
Effective Motion Tracking Using Known

and Learned Actuation Models

Yang Gu

CMU-CS-08-137

June 6, 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Manuela Veloso, Chair

Brett Browning
Geoffrey Gordon
Martial Hebert

Tucker Balch (Georgia Institute of Technology)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Yang Gu

This research was sponsored by the DARPA under grant numbers NBCH1040007 and NBCHC030029, and
Boeing under contract number CMU-BA-GTA-1. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Object Tracking, Robot-Human Team, Motion Model Learning

Abstract

Robots need to track objects. We consider tasks where robots actuate on the target that
is visually tracked. Object tracking efficiency completely depends on the accuracy of the
motion model and of the sensory information. The motion model of the target becomes
particularly complex in the presence of multiple agents acting on a mobile target. We assume
that the tracked object is actuated by a team of agents, composing of robots and possibly
humans. Robots know their own actions, and team members are collaborating according to
coordination plans and communicated information. The thesis shows that using a previously
known or learned action model of the single robot or team members improves the efficiency
of tracking.

First, we introduce and implement a novel team-driven motion tracking approach. Team-
driven motion tracking is a tracking paradigm defined as a set of principles for the inclusion of
a hierarchical, prior knowledge and construction of a motion model. We illustrate a possible
set of behavior levels within the Segway soccer domain that correspond to the abstract
motion modeling decomposition.

Second, we introduce a principled approach to incorporate models of the robot-object inter-
action into the tracking algorithm to effectively improve the performance of the tracker. We
present the integration of a single robot behavioral model in terms of skills and tactics with
multiple actions into our dynamic Bayesian probabilistic tracking algorithm.

Third, we extend to multiple motion tracking models corresponding to known multi-robot
coordination plans or from multi-robot communication. We evaluate our resulting informed-
tracking approach empirically in simulation and using a setup Segway soccer task. The
input of the multiple single and multi-robot behavioral sources allow a robot to much more
effectively visually track mobile targets with dynamic trajectories.

Fourth, we present a parameter learning algorithm to learn actuation models. We describe
the parametric system model and the parameters we need to learn in the actuation model.

3

As in the KLD-sampling algorithm applied to tracking, we adapt the number of modeling
particles and learn the unknown parameters. We successfully decrease the computation time
of learning and the state estimation process by using significantly fewer particles on average.
We show the effectiveness of learning using simulated experiments. The tracker that uses
the learned actuation model achieves improved tracking performance.

These contributions demonstrate that it is possible to effectively improve an agent’s object
tracking ability using tactics, plays, communication and learned action models in the presence
of multiple agents acting on a mobile object. The introduced tracking algorithms are proven
effective in a number of simulated experiments and setup Segway robot soccer tasks. The
team-driven motion tracking framework is demonstrated empirically across a wide range of
settings of increasing complexity.

4

Acknowledgements

I would like to thank many people for their support and guidance during my years as a
graduate student here at Carnegie Mellon.

First and foremost, I gratefully acknowledge the support and encouragement of my advisor,
Manuela Veloso. She has been instrumental in directing me from my initial explorations to
the final thesis corrections. She has helped me to get through the difficulty and encourage
me to achieve to the best of my ability. Without Manuela, this dissertation would not have
happened.

I also thank my committee member, Brett Browning for his valuable advice and support when
I have been working with him on the Segway soccer robot project. I thank my committee
members, Brett Browning, Geoffrey Gordon, Martial Hebert and Tucker Balch, for their
valuable comments regarding my thesis research. They have served to greatly improve the
content and presentation of this work.

Besides Manuela, I also thank other members of the CMBalance Segway soccer team, Brett
Browning for developing the architecture and vision system, Brenna Argall for developing
the skill and game play, Jeremy Searock, Kristina Rohlin and Mike Licitra for developing
and supporting the robot hardware. I also thank other members of the Coral research group
who shared their ideas with me during the meetings and discussions. Many people gave me
helpful comments during my thesis proposal and thesis practice talk. I would like to thank
Maayan Roth, Douglas Vail, Colin McMillen, Elisabeth Crawford, Sonia Chernova, Daniel
Borrajo for their great comments that helped me to prepare the thesis talk and document.

5

6

Table of Contents

1 Introduction 19

1.1 Motivation . 20

1.2 Objectives . 22

1.3 Approach . 23

1.4 Contributions . 25

1.5 Guide to the Thesis . 26

1.6 Summary . 27

2 Team-Driven Motion Tracking 29

2.1 Principles . 30

2.2 Multi-Robot Instantiation Motivated by Segway Soccer 32

2.2.1 Implemented Components . 32

2.2.2 Future Components . 34

2.3 Summary . 35

7

3 Background 37

3.1 Nonlinear Filtering Problem . 37

3.2 Bayesian Filters . 38

3.3 Kalman Filter . 39

3.4 Sequential Importance Sampling . 41

3.5 Multiple Switching Dynamic Models . 43

3.6 Multiple Model Particle Filter . 44

3.7 Dynamic Bayesian Network . 45

3.8 Summary . 46

4 Tracking Using Own Actuation Model 49

4.1 Tactics . 50

4.2 Tactic-Based Model Transitions . 51

4.2.1 Multi-Model System . 51

4.2.2 Motion Modeling Based on the Tactic 54

4.3 Tactic-Based Object Tracking Algorithm . 56

4.4 Results . 58

4.4.1 Ball Motion and Measurement Noise Profiling 58

4.4.2 Metrics . 59

4.4.3 Simulation Experiments . 61

8

4.4.4 Segway Soccer and Segway RMP Robot 66

4.4.5 Test on the Real Robot . 68

4.5 Summary . 70

5 Tracking Using Team Actuation Model 75

5.1 Plays . 76

5.2 Play-Based Model Transitions . 78

5.2.1 Tracking Scenario . 79

5.2.2 Play-Based Motion Model . 80

5.3 Communication . 82

5.3.1 Types of Communicated Message . 82

5.3.2 Communication-Based Motion Model 82

5.4 Team-Based Tracking Algorithms . 83

5.4.1 DBN Representation . 83

5.4.2 Play-Based Particle Filtering (PBPF) Algorithm 83

5.4.3 Communication-Based Particle Filtering (CBPF) Algorithm 85

5.5 Results . 86

5.5.1 Metrics . 86

5.5.2 Simulation Experiments . 88

5.5.3 Team Cooperation Test . 91

9

5.5.4 Team Communication Test . 93

5.6 Summary . 93

6 Learning of Actuation Models 103

6.1 Parametric System Model . 104

6.2 Learning of Actuation Model . 105

6.2.1 Partition of Parameter Space . 105

6.2.2 Likelihood Function . 107

6.2.3 Augment the State Vector of Particles 108

6.2.4 Adapting the Number of Particles . 109

6.3 Results . 110

6.4 Summary . 112

7 Categorization of Previous Work 119

7.1 Multi-Model Motion Tracking . 119

7.2 Cooperatively Tracking . 120

7.3 Motion Prediction . 120

7.4 Tracking Using Prior Knowledge or Dynamic Information 122

7.5 Summary . 122

8 Conclusions and Future Work 125

8.1 Conclusions . 126

10

8.2 Directions for Future Work . 127

8.3 Concluding Remarks . 128

A Notations 129

B Skill and Tactic Descriptions 131

11

12

List of Figures

1.1 Motivation example: from frame 431 to 477. This experiment uses our track-

ing approach. 21

1.2 Motivation example: from frame 486 to 710. This experiment does not use

our tracking approach and results in a longer interval. 21

2.1 Top-level structure of our proposed approach 30

3.1 A DBN for a state-space model. 46

3.2 A DBN for multiple switching dynamic models. 47

4.1 Skill state machine for tactics. Each node is a skill and the edges show the

transition between skills. Transitions between skills are based on the perceived

state. (a) Skill state machine for tactic chase ball. (b) Skill state machine

for tactic grab and kick. 50

4.2 Tactic-based motion modeling, where m1, m2, · · · , mn are n single models, Ta

is the tactic, vb is the additional information, and n = Nm, the number

of models. πi,j is the transition probability from model mi to model mj

given mi, and 〈Ta, vb〉. Each layer in the graph is conditioned on a particular

combination of the tactic executed and the additional information obtained. 55

13

4.3 Ball motion model. Each node is a single model. The tables list the transition

probability between any two single models. (a) Ball motion model based on

tactic chase ball. (b) Ball motion model based on tactic grab and kick. . 56

4.4 A dynamic bayesian network for tactic-based object tracking. Filled circles

represent deterministic variables which are observable or are known as the

tactic that the robot is executing. 57

4.5 Test setup for estimating the ball speed decay d. The ball rolls off the ramp

(with height h) with speed v0 and it stops after it travels a distance of L. . . 59

4.6 A typical ball trajectory when a robot is executing grab and kick tactic. . . 62

4.7 A snapshot of the particle cloud and the model probabilities at t = 1 and t =

3. 64

4.8 A snapshot of the particle cloud and the model probabilities at t = 19 and t

= 24. 65

4.9 A snapshot of the particle cloud and the model probabilities at t = 80 and t

= 86. 66

4.10 RMS position error versus time . 67

4.11 IMM tracking result: model probabilities . 68

4.12 TBPF tracking result: model probabilities 69

4.13 RMS position error versus the maximum kicking speed 70

4.14 The percent of time in the view of the camera versus the maximum kicking

speed . 71

4.15 The Segway RMP soccer robot equipped with a kicker, a catcher, infrared

sensors, and a camera mounted on a custom pan-tilt unit. 72

14

4.16 grab and kick speed estimation (a) Single model tracking. (b) Tactic-based

multi-model tracking (TBPF). 73

5.1 An illustration of the sequence of behavior execution of play 1. 77

5.2 An illustration of the sequence of behavior execution of play 2. 78

5.3 Object motion modeling based on the play: Naive Offense. Each node is a

model. Models transit to one another according to the predefined probabilities

(not shown in the figure). (a) Ball motion model. (b) Human teammember

motion model. 81

5.4 A dynamic Bayesian network for team member tracking. Filled circles repre-

sent deterministic variables which are observable or are known as the tactic

or the play. 84

5.5 A dynamic Bayesian network for play-based object tracking. 85

5.6 A DBN for team-driven object tracking when communication is enabled. . . 87

5.7 The snapshots of the particle cloud and the model probabilities at t = 4, 23,

24, and 27. 94

5.8 The snapshots of the particle cloud and the model probabilities at t = 75, 77,

79, and 86. 95

5.9 RMS position error versus the number of particles 96

5.10 Play 1: RMS position error and velocity error versus time. 97

5.11 Play 2: RMS position error and velocity error versus time. 98

5.12 Play 2: RMS position error versus the amount of noise. 99

15

5.13 A demonstration of a naive team cooperation plan in offensive scenario. The

digits along the lines show the sequence of the whole plan. The filled circle

at position B represents the robot. The unfilled circle at position E represent

an opponent player. The shaded circle represent the human teammember. . . 99

5.14 Ball speed estimation results from the multi-model tracker with and without

including the communicated information. 100

5.15 Model weightings when communication is disabled. 101

5.16 Model weightings when communication is enabled. 101

6.1 The illustration of the unknown parameter: passing angle. 106

6.2 Learning result: t = 3 . 115

6.3 Learning result: µ = 92, φ = 6, t = 400 . 115

6.4 Learning result: µ = 105, φ = −10, t = 250. 116

6.5 Learning result: µ = 85, φ = 4, t = 250. 116

6.6 Actuation model learning result . 117

16

List of Tables

2.1 Components using different behavior levels 32

4.1 List of skills used in this chapter along with brief descriptions. 51

4.2 The model index and the corresponding ball motion model. 54

4.3 TBPF algorithm. 58

4.4 The nominal filter parameters used in the simulation. 63

4.5 Performance comparison for three trackers 65

4.6 Performance comparison of IMM and TBPF for predicting the ball motion

model . 65

5.1 A simple example play: Play 1. 76

5.2 Play 2 that involving sequencing of behaviors. 77

5.3 List of tactics used in our example play along with brief descriptions. 78

5.4 The model index and the corresponding ball motion model. 80

5.5 PBPF algrithm. 86

5.6 CBPF algrithm. 88

17

5.7 The nominal filter parameters used in the simulation. 89

5.8 Play 1: RMS error comparison for three trackers 90

5.9 Play 2: RMS error comparison for three trackers 90

5.10 Play 1: Performance comparison for three trackers 91

5.11 Play 2: Performance comparison for three trackers 91

5.12 The average time taken over all the successful runs. 92

6.1 Partition of the parameter space. 106

6.2 Update the probability of each bin. 108

6.3 Actuation model learning algorithm. 113

6.4 The nominal filter parameters used in the simulation. 114

6.5 The preset parameters for Figures 1.3-1.5 . 114

6.6 RMS error comparison for three trackers . 114

18

Chapter 1

Introduction

Target tracking is one of the important elements of surveillance, guidance, or obstacle avoid-
ance systems. The role of tracking is to determine the number, position, and movement of
targets through recursive target state estimation [32]. The target state typically consists
of kinematic components (e.g., position, orientation, velocity) and attributes (e.g., target
signal-to-noise ratio, spectral characteristics). Noise-corrupted measurements are collected
by a single or multiple sensors. The tracking system forms and maintains a track for each
target from a sequence of measurements that have been associated with the target over time.

Target tracking is widely used in multi-robot applications. We identify two kinds of tracking
problems in which:

1. The tracker is static or does not actuate on the tracked object and

2. The tracker, or its teammate agent, actuates on the object.

This thesis focuses on the latter problem in which tracking is performed by a robot executing
specific tasks where the object being tracked is actuated by the robot tracker or by its
teammates. An example of such tasks is a Segway RMP soccer robot grabbing and kicking a
ball. Object tracking efficiency completely depends on the accuracy of the motion model and
of the sensory information. The motion model of the target becomes particulary complex in
our case and highly dependent on the robot’s actions. In addition, this thesis also considers
the challenging environment of multiple team members actuating the object being tracked.
In this case, the motion can become highly discontinuous and nonlinear.

We assume that robots know their own actions, and robots in a team are collaborating ac-

19

cording to coordination plans. The thesis shows how the knowledge in terms of the single
robot control strategy and the multi-robot coordination plan is a valuable source of infor-
mation for tracking.

1.1 Motivation

In order to concretely motivate how robot action models, in particular team actions, con-
tribute to improve tracking performance, we provide a brief illustrative example. Figure 1.1
and 1.2 show a sequence of views from a Segway robot’s pan-tilt camera [9]. Each picture
corresponds to one frame identified by the frame id shown at the lower right corner. The
frame rate is approximately 30 frames per second and the camera has a limited field of view
(FOV). When the object is in the FOV of the camera, tracking is fine. When the object
leaves the FOV of the camera, the prediction of the tracker is used to keep the camera pointed
to the object: the prediction from the tracker is translated into a command to position the
camera in order for the object to be consistently located in the camera’s FOV.

Figure 1.1 shows the first example in which a robot is using our developed tracking algorithm
(frames 431 - 477). Figure 1.2 shows the second example in which a robot is tracking without
our algorithm (frames 486 - 710). Initially, the ball is static and the robot finds the ball at
frame 431 and at frame 486 in the two examples respectively. We describe the examples for
their sequence of relevant frames as follows.

• From frame 431 to frame 477: The robot integrates the team action model into tracking.
At frame 431, the ball is kicked towards the robot. Though the ball moves fast, the
robot quickly finds the ball at frame 445 based on the knowledge that the team member
passes the ball to it. The ball is temporarily not seen and it takes the robot only about
15 frames (0.5 second) to find the ball again and then the robot keeps tracking the ball
well.

• From frame 486 to frame 710: A new trial starts without the incorporation of the team
action model. The ball is kicked towards the robot, but it now takes approximately
120 frames (4 seconds) for the robot to find the ball. After frame 608, the ball is in
the FOV of the camera and the robot tracks it correctly.

The superiority of our tracking algorithm, as depicted in the example, is due to the inclusion
of the team action models into the tracker. The robot knows that its team member will
pass the ball towards it. When the ball is temporarily not seen, the robot calculates the

20

Figure 1.1: Motivation example: from frame 431 to 477. This experiment uses our tracking
approach.

Figure 1.2: Motivation example: from frame 486 to 710. This experiment does not use our
tracking approach and results in a longer interval.

21

estimated ball position with the motion model under the team member action, trying to find
the ball at the estimated position which is right beneath its kicker. Furthermore, when the
team member announces the action as soon as it kicks the ball (not shown in the example,
but also introduced in our work), the robot selects a correct motion model and tracks the
ball even more efficiently.

Instead, when the control strategy integration is disabled, the robot performs an uninformed
search locating the ball in a long time because the action at frame 486 makes the motion of
the ball highly discontinuous and nonlinear. The robot has to track for the ball without an
appropriate motion model, leading to its long plain search.

The example supports our work in exploiting different kinds of nonstandard (prior and
dynamic) information into the tracker to produce better estimates of the object state. The
techniques that we describe are applicable to any domain that includes one or a team of
agents cooperating on a specific task and acting on the target objects of their tracking.

1.2 Objectives

Agents act using behaviors as tactics and cooperate using predefined team plays. Information
about action on the objects can also be sent as a communication message to a specific team
member to enable the update of the motion model of the tracked object. Furthermore an
actuation model could be learned from observation.

The thesis seeks to answer the question,

Can an agent effectively improve its object tracking ability using tactics, plays,
communication and learned action models in the presence of multiple agents acting on a
mobile object?

By tracking, we mean the data-processing algorithm whose role is to process sensor mea-
surements based on the object motion models in order to form and maintain a sequence of
object state estimation up to the current time.

22

Tactics correspond to the individual robot behaviors. Each robot executes tactics inde-
pendently of the other robots. Plays correspond to the team strategy which is responsible
for assigning tactics to each individual robot in order to achieve a joint policy in a team.
Communication is the intentional exchange of information between team members. Com-
munication improves the performance of a multi-agent system. Though tactics and plays are
the primary components of the Skills-Tactics-Plays control architecture [7] that is used in a
robot soccer task, the techniques that we present are applicable to any domain where a team
of agents are cooperating on a specific task and executing actions using behavior models.
Actuation on the targets is sent as communicated message to a specific team member to
update and synchronize the motion model of the tracked target.

Action model learning is the process of an agent acquiring a set of parameters through
observation that define other agents’ action effects on the ball through the agent’s interactions
with the environment. Learning is particularly useful when constructing unknown action
models.

By acting, we mean a robot changes the motion of the object. In a multi-agent system, all
agents might act on the object which makes the motion of the object more complex.

1.3 Approach

We identify the challenges of tracking in such a dynamic, adversarial and noisy environment
as follows:

• Inaccurate sensing: Each robot uses a color pan-tilt camera as its primary sensor
to perceive the world. Each robot is equipped with infrared sensors (IR) to detect the
objects located in the catchable area of the robot.

• Limited visual scope: The camera has only limited FOV. It is difficult to consistently
keep an object in the FOV of the camera. Actually, as long as robots are unable to
cover the entire environment with their own sensors, the approach presented in this
thesis reduces the tracking error significantly.

• Complex motion of the sensor: The sensors (camera and IR) are not located on
a static position. Instead, the sensors are mounted on a mobile robot 1. The moving
trajectory of the robot does not follow any particular route. Robots dash and stop,
changing their velocity immediately.

1The Segway RMP with its balancing motion, is particularly challenging.

23

• Interaction between robots and objects: Robots manipulate the ball with their
kickers and catchers. The actuation on the tracked object makes the motion of the
object highly noncontinuous.

• Observable actions of other players: Observation of others’ actuation on the ball
is hard. It is a challege to learn an action model.

We are interested in tracking in a multi-robot actuating environment. In a soccer task, there
are many robot behaviors related to actuation on the tracked object. Soccer tasks also give
multiple actuating agents. Therefore we use robot soccer as our test platform. The ball is
considered the object to be tracked.

Our approach builds upon three primary facts:

• An individual robot knows its own actions. If it is the case that a robot is manipulating
the ball, the robot can predict the ball’s motion using its own actions.

• Robots in a team collaborate according to pre-defined coordination plans or dynamic
communication. If it is the case that a teammate is manipulating the ball, the robot
that is not controlling the ball can predict the ball’s motion by reasoning about the
possible teammate actions. If the communication between teammates is allowed, the
robot that is not controlling the ball can explicitly know what the action is from their
teammates.

• Robots can learn the opponent’s action effects on the ball. At a low-level, robots can
learn to know the opponent’s kicking power and direction. At a high-level, robots can
learn to know the opponent’s kicking strategies, e.g., in a certain situation whether to
shoot or to pass. If it is the case that an opponent robot is manipulating the ball, the
robot in our team can predict the ball’s motion using the learned action models during
the game.

Based on the above facts, we claim that the knowledge about the single robot control strategy
and the multi-robot coordination and communication are valuable sources of information for
tracking. Therefore, we address the challenges by including the information into a temporal
representation. Variations of actuation effects on the ball are represented as different motion
models of the ball. Variations of information sources are used to infer what the most likely
motion model the ball is following and what the most likely motion model it is going to
transit to.

24

1.4 Contributions

In a Segway soccer game, there are multiple moving objects on the field. e.g, the ball, the
human teammate and the two opponents. Each team is identified by their distinct color.
The ball is in orange [40]. The problem of tracking can be abstracted as follows:

• n moving “robots”.

• All the “robots” act on the object.

• “Robots” act using behaviors.

• “Robots” cooperate using team plans.

• “Robots” communicate.

• Multiple moving objects (the ball and other “robots”).

• The object has Nm motion models which are functions of available information. The
resulting motion model is a switching state-space model.

• Deciding which motion model to take is dependent on the availability of the different
sources of information including robot’s own actions, team plays and communicated
information.

The contributions of our work are:

• We identify the relationship between a hierarchical robot control architecture and team
actuation models. The individual robot and team behaviors are transferred into prob-
abilistic representations of multiple object motion models. Depending on the available
information, we hierarchically build Tactic-Based Motion Model (TBMM), Play-Based
Motion Model (PBMM) and Communication-Based Motion Model (CBMM). TBMM
is the basic object motion model when the robot actuates on the object. PBMM is
an extension of TBMM when multiple team members act on the object and robots
have access to predefined team plays. CBMM is an extension of PBMM when robots
communicate their actions on the object.

• We incorporate a single robot and a team actuation models into a Dynamic Bayesian
Network (DBN)-based temporal representation for tracking.

25

• We introduce several multi-model tracking algorithms based on:

– The robot’s own actions (Tatic-Based Particle Filtering),

– Predefined team plays (Play-Based Particle Filtering),

– Communicated team actions (Communication-Based Particle Filtering),

– Learned action models.

The layered structure of the object motion model makes the tracker scalable to different
amount of available information.

• We present an empirical comparison between several classical tracking algorithms in-
cluding Kalman Filter (KF), Interacting Multiple Model (IMM) and our proposed
tracking algorithms, i.e., TBPF, PBPF and CBPF. We examine the performance of
each algorithm according to a variety of metrics. We show that our proposed tracking
algorithms significantly improves the tracking performance.

• We evaluate the new tracking algorithms in simulated experiments, robot platforms,
and a human-robot team. Robot tests are performed through different setup Segway
robot soccer tasks.

• We present a parameter learning algorithm to learn actuation models. We evaluate
the presented algorithm in simulated experiments and compare their performance ac-
cording to a variety of metrics. We use the learned actuation model to improve the
tracking performance.

1.5 Guide to the Thesis

The thesis is organized as follows:

Chapter 2 We present the high-level architecture of our approach. We introduce three
principles for our team-driven motion tracking and give the corresponding instantiation in
our Segway soccer platform.

Chapter 3 We give a brief tutorial of the background knowledge and the framework we
use.

Chapter 4 We include the low-level individual skills to help construct the motion model.
When tracking is performed by a robot executing specific tasks acting over the object being
tracked, such as a Segway RMP soccer robot grabbing and kicking a ball, the motion model

26

of the object becomes complex, and dependent on the robot’s actions. We build motion
models as a function of the robot’s tactic.

Chapter 5 We include the team plan to build the motion model in a multi-agent setup.
When the robot is playing a game as a member of a human-robot team, the team coordination
knowledge provides further information that can be incorporated into the motion modelling
and tracking process. We also include the communicated messages between team members.

Chapter 6 We learn the actuation models of the team member and the opponent player.

Chapter 7 We give a brief overview of the related work.

Chapter 8 We summarize our major contributions and present future directions.

1.6 Summary

In this chapter:

• We give the motivation of our work using an illustrative example.

• We present the problem abstraction. We identify the challenges of the problem and
describe how to address the challenges using our approach.

• We identify our contributions.

• We give a brief guide to the remaining part of the thesis.

27

28

Chapter 2

Team-Driven Motion Tracking

In this chapter we overview the complete thesis approach and system framework. We discuss
the principles followed in the thesis. We present the components implemented in the thesis
and discuss future components to be developed.

Figure 2.1 shows the top-level structure of our complete approach for team-driven motion
tracking. We integrate multiple information sources to affect the motion model used by
our tracker. Concretely, Figure 2.1 shows the five sources used in this thesis, namely tactic,
play, communication, learned actuation model, and sensor observation. Different information
sources are represented in various formats.

• A tactic refers to an individual robot behavior (Chapter 4), while a play controls the
team behavior (Chapter 5). We use the information contained in tactics and plays to
identify the robot behavior. We further use the robot behavior to identify the object
motion model in order to construct the transition probability matrix of various object
motion models.

• Communication stands for messages sent between team members to share information
or trigger team actions (Chapter 5). A communicated message is represented with
message identification numbers. Actuation on the targets is sent as a communicated
message to a specific team member to update and synchronize the motion model of
the tracked target.

• Learned model refers to the parameters of the actuation model. Learned model is
obtained by learning through observation (Chapter 6).

• Sensors provide signals that can be observed.

29

Motion prediction depends on the motion model and its role is to predict object’s future
motion. State estimation is usually implemented using a tracking filter to carry out recursive
object state estimation. A track is a sequence of object state estimates up to the current
time.

The output of the system is fed into the motion model to learn model-specific parameters
in the learning stage (Chapter 6). The output of the system is also used to help upper level
decision making. As a future direction, sensors will receive the feedback from the output of
the system to control the sensor position (e.g., pointing, Chapter 8.2). For example, a robot
with cameras will use this feedback to know where its cameras should point to in order to
keep the object of interest in its focus of view.

The introduction and implementation of the team-driven motion tracking approach is one of
the main contributions of this thesis. Team-driven motion tracking is a tracking paradigm
defined as a set of principles for the inclusion of a hierarchical, prior knowledge and con-
struction of a motion model. This chapter lays out the principles of team-driven motion
tracking (Section 2.1) and gives an overview of the implementation which is detailed in
Chapter 4-Chapter 6 (Section 2.2). Section 2.3 concludes this chapter.

Sensors

M otion
M odel

M otion
P redic tion

Observation

State
Estimation

T
ra

ck
s

Tac tic

P lay

P arameter Estimation

Communication

Tracking

Learned M odel

Figure 2.1: Top-level structure of our proposed approach

2.1 Principles

Team-driven motion tracking is defined by three principles. In this section, we identify,
motivate and specify these three principles.

Principle 1: Motivated by robot soccer, team-driven motion tracking is designed for a
mobile object whose motion is too difficult to model.

30

Instead, the team-driven motion tracking approach consists of breaking a motion modeling
problem down into several behavioral layers and includes the useful behavioral information at
each level one at a time. This approach uses a bottom-up incremental approach to integrate
hierarchical levels of prior information. Starting with low-level behaviors, the process of
inclusion of new information continues until reaching high-level strategic behaviors that deal
with the full domain complexity.

Principle 2: The appropriate behavior granularity and the aspects of the behaviors to
be learned are decided as a function of the specific domain. The task of motion model
decomposition is not automated. Instead, the hierarchical levels are defined by the prior
information available to a specific domain.

In our Segway soccer domain, the ball’s motion model problem is decomposed into an incre-
mental problem of inclusion of a robot’s own tactic, multi-robot team plans, communicated
messages and opponent actuation models through learning. In this approach, inclusion of
information begins with individual behaviors, which facilitate multi-agent collaborative be-
haviors, and eventually lead to adversarial behaviors.

Principle 3: An agent’s cognition architecture (behavior model) is used to infer its possible
action and corresponding results towards the objects.

Our robot control architecture, Skills-Tactics-Plays (STP), consists of Skills for low-level
control policies, Tactics for high-level single robot behavior, and Plays for team coordination
[7]. Though the STP control architecture [7] is used in a robot soccer task, the techniques
that we present are applicable to any domain where a team of agents are cooperating on
a specific task and executing actions using behavior models. Actuation on the targets is
sent as a communicated message to a specific team member to update and synchronize the
motion model of the tracked target.

In summary, team-driven motion tracking as introduced in this thesis is a tracking paradigm
designed to allow agents to include more domain-specific information to construct better
motion models. Team-driven motion tracking allows for a bottom-up definition of motion
modeling capabilities at different levels in a complex domain. Extra motion modeling ca-
pabilities are identified when agents have internal behaviors or agents communicate. The
principles of the team-driven motion tracking techniques are summarized as follows.

1. A direct construction of a motion model is too complex.

2. A bottom-up, hierarchical modeling decomposition is given.

3. An agent cognition architecture provides additional information for motion model con-

31

Component Strategic Level Behavior type
tactic robot-ball individual
play multi-robot-ball multi-agent
communication multi-communication-robot-ball team with communication
parameter estimation team-to-opponent adversarial

Table 2.1: Components using different behavior levels

struction.

2.2 Multi-Robot Instantiation Motivated by Segway

Soccer

Table 2.2 illustrates a possible set of behavior levels within the Segway soccer domain that
correspond to the abstract motion modeling decomposition represented in Section 2.1. Tac-
tics, e.g., pass-ball, are individual behaviors which enable the robot to act and control the
object effectively. Plays are multi-agent behaviors which define the team coordination behav-
iors. Communication is also a multi-agent behavior in which case one agent talks to another
by sending messages. Parameter estimation enables the agent to learn by observation.

We identify an important level of motion modeling that must be constructed before moving
on to higher-level strategies. We build a more complex motion model upon it to create
higher-level team behaviors. Section 2.2.1 gives an overview of our team-driven motion
tracking implementation in the Segway soccer domain and Section refarch:future discusses
how the implementation could be extended further.

2.2.1 Implemented Components

Our implementation consists of three included team actuation information and a learning
component, each of which is described more fully along with extensive empirical tests later
in the thesis.

1. Tracking using own actuation model (using individual behavior)

32

First, we include the low-level individual skills to help construct the motion model.
When tracking is performed by a robot executing specific tasks acting over the object
being tracked, such as a Segway RMP soccer robot grabbing and kicking a ball, the
motion model of the object becomes complex, and dependent on the robot’s actions.
We build motion models as a function of the robot’s tactic.

2. Tracking using team actuation model (using collaborative team behavior)

Second, we include the team plan to build the motion model in a multi-agent setup.
Robots in a team collaborate according to pre-defined coordination plans or dynamic
communication. If it is the case that a teammate is manipulating the ball, the robot
that is not controlling the ball can predict the ball’s motion by reasoning about the
possible teammate actions. The team coordination knowledge provides further infor-
mation that can be incorporated into the motion modelling and tracking process.

3. Tracking using communicated message (using communication agent)

Third, we include the communicated messages between team members. Communica-
tion improves the performance of such a multi-agent system. When communication is
enabled, a shared world model that stores the state of the team can be constructed. We
present our solution to integrate the communication information into our team-driven
multi-model motion tracking.

4. Learning of actuation models (learning behavior)

Fourth, we learn the actuation models of the team member and the opponent player as
well. Any model consists of one or multiple parameters. Usually the model parameters
are set by a human expert, based upon the experience with the environment and
the robot. We present a novel method of automating the procedure of acquiring this
probabilistic motion model. We present a parametric system model. We apply particle
filtering and extend the use of KLD-sampling to learning parameters in this model.
The result is a fast algorithm which runs on-line and achieves accurate-enough learning
of parameters. Furthermore, this method provides a refined motion model based on
the current one, resulting in more accurate tracking.

In general, the four included pieces of actuation information above illustrate the principles
of the team-driven motion tracking paradigm as laid out in Section 2.1:

• The decomposition of the motion modeling problem into smaller subtasks enables the
construction of a more complex motion model.

• The hierarchical task decomposition is constructed in a bottom-up, domain-dependent
manner.

33

• The domain-dependent agent architecture is used to exploit available behavioral infor-
mation to build more complex motion models.

2.2.2 Future Components

This section carries the Segway soccer example of our team-driven motion tracking beyond
its implementation in this thesis.

When there are limited tracking resources, i.e., there are more objects to be tracked than
tracking resources. E.g., in Segway soccer, the robot needs to track several objects (including
the ball, team members and opponents) using one pan-tilt camera. When multiple objects
need to be tracked using limited trackers, the question of assigning different trackers to
different objects is then crucial. This is a sensor scheduling or sensor management problem.

• Instead of continuously scanning over the full field of view to locate the target, the
tracker will restrict its scanning area, on the basis of a real-time analysis of the current
robot strategy, team plan and object trajectory in its memory, to a very narrow window
precisely the size of the useful targets.

• Instead of always focusing on one target, the tracker will shift its focus elegantly
between several interesting targets.

• Instead of using a manually tuned or fixed time on each target, the tracker will learn
to know how much time to spend on each target in order to ensure consistent tracking
of each target.

The thesis contributions provide practical algorithms for tracking to be applied in domains
with ever increasing robot-object interactions. First we will need to identify the known
behavior model of the specific application. We will apply the team-driven motion tracking
framework and follow the introduced principles to decompose the motion modeling prob-
lem and take use of the behavior knowledge. Even in some application domains without
robot-object interaction, e.g., Unmanned Aerial Vehicle (UAV), by including the coopera-
tive tactics and communicated information, we will still reduce the tracking error by using
the communication-based motion model.

34

2.3 Summary

In this chapter:

• We present the top-level structure of our proposed team-driven motion tracking. We
explain the functions of main components.

• We identify and motivate three principles for team-driven motion tracking.

• We illustrate a possible set of behavior levels within the Segway soccer domain that
correspond to the abstract motion modeling decomposition. We identify the bottom-up
construction of motion models.

• We give the brief description of our implemented components in our team-driven mo-
tion tracking paradigm.

35

36

Chapter 3

Background

The fundamental building block of a tracking system is a tracking filter. The Kalman-
Bucy Filter is the best known filter, a simple and elegant algorithm formulated more than
40 years ago [22]. It is an optimal recursive Bayesian estimator for a restricted class of
linear Gaussian problems. Recently there has been a surge of interest in nonlinear and non-
Gaussian filtering, in which sequential Monte Carlo estimation is one of the most popular
tools, also known as particle filters [11]. This section presents the background of this thesis
and is organized as follows. Section 3.1 defines the problem of nonlinear filtering and section
3.2 gives the conceptual solution. Section 3.3 gives a brief description of Kalman filtering
and section 3.4 shows the sampling and filtering methods, leading to particle filtering. Then
section 3.5 and 3.6 discuss multi-model related problems and solutions. Section 3.7 describes
the dynamic Bayesian network and how to represent the state-space model and multiple
switching dynamic models with a DBN.

3.1 Nonlinear Filtering Problem

Let xt denote a target state vector. The general parameterized system process at time t is
given by [4]:

xt = ft−1(xt−1,vt−1) (3.1)

zt = ht(xt,wt) (3.2)

where ft−1 and ht are the parameterized state transition and measurement functions; x, z

37

are the state, and measurement vectors; v is the process noise vector, which caters for
any mismodeling effects or unforeseen disturbances in the target motion model; w is the
measurement noise vector. The noise vectors v and w are assumed to be white, with known
probability density functions and mutually independent. The initial target state is assumed
to have a known pdf p(x0) and also to be independent of the noise vectors.

We try to find filtered estimates of xt based on the sequence of all available measurements

z1:t
4
= {z1, z2, · · · , zt} up to time t.

3.2 Bayesian Filters

From the Bayesian view, the problem is to recursively construct some degree of belief in
the state xt at time t, given the data z1:t up to time t. That is, we seek estimates of xt by
constructing the posterior p(xt|z1:t).

Recursive filters essentially consist of two steps:

• prediction step: p(xt−1|z1:t−1)→ p(xt|z1:t−1)
(usually deforms/translates/spreads state pdf due to noise)
Using the Chapman-Kolmogorov equation, 1

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (3.3)

This is the prior of the state xt at time t without knowledge of the measurement zt,
i.e., the probability given only previous measurements.

• update step: p(xt|z1:t−1, zt)→ p(xt|z1:t)
(combines likelihood of current measurement with predicted state; usually concentrates

1Chapman-Kolmogorov equation:f(xn|xs) =
∫∞
−∞ f(xn|xr)f(xr|xs)dxr. This equation gives the transi-

tional densities of a Markov sequence. Here, n > r > s are any integers.

38

on state pdf)2

p(xt|z1:t) (3.4)

=
p(z1:t|xt)p(xt)

p(z1:t)
(Bayes’ Theorem) (3.5)

=
p(zt, z1:t−1|xt)p(xt)

p(zt, z1:t−1)
(3.6)

=
p(zt|z1:t−1,xt)p(z1:t−1|xt)p(xt)

p(zt|z1:t−1)p(z1:t−1)
(Conditional probability) (3.7)

=
p(zt|z1:t−1,xt)p(xt)

p(zt|z1:t−1)p(z1:t−1)
· p(z1:t−1|xt) (Reorganize) (3.8)

=
p(zt|z1:t−1,xt)p(xt)

p(zt|z1:t−1)p(z1:t−1)
· p(xt|z1:t−1)p(z1:t−1)

p(xt)
(Bayes’ Theorem) (3.9)

=
p(zt|z1:t−1,xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(Cancel out identical terms) (3.10)

=
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(Markov property) (3.11)

Now we have

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(3.12)

that is

posterior =
likelihood · prior

evidence
(3.13)

where prior is given by prediction equation, likelihood is given by observation model,
and evidence is the normalizing constant in the denominator,

p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt (3.14)

3.3 Kalman Filter

The Kalman filter assumes that the posterior density at every time step is Gaussian and
hence completely characterized by its mean and covariance [42]. Suppose Equation (3.1)

2Useful equations: p(a, b|c) = p(a|b, c) · p(b|c) and p(a, b) = p(a|b) · p(b)

39

and (3.2) can rewritten as:

xt = Ft−1xt−1 + vt−1 (3.15)

zt = Htxt + wt (3.16)

(3.17)

where Ft−1 and Ht are known matrices defining linear functions. vt−1 and wt are mutually
independent zero-mean white Gaussian, with covariances Qt−1 and Rt respectively.

The Kalman filter algorithm can be viewed as the following recursive relationship:

p(xt−1|z1:t−1) = N (xt−1; x̂t−1|t−1,Pt−1|t−1) (3.18)

p(xt|z1:t−1) = N (xt; x̂t|t−1,Pt|t−1) (3.19)

p(xt|z1:t) = N (xt; x̂t|t,Pt|t) (3.20)

where N (x; ξ,P) is a Gaussian density with argument x, mean ξ, and covariance P.

The mean and covariance of the Kalman filter are given by:

x̂t|t−1 = Ft−1x̂t−1|t−1 (3.21)

Pt|t−1 = Qt−1 + Ft−1Pt−1|t−1F
T
t−1 (3.22)

x̂t|t = x̂t|t−1 + Kt(zt −Htx̂t|t−1) (3.23)

Pt|t = Pt|t−1 −KtStK
T
t (3.24)

where

St = HtPt|t−1H
T
t + Rt (3.25)

is the covariance of the innovation term zt −Htx̂t|t−1, and the Kalman gain is

Kt = Pt|t−1H
T
t S−1

t (3.26)

The Kalman filter recursively computes the mean and covariance of the Gaussian poste-
rior p(xt|z1:t). This is the optimal solution to the tracking problem provided the following
assumptions hold:

40

• vt−1 and wt are drawn from Gaussian densities of known statistics

• ft−1(xt−1,vt−1) is a known linear function of xt−1 and vt−1

• ht(xt,wt) is a known linear function of xt and wt

3.4 Sequential Importance Sampling

Particle filters are suboptimal filters. They perform sequential Monte Carlo (SMC) estima-
tion based on a point mass representation of probability densities. By applying importance
sampling to perform nonlinear filtering specified by the conceptual solution in section 3.2,
we obtain the sequential importance sampling algorithms.

Sequential Importance Sampling (SIS) is the basic framework for most particle filter algo-

rithms [2, 11, 26]. Let {x(i)
0:t} be a set of support points (samples, particles), i = 1, · · · , Ns,

and w
(i)
t be associated weights, which are normalized to

∑
i w

(i)
t = 1. Then we obtain

p(x0:t|z1:t) ≈
Ns∑
i=1

w
(i)
t δ(x0:t − x

(i)
0:t) (3.27)

Usually we cannot draw samples x
(i)
k from p(·) directly. Assume we sample directly from a

different importance function q(·). Our approximation is still correct if

w
(i)
t ∝

p(x
(i)
0:t|z1:t)

q(x
(i)
0:t|z1:t)

(3.28)

If the importance function is chosen to factorize such that

q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1) (3.29)

then one can obtain new particles x
(i)
0:t ∼ q(x0:t|z1:t) by augmenting each of the existing old

particles x
(i)
0:k−1 ∼ q(x0:t−1, z1:t−1) with the new state x

(i)
t ∼ q(xt|x0:t−1, z1:t) (later we will see

also q(xt|xt−1, zt)).

41

Now we want to do the weight update.

p(x0:t|z1:t) (3.30)

= p(x0:t|zt, z1:t−1) (3.31)

=
p(x0:t, zt|z1:t−1)

p(zt|z1:t−1)
(Bayes’ Theorem) (3.32)

=
p(zt|x0:t, z1:t−1)p(x0:t|z1:t−1)

p(zt|z1:t−1)
(Conditional probability) (3.33)

=
p(zt|x0:t, z1:t−1)p(xt,x0:t−1|z1:t−1)

p(zt|z1:t−1)
(3.34)

=
p(zt|x0:t, z1:t−1)p(xt|x0:t−1, z1:t−1)

p(zt|z1:t−1)
× p(x0:t−1|z1:t−1) (3.35)

=
p(zt|xt)p(xt|xt−1)

p(zt|z1:t−1)
× p(x0:t−1|z1:t−1) (Markov property) (3.36)

∝ p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1) (3.37)

By substituting both numerator (3.29) and denominator (3.30) into (3.28), the weight update
equation can then be shown to be

w
(i)
k ∝

p(zt|x(i)
t)p(x

(i)
t |x

(i)
t−1)p(x

(i)
0:t−1|z1:t−1)

q(x
(i)
t |x

(i)
0:t−1, z1:t)q(x

(i)
0:t−1|z1:t−1)

(3.38)

=
p(x

(i)
0:t−1|z1:t−1)

q(x
(i)
0:t−1|z1:t−1)

×
p(zt|x(i)

t)p(x
(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, z1:t)

(3.39)

= w
(i)
t−1 ×

p(zt|x(i)
t)p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, z1:t)

(3.40)

= w
(i)
t−1 ×

p(zt|x(i)
t)p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1, zt)

(3.41)

The last step assumes q(xt|x0:t−1, z1:t) = q(xt|xt−1, zt). So that the posterior density p(xt|z1:t)
can be approximated as

p(xt|z1:t) ≈
Ns∑
i=1

w
(i)
t δ(xt − x

(i)
t) (3.42)

The SIS algorithm thus consists of recursive propagation of the weights and support points
as each measurement is received sequentially.

42

SIS

1 for i ← 1 to Ns

2 do Draw x
(i)
t ∼ q(xt|x(i)

t−1, zt)

3 Assign the particle a weight, w
(i)
t , according to (3.41)

How to choose importance density? It is often convenient to use the prior:

q(xt|x(i)
t−1, zt) = p(xt|x(i)

t−1) (3.43)

Substitution of (3.43) into (3.41) then yields

w
(i)
t ∝ w

(i)
t−1p(zt|x(i)

t) (3.44)

Sampling Importance Resampling Filter (SIR) proposed in [15] uses the dynamic prior as
the importance density and resamples in each udpate step.

SIR

1 for i ← 1 to Ns

2 do Draw x
(i)
t ∼ p(xt|x(i)

t−1)

3 w
(i)
t ← w

(i)
t−1 × p(zt|x(i)

t)
4 for i ← 1 to Ns

5 do Normalize: w
(i)
t ← w

(i)
t /
∑

j w
(j)
t

6 Resample

This is the most common choice of importance density since it is intuitive and simple to
implement. We use SIR in Chapter 5 intensively. We choose a combination of dynamic prior
and a distribution that is proportional to the perceptual likelihood p(zt|xt) in Chapter 6.

3.5 Multiple Switching Dynamic Models

There are many engineering applications that deal with nonlinear dynamic systems charac-
terized by a few possible models (or regimes) of operation [6]. These problems are referred
to as hybrid-state estimation problems involving both continuous-valued target state and a
discrete-valued regime variable [12].

43

A discrete-time hybrid-state system is described by the following dynamics and measurement
equations:

xt = ft−1(xt−1, mt,vt−1) (3.45)

zt = ht(xt, mt,wt) (3.46)

where mt is the model (region) variable which determines which dynamic model is in effect
during the sampling period (t − 1, t]. The model variable is commonly modeled by a time-
homogeneous Nm-state first-order Markov chain with transition probabilities

πi,j
4
= P{mt = i|mt−1 = j} (i, j ∈ S) (3.47)

where S
4
= {1, 2, · · · , Nm}. The transition probability matrix Π = [πi,j] is thus an Nm×Nm

matrix with elements satisfying

πi,j ≥ 0 and
Nm∑
j=1

πi,j = 1, (3.48)

for each i, j ∈ S. The initial model probabilities are denoted as

µi
4
= P{m1 = i} (3.49)

for i ∈ S, such that µi ≥ 0 and
∑Nm

j=1 µi = 1.

3.6 Multiple Model Particle Filter

The multi-model particle filter is used to perform nonlinear filtering with switching dynamic
models. Some problems belong to a class of hybrid state estimation problems where the
state vector consists of both a continuous-valued part and a discrete-valued part, i.e., Xt =
(xT

t , mt)
T , mt ∈ S = {1, 2, · · · , Nm} [27].

The first step in the Multiple Model Particle Filtering algorithm is to generate a random set
{m(i)

t }Ns
i=1 based on {m(i)

t−1}Ns
i=1 and the transition probability matrix Π = [πi,j], where i, j ∈ S.

The next step performs a model conditioned SIS filtering. The optimal model conditioned
importance density is given by

q(xt|x(i)
t−1, m

(i)
t , zt)opt = p(xt|x(i)

t−1, m
(i)
t , zt). (3.50)

44

The most popular choice appears to be the transitional prior [2]:

q(xt|x(i)
t−1, m

(i)
t , zt) = p(xt|x(i)

t−1, m
(i)
t). (3.51)

There are a lot of other densities that can be used which result in various names of the
particle filter, e.g., Auxiliary Particle Filter, the Regularised Particle Filter [2]. The choice
is an important design step in the design of a particle filter.

3.7 Dynamic Bayesian Network

The data in the tracking scenario comes in the form of temporal (time-series) data, which
is generated sequentially by the state process. A Dynamic3. Bayesian Network (DBN) is a
natural representation language for modeling time-series data. A DBN allows us to represent
complex systems in a compact and natural way [29].

A DBN is a directed graphical model [23]. Each node in the graph corresponds to a random
variable. Each edge in the graph denotes the dependency of a variable on its parents. We
use filled circles to denote observable variables. The graphical structure of a DBN encodes a
set of conditional independence assumptions: each node is conditionally independent of its
non-descendants given its parents.

As described in Section 3.1, in a state-space model, we have the state transition model,
p(xt|xt−1), the measurement model, p(zt|xt), and the initial state pdf, p(x0). In a DBN,
xt, zt represent sets of system variables. A DBN for a state-space model is illustrated in
Figure 3.1. In this graph,

• z is an observable variable.

• xt is dependent on xt−1.

• zt is dependent on xt.

As described in Section 3.5, in multiple switching dynamic models, we add a model variable
m to describe the switching between different kinds of dynamics models. The dynamics

3The term “dynamic” means we are modeling a dynamic system. It does not mean the graph structure
changes over time.

45

xt -1

xt

zt -1

zt

xt +1 zt +1

Figure 3.1: A DBN for a state-space model.

of the models themselves are governed by a discrete-state Markov chain. Since this model
contains both discrete and continuous variables, it is sometimes called a hybrid DBN [29].
A DBN for multiple switching dynamic models is illustrated in Figure 3.2. In this graph,

• z is an observable variable.

• xt is dependent on xt−1 and mt.

• mt is only dependent on mt−1.

• zt is dependent on xt.

3.8 Summary

In this chapter, we focus on reviewing the relevant background for the thesis work.

• We describe the nonlinear filtering problem. We introduce the system model and the
measurement model.

46

xt -1

xt

zt -1

zt

mt -1

mt

xt +1 zt +1mt +1

Figure 3.2: A DBN for multiple switching dynamic models.

• We describe the general recursive Bayesian filter. We show the prediction step and
update step in a recursive Bayesian filter.

• We describe briefly the Kalman filter and its applicability.

• We describe the sequential importance sampling framework and the particle filter al-
gorithm.

• We present the multiple switching dynamic models. We present the multiple model
particle filter which is used to perform nonlinear filtering with switching dynamic
models.

• We describe the dynamic Bayesian network and how to represent the state-space model
and multiple switching dynamic models with a DBN.

47

48

Chapter 4

Tracking Using Own Actuation Model

Mobile robots need to track objects e.g., [35]. When tracking is performed by a robot
executing specific tasks acting on the object being tracked, such as a Segway RMP soccer
robot grabbing and kicking a ball, the motion model of the object becomes complex, and
dependent on the robot’s actions [25]. In this chapter we show how this thesis contributes
the use of multiple motion models as a function of the robot’s tactic within a particle-filter
based tracker.

Over the years, a lot of different sensors such as vision sensors, infrared and ultrasound
sensors have been used in the robotics community. For the environments the Segway RMP
operates in, there are few sensors that can compete with color vision for low cost, compact
size, high information volume and throughput, relatively low latency,1 and promising usage
for object recognition. Thus, we choose vision as the primary sensor. Recently, we have
equipped each robot with an infrared sensor to reliably detect objects close to it. We intro-
duce how this additional information can be combined with vision sensor to achieve more
effective tracking.

1Latency of the digital camera refers to the amount of time between the the moment the shutter is pressed
and when the camera is ready to take the next shot. So it is the time to process a photo and store it on the
internal memory card.

49

4.1 Tactics

Our control architecture, called Skills-Tactics-Plays, consists of Skills for low-level control
policies, Tactics for high-level single robot behavior, and Plays for team coordination [7]. We
construct the robot cognition using this architecture and in this chapter we focus on skills
and tactics that form the components for single robot intelligence. Skills can be connected
as a finite-state-machine for a given tactic. Thus, a tactic can perform a range of complex
actions by triggering the appropriate sequence of skill execution.

Figure 4.1 (a) shows the skill state machine for a simple chase ball tactic, which con-
tains two skills, search and go near ball. The tactic starts from search, and when the
ball is visible then it transfers to the skill go near ball. If the ball is lost, the state ma-
chine transfers back to search. Figure 4.1 (b) shows the skill state machine for a more
complex grab and kick tactic. This tactic executes a sequence of skills namely search,
go near ball, grab ball, aim, and the final kick skill. Transitions between skills are based
on the perceived state.

A im

K ick

D o n e

Tu rn body to
face Targe t

Fi n ge r u p, Ki ck

Go
near

G ra b
ba ll

Fi n ge r u p, G o to a
n e ar ba l l pos i ti on

Fi n ge r down

S earch

(b)

S earch
Go
near

See ball

Lost ball

(a)

Fi n d targe t

Los t targe t
Los t ba l l

Figure 4.1: Skill state machine for tactics. Each node is a skill and the edges show the
transition between skills. Transitions between skills are based on the perceived state. (a)
Skill state machine for tactic chase ball. (b) Skill state machine for tactic grab and kick.

Table 4.1 enumerates the skills used in this chapter along with brief descriptions. In this
chapter we use these two tactics, namely chase ball and grab and kick.

In order to use the tactics as information for the tracker, we need to map tactics into motion
models of the object being tracked.

50

Skill Description
search turn body and camera until the ball is seen
go near ball move to a position near the ball and look at the ball
grab ball put down the catcher(finger)
aim look for the target and turn body to look at it
kick put up the catcher and use the kicker to kick the ball out

Table 4.1: List of skills used in this chapter along with brief descriptions.

4.2 Tactic-Based Model Transitions

In this section, we take the ball-tracking problem as a detailed example to show the tactic-
based motion modeling method in general.

4.2.1 Multi-Model System

As described in Section 3.5, the general parameterized state-space system is given by:2

xt = ft−1(xt−1, mt,ut−1,vt−1) (4.1)

zt = ht(xt, mt,wt) (4.2)

where ft and ht are the parameterized state transition and measurement functions at time
t; xt,ut, zt are the state, input and measurement vectors; vt,wt are the process and sensor
noise vectors of known statistics. The model variable mt can take any one of Nm values,
where Nm is the number of models used in our system. For details of the multi-model system,
please refer to Section 3.5.

In our Segway RMP soccer robot environment, we define four models to model the ball
motion.

• Free-Ball. The ball is not moving at all3 or moving straight with a constant speed decay
d which depends on the environment surface and sampling period ∆t. We obtain the
value of d by experiments on different surfaces (See detail in Section 4.4.1).

xt = FFree
t xt−1 + vFree

t−1 (4.3)

zt = HFree
t xt + wFree

t (4.4)

2We add an input vector u to the state transition function.
3We do not have Stopped-Ball model because it is merely a special case of Free-Ball when the ball speed

is zero.

51

where xt = (xt, yt, ẋt, ẏt)
T , zt = (zxt , zyt)

T ; xt, yt are the ball’s x, y position in global
coordinates at time t; ẋt, ẏt are the ball’s velocity in x and y direction in global coor-
dinates at time t; zxt , zyt are the ball’s measurement in the x and y direction in global
coordinates at time t. The superscript “Free” indicates the model index. FFree

t and
HFree

t are known matrices as follows:

FFree
t =


1 0 ∆t 0
0 1 0 ∆t
0 0 d 0
0 0 0 d

 ,HFree
t =

[
1 0 0 0
0 1 0 0

]

where ∆t is the time interval between two consecutive vision frames, d is the speed
decay term depending on surface.

• Grabbed-Ball. The ball is grabbed by the robot’s catcher. In this case, no vision is
needed to track the ball, because we assume the ball moves with the robot. Therefore
the ball has the same velocity as the robot (plus noise) and its global position at time
t is the robot’s global position plus their relative position, which is assumed to be a
constant, plus noise. These two noise variables (position noise and velocity noise) form
the noise vector vGrabbed. We use the same measurement model as Equation 4.4.

• Kicked-Ball. The ball is kicked therefore its velocity is equal to a predefined initial
speed plus noise. And its position is equal to its previous position plus noise. These
two noise variables form the noise vector vKicked. We use the same measurement model
as Equation 4.4.

• Bounced-Ball. This model is only used in simulation 4 to describe the motion of the
ball when it is bounced off one of the field borders. The motion of the ball is assumed
to be reflected by the field border with a considerable amount of velocity reduction.
In our simulation, the same parameter speed decay d is used to describe the amount
of velocity reduction.

xt = FBounced
t xt−1 + uBounced

t−1 + vBounced
t−1 (4.5)

Depending on which field border the ball is bouncing off, we have four set of cor-
responding FBounced

t (i) and uBounced
t (i), i = 1, 2, 3, 4. We use the same measurement

model as Equation 4.4. 5

4We add walls to the border of the field in the simulated experiment. In the robot tests, there are no
walls at the field border.

5This model is only used in simulation. We do not consider the effect of the spinning of the object in
order to simplify the measurement model. To use such model in the real robot tests, we probably need lots
of noise to model the effect of unmeasured spin.

52

FBounced
t (1) =


0 0 0 0
0 1 0 0
0 0 −d 0
0 0 0 d

 ,uBounced
t (1) =


−FIELD WIDTH/2

0
0
0

 ;

FBounced
t (2) =


0 0 0 0
0 1 0 0
0 0 −d 0
0 0 0 d

 ,uBounced
t (2) =


FIELD WIDTH/2

0
0
0

 ;

FBounced
t (3) =


1 0 0 0
0 0 0 0
0 0 d 0
0 0 0 −d

 ,uBounced
t (3) =


0

−FIELD HEIGHT/2
0
0

 ;

FBounced
t (4) =


1 0 0 0
0 0 0 0
0 0 d 0
0 0 0 −d

 ,uBounced
t (4) =


0

FIELD HEIGHT/2
0
0

 ;

where FIELD HEIGHT is the height of the total field, and FIELD WIDTH is the width of
the total field.

Table 4.2 concludes the index of the model variable m and the corresponding ball motion
model in this chapter.

53

m Ball motion model
1 Free-Ball
2 Grabbed-Ball
3 Kicked-Ball
4 Bounced-Ball

Table 4.2: The model index and the corresponding ball motion model.

4.2.2 Motion Modeling Based on the Tactic

From the previous section, we know that the model index m determines the present single
model being used. For our ball tracking example, m = 1, 2, 3, 4 for the single model Free-Ball,
Grabbed-Ball, Kicked-Ball and Bounced-Ball respectively. In our approach, it is assumed
that the model index, mt, conditioned on the previous tactic executed Tt−1, and other useful
information vt (such as ball state xt−1, infrared measurement st or the combination of two or
more variables), is governed by an underlying Markov process, such that, the conditioning
parameter can branch at the next time-step with probability

πi,j = P(mt = i|mt−1 = j, Tt−1, vt) (4.6)

where i, j = 1, · · · , Nm. Since we can draw P(mt = i|mt−1 = j) in an Nm × Nm table, we
can create a table for Equation 4.6 with a third axis which is defined by the tuple 〈Ta, vb〉
as shown in Figure 4.2. Here the tactic Ta is the primary factor that determines whether
mi transits to mj and what the probability is of the transition, while the information vb

determines the prior condition of the transition. This is why we call it tactic-based. Each
layer in the graph is conditioned on a particular combination of the tactic executed and the
additional information obtained.

With this tactic-based modeling method, we can obtain the corresponding motion models
for the tactics shown in Figures 4.3. In Figure 4.3 (a), there are only two possible single
models: Free-Ball and Kicked-Ball. We take the information “ball is near” as a branching
parameter, which can be obtained by reasoning, using ball state information and robot’s self
state information. Because it is a binary parameter, we can use two tables to define all the
transition probabilities. Similarly, in Figure 4.3 (b), we use the infrared binary measurement
as the branching parameter. The two tables list the transition probabilities between any two
single models conditioned on “the infrared sensor can/cannot sense the ball” respectively. In
this way, we can build motion models for any existing tactics we have designed. Note that
Figure 4.3 describes the motion model of the object, while Figure 4.1 describes the behavior
model (tactic) of the robot. We construct the object motion model using the knowledge of
the robot behavior model.

54

m1

 m 2

.

.

.

.

.

.

m n

m1 m2

m 2,1 m 2,2

m n,1 m n,2

m1

 m 2

.

.

.

.

.

.

m n

m 2,1 m 2,2

m n,1 m n,2

m1

 m2

m1 m2

1,1 1,2

2,1 2,2

Figure 4.2: Tactic-based motion modeling, where m1, m2, · · · , mn are n single models, Ta is
the tactic, vb is the additional information, and n = Nm, the number of models. πi,j is the
transition probability from model mi to model mj given mi, and 〈Ta, vb〉. Each layer in the
graph is conditioned on a particular combination of the tactic executed and the additional
information obtained.

In general, to build the Tactic-Based Motion Model (TBMM), we need first to use the
information contained in tactics to identify the robot behavior. We use the robot behavior
to identify the object motion models that are affected by the robot’s actions. We construct
the transition probability matrix of various object motion models based on the identified
robot behavior and their actions on the object.

In other domains, we need to identify the known behavior model of the specific application.
We apply the team-driven motion tracking framework and follow the introduced principles
to decompose the motion modeling problem. The granularity of decomposing is domain-
dependent. We take use of the individual agent’s behavior knowledge to construct the
object’s motion model.

55

F ree Kicked

G ra bbe d

Free

Kicked

Grabbed

Free Kicked Grabbed

0.1

1.0

0.0

0.9

0.0

0.0

0.0

0.0

0.0

Free

Kicked

Grabbed

Free Kicked Grabbed

0.9

1.0

0.0

0.1

0.0

0.0

0.0

0.0

0.0

 ba ll n ear = t rue ba ll n ear = fa lse

(a)

F ree kicked

G ra bbe d

Free

Kicked

Grabbed

Free Kicked Grabbed

0.2

1.0

0.03

0.0

0.0

0.02

0.8

0.0

0.95

Free

Kicked

Grabbed

Free Kicked Grabbed

0.8

1.0

0.03

0.0

0.0

0.9

0.2

0.0

0.07

in f ra red sen so r = t rue in f ra red sen so r = fa lse

(b)

Figure 4.3: Ball motion model. Each node is a single model. The tables list the tran-
sition probability between any two single models. (a) Ball motion model based on tactic
chase ball. (b) Ball motion model based on tactic grab and kick.

4.3 Tactic-Based Object Tracking Algorithm

Following the tactic-based motion model given in the previous section, we can use a dynamic
Bayesian network (DBN) to represent the whole system in a natural and compact way as
shown in Figure 4.4. In this graph, the system state is represented by variables (tactic T ,
infrared sensor measurement s, object state x, object motion model index m, vision sensor
measurement z), where each variable takes on values in some space. The variables change
over time in discrete intervals, so that xt is the object state at time t. Furthermore, the
edges indicate dependencies between the variables. For instance, the object motion model
index mt depends on mt−1, Tt, st and xt−1, hence there are edges coming from the latter four
variables to mt. Note that we use an approximation here. We assume the measurement of
the infrared sensor is always the true value, so it does not depend on the object state. Under
this assumption, there is no edge from xt−1 to st, which greatly simplifies the DBN and the
sampling algorithm as well.

We use the sequential Monte Carlo method to track the motion model m and the object
state x. Particle filtering is a general purpose Monte Carlo scheme for tracking in a dynamic
system. It maintains the belief state at time t as a set of particles p

(1)
t , p

(2)
t , · · · , p(Ns)

t , where

each p
(i)
t is a full instantiation of the tracked variables {p(i)

t , w
(i)
t }, w

(i)
t is the weight of particle

p
(i)
t and Ns is the number of particles. In our case, p

(i)
t = 〈x(i)

t , m
(i)
t 〉.

56

The equations below follow from the DBN.

m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt) (4.7)

x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1) (4.8)

Note that in Equation 4.8, the object state is conditioned on the object motion model m
(i)
t

sampled from Equation 4.7.

xt -1

xt

zt -1

zt

mt -1

mt

Tt-1

Tt st

s t-1

Vis ion
Measurem ent State

Motion
 Model

T ac tic
Infrared
Sensor

xt +1 zt +1mt +1

Tt+ 1 s t+ 1

Figure 4.4: A dynamic bayesian network for tactic-based object tracking. Filled circles
represent deterministic variables which are observable or are known as the tactic that the
robot is executing.

Then we use the Tactic-Based Particle Filtering (TBPF) algorithm to update the state
estimates. Table 4.3 lists our TBPF algorithm in detail.

The inputs of the algorithm are samples drawn from the previous posterior 〈x(i)
t−1, m

(i)
t−1, w

(i)
t−1〉,

the present vision and infrared sensory measurement zt, st, and the tactic Tt. The outputs
are the updated weighted samples 〈x(i)

t , m
(i)
t , w

(i)
t 〉. In the sampling algorithm, first, a new

object motion model index, m
(i)
t , is sampled according to Equation 4.7 at Line 2. Then

given the model index, and previous object state, a new object state is sampled according

57

[{x(i)
t , m

(i)
t , w

(i)
t }Ns

i=1] = TBPF[{x(i)
t−1, m

(i)
t−1, w

(i)
t−1}Ns

i=1, zt, st, Tt]

1 for i ← 1 to Ns

2 do draw m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt)

3 draw x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1)

4 w
(i)
t ← p(zt|x(i)

t)

5 Calculate total weight: w ←
∑

[{w(i)
t }Ns

i=1]
6 for i← 1 to Ns

7 do Normalize: w
(i)
t ← w

(i)
t /w

8 Resample

Table 4.3: TBPF algorithm.

to Equation 4.8 at Line 3. The importance weight of each sample is given by the likelihood
of the vision measurement given the predicted new ball state at Line 4. Finally, each weight
is normalized and the samples are resampled. Then we can estimate the object state based
on the mean of all the x

(i)
t .

4.4 Results

In this section, we first design experiments to estimate the ball speed decay in ∆t (time
interval between vision frames) on different surfaces. We profile the system and measurement
noise. We give four performance metrics to present a performance comparison of three
tracking algorithms. Finally we evaluate the effectiveness of our tracking system in both
simulated and real-world tests.

4.4.1 Ball Motion and Measurement Noise Profiling

From previous work we know the initial speed and accuracy of the ball velocity after a kick
motion. Here our goal is to estimate the ball speed decay d. We put the ball on the top of
a ramp and let it roll off the ramp with initial speed

v0 =
√

2gh

58

a
v0

h

L

Figure 4.5: Test setup for estimating the ball speed decay d. The ball rolls off the ramp
(with height h) with speed v0 and it stops after it travels a distance of L.

without taking the friction on the surface of the ramp into account, where g is the gravity
and h is the height of the ramp. We record the distance the ball travelled (L) from the
position the ball rolls off the ramp to the position it stops. Obviously, the ball speed decay
can be approximated as

d = 1− v0∆t

L

where ∆t ≈ 0.033 sec. Following the test result, we use d = 0.99 for the cement surface.
From the test, we note that the faster the ball’s speed is, the smaller the system noise, hence
the more the ball’s trajectory forms a straight line. We therefore model the system noise to
be inverse proportional to the ball speed when the motion model is Free-Ball.

In order to profile the measurement noise, we put the ball on a series of known positions,
read the measurement from vision sensor, and then determine the error in that measure-
ment. From the results, we know that the nearer the ball, the smaller the observation noise.
Therefore we choose to approximate the error distribution as different Gaussians based on
the distance from the robot to the ball.

4.4.2 Metrics

We present a performance comparison of three tracking algorithms:

• A simple Kalman filter (KF) using a single model (Free-Ball).

• IMM using multiple motion models. Three motion models: Free-Ball, Grabbed-Ball
and Kicked-Ball are considered. The transitional probability matrix ΠIMM used by
IMM is the same as the one used by TBPF when infrared sensor reading is ‘OFF’ and
the ball is not close to any field border (no bouncing possibility).

59

• TBPF using multiple motion models and multi-sensor observations. All four motion
models mentioned in Section 4.2.1 are included. The transitional probability matri-
ces are determined by robot’s tactic and additional state information like the ball’s
predicted global position.

The comparison is based on a set of Monte-Carlo (MC) simulations and real robot test.
Each MC simulation run generates different system and measurement noise according to the
profiled noise model. We give a description of the three performance metrics that will be
used in the analysis of this chapter and in the following chapters as well:

• The root-mean square(RMS) position error;

• Percent of time in the view of the camera;

• Model prediction correct rate.

Let (x̂i
t, ŷ

i
t) and (xi

t, y
i
t) denote the estimated and true object positions at time t at the ith

MC run. Let M be the total number of independent MC runs. The RMS position error at
time t can be defined as

RMSt =

√√√√ 1

M

M∑
i=1

(x̂i
t − xi

t)
2 + (ŷi

t − yi
t)

2 (4.9)

In the simulation, we use a simulated pan tilt camera mounted on the center roof, 5 meters
over the field. The camera motion is modeled as two idealized rotations around the origin,
followed by a perspective camera transformation. At time t of each MC run, we command
the camera to point to the estimated object position (x̂i

t, ŷ
i
t). We then calculate the effective

field of view (FOV) of the camera at time t. We count how many times the true object
position (xi

t, y
i
t) falls inside FOV using the current tracking algorithm during the entire MC

run. The percent of time that the object is within FOV can be computed as

ηFOV =
1

M

M∑
i=1

of times the object is in FOV

#total time steps
=

1

M

M∑
i=1

#of times the object is in FOV

T
×100%

(4.10)
where T is the total time steps in each MC run.

60

Let m̂i
t and mi

t denote the estimated and true object motion model at time k at the ith MC
run. The model prediction correct rate is defined as

e =
1

M

M∑
i=1

#correct model prediction

#total time steps
=

1

M

M∑
i=1

m̂i
t == mi

t

T
× 100% (4.11)

Another metric is the non-Free-Ball model prediction correct rate.

e′ =
1

M

M∑
i=1,m̂i

t 6=1

m̂i
t == mi

t

T
× 100% (4.12)

4.4.3 Simulation Experiments

Because it is difficult to know the ground truth of the ball’s position and velocity in the real
robot test, we do the simulation experiments to evaluate the precision of tracking.

Experiments are done following the grab and kick tactic (Figure 4.1 (b)). Noises are sim-
ulated according to the model profiled in the previous section. A typical scenario to be
investigated, shown in Figure 4.6, involved tracking of a moving ball from the viewpoint of a
robot during the first 100 time steps (T = 100). The solid line shows the ground truth of the
ball’s moving trajectory. The ball, which is initially static at the position (0,0), represented
with an x-mark in the figure, is kicked by the robot at time t = 1. The ball’s trajectory is
illustrated with the solid line segments. At time t = 20, the ball bounces off the upper field
border (blue circle in the figure). At time t = 24, 59, 73, the ball bounces and changes its
velocity orientation. At time t = 90, the ball is grabbed by the robot (black circle in the
figure). The ball is kicked again at time t = 94.

The transitional probability matrix ΠIMM used in the simulation is as follows.

ΠIMM =

 0.75 0.20 0.05
0.15 0.05 0.80
0.80 0.10 0.10

 (4.13)

Here are the transition probability matrices Πst=0,closet=0, Πst=1,closet=0 used by TBPF in the
simulation, where st is the infrared sensor reading at time t, closet is a binary indicator.

61

−50 0 50
−40

−30

−20

−10

0

10

20

30

40

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

Object Trajectory
Start
Bounced
Grabbed
Kicked

Figure 4.6: A typical ball trajectory when a robot is executing grab and kick tactic.

When the distance from the predicted ball position at time t to any field border line is less
than 5 cm, closet is set to be true.

Πst=0,closet=0 =


0.75 0.20 0.05 0
0.15 0.05 0.80 0
0.80 0.10 0.10 0
1.0 0 0 0

 , Πst=1,closet=0 =


0.10 0.85 0.05 0
0.05 0.90 0.05 0
0.85 0.05 0.10 0
1.0 0 0 0

 (4.14)

p(mt = 4|mt−1 = i, closet = 1) = 0.9, i = 1, 2, 3 (4.15)

p(mt = 1|mt−1 = 4) = 1 (4.16)

Unless otherwise mentioned, the nominal filter parameters used in the simulation are listed

62

in Table 4.4.

Parameter Value Description
∆t 0.033 The time interval between two consecutive vision frames
d 0.999 Speed decay
T 200 Total time steps in one Monte Carlo run
M 50 The number of MC runs
Ns 1000 The number of particles
Nthr Ns/3 Particle resample threshold
w0 [0.9 0.1 0 0] Initial model probabilities

Table 4.4: The nominal filter parameters used in the simulation.

The particle filter uses Ns = 1000 particles with resampling only when the effective sample
size N̂eff = 1/

∑Ns

i=1(w
i
t)

2 < Nthr = Ns/3. The initial model probability w0 is set to be [0.9
0.1 0 0]. That is,

p(m1 = 1) = 0.9, (4.17)

p(m1 = 2) = 0.1. (4.18)

The kicking speed is 100 cm/s and the direction is always north-east. The process noise v
and the sensor noise w are set to be identical in the four models.

v ∼ N (0, Q), the process noise covariance matrix

Q =


5 0 0 0
0 5 0 0
0 0 2 0
0 0 0 2

 (4.19)

w ∼ N (0, R), the sensor noise covariance matrix

R =

[
10 0
0 10

]
(4.20)

63

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=1

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=3

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

Figure 4.7: A snapshot of the particle cloud and the model probabilities at t = 1 and t = 3.

Figures 4.7, 4.8, and 4.9 display the output of the TBPF at time t = 1, 3, 19, 24, 80,
and 86 in one MC run, respectively. The left-hand side in this set of figures always shows
the distribution of particles (x

(i)
t , y

(i)
t) at time t, with their weighted mean value (x̂t, ŷt)

represented by a green x-mark. The true position of the ball at time t (xt, yt) is represented
by a red circle. The true velocity of the ball at time t (ẋt, ẏt) is represented by a red line.
The right-hand side presents the probabilities of models. For example, at t = 1 (Figure 4.7),
the ball is at its initial position. The particles are initialized to be uniformly distributed
over the entire field. The initial model probability w0 = [0.9 0.1 0 0]. At time t = 3, most
of the particles are distributed close to the true ball position. The probability of model 1
(Free-Ball) is approximately 0.7, which is the dominant model. Observe from Figure 4.8,
the ball is bouncing off the field border at time t = 19 and t = 24. The model 4 (Bounced-
Ball) is becoming competitive with Free-Ball at time 19 and it is dominant at time t = 24.
Figure 4.9 corresponds to t = 80 and k = 86 when the ball is being grabbed and finally
kicked out. The change of model probabilities is consistent with the model variations.

The first trial examines the RMS position error versus time for the KF, IMM, and TBPF, and
compares it with the computed CRLB. The performance results are shown in Figure 4.10
where we see that the TBPF achieves the best performance with the RMS error. While the
KF and IMM show a tendency to diverge which results in subsequent poor track estimates.
A summary of these results are also tabulated in Table 4.5.

The second trial examines the performance of IMM and TBPF for predicting the ball motion
model. We use two performance metrics e and e′ introduced in Section 4.4.2. A summary
of the performance results are shown in Table 4.6 which shows the IMM’s inability to

64

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=19

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=24

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

Figure 4.8: A snapshot of the particle cloud and the model probabilities at t = 19 and t =
24.

Algorithm RMS Mean (cm) RMS Std (cm)
KF 6.5701 0.6674

IMM 3.1277 0.6840
TBPF 0.9280 0.2108

Table 4.5: Performance comparison for three trackers

detect any motion model change. This is clear from the model probability curves shown in
Figure 4.11 and 4.12. Alrough there is slight bump in the model probability for the correct
change of model, the IMM algorithm is unable to establish the occurrence of actuation on
the ball. The overall result is a track that is showing tendency to diverge from the true track.
For the same set of parameters, the TBPF shows excellent performance as can be seen from
Figure 4.6. Here we note the model probability curves for the TBPF shows that unlike the
result of IMM, the TBPF model probabilities indicate higher probability of occurrences of
actuation on the ball. The overall result is a much better tracker performance for the same
set of measurements.

Algorithm e (%) std of e (%) e′ (%) std of e′ (%)
IMM 89.0 4.57 0 0
TBPF 95.3 1.57 78.16 8.06

Table 4.6: Performance comparison of IMM and TBPF for predicting the ball motion model

65

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=80

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=86

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

Figure 4.9: A snapshot of the particle cloud and the model probabilities at t = 80 and t =
86.

The third trial examines the performance of the considered filters as a function of the max-
imum kicking speed. Figure 4.13 and 4.14 show the RMS error and ηFOV as a function
of the maximum kicking speed. As we expected, for the KF and IMM, the performance is
acceptable when the maximum kicking speed is less than 60 cm/s. When the kicking speed
gets bigger, the ability to detect the change of model becomes more important to the tracker,
which results in the subsequent poor performance of KF and IMM in terms of RMS error
and ηFOV . While the TBPF performs significantly better than the above two filters. We do
not find noticeable performance decrease even if the kicking speed is as big as 140 cm/s.

4.4.4 Segway Soccer and Segway RMP Robot

The Segway platform is unique due to its combination of wheel actuators and dynamic
balancing [8]. The Segway RMP, or Robot Mobility Platform, provides an extensible control
platform for robotics research [18]. It imbues the robot with the novel characteristics of a
fast platform and the ability to travel long ranges, carry significant payloads, navigate in
relatively tight spaces for its size, and provides the opportunity to mount sensors at a height
comparable to human eye level [36].

In the thesis work, we test our tracking algorithm on the Segway RMP robot [8] (Figure
4.15). We briefly describe the two major components of the control architecture, the sensor
and the robot cognition, which are highly related to our motion tracking algorithm.

66

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

Time (sec)

R
M

S
 P

os
iti

on
 E

rr
or

 (
cm

)

KF
IMM
TBPF

Figure 4.10: RMS position error versus time

The goal of vision is to provide as many valid estimates of objects as possible. Tracking
then fuses this information to track the most interesting objects of relevance to the robot.
We use one pan-tilt camera as the vision sensor. We do not discuss the localization of the
robot in the sense that a lot of soccer tasks can be done by the Segway RMP robot without
localization knowledge. Also we use global reference for position and velocity in this thesis
which means it is relative to the reference point where the robot starts to do dead reckoning.

We have equipped each robot with infrared sensors (IR) to reliably detect the objects located
in the catchable area of the robot. Its measurement is a binary value indicating whether or
not an object is there. In most cases, this is the blind area of the pan-tilt camera. Therefore,
the infrared sensor is particularly useful when the robot is grabbing the ball.

67

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1
IMM

Free

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

M
od

el
 P

ro
ba

bi
lit

ie
s

Grabbed

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

Time (s)

Kicked

Figure 4.11: IMM tracking result: model probabilities

4.4.5 Test on the Real Robot

In the real-world test, we do experiments on the Segway RMP soccer robot executing the
tactic grab and kick. In all runs, the robot starts with the skill search. When it finds the
ball, the ball will be kicked directly to the robot. Then the robot grabs the ball after the ball
is in the catchable area and is detected by the infrared sensor. Each run ends with the skill
kick. And two seconds later after the kick if the robot can still see the ball, we count this
run as successful. Anytime the robot begins executing the skill search a second time, we
count that run as fail. That is to say, we only permit one searching which is at the beginning
of each run, after that, the robot should consistently keep track of the ball. Note that in the
grab and kick tactic, the robot is commanded to search the ball if the ball is not visible in
0.5 sec. In the experiments over 45 runs, the tracker with a single model fails 94.5% of the
total runs. While the grab and kick based TBPF tracker only lost the ball 13.2% of the
total runs.

68

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1
TBPF

Free

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

M
od

el
 P

ro
ba

bi
lit

ie
s

Grabbed

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

Kicked

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

Time (s)

Bounced

Figure 4.12: TBPF tracking result: model probabilities

Figure 4.16 shows how the TBMM tracker beats the single model tracker. In Figure 4.16
(a) and (b), graphs in the first row show the speed estimation results; graphs in the second
row show the corresponding IR sensor readings (ON/OFF, or 1/0), indicating whether the
ball is detectable by the IR sensor; graphs in the last row show the binary information of
whether the ball is in the FOV of the camera (Y/N) from the single model tracker and the
TBPF tracker respectively.

Because in each run, the ball is moving towards the robot, then it is kicked away by the robot,
the IR sensor always outputs 0 before the robot grabs the ball and after the robot kicks the
ball. It outputs 1 when the robot is grabbing the ball and aiming at the object. The most
interesting thing happens at the time after the robot kicks the ball and the IR sensor outputs
0 again. In Figure 4.16 (a), the ball is visible in some few frames and is finally lost due to
the underestimation of the ball speed. In Figure 4.16 (b), the ball is visible consistently
thanks to the correct estimation of the ball speed as soon as the IR sensor outputs 0. This
change of IR sensor measurement triggers the motion model of most particles transiting from

69

50 100 150
−20

0

20

40

60

80

100

120

140

Kick Speed (cm/s)

R
M

S
 P

os
iti

on
 E

rr
or

 (
cm

)

KF
IMM
TBPF

Figure 4.13: RMS position error versus the maximum kicking speed

Grabbed-Ball to Kicked-Ball then to Free-Ball, which models exactly what is going on in the
real world.

4.5 Summary

In this chapter:

• We contribute a method to achieve efficient tracking through using a tactic-based
motion model. The tactic-based motion modeling method gives the robot a more exact
task-specific motion model when executing different tactics over the tracked object.

• We present a method to combine the vision and infrared sensory information. The
infrared sensor provides useful information of the tracked object when the object moves
into the blind area of the vision sensor.

• We represent the system in a compact dynamic bayesian network and propose a TBPF
algorithm to keep track of the motion model and object state through sampling.

70

60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

90

100

Kick Speed (cm/s)

P
er

ce
nt

 o
f t

im
e

in
 th

e
vi

ew
 o

f t
he

 c
am

er
a

(%
)

KF
IMM
TBPF

Figure 4.14: The percent of time in the view of the camera versus the maximum kicking
speed

• We give three performance metrics to compare tracking performance of different track-
ers. We show the efficiency of TBPF over single model tracking and IMM through the
empirical results from the simulated and the real experiments.

71

Figure 4.15: The Segway RMP soccer robot equipped with a kicker, a catcher, infrared
sensors, and a camera mounted on a custom pan-tilt unit.

72

0 1 2 3
0

0.5

1

S
pe

ed
 (

m
/s

)

Single Model

0 1 2 3
0

0.5

1

IR
 R

ea
di

ng
 (

O
N

/O
F

F
)

0 1 2 3
0

0.5

1

(a) Time (sec)

In
 C

am
er

a
F

O
V

 (
Y

/N
)

0 1 2 3 4
0

0.5

1

TBMM

0 1 2 3 4
0

0.5

1

0 1 2 3 4
0

0.5

1

(b) Time (sec)

Figure 4.16: grab and kick speed estimation (a) Single model tracking. (b) Tactic-based
multi-model tracking (TBPF).

73

74

Chapter 5

Tracking Using Team Actuation
Model

Robots in a team collaborate according to pre-defined coordination plans or dynamic com-
munication. For example, if it is the case that a teammate is manipulating the ball, the
robot that is not controlling the ball can predict the ball’s motion by reasoning about the
possible teammate actions. All the players on the field can also actuate over the ball, namely
grab and kick the ball according to the rules which makes the motion model of the ball even
more complex. While we may not know of the actuation of the opponents, known team
coordination plans provide valuable information that can be incorporated into the motion
modeling and tracking process.

When team plans may not be available, we develop our solution to integrate the commu-
nication information into a team-driven multi-model motion tracking. If communication
between teammates is allowed, the robot that is not controlling the ball can explicitly know
what the action is from their teammates. Actuation on the targets is sent as communication
messages to a specified team member to update and synchronize the motion model of the
tracked target.

The organization of this chapter is as follows. We describe the concept of play as a team plan
in our robot cognition architecture. We extend the tactic-based tracking scheme introduced
in the previous chapter to solve a plan-dependent tracking problem. We then show our
team-based mechanism to incorporate team communication into tracking. We evaluate our
approach using simulated tests and Segway robots.

75

5.1 Plays

A play, P , is a fixed team plan consisting of a set of applicability conditions, termination
conditions, and N roles, one for each team member [7]. Each role defines a sequence of tactics
T1, T2, · · · and associated parameters to be performed by that role in the ordered sequence.
Assignment of roles to team members is performed dynamically at run time. Upon role
assignment, each robot i is assigned its tactic Ti from the current step of the sequence for
that role.

Two different plays are used in the test. The first play is defined in Table 5.1.

PLAY Play 1

APPLICABLE offense

DONE aborted !offense

ROLE 1

pass 2
none

ROLE 2

position for pass

receive pass

shoot

none

Table 5.1: A simple example play: Play 1.

Each play has two roles as we focus on two teammates. A role consists of a list of tactics
for the player to perform in sequence. In the example, play 1 in Table 5.1, there are two
roles. The first role has only one tactic to execute. The second role has three sequenced
tactics (behaviors). In this case the robot will position first. After the first tactic finishes,
the robot filling that role will switch to the receive pass tactic and try to intercept the
ball. After the second tactic finishes, the robot will switch to shoot tactic and try to kick
the ball toward the goal. The complete sequence of behaviors is illustrated in Figure 5.1.

The second play is defined in Table 5.2. In this play, both roles have sequenced behaviors,
which require coordination between the two players. In this play, one player is assigned to
pass the ball to another player. Once the pass behavior is completed, all the roles transition
to their next behavior. The passing player will switch to a position for pass behavior,

76

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
Ball
Robot
Human

Figure 5.1: An illustration of the sequence of behavior execution of play 1.

PLAY Play 2

APPLICABLE offense

DONE aborted !offense

ROLE 1

pass 2
position for pass

receive pass

pass 2
none

ROLE 2

position for pass

receive pass

pass 1
position for pass

receive pass

shoot

none

Table 5.2: Play 2 that involving sequencing of behaviors.

77

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
Ball
Robot
Human

Figure 5.2: An illustration of the sequence of behavior execution of play 2.

and the target of the pass will switch to a behavior to receive the pass, after which it will
switch to a pass behavior. The complete sequence of behaviors is illustrated in Figure 5.2.
The figure shows the initial position of the ball, the robot and the human player. The figure
also shows the moving trajectory of the ball as the dotted lines with arrows.

Table 5.3 concludes the tactics used in our example play along with a brief description.

Tactic Description
pass kick the ball toward a teammate.
shoot kick the ball to go into the goal.
position for pass move to a position on the field to anticipate a pass.
receive pass move to a position to receive a pass.

Table 5.3: List of tactics used in our example play along with brief descriptions.

5.2 Play-Based Model Transitions

In this section, we take an object tracking problem as a detailed example to show the
extension of the tactic-based motion modeling method in general when the team coordination

78

knowledge (play) is incorporated. First we give an introduction of the environment and
objects under the Segway soccer setup. Second, we describe detailed motion models for both
the ball and the teammember. Third, we extend the tactic-based motion modeling to the
play level when both the ball and the teammember are included into the tracking. We show
how we model the play-dependent interactions between the teammember, the robot and the
ball and set up a base for giving the multi-model tracking algorithm in the next section.

5.2.1 Tracking Scenario

Many tracking scenarios involve multiple moving targets. In a Segway soccer test, we need
to track the ball and the team member. Each team is identified by their distinct color. The
ball is orange [40]. We use two separate trackers instead of one because we can differentiate
the ball with the team member thanks to the color-based vision system.

Ball Motion Modeling

In our Segway RMP soccer robot environment, we define six models to model the ball motion
(for the rest of this chapter, for simplicity, we use xt to represent the ball state, and use x′

t

to represent the teammember state).

• Free-Ball, Grabbed-Ball, and Bounced-Ball. They are the identical models we use in
Chapter 4.

• Human-Grab-Ball. The ball is held by the teammember. we can infer the ball position
if we know the teammember position well.

• Kicked-Ball. The ball is kicked by the robot or the teammember. Based or whether it
is a pass to the teammember or a shot at the goal, we further introduced two motion
models Passed-Ball and Shot-Ball.

Table 5.4 concludes the model index and the corresponding ball motion model in this chapter.

Teammember Motion Modeling

We define four models to model the teammember’s motion.

79

m Ball motion model
1 Free-Ball
2 Grabbed-Ball
3 Human-Grabbed-Ball
4 Passed-Ball
5 Shot-Ball
6 Bounced-Ball

Table 5.4: The model index and the corresponding ball motion model.

• Random Walk. The teammember is wandering in the field. So the state at the new
time is the state at the current time with some additive zero-mean (assumed Gaussian)
noise.

• Holding Ball. The teammember is holding the ball without moving and waiting for the
robot to receive the ball. Should the robot know the ball position well, it can infer the
teammember position by the ball position in a similar way as Robot-Grab-Ball for ball
motion modeling.

• Accelerating/Stopping. The teammember dashes and obtains a velocity or stops in a
short time.

• Positioning. The teammember is going to a predefined tactical position with a constant
speed. This case happens mostly after the teammember passing the ball to the robot
and moving down the field toward opponent’s goal.

5.2.2 Play-Based Motion Model

Given the knowledge of the team coordination plan (the play Pt−1 at time t−1), the robot can
infer what tactic the teammember is executing (T ′

t−1), which provides valuable information
about the motion model of the teammember (m′

t). Both the robot and the teammember act
on the ball in a Segway soccer game. The motion model of the ball (mt) is therefore affected
by what tactic the robot (Tt−1) and the teammember (T ′

t−1) are executing.

From the previous subsection, we know that the model index m determines the present
model being used. For our teammember tracking example, m′

t = i, i = 1, · · · , 4. In our
approach, it is assumed that the teammember motion model index, m′

t, conditioned on the
previous tactic executed T ′

t−1 by the teammember, and other useful information v′t (such

80

as ball state), is governed by an underlying Markov process, such that, the conditioning
parameter can branch at the next time-step with probability.

π′
i,j = P(m′

t = i|m′
t−1 = j, T ′

t−1, v
′
t) (5.1)

where i, j = 1, · · · , Nm′ . Since T ′
t−1 can be determined by Pt−1, we get

π′
i,j = P(m′

t = i|m′
t−1 = j,Pt−1, v

′
t) (5.2)

(a)

Ra ndom
W a lk

P osition-
ing

H old
Ba ll

(b)

F ree

H um a n
G ra b

Robot
G ra b

R obot
Kick

H um a n
K ic k

A c c

Figure 5.3: Object motion modeling based on the play: Naive Offense. Each node is a
model. Models transit to one another according to the predefined probabilities (not shown
in the figure). (a) Ball motion model. (b) Human teammember motion model.

For our ball tracking example, mt = i, i = 1, · · · , 6. Similarly,

πi,j = P(mt = i|mt−1 = j, Tt−1, T ′
t−1, vt) (5.3)

where i, j = 1, · · · , Nm. Since Tt−1, T ′
t−1 can be determined by Pt−1, we get

πi,j = P(mt = i|mt−1 = j,Pt−1, vt) (5.4)

Suppose the current team play is the Play 1 in Section 5.1, we can obtain the corresponding
motion model transitions for both the ball and the teammember using the play-based method
(Figure 5.3).

In general, to build the Play-Based Motion Model (PBMM), we need first to use the informa-
tion contained in plays to identify the related team behavior and individual robot behavior.
We use the robot behavior to identify the object motion models that are affected by the
robot’s actions. We construct the transition probability matrix of various object motion
models based on the identified robot behavior and their actions on the object.

81

5.3 Communication

In the previous section, we introduce an extension to the tactic-based tracking to solve the
plan-dependent object tracking problem. The dynamic multiple motion models are based
on the predefined team coordination plan. Communication between robots is not used and
every robot coordinates based on observation only. In some cases, when the tactics of the
team member are not exactly determined, the motion model of the target is unprecise so
that the tracking performance will be affected seriously.

Communication improves the performance of a multi-agent system [19]. When communica-
tion is enabled, a shared world model that stores the state of the team can be constructed.
The focus of this chapter is to present our solution to integrate the communication infor-
mation into our team-driven multi-model motion tracking. The techniques that we describe
are applicable to any domain where a team of agents are cooperating on a specific task and
any of them can actuate on the targets in the field. Actuation on the targets is sent as
communication messages to a specified team member to update and synchronize the motion
model of the tracked target.

5.3.1 Types of Communicated Message

Each communicated message will be repeated for the several following time steps to avoid
possible data loss in transmission. We define three types of communication messages in
terms of different actuation model. Each type of message has a unique message ID.

• Hold: After grabbing the ball, robot announces “hold” indicating the ball is under
its kicker.

• Shoot: Robot announces “shoot” when it kicks the ball to the opponent’s goal.

• Pass: Robot announces “pass“ when it decides to pass the ball to its teammate.

5.3.2 Communication-Based Motion Model

Given the communication information (Ct−1 = {None,Hold,Shoot,Pass}), the robot can
infer which motion model the ball should take. The motion model of the ball (mt) is therefore
affected by what tactic the robot (Tt−1) is executing and what actuation the teammate is
doing.

82

We know that the model index m determines the present motion model being used. For
our ball tracking example, mt = i, i = 1, · · · , 6. In our approach, it is assumed that the
team member motion model index, mt, conditioned on the previous tactic executed Tt−1 by
the robot, the communication message Ct−1 which indicates teammate actuation, and other
useful information vt (such as ball state and infrared sensor reading), is governed by an
underlying Markov process, such that, the conditioning parameter can branch at the next
time-step with probability.

πi,j = p(mt = i|mt−1 = j, Tt−1, Ct−1, vt) (5.5)

Note that Ct−1 = None indicates no message is received in the current time step. While
Ct−1 6= None indicates a message is received concerned with a teammate actuation.

5.4 Team-Based Tracking Algorithms

In this section, we first use dynamic Bayesian networks to represent the whole system.
We give the detailed Play-Based Particle Filtering (PBPF) algorithm of tracking in a multi-
model multi-hypothesis scheme. We further include the communicated information to extend
PBPF into Communication-Based Particle Filtering (CBPF).

5.4.1 DBN Representation

Following the play-based motion model, we can use dynamic Bayesian networks (DBNs) to
represent the whole system for team member and ball tracking in a natural and compact
way as shown in Figure 5.4 and Figure 5.5 respectively. For the rest of this section, we give
the ball-tracking algorithm following Figure 5.5. The team-member-tracking algorithm can
be obtained similarly following Figure 5.4.

5.4.2 Play-Based Particle Filtering (PBPF) Algorithm

We use the sequential Monte Carlo method to track the motion model m and the object
state x. Particle filtering is a general purpose Monte Carlo scheme for tracking in a dynamic
system [11]. It maintains the belief state at time t as a set of particles p

(1)
t , p

(2)
t , · · · , p(Ns)

t ,

83

x 'k -1

x 'k

z'k -1

z'k

m'k-1

m'k

Vis ion
Measure-
m ent

 StateTeam M emb er
M o tio n
M o d el

x 'k+ 1 z'k +1m'k +1

P k-2

P k-1

Play
(shared)

P k

T 'k-2

T'k-1

T eam
Mem ber
T ac tic

T'k

Figure 5.4: A dynamic Bayesian network for team member tracking. Filled circles represent
deterministic variables which are observable or are known as the tactic or the play.

where each p
(i)
t is a full instantiation of the tracked variables {p(i)

t , w
(i)
t }, w

(i)
t is the weight of

particle p
(i)
t and Ns is the number of particles. In our case, p

(i)
t = 〈x(i)

t , m
(i)
t 〉.

We sample the object motion model following the object-tracking DBN as below:

m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, T ′

t−1) (5.6)

Note that Tt−1 and T ′
t−1 are inferred deterministically from Pt−1 instead of sampling. Con-

ditioned on the object motion model m
(i)
t , we then use the importance function introduced

in [30] to sample the object state x
(i)
t :

x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1). (5.7)

Table 5.5 lists our PBPF algorithm in detail.

The inputs of the algorithm are samples drawn from the previous posterior 〈x(i)
t−1, m

(i)
t−1, w

(i)
t−1〉,

the present vision and infrared sensory measurement zt, st, and the tactic Tt. The outputs
are the updated weighted samples 〈x(i)

t , m
(i)
t , w

(i)
t 〉. In the sampling algorithm, first, a new

object motion model index, m
(i)
t , is sampled according to Equation 5.6 at Line 2. Then

given the model index, and previous object state, a new object state is sampled according

84

x t -1

x t

zt -1

zt

mt -1

mt

Tt-2

Tt -1 st

s t-1

Vis ion
Measurem ent

 StateBall M o tio n
 M o d el

Robot
T ac tic

Infrared
Sensor

x t +1 zt +1mt +1

Tt s t+ 1

P t-2

P t-1

Play

P t

T't-1

T eam -
m ate
T ac tic

T't

T 't-2

Figure 5.5: A dynamic Bayesian network for play-based object tracking.

to Equation 5.7 at Line 3. The importance weight of each sample is given by the likelihood
of the vision measurement given the predicted new ball state at Line 4. Finally, each weight
is normalized and the samples are resampled. Then we can estimate the object state based
on the mean of all the x

(i)
t .

5.4.3 Communication-Based Particle Filtering (CBPF) Algorithm

With the communication information, robots do not need to infer teammate’s tactic from
the team play any more if received message is not none [17]. Instead, every actuation
on the ball is announced to keep the ball motion updated among team members. After
including communicated information, the DBN is updated as in Figure 5.6. Note that the
motion model is not dependent on teammate’s play or tactics when the received message
is not none, since the communication message contains all the information presented by
teammate’s tactics.

Table 5.6 lists our CBPF algorithm in detail.

85

[{x(i)
t , m

(i)
t , w

(i)
t }Ns

i=1] = PBPF[{x(i)
t−1, m

(i)
t−1, w

(i)
t−1}Ns

i=1, zt, st, Tt, T ′
t]

1 for i ← 1 to Ns

2 do draw m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt, T ′

t)

3 draw x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1)

4 w
(i)
t ← p(zt|x(i)

t)

5 Calculate total weight: w ←
∑

[{w(i)
t }Ns

i=1]
6 for i← 1 to Ns

7 do Normalize: w
(i)
t ← w

(i)
t /w

8 Resample

Table 5.5: PBPF algrithm.

Compared to the PBPF algorithm in Table 5.5, the modifications is made when we do
receive a message from the teammates. Otherwise, it runs the same sampling procedures as
in PBPF.

5.5 Results

In this section, we introduce the performance metrics we use to compare the tracking per-
formance of three trackers. We evaluate the effectiveness of our tracking system in both
simulated and real-world tests. We evaluate the target detection performance between our
method and IMM.

5.5.1 Metrics

We present a performance comparison of four tracking algorithms:

• A simple Kalman filter (KF) using a single model (Free-Ball).

• TBPF using multiple motion models and multi-sensor observations introduced in Chap-
ter 4. The new motion models that describe the human team member’s actions on the
object introduced in this chapter are not included. The transitional probability ma-

86

x t -1

x t

zt -1

zt

mt -1

mt

Tt-2

Tt -1 st

s t-1

Vis ion
Measurem ent

 StateBall M o tio n
 M o d el

Robot
T ac tic

Infrared
Sensor

x t +1 zt +1mt +1

Tt s t+ 1

Ct-2

Ct-1

Ct

Com m

Figure 5.6: A DBN for team-driven object tracking when communication is enabled.

trices are determined by robot’s tactic and additional state information like the ball’s
predicted global position.

• PBPF using all the motion models described in this chapter. The transitional prob-
ability matrices are determined by robot’s tactic, the team member’s tactic inferred
from the play, and additional state information.

• CBPF using all the motion models described in this chapter. Besides the factors
mentioned in PBPF, the transitional probability matrices are determined by the com-
municated information as well.

The comparison is based on a set of Monte-Carlo (MC) simulations and real robot test.
Besides the performance metrics defined in Chapter 4, we give two more metrics.

• The root-mean square(RMS) velocity error;

• The execution time of a certain play. This metric shows how soon a play is finished.
As we know, in a competition game, the less time we use to finish a play, the more
chance we have to win.

87

[{x(i)
t , m

(i)
t , w

(i)
t }Ns

i=1] = CBPF[{x(i)
t−1, m

(i)
t−1, w

(i)
t−1}Ns

i=1, zt, st, Tt, T ′
t]

1 for i ← 1 to Ns

2 do if Ct−1 = None

3 then draw m(i) ∼ p(mt|m(i)
t−1,x

(i)
t−1, st, Tt−1, T ′

t−1)

4 else draw m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, Ct−1)

5 draw x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1)

6 w
(i)
t ← p(zt|x(i)

t)

7 Calculate total weight: w ←
∑

[{w(i)
t }Ns

i=1]
8 for i← 1 to Ns

9 do Normalize: w
(i)
t ← w

(i)
t /w

10 Resample

Table 5.6: CBPF algrithm.

5.5.2 Simulation Experiments

Simulated experiments are done following the play 1 and play 2 in Table 5.1 and 5.2 respec-
tively. In each trial, the ball’s initial position is at (-40, -30) and its initial speed is set to
zero. The robot’s initial position is at (-35, -20). The human player’s initial position is at
(20, 10).

Unless otherwise mentioned, the nominal filter parameters used in the simulation are listed
in Table 6.4. The kicking speed is 100 cm/s and the direction depends on whether it is a pass
or shoot. The process noise v and the sensor noise w are set to be identical in all models.
We decrease the speed decay d to consider more frictions and make the ball’s movement slow
down. As a result, simulated agents will be able to intercept the moving ball.

v ∼ N (0, Q), the process noise covariance matrix

Q =


0.5 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.2

 (5.8)

88

w ∼ N (0, R), the sensor noise covariance matrix

R =

[
1 0
0 1

]
(5.9)

Parameter Value Description
∆t 0.033 The time interval between two consecutive vision frames
d 0.96 Speed decay
T 200 Total time steps in one Monte Carlo run
M 50 The number of MC runs
Ns 500 The number of particles
Nthr Ns/3 Particle resample threshold
w0 [0.9 0.1 0 0] Initial model probabilities

Table 5.7: The nominal filter parameters used in the simulation.

Figures 5.7 and 5.8 display the output of the PBPF using play 1 at time t = 4, 23, 24, 27, 75,
77, 79, and 86 in one MC run, respectively. The left-hand side in this set of figures always
shows the distribution of particles (x

(i)
t , y

(i)
t) at time t, with their weighted mean value (x̂t, ŷt)

represented by a green x-mark. The true position of the ball at time t (xt, yt) is represented
by a red circle. The true velocity of the ball at time t (ẋt, ẏt) is represented by the red line.
The estimated ball velocity (ˆ̇xt, ˆ̇yt) is represented by the cyan line.

The right-hand side presents the probabilities of models. For example, at t = 4 , the ball
is still at its initial position. The robot is coming towards the ball. The particles are
distributed surround the position of the ball. The dominant model is Free-Ball. At time
t = 23, the IR sensor outputs 1 which indicates the ball is being grabbed by the robot. Most
of the particles are distributed close to the true ball position. The probability of model 2
(Grabbed-Ball) is approximately 0.85, which is the dominant model at this time. Observe
from the 3rd subgraph in Figure 5.7, the ball is being kicked out. Note that the ball velocity
prediction (cyan line) is very close to the true ball velocity (red line). The dominant motion
model changes to (Passed-Ball). At time t = 27, robot already finishes its behavior and
it assumes the human player is executing the tactic receive_pass. The first subgraph in
Figure 5.8 corresponds to t = 76 and the human player is holding the ball. The motion
model prediction shows the current dominant model is model 3 (Human-Grabbed-Ball). At
time t = 79, model 5 (Shot-Ball) is becoming dominant. In the last subgraph in Figure 5.8,
the ball is bouncing off the field border. The change of model probabilities is consistent with
the model variations.

The first trial examines the error performance of the PBPF using play 1 for varying values

89

of the number of particles. Figure 5.9 show the RMS position error as a function of the
number of particles for 50 ≤ Ns ≤ 1000. As expected, we see an improvement in performance
as the number of particles is increased. However, note that as Ns is increased beyond 500,
there is insignificant improvement in performance. Thus we us Ns = 500 in our following
simulations.

The second trial examines the RMS position error and velocity error versus time for the
KF, TBPF, and PBPF. The performance result following play 1 and play 2 are shown in
Figure 5.10 and 5.11 respectively. A summary of these results are also tabulated in Table
5.8 and 5.9. We see that the PBPF achieves the best performance with the minimum RMS
error compared to TBPF and KF. While the KF and TBPF show a tendency to diverge
which results in subsequent poor track estimates. Note that TBPF performs much better
than KF when the ball is manipulated by the robot. Because in this case, robot’s own tactic
provides enough information to predict the ball’s motion model. While the ball is controlled
by the human teammate, TBPF has little performance advantage over KF since it does not
consider the teammate’s actions on the ball. PBPF extends the idea of TBPF and includes
the inferred teammate’s tactic to predict the ball’s motion model.

Algorithm RMS Position RMS Position RMS Velocity RMS Velocity
Mean (cm) Std (cm) Mean (cm/s) Std (cm/s)

KF 2.1638 0.0692 38.3330 0.9038
TBPF 1.7748 0.2158 23.5554 2.8932
PBPF 0.5862 0.3599 4.1461 4.9243

Table 5.8: Play 1: RMS error comparison for three trackers

Algorithm RMS Position RMS Position RMS Velocity RMS Velocity
Mean (cm) Std (cm) Mean (cm/s) Std (cm/s)

KF 2.1339 0.0572 37.1350 0.7692
TBPF 2.0683 0.2099 25.3736 4.7967
PBPF 0.5031 0.0680 4.0677 1.6480
CBPF 0.4951 0.1598 3.75 2.8338

Table 5.9: Play 2: RMS error comparison for three trackers

The third trial examines the metric ηFOV and the execution time for the KF, TBPF, and
PBPF using play 1 and play 2. A summary of these results are tabulated in Table 5.10
and 5.11. The results show that the robot using PBPF almost keeps the ball in field of
view all the time and finishes the execution of both plays in the shortest time. As we

90

expected, TBPF performs better than KF since approximately half of the time the robot is
manipulating the ball. TBPF begins to show its inability to keep the ball in its camera’s
visible area after the robot passes the ball to the human player. Due to the inaccurate
estimation of ball position and velocity, though the robot and the simulated human player
use the identical way to intercept the ball, the player that use KF or TBPF takes more time
to catch the ball.

Algorithm ηFOV mean ηFOV std mean time used std time used
KF 70.3 2.48 102.68 10.89

TBPF 84.22 4.33 96.9 10.12
PBPF 98.8 3.11 87.46 5.27

Table 5.10: Play 1: Performance comparison for three trackers

Algorithm ηFOV mean ηFOV std mean time used std time used
KF 67.12 2.47 195.2 19.67

TBPF 79.88 7.07 176.9 18.77
PBPF 99.86 0.38 162.9 9.82
CBPF 99.86 0.48 163 9.18

Table 5.11: Play 2: Performance comparison for three trackers

The fourth trial examines the performance improvement after integrating team communi-
cated message using play 2. Figure 5.12 shows the RMS error for varying amount of sensor
noise. Note that the default sensor noise w ∼ N (0, R). In this test we set the covariance
of sensor noise to be 2R, 5R, 8R, 11R. From the result, we find that for a large amount of
sensor noise, the CBPF shows the least degradation in performance.

5.5.3 Team Cooperation Test

In the real-world test, we do experiments on the Segway RMP soccer robot executing the
offensive play and coordinating with the human teammember. The test setup is demon-
strated in Figure 5.13, in which the digits along the lines show the sequence of the whole
strategy, the filled circle at position B represents the robot, the unfilled circle at position E
represent an opponent player, and the shaded circle represent the human teammember.

When each run begins, the human teammember is at position A. With this team cooperation
plan (play), the robot chooses the tactic receive pass to execute, in which the robot starts

91

with the skill search. When the robot finds the ball, the teammember passes the ball directly
to the robot and chooses a positioning point to go to either at C or D. The robot grabs
the ball after the ball is in the catchable area and is detected by the infrared sensor (skill
grab ball). Next the robot searches for the teammember holding the ball with its catcher
(skill search teammember). After the robot finds the teammember, the robot kicks the
ball to its teammember and the teammember shoots at the goal (skill kickto teammember,
completing the whole offensive play. Each run ends in one of the following conditions.

• Succeed if the human receives the ball from the robot or the human does not receiver
the ball but the pass is directed to a close area (the distance to the human is less than
0.5 m) to the human.

• Fail if the robot is in searching for the ball or the teammate for more than 30 seconds.
The size of game field in Segway soccer is much larger than that of any RoboCup
league. It takes a Segway robot approximately 15 seconds to scan the whole field using
its pan-tilt camera. We pick a threshold value to be 30 seconds so as to allow the robot
scanning no more than twice.

• Fail if the ball is outside the field boundary before the robot catches it.

In the experiment over 25 runs, the robot with single model trackers fails 8 of the total.
While the robot with play-based multi-model trackers fails 3 of the total. We also keep
track of the mean time taken in all the successful runs. We list the result in Table 5.12.
Using play-based multi-model tracking saves 32.3% time in terms of completing the whole
play over single model tracking. During the experiment, we note that when using the single
model tracking, most time were spent on searching the teammember. Incorporating the
team cooperation knowledge known as play into the teammember motion modeling greatly
improves the accuracy of the teammember motion model and therefore avoids taking time
in searching a lost target from scratch.

Motion Model Single Model Multi-Model

Mean Time (sec) 33.4 22.6

Table 5.12: The average time taken over all the successful runs.

92

5.5.4 Team Communication Test

In the real-world test, we do experiments on the Segway RMP soccer robot executing the
receive pass tactic to receive ball from robot teammate. The teammate robot is executing
the pass tactic. When the kick motion is done, the teammate announces the “pass” message
through peer-to-peer communication. We implement multi-model tracker with and without
including communication information to compare the performance.

Figure 5.14 plots the ball speed estimation results from each tracker in one of the experi-
ment. As is shown in the figure, the estimation without communication lags from the true
value about 0.5 s, while the estimation with communication is well predicted because the
announcement is received right after the actuation is made. To illustrate the superior track-
ing of the tracking with communication, Figure 5.15 and 5.16 plots the corresponding model
weighting from each tracker. We can clearly see that the model transition in Figure 5.16 ex-
actly describes the real world testing scenario in which motion model transits from Free-Ball
to Passed-Ball, then Free-Ball and at last Grabbed-Ball.

5.6 Summary

In this chapter:

• We extend the tactic-based tracking to include team-level coordination plan. This
extension enables the tracker to use more exact motion models when team members
are acting on the tracked object.

• We give a Play-Based Particle Filtering algorithm to keep track of the motion model
and object state through sampling.

• We include communicated messages between teammates to further improve the motion
model of the object. We give a Communication-Based Particle Filtering algorithm that
extends PBPF when communication is enabled.

• We use a few performance metrics proposed in previous chapter. We give two new
performance metrics to compare tracking performance of different trackers.

• We show the efficiency of the PBPF and CBPF over single model tracking and TBPF
through the empirical results from the simulated and the real experiments.

93

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=4, IR = 0, Bounced = 0

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=23, IR = 1, Bounced = 0

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=24, IR = 0, Bounced = 0

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=27, IR = 0, Bounced = 0

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

Figure 5.7: The snapshots of the particle cloud and the model probabilities at t = 4, 23, 24,
and 27. 94

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=75, IR = 0, Bounced = 0

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=77, IR = 0, Bounced = 0

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=79, IR = 0, Bounced = 0

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

−50 0 50
−40

−30

−20

−10

0

10

20

30

40
t=86, IR = 0, Bounced = 12

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

Figure 5.8: The snapshots of the particle cloud and the model probabilities at t = 75, 77,
79, and 86. 95

0 200 400 600 800 1000 1200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Particles

R
M

S
 P

os
iti

on
 E

rr
or

 (
cm

)

Play 1
Play 2

Figure 5.9: RMS position error versus the number of particles

96

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

Time

R
M

S
 P

os
iti

on
 E

rr
or

 (
cm

)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

Time

R
M

S
 V

el
oc

ity
 E

rr
or

 (
cm

/s
)

KF
TBPF
PBPF

KF
TBPF
PBPF

Figure 5.10: Play 1: RMS position error and velocity error versus time.

97

0 50 100 150 200 250
0

1

2

3

4

5

Time

R
M

S
 P

os
iti

on
 E

rr
or

 (
cm

) KF
TBPF
PBPF

0 50 100 150 200 250
0

20

40

60

80

Time

R
M

S
 V

el
oc

ity
 E

rr
or

 (
cm

/s
)

KF
TBPF
PBPF

Figure 5.11: Play 2: RMS position error and velocity error versus time.

98

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Noise level

R
M

S
 P

os
iti

on
 E

rr
or

 (
cm

)

KF
PBPF
CBPF

Figure 5.12: Play 2: RMS position error versus the amount of noise.

��A
B

E

�C

��
��D

1
2'2

3 3'

4 4'

Figure 5.13: A demonstration of a naive team cooperation plan in offensive scenario. The
digits along the lines show the sequence of the whole plan. The filled circle at position B
represents the robot. The unfilled circle at position E represent an opponent player. The
shaded circle represent the human teammember.

99

4 4.5 5 5.5 6 6.5 7 7.5 8
0

1

2

sp
ee

d
(m

/s
) no comm

w/ comm

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

IR
 R

ea
di

ng
 (

O
N

/O
F

F
)

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

time (s)

C
om

m
 (

Y
/N

)

Figure 5.14: Ball speed estimation results from the multi-model tracker with and without
including the communicated information.

100

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

M
od

el
 W

ei
gh

tin
g

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

Time (sec)

Free Ball

Grabbed Ball

Robot−Kick−Ball

Human−Kick−Ball

Figure 5.15: Model weightings when communication is disabled.

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1
Free Ball

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

Grabbed Ball

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

M
od

el
 W

ei
gh

tin
g

Robot−Kick−Ball

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

0.5

1

Time (sec)

Human−Kick−Ball

Figure 5.16: Model weightings when communication is enabled.

101

102

Chapter 6

Learning of Actuation Models

Many engineering applications are characterized by nonlinear or linear dynamic systems with
a few possible modes (models) [14]. For example, an industrial plant may have multiple dis-
crete modes of behavior, each of which has approximately linear dynamics. These problems
are often referred to as jump Markov or hybrid-state estimation problems [11].

This chapter addresses estimating state and learning motion models in such a hybrid-state
system. We are interested in tracking the ball in a robot soccer domain. This is a highly
dynamic and multi-agent environment. All the robots in the field actuate on the ball, e.g.,
grab and kick the ball, making the motion model of the ball very complex [25].

Any model consists of one or multiple parameters. Usually the model parameters are set
by a human expert, based upon the experience with the environment and the robot. In
this chapter, we present a novel method of automating the procedure of acquiring this
probabilistic motion model. We present a parametric system model. We apply particle
filtering and extend the use of KLD-sampling to learning parameters in this model. The result
is a fast algorithm which runs on-line and achieves accurate-enough learning of parameters.

This approach deals simultaneously with both unknown fixed model parameters and state
variables. This not only relieves the work burden from the human expert, but can be very
useful when the environment changes (e.g., moving from inside to outside). This approach
can be applied to learn the motion model of the teammate or even the opponent, as a
substrate for opponent modeling. Furthermore, this method provides a refined motion model
based on the current one, resulting in more accurate tracking.

103

6.1 Parametric System Model

As described in Section 3.5, a discrete-time hybrid system is given by:

xt = ft−1(xt−1, mt,ut−1,vt−1) (6.1)

zt = ht(xt, mt,wt) (6.2)

where f and h are the parameterized state transition and measurement functions; xt,ut, zt

are the state, input and measurement vectors at time t; vt−1,nt are the process and mea-
surement noise vectors. The covariances of vt−1,wt are respectively Qt−1 and Rt. The model
index parameter m can take any one of Nm values, where Nm is the number of models in
the system.

A discrete-time hybrid system with unknown parameters is given by:

xt = ft−1(xt−1, mt,ut−1,vt−1, θt−1) (6.3)

zt = ht(xt, mt,wt, θt) (6.4)

θ denotes the vector(s) consisting the unknown parameters, such as the variances of the
noises and the coefficients of the functions f and h.

We are interested in learning the opponent actuation model in order to improve the tracking
performance. In our Segway robot soccer setup, there are three related ball motion models
in terms of actuation:

• Passed-Ball. The ball is passed from one player to another. Suppose we know the
positions of the two players. We want to learn the initial speed µ of the ball and the
kicking angle φ as shown in Figure 6.1. In this case, θ = (µ, φ).

• Shot-Ball. The ball is kicked by the player to the goal. In this case, we know that
the ball is moving toward the goal. We want to learn the initial speed of the ball
after the ball leaves the catcher of the player. That is, we want to know how hard the
ball is being kicked. In this case, θ = µ. Therefore, this is a special case of learning
Passed-Ball.

• Grabbed-Ball. The ball is grabbed by the catcher. In this case, we assume the ball
moves with the player. If we know the position of the player, we can infer the position
of the ball. We do not learn any parameters of this model.

104

6.2 Learning of Actuation Model

The challenges of learning the parameter θ = (µ, φ) of the actuation model are as follows.

• The object’s motion consists of multiple motion models. We do not explicitly know
which motion model the object follows.

• The actuation model of the opponent may not be fixed. We need a learning algorithm
adapting to the opponent’s actuation model dynamically and quickly.

• The actuation on the ball happens sporadically. The effect of the actuation changes the
motion of the ball immediately. We need to identify the occurrences of the opponent’s
actuation. We need to learn the actuation parameters from the trajectory of the
actuated ball.

• The computation time required by the learning algorithm is limited. The learning
algorithm needs to be able to run on-line and its running time of each learning epoch
needs to be less than the incoming sensor data interval, e.g., 33 milliseconds.

Considering the above challenges, we propose a sampling-based algorithm to learn the op-
ponent’s actuation model.

• We partition the parameter space into discrete bins and initialize the bins with uniform
weights. The sum of the weighted bins represents the joint density estimation of the
parameters.

• We extend the multi-model particle filter by augmenting each particle with another
component: a bin id of the actuation model. We keep resampling the bin id after
detecting the occurrences of actuation by evaluating the predicted observations vs the
sensor measurement.

• We extend the use of KLD-sampling framework to learning and successfully decrease
the computation time of learning and the state estimation process.

6.2.1 Partition of Parameter Space

Without losing of generality, we first consider the case that only one of the models contains
unknown parameters. We partition the parameter space into b bins. Let ρ = (ρ1, ρ2, . . . , ρb)

105

denote the true probability of each bin. We draw n parameter samples from the discrete dis-
tribution with b bins, which results in a multinomial distribution, i.e., Θ ∼ Multinomialb(n, ρ).
Θ = (Θ1, Θ2, . . . , Θb) denotes the number of samples drawn from each bin. The sum of the
number of samples from each bin equals to n.

n∑
i=1

Θi = n (6.5)

A B
30o

Figure 6.1: The illustration of the unknown parameter: passing angle.

For example, suppose we have only one unknown parameter θ = φ, which is the kicking
angle of the opponent’s actuation model when passing the ball. In Figure 6.1, robot B is
passing the ball to A with a kicking angle φ = 30◦,−45◦ ≤ φ ≤ 45◦. If we use b = 7,
the parameter space can be uniformly partitioned into 7 discrete bins listed in Table 6.1.
The initial probability of each bin ρ0 = (1

7
, 1

7
, . . . , 1

7
). The goal of our learning process is to

approximate the true probability ρ of bins.

bin 1 2 3 4 5 6 7
φ (◦) -45 -30 -15 0 15 30 45
ρ0

1
7

1
7

1
7

1
7

1
7

1
7

1
7

Table 6.1: Partition of the parameter space.

106

6.2.2 Likelihood Function

From the parametric system model in Section 6.1, we know that the likelihood of the mea-
surement series (z1, z2, · · · , zT) from time 1 to T specified by the parameter θ is obtained
by

L(θ) = p(z1, z2, . . . , zT |θ) (6.6)

=
T∏

t=1

p(zt|z1:t−1, θ) (6.7)

The term p(zt|z1:t−1, θ) can be obtained by

p(zt|z1:t−1, θ) =

∫
p(zt|xt, θ)p(xt|z1:t−1, θ)dxt (6.8)

where p(zt|xt, θ) is the measurement likelihood and p(xt|z1:t−1, θ) is the predictive distribu-
tion.

We use a set of particles presented in Section 4.3 to approximate the posterior distribution
of p(xt−1|z1:t−1).

p(xt−1|z1:t−1) ≈
Ns∑
i=1

w
(i)
t−1δ(xt−1 − x

(i)
t−1) (6.9)

where Ns is the number of particles and w
(i)
t−1 is the weight associated with the ith particle

at time t− 1.

The predictive distribution is approximated by a one-step prediction

p(xt|z1:t−1, θ) ≈
Ns∑
i=1

w
(i)
t−1δ(xt − ft−1(x

(i)
t−1, mt,ut−1,vt−1, θ)) (6.10)

=
Ns∑
i=1

w
(i)
t−1δ(xt − x

(i)
t) (6.11)

where ft−1 is the state transition function at time t− 1.

Note that we compute the importance weight w
(i)
t with respect to the observation zt by

w
(i)
t = w

(i)
t−1 × p(zt|x(i)

t , θ). (6.12)

107

Therefore the term p(zt|z1:t−1, θ) can be approximated by

p(zt|z1:t−1, θ) ≈
1

Ns

Ns∑
i=1

w
(i)
t . (6.13)

The log-likelihood is given by

log L(θ) ∝ log
T∏

t=1

Ns∑
i=1

w
(i)
t (6.14)

=
T∑

t=1

log
Ns∑
i=1

w
(i)
t (6.15)

In the resampling step, we replicate particles in proportion to their weights. After resampling,
all particles have an identical weight. So that, in a recursive way to compute log L(θ), we
count the number of particles with specific bin id. We update the probability of each bin
(ρ) following the procedure as shown in Table 6.2.

1 for j ← 1 to b
2 do Θj ← Count the number of particles drawn from bin j
3 if Θj ≤ 1

4 then ρj
t ← ρj

t−1

5 else

6 ρj
t ← ρj

t−1 + log Θj

7 Normalize: ρj
t ← exp(ρj

t)/
∑b

j=1 exp(ρj
t)

Table 6.2: Update the probability of each bin.

6.2.3 Augment the State Vector of Particles

We extend the multi-model particle filter by augmenting a component θ
(i)
t to indicate the

bin id of the unknown parameters of the actuation model: p
(i)
t = 〈x(i)

t , m
(i)
t , θ

(i)
t 〉. θ

(i)
t is

dependent on m
(i)
t , i.e., the bin id indicated by θ

(i)
t corresponds to the motion model m. If

θ
(i)
t = 0, the particle i at time t does not related to any actuated motion. For example, if

108

m
(i)
t = 1, θ

(i)
t = 5, the particle i at time t has been actuated by the opponent using bin id 5

associated with motion model 1.

The change of the bin id of each particle can be summarized as follows:

• Initialization. The initial value of the bin id of each particle is 0. No actuation is
expected at the beginning of the learning process.

• Birth. When m
(i)
t = Passed-Ball or Shot-Ball, a bin id is sampled from the current

parameter distribution.

• Death. When m
(i)
t = Grabbed-Ball, a bin id is reset to zeros. That is, after the ball is

being caught by any player, the motion is changed. We stop the learning process.

• No Change. When m
(i)
t = Free-Ball, Bounced-Ball, there is no change to the bin id.

• Update. At the end of each particle evolution, we resample particles and update their
bin ids as shown in Table 6.2.

After resampling, we compute the weighted sum of the particles with the same bin id and
update their corresponding log-likelihood of the measurements using Equation 6.15.

6.2.4 Adapting the Number of Particles

The key idea of KLD-sampling approach is to derive an upper bound of the error introduced
by the particle-filter-based belief representation [13]. The number of particles is determined
at each iteration of particle filtering to ensure the error between the true posterior and
particle-based representation, namely the KL-distance is less than ε with probability 1− δ.

As in the KLD-sampling algorithm applied to tracking, we adapt the number of modeling
particles for learning the unknown parameters. Our approach chooses a small number of
particles if no learning is performed. When learning opportunity is detected, our approach
generates particles until their number is large enough to guarantee the KL-distance is less
than the predefined bound.

For a given δ, the sample size needed to approximate a discrete distribution with an upper

109

bound ε on the KL-distance is [13,20]:

n =
k − 1

2ε

(
1− 2

9(k − 1)
+

√
2

9(k − 1
z1−δ

)3

(6.16)

where z1−δ is the upper 1− δ quantile of the standard normal distribution.

An update step of our actuation model learning algorithm is summarized in Table 6.3.
We incrementally determine the number of supported bins k by checking for each sampled
particle whether it falls into an empty bin or not. We assume that a bin has support if
it contains at least one particle. We use Equation 6.16 to update the desired number of
particles nχ needed to learn the parameter θ. When the number of generated particle n
is greater than the desired particle number nχ, the stopping condition of generating new
particles is satisfied.

pt = {x(i)
t , m

(i)
t , w

(i)
t , θ

(i)
t }ni=1 represents the particles at time t. In each step, We start with a

uniform distribution of ρ0, which represents the initial joint distribution of parameters. pt

is set to an empty set. k denotes the number of supported parameter bins. n denotes the
number of particles generated. We update the number of supported bins k for the predictive
distribution after we generate a sample with certain motion model. The determination of
k is done by checking for each generated sample whether its associated bin id falls into an
empty bin or not.

6.3 Results

In this section, we evaluate the actuation model learning capability of our approach in
simulated experiments.

In each trial, the ball’s initial position is at (-40, -30) and its initial speed is set to zero. Two
robot’s initial positions are (-35, -20) and (20, 10) respectively. The two robots pass the
ball to each other repeatedly until the end of the trial. We assume by default the passing
robot use fixed actuation models in terms of kicking speed and kicking angle. We also test
the learning result when the passing robot change their actuation models during the passing
game.

An observing robot is located at a fixed position (45, -30), tracking and learning the actuation
model used by the two robots.

110

Unless otherwise mentioned, the nominal filter parameters used in the simulation are listed
in Table 6.4. The kicking speed and kicking angle vary in different trials. The process noise
v and the sensor noise w are set to be identical in all models.

v ∼ N (0, Q), the process noise covariance matrix

Q =


0.5 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.2

 (6.17)

w ∼ N (0, R), the sensor noise covariance matrix

R =

[
1 0
0 1

]
(6.18)

Figures 6.2 and 6.3 display the output of tracker and learning result at t = 3 and 400 in one
MC run, respectively. The upper-left figures shows the distribution of particles (x

(i)
t , y

(i)
t)

at time t, with their weighted mean value (x̂t, ŷt) represented by a green x-mark. The true
position of the ball at time t (xt, yt) is represented by a red circle. The true velocity of the
ball at time t (ẋt, ẏt) is represented by the red line. The estimated ball velocity (ˆ̇xt, ˆ̇yt) is
represented by the cyan line. The upper-right figures present the probabilities of models.
The two bottom figures show the learned distribution of the parameters: kicking speed and
kicking angle.

Table 6.5 shows the preset parameters to be learned in the following experiments. From the
final learning results of Figures 6.3, 6.4 and 6.5, we can see that the mean of the learned
distribution is pretty close to the preset parameter values.

The next trial examines the learning performance in terms of the error between the learned
parameter values and the preset parameter values. Figure 6.6 shows the parameter learning
result over 30 MC runs. The learned parameters adapt to the unknown distribution in less
than 25 seconds. That is, the approximate actuation model can be constructed by observing
2 or 3 passes. This quick adaptation ability is very useful in terms of learning opponent
actuation model and responding with adversarial actions.

In the third trial, the passing robots change their actuation models during the passing game
every 20 seconds. We test the tracking performance using three trackers overn 30 MC runs:

111

KF, PBPF without the actuation model and PBPF with the learned actuation model. The
result is summarized in Table 6.6. By including the learned model, the tracker achieves
significant tracking improvement in terms of position RMS and velocity RMS.

6.4 Summary

In this chapter, we present a parametric system model which describe the :

• We describe the parametric system model and the parameters we need to learn in the
actuation model.

• We partition the parameter space into discrete bins and initialize the bins with uniform
weights. The sum of the weighted bins represents the joint density estimation of the
parameters.

• We extend the multi-model particle filter by augmenting each particle with another
component: a bin id of the actuation model. We keep resampling the bin id after
detecting the occurrences of actuation by evaluating the predicted observations vs the
sensor measurement.

• We extend the use of KLD-sampling framework to learning and successfully decrease
the computation time of learning and the state estimation process. The approach
results in a fast and accurate on-line parameter-learning algorithm.

• We show the effectiveness of learning using simulated experiments. The tracker that
uses the learned actuation model achieves improved tracking performance.

112

1 pt = ∅, n = 0, nχ = 0, nχmin
= 100, k = 0

2 while n < nχ or n < nχmin

3 do

4 draw m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1)

5 if m
(i)
t = Passed-Ball or Shot-Ball

6 then draw θ
(i)
t ∼ ρt

7 elseif m
(i)
t = Bounced-Ball or Free-Ball

8 then θ
(i)
t = θ

(i)
t−1

9 else θ
(i)
t = 0

10 draw x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1, θ

(i)
t)

11 w
(i)
t ← p(zt|x(i)

t , θ
(i)
t)

12 pt = pt ∪ (x
(i)
t , m

(i)
t , w

(i)
t , θ

(i)
t)

13 if θ
(i)
t 6= 0 and θ

(i)
t falls into empty bin b

14 then k = k+1
15 b = non-empty
16 if n ≥ nχmin

17 then nχ = k−1
2ε

(1− 2
9(k−1)

+
√

2
9(k−1

z1−δ)
3

18 n = n + 1

19 Calculate total weight: w ←
∑

[{w(i)
t }Ns

i=1]
20 for i← 1 to Ns

21 do Normalize: w
(i)
t ← w

(i)
t /w

22 π = Resample({wi
t}Ns

i=1)

23 θ
(·)
t = θπ

t , x
(·)
t = xπ

t , m
(·)
t = mπ

t

24 wi
t = 1/Ns

25 update ρt as in Table 6.2
26 return pt

Table 6.3: Actuation model learning algorithm.

113

Parameter Value Description
∆t 0.033 The time interval between two consecutive vision frames
d 0.96 Speed decay
T 600 Total time steps in one Monte Carlo run
M 30 The number of MC runs
Ns 500 The number of particles
Nthr Ns/3 Particle resample threshold
w0 [0.9 0.1 0 0] Initial model probabilities

Table 6.4: The nominal filter parameters used in the simulation.

Figure µ (cm/s) θ(◦)
1.3 92 6
1.4 105 -10
1.5 85 4

Table 6.5: The preset parameters for Figures 1.3-1.5

Algorithm RMS Position RMS Position RMS Velocity RMS Velocity
Mean (cm) Std (cm) Mean (cm/s) Std (cm/s)

KF 2.85 3.56 25.33 37.55
PBPF 2.18 3.10 20.33 26.05

PBPF w/ learning 1.50 2.10 9.02 10.87

Table 6.6: RMS error comparison for three trackers

114

−50 0 50
−40

−20

0

20

40

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

80 90 100 110 120
0

0.05

0.1

0.15

0.2

0.25

t =
 3

kick speed µ (m/s)

est spd 101.00

−20 −10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

kick angle φ (°)

est ang 0.50

Free−Ball

Opp−Grabbed−Ball

Opp−Passed−Ball

Figure 6.2: Learning result: t = 3

−50 0 50
−40

−20

0

20

40

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

80 90 100 110 120
0

0.05

0.1

0.15

0.2

0.25

t =
 4

00

kick speed µ (m/s)

est spd 91.94

−20 −10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

kick angle φ (°)

est ang 4.36

Free−Ball

Opp−Grabbed−Ball

Opp−Passed−Ball

Figure 6.3: Learning result: µ = 92, φ = 6, t = 400

115

−50 0 50
−40

−20

0

20

40

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

80 90 100 110 120
0

0.1

0.2

0.3

t =
 2

50

kick speed µ (m/s)

est spd 103.03

−20 −10 0 10 20
0

0.1

0.2

0.3

kick angle φ (°)

est ang −9.60

Figure 6.4: Learning result: µ = 105, φ = −10, t = 250.

−50 0 50
−40

−20

0

20

40

X Position (cm)

Y
 P

os
iti

on
 (

cm
)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Models

M
od

el
 P

ro
ba

bi
lit

ie
s

80 90 100 110 120
0

0.1

0.2

0.3

t =
 2

50

kick speed µ (m/s)

est spd 88.34

−20 −10 0 10 20
0

0.1

0.2

0.3

kick angle φ (°)

est ang 3.32

Figure 6.5: Learning result: µ = 85, φ = 4, t = 250.

116

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

R
M

S
 (

m
/s

)

Kick Speed RMS vs Time

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Time (sec)

R
M

S
 (

)

Kick Angle RMS vs Time

Figure 6.6: Actuation model learning result

117

118

Chapter 7

Categorization of Previous Work

There are several areas of previous work related to this research. We discuss them along the
four main aspects of our approach: (i) probabilistic state estimation; (ii) cooperatively track-
ing by multiple robots; (iii) motion prediction; (iv) improvement of tracking performance
through integration of prior knowledge or dynamic information.

7.1 Multi-Model Motion Tracking

Tracking moving objects using a Kalman filter is the optional solution if the system follows
a linear model and the noise is assumed Gaussian [21]. Multiple model Kalman filters such
as Interacting Multiple Model (IMM) are known to be superior to the single Kalman filter
when the tracked object is maneuvering [3]. For nonlinear systems or systems with non-
Gaussian noise, further approximations such as extended Kalman filter are introduced, but
the posterior densities are therefore only locally accurate and do not reflect the actual system
densities. Since the particle filter is not restricted to Gaussian densities, a multi-model
particle filter is introduced in [6, 12, 27]. However, these approaches assume that the model
index, m, is governed by a Markov process such that the conditioning parameter can branch
at the next time-step with probability P(mt = i|mt−1 = j) = πi,j where i, j = 1, · · · , Nm.
The uncertainties in the object tracking problem in this thesis do not have such a property
due to the interactions between the robot and the tracked object. We contribute a tactic-
based motion modeling (TBMM) method to solve the problem. We introduce the play-based
motion modeling (PBMM) method when team coordination knowledge is available.

119

7.2 Cooperatively Tracking

Many efforts investigate the problem of state modeling and mapping with robot teams,
e.g., [10, 37]. Robots observe each other and the environment. They use the shared obser-
vation to increase the total information available to each robot for localization or tracking
mobile objects. Approaches that use behaviors to deliberately reduce the uncertainty in sen-
sor readings enable multiple robots to cooperatively track multiple objects [38]. However,
because of the positional uncertainty, global positions of objects reported by teammates can
very easily be erroneous. Therefore, sharing global information about the position of tracked
objects is very difficult. One approach is to explicitly maintain separate estimate of self and
teammate information, which has been proven to be an effective solution to deal with this
uncertainty [33]. Another interesting approach considers an environment where the robots
are unable to cover the entire field with their own sensors and may be out numbered by
the targets. The team of robots perform cooperatively tracking by communicating positive
and negative information (where robots do not see targets) [31]. The object tracking error
is reduced significantly in most instances. Our approach does not include communicated
information in terms of global position. Instead, the action that can substantially change
the motion characteristics of the tracked object is communicated, which can greatly avoid
the problem of erroneous information.

7.3 Motion Prediction

It is an important ability of an agent to perceive moving objects in its vicinity environment.
In the robotics community, autonomous robots need to be able to predict the future motion of
the mobile targets as well. Motion prediction in such scenarios is a difficult challenge because
most objects are moving and there are physical interactions between different objects (e.g.,
a soccer robot holding and kicking a ball, or a robot pushing an obstacle).

Motion prediction is a research area with a wide range of applications, including video
surveillance and robot navigation. Traditional research focuses on designing an a priori
motion model to describe how the state of a particular object (e.g., position and velocity)
changes over time when it is subject to a given control (e.g., acceleration). In order to
predict the future motion of a particular object, its current state and control are estimated
first (e.g., using the Kalman filter [21]). Next the estimated state and control are fed into
the motion model to get future state estimates. This approach computes good motion
predictions when the motion model used is faithful to describe the object motion and the
state and control estimations are accurate. However, in real robot applications, e.g., robot

120

soccer, such conditions are hardly met [16]. We use the ball-tracking in robot soccer as an
example. First, there are multiple robots that actuate the ball, which makes the motion of the
ball highly noncontinuous. Any single motion model is impossible to faithfully describe the
broken trajectory of the ball. Second, traditional motion prediction techniques are not able
to get accurate control estimates because the actuation over the ball is coming from multiple
robots. Therefore we are unable to feed the external control into the motion model using the
traditional approach. Third, traditional prediction techniques perform well when the object
is within the focus of visual scope at each time step. However, in a real environment, objects
may have broken or even occluded trajectories, frequently leading to the object becoming
lost to the tracker.

Recent motion prediction techniques are based on the idea that, for a given area, moving
objects tend to follow typical motion patterns that depend on the objects’ nature and the
structure of the environment [39]. A typical motion prediction technique first uses a learning
stage to observe and learn the typical motion patterns of the moving objects. It then
uses the learned motion patterns to predict the future motion of a particular object. This
approach leads to a better motion model since the learning stage clusters the similar observed
trajectories and computes multiple representative trajectories [5]. It permits to take into
account not only the current state of the object but also its past states. The weakness lies
in the inability to use the known behavior models of the individual robot and the team of
robots. By including such behavior knowledge and learned actuation model in this thesis,
we can achieve more accurate motion prediction results.

In this thesis, we contribute a novel team-driven approach to incorporate models of robot-
mobile-object-interaction, team plan and communication into the motion prediction algo-
rithm. Our motion prediction method allows to have multiple predictions of the object’s
location rather than entirely depending on the most recent observation. Making use of mul-
tiple sources of information, we feed the team knowledge as an external control and introduce
a probabilistic motion model. We also learn the model parameters in such a switching state-
space model. We evaluate our resulting informed-tracking approach empirically in simulation
and using a setup Segway soccer task. The input of the multiple single and multi-robot be-
havioral sources allows a robot to much more effectively visually track mobile targets with
dynamic trajectories.

121

7.4 Tracking Using Prior Knowledge or Dynamic In-

formation

There are several approaches incorporating some kind of prior knowledge related to the
general problem of tracking under no actuation. For example, hard constraints on object
position, speed or acceleration have been considered in tracking problems to improve tracking
performance [41]. This kind of information is simple and easy to represent as a truncated
density. The only thing to do is to sample from a truncated density using rejection sampling
technique. Another situation is where a number of objects are moving in formation, and there
is a strong dependency between the individual sensor measurements, which provide valuable
information on object behavior. Actually this problem can be modeled as independent
individual object motions superimposed on a common group effect. A model of this type was
introduced in [28,34], in which the motion of the group and disposition of the measurement
sources relative to the group are modeled as two separate components. In the terrain-aided
tracking problem, using the ground moving target indicator (GMTI), one may have some
prior information of the terrain, road maps, and visibility conditions [1]. The algorithm
is referred to as the variable structure multiple-model particle filter, since it adaptively
selects a subset of modes that are active at a particular time. This approach outperformed
normal tracking method without integrating the prior information due to the better dynamics
models, which capture the motion dynamics with terrain information in an intricate but
accurate manner. However, the tracker does not have actions on the targets in the group.
So all the above approaches deal with the problem of tracking under no actuation. One
of the effort reporting a tracking approach concerned with our problem of actuation over
tracked objects is presented in [25]. Joint state estimation has been used successfully for
tracking a dynamic object with a mobile robot, where the actions of the robot change the
process characteristics of the tracked object. Our approach extends the above approach by
using a dynamic transition table dependent on the play that the robot is executing and
the additional information that matters. The play-based motion modeling can be flexibly
integrated into our existing skills-tactics-plays architecture.

7.5 Summary

In this chapter, we discuss the related work along the four main aspects of our approach:

• Probabilistic state estimation.

122

• Cooperatively tracking by multiple robots.

• Motion prediction.

• Improvement of tracking performance through integration of prior knowledge or dy-
namic information.

Further related work when appropriate is occasionally discussed in the previous technical
chapter of the thesis.

123

124

Chapter 8

Conclusions and Future Work

Our goal in this thesis is to explore methods to improve an agent’s object tracking ability.
We are interested in methods that take use of tactics, plays and communication to improve
object tracking efficiency in the presence of multiple agents acting on a mobile object.

Our approach builds upon three main facts:

• An individual robot knows its own actions. If it is the case that a robot is manipulating
the ball, the robot can predict the ball’s motion using its own actions.

• Robots in a team collaborate according to pre-defined coordination plans or dynamic
communication. If it is the case that a teammate is manipulating the ball, the robot
that is not controlling the ball can predict the ball’s motion by reasoning about the
possible teammate actions. If the communication between teammates is allowed, the
robot that is not controlling the ball can explicitly know what the action is from their
teammates.

• Robots can learn the unknown actuator’s action effects on the ball. At a low-level,
robots can learn to know the actuator’s kicking power and direction. At a high-level,
robots can learn to know the actuator’s kicking strategies, e.g., in a certain situation
whether to shoot or to pass. If it is the case that an opponent robot is manipulating
the ball, the robot in our team can predict the ball’s motion as well using the learned
action models during the game.

125

8.1 Conclusions

The main contributions of this thesis are:

• We incorporate a single robot and a team actuation models into a Dynamic Bayesian
Network (DBN)-based temporal representation for tracking.

• We introduce several multi-model tracking algorithms based on: (i) the robot’s own
actions; (ii) predefined team plays; (iii) communicated team actions. Various informa-
tion sources are channelled into the motion model of the system, namely tactic, play,
communication, learned opponent actuation parameters and sensor observation.

• We introduce and implement the team-driven motion tracking framework. Team-driven
motion tracking is a tracking paradigm defined as a set of principles for the inclusion
of a hierarchical, prior knowledge and construction of a motion model. We illustrate
a possible set of behavior levels within the Segway soccer domain that correspond to
the abstract motion modeling decomposition.

• We present an empirical comparison between several tracking algorithms. We exam-
ine the performance of each algorithm according to a variety of metrics. We evaluate
the new tracking algorithms in robot platforms, a human-robot team, and in simu-
lated tests. We show the efficiency of the TBPF, PBPF and CBPF over single model
tracking.

• We present a parameter learning algorithm to learn opponent actuation models. We
describe the parametric system model and the parameters we need to learn in the
opponent’s actuation model. We partition the parameter space into discrete bins and
initialize the bins with uniform weights. The sum of the weighted bins represents the
joint density estimation of the parameters. We extend the multi-model particle filter by
augmenting each particle with another component: a bin id of the actuation model. We
keep resampling the bin id after detecting the occurrences of actuation by evaluating
the predicted observations vs the sensor measurement. We extend the use of KLD-
sampling framework to learniing and successfully decrease the computation time of
learning and the state estimation process. We show the effectiveness of learning using
simulated experiments. The tracker that uses the learned actuation model achieves
improved tracking performance.

126

8.2 Directions for Future Work

This thesis opens up new interesting directions for further research:

• Uncertainty of Human Teammate. If the teammate is a human, not a robot,
the certainty that the teammate is executing the expected play or tactic could be
reduced. That is, the human teammate could fail to execute the desired play or tactic.
Future work might take such uncertainty into account. A better human team member
modeling (for example, include intercepting the moving ball, mark a player, covering
the goal) will also help. Another interesting work is to know how the performance of
the presented method is affected by the presence of tactics of the team member that
are not exactly determined in the team coordination plan.

• Limited Trackers. When there are limited tracking resources, i.e., there are more
objects to be tracked than tracking resources. E.g., in Segway soccer, the robot needs
to track several objects (including the ball, team members and opponents) using one
pan-tilt camera. When multiple objects need to be tracked using limited trackers, the
question of assigning different trackers to different objects is then crucial.

– Instead of continuously scanning over the full field of view to locate the target,
the tracker restricts its scanning area, on the basis of a real-time analysis of the
current robot strategy, team plan and object trajectory in its memory, to a very
narrow window precisely the size of the useful targets.

– Instead of always focusing on one target, the tracker shifts its focus elegantly
between several interesting targets.

– Instead of using a manually tuned or fixed time on each target, the tracker learns
to know how much time to spend on each target in order to ensure consistent
tracking of each target.

• High Dimensional Parameter Space. In our current implementation of parameter
space partition when learning opponent actuation model, we use a discrete distribution
with a fixed bin size. If the parameter space contains high dimensional parameters, the
fixed-size-partition method could lead to poor discretization. Because more samples
may be used in “unimportant” parts of the parameter space. An interesting direction
is to change the discretization over time using a KD-tree structure.

• Application Opportunities in Other Domains. The thesis contributions pro-
vide practical algorithms for tracking to be applied in domains with ever increasing
robot-object interactions. First we need to identify the known behavior model of the

127

specific application. We apply the team-driven motion tracking framework and follow
the introduced principles to decompose the motion modeling problem and take use of
the behavior knowledge. Even in some application domains without robot-object in-
teraction, e.g., Unmanned Aerial Vehicle (UAV), by including the cooperative tactics
and communicated information, we can still reduce the tracking error by using the
communication-based motion model.

8.3 Concluding Remarks

This thesis contributes a number of multi-model tracking algorithms in the presence of mul-
tiple agents acting on a mobile object. We introduce and implement the team-driven motion
tracking framework. We illustrate a possible set of behavior levels within the Segway soccer
domain that correspond to the abstract motion modeling decomposition. We demonstrate
effective object tracking in single robot tasks with own actuation information, in domains
with team actuation models, and for complex tasks with existence of opponents. We also
demonstrate how a single, team or learned opponent actuation model could be integrated
in a multi-model tracking framework. The thesis contributions provide practical algorithms
for tracking to be applied in domains with ever increasing robot-object interactions.

128

Appendix A

Notations

Notation Description
xt Object position in x coordinate at time t
x̂t Predicted object position in x coordinate at time t
yt Object position in y coordinate at time t
ẋt Object velocity in x coordinate at time t
ẏt Object velocity in y coordinate at time t
d Speed decay

dc,l(t1, t2) The normalized distance between the cth and lth measurement of zt1 and zt2

f State transition function in general
h Measurement function in general
mt Model at time t
m′

t Model of teammate at time t
mi

t Model of ith particle at time t

p
(i)
t The ith particle at time t
q Proposal function
st Infrared sensor reading at time t
ut Control input at time t
v Additional information used by tactic-based motion modeling
vt Process noise vector at time k
wt Sensor noise vector at time k
wc,t Sensor noise of the cth measurement at time t
xt Estimated state at time t
zt Sensor reading at time t

129

Notation Description
z1:t Sensor readings from time 1 to time t
Ct The communication message at time t

E(X) Expectation of random variable X
F State transition matrix
F 1

t State transition matrix of model # 1 at time t
H Measurement transition matrix
It Observed information set at time t
Jt The number of region of interest at time t
Kt Kalman gain at time t
KT

t The transpose of Kalman gain matrix at time t
Kt The number of target being tracked in the system at time t
M The number of independent MC runs in simulated test.
NCt The number of clutter points at time t
Ns The number of particles
Nm The number of motion models

Pt|t−1 Covariance matrix at time t with accumulated sensor readings from time t− 1
Pt|t Covariance matrix at time t with accumulated sensor readings from time t
Pt The play used at time t
Q Process noise covariance
R Sensor noise covariance

S The total set of motion models: S
4
= {1, 2, · · · , Nm}.

St The set of region of interest at time t
St Covariance matrix of the innovation term at time t
T Total time steps in one Monte Carlo run
Tt The tactic used by the robot at time t
T ′

t The tactic used by the teammate at time t
αt The association vector that indicate the measurement-to-target assignment
γt The track-to-region association vector
ω Weight

ω
(i)
t Weight of the ith particle at time t
τ The length of the sliding window
∆t The time interval between two consecutive vision frames. ∆t = 1/30 sec in all tests.
Π Transitional matrix
πij Transition probability

N (x; ξ, P) A Gaussian density with argument x, mean ξ and covariance P
θ0 Initial model parameters
θt Unknown model parameters at time t

130

Appendix B

Skill and Tactic Descriptions

Skill Description
aim look for the target and turn body to look at it
go near ball move to a position near the ball and look at the ball
grab ball put down the catcher(finger)
kick put up the catcher and use the kicker to kick the ball out
search turn body and camera to look for the ball

Tactic Description
chase ball follow the ball
grab and kick go to the ball and grab it, then aim at the target and kick
pass kick the ball toward a teammate.
position for pass move to a position on the field to anticipate a pass.
receive pass move to a position to receive a pass.
shoot kick the ball to go into the goal.

131

132

Bibliography

[1] M. Arulampalam, N. Gordon, M. Orton, and B. Ristic. A variable structure multiple
model particle filter for gmti tracking. Proc. 5th Int. Conf. Information Fusion, July
2002.

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters
for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal
Processing, 50(2):174–188, February 2002.

[3] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan. Estimation with Applications to Tracking
and Navigation. John Wiley & Sons, Inc, 2001.

[4] Yaakov Bar-Shalom and Thomas E. Fortmann. Tracking and Data Association. Aca-
demic Press Inc, 1988.

[5] M. Bennewitz, W. Burgard, and S. Thrun. Learning motion patterns of persons for
mobile service robots, 2002.

[6] Y. Boers and H. Driessen. Hybrid state estimation: a target tracking application.
Automatica, 38:2153–2158, 2002.

[7] Brett Browning, James Bruce, Michael Bowling, and Manuela Veloso. Stp: Skills, tactics
and plays for multi-robot control in adversarial environments. IEEE Journal of Control
and Systems Engineering, 219:33–52, 2005.

[8] Brett Browning, Jeremy Searock, Paul E. Rybski, and Manuela Veloso. Turning segways
into soccer robots. Industrial Robot, 32(2):149–156, 2005.

[9] Brett Browning, Ling Xu, and Manuela M. Veloso. Skill acquisition and use for a
dynamically-balancing soccer robot. In AAAI, pages 599–604, 2004.

[10] G. Dissanayake, H. Durant-Whyte, and T. Bailey. A computationally efficient solution
to the simultaneous localisation and map building (slam) problem. In ICRA 2000, 2000.

133

[11] A. Doucet, N. De Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in
Practice. Springer-Verlag, New York, 2001.

[12] D.S.Angelova, T.A.Semerdjiev, V.P.Jilkov, and E.A.Semerdjiev. Application of monte
carlo method for tracking maneuvering target in clutter. Mathematics and Computers
in Simulation, 1851:1–9, 2000.

[13] Dieter Fox. Adapting the sample size in particle filters through kld-sampling. I. J.
Robotic Res., 22(12):985–1004, 2003.

[14] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-
space models. Neural Computation, 12(4):831–864, 2000.

[15] N. Gordon, D. Salmond, and A F M Smith. Novel approach to non-linear and non-
gaussian bayesian state estimation. In IEEE Proceedings-F, 1993.

[16] Yang Gu. Tactic-based motion modeling and multi-sensor tracking. In Proceedings of
the Tenth National Conference on Artificial Intelligence (AAAI-05), pages 1274–1279,
2005.

[17] Yang Gu and Manuela Veloso. Multi-model tracking using team actuation models. In
Proceedings of the 2006 International Conference on Robotics and Automation, 2006.

[18] et al. H. G. Nguyen. A Segway RMP-based robotic transport system. In SPIE Proc.
5609: Mobile Robots XVII, Philadelphia, PA, October 2004.

[19] Kam-Chuen Jim and C. Lee Giles. How communication can improve the performance of
multi-agent systems. In AGENTS ’01: Proceedings of the fifth international conference
on Autonomous agents, pages 584–591, New York, NY, USA, 2001. ACM Press.

[20] N. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions, vol-
ume 1. John Wiley and Sons, New York, 1994.

[21] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans.
ASME, Journal of Basic Engineering, 82:35–45, March 1960.

[22] R. E. Kalman and R. Bucy. New results in linear filtering and prediction theory. In
Trans. ASME. J. Basic Engineering, pages 83:95–108, March 1961.

[23] Saphne Koller and Uri Lerner. Sampling in factored dynamic systems. Sequential Monte
Carlo Methods in Practice, 2001.

[24] Chris Kreucher, Keith Kastella, and Alfred O. Hero III. Multi-target sensor management
using alpha-divergence measures. pages 209–222, 2003.

134

[25] C. Kwok and D. Fox. Map-based multiple model tracking of a moving object. Proceed-
ings of eight RoboCup International Symposium, July 2004.

[26] Jun S. Liu and Rong Chen. Sequential Monte Carlo methods for dynamic systems.
Journal of the American Statistical Association, 93(443):1032–1044, 1998.

[27] S. McGinnity and G.W.Irwin. Multiple model bootstrap filter for maneuving target
tracking. IEEE Trans. Aerospace and Electronic Systems, 36(3):1006–1012, 2000.

[28] M. Morelande and S.Challa. An algorithm for tracking group targets. Proc. Workshopp
on Multiple Hypothsis Tracking: A Tribute to S.Blackman, May 2003.

[29] Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, 2002.

[30] William Ng, Jack Li, Simon Godsill, and Jaco Vermaak. A hybrid approach for online
joint detection and tracking for multiple targets. IEEE Aerospace Conferences, 2005.

[31] M. Powers, R. Ravichandran, and T. Balch. Improving multirobot multitarget tracking
by communicating negative information. In Third International Multi-Robot Systems
Workshop, New Orleans, LA (US), 2005.

[32] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon. Beyond the Kalman Filter,
Particle Filters for Tracking Applications. Artech House Publishers, 2004.

[33] Maayan Roth, Douglas Vail, and Manuela Veloso. A world model for multi-robot teams
with communication. In IROS-2003, 2003. (under submission).

[34] D. Salmond and N. Gordan. Group and extended object tracking. Proc. SPIE, 3809,
1999.

[35] D. Schulz, W. Burgrad, and D. Fox. People tracking with mobile robots using sample-
based joint probabilistic data association filters. International Journal of Robotics Re-
search, 22(2), 2003.

[36] Jeremy Searock, Brett Browning, and Manuela Veloso. Turning segways into soccer
robots. Proceedings of IROS’04, September 2004.

[37] J. Spletzer, A.K. Das, R. Fierro, C.J. Taylor, V. Kumar, and J.P. Ostrowski. Coopera-
tive localization and control for multi-robot manipulation. In IROS 2001, 2001.

[38] A. Stroupe and T. Balch. Value-based observation with robot teams (vbort) using prob-
abilistic techniques. In Proceedings of the 11th International Conference on Advanced
Robotics, 2003.

135

[39] Dizan Alejandro Vasquez Govea and Thierry Fraichard. Motion prediction for mov-
ing objects: a statistical approach. In Proc. of the IEEE Int. Conf. on Robotics and
Automation, pages 3931–3936, New Orleans, LA (US), April 2004.

[40] M. Veloso, B. Browning, P. Rybski, and J. Searock. Segwayrmp robot football league
rules. Technical report, http://www.cs.cmu.edu/ robosoccer/segway/, 2005.

[41] L.-S. Wang, Y.-T. Chiang, and F.-R. Chang. Filtering method for nonlinear systems
with constraints. IEEE Proc. - Control Theory and Appl., pages 525–531, November
2002.

[42] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical report,
Department of Computer Science, University of North Carolina at Chapel Hill, 1995.

136

	Introduction
	Motivation
	Objectives
	Approach
	Contributions
	Guide to the Thesis
	Summary

	Team-Driven Motion Tracking
	Principles
	Multi-Robot Instantiation Motivated by Segway Soccer
	Implemented Components
	Future Components

	Summary

	Background
	Nonlinear Filtering Problem
	Bayesian Filters
	Kalman Filter
	Sequential Importance Sampling
	Multiple Switching Dynamic Models
	Multiple Model Particle Filter
	Dynamic Bayesian Network
	Summary

	Tracking Using Own Actuation Model
	Tactics
	Tactic-Based Model Transitions
	Multi-Model System
	Motion Modeling Based on the Tactic

	Tactic-Based Object Tracking Algorithm
	Results
	Ball Motion and Measurement Noise Profiling
	Metrics
	Simulation Experiments
	Segway Soccer and Segway RMP Robot
	Test on the Real Robot

	Summary

	Tracking Using Team Actuation Model
	Plays
	Play-Based Model Transitions
	Tracking Scenario
	Play-Based Motion Model

	Communication
	Types of Communicated Message
	Communication-Based Motion Model

	Team-Based Tracking Algorithms
	DBN Representation
	Play-Based Particle Filtering (PBPF) Algorithm
	Communication-Based Particle Filtering (CBPF) Algorithm

	Results
	Metrics
	Simulation Experiments
	Team Cooperation Test
	Team Communication Test

	Summary

	Learning of Actuation Models
	Parametric System Model
	Learning of Actuation Model
	Partition of Parameter Space
	Likelihood Function
	Augment the State Vector of Particles
	Adapting the Number of Particles

	Results
	Summary

	Categorization of Previous Work
	Multi-Model Motion Tracking
	Cooperatively Tracking
	Motion Prediction
	Tracking Using Prior Knowledge or Dynamic Information
	Summary

	Conclusions and Future Work
	Conclusions
	Directions for Future Work
	Concluding Remarks

	Notations
	Skill and Tactic Descriptions

