with the reward from the optimal HOP-POMDP policy. Over all costs of traveling
and help, and availabilities, the average reward for an optimal policy was 6.43 and the
reward for a OPOMDP policy was 6.01. We find that the rewards are the same when the
availability of the occupants are the same (α2 = α3) and when the cost of help for h2 is
greater than the cost of help h3. The optimal HOP-POMDP policy reward is almost double
the OPOMDP policy reward in the worst case.

For example, when h2 has availability α2 = 1.0 and h3 has availability α3 = 0.0, the
optimal HOP-POMDP policy reward is on average 8.55 (min 6.92, max 9.78) (Figure 3.2
light gray). The OPOMDP policy reward (average 5.73) is the same as the HOP-POMDP
reward when the cost of help for h2 is 2 or higher. However, the reward drops significantly
to an average of 3.54 for lower costs of helping for h2 (Figure 3.2 dark gray).

Next, we model our own building to demonstrate the HOP-POMDP policies in a prac-
tical, larger-scale state space.

3.4.2 Real-World Building

We model the indoor robot navigation problem as a HOP-POMDP in which the human ob-
servation providers are the occupants of the offices around the building. Their availability
differs depending on their schedules and their cost of asking depends on their willingness
to help the robot. We gathered this data through a study of the 78 offices over 9 test times
collected over three days (described further in Chapter 5). The availability of our office
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Figure 3.2: The optimal HOP-POMDP policy reward for α2 = 1.0, α3 = 0.0 is 8.54
(light gray). The OPOMDP policy reward is equal for high cost of help for h2 but drops
significantly to an average of 3.54 (dark gray).

occupants is shown in Figure 3.3(a) where darker gray represents higher availability.

We tested the top portion of the building from the hallway to the lab marked with an X,
with a graph consisting of 60 nodes including 37 offices (Figure 3.3(b)). Taking an action
between a current node s and a connected node s′ on the graph had the following transition
probabilities:

T (s, a, s) = 0.1 T (s, a, s′) = 0.9

We assigned a constant cost λ = −1 as the cost of asking each occupant and a reward
R(final, a) = 100.0 for reaching its laboratory space. We were able to find an optimal
solution using the Witness algorithm for this environment (unsurprising for the size of the
environment).

The OPOMDP policy takes the shortest path (dashed line) to the lab while the opti-
mal HOP-POMDP policy takes a longer route (solid line) that has more available building
occupants (Figure 3.3(b)). Because the costs of help were all the same for all occupants,
the difference in paths indicates that the likelihood of finding an occupant to ask is higher
on the longer path and results in a higher expected reward than the shorter path. Interest-
ingly, this same policy can be used for many offices around the lab and remains constant
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(a) Availability (b) Policies

Figure 3.3: (a) We measured the availability of occupants in each of 78 offices in our
building - darker gray represents higher availability. (b) The OPOMDP policy takes the
shortest path to the lab (dashed line) while the optimal HOP-POMDP policy takes a longer
route with more available people (solid).

throughout the deployment of the robot. While the optimal policy takes much longer to
solve, the precomputation time may be worth it to increase the expected reward and reduce
the cost of help from the occupants along the suboptimal path or the cost of replanning if
a human is not available.

To summarize, we found that the optimal HOP-POMDP policy is better in nearly 40%
of our tests - surprisingly small given that the OPOMDP does not take into account hu-
mans. The optimal HOP-POMDP policy attempts to minimize the cost of asking while
maximizing expected reward, while the OPOMDP policy only maximizes reward. As a
result, the optimal HOP-POMDP policy chooses to travel to the less available but less
costly human to reduce costs. Finally, we found that the optimal HOP-POMDP policy
does in fact differ from the OPOMDP in practical environments with more dispersed and
less available humans, and therefore it is reasonable to compute the HOP-POMDP policy
to reduce the expected cost of asking sub-optimal humans.
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3.5 Feasibility Discussion

While we were able to implement the HOP-POMDP for one part of our building, it took
over one day to solve the optimal policy for a single destination in the building. While
we could have used a faster or more approximate algorithm, optimal POMDP solutions
are in general intractable to compute for large state and action spaces such as building
environments. In this section, we discuss the feasibility of implementing HOP-POMDPs
for larger environments.

Environment Occupant Models: The HOP-POMDP model requires availability, ac-
curacy, and cost of help estimates for each environment in order to solve for the optimal
policy. This means collecting information from occupants prior to deploying our robot. If
occupants move or even as their calendar appointments change, the availability at their lo-
cation will change and may change differently at different times of day. We performed an
extensive experiment to measure availability in our building prior to deploying the robot
(see Chapter 5). However, this is difficult in practice - even after gaining access to oc-
cupancy sensors in the building. In Chapter 7, we contribute an algorithm to learn these
values online while the robot is deployed.

Number of Policies: POMDPs are typically solved to accomplish a single goal. How-
ever, our robot will have to navigate to many different offices in the environment. The
HOP-POMDP would need a policy for many start-end location pairs throughout the build-
ing. For example, the policy to go from location A to B cannot be reused to go from B to
A. Additionally, a new HOP-POMDP policy must be created for each possible availability,
accuracy, and cost at each location in the building depending on the time of day.

Even though there are relatively few actions to take between states, even precomputa-
tion of all of these policies (by destination as well as availability) would take a long time,
possibly weeks or more. By the time that the models were computed, the environment
might have changed. As a result, we suggest using approximate POMDP solvers that do
include asking actions but take much less time to compute rather than the exact solver or
heuristic solver that we used in these experiments.

Because of these limitations, we were unable to implement the HOP-POMDP policy
on CoBot for deployment.
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3.6 Chapter Summary

We introduced Human Observation Provider POMDPs (HOP-POMDP) to take into ac-
count the availability, accuracy, and costs of asking for help from environment occupants
in addition to the robot’s own reasoning uncertainty. Solved HOP-POMDP policies trade
off the uncertainty when navigating autonomously with the cost and uncertainty of asking
environment occupants for help to overcome the reasoning uncertainty.

In order to solve the HOP-POMDP policies, we rely on POMDP solvers. How-
ever, optimal HOP-POMDP policies can differ from OPOMDP policies adapted for HOP-
POMDPs and we realize that the execution of HOP-POMDP policies is not standard be-
cause occupants do not provide probabilistic observations due to noise like other sensors
do.

We have shown that the approximate policy that does not take into account humans
when determining a navigational path is suboptimal nearly 40% of the time when the
shortest distance to the goal is not the one with the best occupant to ask for observations.
We conclude that, because the optimal HOP-POMDP policy only has to be computed once
to be used throughout a robot deployment, it should be used to ensure higher reward and
better expected usability for environment occupants.
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Chapter 4

Replanning with Environment
Occupants

We have presented conditional and probabilistic deliberative plans for determining whether
devices should ask for help to overcome reasoning uncertainty and actuation limitations.
All of our presented requests for help thus far assume that the help takes place where the
robot is currently located. For example, if the robot has localization uncertainty, a per-
son helps the robot by indicating its current (x, y) position. Most other devices that ask
questions while performing tasks also have planning algorithms that assume that help is
given at the current location (e.g., for learning (Asoh et al. (1997); Chernova and Veloso
(2008a); Grollman and Jenkins (2007); Katagami and Yamada (2001)) as well as without
learning (Fong, Thorpe, and Baur (2003); Weiss et al. (2010))).

However, many of CoBot’s actions that it requires help with are spatially-situated - they
must be performed in a particular location or set of locations in the environment (e.g., at the
elevator or in the kitchen). People may visit these help locations at different frequencies,
but the potential cost of them helping the robot is low because they are already performing
the task the robot requires help with. Because the help is required at the particular location,
the robot may have to wait a long period of time for help to arrive which delays its ability
to complete its task.

In order to reduce wait time, this thesis argues that because the robot is mobile, it could
travel to offices in our building to find immediate help at the higher cost of interrupting
environment occupants and having them travel to the help location. The problem of identi-
fying an optimal help policy (i.e., waiting at the help location versus proactively navigating
to find an environment occupant in an office) hinges on evaluating this tradeoff between
interruption costs to the environment occupants and task completion time. In this chapter,
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we contribute our human-centered replanning algorithm that takes into account where the
robot will need help and who is available in the environment to determine who to ask to
help and where.

We first present results from the deployment of our conditional planning algorithm to
request help using the elevator. We show that while CoBot could receive help immediately
at times, it also could wait up to 10 minutes. We then illustrate the process of seek-
ing spatially-situated help from environment occupants and highlight the challenges and
tradeoffs of planning to request such help. We next contribute a decision-theoretic human-
centered replanning algorithm that takes into account both the robot’s and occupants’ costs
and likelihood to help to determine who to ask for help (details of the evaluation of the oc-
cupant model in Chapter 5). Finally, we demonstrate that our algorithm limits the number
of occupants that are interrupted in their offices while also limiting the expected waiting
time to complete tasks to just a few minutes.

4.1 Conditional Plan Deployment

Using the conditional task plans, we deployed CoBot to perform tasks for people on the
upper four floors of an office building for a two week period. CoBot was deployed for
two hours every weekday and made available to the building occupants. Occupants were
alerted of CoBot’s availability through email and physical signs posted on bulletin boards
and on the robot itself. The deployment times varied each day, and were announced be-
forehand on CoBot’s website.

Over one hundred building occupants registered to use CoBot on the website, request-
ing 140 tasks in the first two weeks. Users found creative ways to exploit the robot’s
capabilities, including, but not limited to:

• Sending messages to friends.

• Escorting visitors between offices.

• Delivering printouts and inter-office mail.

Particularly in the first couple days of deployment, we found building occupants followed
the robot around to see where it was going and how it worked. We discuss later how this
behavior affected our modeling results.

In fulfillment of the user requested tasks, CoBot travelled a total of 8.7 km, which
covered most of the building. In particular, we found that occupants often scheduled the
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Task Type Total Requests # Multi-Floor Requests
Escort 3 2
GoToRoom 52 22
DeliverMessage 56 20
Transport 29 22

Table 4.1: CoBot performed 66 multi-floor tasks out of the total 140 indicating the impor-
tance of the conditional plan to ask for help using the elevator.

robot to perform tasks on multiple floors of our building, saving the task solicitors time
because they did not have to travel between floors themselves. They scheduled the robot
to transport objects between multiple floors of the building more often than they used the
multi-floor functionality for other tasks (Table 4.1). However, even the other scheduled
tasks utilized the elevator 40% of the time.

This finding about multi-floor use is significant as CoBot could not have otherwise
performed these tasks without our conditional plan to ask for help using the elevator. We
conclude that our elevator help planning algorithm is valid for successfully completing
tasks. Furthermore, it supports our model of symbiotic autonomy that humans are willing
to help a robot complete its tasks if they see potential benefit for them in the future. Build-
ing occupants (even those that had never scheduled a task) were willing and able to help
the robot in and out of the elevator.

As we break down these tasks further, we find that CoBot spent

• 6 hours and 17 minutes navigating,

• 36 minutes with a blocked path waiting for a person to move out of its way,

• 1 hour and 2 minutes waiting for help with the elevator,

• 1 hour and 18 minutes waiting for task solicitor help to complete its tasks.

Figure 4.1 shows how much time CoBot took to execute each transport task, and how that
time was apportioned. Based on these times, we find that task solicitors did respond to the
robot’s request for help at the start and end of tasks as well as using the elevator. However,
the robot spent a lot of time waiting for the help. This waiting time is only expected to
grow, as novelty of the robot meant that people were willing to help relatively quickly in
the first few weeks.

While CoBot cannot algorithmically reduce its time waiting for a device user to con-
firm task completion (only the user knows if it is completed), it can possibly reduce its
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Figure 4.1: Transport tasks execution time breakdown includes 1) waiting for help to start
the task, 2) waiting for the elevator 3) riding the elevator, 4) navigating (not including time
blocked by obstacles), 5) waiting blocked by an obstacle, and 6) waiting for help to end
the task.

elevator wait time by proactively finding help away from the elevator. In the next section,
we describe a scenario in which CoBot could proactively navigate to find help instead of
waiting for it.

4.2 Example of Spatially-Situated Help

Rather than only waiting at the elevator for help, we argue that robots can proactively navi-
gate to request help to perform spatially-situated actions that require a helper to physically
go to a location to perform the action, such as using the elevator and retrieving coffee from
the kitchen. In order to illustrate the many decisions and challenges that must be consid-
ered, we describe one possible scenario that CoBot could itself in when it must use the
elevator and tradeoffs the robot must make in determining where to find help (Figure 4.2,
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(a) (b) (c)

Figure 4.2: (a) CoBot autonomously navigates to the elevator that it must use to reach a
destination on a different floor. It waits at the elevator for someone to arrive and help. (b)
If no one arrives at the elevator, CoBot replans to find someone in an office rather than
waiting longer, determines the best office to ask, and proactively navigates there. At the
office, CoBot asks a person in the office if they are willing to help. If not, CoBot replans
to find someone else. (c) When CoBot and a helper arrive at the elevator, it can ask for the
help it needs. CoBot asks them to press the elevator buttons as well as to hold the doors
open.

subfigures referenced below).

(a) Waiting at the Help Location. People arrive in help locations at varying frequen-
cies. If CoBot navigates to the elevator, it may or may not find a person who is also trying
to use the elevator and who could help it get to the correct floor. The elevators are less
frequently used during class time, for example, so the robot could be waiting a long time,
delaying its task completion. The benefit of asking the person already at the help location
is that they are already performing the action themselves and should have little cost to
helping the robot. If CoBot waits at the help location for a long time, it may instead be
beneficial to proactively navigate to find a person in an office who can help immediately.

(b) Deciding Where to Proactively Travel. If CoBot travels to find a person in an
office who could help, they must travel together back to the elevator. Determining who
to ask for help is important in maintaining robot usability over long term deployments.
In particular, we identify several possible factors of the decision of who to ask. First, the
distance between CoBot’s current location and the location of the office helpers may be
a factor. Once CoBot arrives at an office, other factors may include the potential helper’s
availability, meeting schedule, or unwillingness to respond due to too many questions from
the robot. If the helpers are willing to help, another factor is the travel distance to the help
location with CoBot. When the robot and helper arrive at the help location, there may be a
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new possible helper at the help location which may factor in to the decision about whether
to help again later. Finally, if the helper does not know how to help (e.g., use the coffee
maker), it may impact their willingness to help and success of actually helping.

(c) Requesting Spatially-Situated Help. Once a person is at the help location, CoBot
also must plan its task questions. To use the elevator, CoBot asks the helper to press the
up/down button and notify it when he/she has done so. It also tells the person to hold the
doors open so that it does not get stuck. Then, CoBot waits for the elevator doors to open
and navigates autonomously inside. After stopping inside the elevator, it asks the person
to press the appropriate floor number and to hold the doors open when they get to that
door. to again assist in keeping the doors open when the elevator gets to the correct floor.
Upon reaching the correct floor, CoBot navigates out of the elevator and then continues
navigating to its destination.

We surveyed environment occupants to understand what factors are important in determin-
ing whether environment occupants are wiling to help and what the cost of help is (details
in Chapter 5). We use the results to derive a decision-theoretic human-centered replanning
algorithm that plans to ask for spatially-situated help both near the elevator and away from
it.

4.3 Spatially-Situated Help Algorithm

We present our spatially-situated action help algorithm for the robot to execute when it
requires actuation help (Rosenthal and Veloso (2012)). Based on our survey findings pre-
sented in Chapter 5, our algorithm always navigates to the help location first to wait for
someone there to request help from. Then, only after waiting without someone agreeing
to help, the algorithm employs our proactive travel tradeoff to determine who to seek help
from in offices also based on our survey findings. We demonstrate that our robots can
receive help faster by proactively navigating to find help compared an algorithm that only
wait at the help location. Additionally, we show that our algorithm is more usable than an
algorithm that always proactively navigates because it asks at the help location first which
our survey shows is preferable to our participants.

4.3.1 Spatially-Situated Action Help (SSAH)

We contribute our Spatially-Situated Action Help Algorithm to plan (and replan) to proac-
tively seek help to overcome its actuation limitations while completing tasks in the envi-

58



ronment. When CoBot reaches an action in its plan that it cannot complete autonomously,
it calls SSAH(help,lhelp) with the type of help it needs and the location lhelp where it should
be receiving help (Algorithm 2).

The algorithm first initializes the taskSuccess indicator variable, list of offices, sets
a waitThreshold to indicate how long to wait for a person to answer in offices, always
chooses to travel to the help location lhelp first (line 1). In order to ensure that the robot
does not wait too long at the help location, we set the taskThreshold for the max time that
the robot should wait before proactively navigating to offices (line 2) (See Setting Wait
Threshold for details).

After setting these values, the robot navigates to find a helper at the help location (line
3). Then, it asks for help (line 5) and waits for a response depending on where it is (lines 6-
10). If someone is willing to help, it tries to execute with them and updates its information
about the helper at location lot (line 11-14). If it was not successful or could not find a
person, it picks a new lowest cost location using our Proactive Travel Tradeoff (PTT) (line
15-18), subtracts the office from its list so that it doesn’t revisit it (line 16). The PTT
tradeoff uses the updated location information to accurately determine the cost of asking
each office for help. The algorithm returns when it either has been helped successfully or
there are no more offices to visit (line 20).

4.3.2 Proactive Travel Tradeoff (PTT)

In order to determine who to ask for help, our Proactive Travel Tradeoff (PTT ) computes
the expected cost to complete the help with proactive navigation to each possible office and
chooses the minimum cost office. The costs are computed based on our survey findings.
This tradeoff is decision-theoretic Lehmann (1950); Schoemaker (1982) in that it computes
the best action with the lowest expected cost by taking into account helpers’:

• availability α or probability the person is in their office,

• interruptibility ι or the probability the person is not busy

• expertise e or the probability of successful help,

• location l of offices,

• recency of help r or the time since person’s last help,

• frequency of help f per week, and
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Algorithm 2 SSAH(help,lhelp)
1: taskSuccess ← false, waitThreshold ← waitTime, offices ← getAllOffices(), travel-

Loc← lhelp
2: (taskThreshold,loc)← PTT(lhelp,lhelp,offices)
3: while ¬taskSuccess AND |offices| > 0 do
4: Navigate(loc)
5: Ask(helptype)
6: if loc = lhelp then
7: willing←WaitForResponse(taskThreshold)
8: else
9: willing←WaitForResponse(waitThreshold)

10: end if
11: if willing then
12: taskSuccess← ExecuteWithHuman(help)
13: updateHelper(loc)
14: end if
15: if ¬taskSuccess then
16: (time,travelLoc)← PTT(travelLoc,lhelp,offices)
17: offices← offices - travelLoc
18: end if
19: end while
20: return taskSuccess

• willingness to answer w(ι, r, f) based on past experiences and current interruptibil-
ity.

Using this model of helpers, the PTT tradeoff computes the cost of asking at each
office o including:

• COT cost traveling to the office o,

• the probability of a person being available αo and the cost of asking them to help
COA,

• the willingness of them to help w(ιo, ro, fo) and the cost of the helper traveling back
to the help location COTH ,

• the probability of being unnecessary αhelp and the corresponding cost COU ,
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• the probability of failing due to expertise eo and the cost of failure COF ,

• the cost of replanning from the current location with PTT in case a person is not
available or willing to help.

Formally, PTT (lstart,lhelp,offices) = mino∈offices

COT (lstart, lo)

+ αo

[
COA(ιo, ro, fo)

+ w(ιo, ro, fo)
[
COTH(lo, lhelp)

+ αhelp ∗ COU(lhelp)

+ (1− eo)[COF (lo, lhelp)

+ PTT (lhelp, lhelp, offices− o)]
]

+(1− w(ιo, ro, fo)) ∗ PTT (lo, lhelp, offices− o)
]

+ (1− αo) ∗ PTT (lo, lhelp, offices− o)

While this tradeoff finds the optimal office, it is intractable to compute for any large
number of offices given the recursion for failure and the branching factor equal to the
number of offices in the building. For our implementation, we compute the greedy best
office that does not recurse on PTT and instead uses a constant FAIL COST that is greater
than the cost of successfully asking any office (approximately 1000 seconds).

4.3.3 Setting Task Thresholds

The SSAH algorithm also required a task threshold to wait at the help location before
starting to proactively ask for help. We explored two methods for setting the threshold.
First, we looked to queueing theory to model the arrival of a person at the help location
using a Poisson Process Arlitt and Williamson (1997). If the robot were to model the
likelihood of finding help using this distribution, however, we found that the probability
that a person will arrive increases over time so the robot never proactively navigates away
from the help location. Second, we used the Buy or Rent problem (Ski Rental problem)
as an analogy for setting this threshold, in which there is a small cost to continuing to
wait and a large cost to finding a person elsewhere Karlin et al. (1994). The solution to
this problem is not optimal in hindsight but ensures that the robot will take no longer than
twice the expected time to proactively find a person to complete the task. We choose this
solution because not only does threshold task completion time but also has the property
that it will wait at the help location.
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4.4 Experiments

Our SSAH algorithm combines waiting at the location of help with proactive navigation
in order to speed task completion while limiting the number of questions asked at offices.
In order to characterize the performance of our greedy PTT algorithm, we performed
real-world and simulated experiments. These results are meant to be examples of how the
algorithm behaves and not a complete analysis of behavior over all possible environments.

4.4.1 Simulated Experiments

We simulated four hallways of our building, the elevator nearby, and the occupants in
their offices. The hallways contain 28 offices in an elongated rectangle shape with the
elevator in the middle of one of the long hallways. Our real building contains occupancy
sensors in each office, so we define αo ∈ {0, 1} randomly. Additionally, we generate
random probabilities for willingness to respond w ∈ [0, 1]. Finally, we use real world
data to compute the frequency that a person appears at the elevator (αhelp). Through an
observational study, we found that on one floor αhelp = 5min and on another floor αhelp =
10min.

We test our SSAH algorithm against two other algorithms. In the Wait Only algorithm,
the robot travels to the help location and waits indefinitely until someone helps there. This
algorithm is guaranteed to find a low cost helper at the help location but may result in long
task completion times. In the Proactive Only algorithm, the robot uses the PTT tradeoff
to immediately find a helper in an office. This algorithm is guaranteed to find help quickly
but at the cost of always interrupting an office worker.

Time to Find Help

Our SSAH algorithm finds help faster than Wait Only but slower than Proactive Only
(Figure 4.4). The Wait Only algorithm that only waits at the elevator has high variance
and takes on average 5 minutes and 10 minutes respectively on the two different floors of
the building. The Proactive Only algorithm which goes directly to find help in an office
rather than waiting at the elevator almost always finds help in under three minutes. The
SSAH algorithm is in between the two algorithms as it waits first and then navigates away.

62



Figure 4.3: Our SSAH algorithm finds help use the elevator faster than the Wait Only, but
not as fast as Proactive Only which always goes directly to find someone in an office.

Number of Offices Asked

While the Proactive Only algorithm found a helper faster, it also interrupted people in
offices every time it needed help. This is costly according to our survey results. Instead,
our SSAH algorithm was able to cut the number of offices visited in half for the 5 minute
floor and by 20% for the 10 minute floor compared to the Proactive Only algorithm. While
we would like the robot to complete tasks quickly, we also want to make sure that people
are willing to help the robot months and even years. The less frequently the robot actually
interrupts people in offices and can instead ask people who are already using the elevator,
the more usable and deployable we expect the robot and algorithm to be for our building
in the long run.

We conclude that while SSAH takes longer to find help than Proactive Only, the re-
duction in office help requests is significant for the future usability of our robot.

4.4.2 Real Robot Deployment

In order to understand how our algorithm performs in practice, we conducted an experi-
ment in which the robot performed multi-floor tasks which required help using the eleva-
tor. In the first phase of the experiment, we deployed CoBot with the Wait Only algorithm.
With this algorithm, the robot was able to accomplish 66 multi-floor tasks which it could
not have completed without help, waiting on average 1 minute to find help. Interestingly,
this result conflicts with our previous finding that people use the elevator once every 5-10
minutes depending on the floor. We found that people were often following the robot or
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Figure 4.4: Our SSAH algorithm requires less help from offices, making it more usable
for our occupants long-term.

interested in its deployment and therefore helped more often and faster than what one can
expect on a more normal day.

In the second phase, we conducted a preliminary experiment of CoBot using our SSAH
algorithm to find help. After waiting for help at the elevator, CoBot contacted a server to
access the occupancy sensors in each office of the building and then estimated the in-
terruptibility of those who were available. It then chose the best office using our PTT
algorithm, navigated there, and asked for help. If the person refused to help or ignored the
robot’s question, CoBot would replan using the PTT tradeoff to find another office.

Because the novelty had worn off by the time we deployed this phase, we found the
robot waiting times were much more of what we would have expected. CoBot waited
an average of 190 seconds for a person to arrive at the elevator before proactively nav-
igating. This result is much shorter than the 5-10 minutes for Wait Only and results in
more satisfaction for the people who request the tasks as well as those located around the
elevator.

From these results, we conclude that our SSAH algorithm is expected to find help faster
than Wait Only without asking as many people in offices as the Proactive Only algorithm.

4.5 Chapter Summary

Our CoBot robots are capable of autonomous localization and navigation, but have actua-
tion limitations that prevent them from performing some actions such as pushing buttons
to use the elevator and making coffee in the kitchen. Interestingly, these limitations re-
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quire humans to be spatially-situated in the help location in order to help the robots per-
form these actions. We take advantage of the fact that our robots are mobile and have
them proactively seek humans in offices to travel to the help location. We contribute a
human-centered decision-theoretic replanning algorithm to take into account potential of-
fice helpers’ preferences about where to navigate and who to ask in the environment based
on helper interruptibility, and how recently and frequently the robots might ask them for
help. We demonstrated in simulation and in a real-world implementation to that our algo-
rithm balances the time waiting at the elevator with the expected interruption of proactively
finding helpers.
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Chapter 5

Modeling Human State

Our human-centered planning algorithms use models of humans in the environment to
determine device actions and whether and who to ask for help. In particular, unlike prior
work that assumes humans are always available and willing to help (e.g., device users
Lee et al. (2010), supervisors (Fong, Thorpe, and Baur (2003); Shiomi et al. (2008)),
teachers (Argall et al. (2009); Hayes and Demiris (1994); Lockerd and Breazeal (2004);
Price (2003)), and passers-by in the environment (Asoh et al. (1997); Hüttenrauch and
Eklundh (2006); Michalowski et al. (2007); Weiss et al. (2010))), our algorithms used
models of human state attributes:

• availability - whether the human is in the environment,

• interruptibility - whether the human is performing other tasks,

• distance to the help location - how far the human will have to travel to help the
device,

• accuracy/expertise - whether the human understand how to help and can do so well,

• cost of help - how much time and effort the help takes, and

• incentive to help - how much benefit the human receives from helping.

A person may not be available or be located near the device in order to provide it help.
Similarly she may be around but busy in a meeting or interacting with someone else (not
interruptible Fogarty et al. (2005)). Even if she was available and interruptible, she may
not understand the question to answer accurately. She may also perceive a high cost of
helping and not see the benefits toe incentivize her to help.
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Additionally, our algorithms use other factors that may affect willingness to help:

• help type - which question the device is asking,

• frequency of questions - how often the device asks the human for help, and

• recency of the last question - how long ago the last question occured.

A person may not want to help with particular questions, or after they are asked frequently
or recently.

In this chapter, we contribute studies of both device users and occupants in the envi-
ronment to demonstrate our human-centered planning algorithms should include models
of each of these attributes. First, contribute two studies of device users to demonstrate
that they have their own costs and incentives to help their devices. We survey phone users
to measure their personalized costs of help and incentive to help their phone learn their
volume preferences, and then describe a short study of the cost and incentive of 5 visitors
to help answer CoBot’s localization questions as it escorts them to meetings around our
building.

Second, we contribute two studies of environment occupants to demonstrate the need
for all nine attributes identified above. We survey building occupants to demonstrate that
all the factors affect their willingness to travel down the hall to help CoBot use the elevator,
and then describe a wizard-of-oz (Green and Wei-Haas (1985)) remote-controlled CoBot
experiment in which the robot actually asks occupants to leave their offices to further
demonstrate the need to model distance to location, interruption, incentive to help, help
type, and frequency of questions.

5.1 Modeling Phone Users: A Survey

Phones have reasoning uncertainty in that they do not know whether to turn the volume
on or off given users’ state. To train a classifier to reduce this reasoning uncertainty, we
previously contributed a human-centered algorithm to ask for users’ volume preferences
when the incentive to answer questions was higher than users’ cost of helping. In this
section, we present surveys of users of smart phones who receive several phone calls,
SMS messages, and calendar alarms daily to understand phone users interruption costs
of help and incentives to help prevent phone volume misclassification across a variety of
situations Rosenthal, Dey, and Veloso (2011).
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GPS: Longitude, Latitude, Accelerometer X, Y, Z Time until Next Meeting
Speed axes

User in Meeting Noise (in dB) Hour of Day
Day of Week User on Phone Count of Times On-Phone

Caller has Contacted User
User on Phone with User on Phone with Next Meeting is a

Someone in Contact List Someone in Favorite List Repeated Meeting
Contactor is in Contactor is in Count of Times Contactor
Contact List Favorites List Has Contacted User

Table 5.1: Smart phones have a variety of sensors that we can use to describe the user’s
state and predict their cost and incentive to help the phone.

In the survey, participants were asked to rate their preferences for receiving audible
notifications in a variety of hypothetical, but real world, situations and their expected costs
and incentives to train their volume classifier. We analyzed the differences in preferences
and cost ratings between participants in the same situation as well as differences that a
single participant provided across multiple situations to determine if a single model of all
users (as found in Khalil and Connelly (2005)) is sufficient or if personalized models of
users are also needed. We show that each user has different costs and incentives to help,
warranting the need for personalized models of the cost and incentive of help for each user.

5.1.1 Method

Before the survey began, participants were first asked a series of questions about their work
schedule and common modes of transportation, which might affect their survey responses
about situations in which they want audible notifications. Participants were then given 20
hypothetical situations when their phone might display a notification for each notification
type. These situations were drawn from the sensor features in Table 5.1 and described
participants environments (e.g., work or movie theater) or activities at the time of the
interruption (e.g., driving a car or relaxing at home).

Participants were given a short description of each of the situations and notification
reason for the interruption, and were asked 1) if they would want audible notifications in
that situation (interruption preference). Then they were asked to rate 2) their expected
annoyance if the phone has the wrong volume setting (cost of misclassification/incentive
to help) and 3) their expected annoyance if the phone asked which volume it should use
(cost of asking for help). The questions were as follows:
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1. In this situation, would you want your phone to ring out loud? Answer: Yes/No

2. How upset would you be if the phone did the opposite (rang when it should have
been silent or vice-versa)? Answer: Likert scale 1 (no problem) to 7 (I would be
very upset).

3. In this situation, how upset would you be if your phone asked what it should do if it
didnt know? Answer: Likert scale 1 (no problem) to 7 (I would be very upset).

An example of the questions for a situation where a user is in a meeting at work is found
in Table 5.2, Additionally, participants were able to list exceptions to their interruption
preferences for each situation.

All combinations of situations, notification reasons and notification types (phone call,
SMS message, or calendar alarm) were presented to participants. Because of the number of
situations that would be necessary to train a classifier, we split the survey into twelve parts.
Each participant was given the option of answering all questions through all 12 surveys,
but was not required to complete them all. Before each survey, participants confirmed that
they did receive each notification type the survey focused on (e.g., only those who received
calendar alarms filled out the calendar surveys).

Participants Participants were recruited through a Carnegie Mellon participant recruit-
ing website to complete the online surveys. We are interested in both within-subject differ-
ences across notification types, as well as between-subject differences for each situation.
In total 44 participants took all 12 surveys and 50 more participants took subsets of the
surveys for an average of 69.25 participants per survey. Sixty-five out of 94 participants
reported that they were students. The rest reported jobs such as cashier, machine shop
manager, photographer, and administrative assistant. The average age of the participants
was 25.27 with standard deviation 6.3.

5.1.2 Results

We received a total of 9219 responses to our surveyed situations questions and analyzed
the proportion of participants who wanted audible notifications for each notification type
(calls, SMS messages, or calendar alarms), situation, and notification reason to understand
interruption preferences.
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Notification Notification Question
Type Context

Phone Favorite List, If you were at work in a meeting and someone in
Contact List, your favorites list called, would you want your

Frequently Calls phone to ring aloud?
Phone Favorite List, If you were at work in a meeting and someone in

Contact List, your contact list called, would you want your
Occasionally Calls phone to ring aloud?

Phone Favorite List, If you were at work in a meeting and someone in
Contact List, not in your contact list called, would you want

Few (if any) Calls your phone to ring aloud?
SMS Favorite List, If you were at work in a meeting and someone in

Contact List, your favorites list texted you, would you want your
Frequently Texts phone to ring aloud?

SMS Favorite List, If you were at work in a meeting and someone in
Contact List, your contact list texted you, would you want your

Occasionally Texts phone to ring aloud?
SMS Favorite List, If you were at work in a meeting and someone in

Contact List, not in your contact list texted you, would you want
Few (if any) Texts your phone to ring aloud?

Calendar Repeating If you were at work in a meeting and a repeating
Meeting meeting was about to start, would you want your

phone to beep aloud to remind you?
Calendar Non-Repeating If you were at work in a meeting and a non-

Meeting repeating meeting was about to start, would you
want your phone to beep aloud to remind you?

Table 5.2: Eight questions were asked about whether the users phone should ring in a
meeting at work. Prior to taking the survey, participants were given definitions of the
notification contexts to help them answer the questions.

71



Figure 5.1: Participants varied greatly in their preferences for audible notifications at work
when they were not in meetings, but mostly agreed that they should not receive calls or
text messages during meetings.

Volume Preferences: We found that participants had very different interruption prefer-
ences for each type of notification, which is contrary to current phone settings that only
allow a single phone volume for all notification types. For example, at work, 45% of par-
ticipants wanted calendar notifications during meetings compared to 7% on average who
wanted phone calls or text messages in the same situation (Figure 5.1). Only 35% of par-
ticipants wanted to receive phone calls at work, but more wanted text messages, especially
from those on their favorites list. This finding supports our need for an autonomous phone
volume changing application and the fact that any out-of-the-box application would have
reasoning uncertainty about how to set the phone volume.

Predefining Volume Preferences: Participants noted that, currently, they often kept
their phone on vibrate rather than silent or loud volume because of these situational and
notification type differences. One participant said that they prefer to err on the side of
caution when it comes to phone volume and I can find the time to check the onscreen mes-
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sage if I’m not too busy rather than listening for an audible notification. When they had to
decide on a loud or silent volume setting, participants often responded that they would not
want their phone to ring unless it was a family emergency or unless Im getting a ride from
that person. These exceptions are hard to enumerate and predefine and indicate a need to
ask for help and request preferences in situ.

Cost of Help and Incentive to Answer: In order to be able to collect these in situ re-
sponses in a human-centered way, we use their surveyed costs of misclassification and ask-
ing to prevent unneeded interruptions and increase the likelihood of a usable application.
Participants reported varying costs of misclassification (incentive to answer) responses on
the Likert scale from 1-7 (mean 4.3, s.d. 2.1). Participants responded nearly half of the
time (4436/9219 responses) that they would have “No Problem” if their phone asked them
for their preference (mean 2.6, s.d. 1.95). There was no particular situation where a ma-
jority of participants indicated that they would not be willing to answer. In fact, some
participants indicated that they would always be willing to answer questions while others
indicated there were situations when they never wanted to answer questions. These results
show that a single cost model for all situations and/or all participants (from Kapoor and
Horvitz (2008)) would likely interrupt many participants who indicated they did not want
questions. Additionally, we find that we do need to model both cost and incentive to help.

Based on these findings and analysis, we conclude that both cost of help and incentive
to help (cost of misclassification) are important human state attributes to model when de-
termining whether to ask for help with reasoning uncertainty. Additionally, we need to
learn a personalized model of these two attributes for each device user.

5.2 Modeling Robot Users: A Study

Our CoBot robot has reasoning uncertainty in its ability to localize while navigating. If
CoBot is navigating with a visitor in the building and does not ask for help with localiza-
tion, it may wind up backtracking along its path and frustrating the visitor. However, if it
does ask for help, the visitor may also be frustrated unless they recognize the incentives
that the robot has to offer as it navigates with them. Next, we present the results of five vis-
itors using our CoBot to navigate to meetings, and show that most visitors would use the
robot again despite the costs of providing help with the incentives that the robot provides.
However, because each visitor has different expectations of the robot’s abilities and dif-
fering incentives to answer the robot’s questions, we again show that personalized models
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of incentives are necessary for human-centered planning algorithms to use to determine
whether or not to ask for help.

5.2.1 Method

In order to test CoBot’s capabilities in assisting visitors through their meeting schedules,
we invited five participants to participate in a four-meeting schedule over a single floor of
our building but spread out in four hallways (Rosenthal, Biswas, and Veloso (2010)). The
participants were true visitors and had never been in the building before. The robot could
assist them in three ways:

• navigating quickly to meetings,

• inform about offices and labs along the way,

• bring drinks to meetings,

• providing additional information about meeting hosts (by displaying the host’s web-
site)

CoBot autonomously navigated and localized in the building and responded to verbal com-
mands for drinks and additional information about meeting hosts. If visitors asked for
drinks, CoBot navigated to a predetermined location to find a person to place the drink on
it.

When participants arrived for the study, they were told about their meeting schedule,
and CoBot’s abilities to help them navigate and provide information about different rooms
and labs as they walk between meetings. They were also told that they should request the
CoBot bring drinks and provide information at least once in their schedule, but it was up
to them to choose when to make the requests. Because participants could choose the order
and time of each, it more accurately reflects a typical day. Additionally, they were told
that sometimes the robot got lost and would ask for localization help.

After completing the meeting schedule, participants were given surveys about their
experiences and were asked to rate each feature of the robot on a scale from -2 (not useful)
to 2 (very useful). Additionally, we asked each participant to rate the number of questions
CoBot asked from -2 (too many) to 2 (too few).
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Ability P1 P2 P3 P4 P5
Host Info 2 0 2 1 2
Drink 2 -1 2 1 1
Labs 1 1 1 1 1
Help Requests -1 -1 -1 -2 0
Use it Again? Yes Yes Yes No Yes

Table 5.3: Participants ratings from -2 (not useful) to 2 (very useful) of CoBot’s abilities
and questions. The results indicate costs as well as incentive to help the robot.

5.2.2 Results

All participants were able to follow the CoBot to their meetings and answer the robot’s
questions. CoBot successfully retrieved drinks and provided participants with information
about three labs they were passing and the meeting hosts as the participants were guided to
the meetings. While participants typically would have had to search through the hallways
to find the rooms, CoBot led them directly there.

CoBot gave the same information and asked nearly the same number of questions
(about 10) to each participant. While participants mostly felt the robot could have asked
fewer questions, they had different opinions about how many were too many - reflect-
ing the need for personalized costs of requesting help. Table 7.2 shows the ratings each
participant (P1-5) gave for the robot’s abilities. We found that each participant rated the
usefulness of the incentives differently, showing that each participant had different expec-
tations for each ability and subsequent state.

When we combine the robot’s incentives along with the cost of help, we found that
four out of five participants said they benefitted from the navigation guidance and other
assistance and would use CoBot again, even thought they felt the robot asked them for
help too many times. The one participant who would not use it again placed high cost on
asking for help and said he would use it again if it asked fewer questions.

Our findings in this case study again necessitate modeling the cost of help and incen-
tive to help in our human-centered planners. The visitors could either state their interests
in the robot upfront before using it or the robot can learn the visitor’s costs as they travel
together through the day.
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5.3 Modeling Environment Occupants: A Survey

CoBot has limitations in its ability to manipulate objects and press buttons. However,
we would still like it to traverse our multi-floor building to perform tasks. Previously,
we contributed human-centered planning algorithms to wait at the elevator for help and
then use models of humans in the environment to replan where to navigate and who to
ask for help. In this section, we present a survey of humans in the environment who may
potentially be asked for help in order to understand what human state attributes should be
modeled in our planning algorithms.

We made five hypotheses based on our intuitions about what human state attributes
matter in determining where and who to ask for help. The first two hypotheses represent
the spatial considerations that CoBot robot should take into account.

Cost of Help: Asking someone for help who is already in the location is preferred
over finding someone in an office. A benefit of asking the in-location person is that they
are already performing the action themselves and should have little cost to helping the
robot.

Distance to Help Location: If someone in an office must be asked because it is
unlikely that anyone will be at the help location, there should be a preference for asking
someone close to the location to avoid making someone travel too far. Although the robots
are mobile and are capable of traveling to find help, an in-office helper would have to travel
back to the help location.

The second three hypotheses represent the considerations the robot should make to in-
crease the likelihood that people are willing to comply and help the robot, because the
robot need help performing these actions over a long period of time.

Availability: If a robot travels with a person to the help location and there is some-
one already at the location of help, the traveling person may feel that they were asked
unnecessarily.

Interruption: The robot should avoid requesting help from people in offices that are
likely to be busy.

Recency of Last Question and Frequency of Questions: The robot should take into
account how recently it asked different helpers to avoid asking too often.

We test these hypotheses using the results from our survey.
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Figure 5.2: Participants were shown an image with two humans (orange and green) in
different offices or locations and different state attributes and asked which they thought
the robot (blue dot) should navigate to to ask for help using the elevator (pink square) or
coffee maker.

5.3.1 Method

In order to test our hypotheses, we conducted a web survey about participants’ preferences
for when, under what conditions, and how frequently they would be willing to help the
robot (Rosenthal and Veloso (2012)). In the first half of the survey, subjects were shown
a partial map of our building with different configurations of people in offices who could
be available, different locations of the robot, and different locations for receiving help
- the elevator or the kitchen to make coffee. They were asked which person the robot
should choose to ask for help. In the second half of the survey, participants were told to
suppose that they were the one being asked for help and answered questions about their
willingness to help the robot under different conditions of interruptibility, recency of the
last time the robot could have asked for help, and frequency of the number of questions the
robot could ask per week. Figure 5.2 shows an example image of what participants saw as
they compared and chose which human the robot should travel to.
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Figure 5.3: While a majority of participants specified that they thought the robot should
look in the location of help first, some thought that it should ask in an office to avoid
wasting time waiting for someone to arrive.

5.3.2 Results

Thirty participants were recruited through a Carnegie Mellon University website that hosts
advertisements for human-subject studies. The survey contained 50 questions and took
about 45 minutes for participants to complete.

Cost of Help: We found that in those office configurations where there was one
person in an office near the help location and there was a chance of another person at the
help location, participants indicated that the robot should check if there was a person at
the help location 60% of the time when asking for help to use the elevator and 80% of the
time for making coffee (Figure 5.3). As expected, participants noted that they chose the
help location because the helper would already be performing the actions and it would not
be much more costly to help the robot.

However, we were surprised that a large number of people chose to ask a person in an
office first. Most said that if the robot were closer to an available person, it would be better
not to waste time navigating past them to the help location to check first since “it is not
guaranteed that someone will be standing in front of the elevator.” While it is true that the
robot may “waste” time waiting, 80% of participants said that they would be more willing
to help the robot if they knew it had tried first to wait by the help location, confirming our
hypothesis that there is a different cost of help if the person is already at the help location.

Availability: Because we were specifically concerned about the possibility that office
helpers would feel unnecessary if they found another person already at the help location,
we told participants to suppose this situation happened. We then asked when they would
be willing to help the robot again. If participants felt unnecessary, we would expect a
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Figure 5.4: Participants would be less willing to help the robot and would want to wait
longer before they helped next if they traveled to the help location when another person
could have helped.

larger number to be less willing to help in the near future and potentially never want to
help again.

Our results show that participants did want the robot to wait longer after helping in
this scenario compared to when there was no one else present at the help location (Figure
5.4). Despite feeling unnecessary, 83.4% participants said they would be willing to use the
robot again. Additionally, 80% of participants responded that if the robot explained that it
had already checked the help location and no one was there, they would be more likely to
accept its request for help. As a result, we conclude that the availability of helpers in the
help location as well as in offices impacts the willingness of people to help the robot.

Distance to Help Location: Next, we tested whether the robot should ask the closer
person to the elevator (everything else being equal) and how far people were willing to
travel to help the robot. When shown different configurations of the robot and avail-
able people in offices, surprisingly only 75% participants responded that the robot should
choose the closer person, irrespective of whether the person would be helping with the
elevator or coffee. Participants said that the robot could ask someone further away if it
would pass the further person first.

When asked the furthest distance they were willing to travel, 43.5% of participants
said they were willing to travel up to 15 meters to help the robot. We were surprised to
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Figure 5.5: Most participants were willing to travel up to 9 meters to help the robot, but
17.4% responded that they were willing to help from anywhere in the building.

learn that 39.1% were willing to travel more than 15 meters. Half of the participants who
were willing to travel more than 15 meters (17.4%) said they were willing to travel from
anywhere in the building. This indicates that the distance to the help location may not be a
significant factor for all helpers in determining which person to navigate to to ask for help.

Interruption, Frequency of Questions, and Recency of Last Question:
Finally, we hypothesized that the frequency and recency of questions would signifi-

cantly affect a person’s likelihood to want to help the robot in addition to interruptibility.
We asked participants to predict whether they would be likely to help the robot depending
on whether they were in a meeting, how many times they had been asked in the last week,
and the last time they had been asked. While 69.5% of participants were willing to help
the robot within 8 hours (within the same day) if they felt needed, 47.7% of participants
responded the same way when there was someone else present. In comparison, when par-
ticipants were told to assume that the robot had interrupted them in a meeting to ask for
help, 69.5% were still willing to help again in the same day and 56.5% were willing to
help again within 4 hours.

In order to test whether recency and frequency of help had a statistically significant
effect on the willingness to help, we performed a Nominal Logistic Regression (measured
with the χ2 statistic) testing for differences in the binary response variable willingness to
respond based on independent variables participantID (nominal), in a meeting (nominal),
frequency of questions per week (continuous), days since last helped (continuous), and all
pairs and the triple of in a meeting, frequency of questions, and days since last helped.
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Figure 5.6: There is a significant effect of both interaction history variables on participants’
willingness to help the robot.

We found a statistically significant main effect of all four independent variables: par-
ticipantID (χ2[29, 29] = 337.71, p < 0.0001), in a meeting (χ2[1, 1] = 462.28, p <
0.0001), frequency of help per week (χ2[1, 1] = 87.40, p < 0.0001), and days since last
helped (χ2[1, 1] = 143.62, p < 0.0001). Figure 5.6 shows the combined effect of both in-
teraction history variables (frequency of help and days since last help). As expected, there
is a negative effect of being in a meeting and being asked more frequently in a week, while
there is a positive effect of the helper being asked for help more days ago. We also found
that the pairs in a meeting × frequency of help (χ2[1, 1] = 12.89, p < 0.0003) and in a
meeting × days since last helped (χ2[1, 1] = 20.82, p < 0.0001) were statistically signif-
icant. The pair frequency of help × days since last helped was not statistically significant
(χ2[1, 1] = 2.32, p = 0.1279). Finally, we found that the triple in a meeting × frequency
of help × days since last helped had a statistically significant effect on willingness to help
(χ2[1, 1] = 19.17, p < 0.0001). These results confirm our hypothesis that interruptibility,
recency and frequency of questions do play a significant role in helpers’ willingness to
help the robot.

To summarize, we confirmed all five hypotheses. Robots (and other devices) should con-
sider the cost of help, distance to help location, availability, interruptibility, and frequency
and recency of questions. However, some participants were willing to help irrespective
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of the distance to the help location. We use these human state attributes in our human-
centered replanning algorithm to determine who to ask for help and where to navigate.

5.4 Modeling Environment Occupants: A Study

CoBot has both localization and actuation limitations that it will need to overcome simul-
taneously while deployed. In order to understand the feasibility of asking environment
occupants for different types of help during tasks, we designed a study in which CoBot
visited every occupant in offices on one floor of our building to ask each type of question
at different times of day (Rosenthal, Veloso, and Dey (2012a)). Additionally, we test how
the distance to help location and incentives to help impact the willingness to help.

We measure the number of times each occupant is available in their office and willing
to help for each question type as well as the amount of time they spend helping the robot.
Because we were exploring the feasibility of asking different types of questions in this
study and not testing the autonomy of the robot, CoBot was wizard-of-oz’d (Green and
Wei-Haas (1985)) or remote-controlled.

5.4.1 Help Types

We test environment occupants’ willingness to help the robot with three help types that
take different amounts of time to answer and are different distances from the occupants’
offices. The questions are all spoken out loud for the occupants to hear and displayed on
the robot’s laptop screen, but we require that the occupants answer the questions using the
visual user interface on the laptop as it cannot understand speech.

Localization Reasoning Uncertainty Help When CoBot requires localization help, it
can find an open door to ask the occupants to share their room number in the following
way:

I cannot determine my location. What is the room number of this office? (mul-
tiple choice)

After speaking the question, CoBot lists three predictions of the possible office numbers
and an additional textbox (in case the three office numbers were all incorrect) for the occu-
pant to respond with. Because building occupants should know their own office number,
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(a) Localization (b) Moving Chairs (c) Writing Notes

Figure 5.7: Occupants were asked to answer a multiple choice localization question, move
chairs out of the way, and write a note on another occupant’s door.

CoBot’s localization questions should be fast for them to respond to and do not require the
occupants to leave their offices except for accessing the robot’s backwards facing screen.

Moving Chairs Actuation Limitation Help Our building contains many seating areas
with moveable chairs that are hard for the robot to detect. Even if CoBot could detect
the chairs, it has no way of physically moving chairs that are blocking its path. CoBot
navigated to occupants’ offices and asked them to check and move chairs in the closest
common area so that it could pass:

My laser range finder cannot determine the location of chair legs in the com-
mon area. Can you please move chairs in the common area to clear a path for
me?

While occupants can easily identify and move chairs out of CoBot’s way, this task requires
that participants leave their offices to help the robot (Fig. 5.7(b)). Help with this limita-
tion ensures that CoBot can safely navigate through the environment, assuming that the
occupants actually move the chairs as requested. The occupants are asked to confirm their
action on the laptop user interface so that the robot knows it is safe to continue.

Writing Notes about Mail Delivery Actuation Help In this work, we assume that
CoBot will eventually perform a mail delivery task as an incentive for occupants to help
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the robot. However, CoBot does not have the manipulation abilities to select mail for an
occupant or leave a message that a package is available. This limitation affects its ability
to perform its task and therefore requires occupants to perform some of the robot’s task
for it. The robot requested that occupants write a note to notify a nearby occupant that
they have a package waiting in the mailroom located one floor below our test floor (Fig.
5.7(c)):

I am trying to deliver a package to room 7505, but the door is closed. Can
you please use the paper and pen in the bag on my left to write a note that a
package is available downstairs and place it on their door?

We assume that the robot can find an office close-by to write the note. In this study, the
office number of the nearby office (here 7505) changed depending on the occupants’ loca-
tion to ensure the occupants did not have to walk too far out of their office to deliver this
message - the room was on average 5 offices away from a helper (closer than most par-
ticipants indicated they were willing to travel in the previously-described survey). When
CoBot navigated to offices to request help writing a note, it carried paper and pens in a
tote bag for the occupants to use.

5.4.2 Method

Prior to the study, occupants on one floor of our academic building were told that the
robot would soon be deployed in our environment to perform services for them, such as
mail delivery. Additionally, they were told that it sometimes requires help to overcome
its limitations, and that we were currently testing the robot’s ability to ask for and receive
help. Occupants were given the choice to help the robot if they were available, but did not
have to help if they did not want to and could close their office doors to indicate that the
robot should not ask them for help. Only one graduate student office emailed the authors
to ask not to participate. As a result, CoBot sought help from each of 78 offices, nine times
over three days (three times per day).

In order to compare occupants’ availability to help with each request, CoBot attempted
to ask each occupant for each help type each day for a within-subjects study design. In
order to simulate an actual deployment of the robot, we:

• randomly assigned the order of the three requests each day such that each question
was asked once per day and at different times on different days,

• randomly chose two of the nine requests to offer a gift of candy to represent the
benefit provided when a robot performs services for them (i.e., brings mail).
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The occupants each received at most two gifts total during Cobot’s nine potential visits to
reflect the fact that the robot will likely need help from an occupant even when they are not
receiving some benefit (e.g., his/her mail). The assignment of gifts for each occupant was
randomly chosen before the study started, and it was not guaranteed that the occupants
would be available at the gift times. However, occupants were told about the gifts ahead
of time so these gifts served as the incentives for occupants to help the robot.

The robot traversed the floor at 9:30am, 12:00pm, and 2:30pm for three days along the
same predefined path. The occupants were not able to see the wizard drive the robot or
trigger the question from their offices. When the robot arrived at the door to each office,
it first spoke “Hello” to get the occupant’s attention and then spoke the the question and
printed it on the laptop screen. The robot required participants to click on the laptop to
respond after performing the requested help at a help location. Upon pressing “Done,”
the robot would speak “Thank you” as an indication to the wizard to move the robot to
the next office. Some occupants ignored the robot and did not click “No, I cannot help.”
After 10 seconds without a response from an occupant, the wizard timed out the question,
moved the robot to the next office in the sequence, and this was logged as a refusal to help
the robot. The wizard skipped offices that had closed doors.

After the study, the authors conducted interviews with occupants to understand their
perceptions of the robot, their feelings about answering questions through the study, and
to follow up on any observations about the occupants’ interactions with the robot.

Robot Apparatus: In order to ensure that the robot stopped at the correct sequence
of doorways, the wizard controlled the robot’s motion and triggered the robot to speak
the questions and display them on the screen. The screen interface on the robot’s laptop
contained one large text area with the question, and two buttons - “Yes, I am willing to
help” and “No, I cannot help”. For all questions, if the occupant clicked yes, the robot
automatically provided instructions to click an additional “Done” button when the task
was complete. Multiple choice locations were also displayed for the localization question.
Whether the task was completed or not, the robot thanked the occupant and the wizard
navigated the robot to the next office. As occupants clicked on the interface, it logged the
office number along with the question type, responses to the question and the time stamp
to use in the analysis. The occupants were required to use the screen interface - the robot
did not respond to speech.

Measures: In order to evaluate the willingness of occupants to answer the robot’s ques-
tions we use four main measures: number of open doors, number of times occupants
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(a) Total Open Doors (b) Refused or Ignored

Figure 5.8: (a) 130 doors were open out of 702 in nine trials (darker means the door was
open more frequently). (b) Out of 130 open doors, 53 occupants in those offices refused
to help the robot.

helped, locations of the occupants, and time spent responding. The number of open doors
is an upper bound on the number of occupants who will help the robot. The number of
times each occupant helped the robot allow us to understand the availability of humans
to help the robot throughout the building. We determine whether there is a difference in
response frequency and the amount of time it took occupants to respond to the different
question types over time. Due to the small sample size (78 rooms tested 9 times each), we
only test for trends in our data and not statistical significance.

5.4.3 Quantitative Results

Our results show that some, but not all, occupants were willing to help the robot at any
given trial and that they were largely distributed through the environment. Interestingly,
their willingness changes with availability at different times of day but not depending on
the type of question. Participants were equally willing to help with all types of questions
although some took much longer than others and were at a further distance from their
office.
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Availability: In total, 130 doors were open out of a combined 702 in nine trials (Figure
5.8(a) - darker means the door was open more frequently). Occupants helped the robot 78
times out of the 130 possible open doors. 46 offices were open at least once and 31 of those
offices contributed responses. Each office was open on average 1.8 (s.d. 1.9) times out of
9 possible and occupants answered on average 1.1 questions (s.d. 1.7). The high standard
deviation for the offices indicates that there were a few occupants available almost all of
the time, while many occupants were unavailable. Seven out of the 78 offices contributed
36 of the 78 responses to the robot. This indicates that there is a group of people that
would likely be available for the robot to ask for help, although at any particular time there
are likely to be many more occupants that the robot could ask to further distribute the help.

Help Type: In terms of the question types, we found that each type of question took
a very different amount of time to complete but occupants helped equally with them all.
Occupants took on average 30.1 sec (s.d. 18.1) to complete localization questions, 55.6
sec (s.d. 24.6) for chair questions, and 88.3 sec (s.d. 45.3) for the note writing questions.
Despite these differences, when occupants were available to help, they were willing to
answer any type of question. We found little difference in the response rate for each
question type - 57.5% of the localization questions, 62.5% of the chair questions, and 50%
of the notes questions. This finding indicates that a robot would not need to reduce the
asking frequency of questions that take longer to answer.

Incentive to Help: We found no statistical difference in answering frequency when oc-
cupants were offered gifts to when they were not, but some occupants indicated in in-
terviews that the gift did affect their decision to help. In particular, we observed some
occupants deliberately opening their doors when they heard the robot down the hall so that
they could help and possibly receive a gift. While gifts were only offered at random times,
some participants stated in the interview that they would be more willing to help the robot
if it offered candy more often.

Distance to Help Location: Figures 5.10(a), 5.10(b), and 5.10(c) show the frequency of
help from each office by time of day, with darker colors representing more frequent help.
Interestingly, the few frequently available occupants were largely distributed around the
building - especially in the areas where the robot has the most uncertainty (Fig. 1.2(b)). A
random selection of seven offices would not necessarily result in such an even distribution
across the building. Every help location in the building was at most 10 offices from an
occupant that helped the robot during many of the trials, except for the north side of the
building at 2:30. Because the robot is least uncertain in the north side of the building, the
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Figure 5.9: On average, 14.4 (s.d 7.5) offices were open for each trial and 8.7 (s.d. 3.6)
occupants helped the robot. While there were fewer open doors over time, more occupants
with open doors were willing to help the robot.

robot may be able to navigate despite the low availability. However, the distance between
available occupants indicates that any particular helper will not need to travel far to help
the robot.

Novelty Effect: On an average trial, 14.4 (s.d. 7.5) doors were open, and occupants in
those offices responded to the robot’s requests for help 8.7 times and refused to help or
ignored the robot the remaining 5.7 times (Fig. 5.9). However, there is a strong effect of
day on the proportion of open offices and available helpers. The number of open office
doors dropped each day likely due to occupants’ prior knowledge about when the robot
would be visiting. The number of occupants that did help the robot remained constant
over the three days indicating less of a novelty effect for those 7 occupants who helped the
robot the most.

To summarize, we found that availability, incentive to help, and the novelty effect had a
significant impact on the willingness of occupants to answer questions. Because our robot
asked participants to travel only a short distance to help locations, we did not see an effect
of distance on willingness to help. While help type did not have significant effects on
overall willingness, we did find that it had a significant effect on usability based on our
qualitative interviews after the study.
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(a) Helped at 9:30am (b) Helped at 12:00pm (c) Helped at 2:30pm

Figure 5.10: (a), (b), (c) While occupants in each part of the building answered the robot’s
questions for most times of the day, we find almost no available occupants at 2:30 on
the north side of the building. The darker the office color, the more often the occupant
responded to questions.

5.4.4 Qualitative Results

We interviewed participants after the study to further understand their actions during the
study. We found that these actions depended on more of our human state attributes.

Help Types and Question Repetition: While most participants did respond to the re-
peated questions (each of the 3 questions were repeated each day), during the interviews,
occupants reported that they were confused as to why the robot asked them to perform
the same help multiple days in a row. One occupant reported that he wrote the incomplete
notes out of frustration when he was asked to do the same task multiple times. This finding
mirrors previous work that showed that people who are asked for help too frequently tend
to stop responding to help requests in the future Scollon, Kim-Prieto, and Diener (2003).

While this repetition of questions is an artifact of our study, it indicates the need for the
robot to keep track of which occupants it has asked for help to purposefully plan to avoid
those offices unless there is no other help available. This would require that the robot also
model the history of questions to more heavily weigh the occupants who have not been
asked for help recently. The robot would then need to model not only who is available
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to help but the cost of asking someone too frequently, and the additional constraints for
navigational planning and determining who to ask for help.

During actual deployments of a robot, however, reducing question repetition could be
difficult. If only a single occupant is frequently available in areas of frequent limitations,
the robot would have no choice but to travel in that area sometimes. In order to reduce the
likelihood of this happening, it could request help from an occupant who is further away
and is not asked for help as often. Additionally, the robot could include time in planning
to vary the time of day it would complete the task (possibly delaying its task) if another
occupant is available at another time.

Interruptibility: In designing the robot’s initial interaction, we used an assumption that
an open office door indicates that the occupant is interruptible. However, we found that
often doors are left open even when occupants are in meetings or on the phone. Occupants
who were in meetings and did not want to help the robot either verbally tried to send the
robot away or ignored the robot until it left their doorway. Surprisingly, however, many
occupants did interrupt their meetings or put their phone call on hold to help the robot and
some reported that the interruptions were “well-needed breaks in their day.”

Models of interruption have been used for supervisors to warn them about the robot
needing help soon Shiomi et al. (2008). While it might seem obvious that a robot in human
environments should also have a model of interruptibility through real-time sensing, a
naı̈ve interruption model may predict that occupants are not available to help when they
are in meetings or on the phone Fogarty et al. (2005). However, if CoBot used this model,
it would have received fewer responses compared to asking for help at every open door.
A robot must learn, through its long-term interactions, which occupants are willing to be
interrupted and under which conditions (e.g., who they are speaking with, whether they
are working on the computer) to take full advantage of the occupant help.

Accuracy and Deception: We also assumed that participants would answer the robot’s
questions accurately and completely when they agreed to help. While occupants did an-
swer 100% of the localization questions accurately, we found that several participants
deceived the robot, responding that they moved the chairs or that they had written the note
when they had not. In particular, two occupants submitted blank notes and two wrote notes
with incomplete information about the package location.

It is unclear whether participants deceived the robot because they were told it was a
study and not deployed for real. However, these results indicate that a robot must maintain
some uncertainty about whether a task was actually performed for it. The robot could
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ask another occupant to confirm the task was completed since it may be difficult for the
robot to detect deception itself, or otherwise use extra sensors to detect that the task was
completed (e.g., a sensor near the paper and pens to detect if an occupant picked them up
to write a note), or mitigate failures by apologizing and requesting help from someone else
Lee et al. (2010). If the robot can determine and learn through its interactions over time
which occupants are deceptive Donmez and Carbonell (2008); Donmez, Carbonell, and
Schneider (2009), it should avoid asking for help from them in the future by either lowering
the availability of the occupant or adding additional costs related to the trustworthiness of
the occupants.

5.5 Chapter Summary

This chapter has presented a series of surveys and studies of device users and environment
occupants to understand what state impacts their willingness to provide help. In the survey
of phone users and study of robot users, we showed that the cost of help and incentive to
help impacted willingness and that these costs were highly personalized to each individual
user. For phone users, the cost of help depended on the situation the user was in (e.g., in the
car or in a meeting). For robot users, the cost and incentive depended on the expectations
that users had about what robots should be able to do.

In our survey and study of environment occupants around our robot, we showed that
willingness to help depended on many more human state attributes:

• availability

• interruptbility

• cost of help

• incentive to help

• distance to help location

• accuracy/expertise

• help type

• frequency of questions

• recency of questions
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Notably, because environment occupants are not near the robot, they must travel to the lo-
cation of help and they may receive many questions throughout deployment. Additionally,
although the occupants are not receiving direct benefit from the robot’s current task, there
is an overall incentive for them to help in order for the robot to perform tasks for them in
the future.

As a result of these studies, our human-centered algorithms include models of these
attributes are used in determining whether and who to ask for help.
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Chapter 6

Increasing Human Response Accuracy

Prior approaches to requesting help with reasoning uncertainty from humans that assume
humans are supervisors and always knowledgeable about their devices’ state inferences
when providing help, such as active learning (Cohn, Atlas, and Ladner (1994); Mitchell
(1997)), learning by demonstration (Argall et al. (2009)) and mixed-initiative and semi-
autonomous robots (Asoh et al. (1997, 1996); Shiomi et al. (2008)). However, we do
not necessarily assume that humans in the environment such as device users and occu-
pants are supervisors and will be knowledgeable and always answer the device’s reasoning
uncertainty questions correctly (Fong, Thorpe, and Baur (2003); Donmez and Carbonell
(2008)). This chapter focuses on how intelligent devices can increase the likelihood of re-
ceiving correct responses to reasoning uncertainty questions from human non-supervisors
by changing the questions they ask.

Human-human interactions are often grounded in the common references and experi-
ences we have with others (Clark and Wilkes-Gibbs (1986)). When we ask for help from
other humans, these common experiences help clarify the question being asked and help
us answer as accurately as possible. However, because humans may not share knowledge
or references with robots, it has been suggested that robots should explicitly share their
state information with humans as they act in the world (Clark (2008)). We are interested
in the types of information that could and should be shared with humans.

We performed an extensive human-robot interaction (HRI) and human-computer in-
teraction (HCI) literature review to understand the types of information that other robots
and devices have used to ask for help from humans. We found that asking for help is com-
mon when there is a lot of uncertainty in inference (e.g., recognizing or labeling objects
in images (von Ahn and Dabbish (2004)) or localizing a robot (Asoh et al. (1997))). Ad-
ditionally, we found several sets of guidelines for the types of information that intelligent
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devices should provide (e.g., Bellotti and Edwards (2001); Erickson and Kellogg (2001);
Horvitz (1999); Shadbolt and Burton (1989)). In analyzing prior work and the guidelines,
we identified four common types of information that researchers in HRI and HCI have
commonly used:

• Context: The current sensor information related to the task (e.g., features detected
through vision or LIDAR);

• Prediction: The current inferred state (e.g., the object detected with vision or the
location of the robot),

• Uncertainty: The probability the inference is incorrect, and

• Feature feedback: The critical features from context used in inference (e.g., the
number of sides of the object or the carpet pattern near the location).

While different combinations of these four types of information are often used when re-
questing help from humans, little work has been performed to identify which combinations
result in more accurate responses.

In order to understand how each of these types of information impacts human response
accuracy to devices’ requests for help with reasoning uncertainty, we performed five stud-
ies on different intelligent devices and systems. On a robot, we tested how to ask for help
with localization uncertainty and also shape recognition. On other intelligent systems, we
tested how to ask for help with activity recognition on a smart phone (similar recognition
of volume preferences in terms of device users giving their preferences), email filtering
online, and interruptibility recognition in offices. We briefly describe each task below:

• Localization Many mobile robots perform localization tasks to determine where they
are and how to navigate to a goal location. If a robot cannot determine its location,
it may miss turns and have to backtrack down the hallway. We have demonstrated
that a robot can ask a human to identify its location on a map when it is uncertain
(i.e., “Can you point to where we are on this map?” (shows map)) to navigate more
quickly and accurately to its goal (Rosenthal, Biswas, and Veloso (2010)).

• Shape/Object Recognition Shape recognition (i.e., identifying shapes of building
blocks as a cube, cylinder, etc.) is similar to a camera-based object recognition
task a robot might have to perform. In such recognition tasks, if a robot cannot
determine the shape of an object that it is supposed to pick up, for example, it may
fail to complete its task. It could instead ask a human to identify the shape or object
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when it is uncertain (i.e., asking “What shape is the red building block?”) in order
to overcome the recognition failure and complete more tasks.

• Activity Recognition The sensors on mobile devices are often hidden and their data
is hard to explain, but they capture activities that their users are aware of, such as
exercise patterns (Consolvo et al. (2008)). For example, a physical activity coach
performs activity recognition using sensors to identify exercises the user performs.
An application like this may record users’ activities for doctors to analyze physical
activity levels, and thus users have an interest in answering its questions such as
“What activity are you doing?” to ensure it correctly identifies their activities.

• Email Filtering While most users do not think of their desktop computers as learn-
ing from their actions, word processors learn to spell-check new words and email
applications learn which emails are spam and which are not. Because these labels
are subjective, the user carries the burden of having to label their own data and may
make mistakes. An email filter could try to sort emails in the inbox into a folder and
request help by asking “Where does this email belong?” if it is uncertain.

• Interruptibility The problem of recognizing when someone is interruptible (on a
scale 1-5) has been widely studied in the literature (e.g., Fogarty et al. (2005);
Horvitz, Koch, and Apacible (2004)). We asked non-supervisors to predict inter-
ruptibility by answering the question “How interruptible is this person?” on Ama-
zon.com’s Mechanical Turk - an actual large-scale system that is often used to have
non-supervisors help answer questions cheaply.

We test other applications in addition to our two main device tasks in order to understand
how our findings generalize.

Next, we describe each type of information that devices could include. Then, we
describe our general study design that we followed for each of the 5 experiments. In
the sections following, we describe our experiments and results. Finally, we discuss our
findings, generalizations, and considerations for implementing them on actual devices.

6.1 Types of Information to Provide Helpers

We analyzed different systems that request help in different domains and categorized the
types of information they provide to contextualize or ground those requests (Clark and
Wilkes-Gibbs (1986)). We found four popular categories of information also proposed
by other researchers (e.g., Bellotti and Edwards (2001); Erickson and Kellogg (2001);
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Work Amt. Lvl. Unc. Pred. FF Act. Int.
Horvitz (1999) X X X X X

Bellotti and Edwards (2001) X X X
Erickson and Kellogg (2001) X X X X X

Table 6.1: Types of information most commonly provided when asking non-supervisors
for feedback include amount of context (Amt.), level of context (Lvl.), uncertainty (Unc.),
prediction(Pred.), feature feedback (FF), executed action (Act.), and social interaction
(Int.).

Horvitz (1999)): context, prediction, uncertainty, and feature feedback. While these other
researchers have also proposed including other information such as the current action that
is being executed (Bellotti and Edwards (2001)), acknowledgment of accountability to the
humans in the environment (Bellotti and Edwards (2001); Erickson and Kellogg (2001)),
and the costs and benefits of different user responses (Horvitz (1999)), we did not find
these other types to be as prevalent in implemented systems. Table 6.1 demonstrates the
information that each researcher suggests.

Next, we provide operational definitions for each kind of information and provide ex-
amples of how to implement them in our two task domains (summarized in Table 6.3).
We compare the accuracy of non-supervisor responses to robots’ questions that include
different combinations of the information.

Context Many robots and other applications provide humans with some contextual in-
formation about their sensor data before asking a question. However, some provide more
contextual information than others and some provide it at different levels.

Local vs Global Context A robot user interface to monitor speech recognition errors
provides the audio that could not be recognized and a transcript of the conversational
context (Shiomi et al. (2008)). However, another robot provides no context at all about
its current sensor readings when asking for help with localization and navigation in an
office hallway (e.g., Asoh et al. (1997)). Similarly, other interfaces provide more or less
context. For example, when BusyBody asks users to estimate their own interruptibility,
it does not explain what it thinks the user is doing (Horvitz, Koch, and Apacible (2004)).
Hoffman et al. request help from Wikipedia users to fill in missing summary data as the
users are reading an article (Hoffmann et al. (2009)). When users are asked if the text they
are reading in the article belongs in the summary, important keywords are not provided in
the text. When reading the summary, users are provided with excerpts that could be added
to make the summary more complete. In studies of interruptibility, it has been shown that
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people make judgments with relatively small amounts of context (15 seconds) and extra
context (30 seconds) does not improve accuracy (Fogarty et al. (2005)).

We define two kinds of contextual information: local context and local+global context.
Local context are the features immediately in the area that the robot is trying to classify
or infer. For example, in the speech recognition user interface described above, the local
context is the audio recording of the sentence that is not recognized. The local+global
context additionally contextualizes the local context in the entire state space (e.g., the
unrecognized sentence within the current conversation). In our shape recognition task, the
local context is the color feature of the object in question and the local+global context is the
location of the object in the image area (e.g., top, left, bottom, right). In our interruptibility
study, we use 15 seconds of video as local context, while 30 seconds is local+global.

High vs Low Level Context We also vary the context in terms of the feature level
information that is provided (not possible in the robot experiments because the data is
too dense and complicated to provide low level context). Recently, researchers demon-
strated that labelers’ accuracy can depend on the level of contextual information they are
provided. When users understand and use their own rules for classification, they are bet-
ter at making those classifications compared to classifying based on the computers’ rules
(Stumpf et al. (2005, 2007a)). This finding is supported by work in feedback in informa-
tion retrieval applications (Rui et al. (1998a); Salton and Buckley (1990a)) which mask the
low-level sensor-level features that computers use and collect (i.e., individual keywords in
documents or accelerometer data) and allow users to search for information using high-
level meaning attributed to the low-level data (i.e., summaries of documents or physical
motion inferred from accelerometers). However, because it is often difficult to generate
the high-level explanation of context, many applications provide only the low-level raw
data, like pictures, to labelers instead of a summary with the assumption that they can find
their own meaning (von Ahn and Dabbish (2004); von Ahn et al. (2008)).

Subjects in the low-level context condition receive information about sensor readings
on the activity recognizer, keywords in an email, and raw interruptibility video footage,
to help them make their classifications. For instance if someone was jumping, the sensor
might read “shaking” - we do not expect users to interpret exact numerical sensor read-
ings or graphs. With high-level context, participants received explanations such as email
summaries or body motions like “your feet are leaving the floor” that correspond to sensor
readings.

Prediction The prediction is the most likely state based on the inference. For example,
in our shape recognition task, the prediction is the most likely shape (i.e., cube or cylinder).
In speech recognition, the prediction is the most likely sentence that was spoken (Shiomi
et al. (2008)). An interface may automatically fill in fields in an online form or provide a
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prediction for which folder to sort a piece of email into (e.g., Culotta et al. (2006); Faulring
et al. (2010)). Providing a prediction may reduce a user’s work to respond because they
only have to confirm an answer rather than generate it (Eagle and Leiter (1964)). In this
work, we test the accuracy of participant responses when the intelligent system provides a
correct prediction. Testing accurate predictions allows us to understand how people trust
the intelligent system and how much they are paying attention to what it says.

Uncertainty Many classification and inference algorithms give a measure of uncertainty
- the probability that a prediction is inaccurate - in addition to the prediction itself. Studies
of context-aware and recommender systems show that providing users with the level of
uncertainty in predictions improves its overall usability (e.g., Banbury et al. (1998); Mcnee
et al. (2003)), even if the system does not provide the exact uncertainty value (Antifakos,
Schwaninger, and Schiele (2004)). For example, in the shape recognition task, the robot
indicates that it is uncertain with the phrase “Cannot determine the shape.”

Feature feedback We define feature feedback as a set of contextual features that are
most important for the inference. For example, in the shape recognition domain, feedback
might include the number of edges or sides a shape has. It has been shown in both the
active learning and HCI literature that people are capable of providing useful feature feed-
back to a system. For example, in text classification domains, people were able to indicate
not only the type of news article (sports, current events, etc.) but also keywords in the ar-
ticle that determine the type (e.g., team or score for sports (Raghavan, Madani, and Jones
(2006a))). People have also been able to successfully provide corrective feedback for
handwriting recognition, email classification, and other domains (e.g., Mankoff, Abowd,
and Hudson (2000); Scaffidi (2009); Shilman, Tan, and Simard (2006)). We test whether
providing this additional feedback influences the accuracy of non-supervisor responses to
inference questions.

Combining the Information

Despite the common use of our four types of information, we found that different combina-
tions of them have been used on different robots and other intelligent systems. For exam-
ple, search and rescue robot interfaces for supervisors almost always include the robot’s
local context and inference predictions (Yanco, Drury, and Scholtz (2004)). However,
sensor uncertainty and feature feedback did not appear in interfaces, because supervisors
implicitly also knew about the robot’s uncertainty and were able to give feedback about
the features without being asked.

In total, there are three ways to provide amount of context: no context, local context,
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State Info. Operational Definition Examples
Local The features around the Shape: “You are working with the red and
Context area that the robot is trying green blocks.”

Loc.: “I am near the kitchen.”
to classify. Act Rec: “Your feet are leaving the ground”

Email: “The email has keywords A and B.”
Int: (15 seconds of video)

Local+Global The location of the local Shape: “You are working with the red
Context context in the state space. and green blocks on the top left” (of tower)

Loc.: “I am near the kitchen by the
7100 corridor.”
Act Rec: “Your feet are leaving the ground
together and repeatedly.”
Email: “The email has keywords A and B
and title C and D.”
Int: (30 seconds of video)

High Level The high level activity data Shape and Loc: Untested
Context Act Rec: “Your feet are leaving

the ground.”
Email: “The email is summarized by F & G.”
Int: “The door is open and there are
people inside.”

Low Level The sensor level data Shape and Loc: Untested
Context Act Rec: “Shaking motion detected.”

Email: “The email has keywords A and B.”
Int: (raw video)

Prediction The most probable answer Shape: “Prediction is a rectangular prism.”
Loc.: “I think I’m at the red dot.” (on map)
Act Rec: “Prediction: Jumping.”
Email: “Prediction: Session Changes.”
Int: “Prediction: 4 (on scale 1-5)”

Table 6.2: Operational definitions for each of the types of information we focus on in
this work, and examples of that information in our five task domains: Shape Recognition
(Shape), Localization (Loc), Activity Recognition (Act Rec), Email filtering (Email), and
Interruptibility (Int).
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State Info. Operational Definition Examples
Uncertainty Probability the inference Shape, Loc, Act Rec: “Cannot determine

is incorrect the (shape, location, activity).”
Email: “Cannot confidently make a
prediction.”
Int: “Cannot determine if the person is
interruptible.”

Feature Ask the human for a set Shape: “What features describe the block?”
Feedback of contextual features that Loc.: “Please describe the location.”

are indicative of the answer Act Rec: “How can this action be detected?”
Email: “Why is this folder correct?”
Int: “How did you make that determination?”

Table 6.3: Continued from Table 6.2: Operational definitions for each of the types of
information we focus on in this work, and examples of that information in our five task
domains: Shape Recognition (Shape), Localization (Loc), Activity Recognition (Act Rec),
Email filtering (Email), and Interruptibility (Int).

or local+global context and each at high or low level for non-robots. For each of those
choices it could provide an inference prediction or not. For each of those six choices, it
could provide uncertainty information or not. And finally, for each of those choices, it
could request feature feedback or not. As a result, there are 3× 2× 2× 2 = 24 different
combinations of this information that could be provided on robots and 3 × 2 × 2 × 2 ×
2 = 48 different combinations for the other intelligent systems. We combine the types
of information in the following order: 1) uncertainty, 2) context, 3) the question the robot
wants answered, 4) prediction, 5) feature feedback. For example, when the robot in the
shape recognition task asks about a block with all four kinds of information, it would say:

Robot: “Cannot determine the shape. You are working with the red and green
blocks in the top left. What shape is the red block? Prediction is Rectangular
Prism.”
Human: Answers
Robot Follow Up: “What features describe this block?”

However, if the robot only asks with uncertainty and prediction (no context or feature
feedback), it would say:

Robot: “Cannot determine the shape. What shape is the red block? Prediction
is Rectangular Prism.”
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Human: Answers

In our studies, we explore the impact of these different combinations on the accuracy
of non-supervisor responses. In the shape recognition, activity recognition, and email
filtering tasks, we will test all combinations to find the most accurate. In the localization
and interruptibility tasks, due to time constraints, we test only some of the combinations.
While the exact statements are domain specific, they illustrate how we use the operational
definitions and can be easily generalized to other similar applications. Next, we contribute
our study design that we used to test the combinations of information.

6.2 Study Design

We define non-supervisors as humans who have a task to attend to and do not monitor
an intelligent system’s progress (Rosenthal, Veloso, and Dey (2012b)). Because they are
busy with their own task, they may not hear the information the intelligent system might
provide when asking for help, they may be rushed to answer, and as a result, their answers
may be incorrect or they may not answer at all. However, despite the interruptions, some
non-supervisors, such as system users, have incentive to accurately answer questions in
order for the intelligent system to be able to complete its tasks for them. For example,
visitors, who are escorted to meetings by a robot, may have incentive to answer ques-
tions about localization so that they can continue following the robot to their meetings
(Rosenthal, Biswas, and Veloso (2010)). Recent studies on email systems confirm that
people are willing to be interrupted if there is a perceived benefit for them later (Stumpf
et al. (2007a,b)). We are interested in combinations of information that improve response
accuracy under these conditions.

We contribute a two-phase study design, namely an initial exploration phase to test
many combinations of information and a validation phase to explicitly compare our best
found combination with a baseline combination. In the initial exploration phase when the
intelligent system asks for help, we vary the combination of information that participants
receive to understand how it affects the accuracy of their responses to the questions. Given
the number of combinations, we cannot test each combination separately. Instead, we test
the impact of each of these different types of information. In our initial experiment, we
show which types of information have a positive effect on the accuracy of the participants,
either alone or in conjunction with other information in a between-subjects design. Using
the between-subject design, we can understand how user accuracy varied through the ex-
periment without confounding user opinion by presenting multiple combinations in a short
period of time. We measure the response rate and accuracy to the systems’ questions.
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Although we do not test each combination, we perform a validation comparing the
combination which includes all positive information from the initial phase against a pre-
dicted best combination from a set of HRI and HCI experts - researchers who work in
these areas - to show that our combination statistically more accurate.

The design is intended to mirror real-world conditions of asking non-supervisors while
controlling for variations in the timing of the questions.

Cost of Help In both the initial exploration and validation phases, participants are given
a task to complete and limited time to complete it, preventing them from supervising the
system. They are told that they will only be judged on their task performance but that they
can help the system if they have time to complete the task.

Incentive to Answer Non-supervisors have incentive to answer questions despite the
interruption, because they want the intelligent system to perform tasks for them. In our
study design, participants are told that the system will interrupt their task to ask them for
help if it is uncertain of predictions it is making. They are told that helping the system
during their current task will improve their performance on a second task (which they are
never actually given), but answering is optional as it may slow down their performance
on their current task. During the study, participants must determine if they have time to
answer the question without affecting their task performance. We measure the response
rate to understand how participants evaluated the tradeoff.

Control of Question Timing The timing of a question may significantly affect response
accuracy if the question is referring to something that the participant is doing at the time. In
order to control the timing, the experimenter triggered the same questions during the same
events in the task for all participants in all conditions (the systems were wizard-of-oz’d
(Green and Wei-Haas (1985))). Controlling the timing ensures that the only difference
between study conditions is the information the participants receive when being asked for
help. The ground truth of what the systems are asking about are based on the experimenter
triggers. We compare the participants’ responses to the experimenter’s ground truth to
measure response accuracy.

Two-Phase Validation The initial exploration phase is a between-subjects experiment.
Participants are assigned to one condition of the study and receive a single combination
of information for all questions asked. By comparing participants’ responses in the dif-
ferent conditions, we can determine the best combination of information. After an initial
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study, our study design includes a second within-subject validation study to explicitly test
our best found combination of information against a combination that HRI or HCI experts
predict will result in the most accurate responses. We chose the HRI or HCI expert combi-
nation to serve as our baseline instead of a baseline with no information, because we expect
that a system that asks for help would be implemented with their predicted combination.
The validation serves to show that our results are an improvement over this baseline.

Next, we describe two experiments conducted using our study design.

6.3 Experiments

To investigate the impact of an intelligent system providing different combinations of in-
formation when asking for help, we compared the accuracy of non-supervisor responses
during each of our five tasks described in detail below. We first conducted the initial phase
of the shape recognition, activity recognition, and email filtering tasks, testing all combi-
nations of information. At the same time, HRI and HCI researchers were brought together
to come to a consensus on which combination of information they thought would result
in the highest accuracy - which we call the HRI or HCI expert input combination. Af-
ter finishing our initial tasks, we ran validations of teach task to directly compare our best
combination to the HRI or HCI expert input. Finally, we conducted the localization and in-
terruptibility task experiments to test our best validated combinations against the HRI and
HCI expert input once again. We show that our single best robot combination outperforms
all others in both robot domains, and best intelligent system combination outperforms the
other combinations in the our other three domains.

6.3.1 Task Procedures

Questions and Information Combinations Before each study began, we generated the
questions and information the robot provided based on the expected state at the time the
questions would be asked. We, first, determined which sensors that would be used in the
task (e.g., camera for shape recognition and a WiFi sensor readings for localization). Then,
we chose the blocks, locations, emails, activities, and videos that the intelligent systems
would ask for help about and used our operational definitions to generate the information
the systems would provide about them. We combined the information and questions in
the following order: 1) uncertainty, 2) context, 3) the question the robot wants answered,
4) prediction, 5) feature feedback. For example, for the shape recognition task, when the
robot provided all information it would say:
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(a) Robosapien V2 robot (b) A block structure (c) A block structure

Figure 6.1: (a) The robot asked participants to indicate the shapes of blocks they were
holding as they built the structures. (b) and (c) Examples of structures participants were
asked to build out of multi-colored blocks.

Robot: “Cannot determine the shape. You are working with the red and green
blocks in the top left. What shape is the red block? Prediction is Rectangular
Prism.”
Human: Answers
Robot Follow Up: “What features describe this block?”

Table 6.3 outlines examples of each type of state information for each task and outlines
the different combinations of information.

Shape Recognition Initial Task For the shape recognition task, we asked participants
to build structures out of blocks while the robot tried to recognize the block shapes (Rosen-
thal, Dey, and Veloso (2009)). Our robot in this study, the RoboSapien V2 robot (Figure
6.1(a)), contains a camera to track primary colors and LEDs that rotate towards the motion
so that it appeared to be watching the participants build the structures. Upon arrival for the
study, participants were randomly but evenly assigned to one of the 24 combinations of
information, given an explanation of the study and signed a consent form. Before starting
the task, participants were told that while they were building the structures, the robot might
ask them for help. The building task prevented the participants from supervising the robot
too closely. They could choose not to respond to the questions if they were too busy with
building the structures, but they were told that answering questions would benefit them in
a second related task (which we did not actually have them perform).
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Participants were, then, given 50 colored blocks and four pictures of structures each
containing 20-30 blocks to build in 12 minutes (Figure 6.1(b) and 6.1(c)). When each of 8
pre-designated blocks were picked up by the participant, the experimenter pressed a button
to make the robot ask participants to identify the shape of a block they were holding in
their hand. The participants were then given a chance to answer the questions verbally
if they chose to. After completing the task, participants were given a survey about their
experiences with the questions. Then, participants were told there was not enough time to
conduct the second task and were dismissed after being paid.

Shape Recognition Validation While the initial phase was run, we sought advice from
three members of the HRI community about which information they believe the robot
should use when asking for help. The community members understood both the tech-
nical data that could be collected and the usability requirements necessary for effective
communication to non-supervisors. We explained each type of information and how the
information could be combined together. They suggested that the robot should provide un-
certainty, local context, no prediction, and feature feedback, which we call the HRI expert
input combination, to achieve maximum accuracy. They believed that longer sentences
in the global context condition would make participants have to listen longer, interrupting
them more. Additionally, they thought that participants would not believe the predictions
if a robot was asking questions. We test the HRI expert input against our best found com-
bination from the initial shape recognition task to validate that our best combination is
better than what would commonly be implemented on robots that ask for help.

The shape recognition validation was conducted as a within-subject design with par-
ticipants receiving questions both with our best combination of state information and with
the HRI expert input combination. Participants were randomly but evenly assigned to the
combination of information they would receive first. Subjects were given the same shape
recognition task instructions in the initial phase. When they finished building their first
four structures in 12 minutes, they were given a questionnaire. Then, they were given
a second set of four structures (the order of the groups of structures were randomly and
evenly assigned between the two conditions) to complete in 12 minutes while the robot
asked questions using the second combination of information. In total, participants per-
formed two 12 minute tasks, filled out a survey after each task, and then filled out a final
survey to compare the two question conditions. When they completed the third survey,
they were paid and dismissed.

Localization Task Our robot CoBot (Figure 6.2), a real custom-built mobile robot, is
capable of autonomous localization and navigation and provides services such as tours of
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(a) CoBot - front (b) CoBot - back

Figure 6.2: CoBot from the front (a) and back (b). Participants walked behind CoBot
so that they could see the messages and questions. CoBot spoke the questions through
speakers below the laptop.

our computer science building. However, it can be uncertain of its location when using
WiFi localization (Biswas and Veloso (2010)). We have shown that if CoBot could ask for
localization help from people in the environment as it navigates, it can avoid localization
errors and speed navigation time (Rosenthal, Biswas, and Veloso (2010)).

In our localization task, participants were asked to walk around with CoBot while it
gave a 15-minute tour of one floor of the building. These participants had never been
on this floor of the building and thus could benefit from the tour. Upon arrival, they
were randomly assigned to one of five conditions: 1) no information, 2) uncertainty and
local+global context, 3) uncertainty and prediction, 4) uncertainty, local+global context,
and prediction, and 5) uncertainty, local+global context, prediction, and feature feedback
(our best found combination from the shape recognition task). In pretests, we found that
local context was not enough for people who had never seen our building before. Addi-
tionally, we include uncertainty in four conditions because it has previously (Antifakos,
Schwaninger, and Schiele (2004)) been found that users tend to trust agents more when
they admit they are uncertain. The other conditions all included context and predictions.
Our 5th condition tests our best combination which also includes feature feedback.

The experimenter remote-controlled the robot to each location in the building, trig-
gering information about seven different laboratories, art installations, and views from
the windows as it navigated. Participants were told that the robot would not be able to
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continue the tour if they did not help it. Because the experimenter was standing behind
the participant while he/she was following the robot, the participants could not see the
experimenter trigger the questions or control the robot and they believed the robot was
moving autonomously. During the tour, the experimenter stopped the robot in 13 pre-
defined locations to ask participants to indicate the robot’s location on a map (Figure 6.3).
We used CoBot’s uncertainty and predictions from its autonomous navigation to guide our
decisions in where we triggered questions during the study. After the participant clicked
on the map to indicate their location, the robot would continue navigating. After partici-
pants completed the 15-minute tour containing 7 places of interest and 13 questions, they
were given a survey about their experiences with the robot. Upon completing the survey,
participants were paid and dismissed.

Figure 6.3: CoBot stopped in 13 locations to ask participants to indicate their current
location by clicking on the map on the user interface.

6.3.2 Activity Recognition Initial Task

Subjects were told they were testing a new physical activity coach on a handheld device
that could detect the different activities they performed (Figure 6.4). The subjects’ primary
task was to perform each of the 12 physical activities from a list provided (Table 6.4).
Subjects were given all equipment required to complete the activities, including a soccer
ball, tennis balls, rackets, step stools, and golf clubs.

They were required to carry a Nokia 770 Internet Tablet that would recognize their
activities and beep when it had questions. They were to respond to questions on the tablet
using a stylus on a virtual keyboard. We randomly pre-selected 8 out of the 12 activities
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to ask participants about. Questions were sent from the experimenter’s computer, 10-
20 seconds after each activity was initiated. Subjects were told that they should answer
the questions if they felt they had time as their responses would help them in a second
task (which was never given). Subjects had 12 minutes to complete as many activities as
possible, while answering the agent’s questions when they had time.

As with the other initial studies, when the participants arrived they were randomly
but evenly assigned to one of the study conditions in a between-subject design. After
completing the experiment, they were asked to fill out a survey about their experiences
with the activity coach. Upon completion, participants were paid and dismissed.

Activity Description
Walk Walk around the room once

Soccer Dribble a soccer ball around the room once
Steps Step up and down off a stool 10 times
Tennis Bounce a tennis ball on a racket 10 times
Golf Putt golf balls on a mini course 5 times

Hula Hoop Use a hula hoop 10 times
Read Sit and read 2 pages of a travel book

Toss Ball Throw a ball in the air 10 times
Bounce Ball Bounce a ball on the ground 10 times

Jump Jump up and down 20 times
Jumping Jacks Do 10 jumping jacks
Push Objects Push 5 chairs from table to the wall

Table 6.4: Participants were told that their activity coach could detect 12 tasks.

6.3.3 Activity Recognition Validation

As with our shape recognition task, while the initial phase was run, we sought advice from
three members of the HCI ubiquitous computing community about which information they
believe the activity recognizer should use when asking for help. The community members
understood both the technical data that could be collected and the usability requirements
necessary for effective communication to users. We explained each type of information
and how the information could be combined together. To achieve maximum accuracy, they
suggested that the device should provide no uncertainty, high-level and local+global con-
text, predictions, and feature feedback, which we call the HCI expert input combination.
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(a) (b)

Figure 6.4: Activity recognition task participants answered questions while performing
activities such as tennis.

The activity recognition validation was conducted as a within-subject design with par-
ticipants receiving questions both with our best combination of state information and with
the HCI expert input combination. Participants were randomly but evenly assigned to the
combination of information they would receive first. Subjects were given two different
sets of activities to perform with the two combinations of information and were asked to
fill out a survey after each. In total, participants performed two 12 minute tasks, filled out
a survey after each task, and then filled out a final survey to compare the two question
conditions. When they completed the third survey, they were paid and dismissed.

6.3.4 Email Filtering Initial Task

In this task, participants were asked to read provided emails about an upcoming academic
conference and consolidate all the changes that need to be made to the conference schedule
and website (Steinfeld et al. (2006)). They were given a spreadsheet with information
about conference speakers, sessions, and talks, and asked to make changes to it based on
change requests in the email, in 12 minutes. The emails and task were modified from the
RADAR dataset (Steinfeld et al. (2006)). The emails in the data set were labeled with a
folder name, which was removed to test the participants. Additionally, we added high-level
summaries of the emails and low-level keywords for the agent to use to ask for help.

When subjects arrived, they were randomly but evenly assigned to their combination
of information condition (between-subjects design). Subjects were given an email appli-
cation with the emails and were told that the classifier had sorted most emails into folders
based on the type of changes that needed to be made (schedule or website). The email
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interface was built with Adobe Flex and presented on a 15” Apple MacBook Pro. The
participants were asked to try to sort the “Unsorted” emails and answer the questions that
popped up automatically when the participant read an email while they were busy updat-
ing the spreadsheet with the relevant information. After 12 minutes were up, participants
were given a survey about their experiences with the email tool. They were then paid and
dismissed.

6.3.5 Email Filtering Validation

We again sought HCI community expert advice while running our initial Email Filter-
ing task. Community members worked on the usability of email systems and understood
the technical data and usability requirements of such an email filtering application. Like
the activity recognition validation, they suggested that to improve accuracy of responses,
an email filtering application should provide provide uncertainty, low-level extra context,
predictions, and do not request user feedback, which we call the HCI expert input combi-
nation.

Like the other validation experiments, participants were randomly but evenly assigned
to which of the two conditions (expert input or our guideline) they would receive first.
Subjects were given two different sets of activities to perform with the two combinations
of information and filled out surveys after completing each set. In total, participants per-
formed two 12 minute tasks, filled out a survey after each task, and then filled out a final
survey to compare the two question conditions. When they completed the third survey,
they were paid and dismissed.

6.3.6 Interruptibility Validation

The problem of recognizing when someone is interruptible has been widely studied (e.g.,
Fogarty et al. (2005); Horvitz, Koch, and Apacible (2004)). Specifically it has been shown
that strangers are fairly accurate at rating someone elses interruptibility. With crowd-
sourcing technologies widely available today, we conducted an additional task on Ama-
zon.com’s Mechanical Turk, an actual system that is often used to pair label requestors
with people willing to label data. The labelers on this website have never seen the appli-
cations that collect the data (they are non-supervisors); they only fill out forms online for
a small fee.

We recruited subjects from Amazon.com’s Mechanical Turk to estimate the interrupt-
ibility of office workers from video data previously collected. When the interruptibility
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Figure 6.5: Participants were asked to judge whether people were interruptable in their
offices.

video data was collected, office workers made the ratings without specifying who the in-
terrupter was. Our dataset included 586 45-second videos from 5 offices at a university that
had been labeled with an interruptibility value from 1 (Highly Interruptible) to 5 (Highly
Non-Interruptible) by the five office workers themselves. Twelve videos were selected
from the data set and put on the Mechanical Turk website, two randomly chosen from
each interruptibility level plus two more from randomly chosen levels. Participants on
Mechanical Turk were asked to rate the person in each of the 12 videos on the same 1-5
scale (Figure 6.5) using questions with our guideline or HCI expert input for a between-
subjects design. Participants were randomly but evenly assigned to which condition they
received and were paid upon completion of their survey.

6.3.7 Participants

Pittsburgh residents with ages ranging from 18-61 (mean 27.6, s.d 2.4) with a variety of
occupations including students, bartenders, teachers, and salesmen performed the shape
recognition, activity recognition, and email filtering tasks, Thirty-seven subjects in the ini-
tial phase performed all three tasks and 33 more performed the validations - 11 per task.
Forty-two participants were included in the localization study all of whom were graduate
or undergraduate students at Carnegie Mellon University who had not spent time in our
new computer science building. 180 participants in the Interruptibility task were recruited
anonymously on Mechanical Turk, but were only allowed to complete the task once by
comparing usernames. Only a few participants (15%) had experience with machine learn-
ing technology, and all spoke fluent English.
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6.3.8 Measures

Because a robot agent would benefit more from correct answers to questions rather than
incorrect ones, we assessed the non-supervisor responses to the questions primarily based
on correctness. The responses in the shape recognition task were classified as a binary
value: correct or incorrect. The responses in the localization task were measured as the real
distance from the true robot location to the location the participants clicked on the map.
We also gave surveys to all subjects about their opinions of the robots, asking questions
including whether they found the applications to be annoying.

Shape Recognition, Activity Recognition, and Email Filtering: Participants’ responses
were classified as correct answers if their last answer (some users changed their minds) was
correct and incorrect otherwise. For example, if a subject disagreed with the prediction,
but gave an equally correct answer, it was classified as correct. Synonyms were determined
to be correct as long as they were not too vague. For example, “rectangle” was considered
a synonym to “rectangular prism” but “square” and “cylinder” were not.

We also analyzed the amount of feature feedback that was given for those conditions.
If non-supervisors can provide accurate labels for their data, their ability to give quality,
or helpful, feedback is of particular interest to possibly speed learning tasks (Raghavan,
Madani, and Jones (2006b)). If participants received a request for feedback, their response
was coded based on how many features about the data were provided. A value of 0 was
given to a response that provided no additional information (e.g., “I don’t know”). For ev-
ery piece of valid information, the value increased by 1. For example, “I’m doing jumping
jacks if my arms move up and down and my legs go in and out”, would be given a value
of 2.

Localization Task: Participants clicked on a map displayed on the robot’s screen to
indicate their current location, and the (x, y) locations of their clicks were logged in order
to determine the Euclidean distance to the actual robot location. These mouse clicks could
be used directly by the robot by translating the pixel coordinates into (x, y) coordinates
in the building, making it an ideal way to ask for help. Each pixel is equal to about 4
inches and a hallway in the building is 15 pixels across. The mouse clicks were deliberate
as participants often considered which pixel to press within a 1-2 pixel granularity. We
recognize Euclidean distance does not distinguish incorrect hallways or inside offices as
worse than a click in the appropriate hallways. However, our data indicates that when
these errors occur, they are at large distances from the true location anyway.
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Interruptibility Validation: Participants in this study gave a numerical value from 1 to
5 for their interruptibility predictions. We analyzed the mean squared error (MSE) of the
given response to the true label for that data.

MSE = (true− predicted)2 (6.1)

Although we do not expect participants to necessarily give accurate predictions, we expect
them to be close to the true interruptibility. This schema more heavily penalizes predic-
tions that were further from the true interruptibility.

Surveys: After completing any of the tasks, participants were given questionnaires on
their subjective experiences with each technology. They were asked about whether they
thought the robot’s questions were annoying and whether they found each dimension par-
ticularly useful. Responses were coded as either “Yes” or “No” because participants were
not exposed to their combination of information many times and we did not believe that
using a Likert scale to understand information preferences would produce valid results.
Participants were also asked whether it was easy or hard to answer the questions on a
Likert scale from 1 (very easy) to 5 (very hard).

6.4 Experiment Results

We analyze the results of our studies to determine the combination of the four types of
information that results in the most accurate responses. We find the same combination
results in the highest accuracy in both robot domains while a different best combination
results in the highest accuracy in the other 3 domains. We will compare our results with the
HRI and HCI expert input to show that our combinations improves accuracy a statistically
significant amount.

6.4.1 Shape Recognition Initial Task

The robot asked all subjects at least 5 out of the 8 possible questions, due to some sub-
jects running out of time. There was no significant difference in the number of questions
answered for any particular combination of state information. Six percent of the questions
that were asked were ignored due to the primary task. Seven participants skipped at least
one question with two participants accounting for nearly half of the skipped questions. Of
the answered questions, participants had an average error rate of 16.4% (s.d. 25%). This
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(a) Context (b) Prediction

(c) Uncertainty (d) Feature Feedback

Figure 6.6: Shape recognition initial task results. (a) The more context the robot provides,
the higher the accuracy of the participants’ responses. (b) When the robot includes a pre-
diction, the participants answer more accurately. (c) When the robot provides at least local
context, the accuracy increases when the participant also receives uncertainty information.
(d) When the robot asks for feature feedback, the participants answer more accurately.

high standard deviation indicates that many (15) participants answered all questions cor-
rectly while several had very high error. We performed an ANOVA with the F statistic to
test for ordering effects of whether the question number affected the participant accuracy.
We found that there was no order effect and the accuracy did not change over the eight
questions (F [7, 170] = 1.70, p > 0.05). McNemar tests with the χ2 statistic were used to
analyze the significance of the categorical response (correctness) against the categorical
independent variables (our four types of information).

We analyzed the effects of each individual type of information on the proportion of cor-
rect answers the robot received. Figure 6.6(a), 6.6(b), 6.6(c), 6.6(d) show the percentage of
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questions that were incorrectly answered for context and predictions, uncertainty, and fea-
ture feedback, respectively. Subjects made statistically significantly fewer errors as they
were given more context, dropping from 42% (none) to 23% (local) to 10% (local+global)
(χ2[2, 2] = 8.61, p < 0.02). Subjects made significantly fewer errors when they received
predictions (10%) compared to when they did not (25%) (χ2[1, 1] = 3.59, p < 0.05)
and made fewer errors when asked about feature feedback (10%) compared to when they
were not (19%) (χ2[1, 1] = 4.05, p < 0.05). There were no significant effects of uncer-
tainty alone, but we found a significant paired effect of uncertainty and context reducing
the error from 21% to 16% with local+global context and no significant difference in er-
ror without context (χ2[2, 2] = 5.98, p < 0.05). There were no other significant effects.
Overall, we find that providing all four types of state information - local+global context,
prediction, uncertainty, and feature feedback - increases the accuracy of non-supervisor
responses. We will refer to this combination of information as our guideline for robots to
ask non-supervisors for help and compare it to the HRI expert input next.

Subjects did not find any combination of dimensions more annoying than the others.
Of the participants who received feature feedback, predictions, uncertainty or contextual
information (local and local+global), 35%, 64%, 37% and 71%, respectively, found them
to be useful.

6.4.2 Shape Recognition Validation

We compared the responses of participants in a within-subject design when the robots
asked questions with the HRI expert input (local context, uncertainty, and feature feed-
back) to our guideline (local+global context, prediction, uncertainty, and feature feed-
back). T-tests were used to analyze the significance of the categorical response (correct-
ness) against the two combinations of information (expert input and our guideline). There
was no significant effect in the ordering of the conditions (t[186] = 0.00, p > 0.05).
Figure 6.7 shows the percent of questions subjects answered incorrectly for each condi-
tion. There are significant effects of the combination on the proportion of correct an-
swers subjects gave. Subjects provide significantly more correct answers (2.22% error)
to the robot’s questions when using our guideline compared to the expert input (15.63%)
(t[186] = 10.05, p < .01).

Participants were asked whether they thought each kind of information was useful in
helping them to answer the robot’s questions. Subjects only scored the two systems differ-
ently for the contextual information dimension. While six participants gave our guideline
combination (with local+global context) a score of 5 (very useful) for contextual infor-
mation, only two participants gave the HRI expert combination (with local context) the
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Figure 6.7: Shape recognition validation participants made significantly fewer errors when
the robot provided our guideline combination compared to the combination determined by
HRI expert input.

same score. However, a t-test shows no statistical difference between local context (3.46
average score) and local+global context (4.15) (t[13] = 1.39, p > 0.05). Participants
rated our prediction on average 3.69 which is more positive than neutral, but we could not
compare this to the expert condition which did not receive predictions. Subjects rated our
uncertainty and the expert uncertainty (which were the same), 2.67 and 2.77 respectively
(t[13] = 0.18, p > 0.05). Similarly, participants rated the feature feedback (which were
the same) identically at 2.66 (t[13] = 0.0, p > 0.05).

Subjects were given another survey at the end of the experiment asking which system
they preferred, which they thought was smarter, and which learned more. On all three sur-
vey questions, our guideline scored higher. Twelve out of fourteen respondents preferred
our guideline over the expert input, eleven thought ours was smarter, and ten reported they
thought ours learned more.

6.4.3 Localization Task

We collected the clicks on the map for each participant and calculated the Euclidean dis-
tance from the clicks to the actual robot location. Because the distribution of these dis-
tances was skewed, we performed a log transformation to normalize the data. We, then,
analyzed the results of the localization test of log distances with a mixed model with par-
ticipant ID as a random effect and the question condition as a fixed effect analyzed using
the F statistic. Our results show there are statistically significant differences between the
five conditions (F [4, 38.53] = 3.93, p < 0.001). We used contrasts to analyze whether
there were statistically significant differences between our guideline (condition 5) from
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Figure 6.8: The localization task had 5 conditions: 1) no state information, 2) uncertainty
and local+global context, 3) uncertainty and prediction, 4) uncertainty, local+global con-
text, and prediction, and 5) (our guideline) uncertainty, local+global context, prediction,
and feature feedback. Participants who received our guideline combination of information
responded with the least error.

the shape recognition study and the other four conditions tested. Running 4 contrasts
means that statistical significance is determined at the level of p < .05/4.

Although we analyzed the log distances, we report the true distances in meters for clar-
ity (Figure 6.8). Participants who received no state information clicked further away from
the robot’s true location (4.5 meters) compared to those who received our guideline (1.65
meters) (F [1, 38.45] = 22.17, p < 0.001). Participants who received only uncertainty and
local+global context or uncertainty and predictions clicked 2.76 and 2.74 meters respec-
tively from the true location, a marginally significant difference (F [1, 38.9] = 3.18, p =
0.082) (F [1, 38.7] = 3.78, p = 0.059). While our guideline shows a 1 meter improvement
to these two conditions, there was a larger range of click distances for these conditions
leading to only marginal significance. Finally, participants who received local+global con-
text, uncertainty, and prediction clicked significantly further from the true location (2.94
meters) than those with our guideline (F [1, 37.6] = 8.17, p < 0.001).

6.4.4 Activity Recognition Initial Task

We collected 119 responses from participants, including 8 for which participants (6 of
them) said they were too busy to respond. When we analyzed the remaining 111 responses
for the effects of the individual dimensions on the proportion of errors participants made,
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we found that subjects were correct nearly 100% of the time and there was no effect of
any of the dimensions or their combinations. However, we found that when an intelligent
system requests feature feedback, subjects were able to provide on average of .81 pieces of
quality feedback compared to almost 0 pieces without being asked (some subjects provided
feedback without prompting). We include feature feedback in our best combination, as this
is a statistically significant difference (F [6, 112] = 8.87, p < 0.001).

We then used the McNemar test on the amount of feedback with all five dimensions
as independent variables to analyze the significance. We find that subjects who received
local context provide a significantly larger amount of quality feedback (.77 pieces) com-
pared to those provided either no context (.30 pieces) or local+global context (.31 pieces)
(F [2, 2] = 5.38, p < .002). Additionally, subjects who received low-level context pro-
vided statistically significantly greater amount of feedback (.58 pieces) compared to high-
level context (.34 pieces) (F [1, 1] = 3.33p < 0.05). There were no significant effects and
no combined effects for providing predictions or uncertainty so we use qualitative results
to understand the impact of those dimensions.

We find that 25% of subjects who did not receive predictions reported it hard or very
hard to answer the questions. Additionally, 0% of subjects with predictions reported the
task difficult and 83% thought the questions were useful. There were no effects of un-
certainty on the qualitative data so we do not include it in our best combination. Based
on these results, we determine that the best combination for a non-supervisor labeling
their own data is the following: no uncertainty, do provide sufficient low-level context,
predictions, and request feature feedback.

6.4.5 Activity Recognition Validation

We validate our best combination against the HCI community advice: do not explain un-
certainty, but provide high-level and extra context, predictions, and request feature feed-
back. We collected 113 responses from participants including 11 non-responses. Four
participants were too busy to respond at least once. We found that for both conditions,
subjects gave correct responses 100% of the time and there were no statistically significant
effects on feedback quality, so we use the qualitative results to differentiate the conditions.
Subjects found that our dimensions were useful but only 30% realized they were receiving
contextual information. Subjects did not prefer either system and could not identify which
one learned more, but 70% of participants thought the system using our guidelines was
smarter. Participants that believe a computer is smarter will respond with more sophis-
tication than to one they think is not as smart (Pearson et al. (2006)). So, we conclude
that our combination is at least as good as, if not better than, other combinations of the
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information.

6.4.6 Email Filtering Initial Task

We collected 153 responses from participants including 13 non-responses. Four partic-
ipants answered that they were busy at least once. We first analyzed the effects of each
individual type of information on the proportion of errors. Subjects answered a statistically
significant larger proportion of questions incorrectly when given high-level context (46%)
versus low-level context (37%) (χ2[2, 2] = 10.57, p < .01) (Figure 6.9(a)). Subjects had
significantly higher error rate when they received no context (47%) or extra context (52%)
compared to subjects who received sufficient context (40%) and this effect is heightened
when combined with the level of context (χ2[4, 2] = 11.04, p < .01) (Figure 6.9(b)). No
other single type of information was significant.

To understand how the other three dimensions affected participant performance, we
analyzed the effects of pairing them with the significant dimension and each other. Sub-
jects provided statistically significantly more errors when they did not receive a prediction
with local context (50%) compared to when they did (22%) (χ2[2, 2] = 7.72p < .01) (Fig-
ure 6.9(c)). We found that if we provide local context, providing uncertainty decreases
error from 54% to 30% (χ2[4, 4] = 11.56p < .01). There is a significant paired effect of
prediction with uncertainty (χ2[2, 2] = 8.70p < .01). Finally, we found that requesting
feature feedback resulted in a decrease from 70% to 10% in errors when paired with un-
certainty but an increase in error from 13% to 55% when no uncertainty information is
provided (χ2[2, 2] = 12.21p < .02).

We analyzed the survey responses to understand how useful subjects felt each dimen-
sion was. We found that 50% of subjects thought the questions were useful to them during
their task while 41% found answering them annoying. A majority of subjects who saw
each dimension thought they were useful. 90% of subjects found context useful when they
received at least sufficient context, and 100% of subjects who received predictions found
them useful. 78% and 71% of subjects who were asked for feedback and who received
uncertainty respectively, found it useful. We conclude that the intelligent system should
use the following combination when asking non-supervisors to label other data: provide
uncertainty, sufficient low-level context, predictions, and request feature feedback.
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(a) Level of Context (b) Amount of Context

(c) Prediction

Figure 6.9: Email filtering initial task results. (a) Low level context improved accuracy
more than high level context. (b) Participants answered most accurately when given local
context. (c) When paired with local context, participants answered more accurately when
given a prediction.
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6.4.7 Email Filtering Validation

HCI researchers that work in the email domain came to the following consensus on our
dimensions: provide uncertainty, low-level extra context, predictions, and do not request
feature feedback. We collected 301 responses including 4 non-responses. Three partici-
pants refused to respond at least once. We found a significant effect of the combination on
the proportion of correct responses (t[2, 250] = 2.48, p < .01). Subjects who received our
combination were 100% correct, while those who received the community advice were
94% correct. A majority (8/11) people preferred the community advice but (7/11) people
thought our intelligent system was learning more. When we analyze the dimensions that
differed between combinations, more people preferred our context (58% vs. 40%) and
predictions (63% vs. 40%).

6.4.8 Interruptibility Validation

Participants in this study were required to answer all 12 questions. Half of our 180 par-
ticipants estimated the interruptibility for 12 videos with the best combination from the
email task and half received the email communitys advice. We analyzed the average mean
squared error (MSE) of each participants estimation compared to the true interruptibility
across the videos and performed a between-subjects ANOVA analysis to compare the error
between the combinations. We removed 16 of the 180 subjects that had MSE results that
were more than 3 times the median of the entire data set (average MSE=1.37, outliers ¿
4.11). Subjects who received our combination had a statistically significant lower average
MSE (mean 1.17, std. dev. 0.62) than those who received the community advice (mean
1.42, std. dev. 0.92) (F [1, 164] = 6.02, p < 0.01). Subjects who received our combination
were correct or off by one level of interruptibility 85% of the time, while subjects that
received the community advice were correct 80% of the time. Both of these are better than
the previously published interruptibility result, reporting a 65% off-by-one accuracy with
only sufficient context.

6.5 Discussion

Our results show that we were able to find two combinations of information for intelli-
gent systems to provide non-supervisors to increase the accuracy of their responses - one
for robots to provide and one (differing in only one dimension) for other systems such as
mobile phones or email applications. Additionally, we were able to validate these com-
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binations of information against HCI and HRI expert input. Next, we discuss the impact
of each kind of information on the human as well as the impact to intelligent systems of
providing this information.

6.5.1 Benefits of Robot State Information

Interestingly, the combination of information that resulted in the most accurate responses
for the non-supervisors is the same as the combination found useful for supervisors even
though all the information was not found on supervisors’ interfaces (Yanco, Drury, and
Scholtz (2004)). We found that participants in the shape recognition study rated the context
and the prediction as useful to helping them respond, while supervisors similarly include
the two types of information in their interfaces. Additionally, while neither our participants
nor the supervisors rated the uncertainty and feature feedback as not useful, both types of
information were found to increase the accuracy of responses. Contrary to HRI expert
intuition about which information increases the accuracy of responses, our result shows
that all types of information have an impact on the non-supervisor. However, we believe
that a robot will not need to provide all information to supervisors, shortening the length of
each required question, because they implicitly know the uncertainty and feature feedback
information.

Context and Prediction: The supervisors and non-supervisors use contextual informa-
tion and prediction to focus their attention on what the robot is asking about. In the shape
recognition task especially, where the participants were not shown the camera view of the
robot, the full (local+global) description of where the robot was looking was useful to help
participants find the block in question. Although the prediction was always correct, partic-
ipants often did not trust it. The contextual information was used by the non-supervisors
to check that the robot’s prediction was consistent with the context it was providing. Ad-
ditionally, the subjects’ high rating of the predictions indicates that they listened to the
predictions despite being busy with their primary task. A robot with less accurate pre-
dictions would need to focus more on providing contextual information to help people
determine the accuracy of the prediction.

Uncertainty: Although non-supervisors were frequently interrupted with questions in
their structure building task and in the tour, they almost always answered the questions
when it was prefaced with uncertainty information. Although these interruptions slowed
them down, when the robot said explicitly that it was uncertain, the participants felt they
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should answer the question. We found a significant interaction of uncertainty and con-
text in our analysis marked by improvement in accuracy with high levels of context, which
confirms previous findings that users tend to trust or rely on systems more when the system
displays uncertainty information (Antifakos, Schwaninger, and Schiele (2004)). However,
when participants were asked whether they valued uncertainty, they did not remember if
they had received the uncertainty information and did not report it as useful. We believe
that participants underestimated how much they were using the uncertainty in their predic-
tions.

Feature feedback: When participants were asked to provide feature feedback about
their response, they sometimes changed their labels to the correct answer when they
thought about why they chose the particular label. While it may be difficult for a sys-
tem to incorporate such freeform feedback as we allowed, it has been shown that feature
feedback can improve classifier accuracy (Raghavan, Madani, and Jones (2006a)). Ad-
ditionally, and perhaps more importantly, we have shown that the robot will benefit from
increased response accuracy just by asking the question and irrespective of using the re-
sponse.

6.5.2 Benefits of State Information for Other Systems

We found that each of the five dimensions amounts of context, level of context, un-
certainty, prediction, and requests for user feedback had a positive effect on the non-
supervisors of other intelligent systems as well. In particular, the best combinations of
information for the activity recognition and email filtering tasks were nearly the same
only differing by uncertainty.

Context and Prediction First, participants used the context and prediction to match
the intelligent systems focus. For example, many participants used the key words and
summaries of the emails when deciding on a label instead of reading the entire email. As
a result, the questions did not take as long for participants to answer compared when they
had to pick out the important context themselves. Additionally, participants checked to
confirm their label was consistent with the given context.

We had assumed that because the email labelers did not know the context the data was
drawn from, the intelligent email filter would need to provide extra context to maximize ac-
curacy compared to users of activity recognizers that knew their own context as they were
acting. However, because participants had some domain knowledge for sorting emails and
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determining if someone is interruptible, they did not need as much context to be accurate.
We also found that just as participants did not require high-level context about their own
activities, they did not require high-level context in the email or interruptibility tasks be-
cause the raw data (email keywords and video clips) were already human-understandable.
This is significant because it reduces computation time for constructing questions, and
eliminates the need to translate low-level sensor data into high-level context, allowing
more time for processing data.

Uncertainty The only difference between the email filtering and activity recognition
task combinations is uncertainty. Uncertainty offers no help to the labeler but indicates
that the classification is hard. Participants were aware of the difficulty of activity recog-
nition without the acknowledgement from the system, reporting that they were impressed
that a mobile device was able to recognize their activities. Receiving uncertainty did not
change their opinion about the recognizer and there were no significant changes in accu-
racy as a result. However, participants in the email filtering and intelligibility tasks saw
human-understandable data and assumed the classification was, in fact, easy. When these
participants received uncertainty, we believe they recognized the difficulty of the task and
tried harder, resulting in higher accuracy responses. In general, non-supervisors that real-
ize the classification is hard do not require uncertainty information.

Furthermore, although participants were frequently interrupted with questions in their
12-minute tasks, they almost always answered when it was prefaced with uncertainty. For
example, in the activity recognizer task, one participant who was interrupted only seconds
after starting a task said, “Its interrupting me again! Oh, well, I guess it must be hard
to distinguish between these [activities].” This shows that participants excused the inter-
ruption when they felt they could help the intelligent system. However, when we asked
participants whether they valued uncertainty, they did not remember if they had received
that information and therefore reported it as being not useful. We believe participants
underestimated the usefulness of uncertainty for the usability of the questions.

Feature Feedback Finally, when participants were asked to provide feature feedback
about the label, they sometimes changed their labels to the correct answer when they
thought about a reason for the label. While it may be difficult for a system to incorpo-
rate such freeform feature feedback, we find that the intelligent system will benefit from
increased response accuracy just by asking the question and irrespective of using the re-
sponse. To make it easier to use such feedback, the intelligent system could ask a multiple-
choice question. Overall, we found each piece of information was useful for participants.
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6.5.3 Errors

We were initially surprised by the number of errors that participants made in the domains,
particularly the robot ones. However, upon further examination of the data, we found that
there were two main causes of errors among our participants in each task. In the shape
recognition, the robot asked each question about the block the participants were currently
holding in their hands. The participants often picked up multiple blocks at a time, causing
mix-ups in shape when they were not paying attention. Additionally, participants con-
tinued building while the robot asked for help. If they put down their block and picked
up another one of the same color, sometimes they would respond with the shape of the
latter block although the robot started asking earlier. Similarly, in the activity recognition
task, participants continued performing their activities even after the device asked them
for help, causing errors if they completed the task and moved to the next one before an-
swering the question. While these two problems could have been solved by requiring the
participant to stop what they were doing to listen to the intelligent system, it is unlikely
that non-supervisors would stop what they were doing in real world situations. We believe,
therefore, that our shape and activity recognition results reflect real world scenarios at the
cost of increased numbers of errors in many conditions. Our shape recognition validation
results show that using our guidelines, the error rate drops to 2% even when participants
do continue working during the question.

In the localization study, the robot stopped moving to allow the participants to click
on its attached laptop. Realistically, an error of 3 meters or more, as we received in all
conditions except our best found combination, would not resolve the robot location uncer-
tainty around an intersection to know whether to turn now or continue straight for another
meter before turning. The two main causes of error in the localization task were due to
1) lack of knowledge of the building and 2) misunderstanding the robot’s question. When
participants did not know the building, they often found it hard to read the map even with
every room labeled. Participants would often click on the correct corridor of rooms but did
not focus their clicks close to specific room they were nearest to, resulting in clicks further
down the hall away from the true robot location. Additionally, participants who found the
room sometimes would click on the room itself rather than their location in the hallway.
While this is an interesting response, it would result in large localization errors on a real
robot.

Both of these errors were greatly reduced using our combinations of information. The
participants in our guideline condition in the localization task had an average error of 1.65
meters, roughly the width of the hallway. While the robot can account for such error in its
sensors, responses with larger errors would be difficult to use because the questions often
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occurred near hallway intersections when the robot is uncertain of whether to turn yet. The
predictions on the map indicated to the participant to click in the hall instead of in a room.
Most importantly, the feature feedback question resulted in participants looking around at
room numbers more than in other conditions. This heightened awareness likely impacted
the responses the most in our guideline condition.

6.5.4 Computation Required to Calculate State Information

As we are motivated by task-driven robots that interact with people in the environment, we
acknowledge that computation is limited on these robots and generating these questions
may sometimes not be possible. We aimed to use information that was largely already cal-
culated or known by the robot in order to reduce the computational requirements of asking
for help. However, with limited resources, we found that a robot can increase the accu-
racy of its responses most with the least computation by providing at least local context,
and also providing uncertainty and asking for feature feedback. We have found the most
significant increases in accuracy when adding additional context, and suggest maintaining
at least local context when asking for help. When CoBot provided context, participants’
errors dropped from 4.5 meters to 3 meters to the robot’s true location. Providing uncer-
tainty information and asking for feature feedback both increase accuracy without having
to generate any new information. The feature feedback, in particular, requires that the
non-supervisor be more alert of the robot and the environment and results in more ac-
curate responses, dropping localization error significantly from 3 meters to less than 2
meters.

6.6 Chapter Summary

People in the environment can help intelligent devices reduce their need for supervision.
However, they may not understand the device’s questions and may not answer accurately.
We have demonstrated in 5 different domains, including several validation experiments,
that devices can improve accuracy by changing the way they ask for help.

We first contribute a novel two-part study design to evaluate which combination of
the four types of information results in the most accurate non-supervisor responses. In
the design, participants are asked to perform a task to limit their ability to supervise their
intelligent systems. As an intelligent system requests help on its own task, participants
determine whether it is worth interrupting their task to respond. The intelligent system
is wizard-of-oz’d to ensure that the only difference between study conditions is the in-
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formation provided; each participant receives the same questions at the same time during
their task. After an initial test of many different combinations of information, our design
includes a validation study to explicitly test our best found combination against a combi-
nation that HRI and HCI experts believed would result in the most accurate responses.

Our second contribution is the results of 5 experiments based on this study design.
Two experiments are on robots − a shape recognition task and a localization task. In the
shape recognition task, a wizard-of-oz’d toy robot asks participants to identify the shapes
of blocks they are manipulating. In the localization task, a remote-controlled (wizard-of-
oz’d (Green and Wei-Haas (1985))) real robot asks participants to identify their current
location while giving a tour of the building. We find that providing all four kinds of infor-
mation together - context, prediction, uncertainty, and feature feedback - most improved
the accuracy of participants’ responses in both studies (Rosenthal, Dey, and Veloso (2009);
Rosenthal, Veloso, and Dey (2012a)). The last three experiments are on smart phone activ-
ity recognition, email filtering, and interruptibility. Interestingly, we find that a different
set of information from the robot studies results in the highest accuracy for all three of
these experiments (Rosenthal and Dey (2010)).

While this result may seem obvious, our group of HRI and HCI researchers predicted
that different combinations would result in more accurate responses compared to our
findings. In a direct comparison with their selected combination, we validated that our
best found combinations provides a statistically significant improvement in accuracy. We
thirdly contribute our combinations as guidelines, validated in five domains and against
HRI and HCI expert input, that can be used in new domains to increase non-supervisor
accuracy. Because these combinations of information have been validated many times, we
argue that they can be used directly in new applications using our operational definitions
of each type of information.
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Chapter 7

Learning Models of Humans

We have shown that there are many important human state attributes to model in human-
centered algorithms when determining whether, how, and who to ask for help. However,
we have not yet contributed algorithms for learning these attributes and the corresponding
reward functions that the human-centered algorithms utilize.

In this chapter, we contribute three algorithms to learn these attributes and rewards.
Our first algorithm uses linear regression over Likert scale survey ratings from phone
users to determine their cost of help and incentive to help (details in Chapter 5). The
resulting predictive models were used in the human-centered volume learning algorithm
(details Chapter 2). While users indicated that the algorithm made accurate decisions about
whether to ask for help, the survey was very long and could not be deployed to many peo-
ple. The longer that the surveys become, the more likely the participants will abandon the
survey leaving no usable results (Heberlein and Baumgartner (1978)).

Second, we contribute an algorithm to learn reward functions in which the reward is a
linear function of several subrewards such as human state attributes. We call these reward
functions multi-attribute additive reward functions. Our goal for the algorithm is to elicit
rewards and preferences from device users and environment occupants in a “usable” way
that asks easy questions for people to answer and does not require too many responses. In
particular, our algorithm asks comparison questions between concrete scenarios, which is
easier and more accurate for humans to do than provide arbitrary Likert ratings.

Finally, because it can be difficult to measure human state attributes such as availability
and accuracy prior to deploying the device, we contribute an algorithm that learns avail-
ability and accuracy while executing the human-centered HOP-POMDP navigation policy
presented in Chapter 3. We demonstrate that the algorithm converges to the true availabil-
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ity and accuracy of environment occupants while only recomputing the optimal POMDP
policy when the approximated values change significantly from the current policy.

7.1 Learning Models of Phone Users

In Chapter 5, we showed that phone users have costs and incentives to help their phones
learn their volume preferences. The phone needs to learn the costs and incentives for dif-
ferent situations that the user might encounter in order for the volume learning application
to determine whether or not to ask. To collect costs and incentives, we asked participants
to fill out our survey. We contribute our method for using their responses to learn the per-
sonalized cost and incentive models which were inputted into our human-centered phone
volume learning application.

7.1.1 Algorithm

As phone users filled out surveys, we created artificial but plausible sensor values for each
of the features on the phone for each situation in the surveys (e.g., driving, in meetings).
In order to do this, we captured sensor values as we ourselves were in each situation. For
example, while driving, we measured example speeds measured from the GPS, accelerom-
eter vibrations, and microphone noise levels.

Then for each user, we used our artificial sensor values to train a linear regression
(easily computable on a phone) with the users’ surveyed Likert ratings for their cost of
help and incentive to help. For example, we used the Likert value for the cost of asking
while driving as the label for the artificial sensor values of driving. The linear regression
model was then loaded onto the user’s phone for use by the human-centered learning
algorithm.

For any new sensor values collected while the user is using the phone, the linear re-
gression will predict the user’s cost and incentive to help. By comparing these two values,
our algorithm can determine if it should ask for the user’s phone volume preferences. It
is important to note that because we used only a linear combination of the features in Ta-
ble ?? and did not use complex features, our cost approximations are easy to calculate on
phones but may not always be predictive for all users. We aimed to overestimate the cost
of help for each user in order to minimize the number of questions asked.
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7.1.2 Results

Our linear regression models varied in their ability to capture each participants predicted
asking costs, as measured by the R2 test, but overall was successful for such a simplistic
model. Some of our linear regressions had R2 values near 1, indicating that the linear
regression almost completely modeled the features that determine user’s cost or incentive.
Others were only about 0.3 (mean 0.65, s.d. 0.15), indicating that there were other features
that could be added to the linear regression to better model the cost and incentive.

Our results of the human-centered learning algorithm that used these linear regressions,
however, show that the asking is usable and our learned models were successful in trading
off the costs and incentives. However, our surveys were too long to be deployed to many
users.

7.2 Active Learning of Additive Reward Functions

We have shown that surveys can be effective in approximating human cost and incentive
to help. However, research on how to write surveys shows that the order the questions are
asked influences the numerical value they are given (Schwarz and Hippler (1995)) and if
the questions are multiple choice the scale of the choices matters for the answers they will
provide (Schwarz et al. (1991)). Additionally, the length of our phone survey is prohibitive
to deployment, as people typically are not willing to fill out long surveys (Heberlein and
Baumgartner (1978)).

In this section, we are interested in using active learning techniques to reduce the length
of surveys. Now, rather than maintaining one cost and one incentive function, we combine
the two values into a single multi-attribute reward function. We learn these multi-attribute
additive reward functions as a linear combination of the the human state attributes while
minimizing the number of survey questions that humans are asked.

7.2.1 Problem Definition

Let a state of a human s be factored into features 〈s1, s2, . . . , si, . . . sn〉 that reflect the
tradeoffs (e.g., time, distance, interruption, etc) that humans are making to determine their
action a (e.g., to help a device or not). The additive reward function of a state,action pair

R(s, a) =
∑
i

λiri(si, a) (7.1)
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is the sum of scaled (by λi) subrewards ri(si, a) computed over the state’s features. With-
out loss of generality, we require the values of each subreward to be normalized ri(si, a) ∈
[0, 1], where values towards 1 represent higher reward. Additionally, let a concrete state,action
pair scenario with specific feature values be denoted σ where σ.s and σ.a refer to the sce-
nario’s state and action respectively. The goal is to learn the personalized reward scale
values of λi subject to the constraints that ∀i, 0 ≤ λi ≤ 1 and

∑
i λi = 1 from humans.1

While there have been several very successful algorithms for learning these reward
functions from humans, they are in general not feasible to deploy to real users. Inverse
Reinforcement Learning learns a reward function based on demonstrations of optimal be-
havior from a human (Ng and Russell (2000)). The algorithm hinges on the fact that
because the human’s actions are optimal, the reward for taking the action a from the ob-
served state s must be greater than any other possible action a′ ∈ A from the same state:

∀a′ ∈ A,R(s, a) > R(s, a′) (7.2)

The set of inequalities resulting from the observed behavior can be solved using linear
programming to find a solution to the reward function that is optimal for the given set
of demonstrations. This algorithm was extended to problems in which each state is fac-
tored into features (multi-attribute) and the reward function is learned over features as our
problem statement requires (Abbeel and Ng (2004)). However, while experts can easily
demonstrate optimal states and actions, it may be difficult for real users to 1) perform ac-
tions optimally (Argall, Browning, and Veloso (2008)) and 2) know which demonstrations
will best teach the learner leading to the need for many demonstrations (Eagle and Leiter
(1964)).

In order to overcome the errors in demonstration, other work has focused on the learner
(algorithm) proactively asking the human which of two probabilistic scenarios is preferred
in an active learning style (Regan and Boutilier (2011)). The algorithm asks questions of
the form “Would you prefer action a in 1) a concrete state or 2) with probability in the
best or worst state. This algorithm has been shown to ask relatively few questions while
learning λs (Regan and Boutilier (2011)) which is important for real people as survey re-
sponse rate has been shown to decline as the number of questions increase (e.g.,Heberlein
and Baumgartner (1978)). However, it has been shown that people often overestimate the
probability that good things will happen (Weiten (2011)) and as a result, the values of λ
may be skewed.

1Because of the subreward normalization, ∀λi ≥ 0. Proof by contradiction. If there was a λi < 0, the
higher the subreward the lower the product λi∗ri(si, a). This contradicts the requirement that feature values
near 1 are better. The subreward function could instead be negated (and renormalized) so that λi is positive.
Additionally, without the constraint

∑
i λi = 1, there are an infinite number of valid scaling factors (e.g., for

numFeatures = 2, λ1 = λ2 = 0.5 is equivalent to λ1 = λ2 = 1.0).
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Next, we describe our algorithm to learn additive reward functions that asks few ques-
tions but also asks questions that are less susceptible to human error by asking about two
concrete states rather than probabilistic ones.

7.2.2 LearnImportance Algorithm

We contribute the LearnImportance algorithm that asks people for their preferences be-
tween two scenarios σ1 and σ2 with concrete values for each feature si∑

i

λi ∗ ri(σ1.s, a)
?

>
∑
i

λi ∗ ri(σ2.s, a) (7.3)

For example, it could ask about human preferences of helping or not helping in different
scenarios. We use a Monte Carlo method to determine the pairs of scenarios to ask about
by generating a set of hypothesis λs and choosing a pair that best divides the hypothe-
sis space in half. By dividing the space in half, our algorithm ensures it asks relatively
few questions (log in the number of hypotheses). The last hypothesis best approximates
the person’s preferred λ scaling factors with the error rate decreasing as the number of
hypotheses increases. Additionally, because preferences form linear inequalities, it is pos-
sible to solve the linear program to approximate λ like IRL does.

Our LearnImportance algorithm is outlined in Algorithm 3. We instantiate the algo-
rithm with a number of features numFeatures and a set of concrete state,action scenarios
that would make sense to explain to people. Given the number of features, the algorithm
generates a set of hypotheses h for the possible values of λ subject to the constraints de-
fined above (Line 1, Figure 1a). Our algorithm also instantiates the list of user preferences
to the constraint that

∑
i λi = 1.

While the number of valid hypotheses h is still greater than 1, the algorithm iterates
over all pairs of scenarios to find the pair which divide the hypothesis space most evenly
(Line 4, Figure 1b). We use a Monte Carlo method to find the best pairs of scenario
rather than computing the true area of the hypothesis space. When the user responds with
their preference of either σ1 or σ2 (Line 5), the algorithm generates the correct preference
inequality (Lines 6-10), adds that preference to the list of preferences (Line 11), and then
iterates through h to remove the hypotheses that are invalidated by the new preference
(Line 12) (Figure 1c). It repeats the process until it narrows down the hypothesis space to
a single hypothesis (Figure 1d). Then, it finds a solution λ (Line 14).

We next discuss the details of each function in turn.

133



Algorithm 3 LearnImportance(numFeatures, scenarios)
1: h← GenerateMonteCarloHypotheses(numFeatures)
2: preferences←

∑
i λi = 1

3: while |h| > 1 do
4: (σ1,σ2)← FindBestPair(h, scenarios)
5: betterScenario← Ask(σ1,σ2)
6: if betterScenario = σ1 then
7: pref←

∑
i λi(ri(σ1.s, σ1.a)− ri(σ2.s, σ2.a)) > 0

8: else
9: pref←

∑
i λi(ri(σ2.s, σ2.a)− ri(σ1.s, σ1.a)) > 0

10: end if
11: preferences← preferences ∪ pref
12: h← RemoveHypotheses(h, pref)
13: end while
14: return FindSolution(preferences)

Generating scenarios: Because our algorithm asks about concrete state-action scenar-
ios in a survey form, those scenarios must be explainable and understandable to people.
We recommend making a list of scenarios by hand that are easy to describe to users in or-
der to ensure that they meet this requirement. In practice, we have not found the particular
scale or values of these scenarios to have an impact on the ability to accurately learn λ,
except values spanning each feature be used.

For example, we can use two human state attributes that we previously found to de-
termine the reward for helping a device - a user interruption level computed on a scale
[1, 10] and the number of hours ago that the last query was asked [0, 24]. While a valid
scenario is any combination of these two features, it may not be easy for a user to imagine
a situation where their interruptibility was 5.346 and they were asked 8.82 hours ago. In-
stead, we could create concrete scenarios that require the interruptibility be given in whole
numbers and last question asked hours ago could be [0.5, 1, 2, 4, 8, 24] (hour values that
are relatively easy to think about).

In general, the generated scenarios should be easy for a user to understand without
much explanation.

GenerateMonteCarloHypotheses: We generate a uniform random set of hypotheses
for λ subject to our constraints that 0 ≤ λi ≤ 1 and

∑
i λi = 1. Each hypothesis is in

R|λ|−1, as λ0 can be completely explained by the remaining features. As with all Monte
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(a) (b)

(c) (d)

Figure 7.1: a) The LearnImportance algorithm first GeneratesMonteCarloHypotheses for
λ where

∑
i λi = 1 (here |λ| = 2). b) The algorithm searches the through all pairs of

scenarios to FindBestPair that cuts the hypothesis space in half. c) When it finds the best
pair, it asks the person for their preference and removes the invalidated hypotheses. d)
Then, it repeats the process of finding a new pair of scenarios, asking, and removing the
invalid hypotheses.

Carlo methods, increasing the number (and therefore the density) of hypotheses increases
the accuracy of the learned λ. In our experiments section, we vary the number of generated
hypotheses to show how the accuracy of the learned λ increases.
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FindBestPair: The additive reward for each scenario is R(s, a) =
∑

i λiri(si, a). If a
user preferred scenario σ1 over σ2, we can generate an inequality∑

i

λiri(σ1.s, σ1.a) >
∑
i

λiri(σ2.s, σ2.a)

or
∑
i

λi(ri(σ1.s, σ1.a)− ri(σ2.s, σ2.a)) > 0 (7.4)

which forms a plane through the hypothesis space h and invalidates hypotheses that do not
satisfy the new preference.

Let invalid(h,pref) be the number of hypotheses in h rendered invalid by the prefer-
ence. FindBestPair iterates through all pairs and finds the pair of scenarios σ1 and σ2 that
minimizes

abs(invalid(h, pref)− |h|/2) (7.5)

where pref is an equality like Equation 7.4. In other words, it finds the pair of scenarios
that best splits the hypotheses in half. Dividing h in half each time through the loop (Line
3) implies that the number of user preference questions needed to learn λ is log2(|h|)
questions.

RemoveHypotheses: Once the best pair is found, the user is asked for their preference
by listing the features of each scenario. Then, the algorithm generates the inequality pref-
erence pref based on their response. The RemoveHypotheses function iterates through all
hypotheses in h, determining whether each is valid by setting in the hypothesized values
of λ into the inequality, and removing those from the list that are invalid. The hypotheses
remaining in h after RemoveHypotheses satisfy all preference inequalities in preferences.

Rather than removing hypotheses, it is possible to redistribute the invalid hypotheses
in the valid area keeping the number of hypotheses the same over time. This process will
increase the accuracy of the algorithm because there are more hypotheses to divide in half
at each step, but at the cost of possibly asking the person more questions.

FindSolution: The FindSolution algorithm could use the remaining hypothesis as its
approximation of λ. As the number and density of hypotheses increases, the error of
the remaining hypothesis decreases because the valid hypothesis area is more constrained
(Metropolis and Ulam (1949)).

It is also possible to evaluate the linear program of the preference inequalities that
were generated through the algorithm to constrain the hypothesis space. An algorithm

136



such as the simplex algorithm (Dantzig (1963)) find the valid area within the inequalities
and and find the minimum or maximum point subject to another constraint (e.g., minimize
or maximize the distance from (0,0)) For the purposes of understanding how the selected
scenarios impacted the preference inequalities, we will evaluate the linear program in our
following experiments.

Next, we present experiments towards demonstrating the use of our algorithm on an
example additive reward problem. Because the scenarios are not probabilistic and we are
not asking for numerical values as in our previous surveys, we show that people should
find this exercise to be understandable and that their preferences are consistent over the
length of the survey.

7.2.3 Experiment

In order to understand how our algorithm performs on real-world tasks, we present our
experiment to evaluate its ability to learn different reward functions for asking different
environment occupants to travel to help CoBot use the elevator. We first describe the
occupants’ reward functions that we would like to learn. Then, we briefly describe our
surveys again to show the use of scenario comparison questions. Finally, we present our
simulated results to learn random scaling factors λ with different numbers of generated
hypotheses and different types of generated scenarios for |λ| = 2 and 3.

CoBot maintains state information about itself (i.e., its own location) as well as in-
formation about offices and people in the environment. In order to determine where to
navigate in order to ask for help, we presented our replanning algorithm that determines
the offices that are closest to its current location and the location where it will need help
(e.g., the elevator, kitchen, etc). Additionally, the algorithm included the cost of asking
each human in terms of human state attributes such as how interruptible they are, how
frequently they help, and the last time they were asked. As a result, our robot minimizes
the sum of subrewards computed over the robot and human state to determine where to
navigate and who to ask for help. For example:

arg min
lo

COT(lcurr, lo) + COA(lo, ιo, fo, to) + COTH(lo, lhelp)

where

• COT(lcurr,lo): distance to travel from current location lcurr to office lo,

• COA(lo,ιo,fo,to): cost of asking at lo for help, based on their interruptibility ιo, fre-
quency of help fo, and the last time to they helped,
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• COTH(lo,lhelp): distance to travel from the office lo to the location of help lhelp with
the human.

In our problem, our three subrewards: cost of asking (COA) and the cost of traveling
with and without the human (COT and COTH) are independent and additive. While we
could manually tweak subreward functions so that the values are roughly in the range to
get to our desired behavior, this takes time and is subject to error. Because each person has
different preferences, determining the COA and COTH for each office is infeasible without
asking them for their preferences but is also infeasible to require them to demonstrate
their preferences. We would like the environment occupants to fill out a survey of their
own preferences for when they get asked for help in order to increase their satisfaction
with the robot and likelihood that they will continue helping it over time. The survey
should not be too long in order to increase the likelihood that it gets filled out (Heberlein
and Baumgartner (1978)), and should include questions that are easy to answer and not
susceptible to error.

Using our LearnImportance algorithm, we will train 3 scaling factors for our three
subrewards:

λ1 ∗ r1(COT, ask(lo)) + λ2 ∗ r2(COA, ask(lo))

+λ3 ∗ r3(COTH, ask(lo)) (7.6)

Interestingly, in this problem, we also have a secondary additive reward learning prob-
lem in relationship between our 3 COA features - ιo interruptibility,fo frequency of asking,
and to time of last question - to compute the COA for the larger reward function:

λ4 ∗ r4(ιo, ask) + λ5 ∗ r5(fo, ask) + λ6 ∗ r6(to, ask) (7.7)

We took a two part approach in order to learn these scaling factors. First, we deployed
a survey (summarized in Chapter 5) with 50 of these comparison questions in order to
evaluate the consistency of responses and the ease of understanding from participants.
These questions were not dynamically generated using our algorithm; instead they were
static and the same for each person. Then, we performed simulated experiments to under-
stand how our algorithm performed with different preferences, scenarios, and numbers of
hypotheses.

7.2.4 Survey Results

We conducted a web survey about participants preferences for what conditions and how
frequently they would be willing to help our robot (summarized in Chapter 5). In the
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Figure 7.2: In the survey, participants were asked which of two people (orange and green)
should help a robot (center in blue) use the elevator (pink box). For example, the peo-
ple here are equidistant from the elevator but have different availability and frequency of
helping.

survey, participants were given two concrete scenarios and asked which person should
be asked for help (Figure 7.2). Participants were able to successfully answer all of our
concrete scenario comparison questions and did not ask us to clarify the scenarios or the
instructions. As expected, they did respond that the 50 questions was extreme for an online
survey format.

We analyzed the results to understand if and when participants’ responses began con-
flicting with previous answers. Importantly, while participants did tire of the questions and
became inconsistent in their preferences over time, the first 10-20 questions depending on
the person were consistent. This indicates that our new algorithm should not need to ask
more than this many questions to learn the additive reward functions. We were unable to
use the actual responses to learn additive reward functions because of the error by the end
of the 50 questions. Instead, we next simulate the comparison questions.

7.2.5 Simulated Results

In order to understand how our algorithm performed with different scenarios and different
numbers of generated hypotheses for random scaling factor preferences, we performed a
series of simulated experiments. In the experiments, we randomly generated sets of true λ
such that

∑
i λi = 1, and then ran our algorithm with auto-generated responses to the Ask
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Figure 7.3: As the number of hypotheses increases for |λ| = 3, the error rate of the
solutions decreases regardless of the evenness of the scenarios chosen.

questions based on the true λ. In total, we tested 30 random λs for each variable of |λ| =
2 or 3, the number of hypotheses (number of queries), preference solution analysis, and
types of scenarios generated.

We analyze the minimum and maximum intersection point of the simplex formed by
the constraints to understand the size of the simplex for the number of questions asked.
However, these solutions may not satisfy the

∑
i λi = 1 requirement. For implementation,

one should instead use the last remaining hypothesis left after asking questions.

Figure 7.3 shows the average minimum and maximum distance error of the solution
λ from the randomly generated true λ for |λ| = 3. The error rates of both solutions
are parallel and decreasing with the number of hypotheses indicating that the preference
constraints are narrowing down λ from the high and low values equally. In our scenarios,
the minimum intersection point had less error than the maximum distance solution with
average difference 0.14.

Next, we evaluate our choices in scenarios and the resulting accuracy. We generated
both evenly spaced scenarios for our robot navigation example (whole number evenly
spaced distances, values of a potential cost of asking, and cost of traveling with the hu-
man) as well as unevenly spaced scenarios (interruptibility in tenths, hours ago of last
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question [0.5, 1, 2, 4, 8, 24, 48, 168], and frequency of questions per day [0.05, 0.1, 0.5,
1.0, 2.0, 5.0]). Our subrewards map both even and uneven scale values to [0, 1]. Because
these scenarios dictate the dividing hyperplanes through the hypothesis space, it is possi-
ble that they could affect the error of the learned λ. The grey lines in Figure 7.3 represent
the evenly spaced conditions and the black dashed lines represent the uneven conditions.
The differences between the lines is negligible compared to the number of generated hy-
potheses, indicating that the algorithm is accurate irrespective of the scenarios.

Finally, we compare the number of hypotheses or questions generated compared to
the accuracy of the solution based on the size of λ. As Figure 7.3 shows, as the number
of hypotheses and number of questions = log(hypotheses) increases, the error decreases.
With 5000 hypotheses or 12 questions, the algorithm is able to learn the solution with
0.02 (s.d. 0.1) error on average. The high standard deviation implies that most of the
solutions had 0.0 error. For |λ| = 2, the algorithm required only 5 questions on average to
reach error 0.015(s.d. 0.05) although increasing the number of hypotheses to 5000 reduced
error to 0.0(s.d.0.001). This indicates that our algorithm can learn 2 and 3 attribute reward
functions with a small number of questions, making it feasible to deploy.

Additionally, it is worth noting that rather than adding 10 times as many hypotheses for
each |λ| increase, it is possible to redistribute the hypotheses in the valid area rather than
removing them as we mentioned above. This would reduce the computation of iterating
through all hypotheses to find the pair that best pair of scenarios that divides them without
sacrificing accuracy.

In summary, we contribute a novel Monte Carlo algorithm for eliciting scenario prefer-
ences from people and learn additive reward functions in log of the number of generated
Monte Carlo hypotheses. In particular, our algorithm asks people for their preferences
between two concrete state,action scenarios and refines its list of valid hypotheses accord-
ingly. We demonstrate using a survey that real people can understand the questions and
answer accurately. Then, we provided simulated results to show that the error decreases
as the number of hypotheses increases and that the specific concrete scenarios that the
algorithm asks about do not affect the accuracy. We conclude that our algorithm is less
susceptible to human error while learning user preferences proportionately to the number
of hypotheses.

141



7.3 Learning Human Attributes During Deployment

Finally, our human-centered planning algorithms require models of human attributes such
as availability and accuracy not just for reward functions but also in observation functions.
Our HOP-POMDP presented in Chapter 3, for example, is defined as {Λ,S, α, η,A,O,Ω, T, R}.
where

• Λ - cost of asking each human

• α - availability for each human

• η - accuracy for each human

• A = A ∪ {aask} - autonomous actions and a query action

• O = O∪{∀s, os}∪onull - autonomous observations, a human observation per state,
and a null observation

• T (s, aask, s) = 1 - self-transition for asking actions

It requires predefined availability and accuracy for each human in the environment. How-
ever, it may be difficult to acquire accurate approximations prior to robot deployment. Ad-
ditionally, these values may change over time. In this section, we introduce our LM-HOP
algorithm to learn the availability and accuracy of human observation providers while the
robot executes its current policy using an explore/exploit strategy. Because the availability
and accuracy are used in the observation function, our algorithm learns this observation
function.

Recent work has also focused on using oracles to learn the transition and observation
probabilities of POMDPs when it is difficult to model a robot before it is deployed in
the environment (Kearns and Singh (2002); Jaulmes, Pineau, and Precup (2005); Doshi,
Pineau, and Roy (2008); Cai, Liao, and Carin (2009)). In these algorithms, a robot in-
stantiates hypothesis POMDPs that could possibly represent its transition and observation
functions. The robot executions the action consensus from all of the hypotheses until there
is disagreement between them of which action to take. The robot then asks an oracle to
reveal the current state, the hypotheses which do not include the current state in the belief
are removed, and new hypotheses are instantiated to replace them. In this way, the robot
converges to choosing hypothesis POMDPs with the correct observation and transition
functions. However, the robot must solve hypothesis POMDP policies 103 − 106 times to
learn the observation and transition functions for small problems like the Tiger Problem,

142



which is intractable for robots in real time (Kearns and Singh (2002); Jaulmes, Pineau,
and Precup (2005)). Additionally, we cannot depend on humans to be available to help the
robot.

7.3.1 Algorithm

We introduce an online algorithm to learn the availability and accuracy of humans in the
environment (the HOP-POMDP observation function) while the robot executes the cur-
rent optimal policy using an explore/exploit strategy. While prior work on learning ob-
servation functions would also learn our HOP-POMDP observation function, the work
is not tractable to solve in real environments due to their instantiation of multiple hy-
pothesis POMDPs and the requirement that an oracle provide accurate observations about
the robot’s state (Jaulmes, Pineau, and Precup (2005); Doshi, Pineau, and Roy (2008)).
Instead, our algorithm for Learning the Model of Humans as Observation Providers (LM-
HOP):

1. requires only one HOP-POMDP to be executed at a time,

2. selectively recalculates the policy only when the observation probabilities have changed
significantly, and

3. does not require an always-accurate and available oracle to provide accurate obser-
vations.

In particular, the algorithm keeps track of the most up-to-date availability and accuracy
for each human while balancing exploration of the environment with exploitation of the
current policy. When the up-to-date availability is significantly different from the current
policy availability, the robot recalculates the optimal policy using the new values. We
detail the LM-HOP Algorithm (Algorithm 4) in terms of these three contributions.

Single HOP-POMDP Instantiation We only instantiate a single HOP-POMDP for
learning rather than several hypothesis POMDPs. We maintain counts (#os′,s) for each
observation os′ in each state s and for each null observation in each state, as well as the
robot’s belief b(s), and the availability and accuracy of each human (Lines 1-5). Before
each action, the robot chooses a random number ρ to determine if it should explore or ex-
ploit the current best policy π (Lines 8-12). Then, as usual, the belief is updated according
to the current policy and observation (Line 14), rather than taking the consensus action of
many hypothesis POMDPs.
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Learning Human Accuracy and Availability In HOP-POMDPs, the robot only needs
to learn after aask actions. Prior work assumes that a human will always answer accurately
(os). However, in our algorithm, if onull is received after asking, the robot does not know
its current state. As a result, it must update the approximate availability of all possible
states it could be in, weighted by the probability of being in each state b(s) (Lines 17-18).
If an observation os is received, its availability of each state is incremented by the belief
b(s), because we still do not know if the human answered accurately (Lines 19-22). In
order to learn accuracy from observations os, each ηs is incremented by the belief b(s) of
the robot (Lines 23-24). The accuracy and availability are calculated as averages (over
time t) of observations over all questions asked.

It should be noted that due to the limitations of humans in the environment, our algo-
rithm may attribute some unavailability to some available humans. In particular, the robot
attributes the unavailability onull to all states weighted by b(s). If one human is always
available and another is never available, some unavailability will still be attributed to the
always-available human because the robot is uncertain and does not know it is not asking
the always-available human.

Selective Learning In order to reduce the number of times a HOP-POMDP policy
must be recomputed, we selectively update the policy when the estimated availability or
accuracy of a human has changed significantly from the current HOP-POMDP estimate.
We determine if any availability or accuracy has significantly changed using Pearson χ2

test which tests the difference between an observed set of data and the expected distribution
of responses. For example, with availability αs = 0.7 we would expect that only about
30% of the received observations are onull. To compute the statistic, we define the number
of observations from state s as ns : ns =

∑
s′ #os′,s + #onull,s

Then we define χ2(s) =

(
∑′

s #os′,s − nsαs)2

nsαs
+

(#onull − ns(1− αs))2

ns(1− αs)
(7.8)

to test whether the observed availability α̂s is different than the initialized αinit,s or the
accuracy η̂s is different than ηinit,s with 95% confidence (χ2(s) > 3.84, Lines 27-31). If so,
then it is unlikely that our current HOP-POMDP represents the humans in the environment.
The approximations of all accuracies and availabilities must be updated, and the HOP-
POMDP policy must be recomputed. The confidence parameter can be adjusted to further
reduce the number of policy recalculations (e.g., 99% confidence would require χ2(s) >
6.64). We expect our algorithm to recompute few times in contrast to the prior algorithms
which recalculate each time the hypothesized POMDP actions conflict.
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Algorithm 4 LM-HOP(π, τ, αinit, ηinit, binit)
1: // Initialize availability, accuracy and counts

2: α̂s ← αinit,s, ∀s, s′, #os′,s = 0,#onull,s = 0
3: // Execution Loop

4: for t = 1 to∞ do
5: b← binit
6: loop
7: // Choose explore or exploit action

8: if ρ > 1
t

then
9: a← random action

10: else
11: a← π(b)
12: end if
13: // update belief using transitions τ, receive observation o

14: b← τ(b, a), o← Ω(b, a)
15: // if a = ask, update availability based on onull and

accuracy based on os′

16: if a = aask then
17: if o = onull then
18: ∀s, α̂s ← (1− 1

t
b(s))α̂s, #onull,s ← b(s)

19: else
20: #observed os′
21: ∀s, α̂s ← (1− 1

t
b(s))α̂s + 1

t
b(s)

22: ∀s, #os′,s ← b(s)
23: for s 6= s′, η̂s ← (1− 1

t
b(s))η̂s

24: η̂s ← (1− 1
t
b(s′))η̂s′ + 1

t
b(s′)

25: end if
26: end if
27: // is α̂ different than αinit?

28: if for any s, χ2(s) > 3.84 for αs or ηs then
29: αinit,s ← α̂s, ηinit,s ← η̂s
30: π ← SOLVE POLICY(αinit)
31: end if
32: end loop
33: end for
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7.3.2 Experiment

In order to test our learning algorithm, we use the same benchmark HOP-POMDP with
two available humans as we used previously in Chapter 3. Our benchmark HOP-POMDP
is a finite-horizon POMDP that contains 5 states and 2 actions with two humans (states 2
and 3) and two final states (4 and 5) (Figure 7.4). The robot starts at state 1 and chooses
to take action B or C, where

T (1, B, 2) = 0.75 T (1, B, 3) = 0.25

T (1, C, 2) = 0.25 T (1, C, 3) = 0.75

The robot can then execute B or C from 2 and 3 to 4 or 5:

T (2, B, 4) = 1.0 T (2, C, 5) = 1.0

T (3, B, 5) = 1.0 T (3, C, 4) = 1.0

However, the reward for state 4 is -10 and the reward for state 5 is +10. The robot
has the opportunity to ask for help in states 2 and 3 to ensure it receives +10. The costs
of asking when the humans respond are R(2, aask, 2, o) = R(3, aask, 3, o) = −1 and
when they do not respond R(2, aask, 2, onull) = R(3, aask, 3, onull) = 0. We vary the true
availability and accuracy of the humans in states 2 and 3, and learn them while executing
the current best policy.

Depending on the availability and accuracy of the humans h2 and h3, the optimal policy
will determine whether the robot should take action B or C from state 1 and whether it
should ask at the next location. This POMDP is similar in size and complexity to other
POMDP benchmarks such as the Tiger Problem, and we will compare our results to those
of other results on similar problem sizes.

We show that our algorithm significantly reduces the number of HOP-POMDP poli-
cies that must be computed compared to prior work. Additionally, compared to these
approaches and other explore/exploit learning algorithms for POMDPs (e.g., Kearns and
Singh (2002); Cai, Liao, and Carin (2009)), we show that our algorithm converges to-
wards the true accuracy and availability of human observation providers without requiring
an additional oracle to provide true state observations. As a result, the algorithm is more
tractable to execute in a real environment.

7.3.3 Results

We first tested the LM-HOP algorithm, assuming that the humans were 100% accurate.
We initialized the availability αinit,2 = αinit,3 = 0 to understand how fast the algorithm
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Figure 7.4: The robot starts at state 1 and can take actions to travel to states 4 (reward -10)
or 5 (with reward 10). There are humans in states 2 and 3 that the robot can decide to ask
so that it travels to state 5 to maximize its reward.

would converge to true availabilities. We compare to an explore-only algorithm that does
not take into account the current best policy to determine how to act and an exploit-only
algorithm that only acts based on the current best policy. As with the LM-HOP algorithm,
if the estimated availability is significantly different than the current policy estimates, we
recompute the current policy. As an example, Figure 7.5 shows the estimated availability
of h2 (light grey) and h3 (black) over 5000 executions of the HOP-POMDP with true
availability α2 = 0.7 and α3 = 0.4.

We then tested the simultaneous learning of both the availability and accuracy of hu-
mans in the environment. We initialized the availability of both humans to αinit,2 =
αinit,3 = 0.0 and the accuracy of both humans to ηinit,2 = ηinit,3 = 1.0. We then var-
ied the true accuracy and availability of our humans to understand the learning curves.
Figure 7.6 shows an example of the learning rates for the availability and accuracy of h2
and h3 when true accuracy of each humans is 0.5 and the true availabilities are α2 = 0.7
and α3 = 0.4.

Explore/Exploit Strategy We find that our LM-HOP algorithm and the explore-only
algorithm closely approximate the true availability and accuracy. The approximate avail-
abilities in Figure 7.5 are 67% (compared to 70%) and 41% (compared to 40%). Com-
pared to the explore-only algorithm (Figure 7.5 dot-dash lines), our LM-HOP algorithm is

147



Figure 7.5: The estimated availability of h2 (light grey) and h3 (black) over 5000 execu-
tions of the HOP-POMDP with true availability α2 = 0.7 and α3 = 0.4.

slower to start converging because it tries to maintain high expected reward by exploiting
the current best policy of not asking for help. If we modified the explore-exploit learning
parameter ρ, our LM-HOP algorithm would spend more time exploring at first and would
converge faster. Our algorithm does converge faster in the end because, after recalculating
the policy, the policy includes asking. The exploit-only algorithm learns very slowly in
our example because the initial optimal policy does not include ask actions.

We also compare the average reward (collected over 10000 executions) between the
learning algorithms and the optimal policy reward if true accuracy and availability were
known. Although the explore-only algorithm performs similarly to our LM-HOP algo-
rithm in terms of number recalculations and convergence, it earn only an average -.215
reward compared to our algorithm which earns 3.021. The exploit-only algorithm earns
4.742 reward, and the optimal policy initialized to the true availability and accuracy earns
5.577. While the exploit-only algorithm earns more on average than our LM-HOP algo-
rithm, we find that it earns very little reward when it chooses the path with lower avail-
ability first and high reward otherwise. Our algorithm does not have this dichotomy, and
therefore we believe it performs better. We found no statistical difference between the av-
erage reward received when only learning availability and when learning availability and
accuracy.

Comparison to Prior POMDP Learners The X’s on Figure 7.5 show the number of
policy recalculations while learning availability only. On average, our LM-HOP algorithm
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Figure 7.6: The estimated availability (light grey) is learned at the same time as the ac-
curacy of the humans (black). h2 is visited more often and his accuracy (0.5) is learned
faster.
recalculated the policy 20-30 times when learning only availability. When learning both
accuracy and availability, our algorithm recalculated the policy an average of 10 more
times for a total of 30-40. Additionally, our algorithm converges to the true availability
and accuracy within 1000-2000 executions of a single HOP-POMDP.

By varying the statistical significance confidence interval, it is possible to speed up
how many executions it takes for our algorithm to converge. By requiring less confidence
in the new availability and accuracy values, our algorithm does not have to wait so many
executions before recomputing the policy. However, the tradeoff is that there will be more
POMDP recomputations. Overall, the LM-HOP algorithm recalculates the policy signif-
icantly fewer times than the prior work’s 103 − 106 recalculations of 20 POMDPs of the
similar-sized Tiger Problem Jaulmes, Pineau, and Precup (2005); Doshi, Pineau, and Roy
(2008).

7.4 Chapter Summary

In this chapter, we contribute algorithms for learning human state attributes and reward
functions in a usable way. We first introduced our linear regression algorithm that used
survey situations and Likert value responses to predict phone users’ cost of and incentive
to help. While the algorithm did not always accurately model these two attributes, the
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human-centered algorithm that used these predicted values had high usability.

Second, in order to reduce the number of questions that people must answer and also
avoid using Likert values that people find hard to estimate, we introduces an active learning
algorithm that determined scenarios to ask people about and learned multi-attribute reward
functions. We demonstrated using our survey results that participants did find these ques-
tions easier to answer, and using simulated results that our algorithm learns more accurate
reward functions as the number of questions increases.

Finally, we introduced our LM-HOP explore/exploit algorithm to learn the availabil-
ity and accuracy of the humans while executing the current best policy. We demonstrated
that in terms of the explore/exploit strategy, our algorithm converges faster and with con-
sistently higher reward than the explore-only and exploit-only algorithms. Compared to
prior learning algorithms, we demonstrated that our algorithm, with a single hypothesized
HOP-POMDP, recomputes POMDP policies at least 2 orders of magnitude fewer times.
Our LM-HOP algorithm is effective in approximating the true availability and accuracy
of humans without depending on oracles to learn.
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Chapter 8

Related Work

This thesis merges ideas from Human-Computer Interaction (HCI), Human-Robot Inter-
action (HRI), and Artificial Intelligence (AI) about devices eliciting help from humans to
perform tasks more efficiently. We review the research efforts in HCI, HRI, and AI for
all aspects of asking for help that are covered in this thesis: determining when an agent
requires help, determining who to ask, how to ask a person specifically, when it is appro-
priate to ask a person, and finally how agents can use those responses. We use the term
“agents” in this chapter to refer to both software planners and robots.

8.1 Kinds of Help

The literature defines a wide spectrum of ways that people and agents can offer advice and
help to another agent. Parasuraman et al. suggest there are four types of help that a human
can give: information acquisition, information analysis, decision and action selection, and
action performance (Parasuraman, Sheridan, and Wickens (2000)). When acquiring or
analyzing information, agents that use sensors may ask for help with reducing reasoning
uncertainty (e.g., locations on a map (Asoh et al. (1996); Biswas and Veloso (2010))) using
experience sampling (Barret and Barrett (2001)) or observation (Hayes et al. (2004)) or
online during execution (e.g., Cohn, Atlas, and Ladner (1994); Lewis and Gale (1994)).
Because it can be easier for people to confirm a label rather than generate a new one (Eagle
and Leiter (1964)), some agents only require a person to confirm a help response (e,g,,
Fong, Thorpe, and Baur (2003)) or provide corrective feedback (e.g., Shilman, Tan, and
Simard (2006); Argall, Browning, and Veloso (2007); Faulring et al. (2010)). Raghavan
et al. found that in some domains like text classification, people are good at determining

151



the important features of differentiating between labels in addition to providing the labels
themselves (Raghavan, Madani, and Jones (2006a)).

Deciding which action to take depends on the mapping from states to actions (the pol-
icy) that should be taken. In robot learning by demonstration, a demonstrator creates that
mapping for the robot. Methods for learning include telling the agent which action to take
if the agent already knows how to perform it (Chernova and Veloso (2008b)), physically
moving the robot through teleoperation (e.g., Katagami and Yamada (2001); Nicolescu
(2003); Browning, Xu, and Veloso (2004); Saunders, Nehaniv, and Dautenhahn (2006)),
or physically performing the task for the agent to imitate (e.g., Hayes and Demiris (1994);
Atkeson and Schaal (1997); Price (2003); Lockerd and Breazeal (2004)). In reinforce-
ment learning (e.g., Kaelbling, Littman, and Moore (1996); Sutton and Barto (1998)),
people can provide positive or negative rewards directly to encourage or discourage ac-
tions (Thomaz and Breazeal (2006)) or demonstrations can be used as reinforcement of
a control policy (e.g., Atkeson and Schaal (1997); Abbeel and Ng (2004)). Finally, if it
is not possible for an agent to learn to perform a task or to execute the selected actions,
someone can take control of the agent to teleoperate it (e.g., Sellner et al. (2006); Dorais
et al. (1999)) or wizard of oz the actions (Green and Wei-Haas (1985)). Multiple peo-
ple and agents can also perform a task together with mixed-initiative interactions (e.g.,
Ferguson, Allen, and Miller (1996); Veloso (1996); Horvitz (1999)). Hearst outlines a
spectrum of human assistance from directed control (teleoperation) through dynamic au-
tonomy (teamwork) for robotics to plot the level of autonomy of different robots and the
help they require (Hearst (1999)).

In this thesis, similar to the information acquisition and analysis related work, our
smart phone and robot ask for additional observations to reduce uncertainty for both learn-
ing and non-learning purposes to improve task performance. In contrast to the action
policy help of the related work, this thesis largely assumes the action policy is known if
the state is known (the exception is learning the action policy for phone volume). Addi-
tionally, unlike the related work which takes control of the robot or teaches the correct
action, our work focuses on the action limitations that the robot could never perform. If
the device cannot perform the action in the action policy, it asks for help to overcome the
actuation limitation.

8.2 How to Use Help

We first outline different ways in which human help has been used in prior work. This
thesis focuses planning for help that will be used during execution and for learning.
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8.2.1 Learning

Traditional active learning and learning by demonstration techniques have taken place of-
fline before a task has started with a dedicated oracle or perfect teacher (e.g., Cohn, Atlas,
and Ladner (1994); Atkeson and Schaal (1997); Price (2003)). Online active learning (e.g.,
Horvitz (1999); Kapoor and Horvitz (2008)) and learning by demonstration while perform-
ing a task (e.g., Lockerd and Breazeal (2004); Chernova and Veloso (2007)) allow labelers
and demonstrators to focus their attention on data as it occurs rather than on instances that
occurs infrequently but are classified incorrectly. As discussed previously, Kapoor and
Horvitz incorporate interruptibility measures into their online active learner to ask fewer
times and with a more balanced number of “busy” and “not busy” labels compared to
random sampling. The users of the decision-theoretic dynamic model was additionally
more usable and preferred by users. Proactive Learning is an online learning process that
determines which of multiple possibly imperfect or fallible supervisors that provide labels
for data to trust and request labels from (Donmez and Carbonell (2008)). Donmez and
Carbonell offer algorithms to determine who to ask for help if some of the labelers fail
to respond, if some answer incorrectly but offer a confidence in their answer, and if some
are more expensive to query than others (Donmez and Carbonell (2008)). Additionally,
Donmez et al provide an online algorithm for determining which of many labelers on Me-
chanical Turk to query based on their expected accuracy while still minimizing the number
of label queries (Donmez, Carbonell, and Schneider (2009)).

Corrective feedback is used in many predictive applications to learn to overcome over-
confidence which can arise when the learner believes that predicted labels are more accu-
rate than they actually are. Rather than limiting learners to only request help from demon-
strators in learning by demonstration, Chernova and Veloso also allow the demonstrator
to provide corrective feedback when possible (Chernova (2009)). Argall et al. allow hu-
mans to select multiple data points to correct at once when controlling the robot (Argall,
Browning, and Veloso (2007)). These techniques begin to bridge the gap between the as-
sumptions of perfect labelers and true human labelers while improving the accuracy of the
resulting predictions.

8.2.2 Planning

While planners model the states of the world and the actions of the agents in the world, in-
corporating communication into these models has proven difficult. The OPOMDP model
does not include an answering agent in the model, but does include the asking action for
the single agent to perform (Armstrong-Crews and Veloso (2007)). By asking for help, the
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agent receives perfect information to know its state with certainty and can continue taking
optimal actions. The Decentralized decision processes model the necessity for communi-
cation between agents (e.g., Bernstein, Zilberstein, and Immerman (2000); Goldman and
Zilberstein (2004)). Often, it is assumed that all agents can broadcast their messages to
all agents in the team and do not need to determine exactly which agents would know the
most accurate answer to the question. Dec-MDP-Com and Dec-POMDP-Com are models
which include an extra parameter about the cost of communicating each message to de-
termine the most cost effective times to communicate (Goldman and Zilberstein (2003)).
Goldman et al. offer three methods of communication 1) one way, 2) two way, and 3)
confirmation for more one-one questions. While subsequent approaches have been of-
fered other methods for communicating, including execution-time communication, they
continue to broadcast messages (Scerri et al. (2004); Spaan, Gordon, and Vlassis (2006);
Roth, Simmons, and Veloso (2007)). Like the thesis, these techniques aim to plan how to
communicate between agents to resolve inherent uncertainty in sensor observations and
plans. However, they do not focus on modeling the capabilities of each agent to determine
who is best to communicate with.

8.2.3 Semi-Supervised Robot Control

Dorais et al. introduced sliding or adjustable autonomy as a technique to transition be-
tween autonomy and teleoperation during a task (Dorais et al. (1999)). Because a human
cannot always be available to provide fine-grained teleoperation remotely to a robot on
Mars and because a robot may have varying capabilities to complete tasks, they present
four robot modes: 1) entirely ground-controlled, 2) ground-controlled with autonomous
recoveries, 3) autonomous with ground-commands executed simultaneously with the plan
and 4) fully autonomous. A robot can transition between these modes based on the com-
mands that are given (e.g., “go forward 5 meters” or “explore the area ahead”). Sellner
et al. extend this idea for multi-robot systems where a human cannot be in control of all
robots at once (Sellner et al. (2006)). They define a “mixed-initiative” control model in
which the human can assume control and the robot can request the human’s control and
a “system-initiative” control model in which the robot must always request the human’s
time. While participants who tried the models had different preferences for the models,
the models necessitate the robots having shared knowledge about who needs the human’s
attention in order to not overwhelm the human. Shiomi et al. developed an interface for
reducing the cognitive load of humans controlling multiple robots by 1) alerting the human
ahead of time that a robot will need help soon and extending time that it can be autonomous
if the human is busy with another robot and 2) providing context about why the help is
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needed so that the teleoperator can take control faster (Shiomi et al. (2008)). Although
these robots require some teleoperation from an expert, they can perform autonomously
and transition between modes of autonomy by proactively requesting help from humans
rather than relying on the complete attention of the human teleoperator during tasks.

Collaborative control models the human teleoperators to reduce the requirement for an
expert controller (Fong et al. (2001)). Before a human begins controlling the robot, models
about both the human’s capabilities and knowledge and the robot’s safety capabilities are
developed by hand. Using these model, the robot takes commands from the human and
then can create a dialogue with the teleoperator to ensure its own safety, determining when
to ask the human to confirm a possibly dangerous action and with what language. Fong et
al. found that different users have different expectations about how urgent these questions
would be - some did not answer the questions because of the interruption (Fong, Thorpe,
and Baur (2003)). Additionally, robotics experts found that questions about the safety of
the robot were not necessary for them, but did appreciate the robot maintenance questions
that allowed them to keep track of the battery power and other sensors through a task.
Bruemmer et al. extend collaborative control to allow the robot to perform other sensor
tasks semi-autonomously while the human is teleoperating it (e.g., looking for people in
search and rescue scenarios) (Bruemmer et al. (2005)).

This thesis instead focuses on autonomous task execution in which the device is ex-
pected to perform on its own and proactively request help rather than depending on a
supervisor to help take control of it or teach it.

8.3 When to Ask for Help

Determining the timing of when to ask for help is important both for receiving relevant
labels and for ensuring that there is a person available who can help. Prior work in asking
for human help has focused on receiving relevant labels. In contrast, this thesis adds
models of humans into the decision for determining whether and when to ask for help.

8.3.1 During Data Collection
To limit the amount of data to label, Experience Sampling (ESM) relies on people in the
environment to label their own data (e.g., Barret and Barrett (2001)). While people in
the environment can be very accurate at labeling both qualitative and quantitative data
(Consolvo and Walker (2003)), they require a lot of prompting by the systems to remind
them to provide labels. While some ESM label collections depend on people to remember
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to label their data at the end of the day (e.g., diaries at the end of the day (Carter and
Mankoff (2005))), others require users to enter data at throughout the day (e.g., at random
intervals (Horvitz, Koch, and Apacible (2004)) or when users recognize an event occurring
(Consolvo and Walker (2003))). These techniques for data collection do not take into
account the agent’s needs for data. It assumes that by collecting data randomly, the data
sample reflects what an agent will encounter when it is trained and deployed.

Including a model of classifier uncertainty into the decision of when to ask for help,
initial work in the active learning community focused on generating new data points to la-
bel that would help define a classifier (e.g., Angluin (1988); Plutowski and White (1993)).
These techniques have been shown to reduce the number of labels compared to labeling all
of the data while maintaining the accuracy of the classifiers. However, they could produce
queries that did not make sense for people to answer (e.g., “Is a pregnant man more prone
to heart disease?”) (Lewis and Catlett (1994)). To generate more appropriate data requests,
many recent techniques have focused on querying data from the given set. Cohn et al. find
the optimal method of choosing data to label by selecting the data point which, once la-
beled, will result in the highest accurate classifier for all future data (Cohn, Atlas, and
Ladner (1994)). However, this technique is often difficult to compute in practice. Lewis
and Catlett use uncertainty sampling choose which data point the current classifier is most
uncertain about (Lewis and Catlett (1994)). Roy and McCallum use sampling estimation
calculate the expected error rate if each point is labeled and choose the one with the high-
est reduction in error (Roy and McCallum (2001)). Nguyen proposed applying clustering
algorithms to the data and choosing a single point to label from each cluster (Nguyen H
(2004)).

Horvitz argues that while there are techniques to reduce the number of requests that an
application can make to a user, applications would be more usable if they take into account
the social implications of requesting information from users (Horvitz (1999)) - particularly
based on human interruption level.

8.3.2 While Planning
Other agents plan their actions (including when to communicate) based on expected un-
certainty in their state. Here, the help is about the agent’s current state. Markov Decision
Problems (MDPs) are used to model the states and actions of an agent that has complete
knowledge of its environment (Howard (1960)). Partially Observable MDPs (POMDPs)
are used if an agent cannot directly observe its states and instead uses noisy observations
such as sensor readings (Kaelbling, Littman, and Cassandra (1998b)). Because there is
only a single agent, there is no need to communicate. However, an extension of POMDPs,
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Oracular POMDPs (OPOMDPs), assume that there is a ground truth source of informa-
tion such as a human that can be obtained at a cost and an agent can take an additional
action to query that source in order to reveal the fully observable state (Armstrong-Crews
and Veloso (2007)). By solving OPOMDP models, agents determine when to ask for the
ground truth information and when to act independently. However, this work still assumes
that a human is always available and accurate.

For multi-agent systems that do not include humans, Multi-Agent MDPs (MMDP) can
be used if each agent can fully observe all agents’ states and no communication is needed
between the agents to clarify that state information (e.g., Pynadath and Tambe (2002)).
Decentralized MDPs (DEC-MDP) can be used when each agent cannot observe the whole
state, but by sharing information between them, all agents can fully observe the state of
the world and similarly DEC-POMDPs can be used when the combination of all agents’
information is not enough to complete observe the world (Bernstein, Zilberstein, and Im-
merman (2000)). Dec-MDP-Com and Dec-POMDP-Com are models which include an
extra parameter about the cost of communicating each message to determine the most cost
effective times to communicate (Goldman and Zilberstein (2003)). While it the DEC-
POMDP models can be simplified to their respective MDP and POMDP models when
agents can broadcast communication for free to all agents all the time, determining when
to communicate at a cost in DEC-MDPs and DEC-POMDPs has been shown to make the
problem of solving these models NEXP-complete (Bernstein, Zilberstein, and Immerman
(2000)). In addition to the complexity of solving the plans, these models include full state
and action representation for multiple agents. It would be infeasible to model humans this
way, especially if they are not necessarily always helping with the task.

Heuristic approaches have been proposed to reduce the overhead in communication or
coordination between multiple non-human agents. For example, Nair et al. propose that
agents should communicate synchronously every K timesteps, which allows the agents to
also synchronize their states at that time (Nair, Roth, and Yohoo (2004)). Roth et al. in-
stead define a factored DEC-MDP in order to allow individual agents to act alone without
requiring communication until the agents must coordinate actions to avoid failure (Roth,
Simmons, and Veloso (2007)). Melo and Veloso predefine the states that could require
coordination between agents and learn the communication requirements during task exe-
cution (Melo and Veloso (2009)). However, these still do not model the availability of the
agents to respond to communication and much literature including (Roth, Simmons, and
Veloso (2005)) argues that it is unclear when communication is needed until the time of
task execution.
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8.3.3 During Execution

Often the need for communication comes from the inherent uncertainty in executing in
an unknown environment and collecting noisy sensor data. During the execution of a
plan, agents can stop and choose to communicate their state with each other when 1) one
agent becomes too uncertain or 2) one agent receives an observation that would affect task
actions. When learning by demonstration, Chernova and Veloso, for example, request a
new demonstration of an action when it is unsure which discrete action to take during
execution of the task (Chernova and Veloso (2007, 2008a)). Even during teleoperation,
Fong et al. request the robot to confirm whether an action should be taken in potentially
dangerous conditions for the robot (Fong, Thorpe, and Baur (2003)).

For some tasks, the execution is not discrete and a human must provide corrective
feedback only after the complete set of actions has been taken. Argall et al. request
corrective feedback on successful actions taken only after the robot fails to complete a
task (Argall, Browning, and Veloso (2007)). An interface may automatically fill in fields
in a form or provide a prediction for which folder to sort a piece of email into and leave
it up to a person to determine when a correction must be made (e.g., Culotta et al. (2006);
Faulring et al. (2010)). In CueTIP, users see their handwriting and the word prediction
and can make corrections (Shilman, Tan, and Simard (2006)). However it can be difficult
in some cases for a user to notice when the execution is wrong (e.g., when a spam filter
puts an important email in the spam folder). The OOPS toolkit helps users “discover” if
the learners prediction is incorrect and then provides a set of interaction techniques for the
user to correct it (Mankoff, Abowd, and Hudson (2000)).

This thesis instead included models of humans at different locations in order to plan
for the need for help. Then, during execution, we use replanning in case there is no one
available in the expected locations.

8.4 Who to Ask for Help

Scholtz defined five different types of people that are available in robots’ environments:
supervisor who ensures the robot software is operating properly, operator who is using the
robot, mechanic who fixes the physical system, teammate who works with the robot to per-
form a task, and bystander who does not directly interact with the robot (Scholtz (2002)).
Goodrich and Schultz extend this definition to include mentors who help teach robots and
information consumers who benefit but do not work directly with robots (Goodrich and
Schultz (2007)). This thesis explores proactively requesting help from device users (most
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closely related to operators) and environment occupants (most closely related to infor-
mation consumers) rather than supervisors and mentors who are assumed to always be
available, accurate, and willing to help.

8.4.1 Users, Mentors, and Supervisors
We distinguish a user as a person the device/agent is performing a task for while a super-
visor ensures it is working appropriately. In general, the user knows less about how the
application works, but both the user and a supervisor can help an application. Because
they both use the devices long-term, it is possible to model them. Fong et al. model the
participants (users) helping to control their robot and change the types of questions that
are asked based on expertise (Fong, Thorpe, and Baur (2003)). Experts tend to provide
extra help by injecting extra knowledge and creating more common references compared
to novices which can be useful for future questions (Isaacs and Clark (1987)). However,
other than asking the human explicitly, most techniques to determine expertise are limited
to a specific domain like software engineering (Mockus and Herbsleb (2002)) and require
additional information about the user such as their social networks (Zhang, Ackerman, and
Adamic (2007)), emails (Campbell et al. (2003); Balog and de Rijke (2006)) or bulletin
board posts (Bouguessa, Dumoulin, and Wang (2008)).

While there is often only a single user or supervisor available, there may be instances,
especially in learning environments, when multiple supervisors or mentors are available to
help. Proactive Learning is an online learning process that determines which of multiple
possibly imperfect or fallible supervisors that provide labels for data to trust and request
labels from (Donmez and Carbonell (2008)). Donmez and Carbonell offer algorithms to
determine who to ask for help if some of the supervisors fail to respond, if some answer
incorrectly but offer a confidence in their answer, and if some supervisors are more expen-
sive to query than others (Donmez and Carbonell (2008)). This thesis focuses on modeling
users rather than supervisors who may be less accurate and available to help.

8.4.2 Teammates

In multi-agent domains, teammates, include both computer agents and humans, act au-
tonomously but can perform actions or tasks together to achieve goals. Multi-Agent MDPs
(MMDPs, DEC-MDPs, and DEC-POMDPs) have been used to model these teams deter-
mine when to communicate their state (e.g., Pynadath and Tambe (2002); Bernstein, Zil-
berstein, and Immerman (2000)). In many cases, this communication is in the form of
a broadcasted message to all agents (e.g.,Bernstein, Zilberstein, and Immerman (2000);
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Roth, Vail, and Veloso (2003); Nair, Roth, and Yohoo (2004); Roth, Simmons, and Veloso
(2005)) rather than directing a question to a particular agent to save communication costs.
In contrast, we assume that devices are performing for humans, not performing tasks with
them. In these cases, we assume that direct communication is needed.

8.4.3 Bystanders and Environment Occupants in the Environment

When users, supervisors, or teammates are not available or not accurate enough to help
an agent, this thesis argues that an agent may be able to ask other bystanders in the en-
vironment. However, the agent has no information about these bystanders before the first
response. One example of a domain where there are many bystanders in the environment
is recommender systems. While some recommender systems have used weighted majority
of bystanders to determine how to help a user (Nakamura and Abe (1998)), many systems
now use collaborative filtering techniques which cluster similar bystander users together
without requiring a user’s preferences (Herlocker et al. (1999)). More directly related is
Weiss et al.’s robot asked for help navigating to a location from bystanders on the street
(Weiss et al. (2010)).

This thesis instead seeks to understand how to seek help from environment occupants
who are in the environment for longer periods of time than bystanders and can receive
benefit from device tasks in the future.

8.4.4 Crowd-Sourcing and Online Help

Recently, human computation and crowd-sourcing on websites like Amazon.com’s Me-
chanical Turk (M.Turk (2010)) have been used to gather multiple humans’ labels cheaply
(e.g., von Ahn and Dabbish (2004), von Ahn et al. (2008)). The ESP Game labels images
on the internet by showing them to two people at once and asking them to guess the same
word (von Ahn and Dabbish (2004)). The game takes advantage of the idea that if two
people can generate the same response, it is more likely to be correct, making these la-
bels more accurate than ones generated using captions and other heuristics on the original
websites the pictures are embedded in. Human Computation has sparked recent interest
in generating games to help solve problems including recommender systems (Hacker and
von Ahn (2009)) and search (Ma et al. (2009); Law, Mityagin, and Chickering (2009)). Re-
cently, Mechanical Turk has been used to cheaply translate audio (Callison-Burch (2009)),
create automated directory assistance by identifying semantically equivalent speech (Paek,
Ju, and Meek (2007)), and transcribe audio from experiments (Marge, Banerjee, and Rud-
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nicky (2010)).

Shahaf and Horvitz explore the idea of modeling online users to plan when to post
questions online to be answered by the crowd (Shahaf and Horvitz (2010)). Additionally,
while human computation makes it possible to request and get data cheaply, it is unclear
how many people must perform a task to be confident that the response is accurate. In the
ESP Game, Von Ahn and Dabbish require that pairs of participants type the same label,
but once the label is generated it is not confirmed (von Ahn and Dabbish (2004)). In Re-
CAPTCHA, Von Ahn et al. use one known word and one unknown word to test whether a
user is authenticated (von Ahn et al. (2008)). However, when determining the accuracy of
the user’s response to the unknown word, they require at least two users to agree with an
optical character recognition (OCR) prediction or three users without OCR. The authors
say that relaxing or strengthening these requirements does not affect the overall accuracy
of the unknown word prediction as long as the human users are relied upon more than
OCR when determining the prediction. Donmez et al. determine which people on Me-
chanical Turk to request labels from (possibly a different number for each label) based on
the expected reward each participant has received thus far answering questions and show
this technique approaches the accuracy of a single perfect labeler (Donmez, Carbonell, and
Schneider (2009)). This thesis does not focus on online users because of the asynchrony
of receiving responses, however, our methods for modeling online users and determining
who and whether to ask for help can be applied to crowd-sourcing.

8.5 How to Ask for Help

When humans ask for assistance from other humans, it has been shown that the language
used in a question can affect how people answer it, both in terms of the language used in
the answer and the correctness of the answer (Clark et al. (1992); Presser (2004)). Ad-
ditionally, while humans share common experiences and can take each others perspective
easily to answer questions, they also provide contextual information to ground their re-
sponses when necessary to supplement their questions (Clark and Wilkes-Gibbs (1986)).
Based on these phenomena, the social psychology and HCI communities have developed
guidelines on how to write survey questions and for techniques like focus groups, inter-
views, cognitive walkthrough, and pretests to help researchers iterate on and improve their
questions, to reduce any possible ambiguities that people may find (Jeffries et al. (1991)).

While several different sets of guidelines have been proposed for agents that require
help from humans (e.g., Bellotti and Edwards (2001); Erickson and Kellogg (2001); Horvitz
(1999); Shadbolt and Burton (1989)), there are seven main types of proposed information:
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different amounts of context, human-understandable context, uncertainty, predictions, user
control and feedback, action disclosure, and social interaction. We find that the first five
types of information, operationalized in Chapter 6, are the most commonly used in current
applications. This thesis contributes an understanding of how to ask for help in order to
increase the accuracy of human responses.

Human-Understandable Contextual Information: Many of the guidelines suggest
that agents should provide people with some contextual information about the environment
and sensors that the agents have difficulty with. Work in creating common ground with
robots have shown that humans and robots can communicate more effectively when pro-
vided context about the robot’s sensors and environment (Torrance (1994); Steels (2003);
Topp et al. (2006)). However, we found that different researchers interpret this principle
differently when implementing their agents.

When the BusyBody application asks users to estimate their own interruptibility to use
for training an interruption predictor, it does explain the reason for asking at that moment
(Horvitz, Koch, and Apacible (2004)). Hoffman et al. request help from Wikipedia users
to fill in missing summary data as the users are reading an article (Hoffmann et al. (2009)).
When users are asked if the text they are reading in the article belongs in the summary,
important keywords are not highlighted in the text. When reading the summary, users are
provided with excerpts that could be added to make the summary more complete. Addi-
tionally, in studies of interruptibility, it has been shown that people make judgments with
relatively small amounts of context (15 seconds) and extra context (30 seconds) does not
improve accuracy (Fogarty et al. (2005)). Asoh et al. use Jijo the robot to ask about loca-
tions without context to build a map of the building (Asoh et al. (1997)) while Shiomi et
al. provide teleoperators with complete video and audio from their robot Robovie (Shiomi
et al. (2008)).

Recently, researchers demonstrated that labelers accuracy can depend on the level of
contextual information (low level sensor readings vs high level summaries of the sensor
data) they are provided. When users understand and use their own high level rules for clas-
sification, they are better at making those classifications compared to classifying based on
the computers rules (Stumpf et al. (2005, 2007a)). This finding is supported by work
in feedback in information retrieval applications (Rui et al. (1998b); Salton and Buckley
(1990b)) which mask the low-level sensor-level features that computers use and collect
(i.e., individual keywords in documents or accelerometer data) and allow users to search
for information using high-level meaning attributed to the low-level data (i.e., summaries
of documents or physical motion inferred from accelerometers). However, because it is
often difficult to generate the high-level explanation of context, many applications provide
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only the low-level raw data, like pictures, to labelers instead of a summary with the as-
sumption that they can find their own meaning (von Ahn and Dabbish (2004); von Ahn et
al. (2008)). Shiomi et al. provide both the predicted text transcription and the low-level
audio to let teleoperator supervisors distinguish the voice themselves if the text does not
make sense (Shiomi et al. (2008)).

Predictions: Like Shiomi et al. providing text transcriptions, other work has focused
on making it easier for people to help an agent by providing a predicted response rather
than require a person to recall the answer Eagle and Leiter (1964) possibly simplifying
their work (e.g., Stumpf et al. (2005)). An interface may automatically fill in fields in a
form or provide a prediction for which folder to sort a piece of email into (e.g., Culotta
et al. (2006); Faulring et al. (2010)). When asking teleoperator supervisors to confirm
their possibly dangerous actions, Fong et al gives users a suggested threshold for defining
dangerous conditions in the future and found that users either followed this threshold or
set the threshold extremely high to prevent future questions (Fong (2001)).

Prediction Feedback: Users could also provide corrective feedback for incorrect pre-
dictions to improve later classification (Culotta et al. (2006)). In the active learning com-
munity, Raghavan asked people to label text documents as news articles, sports, etc., and
also asked them to pick words (features of the classifier) that should have high weight for
each class (Raghavan, Madani, and Jones (2006a)). Participants knew the article words
they were looking for and could identify them easily. The classifier could correctly weight
the important features faster than asking for article labels alone, because people had nar-
rowed down the important features. This same method can easily be used for email clas-
sification and the other domains. For example, in CueTIP, users see their handwriting
and the word prediction and can make corrections (Shilman, Tan, and Simard (2006)).
Scaffidi allows users to provide feedback by creating new rules to make better predic-
tions of phone numbers and other personal information found in emails (Scaffidi (2009)).
The OOPS toolkit helps users “discover” if the learners prediction is incorrect and then
provides a set of interaction techniques for the user to correct it (Mankoff, Abowd, and
Hudson (2000)). By asking for feedback and providing predictions, an agent can correct
errors and use feedback to improve its learning.

Prediction Uncertainty: Many agents calculate a prediction probability in order to
decide whether it should ask for help. Studies of context-aware, expert, and recommender
systems all show that providing users with the level of uncertainty in a system’s predictions
improves its overall usability (e.g., Banbury et al. (1998); Mcnee et al. (2003)), even if the
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learner does not provide the exact uncertainty probability of correctness. Antifakos et al.
studied the effect of displaying uncertainty information in conjunction with a system’s
predictions about previously seen lists of numbers (Antifakos, Schwaninger, and Schiele
(2004)). By displaying this uncertainty information, the authors found that participants
depended less on the predictions and remembered the lists of numbers better themselves
even when the uncertainty values were incorrect. This result was replicated in both desktop
and ubicomp domains.

8.6 Considerations when Asking for Human Help

Along with the considerations for the type of information that could be included when
asking for help in order to improve grounding, people also consider the types of questions
people are good at answering and how people decide when to ask questions. There are
some questions that may help an agent but may not be natural for people. Additionally,
people not only incorporate ideas of interruption into whether they should ask for help, but
also in the length of help required and the history of how many questions have been asked.

This thesis asks questions that are easy for people to answer. They are multiple choice
questions or lend to perception tasks such as identifying locations and pressing buttons
that anyone can perform.

8.6.1 Asking Appropriate Questions

While grounding can help resolve some misunderstanding when asking for help, Thomaz
et al. found that sometimes people have different models for how agents could or should
use their help compared to how they actually are using the help (Thomaz, Hoffman, and
Breazeal (2006)). They asked participants in a study to provide reinforcement to teach
an online character to cook. While participants were eventually capable of using the re-
inforcement technique, participants wanted to use the reinforcement to encourage future
behavior and spent a long time figuring out that they were reinforcing previous behavior.
For example, participants continually clicked on a bowl, actually reinforcing that the bowl
was not picked up, while they expected that their clicking would suggest picking up the
bowl. Participants were also more prone to positive reinforcement rather than giving a
negative cost for performing a particular action. As a result, Thomaz et al. recommend
and implement a second type of reinforcement to better align with human understanding
of the help they are providing (Thomaz and Breazeal (2006)). Expertise of the participant
can also be used to determine the kinds of questions an agent should ask (Fong, Thorpe,

164



and Baur (2003)).

8.6.2 Cost of Asking

One of the biggest problems of requesting help from users is the required time investment
(Scollon, Kim-Prieto, and Diener (2003)). Data collection techniques such as ESM are
susceptible to inappropriate interruptions, which may become is a significant distraction
(Carter, Mankoff, and Heer (2007)). The distractions and interruptions may lead to inac-
curacy of reporting or failures to report data (Kahneman et al. (2004)). Individuals asked
to recall labels after an activity of interest has occurred rather than during the activity can
also be inaccurate in their labeling if they forget the context or situation to label (Csik-
szentmihalyi and Larson (1987)). Jameson et al find that giving users a lot of information
and then expecting them to recall it all can be difficult for users to do and model this cost
of giving too much information in order to determine when it is appropriate to give one
instruction at a time versus all together (Jameson et al. (2000)). In general, asking partici-
pants too many times can lead to a lack of compliance, reducing the number of labels that
can be collected (Scollon, Kim-Prieto, and Diener (2003)).

People take into account this cost of interruption and annoyance when deciding whether
to ask for help. They internally calculate the cost of failing to complete a task with the cost
of the immediate interruption and of the continuing cost of how many questions they have
asked and how many more questions they might need to ask (DePaulo and Fisher (1980)).
Additionally, people tend to ask fewer questions when the help required takes a long time.
Many solutions have been proposed to reduce the burden of ESM and other data collection
techniques on participants by making it easier to understand the data (e.g., visualizations
Hsieh et al. (2008)) and reducing the number of questions that should be asked per day.
Horvitz argues that it is important to balance both the costs of asking and interrupting
people with the benefits of collecting the data in order to create more usable interfaces
that require help or data collection from users (Horvitz (1999)). While interruptibility is
important in determining whether to ask for help, models about the time for help and the
history of questions may also reduce the expected cost of asking for help.

8.6.3 Interruptibility

The problem of recognizing when someone is interruptible has been widely studied in the
literature (e.g., Horvitz, Jacobs, and Hovel (1999); McFarlane (1999); Czerwinski, Cutrell,
and Horvitz (2000); Horvitz et al. (2002); McFarlane (2002); Horvitz and Apacible (2003);
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Czerwinski, Horvitz, and Wilhite (2004); Horvitz, Koch, and Apacible (2004); Fogarty et
al. (2005)). Czerwinski et al. showed that even when users that ignore instant messages,
these messages are still interruptions which affect task performance (Czerwinski, Cutrell,
and Horvitz (2000); Czerwinski, Horvitz, and Wilhite (2004)). While Horvitz showed
that modeling interruptibility is possible with expert labelers after the fact, labeling the
data after the events does not capture the real-time application of interruptibility models to
avoid unnecessary or unimportant distractions (Horvitz, Jacobs, and Hovel (1999)). Build-
ing personalized predictive models of interruptibility have been shown to be accurate in
predicting users’ busyness (Horvitz, Koch, and Apacible (2004); Fogarty et al. (2005)).
However, McFarlane compared four different methods for when to interrupt people (as-
suming it was possible to detect their interruptibility level) and found that none of them
overall improved users’ performance compared to the others (McFarlane (1999, 2002)).

Recently, Kapoor and Horvitz take an active learning approach to determine when
participants are interruptible and model both the cost of misclassification and the cost
of asking for help when deciding which data points to ask about (Kapoor and Horvitz
(2008)). They compare random sampling methods with uncertainty-based sampling (ask
when the classifier is uncertain), decision-theoretic sampling (ask when benefit of informa-
tion is greater than the cost of interrupting), decision-theoretic dynamic (same as decision-
theoretic except that the classifier can also ask about previously seen data). They find
that the decision-theoretic dynamic model not only results in more accurate interruption
classifiers with fewer label requests than random sampling but that users of the dynamic
model is also find it significantly less annoying than the random sampling. This shows that
agents can increase the usability of agents that request help by taking into account their
interruptibility.

8.7 Chapter Summary

Prior work has focused on when an agent should ask for help based on uncertainty, and
although prior work has also shown that people have limited availability and accuracy,
the asking literature has not adopted that model of humans. In this thesis, we contributed
planning algorithms to reason about human helpers in addition to uncertainty to determine
which actions to take and who to ask for help.
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Chapter 9

Conclusion and Future Work

9.1 Contributions

This thesis makes the following contributions:

• A symbiotic approach for devices to ask for human help to overcome limitations
during tasks.

Rather than limiting device tasks to those in which it can perform autonomously, we
include actions for devices to plan to ask for help from humans in the environment
to overcome actuation limitations and reasoning uncertainty. We define symbiotic
relationships as those in which the device asks for help from humans while per-
forming tasks for them. Because the devices are performing tasks for humans, the
humans have incentive to help the device overcome its limitations to complete its
tasks effectively.

• A human-centered planning approach in which we study how humans interact
with devices, and then use those models of humans in planning algorithms.

In our human-centered planning approach, a device reasons about humans in the
environment in addition to its own state and goals to determine which actions to
take. In particular, we incorporate models of human state, such as availability and
accuracy, and asking actions into devices’ own state and actions. Using this new
model, our planning algorithms can proactively weigh the costs and benefits of dif-
ferent actions in different states to determine an action plan. Because the actions are
based on both the human state and the device’s state, the planner optimizes not only
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the task goals but also usability during deployment. This thesis contributes a for-
mal approach to human-centered planning that focuses on building human models
that accurately represent the tradeoffs that humans make when interacting with their
intelligent devices in the environment.

• A classification of two types of help that devices can request help for and two
types of humans that devices can request help from.
We classify device limitations into two types: action limitations, reasoning uncer-
tainty (for state and policy). In order to overcome action limitations, humans must
perform those actions for the device. In order to overcome state or policy reasoning
uncertainty, humans indicate which state or action the device is in, increasing the de-
vice’s capability of then continuing to perform autonomously. While a robot could
reduce its reasoning uncertainty and learn to perform tasks it requests help for, we
do not expect any robot to be able to overcome actuation limitations autonomously.
For example, a robot without arms cannot ever lift a cup of coffee. When the device
does not have limitations, it performs autonomously.

This thesis examines two different types of humans in the environment that could
help devices overcome these limitations - device users who are near the robot and re-
ceive task benefit and environment occupants of buildings who have predefined work
spaces and conduct work which requires that they be present in the environment over
a period of time but cannot monitor the device’s progress. We contribute algorithms
for overcoming different limitations with different types of human helpers.

• Human-centered planning algorithms (conditional, deliberative, and replan-
ning) that model human helpers to plan device actions.
We contributed three conditional plans for devices to use to perform tasks that in-
clude help requests from different types of humans. First, we contributed conditional
plans for completing each of CoBot’s user-requested tasks in our multi-floor build-
ing. The plans included reducing state localization uncertainty and helped the robot
overcome manipulation limitations to use the elevator. Second, we contributed a
human-centered conditional planner for CoBot that requests help to reduce uncer-
tainty while navigating. The planner explicitly models state costs to determine when
to ask for help and when to act autonomously. Finally, we contributed a human-
centered conditional planner for a smart phone to learn to reduce uncertainty about
when it should ring and when it should be on silent mode. This algorithm trades off
the cost of asking humans for help with the incentives for them to answer.

We then contributed a human-centered probabilistic deliberative planner for CoBot
to use to determine which navigational path to take to minimize uncertainty and
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maximize the likelihood of finding available help. The HOP-POMDP planner mod-
els the availability, accuracy and human cost of help along with the robot uncertainty
and capabilities. Rather than taking the shortest path and waiting for help, the HOP-
POMDP plan chooses the highest reward path that may be longer with less uncer-
tainty or more humans available to help in order to reduce the cost of backtracking
and errors. We also extend this planner to include policies for determining which
help location to navigate to to ask for actuation help.

Finally, we recognized that many of CoBot’s actuation limitations are spatially-
situated in particular help locations. Based on an analysis of the deployment results
from the conditional planners, we contributed our SSAH replanning algorithm to
proactively bring environment occupant helpers from offices to help locations such
as elevators rather than wait indefinitely at the help locations. The algorithm takes
into account models of human availability, interruptibility, and cost of help as well
as interaction history of questions over time to determine who to ask for help. We
show that the human-centered replanning algorithm, which first waits at the help lo-
cation and then navigates away, completes tasks faster than only waiting at the help
location while limiting the number of people in offices that it asks.

• Validation of the human centered planning algorithms in simulation and de-
ployment in the environment against both naı̈ve uses of human state as well as
state-of-the-art algorithms that do not model humans.

The human-centered planning algorithms were all tested in realistic yet simulated
environments to understand how they behaved with a variety of humans. In order
to do so, we randomly generated availabilities and accuracies and other parameters
of humans in different locations in building graphs. We demonstrate that our algo-
rithms behave appropriately in each environment. Then, we demonstrated its use in
our building environment as well to show that they do scale to many humans and
how it works in real-world spaces. We, also, deployed those algorithms on the real
robot to understand how help works in practice.

• An increased understanding of two types of human helpers and how their hu-
man state affects their willingness to respond to device questions through mul-
tiple survey, in-lab, and in situ studies.

Our human-centered planning algorithms use models of humans in the environment
to determine device actions and whether and who to ask for help. We contributed
studies of both device users and occupants in the environment to demonstrate our
human-centered planning algorithms should include models of each of these at-
tributes. First, we contribute two studies of device users to demonstrate that they
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have their own costs and incentives to help their devices. We survey phone users to
measure their personalized costs of help and incentive to help their phone learn their
volume preferences, and then describe a short study of the cost and incentive of 5
visitors to help answer CoBot’s localization questions as it escorts them to meetings
around our building. Second, we contribute two studies of environment occupants.
We survey building occupants to demonstrate that all the factors affect their will-
ingness to travel down the hall to help CoBot use the elevator, and then describe a
wizard-of-oz CoBot experiment in which the robot actually asks occupants to leave
their offices.

• Learning algorithms for capturing personalized models of human states during
deployment for use in the planning algorithms

One major challenge in our human-center planners is generating the human model
parameters. We contributed three algorithms to learn the human models. The first
algorithm used linear regression techniques to generalize responses to survey ques-
tions. The second algorithm proactively and dynamically changed the survey ques-
tions to more quickly learn the models. Finally, the third algorithm uses the delib-
erative planning algorithm and learns the model online as the robot performs tasks.
We demonstrate that all three learn accurate models of humans and the latter two
also do so in a human-centered way - learning quickly and with minimal human
effort.

• Use of human-centered planning algorithms to determine whether, how, and
who to ask for help and where to navigate to get the help.

We have applied our algorithms to several different aspects of asking for help. Our
conditional algorithms determine whether to ask for help to both users and environ-
ment occupants. Our deliberative and replanning algorithms trade off uncertainty
and task performance with cost of help to determine where to navigate and who to
ask for help. Finally, our user studies guided our questions to determine how to ask
for help. We showed that providing humans with device context, classification pre-
diction and uncertainty, and additional feedback all increase the accuracy of human
responses to device questions.

9.2 Future Work

There are several ways to extend human-centered planning to further understand humans
as well as relax the assumptions we make about them.
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• Personalized Dialog with Humans

Because this thesis assumes that devices are deployed long term for users, we ar-
gue that the usability of the devices is important. Devices, such as CoBot often
use dialog systems as their main interaction with users. However, dialog systems,
like CoBot’s, have traditionally assumed short term interactions and have employed
static algorithms. In practice, this is not usable for long-tern deployments. For ex-
ample, throughout our deployment of CoBot, we found that users became confused
when it asked the same questions multiple times in the same day. Additionally, they
became bored with interaction when it greeted them identically for each task. Future
work is needed to understand how this dialog affects long term usability.

Humans, instead, change their dialog over time to express a change in relationship
and familiarity with a person. Because our algorithms take into account interaction
history, it would be possible for future work to develop algorithms that take into
account previous interactions and vary the dialog over time. The Carnegie Mellon
robot commentators changed their dialog probabilistically based on previously-said
expressions (Veloso et al. (2006)). Future work would also be needed to understand
how people expect to interact long term with a device. For example, it would be
interesting to know how often dialog should change what personal touches should
belong in dialog. Additionally, future work is needed to understand how to identify
people and overcome uncertainty in identity predictions as well as how new and
changing dialog affects the device usability over time.

• Learning Model Parameters

The algorithms contributed in this thesis assume that we have prior probabilities and
costs collected from surveys to use in planning algorithms. These surveys are exten-
sive in order to collect enough data to create accurate prior probabilities. We have
also contributed algorithms that learn online rather than using priors; however, these
online learning techniques trade off learning speed with computability and tractabil-
ity of optimal policies. Future work is needed to understand how the learning occurs
in real world deployments, given few interactions with humans each day. It is im-
portant for these algorithms to learn quickly and with few observations in order to be
usable in large environments. Additionally, our current estimates err on the side of
caution and predict less availability and higher costs in order to increase the usabil-
ity even for inaccurate models. Future work is needed to understand whether this is
a reasonable assumption as well as understand how learning affects deployability.

• Prediction of Model Parameters
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This thesis assumes that models of humans are stationary with respect to within task
time as well as throughout deployment. While it does assume that models could
change through the day, it does not make predictions about how models will change
while planning each task. In order to be able to predict the parameters over time,
future work would be needed to collect hundreds of very fine-grained data points for
each person at each time of day about parameters such as availability, interruption,
accuracy, etc. Currently, we are only able to collect occupancy data on a 10-minute
time scale, far longer than the average task takes to complete. With this additional
information, we could predict future values given current ones.

Given this prediction algorithm, future work would then need to contribute planning
algorithms that reason over possibly-infinite future prediction times to plan when
to take actions. Additionally, these algorithms should run in real time and include
replanning in order to take into account additional information collected during task
execution. Possible ways to reduce the complexity of the problem include includ-
ing time bins to discretize predictions and including a finite prediction horizon if
replanning is used.

• Incentives for Humans to Help
This thesis assumes that humans are in a symbiotic relationship with their devices
and have incentive to help because they request tasks and receive benefit from them.
However, some environment occupants in particular may have more incentive to
help despite requesting few tasks if they are given other incentives (e.g., thank you’s,
candy or coffee, or performing tasks without requesting the robot). In order to be
able to reason about incentives, CoBot would need to model how much benefit each
incentive contributes to each human’s reward function. Different people may have
different reward functions for different incentives and we would need to model them
in order to personalize interaction. Additionally, it would need to create and add its
own tasks to plans to complete these incentives. This requires trading off benefits of
completing requested tasks with benefits of providing incentives to improve future
interactions. Future work is also required to understand this tradeoff in long term
deployment.

Additionally, there are many future directions for applying human-centered planning
to other domains.

• Learning By Demonstration
Learning by Demonstration is a technique that should be easily adoptable by even
novice users. Most work in this area, particularly on robots, has focused on im-
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proving the learning algorithms themselves and assumes that demonstrators are ex-
perts that are available whenever the system needs a new demonstration. In order
to be able to deploy such demonstration systems in real world settings, the action
planning algorithms need to be able to reason about which possibly-novice people
might be available to demonstrate, and must be able deal with possible delays or
imperfect help demonstrations. While my thesis work modeled some of these hu-
man constraints, it assumed there was a symbiotic relationship in which the humans
knew how to and wanted to help the systems. Using models of humans, learning by
demonstration algorithms may be able to be deployed to real??world users as a tool
to personalize and improve the performance of their intelligent systems.

• Crowdsourcing

The internet has become a valuable resource to recruit crowds of volunteers to per-
form short tasks cheaply. Most people who use crowdsourcing depend on it to train
data for offline classification rather than for tasks with real??time components. My
thesis work focused on asking people in the intelligent systems environment for help
rather than using crowdsourcing because the devices could use the idea of the symbi-
otic relationship to increase the likelihood of receiving fast and accurate responses.
Additionally, there is some concern about how quickly responses can be received
on crowd sourcing websites. However, by modeling the volunteers on websites like
Mechanical Turk and their patterns of use on the site, algorithms could proactively
post tasks or questions without having to ask people in the systems environment.
The questions could be posted at times when there are more accurate or more spe-
cialized people available to reduce the number of responses, monetary cost, or time
to complete tasks. These algorithms would need to reason over hundreds of thou-
sands or millions of people online to receive help or feedback performing real-?time
tasks.

• Accessibility

People with disabilities and the elderly are limited in how they interact with comput-
ers. I believe there are many opportunities to automatically adapt interfaces to their
users in order to increase usability and task performance. For example, graphical
user interfaces could use knowledge about their users to determine the size of text
and buttons, the background colors, and even the layout automatically rather than
depending on add-?on products to modify the existing layout. Additionally, touch
interfaces could incorporate more sophisticated prediction algorithms to understand
users intended actions rather than depending on precise button clicks. There are
also opportunities for intelligent systems to help people with disabilities or the el-
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derly interact with and use other products more easily. With a model of low-?vision
users, for example, intelligent devices could magnify or read printed text aloud, de-
termine and describe the elements of the environment that the user might miss, and
assist them in navigating through those environments. Accurate, usable, deployable
algorithms could help people with disabilities use technology more effectively.
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Appendix A

Surveys

You can find the appendix of surveys online at www.cs.cmu.edu/ srosenth/research/appendix.pdf.
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