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Abstract

Many interesting theoretical problems arise from compuieiworks. In this
thesis we will consider three of them: algorithms and datacstires for problems
involving distances in networks (in particular compacttimog schemes, distance
labels, and distance oracles), algorithms for wirelesaciéypand scheduling prob-
lems, and algorithms for optimizing iBGP overlays in automus systems on the
Internet. While at first glance these problems may seemrmeisedifferent, they are
similar in that they all attempt to look at a previously seainetworking problem
in new, more realistic frameworks. In other words, they drasmuch about new
modelsfor old problems as they are about nalgorithms In this thesis we will de-
fine these models, design algorithms for them, and provenleasdand impossibility
results for these three types of problems.
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Chapter 1

Introduction

There is no question that much of the algorithmic work in teoretical computer science com-
munity has been at least indirectly motivated by problenssrag from computer networks. After
all, one of the standard uses of graphs is to represent sualorks. However, this motivation
has in many cases been one-way: theoreticians get motiveibon networking, but after the
normal theoretical abstraction the problems they end ugkiwgron become so theoretical that
the original networking becomes almost unrecognizables an happen in multiple ways: for
example, perhaps in the abstract theoretical problem ibbeashown that basically nothing can
be done (the problem is hard to approximate, or certain sacgsstructures do not exist, or
some other negative result) but in practice many things deenork fine. This is the standard
argument for analyses likieverage-casanalysis, in which we stay in the same model but try to
prove results other than worst case bounds. Or perhaps tHelrabthe network used is funda-
mentally flawed, so any result we prove is a statement onluthe model, not about reality. In
this thesis we examine networking problems where the pusvibeoretical work falls into these
categories and we attempt to make the theory more realidtcalso consider some networking
problems where there is no previous theoretical work.

1.1 Algorithms and Data Structures for Network Distances

For problems from the first category, in which the theordtloaver bounds seem too strong
compared to what is possible in practice, we consider a tyaoeproblems having to do with
distances in computer networks. There are many notionsiefdice” in networks, for exam-
ple the latency between points, the bandwidth, the hop ¢doetiGP distance, etc. For some
applications these distances are crucial (e.g. routimg) far others they are nice to know for op-
timization reasons (e.g. content-distribution networl&)me of these distance notions are truly
metric spaces (IGP distances), but for those that do vitdiategle inequality there is experimen-
tal evidence to suggest that these violations are relgtreeé [ 75], so we will assume throughout
this work that whatever notion of distance we are workingwabeys the triangle inequality. In
this thesis we will examine four distance-based probleneswark spanners, distance oracles,
distance labels, and compact routing.

Given a metricM = (V, d) (presumably arising from some network distances)yapanner
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of M is aweighted grapty = (V, E, w) inwhichd(u,v) < dg(u,v) < ad(u,v) forall u,v € V
(whered; is the distance id7 according to the weights). Less formally( is ana-spanner if it
preserves all distances in the metric up to a factar.of his is obviously achievable with = 1
by simply making a complete graph withy({u, v}) = d(u, v), but in many situations what we
want is asparsegraph that preserves distances well. So the study of spaisre study of the
tradeoff between (the stretchor distortionof the spanner) and”| (thesizeor sparsity.

There is a large body of work on spanners dating back to tleell880's l[_Bl%b 4,29, 36,
ﬁﬂ@] and still going stronﬁll 17,142] 38 84]; seg,,dﬂ] for many of the results.
Spanners were initially studied due to applications in meknsynchronization, but since then
they have found myriad uses in network design and routingiedisas in many places where itis
advisable to compactly store a graph without changing teadces much, such as in speeding
up shortest path computations. Apart from the literaturdimaing spanners of general graphs,
there has also been a large body of work on Euclidean spa(mmse.g.mﬂ 9)), as well
as work on spanners for doubling metritsl [, 52].

Similar problems that have a more data structure-like flanolude constructing goodis-
tance oraclesanddistance labels A distance oracle is an algorithm that preprocesses a enetri
spaceM = (V,d), stores some data structure, and then answers pairwisandéstjueries. The
relevant parameters are the amount of preprocessing timaepace used to store the data struc-
ture, the time necessary to answer a query, and the accur#og answer. Most previous work
on distance oracles, including the work in this thesis, s@sumainly on two of these parameters:
the size of the data structure and the accuracy of the respdhis obvious that exact distance
oracles require either large data structures (e.g. theeedistance matrix) or large query times
(e.g. a shortest path computation), but fast and compactesravith bounded stretch have been
given for both general grapi’E[82] and for special classgaﬂhsl[_—abﬁdjﬂl].

A distance labeling scheme can be thought of as “distrifutiestance oracle: a distance
labeling scheme is an algorithm that, given a metric spaggigas a label to every point in the
metric such that the distance between two points can be mippated by a computation that
takes as input only the two labels. The most important par@raéor these schemes are the size
of the labels and the accuracy of the response, althouglinigentecessary for the computation
is also interesting. There is significant previous work astatice labels in the theory community
(e.0. mﬁbﬁ 7]) as well as in the practical networlaoghmunity, where they usually go by
the name “network coordinate systems” and are generaltyicesd to labels corresponding to
the coordinates in some low-dimensional embedding of thieieriato real spacelﬂ 8]. The
practical uses of distance labels are obvious: any netwgdtithm that uses overlays or makes
connections between nodes that are not neighbors in thengogtaph can take advantage of
the distance information provided by labels to optimizedkerlay. In fact, content distribution
networks that use overlays were the original motivationtfoe work on network coordinate
systems.

Finally we consider the problem of compact routing. Of alltioé tasks that must be per-
formed by a distributed system, routing messages is amanmtst fundamental. Whether the
system is the Internet, a LAN, or even a large multiprocessonputer, messages have to be
routed from sources to destinations. A natural model fos fiioblem is a weighted graph in
which the cost of routing a message equals the total coseqgddkh taken. In this model the best
that we can hope to do would be to route along shortest patfageba points. This naturally
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leads to the main way of measuring routing efficiency: stretch(also called thalistortion) is

the maximum over all source-destination pairs of the ratithe cost of routing from the source
to the sink and the length of the actual shortest path betieesource and the sink. The obvious
solutionis to keep at each node a routing table with entdealf of the othern—1 nodes. But this
solution take$2(n log n) space, which for large is impractical. Thus we have the fundamental
tradeoff between stretch and space that compact routirensefitry to address. This has been a
very active area of research in the distributed computird@ythroretical networking community,
and previous work includes results for general graphs byrjmand Zwickl[__als and Abraham,
Gavoille, and Malkhiﬁb and results on special classes apygs such as tredg:[@ 43| 65] and
doubling metricsMéjﬁO].

For all of these problems strong lower bounds are known (aswy the well-known girth
conjecture of Erdds). But these lower bounds are on thetweaise, and are of the form “there
exist graphs (or metrics) for which any spanner/oracl&ialg/routing scheme does poorly for
at least one pair of vertices”. In practice, though, thisetyyd worst case behavior does not
seem to arise. For example, there are many distance lalsghrgmes that have good empirical
performanceEZSS]. We attempt to be slightly more realisbt by changing the network
model, but by changing the type of result we prove. In thisikh&e will give constructions
and results that have sorskack in that we will prove statements of the form “on any graph or
metric, there is a construction that does well on all but &naction of pairs of vertices”. These
types of results will then let us prove average case bountisedform “on any graph or metric
there is a construction such that the average performanee airs of vertices) is good”. These
are clearly more realistic results, and are at least analngtitempt at explaining why certain
algorithms do well in practice despite the theoretical Iol@unds.

Slightly more formally, note that all of the problems we cules have a notion of stretch
or distortion and a notion of size. We say that they hagtack and stretclw if they have
stretcha on all but ane fraction of pairs. The hope is that allowing some slack alsmne us
to give better size bounds in term of the slackWe will also consider constructions that are
gracefully-degradingn the sense that a single construction katack andx(e) stretch for alle
simultaneouslyThis is a much stronger condition than merely requirrgjack, since it forces
one construction for all rather than allowing different constructions for diffetenHowever, it
will allow us to prove stronger statements not involvingcglasuch as a construction having low
averagedistortion.

This thesis includes the work initially presented |E|[27] gpanners, distance oracles, and
distance labels, and the work in—_[34] on compact routing see For example, we prove the
following theorems about spanners:

Theorem 1.1 For any metric om points, for any0 < e¢ < 1, for any integert > 0, there exists
a graph H (e) that is a(12k — 1)-spanner withe-slack of sizex + O(()"*'/¥). Furthermore,
there is a graphd with O(n) edges that is & (log %)-stretch gracefully degrading spanner with
O(1) average stretch an@(log n) worst case stretch.

Analogous theorems can be proved for distance oracles atahde labels. Note that this
construction allows us to essentially bypass known loweniois: assuming a girth conjecture of
Erd6s, there are graphs for which it is not possible to aoiesta spanner with stretch less than
2k — 1 and at most'+/* edges. This obviously implies that we cannot construct speswith
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a linear number of edges unless we have logarithmic str&ahTheoreni_T11 bypasses this and
gives us linear size spanners with constant stretch as ®mganly make the stretch guarantee
on al — e fraction of the pairs.

Our results for compact routing are a little more complidates they depend on the details
of the model. More specifically, one issue that influencestaity of routing schemes is the
power they have to rename nodes. There iswme-independemiodel, in which schemes have
to route without changing the names of any nodes, and#mee-dependenmhodel, in which
schemes are allowed to assign labels to vertices and caa wsutg information in the labels.
Somewhat surprisingly, for general graphs there does revhge be a large difference between
these two models. In particular, the best general namendigped scheme is the one devised by
Thorup and Zwick inl[83] which use®(kn'/*) space and(klog”n) size labels to get stretch
4k — 5, while the best name-independent scheme is due to Abrahawilleé, and Malkhi
[6], who give a scheme that usex k*n'/* log® n) space and has stretéh(k). There is also a
difference betweedesigner-porschemes, which can assign the ports that connect a vertesx to i
neighbors to be any permutation, afixkd-portschemes which cannot renumber the ports and
thus must assume that they have been assigned adversaiihllg there does not appear to be a
large amount of literature on this difference, it is one thaves crucial when we start allowing
slack.

Note that these two distinctions (hame-dependent vs. nadependent, designer port vs. fixed
port) give rise to four distinct models, each of which allas routing scheme to have a different
amount of power. In the name-dependent model (in eithermpodel) we can construct rout-
ing schemes with slack that give results analogous to thospanners, i.e. we can construct
extremely small routing tables and still get constant skr&tn all but are fraction of pairs. In
the name-independent model this is possible for designgs falthough the bounds are some-
what weaker), but we prove that allowing even a constant aaiuslack does not help in the
name-independent fixed-port model.

1.2 Wireless Network Capacity

A different problem that we consider in the realm of thear@tinetworking is maximizing the
transmission capacity of wireless networks. In the basidehare are given a collection of trans-
mitter/receiver pairs in the Euclidean plane, and the got maximize the number of successful
instantaneous transmissions. Maximizing transmissi@aci#y has been studied in many con-
texts, and while many variants have been considered, theteva axes along which much of the
work can be partitioned. The first axis is random vs. arbjtregtworks. If we consider random
networks, then the goal is typically to give bounds on theeexgd capacity, and study how this
changes with the density of the network (or with some oth&resting parameter). Another
option, which is what we consider in this work, is to studyiteyy or worst-case topologies. In
this setting it makes no sense to study the “average” capatitce that could depend heavily
on the actual structure of the network. Instead, the goad study the problem of maximiz-
ing capacity as an optimization problem, and give hardnesslts, centralized algorithms, and
distributed protocols given an arbitrary network as input.

The second axis is the protocol model vs. the physical madwl,is concerned with how
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we model interference and define a successful transmidsiahe protocol modethere is some
interference graph on the transmitters, and a transmissisunccessful if and only if none of the
neighbors of the transmitter in this graph also chose tcstran It is obvious from this definition
that maximizing network capacity is the same problem asriigdi maximum independent set in
the interference graph, which is a famous and well-studiretlpm in its own right. In the con-
text of this problem, further assumptions are usually mdmriaithe structure of the interference
graph, since physical constraints make it unlikely that tivaph is totally arbitrary. One typical
assumption is that it is anit disk graph(abbreviated UDG), which means that two transmitters
interfere if and only if they are at distance at mosh the Euclidean plane. There has also been
a considerable line of work on weakening this assumptiomovariants of it, including the Tx
model of @.] and the growth-bounded model@[??] [64].

In the physical modelon the other hand, we do not assume the existence of anergede
graph. Instead we let every transmitter choose a power tadmast at, give a rule for how that
power fades with distance, and say that a transmission hexs fieccessful if and only if the
received signal divided by the sum of the interference arckgp@und noise is at least some
threshold. This model is significantly more complicatednthiae protocol model, for a variety
of reasons. In the protocol model the success of a trangnisEpends only on the OR of its
neighbors; if any of its neighbors transmit then it failsegpective of whether one or ten of them
transmitted, and any number of transmitters outside of éigtmborhood can transmit without
affecting its success. But in the physical model interfeesaccumulates and normally spreads
out to infinity, so not only is the decision function more cdiogted than an OR of neighbors it
actually depends on every transmitter in the entire netw@'kile not all of the assumptions in
the physical model are absolutely true, it is commonly thdug be a more accurate model of
reality than the protocol model.

Furthermore, there is a difference betwemntralizedand distributedalgorithms. While
studying the fundamental computational problem is intérgs in many (perhaps most) real
world situations there is no central authority to run theoalidpm and tell all of the transmitters
what to do. ldeally each transmitter would make its own denis about whether to broadcast
(and in the physical model, how much power to use). In thegmatmodel, since we have an
interference graph we can simply abstract out to the graghran a normal distributed pro-
tocol on this graph, and indeed this problem is usually diassunder “distributed maximum
independent set”. In the physical model, however, ther@ianderlying communication or in-
terference graph so coordination, even among very clossrtndters, is more complicated. And
even in the protocol model, using standard models for tisteid algorithms are problematic: do
transmitters really know their neighbors? Can they readigdsdifferent messages to different
transmitters? Can a transmitter really receive multiplssages at the same time? In this thesis
we will examine both the centralized and the distributedjpam.

There has been very little study of the complexity of caltnathe maximum possible ca-
pacity in arbitrary networks in the physical model. We bedi¢hat addressing this question is
important for two reasons. First, although analyzing cégao random networks is important
for determining what level of transmissions will be possiiol completely unstructured networks,
there are many situations where the network will have somteagatructure and the transmis-
sion capacity may be very different than what is possibleaimdom networks. In these cases
we believe that knowing the complexity of calculating theanaum number of transmissions is
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important. Second, as is well-known the Unit Disk Graph miades not capture many features
of wireless networks. One reason for this is that receivalish@ar interference from all other
transmitters, even if they are far away. A more importansogais that interference at a receiver
is acumulativeeffect of multiple transmitters whereas in the Unit Disk @mamodel interference
is simply a local binary property.

This thesis includes the results 6f [9] on the centralizeobfm and the results oﬂ35]
on the distributed version. In particular, we show that iNiB-hard to maximize the number
of simultaneous successful connections in the physicalenbdt on the other hand there is a
polynomial time algorithm that gives ad(log d,,..)-approximation, where,,.. is the largest
distance of any transmitter-receiver pair. We also desigarae played by the transmitters with
the property that any Nash equilibrium has an expected nuaoflseccessful transmissions that is
within O(d% ) of the optimum, where is a parameter of the physical model known as the path-
loss exponent. Finally, we show that this game also has thygepty that if every transmitter uses
an algorithm with theno-regretproperty then the average number of successful transmisgo
also withinO(d2% ) of the optimum. We will define no-regret algorithms in Seoff3, but it is
known that no-regret algorithms exist for every game. Salreowords, we design a distributed
algorithm (every transmitter uses no-regret algorithrhaj ts based ongame-theoretianalysis
rather than a purelglgorithmicanalysis. We believe that this style of analysis is one oftthe
contributions of this work, and we hope that this techniqurediesigning distributed algorithms
will prove useful for other problems.

1.3 Constrained Connectivity and iBGP

The final problem that we consider is back in the realm of winedworks, but is based on
real life protocols rather than the idealized settings ahpact routing, spanners, and the other
problems involving network distances. In particular, wd & looking at interdomain routing on
the Internet and how routes are internally distributed gisineinterior Border Gateway Protocol
(iIBGP). This is the version of the interdomain routing pcabBGP Ek] used by routers within a
subnetwork to announce routes to each other that have baretefrom outside the subnetwork.

1.3.1 IBGP Problem Definition

The Internet consists of a number of interconnected sulorésicalled Autonomous Systems
(ASes). As described irEllS], the way that routes to a givestidation are chosen by routers
within an AS can be viewed as follows. Routers have a rankinguates based on economic
considerations of the AS. Without loss of generality, in wiolows we assume that all routes are
equally ranked. Thus routers must use some tie-breakirgnseln order to choose a route from
amongst the equally ranked routes. Tie-breaking is basddafiit engineering considerations
and in particular, the goal is to get packets out of the AS asktyuas possible (calledot-potato
routing).

An AS attempts to achieve hot-potato routing as follows. fichgers that initially know of a
route are calledborder routers (These initial routes are those learned by the border reditem
routers outside the AS.) The border router that initiallypws of a route is said to be tlegress
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routerof that route. Each border router knows of at most one routd@stination. Thus an initial
set of routed” defines a set of egress routéfs where there is a one-to-one relationship between
routes inf’ and routers inXr. The AS has an underlying physical network with edge weights
(e.g., IGP distances or OSPF weights). @istancebetween two routers is then defined to be the
length of the shortest path (according to the edge weigletisyden them. Given a set of routes,
a router will rank highest the one whose egress router iseslogccording to this definition of
distance. Thaignaling graphH is an overlay network whose nodes represent routers andevhos
edges represent the fact that the two routers at its endpog® iBGP to inform one another of
their current chosen route. The endpoints of an edgl iare calledBGP neighbors A path
in H is called asignaling path Finally, iBGP can be thought of as working as follows. In an
asynchronous fashion, each router considers all the letetgs it has heard about from its iBGP
neighbors, chooses the one with the closest egress routaebsits iBGP neighbors about the
route it has chosen. This continues until no router learresrolute whose egress router is closer
than that of its currently chosen route. When this procesis ¢ime route chosen by routetis
denoted byR(r). Let P(r) be the shortest path fromto E(r), the egress router a§(r). When
a packet arrives at, it sends it to the next routef on P(r), ' in turn sends the packet to the
next router onP(r’) and so on. Thus iP(r’) is not the subpath aP(r) starting at’ then the
packet will not get routed asexpected.

Thus there are two properties that a signaling grapshould have if the AS is to achieve
hot-potato routing:

1. complete visibility: each router hears about (and hence choose&&s)) the route inF’

whose egress routéf(r) is closest to- from amongst all routers iX » and

2. no deflections for each router, all routers’” along P(r) haveE(r') = E(r).
For a givenX 1, we say that a signaling graphdsrrect for X - if it satisfies the goals of complete
visibility and no deflections. If it satisfies these goals dtirpossibleX  then we say that the
signaling graph i€orrect

Clearly if H is the complete graph theH is correct. However the complete graph is not
practical and so network managers have adopted variouggooafion techniques to reduce the
size of the signalin grapﬂl 85]. Unfortunately these¢hnods do not guarantee correct sig-
naling graph§|_L_1| 7]. Thus our goal is to determine corsggaling graphs with fewer edges
than the complete graph.

It is easy to check that complete visibility implies no defi@es. Therefore a signaling graph
is correct if and only if it satisfies complete visibility. Aatural question is to minimize the
number of edges in the signaling graph or to minimize the maxn number of iBGP neighbors
for any router while guaranteeing correctness. We deft@P-SuMm to be the problem of finding
a correct signaling graph with the fewest edges. SimilartydefinelBGP-DEGREEt0o be the
problem of finding a correct signaling graph with the minimpaossible maximum degree.

1.3.2 Safe Sets and Constrained Connectivity

The definitions 0iBGP-SUM andiBGP-DEGREE presented above are the ones that we would
like to use, but they are somewhat difficult to work with. Tiagrue for two reasons: first, even
if we are given a signaling grapi and an initial set of routeg’, how do we check for complete
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visibility? The obvious way is to simulate iBGP on thfdtand F', but since we want to examine
this problem from an optimization standpoint we would likehtave a more structural definition
of correctness that does not require protocol simulatioecofid, note that the definition of
a correct signaling graph is that it satisfies complete iligitfor every possiblyX. So the
corresponding decision problem would be to decide if therste a graphi such that// has at
mostk edges and has complete visibility for all possifdle. But this is &2, statement, where we
have an existential quantifier followed by a universal gifentfollowed by a polynomial time
evaluable predicate. Unless the polynomial hierarchyapsiesy:, is a harder class even than
NP. Soa priori the iBGP problems might be even more difficult than the NPolete problems.

Fortunately this turns out not to be the case: the decisiosiaes of the iBGP problems
are in NP. Moreover, in the process of proving this we alsadlathe first problem and give a
structural definition of correctness. Given the underlymegwork (or at least the IGP distances),
we can associate a specsalfe sevf verticesS(z, y) C V with every pair of vertice$z, y). The
precise definitions of the safe sets will be presented ini@ed 1.1, but they are based only on
the network distances. It turns out thtis correct if and only if for all(x,y) € V' x V there
is a path between andy in H that is completely contained ifi(z, y). We call this thesafe set
definitionof iBGP, and because of the if and only if statement of the rdr@owe know that it
is completely equivalent to the more normal and applicatientered definition. In this thesis
we will use the safe set definition to prove that boBGP-Sum and IBGP-DEGREE cannot
be approximated better th&¥(logn) (unless P=NP), and we will give two different but related
algorithms based on a natural LP relaxation thaté(rez/?’)-approximations.

While for our purposes the safe sétér, y) were defined in such a way as to make the safe
set definition equivalent to the original iBGP definitionetbafe set definition itself suggests a
few generalizations which are a bit more theoretical, altifostill have their own applications.
The two natural relaxations are to allow arbitrary safe satpart of the input to the problem
(instead of safe sets based on the network distances), aaltbto an input graph’ that the
output signaling graph must be a subgraph of. When we makkedidhese relaxations we get
a new network design problem that we c&@lbnstrained Connectivitygiven a graphz and a
setS(z,y) C V for all pairs of vertices inV/, find a subgraph/ of G of minimum size (or
minimum max degree) such that every pair of nodeg has a path between them hh that
is completely contained i(x,y). If we only allow the first relaxation, then we simple have
constrained connectivity on the input graghis the complete graplk’,,; we will refer to this
version of the problem aSonstrained Connectivity oR’,.

While the iBGP problem is not nearly as general as constdato@nectivity, there is an ob-
vious security application that, to the best of our knowksdwas not previously been considered.
Suppose we have players who wish to communicate with each other but they dahdrust
one another with messages they send to others. That is, whkéshes to send a message to
v there is a subsef(u, v) of players that it trusts to see the messages that it sends @f
course, if for every pair of players there were direct commation channels between the two
players, then there would be no problem. But suppose thexedst to protect communication
channels from eavesdropping or other such attacks. Themlarguld be to have a network of
fewer thanO(n?) communication channels that would still allow a route froatteu to each
v with the route completely contained withi(u, v). Thus this problem defines a Constrained
Connectivity problem.



In this thesis we show that both the sum and the degree versiathe general Constrained
Connectivity problem are extremely difficult to approximatunder plausible complexity as-
sumptionsitis impossible to approximate either one tododitiare'os’ " for any constant > 0.
Moreover, the natural LP relaxation (which is simply the @i generalization of the LP for the
iBGP problem) has a polynomial integrality gap. On the otiand, theD(n?/?)-approximation
algorithm that we originally designed for iBGP generalire€onstrained Connectivity oR,.
We will also show some easier settings (for example, if alihaf safe sets are hierarchical) in
which Constrained Connectivity can actually be solved itypomial time.
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Chapter 2

Network Distances

2.1 Introduction

In this chapter we discuss four data structures relateddtanices in computer networks: net-
work/graph spanners, distance oracles, distance labslisc@mpact routing schemes. Recall
that given a metrid// = (V, d) (presumably arising from some network distances)yepanner
of M is aweighted grapty = (V, E, w) inwhichd(u,v) < dg(u,v) < ad(u,v) forall u,v € V
(wheredy; is the distance itz according to the weights). Less formally,GG is ana-spanner

if it preserves all distances in the metric up to a factondfwhich is called thestretchof the
spanner). Our goal is to construct spanners with both loatdtrand few edges. Similarly, a
distance oracldor M is an algorithm that preprocessgs, stores some data structure, and then
approximately answers pairwise distance queries. Theartgparameters are the amount of pre-
processing time, the space used to store the data strutttaréme necessary to answer a query,
and the accuracy of the answer. We are mainly be concernédheatsize of the data structure
and the accuracy of the response. We define the stretch ofaadésoracle in the obvious way
analogous to the stretch of a spanner: an oracle has stretcm every pair of vertices it returns
a value that is at least as large as the true distance and anntioses the true distance. A dis-
tance labeling scheme is in many way a distributed distareelea a labeling assigns a label to
every vertex so that an approximation of the distance betw&e points can be computed just
from the labels of the two points. The most important paramseare the size of the labels and
the accuracy of the approximation, where we measure theaocusing the stretch, defined in
the obvious way similar to the stretch of oracles and spanner

Compact routing schemes are an abstraction of the normiépawitched network routing
schemes that are commonly used in networks today. Theyraseige data structure to each
vertex (e.g. the normal routing tables so heavily used iwagting) and when a packet arrives
they use this data together with other available inforrmaf{guch as the packet header or the
incoming port) to figure out what outgoing link the packet slidbe forwarded on. The stretch
of a compact routing scheme is defined in the obvious way aséxémum over pairs of nodes of
the distance taken by a packet going from one node to the divided by the shortest possible
distance. As always, we want to study the tradeoff betweersitte of the scheme (i.e. the size
of the data structures stored at each node) and the stretcurs.
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There has been a significant amount of work on all of thesel@nad Our main contribution
is introducing the notion o$lackto these problems, which allows us to ignoreeamnaction of
the pairs in the hope of getting much stronger guaranteethé®oremainingl — ¢ fraction of
the pairs. This notion has its roots in the studynwétric embeddingsvhich has been a central
pursuitin algorithms research in the past decade. Loopelgilsng, an embedding is a map from
a metric space into a “simpler” metric space so that distahetween points are changed by at
most a small factor. More formally, giventarget classC of metrics, anembeddingf a finite
metric spacel! = (V,d) into the clas¥ is a new metric spac&!’ = (V,d’) such that\/’ € C.
Most of the work on embeddings has uskstortionas the fundamental measure of quality; the
distortion of an embedding is the worst multiplicative fadby which distances are increased by
the embedding. This is equivalent to the notion of stretcbunproblems, and we will use the
terms “distortion” and “stretch” interchangeably. GivdretmetricM = (V,d) and the clas§,
one natural goal is to find an embeddipg V., d)) = (V,d’') € C such that the distortion of the
map is minimized. Note that this notion of embedding includesa@pts such as spanners, in
which the clasg€ is the class of metrics generated by sparse graphs.

In the theoretical computer science community the poptylafithe notion of distortion/stretch
has been driven by its applicability to approximation aitons: if the embedding : (V,d) —
(V,d') has a distortion oD, then the cost of solutions to some optimization problemslom)
and on(V, d’) can only differ by some function ab; this idea has led to numerous approxima-
tion aIgorithms|E|4]. Seminal results in embeddings ineltiteO (log ) distortion embeddings
of arbitrary metrics intd,, spaceleS], the fact that any metric admits&fog n) stretch span-
ner withO(n) edge&l@], and that any metric can be embedded into a digstrbaf trees with
distortionO(log n) [41]. These three results are known to be tight.

In parallel to this theoretical work, more applied commigsthave had much recent interest
in embeddings (and more generally, but also somewhat vggareproblems of finding “simpler
representations” of distance spaces). One example is th@rkeng community, where there is
much interest in taking the point-to-point latencies betweaodes in a network, treating it as a
metric spacel/ = (V,d) satisfying the triangle inequality, and finding some simpépresen-
tation M’ = (V, d’) of this resulting metric so that distances between nodedeajuickly and
accurately computed in this “simpler” metrid’. Despite this similarity of interest, many of the
theoretical results mentioned above have not been usedwindbese applications; the logarith-
mic guarantees on the distortion are often deemed unadieptadeed, the notion of distortion
turns out to be a demanding and inflexible objective fungtaord the empirical works are often
happy with guarantees of the following form: they allow sosneall fraction of the distances to
be distorted byarbitrary amounts, but then seek very strong guarantees on the @istorturred
by the remaining large fraction of the distances. E.g., sarietworking application above, we
would be happy imostinter-node distances were correct and only a small fractiagistances
would be estimated poorly.

To remedy the situation, Kleinberg, Slivkins, and Wex][ﬁefined the notion oémbed-
dings with slackin addition to the metrid\/ = (V, d) and the clas§ in the initial formulation
above, we are also givenstack parameter. We now want to find a map(M) = (V,d') € C
whose distortion is bounded by some quantitfe) on all but are fraction of the pairs of points
inV x V. Note that we allow the distortion on the remaining pairs of points to be arbitrarily
large. The line of work starting with their paper, and furée: by Abraham et aI|12] andﬂ[B]
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showed that very strong results were indeed possible: in¥dwen allowed constant slack, one
could get constant-distortion constant-dimensional etdlygys. Given these results for embed-
dings into normed spaces, it is natural to ask whether on@ltain similar results for spanners
and related constructs such as distance oracles, dis&@me@lgs, and compact routing schemes.
In particular, all of these have a notion of stretch or disbor and a notion of size; we say that
they haves-slack and stretch if they have stretcly on all but are fraction of pairs. This should
presumably let us give better size bounds in term of the gie@rkmetek, and that is exactly
what we do in this chapter.

We also discuss a different way of bypassing the lower bowmdspanners, by designing
approximation algorithms or per-instance guarantees. IdWwer bound on spanners is based
on the existence of graphs that do not have good spanners, get taround them we make
guarantees of the form “this algorithm returns a spanndrisheose in size to the best possible
spanner”. Our algorithms are the best known for the diresfahner problem, and are detailed
in SectioZpb

2.2 Definitions and Slack Basics

All metric spaces we consider are finite and the graphs weidenare undirected. L&tV d)

be a metric space, where = |V|. Theball B(x,r) = {y € V | d(z,y) < r} is the set of
points at distance at mostfrom z. For0 < ¢ < 1, let R(z, €) be the minimum distancesuch
that|B(z,r)| > en. The pointy is e-far away from pointz if d(z,y) > R(x,¢). We begin by
defining slack spanners, and then similarly define slacladcs oracles, distance labelings, and
compact routing scheme.

Definition 2.1 ((Uniform) Slack Spanner) Given a metric(V,d) and0 < ¢ < 1, a weighted
graph H = (V, E) with each edgdu,v) € E having weightd(u, v) is an a-spanner withe-
uniform slackif for all =,y € V such thaty is e-far away fromz,

d(l’,y) < dH(x7y> Sa- d(l’,y)

In general,ae can be a function of and |V/|. If the metric(V, d) is induced by some weighted
graphG, we say that{ is asubgraph spanndr H is a subgraph of-.

In other words, ar-uniform slack spanner is a graph with the property that fxhepoint
x, apart from then points closest ta;, the distances from to the rest of the points are well
approximated. We call this concepirfiformslack” to be consistent with previous notation; all
references to é-slack” in this thesis meane“uniform slack”. For the record, thelis a non-
uniform notion of slack in which the only restriction is thettmost ar¥ fraction of the edges can
be ignored (se£|[2, Defn. 1.1] (EISS] for details). But weiaghk positive results even in the more
restrictive uniform model. Also, readers Gf [3] should ndtate-uniform slack embeddings are
called “coarsely(1 — ¢) partial embeddings” in that paper.

Definition 2.2 (Gracefully degrading spanner) A weighted grapt is ana(é)-gracefully de-
grading spannefior the metric(V, d) if for each0 < € < 1, H is an a(%)-spanner withe-slack.
The notion of subgraph spanner also applies analogously.
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We also consider two incomparable notions of “average’odigin; both have been consid-
ered previously in the literature, and we will construct spers that are simultaneously good
with respect to both these notions.

Definition 2.3 (Average Distortion) Theaverage distortionf a spannerd for a metric space
(V.d)is

dH (x,y)

1
@Z{x,y}e(g) d(z,y)

Definition 2.4 (Distortion of Averages) Thedistortion of averagesf a spannei/ for a metric
space(V,d) is
2oy
>

x2/> dp (z,y)

(\2/) d(z,y) *

{z,y}e

The corresponding slack definitions of distance oraclestadce labelings, and compact rout-
ing schemes are obvious. Recall that a distance oracle isthdata structure which allows fast
gueries for approximate distances, a distance labeling ssaignment of labels to vertices so
that the approximate distance between two points can be aapust from their two labels,
and a compact routing scheme consists of a data structuaglatertex (e.g. a routing table) and
a forwarding rule that outputs the outgoing port number giggoacket’'s header and the node’s
routing table (as well as possibly other information like thcoming port number, depending on
the model).

Definition 2.5 (Slack Distance Oracle)A distance oracl® has stretch with e-slack ifd(z, y) <
do(z,y) < ad(z,y) for all x,y € V such thaty is e-far from z. OracleO is a-gracefully de-
gradingif it has stretcho with e-slack for all0 < e < 1.

Definition 2.6 (Slack Distance Labeling) A distance labelingL, f) (whereL maps vertices to
labels andf maps pairs of labels to distances) has stretahith e-slack ifd(z, y) < f(L(z), L(y)) <
ad(z,y) for all x,y € V such thaty is e-far from z. A labeling isa-gracefully-degradingf it
has stretchy with e-slack for all0 < e < 1.

Definition 2.7 (Slack Compact Routing Schemes}or a compact routing scheni®, letdg(z, y)
denote the total distance traveled by a packet starting fraimat is destined fogy. ThenR has

stretcha with e-slack ifd(z, y) < dgr(z,y) < ad(z,y) for all z,y € V such thaty is e-far from

x. A scheme is-gracefully-degradingf it has stretcho with e-slack for all0 < e < 1.

Now that the basic definitions are clear, we can start agtialilding these structures. The
basic building block that we will use in all of them is a smalhgple of points from the metric
spacéel such that each point is “close” to some sample point:

Definition 2.8 (Density Net) Given a metric spacéV, d) withn = |V|, and0 < ¢ < 1, an
e-density neis a setNV C V' such that(1) for all z € V, there existg € N such thatd(z,y) <
2R(z,¢€), (2) |N| < 1, and(3) B(z, R(z,€)) N B(y, R(y,e)) =0 forall z,y € N.

We will often refer to the nodes iV ascenters Note that the difference between anet
and an=-density netis in the notion of “closeness”: here the alldwistance fronx to its closest
center depends on the density of points around

Lemma 2.9 Given a metric spacé€V,d) and0 < e < 1, ane-density netV can be found in
polynomial time.
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Proof: For brevity, let us denote the bal(z, R(z, €)) by B, for any pointz € V. We begin
by ordering the vertices in a lidt by nondecreasing value @i(-, ), breaking ties arbitrarily,
and initializing the setV to be empty. We remove the first verteXrom list L. If there exists
u € N such thatB, intersectsB,, then we just discard; otherwise, we add to NV and remove
all vertices in the balB, from the listL.. We repeat this process until the listbecomes empty
and returnN as oure-density net.

We first prove the third property. Let y € N, and without loss of generality suppose that
was beforey on the listL. Then wheny was considered, since we added itNowe know that
B, did not intersect5, for any otherz € N (if it did intersect then the algorithm would have
discarded it). So in particulas, N B, = 0.

We next show that the subs¥treturned satisfies the three properties given in Defin[fié&h 2
Consider any point € V. We show that there is a poipgt € N within distance2R(z, ¢) of
x. If z is included inN, this is trivially true. Otherwise, either was at some point the first
vertex in list L and get discarded, ar was in some balB, and removed from lisi.. In the
former case there is some pointc N such thatB,, intersectsB,. Sinceu appears before in
the initial list, R(u, €) < R(z, ¢) and hence the distance betweeand the density-net pointis
d(u,z) < R(u,e) + R(x,e) < 2R(x,¢). In the latter case, asappear before in the initial list,
we also haveR(v,e) < R(z,¢) and sad(x,v) < R(v,€) < R(z,¢) < 2R(x,¢€).

To show thai V| < % note that by the third property the intersectionfand B, is empty
for any two distinct points,y € N. Since for eachx € N, the ball B, contains at leastn
points, we conclude thaiv| < <. m

The following lemma, which we will use regularly, is one oftimost useful facts about
density nets:

Lemma 2.10 Let N be ane-density net, leti, v € V' such that is e-far from«, and letu’ and
v" be the closest nodes iN to v andv respectively. Thed(u,v') < 2d(u,v) andd(v,v’) <
3d(u,v).

Proof: By property (1) of density netgu, u') < 2R(u, €). Sincev is e-far fromu, by definition
R(u,€) < d(u,v), and thusi(u,v’) < 2d(u,v). By the choice o’ and the triangle inequality
we know thatd(v,v’) < d(v,u’) < d(v,u) + d(u,v') < 3d(u,v). u

2.3 Slack Spanners

We will now use the ability to find density nets to construcbdalack spanners. We give a
general transformation technique to convet )-spanners with’(n) edges inte-slack spanners
with stretch(5 + 6a(2)) andn + T'(1) edges. Our construction is very simple. We first construct
an e-density netV as given in Lemm&29. Sind&'| < 1, we can construct an(2)-spanner

H for the set of centera/. Then, for each point € X \ N, we add an edge betweerand its
closest pointinV to H; this gives us a spannéf for (V,d).

Theorem 2.11 The spannef! hasn+7'(2) edges, and is & + 6(1))-spanner withe-uniform
slack.

Proof: First we bound the size dff. SinceN has at mos§ points, the spannd?i has at most
T'(1) edges. Moreover, for each pointe 1\ N, one extra edge is added. Henéehas at most
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n+T(1) edges.

Next, we bound the stretch éf. Consider two points andv such thaw is e-far away from
u, i.e.,d(u,v) > R(u,¢). Letu be a closest point itV to whichw is connected to i (or set
v = wif wisin N), and define’ similarly with respect ta. By LemmdZIDd(u, v') < 2d(u, v)
andd(v,v") < 3d(u,v). Also,d(u’,v") < d(u',u) + d(u,v) + d(v,v") < 6d(u,v). This implies
that

dg(u,v) d(u,u') + dy(u',v") + d(v',v)
5d(u,v) + dy(u',v")

5d(u,v) + a(2)d(u’,v")
5d(u,v) + a(2)(6d(u,v))

as claimed. |
As an example of how we apply Theorém2.11, let us recall a-kedlwn result about span-
ners for general metrics.

Theorem 2.12 (Spanners for general metricﬂﬁB]For any metric of size:, there exists a
(2k — 1)-spanner withO (n'*'/*) edges.

Applying TheoreniZ111 to Theorem 2112 yields the followimgadlary.

Corollary 2.13 (Uniform slack spanners for general metric For any metric, for any0 <
e < 1, for any integerk > 0, there exists 12k — 1)-spanner withe-uniform slack of size
n -+ O((%)l—i—l/k)_

Note that if the metri¢V, d) was generated by a gragh= (V, E), our previous construction
may result in a spanner that is not a subgraph of the origiagitg=. We now give an alternative
construction to obtain a subgraph spanner.

Let us first recall a fact about shortest paths in weighteglggawhose proof can be found in

the journal version oml]. Suppose = (V, E) is a weighted graph ang is a set of pairs of
vertices.
Fact 2.14 We can assign a shortest path in the gra@ho each pair inP such that the inter-
section of any two such shortest paths is either empty orajsath inG. If H is the subgraph
obtained by the union of all such shortest paths @&hi$ the set of vertices i/ with degree at
least 3, ther)_ degr (v) < O(y/|B] - |P|).

Using this fact we can now construct subgraph spanners. fsdydet N be ane-density
net, which we know has at mostelements. We construct ar(%)-spannet’ of size7'() on
N, which we convert to a subgraph in the following manner. Wet to be the set of distinct
pairs{u,v} that are edges if/’. We takeH to be the union of the shortest pathgiirbetween
all pairs in P in the manner as stated in F&ci2.14. Finally, assuming #wdt pode in/ has a
unigue closest point itV (by resolving ties according to some fixed permutatioi pfpoints in
V' are connected t&V by shortest path trees rooted at the pointévinusing edges in the given
graphdG.

The following theorem shows that the resulting subgrapimseef/ contains a small number
of edges and has small stretch.

Theorem 2.15 The subgraph is a (5 + 6c(2))-spanner withe-uniform slack and ha®(n +
T(1)?) edges.

VAN VANR VARVAN
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Proof: Note that the seP containsI’'(2) pairs. Moreover, because the intersection of any two
shortest paths between pairs fihis either empty or a path itr, any two such shortest paths
can lead to at most 2 vertices fii with degrees at least 3 and so it follows that the Betf
vertices inH having degree at least 3 has size boundedty(1)?). Using the FadiZ14 and

the observation that the vertices having degree at most2nnust be trivially bounded by, it
follows that H has at mos©(n + 7'(1)?) edges. Connecting points I1i to their closest points
in N using shortest path trees adds an eifa) edges.

To bound the stretch, observe thtis an a(1)-spanner for points inV. Moreover, each
pointx € V has a shortest path to a closest poinf\in Hence, it follows immediately as in
the proof of Theorerti 211 that for any two pointsv € V' such thatu is e-far away fromo,
d(u,v) < (5+ 6a(2))d(u,v). n

Applying TheoreniZ5 to Theorelm 2]12 gives the followingatiary.

Corollary 2.16 (Subgraph uniform slack spanners for generametrics) For any metric, for
any0 < e < 1, for any integert > 0, there exists a subgraph2k — 1)-spanner withe-uniform
slack of size)(n + (1)272/%),

2.3.1 Low Weight Spanners

Ideally the slack spanners we create would have low weightedlsas low size (where weight

is the sum of the distances on the included edges, and sike isumber of edges). Clearly
distances can be scaled arbitrarily, so by low weight we nmrekative to an MST. Chandra et
al. Iﬁ] give a general transformational method#epanners that are not necessarily subgraphs.
They assume thatis a constant, though, which will not necessarily be trueoiarpurposes. In
particular, we will want to let be O(logn). A slight reworking of their algorithm and analysis
yields the following result:

Lemma 2.17 Suppose that there exists afv)-spanner construction witQ ( f (n)) edges, where
f(n)/2 > f(|n/2]), that can be constructed in polynomial time. Then for every0 there is a
poly-time constructibléx(n)(1+ €) + ¢)-spanner withO(f(2)) edges and weigh® (= f(2)(1 +
€)a(n)logn) - wt(MST).

This lemma allows us to build a low-weight spanner ondftkensity netV,, but in order to
make the entire spanner low-weight we also need to be abtaiwect the rest of the nodes to the
centers via short edges. Fortunately, this is easy to ddthara result of Khuller, Raghavachari,
and Young|E|7]. They defined and gave a construction for LAGIght Approximate Shortest-
path Trees) which we will use as a black box.

Definition 2.18 (o, 3)-LAST) Let G be an arbitrary graph with non-negative edge weights
and a root vertex. A tree7 rooted atr is called an(«, 3)-LAST if the following conditions are
satisfied:

1. The distance of every vertexrom in 7" is at mostx times the distance betweerandr

inG.

2. The weight of " is at most3 times the weight of an MST 6f.

Khuller, Raghavachari, and Young give an algorithm for ¢nrting good LASTS, and prove
the following theorem about it.
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Theorem 2.19 The algorithm finds &1 + /2,1 + @)-LAST for anyy > 0.
Using this together with LemnfaZ]17, the following theorenfairly simple.

Theorem 2.20 Given anx(n)-spanner withe-slack andf (n) edges, we can create(@(1)a(1))-
spanner withe-slack, O(n + f(£)) edges, and(cf(+)a(2)log t) - wt(MST(N,)) + O(1) -
wt(MST(V))) weight.

Proof: Our construction from Lemmia.9 finds a setlo€enters, builds an(2)-spanner on
those, and then connects every node to its closest centeus@/éhe same set of centers, but
instead of the default spanner we put down the low-weighmsfiaamation of it, and instead of
simply connecting every vertex to the closest center we grow-+ v/2, 1 4 v/2)-LAST out of
the set of centers. Then the total number of edges will be &t Mt + f(+)), and the total
weight will be O(ef(1)a(2) log L) - wt(M ST enters) + (1 + v2) - wt(MST)) (where the first
term is from the low weight spanner on the centers, and thergkis from the LAST). Following
the analysis of Theorem2ZJ11, but with an extra /2 factor for the distances to the centers and
a2a(2) + 1 factor instead of an(2) factor for the distance between the centers, we get that the
stretch isl1 + 5v/2 + 12a(1) = O(1)a(2) as claimed. m
Applying TheoreniZ20 to Theorem 2112 with= O(logn) gives the following corollary.

Corollary 2.21 (Low weight uniform slack spanner for generd metrics) For any metric of size
n, there exists a (log )-spanner withe-uniform slack of sizé&(n + 1) and weightO(log” 1)
times that of an MST.

2.3.2 Gracefully Degrading Spanners and Notions of AveragPistortion

In this section, we give general procedures to convert argispanners into gracefully degrading
spanners. We present two constructions, a simpler oneyfetl by a more sophisticated one that
works under weaker assumptions.

The Simpler Construction

Suppose we know how to construct ordinafy:)-spanners of siz&'(n) for finite metrics of size
n. Observe that typically(-) is a sublinear function, such @xlogn). It is often the case that
there exists”, ¢ > 1 such thatv(n) < Ca(n'/¢). Then, one can take = n~'/¢ and construct
a 1-spannerH, for someey-density netNy, having small size. In particulaf/, can just be a
complete graph omV,, which will have size at mos(t%)2 = n?/c. We also make use of the
a(n)-spannerfl for the entire metrid’. The gracefully degrading spanner consists of the union
of H and H,, together with edges that connect each pointito its closest point inV,. So as
long asc > 2 the size of the spanner is at m@tn) + n*° +n < T'(n) + 2n.

Observe that it < ¢, andy is e-far away fromzx, then we can use the spamférto bound
the stretched distance, which is at most(1)d(z, y), becauser(n) < Ca(n'/c) < Ca(?). If
€ > o, then we can use the spanréy as in the slack spanner to conclude that the multiplicative
stretch is at most 11. Note that for interesting functignwe havell < C’a(%). Hence, this
simple construction gives us the following theorem on ghalbedegrading spanners.
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Theorem 2.22 Suppose there exists afin)-spanner of siz&'(n) for any metric of size, where
() is a non-decreasing function such that there exists egists1 such thatv(n) < Ca(n'/?).
Then, for any finite metri¢V, d) of sizen, there exists arﬁ]a( )-gracefully degrading spanner
of size at most'(n) + 2n.
If we have the stronger assumption thgt) < Ca(n'/*), then the gracefully degrading
spanner can be made to be a subgraph of the weighted grapimthates the metri¢V, d).

Applying Theoreni 222 to Theorem 2112 with= O(log n), we obtain the following corol-
lary.
Corollary 2.23 (Gracefully degrading spanner for general netrics) Any metric of sizes has
a O(log 1)-gracefully degrading spannel of sizeO(n). If the metric is induced by some
weighted grapl, thenH can be made to be a subgraph®@f

We can now show that this construction actually gives a spatirat hasO(1) “average
distortion” for both notions of average distortion givenDefinitiondZ.B an@2]4.

Theorem 2.24 (“Average Distortion”) For any metric(V,d), there exists a spannedd with
sizeO(n) that has both constant average distortion and constanodisin of the average, and
moreover hag)(logn) stretch in the worst case. If the metiie’, d) is induced by some graph
G, thenH can be made to be a subgraph®@f

Proof: We use the spanner of Corolldiy2.23. Recall that i$ ¢,-far away fromz, then
dy(x,y) < 11d(z,y), otherwisedy (z,y) < O(logn)d(z,y).
We first bound the average distortion.

1 dg(zy) 1
@E{x,y}e(g) ﬂxvy) o E:EGVn 1Zy¢x d(xy
< LY. (H0(logn) + (1 - ) - 11) = O(1)

We next bound the distortion of average.

E{w,y}e(g) dp(z,y) RS S e
Z{w~,y}€(‘2/) ) 2zev 2oyse UaY)
Zu x dy (‘T y)
< maXeey T

< maxgey{—==0(logn) + 11} = O(1),

the last inequality following from the following argumeriior fixedzx, let A be the set of points
y that aree,-far away fromzx and_ﬁ be the rest of the points. Note that for apg A andy € A,
d(xz,7) < d(z,y). Hence, fromA| < ¢yn, we have

¥, ead@y)

ZyeAd Y] 1/4
Zyev d(z,y) ’

<é€=n"

The Sophisticated Construction

Our second construction makes use of density nets of diffeseales and exhibits gracefully
degrading behavior with only weaker assumption on the fonet.
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Suppose there exists afin)-spanner of siz&(n) for any metric of size:. The assumption
that we make isv is bounded by a linear function. This is perfectly reasoeasl Kruskal’s MST
algorithm immediately gives an-spanner. Moreover, note th&{n) has to be at least — 1 in
order to connect every pair of points. Hence, we have thewatg smoothness assumptions.
Assumption 2.25 (Smoothness)Ve assume that

1. o(2n) < 2a(n), and

2. T(%) < iT(n).

Theorem 2.26 Suppose there exista:dn)-spanner of siz&'(n) for every metric of size. Then,
for any finite metric of size, there exists ari152a(1/¢) + 150)-gracefully degrading spanner
of size2T'(n) + O(nlog™ n).

Construction outline. Let I := {0,1,2,..., [log,n|}, and for each € I, lete; = 2'/n. For
eachi € I, we construct ar;-density netV; for the metric(V,d) and also a corresponding
a(1/e;)-spannerH; of sizeT'(1/e;) for N;. Note thatV, = V. The union of theH;’s would be
part of our gracefully degrading spanner, which so far cimstat mosty ", _, 7'(n/2") < 2T(n),

by the smoothness assumption. The crux of the constructioow to add a few number of edges
between net points from different scales and maintain sgnatiefully degrading stretch.

Recall that from the first property of density net, each paing within distance at most
2R(x,¢;) from N;. The next lemma shows that if we go framto N; via net points from smaller
scales, the distance travelled would not increase too much.

Lemma 2.27 Supposd < i(1) < i(2) < --- < i(s) andz, € V. Suppose fot <[ < s, the
point z; is a closest point inV;;) to z,_;, andz;" is a closest point inV;;) to z,. Then,

> d(zmor, ) <Y 27 d(z, 7).
=1 =1

Proof: We show the result by induction on For the base case= 1, the result is trivial,
because;, = 2. Assume the result holds for some> 0. Consider the point,;; € Nj41)
closest tox,. Henced(z,, zs11) < d(z, 2%,,). Now, by the triangle inequality,

d(zs, z541) < d(2s, 2511) < d(20, 25) + d(20, 2541)-
Using the triangle inequality again,
d(z0,2s) <>, d(z1-1, 21).
By the induction hypothesis,
S d(ziers ) < 300 257 d(z0, 27).

Finally, combining the three inequalities, we have

s+1 s+1
Zdzl 1,21) <2Z2S ‘d(z0, 27) + d(z0, 254 1) 22(3“ (2, 27),
=1 =1
as required. |

Observing that fol. <1 <'s, d(z, %) < 2R(20, €;1)) < 2R(20, €i(5)), We have the following
corollary.
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Corollary 2.28 Let0 < (1) < --- <i(s) andzy, 21, . . ., 25 be as before. Then,
Yo d(zi1, z) < 2(2° — 1)R(20, €i(s))-

In view of Lemmd 227 and Corollafy 2P8, we can bound theadis¢ between andy in
the gracefully degrading spannetjifs ¢, -far away fromz.

Lemma 2.29 Suppos® = i(0) < i(1) < --- <i(s) and forl <1 < s, every point inV;;_1) is
connected directly with its closest pointN);y in the gracefully degrading spannéf. Suppose
y is €;5)-far away fromz. Then, the distance betweerandy in H is at most

((5-2° = )a() +5- (22 = D)d(w,y),

Proof: Note that from the hypothesis, we haktéz, ¢;,)) < d(z,y). We apply LemmaZ.27
with z, = x and go through the various net points -, . . . to reachz,. By CorollarylZZZ8, the
distance travelled from to x, iS dy (x, z5) < 2(2° — 1) R(x, €5)) < 2(2° — 1)d(x, y).

Now we apply Lemm&Z.27 again with = y = 1. Using the notation that for < [ < s,
y; andy;" are closest points iV;;) to i, andy respectively, the distance travelled frano v,
is du(y,ys) < >0, 2°7d(y, yp).-

However, observing thal(y, y;) < d(y,z;) < d(x,y)+d(x, z}). We conclude thaty (y, ys) <
3-(2® —1)d(z,y). Combining the two bounds oty (z, =) anddy(y, ys) and using the triangle
inequality,d(zs, ys) < d(zs,x) + d(z,y) + d(y,ys) < (5-2° —4)d(z,y).

Now, the distance between andy, in the spannefi;,) is at most

a(z=)d(@s,ys) < (5-2° = d)a(-)d(z,y).

€i(s) €i(s)

Hence, the distanaéy (z, y) is at most

(5-2° —4)a(2-) +5-(2° —1))d(z,y).

€i(s)

|

From the above LemnaZR9, one can see why our spair(@rhich consists of the union
of H,'s and extra edges between density nets of different scialgsacefully degrading. Indeed,
given0 < e < 1, we pick the largest such thate; < e. Observe that < 2¢; and hence
a(l/e;) < 2a(l/e), by the smoothness assumption. Suppose that for any:legf pointz € V'
can reach a close net point iy using at most hops, in the manner described in LemmaP.29.
If y is e-far away fromz, then we can conclude thé; (=, y) < O(2%)a(1/e)d(z,y).

Our problem reduces to how to add a small number of edges batdensity net points so
that the number of hops to reach a close net point in any lev@hiall. For example, if we add
an edge from each point ¥ to a closest net point in each level, then we can ensure tadidh
number to reach any level to be 1, but we could have adtedog n) edges. Fortunately, there
is a technique introduced by YaE[QO] and independently pnAdnd Schiebeﬂ[?] that provides
a nice tradeoff between the number of edges added and theohop, evhich is also used in the
construction of low hop diameter spannerlini[28].

The construction makes use of the Ackermann’s function,sglaefinition is recalled below.
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Definition 2.30 (Ackermann’s function @]) Let A(s,t) be afunction defined for integesst >
0 as the following.

A(0,t) =2t fort >0
A(s,0) =0,A(s,1) =2 fors>1
A(s,t) = A(s — 1, A(s,t — 1)) fors>1,t>2

Using the construction as described |E|[90] and [28], onegeinthe following result in a
straight forward manner.

Lemma 2.31 Supposéh, s,t are non-negative integers such thzlt < 4A(s,t). Then, it is

possible to ad@(¢ + 1)n edges between density net points of different scales satlfothany

pointz € V and any: < h, a net point inN; can be reached from via net points in smaller
scales, in the manner described in Lenimal?.2%,-in1 hops.

Proof of Theorem[2Z.Z6: We use LemmBZ.B1. Note that the number of levels islog, n.
Hence, by putting = 3 andt = O(log" n), we conclude that the number of hops is at most 4.
Hence, using LemniaZR9, we can obtaifiz2«(1/€) + 150)-gracefully degrading spanner, as
required. |

2.4 Distance Oracles and Labelings

The techniques that we developed for slack spanners alsmturto be useful for developing
slack distance oracles and distance labelings. Distaramdesr and labelings have been widely
studied, perhaps even more so than spanners, and distaetiada were in fact one of the orig-
inal motivations for the definition of slack embeddings bgkberg, Slivkins, and Wexleﬁ|58].
We give the first slack labelings that do not use an embedditoyj, allowing us to bypass a
lower bound from Abraham et al.l [2].

2.4.1 Distance oracles

Thorup and Zwick@] studied the problem of creating disgwracles for metric spaces. A
distance oracle is a small data structure which allows fastigs for approximate distances.
Distance oracles are supposed to capture the heart of Hpaiedl shortest paths problem; in
many applications we are not actually interested in evargleione of the distances, but instead
just need to quickly find any distance if it is needed. Theyegwn oracle that, for any integer
k > 1, takesO(kn'*'/*) space, ha®)(k) query time, and has stretch 2k — 1. It is natural

to introduce slack to distance oracles, especially sineartain method of constructing distance
oracles is via sparse spanners. This was first done by AbraBartal, and Neiman_ [3], who
give a result for gracefully degrading distance oraclesrmitfor slack distance oracles. We
describe constructions for both, giving the first slack ahise oracles and a simpler gracefully
degrading oracle that achieves constant average distpriiatching the result 0E|[3]. We as-
sume a word of memory can store a distance or a node identiflécly would be true in most
practical implementations, as well as in the theoretichlm®be model). We first give a general
transformational theorem.
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Theorem 2.32 Suppose that there exists some distance oracle aith) stretch andO(q(n))
query time that use®(f(n)) space. Then there exists a distance oracle witmiform slack,
5+ 6a(2) stretch, andD(¢(1)) query time that use®(n + f(1)) space.
Proof: As usual we first create the set of centers by usingttiensity net of LemmBg=2.9. For
each vertex that is not a center, store the edge to the closetdr. Then use the given distance
oracle on the set of centers. The claimed slack and stretechdsoare directly from the analysis
of TheorenTZI11. On a query of verticesv, we simply look up the center’ closest tou and
v’ closest tov (which can be done in constant time since we only store thatenlge) and then
use the given oracle on the centers, which takég(<)) time. Similarly, we need)(n) space
to store the one edge incident on each non-centeiyfd!)) space to store the oracle for the
centers, giving a total ad(n + f(1)) space. m
By using this transformation on the distance oracle of Thamnd Zwick Eiz Theorem 3.1],
we get the following corollary.

Corollary 2.33 (Uniform slack distance oracle) For every integerk > 1, there is a distance
oracle withe-uniform slack,O(k) query time, and2k — 1 stretch that use®)(n + k(2)'*1/%)
space.

Proof: For any integerk > 1, Thorup and Zwick give a distance oracle with k) query
time and2k — 1 stretch that usekn'*'/* space. The corollary then follows immediately from
TheoreniZ3P. m

Gracefully degrading distance oracles

We can also use the ideas for gracefully degrading spanrers3$ectio 2,312 to create grace-
fully degrading distance oracles. Recall that Theofeml 22 ax(n)-spanner of the entire
metric together with an-spanner for afmy-density net. Instead of using two levels of spanners,
we just use two levels of distance oracles, where the orattbee,-density net is exact. So if

€ < €o then we use the distance oracle on the entire metric whicarfgipointsz, y in the space
gives a stretch of(n) < Ca(n'/) < Ca(l). If e > ¢ then we use the exact distance oracle on
the density net to get a multiplicative stretchldf By lettingc = 2 we know that thel-oracle
will not take more tham space, and storing the closest center for each node only talether

n space, so the total space used is of(ly) + 2n. The query time in thé-oracle is constant,
so the total query time i®(¢(n)). This gives the following theorem on transforming distance
oracles into gracefully degrading distance oracles.

Theorem 2.34 Suppose that there exists some distance oracle aith) stretch andO(q(n))
query time that use9(f(n)) space, where(-) is a nondecreasing function for which there exists
a constantC' > 0 such thatx(n) < Ca(n'/?). Then there exists a gracefully degrading distance
oracle withC (1) stretch andD(q(n)) query time that use®(f(n)) + 2n space. Furthermore,
the average distortion and distortion of average of thigafise oracle igD(1).

The stretch of the distance oracle of Thorup and Zwick [82edrbm 3.1] satisfies the re-
quirement oru(-), so by applying TheoremZ.B4 to that oracle and using theagesrase analysis
of Theoren 224 we get the following corollary.
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Corollary 2.35 (Gracefully degrading distance oracle)For any integett with1 < k& < O(logn),
there is a distance oracle with worst case stretchebf— 1 and O(k) query time that uses
O(kn'*'/*) space such that the average distortion and the distorticawvefage isO(1).

The gracefully degrading distance oracle of Abraham, Baatad Neimanﬁ]S, Theorem 14]
gives the same query time, worst case stretch, averagetthst@and distortion of average. Their
oracle use®)(n'*/*logn) space, though, which is more than we usé i o(logn) and the
same ifk = ©(logn).

2.4.2 Distance labels

A distance labeling is an assignment of labels to the vertsmethat the approximate distance
between any two vertices can be computed simply by lookintheatwo labels. The goals are
to minimize the stretch, the size of the label, and the tinexled to compute the distance given
the two labels. It is natural to extend this definition to Kl#ébelings in the obvious way. We
give the first slack distance labeling that uses space imdkgre ofn. Note that any embedding
of a metric into/, gives a distance labeling where the size of a label is the nisna of the
embedding. Embeddings of this form were considered by Adrabt al. lﬂZ], who proved that
the dimension must depend &g n. Thus any distance labeling that uses a slack embedding
into Z, must use space that dependd@nn, whereas our labeling is independent.of

As with distance oracles, we begin by giving a general tramsétion theorem. Note that as
before all space claims assume that it takes only a constamirt of space to store a distance or
an identifier of a point, or equivalently the space boundsbmawviewed as bounds on the number
of words rather than the number of bits.

Theorem 2.36 Let (V, d) be a metric space with points. Suppose that there exists a distance
labeling where each label has sizk f(n)) and for any two points, v it is possible to compute,
in O(q(n)) time, an approximation to the distance betweeand v with a stretch of at most
a(n). Then there exists a distance labeling witliniform slack such that every label has size
O(f(%)), and computing distances up to a stretctbef 6a(<) can be done ifD(¢(1)) time.
Proof: Create a set of centers using Lemima 2.9. Apply the givenitadped the set of centers,
and for each non-center let its label be the distance to thiecelosest to it together with the
label for that center. The claimed slack and stretch boumeckear, and the size bound is
immediate since each label is just a distance and a centelr |[&he computation time is just
the time to add two distances (which we assume takes cortsta)tplus the time to find the
distance between the two centers. |

We get the following corollary by simply applying Theoré€n®8.to the distance labeling of
Thorup and Zwick@Z, Theorem 3.4]. Note that the size of #ieels is independent af

Corollary 2.37 (Uniform lack distance labeling) Let (V, d) be a metric space on points. Let
0 < e < 1, and letk be an integer with < k£ < log % Then it is possible to assign each point a

label that use®)((1)!/*log~'/* 1) space such that, given the labels of vertioes wherev is
e-far fromu, the distancel(u, v) can be computed up to a stretchl@k — 1 in O(k) time.
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Gracefully degrading distance labelings

As with distance oracles, we can use the ideas from SEgi®2 to create gracefully degrading
labelings.

Theorem 2.38 Suppose that there exists some distance labeling scheraayfanetric space in
which each label has size( f(n)) and for any two points, v € V' it is possible to compute, in
O(q(n)) time, an approximation td(u, v) with a(n) stretch. Furthermore, suppose that ) is a
nondecreasing function such that for every integer 0 there exists a constadt > 0 such that
a(n) < Ca(n'/¢). Then for every metric spac#’, d) onn points and every integer > 0 there
exists a gracefully degrading distance labeling/oivhere each label has sizg( f(n)+n'/¢), the
stretch isC'a (1), and the time to compute an approximate distance given thelddsO(¢(n)).

Proof: Lete, = n~'/¢, and create amy,-density net ofl/. For each point in the density
net, letlabel’(v) be the distances to every other point in the net, which tak@sostO(n'/¢)
space. For every point € V, letlabel” (v) be the label assigned toby simply using the given
scheme on the entire space, giving labels of §i¢(n)). Then for every point € V we let
label(v) belabel” (v) together with the distance fromto the closest poini in thee,-density net
andlabel’(u). Then clearly the required space for a single lab&b{g (n) + n'/), as claimed.
If ¢ < ¢ then we can compute the distance between two nadesdv by simply comparing
label” (u) andlabel” (v) in O(q(n)) time, giving a stretch of at most(n) < Ca(n'/¢) < Ca(l).
If ¢ > ¢, then we get a multiplicative stretch ot by adding the distance fromto its closest
center point to the distance fromto its closest center point and then adding the distancedsgtw
the two center points (which can be obtained from eitherl)al3éhis only takes constant time
and thus the computation timed¥¢(n)).

Applying Theoreni 2.38 witlr = £ to the distance labeling of Thorup and ZW|J£|[82 Theo-
rem 3.4] and then using the average case analysis of ThéaBEhgXes the following corollary,
which gives a distance labeling with bounds that esseptiaditch those of Abraham, Bartal, and
Nelmanﬂs Theorem 10] wheh = O(logn).

Corollary 2.39 (Gracefully degrading distance labeling) For any integerk with 1 < k£ <
O(logn), there is a distance labeling of any point metric such that each label has size at
mostO(n'/*log' =¥ n), and given two labels it is possible to compute the distarteden the
two points up to a worst case stretch2df— 1 in O(k) time. Furthermore, the average distortion
and the distortion of average are(1).

2.5 Compact Routing

As in spanners, oracles, and labelings, the main tradeo@inmpact routing is between tgetch
(the distance traveled by a packet divided by the shortébtgistance) and thgpace But in the
compact routing setting the notion of space is a bit more diwawied. There is théable size
which is just the amount of space used at each node to staragaable information or anything
else used by the routing protocol, but there is alsasader sizewhich is the amount of space
used in each packet to store information used by the routhgrae. Furthermore, there are two
main models of compact routing: tilame-dependembodel (in which schemes are allowed to
assign labels to vertices and can route using informatidhariabels) and theame-independent
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model (in which schemes have to route without changing timeenaf any node). In the name-
dependent model an additional space parameter isitiet size which is the size of an assigned
name. These models turn out to be quite different when ourigskack constructions. We begin
with constructing schemes for the name-dependent modetham construct schemes and prove
impossibility results for the name-independent model.

2.5.1 Name Dependent Model

Our name-dependent schemes are adaptations of the spanSextiorZB. In particular, they
follow the general formula of building a density net and rembering how to route to, on, and
from it. Givene, let N be ane-density net. For each € V, let Net(u) be the closest point ity
to u. For eachv € N, connect all points € V' such thatVet(u) = v to v by a shortest path tree
T, rooted atv. We begin by giving a general conversion theorem from tregimg to general
slack routing. Note that the real power of this method is caalyigeneral routing to tree routing,
which works well when tree routing is much easier than gdrrerging but does not obviously
help us if tree routing is hard; we will discuss this more itSs[Z5.2.

Theorem 2.40 Suppose that any tree withvertices admits a routing schenig with routing
tables of sizes(n), labels of sizé/(n), headers of sizé(n), and stretchn(n). Then given any
weighted graphz = (V, E) and any0 < e < 1, there is ane-slack routing scheme in the
name-dependent model with routing tables of sitezn + s(n), labels of sizdog 1 + ¢(n),
headers of sizevg £ + h(n), and stretctBa(n) + 4

Proof: Arbitrarily assign each node in the net a unique IXin. .., |N|}. The ID of a vertex
v will be referred to ag D (v). The routing table of each node contajig < ! entries, one for
each net node, and thus every node can route directly to anyode. The label of a nodeis
the ID of Net(v) together with the label assignedddy R’ applied toTy..,. Routing fromu
to v is done by routing directly tdVet(v) (which can be done using the routing tables at each
node and the ID ofVet(v), which is contained in the label @f and then using?’ to get from
Net(v) to v. The table size is then at moStogn + s(n), since it takes at mosdbg n bits to
represent a port. Since each ID of a net node is some inteder in., 1}, the total label size is
at mostlog £ + /(n) and the total header size is at mbgf 1 + h(n).

We use Lemm&=2.10 and the triangle inequality to bound tlegcétrfromu to v whenw is
e-far fromu, getting thatlz (u, v) = d(u, Net(v)) + dr/ (Net(v),v) < d(u,v) +d(v, Net(v)) +
a(n)d(Net(v),v) < 4d(u,v) + 3a(n)d(u,v). [

Note that since the ports only have to be labeled accorditigetone tree routing schen##,
this conversion gives a scheme in the designer-port mod#lig in the designer-port model and
a scheme in the fixed-port model otherwise.

To get an actual routing scheme, we apply this conversioaréme to the following tree
routing schemes of Thorup and Zwick:

Theorem 2.41 (Thorup and Zwick @]) Given a treeT’, it is possible to route exactly of
(stretchl) in the fixed port model using no routing tables and labelsla@aders of size(log” n).
In the designer port model, it is possible to routemith stretchl using no routing tables and
labels and headers of sizé + o(1)) log n.

Using TheoremE 240 afd 2141, we can give our first name-digmeslack routing schemes:
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Theorem 2.42 LetG = (V, E) be a weighted graph. Then for afiy € < 1, there is a routing
scheme in the fixed-port model witlslack, routing tables of siz@ (% log n), headers and labels

of sizeo(log?n), and stretch?. In the designer port model, there is a scheme with the same
parameters except with headers and labels of &ize o(1)) logn + log <.

One downside of this scheme is the dependencé onthe table size. We would like to
decrease this, sincedfis extremely small then this becomes large. Our next schedhgces this
dependence, but at the cost of slightly increased stretah aydin give a conversion theorem,
this time from tree and general routing schemes to slackirg@ichemes:

Theorem 2.43 Suppose that there is a general routing scheé®weith routing tables of size(n),
labels of siz€/(n), headers of sizé(n), and stretchw(n). Furthermore, suppose that there is a
tree routing scheme’ with routing tables of siz€/(n), labels of sizé’(n), headers of siz&'(n),
and stretchv/(n). Then given a weighted gragh = (V, E') and a parametef < ¢ < 1, there

is a e-slack routing schem& for G with routing tables of size(Z; + 1) + s/(n), labels of size
0(% + 1)+ ¢'(n), headers of size(% + 1) + 1/(n), and stretcl2 + 3a/(n) + 6a(% + 1)

Proof: The basic idea of this scheme is to route inside of the netpaxket going from: to v
will go from u to Net(u) to Net(v) to v instead of going from: to Net(v) to v as in Theorem
[Z40. Unfortunately we cannot just applyto the net since the net nodes themselves do not
necessarily induce a connected subgraph. Indeed, sinoetihedes are all fairly far away from
each other they are likely connected only through many imnéeliate nodes.

Fortunately we can use technigues similar to those used pp&smith and Elkin to con-
struct pair-wise distance preservers [31]. In particukar,can use Fa€fZ.J14 on the graghwith
P = (1;) The resulting subgrapfi’ is a shortest path graph of. Considering just the edges
used in two paths, there are at most two vertices of degrezaatd (since they either intersect
at a single path or not at all). Since there are at njp;;daths, this implies that there are at most
Ei4 vertices in the shortest path graph with degree at [&etd thus at mosgt; + % vertices with
degree eithett or at least3. Each node of degrezis on a unique path between these nodes,
so we get a new grapf by removing all of the nodes of degreen G’ and replacing each of
the removed paths by an edge of the same total lerdgik.connected and has the property that
the shortest path between every pair of net nodes is the sathe gahortest path in the original
graph, so we apply? to this graph.

Routing fromu to v takes place as follows. Firstroutes up toNet(u), which takes only
constant space if we have every node remember the port ussehtbup to its net node. In
the next phase we route f8et(v) using R on GG. Since this graph replaced paths with edges,
all of the degre& nodes that were removed need to know what to do. But this i €ase
they only have degre2in GG/, so they can just remember the two ports used for net routidg a
automatically forward any packet received on one port is fifiase to the other port. All of
the other nodes that might be encountered in this phase weremoved, so they know how to
route. When the packet reach®st(v), we route dowrl 'y, to v by usingR'.

So in this scheme the routing table at a node might have todiecthe routing table of?
on a graph with}; + 1 nodes and the table d’ on a graph with: nodes, for a total size of
s(% + 1)+ s'(n). Alabel forv consists of a tree routing label frof together with the label

of Net(v) in R applied toG, for a total size of (X + 1) + ¢'(n). A header has to include a tree
routing header and a general headerGoffor a total size ofu(4 + 1) + W (n).
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It remains to prove the stretch bound. ket € V' such thav is e-far from«. Using Lemma
210 and the triangle inequality, we have that

dr(u,v) < d(u, Net(u)) + 04(54 + 1)al(]\fet(u), Net(v)) + o/ (n)d(Net(v),v)

€

< 2d(u,v) + 3d/(n)d(u,v) + a(;4 + %)(d(Net(u), u) + d(u,v) + d(Net(v),v))

! + l)6al(u,v))

< 2d(u,v) + 30’ (n)d(u,v) + a5 + -

as claimed. |

We now use another result of Thorup and Zwick, this time oregaircompact routing. Note
that since the fixed-port model is a restricted version ofdésigner-port model, the following
results (which hold for fixed ports) also hold for designertpo

Theorem 2.44 (Thorup and Zwick [E_:l;]) Letk# > 1 be an integer, and lef = (V, E) be a
weighted graph. Then there is a compact routing scheme ifixbd-port model with routing
tables of sizex(n'/*log®> /% n), labels of sizeo(klog®n), and headers of size(log’n), and
stretch 4k-3. In addition, after one round of handshakingvhicho(log® n) bits are exchanged
they route with stretcBk — 1.

Now we can apply Theorem 2Z}43 to the Thorup and Zwick schemgsttout main result on
name-dependent compact routing with slack:

Theorem 2.45Let £ > 1 be an integer, and le¢ = (V, E) be a weighted graph. Then
there is a compact routing scheme in the fixed-port model wélack, routing tables of size
o=t log? /% 1), labels of size(log>n) + o(klog® ), headers of size(log>n), and stretch
24k — 13. After a round of handshaking in whieilog? %) bits are exchanged, this stretch can
be reduced td 2k — 1.

One important corollary of this is the scheme obtained byirgpt = log% in the above
scheme. This results in a name-dependent compact routimg'rse:withO(logé) stretch and
all of the space bounds at most polylogarithmimiand%. We will use this scheme in the next
section.

Gracefully Degrading Routing

As with spanners and embeddings, we would like to createck stauting scheme that works
not just for a fixedk but for all e simultaneously. Such a scheme would have polylogarithimic (
n) routing tables, headers, and labels, and for ampuld guarante®(log %) stretch on all but
ane fraction of the pairs. We almost give such a scheme, usinglagk routing scheme from
Theoren 245 as a basic building block but also losihgga\ factor in the label size (wherA
is the diameter of the graph). However, this lossa@fA is due exclusively to having to store
some distances, so if it takes constant space to store ackstas would be the case in any actual
implementation or in the cell-probe model), then we achigglog(n) size labels.

For integeri with 0 < i < logn, lete; = % We will refer to each as alevel For each
€;, create a;-slack routing scheme according to TheolemP.45 With log Ei LetO < e < 1,
and leti be the largest such that; < e (such ar always exists since without loss of generality
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€> %). Then the routing scheme fey suffices fore, since it ignores; < e fraction of the pairs,
has stretctO(log -) = O(log2) = O(log ¢), and has tables, headers, and labels of size siill
polylogarithmic inn and%. Unfortunately the same routing scheme needs to work fot, &b
we can't simply choose anand use that level. However, note that the route betwesmdv in
the desired level is no shorter than the shortest route legtwandwv over alllogn levels. So if
we could remember for each pair of nodes which level giveshuogtest path, then we could just
use that level whenever we're asked to route between that pai

Obviously we can’t actually remember the best level for epaln, since that would take
Q(n) space at each node. But we can do something just as good: takkosource to do some
computation and figure out which level would be best givendhstination. And thanks to
another result of Thorup and ZW|CH82] we can do this usinty @olylogathmic space at each
node. In particular, Thorup and Zwick proved the followimggult about distance labels:

Theorem 2.46 (Thorup and Zwick @]) Let(V,0) be a metric space on points with integral
distances with diameteh. Let1l < k < logn be an integer. Then it is possible to assign to
each pointv € V an O(n/*1log' "% nlog(nA))-bit label, denoted label, such that for any
two pointsu, v € V' it is possible to compute, i@ (k) time, an approximation to the distances
d(u,v) with a stretch of at mostk — 1.

The restriction to integral distances is required only s thdistance can be storedlig A
space. We remove this assumption, and judblei\ be the space necessary to store a distance.

Now we can define our gracefully degrading routing scheme.eBoh level with 0 < i <
logn, let R; be the routing scheme from Theor€m 2.45 with parameteasdk = log -. For
eachv € V, let Net;(v) be the closest net point toin the density net used b¥;. The routlng
table ofv consists of the union over all levelof the routing table of?; atv. The label ofv is
the union over levels of the label assigned toby R; together with the distance Wet;(v) and
the distance label given by Theor€m2.46\et; (v) in the shortest path graph for the net at level
1.

When routing fromu to v we compute the distance fromto v in each level by computing
d(u, Net;(u)) + d(Net;(v),v) + d'(Net;(u), Net;(v)), whered' is the distance given by com-
paring the distance labels for the two net points. We thereralong the level that minimizes
this quantity. Note that all of the information needed to pome the correct level is in the labels
of v andw, and that after the correct level is determined routing aGaondrried out as in Theorem
[Z.43 by using an extr@(loglog n) bits in the header to tell intermediate nodes what the cbrrec
level is.

Theorem 2.47 The above scheme is a gracefully degrading compact routimgrae with routing
tables of sizex(log” n), labels of sizeD(log* n + log® nlog A), headers of size(log”n), and
stretchO(log 2).

Proof: Since each level usés= log <, the total size of the tables is at mgﬁ"g" (log® 2) <

o(log* n). Each label contains for each level a normal slack label atigtance label for its net
node, so the size of a label is at mds}%," (o(log? n) + o(log® 1) + O(log?n + lognlog A)) <
O(log* n + log® nlog A) smce < n. Each header is just the header for a given level together
with the number of that level, so has size at masig® n) + loglogn = o(log®n).
For the stretch bound, it is important to note that we choseséxesults of Thorup and Zwick
for both the net routing and the distance labels. This waseiatidence. The Thorup and Zwick
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routing scheme we use (TheorEm2.44) is based on the tedwtigat they pioneered for distance
oracles and labels iIEBZ], and in particular the— 1 stretch (after handshaking) in the routing
scheme is the exact sa@k — 1 as the stretch of their distance labels. Furthermore, u$iag
same labels we can compute the sathe- 3 as in the routing scheme without handshaking. It
is not just that the bounds are the same, but that they agtt@mthpute the exact same path, so
in fact the distance label gives precisely the distancettieatouting scheme will take inside the
net. Thus our calculation of the distance travelled betweandwv at each level exactly equals
the actual distance it would take if we routed at that levelgisur scheme, and so by choosing
the smallest such distance we choose the best level.

Since we are routing along the best level, we are in partiawating along a path that is
no longer than the path we would have taken by routing aloadetel just below, which we
showed earlier would be a sufficient level to route on. So theteh of the path that we take is
no more than the stretch of that level, which by construcigai(log 1 ). n

One thing to note about the above theorem is that while it isoale-free due to the depen-
dence orlog A in the labels, it is close to being scale-free. In particulaglog A comes from
the need to store distanc@[82, Thm 3.4], not from any intietependence on the aspect ratio
due to a distance-based decomposition like the sparses:oflﬁ,m%]. So if distances can be
stored in a constant amount of space (which is a reasonaplexamation, since presumably
any implementation would use a fixed size floating point methiostoring distances) then the
dependence on the diameter disappears.

An important corollary to the above theorem is the existewnfca routing scheme (without
any kind of slack) with polylogarithmic size labels, tahlaad headers, and stret€l{logn) in
the worst case bu®(1) on average. In fact, the above scheme satisfies these nexguite:
Corollary 2.48 The above gracefully degrading routing scheme®ésg n) worst case stretch,
butO(1) average distortion and)(1) distortion of average.

Proof: It clearly hasO(logn) worst case stretch sincedf= % the fact that it has-(uniform)
slack guarantees that it does not ignore any pair (since eatéxv is only allowed to ignore
the closest node to, which would be itself), and on everything else it has stré¥¢logn). To
bound the average distortion, againdgt % and letu € V be an arbitrary vertex. For eaeh
the routing scheme ignores the clos#shodes, and has stretci(log 7+ ) on the rest. Leh(v)
denote the largestsuch that: does not ignore, i.e. h(v) = max{i : v ¢ B, (u)}. For each
0 <i<logn,letF(i) = {v eV :h(v) =i} NotethatF(i)| < 2°, and that there is some
constant: such that for eachr € F'(i) the stretch of the route from to v is at mostclog .
Then the average stretch of routes with sourgge at most

S SUITT R oYW P
i — < — —
n—lvevd(u,v)_n—lizo COg2l_n—1Z_:0 ©8 5i

(2n —logn —2) = O(1)

n—1
Since this is true for all. € V, the total average distortion {3(1).
To bound the distortion of average, first note that

Dayev dr(@y) 22,22, dr(,y) 2., dr(z,y)

S dmy) Sy, dmy) Y d(wy)
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Letz be the vertex that maximizes this ratio. Let= 3 d(z,y), andletZ; = }° . d(z,y).

Then for some constant the distortion of average id/Z) 1" Z;clog 7. Butz;/Z < %
since every vertex (i) is one of the closest’™ nodes tar. Hence the total distortion of

average is at mosty_ %" £~ log & = 2¢(2n — logn — 2)/n = O(1). n

2.5.2 Name-Independent Model

The name-independent model is significantly more difficulvbrk in than the name dependent
model. As an example, note that the above schemes dependhgridextractVet(v) from the
label ofv. This is impossible in the name-independent model, sine@#mes are arbitrarily (or
adversarially) assigned and thus contain no informatiayuaitheir location in the network. In
this section we give a good compact routing scheme with diacthe designer port model and
give a simple modification of a lower bound of Abraham, Gdeoihnd Malkhi |[]5] to prove that
no such scheme exists in the fixed port model. The differeeteden the models is that in the
designer port model the scheme is allowed to number the pbasvertex in any way it wants
(so long as it only uses the values fromp to the degree), while in the fixed port model it is not
allowed to renumber the ports.

Designer ports

Our name-independent designer port scheme is based ofé dfasic name-dependent scheme
of TheorenTZZR2. The main problem is that without the poweadsign labels we do not know
Net(v), so we do not know which net node to route to. We overcome thissing hashing and
a distributed data structure that stores all of the necgdabel information somewhere close to
the source node.

There is also the added difficulty of tree routing. In the nadependent model we could
route in trees very efficiently, but in the name-independeatlel the best known single source
routing algorithm, due to Laind__[_lSS], has stretzh — 1 and use$)(n'/*) space at each node,
and the best all-pairs schemé [6] Hagk) distortion and use®(n'/*) space. In the fixed port
model Laing’s single-source scheme is optirﬂal [5], andaalth this lower bound does not work
in the designer port model there is no known algorithm thasusie ability to assign ports to
beat the scheme df [65]. So reducing the problem to treemguéis we did in TheorefiZK2, is
not particularly helpful.

There is one situation where name-independent tree roaéinde done, though: Abraham,
Gavoille, and Malkhi showed itlﬂ[l] that tree routing can beelwith polylog space and constant
stretch if the tree is unweighted. This result holds for btitd fixed port and designer port
models.

Letu € V, and letv € V bee-far from u. Let B, = B(Net(u), R(Net(u),€)) be the
en closest points taVet(u), and letT! be the shortest path tree rootedMatt(u) on B,,. The
following lemma gives the essential property of these tthaswe will be using.

Lemma 2.49 If v is e-far fromu andw € B;,, thend, (Net(u), w) < 4d(u, v).

Proof: Sincew € B,, by definitiond(Net(u),w) < R(Net(u),¢). If Net(u) is the first net
pointto cover in the greedy density net construction algorithm then wekti@t R( Net(u), €) <

31



R(u,€), and thusiz, (Net(u), w) < R(Net(u),e) < R(u, €) < d(u,v) by the definition ok-far.
Otherwise letu’ € N be the first point in the greedy algorithm to cower Then not only is
d(u, Net(u)) < 2R(u,¢€), but alsod(u,u') < 2R(u,¢). Sinceu’ is in N, by property (3) of
e-density nets we know that ¢ B.(Net(u)), and thus

d(Net(u),w) < R(Net(u),e) < d(Net(u),u’)
< d(Net(u),u) +d(u',u) < 2d(u,v) + 2d(u,v) = 4d(u, v)

as claimed. |

Since we are aiming for constant stretch, this lemma impghes we can play around for
a while insideB!,. Leth : V — [en]| be any balanced hash function, e.g. computitgv)
mod en. Note that since: is balanced onl>0(§) nodes map onto a single value. For each
centeru € N assign each of the: elements oB], = B.(u) a different color inen], and let the
color assigned to a nodebe denoted byolor(v). Each node receives at most one color since
B.(x)NB.(y) =0 forall z,y € N by property (3) of density nets. If a nodéhas colow then it
stores the label assignedgdy Theoreni-2.42 (in the fixed-port model) for glie V' such that
h(y) = a, which uses a total of at most? log® n) space.

Once we have found the label of the destination then we are,dgince we can simply
have every node remember the routing table of Thedren 2.d2pestend that we are in the
name dependent setting. Thus the problem is reduced to @iridlennodew € B! such that
color(w) = h(v). Unfortunately as previously mentioned doing name-indelpat compact
routing in trees is hard, but Lemriia2149 tells us that we caam@eind this. In particular, stretch
is not the right measure: everything B), is close tou relative tov, So we can route on shortest
paths to a constant number of destinationgjrbefore routing tav (and then ta)). These other
destinations might be very far away from relative tou or Net(u) and so would incur large
stretch, but since our end goal is nobut v this is acceptable.

Intuitively this is reminiscent of unweighted routing, seawe do not care about the weights
of the edges irff], as long as we are routing along shortest paths to only a aanstenber of
destinations. Indeed, we are able to use a result of Abra@awnille, and Malkhi to do this:

Theorem 2.50 (Abraham, Gavoille, Malkhi ﬂ]) Every unweighted rooted tree with nodes
has a single-source name-independent routing schemeqidesigner port model) such that the
distance traveled between the rooand a destinatiom is at mostd(r, v) + 2d(T"), whered(T")

is the depth of the tree. Moreover, ordllog* n/(loglog n)? + log® n/log log n) bits are needed
per node and headers have siZég’ n)

We cannot use this result as a black box since even thoughkgsreagood guarantee about
distances it does not make the necessary guarantee abontittiiger of intermediate nodes
routed to, so it could require routing directly to(1) intermediate nodes and thus incur too
much weighted distance. But an examination of the proof aforenmZ.5D reveals that it does
in fact route to only one other intermediate nageand routes along the shortest path froro
x, then back up te, and then directly fromr to w. They use another hash functiéh which
maps the nodes of the tree onto a key space, and then asssgrk#hes in a very careful manner
so that interval routing on the key space can be done efflgiertis lets them find the node that
ownsH (w), which will then contain the necessary information for ingttow. One fact to note
about their theorem is that it uses the power of designespontearrange the ports so that they
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are in order of the size of the subtree rooted at each childtinguhis all together, we get the
following theorem:
Theorem 2.51Let G = (V, E) be a weighted graph. Then for afly < ¢ < 1 there is a
name-independent designer-port routing scheme walack for G with routing tables of size
O(Llog®n + log" n), headers of size(log” ), and stretce7.
Proof: Each node has to remember the routing tables of Thebrem thd2outing tables and
information for Theoreri 2,30, and the name-dependentddbelp to% other nodes. This totals
O(Llogn) + O(log* n) + O(Llog”n) = O(Llog® n + log* n) bits. The header contains at most
a header from Theorem 2142 and a header from Thebrem 2.5@ asimosb(log® n) bits.
Routing in this scheme will take place as follows. Firstwill route up to Net(u). Then
using the scheme from Theordm 2.50 we route to the node whicts &/ (h(v)), where the
name of a node is now its color. Then i{h(v)) we find out how to get to the node colored
h(v)in B!, so we go there. Then at that node we find out the label from fEmel@. 242 forv, so
we route toNet(v) and then down t@. We can use Lemmas 2]49 dnd 2.10 to give a bound on
the distances to and froi (h(v)) andh(v), giving us

d'(u,v) < d(u,Net(u))+ 2d(Net(u), H(h(v))) +

2d(Net(u), h(v)) + d(Net(u), Net(v)) + d(Net(v),v)

2d(u,v) + 8d(u,v) 4+ 8d(u,v) + d(Net(u),u) + d(u,v) + d(v, Net(v)) + 3d(u, v)
18d(u, v) + 2d(u, v) + d(u, v) + 3d(u,v) + 3d(u,v) < 27d(u, v)

IA A

as claimed. |

We can create a slightly different tradeoff between spacksdretch by making one easy
change: instead of havind (h(v)) remember how to get th(v), we just have it remember all
of the name-dependent labels thét) is supposed to remember. One of the lemmas proved in
[E|] about Theorerh 250 is that each node remembers at @adsg n/ log log n) different hash
values, and at mosP(logn) nodes hash to the same value. So the node that éin$v))
might have to store the name-dependent labels originaihgdtbyO (log” n/ log log n) different
nodes, for a total extra space@t% log*n/loglogn). The stretch is then reduced frafito 19,
since we don’t waste a trip frorff (h(v)) to Net(u) to h(v). So we have as an easy corollary:

Corollary 2.52 Let G = (V, E) be a weighted graph. Then for afly< ¢ < 1 there is a
name-independent designer-port routing scheme walack for G with routing tables of size
O(Llog* n/loglogn + log* n), headers of size(log” n), and stretchl9.

Fixed ports

Abraham, Gavoille, and Malkhi recently showeh [5] that feery integerk > 1 there is a graph

(in fact a star) such that any name-independent fixed-paoitinmg scheme with stretcbk — 1
requires)(n'/*) space. They also proved a polynomial lower bound on the swhes only

the averagestretch is constant, which eliminates the possibility obdagracefully degrading
routing schemes in this model (since any such gracefullyatbgg scheme has constant average
stretch, following the proof of Corollad/2Z#8). We exterfteir basic argument to prove that
for any0 < e < 1/2 with e constant, na-slack scheme exists with constant stretch and space
polynomial in% and polylogarithmic im.
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The proof from |[]5] uses a distributed Kolmogorov complexatgument, where they fix some
of the ports to a sequence with high Kolmogorov complexitgf ahow that any routing scheme
that does not us@(n'/*) space allows us to compute the sequence without using mace sp
giving a contradiction. In particular, they fix a sequericef size |n /2] with the property that
any subsequence or subset/ohas large Kolmogorov complexity relative to its size, anernth
create a star network where the fifst/2| nodes are at distandefrom the root and are on ports
in L and the othefn/2] nodes are at distandefrom the root. LetC' be the set of nodes at
distancel from the root, and lef’ be the others. In order to reach the node€’ifrom the root
with stretch at mos2k — 1, the routing scheme cannot route to any of the nodds iihey then
just consider destinations ifi and show that being forced to never leavesxcept to go to the
root forces the scheme to use polynomial space.

However, this is not true anymore when we allow constantkslét particular, some of the
destinations inC' will be ignored by the root and so the routes to those nodeklagu out to
some nodes i’ to get extra information. However, we can fix this by just ddegng the subset
of destinations that we do not ignore, which will still haaede Kolmogorov complexity since it
has size at least a constant fractiorj@f. We also need the property that we can easily generate
the initial outgoing headers for this set, which we can namby slightly perturbing the first
(1 — e)n points to have distance+ § from the root for some small constaht> 0. Then since
the root is forced to ignore the closestnodes it cannot ignore any of these nodes, and we easily
generate the outgoing headers since they are just all etesrogfi, . .., (1 — 2¢)n/2}. We omit
the details since they are just a rehashind:bf [5]; it is ghrdiorward to modify the proof of the
lower bound inlﬂS] using this new subset@finstead of all ofC. This gives the following lower
bound.

Theorem 2.53 For each integeft > 1 and constant < ¢ < 1/2, there is a weighted-node
star for which every name-independent fixed-port routirigeste withe-slack and stretcBk — 1
uses at leasf)(n'/*) bits of memory at some node.

2.6 Approximation Algorithms for Spanner Problems

We now examine a slightly different topic: approximatiog@ithms for spanner problems. The
motivation for this is simple, and corresponds with the wettion for looking at slack problems
in the first place: the strong lower bounds are not realisBtack was one way around them,
but looking at per-instance guarantees rather than glaledagtees is another way. The lower
bounds implied by Erdés’s girth conjecture are of the fortimete exist a family of graphs for
which no good spanner exists”. But many graphs are not lilsg $lo we instead turn our attention
to approximation algorithms, or per-instance guarantdes, are of the form “we can build a
spanner that is close to the size of the best spanner, whakbatdappens to be”.

We will consider a few different spanner variants. In gehenrge are given a graply =
(V, E) (possibly directed), &ength functiory : £ — R*, and aweight functionw : £ — R™.
The distance between any two vertices is defined to be theéest@ath distance between them
according to/. We will want to find a subgrapl#/ of G of minimum total weight such that
the stretch between any two points is at most some pararhdterthis section we define a
spanner to be what was called a subgraph spanner in SECBpnTAis is obviously equivalent
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to finding a subgrapl?/ such that the stretch of any edgefins at most:. In thebasick-spanner
problem, the graply is undirected and both the length and the weight functioaslvays equal
to 1, i.e. distances are the number of hops and the goal is to naaithe number of edges. In
the unit-length k-spanner problem the length function is alwayand the weight function is
arbitrary, while in theunit-weightk-spanner problem the weight function is alwaysnd the
length function is arbitrary (note that this is the versidrspanners discussed in Sectlonl 2.3).
All of these versions can clearly be defined for both undedand directed graphs.

The basic tool that we will use to design approximation atgarns is an LP relaxation of the
k-spanner problem. For each edgey) € £, let’P, , denote the set of paths @& from x to y
with stretch at most (i.e. the sum of the lengths of edgesfiis at mostt x ¢(u, v)). For each
edgee € E we will have a variabler., and for each patl® € P, , we will have a variablefp.
This gives the following linear program:

min Z w(e)x,

ecl
s.t. Z fr<z. V(r,y) € E,ec€ E
PePy ye€P (21)
Z fr>1 V(z,y) € £
PEPqy
T, > 0 Vee F
fp>0 V(z,y) € E,P € P,y

This LP is obviously a valid relaxation of thespanner problems. To see this, suppose that
we are given a spannéf. Then for every edgér, y) in the original graph there is a path fif
of stretch at most, i.e. there is some path frofa, , in Z. So we can set. to 1 for all edges
e in H, and we will setfp to 1 if Pisin H. SinceH is a valid spanner all the constraints are
satisfied.

This LP has polynomial size for certain versions of the peafl for example the unit-length
version in whichk is a constant. In general, it will have polynomial size whasrehe number of
stretchk paths between two adjacent points is at most a constantxéon@e if ;. is a constant
and the ratio between the length of the maximum edge and tigghef the minimum edge is
a constant. In these cases this LP can be solved in polyndmialusing any polynomial time
linear programming algorithm. In some cases, though, tRisias exponential size, and it is not
obvious how to solve it in those cases. In fact, we will novedhe LP in these instances. We
will insteadapproximatelysolve the LP.

We do this by using a different LP that is an edge based fortionlanstead of a path based
formulation. We will again have a variable, for every edge, but we will change the flow
variables fromfp to f((jf)), i.e. we will have a variable for every edge indicating howatmu
flow is going from one endpoint to the other for every commydiih the undirected case this
will actually mean two variables per edge, one for each timeg. The intuition behind this LP
is simple: the first constraint forces every flow to obey thgeedapacities, the second, third,
and fourth constraints force a unit flow out of the source antd the sink (with flow conserved
everywhere else) for every commodity, and the fifth constriorces the “length” of each flow
to have stretch at most
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min Z w(e)x

eceE
st fEY) < g, Vee E,(x,y) € E

Z f(uv Z f(uv =1 VY(u,v) € E

z:(u,z)EE z:(z,u)EE
Z £ Z fi =1 Yuv) e E

z:(z,0)ER z:(v,2)EE (22)
Z fiom — Z oM =0 V() € Boustay

vi(u,w)EE vi(v,u)EE
S (o) fEY < k(@) Y y) € By (wo) €

(u,w)EE

Le 2 0 Ve € E

fou >0 Y(z,y) € B, (u,v) € E

This LP clearly has polynomial size, and is also a relaxatithe k-spanner problems. It is
a relaxation basically for the same reason thalELP 2.1 isid welaxation: given a-spannert,
we will setz, to 1 for all edges in/, and for all edgesz, y) € E we will route one unit of flow
from z to y through a path inP, , that is also inf, at least one of which must exist sinéeis
a valid k-spanner. So we can solve this LP in polynomial size usingeafynomial time linear
programming algorithm and get a fractional solution. We change this into a solution with a
polynomial number of path-based flows rather than edgedbff®@s using standard techniques;
for example, for every commodity we can find an arbitrary padim the source to the sink on
which every edge has nonzero flow, assign the amount of flovherbottleneck edge to that
path, and then remove that flow from the original. In eachatien some edge gets pushed to
have0 flow, so this only runs a polynomial number of iterations soeméd up with a path based
solution that has polynomial support.

However, this still might not be a valid solution to [PR.1.i3Is because the only guarantee
we have on the path lengths is that for every efge) € E, the sum of the lengths of the paths
times the flow on the path is at mdst((z, y)). More formally, let?’, , be the set o&ll paths
betweenr andy, not just the paths with stretch at m@stThen after converting our solution for
LP[Z2 to a path-based solution we will have the property ¥iat. . £(P)fp < k((u,v)),
where/(P) is defined to be the sum of the lengths of the edgeB.ifThis is weaker than the
stretch condition of LP2]1, since it just says that the ayegath used must have stretch at most
k, not that all paths used must have stretch at mho$dn the other hand, if the average stretch
is at mostk, then by Markov’s inequality we know that at leds® of the flow is on paths with
stretch at mosek. More generally, we know that at leagt. flow is on paths with stretch at
mostl + e. So if we increase alt values by a factor of? and remove the flow on all paths of
length more tharn1 + €)%, we will have a solution to LP_2.1 for th@ + €)k-spanner problem.
This naturally gives rise tbicriteria approximation algorithms, where we will give(a + ¢)k-
spanner that has weight at mostafactor larger than the optimuispanner. We will call such
algorithms(1 + ¢, «)-approximations. Slightly more formally, this analysighs the following
theorem:
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Theorem 2.54 If there is an algorithm that is am-approximation for thek-spanner problem
assuming it has a valid fraction solution for [PR.1, thenahde modified to yield a polynomial
time (1 + ¢, “=«)-approximation algorithm.

In this section we will explore these relaxations by usirgnhto design approximation algo-
rithms and analyzing their integrality gaps.

2.6.1 Approximation Algorithm for Unit-Weight £-Spanner

In this section we design(é(n2/3)-approximation algorithm for the unit-weightspanner prob-
lem (directed and undirected) as long as we can solMeTIlP Pwle tannot solve it we will give
a bicriteria approximation by applying Theorém3.54. Fa timdirected unit-weight-spanner
problem it is well known that there is alwaysktaspanner with at most!t F1 edges, which is
obviously anFiT approximation since any spanner needs at leasit edges just to be connected.
So our new algorithm is not an improvement over this existitgprithm. For the directed ver-
sion, though, the best known algorithm igdn'~'/*)-approximation due to Bhattacharyya et
al. Iﬂ] that works only for the basic directédspanner problem (unit lengths and weights). So
for k£ > 3 our algorithm is better for the basic directed problem, anthe best of our knowledge
it is the only known algorithm for the unit-weight directéespanner problem. Fdr = 3 there

is also a previoud)(n?3)-approximation due to Elkin and Peléa[:%?] that does not URdased
techniques, but their algorithm and analysis are signifiganore complicated than ours.

We begin by assuming a fractional solution f) for LP[Z]. For everyu, v) edge inE, let
N,., C V be the set of vertices that lie on a path of stretch at mdetm w to v (i.e. the set of
vertices that are used by at least one pat®jn). The following lemma bounds how small the
capacities in the solution can be relative to the size ofdlsess:

Lemma 2.55 For any (u, v) € E there is a pathP € P, , with the property that every edge in

1
hasz, > Vol

Proof: Suppose this is false for sonte,v). Let B C N, , x N,, be the set of edges with
r. < 1/|N,,|>. Then every patt® € P, , goes through at least one edgeAnso these edges
form a cut between andwv relative to the paths i®, ,. Since we have a valid LP solution, we
know that at least one unit of flow is sent franto v using paths iP, . This means that the
number of edges i must be at leagtV,, ,|*. But this is a contradiction: every edge thhas
both endpoints iV, ,, so there are at mo$t*»*) < |N,,|* of them. n

So if | N, | is small, Lemm&Z35 implies that there is some strétglath with the property
that every edge is assigned a large capacity. This is good fewounding, since it means that
we will not have to round the capacities up by very much. Buatwvh| NV, .| is large? Then there
are many nodes that are on stretcpaths, so we should be able to find such a path by picking
nodes randomly. This is formalized in the following lemma:

Lemma 2.56 If we sample at Ieas‘i% vertices independently and uniformly at random, then
with probability at leastl — 1/n? at least one sampled vertex will be W, ,
Proof: The probability that no sampled vertex isij, , is at most

3nlnn

Nuv ‘N”r")/”‘ _
(1_| ,|) §e31nn:1/n3

n
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and thus the probability that at least one sampled vertex§,i, is at leastl — 1/n? [ |

Our algorithm is quite simple, and is based on these two lesnme first do a thresh-
old LP rounding: any edge with 2, > 1/(3n1nn)%*? is included in our spanner. We then
randomly samplé3n Inn)?? vertices, and for each sampled vertexve built a shortest path
in-arborescence and a shortest path out-arborescencaratt (in the undirected case these
will simply be the same shortest path tree).

Theorem 2.57 This algorithm returns a valid spanner with probability aglstl — 1/n, and if
it does return a valid spanner then it is@((n In n)/?)-approximation.

Proof:  We first prove that it results in a valid spanner. Consider s@dge(u,v) € E.
If |Nyo| < (3nlnn)l/3, then Lemmd 285 implies that there is some strétgiath in which
every edge: hasz, > 1/(3n1nn)%3. So the threshold rounding step will add all of the edges
of this path to our spanner, so there will be a path frorto v in our spanner with length at
mostk(((u,v)). On the other hand, ifN,,| > (3nInn)Y/? then Lemmd&Z36 implies that with
probability at leastt — 1/n* we will have sampled some vertex i, ,. Suppose we sample
z € N,,. By the definition ofV, , we know thatr is on some path from to v with stretch
at mostk, and thus the length of the shortest path frarto x plus the length of the shortest
path fromz to v is at mostk/((u, v)). Since we included both a shortest path in-arborescence
and a shortest path out-arborescence rootedaatr spanner will include both of these shortest
paths, and thus will include a path fromto v with stretch at most. Now we can take a union
bound over all such edges, and get that with probability agtle — 1 /n everyedge(u, v) with
|N..o| > (3nInn)Y/? has at least one vertex from, , in the sample set. So for any edge v)
either the LP rounding or the random sampling will guararae®lid path of stretch at most
and thus the graph we return is a valid spanner (with prottakil leastl — 1/n).

To prove that it is a)((n Inn)?*?)-approximation we will show that each step costs at most
O((nlnn)*?)x OPT. This is obvious for the LP rounding step: evetyis increased by at most
a factor ofO((n1nn)?/?) so the rounding costs at maS{(n Inn)?/?) times the LP cost. Since
the LP is a valid relaxation, this implies that the roundingts at mosO((nInn)??) x OPT.
To show that the second step does not add many edges, camesampled vertex Suppose
that in the original graphz, nodes are reachable fromand S, nodes have paths ta Then
obviously any spanner must have size at least{ R, — 1, S, — 1} just to maintain connectivity
between nodes that should be connected. But adding a dimathsn-arborescence adds at most
S, — 1 edges, and adding a shortest path out-arborescence addst@akm- 1 edges. So the
number of edges we added by samplinig at mostS, — 1+ R, — 1 < 2 x OPT'. Thus the total
cost for the second step is at m@gdn Inn)?* x OPT m

This gives a(j(nz/?’) approximation to the directed unit-weightspanner problem as long
as we can solve LP3.1. If we cannot solve it, then combiningofém 251 with Theorel ZH7
gives a bicriterig1 + ¢, 2<O((n Inn)*?))-approximation.

2.6.2 Unit-length2-Spanner

The unit-length2-spanner problem is qualitatively and quantitatively eliint fromk-spanner
with & > 2: it is known that it can be approximated @(logn) and that this is tight (assuming
P # NP). As part of our goal of understanding the spanner problenouph LP relaxations,
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we show that LPZ]1 has integrality gap@flog n), and that there exist instances of unit-length
2-spanner on which the integrality gap is al3@ogn). In fact, these instances show large gap
even when weights are also unit, i.e. when we are actuallgerbasi-spanner problem. For
this section we will assume that we are in the undirectediaerdut the same techniques work
in the directed version as well.

Lower Bound

We first show that the integrality gap §%(logn) on certain instances. The intuition is that we
will apply the hardness reduction from set covertspanner to an instance of set cover that
has a large integrality gap. We first describe the generiaaioh, then the particular set cover
instance that we apply it to.

Suppose we have a (unweighted) set cover instance with etefi@nd setsS, where|U| =
N and|S| = M. We create a grap& with vertex set/ U S U {x; : i € [k]}, wherek = M?.

In other words, there is a vertex for every element, a vertexefrery set, and: new vertices
x1,...,x. Clearly the number of vertices is polynomial in the sizels# set cover instance (it
isin factn = M? 4+ M + N). There is an edge from eveny to every set node and to every
element node, an edge between every two set nodes, and ahetdgen a set node € S and
everye € U : e € S. More formally, the edge setiS{z;,S} : i € [k],S € S} U{{x;, e} :i €
kl,e e U U{{S,5}:5,8" e S}U{{S,e} :se€S,ecU,ec S}

The set cover instance that we use has elemerit’set{0}, so there ar@? — 1 elements.
There is a sef,, for everya € F{ (so there ar@? sets), wheres, = {e € F\ {0} : - e = 1}.
We are using the normal notion of dot product o¥étere, i.e« - e = aje; + - - - + a,e, (Mod
2). Itis easy to see that every element is in exactly half ofsets. This large amount of overlap
intuitively allows the linear program to “cheat”.

To see that the LP has a small solution, we will set the capacithe edges between set
vertices tol, the edges between set vertices and element verticesatal the edges between
vertices and element vertices@oWe will also set the capacity of edges betwegerertices and
set vertices t@/M. Obviously this solution has cost at mast/ 2 + M? + MN = O(M?) =
O(n), so it remains to show that it is a feasible solution. To shbig,tfor every edge in the
original graph we need to find a way to route at least one uriiibef subject to our capacities
from one endpoint to the other along paths of length at mo$his is trivial for every edge that
we set to have capacitly so we just need to worry about edges incident:pnodes. For edges
of the form{x;, S} with S € S, we can send /M flow on every edge from; to S (including
the edge fromz; to S, and then flow that was set to se&ts = S can be forwarded along the
{S’, S} edge. For edges of the forf;, e} with e € U, we can sen@/M flow from z; to every
set that contains. Since exactly half of the sets contaithis adds up to a total flow df. This
flow can then be forwarded directly tg since there is an edge of capacitipetweere and every
set containing. Thus this if a feasible solution to the flow LP of c@stn).

Now we want to show than any integral solution has cost at leaslogn). Consider some
arbitrary integral solution (i.e. a setting of 0/1 capaastto every edge such that one unit of flow
can be sent between the endpoints of any original edge uathg pf length at mo<f). Consider
an edge{z;, e} with e € U. Either this edge has capacityor there is somé& € S withe € S
such that the edges:;, S} and{S, e} both have capacity. This is because the only paths of
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length at mos2 between:; ande are paths of this form and the one direct edge. Since thigés tr
for everye, the vertices adjacent tg must form a valid set cover of this original instance (where
an edge directly to an elemenis equivalent to adding the sét}). Thus the degree of any;
node must be at least the size of the smallest valid set cBgepur set cover instance, it is easy
to see that the size of the smallest cover is at lga3b see this, suppose otherwise, i.e. assume
there is some collection of set, , ..., S,, , that covers the elements. Thef;'S,. = 0, so
N—{e € F4: o; - e = 0} = {0}. But this is a contradiction, since the intersection;of 1
hyperplanes in the-dimensional vector space ovigs cannot be just a single point (that would
require at leasf hyperplanes). So any valid set cover has size at leastog V.

So now we know that any integral solution to the flow LP has ab&astcq > M?log N =
Q(nlogn), thus proving that the integrality gap of the flow LP is at l€@fog n).

Upper Bound

To see that the LP has an integrality gap(@flogn) we will essentially do the reverse and
reduce2-spanner to set cover. First, some notation: for each vertex’, let N(v) C V be
the set of neighbors af in G. For eachv € V andU C N(v), let SY = {{v,u} € E : u €
Utu{{w,z} € E:w,z € U}, i.e.SY consists of edges in which both endpoints are contained
in U or one endpoint i and the other is i/. The intuition is that if we include all edges from
v to nodes inJ in our spanner, theRY are the edges that are now stretched by at ost

This leads to the obvious set cover formulation: the elemant edges i/, the sets are
{SY}oevivenw), and the costof asét’ isc(v, U) = Y, ., w({u,v}) (i.e. the cost of adding all
the edges betweanandU to the spanner). As a side note, the existindog n)-approximation
algorithms for2- spanner|EJE3] are basically just the basic greedy algworior this set cover
instance, although they don’t phrase it that way. The onffigdince is that in their algorithms
the cost of a set changes throughout the algorithm, since &dge has already been included
then it's cost should not be factored into the cost of any set.

This set cover formulation leads to the obvious related Pl relaxation:

mmzz c(v, U)yY

veV UCN (v

Z Z yvzl Vee F

veV UCN (v):e€SY

(2.3)

Since this is a set cover LP, we know that it has integralitp g& O(logn) (note that
this is irrespective of whether or not it is an exact formiglatof 2-spanner). LetL Py, and
I Py, denote the optimum fractional and integer values respalgtiP[21, and lef Ps and
1 Ps¢ denote the optimum fractional and integer values of thisseéd.P. We want to show that
I P10, < O(logn)LPyie,, and we know thaf Psc < O(logn)LPsc. So to finish off we will
show that[Pflow < O(ngc) and thatLPSC < O(Lpflow>-

Lemma 2.58 I Py, < I Psc

Proof: Since these are the optimum values of minimization probjémarder to show this we
just need to show how to transform any integer set coverisolinto an integer flow solution of
no larger cost. Ley be a solution to the set cover IP. To build a flow solution,asgt,, = 1 if
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there is somé/ C N(v) such thatu € U andyY = 1 or if there is somd/ C N(u) such that

v € U andy? = 1. We first claim that the cost of this flow solution has not gopewhich is
easy to see since any edge for which werset 1 (and thus cost ug(e)) contributesu(e) to the
cost of at least one s&f’ with y¥ = 1. Now we claim that this is a feasible integer flow solution,
which means that we need to find a way to route every edg@edlong a path of length at moat
using only edges withr, = 1. Let{u, v} € F be an arbitrary edge. Since it is covered by the set
cover solution, there is someandU C N(v) with y¥ = 1 and{u,v} € SY. This means that
there is either a length path or a lengtl2 path (throughv) between. andv consisting of edges
that were set to have. = 1, and thus we can route a feasible flow. ]

Lemma 2.59 LPs¢ < O(LPfo)

Proof: To prove this lemma we show how to convert a fractional flow mfractional set cover
that costs at most times as much. Let, f be a solution to LIP2Z11. The cost of this solution is
> .crw(e)r.. We first increase alk and f values up to the next power @f giving us a new
feasible flow solution’, f* with >~ w(e)z, < 2> w(e)z.. Forallv € V andi € Zx, let
U(v,i) = {u € N(v) : 2,4 = 1/2°}. Now to create a fractional set cover we will just set
g — 121 for all v € V and nonnegative integers

We first claim that this is a feasible fractional set cover. sée this, consider some edge
{u,v} € E. In the fractional flow solution’’, f’ at least one unit of flow is sent on paths of
length at mos® betweenu andv. So some amount of flow is sent directly along edgev},

some is sent from to some intermediate vertex and then tov, some through intermediate
vertexz,, etc. The flow sent along the path- z; — v is at mostunin{z, _,, 2}, ,}. Suppose

this value isl /2. Then note that both andv are inU(z, ), so the variableg’ ") fractionally
covers the edgéu, v} by 1/2°. So any path carrying flow in the flow solution has a corresjpromd
set that covers to the same amount.

Slightly more formally, for any three verticesu,v € V with u,v € N(z), letI(z,u,v) =

log max{———, ———}. Note that the maximum flow sent betweerand v via = is at most
{u,z} {v,z}

1/21Gwv) Then

U (u,lo (l/x'uv ) U(v,lo (1/$luv ) z,1(z,u,v
Yoo DT iy T gy, T T N UG
z€V UCN(z):{u,v}eSY z2eV:u,veN (z)

’ / 1(z,u,v)
>y + Ty D, 1/2

z€V:u,weN (z)
S
PPy,

and thus edgéz, y} is covered, so thg values we set do indeed form a feasible fractional set
cover.

Now we need to argue that the cost of this fractional set ca/etose to the cost of the

fractional flow. Note that by setting) " to 1/2* we have incurred co$T,,_;;(,..) C{u.} /2" SO
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the total cost of our fractional set cover is

ZZ v, U(v, )y @) = ZZZ ({u,v})/2"

veEV  d veEV i uEU(U 7,)

=>> > w({u, v})/2'

veV i uEN(v):x’u’ >1/2¢

<Z Z 2w({u,v})rl,

veV ueN (v
=4 Z w(e)z!
ecEl
<8 Z w(e)x
Thus the cost of our partial set cover is at m@simes the cost of the original flow solution,
S0 LPsc < O(LPyi0y) as claimed. u
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Chapter 3

Wireless Network Capacity and Scheduling

In this chapter we switch our attention to wireless netwpvisich have their own unique char-
acteristics including broadcast rather than point-taapoommunication, the ability of multiple
transmissions to use the same channel, and somewhat mopesoraquirements for a trans-
mission to be “successful”. Because of these differen¢esetare various different models of
wireless communications, all of which are different thae standard models of wired commu-
nications. One fundamental problem in which the specifidh®@imodel make a large difference
(and which demonstrates how different the wireless setitifrom the wired setting) is the prob-
lem of network capacityr one-shot schedulindn this problem we are given a wireless network
and a collection of transmission requests and simply wandgimize the number of simulta-
neous successful transmissions. Obviously when conaglénis question the major modeling
issue is how we model interference, or equivalently how wterdeine what sets of transmitters
can successfully simultaneously transmit. In this thegsmil consider two basic models: the
protocol modeblnd thephysical mode{although most of the results will be in the more interest-
ing physical model).

In the protocol model there is some interference graph ordésered transmissions, and a
transmission is successful if and only if none of the neighklwd the transmission in this graph
also chose to transmit. It is obvious from this definitionttimaximizing network capacity is the
same problem as finding a maximum independent set in théeréece graph, which is a famous
and well-studied problem in its own right. In the context bistproblem, further assumptions
are usually made about the structure of the interferengehgiince physical constraints make it
unlikely that this graph is totally arbitrary. One typicasamption is that it is anit disk graph
(UDG), which basically means that transmitters interfétley are too close to each other. But
even in this setting finding the maximum independent set ishhife Eh], although there are
simple polynomial time approximation sche @E_B TOkre has also been a considerable
line of work on weakening this assumption or on variants ohitluding the Tx model oﬂEl]
and the growth-bounded model m77] ahd| [64].

In the physical model, on the other hand, we do not assumextktrece of an interference
graph. Instead we let every transmitter choose a power tadwast at, give a rule for how that
power fades with distance, and say that a transmission esatul if and only if the received
signal divided by the sum of the interference and backgrawride is at least some threshold.
This model is significantly more complicated than the protocodel, for a variety of reasons. In
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the protocol model the success of a transmission depeng®nrthe OR of its neighbors; if any
of its neighbors transmit then it fails, no matter whethee on 10 transmitted, and any number
of transmitters outside of its neighborhood can transmiheut affecting its success. But in the
physical model interference accumulates and spreads anfindy, so not only is the decision
function more complicated than an OR of neighbors it acjuddipends on every transmitter in
the entire network. While not all of the assumptions in thggatal model are absolutely true, it
is commonly thought to be a more accurate model of reality tha protocol model.

Furthermore, there is a difference betwemntralizedand distributedalgorithms. While
studying the fundamental computational problem is intérgs in many (perhaps most) real
world situations there is no central authority to run theoalidpm and tell all of the transmitters
what to do. ldeally each transmitter would make its own denis about whether to broadcast
(and in the physical model, how much power to use). In thegmatmodel, since we have an
interference graph we can simply abstract out to the graphr@ma normal distributed protocol
on this graph, and indeed this problem is usually classifreteu“distributed maximum indepen-
dent set”. In the physical model, however, there is no uydeglcommunication or interference
graph so coordination is more complicated. And even in tlwgmol model, using standard
models for distributed algorithms are problematic: do sraitters really know their neighbors?
Can they send different messages to different transnt€ran a transmitter receive multiple
messages at the same time?

In this thesis we try to work in a more general model that agsi@ss about inter-node com-
munication. We consider arbitrary networks in both the ptaisand protocol models, where
every transmitter knows only what happens to its transminssi We do not even assume that
neighbors in the protocol model can communicate (althoughassumption about reception
knowledge is equivalent to every node knowing whether oratdéast one of its neighbors at-
tempted to transmit), and in fact we design algorithms agsgithhat they cannot. We show that
even in this extremely general model, there are simple dlguos that can guarantee that the av-
erage number of successful transmissions is a good appatiginto the optimal solution. While
distributed approximation algorithms for maximum indegent set are well studied (e.ﬂ??]),
this is, to the best of our knowledge, the first result thatsdoat include communication among
nodes, just information about the result of a transmissidns is also the first decentralized al-
gorithm with provable approximation guarantees in the ptatsnodel, which is perhaps a more
interesting result as until recently we did not even know gbad centralized algorithm in this
model Eb @6].

Moreover, the inspiration and techniques we use come nat fre distributed computing
literature, but instead from the algorithmic game theorg &arning theory literature. In par-
ticular, we study a notion that generalizes the well-knowiogoof anarchy: theprice of total
anarchy originally defined byEO] as a way of weakening the ratisigassumption behind the
price of anarchy. But by definition there are algorithms ttmalmost as well as the price of total
anarchy, unlike the price of anarchy. So by proving that theepof total anarchy is small we
have actually proved that if every transmitter runs a s¢edalo-regretalgorithm then the av-
erage performance will be good. This is a powerful tool whengighing distributed algorithms
since it allows the algorithm designer to prove approximratjuarantees for distributed algo-
rithms simply by proving no-regret for a centralized alglonn. We hope that this technique for
designing distributed algorithms will prove useful for etlproblems, and believe that maximiz-
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ing network capacity is simply one of a number of problems mah the price of total anarchy
can be bounded.

We will begin by proving that maximizing wireless networkpeity is NP-hard in the phys-
ical model. We call this the MXx-CoNNECTIONS problem. We will then describe two relatively
simple approximation algorithms. Since in reality we waistributed protocols and algorithms
in wireless networks, we then prove a bound on the price ofcuyeof a natural game. Finally,
we will extend the analysis used to prove the price of anatohgive a distributed algorithm
based on no-regret algorithms and the price of total anawdtigh works in both the protocol
and the physical models.

3.1 Wireless Models

In the protocol model every transmitter can either trangmitot transmit, and a particular trans-
mitter is successful if and only if it chooses to transmit ande of the neighbors of its connection
in the interference graph choose to transmit. We will briefysider general graphs, but will

spend most of our time olocally growth-boundedyraphs, which are a generalization of the
growth-boundedjraphs of|{—ﬁ|4]:

Definition 3.1 A graphG = (V, E) is locally growth-boundedf there is some constaitsuch
that for every node € V the size of a maximum independent sedifv) U {v} is at mostk,
whereN (v) denotes the set of neighborswih G.

We note that, as pointed out Hﬂ??], growth-bounded graphrelize unit disk graphs,
guasi-unitdisk graphs, unit ball graphs, and other poygaeralizations of UDGs, and therefore
locally growth-bounded graphs also generalize these rsodel

For the physical model we consider a set@onnections in the plane, where each connection
has a transmitter, and a receiver;. For two points: andv in the plane, let/(u, v) be the normal
Euclidean distance between them. Suppose:ithatroadcasting with power. Following the
model from [76] andl[9], the signal strengthuais P.(u,v) = p-min{(dy/d(u,v))*, 1}, where
«a andd, are some parameters that we assume are constants. We wilhalse the standard
assumption thatr > 2 (this assumption was used i @ 45) 46], among others). Meiethis
model allows nodes to be arbitrarily close together, antlgaps the received power by what
happens at distaneg. This model generalizes the model from much of the previoagkun
whichd, = 1 and all distances are at Ie&s@,@,@].

A transmission front, to r, is successful if the ratio of the received signal strengtth&
interference is at least some threshojdhat is, if

Py (tu,Tu)
> v Pr(to ) —

We will sometimes call this aBINR constraint

For ease of presentation, we will assume throughout thismijat the maximum power of a
transmitter isl. All of our results hold for an arbitrary maximum power. Wel\@ometime make
the simplifying assumption that there is no backgroundenais. the only causes of interference
at a receiver are the signals of other transmitters. Mostuofresults still hold with nonzero

T
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Figure 3.1: The graph that forms the basis of our NP-hardrezksction.

background noise as long as we are guaranteed that evesyritaer-receiver pair is at a distance
bounded away from their absolute physical limit, i.e. thsrsome constant > 0 such that
d(t;, ;) < (1 —0)(=5)"* whereW is the background noise. We will €., = max; d(t;, ;)
be the maximum distance between any transmitter-receaier p

3.2 NP-hardness

In this section we show that the M -CONNECTIONS problem in arbitrary networks under the
physical modelis NP-hard. Our reduction follows the basw&tegy of the NP-hardness reduction
for Maximum Independent Set (MIS) in unit disk graphs. Hoemthe reduction is somewhat
more complicated since we have to deal with the fact thatfertence comes from arbitrary
distances. The reduction starts from the NP-hardness ofiMp&nar cubic graphs. Specifically
it is known (see e.gm4]) that MIS is NP-hard in graphs whatenodes are on the edges of
a grid with squares of siz&/, edges are of sizé, all nodes have degree at m@sand each
degree3 node is incident to linear arrays of size at leasf4 (see Figuré_3]1). Note that any
maximum independent set will include at most every othereraldng an edge of the grid. The
proof becomes somewhat complex since we need to show thabw#r levels will lead to an
infeasible solution for any non-independent set.

We now describe a gadget that will be used in the eventualnesslproof. The purpose
of the gadget is to represent a degree-3 node in our grid. \Weider three linear arrays of
nodes. (See Figufe—3.2.) Each node serves as both the tttersarid receiver for a sin-
gle connection. The first linear array is at positiansl1.2), (0,2.2), (0, 3.2),.... The second
linear array is at position§l.2,0), (2.2,0),(3.2,0),.... The third linear array is at positions
(0,—1.2),(0,—2.2),(0,—3.2),.... Lastly we have a single node @t 0). We let the path-loss
exponenty = 2.05, the signal-to-noise ratio threshotd= 1.00001 and the maximum power
Pmax = 1. We also suppose that each linear array has a at feastles for some parametér
The first result about this gadget follows directly from thesen value of.

Lemma 3.2 There is no feasible solution that contains adjacent nodas fone of the linear
arrays.
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Figure 3.2: The gadget.

Proof: Consider two adjacent nodes from a linear array. The distéietween them equals
Consider the transmission with the smallest power. The SidiRhat transmission will be at
most1. Hence the SINR constraint is not satisfied. |

Hence it remains to see what configurations are feasibletiiatuse alternating members of
a linear array. The following facts can be verified numehcal
Lemma 3.3 The following configurations are feasible for arbitrarilgrge ¢, even when there is
a background noise level ef= 0.01.

e (0,0),(0,2.2),(0,4.2),...,(2.2,0),(4.2,0),..., (0,-2.2), (0, -4.2),... (See Figurd3]3

(left).)
e (0,1.2),(0,3.2),...(1.2,0),(3.2,0),...,(0,-1.2),(0, —3.2), .. .. (See Figur&3]3 (right).)
For sufficiently largel the following configurations are not feasible, even if thisr@o back-
ground noise level.
e (0,0),(0,1.2),(0,3.2),...,(2.2,0), (4.2,0),..., (0,-2.2), (0, —4.2), ... (See Figurd_314
(left).)

e (0,0),(0,2.2),(0,4.2),...,(1.2,0),(3.2,0),..., (0,-2.2),(0,—4.2),... (See Figurd 34
(middle).)

e (0,0),(0,2.2),(0,4.2),...,(2.2,0), (4.2,0),..., (0,—1.2),(0,—3.2),... (See Figurd_3l4
(right).)

It is easy to see that by making sufficiently large we can guarantee that for any nodee
interference caused toby nodes at distance at ledgt/4 from a is at most. Note that)/ will
depend only on. Itis also easy to see from Lemmal3.3 that in a single lingawyat is feasible
for every other node to transmit af,.. = 1 even with background noise 6f01.

We can use the above gadget to show NP-hardness in the fojawanner. First we can
make sure that in the grid example where MIS is hard every modée corners of the grid have
degree 3 and every other node has degree 1 or 2. (See Eiglir&\& then place a copy of the
gadget around every degree-3 node so that the linear aroagesspond to degree 1 or 2 nodes.

For the first direction of the reduction we would like to shdwat for any MIS in the original
graph, the corresponding nodes can transmit in our wirdlestance. This is easy to see by
using Lemmd_3]13, since close to the center of each gadget oxe #rat the interference from
outside the gadget is at mastso it is still feasible. The only non-obvious case is wheo tw

47



Figure 3.3: The feasible configurations.

Figure 3.4: The infeasible configurations.
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gadgets meet at the center of a chain, but this is clearlfestisible since at the center of the
chain everything within distanck/ /4 is just part of the chain, so is still feasible by broadcagtin
at powerl (which is consistent with the feasible gadget solution).

Now we need to show that any maximum feasible solution formmdependent set in the
original graph. An important observation is that we can withloss of generality assume that in
any maximum feasible solution every other node in a lineayais transmitting. If not, then we
could always add to the number of nodes transmitting in tiesli array by turning off one of the
degree 3 nodes. We can repeat this process until every lnegrhas half its nodes transmitting.
Lemma3B then implies that we cannot have a degree 3 nodariitiimg together with one of
its neighbors, and Lemnia_B.2 implies that no other adjacedées are transmitting. This any
maximum feasible set also forms an independent set, comgligte reduction.

3.3 Approximation algorithms

Due to the NP-hardness of our problem we now turn our attert@pproximation algorithms.
Ideally we would like to adapt one of the polynomial time appmation schemes (that give a
(14 e)-approximation for any) for MIS on UDGs to the physical model. Unfortunately we are
unable to do that, mainly because the analyses of thesathlgsrmake critical use of the fact
that two transmissions only interfere if the transmittees @ose to each other. However, in the
physical model interference can occur at arbitrary distganghich makes it difficult to directly
adapt these algorithms. However, in this section we showith#, ., is constant then we can
obtain constant approximation algorithms in polynomiaid¢i More generally, we present an
O(log dpmax )-approximation that runs in polynomial time, and for theec#@s which the back-
ground noisé? = 0 we give anO(1)-approximation that runs in tim@ (n%ex).

Before we present these algorithms we start witteasity lemmahat we shall use both for
these results and for our game-theoretic results in Sesfioh and_3]5. This lemma states that
any feasible solution can only have a limited number of negsiin any fixed area.

Lemma 3.4 Consider a squareS with side-lengthd,. In any feasible solution the maximum
number of connections with a receiver in squares 3*/7.

Proof: Without loss of generality we assume that the backgrounsenisi). Having a non-zero
background noise can only reduce the number of connecti@i€éan be supported.

Suppose that all nodes in the feasible solution transmit @veer such that the received
signal is a constany, i.e. p; min{1, (do/d(t;,7;))*} = p. Leti andi’ be two connections such
that bothr; andr; liein S.

The interference caused by connecti@treceiver; is at leasp;-min{1, (do/d(t;, 7))} >
pimin{1, (do/(d(r;,r)+d(t;,7;)))*}. By the geometry of the squatewe know that!(r;, r;/) <
2dy, which implies thap; min{1, (do/(d(rs, ) +d(t;,r3)))*} > gep; min{1, (do/d(t;, 7:))*} >
3. Since the actual received signal strength of a connecsipnif there are more thag® /7
such connections the interference experienced by all ohtiveuld be enough to prevent the
SINR constraint being satisfied fal connections.

We now remove the condition that the received powers foryegennection are the same.
However, in this case the SINR value for some connection imeistorse than it was when the
received signal powers were the same. This implies thaeiktlhare more thasf /T connections,
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Figure 3.5: We form our solution usinigout of everyk? squares. Heré = 3.

then for any set of transmission powers there wilkeeneconnection whose SINR constraint is
not satisfied. u

Corollary 3.5 Suppose now that squafehas side-lengtll. In any feasible solution the maxi-
mum number of connections with a receiver in squaie 3d*/7(dy)>.

Proof: Divide squareS up into subsquares of sizig and then apply Lemnia3.4. |
Lemma 3.6 Now consider a balB of radiusd. In any feasible solution the maximum number
of connections with a receiver in balt is 3% - 4d?/7(dy)?.
Proof: Follows immediately from the fact that any circle with raslitiis contained in a square
with side-length2d. [ |
The following extension of Lemn{az3.4 will also be useful.
Lemma 3.7 Consider a squares with side-lengthd. In any feasible solution the maximum
number of connections such thét;, ;) > d andr; is in squaresS is 3% /.
Proof: The analysis is almost identical to that of Lemmal 3.4 once wte that in this case
d(ri,ri) < 2d < 2d(t;,r;) forall 7. u
In the next two theorems we present our approximation algos for the Max-CONNECTIONS
problem in the SINR model.

Theorem 3.8 There exists a polynomial time algorithm that always find®latson to MAX -
CoONNECTIONSthat is within a factorO(log d,,,.) Of optimal.

Proof: We divide all connections into classes based on distan@ssE} contains all connec-
tionsi such thatd,,.,./27~! > d(t;, ;) > dmax/2’. Note that in the optimal solution there must
exist aj such that¥; contains @71/ log d,,.x connections. In the following we will consider each
J inturn and obtain a constant approximation for the conoestinF; only. We focus on g for
which dy., /27 > dpie. The connections for which,, ., = 0 can be handled similarly.

We now divide the problem into squares of siflg.. /2. (See Figur€3]5.) We refer to these
squares ag-squares From eachj-squares, if there is at least one receiver fhthen we choose
one arbitrarily, and restrict ourselves to the problem asthconnections. Note that Lemmd 3.7
implies that eachi-square only contains at mast/r receivers from the optimal solution af,
so as long as we can support at least a constant fraction afrmsen connections we are still
within a constant of the optimal solution df).

We now restrict our attention tb out of everyk? j-squares in an evenly spaced pattern for
some parameted, i.e. squares located at the same coordinates/m¢8ee Figuré3]5). We can
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partition the plane intd:? such sets of squares. We show that in each set we can supjgort on
connection in each square, so by taking the best set we aréasitig anothek? factor.

Consider somg-squareS, and consider the sdtof j-squares in the same pattern set that
are offset fromS by exactlyik in one coordinate and at mo&t in the other coordinate (i.e.
the set ofj-squares that are on the border of the ball of radiusik aroundsS). Since the/,
distance is at most the norm@aldistance, it is not hard to verify that the maximum interfere
caused by the connection into the connection irt is at Mostp,ax (o2’ / (ik — 3)dmax)® <
Pax (027 /(i(k — 3))dmax)®. It is also easy to see that there are at nsostquares in/. This
implies that the total interference suffered by the conioedn S is at most

- . d02j a_ d02j o
2 S ()~ () v

where((a — 1) is the Riemann zeta function, which is constant for constant2.
The connection inS can use powep,..x, so if W = 0 then the connection i¥ can be
supported as long as
pmaX/(dmaX/zj_1>

Spmax (Uﬂ—@%) C(Oé - 1)

And thus by the same argument, so can all of the rest of theemtioms in/. So it suffices to
choosek such that'k — 3)® > 8dy2*((a — 1), and thust is some constant. Ifi” = 0 then we
have to increasg by a constant factor depending only dfrecall that) is a measure of how far
dmax 1S from the physical limit). The approximation factor thag Yose for clasg’; due to all the
connections that have been removed;ii;2 which is a constant for fixed andr. As already
mentioned, our overall approximation ratio is theref@@og d,.x)- ]

If there is no background noise we can obtain another alyorivhose approximation ratio
has a better dependence @y, at the expense of a worse dependence in the running time. The
algorithm is extremely similar to the proof of Theoréml3.&egt for using squares of sizg,...,
scaling so total power from a squarenis.., and dropping half of the connections in each square.

Theorem 3.9 For the case with no background noise (.= 0) we can find arO(1) approxi-
mate solution in tim@Q((dmex/do)*)

Proof: We divide the plane into squares of sizg.,. Consider one such squafe We then
divide this square into subsquares of sigeBy Lemmd 34, the number of connections that have
areceiver in a square of sizg in any feasible solution is at mo3t /7. Therefore the number of
connections that have a receiver in squéra any feasible solution iéd,,../do)?3*/7. Hence
we can find the optimum solution for connections with a reeein S in time n(dmax/do)*3%/7

by trying all possible subsets. LétPTs denote this set of connections fSrand their power
assignment.

Now for every squares we scale the powers of the transmittersai®7s so that the sum
of their powers isl. Note that any receiver i¥ that was part of a connection fromPTy is
still feasible relative to the other connectionsPTs. This is because there is no background
noise, so scaling powers up or down by the same factor doeafieat feasibility. Obviously
combining all of these solutions for every squaranight result in an infeasible solution, but
certainlyOPT <%, OPTs.

> T,
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We now letk be a number such that

= = 1 1
< .

u:_gu;éo U:_gu#) ((k - 3)(“ + U)dmax»a (6dmaX)a
Note that it suffices fok to be a constant. We can now say that if we consider sets ofeg)ira
which we include one out of evekth square in the horizontal direction and one out of evighy
square in the vertical direction, and limit the total tramssron power tol in each such square,
the total interference experienced at any receivef iis at mostm. Now we consider
what happens if we remove half of the transmissions floi7s. If we remove the half of
the transmissions with the maximum transmission power, réldeiction in the interference at
the remaining transmissions is at le mlax —. Hence the increase in interference from the
additional squares is compensated for by the reductionterference due to connections with
receivers inS. By choosing the best of the& square classes, and then losing at most half of the

transmissions in any square, we gdt/@2k?) = O(1)-approximation. n

3.4 Game Theory

As discussed, the approximation algorithms describedipuely are centralized. We would
also like to examine highly distributed algorithms thaballeach transmitter to make its own
decision based on limited local information. One extremmsiea of this is the setting in which
transmitters are not allowed to exchange any informatidwéeen themselves, and instead must
make a decision on broadcast power based only on knowledtieeafignal and noise at their
receivers (we assume that receivers periodically proviteinformation to their transmitters).
A natural way of viewing this setting is as a game where thestmatters are the players and the
pure strategies are power settings. In this section we wilhé such a game and show that every
Nash equilibrium in this game results in an expected numbsuccessful transmissions that is
close to optimal if there is no background noise.

For simplicity of notation we will without loss of generalitescale powers and” so that
Pmax = 1. The game that the transmitters will be playing is simplectE@ansmitter is a player,
whose pure strategies are the reals0inl], with a nonzero value representing broadcasting at
that power and representing not broadcasting. So a mixed strategy is aapility distribution
over [0, 1]. A transmitter gets payoff if it does not broadcast (i.e. has pow®r payoff 1 if
it broadcasts and its receiver has signal to noise ratioaat t¢ and—1 if it broadcasts but its
receiver has SINR less that We note that it is easy to see that the same game without the
penalty can have bad Nash equilibria (in particular, eveeforoadcasting). We first discuss pure
Nash equilibria in this game, and then examine the more gérmeéxed Nash case.

3.4.1 Pure Nash Equilibria

A pure Nash equilibrium is a very natural solution concept¢s it would guarantee that every-

one broadcasting is doing so successfully while no one raddwasting could succeed even if
they went at maximum power. Unfortunately a simple examptas that pure Nash equilibria

do not always exist in our game.
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Figure 3.6: No pure Nash exists

The bad example is as follows, and is given in Fiduré 3.6. & hes three transmittets, t,, t3
in an equilateral triangle with side leng®a for some arbitraryl > d,. The receiver fot, (i.e.
r1) is located halfway between andt, (so at distanc& from each). Similarly;, is located
halfway betweert, andt; andr; is located halfway between andt¢,;. We will setr = 2 and
a = 2.5, and will assume no background noiselgo= 0.

We first claim thajOPT'| = 1. To see this, suppose that there are at least two successful
broadcasts. Without loss of generality we will assume tloaihectionsl and2 are successful,
and are broadcasting at powersandp, respectively. Then since connectibris successful
we know that(p; /d*)/(p2/d*) > 2, and thus thap; > 2p,. Now we note by simple ge-
ometry that the distance from to r, is exactlydv/3, so the SINR of connectioR at r, is
(p2/d*)/(p1/(dV3)*) = (p23"%°) /p1 < (p23"%°)/(2p2) = 3" /2 < 2 = 7, which is a contra-
diction since we assumed that connectiomas successful.

Now since|OPT| = 1, any pure Nash equilibrium must have exactly one succetsius-
mission (since obviously it must have more ttisand at mostO PT'|). Without loss of generality
we will assume that connectidns successful with powaer;, so by the definition of a pure Nash
it must be the case that neither connectlaror 3 are broadcasting with power greater titarBut
then the interference aj is justp, /(dv/3)®, so ift, broadcasted at powgr then the SINR at,
would be(p;/d®)/(p1/(dv3)*) = (V/3)* > 3 > 7. Sot, would be successful if it transmitted
at power at least;, and thug; broadcasting by itself is not a pure Nash equilibrium.

While pure Nash equilibria do not always exist, when they xistehey have value close to
OPT. This is formalized in the next subsection when we prbeesame statement about mixed
Nash equilibria, but we will provide the intuition for the r@Nash special case. Fix some pure
Nash. We will try to find a receiver whose associated trartemig not broadcasting in the Nash
but has “small” interference, where our notion of small ismedhing that increases as the value of
the Nash gets closer to OPT. Since this receiver’s transnmghot broadcasting, the interference
must be overcoming any possible signal and thus must agto@lguite large, implying that the
Nash must actually have value close to OPT.
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3.4.2 Mixed Nash Equilibria

While pure Nash equilibria do not always exist, obviously ixed Nash does (assuming a dis-
cretization of the action space). We now show that any mixashiNand thus any pure Nash, if
one does exist) has value close to OPT. This result is agtuailied by the no-regret result that
we will discuss later (Theorefn3115), but we feel it is usétufirst consider the more intuitive
case of mixed Nash. Recall that a mixed strategy is a prabadiktribution over the possible
powers (i.e. ovef0, 1]), and in a mixed Nash there is no incentive for any transmittehange
its distribution. For our purposes, for a transmittewe will only need to consider the proba-
bility ¢; thatt; broadcasts with non-zero power. We begin with a few usefuht@s. Fix some
Nash equilibrium. For each transmitter let p,,.q(i) be the probability (over the randomness
in the strategies of the other transmitters) thawould be successful if it were to broadcast at
powerl. Let pyq(i) = 1 — pyooa(i) be the probability that; would not be successful. Note that
if ¢; has non-zero probability of broadcasting at some powertgreaan0 but less thar then
the probability of it succeeding at that power must be equéhé probability of it succeeding at
powerl, since otherwise it could just switch to powieand strictly increase its expected payoff.
S0S = ). ¢ipgood(?) is the expected number of successful transmissions (eevatue of the
equilibrium). LetT = > . ¢; be the expected number of transmissions.

Lemma 3.10 For any Nash equilibrium, for any transmittey, if ¢; < 1 thenpy,.4(i) > 1/2 and
if ¢; > 0thenpyq(i) < 1/2

Proof: Suppose thag; < 1 and thaipy.q(i) < 1/2, SOpy.ea(i) > 1/2. Then by broadcasting at
power 1 with probability ¢;, the expected payoff tg would beq;(pyood(i) — (1 — Pgooa(i))) =
4i(2pgooa(t) — 1). Since2p,00a(i) — 1 > 0, this is maximized by setting = 1, contradicting our
choice ofi and our assumption that this is an equilibrium.

Similarly, suppose that; > 0 and thatp,.,(i) > 1/2. Then when; broadcasts it will fail
more thanl /2 the time, giving negative expected payoff, isavould just never broadcast (i.e.
setgq; to 0), contradicting our choice of [ |

Lemma 3.11 For any Nash equilibrium$ <7 < 2S5

Proof: The first inequality is obvious from the definitions, and tke@and immediately follows
from the second part of Lemnia3110, sire= >, ¢; =23, 3¢ < 2>, Pgooa(i)qi = 25.

Let OPT be the set of receivers that achieve their SINR requirenretiita optimal solution.
We can now prove the main theorem of this section:

Theorem 3.12 Any Nash equilibrium has an expected number of successiurrissions at
leastQ(|OPT|/d%. ), where we assume thatand r are constants.

Proof: Fix a Nash equilibrium. Lef, = {i : ¢ = 1} be the set of connections with
transmitters that broadcast at power greater thavith probability 1. Consider the following
procedure (only for analysis, obviously). For each reaeiven OPT' \ L we will keep track of
how much it is “bought” with a variablé(z), initially all set to0. Now we order all transmitters
in the instance (or just all transmitters with non-zeyan the Nash) arbitrarily. We examine the
transmitters one by one in this order. Say we are on transmjttLet R(i) be theL%j
closest receivers iI0WPT \ L to i (for some parametet to be defined later) that are currently
bought to less than, i.e. haveb(z) < 1. We now increase thelr values byg;, sob(z) :=
b(z) + ¢;.
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Since each transmitter increases the sum obthalues byg, | '2“2H=F | at the end of this
process we know that, b(z) = 3, ;| I2ZRH | < [IOPTALIZR - [OPT L] gince by definition
T =), ¢. This means that there is some receiver OPT'\ L that has)(a) < 1/k.

Let M’ be the set of transmitters that contributedte) during the above process. Note that
sinceb(a) < 1/k we know that)_~ _,. ¢, < 1/k; we will use this later. Let\/ be all other
transmitters, and for every distanddet z(d) = >_,/.4(0..)<q = D€ the probability mass from
M located insideB(a, d). Consider some transmitterc M. Sincea ¢ R(x) andb(a) < 1, any
receivery € R(x) must havel(x,y) < d(z,a), or elsea would be inR(z). So by the triangle
inequality we know thatl(a, y) < 2d(a, z), and thus that any transmitterat distance at most
from a must have its entiré&(z) at distance at mogt from a.

We will now give an upper bound for(d). Since every transmitter in A/ N B(a,d) con-
tributesg, | 2P | 10 the sum of thé values, and each receiver that it contributes to must be
in B(a, 2d), the sum of the values of receivers i (a, 2d) is at least:(d)| ' 2FLEE | Since
a receiver'sh value only increases if it is less thdnand then only increases by at mastve
know that theb value of any receiver is at mo8t Thus the number of receivers from OPT in
B(a,2d) is at least'@ | CPHE | By | emmd 3B, this implies that? > 28 [ I9PHE | gng
thus thatz(d) < chQ/L%J for some constantdepending only omy, 7, andd,.

Now that we have an upper bound on the probability mass iresio&l around:, we want
to upper bound the probability mass in an annulus of thickhesounda. To do this, we note
that the interference at is maximized if every ball around actually meets the above bound.
Since in the end we will care about upper bounding the intenfee, we can say without loss of
generality that every ball meets the above bound, implyirag the sum of the probabilities of

transmitters between distanéandd + 1 is at most

2c 5 9 6ed
POPT\L|—I€J (d+1)°—d) < VOPT\L\—kJ
kT kT

whend > 1, and is at mosic/ij whend = 0. Since the expected interference from a
transmitter at distancé from « is at most its probability of broadcasting timesi*, this means
that the expected interferencecad:aused by transmitters at distance betwéamdd + 1 from

a is at most(6¢/ |\ 2PME |y . 1 for d > 1. Ford = 0, since the interferenced caused by a
transmitter is at most, the expected interference from transmitters betweemuaigts) and 1
froma is at moch/LwJ Using linearity of expectations, we can sum over the artouli

get that the expected interference:as at most

2¢ 80( a—1)
\}OPT\L\—kJ POPT\L\ k:J Zda 1= POPT\L\ k:J
kT kT

where((« — 1) is the Riemann zeta function (which will be constantdor 2).

This gives us an upper bound on the expected interferenceaised by transmitters .
What about the transmitters i’? Since we know tha}",_,, ¢. < 1, we get that they cause
at most% expected interference (which is what would happen if theyeved at distancé from

a). Thus the total expected interference is at n{esg (o — 1)/ [2FEZR ) 4 1
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So now we have an upper bound on the expected interferenteislassume (for now) that
W = 0. By using Markov’s inequality, we get that the probabilibata hears interference at
least twice the expected interference is at mg&t But since we know from how we selected
a that the probability that its transmitter tries to transisitess than, Lemmda3.ID implies that

Poaa(a) > 1/2. Thus(16¢((a — 1)/L%J) + 2 must be enough interference to kill the

transmission ta; in particular, it must be the case thigte¢ (o — 1)/[[2ZREER ) > 12
We will now finally setk, to 47d2,,., giving us thatl6e¢ (a — 1) /[ 2P L i | > 1

Solving forT" in this equation, and assuming constargndr, implies thatl’ > Q(|OPT \
L|/d*.), and thus by LemmBa3]l1 we have titat> Q(|OPT \ L|/d*2.). If |OPT \ L| =
o(|OPT) then a superconstant fraction of transmitters are brodidcasith probability1 in the
Nash, which by LemmB=3110 and Lemida~3.11 means that the @caamber of successful
transmissions in the Nash is at le&s{O PT’|), which would prove the theorem. On the other
hand, if|OPT \ L| = Q(|OPT]) then the above equation implies that> Q(|OPT|/d>.),
thus proving the theorem.

If W # 0 the theorem is still true but the details are slightly morenpticated, so we give
only a brief sketch. With background noise, instead of twiloe expected interference being
enough to kill the signal it must be that twice the expecteadrference plus the background
noise must be enough to kill the signal. But this only causewuose another constant, since
we assumed from the beginning that the distance from anyvera® its transmitter (and thus
from a to its transmitter) is bounded away from the absolute lingialzonstant. |

3.5 Distributed Algorithms and No-Regret

We first need a few basic definitions about games. In this$hés only games we will care
about will be games with players in which every player has exactly two possible actid_et
A = {0, 1}" be the space of possible strategy profiles for the game,iven@ pointA € A,
theith coordinate:; represents the action used by playar profile A. Each playei will have
a functiona; : A — R that assigns a utility to each strategy profile. We will wamtbnsider
modifications of strategy profiles: giveh € A, let A & «; be the strategy set obtained if player
i changed its action from; to a;. We will use superscripts to denote time, 4bwill be the
strategy profile at time anda! will be the action taken by playérat timet.

The following definition will play a central role in this séah:
Definition 3.13 Theregretof player: at timeT" given strategy profiled®, A2, ... AT is

1 & . 1 < .
acfon) T ; A @a) -7 ; ai(A)

Intuitively, having low regret means that you do almost adl &e on average as the best
single action would have done. This notion of regret has Istadied extensively, especially in
two different models: thexpertsmodel and thdanditmodel. The difference between the two
models lies in the knowledge gained by a player after eachdoin the bandit model a player
only finds out the utility that it gained, while in the expem®del players also find out the utility
they would have gained if they had played the other actioncé&the results that we care about
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are similar in both models, we will choose the more genera and be in the bandit model.
In the wireless setting, this means that if a transmitterosles to transmit then it will find out
whether or not it succeeded, but if it chooses not to trantmeit it gains no information.

The price of total anarchywas introduced by Blum et aE[lZO] as a way of generalizing the
price of anarchy The price of anarchy of a game is the ratio of the value of teead optimum
to the value of the worst Nash equilibrium. For example, int®a[3.4 we proved that the price
of anarchy of the wireless game @¥d?2,). It is, as the name suggests, supposed to quantify
the “price” that is being paid by allowing each player to beeparate rational agent rather than
simply being controlled by a centralized authority. Unforately there are various problems
with this definition, one of which is that, since finding a Nasjuilibrium is PPAD-complete
[E], it is not clear that rational agents will actually playNash equilibrium. In particular, if they
always do then we could find a Nash equilibrium simply by tejtrational agents play. Blum
et al. [ﬂ)] proposed weakening this rationality assumplipmssuming only that the agents use
strategies with regret tending tbas time goes to infinity (calledo-regret algorithms They
chose this assumption because it generalizes the Nash pissurfplaying a Nash equilibrium
is a no-regret algorithm), and is plausible since such @lyms actually do exist (e.g|:L|11]) o)
rational players should do at least as well. They call the rat the optimum social welfare
to the average social welfare obtained by players usingegeet algorithms the price of total
anarchy. We will use this not as a tool for weakening ratidpassumptions, but rather as a
tool for designing distributed algorithms, since by defontwe are guaranteed the existence of
algorithms that achieve the price of total anarchy (anyegret algorithm).

Some of the basic game theory underlying our results is tireesa both the protocol model
and the physical model. In particular, the basic game is éinees Each transmitter is a player,
with two possible strategies: broadcast at pov@re. do not broadcast) or broadcast at power
(full power). Note that in the physical model we are compgtivith the optimum solution that
can use any power betweérand1, but we will only be using powergand1. A transmitter has
utility 1 if it broadcasts successfully, i.e. meets its SINR requéenin the physical model or has
no neighbors broadcasting in the protocol model. It hagyti 1 if it broadcasts unsuccessfully,
and utility 0 if it does not broadcast at all. This is the same game that wsidered in Sectidn 3.4
except we are restricting the transmitters to two strategiand1.

Let 7" be some time at which all transmitters have regret at mmoSr goal is to prove that
the average number of successful connections up toTirhas been close t@ PT|. For each
transmittert;, let ¢; be the fraction of times at which chose to transmit (i.e. played actidh
and lets; be the fraction of times at which transmitted successfully. Thep = . ¢; is the
average number of attempted transmissions&rd ) . s; is the average number of successful
transmissions, so we are trying to prove tlas close to|O PT|. The following lemma shows
that S can be bounded bg, and thus will allow us to only look at attempted broadcaather
than successful broadcasts:

Lemma3.145 < Q <25+ en

Proof: The first inequality is obvious from the definitions, since #werage number of suc-
cessful transmissions is clearly at most the average nuoflatempted transmissions. For the
second inequality, it is sufficient to show that> 1(¢; — ¢) for all transmitters,;. Suppose that
s; < %(qi — €) for somei. Thent;’s average utility iss; — (¢; — s;) = 2s; — ¢; < —e. Butt; could

57



have had average utility ofby never broadcasting, which is a contradiction sihbas regret at
moste. [

3.5.1 Physical Model

We first consider the physical model. Our main theorem is thatprice of total anarchy is
small; in particular, we show that if all transmitters hawevlregret then the average number of
successful transmissions is close to optimal:

Theorem 3.15 Suppose that at timé every sender has regret at mast Then the average
number of successful transmission&i$O PT|/d> ) — en.

max

Proof: The proof of Theoreriz3.15 is extremely similar to the prooffbkoren3IR. In fact,
since in a Nash equilibrium every player has regréby the definition of Nash), Theorem3]12
is actually a corollary of Theoreld3115. The intuition behihe proof is that we can treat the
fraction of time that a transmitter chose to broadcast uaing-regret algorithm in a similar way
to how we treated the probability that a transmitter broatké in a mixed Nash. Of course,
they are not identical since one is a statement about whatasgically happened in the past
while the other is a probabilistic statement that holds F& past, present and future, but they
are similar enough that the proof basically goes through. itkide the modified proof for
completeness.

Let L = {i : ¢; > 1/2 — €} be the set of connections with transmitters that broad¢dsast
1/2 — e fraction of the time. Consider the following procedure. Bach receivet in OPT \ L
we will keep track of how much it is “bought” with a variabbéx), initially set to0. Now we
order all transmitters in the instance (or just all transeng with non-zeray;) arbitrarily. We
examine the transmitters one by one in this order. Say werateaasmitter;. Let

o VOPT/C\QM - kJ

for some parametér to be defined later, and |ét(i) be thed closest receivers iO PT'\ L tot;
that are currently bought to less thani.e. haveb(z) < 1. We now increase theirvalues byy;,
sob(x) := b(x) + ;.

Since each transmittérincreases the sum of thievalues byg; @, at the end of this process
we know that

|OPT\ L| -k _|OPT\ L|
zx:b(x) = Zi:%q) < 2 < A

since by definition) = )".¢;. This means that there is some receivehat is inOPT but
whose transmitter is not ih that has(a) < 1/k.

Let M’ be the set of transmitters that contributedte) during the above process. Note that
sinceb(a) < 1/k we know that) " _,. ¢, < 1/k; we will use this later. Let\/ be all other
transmitters, and for every distandelet z(d) = >_,c,/.40..)<a = € the average number of
transmissions from transmitters i located inside3(a, d). Consider some transmitterc M.
Sincea ¢ R(x) andb(a) < 1, any receivery € R(z) must havel(z,y) < d(z,a), or elsea
would be inR(x). So by the triangle inequality we know théta, y) < 2d(a, z), and thus that

58



any transmitter: at distance at most from a must have its entird?(z) at distance at mod
from a.

We will now boundz(d). Since every transmitter in M N B(a, d) contributesy, ® to the
sum of theb values, and each receiver that it contributes to must b&(in 2d), the sum of the
b values of receivers iB(a, 2d) is at least:(d)®. Since a receiver’s value only increases if it
is less thari, and then only increases by at mastve know that theé value of any receiver is
at most2. Thus the number of receivers frotP7"\ L in B(a, 2d) is at Ieast@cp. By Lemma

3.8, this implies thatd? > @@ and thus that

2cd?
z(d) < T (3.1)
for some constant depending only omv, 7, andd.

Now that we have a bound on the average number of transmssisisidle a ball around, we
want to bound the average interference.ato do this, we will first bound the average number of
transmissions in an annulus of radis i.e. z(d + dy) — z(d). We first note that the interference
ata is at most the interference caused if every ball arouatually meets the bound given by
@). This is easily proved: letbe the first ball that doesn’t meet the boundofl(3.1). If theree
no transmitters at distance greater thiimom «, then clearly the average interference could be
increased by adding more transmitters to every annulusdosstthat the bound oE(3.1) is met.
If there are transmitters at distance greater tlidrom «a, then clearly the average interference
would be increased by moving enough of them iBt@, d) to meet the bound. Now we can just
keep repeating this process until there are no more tratepast the first distance that fails to
meet [31l), reducing to the first case.

This now implies that we can treat inequalify{3.1) as a lolveund as well as an upper
bound, and thus the average number of transmissions comingdenders between distante

andd + d, is at most

2

S+ o)~ ) <
whend > d,, and is at mos2c/® whend = 0. Since the interference from a transmitter at
distancel from a is at mostmin{1, (%)}, this means that the average interference eaused
by transmitters at distance betweéandd + d, from a is at most(6¢d; /@) - d(},l ford > d,.
Ford = 0, since the interference caused by a transmitter is at intbstaverage interference from
transmitters between distandeandd, from a is at mostc/®. Using linearity of expectations,

we can sum over the annuli to get that the expected interderatu is at most

6cdod

2¢  bedy™ & 1

P ® & (ido)*!

~ 2¢(1+3d3¢(a—1)) - 8cC(av—1)
B @ -9

where((a — 1) is the Riemann zeta function (which will be constant for- 2) and we are
assumingl, < 1. If dy > 1 then we will simply havel? as a constant to carry through the rest of
the calculations, which will not matter since we are notrafténg to optimize constants anyway.
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This gives us a bound on the average interferencecaused by transmitters /. What
about the transmitters ii/'? Since we know that_,_,, ¢. < 1, itis obvious that they cause at
most% average interference (which is what would happen if theyevar at distancel, or less
from a). Thus the total expected interference is at most

8cC(av—1 1
((a—1)

o k

So now we have a bound on the average interferencenphgt:) denote the fraction of times
in which a’s transmitter could not succeed in transmitting, wheth&ied or not. Ifppag(a) < i
then sending at every time would give average utility gneman% — i = % But when we chose
a we made sure that its transmitter (caltjtwas fromOPT \ L, so we know that, < % — €.
Thust only tries to transmit less tha@— e the time, and hence it has an average utility of less
than% — ¢. This is a contradiction since we are assuming thiaas regret at most and thus
pbad(a) > i

So a’s transmitter would fail at Ieas}i of the time if it tried to send every time, and the
average interference is at mast:((« — 1)/®) + 1. By Markov's inequality we know that the
fraction of times at whichu hears interference at least four times the average intréer is
at most1, so the interference atis at least(32c((a — 1)/®) + £ at most: of the time. So
this amount of interference must be enough to make it impts$or a to successfully receive
(i.e. the SINR constraint would be violated), or elsg(a) would be less thag. Sincea is at

distance at most, .. from its transmitter, the strength of its signal is at Ieﬁ?ﬁt. Thus we get

max

that32c¢((a—1)/P > ij — 2. We will now finally setk, to 8d2.,../dg, giving us that

32¢C(a — 1) - dg
L\OPT\u—sngaXJ = 27de

max
(o4
STdmax Q

(3.2)

Solving for @ in this equation, and assuming constantr, andd,, gives us that) >
QOPT\ L|/d*.). Tocompar&) to |OPT|instead of OPT'\ L|, we note that fOPT\ L| <
1|OPT|) then at least half of the transmittersGhPT are broadcasting at least- ¢ of the time,
and thus) > 1|OPT|(3—¢) = Q(|OPT|). Onthe other hand, {DPT\ L| > 5|OPT|then we
getthatQ > Q(|OPT|/d*.). Now we can simply apply Lemnfa=3114 to prove that the average

max

number of successful connections is at €28 PT'|/d>*2, — en), thus proving the theorema

max

Other Metrics

The physical model assumes that the fundamental underiyigigic is the Euclidean plane.
However, we only used this assumption in one place: the pbaemmal3b, the main den-
sity lemma, which proved that the number of receivers from f@asible set of transmissions
contained in a ball of radiug is at mostO(d?). We then used this lemma to bound the average
interference, which will work whenever the exponent in tlemsity lemma is strictly less than
the path-loss exponent So actually our proof will work in any metric in which the niver of
receivers from a feasible solution contained in a ball ofuad is O(d“ ) for somee > 0.

One example of this is true three-dimensional space withidim&ctional antennas. In this
case, it makes sense to assume that 3, since power is being dissipated in three dimensions
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(soa > 3) and some is probably being lost due to being absorbed bysijer just the air). On
the other hand, a sphere of radilisan clearly be covered with ((d/dy)*) spheres of radiug,
and thus we can immediately derive the appropriate dersityria from LemmB34 (which still
holds as stated).

But even making only the weakest standard assumptiongtha®, we can still handle extra
metrics; for example, any metric with doubling dimensiohedoubling dimensioonf a metric
is defined to be the smallest numidefor which for all distances € R, any ball of radius?
can be covered bg* balls of radiusd/2. Suppose we have a metric with doubling dimension
k. Then by recursive applications of the definition of dougldimension we get that any ball of
radiusd can be covered bg*®°s(?/%) — (4/d,)* balls of radiusd,, and thus we can once again
apply Lemmd3}4 to get LemnfiaB.6, and as longras & the rest of the proof will go through
as before.

Finally, we consider one class of metrics for which a goodsitgriemma doesot hold,
but for intuitively unrealistic reasons: theireless manifoldintroduced by Kanade and Vem-
pala Eb]. Intuitively, they define the class of wireless m@ds as the class of distorted two-
dimensional grids. In particular, considerkax k grid, with an arbitrary nonnegative length
assigned to every grid edge. Now let the distance betweempoivids be the length of the short-
est path between them in this weighted graph. In their p@r, Kanade and Vempala give
heuristics for finding the best such manifold given signedrggth data, and show that for exist-
ing data sets the best wireless manifold is significantlyeramcurate than the best embedding
into the Euclidean plane. Thus it is natural to ask whethetechniques extend to these mani-
folds. Unfortunately they do not: the following theorem slsdhat the density lemma we require
for our proof to work is not true.

Theorem 3.16 For anyd > 0 there is a wireless manifold and a set(@fd) feasible transmis-
sions on this manifold such that all receivers are in a baltaafiusd.

Proof: We first note that we can embed uniformly weighted completplgs into a wireless
manifold. To see this, suppose that we want to embed a coengtaph withk vertices and
weightd on every edge. We first create a squéreith [k/4] vertices on each side, and set the
length of all edges with both endpoints $hto 0. We can then také edges with one endpoint
in S and the other outside ¢f and set their lengths t@/2. All other edges will have weight/
for someM > d. The resulting metric is clearly the required complete graphere the nort
endpoints of thé: edges we chose are the vertices.

Now that we can embed complete graphs, consider the sameeatengpaph ont vertices
with distanced between them. Put a transmitter/receiver pair on eachweit¢he complete
graph (sot; andr; are co-located). If all transmitters broadcast at polethe signal at-; is
1 and the interference i6: — 1)-L.. So as long ag& < £ + 1 the SINR at receiver; is at
leastr, and thus the connection is supported. Thus in a ball of sadliwe can supporf(d®)
connections. |

Byzantine Transmitters

In many cases it is not realistic to assume that every singhsmitter will be running a no-regret
algorithm, so when designing a distributed algorithm we lddile to be robust to some fraction
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of the transmitters behaving in arbitrary ways. We managetoeve this, but only if the number
of transmitters that are Byzantine is a fraction©f"T'|, not if it depends om.

We generalize the proof of Theordm 3.15 in a straightforwaag. First, letB be the set of
Byzantine transmitters, and I€tPT" be optimal relative to whatever the Byzantine transmitters
do (butO PT is still a fixed set that would be feasible at every time pdiniot for B). Let () be
defined as before, but I€} be the part of the sum that comes only from transmitters nd.in
Note thatQ < @Q + | B|. Also note that LemmB_3.14 still holds, except wighinstead ofQ and
whereS' is only summed over transmitters notin

It is easy to see that the analysis of Theofeml3.15 holds tsidtar (), since the node we
find will be in OPT and thus non-Byzantine and the packing argument works asdsince
OPT is feasible on its own. SQ = Q(|OPT|/d*¢.). If |B] < (1 — §)Q then we know that

max

Q > 6Q > QS|OPT|/d*,), and can apply Lemma=3114 to finish the proof. In particular,

by settingd to 1/2 we see that there is some constansuch that if at most|OPT|/d>*,,
transmitters are Byzantine then we still gegb&i>?, ) approximation tqO PT|.

max

3.5.2 Protocol Model

As discussed, in therotocol modeleach connection is a node in an interference graph, and
a transmission is successful if none of its neighbors ame tadgismitting. Clearly maximizing
capacity is just the same problem as finding a maximum indiga@rset in the interference graph.
The classic theoretical model used for these graphs araliskigraphs, but we will generalize
to all locally growth bounded graphs. We show how to use timeeshasic technique as in the
physical model, i.e. proving that the price of total anarghgmall for a particular game, to give
a distributed algorithm that has good average performakdeile we will not obtain either as
good an approximation or as small a running timeLak [77], taorghm is totally distributed in
the sense that the only information each node gets is whetheat any of its neighbors tried to
join the independent set in the last round.

We first show that in general graphs the average number okssfid transmissions when
every transmitter uses a no-regret algorithm can be arlytfar from the size of even the small-
estmaximalindependent set. We then show that for growth bounded graftes a sufficient
number of rounds, the average number of nodes that bro@dcsistcessfully in a round is within
a constant of the size of the maximum independent set.

General Graphs

Consider the following interference graph: there are tweci nodes: andv that are adjacent.
The nodeu is also adjacent ton — 2)/2 nodesr:, xs, . . ., T(,—2)/2, NONE of which are adjacent
tov, andv is also adjacent ton — 2)/2 nodesy,, y», . . ., y(n—2)/2, NONE of which are adjacent to
u (see Figuré3]7). Clearly the smallest maximal indepensienhas sizé@;—Q +1=n/2 asit
consists of either. with all they’s or v with all the z’s. On the other hand, suppose thaand

v each choose to broadcast independently with probalifityand all of ther;’s andy;’s never
broadcast. Obviously the expected number of successharigsions given these strategies is
1/2, so itis only arf2(n)-approximation. We claim that in this case, every transmitt using a
no-regret algorithm.
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Figure 3.7: Bad interference graph

To see this, first consider somg. Sinceu broadcasts with probability/2, the expected
average utility ofr; if it chose to broadcast every time(isand obviously never broadcasting has
average payoff.. Thus never broadcasting is a no-regret algorithm. The sagement can be
used for anyy;, with v taking the place of.. Now considen:. It too is adjacent to one node
that broadcasts with probability/2, so both of its actions would give average utilityClearly
randomizing independently over these two actions also hawvearage utility of), and thus is a
no-regret strategy. The same argument obviously works & well, finishing the proof.

Growth-Bounded Graphs

When we restrict to growth bounded graphs, no-regret algms actually do result in good

behavior. This is essentially because the bad example igreesfor general graphs can’t occur,
since in growth bounded graphs the number of neighbors ofde tizat are in an independent
set is at most a constant. In other words, the definition oivgtdounded graphs get us the
equivalent of the density lemmas we used in the physical ifodeLemma$34 and 3.6).

Theorem 3.17 In growth-bounded graphs in which at mdsneighbors of any node are in an
independent set, if all transmitters have regret at nxasten the average number of successful
connections is at lea$t(|OPT|) — en.

Proof. Let 2z, be some node, with neighbors, ..., z,,. ¢,s,@Q, andS are as defined in the
physical model. We first claim thaC" ; ¢,, > % — 5. The first case is if,,, > 1/3, in which
case the claimis trivially true. So suppose that< 1/3. Letppaqbe the fraction of times thag,
would be unsuccessful if it chose to broadcast, i.e. thdibmof times at which at least one of its
neighbors broadcasts. Then the average utility of alwayadwasting i$ —ppag—pPoad = 1—2Ppag-
If prag < 1/3 — €/2, then the average utility of always broadcasting is at l€A3t+ €. But this
is a contradiction since, has average utility at mogt < 1/3 but also has-regret. Thus we
know thatppag > 1/3 — €/2. But clearlyppag < >, ., by definition, since in order for a time
to contribute toppaq at least one of the;’s need to be broadcasting. Hence we have proved that
ZZO Qz; = % - %

Now we relatg O PT'| to (). For nodest € OPT, letb(z) = > ¢ v(uyu() - BY the above
claim we know thab(x) > § — £, and thus)"__, .- b(x) > |OPT|(3 — 5). But every node
is adjacent to at most nodes fromOPT by the growth-boundedness of the graph, and thus
> weorr (@) < kY, ¢ = kQ. Putting these together, we get thiat> 2 (3 — 5)|OPT|. We
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now apply Lemm&3.14 to get that

as claimed. m

3.6 Simulations

While the main contributions of this thesis are theoretioe¢ also performed simulations to
show how no-regret algorithms do in practice. There are tsyeats that we wanted to test: the
quality of the algorithm (i.e. the average number of sudtgssansmissions) and the speed at
which the algorithm converges on that average. Our simaratill be in the vanilla physical
model, where transmitters and receiver are points in thdidean plane. We will be using
random topologies, in which transmitter-receiver pairs are placed uniformly at randaoma
square of size of siz&)0 x 100 in the Euclidean plane, subject to each receiver being triie

at mostd,,,.., from its transmitter. Throughout these simulations we géfloe = 2.1 andr = 0.5,
since it turns out that changing these parameters does angefthe trends by very much.

For the simulations to test the quality of the algorithm wé eompare our algorithm to the
average performance achieved if every transmitter usestarégponse strategy instead of a no-
regret strategy. In particular, we will compare what haggpemen every transmitter uses Best
Response (the trivial algorithm in which each transmittansmits if it would have succeeded
last round and does not transmit if it would not have, i.e heaansmitter simply does the best
thing relative to what happened last) to what happens wherydvansmitter uses the classic
no-regret algorithnRandomized Weighted Majority (WM#®&¥)Littlestone and Warmuciﬁb?].

Our quality simulation shows the relationship between thiber of nodes and the average
number of successful transmissions per round after simmgl&r 100 rounds. We did this oh00
instances for each value afand averaged the results. Figlirel 3.8 shows thatgets larger our
algorithm does better, while Best Response does about the & slightly worse). Note that
largen is the only interesting regime, since only whers large is there a lot of interference from
other transmitters. This figure also shows that the appration bound we proved)(d>*_), is
overly pessimistic, since for all three values&f,, that we tested the actual performance is
significantly better tham /d>_, and clearlyn is an upper bound of© PT'|. For example, when
dmax = 8 @andn = 1000, we observed an average 038.861 successful transmissions, while
1000/8*!is only 12.69.

For the convergence speed simulations, instead of congptarithe Best Response algorithm
we just test the average number of successful transmisafterssarious iterations. Our analysis
requiresQ(n? log n) iterations before the approximation guarantee can be ntadegur simu-
lations show that in practice this number of iterations ismecessary. As shown in Figure13.9,
substantially fewer than iterations are required before the average is basicalhlestd he time
to stability is not constant, as it does seem to grow withut it is certainly substantially smaller
than theQ(n? log n) bound required by the analysis.
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3.7 Conclusions

In this chapter we examined the complexity of maximizingrihenber of supported connections
in the physical wireless model and we studied the performahat can be achieved by com-
pletely distributed algorithms operating under an appedprincentive structure. In particular,
we proved NP-hardness and gave two approximation algosifiomthe centralized case. In the
distributed setting our main techniques were game thepnetimely proving that the price of
total anarchy of an appropriately defined game is small. Weehbat this technique will prove
fruitful when considering other distributed problems, esiplly when only extremely limited
feedback is allowed. We also showed by simulation that legret algorithms do even better in
practice than the theoretical worst case, both in termseif sipproximation to optimal and the
time it takes to achieve this approximation.
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Chapter 4

Constrained Connectivity and iBGP

In this chapter we will turn our attention back to wired netl®and discuss the iBGP and Con-
strained Connectivity problems that we introduced in SediiL.3. We first review the basics of
iIBGP that we introduced there. In this setting there is so®ftdistances in the network, pre-
sumably defined by the IGP distances or OSPF weights or by sonikar networking protocol.
There is an initial set of routes with corresponding egress routexs-, where the egress router
for some route is simply the router in the AS that initiallyelneé about the route over eBGP from
some other autonomous system. Given a set of routes, a wiliteaink highest the one whose
egress router is closest according to this definition ofatise. Thesignaling graphH is an
overlay network whose nodes represent routers and wherel@ga represents the fact that the
two routers at its endpoints use iBGP to inform one anotheheif current chosen route. The
endpoints of an edge iH are calledBGP neighborsA path in H is called asignaling path

iBGP can be thought of as working as follows. In an asynchusnfashion, each router
considers all the latest routes it has heard about from &HBieighbors, chooses the one with
the closest egress router and tells its iIBGP neighbors abeubute it has chosen. This continues
until no router learns of a route whose egress router is clise that of its currently chosen
route. When this process ends the route chosen by rousedenoted byR(r). Let P(r) be the
shortest path from to £(r), the egress router k(). When a packet arrives af it sends it to
the next router’ on P(r), r" in turn sends the packet to the next router/’) and so on. Thus
if P(r’) is not the subpath aP(r) starting at~’ then the packet will not get routed agxpected.
An important property for a signaling graph to have@nplete visibilityin which each router
r hears about (and hence chooses:as)) the route inF' whose egress routé?(r) is closest to
r from amongst all routers IX . It is easy to see that iff has the complete visibility property
for I then it will correctly implement the desired routing, so way shatH is correctif it has
complete visibility for all possible external routé or equivalently for all possible subsets:
of the routers that might announce external routes.

In Sectior_L.B we claimed that the problems of minimizingribenber of edges in a correct
signaling graph (theBGP-Sum problem) and the minimizing the maximum degree in a correct
signaling graph (theBGP-DeGREEproblem) are special cases of a new network design problem
that we callConstrained Connectivityln Constrained Connectivity we are given a graph=
(V, E) and for each pair of node&:,v) € V x VV we are given a set(u,v) C V. Each
suchS(u,v) is called asafe setand it is assumed that v € S(u,v). We say that a subgraph
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H = (V, F) of G is safely connecteid for every pair of nodegu, v) there is a path it from u
to v in which every node in the path is #(u, v). We are interested in two versions this problem:

1. CONSTRAINED CONNECTIVITY-SUM: compute a safely connected subgrdplwith the
minimum number of edges, and

2. CONSTRAINED CONNECTIVITY-DEGREE compute a safely connected subgrdphhat
minimizes the maximum degree over all nodes.

We will begin this chapter by proving that the iBGP problems i fact a special case of
Constrained Connectivity, and then we will use this chamazation to prove that they are hard to
approximate to better than(logn). We will then generalize them to Constrained Connectivity
on K, for which we demonstrate two approximation algorithmseohaen obvious LP relax-
ations. Generalizing further, we show that the Constraf@ednectivity problems are as hard to
approximate as the well-known Label Cover problem, andtti@batural LP relaxations have at
least a polynomial integrality gap. Finally, we will consrdConstrained Connectivity in some
simpler settings and show that in these settings it can lgtuasolved optimally in polynomial
time.

4.0.1 Related Work

Issues involving eBGP, the version of BGP that routers ifediht ASes use to announce routes
to one another, have recently received significant atteritam the theoretical computer science
community, especially stability and game-theoretic iss(esg., l[ZbEIISEG]). However, not
nearly as much work has been done on problems related to B€Eh distributes routes inter-
nally in an AS. There has been some work on the problem of gteeang hot-potato routing in
any AS that uses soute reflector architectur@], which is the most commonly used type of
iBGP signaling graph. These earlier papers did not consigeissue of finding small signaling
graphs that achieved the hot-potato goal. Instead thegrgittovided sufficient conditions for
correctness relating the underlying physical network & route reflector configuratioﬂ47]
or they showed that by allowing some specific extra routegtarinounced (rather than just the
one chosen route) one could guarantee a version of hotepatating E!li]. The first people to
consider the problem of designing small iBGP overlays stthifeachieving hot-potato correct-
ness were Vutukuru et aE'BG], who used graph partitiontcigesnes to give such configurations.
But while they proved that their algorithm gave correct cgufations, they only gave simulated
evidence that the configurations it produced were small.oBaial. EB] considered the problem
of designing small correct solutions (along with other ¢aaists that we do not concern our-
selves with) but went in the opposite direction, giving a neaatical programming formulation
but then simply solving the integer program using supewpamial time algorithms. Xiao et
al. @] were also concerned with constructing small iBGRréays, but instead of guaranteeing
correctnesshey guaranteeeliability.
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4.1 iIBGP Problems

4.1.1 IBGP and Constrained Connectivity

We want to show that the iBGP problems are a special case aCémstrained Connectivity
problems. This involves defining a safe set for every pairasfiges, and proving that a signaling
graph H is correct if and only if it is safely connected according hede safe sets. We will
assume that there are no ties, i.e. all distances are digfiactwo routers: andy, let D(z,y) =
{w: d(x,w) > d(z,y)} be the set of routers that are farther frarthany is. LetS(z,y) = {w :
d(w,y) < d(w, D(z,y))} U {y} be the set of routers that are closeytthan to any router not in
the ball around: of radiusd(z, y). We will refer to S(x, y) as “safe” routers for the pairr, y),
and they form the safe sets for the Constrained Connectiivityance. A path betweenandy

in a signaling graph is said to besafe signaling patlfor (z, y) if it is contained inS(x, y).

Theorem 4.1 An iBGP signaling grapti is correct if and only if for every paitr,y) € V x V
there is a signaling path from to x that uses only routers if(z, y).

Proof: We first show that if every pair has a safe signaling path themyenode hears about
the route that has the closest egress router no matter wdnaettof egress routepsy is. This is
simple: letz be a router, and lej € X be its closest egress router. Lebe the route whose
egress router ig. By assumption there is a signaling path frgrnto = that uses only routers in
S(z,y). By definition, every one of these routers is closey than to any router farther from
thany is. Sincey is the closest egress 19 this means that for all of the routersétz, y), y will

be the closest egress router. A simple induction then shbatsthe routers in a safe signaling
path will each choose and hence tell their iBGP neighbor in the path abauthat is,» hears
aboutr.

For the other direction we need to show that if a signalingliia correct then every pair has

a safe signaling path. For contradiction, suppose thaetiseno safe signaling path frogto

x. Let X, the set of egress routers, b¥x, y) U {y}. Letr be the route whose egress router is
y. Since every router itD(x, y) is farther fromz thany is, this means that for this set of egress
routersz is closer toy than any other egress. By correctness we know:thddes hear about
Lety = ay,ao,...,a, = x be the (or at least a) signaling path frento « through whichr hears
aboutr. Since there are no safe signaling paths fromo 2, we know that there exists sonme
such thau; ¢ S(x,y). This means that there is somec D(x,y) such thatl(a;, w) < d(a;,y).
Since we assumed correctness we know thateard about the route with the closest egress
routerz to a;, andz # y (sincew in particular is closer). Sa; will not tell its iIBGP neighbors
aboutr, which is a contradiction since is on the signaling path from which heard about.
Thus a safe signaling path must exist. |

Note that this condition is easy to check in polynomial tis@we have shown membership
in NP. This characterization also shows that the probleddGP-Sum andIBGP-DEGREE are
Constrained Connectivity problems where the underlyirapb(z is K,, the complete graph on
n = |V| nodes and the safe sets are defined by certain geometricrpespe
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4.1.2 iBGP Hardness

In this section we will show that the iBGP problems &@og n)-hard to approximate by a re-
duction from HTTING SET (or equivalently from &T CoVER). This is a much weaker hardness
than the2!°s’ ‘" hardness that we will prove for the general Constrained €otivity problems
in Section4.B, but the IBGP problems are much more restectiVe begin by giving a useful
gadget that encodes aHING SET instance as an instance of an iBGP problem in which all
we care about is minimizing the degree of a particular vert®e will then show how a simple
combination of these gadgets can be used to prova BGP-DEGREE s hard to approximate,
and how more complicated modifications to the gadget can ée tasprove thatBGP-SUM is
hard to approximate.

Suppose we are given an instance of hitting set with elemieats . ., n (note that we are
overloading these as both integers and elements) andséts . . ., T,,,. Our gadget will contain
a noder whose degree we want to minimize, a naddor all elements € {1,...,n}, and a
nodebr, for each sefl; in the instance. We will also have four extra “dummy” nodesy, u,
andh. The following table specifies some of the distances betveants. All other distances
are the shortest path graph distances given theseliLieé some large value (e.20), and lete
be some extremely small value larger than

X Z y a; br, u h
X M M+ 1.4+ je
z M 1.5 14 e 2
y 1.5
a; 1+ ie 1+ (+j)e(fieT;) 1.1
br, | M + 1.4+ je 1+ (i+je(if 1 € Ty) 1+ je
U 2 1.1
h 1+ je

It is easy to check that this is indeed a metric space. Infbymae want to claim that any
solution to the iBGP problems on this instance must have ge &dmx to a; nodes such that
the associated element$orm a hitting set. Herey, u, andh are nodes that force the safe sets
into the form we want, and is used to guarantee the existence of a small solution.

Lemma 4.2 Let £ be any feasible solution to the above iBGP instance. Foryevertexbr,
there is either an edgéz, by, } € £ or an edge{x, a;} € E wherei € T,

Proof: We will prove this by analyzin@(z, bz, ). If we can show tha$ (z, br,) = {z, bz, }U{a; :
i € T;} then we will be finished. Note thal(x,br,) = M + 1.4 + je, so the vertices outside
B(z,d(z,br,)) arey (distanceM + 1.5 from ), u (distancel/ + 2 from z), & (distance at least
M + 2.4 from z), andby, with & > j (distanceM + 1.4 + ke from z). The vertices inside the
ball arez, z, all a; nodes, and;, with k < j.

Obviouslyz andbr, are inS(x, br,) by definition. Leta; be a vertex withi € T}. It is easy
to verify thata; is closer taby, than to any vertex outside of the ball: it has distahee (i + j)e
from by, distancel + (i + k)e from by, with & > j, distance2.5 + ie from y, distancel.1 from
u, and distance greater tharfrom h. Soa; € S(z,br;) as required. On the other hand, suppose
i ¢ Tj. Thend(a;, br;) > 2, while d(a;,u) = 1.1, soa; ¢ S(x,br;). Similarly, any vertexr,
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with k < j is closer toh (distancel + je) than tobs, (distance at least) andz is closer toy
(distancel.5) than tobs; (distance at least). ThusS(z,br,) = {z,br,} U{a; : i € T}, SOE
must include an edge fromto eitherby, or ana; with i € T;. ]
We now want to use this gadget to prove logarithmic hardnessBEGP-Sum. We will
use the basic gadget but will duplicate So there will bel copies ofz, which we will call
T1, T, ..., 1 and their distances are defined todie;, z) = M + ie andd(xz;,br;) = M +
1.4 + (i + j)e with all other distances defined to be the shortest path. Maieall we did was
modify the gadget to “break ties” between thes. Also note that the shortest path betwegn
andz; is throughz, for a total distance dtA/ + (i + j)e. As before, letd be the smallest hitting
set.
Lemma 4.3 Any feasibleBGP-3Jm solution has at least| H | edges.
Proof: Itis easy to see that Lemrha}.2 still holds, i.e. thiat;, br,) = {z;, by, }U{ay : k € T;}.
Intuitively this is because all othernodes are outside d#(x;, d(z;b7,)) and all distances from
x to the gadget are the same as before except with an additioridlis implies that the number
of a;, andbr, nodes adjacent to; in any feasible solution must be at lea&t, since if there were
fewer such adjacent nodes it would imply the existence of allemhitting set (anyr, nodes
adjacent tac; could just be covered using an arbitrary elemerifjiat the same cost as using the
set itself). Thus the total number of edges must be at le&st n

Lemma 4.4 There is a feasibleBGP-Sum solution with at most| H | + ¢ + (m +n +4)? edges.

Proof: The solution is simple: create a clique on thebr,, z, u, y, h nodes (which obviously
has size at mogtn + n + 4)?), include an edge from eveny to » (another edges) and include
an edge from every; to everya, with k£ € H (another/|H| edges). Obviously there are the
right number of edges in this solution, so it remains to prthet it is feasible. To show this
we partition the pairs into types and show that every painierg type is satisfied. The types
arel) x; — br,, 2) v; — h, 3) x; — x;, 4) v; — a (Wherea is any other node in the gadget not
included in a previous type), ari) o — x; This is clearly an exhaustive partitioning, so we can
just demonstrate that each type is satisfied in turn.

For the first type we already showed thétr;, by, ) includes alla, wherek < T;. Since
H is a valid hitting setr; must be adjacent to one suah, which in turn is adjacent tér,,
forming a valid safe path. For the second type the only vestioutsideB (x;, d(x;, h)) arex;
with j # 4, andz is closer toh than to any such;. Thusz € S(z;, h) so the path:; — z — h
in our solution is a valid safe path. For the third type thetices outsideB(z;, d(z;, z,)) are
{zy : k > jandk # i}. Because of the tie-breaking we introducé;, z;) = M + je while
d(z,x) = M + ke > M + je, and thus: € S(z;, z;) and so the path; — = — z; in our solution
is a valid safe path. The fourth type is even simpler, sinceust be eithet, u, y, or ana; node
and the shortest path from to any of these is through Soz € S(z;,a) andz; — z — aisa
valid safe path. Finally, for the last type the vertices @é® (o, d(«, ;)) are{xy : k > i}, and
z is closer tox; (distanceM + ie) than any such,, (distancelM + ke). So again: € S(a, x;)
and thusy — z — z; is a valid safe path. ]

Theorem 4.5 It is NP-hard to approximateBGP-SUm to a factor better tha2(log V), where
N is the number of vertices in the metric.

Proof: Itis known that there is somefor which it is NP-hard to distinguish hitting set instances
with a hitting set of size at mogtfrom instances in which all hitting sets have size at |gdstm.
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In the first case we know from Lemnha ¥.4 that there is a vdi@P-Sum solution of size at
most/3 + ¢ + (m + n + 4)%. In the second case we know from Lemmal 4.3 that any valid
IBGP-SUm solution must have size at leagtIinm. If we setl = (m + n + 4)? this gives a
gap oflGlnm/l(5 + 2) = Blnm/G + 2 = Q(log m). The number of verticed’ in the I BGP-
Sum instance i0((m + n + 4)?) sologm = Q(log N), and thus we ge®(logn) hardness of
approximation. [ |

It is also fairly simple to modify the basic gadget to prove #ame logarithmic hardness for
IBGP-DEGREE We do this by duplicating everythingther thanz, instead of duplicating:.
This will force x to have the largest degree.

Theorem 4.6 It is NP-hard to approximateBGP-DEGREE to a factor better tharf2(log N),
whereN is the number of vertices in the metric.

Proof: We will use multiple copies of the above gadget. helbe some large integer that we
will define later. We create: copies of the gadget but identify all of thevertices, so there is
still a uniquex but for all other node® in the original there are now copiesv?!, v?, ..., v®.
The distance between two nodes in the same copy is exacttytas ioriginal gadget, and the
distance between two nodes in different copies (gandt’) is the distance implied by forcing
them to go through: (i.e. d(s',#/) = d(s,x) + d(z,t)). Call this metricM = (V,d). Every
vertex in copy: is closer to the rest of copythan to any vertex in copy, so Lemma4]2 holds
for every copy. Thus if the smallest hitting set/ithe degree of: in any feasible solution to
IBGP-DEGREEON M must be at least|H |.

Conversely, we claim that there is a feasible solutionBt@ P-DEGREEIn which every vertex
has degree at most| /| + 1). Consider the solution in which is adjacent ta’ and toa’ for
all j € [o] andi € H, and all nodes (other thar) in copyj are adjacent to all other nodes (other
thanz) in copyj for all j € [a]. By the above analysis ¢f(z, bépj) we know that this solution
satisfies these safe sets (via the safe patha; — b, wherei € H is an element iff}). It also
obviously satisfies pairs not involvingin the same copy, since there is an edge directly between
them. It remains to show that pairs involvingre satisfied and that pairs involving two different
copies are satisfied.

For the first of these we will show thatis in all safe sets of the formi(z, w') wherew is
not ab node. This is easy to verify exhaustively. It is also truet thés in all safe sets of the
form S(w', x) even whenu is ab node, since all vertices outside the b&llw’, d(w’, z)) are in
different copies and the shortest path frerto any node in a different copy must go through
Thus the pathy — 2z — w* in our solution satisfies both of these safe sets. Finally,again easy
to verify that pairs in different copies are also satisfied.

Now by settinga appropriately we are finished. Each copy has m + 4 nodes, so in the
feasible solution we have constructed the degree of any ottae thanz is at most(n + m +
4)? + 1. If we seta to some value larger than this, s@y+ m + 4)3, we know that the degree
of z has to be at leag + m + 4)®| H|. It is known that it is hard to distinguish between hitting
set instances with hitting sets of size at m@sand those in which every hitting set has size at
leasts Inm for some values. Suppose that we are in the first case, where there is a hgéihg
of size at most;. Then we constructed a feasible solution to tB&P-DEGREE problem with
maximum degree at mosgt + m + 4)3(3 + 1). In the second case, where every hitting set
has size at least In m, we showed that the degree of(and thus the maximum degree) must
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be at leastn + m + 4)*3Inn. This gives a gap of lnm/(3 + 1), which is clearlyQ2(log m).
Since the number of vertices in thBGP-DeEGREE instance is polynomial imn, this implies
(log N)-hardness. n

4.2 Constrained Connectivity onk,

In this section we show that there ist(n2/3)-approximation algorithm for GNSTRAINED
CONNECTIVITY-SUM and GONSTRAINED CONNECTIVITY-DEGREEas long as the underlying
graph is the complete graphki,,. This obviously implies the same approximation ratio foe th
iBGP problems, since they are special cases. Our algoriggtvo components, an LP rounding
algorithm and a random sampling step. So we first discuss plsibP relaxation: thdlow
LP. This is actually a relaxation of the general Constrainedr@ativity problems, but for the
purposes of this section we will just assume that the unogylgraphG is K,,.

For every pairu,v) € V x V let P, be the collection of: — v paths that are contained in
S(u,v). The flow LP has a variable for every edge € F (called thecapacityof edgee) and a
variablef(P) for everyu — v path inP,, for every(u,v) € V x V (called theflow assigned to
pathP). The flow LP simply requires that at least one unit of flow istdgetween all pairs while
obeying capacity constraints:

min ) c.

S pep,, f(P) =1 Y(u,v) €V x V
> pepyyecp I (P) < ce Ve e E,(u,v) €V XV
0<ec <1 Ve € E
0< f(P)<1 V(u,v) € VXV, P € Py

This is obviously a valid relaxation of @VSTRAINED CONNECTIVITY-SUM: given a valid
solution to GNSTRAINED CONNECTIVITY-SUM, let P,, denote the required sate— v path
for every (u,v) € V x V. For every edge in somePF,, setc, to 1, and setf(FP,,) to 1 for
every (u,v) € V x V. This is clearly a valid solution to the linear program witretexact
same value. To change the LP foo@STRAINED CONNECTIVITY-DEGREE we can just in-
troduce a new variabl®, change the objective function tain A\, and add the extra constraints
> o funter Clupy < Aforallu € V. And while this LP can be exponential in size (since
there is a variable for every path), it is also easy to desigorapact representation that has
only O(n*) variables and constraints. This compact representatien/aaablesf((qff)) instead

of f(P), Wheref((;”:g)) represents the amount of flow fromto v along edge{u, v} for the de-
mand(z, y). Then we can write the normal flow conservation and capaabgstaints for every
demandz, y) independently, restricted t8(z, y).

Our rounding will make use of the following simple lemma.

Lemma 4.7 In any fractional solution to the flow LP, for every pdit,y) € V' x V there is a
path between: andy completely contained if(x, y) in which every edge is assigned capacity
atleastl/|S(z,y)|>
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Proof: Since the fractional solution is feasible, it sends one offitow from z to y using only
edges that have both endpointsdfi, y). Suppose for contradiction that the lemma is false for
some(z, y) pair. Theneverysafe path fromx to y uses at least one edge with capacity less than
1/1S(z,y)]*. Let B be the set of these edges, ie.= {{u,v} : u,v € S(z,y) andeg, .} <
1/|S(x,y)|?}. Since every safe — y path must go through at least one edg®irthe edges of3
must form anz — y cut in the graph induced ofi(z, y). However,| B| < |S(z, y)|?, since every
edge inB must have both endpoints B(z, y). This is a contradiction, since we cannot send one
unit of flow across a cut with less thafi(z, )|? edges in which every edge has capacity at most
1/1S(z,y)|*. -

Another important part of our algorithm will be random samgl We will use two different
types of sampling: star sampling for the sum version and sdgepling for the degree version.
First we consider star sampling, in which we independeratiysle nodes with probability, and
every sampled node becomes the center of a star that spavertée set.

Lemma 4.8 All pairs with safe sets of size at leastwill be satisfied by random star sampling
with high probability ifp = 3Inn/s.

Proof: Consider some paifz, y) with |[S(x,y)| > s. If some node (say) from S(z,y) is
sampled then the pair is satisfied, since the creation ofrastavould create a path — z — y
that would satisfy(x, ). The probability that no node frotfi(z, y) is sampled is

(1 _p)\S(ac,y)\ < (1 _p)s <e P = 6—3lnn _ 1/n3

Since there are less thaf pairs, we can take a union bound over all p&irsy) with |.S(x, y)| >

s, giving us that all such pairs are satisfied with probabéityeastl — 1/n. |
For edge sampling, we essentially consider the ErdossRfraphG,, ,, i.e. we just sample

every edge independently with probability We will actually consider the union dflogn

independent?,,,, graphs, wherey = (98¢ for some smalk > 0. Let H be this random
graph.

Lemma 4.9 With probability at leasti — 1/n, all pairs with safe sets of size at leaswill be
connected by a safe path .

Proof: Let(x,y) be a pair withS(x,y)| > s. Obviously(z, y) is satisfied if the graph induced
onS(xz,y) is connected. Itis known [21] that there is some smalith 0 < € < 1 so thatG, , is
connected with probability at least2. SinceH is the union of3 log n instantiations of,, ,,, we
know that the probability that the subgraphifinduced onS(z, y) is not connected is at most
1/n3. We can now take a union bound over all syehy) pairs, giving us that the probability
that there is some unsatisfiéd, y) pairs with|S(z,y)| > s is at mostl /n. n

We will now combine the random sampling and the threshokkda P rounding into a single
approximation algorithm. Our algorithm is divided into twbases: first, we solve the LP and
round up any edge with capacity at leagh?/3. This takes care of safe sets of size at mdst.
Second, if the objective is to minimize the number of edgeslavstar sampling with probability
3lnn/n'/3, and if the objective is to minimize the maximum degree we digeesampling using
the construction of Lemnia2.9 with= n'/?,

Theorem 4.10 This algorithm is a)(n*/?)-approximation to botlCONSTRAINED CONNECTIVITY-
SuM and CONSTRAINED CONNECTIVITY-DEGREEON K,,.
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Proof: We first argue that the algorithm does indeed give a validtgwiudo the problem. Let
(z,y) be an arbitrary pair. IfS(z,y)| < n'/3, then Lemm&Z]7 implies that the first phase of the
algorithm results in a safe path. |I§(z,y)| > n'/3, then Lemm&Zl8 or Lemnia4.9 imply that
the second phase of the algorithm results in a safe path. &g puair has a safe path, and thus
the solution is valid.

We now show that the cost of this algorithm is at mO$t>/?) x O PT'. We first consider the
objective function of minimizing the number of edges. In &d we only increase capacities
by at most a factor of*/?, so since the LP is a relaxation of the problem we know thatates
cost of phase 1 is at most/® x OPT. For phase 2, in expectation we chds€/3 Inn stars,
for a total of at mos8n®/? Inn edges. But since there is a demand for every pair we know that
OPT > n — 1, so phase 2 has total cost at me§n2/3) x OPT.

If instead our objective function is to minimize the maximulegree, then since phase 1
only increases capacities y#/® we know that after phase 1 the maximum degree is at most
n?3 x OPT. In phase 2, a simple Chernoff bound implies that with higbbability every
node gets)(n?/?) new edges, and thus the node with maximum degree still haseleg most
O(n2/*) x OPT. m

We also have a primal-dual algorithm that gives the samehbasults as the threshold round-
ing for the GONSTRAINED CONNECTIVITY-SUM problem. While this algorithm and its analy-
sis is slightly more complicated and only works for the Sumsian, by not solving the linear
program we get a faster algorithm. In particular, the bestvkm algorithms for solving linear
programs withVn variables také)(Nn3°) time on general LPs, so since there afe= n* vari-
ables in the compact version of the flow LP this takésa'>5) time. The primal-dual algorithm,
on the other hand, is significantly faster: a naive analsisisvs that it take®(n°) time.

In this algorithm we use the cut LP, which is a different ragan than the flow LP. In
fact, the algorithm is quite similar to the primal-dual algom for Steiner Forest, which uses
a similar cut LP but doesn't have to deal with safe sets. Gwerair (u,v) € V x V, let
S(u,v) = {5 C S(u,v) : uw € S ANv ¢ S} be the collection of safe set cuts that separatad
v. Furthermore, given a séte S(u,v) letd,,(S) = {e € (1) : e € (S, S(u,v) \ S)} be the set
of safe edges that cross The cut LP has a variable for every edge:, and is quite simple:

min E Te
e

s.t. Z Te > 1 Vu,v eV, S € S(u,v)

Eeduv(s)
T, >0 Ve € (g)

This LP simply minimizes the sum of the edge variables suligt¢he constraint that for
every cut between two nodes there must be at least one sagecealgsing it. Since this is a
primal-dual algorithm, instead of solving and roundingstbP we also consider the dual, which
has a variablg’ for every pair(u,v) andS € S(u,v). We say that an edgec S(u, v) if both
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endpoints ot are inS(u, v).

max Z Z yg"

u,veV  SeS(u,w)

st Y > Y <1 Ve € (Z)

u,weV:eeS(uw)  SES(u,w):e€dyup(S)
yg' >0 Yu,v € V, S5 € S,

Unfortunately we will not be able to use a pure primal-dugragimation, but will have to
trade off with a random sampling scheme as in the roundingréilgn. So instead of this primal,
we will only have constraints fou, v € V with |S(u,v)| < ¢ for some parameterthat we will
set later. Thus in the dual we will only have variablg$ for (u,v) with |S(u,v)| < t. This
clearly preserves the property that the primal is a validxation of the actual problem. Let
D ={(u,v) : |S(u,v)| < t}.

Our primal-dual algorithm, like most primal-dual algomtis, maintains a set @ictivedual
variables that it increases until some dual constraint imesotight. Once that happens we buy
an edge (i.e. set some to 1 in the primal), change the set of active dual variables, apeat.
We do this until we have a feasible primal.

Initially our primal solution H is empty and the active dual variables g, for every
(u,v) € D, i.e. every node: has an active dual variable for every othethat it has a de-
mand with corresponding to the cutff{u, v) that is the singletofu}. We raise these variables
uniformly until some constraint (say the one for {w, z}) becomes tight. At this point we add
e to our current primal solutio/. We now change the active dual variables by “merging” moats
that cross. In particular, there are some active variable¥’} wheree € 6,,(5) (which implies
thatw, z € S(u, v) as well). LetH|s(. ., denote the subgraph éf induced onS(u, v). Without
loss of generality we can assume thatc S andz ¢ S. LetT C S(u,v) be the connected
component off|s(,, ) containingz. We now makeys"” inactive, and makgy!,, active. We do
this for all such active variables, and then repeat this ggedincrementing all dual variables
until some dual constraint becomes tight, adding that eddgé,tand then merging moats that
cross it) until all pairdu, v) € D have a safe path iH.

Lemma 4.11 This algorithm always maintains a feasible dual solutiord &m active set that
does not contribute to any tight constraint.

Proof: We will show this by induction, where the inductive hypotises that the dual solution is
feasible and that no dual variables that contribute to & tighstraint are active. Initially all dual
variable arel, so it is obviously a feasible solution and no constrainéstaght. Now suppose
this is true after we add some edge We need to show that it is also true after we add the next
edgee = {w, z}. By induction the dual solution after we addeds feasible and none of the
active dual variables contribute to any tight constraintbus raising the active dual variables
until some constraint becomes tight maintains dual fekisibi

To prove that no active variables contribute to a tight cast, note that the only new tight
constraint is the one correspondingetol he only variables contributing to that constraint are of
the formy¢” wheree € §,,(S). But our algorithm made all of these variables inactive, anly
added new active variables for sétsthat contain bothw andz and thus do not contribute to the
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newly tight constraint. Furthermore, these s¢tare formed by the union &f and the connected
component inf |5,y containing the other endpoint, so no newly active variableticbutes to
a constraint that became tight previously (since they spoad to edges i#/). ]

Theorem 4.12 The primal-dual algorithm returns a grapH with at mostO(t?) x OPT edges
in which every pair(u, v) with |S(u, v)| < t has a safe path.

Proof: After every iteration of the algorithm all of the tight coraints are added té&/, which
together with Lemm&<4.11 implies that the algorithm nevesgaguck. Thus it will run un-
til every pairu,v with |S(u,v)| < t has a safe path. It just remains to show that the total
number of edges returned is at ma@ztt?) x OPT. To see this, note that every edge fih
corresponds to a tight constraint in the feasible dual smuive constructed, so f € H then

Zu,v:eES(u,v) ZSES(U,U):@G&HU(S) ygv = 1. Thus we have that

H =3 1=>, > 2. W

ecH e€H (uw)eD:eeS(u,v) SES(u,v):e€duu(S)

=2 2 2w

(u,v)eD SeS(u,v) e€duy (S)NH

= D D HNW(S)yE

(u,v)eD SeS(u,v)

DI I

(u,w)eD SES(u,v)
<t x OPT

where the last inequality is by duality, and the next to lasguality is becausg? N 0., (5)| <
(10u (9N < 2 (since(u,v) € D). n

Lemma 4.13 The primal-dual algorithm takes at maS{(n°) time.

Proof: The primal-dual algorithm adds at least one new edge peatiter, so there can be
at mostn? iterations. In each iteration we have to figure out the curvatue of every dual
constraint and the number of active variables in each caimstrwhich together will imply what
the next tight constraint is and how much to raisegivariables. We then need to raise the active
variables by that amount and merge moats. Note that for edenyand there are at most two
active moats, so the total number of active variables is atti@¢n?). Thus each iteration can
be done in timeO(n'), where the dominant term is the time taken to calculate theevaf each
dual constraint. So the total time @3(n°), where there are extra poylogarithmic terms due to
data structure overhead. ]

Now we can trade this off with the random sampling solutionléwmge safe sets to get an
actual approximation algorithm:

Theorem 4.14 Thereis eON(nQ/?:) approximation algorithm for the @VSTRAINED CONNECTIVITY-
Sum problem that runs in timé& (n°)

Proof: Omitted — basically like the proof of Theordm 41.10 except thatead of trading off
the LP rounding and the random sampling we trade off the grdnal algorithm and random
sampling. [ |
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Figure 4.1: Basic hardness construction.

4.3 Constrained Connectivity

In this section we consider the hardness of the Constraimmeh€tivity problems and the inte-
grality gaps of the natural LP relaxations.

4.3.1 Hardness

We now show that the @USTRAINED CONNECTIVITY-SUM and GONSTRAINED CONNECTIVITY-
DEGREE problems are both hard to approximate to better tilefy " for any constant > 0.
We do this via a reduction from M-REP, a problem that is known to be impossible to approx-
imate to better tha@'®s' " unless NPC DTIME (nP°°e()) [62]. An instance of MN-REP is

a bipartite graphG = (U, V, E) in which U is partitioned into group#/;, Us, ..., U,, andV is
partitioned into groups’, Vs, ..., V,,. There is asuper-edgéetweenU; andV; if there is an
edge{u,v} € E such that € U; andv € V;. The goal is to find a minimum sét of vertices
such that for all super-edggé/;, V;} there is some edggu, v} € E with u € U; andv € 'V
andu, v € S. Vertices from a group that are $are called theepresentativesf the group. Itis
easy to prove by a reduction froraABEL COVER that MIN-REP is hard to approximate to better
than2'°s’ ‘" and in particular it is hard to distinguish the case wBenvertices are enough
(one from each group for each side of the graph) from the cémm@m x 2'°' " vertices are
necessar)IEZ].

Given an instance of Mi-REP, we want to convert it into an instance oD@STRAINED
CONNECTIVITY-SUM. We will create a graph with five types of vertices? for j € [m] and
i € [d); U, V,; y;forj € [m] andi € [d]; andz. Here thex nodes represent copies of the
groups ofU and they nodes represent copies of the groups df, whered is some parameter
that we will define laterz is a dummy node that we will use to connect pairs that are ni&ir
to the analysis. Given this vertex set, there will be fourstypf edges{z}, u} for all j € [m]
andi € [d] andu € Uj;; {u, v} for all edges{u, v} in the original MN-REP instance;{v, 3’} for
all j € [/m] andi € [d] andv € V}; and{w, z} for all verticesw.

This construction is shown in Figufe¥.1, except in the dataastruction there aré copies
of each node in the top and bottom layer and therezi;made that is adjacent to all other nodes.
In Figure[41 the middle two layers are identical to the ovédiMIN-REP problem, and the large
ellipses represent the groups. In the figure we have simpglg@a@ new vertex for each group,
and in the construction there afesuch new vertices per group as well aseertex.
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Now that we have described the constrained connectivitglgrave need to define the safe
sets. There are two types of safe sets: if in the originabimse there is a super-edge between
U; andV; thenS(zf,y%) = S(y¥,af) = {«},yf} UU; UV forall k € [d]. All other safe sets
consist of the two endpoints and Let e,z denote the number of super-edges in thedNREP
instance, and let,;r denote the number of vertices.

The intuition behind the following theorem and proof is thagafe path between annode
and ay node corresponds to using the intermediate nodes in theagdtie representatives of the
groups corresponding to theandy nodes, so minimizing the number of labels is like minimizing

the number of edges incident erandy nodes.

Theorem 4.15 The originalMIN-REP instance has a solution of size at mdstif and only if
there is a solution to the reduced Constrained Connectprityplem of size at mostd + ey +
2md +Nyp-

Proof: We first prove the only if direction by showing that if thereasMin-REP solution of
size K then there is a Constrained Connectivity solution of gizé+ e,z + 2md + ny 5. Let
OPT)r be the set of vertices in a Min-Rep solution of si&e Our constrained connectivity
solution includes all edges of typle i.e. we include a star centeredat For eachi € [d] and
J € [m] we also include all edges of the for{‘aj., u} whereu € U; N OPT),r and all edges of
the form{y’, v} wherev € V; N1 OPT), . Finally, for each super-edge in the Min-Rep instance
we include the edge between the pair fron®7),r that satisfies it (if there is more than one
such pair we choose one arbitrarily). The star clearlyhad + n,,r edges, there ar& d edges
from x andy nodes to nodes iV PT),, and there are clearly,,r of the third type of edges,
so the total number of edges in our solutiorkig + ez + 2md + nyr @s required. To prove
that it is a valid solution, we first note that for all pairs ept those of the forniz*, y%) or
(v, =F) where{U;, V;} is a super-edge are satisfied via the star centeredfedr pairs(:c;g, y¥)
and(y}, z}) with an associated super-edge, sifT), is a valid solution there must be some
u € U;NOPTyrandv € V;NOPT)y i that have an edge between them, and the above solution
would include that edge as well as the edge frghto « and fromyf to v, thus forming a safe
path of lengtl8.

For the if direction we need to show that if there is a Conetrdi Connectivity solution of
size Kd+ ey r+2md+nyr then there is a Min-Rep solution of size at mastLet O PT¢¢ be
a constrained connectivity solution witid+ e, g +2md+ny r edges. Sincé(w, z) = {w, z}
for all verticesw, 2md + nj,r of those edges must be a star centered ab onlyKd + ey g
edges are between other vertices. Obviously there needdblbaste,,r edges betweeti and
V, since otherwise it would be impossible to satisfy all of ttnands betweenandy nodes
corresponding to super-edges. Thus there are at Kidstdges incident on eitheror y nodes.
We can partition these edges intgparts, where the edges in tftl part are those incident on an
x' ory* node. So there must be one part of size at ni6stet i be this part. But since this is a
valid constrained connectivity solution there is a safé fettween:’, andy; for all j, £ such that
there is a super-edge betweénandy,, and thus the nodes it andV” that are incident to edges
in thissth part must form a valid Min-Rep solution of size at mé&t |

We can now sef = n?,, which gives the following theorem

Theorem 4.16 CONSTRAINED CONNECTIVITY-SUM cannot be approximated better thalpe' "
for anye > 0 unless NPC DTIME(nPol¥log(n))
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Proof: We know thatitis hard to distinguish between an instance nfMREP with a solution of
size at mosgm and an instance in which every solution is of size at least 22" ™. Letd =
n3,r- Then TheorerZ15 implies that it is hard to distinguisineemn an instance of constrained
connectivity with a solution of size at madtun3, , + e r+2mn3, p+nyr = O(mn, ) and an
instance in which every solution has size at l€agp'>s' “"vrn2 o + ey + 2mn’, p + nag =
Q(mn3, z2'°8" “"ur). This gives an inapproximability gap 6f(2'°2" =), Sinced = n2,,
the number of vertices in our constrained connectivity instancesigr +2mn3, , < O(n3,z),
and thug(2los’ ") — 9%(os’“n) Tg get this 28" “" we can simply use a smallét  m

We will now prove that ©NSTRAINED CONNECTIVITY-DEGREEhas the same hardness of
approximation of @NSTRAINED CONNECTIVITY-SUM. The reduction from MN-REP to the
degree problem is basically the same as the reduction tauthepsoblem, except there are also
d* additional copies of the gadget other than thendy nodes. More formally, now the nodes
arex’ andy! for j € [m] andi € [d], u” foru € U andi, j € [d], v" forv € V andi, j € [d],
andz" for i, j € [d]. Now intuitively each copy; of the originalU, V, andz is hooked together
exactly like in the original construction, and is hooked aplte nodeqz} } ¢,y and {yi}ke[m}
exactly as if they were one copy of the outeandy nodes of the original construction.

More formally, the edges are the same as before, except nowafahed? new copies is
independent. In other words, there is an edge betwé@mdv™ for all i,k € [d] and;j € [m]
andu € Uj;, an edge between, andv* for all i,k € [d] andj € [m] andv € Vj, an edge
between:” andv* for all 7, j € |d] and edgegu, v} in the original MN-REP instance, an edge
between:} andz** forall i, k  [d] and; € [m], an edge betweey} andz*' for all i, k € [d] and
j € [m], an edge betweew* andz®* for all i, k € [d] andu € U, and an edge betweeff and
z* for all i,k € [d] andv € V. Similarly, the safe sets are as before but defined by thessopi
Thatis,S(zf,y%) = S(y,2F) = {=},4} UU} UV/. All safe sets between nodes in the same
copyij are the two endpoints together with, and the safe set of vertices in different copies is
just all vertices.

Theorem 4.17 CONSTRAINED CONNECTIVITY-DEGREE cannot be approximated better than
2log’"“n for any constant > 0 unless NPC DTIME(nPolylos(n))

Proof: Every vertex inU% or V% can have degree at mos},;z + 1, since there are only
nyr — 1 other nodes in its copy, and it can in addition be adjacenttand the noder;,
or yi corresponding to its group, and V. respectively. Every node” has degree at most
nur + 2m < 3nyg, Since it can be adjacent inr nodes inU*” andV* as well asn nodes
from X* andm nodes fromY’. On the other hand, eveny, node and every; node must be
adjacent to at least U* or V*/ node respectively for alf possibilities for/. So every such:
or y node has degree at leastso if we setd = 3n,,z we know that the node with maximum
degree must be anor ay node.

Recall thatit is hard to distinguish M-REP instances with solutions of size at ma@st from
those in which all solutions have size at least2'>s’ ™z, Suppose that there is a solution of
size2m, i.e. there is a solution with one representative from eacig Then there is a solu-
tion to the corresponding @VSTRAINED CONNECTIVITY-DEGREE instance with max degree
at mostd: every:c;. andy;l is connected to its corresponding representative in eatfieafcopies
corresponding to it as well as to thanode for that copy, and in each copgywe include all edges
betweenU“ andV* and all edges between those nodes ghd |t is easy to see that this is a
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valid solution: by the analysis of Theordm4.15 we know thét valid inside of each copy, and
to get between copies nod€s andt* can use the safe path — 2% — xf — 2% — yit — 2k ¢kt
wheres andt are arbitrary nodes in the copy, andh is an arbitrary index irm].

On the other hand, suppose that every solution to the-REP instance has size at least
2m2'°s' “mur_ Then as in the analysis of Theor&ém4.15 for every cgpthere must be at least
om2lee’ “nur edges that are either betwedr andU or betweeny’# andV%. Thus there are
at leastd22m2's' “mur such edges. Since there are oBlyd vertices inX U Y, at least one
such vertex must have degree at &t "=,

This shows that it is hard to approximat@ SSTRAINED CONNECTIVITY-DEGREEt0 better
than2'os' “numrq/q = 2le’ “nur Since the number of verticesin our instance is polynomial
in na g, this means that it is hard to approximate to better tbf¥f' “™). We can then get this
to 2!°¢" " py just using a smaller. n

4.3.2 Linear Programming Integrality Gap

We will now show that the integrality gap of the flow LP fooQ@STRAINED CONNECTIVITY-
SuM is large. The instances for which we will show a large intétyrayap are derived from
instances of th&nique Games problenm which we are given a grapfl = (V, £) and a set of
permutationsr,,, on some alphabet (one constraint for every edde, v) € E) and are asked
to assign a value, from X to each vertex: so as to satisfy the maximum number of constraints
of the formm,, (z,) = x,. This problem was first considered by Khﬁ|[56], who conjestithat

it was NP-hard to distinguish instances on which ) fraction of the constraints can be satisfied
from instances on which at mostfraction of the constraints can be satisfied (for sufficientl
smalle andé). For our purposes we will consider a minimization versidmhe Unique Games
problem in which we can assign multiple labels to verticed thie goal is to assign as few labels
as possible so that for every edge v) there is some label, assigned ta with 7, (x,,) assigned
to v. We first show that there exist instances that require margisa

Lemma 4.18 For any constant < 1, there are instances of Unique Games with alphabet size
2(1+e€
O <n 1(;)> and©(n?) edges that requiren? labels for any valid solution.

Proof: We will prove this by the probabilistic method, i.e. we wilhhayze arandomUnique
Games instance with the given parameters and show that dbalpitity that it has a solution of
size at mosO(n?) is strictly less thari. This then implies the existence of such an instance. For
our random instance, the underlying graph will Rg, so there is a permutation constraint on
every pair of vertices. Let = |X| be the size of the alphabet (we will later set this to the value
claimed in the lemma, but for now we will leave it as a parameteéor each pair of vertices we
will then select a permutation uniformly at random frein

Now consider some fixed sétof an labels (so the average number of labels per node.is
What is the probability tha$' is a valid solution? By Markov’s inequality, we know that abst
n/2 vertices have more thatw labels, so there are at least2 vertices with at mos2« labels.
Call these verticetight, and call an edgéght if both of its endpoints are light. Lefu, v} be
a light edge. We claim that the probability thétsatisfies{u, v} is at most%. To see this,
let ¢ € X be one of the labels assigneditdy S. Since the permutation fdru, v} was chosen
uniformly at random, the probability théis matched to one of the labels assigned by S is at
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most2«/k. Now we can do a union bound over all such lalelsf which there are at mo&ty,
to get that the probability that edde, v} is satisfied byS is at most%. Since the permutations
for each edge are chosen independently, the event thateeidggatisfied is independent of the
event that edge’ is satisfied for alk’ # e. Thus the probability tha$ satisfieseveryedge is at
most the product of the probabilities that it satisfies eadtdfiedge, i.e. the probability thatis
a valid solution is at mosé%) &) < <%) 2" (for sufficiently largen).

By the trivial union bound, we know that the probability thhere issomevalid solution
of size an for our random instance is at most the sum over all possibigtieas of sizean
of the probability that the solution is valid, which by theoal analysis we know is at most
{S : |S] = an}| x <%)<2>. So we will now boundV = |{S : |S| = an}|, which is easy
to do by a simple counting argument. In particular, it is @og thatVv = (22) since there are
exactlykn total labels and we are just choosing of them. Now standard bounds for binomial
coefficients imply thatV < (£2¢)™" = (22)™" Combining this with the previous analysis and

an [0}

settinga = en, we get that the probability that there is some valid solutbsizean is at most

17€n2
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The final inequality is true as long asis sufficiently large. If we set = 15 then this
expression is less than Since this is the probability that the random Unique Gamestance
we selected has a satisfying solution of size this implies that for the given parameters there
is someunique games instance that requires more than= en? labels. |

Now that we have found a Unique Games instance that requiagy habels we would like
to use it to construct a@ISTRAINED CONNECTIVITY-SUM instance on which the flow LP has
large integrality gap. We will basically use the same transftion that we used in the reduction
of MIN-REP to CONSTRAINED CONNECTIVITY-SUM. Let V¢ be the vertex set of the above
Unigue Games instance, and letbe the alphabet. Then ourdBSTRAINED CONNECTIVITY-
SuM instance will have vertex séf equal to the disjoint union o x [d], Vue x X, and a
special node, whered is a duplication parameter that we will set later. For easgobétion, we
will let x; denote the'th copy of vertexz in Vi x [d], i.e.x; = (x,i). Forallz € V¢ and
i € [d] there is an edge from; to every vertex inc x . For everyz,y € Vyg anda, € X
there is an edge betweén, o) and(y, 3) if and only if assigningy to x and to y is sufficient to
satisfy the{z, y} edge in the Unique Games instance (i.e. the permutatiom&meidge matches
them up). There is also an edge between every vertexaforz,y € Vi andi € [d] we set
S(xi,yi) = Sy, i) = {x,y} U (z x ¥) U (y x X), and we set all other safe sets to the two
endpoints and.
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Lemma 4.19 The value of the flow LP on the abo€®NSTRAINED CONNECTIVITY-SUM In-
stance is at leas?d|Vig| + || [Vire| + (V591).

Proof: We prove this by constructing an LP solution of the requirex.s We first set the
capacity of every edge incident arto 1, for a total cost ofX||Vy | + d|Vyg|. This is enough
capacity to satisfy all pairs other than those of the fammy;) or (y;, x;), since for any other
pair z is in the safe set so we can send one unit of flow on the edge frenendpoint ta: and
then one unit of flow on the edge froato the other endpoint.

Now we set the capacity of every other edgel f¢>|. Since the number of other edges is
d|Vue| || + (V5°1) |2 this costs usl|Vie| + ("4¢!) more, which when added to the cost of
the edges ta gives us the claimed total LP value. So we just need to proatkiis is enough
capacity to satisfy demands betweerandy; for all z,y € V andi € [d]. But this is easy to see:
x; can send /|X| flow to every node i x ¥ (for a total flow of1), and each of these nodes will
forward its incoming flow to its neighbor in x >. Since this is a Unique Games instance this
neighbor will be unique, and each nodeyirx X will have exactlyl /]3| incoming flow, which
it can then forward along its edge #¢. Thus we have enough capacity to send one unit of flow
from z; to y;. Andy; can send flow ta; the same way, just in reverse. [

Lemma 4.20 Any integral solution to the aboBONSTRAINED CONNECTIVITY-SUM instance
must have size at mastx O PTy¢) + (V4) +d|Vig|+| 2| Ve | whereO PTy is the minimum
number of labels needed to satisfy the original Unique Gamsance.

Proof: The safe set of any node ands only that node and, so all edges incident toneed to
be present in any integral solution for a costi¥; | + |X||Vu¢|. Furthermore, for every pair
u,v € Vy¢ at least one edge must be present framx X) to (v x X) since if no such edge
existed there would be no way of connectimgandv; throughS(u;, v;) for anyi € [d]. This
adds(""¢1) to the total cost, so now we just need to prove that there mast keastiO Py
edges betweefi;¢ x [d]) and (V¢ x X).

To show this, we will consider some arbitrary integral smnotand partition the edges be-
tween(Vy¢ x [d]) and(Vy¢ x X) into d parts where théth part consists of those edges incident
on nodes(z; : x € Vi }. If every part has size at leatP 1, then we are finished. To prove
that this is indeed the case, we will prove that for every,dhe endpoints that are ¥, x
actually form a valid solution to the Unique Games instar8®consider théth part of the par-
tition. Suppose that the associated label assignment ddésrm a valid solution to the Unique
Games instance. Then there is some pair € V' such that none of the labels assigned &nd
none of the labels assigneddare matched to each other in the permutation corresponding t
edge{u,v}. But this clearly implies that there is no safe path frepto v;, as any such path
must be of lengtl3 and pass through a label farand a label fow that are matched to each in
the permutation corresponding to edge v}. This is a contradiction since the integral solution
must be a valid solution. |

Now we can finally prove Theorem4121:

Theorem 4.21 The flow LP forCONSTRAINED CONNECTIVITY-SUM has an integrality gap of
Q(n3<) for any constant > 0.

Proof: We will use the Unique Games instance of Lenimal.18 in theeeduction. Lemma
19 implies that the flow LP has value at m65t|Vig| + |Vig|i5 ) and Lemm&Z20 implies
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that any integral solution has size at le&8te|Vi¢|*) + |VUG|ST7;). If we letd = |X| =
2(1+¢) . . . .
Vueal =5 then this gives us an integrality gap of

4—4e
el V| T3¢
Q (%) = Q (e[ Vyeal) -

‘VUG| 1—3¢

It is easy to see that the number of nodds our reduction equald|Vy¢| + |2||Vie| + 1 which
in this case is@(\VUG\%). Thus the integrality gap i@(n%), which is sufficient since we
can set to be arbitrarily small. |

We can modify this construction to show a polynomial intéigyayap for the flow LP for
CONSTRAINED CONNECTIVITY-DEGREEalso. We will need Unique Games instances with the
same parameters as in Lemma#.18 but on the complete bépgmiph rather than the complete
graph. Itis easy to see that Lemma34.18 can be modified to phewexistence of these instance.
Now the modification is basically the same as the modificatiermade to show hardness: we
just maked? copies of the inner Unigue Games instance and connect themthpd copies of
the outerr; andy; nodes in the obvious way. This is the proof of Theofeml4.22.

Theorem 4.22 The flow LP forCONSTRAINED CONNECTIVITY-DEGREE has an integrality
gap on(n%‘E) for any constant > 0.

Proof: We only give a sketch of the proof here. The maximum degreengfrande other
than the outerl copies of ther andy nodes is at mosI|VUG|fT7i, so if we setd equal to
that value we know that the maximum degree must be achievesbimge copy of arx; or y;.

By splitting up the flow equally as in the proof of Lemina4.19 kvew that there is an LP
solution in which the maximum degree is at mdgt|/|X| + d = 2d (where the extral factor

is due to being adjacent to all associatecopies). On the other hand, we know that any valid
integer solution must use at leas$t;;;|*> edges incident on copies ef or y; nodes for each
of the d” instances. Thus there are at led4t|V;¢|? edges incident on these nodes in total,
and since there aré@|V¢| such nodes there must be at least one with degree atelé&st;|.
Thus the integrality gap is at least|Vi¢|/d = €|Vyg|. The total number of nodes in our
CONSTRAINED CONNECTIVITY-DEGREE instance isO(|Vy¢||3|d?) = O(|VUG|?:—§5), so this

means the integrality gap B(n%). By settinge small enough this gives us the claimed gap of
Q(nse). n

4.4 Hierarchical and Symmetric Safe Sets

In the hierarchical and symmetric safe set version of Cairstd Connectivitys (z, y) = S(y, z)
forall z,y € V and if some node € S(x,y) thenS(z, z) C S(z,y) andS(z,y) C S(z,y). We
show that a simple greedy algorithm solves this versiomogity.

We say that a paifz, y } is aneasypair if there is some node € S(x, y) such thatS(z, z) C
S(x,y)andS(y,z) C S(z,y). The pair{z, y} is hard otherwise. Note that in a hard p4it, y },
every nodez in S(z,y) has eitherS(x,z) = S(z,y) or S(y,x) = S(x,y) by the hierarchy
property.
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Lemma 4.23 Let G be a graph that has a safe path for all hard pairs. Then all gaalys also
have a safe path ity i.e. G is a feasible solution.

Proof: We prove that every paifx, y} has a safe path it¥ by induction on the size of safe
sets. For the base case, all pdirsy} with |S(z,y)| = 2 are hard, so by assumption they have a
safe path inG. For the inductive step, suppose that there are safe patldl fmairs{u, v} with
|S(u,v)| < k, and let{z, y} be a pair with|S(x,y)| = k. If {z,y} is hard then by assumption
there is a safe path. If it is easy, then there is some nadé (z, y) such thatS(x, z) C S(z,y)
andS(y, z) C S(z,y). Since these two subsets are strictly smaller, by induchiere is anc — 2
path contained irb(z, z) C S(z,y) and there is @ — y path contained irb(y, z) C S(z,y).
Concatenating these paths give:an y path contained it (x, y). [ |

This lemma means that we don’t have to worry about satisfe@sy pairs, just hard ones.
We now prove a few useful and easy lemmas.

Lemma 4.24 Let{x, y} be a hard pair. Therb (u,v) C S(z,y) for all u,v € S(x,y).

Proof: Since{z,y} is hard eitherS(u,z) = S(z,y) or S(u,y) = S(x,y). Without loss of
generality we assume th&tu, ) = S(z,y). This implies that € S(u, z), so by the hierarchy
property we know that (u, v) C S(u,x) = S(z,y). n

This clearly implies that i is a feasible solution anfiz, y} is a hard pair theit|s(, ) is
connected and all paits v € S(z,y) have a safe path containedSiz, y). We now prove some
lemmas about the structure of the optimal solution.

Lemma 4.25 Every edgdz,y} € OPT is a hard pair.

Proof: Suppos€z,y} is an edge irO PT that is an easy pair. Then there is some S(z, y)
such thatS(z, z) C S(z,y) andS(y, z) C S(x,y). Note thaty ¢ S(z, z), since if it was then by
the hierarchy property we would have tit&te, y) C S(z, z), soS(x, z) = S(x,y) contradicting
{z,y} being an easy pair. Similarly, we know thatZ S(y, z). SinceOPT is feasible there is
anx — z path inS(z, z) C S(z,y) and az — y path inS(y, z) C S(z,y), and by the previous
observation neither of them use the y} edge. So there is an— y safe path irO PT that does
not use the{x, y} edge. Any hard paifu, v} that uses thdx, y} edge in a safe path can just
use the path we found through since by Lemm&4.24(z,y) C S(u,v). Thus if we remove
{z,y} all of the hard pairs still have a safe path, so by Lenimal4.23csall of the easy pairs.
This contradict$) PT being optimal. ]
Order all hard pairs in nondecreasing order, breaking tibgrarily. We say{a, b} < {c,d}
if {a,b} comes beforgc, d} in this ordering. We partition the edges OfP1" as follows. Let
e = {u,v} be an edge MO PT, and let{z,y} be the first hard pair in the ordering such that
u € S(z,y) andv € S(x,y), and assigre to part OPTy, ;. By Lemmal4.Zb all edges in
OPT are hard pairs so this is a valid partition. L@I°T<(, ,, = Uiapy<{zyyOFP {0y, and let
OPT(,,y be defined analogously.

Lemma 4.26 Let {z,y} be a hard pair. Theil®) PT<, 3|5,y iS connected.

Proof: Let{u,v} be an edge iWPT|s(,,). Then sincgu, v} is a hard pair (by LemmaZ4.P5)
and{z,y} is a hard pair with bothx andv in S(z, y), by the definition of the partition the part
OPTY, ) containing{u, v} must have{a, b} < {z,y}. Thus{u,v} € OPT<(y y3|s(0.y)- u
We now finally give our algorithm. First we construct the ab@rdering. We then consider
hard pairs in this order, and when considering a pairy } we add the minimum number of edges

85



required to make our current graph restrictedte, y) connected. This algorithm clearly returns
a feasible solution, since for any hard péit,y} at some point we consider it and make sure
that its safe set is connected and that is sufficient by Lemg&ih #or every hard paifz, y}, let
ALG, ,, by the edges added by the algorithm when considefing }, and defined LG .,y =
Uapy<faoyy ALG {05y @NAALG <, ., analogously. Now we will prove thatl LG| < |OPT|.

Lemma 4.27 The endpoints of any edgenPT 1, 3|5,y are connected i LG < (4 43 5(z.y)-

Proof: Let {u,v} be an edge i) PT.(, 1|5z Then{u,v} € OPT, for some{a, b} <
{z,y}. By definition, this means thdi, b} is the first pair in the ordering with a safe set that
contains both: andv. By Lemma[4.2¥ we know thai(u,v) C S(a,b). We also know that
{u,v} is a hard pair by LemmaZ4.R5, soS$fu,v) C S(a,b) then{u, v} would be beforga, b}

in the ordering and would contain bothand v, contradicting the definition ofa,b}. Thus
S(u,v) = S(a,b). After considering{a, b} the algorithm guarantees thatL.G <, 4} |s(ap) IS
connected, and therefore there is a safev path inALG after considerinda, b}. We also know
from LemmdZ4.2W thas (u, v) C S(x,y), so this safe path is entirely presentAl G ¢, 43| s(z.1)
and thusy andv are connected I LG <5 3 [ 5(a.y)- m

Theorem 4.28 |ALG| < |OPT|

Proof: We will prove thatl ALG(, 1| < |OP1TY,,,| for all hard pairs{z, y}. Since these form a
partition of the edges ol LG and ofO PT, this is sufficient to prove thatl! LG | < |OPT|. Con-
sider some such hard pdit, y }. We know from Lemm&4.26 th&? PT (. ,1|s(x.y) IS cONnected,
soOPTy,,; must contain enough edges to connect the compone@$at ¢, |5, By the
definition of the algorithmALG . ,; has the minimum number of edges necessary to connect
the components oA LG ¢, 41| s(z4)- NOW since the number of componentsALG - ¢, 43| s(z.y)

is at most the number of components@P7(, ,1|s(.,) (by LemmalZZ)7), this implies that
[ALG (23| < [OP Tl &
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