

Motivating Programming: using storytelling
to make computer programming
attractive to middle school girls

Caitlin Kelleher

November, 2006
CMU-CS-06-171

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
 for the degree of Doctor of Philosophy.

Thesis Committee:
Randy Pausch (chair)

Jessica Hodgins
Sara Kiesler

Alan Kay, Viewpoints Research

Copyright © 2006 Caitlin Kelleher

This research was sponsored by the Office of Naval Research under grant no. N00140210439
and by the National Science Foundation (NSF) under grant nos. IIS-0329090, DUE-0339734,
IIS-0121629, IIS-9812012 and a generous NSF Graduate Fellowship. The views and
conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the
U.S. government or any other entity.

Keywords: programming environments, gender, computer science education,
motivation, storytelling, Alice, Stencils

Abstract

Women are currently under-represented in computer science. Increasing the

numbers of female students who pursue computer science has the potential both to

improve the technology we create by diversifying the viewpoints that influence

technology design and to help fill projected computing jobs. Numerous studies

have found that girls begin to turn away from math and science related

disciplines, including computer science, during middle school. By the end of

eighth grade, twice as many boys as girls are interested in pursuing science,

engineering, or technology based careers.

In this thesis, I describe Storytelling Alice, a programming environment that gives

middle school girls a positive first experience with computer programming.

Rather than presenting programming as an end in itself, Storytelling Alice

presents programming as a means to the end of storytelling, an motivating activity

for a broad spectrum of middle school girls. The development of Storytelling

Alice was informed by formative user testing with more than 250 middle school

aged girls. To determine girls’ storytelling needs, I observed girls interacting with

Storytelling Alice and analyzed their storyboards and the story programs they

developed. To enable and encourage middle school girls to create the kinds of

stories they envision, Storytelling Alice includes high-level animations that enable

social interaction between characters, a gallery of 3D objects designed to spark

story ideas, and a story-based tutorial presented using Stencils, a new tutorial

interaction technique.

To determine the impact of the storytelling focus on girls’ interest in and success

at learning to program, I conducted a study comparing the experiences of girls

introduced to programming using Storytelling Alice with those of girls introduced

to programming using a version of Alice without storytelling features (Generic

Alice). Participants who used Storytelling Alice and Generic Alice were equally

successful at learning basic programming concepts. However, I found that users

of Storytelling Alice show more evidence of engagement with programming.

Storytelling Alice users spent 42% more time programming and were more than

three times as likely to sneak extra time to continue working on their programs

(51% of Storytelling Alice users vs. 16% of Generic Alice users snuck extra

time).

Acknowledgements
First, I would like to thank my advisor, Randy Pausch, for his frank thoughts and

tireless support. He gave me a tremendous amount of freedom to explore what is

fundamentally a muddy area while continually encouraging me to find ways to

objectively measure success. My committee members Jessica Hodgins, Sara

Kiesler, and Alan Kay provided valuable feedback that guided both my research

and my presentation of it.

Several organizations helped me to find middle school girls for both the formative

and summative evaluations. Thanks to the Carnegie Museum of Natural History,

Georgia Tech’s TEC camp, the Houston Museum of Natural Science, the PALS

homeschooling group, NPHEP, and the Girl Scouts of Western Pennsylvania. I

also owe a large debt of gratitude to the many girls (and their parents) who

participated in the development and testing of Storytelling Alice.

The undergraduates who participated in the Designing Interactive Narrative

Components helped me begin to understand the space of inspiring kids’ story

ideas. I continued to learn from their work long after the end of the seminar.

I would like to thank Dennis Cosgrove, Adam Fass, Andrew Faulring, Desney

Tan, Gabriel Yu, and all of the other Stage 3 folk I have had the good fortune to

work and play with. Finally, I am grateful for the support of my parents, William

and Denise Kelleher, and my sister Erin.

Contents

Chapter 1 Introduction ...1
1.1 Introduction... 1
1.2 A Pragmatic Need for Diversity in Computer Science........................... 2
1.3 Attracting Women to CS... 5
1.4 Middle School Girls.. 7

1.4.1 Gender Expectations ... 7
1.4.2 Academics... 8
1.4.3 Identity Formation .. 8
1.4.4 Middle School Girls and Computers... 9

1.5 Storytelling as a Motivating End .. 10
1.6 Leveraging Alice 2.. 11
1.7 Research and Contributions .. 12

1.7.1 Formative Testing ... 12
1.7.2 Development of Storytelling Alice ... 13
1.7.3 Development of Storytelling Alice ... 15
1.7.4 Contributions... 17

Chapter 2 Introduction to Alice 2...19
2.1 Why Alice? ... 19
2.2 Creating Alice Worlds .. 22

2.2.1 Adding and Positioning 3D Objects ... 23
2.2.2 Creating Sequential Programs... 24
2.2.3 Using Programming Constructs.. 30
2.2.4 Creating New Methods ... 34
2.2.5 Creating methods with parameters.. 35

2.3 Storytelling Alice .. 37
2.4 Motivating Novice Programming Environments.................................. 38

Chapter 3 Formative User Testing...41
3.1 Introduction... 41
3.2 Participants.. 41

3.2.1 Girls in STEM Camps... 41
3.2.2 Home-schooled Students .. 44
3.2.3 Girl Scouts .. 46
3.2.4 Why not schools?.. 48

3.3 Types of Data.. 49
3.3.1 Classroom observations .. 49
3.3.2 Storyboards ... 51
3.3.3 Alice logs .. 54
3.3.4 Classroom discussions .. 55

3.3.5 Surveys.. 55
3.4 Methods... 56
3.5 Usability Changes ... 58

3.5.1 Switching Between the Scene View and the Programming View 58
3.5.2 Too Many Methods Displayed.. 59
3.5.3 Losing Objects in the Scene.. 59

3.6 Issues about Programming.. 60
3.6.1 Editing methods is tempting and dangerous for new users........... 61
3.6.2 New users are often forced to tackle events quickly..................... 61
3.6.3 New users frequently make recursive calls................................... 62

Chapter 4 Enabling Storytelling...65
4.1 Introduction... 65
4.2 Problems with Generic Alice Animations .. 65

4.2.1 Supply animations that better match common actions 66
4.2.2 Reduce the need for trial and error ... 66
4.2.3 Beginning users should not need to understand graphics concepts
like insertion points... 67

4.3 Determining Users’ Needs for Storytelling .. 67
4.3.1 Analyzing Storyboards.. 68
4.3.2 Insights from Storyboards... 69

4.4 Requirements for Storytelling Alice ... 71
4.4.1 First and foremost, characters need to be able to express
themselves... 71
4.4.2 Users Animate People and Characters.. 72
4.4.3 Most stories require multiple scenes... 73
4.4.4 Scenes can ground and motivate the use of programming
subroutines. ... 74
4.4.5 Basic changes in posture go a long way 74
4.4.6 For the most part, locomotion is targeted 75
4.4.7 Many gestures and special-purpose animations are targeted
touching 76
4.4.8 Users need an easy way to get characters back to a normal position
 77
4.4.9 It is sometimes necessary to annotate 3D models with target
information.. 77

4.5 Changes to Alice ... 77
4.5.1 Scenes ... 78

4.6 High-Level Animations .. 82
4.6.1 Animating People.. 82
4.6.2 Animating Other Characters ... 88
4.6.3 Animating Objects .. 89
4.6.4 Animating Cameras .. 90

Chapter 5 Developing the Storytelling Gallery ...93
5.1 Introduction... 93

5.2 Approach... 94
5.3 Design Process .. 95

5.3.1 Round 1... 96
5.3.2 Round 2... 98
5.3.3 Round 3... 100
5.3.4 Round 4... 102

5.4 Lessons Learned.. 103
5.4.1 The Need for Story Inspiration ... 105
5.4.2 Animations that Require Explanation... 105
5.4.3 Character Roles... 106

5.5 Designing the new Story Gallery.. 107
5.5.1 Gallery Organization... 107
5.5.2 Story Beginnings... 107
5.5.3 Environmental or Positional Cues .. 107
5.5.4 Gallery Organization... 108
5.5.5 Character Animations ... 108
5.5.6 Storytelling Gallery Content ... 109

5.6 Story Gallery... 109
5.6.1 Scenes ... 110
5.6.2 Characters ... 111

Chapter 6 Developing the Storytelling Tutorial ..115
6.1 Introduction... 115
6.2 Motivation... 115
6.3 Related Work .. 117

6.3.1 Presenting Procedural Instructions ... 117
6.3.2 Learner Centered Design .. 120
6.3.3 Transparency in User Interfaces ... 120

6.4 My Approach .. 121
6.5 Interaction Description.. 123
6.6 Lessons from Formative Evaluation ... 124
6.7 Authoring Stencils-based Tutorials... 125
6.8 Implementing Stencils .. 126

6.8.1 Modifications to Alice .. 126
6.9 Evaluating Stencils.. 127

6.9.1 Participants.. 127
6.9.2 Preparation of Experimental Materials 128
6.9.3 Paper-based Tutorial ... 128
6.9.4 Stencils-based Tutorial.. 129
6.9.5 Procedure .. 129
6.9.6 Data Collection ... 130
6.9.7 Dependent Measures... 130

6.10 Results... 131
6.10.1 Tutorial Performance .. 131
6.10.2 Quiz Performance ... 132
6.10.3 Survey Results .. 133

6.11 Discussion... 133
6.12 Designing Tutorials for Storytelling Alice ... 134
6.13 Tutorial 1:.. 135
6.14 Tutorial 2:.. 136
6.15 Tutorial 3... 137
6.16 Conclusion .. 138

Chapter 7 Evaluation Methodology ...139
7.1 Introduction... 139
7.2 Choosing a Comparison System ... 139

7.2.1 Tutorial.. 140
7.2.2 Storytelling Support .. 145
7.2.3 Scene Support ... 146
7.2.4 Gallery... 146
7.2.5 Teaching.. 148
7.2.6 Supplementary Materials .. 148

7.3 Methods... 149
7.3.1 Data sources:... 151
7.3.2 Surveys:... 152
7.3.3 Programming Quiz:... 152
7.3.4 Log Files: .. 152
7.3.5 Alice Programs: .. 153

7.4 Participant Demographics:.. 153

Chapter 8 Summative Evaluation Results ..157
8.1 Introduction... 157
8.2 Participants’ Behavior within Alice.. 157

8.2.1 Programming Constructs .. 161
8.3 Participants’ Programming Sessions... 162

8.3.1 Low Programming: Subject Fish_02_11_2006 Using Generic
Alice 163
8.3.2 Low Programming: Subject Instruments_12_17_2005 Using
Storytelling Alice .. 165
8.3.3 Average Programming: Subject Fish_11_20_2005 Using Generic
Alice 168
8.3.4 Average Programming: Subject Castle_11_5_2005 Using
Storytelling Alice .. 170
8.3.5 High Programming: Subject Flamingo_12_17_2005 Using Generic
Alice 173
8.3.6 High Programming: Subject Horse_12_10_2005 Using
Storytelling Alice .. 175

8.4 Attitude Measures ... 176
8.4.1 Attitude Survey ... 177
8.4.2 Additional Survey Questions .. 181
8.4.3 Computer Science Interest .. 182

8.5 Programming Quiz Performance .. 184

8.6 End of Workshop .. 187
8.6.1 Choosing Storytelling Alice or Generic Alice 187
8.6.2 Showing a World .. 188

8.7 Summary ... 190

Chapter 9 What Girls Create ..191
9.1 Introduction... 191
9.2 Generic Alice Worlds ... 191

9.2.1 Arbitrary Motion... 192
9.2.2 Intentional Motion (17 worlds)... 193

9.3 Storytelling Alice Worlds ... 197
9.3.1 Relationship Stories .. 198
9.3.2 Good vs. Evil: 9 programs .. 201
9.3.3 Other Alice Programs: 12 programs ... 202

Chapter 10 Conclusions and Future Work ...203
10.1 Conclusions... 203
10.2 Future Work .. 204
10.3 Designing Motivating Programming Environments........................... 204

10.3.1 Extending Engagement with Computer Programming 205
10.3.2 Simulating Movie Extras .. 210
10.3.3 Achieving Goals without Complete Control............................... 211
10.3.4 Computer Games .. 212

10.4 Addressing Computer Science Pipeline Issues 213
10.4.1 Broadening the Focus to All Students .. 213
10.4.2 Integrating Alice into Schools .. 213
10.4.3 Encouraging Exploratory Learning... 215
10.4.4 Evaluating at Longer-Term Engagement.................................... 216

10.5 Moving Beyond Computer Science .. 217
10.5.1 Teaching Communication... 217
10.5.2 Complex Reasoning .. 217

10.6 Conclusion .. 218

Chapter 11 Programming Languages and Environments for Novice
Programmers 221

11.1 Introduction... 221
11.2 Taxonomy ... 222
11.3 Teaching Systems ... 225

11.3.1 Mechanics of Programming.. 225
11.3.2 Learning Support .. 255

11.4 Empowering Systems.. 262
11.4.1 Mechanics of Programming.. 262
11.4.2 Activities Enhanced by Programming .. 282

11.5 Additional System Information... 288
11.5.1 System Influences ... 289
11.5.2 System Attributes.. 289

11.6 Summary and Future Directions ... 295
11.6.1 Mechanical Barriers to Programming... 295
11.6.2 Sociological Barriers to Programming.. 296

Appendix A: Storyboarding Worksheets ..299
11.7 Worksheet 1 .. 299
11.8 Worksheet 2 .. 310

Appendix B: Surveys and Programming Quiz..327
11.9 Pre-Workshop Survey... 327
11.10 Post-Workshop Survey ... 330
11.11 Programming Quiz.. 334

Appendix C: Generic and Storytelling Alice Reference Booklets...............339
11.12 Generic Alice Reference Booklet ... 339
11.13 Storytelling Alice Reference Booklet ... 348

List of Figures and Tables

Chapter 1 Introduction
Figure 1.1: A scene created in Storytelling Alice. .. 13

Table 1.1: A comparison of the animations in Storytelling Alice and
Generic Alice. ... 14

Figure 1.2: Views of the Alice interface without and with a Stencils-based
tutorial. .. 15

Chapter 2 Introduction to Alice 2
Figure 2.1:To call the IceSkater’s move method, the user drags the tile
“IceSkater move” into the method editor, drops it, and selects parameters
from the pop-up menus. .. 20

Figure 2.2: A screenshot of the Alice interface. 1) The world window
provides a view of the virtual world that a students’ program will control.
2) The object tree contains a list of the 3D objects in the virtual world. 3)
The details area shows the properties, methods, and functions for the
object selected in the object tree. 4) The methods editor shows the code
that defines a method a student is working on. 5) The events area allows
students to call methods based on events in the world, such as mouse
clicks or changes in the value of a variable. ... 22

Figure 2.3: Users press the "Add Objects" button to access the Alice
gallery. .. 23

Figure 2.4: A view of the objects in the Medieval folder. Users can add 3D
objects like the Dragon by dragging them into the 3D scene. 24

Figure 2.5: To animate the bunny in Alice 2, the user 1) selects a method
from the list of methods the bunny can perform, 2) drags the method into
the editor for “my first method” and drops it, 3) and selects parameters
from the pop-up menus. 4 shows a completed method call that tells the
bunny object to move forward by 1 meter. ... 25

Figure 2.6: Users can specify values for optional parameters for a method
call using the “more…” pop-up menu. ... 30

Figure 2.7: Users can add control structures to their programs by dragging
and dropping the control structure tiles from the bottom of the method
editor. .. 31

Figure 2.8: By default, Alice displays a simplified for loop but users can
press the “show complicated version” to gain access to the loop count
variable (i.e. index). .. 31

Figure 2.9: Users can drag in functions that return Boolean values onto the
condition (i.e. “true”) for an If-statement to replace it. .. 32

Figure 2.10: An example of a nested Do in order inside of a Do together
which causes the bunny to jump forward by moving forward while
moving up and down... 33

Figure 2.11: The interface after the user has created a “triple jump”
method for the iceSkater. Alice has created a tile the user can drag into
their program to call “triple jump” and opened a method editor where the
user can define the behavior for “triple jump.”... 35

Figure 2.12: To add a parameter to a method, users can click on the
“create new parameter” button in the method editor. ... 36

Figure 2.13: To make the iceSkater turn right “how many times,” the user
can drag the “how many times” tile and drop it on top of “1 revolution” to
replace it.. 36

Figure 2.14: The method call to “iceSkater.jump and spin” without
(above) and with (below) a parameter that controls how many times the
iceSkater should spin. ... 37

Chapter 3 Formative User Testing
Table 3.1: Academic Demographics for the Houston Museum of Natural
Science Summer Alice Workshop Participants .. 42

Table 3.2: Computer-related Demographics for the Houston Museum of
Natural Science Summer Alice Workshop Participants 43

Table 3.3: Academic Demographics for Home-schooled Participants. 44

Table 3.4: Age and Academic Demographics for Girl Scout Participants. 47

Table 3.5: Computer-related Demographics for Girl Scout Participants.............. 47

Figure 3.1: An example story-board created by a Girl Scout during
formative testing of Storytelling Alice. .. 54

Table 3.6: Development Schedule for Storytelling Alice..................................... 57

Figure 3.2: The “Add Objects” button in Generic Alice (left) and the two
“Add Objects” buttons in Storytelling Alice (right). .. 59

Figure 3.3: Many participants found it more natural to click on the edit
buttons than to drag the method tiles. ... 61

Chapter 4 Enabling Storytelling
Figure 4.1: Counts of storyboard actions by category. ... 70

Figure 4.2: An example “say” animation in Storytelling Alice. 72

Table 4.1: Object types and their animations.. 73

Figure 4.3: Although kneel is not as commonly used as sit on, stand up,
and lie down, I added it to Storytelling Alice because it played an
important role in many of the love stories middle school girls envisioned
creating.. 75

Figure 4.4: An example of a push animation created with the touch and
keep touching animations (above) and a series of images showing the push
animation in action (below). ... 77

Figure 4.5: Objects for the home scene (scene 2) are added to a folder
called “Scene 2 home objects.”... 79

Figure 4.6: A drop down menu allows users to move from one scene to
another (left). When the user drops “Scene 2 kristen.walk to” in the
method editor, Storytelling Alice presents a list of the characters and
objects in Scene 2 as potential targets (right). .. 80

Figure 4.7: An example “say” animation in Storytelling Alice. 82

Figure 4.8: An example “think” animation in Storytelling Alice. 83

Figure 4.9: When a character walks offscreen, the character will turn so
that its forward vector is parallel to the camera’s right or left vector and
walk forward enough distance to be out of view of the camera. 84

Figure 4.10: The image on the right shows the result of “LunchLady.touch
Geoffrey side=up” from the starting position shown at the left............................ 88

Figure 4.11: The image on the right shows the result of “Camera.get two
shot of LunchLady and Geoffrey” from the starting point shown at the left........ 91

Chapter 5 Developing the Storytelling Gallery
Figure 5.1: Clockwise from left: Robot StoryKit, Mythology StoryKit,
Spider in the Sink, and Faeries StoryKit... 96

Figure 5.2: Clockwise from left: Aquarium Story Kit, Graveyard Story
Kit, Restaurant Story Kit, and Skate Park Story Kit... 98

Figure 5.3: Clockwise from left: Kennel Story Kit, Jewel Thief Story Kit,
Mosquito Man Story Kit, and Mixed Fairy Tales Story Kit 100

Figure 5.4: Clockwise from left: Aliens Story Kit, Wacky Circus Story
Kit, Secret Agents Story Kit, and Panda Beach Party Story Kit......................... 102

Figure 5.5: Boris the Ogre (left) sometimes appears as Shrek in stories.
Fish (right) sometimes appear in stories similar to Finding Nemo..................... 106

Figure 5.6: Some of the scenes available for use in Storytelling Alice. 110

Figure 5.7: The 3D objects that users can compose to create a garden. 110

Figure 5.8: Some of the categories of characters available in Storytelling
Alice.. 111

Figure 5.9: A selection of “kid” characters available in Storytelling Alice........ 112

Figure 5.10: Dora, a character in the “kids” category and her character-
specific methods.. 112

Figure 5.11: Lunchlady, a character on the “adults” category and her
character-specific methods.. 113

Figure 5.12: Character’s default arm positions effect how they animate.
Turn forward 0.25 would cause the girl’s palm to face forward and the tin
soldier to hold his arm out behind him. .. 113

Chapter 6 Developing the Storytelling Tutorial

Figure 6.1: A screenshot of a Stencils-based tutorial in Alice with a hole
over the interface component the user needs to interact with in the current
step. ... 117

Figure 6.2: Stencil Objects – A) Navigation Bar, B) Hole with Note, C)
Frame with Note, and D) Stand-alone note. ... 122

Figure 6.3: A tutorial step in the paper-based tutorial (left) and the
Stencils-based tutorial (right).. 128

Table 6.1: Average number of errors and distribution of users’ error counts
for Paper and Stencils-based tutorials... 132

Figure 6.4: In tutorial 1, users created a routine for an ice skater....................... 135

Figure 6.5: In tutorial 2, users created a story about a boy who falls in love
with an ogre... 136

Figure 6.6: In tutorial 3, users learn how to set up scenes. 137

Chapter 7 Evaluation Methodology
Figure 7.1: One step in a Stencils tutorial... 141

Figure 7.2: Tutorial 1 in Storytelling Alice (left) and Generic Alice (right). 142

Figure 7.3: Tutorial 2 in Storytelling Alice (left) and Generic Alice (right). 143

Figure 7.4: Tutorial 3 in Storytelling Alice (left) and Generic Alice (right). 144

Table 7.1: A list of the animations a person can perform in Storytelling
Alice and Generic Alice in the order they appear in the user interface. A
small number of animations including move and turn appear in both
systems.. 146

Figure 7.5: Character (above) and scenes (below) from the gallery in
Storytelling Alice. ... 147

Figure 7.6: Objects from the gallery in Generic Alice.. 148

Figure 7.7: Schedule for evaluation workshops.. 151

Table 7.2: Academic Demographics for Girl Scouts who participated in
the summative evaluation. .. 155

Table 7.3: Computer-related Demographics for Girl Scouts who
participated in the summative evaluation. .. 156

Chapter 8 Summative Evaluation Results
Figure 8.1: Average Percentage of Time users of Generic Alice and
Storytelling Alice spent on scene layout, program editing, and running
their programs. .. 159

Table 8.1: Percentage of time participants using Generic Alice and
Storytelling Alice spent on scene layout, program editing, and running
their programs. .. 159

Figure 8.2: Percentage of time spent on scene layout vs. program editing
for participants who used Generic Alice and Storytelling Alice. 160

Figure 8.3: Percentage of Participants who used methods, do togethers,
and loops in their programs... 161

Figure 8.4: Percentage of participants who used methods, do togethers,
and loops in their programs... 162

Figure 8.5: A screenshot of the world created by Fish_02_11_2006 and the
program that animates it.. 163

Figure 8.6: A screenshot of one of the worlds created by
Instruments_12_17_2005 and the program that animates it. 165

Figure 8.7: A screenshot of another of the worlds created by
Instruments_12_17_2005 and a segment of the program that animates it.......... 166

Figure 8.8: A screenshot of one of the worlds created by Fish_11_20_2005
and a segment of the program that animates it. .. 168

Figure 8.9: A screenshot of one of the worlds created by
Castle_11_5_2005 and a segment of the program that animates it. 170

Figure 8.10: A screenshot of the world created by Flamingo_12_17_2005
and a segment of the program that animates it. .. 173

Figure 8.11: A screenshot of the world created by Horse_12_10_2005 and
a segment of the program that animates it. ... 175

Figure 8.12: Mean scores for attitude questions in the entertaining scale. 178

Figure 8.13: Mean scores for attitude questions in the ease scale. 179

Figure 8.14: Mean scores for questions in the future Alice use scale................. 182

Figure 8.15: Mean scores for questions in the computer science interest
scale... 183

Figure 8.16: Mean Scores on the Programming Quiz for users of Generic
Alice and Storytelling Alice.. 185

Figure 8.17: Grades vs. Quiz performance for users of Generic Alice and
Storytelling Alice. ... 186

Table 8.2: Participants’ choices of which Alice version to take home............... 187

Figure 8.18: Participants choices of which version of Alice to take home......... 187

Table 8.3: Participants choices about what to show. .. 188

Chapter 9 What Girls Create
Figure 9.1: Flamingo_01_28_2006 created a world with a random
collection of characters that move in arbitrary ways. Sometimes the whole
character moves, sometimes only a part (like a leg or arm) is animated. 193

Figure 9.2: Fish_10_01_2005 made an animation involving characters
standing in front of houses. The characters put their arms by their sides
and the girl on the left waves hello. .. 194

Figure 9.3: Sailboat_12_10_2005 created a story-like animation in which a
penguin moves to the lever, the lever turns, and the Christmas tree lights
come on... 195

Figure 9.4: Lighthouse_12_3_2005 created a story-like animation in
which a knight slays a dragon and the princess declares the knight her
hero. .. 195

Figure 9.5: Lighthouse_01_14_2006 created a dancing penguins animation
in which the penguins turn, jump, and look different directions in
sequence and in parallel. ... 196

Figure 9.6: Dress_01_14_2006 wrote a story involving a guy named Dave
who has been having relationships with three different girls. They find out
and kick his legs off in retaliation. The story ends with the statement “And
thats why you dont cheat on girls!!! It Makes Your Legs Fall Off!!!”............... 198

Figure 9.7: Horse_01_28_2006 wrote a story which begins by showing the
title “There was a boy, named Leon, that was a inflexible, unchanging,
bully! And this is what happened to him…” During the course of the story,
the nerd character sees the tree wave and Leon responds by taunting him.
But, the tree begins talking to Leon and he sees the error of his ways and
promises not to further pick on the nerd character. .. 199

Figure 9.8: Castle_11_5_2005 wrote a story in which a father and his two
children get lost while on vacation and mom has to come and rescue them. 200

Figure 9.9: Castle_12_07_2005 created a story in which the wolf comes
and attempts to befriend the three pigs in hopes of eating them later. The
pigs get scared of the wolf and a ninja appears to frighten the wolf away. 201

Chapter 10 Conclusions and Future Work
Figure 10.1: A screenshot of the character-builder in The Sims 2. The user
is currently choosing a hairstyle and color for their Sim character. 207

Chapter 11 Programming Languages and Environments for Novice
Programmers

Figure 11.1: Taxonomy – Teaching Systems ... 223

Figure 11.2: Taxonomy- Empowering Systems ... 224

Figure 11.3:A for loop to compute the sum of the numbers from 1 to 10
written in FORTRAN and BASIC.. 227

Figure 11.4:A short segment of code to compute a worker’s weekly pay
shown in both JJ and Java. Note the line by line correspondence. 229

Figure 11.5:This is an If-statement template as it appeared in the Cornell
Program Synthesizer. The words “condition” and “statement” are
placeholders the user replaces with a condition (such as k < 1) or a
programming statement, respectively. .. 231

Figure 11.6: A view of the My Magic Castle courtyard. The user is
creating the rule “Nicky should dance when it meets the horse.” 235

Figure 11.7:A screenshot of Half Time from Thinkin Things Collection 3 236

Figure 11.8:A LogoBlocks program that waits for a light sensor to get a
reading of less than 10 and then turns motor A on for 20 seconds..................... 237

Figure 11.9:DRAPE Drawing and Programming Environment allows
children to draw pictures... 238

Figure 11.10:Electronic Blocks: the three sensing blocks are pictured on
the left, the logic blocks in the middle, and the action blocks on the right......... 239

Figure 11.11:Building my first animation in Alice. In my first animation,
IceSkater moves forward while she raises her leg. Then, if IceSkater is
close to a hole in the ice, she falls through it. ... 240

Figure 11.12:Magic Forest allows children to control the actions and
appearances of 2D characters. This activity has five characters: a witch, a
cat, and three spiders. The witch has two rules controlling her behavior.
The top one (blue tile on a scroll) allows the user to move the witch
around the scene. The second says that when the witch touches another
object, she should make a sound (e.g. laugh). The witch also has an empty
scroll to which the user can add new behaviors by selecting events and
actions from the brown window at the top of the screen and placing them
together on her scroll. ... 241

Figure 11.13: An image of the “Person” class within JPie. A person has a
name and a birthday as well as methods that for getting and setting the
person’s name and birthday. In the methods panel, the user is editing the
“setName” method which takes a string value and places the value in the
“name” variable. ... 242

Figure 11.14: The Leogo interface showing iconic, direct manipulation,
and textual programming. ... 245

Figure 11.15: A screenshot of Kara showing a finite state machine with
three states: enter, exit, and stop. Below the state machine are Kara’s
instructions based on whether there are tree stumps beside her. Each line
contains instructions for a given scenario. For example, if there is a stump
on Kara’s right and not on her left, she should move forward and go to
state enter. ... 248

Figure 11.16: (a) A simple world in Liveworld containing two objects, an
oval and a turtle. The turtle is open so that the user can see its details. (b)
An example of Lisp code used in Liveworld to turn a turtle. 249

Figure 11.17: A simple program in Atari 2600 BASIC. The areas of the
screen update to show the current position and state of the program. 251

Figure 11.18: Left, a simple Karel world with Karel in a room and a
beeper outside the door. On the right, a program that will move Karel to
the beeper’s location and have him pick up the beeper. 252

Figure 11.19: A view of ToonTalk from inside a house. Marty the Martian
provides information about objects and what they can do.................................. 254

Figure 11.20: A MOOSE Crossing script that allows MOOSE users to pet
Rover. When a user pets Rover, they are told “You pet Rover.” If they are
one of Rover’s friends, then Rover wags his tail. ... 257

Figure 11.21: A puzzle from Rocky’s Boots in which the player is asked to
create a circuit that separates blue crosses from the other shapes. When the
circuit is switched on, shapes move up the right side of the screen. When
they enter the white rectangle, the shape sensors to the right of the
rectangle can detect them. The player is asked to attach a sequence of
logic gates to the sensor that will activate the boot (center) when a blue
cross enters the box. The boot, when activated, will kick the shape out of
the rectangle. ... 259

Figure 11.22: A View of the Scratch interface. In the left-most panel are
the blocks (commands, functions, control structures, and variables) that
users can use in their programs. The center panel is the scripts panel,
where users can compose their programs. The right-most panel shows the
2D world that the user’s program controls. .. 261

Figure 11.23: A screenshot of a RAPUNSEL prototype. 262

Figure 11.24:A screenshot of a traffic light simulation in AgentSheets
containing two rules. The first rule runs continuously: every three seconds
it triggers the second rule. The second rule looks at the current color of the
traffic light and changes it to the next one in the sequence green, yellow,
red. .. 265

Figure 11.25: This drawing shows an example of how users create rules in
Stagecast. On the left side are the conditions in which each rule should be
applied. On the right, the results of each rule are shown. In this drawing,
if there is a raindrop with an empty space between below it, the raindrop

should move down. Otherwise, if there is a raindrop with an empty space
on its right, it should move right. .. 267

Figure 11.26: A view of the event editor in Klik N Play while the user
builds a graphical piano program. The user is currently specifying that
when the “User clicks with left button on white piano key,” the game
should play “sample piano1.” The events are organized in table form
based on their effects: all sound events are in the first column, events on
the user’s objects, piano keys in this screenshot, begin at column 5. 268

Figure 11.27: An editor for the Positive Gravity Button. When the mouse
goes up, Emile will execute 4 actions: Accelerated Motion 1, Stop
Increasing 1, and Display a Value 1 (2 times). At the bottom of the
screen, we can see the code that Emile will execute. Underlined text
corresponds to parameters (or slots) that the user can fill in using menu
options and dialog boxes... 269

Figure 11.28: A conditional statement in COBOL. Conditionals can use
implied subjects and objects as seen in the second and third lines of the
conditional statement. ... 270

Figure 11.29: All data in HANDS is stored in cards, which the user can
draw from a pile shown on the top right of the screen. All the graphics
(flowers and bees) and text on the screen are represented as facedown
cards. One card on the right has been flipped to face up so that the user
can see and edit its properties. When cards are on the board (in the center
of the screen), only the image on their backs are visible. Users of HANDS
can add code into Handy's thought bubble by clicking on his picture in the
upper left corner.. 272

Figure 11.30: A Fabrik program to create a simple text file editor. In the
top left text field, the user can enter a search string for file names. The
user’s string is passed to a file name pattern matcher and then to a GUI list
element. The user can then select the file they want to edit. When a file is
selected, the name of the file is passed to a module to retrieve its contents
and the contents are passed into a text field for the user to edit. 274

Figure 11.31: A Forms/3 program which creates a graphical representation
of a Person. The value for the head is computed with a nested if-statement
that selects an appropriate face based on the age (young < 20) and gender
of Person. The width and height of the body box are based on the Person’s
weight and height. To view or edit the equation associated with a given
cell, the user can press the arrow symbol below the bottom right corner of
the cell. .. 275

Figure 11.32: An Etoys simulation that makes the LadyBug follow the
track. The user has dragged statements from the LadyBug’s viewer (right)
into a script (left) so that the LadyBug continually moves forward, turning
right when she is over red and left when she is over yellow. The script is

currently paused, but if the user pressed the “go” button, the LadyBug
would start following the track. .. 276

Figure 11.33:A phone number look up program written in Boxer. If a user
enters a name in the “name” box and presses the Function-1 key, Boxer
will search through the entries in “list”, another box shown at the top of
the screen, and display the phone number associated with that name. 280

Figure 11.34: A screenshot of the Pinball Construction Set. On the right is
an empty pinball game; on the left are a variety of parts that users can put
into their pinball games... 283

Figure 11.35: An easy challenge in The Incredible Machine: the player
needs to help Mel (top left) get back to his house. The puzzle has been
solved by positioning the grey pipe, ramp, and a trampoline so that Mel
will go through the pipe, slide down the ramp, and bounce off the
trampoline and over the barrier to get home... 284

Figure 11.36: Part of a disease simulation program in StarLogo TNG.
When two turtles collide, each turtle checks to see whether the turtle it
collided with is red. If the turtle’s collide is red, then it calls “Immunity.” 288

Table 11.1: System influences .. 289

Table 2: System Attributes - part 1 ... 292

Table 3: System Influences - part 2 .. 293

Table 4: System Influences - part 3 .. 294

Chapter 1: Introduction 1

Chapter 1 Introduction

1.1 Introduction
In my thesis work, I have developed a programming system called Storytelling Alice for

middle school girls that presents computer programming as a means to the end of

storytelling. The development of Storytelling Alice was guided by formative testing with

more than 200 girls over a two-year period. The formative testing took place in a variety

of formats ranging from 4 hour afternoon workshops to week-long camps with groups of

3 to 20 girls ranging in age from 10 to 17. Participants were recruited from technology

camps, home-schooling groups, and the Girl Scouts. During formative testing, girls

created storyboards of movies they wanted to create and then tried to implement them in

a version of Storytelling Alice. Storytelling Alice includes three types of supports to

enable users to create stories: 1) high-level animations that support the use of social

characters who can interact with one another 2) a gallery of characters and scene

elements that helps girls find story ideas, and 3) a story-based tutorial. Storytelling Alice

is based on Alice 2.0, which provides the ability to render 3D animations and a drag and

drop interface for constructing programs.

To evaluate the impact of the storytelling focus on girls’ motivation to learn and success

at learning computer programming, I did a study comparing girls’ experiences and

behavior using Storytelling Alice and a version of Alice without storytelling support

Chapter 1: Introduction 2

(Generic Alice). The study took place during a series of one-time, four-hour workshops.

Participants were assigned to use either Storytelling Alice or Generic Alice. I collected

participants’ Alice programs, logs of their actions within Alice, survey responses, quiz

performance, participants’ workshop behavior. Participants who used Storytelling Alice

and Generic Alice were equally successful at learning programming concepts. However,

participants who used Storytelling Alice showed more evidence of engagement: they

spent more time programming, were more likely to sneak extra time to work on their

programs and have a stronger interest in using Alice in the future.

The ability to motivate middle school girls to learn computer programming may

encourage more women who choose to pursue computer science. The field of Computer

science has a long-standing problem in attracting women. The participation of women in

computer science peaked in 1985 when more than 35% percent of CS bachelor’s degrees

were awarded to women (Vegso 2005). Since that time, the number CS degrees awarded

to women has dropped. In 2004, fewer than 20% of CS degrees granted by research

universities were awarded to women (Vegso 2005). Several studies have shown that girls

begin to turn away from math and science during middle school (AAUW 1998;

CAWMSET 2000). A positive first experience with computer programming during

middle school may help to increase the number of girls who pursue computer science.

1.2 A Pragmatic Need for Diversity in Computer Science
Despite wide-spread usage of computers-based technologies, only a small,

unrepresentative sample of the population is involved in creating new technologies.

Broadening and diversifying the group of people who create new computer-based

technologies has two potential benefits: 1) a larger, more diverse group will help ensure

that computer science attracts the talent that the discipline needs and 2) a more diverse

group of people involved in the design of new technologies will help to ensure that new

technologies meet the needs of our diverse society.

Advances in computer science enable progress across many disciplines including fields

as diverse medicine, education, and predicting natural disasters. Given the broad impact

of computer science, it is critical that we ensure that computer science continues to attract

Chapter 1: Introduction 3

bright minds that will enable the field to continue to make forward progress and support

progress in other fields. Recently, there has been a dramatic drop in the numbers of

students interested in studying computer science at both the college and high school

levels. In the period between 2000 and 2004, the number of college freshman who listed

computer science as their probable major dropped by 60% and computer science

enrollments at research universities dropped by 39% (Vegso 2005). There is a similar loss

of interest in computer science at the high school level. In the year between 2004 and

2005 alone, the number of students who took an AP computer science exam (either the

Computer Science A or the Computer Science AB exam) dropped by nearly 6%

(College_Board 2004; College_Board 2005). Further, computer science was the only AP

subject area that saw a decrease in student participation (College_Board 2004;

College_Board 2005). Although it is difficult to accurately predict future job openings,

decreasing student interest will inevitably result in a smaller selection pool for the future

leaders of computer science.

In addition to the need to increase the number of people who enter computer science we

need to increase the diversity of people who choose to pursue computer science.

Currently, women are under-represented in computer science. According to the 2004

Taulbee survey, 82.3% of bachelor’s degrees in computer science were awarded to men.

Increasing the diversity of viewpoints in computer science may help to ensure that we

design new technologies that meet the needs of our diverse society. Today, technologies

created by computer scientists touch the daily lives of a broad segment of our population.

Technologies designed by an unrepresentative group may be less likely to take

everyone’s needs into account. For example, early voice recognition and video

conferencing systems did not recognize women’s voices (Margolis and Fisher 2002). The

failure to recognize women’s voices is likely the result of the voice recognition and video

conferencing teams testing their programs in-house with their male-colleagues. A more

diverse design team decreases the likelihood that this kind of scenario will occur. Further,

the problems that we choose to solve and the technologies that we create inevitably

reflect our personal beliefs about what kinds of problems are important and how they

should be solved. For example, the parent of an autistic child is much more likely to think

Chapter 1: Introduction 4

about ways that technology can support autistic children and their families than someone

who has no experience with autism. As technology continues to become an integral part

of daily life, involving a representative sample of people in the design of new

technologies can help ensure that our technologies meet everyone’s needs.

There is some evidence suggesting that men and women would tend to design different

kinds of technologies. A study of 47 preadolescent boys and girls showed that when they

were asked to design their “dream” technology, they tended to describe very different

things. Boys often described vehicles that could take them anywhere whereas girls often

described objects that could help in everyday life (Brunner, Bennett et al. 1998). Similar

differences were seen among 24 adult technology users, balanced for gender and

profession. The men tended to fantasize about bionic mind implants that grant god-like

powers whereas the women in the study tended to fantasize about small flexible

technologies that help people stay in touch and adapt to the wearers’ current needs

(Brunner, Bennett et al. 1998). Because men and women appear to envision different

future technologies, it seems likely that men and women will tend to push technology in

different directions.

Learning to program is also a valuable part of a general education for all students. In

addition to being a nice introduction to structured problem solving, programming also

gives students experience with complex systems and provides students with

computational thinking skills that can be applied to a broad range of disciplines ranging

from Biology to Economics (Wing 2006). The world around us is filled with complex

systems whose behavior depends on the behaviors and interactions of smaller parts within

the system: cars, weather, and manufacturing plants, to name just a few. Yet our schools

do little to prepare students to reason about complex systems. When your car breaks, it is

helpful to be able to read about the main components of car engines and eliminate

possible problems based on your understanding of the behavior of your car. When we, as

a country, make environmental policies that will impact neighboring states, countries, and

the rest of our planet over many years, our citizens need to be able to recognize that

seemingly simple actions like chopping down trees or drilling for oil can affect our air

Chapter 1: Introduction 5

quality and food supplies. Programming provides children with some hands-on

experience dealing with complex systems that they create themselves. When their

programs do not behave as expected, children have to learn to isolate the problems and

solve them. They learn to narrow the scope of a problem and that a single malfunctioning

program component can cause other program components to malfunction.

In addition to the critical thinking skills students develop through programming, an

understanding of computer programming may prove to be a valuable job skill for many

students. Few of today’s students will be able to avoid working with computers in some

capacity. Some research estimates that up to 30% of our computer-using workforce will

be required to do some programming activities as part of their job (Scaffidi, Shaw et al.

2005). Further, many students who choose not to pursue computer-related careers may

find themselves working with computer scientists, programmers, and engineers in some

capacity. Particularly for those students who will eventually work with computer

professionals, a basic understanding of computer programming will be helpful in

preparing students to communicate and work productively with computer professionals.

1.3 Attracting Women to CS
To get a larger, broader group of people to enter the field of computer science, we need to

get a larger, broader group of people to take the first steps towards computer science

careers. One of the main entry points for computer-related careers is learning to program.

The ACM K-12 task force describes the relationship between computer science and

programming in the following way:

While programming is a central activity to computer science, it is only a tool that

provides a window into a much richer academic and professional field. That is,

programming is to the study of computer science as literacy is to the study of

literature (Tucker, Deek et al. 2002).

Learning to program provides students with the basic skills necessary to pursue computer

science. If we can increase the number of female students who learn to program and who

enjoy programming, we will likely help increase the numbers and diversify the

community of people capable of succeeding in computer-related jobs.

Chapter 1: Introduction 6

However, programming courses at both the high school and college level have

traditionally failed to attract a significant number of female students (AAUW 1998).

Researchers have suggested a variety of factors that contribute to girls’ low enrollments

in computer science including disinterest in computers, concerns about the computing

culture, lack of encouragement from peers, parents, and educators, and relatively fewer

opportunities to interact with computers (Furger 1998; AAUW 2000). It is likely that

many of these factors play some part in girls’ decisions not to pursue computer science.

While it would be difficult to broadly address the cultural factors that influence girls’

decisions not to pursue computer science, we can make the process of learning to

program more motivating for girls.

One factor that may contribute to students’ loss of interest in computer science is that

students often find their first experience with computer science uninspiring. Typical

assignments in beginning computer science courses like “sort a list of numbers” or

“generate the sum of the first 1700 integers” fail to engage many students.

To make the process of learning to program more relevant for students, it is important to

introduce programming as a means to a motivating end. What constitutes an “interesting

end” for a female student may vary considerably with age. To have the greatest potential

impact, I chose to focus on designing a programming system for middle school girls.

Studies have shown that middle school is a critical age for girls; many girls decide

whether or not to seriously pursue the study of math and science during middle school

(AAUW 1996). By late high school many girls have already opted out of the math and

science classes that would enable them to pursue a mathematical or scientific major in

college (AAUW 1998). If girls have a positive experience with computer programming

during middle school, they may be more likely to consider enrolling in a high school or

college programming class.

Chapter 1: Introduction 7

1.4 Middle School Girls
To successfully design a programming system for middle school girls, it is important to

understand this age group. In this section, I will attempt to provide some insight into what

a middle school girl is like. Most of the information reported here is based on research

that included many girls, so any single girl may not exhibit all or perhaps even any of the

characteristics of the broader group. Most girls will have at least some of the

characteristics of the broader group.

1.4.1 Gender Expectations
Most girls hit puberty at twelve; middle school children are typically between twelve and

fourteen (Collins and Kuczaj 1991). In U.S. culture, as children start to exhibit the

physical changes of puberty, many people begin to expect both more adult behavior and

more gender-appropriate behavior from them (Collins and Kuczaj 1991). Because there is

still some disagreement on how girls and women should behave, girls at this age often

receive very confusing messages from society (AAUW 1996). In their report Girls in the

Middle, the American Association of University Women described the expectations for

adolescent girls this way:

Adolescent girls are to be sexy and flirtatious but at the same time remain “good

girls.” They are to fend off aggressive male attention while simultaneously

meeting teachers’ expectations of non-aggressive behavior. Females are to put

domestic life first at the same time that they prepare for financial independence

(AAUW 1996).

As adolescents start working towards determining how to balance the sometimes

conflicting expectations for young men and women, they tend to become much less

accepting of gender transgressions (behavior associated with the opposite gender) in their

peers than they were just a couple of years before (Collins and Kuczaj 1991). One study

revealed that adolescents are hesitant to partake in activities that they perceive as

belonging to the opposite gender because they believe that it may cause or at least be

indicative of a problem with sexual identity (Collins and Kuczaj 1991).

Chapter 1: Introduction 8

1.4.2 Academics
During the middle school years, many girls experience a drop in self-esteem and

confidence in academics, particularly in math and science (AAUW 1996). In the third

grade, approximately the same number of boys and girls believe that they are good at

math (64% of girls and 66% of boys) (Dossey, Mullis et al. 1988). By seventh grade,

57% of girls and 64% of boys believe they are good at math (Dossey, Mullis et al. 1988).

That number of girls who believe they are good at math drops to 48% by the end of high

school (Dossey, Mullis et al. 1988). This confidence drop typically precedes a drop in

academic performance (Fennema and Sherman 1977). Girls’ experiences with science are

similar. From elementary school through high school, girls are less likely to do science

based activities than boys (AAUW 1996). While girls express interest in science in the

elementary years, they have increasingly negative views of science, science classes, and

science-based careers as they progress through middle and high school (AAUW 1992).

While the exact reasons for the self-esteem drop and later performance drop in math and

decreasing interest in science are unclear, there are a couple of known factors that may

contribute. Girls tend to attribute their own struggles and failures to a lack of ability,

which may cause them put less effort into their schoolwork (AAUW 1992). Boys, on the

other hand, tend to attribute failures to insufficient hard work or, bad luck (AAUW

1992). Additionally, excelling in school may lead to social isolation for girls, as their

female peers begin to lose academic confidence and downplay the importance of

academics (AAUW 1996).

1.4.3 Identity Formation
For girls and for boys, the process of forming an identity is a fundamental activity of the

middle school period (Stone and Church 1984). Psychologists define identity as an

“internal, self-constructed dynamic organization of drives, abilities, beliefs and individual

history” (Marcia 1980). In other words, identity is a person’s own ideas about what he or

she stands for, what he or she is good at, what he or she enjoys doing, and how his or her

past helped to shape who he or she is today. Identity is dynamic, so it can change to adapt

to new life experiences, new friends, and new found abilities or failures (Stone and

Church 1984).

Chapter 1: Introduction 9

Psychologists believe that identity formation is a process that must include two elements:

a crisis and a commitment (Stone and Church 1984). During the crisis, children become

aware that they are expected to fill or begin to anticipate adult roles and start to feel

pressure to integrate information and emotions about themselves and their experiences

(Marcia 1980). Children who do not experience the crisis often accept the roles that

parents, teachers, peers, or other significant figures in their lives want for them (Marcia

1980).The crisis is resolved when a child commits to a role or set of roles that he or she is

currently filling or working towards filling as an adult and a set of beliefs about

themselves and the world they inhabit (Marcia 1980).

To resolve their identity crises, middle school aged children typically experiment with a

wide variety of roles in their interactions with peers, teachers, parents, etc. (Frankel

2002). Before settling on a role or set of roles, middle school aged children may change

roles and personae rapidly (Frankel 2002) and may take on different roles when

interacting with different people (AAUW 1996). A girl of this age may try to appear

daring and independent with her friends, obedient and responsible with her teachers, and

childish and playful with her parents as she tries to sort out what she stands for, what her

strengths are, and what she enjoys.

1.4.4 Middle School Girls and Computers
Girls are now using computers in large numbers. As of 2000, 9 out of 10 children in the

US have access to a computer in school or at home (Newburger 2000). According to data

from the 2000 census, over 66% of households with children between 6 and 17 have at

least one computer (Newburger 2000). Among teens 13 to 17 years of age, 73% of girls

and 70% of boys use the Internet, although their usage patterns tend to differ (GA 2003).

Girls tend to do more communication-based activities: 68% of girls report using email

“very often” or “pretty often”, as compared to 50% of boys (Roper 1999); 56% of girls

report using instant messaging “very often” or “pretty often”, as compared to 48% of

girls. Boys are more likely to report that they play games (50% of boys vs 43% of girls)

or gather information about sports (40% of boys vs 15% of girls) “very often” or “pretty

often” (Roper 1999). Still, girls are unlikely to move from using computer software to

signing up for a computer programming class. Potential reasons for this include the

Chapter 1: Introduction 10

perception of computer science as a male domain and the fact that traditional

presentations of computer science are uninteresting to many girls.

When girls are asked to draw someone who is good with computers (a computer whiz)

the computer whiz is male in 71% of responses, female in 18% of responses, and

indeterminate in the remaining 11% (Castell and Bryson 1998). Many girls view the

heavily technical culture, with its emphasis on clock speeds, megabytes and other

performance metrics as a fairly uninteresting domain and one that is most appropriate for

boys (AAUW 2000). Because adolescents are less tolerant of cross-gender activities than

kids of most other ages, the perception of computer science as a boys’ activity can itself

be an inhibitor, even for girls who are interested (Collins and Kuczaj 1991).

1.5 Storytelling as a Motivating End
I chose to base my programming system around the activity of creating animated 3D

movies. Storytelling is a good context for middle school girls to learn about computer

programming:

1. Given a little bit of time, most girls can come up with a story they would like to

tell. Storytelling is, at its core, a form of communication which is an important

activity to most middle school girls.

2. Stories are naturally sequential, allowing users to begin by creating sequences of

instructions and gradually progress to more advanced programming concepts as

they gain experience and confidence.

3. Stories are a form of self-expression and provide girls an opportunity to

experiment with different roles, a central activity during adolescence.

4. Non-programming friends can readily understand and appreciate an animated

story, which provides an opportunity for girls to get positive feedback from their

friends.

Chapter 1: Introduction 11

1.6 Leveraging Alice 2
While learning to program would be valuable for many students, it is also difficult and

frustrating for many students. To avoid some of the common problems associated with

learning to program, I leveraged an existing system for novice programmers: Alice

(2003).

Alice is a programming environment for novice programmers that allows users to create

interactive 3D virtual worlds, including movies and games. Alice was designed to make

the process of learning to program easier and less frustrating for beginning programmers

by addressing two of the common difficulties beginning programmers encounter: syntax

errors and invisible state. In Alice, users construct programs by dragging and dropping

code elements, which removes the possibility for making syntax errors. Programs in

Alice are animations which enables users to see their mistakes. Alice allows students to

gain experience with the programming concepts and constructs typically taught in a first

computer science course. These include looping, conditional statements, methods,

parameters, variables, arrays, and recursion.

The mechanical supports Alice provides can help broaden the pool of CS majors. NSF-

sponsored studies have shown that Alice increases the academic success and retention of

at-risk college students (freshmen intending to major in CS who enter college with no

programming experience and/or who are not prepared to enroll in Calculus as freshmen).

At-risk students who enrolled directly into a Java-based CS 1 class earned an average

grade of C and only 47% of them continued on to the second course. After a short Alice

course, at-risk students performed as well as well-prepared students in the Java-based

CS1 course: they earned an average grade of B and 88% of them continued on to the

second course (Moskal, Lurie et al. 2004). The Moskal, Lurie, et al. study did not control

for the amount of time students’ spend in class. Follow-up studies that control for

contact-time are currently underway. Alice is currently being used in CS1 courses at

more than 100 colleges and universities.

Chapter 1: Introduction 12

The Alice system removes syntax-based frustration and makes data state visible. While

decreasing the frustration associated with learning to program may help us retain those

students who are already interested in computer science, it is not sufficient to attract new

students into computer science. No matter how easy something is people still need a

reason to want to do it. To provide a motivation for middle school girls to learn

programming, I created a modified version of Alice that better supports girls in creating

animated stories.

1.7 Research and Contributions
My thesis work is composed of three components: 1) formative user testing to determine

how to support girls in creating animated stories 2) modification of the Alice

programming environment to support storytelling (I will refer to the modified version of

Alice as Storytelling Alice) and 3) an evaluation of Storytelling Alice on girls’ success

and interest in learning to program.

1.7.1 Formative Testing
More than 200 middle school girls (most were Girl Scouts between 11 and 15)

participated in the formative evaluation that informed the design of Storytelling Alice.

Over 18 months, I created and tested 15 different versions of Storytelling Alice. In early

user tests, I asked girls to work in pairs to create an animated story using a version of

Alice. Pair-based user testing is a common technique for gathering usability and

requirements information (Nielson 1993). However, in the case of a creative task like

storytelling, pair-based testing was ineffective because pairs often had difficulties

negotiating the storyline and frequently stopped talking with each other. As an alternative

method for capturing girls’ visions for their stories, I developed a three-step

storyboarding process in which girls write: 1) the “back of the dvd box” description of

their story, 2) break the story into scenes and describe the setting, action, and purpose for

each scene, and 3) create a storyboard of 6-9 frame drawings with accompanying textual

descriptions for each scene.

Chapter 1: Introduction 13

In trying to improve Storytelling Alice, I was guided by girls’ storyboards of what they

wanted to build, observed problems and questions that came up during user testing, and

recorded logs of the actions that girls took in interacting with Storytelling Alice.

1.7.2 Development of Storytelling Alice
Based on user testing, I made three major changes to the Alice system:

1) I added a set of high-level animations and support for creating multiple scenes.

The animations in Alice 2.0 allow users to perform simple graphical transformations like

moving and rotating a character or one of its parts. Using simple transformations, it is

often tedious and frustrating to create the kinds of animations that girls needed for their

stories such as walking or having two characters hug each other. By analyzing the

storyboards girls created for their movies, I identified a high-level set of animations that

enables girls to make more rapid progress on their stories without removing the

motivation to learn a variety of programming constructs.

Figure 1.1: A scene created in Storytelling Alice.

Most of stories that girls imagined creating take place in several different scenes. While it

is possible to create the appearance of multiple scenes in Alice 2.0, it is an involved

Chapter 1: Introduction 14

process that is unsuitable for novice Alice users. To enable girls to create multi-scene

stories, I added scene support to Storytelling Alice. In addition to allowing girls to more

easily create the stories they envision, the need for multiple scenes provides a nice

opportunity for introducing the concept of subroutines.

Table 1.1: A comparison of the animations in Storytelling Alice and Generic Alice.

Storytelling Alice Generic Alice

Say, think Move

Play sound Turn

Walk to, walk offscreen, walk Roll

Move Resize

Sit on, lie on Play sound

Kneel Move to

Fall down Move toward

Stand up Move away from

Straighten Orient to

Look at, Look Point at

Turn to face, turn away from Set point of view to

Turn Set pose

Touch, Keep Touching Move at speed, turn at speed,

roll at speed

2) I created a library of 3D characters and scenery that helps to spark story ideas.

One of the determining factors in girls’ motivation to learn to program in Storytelling

Alice is whether or not they can find a story that they want to tell. I found that the gallery

of 3D characters and scenery can be a source of inspiration for girls’ stories. In particular,

highly caricatured characters with clear roles and giving characters animations that

require some explanation within the story (e.g. what made a robot character go crazy) can

help spark ideas.

Chapter 1: Introduction 15

3) I created a story-based tutorial that introduces users to the mechanics of creating

programs in Alice in the context of stories similar to the ones girls envision creating. I

found that placing the tutorial within a story-context was necessary to engage girls.

However, story-based examples tend to be more complex and contain greater potential

for user error than traditional tutorial examples which are often chosen to illustrate a

concept as simply as possible. To moderate the additional complexity of story-based

tutorials, I created a new interaction technique called “Stencils.” The Stencils technique

overlays a transparent blue screen that catches mouse and keyboard events over the active

Alice interface. User instructions and explanatory information are presented using sticky-

style notes drawn on the blue screen. Holes in the Stencils allow users to interact only

with the interface components necessary for the current step. Stencils is an adaptation of

a related (unpublished) overlay-with-holes technique that I co-developed with Cliff

Forlines while interning for Alan Kay’s group at Walt Disney Imagineering.

The Stencils technique prevents most user errors and enables the presentation of more

complex tutorials. This technique allowed me to create substantially richer, detailed

tutorials, which helped underscore that the system can be used for storytelling.

Figure 1.2: Views of the Alice interface without and with a Stencils-based tutorial.

1.7.3 Development of Storytelling Alice
To evaluate how successful Storytelling Alice is at motivating girls to learn

programming, I conducted a between-subjects study comparing girls’ motivation and

Chapter 1: Introduction 16

learning when they were introduced to programming using Storytelling Alice and a

version of Alice without storytelling support (Generic Alice). Study participants recruited

from the Girl Scouts were randomly assigned to use either Storytelling Alice or Generic

Alice. I used a programming quiz given after the study participants had finished working

with their assigned version of Alice to measure their mastery of programming concepts.

To measure motivation, I collected several kinds of data including participants programs

and actions within Alice (what girls built), their opinions of Alice attitude survey

responses (what girls said), and behavioral measures that indicated engagement such as

the percentage of girls in either condition who snuck extra time to work on their

programs (what girls did).

Study results suggest storytelling is a highly promising approach for motivating more

girls to learn computer programming. Girls who used Storytelling Alice and Generic

Alice performed statistically similarly on the programming quiz. Girls who used

Storytelling Alice show significantly more evidence of motivation than girls who used

Generic Alice.

What girls built:

Participants who used Storytelling Alice spent 42% more time on the programming

aspects of Alice than participants who used Generic Alice, suggesting that storytelling

helps to make the activity of programming more appealing (p < .001). Given the short

period of time users spent working with Alice, users of Storytelling Alice did not learn

more than users of Generic Alice.

What girls said:

Although girls in the Storytelling Alice and Generic Alice conditions found their assigned

version of Alice similarly easy to use and entertaining, girls who used Storytelling Alice

expressed stronger interest in future use of Alice, either as part of a class or on their own

(p = .05).

Chapter 1: Introduction 17

What girls did:

Further, users of Storytelling Alice were nearly three times more likely to sneak extra

time to continue working on their programs after “time was up;” 16% of Generic Alice

users and 51% of Storytelling Alice users snuck extra time (p < 0.001).

Participants who used Storytelling Alice wrote stories about a wide variety of topics

including whether or not you should abandon your friends if you are given a chance to

hang out with the popular crowd, how to deal with a cheating boyfriend, the difficulties

of moving to a new town, how to find a kidnapped dog, and a father with no sense of

direction. Approximately half of the stories the girls created addressed deep issues that

middle school girls face. It seems clear this approach can provide a vehicle for girls to

think about issues they are facing.

Storytelling can provide a gentle, motivating introduction to programming concepts. Girls

often begin by creating sequences of instructions and, as they gain confidence, create new

scenes and new actions for their characters, tasks which often require more complex

programming constructs. Girls’ storyboards commonly included motivation to use

methods, parameters, loops, and parallel execution.

1.7.4 Contributions
This thesis makes several contributions:

1. Results of the study comparing girls’ learning and motivation using

Storytelling Alice and Generic Alice demonstrate that storytelling is a

promising approach for motivating more girls to learn computer

programming. As we continue to search for ways to attract a larger and more

diverse group of students to study computer science, storytelling is an activity we

should consider. Informal testing with other demographic groups suggests that

storytelling has a broad appeal and is approachable for beginning programmers.

2. Through formative user testing, I found that the commonly used pair-based

usability testing approach is poorly suited for creative tasks such as

storytelling. In user testing creative software in which users set their own goals, it

Chapter 1: Introduction 18

is important to find ways to capture users’ plans and intentions before they begin

to change them based on their interaction with the software. For the activity of

storytelling, a 3-step, gradual refinement, storyboarding process can help to

capture users’ goals.

3. Through analysis of girls’ storyboards and user testing, I developed a set of

high-level animations that enable girls to create the kinds of animated stories

they envision. The set of high-level animations for humans can be used as a

starting point for other systems that are designed to allow non-expert users to

animate human beings.

4. I developed the Stencils interaction technique to guide users through

tutorials and prevent most user-errors, enabling the presentation of more

complex, story based examples in the Storytelling Alice tutorial. The Stencils

technique is a general interaction technique that can be used to present tutorial

and help information in user interfaces. It is particularly well suited for interfaces

which make heavy use of point-and-click or click-and-drag interactions.

Chapter 2: Introduction to Alice 2 19

Chapter 2 Introduction to Alice 2

I chose to base my programming system for middle school girls on the Alice system, a

programming environment in which users construct programs via drag and drop to

control the behaviors of objects in a 3D virtual world. Alice 2.0, the most recent version

of the system, was designed for college-level introductory computer science students

without prior programming experience. In this chapter, I will describe Alice 2.0, which

served as my starting point in creating a version of Alice for middle school girls.

2.1 Why Alice?

Alice provides support for two problems that beginning programmers often struggle with:

1) typing syntactically correct programs and 2) finding and fixing logic bugs (Cooper,

Dann et al. 2003). Users construct Alice programs by dragging and dropping program

tiles and selecting parameters from a list of valid choices, a method or program

construction that prevents syntax errors. Alice allows users to master programming logic

and control structures independently of learning to type syntactically correct program

statements. While other systems have prevented users from making syntax errors (Kay;

Teitelbaum and Reps 1981; Miller, Pane et al. 1994; Smith, Cypher et al. 1994; Begel

1996; Kahn 1996; Repenning and Ambach 1996; Goldman 2003; Maloney, Burd et al.

2005), most limit users to a small subset of the control structures typically found in

general-purpose programming languages. Alice allows users to gain experience with all

Chapter 2: Introduction to Alice 2 20

of the standard programming constructs taught in introductory programming classes

including loops, if-then-else statements, recursion, variables, methods, functions, and

parameters.

Figure 2.1:To call the IceSkater’s move method, the user drags the tile “IceSkater move” into the method editor,
drops it, and selects parameters from the pop-up menus.

In Alice, running programs are animated, so students are able to see where they have

made mistakes in their programs. Consider, for example a program in which a dragon is

supposed to leave a castle (by crossing over a moat) and then fly to a knight standing to

the left of the castle. Students’ ability to watch the dragon’s motions can ease the

debugging process. Seeing, for example, that the dragon turned the wrong way after

crossing the moat helps students understand why the dragon is not finishing in the correct

location. In many introductions to programming, students detect errors through incorrect

printed program output. This is similar to being able to see only the dragon’s final

position in the previous example, but not what motions he made to arrive in his location.

Several other novice programming environments animate programs to provide immediate

Chapter 2: Introduction to Alice 2 21

feedback to users (Kay; Papert 1980; Pattis 1981; Kahn 1996; Pane 2002; Maloney, Burd

et al. 2005).

The activity of storytelling is a good match for Alice; Alice is designed to allow users to

create interactive 3D virtual worlds. Animated stories are essentially non-interactive

virtual worlds, a natural subset of Alice’s design space. In Alice, students create

programs that control the behaviors of graphical objects in a 3D virtual world, often short

animations or simple games. In Alice 2.0, users can combine simple animations (e.g.

move and turn) to create more complex behaviors like dances and gestures for the

characters and objects in their Alice 2.0 worlds. It is possible, although frequently

difficult, to create stories in Alice 2.0.

An early study indicates that using Alice 2.0 helps at-risk CS majors to succeed in

introductory programming and increases the chances that they will continue to pursue a

Computer Science degree (Moskal, Lurie et al. 2004). At-risk CS majors are incoming

CS majors who lack programming experience and/or who do not have sufficient

grounding in mathematics to enroll in Calculus. Typically, at-risk students, who are

disproportionately female and minority students, perform poorly in their first Computer

Science course (CS1) and less than half enroll in the second Computer Science course

(Cooper, Dann et al 2003). Cooper, Dann, et al’s study demonstrated that students who

take an Alice programming class either prior to or concurrent with a Java-based CS1

course perform a letter grade better than students not exposed to Alice and 88% of the

students exposed to Alice (vs. 47% of students not exposed to Alice) continue to CS2

(Cooper, Dann, et al 2003). A larger scale study is in progress to validate Cooper, Dann

et al’s results with a larger group of students at a variety of institutions. However, Alice

2.0’s early successes at the college level, particularly among female and minority

students, made Alice 2.0 a strong starting point for my work.

Alice is also beginning to have a real-world impact. Prentice-Hall published a textbook

for college-level introductory programming classes based on Alice in August of 2005:

Learning to Program with Alice by Wanda Dann, Stephen Cooper, and Randy Pausch. As

Chapter 2: Introduction to Alice 2 22

of spring 2006, Alice 2.0 is in being used in classrooms at more than 100 universities and

100 high schools across the United States. Prentice-Hall believes that number will

continue to grow rapidly in coming years.

2.2 Creating Alice Worlds
In this section, I will describe how users build worlds in Alice. In later chapters, I will

describe the modifications I have made to Alice 2.0 to support storytelling. In both

versions of Alice, there are two basic steps in creating a program: 1) selecting and laying

out 3D objects within the virtual world and 2) adding animations to control the behavior

of those 3D objects. Figure 2.2 shows a screenshot of the Alice interface.

Figure 2.2: A screenshot of the Alice interface. 1) The world window provides a view of the virtual world that a
students’ program will control. 2) The object tree contains a list of the 3D objects in the virtual world. 3) The
details area shows the properties, methods, and functions for the object selected in the object tree. 4) The
methods editor shows the code that defines a method a student is working on. 5) The events area allows students
to call methods based on events in the world, such as mouse clicks or changes in the value of a variable.

1

2

3

4

5

Chapter 2: Introduction to Alice 2 23

2.2.1 Adding and Positioning 3D Objects
Alice 2.0 includes a gallery of more than 350 3D objects that students can use in their

programs organized into groups including animals, people, amusement park models,

buildings, 3D controls such as button and switches, musical instruments, space models,

and many more. A larger gallery with more than 400 additional models is accessible

through the web. While some of these objects were specifically created to support the

Alice textbook or in response to user testing, most of them were created by

undergraduates as part of course projects. Consequently, models in the gallery vary

widely in both quality and utility.

Figure 2.3: Users press the "Add Objects" button to access the Alice gallery.

To access the Alice gallery, students press the “Add Objects” button underneath the

world window (see Figure 2.3). This causes the world view to expand and the gallery is

displayed underneath the world view. Groups of objects are stored in folders. By clicking

on a folder, students can see the objects inside that folder. Figure 2.4 shows the objects in

the medieval folder. Students can add an object to their virtual world by dragging the

object into the 3D scene and/or by clicking on the picture of the object and pressing the

“Add instance to world” button on the dialog box that appears.

In Alice, when users drag an object into the world, a bounding box appears in the world

so users can position the new object. When they release the mouse button, the object is

added at the final position of the bounding box.

Users can move any object in their virtual world by clicking on the object and dragging it

along the ground plane. A series of buttons to the right of the world view in both versions

Chapter 2: Introduction to Alice 2 24

of Alice allows users to change the dragging behavior of the mouse so that the mouse

moves objects up and down, rotates objects, resizes objects, or makes copies of objects.

To move the position of the camera in their virtual world, users can click and drag on the

arrows beneath the world view. When users are ready to begin animating their virtual

worlds, they can press the “Done” button to the right of the world view.

2.2.2 Creating Sequential Programs
By default, Alice worlds contain a pre-created method called “my first method” that is

called when the world starts (e.g. when the user presses the play button). This allows

Alice users to simply add method calls to “my first method” and press the play button to

run their program. Typically, beginning Alice users assemble their first programs within

“my first method.”

Users begin to create programs in Alice by dragging command tiles into the method

editor for “my first method.” To see what methods a particular object can do, a user can

Figure 2.4: A view of the objects in the Medieval folder. Users can add 3D objects like the Dragon by dragging
them into the 3D scene.

Chapter 2: Introduction to Alice 2 25

select that object in one of two ways: 1) by clicking on the object’s tile in the object tree

or 2) by clicking on the object itself in the 3D world window. Alice will display the

methods that the selected object can perform in the details area. To call a method on an

object (as part of a program), the user can drag the method tile into the method editor,

drop it and select the parameter values from a pop-up menu (see Figure 2.5).

Figure 2.5: To animate the bunny in Alice 2, the user 1) selects a method from the list of methods the bunny can
perform, 2) drags the method into the editor for “my first method” and drops it, 3) and selects parameters from

the pop-up menus. 4 shows a completed method call that tells the bunny object to move forward by 1 meter.

1

2

3

4

Chapter 2: Introduction to Alice 2 26

Method editors can contain as many method calls (or lines of code) as the user desires.

Scroll bars appear when the method length exceeds one screen; expert users have written

3000 line programs using Alice. As in typical programming languages, method calls are

executed in order. Users can rearrange the lines of code by dragging and dropping them.

In Alice 2.0, all 3D objects perform methods drawn from the thesis work of Matthew

Conway on an earlier version of Alice (Alice 98). In his thesis, Conway studied how to

make 3D graphics transformations such as translate, rotate, and scale understandable to

and usable by undergraduates in non-engineering majors. By observing users completing

a paper-based tutorial for Alice 98, Conway determined how users expected simple 3D

animations to behave and modified the naming and behavior of the animations in Alice to

match users’ expectations.

In addition to performing animations on whole 3D objects (e.g. moving a cow through

space), users can also animate an object’s subparts (e.g. the cow’s legs).

In Alice 2.0, objects can perform the following methods:

object.move(direction, amount)

The move animation slides an object some number of meters in a direction (forward,

backward, left, right, up, down).

object.turn(direction, amount)

The turn animation rotates an object by some number of revolutions in a direction (left,

right, forward, backward). Turning an object left or right rotates the object around its up-

down axis. Turning an object forward or backward rotates the object around its left-right

axis.

object.roll(direction, amount)

The roll animation rotates an object by some number of revolutions in a direction (left,

right). Rolling an object left or right rotates the object around its forward-backward axis.

Chapter 2: Introduction to Alice 2 27

object.resize(amount)

The resize animation resizes an object by a multiplicative factor. Resizing an object by 2

makes the object twice as large in every dimension.

object.say(message)

The say animation displays a cartoon speech bubble containing the message over the

object. Although this is included in Alice 2.0, it was one of the first additions in support

of storytelling that I made to the Alice system.

object.think(message)

The think animation displays a cartoon thought bubble containing the message over the

object. Like say, think was one of my early modifications to Alice in support of

storytelling.

object.playsound(sound)

The playsound animation plays a sound in wav or mp3 format.

object.move to(target)

The move to animation moves one object to another object’s position. In Alice, an

object’s position is defined to be the position of the object’s origin, which is specified by

the artist when the 3D object is created. The most common origin locations are the center

of the object and the center of the object’s bottom face. The move to animation moves an

object so that its origin is in the same location in the Alice world as the target object’s

origin. From a user’s perspective, the move to animation may cause objects to appear to

be on top of one another or cause the moving object to end in a position either above or

below the Alice ground plane.

object.move toward(amount, target)

The move toward animation moves the object toward the target by some number of

meters along the line connecting the object’s origin with the target’s origin. The line

Chapter 2: Introduction to Alice 2 28

between the object’s origin and target’s origin may not be parallel to the ground plane.

This can result in an object moving either into the ground or off of the ground.

object.move away from(amount, target)

The move away from animation moves the object away from the target by some number

of meters along the line connecting the object’s origin with the target’s origin.

object.orient to(target)

The orient to animation rotates the object so that its axes are parallel to the target’s axes.

object.point at (target)

The point at animation rotates the object so that its forward axis is pointing toward the

target’s origin. This can result in an object appearing to lean forward or backward.

object.turn to face(target)

The turn to face animation rotates the object around its up-down axis so that its forward

axis is coplanar with a vector beginning at the target’s origin and pointing up.

object.set point of view to(target)

The set point of view animation moves and rotates the object so that it has the same

position and orientation in the Alice world as the target.

object.set pose(pose)

In Alice, users can create poses for objects by moving their subparts. For example, a

person might have arms and legs as subparts. A checkbox in the scene layout controls

allows users to use mouse dragging to manipulate objects’ subparts. Once a user has

created a pose he or she wants to keep, he or she can press the “capture pose” button on

the properties panel in the details area. The pose stores the positions and orientations of

all of the objects subparts. Set animates an object and all of its subparts from their current

positions and orientations to the positions and orientations stored in the pose.

Chapter 2: Introduction to Alice 2 29

object.stand up()

The stand up animation rotates an object so that its up-down axis is aligned with the Alice

world’s up-down axis.

object.move at speed(direction, speed)

The move at speed animation moves an object at a given speed in a direction (forward,

backward, up, down, left, or right).

object.turn at speed(direction, speed)

The turn at speed animation rotates an object at a given speed in a direction (forward,

backward, left or right). The rotation directions are the same as for the turn animation.

object.roll at speed(direction, speed)

The roll at speed animation rotates an object at a given speed in a direction (left or right).

The rotation directions are the same as for the roll animation.

object.constrain to point at (target)

The constrain to point at animation rotates the object to point at the target (like the point

at animation) during every frame of the animation. This animation can be used to have a

character’s head track a moving object.

object.constrain to face(target)

The constrain to face animation rotates the object so that it is facing the target (like the

turn to face animation) during every frame of the animation. This animation can be used

to have a character constantly face a moving object.

By default, all Alice 2.0 animations animate over 1 second using slow-in and slow-out.

Further, when the animation depends on a coordinate system, Alice 2.0 uses the object’s

coordinate system by default. For example, if a user tells a person to move forward 1

meter, the person will move 1 meter in the person’s forward direction rather than the

world’s or the camera’s forward directions.

Chapter 2: Introduction to Alice 2 30

Figure 2.6: Users can specify values for optional parameters for a method call using the “more…” pop-up menu.

In designing a system for novice programmers, it is crucial not to overwhelm beginning

users with details. Consequently, most methods in Alice only require users to specify one

or two parameters. For example, when adding a move animation, a user must specify

which direction the object should move and how many meters. To provide users with the

option of greater control over their animations, Alice presents infrequently needed

parameters as optional parameters. Optional parameters are assigned a default value when

the animation is created. If users want to change the values for any optional parameters,

they can click on the “more…” at the end of the method call (see Figure 2.6).

Users can also create new methods for specific objects in their worlds. For example, a

user might want to teach a ballerina to pirouette or a kangaroo to hop. Most students

intuitively understand that a ballerina should be able to do different things than a

kangaroo. Working with object-methods in Alice gives students a concrete space to begin

to think about the concept of objects in programming. Alice is an object-based (not

object-oriented) system. When a user creates a pirouette animation for a ballerina, it

applies only to the selected ballerina, not all ballerinas. When students transition into a

language like Java or C++, they have to tackle the concepts of classes, instances, and

inheritance.

2.2.3 Using Programming Constructs
Alice provides several programming constructs. Tiles representing programming control

structures such as if-statements and loops are displayed along the bottom of the method

editor. To add a control structure, users can drag the tile for that control structure into the

method editor, drop it and select any necessary options. Then, the user drags any

statements that they want to be affected by that control structure into it. Each of the

Chapter 2: Introduction to Alice 2 31

control structures available in Alice is discussed briefly below. Both Alice 2.0 and

Storytelling Alice provide the same control structures.

Figure 2.7: Users can add control structures to their programs by dragging and dropping the control structure
tiles from the bottom of the method editor.

Loops

Figure 2.8: By default, Alice displays a simplified for loop but users can press the “show complicated version” to
gain access to the loop count variable (i.e. index).

To create a loop, the user drags the “Loop” tile, drops it into the method editor and

selects the number of times he or she wants the loop to execute. By default, the Alice

loop is presented as a count loop. However, a “show complicated version” button

displays the Loop in the style of a for-loop and allows users to access the loop count

variable (see Figure 2.8).

Chapter 2: Introduction to Alice 2 32

If/Else Statements

To create an If/Else statement, the user drags the “If/Else” tile into the method editor and

selects “true,” “false,” or a Boolean expression, such as a variable or a parameter. Users

can replace the “true” or “false” value with a function that returns a Boolean value. In

addition to methods, all objects in Alice have functions, essentially questions that they

can ask about the state of the world. These are displayed on a tab marked “Functions” in

the details area. The user can drag a Boolean function and drop it onto top of an If-

statement’s conditional to replace it (see Figure 2.9).

Figure 2.9: Users can drag in functions that return Boolean values onto the condition (i.e. “true”) for an If-
statement to replace it.

While Loops

 To create a while loop, the user drags the “While” tile into the method editor, drops it,

and selects true, false, or a Boolean expression as the while condition. As with If-

statements, the user can replace the condition with a function that returns a Boolean

value.

Do Together

Unlike many programming languages, Alice provides a simple construct called a Do

Together for executing multiple methods simultaneously. To create a Do Together, the

user drags the “Do Together” tile into the method editor and drops it. The user can drag

any lines of code that he or she wants to execute in parallel into the Do Together.

Chapter 2: Introduction to Alice 2 33

Do In Order

By default, all methods execute the instructions inside them in order. However, when

creating animations, it is sometimes necessary to have a sequential list of actions happen

in parallel with another action or list of actions. For example to create a jump forward

animation, a user might want an object to move up and then down while moving forward

the whole time. To create a Do In Order, the user drags the Do In Order tile into the

method editor and drops it. Do In Orders are most commonly found inside Do Togethers.

Figure 2.10: An example of a nested Do in order inside of a Do together which causes the bunny to jump
forward by moving forward while moving up and down.

For All In Order

 Sometimes, it is useful to iterate over a list of objects and do something with them, one

at a time. To create a For All In Order, the user drags the “For All In Order” tile into the

method editor and drops it. The user can then select a pre-existing list or choose to create

a new one. Lists can contain numbers, strings, objects, colors, etc. The For All In Order

construct creates a tile that represents the current element in the list that users can drag in

to the For All In Order to use.

For All Together

 This construct is the parallel equivalent of For All In Order. Rather than iterating through

the items in the list one at a time, For All Together performs the actions inside it for all of

the list items simultaneously.

Chapter 2: Introduction to Alice 2 34

2.2.4 Creating New Methods
One of the challenges in learning to program is in learning how to structure programs so

that as they grow in length the programmer can quickly navigate through the code. If a

user wants to change some aspect of their program, it is important that they be able to

locate the relevant code for that aspect of the program. In object-based and object-

oriented languages, programs are organized into methods associated with particular

objects. A collection of lines of code that instructs a clown character to perform a back

flip would be placed inside a method called “back flip”

To create a new method for an object in Alice, a user clicks on that object’s tile in the

object tree. In the details area, at the top of the methods panel, there is a button marked

“Create new method”. Users can press the “Create new method” button and type in a

name for their new method. Alice will open a method editor for their new method and

create a new tile in the object’s list of methods that users can drag into programs to call

their new method. Figure 2.11 below shows the Alice interface after the user has created

a new method called “triple jump” for the iceSkater. In the editor area, Alice has opened

a new method editor for “triple jump.” Initially, “triple jump” will do nothing; users can

drag command tiles into the triple jump’s editor to define what it means for the iceskater

to perform a triple jump. Users can call the method “triple jump” by dragging the “triple

jump” tile into the method editor.

Chapter 2: Introduction to Alice 2 35

Figure 2.11: The interface after the user has created a “triple jump” method for the iceSkater. Alice has created
a tile the user can drag into their program to call “triple jump” and opened a method editor where the user can

define the behavior for “triple jump.”

2.2.5 Creating methods with parameters
Alice allows users to create methods that take parameters. Parameters in Alice can be

numbers, strings, objects, colors, etc. For example, a user might want to create “jump and

spin” method for the iceskater and pass in how many times the iceskater should spin in

the air as a parameter. Below is a simple version of “jump and spin” without a parameter.

To add a parameter to this method, the user can click on the “create new parameter”

button. A dialog box will appear which asks the user to choose a type for the parameter

and give it a name. For the “jump and spin” method, the user might create a number

parameter called “how many times.”

Chapter 2: Introduction to Alice 2 36

Figure 2.12: To add a parameter to a method, users can click on the “create new parameter” button in the
method editor.

When the user clicks ok, Alice will add a tile which represents the new parameter to the

method editor. The user can then drag the parameter tile and drop it where he or she

would like to use the parameter. In the case of the “jump and spin” method, the user

would drag the “how many times” tile and replace the “1 revolution” in the line

“IceSkater turn right 1 revolution.”

Figure 2.13: To make the iceSkater turn right “how many times,” the user can drag the “how many times” tile
and drop it on top of “1 revolution” to replace it.

When Alice adds a parameter to a method, it automatically updates everywhere that

method is called. Before the user adds a parameter, a call to IceSkater’s “jump and spin”

method looks like Figure 2.14. When the user adds the “how many times” parameter to

the “jump and spin” method, Alice also adds it to any places that the method is called.

Chapter 2: Introduction to Alice 2 37

Also, when users create new calls to “jump and spin”, Alice will automatically create a

pop-up menu where users can select values for any parameters.

Figure 2.14: The method call to “iceSkater.jump and spin” without (above) and with (below) a parameter that
controls how many times the iceSkater should spin.

Alice 2.0 provides mechanical supports that ease the process of learning to program. By

constructing programs via drag and drop, users can concentrate on understanding how

programming constructs work rather than learning syntactic rules. Because Alice

programs are animations, users can see the program execute, making it easier for users to

find and fix errors.

Alice provides most of the programming constructs that are typically covered in an

introductory programming class. In Alice, users can create programs that use loops, if-

then-else statements, methods, parameters, and parallelism.

2.3 Storytelling Alice
Alice is a good environment for learning how to program. Unfortunately, most middle

school girls are not intrinsically interested in learning to program a computer. If you walk

into a classroom of middle school girls and ask how many want to learn to program, only

a few hands go up. However, I found that most girls are interested in learning how to

create animated movies. Guided by user tests with more than 200 middle school girls, I

created Storytelling Alice to introduce computer programming to girls as a means to the

end of creating an animated movie. Storytelling Alice has:

1. a set of high-level animations that more closely match the kinds of actions girls

envision using in their stories.

2. a gallery that is designed to help girls find story ideas.

3. a tutorial that introduces girls to the process of creating programs in Alice using

story examples.

Chapter 2: Introduction to Alice 2 38

Subsequent chapters describe my user testing methods and the changes that I made to

Alice 2.0 in support of storytelling.

2.4 Motivating Novice Programming Environments
There is a long and rich history of research on designing programming languages and

environments to broaden the pool of people who learn to program computers. The

majority have focused on simplifying the process of learning to program using a variety

of techniques from improving textual programming languages to creating environments

that allow users to author programs without making syntax errors (see Chapter 11:

Programming Languages and Environments for Novice Programmers)(Kelleher and

Pausch 2005). A smaller number of systems try to provide a motivating context for

learning program.

Three systems have attempted to motivate computer programming through competitions:

in AlgoArena (Kato and Ide 1995) users program sumo-wrestlers to fight tournaments; in

Robocode (Nelson 2001) users program battletanks for a “fight to the finish”, in Rapunsel

(Flanagan, Nissenbaum et al. 2005) users program competitive dancers.

Other systems enable users to create animations and video games. Although it is possible

to create animated stories in these systems, most provide users only general graphics

capabilities. It may be difficult to create stories from basic graphics commands because

of the number of steps required. Several systems allow users to create 2D animations by

moving sprites and changing the graphical image associated with the sprite. Stagecast

Creator enables users to create 2D games and simulations by specifying graphical before

and after conditions (Smith, Cypher et al. 2000). HANDS allows children to create 2D

games using a programming language designed to more closely match the ways in which

non-programmers describe the solutions to programming problems(Pane, Myers et al.

2002). In Toontalk, users can create 2D video games through demonstrating their

programs in an animated 3D virtual environment (Kahn 1996). Scratch (Maloney, Burd et

al. 2005) and Squeak EToys (Kay) enable children to create 2D animations and games

through dragging and dropping graphical tiles. StarLogo TNG (Kloper and Begel 2006)

allows users to create games and simulations by moving 3D models in a virtual world;

Chapter 2: Introduction to Alice 2 39

animations that require a character to move body parts such as walking or waving hello

must be created using external software (Kloper and Begel 2006).

Storytelling Alice is one of few novice programming systems to focus on making the

process of learning to program more motivating. While other systems have attempted to

enable novice programmers to use general-purpose graphics and animations in their

programs, I am not aware of any systems that focus on enabling the creation of 3D

animated stories.

Chapter 2: Introduction to Alice 2 40

Chapter 3: Formative User Testing 41

Chapter 3 Formative User Testing

3.1 Introduction
The development of the storytelling version was guided by extensive user testing with

more than 200 middle school aged girls (and more than 50 boys). This chapter describes

the participants in the formative user testing of Storytelling Alice as well as the tools and

techniques I used in gathering information about users’ storytelling needs and their

interaction with Storytelling Alice. I estimate that I created and tested 15 different

versions of Alice in the process of developing Storytelling Alice.

3.2 Participants
One of the difficult aspects of research involving children is finding enough children who

are representative of typical middle school children. Participants in the formative testing

of Storytelling Alice were largely from Western Pennsylvania (with some from Atlanta,

GA and Houston, TX). Typical middle school children may vary a little bit from one

region of the country to another. Through the course of my thesis work I worked with

children recruited from three main sources: 1) Science, Technology, Engineering, and

Math (STEM) summer camps 2) home-schooling groups and 3) the Girl Scouts.

3.2.1 Girls in STEM Camps
Girls from two different STEM camps participated in the formative testing of the

storytelling version of Alice.

Chapter 3: Formative User Testing 42

32 girls aged 12-14 from Georgia Tech’s Technology, Engineering and Computer (TEC)

Camp participated in an Alice class as part of a week-long camp during the summer of

2003. The Alice class met for four 1.5 hour long sessions. To participate in the TEC

camp, girls were required to complete an application that included an academic transcript,

an essay on a technology-related topic, and teacher recommendations. I do not have

specific demographic information about these students, but the application process was

designed to identify bright girls who had an interest in technology and engineering.

Table 3.1: Academic Demographics for the Houston Museum of Natural Science Summer Alice Workshop
Participants

During the summer of 2004, 19 girls participated in a 3-day Alice workshop offered

through the Houston Museum of Natural Science (HMNS). HMNS workshops and camps

have open enrollment. Consequently, the HMNS girls represented a broader spectrum of

abilities than the TEC camp girls. Academic and computer-related demographic

information is presented in the tables below. Girls ranged in age from 10 to 15, with most

between 10 and 11. All but 3 of the students reported their grades as being either all A’s

or A’s and B’s. Slightly more than half of the students attended public schools, one was

home-schooled, and the rest attended private schools.

Total
Number

Number of Participants 19
Ages High: 15
 Low: 10
 Mean: 11.4
 Standard Deviation: 1.1
Grade in School High: 9
 Low: 6
 Mean: 6.4
 Standard Deviation: 0.8
School Type Public: 10
 Private: 8
 Home-school: 1
Academic Performance Mostly A's: 9
 A's and B's 7
 Mostly B's: 1
 B's and C's: 1
 Mostly C's: 0
 C's and D's: 0
 Mostly D's and below: 0
 No Answer: 1

Chapter 3: Formative User Testing 43

More than half of the girls who participated in the HMNS camp ranked themselves as

“very good” or “excellent” at using computers. More than 1/3 of the students had made a

web page and 2 of the 19 students had previously written a computer program.

Table 3.2: Computer-related Demographics for the Houston Museum of Natural Science Summer Alice
Workshop Participants

 Total Number Percentage
Number of
Participants 19

High: 25
Low: 0
Mean: 7

During the last week,
how often did you
use a computer for
any purpose? Standard Deviation: 6.3

Only schoolwork: 0 0.0%
Mostly schoolwork, some fun: 1 5.3%
Equally for schoolwork and fun: 4 21.1%
Mostly fun, some schoolwork 8 42.1%
Only fun: 2 10.5%

What do you use
computers for?

No answer 4 21.1%
No: 6 31.6%
Yes: 2 10.5%
Don't know: 7 36.8%

Have you ever
written a computer
program?

No answer: 4 21.1%
No: 8 42.1%
Yes: 7 36.8%
Don't know: 0 0.0%

Have you ever made
your own web page?

No answer: 4 21.1%
Poor: 0 0.0%
Fair: 3 15.8%
Good: 2 10.5%
Very good: 8 42.1%
Excellent: 2 10.5%

What is your skill
level at using
computers?

No answer: 4 21.1%

Recruiting from STEM camps has several problems: STEM campers tend to be brighter

(they have chosen to attend an educational camp and may have gone through an explicit

application processes) and more receptive to STEM related activities than average.

However, STEM campers were valuable early testers of Storytelling Alice. They tended

to show more persistence than I have seen in my groups overall. Where a typical middle

school girl might give up after encountering a few difficulties, STEM campers were more

willing to push through problems they encountered. Further, they were able to reflect on

Chapter 3: Formative User Testing 44

ways to improve Alice. In fact, some of the most insightful comments about Alice came

from STEM camp kids. For example, one girl pointed out that we should carefully select

the set of 3D objects that come with Alice to maximize their expressive potential and

minimize the need for repetitive work; she stated that adding a lot of trees to create a

forest was boring and unexpressive, but selecting characters or adding details to a

character’s bedroom had more potential for self-expression.

3.2.2 Home-schooled Students
In addition to girls attending STEM camps, I worked with a variety of home-schooled

students.

10 students, 7 girls and 3 boys, recruited by a colleague who home-schools his children,

came to Carnegie Mellon for 1 hour per week for a semester. The children ranged in age

from 10 to 17 and 6 were African-American students.

31 students, 13 boys and 18 girls, from two Pittsburgh home-schooling groups

participated in two classes organized through local home-schooling organizations. The

classes met for a total of 8 hours, divided into 1 or 1.5 hour sessions. The students ranged

in age from 10 to 16. Most said that math and/or science were their favorite subjects. A

larger proportion of girls listed language arts, arts, or history/government related subjects

as their favorite subject than boys. Girls also tended to have different hobbies than boys.

Where 9 of the 13 boys listed computers as a hobby, only 2 of the 18 girls did. Girls most

commonly listed arts (13 of 18) and sports (13 of 18) as hobbies. According to self-

reports, the home-schooled boys were more frequent computer users than the girls. All

but 1 of the boys reported using their computer daily. Among the girls, fewer than half of

the girls reported using the computer everyday.

Table 3.3: Academic Demographics for Home-schooled Participants.

 Boys Girls All Users
Number of Participants 13 18 31

Chapter 3: Formative User Testing 45

Ages High: 16 16 16
 Low: 10 10 10
 Mean: 12.23 12.74 12.45
 Standard Deviation: 0.66 0.55 1.59
Hobbies arts: 2 13 15
 computers: 9 2 11
 construction: 3 0 3
 sports: 5 13 18
 media: 1 4 5
Favorite Subjects math/science: 11 8 19
 language arts: 1 5 6
 arts: 1 4 5
 history/government: 1 4 5
Computer Usage everyday 13 6 19
 every other day 0 6 6
 weekly 1 3 4
 occasionally 0 3 3

Although I did learn some valuable lessons from the home-schoolers who worked with

Alice, I moved away from working with home-schooled kids for a variety of reasons. The

home-schooling community in Pittsburgh is not large enough to serve as a user-testing

pool. Both home-schooling groups struggled and, ultimately, failed to find 20 kids (with

at least half girls) between the ages of 11 and 15 to participate in the Alice classes.

However, I also found that the home-school community includes a larger than normal

proportion of students I would describe as atypical: several of the students in the two

Alice classes had learning disabilities or special needs. Further, the high degree of

parental involvement in the home schooling community made user testing difficult. For

example, I tried to pair girls with girls and boys with boys. The parent of a shy girl told

me that her daughter would only participate if she could be paired with her brother. In

another case, the mother of a girl with a learning disability insisted that her daughter be

paired with a friend in the class, causing me to have to reshuffle groups after user-testing

had started. Due to the small numbers of girls in these classes, I felt it was necessary to

comply with the requests. The home-school classes were fairly early in my process; both

were held in the spring of 2004. At the time, I was still identifying areas in which Alice

could be improved for girls so parents’ demands did not seriously impact what I was able

to learn from these classes. However, for the later formative evaluations and the

summative evaluations which required randomization, the home-schooling community

would have difficult to work with.

Chapter 3: Formative User Testing 46

3.2.3 Girl Scouts
The majority of users who participated in formative user testing were drawn from local

Girl Scout troops. I recruited troops by placing a short paragraph advertising 4-hr

computer workshops in which Cadette troops (typically composed of students in grades

6-9) could help test the Alice program and learn a little bit about computer programming

in the Community Bulletin, a newsletter the western Pennsylvania Girl Scout office sends

out to troop leaders and activities coordinators in the local area. Interested troop leaders

contacted me to arrange a time for their Girl Scout troops to participate in a workshop. To

encourage a broad spectrum of girls to participate, I offered a $10 donation to the troop

for each girl who participated. The financial incentive encouraged the participation of

girls who did not see themselves as “computer people.” Although I did not formally ask

people their reasons for signing up, my impression is that the majority of troops

participated for fundraising purposes. Many of the troops were explicitly saving money

towards an activity or trip; troops mentioned goals including trips to New York and

Washington, museum tours with docents, camping and ski trips. Girl Scout troops earn

$0.50 per box of cookies sold, so $10 per girl for an afternoon was appealing to a lot of

troops. Some troops participated because the workshop provided an opportunity to visit a

college campus or to give girls educational experience that they might not get in school.

The girls who participated were largely between the ages of 11 and 15. However, I

allowed troops that had a small number of girls slightly older or younger than my target

age range to participate. Consequently, my participant pool includes a small number of

girls either slightly younger or slightly older than my target age range of 11 to 15. The

average girl who participated was between 12 and 13, in the 7th grade, and attended a

public school. Most girls self-reported that their grades were either “mostly A’s” or “A’s

and B’s.” This raises a question about whether or not my participant pool contained a

representative sample of academic abilities. While I cannot answer this question

definitively, based on my interactions with girls who participated in my user testing

sessions, I can say that my participant pool included a wide spectrum of girls with

varying ability levels. Girls do not have to be academically gifted to participate in Girl

Scouts. In fact, several troops included members who were autistic or had other learning

Chapter 3: Formative User Testing 47

disabilities. Based on the nature of self-reports, it seems likely that many girls were

“rounding up” when describing their grades.

Table 3.4: Age and Academic Demographics for Girl Scout Participants.

 Total Number
Number of Participants 165
Ages High: 16
 Low: 10
 Mean: 12.6
 Standard Deviation: 1.2
Grade in School High: 11
 Low: 5
 Mean: 7.3
 Standard Deviation: 1.3
School Type Public: 155
 Private: 10
 Home-school: 0
Academic Performance Mostly A's: 70
 A's and B's 65
 Mostly B's: 10
 B's and C's: 17
 Mostly C's: 1
 C's and D's: 1
 Mostly D's and below: 0
 No Answer: 1

Most of the girls who participated in the formative testing of the storytelling version of

Alice ranked themselves as either “good” or “very good” at using computers on a scale

that ranged from “poor” to “excellent”. Approximately one third of my participants had

made their own web page and 11 of the 165 girl scouts had previously written a computer

program. Most girls reported that they used computers either “equally for schoolwork and

fun” or “mostly for fun and sometimes for schoolwork”. When asked how often girls had

used a computer in the last week, there was a wide variation in answers. 10 of the 165

girls had not used a computer at all in the last week. 12 of the 165 girls reported using the

computer for more than 30 hours over the last week. 97 of the 165 girls reported using the

computer between 1 hour and 10 hours over the last week.

Table 3.5: Computer-related Demographics for Girl Scout Participants.

 Total Number Percentage
Number of
Participants 165

Chapter 3: Formative User Testing 48

High: 75
Low: 0
Mean: 9.35

During the last week,
how often did you
use a computer for
any purpose? Standard Deviation: 11.47

Only schoolwork: 3 1.8%
Mostly schoolwork, some fun: 14 8.5%
Equally for schoolwork and fun: 60 36.4%
Mostly fun, some schoolwork 76 46.1%
Only fun: 4 2.4%

What do you use
computers for?

No answer 8 4.8%
No: 112 67.9%
Yes: 11 6.7%
Don't know: 34 20.6%

Have you ever written
a computer program?

No answer: 8 4.8%
No: 95 57.6%
Yes: 55 33.3%
Don't know: 7 4.2%

Have you ever made
your own web page?

No answer: 8 4.8%
Poor: 2 1.2%
Fair: 23 13.9%
Good: 62 37.6%
Very good: 57 34.5%
Excellent: 13 7.9%

What is your skill
level at using
computers?

No answer: 8 4.8%

3.2.4 Why not schools?
One of the obvious potential sources for recruiting girls is local public schools, as

students drawn from a broad collection of local public schools would be likely to be a

representative sample. I approached a few schools, but found that most of the schools

were focused on preparing their students for the Standards of Learning (SOL) tests

required by the No Child Left Behind Act (NCLB 2002). As computer science is not a

required part of the middle school curriculum, educators were hesitant to devote

classroom or extra-curricular time to anything not covered in the SOL. Even among

interested schools (mostly schools where I had an inside contact), I found it difficult to

set up user tests. In one such school, the principal and computer lab coordinator were

interested in offering an Alice-based activity after school, but the activity coordinator did

not want another activity to supervise.

Chapter 3: Formative User Testing 49

I elected not to approach private schools because I felt it was important to work with a

representative sample of girls. The students who attend most of the private schools

locally are not a representative sample.

3.3 Types of Data
The design of the storytelling version of Alice was based primarily on two sources of

information from formative evaluation: classroom observations of girls using Alice and

storyboards that girls created prior to seeing or using Alice. To supplement my primary

information sources, I used short-answer survey questions, logs of the actions that users

performed in Alice, and classroom discussions.

3.3.1 Classroom observations
Classroom observations were one of the main sources of information guiding the

development of the storytelling version of Alice. I took notes on users’ questions and

comments, as well as things I noticed while watching them work. During user testing, I

answered users’ questions. When not answering questions, I looked for users who were

clearly having a very positive experience (typically evidenced by laughter or attempts to

get the attention of a peer to show something) or a very negative experience (typically

evidenced by sighing or muttering) to observe and tried to get a sense for the causes of

their positive or negative experience. At other times, I simply watched users interact with

Alice. Classes ranged from as few as 3 students to as many as 20. However, I had ten

laptops available for user testing, so there were no more than 10 Alice sessions to observe

in each user testing session.

I performed my initial user tests with pairs of girls working together to create stories in

Alice. By pairing the girls together, I hoped to gain more insight into both the problems

they encountered in attempting to create stories in Alice and their approaches to solving

those problems. Observing the actions and listening to the conversation between a pair of

users working on a task (e.g. two-person talk aloud protocol) is a common and often

successful technique for gathering usability data (Nielson 1993). However, I found that

the two-person, talk-aloud protocol is ill-suited for creative tasks like storytelling because

it creates a string of goals related to negotiating a creative vision and largely unrelated to

Chapter 3: Formative User Testing 50

the software program being evaluated. I found that most of the conversation between

pairs was about the story rather than the software, making it more difficult to capture

problems with the software. The process of negotiation between pairs in developing the

story also has the potential to significantly change the kinds of stories that users try to

build, making it harder to determine what kinds of stories girls envision creating. Further,

I found that girls had a difficult time negotiating a shared vision. While there were some

instances in which working together appeared to result in a better story, there were more

instances in which working in pairs was problematic. I observed cases in which one

member of the pair essentially took over the process and the other half of the pair

contributed little or nothing to the story or its implementation. In other pairs, both

members of the pair were so concerned about each other’s feelings that they were hesitant

to state an opinion. Often these pairs created stories that neither one felt motivated to

build. For a creative process like storytelling, collaboration is difficult. Even among

professional writers, we do not see many jointly authored stories.

One alternative to observing pairs of users is to allow users to work on their stories alone.

However, users working alone do not naturally verbalize their current goals and strategies

for solving a problem. Asking users to talk aloud as they work through a task is awkward

for many users and reminders to verbalize their thought process can distract users from

their task. Despite the problems associated with gathering usability information from

users working individually, I moved from having users work in pairs to having them

work individually. This removed the necessity for girls to negotiate a shared vision for

their story. However, it was important that girls still be able to talk to each other as their

conversations can provide information. To encourage girls to talk to each other, I

configured their workspace such that they could easily interact with each other. I placed

the laptop computers close together, such that girls could see their neighbor’s screen. The

fact that our user testing was done using laptop computers was important because the size

and form factor of the laptops enabled girls to easily turn their computers or adjust the

screens to show what they were working on to another girl at the table. During my user

testing sessions, girls frequently showed each other their animations. Girls asked how to

create actions they saw in other’s worlds. Girls’ conversations with each other as they

Chapter 3: Formative User Testing 51

created their stories in Alice provided valuable insight into what they wanted to create

and their assumptions about how to go about implementing their visions in Alice.

In addition to girls’ conversations with each other, their questions proved to be another

valuable source of information. In user tests, researchers often assign users specific tasks

to complete (Gomoll). In my user testing sessions, I asked girls to create a story, but they

decided what specific story they would like to create. By giving girls control over their

end-goal, I was giving them the power to change that end-goal as they worked. Often,

this occurred when a girl decided that some aspect of her original story idea was going to

be too hard or too frustrating to create in Alice. Girls often asked questions shortly before

giving up on a current goal and forming a new goal. I encouraged girls to ask questions

during user testing sessions.

In my user testing sessions, there were sometimes a small number of shy girls who

seemed hesitant to ask for help. I found that for these girls, if I could offer a quick but

useful pointer in a case where their goals were clear from their actions (for example, in a

case where a girl was dragging in a lot of copies of the same object from the gallery, I

might show her the copy tool) that the girls seemed to be more likely to ask questions or

request help if they encountered problems later on in the session.

3.3.2 Storyboards
Unlike a lot of user testing situations in which a researcher provides users with an explicit

list of tasks to complete, the nature of my research required that girls set their own goals

for the stories they would like to create in Alice. One of the problems with allowing users

to set their own goals is that users can change their goals at any time. In my user testing

sessions I found that while girls often started with lofty goals for the stories that they

wanted to create, they quickly began to adapt those goals based on their perceptions of

what kinds of tasks are difficult in Alice. Consequently, the girls’ initial goals were

particularly valuable. To capture those goals, I experimented with having girls create

storyboards before they ever saw Alice. The storyboards that girls created were an

invaluable source of information to me in determining what the Alice system needed to

support in order to enable girls to create the kinds of stories that they envisioned.

Chapter 3: Formative User Testing 52

However, it took several iterations for me to find a storyboard creation process that

resulted in storyboards from which I could extract actionable information.

3.3.2.1 Attempt 1: Handout on Storyboarding for Movies
As part of the TEC camp held at Georgia Tech, I gave girls a handout which explained

the purpose and process for creating storyboards in the form of a storyboard (see

Appendix A). Originally designed to educate middle and high school students about

creating their own film-based movies, it discussed everything from the level of detail that

a single frame of a storyboard should contain to where one should position the camera to

in order to elicit different kinds of emotional responses from the viewer. I asked girls to

read the handout on storyboarding and then create a storyboard (using an unlimited

supply of blank paper) for the movie that they wanted to create.

In analyzing these storyboards, only one thing was clear. The users expected to be able to

create multiple scenes within Alice. 9 of 11 of the storyboards contained multiple scenes.

Unfortunately, most of the storyboards did not provide sufficient detail about what girls

expected their characters to do. In some storyboards, girls drew a single storyboard frame

to represent an entire scene. In others, girls simply wrote a sentence or two about what

happened in the scene. Girls tended to only provide a general description of what

happened in the scene. For example, a girl might write “Jeremy finds out that Julie is

dating someone else” but omit important details like where Jeremy is, who tells him,

what Jeremy does when he hears the news, etc.

3.3.2.2 Attempt 2: Storyboarding an Example Story
I created a second handout in which I provided an example story in text format, discussed

what information the movie needed to show a viewer in order to communicate what was

happening in the story, and then showed the corresponding storyboard (see Appendix A).

As with the previous handout, I gave users (in this case home-schooled children taking a

class at a local museum) the example story handout and asked them to read the handout

and create a storyboard for their own story. They had an unlimited supply of blank paper

to use.

Chapter 3: Formative User Testing 53

My results were roughly the same as before. Some children drew and others wrote but

few of the storyboards provided detailed information about the kinds of actions that

children expected their characters to be able to perform.

3.3.2.3 Attempt 3: Guided Storyboard Creation Worksheet
Based on the two prior attempts with creating storyboards, it seemed clear that I needed a

more structured process for storyboard creation. I created a worksheet packet that guided

children through creating storyboards in 3 steps (see Appendix C). In the first step, they

wrote a single-paragraph description of the story they were planning to create. In the

packet, I encouraged them to think of this paragraph as being similar to the description

one might find on the back of the DVD box. In the second step, the worksheet directed

girls to break their story into 3-5 separate scenes. For each scene, girls wrote a

description of the setting, what happens during the scene (in 1-2 sentences), and the

purpose for the scene (what the audience should learn from the scene). Finally, girls

created a series of storyboard frames for each of their scenes. The worksheet provided 9

frames per scene and directed girls to both draw the frame and provide a short textual

description of the action in that frame beneath it. In practice, most scenes contained 4 to 6

frames and accompanying textual descriptions.

The more structured approach to creating storyboards helped kids to flesh out their story

ideas and provided some redundant information sources that made the storyboards easier

to interpret. The storyboards contained three sources for actions that girls wanted to

incorporate into their stories: 1) changes in the drawings between one frame of the

storyboard and the next 2) the description of the action for each frame and 3) the textual

description for the scene.

The drawings of the frames were a good source of information about the motions of

characters around the set. In one frame a character might be talking with a friend and

absent from the following frame. Based on this, it is reasonable to conclude that the

character must have left the scene.

Chapter 3: Formative User Testing 54

The textual descriptions often contained information about gestures that the characters

should do. For example, one character might wave to another or raise his arms to indicate

a victory. In looking through the storyboards, most of the information about what girls

wanted their characters to do come from either the frame drawings or their textual

descriptions. There were a small number of actions in scene descriptions which did not

actually appear in the storyboards.

Figure 3.1: An example story-board created by a Girl Scout during formative testing of Storytelling Alice.

3.3.3 Alice logs
I instrumented Alice to record and time-stamp all of the changes that users make to their

Alice worlds in a text file. These logs include information such as

• when a 3D model is added, deleted, or moved

Chapter 3: Formative User Testing 55

• when a line of code is added, deleted, or moved

• when a parameter is changed

• when a new method, variable, or parameter is created

• when the world is played

The Alice logs form a detailed picture of everything the user did in the process of

creating their Alice world. While I did not go through the logs for all of the users who

participated in formative testing of the storytelling version of Alice, I did study the logs

in two types of cases 1) girls who did not have obvious problems but seemed to have a

less positive experience than their peers and 2) in cases where a girl had a clear goal she

had asked for help in realizing which she later gave up on.

3.3.4 Classroom discussions
I experimented with having classroom discussions in which I asked user testing groups

for suggestions on how we might improve Alice. I did this in two ways: 1) opening the

floor to comments and suggestions and 2) breaking girls into small groups to discuss

potential improvements to Storytelling Alice. I found that writing down girls’ suggestions

demonstrated to girls that their ideas were being taken seriously. Girls were more likely

to offer suggestions when I was actively recording them. In general, girls’ suggestions

were only occasionally useful because asking how to improve Alice requires girls to

think about the process of creating a story at a meta-level. Mostly I got comments about

specific pieces of content that girls liked (a particular animation or character) or didn’t

like (the storyline in a tutorial or their favorite animal missing from the gallery). One girl

in a group discussion talked at length about how she thought the second tutorial, which at

the time was a story about a bunny being woken up by a cell phone, was too young for

her. Yet, in another group a girl talked about how cute the bunny was and several other

girls listed the same tutorial as one of the best things about Alice in their survey response.

3.3.5 Surveys
At the end of each session, I asked girls to complete a survey (see Appendix A). The

survey questions varied. I used the end survey as an opportunity to develop and refine

attitude and programming achievement measures for the summative evaluation. In

addition to the attitude survey and programming quiz, I asked users to answer several

Chapter 3: Formative User Testing 56

open-ended questions. The actual questions changed over the course my evaluations.

Questions included:

- What are the 3 best things about Alice?

- What are the 3 worst things about Alice?

- If you plan to talk about your experience today (e.g. the Alice workshop),

what will you say?

- What should we do to improve Alice?

- What are the 3 most frustrating things you tried to animate today?

I found that in the early user tests, asking users to list the 3 worst things about Alice

helped to identify the worst usability problems; users often listed bugs in the system or

processes that were frustrating. As I addressed those problems, girls’ answers to these

questions became less useful. Towards the end of the user testing, I got a fair number of

students who would list “nothing” or talk about a particular character animation that they

did not like (e.g. [the character] Joe Meanie walks funny). One student complained about

the dialog box that reminds students to save their work every 15 minutes. Users rarely

listed missing content or functionality as one of the worst things.

Asking users about functionality or content they wanted in Alice was hit or miss.

Occasionally, users would provide an insightful comment (“You should make simple

stuff like walking/running easier”) or identify a particular usability problem that

frustrated them (“You should make the animation area scroll when someone drags a new

animation to the bottom”). Typically, the suggestions that appeared in surveys also

appeared in observing users working with Alice. The majority of functionality and

content suggestions were very general (“provide more stuff” or “make it less frustrating”)

and hard to act on without additional information.

3.4 Methods
Over the course of developing Storytelling Alice, I focused on one big problem at a time

and adapted the methodology to get at the focal questions for that problem. In all user

testing sessions users completed a version of the tutorial and built a story in Alice. Most

of the sessions included users creating storyboards either before seeing Alice or after

completing the tutorial and before building an Alice world, and most users completed a

Chapter 3: Formative User Testing 57

Broadly speaking, my work on the storytelling version of Alice was divided into three

areas:

1) Creating a tutorial that demonstrates how Alice can be used for storytelling while

introducing new users to the process of creating Alice worlds

2) Identifying and developing storytelling supports that enable girls to create the kinds of

stories they envision in a reasonable period of time.

3) Identifying ways in which the collection of characters and scenery that comes with

Alice (the gallery) can help girls find a story idea.

I found that it was easier to make progress by focusing on one of the three areas at a time.

The table below shows a schedule of the development of the story version of Alice.

Table 3.6: Development Schedule for Storytelling Alice

Tutorial Prior to January 2003 Develop and test on-line tutorials that
demonstrate that Alice can be used for
storytelling using Generic Alice animations.

Content January – May 2003 Working with an ETC (ETC) Master’s student,
a team of undergraduates, and 10 home-
schooled kids I worked to develop themed sets
of 3D models (i.e. Story Kits) containing
scenery and characters supported by character-
specific animations to help kids find and
successfully create a story.

Content July, 2003

January-May 2004

I created and modified a story-gallery based on
experiences with a larger group of students
including campers from Georgia Tech’s TEC
Camp and local home-students who had a
longer period of time in which to work on their
stories. In these sessions, students were not
restricted to using content from a single Story
Kit in their stories.

Higher-Level

Animations

and Scene

Support

July, 2004

September – May

2005

I analyzed what supports girls needed to create
stories and then developed, tested and refined
scene support and higher-level animations
within Alice.

Tutorial June 2005 The new storytelling animations made the
tutorial out-of-date. I created a new second
tutorial showcasing the animations users
commonly needed to create the kinds of stories
they envisioned

Chapter 3: Formative User Testing 58

Content July, August 2005 The new storytelling supports made it possible
to provide better animations with characters. I
took a pass through the story gallery, removed
animations no longer necessary because of the
new animation set, improved the remaining
animations, and creating new ones where
appropriate.

3.5 Usability Changes
In developing and testing Storytelling Alice, I identified several usability problems that

were unrelated to the story aspects of the system. These problems fell into two basic

categories: 1) basic usability problems and 2) usability problems related to programming

in Alice. I made small changes to address the non-programming related usability

problems. Changing the programming model that Alice presents was outside the scope of

my work, but I document my observations here so that they can be considered in the

development of future versions of Alice.

3.5.1 Switching Between the Scene View and the Programming
View

In designing Alice 2.0, the Alice team (of which I was a member) decided to create a

modal interface in which the user is either programming or laying out the scene. When

Alice starts, the interface is in the programming view. To get from the programming view

to the scene layout view, the user presses a small button labeled “add objects” that is

displayed underneath the view of the 3D scene (the world area). To return to the

programming view from the scene layout view, the user presses a button labeled “done”.

Despite the fact that the tutorial introduces both of these buttons and uses them multiple

times, new Alice users often have difficulty remembering where they are. Users get used

to manipulating the list of objects in the object tree to select their current object of

interest. Consequently, many users tend to gravitate towards the object tree for tasks

involving selecting or adding new objects. To help users who search the object tree

looking for a way to add new objects, I added an “add new objects” button to the area just

above the object tree. Because the object tree is always visible, I change the text of this

button to read “done adding objects” when the user is in the scene view. The “add new

objects” button does appear to help people, because it is proximate to the object tree and

Chapter 3: Formative User Testing 59

provides a single button for switching modes. Some users scroll down to the bottom of

the object tree looking for a way to add objects (rather than looking at the space above

the object tree). Placing the “add new objects” button at the bottom of the visible part

object tree might provide further help to new users.

Figure 3.2: The “Add Objects” button in Generic Alice (left) and the two “Add Objects” buttons in Storytelling
Alice (right).

3.5.2 Too Many Methods Displayed
In Alice 2.0, we ordered the methods for each object by their expected use; frequently

used methods like “move” and “turn” were displayed at the top of the list while less

frequently used methods like “orient to” were near the bottom of the list of methods.

In watching users creating programs in Alice, I found that many users will scroll through

the list of methods and get lost at the bottom of the list. When they later need a common

animation, they will only see the less common ones and frequently end up experimenting

with something animations that are not well suited for their intended task because they

have forgotten about the more common animations. To handle this, I added a collapsible

pane of “infrequently used methods”. This allowed me to shorten the list of methods that

were in the list of available animations for each object, increasing the probability that the

method most appropriate for a user’s current task was either visible or nearby.

3.5.3 Losing Objects in the Scene
In Alice 2.0, there are two ways for a user to add a new object to their Alice world: 1)

they can drag it into the scene or 2) they can click on the object and click the “add

instance to world” button. When a user drags an object into their Alice world, Alice

Chapter 3: Formative User Testing 60

displays a bounding box for the object, allowing the user to place the new object at an

appropriate location in their world. When the user adds the object with the “add instance”

button, Alice adds the object at a location saved within the model. These saved locations

are hand-selected such that the object is easily visible from the camera’s opening

position. In practice, users frequently move the camera, creating situations in which the

model’s saved location is far from the user’s current context. To ensure that the user

knows approximately where the new object is, Alice 2.0 animates the camera to a

position where the new object is visible and then animates the camera back to its last

position.

I observed numerous sessions in which users were forced to drive the camera long

distances to find add a new object they had added using the “add instance” button. To

move the object to its intended position within the world, users would repeatedly drag the

object to the edge of the camera’s view and then move the camera a little bit. Driving the

camera to the new object’s location could sometimes take as much as 1 minute. Moving

the new object from where Alice placed it to where the user wanted it often required

several minutes. Users understandably found it extremely frustrating. To prevent this

situation, I modified Alice such that the “add instance” button calculated the offset of the

model’s saved position to the camera’s opening position. Then, rather than adding the

model at its saved position in the world, Alice adds the new model at the calculated offset

from the camera’s current position. With this simple change, Alice places the vast

majority of objects in the Alice gallery at a visible location. Users can click and drag the

model to adjust its final placement in the scene but it is rare that they need to move the

camera to accomplish this.

3.6 Issues about Programming
I encountered a small number of frequently occurring problems relating to how Alice

presents programming. These are likely to be more problematic when users are self-

taught than when Alice is used as part of a class and with the guidance of a teacher.

Chapter 3: Formative User Testing 61

3.6.1 Editing methods is tempting and dangerous for new users
For my user population (and, I suspect for most user populations), the action of clicking

on something is more natural than dragging. In my user testing sessions, users who were

unsure of what to do often clicked on the edit buttons next to character-specific methods.

By making it possible to edit a method by clicking a button, we tempt beginning users to

do something that is likely to cripple them as they begin to explore Alice. By clicking the

edit button, users are changing which method is selected in the method editor. This

creates two problems 1) users often do not know how to get back to the previous method

and 2) the method they have opened is probably not called in their program so code they

add to it will not execute.

Figure 3.3: Many participants found it more natural to click on the edit buttons than to drag the method tiles.

3.6.2 New users are often forced to tackle events quickly
When users create a new method or edit an existing method without first understanding

the concept of a method, they often fail to call that method within their program. After

adding one or more method calls to the method they are currently editing, users press the

play button and are frequently confused that the code they have just created does not

execute. When a user presses the play button and the currently selected method is not

called, Alice displays a message informing users that the method is not called in the

program. Users nearly always dismiss the dialog box without reading it. Most users seem

to mistakenly expect that Alice will play whatever method is selected in the method

editor. I see two potential ways this problem can be addressed 1) provide a better

Chapter 3: Formative User Testing 62

explanation of what is going on when the user hits play or 2) change the model so that in

a default world, Alice will play the currently selected method.

When a user hits play and their currently selected method is not called by anything, they

are almost always lacking information about how Alice decides what method to play.

This provides a nice opportunity for the Alice system to introduce the user to the events

area and point out which methods will be played. This could be done using the Stencils

the interaction technique.

Typically, users who are going to open or create a method do so fairly early in the

process of starting to use Alice independently. By trying to use this opportunity as a

teaching experience, there is some risk that users will feel overwhelmed. We may lose

users by trying to force them to understand too much too quickly. One alternative is to

make the default Alice worlds come with a “when the world starts event” that plays

whatever method is currently selected in the method editor. This would allow beginning

users to more freely explore the system. This allows users to gain experience with Alice

before they need to begin using events.

3.6.3 New users frequently make recursive calls.
New users often read through the list of available methods for a character and almost

immediately try to create a new one without realizing that simply typing in the name for a

new method does not result in the characters performing the actions the name implies.

Having typed in the name for this new method, the next step is to drag it into their

program. But, having created a new method, their new method is now open method

editor. So, when users drag the new method in, they create a recursive call. Alice does put

up a dialog box that asks users if they intend to make a recursive call. For the users who

click the ‘X’ to close the dialog box or answer “no”, this stops them from adding a

recursive call. But, a non-trivial number of users will answer “yes.” For the most part,

these users do not yet understand the concept of methods, so explaining recursion to them

is nearly impossible.

Chapter 3: Formative User Testing 63

At least for middle school users, I think providing users with the ability to easily and

mistakenly create recursive calls in their first minutes using Alice outside the tutorial has

no up side. Recursion is often a concept that even students who are several weeks (as

opposed to a few minutes) into learning to program have trouble mastering.

Chapter 3: Formative User Testing 64

Chapter 4: Enabling Storytelling 65

Chapter 4 Enabling Storytelling

4.1 Introduction
Basic animations like move, turn, and resize are not sufficient to enable girls to create the

kinds of animated stories they typically envision, both because it is difficult to create

human-like motions by moving and turning individual joints (users need to turn a

character’s hips, knees, and ankles individually to make it walk) and because girls are

limited to communicating their stories through motion alone. Based on analyzing the

storyboards girls created and observing the difficulties they encountered in building

stories in Alice, I have added higher-level animations and multiple scene support to

Storytelling Alice. This chapter summarizes my findings about the technical supports

necessary to enable girls to create animated stories and describes how I have

implemented these supports within the storytelling version of Alice.

4.2 Problems with Generic Alice Animations
In early user testing, I observed a mismatch between the kinds of basic animations that

Generic Alice supplies (move, turn, resize, etc) and the kinds of stories that girls wanted

to create, stories in which characters walk around and interact with each other. While

middle school girls appeared to readily understand what the Generic Alice animations do,

many found the process of combining basic animations to create more complex behaviors

like sitting or hugging too difficult. Further, most found the sheer number of lines of code

needed to realize their stories daunting and quickly began to scale back their goals. Often

Chapter 4: Enabling Storytelling 66

their completed animations bore little or no resemblance to the stories they described as

they began working. The kinds of problems that I observed users having in creating their

stories suggested properties for Storytelling Alice.

4.2.1 Supply animations that better match common actions
In Generic Alice, all animations more complex than sliding through space or rotating

around an axis involve directly controlling the character’s body parts. To create a basic

walk animation for a character, a user must combine at least eight different turn

animations to animate the characters’ upper and lower legs, a move animation to move

the character forward while his legs are animating, and a loop to enable him to take more

than one step. There are simply too many steps involved in creating animations like walk

for a beginning user. With a cast of several characters, the task of teaching them to walk

alone becomes daunting. And walking is unlikely to be the only animation that girls will

need to create for their stories. While girls may be willing to put special effort into an

animation that is particularly important within their story, they need to be able to get the

basics of their story in place without Herculean effort. In designing Storytelling Alice, it

was important to determine what actions are commonly used in stories and create

animations to match those.

4.2.2 Reduce the need for trial and error
Building stories using the Generic Alice animations requires a lot of number tuning via

trial and error. Even seemingly simple actions like moving one character into a position

where they can talk to another character (e.g. the two characters should be fairly close to

each other and facing one another) can involve a lot of number tweaking: the user might

start by having the character move forward 3 meters and discover that 3 is too big. After

several tries, they might find that the 1.7 seems to give them a reasonable result.

Storytelling Alice provides animations that allow users to tell their characters where to

move relative to a target (e.g. in front of a sofa or to the right side of a chair), eliminating

much of the need for number tuning when moving characters in a scene.

The need to tweak numbers becomes even more pronounced when users try to create

complex actions like having a character touch an object. Inverse Kinematics is a

Chapter 4: Enabling Storytelling 67

commonly technique for calculating an appropriate set of joint rotation angles to get an

end-effector (e.g. a hand) to touch a target (e.g. a doorknob). However, Generic Alice

does not include inverse-kinematics animations, so users must find appropriate joint

rotation angles through trial and error. This can be quite difficult in practice; moving a

character’s arms such that he or she appears to be touching an object using Generic Alice

can involve tuning the values for rotations around three axes for both the upper and lower

arms. Further, the hand-tuned rotations are extremely brittle. If the user needs to move

either the object or the character attempting to touch the object, the user will have to find

a new set of joint rotation angles using trial and error. Storytelling Alice includes two

animations based on simple, two-joint inverse kinematics to enable users to have

characters touch targets and keep touching those targets as the targets move.

4.2.3 Beginning users should not need to understand graphics
concepts like insertion points

The goal of my work is to motivate girls to learn a little bit about computer programming

through creating animated stories. Consequently, I would like to avoid having users

spend time learning about the internal workings of Alice or 3D graphics systems in order

to understand the behavior of an animation they are using. For example, Generic Alice

has animations like move to and move toward that depend on the origin of an

object, a value that is assigned by the artist who created that object. If a user creates a

move to animation in which the moving character’s origin is at waist level and the target

object’s origin is at ground level, the move to animation causes the moving character to

sink into the ground. Users do not need to learn about the origins of 3D objects in order

to become competent programmers. By focusing on humanoids and animals and

performing most calculations based on bounding boxes, I have hidden many of the inner

workings of the graphics engine; users rarely need to understand what an object’s origin

is or how a pivot point can influence the rotation of an object.

4.3 Determining Users’ Needs for Storytelling
Observing girls trying to create stories using the Generic Alice animations can provide

insight into why animations like move and turn are not sufficient for storytelling, but they

provide little insight into what supports Storytelling Alice should provide to enable girls

Chapter 4: Enabling Storytelling 68

to create stories. To capture girls’ intentions, I asked them to create paper-based

storyboards of their story ideas. I then used those storyboards in combination with

classroom observations, logs of the actions girls took within Alice, and the Alice worlds

they created to identify problems. In between sessions, I modified Storytelling Alice to

address the most serious problems I witnessed.

4.3.1 Analyzing Storyboards
My participants created their storyboards using a 3-step process. First, girls wrote a

paragraph length summary of the story they intended to create. Then they broke the story

into scenes and described the setting, action, and purpose for each scene. Finally they

drew and annotated 6-9 frames for each scene in their story. The process girls used in

creating their storyboards is more fully described in Chapter 4: User Testing.

In analyzing the storyboards girls created, I looked at 3 sources of information:

1) Changes that occur between one frame of the storyboard and the next.

In one frame of the storyboard a character might be standing next to door and in the

following frame, he is sitting on a couch. In between those two frames, the character must

have walked over to the couch and sat down.

2) Actions described in the text under a storyboard frame.

For each frame of their storyboards, girls must describe the action taking place in that

frame. Sometimes the descriptions underneath a storyboard frame reinforce action we can

extract from the pictures themselves. In the case of the character walking to the couch, an

annotation stating that the character walks over to the couch and sits down does not

provide any new information. Often, the frame annotations describe actions that either are

not pictured or are unclear in the storyboard frame. For example, an annotation for a

picture showing two characters might indicate that one of the characters waves her arm

and says hello.

3) Actions mentioned in the scene description

Chapter 4: Enabling Storytelling 69

Occasionally, a user will mention an action in the scene description that does not appear

in either the frame drawings or their annotations. Because these were part of the user’s

vision of their story at some point, I have included them.

4.3.2 Insights from Storyboards
I used storyboards as a qualitative data source. By reading through the storyboards, one

gets a fairly clear sense of the kinds of things that girls expect to be able to do. In

particular, I read through the storyboards looking for things that girls expected to be able

to do that I knew to be difficult to implement within Alice. In addressing problems that I

identified, I prioritized common actions and actions that played a critical role in stories

above other actions.

4.3.2.1 Example Storyboard Data
To provide the reader with a feel for the kinds of information that I was able to extract

from the storyboards, I describe the information extracted from the storyboards created

by one troop of six Girl Scouts. For each storyboard, I wrote down all of the actions that

appear in storyboard frames, frame descriptions or scene descriptions. I then classified

these actions into six categories: changes in body position, camera motions, dialog,

actions intended to convey emotional expression, locomotion, and object manipulation

(see table below). The six storyboards contained a total of 280 actions.

Chapter 4: Enabling Storytelling 70

Actions in Storyboards

0

20

40

60

80

100

120

140

dialog locomotion manipulation camera body position expression

action category

nu
m

be
r

of
 a

ct
io

ns

Figure 4.1: Counts of storyboard actions by category.

4.3.2.2 Dialog
Almost half of the actions in the storyboards were communication based: (i.e. characters

speaking or thinking). Users’ worlds make heavy use of the ability for characters to speak

and think to communicate character’s intentions, histories, feelings, etc.

4.3.2.3 Locomotion
Locomotion actions are actions in which the characters move to a new location within the

scene. Characters most commonly walked up to other characters or targets within the

scene, entered the scene or left the scene. Again, the storyboard plans match fairly well

with what girls actually create in their Alice worlds.

4.3.2.4 Manipulation
Manipulation animations involve one character interacting either with an object or

another character. Examples from the storyboards include a character petting a dog,

dribbling a basketball, pointing at another character, or hugging another character. Often

manipulation actions involve having a character touch an object and possibly maintain

contact with that object as it moves through space. For example, in animating a character

Chapter 4: Enabling Storytelling 71

opening a door, a user would probably want the character to touch the doorknob and then

maintain contact with the doorknob as the door opens

4.3.2.5 Camera
Camera actions involve moving the camera to get views of particular characters or the

whole scene. In the storyboards for this group, girls wanted to move the camera to get a

good view of characters, to show the outside of a building the characters would be

entering, and to move to difference settings (e.g. the city, inside the living room, etc).

4.3.2.6 Body Posture
Body posture actions involve a character changing the orientations of their limbs without

moving a significant distance. In these storyboards, body posture actions include

characters sitting or lying down, standing up, or turning to look at another character.

However this category might also include a character performing a ballet pose.

4.3.2.7 Expression
Expression actions are largely intended to express a particular emotion such as anger or

sadness. Based on the storyboards, the expression actions are united more by the fact that

they are expressing emotions than by the means users chose to express the emotion.

Examples include characters crying with cartoon-style tears, pouting, and stomping out of

the room.

4.4 Requirements for Storytelling Alice
Through analyzing the storyboards my users created and observing users trying to realize

their stories as animated movies, I have learned what primitives are necessary to allow

girls to tell the stories that they envision and what tradeoffs are involved in adding these

primitives into systems. I present my lessons learned to inform the design of future

systems for creating animated stories.

4.4.1 First and foremost, characters need to be able to express
themselves

Simple animations that allow characters to speak and think simple text (in our case

through cartoon-style speech and thought “bubbles”) can go a surprisingly long way

towards enabling storytelling, both in terms of helping to communicate the story and

Chapter 4: Enabling Storytelling 72

allowing characters to express emotions. Speech and thought animations seem like an

obvious addition to any animation system. Yet, versions of the Alice system existed for

more than five years without a way for characters to speak or think (Conway 1997;

Conway, Audia et al. 2000).

Figure 4.2: An example “say” animation in Storytelling Alice.

4.4.2 Users Animate People and Characters
It is extremely rare for users to want to animate chairs and tables, but extremely common

for users to want to animate people and other characters. Further, users have expectations

for how objects should be animated based on their appearance. For example, when users

added a move animation for a person, users expected the animated human figure to walk,

not slide, forward. And these expectations went beyond the method by which a particular

object moves. Users expected people to be able to perform the kinds of basic actions that

most people can do including standing, sitting, and touching objects.

In Generic Alice, all 3D objects can perform the same animations and, from a

programming perspective, are of the same type. As I began to add animations specifically

for people and characters to Storytelling Alice, it no longer made sense to have only one

type of object. In Storytelling Alice, there are 3 types of objects: “things,” “humanoids”,

and “characters”. Things are objects like chairs and tables that users would not ordinarily

want to animate. Things can perform simple animations like move and turn. Humanoids

are all bipedal characters that can walk, talk, change their body posture, and perform a

Chapter 4: Enabling Storytelling 73

variety of gestures. Characters are animals and monsters that do not have a bipedal body

structure. Characters can move by sliding around the scene, talk, and perform some

gestures like looking at objects in their 3D world.

Table 4.1: Object types and their animations

Object Type Animations

Humanoid Say(message string)
Think (message string)
Play sound (sound)
Walk to (object or character)
Walk offscreen
Walk (distance)
Move (direction, distance)
Sit on (object or character)
Lie down (object or character)
Kneel
Fall down
Stand up
Straighten up
Look at (object or character)
Look (direction)
Turn to face (object or character)
Turn away from (object or character)
Turn (direction, amount)
Touch (character or object)
Keep touching (character or object)

Character Say(message string)
Think (message string)
Play sound (sound)
Move to (distance, direction to, object or character)
Move (direction, distance)
Look at (object or character)
Look (direction)
Stand up
Straighten up
Turn to face (object or character)
Turn away from (object or character)
Turn (direction, amount)
Roll (direction, amount)

Object Turn (direction, amount)
Roll (direction, amount)
Straighten up
Move (direction, amount)
Resize (amount)

4.4.3 Most stories require multiple scenes
For the purposes of this discussion, I use the term scene in the way that a play might: a

scene takes place in one setting over a continuous block of time. In our first user testing

Chapter 4: Enabling Storytelling 74

session, I gave users a handout on storyboarding and asked them to draw storyboards on

paper. 9 of 11 storyboards clearly revealed that users expected to be able to create

multiple scenes. This is perhaps less surprising when you consider that even movies and

plays that take place in a single setting, which are often considered unique, show action

in non-continuous blocks of time and therefore use multiple scenes. While having users

create free-form storyboards made the need for multiple scene support clear, the

storyboards were not detailed enough to inform the design of higher-level animations.

After some experimentation with different methods for creating storyboards, I settled on

the 3-step process described in Chapter 1Formative User Testing.

While it is technically possible to create the appearance of having multiple scenes within

Generic Alice, there is no explicit support for it, and it is outside the scope of something

we could reasonably expect a beginning Alice user to master. Users who tried to create

scenes in Generic Alice were largely unsuccessful. One pair of girls commented to the

observer that whenever they needed to start a new scene, they went ahead and called the

observer because it was “just too confusing” to try themselves. And, of the 9 stories that

required scenes, only 3 were actually able to implement them, even with extensive help.

4.4.4 Scenes can ground and motivate the use of programming
subroutines.

Even though the process of creating and maintaining scenes was confusing for users in

Generic Alice, I found that scenes provide a wonderful way to ground and motivate the

concept of programming subroutines (called “methods” in some languages). Girls seemed

to find the notion of separating the action for scene one from the action for scene two and

being able to call each scene’s subroutine when needed to be fairly natural. In adding

scene support to Storytelling Alice, it was important to us to be able to continue to use

scenes to introduce girls to the concept of subroutines.

4.4.5 Basic changes in posture go a long way
Despite the amazing number of positions the human body is capable of assuming, I found

that there were really only three that showed up regularly in stories: sitting, standing, and

Chapter 4: Enabling Storytelling 75

lying down. In Storytelling Alice, these animations are: person sit on (target), person

stand up, and person lie down on (target).

However, I did add animations for two additional body position animations: kneel and

fall down. While kneel and fall down are not used with the same frequency as sit, stand

up, and lie down, I found that they both play significant roles in the kinds of stories that

middle school aged girls tend to tell. I had two groups in a row of Girl Scouts where

marriage proposals played a significant role in most of the stories. Kneel was important

not because it was a commonly occurring action, but because it had great significance in

their stories. Users also used kneel for tasks like petting dogs and picking up items on the

ground. Fall down is used in stories either as a humiliating moment for a character or as a

way to indicate that someone has gotten hurt. Both uses tend to come at important points

in girls’ stories.

Figure 4.3: Although kneel is not as commonly used as sit on, stand up, and lie down, I added it to Storytelling
Alice because it played an important role in many of the love stories middle school girls envisioned creating.

4.4.6 For the most part, locomotion is targeted
When characters move, mostly they move to a position relative to some other object or

character in the world. For example, a person might walk over to a sofa and sit down or

walk to another person to start a conversation. Characters also frequently need to leave a

scene. Moving a specific distance, one of the most commonly used animations in Generic

Alice (Conway 1997; Conway, Audia et al. 2000), is useful largely as a band-aid for

Chapter 4: Enabling Storytelling 76

situations in which there is not an easy way for a user to describe where they want a

character to go relative to some target.

In our storytelling version of Alice, there are three kinds of locomotion animations:

person walk to (target), person walk off screen, and person walk (distance).

4.4.7 Many gestures and special-purpose animations are
targeted touching

While there are many gestures that occur freely in space, I found that about half of the

special-purpose animations that girls wanted to create can be captured by a character

touching a target with his or her hand (or foot) and sometimes following that target as it

moves through space. For example, a user could animate one character pushing another

by having the first character touch the second and continue touching him as he falls

down. As another example, a user could animate dribbling a basketball by touching the

top of it and continuing to touch it as it moves up and down. The ability to have a

character touch something and continue touching it as it moves has a great deal of

expressive power.

In Storytelling Alice, I added two animations: person touch (target) and person keep

touching (target). Users can specify additional parameters to control which limb (right

arm, left arm, right leg or left leg) they would like to touch the target with and which side

of the target they would like to touch.

Chapter 4: Enabling Storytelling 77

Figure 4.4: An example of a push animation created with the touch and keep touching animations (above) and a
series of images showing the push animation in action (below).

4.4.8 Users need an easy way to get characters back to a
normal position

In Generic Alice, users specify joint rotations numerically. For example, to have a

character kick their leg, a user might use the animation “person.rightLeg turn backward

0.25 revolutions”. One advantage of numerically-based animations is that they have

obvious inverses; to return the character’s leg to its normal position, the user turns the leg

forward by 0.25 revolutions. When using animations like touch (target) and look at

(target), it is harder for users to return characters to their default postures (i.e. standing

straight with arms at sides. In Storytelling Alice, I added the “straighten up” animation

which returns all the body parts to their normal positions. It is sometimes possible for

straighten up to generate motions in which body parts pass through other body parts.

Although users sometimes ask if there is some simple way to avoid unrealistic motions,

few are willing to add extra animations to generate more realistic motion.

4.4.9 It is sometimes necessary to annotate 3D models with
target information

Because most locomotion is targeted, it is important that users can reference the targets

that they need. It is important to annotate scenery objects with target information so that

users can easily direct their characters to perform actions like walking over to the

painting on the wall. In the absence of appropriate targets, users often rely on trial and

error to position and orient their character.

4.5 Changes to Alice
Based on user testing, I made two large changes to Alice: 1) I added scene support and 2)

I added a set of high-level animations to enable girls to construct the stories they

envision.

Chapter 4: Enabling Storytelling 78

4.5.1 Scenes
In Storytelling Alice a scene includes a collection of 3D objects (scenery and characters)

and a method (the action that takes place).

To create a new scene, Alice needs to support the user in:

1. finding a location within the 3D world for the new scene

2. organizing the characters and objects for the scene

3. creating a new method in which the user can specify the action for the scene

4. moving the camera when setting up or modifying scenes

5. moving the camera as part of their scene action

4.5.1.1 Finding a location for the new scene
In selecting a location for a new scene, it is important to avoid the possibility of viewing

multiple scenes at once. In Storytelling Alice, I chose to accomplish this by stacking the

scenes on top of one another, but spaced far enough apart (i.e. at twice the far clipping

plane) that objects in one scene would not be visible from other scenes. Even if a user

decided to point the camera straight up, they would not see any of the other scenes.

Another strategy for implementing scenes might have been to show and hide 3D objects

for each scene on demand. I chose to place scenes out of visual range to minimize the

changes to the core system and ease the process of incorporating changes to Alice 2.0

into Storytelling Alice as both developed.

4.5.1.2 Helping the user to organize the characters and objects
needed in the scene

Allowing users to create worlds with multiple scenes creates two problems: 1) users can

easily get overwhelmed by the number of objects in each world 2) main characters often

appear in multiple scenes requiring that users either have multiple copies of their main

characters or be able to easily move characters from scene to scene.

To make the number of objects more manageable, Storytelling Alice automatically

creates a new folder in the object tree for each scene. All the objects and characters for a

Chapter 4: Enabling Storytelling 79

given scene are placed inside the folder. Objects added to the second and all subsequent

scenes are named “Scene X <object name> ”.

Figure 4.5: Objects for the home scene (scene 2) are added to a folder called “Scene 2 home objects.”

When users change which scene they are viewing in the world window, Storytelling

Alice opens the folder corresponding to the new scene, scrolls the object tree such that

the new scene is at the top of the viewable area, and closes all other scene folders. When

users drag and drop commands into the method editor, Alice displays menus to allow

users to select appropriate parameters for their method calls. In the pop-up menus,

Storytelling Alice displays the objects and characters for the current scene in the top-level

menu.

Chapter 4: Enabling Storytelling 80

Figure 4.6: A drop down menu allows users to move from one scene to another (left). When the user drops
“Scene 2 kristen.walk to” in the method editor, Storytelling Alice presents a list of the characters and objects in

Scene 2 as potential targets (right).

Rather than moving characters that appear in multiple scenes from scene to scene, users

simply add all of the objects and characters that are needed for a given scene from the

gallery. While this does create the possibility for multiple copies of the same character in

one Alice world (most commonly in different scenes), it simplifies the process of adding

characters and laying out a scene. Each copy of an object has a different name (Scene X

<object name>) to avoid naming collisions within Alice. However, having multiple

copies of the same character creates a potential scope issue: users may expect methods

and data they add to a character in one scene to apply to all instances of that character in

their Alice world. In practice, I have not seen this issue arise in the first couple of hours

interacting with Storytelling Alice.

4.5.1.3 Creating a new method in which the user can specify the
action for the scene

When the user creates a new scene, storytelling Alice creates a new method named

“<scene_name> method” where users can specify the action that occurs in that scene. All

new worlds in Alice come with a “when the world starts” event that is set up to play

“scene 1 method.” When users create a new method, Storytelling Alice does not change

Chapter 4: Enabling Storytelling 81

which method will play. This creates an opportunity for users to learn about the “when

the world starts” event which they can use initially to play one scene at a time and later to

call a method that will play their whole story.

4.5.1.4 Helping the user manage moving the camera when
setting up or modifying scenes

Through user testing, I found that when users switch from one scene to another, they

expect that the camera will return to its last position in the scene they switch to. To

implement this behavior, Storytelling Alice automatically saves the camera position for

each scene. When a user switches scenes in the authoring tool or hits the play button,

Storytelling Alice updates the saved camera with the current position of the camera.

Surprisingly, the ability to move the camera from scene to scene is sufficient for most

users and most users do not create specialized camera shots. Those who do experiment

with different camera shots tend to do so as a finishing touch on their story.

To enable users to save arbitrary positions and orientations for an object, Generic Alice

provides a “dummy object,” essentially a 3D model of an axis that holds the camera’s

place in the Alice world. In user testing, I found that most middle school girls found the

concept of dummy objects difficult to understand. Describing dummy objects as camera

tripods made the concept accessible to middle school users. In the physical world, tripods

are frequently used to hold a camera in a specific location. The metaphor of a tripod is

less appropriate for other 3D models, users rarely want to save the position and

orientation of an object. By describing dummy objects as tripods within Storytelling

Alice, the most common usage for dummy objects is readily understandable.

4.5.1.5 Helping the user manage moving the camera as part of
their animation

The camera positions for each scene are stored as tripods that are automatically updated

to reflect the most recent position of the camera in each scene. To allow users to easily

move between scenes in their animated stories, I added an animation “move to scene

tripod <scene name tripod>.” A pop-up menu allows users to select the scene tripod

corresponding to the next scene in their story.

Chapter 4: Enabling Storytelling 82

4.6 High-Level Animations
In Generic Alice, all 3D objects are of the same type and perform the same set of

animations. After analyzing the storyboards our users created, I modified Alice to create

three types of objects: humanoids, non-humanoid characters, and objects (i.e. props and

scenery). Each of these three types of objects can perform a different set of animations

within Storytelling Alice.

4.6.1 Animating People
In creating stories, girls most frequently want to animate humanoid characters. In

Storytelling Alice, humanoid characters can perform the following animations:

Say: <person> say <string>

The say animation displays a cartoon-style speech bubble containing a text message over

the chosen character’s head. Optional parameters enable users to set the background color

of the speech bubble, the text color, font size, font, and duration of the animation.

Figure 4.7: An example “say” animation in Storytelling Alice.

Think: <character> think <string>

The think animation displays a cartoon-style thought bubble containing a text message

over the chosen character’s head. Optional parameters enable users to set the background

color of the thought bubble, the text color, font size, font, and duration of the animation.

Chapter 4: Enabling Storytelling 83

Figure 4.8: An example “think” animation in Storytelling Alice.

Play sound: <person> play sound <sound>

The play sound animation allows users to play a wav or mp3 sound. Alice comes with a

library of 10 sounds. Additionally, users can choose to either record a new sound or

select a sound they have stored on their hard drive. Optional parameters enable users set

the volume level and duration of the sound.

Walk to: <person> walk to <target>

The walk to animation has the selected person walk to the specified target (another

person, character, or object in the Alice world). By default, the selected person walks to a

position 1 meter in front of and facing the target. Using optional parameters, users can

change the end-distance between the person and the target and which side of the target

(front, left, right, back, etc) the person approaches. Users can also change the style of the

walk by changing the step size, the amount of vertical “bounce” in the person’s step, and

the extent to which the person swings their arms. To change how quickly a person

reaches their target, users can change either the person’s walking speed (e.g. steps per

second) or the overall duration of the animation.

Walk animations naturally lend themselves to being controlled with speed (e.g. steps per

second) rather than duration. If one asks a person to walk to two different targets, most

people expect that the person will walk at a comfortable pace to both targets rather than

choosing their speed based on how the distance to their target. By default, all the walk

Chapter 4: Enabling Storytelling 84

animations have a set speed (1.5 steps per second) and calculate their duration. However,

I found that users expected to be able to set the duration of walk animations; users control

the pacing of other Alice animations by setting the duration. To accommodate this, all of

the walk animations have both a speed and property and a duration property. Setting

either the speed or the duration disables the other property. For example, if a user sets the

duration for a walk animation, Alice disables the speed property and calculates an

appropriate step speed using the duration.

Walk offscreen: <person> walk offscreen

The walk offscreen animation has the selected person turn to face stage right (as defined

by the camera’s current position) and walk just far enough that they are no longer visible

to the camera. As with the walk to animation, users can change the style of the walk by

modifying the step size, amount of bounce, and amount of arm swing the person uses.

Users can set the number of steps per second or the duration to control how quickly the

person walks. Users can also set the exit direction to control whether the person exits the

scene to stage right or stage left.

Figure 4.9: When a character walks offscreen, the character will turn so that its forward vector is parallel to the
camera’s right or left vector and walk forward enough distance to be out of view of the camera.

Chapter 4: Enabling Storytelling 85

Walk: <person> walk <distance in meters>

The walk animation has the selected person walk forward a given number of meters.

Users can use optional parameters to set step size, amount of bounce, amount of arm

swing, steps per second, and duration.

Move: <person> move <direction> <distance>

The move animation slides the characters the specified distance in the selected direction

without animating any of the person’s body parts. By default, Alice uses object-centric

directions. Each object is a coordinate system; if a user tells a person to move forward,

the person will slide in his or her own forward direction. Optional parameters allow the

user to specify the duration of the move animation and provide the ability to tell a person

to move using someone else’s coordinate system.

Sit on: <person> sit on <target>

Sit on animates the selected person to a sitting position on the front-center of the target’s

bounding box. If the target object is the ground, then the person will sit in place on the

ground. Optional parameters allow the user to specify a different side of the object to sit

on (e.g. the right side of the bed) and change the duration of the animation.

Lie down: <person> lie down on <target>

Lie down on animates the selected person to a lying position on the top center of the

target’s bounding box. If the target object is the ground, then as a special case the person

will lie down in place on the ground rather than moving to the large ground plane’s

origin. Optional parameters allow the user to specify which direction the person’s feet

should be facing (e.g the right side of the couch) and change the duration of the

animation.

Kneel: <person> kneel

Kneel animates the selected person into a kneeling position on the ground. By default, the

selected person kneels on one knee but users can change an optional parameter to have

the selected person kneel on both knees, as they might during a church service.

Chapter 4: Enabling Storytelling 86

Fall down: <person> fall down

Fall down animates the selected person to a lying down position on the ground with their

arms and legs in random positions. By default, fall down causes people to fall forward,

but users can set an optional parameter to make people fall backward, left, or right.

Stand up: <person> stand up

Stand up animates the selected person to a standing position on the ground with all limbs

in their normal positions (e.g. legs together and arms by the person’s side). To avoid

collisions with chairs and other objects a seated character might be on, stand up slides the

character forward a little bit. An optional parameter allows users to have the character

stand up in place.

Look at: <person> look at <target>

Look at animates a person’s head to point at the target. If the target has a head, the

selected person will look at the target’s head.

Look: <person> look <direction>

Look animates a person’s head to look in a particular direction: up, down, left, right, or

forward (e.g. straight ahead).

Straighten up: <person> straighten up

Straighten up animates a person’s body parts to their default positions (e.g. looking

straight ahead with legs together and arms by his or her sides). Straighten up does not

change the location of the person’s body in the world. Users can apply straighten up to

any part of the body. For example if the selected person was seated and looking at

another character in the scene, the user could call person.torso straighten up to return the

person’s head to its normal position.

Chapter 4: Enabling Storytelling 87

Turn to face: <person> turn to face <target>

Turn to face turns the selected person such that they are standing straight up and facing

the target.

Turn away from: <person> turn away from <target>

Turn away from turns the selected person such that they are standing straight up and

facing directly away from the target.

Turn: <person> turn <direction> <amount>

The turn animation rotates the selected person in a given direction (forward, backward,

right or left) a given number of revolutions.

Touch: <person> touch <target>

The touch animation uses a very simple version of inverse kinematics to animate a

person’s right arm such that their hand is touching the front center of the target object’s

bounding box. If the person is not close enough to touch the object, the touch animation

will move the arm such that it appears to be reaching towards the target object. Optional

parameters allow the user to set which limb to touch the target with (right arm, left arm,

right leg, or left leg) and which side of the object to touch (front, back, right, left, top,

bottom). Because touch is based on bounding boxes, sometimes users need to be able to

adjust the point that the hand or foot touches. To allow users to adjust the touch point,

there is an offset which allows users to move the touch point along the line normal to the

plane the person is touching (e.g. the front, back, right, left, top, or bottom of the target

object).

Chapter 4: Enabling Storytelling 88

Figure 4.10: The image on the right shows the result of “LunchLady.touch Geoffrey side=up” from the starting
position shown at the left.

Keep touching: <person> keep touching <target>

Keep touching is intended to allow users to create animations in which a person continues

to touch an object as it moves through space. Keep touching positions the selected

person’s arm or leg in the same way as touch. However, where the touch animation

calculates the target positions and orientations for the selected person’s limb and

animates the parts of the person’s limb to those positions and orientations over the

duration of the animation, the keep touching animation calculates the target positions and

orientations each frame of the animation and sets the selected person’s limbs to those

calculated values. By default a person will keep touching their target for one second, but

users can set a different duration for the animation using the more menu.

4.6.2 Animating Other Characters
Sometimes girls’ stories include non-humanoid characters such as a dog or a fish. These

characters perform a subset of the animations that humanoid characters do. Characters

can perform the following animations:

Say: <character> say <string> [see Animating People]

Think: <character> think <string> [see Animating People]

Chapter 4: Enabling Storytelling 89

Play sound: <character> play sound <sound> [see Animating People]

Move to: <character> move to <amount> <direction> <target>

Move to animates the selected character from its current position and orientation to the

selected distance away from the selected side (front, back, right, left, top, or bottom) of

the target’s bounding box and facing target. Move to does not animate any of the

character’s body parts.

Move: <character> move <direction> <distance> [see Animating People]

Look at: <character> look at <target> [see Animating People]

Look: <character> look <direction> [see Animating People]

Stand up: <character> stand up [see Animating People]

Straighten up: <character> straighten up [see Animating People]

Turn to face: <character> turn to face <target> [see Animating People]

Turn away from: <character> turn away from <target> [see Animating People]

Turn: <character> turn <direction> <amount> [see Animating People]

Roll: <character> roll <direction> <amount>

Roll rotates the selected character around its forwards axis by a given number of

revolutions in the selected direction (left or right).

4.6.3 Animating Objects

Objects perform a set of animations inspired by the commonly used animations in
Generic Alice, which were tailored for moving objects in 3D space. These animations
include:

Turn: <object> turn <direction> <amount> [see Animating People]

Roll: <object> roll <direction> <amount> [see Animating Characters]

Straighten up: <object> straighten up [see Animating People]

Move: <object> move <direction> <amount> [see Animating People]

Resize: <object> resize <amount>

Chapter 4: Enabling Storytelling 90

The resize animation changes the size of the character by a multiplicative factor. For

example, if the user specifies an amount of ½, the resize animation will animate the

character such that each of its dimensions (height, width, and depth) is half as large as its

original dimensions. Optional parameters allow the user to specify a single dimension to

resize along and whether or not the object should resize like rubber (i.e. it should

maintain a constant overall volume).

4.6.4 Animating Cameras
In both Generic Alice and Storytelling Alice, cameras are distinct from other 3D objects.

However, in Generic Alice, cameras and 3D objects have an almost identical list of

animations. In early user testing, one of the consistent messages that I heard from users

was that cameras were too hard to control. In Storytelling Alice, I have added animations

to enable users to create scene transitions, camera shots, titles and subtitles. Based on my

user testing, scene transitions are frequently needed. Some users create specialized

camera shots.

Move to scene tripod: <camera> move to scene tripod <scene tripod>

Move to scene tripod animates the camera to the selected scene tripod’s position and

orientation.

Get close up of: <camera> get close up of <target>

Get close up of moves the camera to a position far enough in front of the selected target

that the entire target is in the camera’s viewing area. It does not check for other objects

that may be occluding the camera’s view of the selected target. Users can change which

side of the target object the camera is viewing (e.g. front, back, left, right, etc).

Get two shot of: <camera> get two shot of <target1> and <target2>

Get two shot of moves the camera to a position where both characters are in the camera’s

viewing area. By default the camera is positioned to the right of target1, but users can

change which side of target1 the camera is positioned at.

Chapter 4: Enabling Storytelling 91

Figure 4.11: The image on the right shows the result of “Camera.get two shot of LunchLady and Geoffrey” from
the starting point shown at the left.

Get character’s view: <camera> get character’s view <character>

Get character’s view is designed to move the camera to a position showing what the

selected character is looking at. It moves the camera to a position slightly in front of the

selected character’s head and an orientation matching that of the character’s head.

Show subtitle: <camera> show subtitle <string>

Show subtitle displays the specified string at the bottom of the screen similar to movie

subtitles. As with speech and thought bubbles, users can change the background color

that the subtitle is displayed on and the text color of the message. By default, subtitles

display for one second. They do not scroll.

Show title: <camera> show title <string>

Show title displays the specified string on a billboard placed in front of the camera. Users

can change the background color and the text color. Like subtitles, titles are displayed for

one second.

Fade to black: <camera> fade to black

Fade to black animates the lighting and background color of the scene to black.

Chapter 4: Enabling Storytelling 92

Fade up from black: <camera> fade up from black

Fade up from black animates the lighting and background color of the scene from black

to the standard lighting.

Point at: <camera> point at <target>

The point at animation orients the camera such that its forward axis is pointing towards

the target.

Move to: <camera> move to <distance> <amount> <target> [see Animating Characters]

Move: <camera> move <distance> <amount> [see Animating People]

Turn to face: <camera> turn to face <target> [see Animating People]

Turn away from: <camera> turn away from <target> [see Animating People]

Turn: <camera> turn <direction> <amount> [see Animating People]

Stand up: <camera> stand up [see Animating People]

Roll: <camera> roll <direction> <amount> [see Animating Characters]

Chapter 5: Developing the Storytelling Gallery 93

Chapter 5 Developing the Storytelling Gallery

5.1 Introduction
In my user testing sessions, one of the attributes that girls who had a positive experience

with Alice tended to share was a vision for a story that they actively wanted to pursue.

Further, the characters and scenery that girls added to their Alice worlds often had a

substantial impact on their ability to find a story idea, their success in creating a program,

and on their continuing interest in using Alice. The potential impact of girls’ choices of

3D objects was illustrated by a pair of girls who came in to user test an early version of

Alice. One of the two girls chose to add a dinosaur and a person to her world. She then

proceeded to build a simple story in which the dinosaur scared the person and the person

ran away in fear. Having accomplished that, she added a mouse from the gallery and

continued her story by having the dinosaur be frightened of the mouse and run away. In

this case, the dinosaur’s potential to be a frightening character provided the inspiration

for a simple story.

The other girl was drawn to a collection of amusement park models, in part because it

was one of the only cohesive spaces available in the gallery at the time. She spent a long

time carefully arranging the rides in her amusement park and then added a man into the

park. She began by having the man ride the merry-go-round but quickly ran out of ideas

she wanted to pursue.

Chapter 5: Developing the Storytelling Gallery 94

Both of these stories are simple cases in which the stories were largely based on cues in

the visual appearance of the models that girls chose from the gallery. These and other

similar user tests illustrated the role of Alice’s gallery of 3D characters and scenery in

girls’ success at finding of story ideas.

To find techniques for inspiring stories through the Alice gallery, I explored Story Kits. I

define a Story Kit as a small, themed collection of characters (in which each character has

a small set of animations that only that character can perform) and scenery, intended to be

used as a starter-set for constructing a story. I chose to focus on Story Kits for two

reasons:

First, girls in user tests were often attracted to coherent sets of objects within the gallery.

For example, they frequently selected the models and characters from Egypt, Japan, and

the Amusement Park, the only coherent sets in the original Alice gallery.

Secondly, Story Kits provide a low-cost way to experiment with different ideas. Making

rapid, large-scale changes to the full Alice gallery of more than 350 models was not

feasible. Story Kits provided the opportunity to identify promising approaches by quickly

developing and testing smaller set of models.

5.2 Approach
My investigations with Story Kits took place within the context of a seminar for

undergraduate students that I co-taught with Entertainment Technology Center Master’s

student Jessica Trybus. 13 undergraduates who had prior experience with Alice

participated in the Story Kits seminar. The undergraduate students worked in teams of 3-

4 students to create and test a series of Story Kits. To create a Story Kit, each team had to

create 3D geometry and textures for all characters and scenery elements and animate their

models in Alice. Teams had two weeks to create each Story Kit. Over the course of the

semester, we created and tested a total of 16 Story Kits in four rounds with each round

taking two weeks. At the end of each round, the Story Kit creation teams were shuffled

so that the undergraduate students were working with a different team on each Story Kit

Chapter 5: Developing the Storytelling Gallery 95

that they built. The approach of two-week long projects and shuffling teams for each

project was inspired by the Building Virtual Worlds course (Pausch).

Throughout the semester, a group of 10 local children came to Carnegie Mellon once a

week to build stories in Alice using Story Kits. The children ranged in age from 10 to 15,

7 were female, and 6 were African-American. 4 attended public or private school and 6

were home-schooled. The weekly sessions with the children were 1.5 hours long. During

the first session, we introduced the children to Alice, concentrating on the features that

we felt would be useful in creating stories. During the subsequent Friday sessions, we

asked the children to work in pairs to create a story using one of our Story Kits.

Occasionally, because of absences or disagreements, children created stories individually.

The Story Kits work occurred fairly early in the process of developing Storytelling Alice,

before I had concluded that asking users to work individually on stories was preferable to

having them work in pairs.

While children created their stories in Alice, undergraduates were required to observe

students using a Story Kit they were not involved in creating, and take notes about what

the children did and said while creating their stories. These observations were used to

guide subsequent rounds of design.

5.3 Design Process
To provide some insight into the process, I will briefly describe the Story Kits produced

during each of the four rounds. Our goal in these four rounds was to explore the space of

Story Kits and identify promising techniques for inspiring stories through the gallery.

Chapter 5: Developing the Storytelling Gallery 96

5.3.1 Round 1

Figure 5.1: Clockwise from left: Robot StoryKit, Mythology StoryKit, Spider in the Sink, and Faeries StoryKit

5.3.1.1 Robots:
The Robots toolkit provided two potential storylines with overlapping characters: 1) a

mad scientist story and 2) romantic relationship story. The characters, a mad scientist and

four stereotypical teenage robots, two boys and two girls, were designed to have

exaggerated and easily identifiable personalities. The setting for this kit was a factory

with several machines that could turn on and off and break.

Character animations proved to be one of the strongest story motivators within the

Robots Story Kit. Two of the three worlds were motivated by an animation: the “crazy go

nuts” animation prompted a story that led up to one of the robots going crazy; the slap

animation prompted our testers to explain through dialogue why one character had hit

another.

5.3.1.2 Mythology:
The Mythology Story Kit intended to enable testers to use the rich space of Greek

mythology as a basis and inspiration for their stories. Unfortunately, the designers of this

kit were unable to finish all of the elements they intended to include in the Story Kit. As

presented to our testers, the Mythology kit included a centaur, a horse, a Pegasus, and a

unicorn. Our testers struggled in creating stories with this Story Kit, probably in large

part due to its incompleteness.

Chapter 5: Developing the Storytelling Gallery 97

5.3.1.3 Faeries:
The Faeries Story Kit used magic as a basis for their toolkit. This Story Kit contained an

ogre, a talking tree, and two faeries: a boy and a girl. The setting is the ogre’s home in a

swamp, which is decorated with a sign that reads, “No faeries allowed.” The ogre, the

faeries, and the talking tree could all cast a variety of spells. The Faeries Story Kit

demonstrated the use of environmental cues as a way to inspire stories. In this case, a

“No faeries allowed” sign helped our testers to understand that the faeries and the ogre

were not supposed to like each other. However, users were not completely successful in

moving from the knowledge that the faeries and ogre disliked each other to a clear story

idea. Two groups disliking each other is a very general conflict. We found that users tend

to be more successful at creating stories based on concrete conflicts. For example, if the

Faeries Story Kit had communicated the reasons behind the ogre’s dislike of faeries,

users could have used knowledge of those reasons in creating their story scenarios.

5.3.1.4 Spider in the Sink:
The Spider in the Sink Story Kit used an introductory animation in which a spider lowers

herself into a sink and realizes that she is trapped to communicate the central conflict for

a story. The Story Kit provided several anthropomorphized toiletries that could help the

spider and animations that turned on the hot or cold water to drown the spider. Although

the introductory animation introduced a clear goal (create a story in which the spider gets

rescued), none of the pairs using this Story Kit chose to create a rescue story.

Chapter 5: Developing the Storytelling Gallery 98

5.3.2 Round 2

Figure 5.2: Clockwise from left: Aquarium Story Kit, Graveyard Story Kit, Restaurant Story Kit, and Skate

Park Story Kit

5.3.2.1 Aquarium
Because the exaggerated characters in the Robots kit seemed to work so well, the

designers of this kit decided to see whether creating a set of characters with exaggerated

personalities would be as successful without considering potential storylines. The

Aquarium Story Kit included six anthropomorphized sea creatures, an aquarium and

several objects commonly found in aquariums such as a cave and a treasure chest.

Even though the treasure chest was included merely to reinforce the aquarium

environment, both pairs of testers focused a fair amount of their attention on the treasure

chest because it helped to suggest a potential story line: one character attempting to guard

or steal another’s treasure. Neither of the pairs seemed to focus on personalities of the sea

creatures.

5.3.2.2 Graveyard
In the previous round, we noticed that animations requiring explanation within the story

can be pivotal in helping middle school students to find a story idea. The Graveyard Story

Kit includes a young girl, a young boy, a ghost and a black cat in a graveyard setting. The

girl and boy both have animations that represent extreme emotions. For example, the boy

can cry and wail and both can pop their eyes out in fear. The pair that tested this Story Kit

seemed to particularly enjoy the crying and screaming sounds associated with the boy’s

animations.

Chapter 5: Developing the Storytelling Gallery 99

5.3.2.3 Skate Park
In the previous round, tensions between boys and girls seemed to be a popular theme in

the stories created with the Robots. This Story Kit provides the support for similar boy-

girl tension stories in a more familiar setting. The Story Kit provides four teenage

skateboarders, two girls and two boys and a schoolyard setting. Knowing that

sophisticated skateboarding tricks can be difficult to animate in Alice, the designers of

this kit created an assortment of skateboarding trick methods that users could call. In

addition to performing skateboard tricks, the characters can hug, kiss, shove, and punch

each other.

The story created with the Skate Park Story Kit centered around three of the children

ganging up on the fourth and punching him, for no discernable reason. The pair who

created the story (both boys) seemed to particularly enjoy the cartoon-style punch

animation.

5.3.2.4 Restaurant
Some of the most successful worlds from Round 1 included a lot of dialogue. In this

Story Kit, the designers wanted to create a setting that encouraged the use of dialogue.

The Restaurant Story Kit includes two restaurant patrons (a dog and a cat) and restaurant

staff members (a panther waiter and a hippo cook) in a two-room dollhouse style

restaurant. All the characters could perform “Rockout” animations. The “Rockout”

animation seems like an odd choice for a restaurant-themed Story Kit. However, in

previous rounds, we had observed that animations that were unexpected could often help

to spark stories. “Rockout” was an attempt to further explore the space of unexpected

animations and determine what kinds of unexpected actions can be successful story

motivators.

All three pairs that used this Story Kit initially focused on a single animation: one pair

focused on the “choke” animation; one pair on the “Rockout” animation that causes the

animals to start playing musical instruments; the final pair focused on the “spill”

animation. The users who focused on the “Rockout” animation had difficulty finding a

sequence of actions that motivated the characters to begin playing musical instruments.

Chapter 5: Developing the Storytelling Gallery 100

The most successful pair used the spill animation. The spill animation caused the object

being spilled to move (by flying) to the hippo cook’s hand and then the hippo spilled the

object on the floor. The pair found the beginning of the animation in which the object to

be spilled flies to the hippo’s hand amusing and explained this strange behavior by

having the hippo complain about having a strange magnetic force in his hands.

5.3.3 Round 3

Figure 5.3: Clockwise from left: Kennel Story Kit, Jewel Thief Story Kit, Mosquito Man Story Kit, and Mixed

Fairy Tales Story Kit

5.3.3.1 Dog Kennel
The designers of this kit wanted to create a kit that provided characters with exaggerated

personalities and obvious character motivations. The Dog Kennel Story Kit contains

several dogs, each with distinct personalities, and a dogcatcher. It is set in a kennel.

The testers who worked with this kit seemed to understand the potential for conflict

between the dogs and the dogcatcher. However, we did not see any evidence that they

noticed the dogs’ distinct personalities. One potential reason for this is that the

animations that were designed to convey personality were hard to interpret unless the

camera was close to the dog. However, the Story Kit did not provide camera animations

to enable close-ups on particular dogs. Users’ difficulties with moving the camera to

reasonable positions in this kit and others provided the motivation to add camera

primitives for common movie camera shots like close-ups and two-shots. The stories

created with this kit seem to focus largely on having the dogs throw different objects at

the dogcatcher.

Chapter 5: Developing the Storytelling Gallery 101

5.3.3.2 Jewel Thief
The designers of the Jewel Thief Story Kit wanted to provide strong character

motivations for each character within the Story Kit and enable our middle school users to

more readily identify interesting animations. To accomplish this, each character in the

Jewel Thief Story Kit has a fantasize animation, which displays a pictorial thought bubble

intended to convey each character’s dreams (for example, a grandmother character

dreams about being a ninja), and a “show all methods” animation, which plays through

all of the characters animations to help students identify interesting animations for use in

their stories. The Jewel Thief Story Kit contains an old lady, a butler, a cook, a dog, and a

ninja. The Story Kit is set in the old lady’s mansion. The pairs using this Story Kit

struggled with moving the camera and the characters to different floors within the

mansion. In essence, each room in the house is a different setting. Users’ difficulty in

moving from one setting to another motivated the addition of scene support in

Storytelling Alice. Despite their difficulties with the camera, one of the two pairs began

to develop dialog that elaborated on the characters in their story, especially the old lady.

5.3.3.3 Mixed Fairy Tales
The Mixed Fairy Tales Story Kit provides characters from two common fairy tales: The

Three Little Pigs and Little Red Riding Hood. The designers of this kit hoped that

providing characters from two known fairy tales would spark interesting stories that

combined different elements from the two tales. Three of the four pairs that worked with

this kit clearly recognized the reference to The Three Little Pigs and Little Red Riding

Hood. Two of the pairs attempted to create a variation of The Three Little Pigs story.

However, once pairs discovered that Little Red Riding Hood had a “matrix kick”

animation (a kick and coordinating camera motion that is similar in style to fight

sequences in a movie called “The Matrix”), all 3 pairs switched their focus to creating

something that used the “matrix kick”.

5.3.3.4 Mosquito Man
The Story Kit contains two superheroes and a villain in a park setting. The designers of

this kit intended for users to create a story in which the superheroes defeat the villain.

Chapter 5: Developing the Storytelling Gallery 102

The Mosquito Man Story Kit incorporates a puzzle in the character animations; the

superheroes must combine their powers in a certain way (through calling character-

methods in a specific order) in order to disable the villain. One pair of middle school

students tested this Story Kit. The pair was distracted early on by the discovery of a road

in the park setting. Rather than focusing on attempting to create a story, they used the fact

users can “drive” the camera around Alice scenes as a makeshift driving game.

5.3.4 Round 4

Figure 5.4: Clockwise from left: Aliens Story Kit, Wacky Circus Story Kit, Secret Agents Story Kit, and Panda

Beach Party Story Kit

5.3.4.1 Aliens
The idea behind this Story Kit is that having two disjoint sets of characters that do not

belong together can help generate story ideas. The Aliens Story Kit contains two Aliens

and a farmer and is set in the farmer’s house. Two pairs of Story Kit testers built stories

with the Aliens Story Kit. One story was inspired by the Aliens’ steal animations; the

Aliens state that their mission is to steal everything and then return to their home planet.

The second story was based around the farmer’s household appliances deciding that they

no longer wanted to work for him and disappearing. The pair creating this story seemed

uninterested in the Aliens.

5.3.4.2 Wacky Circus
Over the course of the semester, we noticed that our middle school testers seem to strive

for humor in their stories. This Story Kit represents an attempt to focus on humor. The

Story Kit contains a variety of circus performers, a circus tent, and an audience that can

Chapter 5: Developing the Storytelling Gallery 103

make a variety of sounds. One of the stories created with this kit plays directly into the

theme the designers intended. In the story, a lion declares that he is hungry and proceeds

to eat everything around him, including the clown car, the audience, and finally the circus

tent. The pair creating the other story was not as successful. While they seemed to value

the humor aspect of the kit and discussed having a crazy circus show, their progress was

stalled by their difficulties moving the camera and the characters within the 3D

environment.

5.3.4.3 Panda Beach Party
The Panda Beach Party Story Kit is based around the concept of providing recognizable

characters and multiple story lines. The Story Kit provides four Pandas with animations

that support romance and drowning stories.

The pair that used this Story Kit seemed to have trouble coming up with a beach-based

story and chose to focus on an ice cream cone as the basis for a story. They discussed

having one character steal an ice cream cone from another, but this did not happen in

their final world.

5.3.4.4 Secret Agent
This Story Kit used a familiar genre to help middle school students generate stories. It

provided two secret agents, an evil doctor, and the evil doctor’s henchmen. The Story Kit

is set in the evil doctor’s observatory, which is equipped with a death laser and a piranha

tank.

Of the Story Kits that attempted to help kids generate stories through the visual

appearance of the characters and scenery, this was by far the most successful. Both pairs

immediately recognized the genre and developed simple stories in which the agents

defeat the evil doctor.

5.4 Lessons Learned
The Story Kits seminar experimented with a wide variety of strategies for inspiring

stories including:

Chapter 5: Developing the Storytelling Gallery 104

- Giving characters animations that require explanation (e.g. Harold the robot’s

“crazy go nuts”)

- Environmental cues (e.g. the “no faeries allowed” sign)

- Providing an Alice world in which has the beginning of a story and introduces

a conflict for the user to resolve (by creating the rest of the story)

- Embedding a puzzle in the story that users need to unravel (e.g. the Mosquito

Man Story Kit in which users must use the superheroes’ powers in a specific

way to defeat the villain.)

- Giving characters animations that reveal a motivation for them (e.g the

characters in the Jewel Thief Story Kit each had a fantasize animation that

suggested a motive; the butler dreamt of being a king and the old lady wanted

to be a ninja.)

- Using characters from familiar stories (e.g. a few Story Kits provided

characters drawn from mythology and folk lore)

- Giving characters animations that suggest a personality (e.g. Sammy the Snail

in the Aquarium Story Kit who was intended to be shy has animations for

hiding in his shell and looking embarrassed)

- Providing character animations that create interaction with other characters

(e.g. a kiss or slap animation)

- Creating Story Kits that bring together unexpected sets of characters (e.g. one

of the Story Kits brought together a farming family and aliens; another paired

characters from multiple fairy tales).

The Story Kits seminar was extremely helpful in identifying promising directions for

creating 3D models and associated animations to help girls find story ideas. However, to

solicit feedback on all of the Story Kits, we required Story Kit testers to use a particular

Story Kit during each session and instructed testers not to add 3D content from other

Story Kits, restrictions that users do not typically have in interacting with Alice. After the

end of the Story Kits seminar, I removed the constraints on users’ content choices and

continued to test Story Kits.

Chapter 5: Developing the Storytelling Gallery 105

5.4.1 The Need for Story Inspiration
Some middle school children seem to come into our Alice workshops with a fully formed

idea for a story: some recount scenes from their lives and others use current events, often

holidays, as a spring board. One girl used Valentine’s Day as inspiration to write a story

about an ogre waiting for years and years for the return of his true love, a fairy. In the

end, the ogre’s love does return. While some kids easily find story ideas, many of the

kids who have participated in testing Storytelling Alice benefit from story-idea supports

within the gallery. Through the Story Kits seminar and later user testing, I have identified

the following techniques which have high potential for sparking story ideas within the

Alice gallery framework.

5.4.2 Animations that Require Explanation
One of the most powerful sources of story inspiration is through animations that require

explanation in the story. Typically these are animations that cause characters to perform

behaviors that are more extreme than would be typically considered socially acceptable.

For example, in the Robots Story Kit a robot character had an animation entitled “crazy

go nuts.” In using this Story Kit with a variety of users including the Story Kit testers, in

classes taught to groups of home-schooled students, and in other informal testing, I have

seen a wide variety of stories that culminate with the robot going crazy. Students have

created stories that dealt with parental authority struggles, relationship issues, social

status, academic difficulty, and more. For a summary of the kinds of stories that girls

create in Storytelling Alice, see Chapter 10.

Initially, I attributed the success of animations like “crazy go nuts” to their

unexpectedness. However, further user testing forced me to refine the explanation;

“unexpected” animations like having an ogre spin his horns or animals randomly start to

play instruments were not attractive to users. Although, people do not expect a character

to randomly start playing a musical instrument, users had trouble finding interesting

narratives to motivate that behavior. The power of animations like crazy go nuts is that

they were expressing valid emotions in a more extreme way than would be considered

socially acceptable in real life, in some ways similar to the over-the-top antics of the

Looney Tunes characters created by Tex Avery (Wikipedia). Other examples that proved

Chapter 5: Developing the Storytelling Gallery 106

useful in sparking story ideas included one character kissing another, a red riding hood

character doing a Matrix-style kick, and dogs throwing bananas at a dogcatcher. These

slightly extreme reactions to things are very appealing to children. It was not uncommon

to hear children say things like “Little Red can matrix kick. I’ve got to use this.”

Initially, the attraction is often both the humor and the fact that the characters are

behaving in ways that the children themselves cannot behave (e.g. “They can throw

bananas?!”). Further, these kinds of actions ask an implicit question (e.g. what did the

dogcatcher do to anger the dogs into throwing bananas at him) which helps children

begin to piece together a narrative.

5.4.3 Character Roles
Characters with clear roles suggested either by their appearance (e.g. the knight in his

armor who needs a quest or a cause to fight for) or their name (e.g. Butch the Guard Dog

who needs something to guard) also proved helpful in inspiring stories. Often, users

recognize characters from a particular genre; several users created stories with secret

agent characters. Common themes in these stories included stopping a mad scientist or

recovering a kidnapped character or stolen item. Other users selected characters who

resembled characters in animated movies; Boris the Ogre has appeared in stories as Shrek

or Shrek’s cousin and the fish in the undersea category often appear in stories similar to

Finding Nemo, although none of the users have referred to their fish characters as Nemo.

Figure 5.5: Boris the Ogre (left) sometimes appears as Shrek in stories. Fish (right) sometimes appear in stories
similar to Finding Nemo.

Chapter 5: Developing the Storytelling Gallery 107

5.5 Designing the new Story Gallery
The experience with Story Kits was valuable in exploring the space of ways that content

(3D models and animations) can help children find story ideas, a key element in having a

positive experience with Storytelling Alice. However, there were several ways in which

Story Kits were not the right approach for use in the gallery.

5.5.1 Gallery Organization
In practice, girls rarely selected all of the characters from the same Story Kit unless they

were specifically instructed to do so. Instead, they would often choose a setting from one

kit and then assemble a cast of characters from several kits. Unfortunately, many of the

Story Kit creators built the character-animations such that they only appeared correct

when used with other characters from the same Story Kit. Consequently, using characters

from multiple Story Kits rendered many of the characters’ animations useless.

5.5.2 Story Beginnings
One strategy for helping users start creating a story is to provide users with the beginning

of a story to complete. However, this removes the opportunity for users to select their

own cast of characters, a process that many users clearly enjoy. Further, when I

experimented with giving users the beginning of a story (through providing users with an

Alice world with appropriate characters, a setting, and animation), it was rare for children

to use the beginning of the story. Most users seemed uninterested in building on the

provided story beginning, even when they were struggling to develop their own story

ideas.

5.5.3 Environmental or Positional Cues
Several of the Story Kits included environmental cues (e.g. a “no faeries allowed” sign

suggests a tension between the faeries and the ogres) or positional cues (e.g. a character

coming into the world in a cage suggests that the character might need to escape) that

suggest potential story lines. As with providing a story introduction, environmental and

positional cues rely on being able to predict which characters users are going to combine

with some accuracy.

Chapter 5: Developing the Storytelling Gallery 108

5.5.4 Gallery Organization
Users clearly preferred to select characters from multiple Story Kits but were often

frustrated by the process of searching for appropriate characters. When using the Story

Kit based gallery, users lacked a good model for where they were likely to find

appropriate characters for what they were trying to build. As a result, users often searched

through nearly every Story Kit looking for a particular type of character (e.g. a girl or a

dog). Often users’ worlds included characters from several Story Kits.

In contrast to their tendency to select characters from multiple Story Kits, my user testers

seemed to be attracted to the coherent spaces that Story Kits provided and would often

use a whole setting from one of the Story Kits.

In developing the gallery for Storytelling Alice, I organized the content into characters

and scenery. Users typically chose a cast and a setting as separate tasks, in either order.

The characters were further broken into groups of similar characters. Most girls in my

user tests tended to choose kids for the main characters in their stories. In response, I

created a folder of “kids.” The rest of the characters are organized into groups like

“adults,” “heroic,” “scary,” or “pets” (see Figure 5.9). These groupings more closely

match the way that girls seem to select characters in their stories.

5.5.5 Character Animations
Another problem that arose from users selecting characters from multiple Story Kits is

that often the characters’ interaction-based animations (e.g. one character pushing another

character) only perform correctly when used with other characters in the same Story Kit.

This is an artifact of animating characters’ limbs by rotating them a certain number of

rotations. The correct rotation to reach one character’s head might be very different from

the correct rotation to reach another character’s head. This problem can be fixed by

writing animations using the new touch and keep touching animations in

Storytelling Alice. At the time that the Story Kits were developed, touch and keep

touching had not been added to the system.

Chapter 5: Developing the Storytelling Gallery 109

In the Storytelling Alice gallery, each character comes with four character-specific

methods. Based on the success of the explanation-requiring animations at inspiring

stories, I tried to incorporate as many explanation-requiring animations as possible. Other

character animations are designed to reinforce a character’s likely role in a story. For

example, the lunch lady has a scold method that reinforces her likely role as an authority

figure.

5.5.6 Storytelling Gallery Content
There were themes in the characters and scenery that girls chose for use in their Alice

programs. Many (but not all) of the stories were about human characters and had children

as the story protagonists. Users also tended to choose familiar characters: often kids,

parents, and teachers. This echoes Purple Moon’s findings that girls wanted computer

games that followed the lives of every-day characters (Laurel 2001). In addition to a

collection of “kid” and “adult” characters, the Storytelling Alice gallery contains animals,

fantasy characters, and characters from folklore.

In creating the gallery for Storytelling Alice, I drew from the Story Kits and the full Alice

gallery more than 700 objects. While the Story Kits included some ordinary places and

characters, including selected content from the Alice 2.0 gallery allowed me to expand

the selection of characters and scenes.

5.6 Story Gallery
The Story Gallery is divided into two categories: scenes and characters.

Chapter 5: Developing the Storytelling Gallery 110

5.6.1 Scenes

Figure 5.6: Some of the scenes available for use in Storytelling Alice.

There are a variety of scenes including: an aquarium, a bedroom, a circus, a city, a

classroom, an Egypt scene, a factory, a forest, a garden, a graveyard, a gym, a hospital, a

kennel, a kitchen, a lair, a living room, a neighborhood, a 3 little pigs village, a school

hallway, a skate park, a stage, and a waterfall.

Figure 5.7: The 3D objects that users can compose to create a garden.

Each scene typically contains several objects that users can arrange in their Alice world

to suit their own purposes. For example, the garden scene includes a “Garden” object

which represents the garden grounds and walls. Users can add ferns and trees to decorate

the garden. Through user testing, it became clear that the most important aspects of a

scene are that it is 1) recognizable and 2) provides a sense of place. Few users wanted to

create their own unique garden; instead, their sense of ownership of their program came

through their stories. While it is tempting to provide small detail objects such as

individual flowers to place in the garden to allow greater personalization, users often find

Chapter 5: Developing the Storytelling Gallery 111

the process of placing small objects frustrating. The addition of detail objects seemed to

provide few benefits to users. Consequently, each scene contains a small number of

objects that allow users to personalize their scenes a little bit. These objects are sized to

be easy to manipulate.

The vast majority of objects users can add to scenes do not have their own methods

because most objects (e.g. furniture and buildings) rarely move. However, a few objects

like the clown car and a laser-weapon that users may want to move have a small number

of methods they can perform.

With the addition of the ability for characters to walk to a particular target, it was

important to annotate some of the scenery objects with target information. Examples

include doorways and details that are painted onto an object (and do not have 3D

geometry associated with them) like a blackboard or a painting hanging on a wall.

5.6.2 Characters

Figure 5.8: Some of the categories of characters available in Storytelling Alice.

The characters are grouped in to several categories: adults, fantasy characters, funny

characters, futuristic characters, heroic characters, kids, pets, scary characters, and

undersea characters. The categories are based on the kinds of roles the characters can

play in stories. Typically middle school children tend to have protagonists who are either

their own age or a little bit older.

Chapter 5: Developing the Storytelling Gallery 112

Figure 5.9: A selection of “kid” characters available in Storytelling Alice.

Each character in the Storytelling gallery comes with at least four animations that only

that character can do. These animations have been designed both to support common

ways that a particular character tends to be used and to provide somewhat extreme

reactions that will help users find story ideas to pursue.

Figure 5.10: Dora, a character in the “kids” category and her character-specific methods.

Dora is an example of a character found in the “kids” category. Dora can hug, kick, or

point and laugh at another character and tap her foot impatiently. All four of these

methods require some explanation within the context of the story and can be used in a

variety of different types of stories.

Chapter 5: Developing the Storytelling Gallery 113

Figure 5.11: Lunchlady, a character on the “adults” category and her character-specific methods.

The Lunchlady is a character in the “adults” category who can scream, scold students,

brainwash another character, or behave as though she is hard of hearing. Typically the

lunch lady is used as an authority figure. To support this role, the lunch lady has two

types of animations: scolding and being hard of hearing both reinforce the lunchlady’s

role as a slightly out-of-touch authority figure; screaming and brainwashing other

characters are extreme responses to student misbehavior.

Figure 5.12: Character’s default arm positions effect how they animate. Turn forward 0.25 would cause the
girl’s palm to face forward and the tin soldier to hold his arm out behind him.

While animating the characters in the Storytelling gallery, I also gave them a consistent

default body position so that users who do animate a character’s arm using the “turn”

animation can do so more easily. In Generic Alice, there are two common default

Chapter 5: Developing the Storytelling Gallery 114

positions for characters and, consequently, two behaviors for the animation

model.arm.turn(forward, 0.25):

1) The character is in a t-position with their arms extended to each side. In this case, the

arm rotates such that the back of the character’s hand goes from facing up to facing

forward (as in the picture on the left)

 2) The character has their arms by their sides. In this case, the arm rotates from by the

character’s side to extend behind the character.

I found that users tend to have an easier time animating characters whose default position

is with their arms at their sides. In this case, one can explain the behavior of the turn and

roll animations using arm circles and flapping. Users were typically able to determine the

correct animations for their desired motion in terms of forward and backward arm circles

(i.e. turn forward or backward) and flapping (i.e. roll right or left). All the characters in

the Storytelling gallery have default positions with their arms at their sides.

Chapter 6: Developing the Storytelling Tutorial 115

Chapter 6 Developing the Storytelling Tutorial

6.1 Introduction
Through user testing, I found that in addition to introducing girls to how Alice works, the

tutorial must also convince girls that Alice can be used to build the kinds of stories they

envision building. The stories girls envision creating tend to be more complex than the

kinds of simple, mechanical examples typically chosen for tutorials. To enable girls to

successfully complete story-based tutorials, I created an interaction technique called

Stencils which draws a translucent blue screen which can catch mouse and keyboard

events over the running Alice interface. For each step in the tutorial, Stencils cuts a hole

over components with which the user needs to interact. Accompanying instructions are

displayed on sticky-style notes drawn over the blue screen. Stencils is able to catch users’

mistakes and ask users to redo the current step before users move to the next step in the

tutorial, preventing users’ mistakes from derailing their progress through the tutorial. In a

study comparing the performance of users learning Alice with Stencils-based and paper-

based tutorials, I found that users of the Stencils based tutorial made fewer mistakes and

completed the tutorial more quickly.

6.2 Motivation
Many tutorial examples are deliberately chosen to demonstrate a particular feature or

technique of a software system as simply as possible. While selecting simple examples

can reduce the chance for crippling user errors during the tutorial, I found that simple

examples may also leave users with the impression that the underlying software system is

Chapter 6: Developing the Storytelling Tutorial 116

boring or irrelevant. When I began user testing early versions of Alice 2.0 with girls, I

found that many of the girls who successfully completed the tutorial were not interested

in continuing to use Alice on their own. One girl summarized her disinterest in Alice by

explaining that she thought that Alice was “a system for moving the bunny around” and

wondered aloud why anyone would want to do that. While the early Alice 2.0 tutorial

was successful in showing girls the mechanics of using Alice, it was unsuccessful in

motivating girls to build their own programs in Alice. I found that it was necessary to

create a tutorial that introduces the mechanics of using the system and shows girls

examples of the kinds of stories they can create using Alice.

The typical story that a middle school girl envisions tends to have more lines of code and

more objects than our original tutorial examples. Increasing the number of 3D objects and

lines of code increases the number of user interface components and consequently, the

potential for user error. Stencils enables users to successfully complete more complex

tutorials by:

1. Helping users quickly figure out what to do in each step by drawing users’

attention to components with which they need to interact.

2. Preventing users from making errors by preventing them from clicking on

components unnecessary for the current step.

Chapter 6: Developing the Storytelling Tutorial 117

Figure 6.1: A screenshot of a Stencils-based tutorial in Alice with a hole over the interface component the user
needs to interact with in the current step.

6.3 Related Work
There are three relevant areas of related work: the presentation of procedural instructions,

learner-centered design, and transparent interfaces.

6.3.1 Presenting Procedural Instructions
Much of the research on how to present procedural instructions to users has been

performed in the context of developing better help systems for software applications.

Currently, most applications present procedural instructions for help systems in a separate

window with supplementary pictures (Goodall 1991; Goodall 1992). However,

researchers have found this method to be problematic for users (Knabe 1995). Users often

forget steps while switching between the instruction window and the application, have

difficulty locating components pictured in the instruction window, or mistakenly think

that the images of interface elements presented in the instruction window are fully

functioning components (Knabe 1995). Since most web-based tutorials use a similar

Chapter 6: Developing the Storytelling Tutorial 118

format, it is likely that users of web-based tutorials will encounter similar problems.

While users of printed tutorials are unlikely to confuse images of interface elements with

the actual interface elements, they may still have difficulty locating the interface elements

or accidentally skip steps. In addition, paper-based manuals and tutorials are more costly

to distribute than electronic versions.

Efforts to improve on-line presentation of procedural instructions have centered on two

areas: 1) improve the quality of procedural instructions presented in a separate context,

and 2) find ways to present help in context.

Early work on presenting procedural instructions demonstrated that adding pictures to

textual instructions helped users complete procedural instructions more quickly, but did

not improve their accuracy (Booher 1975). Because of the dynamic nature of many user

interfaces, researchers have suggested (Schneiderman 1983; Baecker 2002) and evaluated

(Palmiter, Elkerton et al. 1991; Palmiter and Elkerton 1991; Harrison 1995) using

animated demonstrations to present procedural instructions to users. Palmiter et al. found

that participants who used an animated tutorial initially completed test tasks faster than

those who used a text-based tutorial, but users of the animated tutorial did not retain their

learning a week later (Palmiter, Elkerton et al. 1991; Palmiter and Elkerton 1991).

Harrison found that users who used animated tutorials or illustrated textual tutorials

learned more quickly than users who used a non-illustrated textual tutorial (Harrison

1995). Researchers have concluded that for many types of software, animated

demonstrations will not be broadly effective for presenting procedural instructions

(Palmiter and Elkerton 1991; Harrison 1995).

Since many of the problems users encounter when using traditional on-line help or

tutorials are caused or exacerbated by the separation between the instructions and the

application, other researchers have tried to make help available in the context of the

application. Coachmarks (Apple) are markings, typically a circle, cross or check in red or

green, drawn over a component in the interface to attract the user's attention to the

component relevant to the current step. Sukaviriya et al. (Sukaviriya, Isaacs et al. 1992)

animate the cursor over the interface and replace the typical arrow cursor with

Chapter 6: Developing the Storytelling Tutorial 119

representations of the mouse and keyboard to indicate user actions. Coach/2 used an

animated picture of a mouse that left a graphical trail and blinked its eyes to show mouse

clicks (Selker, Barber et al. 1996). Both techniques show the user what interface

components to focus on. However, users may not fully understand what actions are

necessary to accomplish a given task. I have not found any studies comparing the

performance of participants using in-context instructions with that of participants using

more traditional instructions.

While the purpose of procedural instructions is to teach users new skills, once a user has

located the relevant set of procedural instructions in a help system, the system may have

enough information to perform the instructions for the user. Current versions of the

Windows™ Operating System (Microsoft) include a “Show Me” feature that

automatically performs the steps described in the instruction window without showing

the user how the steps were performed. Although this type of feature does not help users

learn new functionality, it does give users an option if they are unable to understand and

perform the steps described.

Rather than trying to improve the presentation of procedural instructions, some

researchers have tried to limit the number and kinds of mistakes that users can make.

Carroll and Carrithers (Carroll and Carrithers 1984) found that users using a specially-

created training version of a word-processing package learned to use the program more

quickly and performed better on a post-test that measured comprehension than users

using the unmodified version of the word-processor. In the training system, when users

choose an advanced feature in the training version, the system responds with a dialog box

stating that the chosen command is not available in the training system. In a later study,

Catrambone and Carroll demonstrated that participants who learned to use the Training

Wheels version of the word-processor with the help of a guided-exploration training card

were able to transfer their knowledge to an unmodified version of the word-processor

(Catrambone and Carroll 1987). Further, these participants were able to perform similar

and more advanced tasks as quickly as or more quickly than users who learned to use the

unmodified version of the word-processor with the same guided-exploration training card

Chapter 6: Developing the Storytelling Tutorial 120

(Catrambone and Carroll 1987). While limiting the number and kinds of mistakes users

can make may help them learn new software more effectively, creating and maintaining

separate training versions creates an additional development cost.

6.3.2 Learner Centered Design
Researchers in Learner-Centered software are exploring ways to create software-based

scaffolding, support for learners as they are learning a new task (Shashaani 1994). While

software-realized scaffolding can take many forms, some Learner-Centered systems

provide scaffolding that is intended to guide learners through a process such as creating a

simulation or researching a question. Emile, a system for building physics simulations,

implements process control by enabling menu items that allow users to access parts of the

interface relevant for later stages in simulation building only after they have completed

earlier stages (Guzdial 1995). TheoryBuilder, a tool for constructing scientific models,

uses reminder messages displayed in pop-up windows to remind learners to perform parts

of the process they have neglected. Users can request that TheoryBuilder stop reminding

them to complete a given task by clicking a “Stop reminding me” button displayed

underneath the reminder message (Jackson, Krajcik et al. 1998). Other systems use the

user interface to suggest the process learners should follow but do not require learners to

follow it (Wallace, Soloway et al. 1998; Quintana, Eng et al. 1999).

6.3.3 Transparency in User Interfaces
Previous work has examined the use of transparency in interfaces and interaction

techniques to solve a variety of user interface problems.

To make better use of screen real estate, Bartlett created stipple-based transparent

controls that could exist in an application’s work area without obscuring it (Bartlett

1992). Kramer proposed the use of translucent, arbitrarily shaped regions as an

alternative to the overlapping windows paradigm that could more fluidly support design

activities (Kramer 1994).

The Stencils technique is most closely related to the work done by Bier et al on the See-

Through Interface: both use a transparent layer drawn over a user interface to change how

an application responds to interface events such as mouse clicks (Bier, Stone et al. 1993;

Bier, Stone et al. 1994). A See-Through Interface consists of Toolglass widgets and

Chapter 6: Developing the Storytelling Tutorial 121

Magic Lens filters that appear as though they are on a sheet of transparent glass in

between the mouse cursor and the user interface (Bier, Stone et al. 1993; Bier, Stone et al.

1994). A Magic Lens changes the appearance of the user interface beneath it by applying

a filter, such as magnification to it (Bier, Stone et al. 1993; Bier, Stone et al. 1994). By

moving a Toolglass widget over a user interface object and clicking on it, a user can

apply that widget’s operation to the selected object (Bier, Stone et al. 1993; Bier, Stone et

al. 1994). By using their non-dominant hands to position sheets containing one or more

Toolglass widgets and Magic Lens filters over the user interface and their dominant

hands to control the mouse cursor, users can select and operate on interface objects in

fewer steps and with less cursor motion (Bier, Stone et al. 1993; Bier, Stone et al. 1994).

Researchers have explored the use of Magic Lenses and Toolglass widgets in several

domains including 3D virtual worlds (Viega, Conway et al. 1996), augmented reality

(Looser, Billinghurst et al. 2004), generating database queries (Fishkin and Stone 1995),

and debugging user interfaces (Hudson, Rodenstein et al. 1997).

6.4 My Approach
Stencils is an interaction technique that is designed to present tutorial instructions in the

application context while preventing many kinds of errors. Stencils-based tutorials

present users with sequences of full-screen, colored, transparent overlays (or stencils)

containing holes. These stencils appear visually overlaid upon the active application

interface and intercept mouse and keyboard events. Events occurring over a hole in the

stencil are passed to the GUI component beneath the hole. This prevents users from

interacting with components covered by the stencil. The holes in the stencil draw the

user’s eye to the component they should interact with during a given step. Notes on top of

the stencil can supply additional information.

One potential problem with presenting tutorial instructions within the application is that

users may confuse interface components belonging to the tutorial with those that are part

of the application. To prevent this, interface elements associated with the tutorial have a

different visual appearance than standard GUI elements, always appear on top of the

stencils, and are slightly transparent so the user can see components in the underlying

Chapter 6: Developing the Storytelling Tutorial 122

interface. Based on our user testing, users do not have difficulty differentiating which

interface elements belong to the help and which ones belong to the application interface.

Stencils can contain four types of objects:

Navigation bars are automatically added to every stencil. They provide “next” and

“previous” buttons. The navigation bar also indicates which step the user is currently

performing and displays the total number of steps in the current task (see Figure 6.2 A).

An “Exit Tutorial” button allows users to close the tutorial at any point.

Holes with attached notes are the most common interface elements. They provide a hole

through which the user can interact with the underlying application component and an

associated note that the tutorial author can use to provide necessary information. Stencils

draws a red arrow to connect the note with its associated hole (see Figure 6.2 B).

Figure 6.2: Stencil Objects – A) Navigation Bar, B) Hole with Note, C) Frame with Note, and D) Stand-alone
note.

Frames with attached notes highlight a particular application component without

allowing the user to interact with it. They are typically used to bring aspects of the

interface to the user's attention. For example, a frame could point out the results of a

completed step. An attached note provides any necessary explanation (see Figure 6.2 C).

Stand-alone notes are used to provide a motivation or describe a goal that will take more

than a single step. They are associated only with the stencil, not with any particular

element in the application interface (see Figure 6.2 D).

Chapter 6: Developing the Storytelling Tutorial 123

6.5 Interaction Description
In each step of the tutorial, the interface is covered by a stencil. Directions for the current

step are displayed on sticky notes. To aid readability, these notes are almost opaque and

are placed by the tutorial author over parts of the interface that are least relevant to the

current step. However, notes are movable and the user can reposition them to get a better

view of a part of the underlying interface, if desired. In user testing, users rarely

repositioned a note. The stencil also contains holes over any elements of the interface that

the user needs to interact with. Users can perform all necessary actions through the hole.

While the rest of the interface is visible, it is not accessible: if users click on elements of

the interface that are covered by the stencil, nothing will happen. By making components

that are not necessary for the current step inaccessible, Stencils prevents users from

accidentally activating an incorrect component and moving the application into an

unknown state.

Steps in the tutorial are presented one at a time. Users move to the next step in one of two

ways: for steps that require a simple action such as a mouse click or an enter key, the

stencil will automatically advance to the next step when it detects the user has performed

the correct action; for more complex steps, the user presses a “next” button to advance

when s/he has completed the step. Pop-up menus appear on top of the stencil and

interface components can be dragged from one hole to another. When users move to the

next step in the tutorial, Stencils checks the current state of the application against a

saved “correct state” to verify that the user has performed the step correctly. In Alice, the

verification is implemented by comparing the changes that have been added to the undo

stack based on the users’ actions in the current step against a list of saved changes from a

“correct” tutorial performance for the current step. In integrating Stencils with other

applications, developers would need to implement their own state-checking algorithm. If

the user has made any mistakes, stencils displays both a note stating that it believes the

user has made a mistake and a “back” button that returns the user to the beginning of the

previous step so that they can try again. If the user has correctly performed the step, the

system advances to the next step in the stencils-based tutorial.

Chapter 6: Developing the Storytelling Tutorial 124

Occasionally, users want to return to a previous step that they have correctly completed.

To allow this, there is a “previous” button as part of the navigation bar. When a user

returns to a previous step, Stencils takes them to the beginning of that step by undoing all

of the actions they have performed as part of the current and last steps. To move forward,

users must complete the steps as directed by the tutorial. By undoing changes when the

user goes back a step, Stencils ensures that the state of the program is always consistent

with the tutorial instructions for that step.

6.6 Lessons from Formative Evaluation
While developing the Stencils interaction technique, I conducted formative evaluations of

three versions of a Stencils-based tutorial with 15 users (7 female), ranging in age from

18 to 60. I chose to start with adult users because they are better able to analyze what

aspects of a user interface are and are not working for them. Users were asked to work

through short tutorial segments while talking aloud. The tutorial segments included

navigating through the interface, selecting menu options, creating new interface elements,

and dragging and dropping interface elements. Once the Stencils-based tutorial was

usable at a basic level for my adult users, I further refined the tutorial based on testing

with approximately 30 home-schooled students between the ages of 11 and 15. The

primary lessons I learned were:

1. Visually reinforce the stencil as an overlay on top of the interface

I found that it was important to make holes and notes appear slightly 3-dimensional.

Without a hint of 3-dimensionality, users sometimes concluded that the interface was

simply tinted blue. With a shadow drawn at the holes to indicate depth and under the

notes so they visually float above the stencil, users seemed to understand that the stencil

was a layer on top of the existing interface.

2. Bring changes that occur underneath the stencil to users’ attention.

Simple actions, such as changes in selection, sometimes cause changes in areas of the

user interface that are underneath the stencil. Because the notes and stencils direct users’

attention to particular regions of the interface, users are less likely to notice changes in

other parts of the interface. If a particular step directs users to perform an action that will

Chapter 6: Developing the Storytelling Tutorial 125

cause a visual change in an area of the interface not exposed by a hole, the next step in

the tutorial should use a frame to highlight that change.

3. When completing simple actions, such as mouse clicks or single keystrokes, users

expect the tutorial to automatically advance.

I found that while users seem to prefer to control the pacing of complex actions, they

expect the tutorial to automatically advance to the next step when they perform simple

actions, particularly mouse clicks. Surprisingly, our evaluations indicated that users were

not confused by the tutorial sometimes automatically advancing and sometimes requiring

manual advancement. Consistency is often a useful strategy for minimizing surprises to

the user. In this case, automatically advancing to the next step was the least surprising to

users.

4. The underlying application needs to alert the tutorial to changes in the layout of the

interface.

Some actions the user takes may cause elements in the interface to shift. If any of these

elements have holes or frames over them, these shifts may result in holes or frames over

the incorrect parts of the interface.

5. For sequences of steps that have holes over the same screen components, shifting the

location of the notes provides a cue that users have moved to the next step.

For many users, the change in position of the notes from one step to the next is a cue that

they have advanced to the next step. When one step asks the user to manipulate the same

interface elements as the previous step, and the notes do not change location, users may

conclude that the tutorial did not advance and inadvertently skip a step.

6.7 Authoring Stencils-based Tutorials
I have created a simple authoring tool for building help stencils to allow non-

programmers to create Stencils-based tutorials. The authoring tool runs on top of the

active application. Objects are added to the stencil by double clicking on its surface. By

default, this creates a hole with an attached note. A right click menu allows authors to

create a frame with a note or a stand-alone note rather than a hole with a note. The author

Chapter 6: Developing the Storytelling Tutorial 126

can reposition notes by dragging them on the surface of the stencil and add instructions or

explanatory information by typing. Notes are visually attached to their associated holes or

frames with a line that updates when they are moved.

After creating the necessary holes in a stencil, the author of a Stencils-based tutorial must

perform the actions necessary to complete the current step. Stencils then requests and

saves a list of changes the tutorial author has made during that step from Alice. These

change lists are saved for every step in the tutorial and used to check that a user working

through the tutorial has correctly completed each step.

6.8 Implementing Stencils
My implementation of Stencils is written using the Java Swing framework (Sun 2006). It

uses the glassPane component in JRootPane to draw the stencil over the existing

interface and intercept all mouse events. Each stencil maintains a list of holes and

components associated with those holes. If a mouse event occurs inside a hole, the stencil

passes the event to the interface element below; otherwise the stencil processes the event.

Keyboard events are also controlled by explicitly managing which interface elements in

the underlying application have keyboard focus. Keyboard events reach an element in the

application interface only if that interface element is associated with a hole that has the

stencil's focus. A focus listener for the stencil’s focused object prevents the user from

moving to another interface element using the keyboard.

6.8.1 Modifications to Alice
The implementation of Stencils requires two Java interfaces which allow a two-way

communication between the tutorial and the underlying application (i.e. Alice). The

Stencils Application Interface allows Stencils tutorials to query Alice about Alice’s

interface components. Stencils implements the Stencils Update Interface which allows

Alice to alert the tutorial to application changes that may require Stencils to adjust. For

example, the user resizing the Alice window may shift the position of underlying

components.

Chapter 6: Developing the Storytelling Tutorial 127

Alice implements the Stencils Application Interface, a Java interface that provides

system-specific functionality to the tutorial. This functionality includes the abilities to:

1. Request the position and size of an interface element given the name of the

element.

2. Request the name of the interface element at a particular position on the screen.

3. Request a string representation of the changes.

4. Ask whether or not two strings representing changes in the world are equivalent.

5. Undo changes made to the Alice world and the interface.

Sometimes user actions will cause the layout of the underlying interface to change. For

example, a user action might cause a new component to be added to the user interface. If

the layout of the components in Alice changes, Alice alerts the tutorial by calling

methods in the Stencils Update Interface (a second Java interface), allowing the tutorial

to determine the new positions for holes or frames in the current stencil and redraw itself.

My implementation of Stencils is written in Java and can be used by any Java application

(implementations for other languages are possible). The Stencils implementation includes

a basic authoring tool and the ability to play back Stencils-based tutorials. To use

Stencils, a Java application must implement the Stencils Application Interface and make

appropriate calls to the Stencils Update Interface to alert the Stencils system to changes in

the layout of the user interface.

6.9 Evaluating Stencils
To evaluate the Stencils interaction technique, I conducted a study comparing the

performance of users given Stencils-based and paper-based versions of the same tutorial.

6.9.1 Participants
Twenty-two Cadette Girl Scouts representing three troops from the Pittsburgh area

participated in our study. The girls ranged in age from 12 to 16 years, with 18 of the 22

being between 12 and 13. When asked to rate their skill with computers, 5 chose “very

good”, 14 girls chose “good”, 2 chose “fair”, and 2 chose “poor or nonexistent”. Of the

22 girls, one had prior programming experience, and 7 had experience creating

webpages. The study was conducted during three one-day, four-hour workshops (one for

Chapter 6: Developing the Storytelling Tutorial 128

each troop). A $10 donation was made to the Girl Scout troop for each girl who

participated.

6.9.2 Preparation of Experimental Materials
The paper and Stencils-based tutorials guide users through a sequence of changes to three

Alice worlds. The textual directions to users are the same in both conditions.

Figure 6.3: A tutorial step in the paper-based tutorial (left) and the Stencils-based tutorial (right).

6.9.3 Paper-based Tutorial
In the paper version of the tutorial, directions for each step are presented beside a picture

of the GUI component the user needs to interact with for that step. Because users often

have difficulty locating components on screen, the pictures of each component include

enough screen context to allow users to easily identify which of the five regions of the

Alice interface, their target component lies in (see Figure 6.3). To allow users to check

whether or not they have correctly completed the steps in the tutorial, I have included

images that show what the relevant parts of the Alice interface should look like at several

points throughout the tutorial.

Chapter 6: Developing the Storytelling Tutorial 129

6.9.4 Stencils-based Tutorial
In the Stencils-based version of the tutorial, directions are presented on yellow Post-it™

style notes on the surface of the stencil. Holes in the surface of the stencils draw users’

attention to components they need to interact with during the current step of the tutorial.

Since our early user testing showed that users often do not notice interface changes that

happen underneath the stencil, the tutorial uses frames to draw users’ attention to changes

that have occurred in the user interface as a result of their actions. When users press the

next button or the stencil auto-advances to the next step, Stencils checks to make sure that

the user has performed all actions necessary for the current step and has not performed

extraneous actions.

6.9.5 Procedure
The study took place during three four-hour Alice workshops and used a two-group

between-subjects design. Participants were randomly assigned to use either the paper or

Stencils-based tutorial. To minimize the effects of differences in computer experience or

academic potential among the three troops, an equal number of participants from each

troop were assigned to the paper-based and Stencils-based tutorial conditions. Both the

paper-based and Stencils-based conditions consisted of 3 participants from troop 1, 3

participants from troop 2, and 5 participants from troop 3, for a total of 11 participants in

each condition.

During the workshop, participants completed three tasks: the tutorial, a post-tutorial

survey, and a quiz designed to test users’ mastery of the material presented in the tutorial.

To complete the quiz, users had to complete tasks in a pre-created Alice world to answer

multiple-choice questions. Participants needed to perform a variety of actions including:

playing the world, finding and calling methods, navigating through the gallery of 3D

objects supplied with Alice, adding 3D objects to their worlds, and editing predefined

methods.

There were no time limits for completing the tutorial, post-tutorial survey and quiz.

Participants were instructed not to help each other, but were told that they could ask the

Chapter 6: Developing the Storytelling Tutorial 130

experimenter for help with the tutorial, if necessary. The experimenter provided help only

when requested.

6.9.6 Data Collection
To enable me to study users’ performance on both the tutorial and the quiz, I recorded

users’ actions in two ways. I instrumented the Alice program to record any changes that

users made to the current Alice world. To record actions users took that did not result in

changes to the current Alice world, I used a locally developed logging program that saves

screen captures and records all mouse and keyboard events. I used the screen shots and

event logs to reconstruct videos of the users’ computer screens as they completed the

tutorial and quiz.

Using both the Alice logs and the videos of users’ computer screens, I produced

transcripts of all actions the users took while completing the tutorial and quiz. In addition,

I recorded the amount of time spent on each tutorial and the quiz.

6.9.7 Dependent Measures
My metrics for evaluating the success of participants using the Stencils-based and paper-

based versions of the tutorials included error rate, elapsed time, and number of requests

for help. My metrics for evaluating learning included the number of correct answers on

the quiz and the elapsed time in completing the quiz.

I counted three types of errors: skipped steps, incorrect selections that caused changes to

which elements are displayed in the user interface, and incorrect actions that caused

changes to the Alice world. All three types of errors have the potential to cripple users’

progress through the tutorial. Any actions not described in the tutorial that caused

changes to either the interface or the Alice world were counted as errors. However, if a

user started an action and canceled it without making a change to the interface or the

world, that action was not counted as an error. Additionally, if a user made an error but

immediately corrected it (e.g. choosing the wrong item from a menu and immediately

changing it to the correct one), it was also not counted as an error.

Chapter 6: Developing the Storytelling Tutorial 131

The elapsed times for the tutorial and quiz were measured beginning when the user

opened the file for a given tutorial and ending when they began to load the next file (e.g.

clicked on the File menu) or closed the Alice program.

6.10 Results
We used unpaired t-tests to compare the performance of participants using the stencils

and paper-based tutorials.

6.10.1 Tutorial Performance
We found that users of the stencils-based tutorial made fewer errors and took 26% less

time than users of the paper- based tutorial. Users of the Stencils-based tutorial skipped

fewer steps (p = 0.012), made fewer erroneous changes to the Alice worlds presented in

the tutorial (p = 0.023) and to the user interface (p = 0.069). In addition to making fewer

mistakes, users of the stencils tutorial were 26% faster in completing the tutorial (p =

0.057): the mean time for completion of the stencils tutorial was 47 minutes, 22 seconds;

the mean time for completion of the paper-based tutorial was 59 minutes, 22 seconds.

Users of the stencils-based tutorial also were less likely to require human assistance to

make progress on the tutorial (p = 0.08). The average number of errors and the

distribution of error counts are shown in Table 1.

Chapter 6: Developing the Storytelling Tutorial 132

Table 6.1: Average number of errors and distribution of users’ error counts for Paper and Stencils-
based tutorials

6.10.2 Quiz Performance
There was no significant difference between the performance of users of the stencils-

based and paper-based tutorials on a post-tutorial quiz. Users of the paper-based tutorial

answered an average of 5.00 out of 6 questions correctly and users of the stencils-based

tutorial answered an average of 4.82 correctly (p = .746).

There was also no significant difference in the amount of time necessary for the users of

the Stencils-based and paper tutorial to complete the post-tutorial quiz. Users of the

Stencils-based tutorial took an average of 20 minutes, 17 seconds to complete the quiz

where users of the paper-based tutorial completed the quiz in an average of 18 minutes,

24 seconds (p = .721). These averages are based on the completion times for users who

 # of Users making n Errors

Average

Errors

per User

0

errors

1-2

errors

3-4

errors

5-6

errors

6-10

errors

>10

errors

skipped

steps 3.82
0 users 3 users 5 users 1 user 2 users 0 users

interface

errors 4.55
5 1 1 2 0 2

world errors 5.09 1 5 4 0 1 0

Pa
pe

r

help requests 0.727 7 3 1 0 0 0

skipped

steps 1.27
5 users 3 users 2 users 1 users 0 users 0 users

interface

errors 1.36
4 5 2 0 0 0

world errors 1 6 4 1 0 0 0

St
en

ci
ls

help requests 0.08 10 1 0 0 0 0

Chapter 6: Developing the Storytelling Tutorial 133

performed all steps in Alice necessary to answer the quiz questions (stencils 8 users,

paper 6 users).

6.10.3 Survey Results
In a survey about the tutorial given after users had completed the tutorial but before they

had started the quiz, I found that users of the Stencils tutorial were more confident that

they completed the steps in the tutorial correctly (Stencils 4.55, paper 3.64 on a 5 point

scale p = 0.029). However, users of the paper tutorial were more confident that they could

build a world in Alice after completing the tutorial than the stencils-based users were

(stencils 3.55, paper 4.18 on a 5 point scale, p = 0.051).

6.11 Discussion
The Stencils technique is a potential alternative for presenting tutorials. Based on our

data, it allows users to attain the same level of learning in a substantially shorter period of

time, with fewer errors, and less reliance on human intervention to make progress.

One of our initial concerns with the Stencils approach was that users might move through

the tutorial quickly and without understanding what they were learning. While the users

of the Stencils tutorial did complete the tutorial more quickly, they appear to have done

so without sacrificing learning. Both the paper-based and Stencils-based tutorial groups

performed similarly in the number of correct answers and the amount of time it took to

complete the quiz.

The increased speed of the users of the Stencils-based tutorial is probably due, at least in

part, to the fact that Stencils presents the tutorial instructions in the context of the

application. While paper-based tutorials require less context-switching than many online-

tutorials presented in a separate window, in a given step the users of the paper-based

tutorial had to find their place in the paper tutorial, read the directions, find the

appropriate components on screen, and determine what the directions wanted them to do.

Users of the Stencils-based tutorial needed only to determine what the directions wanted

them to do.

Chapter 6: Developing the Storytelling Tutorial 134

My original goal in pursuing Stencils was to find a method for presenting tutorials that

will enable users to successfully manage more complex tutorial examples. In terms of

presenting more complex tutorial examples, the largest benefit of Stencils is that when a

user does make a mistake, that mistake is immediately caught and the tutorial returns the

user to a safe state from which he or she can try that particular step again. While Stencils

also helps to reduce the number of user errors, the ability to ensure that users’ mistakes

cannot cripple their progress is critical for making it possible to show more complex

examples within the tutorial.

6.12 Designing Tutorials for Storytelling Alice
Using Stencils, I constructed three tutorials that introduce users to Alice. One of the

crucial aspects of these tutorials is that they both introduce the mechanics and show users

examples of projects they might be interested in creating.

Previous Alice tutorials have focused on simple examples that users can construct from

scratch. Using Stencils, I can present more complex examples that are more

representative of the stories that girls envision creating. In addition to leveraging Stencils,

I have used some pre-created content in both of the programming tutorials to avoid

repetitive tasks or tasks that require skills that are beyond the scope of the tutorial to

teach.

Chapter 6: Developing the Storytelling Tutorial 135

6.13 Tutorial 1:

Figure 6.4: In tutorial 1, users created a routine for an ice skater.

In the first tutorial, users create a routine for an ice skater that includes jumps, spins, and

skating both forwards and backwards. The tutorial is designed to provide users with a

basic overview of the system and introduce them to building simple programs that control

the motions of a single object.

The first tutorial:
• Provides an overview of the Alice interface
• Teaches users how to run programs
• Teaches users how to call methods for an object
• Introduces sequential execution and teaches users how to reorder the commands

in their programs.

Chapter 6: Developing the Storytelling Tutorial 136

6.14 Tutorial 2:

Figure 6.5: In tutorial 2, users created a story about a boy who falls in love with an ogre.

The second tutorial guides users through building a story in which a troublemaking fairy

casts a spell to make a boy fall in love with an ogre. The user adds methods and method

calls to the program to make the boy walk to the ogre, kneel down, and confess his love.

This tutorial is intended to introduce users to more complex programming in Alice. In the

second tutorial, users control multiple objects and multiple methods.

The second tutorial:
• Teaches users how to find and call methods for multiple objects.
• Introduces users to commonly used methods.
• Teaches users how to create and use new methods for characters.
• Teaches users how to change optional parameters to have greater control over the

motion of 3D objects.
• Teaches uses how to have motions happen in parallel.

In earlier versions of Storytelling Alice the 2nd tutorial told a story about a napping bunny

that was woken up by a cell phone ringing. Wanting to protect his naptime, the bunny

hopped over to the phone, squashed it by jumping up and down on it, and then went back

to sleep. One of the goals of the second tutorial is to introduce users to the animations

they are likely to use the most. After adding high-level animations the Storytelling Alice,

it became clear through user testing that the most commonly used animations had shifted

Chapter 6: Developing the Storytelling Tutorial 137

from animations like move and turn to higher-level animations like say and walk

to. The fairy story introduces users to the commonly used high-level animations and is

more similar to the kinds of stories that girls wanted to tell based on their storyboards.

6.15 Tutorial 3

Figure 6.6: In tutorial 3, users learn how to set up scenes.

The final tutorial is designed to introduce users to the mechanics of setting up scenes.

Because this tutorial does not actually create a running program, it does not include a

story or activity in its own right. In the first part, the user learns to arrange objects and

move the camera in a graveyard scene that contains a girl and ghost. In the second half,

users create a new world and add a boy and a lot of big spiders.

The third tutorial teaches users:

• How to switch between the Alice scene view and programming view.
• How to move objects around in the scene using the mouse.

• How to move the camera in the scene.
• How to undo actions.
• How to create new worlds.

• How to navigate through the Alice gallery.
• How to add new objects to the 3D scene.
• How to make copies of objects.

• How to rotate objects.

Chapter 6: Developing the Storytelling Tutorial 138

In my user tests, it was common for girls going through the storytelling tutorials to get

engaged in the story. Girls frequently laughed and made comments about how they

thought characters in the story should behave.

6.16 Conclusion
Although developed for use in Alice, Stencils has broad potential for tutorials in other

software systems. The Stencils technique has several advantages over previous work in

the presentation of procedural instructions. Stencils greatly decreases the number and

types of mistakes that a user can make. The visual representation of the stencil draws the

user's eye to the component or components necessary for the current step. Each stencil

provides a visual indication of what the user can do in that step, without altering the

appearance of the application below. A user study comparing the performance of users

given a Stencils-based tutorial with that of users given a paper-based version of the same

tutorial demonstrated that users of the Stencils tutorial were faster, made fewer errors,

required less help from human teachers, and learned the material covered in the tutorial

as well as the users of the paper tutorial. Stencils will likely be of greatest benefit in

interfaces that are highly spatial and primarily point-and-click with some typing.

Chapter 7: Evaluation Methodology 139

Chapter 7 Evaluation Methodology

7.1 Introduction

In this section, I will describe the system to which I compared Storytelling Alice, define

the metrics I used to compare the experiences of girls in the control and experimental

groups, describe how the summative evaluation sessions were conducted, and provide

demographic information about the 88 girls who participated in the summative evaluation

of Storytelling Alice.

In discussing the evaluation of Storytelling Alice, it seems natural to begin by revisiting

my hypothesis about the potential impact of a storytelling focus on girls’ experience and

interest in learning to program:

Girls who are introduced to programming as a means to a motivating end, such as
storytelling will show more evidence of engagement than girls introduced to
programming as an end in and of itself. I will be able to find quantifiable behavioral
differences between the two groups, such as number of lines of code or time spent
working on programs.

7.2 Choosing a Comparison System

The phrase “…a traditional approach [to introducing programming] that focuses on

teaching programming as an end in itself” raises two questions: 1) What programming

Chapter 7: Evaluation Methodology 140

environment do I use in presenting programming as an end in itself and 2) How will the

teaching occur?

A stereotypical introduction to computer programming often begins with building a

program that prints out the message “Hello world” and may advance to simulating a bank

account balance or generating the nth Fibonacci number. Often, students write programs

in introductory computer science using professional programming languages; today,

many introductory computer science classes are taught using Java. Unlike Java, Alice

provides mechanical supports to ease the process of learning to program. In Alice, users

construct programs by dragging and dropping code elements, a style of program

construction that prevents syntax errors. Further, Alice programs animate all state

changes that occur, enabling users to watch the behavior of their program and more easily

identify mistakes. Comparing girls’ experiences using Storytelling Alice with those of

girls who are introduced to programming using Java makes it impossible to separate the

impact of storytelling support from the impact of Alice’s mechanical supports for

programming. To isolate the impact of storytelling support, I chose to compare

Storytelling Alice to a version of Alice without storytelling support.

Because I used an early, pre-release version of Alice 2.0 as the basis for Storytelling

Alice, one natural strategy is to compare girls’ experiences using Storytelling Alice and

Alice 2.0. However, Storytelling Alice and Alice 2.0 were developed in parallel and some

of the changes made in support of storytelling were also added to Alice 2.0. Rather than

comparing Storytelling Alice against Alice 2.0, I created a version of Alice that does not

include any of the changes I made to support storytelling (Generic Alice).

Storytelling Alice and Generic Alice differ in three ways: the online tutorial, built-in

support for storytelling, and the gallery. I will discuss each of these in turn:

7.2.1 Tutorial
Both Storytelling Alice and Generic Alice have a series of three tutorials that are

presented using the Stencils interaction technique (see Chapter 7 for more details on

Stencils). The tutorials in Storytelling Alice and Generic Alice both cover the same skills

Chapter 7: Evaluation Methodology 141

and concepts in the same order. However, where Storytelling Alice introduces skills and

concepts within the context of story-based projects, Generic Alice uses examples chosen

for simplicity of exposition of the skill or concept.

Figure 7.1: One step in a Stencils tutorial.

In addition to choosing different tutorial examples, the two tutorials motivate the

examples differently. In Storytelling Alice, the tutorial presents itself as a computer

program for making animated movies similar to those of Pixar or Dreamworks. The

motivation for introducing concepts comes from the overarching story that users build

through the tutorial. In contrast, the tutorial in Generic Alice presents itself as a way to

learn how to program a computer. Where the Storytelling Alice tutorial introduces the

commonly used methods by suggesting action in the story and then guiding the user

through building that action, Generic Alice tutorial introduces commonly used methods

both by describing the ways objects can move and by guiding the user through examples

of using move, turn, roll, and resize.

Chapter 7: Evaluation Methodology 142

A more detailed comparison of the Storytelling and Generic Alice tutorials is presented

below.

7.2.1.1 Tutorial 1

Figure 7.2: Tutorial 1 in Storytelling Alice (left) and Generic Alice (right).

Tutorial 1 covers the following material:

• An overview of the Alice interface

• How to run programs

• How to call the methods for a single object by dragging and dropping method

“tiles” into the method editor.

• Basic sequencing and reordering of method calls.

In Storytelling Alice, these concepts are introduced within the context of creating a

routine for an Ice Skater. In Generic Alice, the same concepts are introduced through

moving and turning a fishing boat.

Chapter 7: Evaluation Methodology 143

7.2.1.2 Tutorial 2

Figure 7.3: Tutorial 2 in Storytelling Alice (left) and Generic Alice (right).

Tutorial 2 covers the following material:

• How to find and call methods for multiple objects

• How to use the most common methods

• How to create and use new methods for objects.

• How to change optional parameters in order to control the motions of objects with

greater precision.

• How to make multiple methods execute in parallel

In Storytelling Alice, users learn these skills while building a story in which a fairy casts

a spell on a boy. In Generic Alice, users make a mailbox move, turn, and open its door.

Because Storytelling Alice and Generic Alice provide different sets of methods, the

commonly used animations in Storytelling Alice and Generic Alice differ. In Storytelling

Alice, users most commonly want to characters to walk around their scene and talk to

each other. The Storytelling Alice version of tutorial 2 introduces walk to, say, kneel,

touch, and look at. In Generic Alice, move, turn, and roll are the most commonly used

methods. Each tutorial introduces the most commonly used methods for that system.

Chapter 7: Evaluation Methodology 144

7.2.1.3 Tutorial 3

Figure 7.4: Tutorial 3 in Storytelling Alice (left) and Generic Alice (right).

Tutorial 3 covers the following material:

• How to switch between the Alice scene view and the programming view.

• How to move objects within the scene using the mouse

• How to move the camera within the scene.

• How to undo actions.

• How to create new worlds.

• How to navigate through the Alice gallery.

• How to add new objects to the 3D scene.

• How to make copies of objects.

• How to rotate objects.

Tutorial 3 provides users with an overview of how to set up their own scenes within

Alice. It is broken into two parts: in the first part, users learn to position objects and the

camera; in the second part, users create a new world and then add objects to it. In

Storytelling Alice, users position a girl and ghost in a graveyard scene and then create a

new scene with a timid boy and a scary spider. Although there is no explicit story, both of

the scenes in Storytelling Alice suggest potential conflicts through threatening characters:

a ghost and a spider. In Generic Alice, users position a lighthouse in part one and then

add a beach house and chairs in part two.

Chapter 7: Evaluation Methodology 145

7.2.2 Storytelling Support

Storytelling Alice includes two kinds of built-in support for storytelling: a set of high-

level animations that more closely match the kinds of actions girls needed for their stories

and support for creating multiple scenes. Many girls’ storyboards included multiple

scenes.

Storytelling Alice and Generic Alice provide different basic animations. Table 7.1 shows

a comparison of the available animations for a humanoid character in Storytelling Alice

and Generic Alice.

The animations in Generic Alice were inspired by basic transformations in 3D graphics

(translate, rotate, and scale) and modified based on user testing to enable non-technical

users to use them. In Generic Alice, users must individually rotate each joint (i.e. hip,

knee and ankle) of a character’s legs to make the character walk.

Through studying the kinds of actions that middle school girls want to incorporate into

their stories, I developed an alternative set of higher-level animations that more closely

matches the actions girls envision characters in their stories performing. In Storytelling

Alice, basic character actions like walking, sitting, and touching other objects are

provided.

In Generic Alice, all objects including people, soda cans, and furniture can perform the

methods listed in the “Generic Alice” column of Table 7.1. In Storytelling Alice, there

are different types of objects: humanoid characters, non-humanoid characters, and

scenery objects. Humanoid characters perform the animations listed in the table above.

Non-humanoid characters perform the subset of humanoid animations that do not require

arms and legs. This excludes the following humanoid animations: walk to, walk, walk

offscreen, sit on, lie on, kneel, and fall down. In place of walk animations, non-humanoid

characters can move in a direction (by sliding) or move to an object or another character.

Scenery objects can only perform simple motions like move and turn. A more detailed

Chapter 7: Evaluation Methodology 146

listing and description of the animations in Storytelling Alice can be found in Chapter 5.

A description of the animations in Generic Alice can be found in Chapter 3.

Table 7.1: A list of the animations a person can perform in Storytelling Alice and Generic Alice in the order they
appear in the user interface. A small number of animations including move and turn appear in both systems.

7.2.3 Scene Support
In addition to the high-level animations provided in Storytelling Alice, I found through

user testing that many of the stories that girls wanted to create required multiple scenes.

Storytelling Alice helps users to create and manage multiple scenes (additional details

about multiple scene support can be found in Chapter 5). Generic Alice does not provide

explicit support for creating multiple scenes but users can create the effect of multiple

scenes by combining features available in Generic Alice. However, the process of

creating multiple scenes in Generic Alice is too complex for typical novice users.

7.2.4 Gallery
Both Storytelling Alice and Generic Alice come with a gallery of 3D objects that users

can add to their Alice worlds. The Generic Alice gallery contains a broad selection of

more than 350 objects ranging from animals to buildings to buttons and switches.

Storytelling Alice Generic Alice
Say, think Move
Play sound Turn
Walk to, walk offscreen, walk Roll
Move Resize
Sit on, lie on Play sound
Kneel Move to
Fall down Move toward
Stand up Move away from
Straighten Orient to
Look at, Look Point at
Turn to face, turn away from Set point of view to
Turn Set pose
Touch, Keep Touching Move at speed, turn at speed, roll at speed

Chapter 7: Evaluation Methodology 147

Through user testing, I found that the gallery of objects can be a source of story

inspiration. The gallery of 3D objects in Storytelling Alice includes both characters with

clear roles and animations that require explanation within the story, two techniques that

helped girls to find and develop story ideas. Additional information about the design of

the storytelling gallery can be found in chapter 6.

Figure 7.5 below shows the some of the characters and scenes available in the

Storytelling Alice Gallery. Figure 7.6 shows some of the objects available in the Generic

Alice Gallery.

Figure 7.5: Character (above) and scenes (below) from the gallery in Storytelling Alice.

Chapter 7: Evaluation Methodology 148

Figure 7.6: Objects from the gallery in Generic Alice.

7.2.5 Teaching
Teachers’ presentation of a classroom lesson can have a large impact on students’ interest

in and success at mastering the lesson material. To control for that (as much as possible),

I used the online tutorials to present all Alice and programming related material and gave

one set of verbal directions to all participants (e.g. “find the shortcut to Alice icon on

your desktop and double-click it”), both those using Storytelling Alice and those using

Generic Alice. On a practical level, because Storytelling Alice and Generic Alice are

different, it would be nearly impossible to present a classroom-style lesson to both groups

without calling attention to the differences between the systems and unintentionally

biasing students. Instead, I presented the “teaching” through the tutorials and

accompanying materials. To minimize the risk of embedding a bias in the tutorial and

accompanying materials, I tried to reuse as much of the structure and language as

possible for both of the conditions. Copies of all the materials given to participants are

available in the appendix.

7.2.6 Supplementary Materials
Particularly with middle school students, there are limits on the amount of material one

can put into a tutorial and expect students to master at one time. In both the Storytelling

Alice and Generic Alice tutorials, students typically master the basics of creating simple,

sequential programs. While the tutorials in both systems introduce more advanced skills

like creating methods and having multiple methods execute in parallel, I have seen few

participants who grasp these concepts after completing the tutorial and without further

Chapter 7: Evaluation Methodology 149

practice (outside the context of the tutorial). However, I wanted to provide a way for

participants to learn about looping and writing parameterized methods.

To provide participants with reinforcement for methods and parallel execution and

introduce other programming concepts, I created booklets that explain and show an

example of using methods, methods with parameters, loops, and parallel execution. As

with the tutorials, the Storytelling Alice booklet presents concepts in a storytelling

context and Generic Alice presents concepts within a programming context. The booklets

were provided as an additional resource; participants were not required to read the

booklets. Copies of the booklets for Storytelling Alice and Generic Alice can be found in

the appendix.

7.3 Methods

The summative evaluation of Alice took place as a series of one-time, four hour

workshops. Participants were randomly assigned to either the control group (using

Generic Alice) or the experimental group (using Storytelling Alice). To avoid biasing

participants based on the names Storytelling Alice and Generic Alice, I referred to the

systems by their screen background colors: Storytelling Alice was called Alice Blue

(because the background color was blue) and Generic Alice was called Alice Green.

At the beginning of the session, participants completed a short survey that asked

questions about their academic and computer background as well as their interest in

computer science. When all participants had completed the survey, I explained that they

were going to try out a computer program called Alice and that I was testing two different

versions of Alice. To avoid exposing participants in one condition to the version of Alice

they were not using, I set the computers for Storytelling Alice and Generic Alice up in

different parts of the room so that participants could not see what the screens of

participants in the other condition. I also instructed all participants that they could talk

freely to other participants in their condition, but they could not talk with participants in

the other condition.

Chapter 7: Evaluation Methodology 150

I gave all instructions to the group as a whole, rather than addressing the participants

using Alice Green and Alice Blue separately. I asked each participant to complete the

three tutorials and then build “something to show everyone” at the end of the four hour

session. Each participant was given a booklet showing more advanced programming

concepts within their version of Alice as a reference, but participants were not required to

use the references. I do not have a record of which participants used the references, but in

user testing session it was rare for users to read through them.

At the beginning of the session, I told participants that they were free to ask questions. I

did not initiate contact with any of the participants, but I answered questions that

participants asked as concisely as possible. However, for the most part, participants in

both conditions eventually worked through the problems they encountered.

Participants had two hours and fifteen minutes to complete the tutorial and create a

program using the version of Alice to which they were assigned. After two hours and

fifteen minutes, participants completed a survey and a programming quiz. When I handed

out the survey and quiz, I instructed participants to complete it on their own without

talking to others.

For middle school aged children, four hours is a long time. After all of the surveys and

quizzes were returned, I gave groups ten to fifteen minutes to use the bathroom and get a

drink of water or eat a snack (some groups brought along snacks). Then, I gave

participants thirty minutes to try the version to which they were not assigned (i.e. the

participants who used Storytelling Alice tried Generic Alice and vice versa) and decide

which version of Alice they wanted to take home on CD. Because participants did not

need to complete the tutorial for the second system (the mechanics of both systems are

the same) and were not required to create a finished world, participants only needed

enough time to get a sense of the differences between the systems. Participants were not

given a copy of their Alice program to take home but were told that they could email me

to get a copy of it. While some participants seemed initially disappointed that they could

Chapter 7: Evaluation Methodology 151

not take their programs home, none of the participants in either condition contacted me to

get their programs.

Finally, I asked participants to pick a program that they created in either of the two

versions of Alice to show everyone. Participants opened the relevant version of Alice and

loaded their program. When they were ready, participants walked around the classroom

and watched the programs that other participants had created.

A full schedule of the 4-hour evaluations session is shown in Figure 7.7.

Figure 7.7: Schedule for evaluation workshops.

7.3.1 Data sources:
I collected five types of data: pre- and post-surveys, programming quiz performance, logs

of participants’ actions within Alice, the programs that participants created, and

behaviors such as which participants snuck extra time to work on their Alice programs

and which version of Alice participants chose to take home.

Tutorial
Build something to show

in Storytelling Alice

Take programming quiz and attitude survey

Try Generic Alice

Choose Story or Non-Story Alice to take home

Show a world to everyone

Tutorial
Build something to show

in Generic Alice

Try Storytelling Alice

2 hrs, 15 min

30 min

Experimental Group: Control Group:

Break

Chapter 7: Evaluation Methodology 152

7.3.2 Surveys:
The pre-survey asked questions about participants’ academic background including the

type of school they attend (i.e. public, private, or home-school) and grades and

participants’ computer usage including number of hours of usage in the last week, skill

level, prior programming experience, etc.

The post-survey included an attitude survey focusing on participants’ experience with

Alice, questions about their future interests in using Alice and/or taking computer science

courses, how they would describe their experience using Alice to a friend, etc. Both the

pre- and post-surveys can be found in the appendix.

7.3.3 Programming Quiz:
After completing the post-survey, participants took a short programming quiz. The quiz

asked participants to predict the behavior of short Alice programs. Each question had four

descriptions of the programs’ behavior for participants from which participants selected

an answer. Quiz questions covered sequential programming, events, parallel execution,

loops, method calls, and parameters. A copy of the programming quiz can be found in the

appendix.

7.3.4 Log Files:
I instrumented both Storytelling Alice and Generic Alice to record all of the actions that

users take within the program. These logs include both programming activities such as

adding, deleting, moving, or modifying a line of code, creating a method, adding a loop,

etc and non-programming activities such as adding, deleting, or positioning characters or

objects within the 3D scene. The Alice logs allow me to ask a variety of questions

including:

• How much time participants spend on the programming and non-programming

aspects of Alice.

• Which programming constructs participants use in their programs.

Chapter 7: Evaluation Methodology 153

• Which of participants’ programs (the program created in either Storytelling Alice

or Generic Alice) they choose to share with their peers.

• Whether or not participants sneak extra time to work on their programs before

sharing them.

7.3.5 Alice Programs:
In addition to examining the Alice logs, I also collected the programs that users created.

While the log files are an excellent source of countable data, it is difficult to extract more

qualitative information. Participants running programs are a potential source of more

qualitative information such as what kinds of programs (e.g. stories, artistic animations,

random motion, etc) participants in both condition tended to write as well as information

about what kinds of goals and actions prompt exploration of different programming

concepts.

I also recorded which version of Alice (Storytelling or Generic) participants chose to take

home.

7.4 Participant Demographics:

A total of 88 girls participated in the evaluation of Storytelling Alice; 45 were in the

control group using primarily Generic Alice and 43 were in the experimental group using

primarily Storytelling Alice. Participants in both the control and experimental groups

were given thirty minutes to try the version of Alice to which they were not assigned.

The average age for the participants was 12.6 years (12.8 years in the control group and

12.5 in the experimental group) and nearly all participants were in grades 5-9, with the

majority in the 7th and 8th grades. Overall, 76 participants reported attending public

school and 12 (7 in the control group and 5 in the experimental group) attend private

school. No home-schooled students participated in the evaluation of Storytelling Alice.

Most participants reported getting “mostly A’s” or “A’s and B’s”. This raises a question

about whether or not the test pool incorporated a representative group of students. I was

Chapter 7: Evaluation Methodology 154

unable to find information about average grades for Pittsburgh area middle school

students, although in observing participants working with Alice, it was clear that

participants had a broad range of academic abilities. Determining whether or not different

ethnic groups are represented in the same proportions as the general population can also

provide insight into whether or not the participants were a representative group of

students. Based on the 2000 census, Allegheny County was 84% Caucasian, 12%

African-American, and 3% from other ethnic groups. The participants for the evaluation

of Storytelling Alice were 89% Caucasian, 9% African-American, and 2% from other

ethnic groups (in this case, Asian and Hispanic). While the proportions from each ethnic

group are not an exact match, they are not wildly divergent which supports my sense that

the evaluation participants represented a fairly typical mix (for Western Pennsylvania) of

middle school aged girls.

Chapter 7: Evaluation Methodology 155

Table 7.2: Academic Demographics for Girl Scouts who participated in the summative evaluation.

The 88 participants reported using computers for an average of 9.3 hours per week.

87.5% of participants reported using computers for a mix of entertainment and

schoolwork. Nearly 41% reported that they use computers mostly for entertainment. 10.2

% of participants had previously written a computer program and 36.4% had created a

web page. Most participants (82.9%) described their skill with computers as either

“good” or “very good.” However, 38.6% of participants reported asking for help with

installing new software either “very frequently” or “somewhat frequently” and 56.8%

reported asking for help with troubleshooting either “very frequently” or “somewhat

frequently.”

 Storytelling Alice Generic Alice
All
Participants

Number of
Participants 43 45 88
Ages High: 16 17 17
 Low: 10 11 10
 Mean: 12.5 12.8 12.6
 Standard Deviation: 1.3 1.2 1.3
Grade in School Grade 5: 4 0 4
 Grade 6: 8 6 14
 Grade 7: 13 19 32
 Grade 8: 12 15 27
 Grade 9: 4 3 7
 Other grades: 2 2 4
Grade in School High: 11 12 5
 Low: 5 6 1
 Mean: 7.3 7.5 3.2
 Standard Deviation: 1.3 1.1 1.0
School Type Public: 38 38 76
 Private: 5 7 12
 Home-school: 0 0 0
Academic
Performance Mostly A's: 22 16 70
 A's and B's 13 20 65
 Mostly B's: 3 5 10
 B's and C's: 4 4 8
 Mostly C's: 1 0 1
 C's and D's: 0 0 0
 Mostly D's and below: 0 0 0
 No Answer: 0 0 0

Chapter 7: Evaluation Methodology 156

Table 7.3: Computer-related Demographics for Girl Scouts who participated in the summative evaluation.

Storytelling
Alice

Generic
Alice

Total
Number %

Number of
Participants 43 45 88

High: 70 45 70
Low: 0 0 0
Mean: 9.4 9.3 9.3

During the last week,
how often did you use
a computer for any
purpose? Standard Deviation: 12.9 9.9 11.4

Only schoolwork: 2 2 4 4.5%
Mostly schoolwork, some
fun: 10 9 19 21.6%
Equally for schoolwork and
fun: 11 11 22 25.0%
Mostly fun, some
schoolwork 16 20 36 40.9%
Only fun: 4 2 6 6.8%

What do you use
computers for?

No answer 0 1 1 1.1%
No: 30 30 60 68.2%
Yes: 4 5 9 10.2%
Don't know: 9 10 19 21.6%

Have you ever written
a computer program?

No answer: 0 0 0 0.0%
No: 32 20 52 59.1%
Yes: 9 23 32 36.4%
Don't know: 2 2 4 4.5%

Have you ever made
your own web page?

No answer: 0 0 0 0.0%
Poor: 1 0 1 1.1%
Fair: 5 2 7 8.0%
Good: 14 17 31 35.2%
Very good: 20 22 42 47.7%
Excellent: 3 4 7 8.0%

What is your skill
level at using
computers?

No answer: 0 0 0 0.0%
Very frequently: 12 11 23 26.1%
Somewhat frequently: 14 13 27 30.7%
Neither frequently nor
infrequently: 7 7 14 15.9%
Somewhat infrequently: 7 9 16 18.2%
Very infrequently: 3 5 8 9.1%

When something
goes wrong with your
computer, how
frequently do you ask
friends or family
members for help
fixing it?

No answer: 0 0 0 0.0%
Very frequently: 10 9 19 21.6%
Somewhat frequently: 6 9 15 17.0%
Neither frequently nor
infrequently: 7 5 12 13.6%
Somewhat infrequently: 7 4 11 12.5%
Very infrequently: 12 18 30 34.1%

When you want to
install a new
computer program,
how frequently do
you ask friends or
family members to
help you install it?

No answer: 1 0 1 1.1%

Chapter 8: Summative Evaluation Results 157

Chapter 8 Summative Evaluation Results

8.1 Introduction
This chapter describes and compares the learning and motivation of Storytelling Alice

and Generic Alice. Participants in both conditions showed statistically similar mastery of

programming concepts. However, participants who used Storytelling Alice showed more

evidence of motivation than those who used Generic Alice. Participants who used the

Storytelling version of Alice spent a greater percentage of their time programming,

performed as well as users of Generic Alice on a post-Alice programming quiz, had a

stronger interest in taking a future Alice class, and were more likely to sneak extra time

to work on their Alice programs than users of Generic Alice.

8.2 Participants’ Behavior within Alice

In both versions of Alice, the process of creating a program involves three activities: 1)

selecting 3D objects and positioning them within the 3D scene (which I will call scene

layout) 2) constructing and editing programs and 3) running programs. The process of

creating a program in both Storytelling and Generic Alice is iterative and users typically

return to each of the three activities multiple times. One important metric in determining

the success of Storytelling Alice is how much time girls spend on programming related

activities (either editing or running their programs). Increasing girls’ interest in using

Chapter 8: Summative Evaluation Results 158

Storytelling Alice is of limited benefit if girls elect to focus on scene layout rather than

programming activities.

Both versions of Alice log all of the actions that users take in constructing their programs.

Based on the log files, I can track the amount of time users spent on scene layout,

program construction, and running their program. Participants were given 2 hours and 15

minutes to complete the tutorial and create a program in their assigned version of Alice.

Participants worked with Alice for the entire 2 hours and 15 minutes. However, because

participants completed the tutorial at different rates, not all participants had the same

amount of time to work on their programs. Users typically completed the tutorial in 30-45

minutes. Because of the varying amount of time users had for self-directed Alice use, I

compare the percentage of their total Alice time that users devoted to each activity.

I analyzed the differences in the percentage of time participants using Storytelling Alice

and Generic Alice with an unpaired t-test. Overall, participants who used Storytelling

Alice spent 54% (p<0.001) more time editing their programs and 42% (p < 0.001) less

time laying out their scenes. Users of Storytelling Alice also spend slightly more time

running their programs. In languages like Java or C++, most beginning programs run

almost instantly so users do not devote a significant amount of their time running their

programs. In Alice, programs are animated so users watch their programs execute.

Consequently, running programs in Alice includes the time that users spend identifying

problems or debugging.

Chapter 8: Summative Evaluation Results 159

Average % Time Spent on Alice Activities

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Scene Layout Editing Program Running Program

Alice Activity

A
ve

ra
ge

 %
 T

im
e

S
pe

nt
 o

n
A

ct
iv

ity

Generic Alice
Storytelling Alice

Figure 8.1: Average Percentage of Time users of Generic Alice and Storytelling Alice spent on scene layout,
program editing, and running their programs.

Table 8.1: Percentage of time participants using Generic Alice and Storytelling Alice spent on scene layout,

program editing, and running their programs.

Alice
Version

Number
of

Subjects

Mean
% of
Time High Low

Standard
Deviation p-value

Scene Layout
Generic
Alice 45 40.80% 96.80% 12% 21.9

Storytelling
Alice 43 22.30% 47.20% 2.70% 10.6

p < 0.001

Editing
Program

Generic
Alice 45 34% 61.30% 3.20% 14.1

Storytelling
Alice 43 48.30% 67.10% 29.20% 8.4

p < 0.001

Running
Program

Generic
Alice 45 25.10% 44.90% 0% 10.3

A
lic

e
A

ct
iv

ity

Storytelling
Alice 43 29.30% 47.50% 8.30% 8.58

Chapter 8: Summative Evaluation Results 160

Scene Layout vs. Program Editing

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% Time - Scene Layout

%
 T

im
e

- E
di

tin
g

Pr
og

ra
m

Generic Alice

Storytelling Alice

Figure 8.2: Percentage of time spent on scene layout vs. program editing for participants who used Generic Alice

and Storytelling Alice.

There was a broad spectrum of ways that participants who used Generic Alice partitioned

their time. At one end of the spectrum, users spent 10-20% of their time on scene layout

and 50-60% on editing their program. At the opposite end of the spectrum, users spent

70-100% of their time on scene layout and 0-20% of time editing their program.

In contrast to the usage patterns for Generic Alice, participants using Storytelling Alice

were more tightly grouped together. At one end of the spectrum, users spent 0-10% on

scene layout and 50-70% of their time editing their program. At the opposite end of the

spectrum, users spent 40-50% of their time on scene layout and 30-50% of their time on

programming. While there were several Generic Alice users who spent nearly all of their

time on scene layout, there is no similar group among Storytelling Alice users.

Based on my observations of participants and on participants’ Alice logs, there are two

factors that may account for the differences in the usage patterns of Storytelling Alice and

Generic Alice users: 1) users of Storytelling Alice were somewhat more likely to find a

goal they were committed to pursuing than users of Generic Alice and 2) users of Generic

Chapter 8: Summative Evaluation Results 161

Alice were somewhat more likely to get frustrated while programming and return to

scene layout and users of Storytelling Alice.

In observing participants using Generic Alice, I found that the process of selecting and

arranging objects in the 3D world is a rewarding activity for many users. As a computer

scientist it is easy to view the process of selecting and laying out objects as a necessary

but fairly uninteresting part of using Alice. To middle school girls, selecting and

arranging objects may provide a chance for self-expression, similar in some respects to

the process of choosing clothing for an avatar or furniture to go in a virtual house.

8.2.1 Programming Constructs
In addition to examining how participants chose to spend their time, I examined

participants’ usage of programming constructs such as loops, methods, and parallel

execution.

% Participants using Programming Constructs

0

10

20

30

40

50

60

70

80

90

Methods Do Togethers Loops

Programming Construct

%
 P

ar
tic

ip
an

ts
 U

si
ng

 P
ro

gr
am

m
in

g
C

on
st

ru
ct

Generic Alice

Storytelling Alice

Figure 8.3: Percentage of Participants who used methods, do togethers, and loops in their programs.

Chapter 8: Summative Evaluation Results 162

% Participants who

created methods
% Participants who
used Do Togethers

% Participants who
used Loops

Generic Alice 30 74 33
Storytelling
Alice 53 79 12
p-value p < 0.05 p < 0.05

Figure 8.4: Percentage of participants who used methods, do togethers, and loops in their programs.

Users of both Storytelling Alice and Generic Alice experimented with programming

constructs beyond simple sequences. A majority of the participants in both groups used

Do Togethers to have multiple animations occur simultaneously. 53% of the users of

Storytelling Alice created a new method and used it in their program as opposed to 30%

of the users of Generic Alice. 33% of the users of Generic Alice used loops as compared

to 12% of the users of Storytelling Alice. Given the relatively short period of time that

users spent programming, it is unreasonable to expect them to master all the

programming constructs typically taught in an introductory computer science course.

The users of Generic Alice spent approximately 62 minutes editing and testing their

programs. The users of Storytelling Alice spent approximately 81 minutes editing and

testing their programs.

8.3 Participants’ Programming Sessions
To give a flavor for what participants in each condition did, I will contrast three sessions

of individual users from each condition: 1) a case in which the user spent a lot of time on

scene layout and less time on programming relative to other subjects in their condition

(low programming), 2) an average case (average programming), and 3) a case in which

the user spent a lot of time on programming and less on scene layout relative to other

subjects in their condition (high programming). I will refer to the specific users by their

subject identification strings which consist of the name of the computer they used during

the evaluation (e.g. fish, castle, instruments, etc) and the date of the workshop. To enable

easy comparison between the groups of low, average, and high programmers, I will

describe both low programming examples, then both average programming examples,

and finally both high programming examples.

Chapter 8: Summative Evaluation Results 163

8.3.1 Low Programming: Subject Fish_02_11_2006 Using
Generic Alice

Figure 8.5: A screenshot of the world created by Fish_02_11_2006 and the program that animates it.

Fish_02_11_2006 spent a total of 79.4% of her time on scene layout and 12.5% editing

her program. The world she created has 61 objects, not all of which are visible to the

camera. Objects in the 3D scene include a series of street signs, several mailboxes, sports

equipment, a jet, a helicopter, some beach houses, and several human characters. Of the

61 objects in the scene, only 9 have any motion associated with them. There is no

apparent goal behind the animation in this world; several characters slide to new

positions in parallel and two sounds play.

Fish_02_11_2006 begins her session by making several small scenes without associated

programs in Alice: a beach scene, a world with objects from the amusement park, and

another beach scene with a variety of objects including several beach houses, a

lighthouse, a pier, and a fish. She spent approximately 20 minutes creating the scene and

moving both the objects and the camera. She did not attempt to add any animations. After

20 minutes, she started a new world and added a huge variety of seemingly unrelated

objects from houses to tennis rackets and a blimp. Her first programming action is to

create a new method which she calls “blimp move in the air”. When users create a new

method, Alice opens a new editor in which they can place the instructions for that

method. Rather than defining what it means for the blimp to move, Fish_02_11_2006

dragged in the tile for “blimp move in the air” and created a recursive method call. When

she played the world, nothing happened and she returned to scene layout. After adding

Chapter 8: Summative Evaluation Results 164

another set of objects, she creates another new method on the barn which she calls “open

doors” and calls it recursively. When that did not work, she asked for help and I

explained that she needed to define “open doors” with other commands because she was

teaching Alice what it meant to for the barn to open its doors. She then deleted the

recursive call and added move and move towards animations on for different 3D

objects. She played her world again and nothing happened. So she added a do together

and moved the lines of code into it and played it again. Again, nothing happened. So, she

returned to scene layout and set up a beach scene in a new place in her 3D scene. Having

been unsuccessful in getting her program to animate, she requested help again and I

showed her how to call her “barn door open” method from the main method that Alice

was running when the world starts. As a final step, she added a Do Together and

moved her other animations into it. At the end of the session, Fish_02_11_2006 had 9

commands executing in parallel.

Fish_02_11_2006 demonstrates several of the patterns that emerge among the low

programmers using Generic Alice. The low-programming participants using Generic

Alice often spend a long time on scene layout before they even attempt to add any

programming statements. One participant did not actually begin to program until the last

five minutes of the 2 hour, 15 minute period. Based on my observations, these

participants are trying to find an idea for something that they want to animate by adding

and arranging 3D objects in their world. Often users add a large collection of objects and

sometimes start several new worlds while searching for an idea. The shift from scene

layout to programming frequently happens in one of two ways: 1) users find an idea to

pursue or 2) users tire of scene layout and switch to programming because it is a new

activity. It is reasonable to question why users devote large amounts of time to scene

layout. Based on my observations, there are three main reasons: 1) through adding

objects to their Alice worlds, users develop a confidence in their scene layout skills and

are hesitant to move into an activity (programming) in which they feel less confident and

2) users forget how to animate objects in Alice and do not want to ask for help 3) users

do not find the process of programming in Generic Alice appealing.

Chapter 8: Summative Evaluation Results 165

When they begin programming, not all participants are immediately successful at creating

a program that causes something on screen to animate. Often programs that do not

animate are caused by the user creating a new method that is not called in the program or

creating a recursive method. Participants who are not immediately successful in creating

a program that produces animation often return quickly to scene layout. These

participants often spend a long time adding and moving objects (some create entirely new

scenes) before attempting to program again. Participants who are successful in creating a

program that animates sometimes begin to experiment with their programs by adding new

methods and changing values. Others watch the program animate once or twice and then

return to scene layout because it is more immediately satisfying. Scene layout is both

easy and a potential source for ideas, so when users either do not have ideas or get

frustrated by encountering programming problems, they often spend time on scene

layout.

8.3.2 Low Programming: Subject Instruments_12_17_2005
Using Storytelling Alice

Figure 8.6: A screenshot of one of the worlds created by Instruments_12_17_2005 and the program that
animates it.

Chapter 8: Summative Evaluation Results 166

Figure 8.7: A screenshot of another of the worlds created by Instruments_12_17_2005 and a segment of the
program that animates it.

Instruments_12_17_2005 spent a total of 42% of her time on scene layout and 38% on

editing her programs. Rather than creating a single program, she created several short

scenarios including: 1) a short scene in which a girl gets grounded (see Figure 8.6 above)

2) a short scene in which a fairy casts a spell on two kids who fall in love 3) an aquarium

scene in which fish and an octopus perform a variety of animations without a clear story

and 4) a scene involving a robot and clown talking (see Figure 8.7 above). None of these

programs are fully realized stories. We never learn what the girl in the first program has

done to deserve being grounded or see how she reacts to it, for example. Unlike the

participants using Generic Alice, participants like Instruments_12_17_2005 (who did

comparatively less programming than other participants using Storytelling Alice) still

spent a significant amount of their time programming.

Instruments_12_17_2005 created a series of short programs, beginning with programs

that were largely sequential. In one, she added girl and boy characters and, inspired by

the girls’ slap animation, developed a scene in which the two characters are fighting

and trading insults. There is no justification given for the fight. The program she

developed is purely sequential but is developed over several iterations in which she added

a few lines and then played her program. The fairy and aquarium stories are also simple

sequences of instructions.

Chapter 8: Summative Evaluation Results 167

In her next program, she began to explore slightly more advanced concepts. She set up a

bedroom scene and added a woman and a girl (mother and daughter). In the scene, the

mother is scolding the daughter, spanking her, and telling her that she is grounded. The

girl character (a cheerleader) did not come with any methods that would be appropriate

reactions to being grounded or spanked, so Instruments_12_17_2005 developed a cry

animation over several iterations. She began by having the girl touch her face and then

added a Do Together in which the girl touches her face with both hands and looks at the

ground in shame. The method is called twice in her main program: once at the beginning

and again after the mother has announced that she is grounded.

The following two Alice worlds are less interesting. In the first, she set up a graveyard

scene but did not do any programming. In the second, she added a few characters and

adds some of the methods that come with them, plays it twice and then moves on to

create another world without saving.

Finally, she creates a program in which a clown is trying to get a robot character to leave

by verbally attacking her. Initially, her program consists of a list of method calls.

However, she spends some of the time editing the robot character’s flirt method to make

it play slower.

Instruments_12_17_2005, like the other low-programmers using Storytelling Alice,

developed several different fairly short scenarios that used largely sequential code.

Towards the end of the session, perhaps as she began to feel some mastery of sequential

code, she began to branch out into slightly more advanced programming by creating her

own method and editing a method that came with another character. Like the low-

programming participants using Generic Alice, low-programmers using Storytelling

Alice still seemed to search through the gallery for ideas. While not all of their ideas

materialized into stories or even parts of stories, most added at least some animations to

each of the scenes that they created. Based on my observations, the character-specific

animations in Storytelling Alice entice users to program because they want to see

particular animations such as one character slapping another.

Chapter 8: Summative Evaluation Results 168

One of the problems that occurred among the low programmers using Generic Alice was

that it was common for users to begin programming by making a new method, and not

understanding that they had to define the behavior for the that method, calling it

recursively. This problem seems to occur much less frequently among the low-

programmers using Storytelling Alice. I believe that this can also be attributed to the

attractiveness of the animations in Storytelling Alice. Users of Storytelling Alice were

more likely to experiment with animations their characters already knew rather than

immediately creating new ones. Participants’ early success with programming (often

through calling character-specific method) makes them more likely to continue

programming rather than immediately returning to scene layout.

8.3.3 Average Programming: Subject Fish_11_20_2005 Using
Generic Alice

Figure 8.8: A screenshot of one of the worlds created by Fish_11_20_2005 and a segment of the program that
animates it.

Fish_11_20_2005 began her session by creating and deleting several scenes as she

searched for an idea. These scenes included a beach scene with beach houses and town

houses, an airport scene with a runway, control tower and burning building, and an

amusement park with a carousel, bumper cars, a haunted house, and swings. In the

amusement park, Fish_11_20_2005 adds her first characters: an Alice Liddel (the

character in Alice in Wonderland) and a Cinderella character. But, she does not move

into programming. As with the previous scenes, she simply deletes all of the objects in

Chapter 8: Summative Evaluation Results 169

the world. In this last scene, she also deletes the Alice camera and the scene’s light,

which had the effect of causing the view of the 3D world to go black.

Fish_11_20_2005 began a new world and added a seemingly unrelated group of objects

including a penguin, tortoise, road signs, skateboard, skateboarding ramp, and a candy

cane. She then made several copies of the candy cane and positioned them throughout the

scene. At this point she decided to turn her project into an animated Christmas e-card and

added a 3D text object to title her card “Santa’s Helpers” and made the text appear red

(see Figure 8.8). Having declared a purpose for her project, she began editing her

program. Much of her programming has a strong exploratory flavor. She began by adding

animations that moved the 3D text towards the camera and rotated it. Then, she returned

to scene layout and experimented with changing the sky color and adding fog. When she

returned to programming, she made several of the candy canes rotate. She dragged

several candy cane turns into a do together and added a loop and dragged a line of code

(candy cane turn) into the loop. She changed the loop count (from once to infinity) and

played the world several times. She then added additional lines of code into the loop: a

move towards command and some of the character-specific methods that come with the

penguin. Eventually, she removed all of the method calls from inside the loop. She ended

her world by adding code that makes the tortoise and the penguin fly into the air and out

of view. As a final touch, she added 3D text that says “the end”.

Many of the average-programmers tend towards an exploratory programming style.

There are two common programming patterns: 1) adding several of one of method (e.g.

move towards or turn) and using different parameters in each method call or 2) setting up

a simple program and repeatedly making a simple change and playing the world.

Sometimes this exploration results in a motion that sparks an idea and helps to transition

the student from an exploratory programming pattern into an intentional programming

pattern in which it is clear that they have an idea that they are trying to realize. One of the

average programmers in the Generic Alice case eventually developed a “dance” routine

involving tortoises and hares that move and turn in a synchronized way. But, most of the

programs created by average-programmers using Generic Alice never moved out of

Chapter 8: Summative Evaluation Results 170

exploratory programming. The vast majority of the animations that subjects used were on

the entire object, not its body parts. Users of Storytelling Alice also used primarily

animations that applied to an entire object rather than its body parts, but using the

available animations within Storytelling Alice, users are more readily able to create the

kinds of animations they envision.

As in the low-programming condition, more than half of the average-programmers

created (but did not define) new methods for higher-level animations like having a

penguin flap its wings, a character walk, or the doors on a barn open. Despite their

interest in having higher-level animations for characters, the vast majority of users

animated only entire objects, rather than body parts. One average programmer

experimented with rotating the arms of an Eskimo character.

8.3.4 Average Programming: Subject Castle_11_5_2005 Using
Storytelling Alice

Figure 8.9: A screenshot of one of the worlds created by Castle_11_5_2005 and a segment of the program that
animates it.

Unlike the low-programmers using Storytelling Alice, most of the average programmers

using Storytelling Alice seemed to focus their attention on creating one, larger program.

Castle_11_5_2005 spent 20% of her time on scene layout and 48% on editing her

program. The resulting program tells a story about a father trying to take his kids on

vacation and getting lost. In the end, the son calls his mother on a cell phone to rescue

them. The program contains three scenes separated into their own methods and a main

method that controls the camera and lighting, and calls the methods for each individual

scene. In addition, Castle_11_5_2005 created a “put hands on hips” method for Joey to

Chapter 8: Summative Evaluation Results 171

accentuate a point in the story where he gets frustrated with his father. Castle_11_5_2005

also used Do Togethers to sequence the motion of multiple characters.

Unlike previous cases, Castle_11_5_2005 appears to have arrived at a story idea almost

immediately. She begins by adding Joey, Jenni and the father character and then begins

programming. She begins by having the father say “Let’s get the vacation started kids.”

The two children walk up to their father and she experiments with different durations.

Using a Do Together, she ends the first scene by having the two children exit the scene

together.

In the second scene, Castle_11_5_2005 adds her three characters, a pyramid, and a

sphinx. When she begins to animate the second scene, she experiences some problems: 1)

she mistakenly uses the characters from scene 1 in her code for scene 2 and 2) she does

not change the method called to play scene 2 when the world starts. Rather than giving up

and returning to scene layout, Castle_11_5_2005 asked for help to resolve these

problems. Next, she turned to creating a method for Joey called “put hands on hips” She

adds the two touch animations and experiments with the parameters to make it look right.

It takes her sixteen iterations of changing the parameters of touch and playing the world

to arrive at an animation that she is happy with. Later in the scene, she constructs a “look

scared” method for Joey. She tries several different touch animations, but does not settle

on one that she likes and eventually deletes the implementation of “look scared.”

The third and final scene combines pre-defined character methods with dialog added by

the user. She constructs it from start to finish with very little modification. Finally, she

asks for help to put her scenes together. With help, she creates a method entitled “whole

thing” and calls each scene. Between scenes, she adds code to move the camera and

control the lights.

Having completed her original story, Castle_11_5_2005 begins a new world. In contrast

to her previous world in which she seemed to start with a story, her second world seems

to develop into a story over time. She begins by adding a girl, a man, and a horse. She

Chapter 8: Summative Evaluation Results 172

calls several methods of the girl’s methods: kissing the horse, sitting on it, kneeling, and

then straightening. When she plays her world, the girl kneels and then straightens up. The

“straighten up” animation causes characters to unbend their limbs but does not move the

character. Consequently, calling straighten (as opposed to stand up) after the kneel

animation caused the girl to be standing in the ground. The girl standing in the ground

provides the inspiration for a new story: the girl says “ouch” and Castle_11_5_2005

begins a new scene with the girl in the hospital being treated for her injury. At this point,

there were only a few minutes left in the session and she returned to put a few final

touches on her original world.

In both versions of Alice, users seem to expect that the method currently selected in the

method editor will be the one that is executed. I believe that supporting a model of

executing the selected method would allow users to explore more freely within Alice.

Overall, the average programmers using Storytelling Alice typically worked on one or

two worlds over the course of the session. The average programmers using Storytelling

Alice were more likely to begin with a basic concept for a story. Consequently, they

spent less time adding, deleting, and positioning objects before moving into

programming. However, there are still examples of “found” stories (e.g.

Castle_11_5_2005’s story in which Kristin gets injured) which motivate further

programming. The average programmers using Storytelling Alice made frequent use of

Do Togethers and most also created, defined, and used their own methods. The new

methods were a mixture of scene implementations and actions for characters (e.g. put

hands on hips).

Chapter 8: Summative Evaluation Results 173

8.3.5 High Programming: Subject Flamingo_12_17_2005 Using
Generic Alice

Figure 8.10: A screenshot of the world created by Flamingo_12_17_2005 and a segment of the program that
animates it.

Flamingo_12_17_2005 spent a total of 16% of her time on scene layout and 61% editing

her program. The world that she created shows a duck prince and a coach character. The

duck prince points his scepter at the coach who explodes into pieces. Finally, the duck

moves his scepter in victory. Figure 8.10 above shows Flamingo_12_17_2005’s Alice

program after the coach has exploded. The program includes several do Togethers and

two loops, although one only executes once. Flamingo_12_17_2005 did not create any

new methods.

Like many of the average-programmers using Generic Alice, Flamingo_12_17_2005

begins with a seemingly unrelated collection of characters including a tortoise, a chicken,

a fence, a couch, and a ninja. The beginning of her session is typical of the average-

programmers: she adds a few lines of code, plays them, and often deletes them

immediately. In this initial exploration stage, Flamingo_12_17_2005 explores the move

to, move towards, and turn animations using the evil ninja and the tortoise. Next, she

begins experimenting with animating characters’ body parts, initially with the move

animation but later with turn. In contrast to many of the average-programmers using

Generic Alice, Flamingo_12_17_2005 transitions from experimenting with animations to

attempting to use them for a specific purpose: in this case to animate the head of a

snowman falling off. There is a long segment of moving the snow man’s head backwards

Chapter 8: Summative Evaluation Results 174

and then down by different amounts. Having gotten the head to move from atop the

snowman’s midsection to the ground, she moves all of the lines inside a Do Together.

Having completed her initial goal, Flamingo_12_17_2005 creates a series of new worlds

to which she does not add more than a couple of animations. Her worlds include a taj

mahal scene, an island scene with several characters, and a scene involving the duck

prince and a coach character. In this final one, she creates a new method to lower the

coach’s arm and calls it from her main method (scene 1 method). Initially she uses

arm.move down 1 but, after playing it, experiments with the roll animation instead.

She begins again and re-adds the duck prince and the coach. She begins by trying to

animate the coach’s arms so that they hang by his side. After a few attempts, she gets a

reasonable result and moves the relevant roll animations into a Do Together. She then

turns her attention to animating the duck moving his scepter. The scepter does not

automatically move with the duck’s wing and she experiments with a combination of

move and turn methods to create the appearance of the two moving together. Then she

uses a series of move animations (with different directions and distances) on the coach’s

body parts to make the coach explode. She changes the durations of the explosion moves

to .25 seconds and puts them inside a Do Together. Finally, she adds a sort of victory

dance for the duck in which he moves his left wing and scepter together and then turns

away from the camera and wiggles his tail. Flamingo_12_17_2005 uses a loop to have

the duck wiggle his tail multiple times.

Where generally, the average programmers using Generic Alice did not typically progress

from exploratory programming to intentional programming, the high-programmers all

built at least one thing that exhibited some actual control and intentionality. Two of the

four in the top cluster used exploding animations. Most still created and experimented

with several scenes before they began to work towards a particular goal.

Chapter 8: Summative Evaluation Results 175

8.3.6 High Programming: Subject Horse_12_10_2005 Using
Storytelling Alice

Figure 8.11: A screenshot of the world created by Horse_12_10_2005 and a segment of the program that
animates it.

Horse_12_10_2005 created a story about two fairies who have lost their dog (a poodle)

and request help in rescuing it from a girl, Jenni. They find the dog being held by

Douglas the tree. Douglas says that if they correctly answer a riddle, he will release the

fairies’ poodle. Jenni eventually determines the correct answer and saves the poodle.

Horse_12_10_2005’s world includes two scenes (implemented in their own methods) as

well as a main “my story” method which calls the two scene methods. In addition, she

created a “put hands on hip” method for Jenni in which Jenni places both of her hands on

her hips at the same time. The animation that she produces does not clearly show Jenni

putting her hands on her hips, but Horse_12_10_2005 does not spend a lot of time trying

to improve the appearance of the animation.

Horse_12_10_2005 begins by creating and implementing a “gasp” method for Jenni but

deletes it without playing her program. From this point, she creates the scene from start to

finish with very little revision. Horse_12_10_2005 has Jenny walk over to the faeries, the

faeries kneel down, and there is a short dialog between them establishing that the faeries’

Chapter 8: Summative Evaluation Results 176

dog is missing. Horse_12_10_2005 ‘s basic pattern is to add a few lines to the end of the

program, play it, and then add a few more lines.

In her second scene, Horse_12_10_2005 adds a talking tree character, a poodle, the

faeries, and Jenni. She changes the method that is called when the world starts to “scene 2

method”. Like the first scene, she builds the second scene with very few revisions.

However, she does change the durations of many of her say animations to make the

dialog easier to read.

Like Horse_12_10_2005, all of the high-programmers using Storytelling Alice focused

the majority of their time on a single story that they began to develop very early in the

session. Many of the programs that they produced are dialog heavy and, while there are

several with multiple scenes, they seem to do less exploration of programming concepts

and constructs than the average programmers using Storytelling Alice. The stories

themselves often have a drawn out feel to them. Many create the impression that the girls

have continued to add to them past the point at which they had ideas they wanted to

pursue.

Although purely qualitative, it seems one of the key elements associated with doing more

programming is progressing from the “tinkering” stage to a stage in which users have a

goal that they are trying to move towards. While some users will “tinker”, others are

hesitant to begin programming until they have a story idea. Non-tinkerers without story

ideas tend to add objects to their worlds until they have an idea and if that idea proves

challenging they often return to scene layout.

8.4 Attitude Measures
After working with their assigned version of Alice for 2 hours and 15 minutes,

participants completed a post-Alice survey which included an attitude survey and several

questions about their future interest in Alice and computer science. A copy of the post-

Alice survey can be founding the appendix.

Chapter 8: Summative Evaluation Results 177

8.4.1 Attitude Survey
Based on exploratory factor analysis, I created two scales from the attitude survey: 1) the

entertaining scale measures how much users enjoyed working with their version of Alice

and 2) the ease scale measures how easy users felt it was to use their version of Alice.

Scores for all of the attitude questions ranged from 1 to 5 with 1 corresponding to

“Strongly Disagree” and 5 corresponding to “Strongly Agree.”

8.4.1.1 Entertaining
The entertaining scale included the following statements on the attitude survey:

1. Using the computer during the workshop today was fun.

2. Using the computer during the workshop today was interesting.

3. Using the computer during the workshop today was boring (scores for this

question were reversed).

4. The computer animation program I used today is cool.

5. The computer animation program I used today is entertaining.

Cronbach’s α for the entertaining scale is 0.86.

Chapter 8: Summative Evaluation Results 178

Mean Attitude Scores - Entertaining

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Using the
computer
was fun

Using the
computer

was
interesting

Using the
computer

was boring
(reversed)

The
computer
animation
program is

cool

The
computer
animation
program is
entertaining

Question

M
ea

n
A

tti
tu

de
 S

co
re

Generic Alice

St oryt elling Alice

Figure 8.12: Mean scores for attitude questions in the entertaining scale.

Users of Generic Alice and Storytelling Alice did not differ significantly in how much

they enjoyed using their version of Alice (p = 0.25). Participants in both groups enjoyed

working with Alice. However, the scores for all but one of the questions in the

entertaining scale were slightly higher for users of Storytelling Alice than Generic Alice.

Participants with higher grades enjoyed working with either version of Alice than

participants with lower grades (p = 0.09). Participants’ enjoyment of Alice did not differ

significantly based on their age (p = .26), computer confidence (p=.20), and computer

usage (p=.80).

8.4.1.2 Ease
The ease scale included the following questions:

1. Using the computer during the workshop today was frustrating (scores for this

question were reversed).

Chapter 8: Summative Evaluation Results 179

2. The computer animation program I used today is confusing (scores for this

question were reversed).

3. The computer animation program I used today is annoying (scores for this

question were reversed).

4. The computer animation program I used today is easy to learn.

Cronbach’s α for the ease scale is 0.63.

Mean Attitude Scores - Ease

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Using the
computer was

frustrating
(reversed)

The computer
animation
program is
confusing
(reversed)

The computer
animation
program is
annoying
(reversed)

The computer
animation

program is easy
to learn

Question

M
ea

n
At

tit
ud

e
S

co
re

Generic Alice

St oryt elling Alice

Figure 8.13: Mean scores for attitude questions in the ease scale.

Users of Generic Alice and Storytelling Alice did not differ significantly in how easy

they felt it was to use their version of Alice (p = .90). This is not surprising since the

process of creating a program in Generic Alice and Storytelling Alice is almost identical.

Participants with higher grades found Alice easier to use than participants with lower

grades, regardless of version (p = .01). Girls with higher computer confidence also found

Alice easier to use, regardless of version (p = .02). Younger students also tended to find

Alice easier to use than older students, regardless of version (p = .08). It is surprising that

younger students find Alice easier to use than older students. One potential explanation

Chapter 8: Summative Evaluation Results 180

for this finding is that girls’ academic confidence tends to drop during middle school

(AAUW 1996). Younger girls may tend to have higher overall confidence in themselves

than older girls and therefore find the process of learning Alice easier. Girls’ perception

of Alice’s ease did not differ significantly based on their computer usage (p = .21).

However, despite the fact that participants who used Storytelling Alice and Generic Alice

had statistically similar attitudes, participants who used Storytelling Alice were more

likely to be interested in taking a future Alice class. One potential explanation for users of

Generic Alice being less interested in future Alice classes is that the primary draw in

using Generic Alice is the self-expression that comes from creating virtual worlds by

selecting and arranging objects. After working with Alice for a relatively short period of

time, users typically master the process of finding and arranging objects and may feel that

they can continue without further instruction. In contrast, most of the potential for self-

expression in Storytelling Alice comes through programming, which is considerably

more complex. Consequently, users of Storytelling Alice may feel that additional

instruction would help them to better express themselves through Alice programs.

Storytelling seems to have very little impact on participants’ confidence in their ability to

learn either more advanced concepts in Alice or a general-purpose programming

language like Java or C++. This is not surprising given that process of programming in

both Storytelling Alice and Generic Alice is the same. The storytelling focus may help to

place computer programming in a motivating context but it does not make programming

easier.

In conducting the Alice workshops, I noticed that girls often did not see a strong

connection between creating stories or animations in Alice and the discipline of computer

science as a whole. In the short term, the fact that girls do not immediately connect the

process of creating stories in Alice with computer science may make them more receptive

to learning how to program computers using Alice. However, in the long term, it will be

necessary to find ways to help girls understand the connection between writing Alice

Chapter 8: Summative Evaluation Results 181

programs and the discipline of computer science if we hope to inspire more girls to study

computer science.

8.4.2 Additional Survey Questions

Based on exploratory factor analysis, I created two scales based on the additional survey

questions: 1) the future alice use scale is a measure of participants’ interest in continuing

to use their version of Alice in the future 2) the computer science interest scale is a

measure of participants’ interest in pursuing computer science.

8.4.2.1 Future Alice Use

The future alice use scale included the following questions:

1. If you used Alice (the computer animation program you used today) again, how

long do you think you could use it at one time without getting bored? (Scores

ranged from 1 or “Less than 1 hour” to 5 or “More than 4 hours”).

2. If you had the computer animation program you used today (“Alice”) on a

computer at home, how often during the next month do you think you would use

it? (Scores ranged from 1 or “Never” to 5 or “More than once a week during the

next month”).

3. Would you be interested in taking another Alice class? (Scores ranged from 1 or

“Definitely Not” to 5 or “Definitely Yes”).

4. Do you think you could create a world in Alice that you would be proud to show

your friends? (Scores ranged from 1 or “Definitely Not” to 5 or “Definitely Yes”).

Cronbach’s α for the future Alice use scale is 0.83.

Chapter 8: Summative Evaluation Results 182

Mean Future Alice Use Scores

0

0.5

1

1.5

2

2.5

3

3.5

One time use Use over the next
month

Interest in a future Alice
class

Question

M
ea

n
Sc

or
e

Generic Alice

St oryt elling Alice

Figure 8.14: Mean scores for questions in the future Alice use scale.

Participants who used Storytelling had a stronger interest in continuing to use Alice in the

future than those who used Generic Alice (p = 0.05). One potential explanation for this is

that girls using Storytelling Alice may have felt that it had greater “replayability.” Where

users of Generic Alice often made worlds that seemed to consist of arbitrary motion (see

Chapter 10), users of Storytelling Alice most often created stories. More of the users of

Generic Alice may have felt that they had exhausted the interesting aspects of interacting

with Generic Alice. Grades (p = .22) and past computer use (p = .69) were not significant

predictors of future interest in Alice.

8.4.3 Computer Science Interest

The computer science interest scale included the following questions:

1. Do you think you could create a world in Alice that you would be proud to show

your friends? (Scores ranged from 1 or “Definitely Not” to 5 or “Definitely Yes”).

2. Do you think you could learn to use advanced features in the Alice program?

(Scores ranged from 1 or “Definitely Not” to 5 or “Definitely Yes”).

Chapter 8: Summative Evaluation Results 183

3. Do you think you could learn a computer language like Java or C++? (Scores

ranged from 1 or “Definitely Not” to 5 or “Definitely Yes”).

4. Would you be interested in taking a computer science class in high school?

(Scores ranged from 1 or “Definitely Not” to 5 or “Definitely Yes”).

5. Can you imagine growing up to be a computer scientist? (Scores ranged from 1 or

“Definitely Not” to 5 or “Definitely Yes”).

Cronbach’s α for the computer science interest scale is 0.80.

Mean Computer Science Interest Scores

-1

-0.5

0

0.5

1

1.5

Create a
world you are

proud of

Learn
advanced

Alice features

Learn
Java/C++

Interest in HS
CS class

Grow up to
CS

Question

M
ea

n
S

co
re

Generic Alice

St oryt elling Alice

Figure 8.15: Mean scores for questions in the computer science interest scale.

A single four-hour workshop is a fairly short period of time in which to change students’

interest in pursuing computer science. Not surprisingly, there was no significant

difference in interest in pursuing computer science between users of Generic Alice and

Storytelling Alice (p =.33), although users of Storytelling Alice expressed slightly higher

interest on most questions. However there is a strong relationship between participants’

interest in using Alice in the future and their interest in pursuing Computer Science (r =

.54, p < .0001).The strongest predictors of future interest in computer science were strong

Chapter 8: Summative Evaluation Results 184

academic performance (p =.006) and high confidence with computers (p<0.001). Age (p

= .19), and computer usage (p = 0.2) were not significant predictors of future interest in

computer science.

8.5 Programming Quiz Performance
After completing the survey, participants were asked to complete a 7 question

programming quiz which presented short segments of code in Alice and asked

participants to select the most appropriate description the behavior of the code from a list

of four choices. Questions covered sequential code, parallel code (i.e. do togethers),

loops, methods calls, and method calls with parameters.

Based on exploratory factor analysis, the quiz has two factors: 1) programming structures

and 2) events.

The programming structures scale included a question each about:

1. sequential execution

2. parallel execution

3. simple loops

4. more complex loops

5. method calls

6. method calls with parameters

Cronbach’s α for the programming scale is 0.74.

There was a single question that asked users to predict which method Alice would play

given an image of the user interface.

Chapter 8: Summative Evaluation Results 185

Mean Programming Quiz Scores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seq
ue

nc
e

Do T
og

eth
er

Sim
ple

 Lo
op

More
 C

om
ple

x L
oo

p

Meth
od

 C
all

Para
mete

r

Worl
d S

tar
ts

Eve
nt

Question

M
ea

n
S

co
re

Generic Alice

St oryt elling Alice

Figure 8.16: Mean Scores on the Programming Quiz for users of Generic Alice and Storytelling Alice.

Since users of Storytelling Alice spent more time on programming, we might expect to

see better performance on their post-Alice programming quizzes on either the

programming structures scale (p=0.44) or the events questions (p=.25) Yet, users of

Storytelling Alice did not perform statistically better than those who used Generic Alice.

One possible explanation is that creating stories is inherently less rich than creating

animations in Generic Alice and the additional time on programming was offset by the

lesser value of programming stories as opposed to animations. There were participants

using both Storytelling Alice and Generic Alice who exhibited patterns that may not be as

conducive to learning programming as others. In Generic Alice, it was fairly common for

users to create “totally random” worlds that exhibit absolutely no control. One might

argue that this is a tinkering-based learning style. Some participants did use random

experimentation as a learning tool. However, others appeared to simply try random

methods until something visually interesting happened without trying to understand or

control the behavior of the methods they called.

Chapter 8: Summative Evaluation Results 186

Grades vs Quiz Performance

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Not-High Grades High Grades

Grades

Q
ui

z
Pe

rf
or

m
an

ce

Generic Alice

St oryt elling Alice

Figure 8.17: Grades vs. Quiz performance for users of Generic Alice and Storytelling Alice.

Storytelling Alice had a greater benefit for students without high grades (defined to be

students who receive A’s and B’s or below). During formative testing, I noticed that less

bright students seemed more likely to get frustrated creating programs in Alice 2 and

return to scene layout. Storytelling Alice may make the process of programming more

motivating for these students, motivating them to spend more time programming. Among

those with high grades, users may have devoted their intellectual energy to improving the

story which, depending on their story goals, may not always coincide with learning new

programming concepts.

The strongest predictor of programming quiz performance on the programming structures

questions was academic performance. Students with higher grades tended to perform

better on the programming quiz than students with lower grades (p=.06). Computer

confidence (p=.58), computer usage (p=.22) and age (p=.74) were not significant

predictors of programming quiz performance.

Chapter 8: Summative Evaluation Results 187

The strongest predictors of events performance were strong academic performance

(p=0.03) and computer confidence (p=.01). Computer usage (p=.78) and age (p=.24)

were not significant predictors of programming quiz performance.

8.6 End of Workshop
At the end of the workshop, I gave girls 30 minutes to try the version of Alice to which

they were not assigned (i.e. Storytelling Alice participants tried Generic Alice and vice

versa). After trying the other version, they were asked to choose one version of Alice to

take home. To close the session, I asked participants to choose a single world to show

everyone. Participants were given time to watch each others’ Alice worlds.

8.6.1 Choosing Storytelling Alice or Generic Alice
Table 8.2: Participants’ choices of which Alice version to take home.

Alice Version Chose Generic Alice? Chose Storytelling Alice? p-value
Generic Alice 26.70% 73.30%
Storytelling Alice 11.60% 88.40% p < 0.001

Alice Version to Take Home

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Chose Main Alice Version Chose Non-main Alice Version

Alice Version

%
 o

f U
se

rs

Generic Alice

St oryt elling Alice

Figure 8.18: Participants choices of which version of Alice to take home.

Chapter 8: Summative Evaluation Results 188

Because participants had 2 hours and 15 minutes with their main version of Alice and

only 30 minutes with the other version, it is reasonable to expect that participants would

tend to choose the version with which they had the most experience. In fact, both groups

showed a significant preference for Storytelling Alice (p < 0.001) based on a chi-squared

test. Nearly three quarters of the Generic Alice participants elected to take Storytelling

Alice home and more than 88% of the Storytelling Alice participants also elected to take

Storytelling Alice home. Where 73% of the Generic Alice participants chose to take the

version of Alice with which they had only 30 minutes, only 11.6% of the Storytelling

Alice participants chose their 30-minute version.

In three cases, there were siblings (totaling six subjects) in the testing groups who

colluded to ensure that they had both versions of the system at home. If I remove these

pairs from the data, the preference towards Storytelling Alice becomes slightly stronger:

76.2% of the Generic Alice users choose to take home Storytelling Alice and 10% of the

Storytelling Alice users choose to take home Generic Alice. The fact that participants

who used both Generic Alice and Storytelling Alice overwhelmingly chose Storytelling

Alice as the system they wanted to take home demonstrates that Storytelling Alice has a

stronger appeal than Generic Alice for most girls.

8.6.2 Showing a World
Table 8.3: Participants choices about what to show.

Alice Version
Show World from
Non-Main Version

Show Main World without
Changes

Show Main World
with Changes p-value

Generic Alice 32% 52% 16%
Storytelling
Alice 2% 47% 51% p<0.001

As with the choice of which system to take home, it is reasonable to expect that girls

would primarily choose to show the world that they had the longest period of time to

create. In this case, we do see a tendency in that direction: 68% of the participants using

Generic Alice and 98% of the participants using Storytelling Alice showed a world from

their assigned version of Alice. However, a surprising 32% of the Generic Alice

participants chose to show a world that they created in Storytelling Alice in 30 minutes

rather than the world they had approximately 90 minutes to create in Generic Alice.

Chapter 8: Summative Evaluation Results 189

Participants using Storytelling Alice were more than three times as likely to sneak a few

extra minutes to make final changes to their Alice programs. This tendency to sneak extra

time is another indication of girls’ engagement with programming using Storytelling

Alice. While participants were preparing to share their Alice programs with other

members of their Girl Scout troop, there was a period of several minutes during which

participants could make final changes to their Alice programs, but there was no

expectation that they should do so; their instructions were to load the Alice program they

wanted to share. During this period, some participants took extra time to make final

changes to their Alice programs. Among the users of Generic Alice, 16% of participants

made changes to their Alice program before sharing it. Among the users of Storytelling,

51% of users made final changes to their Alice program before sharing it.

Chapter 8: Summative Evaluation Results 190

8.7 Summary
The results of the summative evaluation of Storytelling Alice demonstrate that

storytelling is promising approach for introducing girls to computer programming.

However, there is still room for improvement in introducing middle school girls to

computer programming.

Participants who used Storytelling Alice spent more of their time on programming and

less time on scene layout than participants who used Generic Alice (p <0.001).

Participants who used Storytelling Alice expressed a stronger interest in using Alice in

the future (p <0.03 when participants’ computer confidence is considered).

Nearly three times as many participants who used Storytelling Alice show motivation to

work on their programs (as measured by the numbers who sneak extra time to continue

working) as participants who used Generic Alice (p < 0.001).

88.4% of Storytelling Alice users and 73.3% of Generic Alice users chose to take

Storytelling Alice as the version of Alice they wanted to take home (p < 0.001).

Users of Storytelling Alice and Generic Alice expressed statistically similar on scales

measuring the entertainment and ease of their version of Alice.

Users of Storytelling Alice and Generic Alice also performed similarly on a post-Alice

programming quiz.

Users of Storytelling Alice and Generic Alice expressed statistically similar interest in

pursuing computer science in the future.

Chapter 9: What Girls Create 191

Chapter 9 What Girls Create

9.1 Introduction
In this chapter, I describe and provide examples of the kinds of projects that girls created

in both Generic and Storytelling Alice. As they were used within the Alice workshops,

both Generic Alice and Storytelling Alice are a medium for self-expression. By

examining the projects girls create in Generic Alice and Storytelling Alice, we gain some

insight into the benefits that creating Alice programs provide to girls (beyond gaining

experience and confidence with computer programming).

9.2 Generic Alice Worlds
Users begin creating programs in Generic Alice by adding 3D objects to their virtual

world. Often, users are drawn to character-like 3D objects like people and animals.

Having selected people and animals, users naturally want to animate their 3D objects in

the ways that people and animals move: a user may want a ballerina to dance, humans to

walk, and bunnies to hop. But the animations in Generic Alice do not easily map to the

kinds of actions that users want their characters to perform, so users naturally begin to

experiment with the animations available in Generic Alice. Users employ different

strategies in exploring the Generic Alice animations. Some of these strategies are more

likely than others to enable the user to develop an understanding of how to construct the

motions they envision out of the animations Generic Alice provides. Among the worlds

Chapter 9: What Girls Create 192

that girls who used Generic Alice created, there are two basic groups: worlds based on

arbitrary motion and worlds that exhibit some intentionality.

Fundamentally, intentionality is a subjective measure since I cannot know exactly what

was going through participants’ minds as they worked on their programs. In deciding

whether or not a program exhibited intentionality I asked myself how one would describe

a given program. If I could come up with a description for all or part of the program’s

animation that was more detailed than “objects are moving in space”, I declared that it

had at least some intentionality. I present these as qualitative results intended to provide

insight into what girls choose to create. To strengthen the results, one could have several

external viewers rate the intentionality of the programs that girls created.

9.2.1 Arbitrary Motion
When users cannot immediately see how to create the animations they envision their

characters performing, many of them begin to add calls to arbitrary animations and play

their programs to see what happens. While some users progress from exploratory

programming to creating animations that demonstrate some control over the animations

they are creating, 62% or 28 of the 45 worlds that users created with Generic Alice

consist of seemingly arbitrary animation; characters and/or their body parts move around

the screen without any coherence or clear purpose. While it is possible that a few of the

users envisioned animations of pseudo-random motion, it was clear from observing girls

interacting with Alice that many of them were at a loss to create any specific animation.

Instead, these users added an assortment of method calls and then played their programs

hoping to stumble on visually interesting animations. Figure 9.1 shows an example screen

shot from one of the arbitrary motion worlds. In this world, characters and their body

parts rotate around different axes and fly to different positions in space.

Chapter 9: What Girls Create 193

9.2.2 Intentional Motion (17 worlds)
38% or 17 of the 45 worlds created by Generic Alice users demonstrate that they had

developed and used intentional control in specifying the motions of their characters.

9.2.2.1 Intentional Motions
15% or 7 of the 45 users created programs which contained one or two simple character

motions but were otherwise largely arbitrary motion. Examples of character motions

include having a cat swish its tail, a penguin open and close its mouth, and a bunny jump

up and down. These worlds seem to the result of users transitioning from experimenting

with the Generic Alice animations to exerting control over them in the service of creating

small character motions.

Figure 9.1: Flamingo_01_28_2006 created a world with a random collection of characters that move in arbitrary

ways. Sometimes the whole character moves, sometimes only a part (like a leg or arm) is animated.

Chapter 9: What Girls Create 194

9.2.2.1.1 Intentional Sequences
There were 10 worlds which longer sequences of animations (as opposed to individual

motions) that had a clear purpose. 7 were short story-like sequences and 3 contained

characters performing choreographed dance routines. None of the users attempted to

create games or interactive pieces. However, the tutorial focused on teaching the skills

necessary to create non-interactive worlds rather than interactive worlds.

9.2.2.1.2 Story-like Sequences
There were 7 short story-like sequences. Most of the action in these story-like sequences

is motivated by the existence of a clear aggressor (e.g a mummy, dragon, etc) and the

other characters’ reactions to that aggressor. In two animations, people run away from

mummies. Another user created a program in which a magical duck casts a spell on a

man whose body explodes by flying into pieces. In most of the story-like sequences,

users rely on the physical appearance of characters to identify them as heroes, villains, or

victims. Most also incorporate simple gestures such as having character raise their arms

in fear before sliding quickly away or a dragon rotating sideways after being stabbed by a

knight that help to communicate the action in the story.

Figure 9.2: Fish_10_01_2005 made an animation involving characters standing in front of houses. The
characters put their arms by their sides and the girl on the left waves hello.

Chapter 9: What Girls Create 195

Figure 9.4: Lighthouse_12_3_2005 created a story-like animation in which a knight slays a dragon and the
princess declares the knight her hero.

Figure 9.3: Sailboat_12_10_2005 created a story-like animation in which a penguin moves to the lever, the lever
turns, and the Christmas tree lights come on.

Chapter 9: What Girls Create 196

9.2.2.1.3 Choreographed Dance Routines

Figure 9.5: Lighthouse_01_14_2006 created a dancing penguins animation in which the penguins turn, jump,
and look different directions in sequence and in parallel.

Three worlds took the form of choreographed dance routines for a group of characters.

The dance routines made heavy use of move and turn with characters performing the

same motions together and in sequence. Dance routine-type programs are a good match

for Generic Alice. Users do not need to communicate a story, several characters doing

simple motions in sequence or in parallel often produce a pleasing result, and the dancers

themselves often only move within a constrained space which helps users avoid the trial

and error that often accompanies trying to get characters to move to a particular location

(e.g. into the igloo) using animations like moving a distance and turning a number of

revolutions. It is interesting to note that two of the three dance-based animations

incorporated penguin characters that came with their own higher-level methods. Using

the methods that came with the penguin objects made it possible for girls to make

somewhat more interesting looking dances. The two girls who used the penguins

combined the penguins’ character-methods like jumping, walking forward, and looking

left and right with simple move and turn animations. The author of one of the two

penguin dances also included a fan dancer who waved her fans and swayed at the waist.

Chapter 9: What Girls Create 197

In looking at the programs created with Generic Alice, it is striking that more than 60%

of users never moved beyond experimentation to intentional control. Girls often struggle

with using the low-level animations in Generic Alice to build up interesting animations.

Further, in Generic Alice users can only communicate a story through the body motions

of their characters because Generic Alice lacks a say method; essentially they can create

a silent film. It is difficult for directors to create compelling silent films even with the

help of trained human actors. Creating silent films by individually controlling the

motions of each joint for each character is still more difficult.

A small number of the girls using Generic Alice added 3D-text objects to their worlds to

help communicate information about their animations. Several programs incorporated

3D-text as titles (like the “The Dancing Penguins” in Figure 9.5) or to turn animations

including winter-themed objects into Christmas e-cards. A few programs also

incorporated 3D-text to enable characters to speak. For example, in the world shown in

Figure 9.4, 3D-text saying “My hero!!!!!” flies forward and over the princess’s head after

she is rescued. However, since each 3D-text phrase has to be explicitly placed within the

world and managed, the process of creating an elaborate dialog is too complex for most

novice Alice users.

9.3 Storytelling Alice Worlds
All of the users of Storytelling Alice created programs that exhibit some intentionality.

This is likely attributable to two factors: 1) the characters perform higher level actions

like walking and sitting that more readily match the kinds of things kids envision their

characters doing 2) the existence of the say and think animations makes it much easier for

kids to communicate what is going on. For example, girls can have their characters say “I

am really sad” even if they cannot communicate the character’s emotional state through

animation.

The programs created with Storytelling Alice are almost exclusively stories which fall

into 3 broad groups: relationship stories (51% or 22 of 43 programs), good vs. evil stories

(21% or 9 of 43 programs), and other (28% or 12 of 43 programs).

Chapter 9: What Girls Create 198

9.3.1 Relationship Stories
The single largest group of stories that users of Storytelling Alice wrote involved

relationships. Girls seemed to use the stories that they wrote to explore issues in their

own lives. However, many of the stories were “larger than life” in the sense that they

portrayed both scenarios and character’s choices that seem beyond the scope of what

most of the story-authors would be likely to encounter in real life (based on my

admittedly limited knowledge of them as individuals). For example, one story about

divorcing parents depicted the children kicking the parents out of the house. There were

three main groups of these: romantic relationships, peer relationships, and familial

relationships.

9.3.1.1 Romantic Relationship Stories: 12 programs

Relationship stories ranged dealt with issues such as jealousy between two girls who

liked the same boy, a girl rejecting a suitor but returning to him after she is rejected by

someone else, and the embarrassment that comes from friends’ public commentaries

Figure 9.6: Dress_01_14_2006 wrote a story involving a guy named Dave who has been having relationships with
three different girls. They find out and kick his legs off in retaliation. The story ends with the statement “And thats

why you dont cheat on girls!!! It Makes Your Legs Fall Off!!!”

Chapter 9: What Girls Create 199

about your relationships. The stories depict a variety of scenarios ranging from

relationships among middle or high-school aged characters to stories that seem to almost

be commentaries on relationships. One program shows a series of boys asking girls out

and the girls rejecting them in different ways. Another program shows a girl and boy

swimming together and kissing at the base of a waterfall. A third program shows two

ogres getting married and pledging eternal love only to declare thief dislike for each other

in the next scene.

9.3.1.2 Peer Relationships: 6 programs

Some of the worlds depicted peer relationships. One shows the brittle nature of

friendships among adolescents: Two girls are hanging out together and one offers to

make a cool weird noise. Her friend’s response is to say “You’re weird” and leave. The

noise-making girl is distraught by her friend’s rejection. Two stories included unlikable

Figure 9.7: Horse_01_28_2006 wrote a story which begins by showing the title “There was a boy, named Leon,
that was a inflexible, unchanging, bully! And this is what happened to him…” During the course of the story, the
nerd character sees the tree wave and Leon responds by taunting him. But, the tree begins talking to Leon and

he sees the error of his ways and promises not to further pick on the nerd character.

Chapter 9: What Girls Create 200

characters (a spider and a large, scary dog) who lament their lack of friends when people

run from them in fear. Others programs show peers taunting and arguing with each other.

9.3.1.3 Familial Relationship Stories: 4 programs
Familial stories range from innocent depictions of imperfect parents to stories involving

painful subjects like divorce. On the innocent end of the spectrum, one girl created a

story about a father who takes his reluctant children on vacation, gets thoroughly lost and

somehow they all end up in Egypt. The son calls his mother using his cell phone to

request that she come to rescue them. In one of the more serious stories, two siblings are

fighting and the older sister maliciously tells the younger sister that she (the younger

sister) was adopted. In another, the parents are divorcing and the kids decide they do not

want to live with either parent so they kick both parents out of the house.

Figure 9.8: Castle_11_5_2005 wrote a story in which a father and his two children get lost while on vacation and
mom has to come and rescue them.

In general, girls’ relationship stories tend to focus on difficult situations. In part, this is

probably due to the fact that girls are using the activity of creating stories in Alice as a

way to think through issues and situations they are facing. However, the focus on difficult

situations may also be a consequence of focusing on stories: stories need a conflict to be

Chapter 9: What Girls Create 201

interesting. It is more difficult to create a satisfying story that centers on a happy scenario

than a sad one.

9.3.2 Good vs. Evil: 9 programs
The second-largest category of were conflicts between good and evil. The conflict

between good and evil provides an easy source of tension, and one that is frequently used

in mainstream movies and books. In the good vs. evil stories created by girls using

Storytelling Alice, violence or the threat of violence were often (but not always)

employed as a way to resolve conflicts. This provides additional support for Laurel’s

claim that girls do not object to the violence in video games as much as they object to the

lack of strong stories (Laurel 2001). Other research has found that when girls design their

own video games they are less likely than boys to provide violent feedback when a player

does not successfully complete a level (Kafai 1995).

Figure 9.9: Castle_12_07_2005 created a story in which the wolf comes and attempts to befriend the three pigs in

hopes of eating them later. The pigs get scared of the wolf and a ninja appears to frighten the wolf away.

Chapter 9: What Girls Create 202

In some stories evil characters are disciplined by more powerful good characters. For

example, in one story, an evil samurai attacks an innocent pig. A good magical tree

comes to the pig’s defense and resurrects the pig, enabling the pig to attack the samurai in

retaliation. In other stories, the evil characters seem to triumph. In one such story an evil

sheriff wants to take over the world. When his minion expresses doubts, the sheriff

disciplines him by picking him up and tossing him across the room.

9.3.3 Other Alice Programs: 12 programs
The remaining worlds created with Storytelling Alice do not fall neatly into a single

category. These miscellaneous worlds include two stories about finding lost dogs, two

stories depicting running and swimming races, and three choreographed routines (circus

and cheerleading). These last three are similar in nature to the choreographed dance

routines created by users of Generic Alice.

Nearly all of the users of Storytelling Alice made stories (with the exception of the 3

choreographed routines). Further, all of the users of Storytelling Alice (as compared to

38% of the users of Generic Alice) moved from experimental programming into

intentional programming. In a sense, Storytelling Alice helps to minimize the time users

take to figure out what they should do with the system, how to use the tools the system

provides, and begin actually working towards a goal. Although it is possible to use

assignments to provide students with a goal, this approach may be significantly less

motivating for students.

There are benefits to constructing animated stories that go beyond girls gaining

experience with and confidence in their abilities to program a computer. Storytelling

provides girls with an opportunity to think about and role play through or simply vent

about issues they are facing in their own lives. Additionally, storytelling is a form of

communication. When girls show their stories to a peer, the peer often comments about

aspects of the story that they do not understand which provides a natural motivation for

girls to revise their stories.

Chapter 10: Conclusions and Future Work 203

Chapter 10 Conclusions and Future Work

10.1 Conclusions
The results of my study suggest that participants who used Generic Alice and Storytelling

Alice were equally successful in learning programming concepts. However, I found that

participants who used Storytelling Alice showed more evidence of engagement with

programming; they spent a 42% more time programming instead of devoting time to non-

programming activities within Alice and expressed greater interest in future use of Alice

than participants who used Generic Alice. With less than 0.5% (Vegso 2005) of women

entering college intending to major in computer science, it is encouraging that

Storytelling Alice motivates more than half of middle school girls to sneak extra time to

program. These results suggest that the storytelling approach is highly promising for

attracting more middle school girls into computer science.

Although participants who used Storytelling Alice showed more signs of engagement

with programming than participants who used Generic Alice, users found Generic Alice

and Storytelling Alice equally entertaining. I believe that users of Generic Alice may

have enjoyed their overall experience with Generic Alice in part because they found the

process of selecting and laying out 3D objects in the virtual world to be entertaining. The

fact that users of Generic Alice spent less time on programming than users of Storytelling

Alice may provide some support for this explanation.

Chapter 10: Conclusions and Future Work 204

10.2 Future Work
My future work lies in three broad areas: 1) designing programming environments that

will help to interest girls (and boys) in studying computer science, 2) addressing the

computer science pipeline problems, and 3) designing environments that leverage girls’

motivation to program animated stories to teach critical thinking and communication

skills.

10.3 Designing Motivating Programming Environments

One way to think about the future work in presenting computer programming to middle

school girls is to consider the properties of an ideal approach to introducing middle

school girls to computer programming. It would have two properties:

1. Girls would find the process of learning to program enjoyable for its own

sake.

2. Girls’ programming experiences would provide them with a framework

for understanding the discipline of computer science.

Often introductory computer science courses concentrate on getting students to master a

list of programming constructs. However, a middle school introduction to computer

programming and computer science should not be evaluated based on the number of AP

Computer Science test questions students can correctly answer by the end of the course.

While it is important that girls get some exposure to programming constructs and

concepts, I would argue that the most important aspects of a middle school introduction

to Computer Science are that girls end the experience believing that computer science can

be fun and that they can be successful computer scientists. A successful computer science

introduction at the middle school level will motivate more students to enroll in high

school and college level computer science courses. The details of particular programming

languages and AP material can be deferred until high school or college.

Chapter 10: Conclusions and Future Work 205

Storytelling Alice represents a step towards a programming system that can provide

students with a positive first experience with computer programming. However, there is

still considerable potential for improvement. Through user testing, I was able to make the

first two to three hours of learning to program a motivating and rewarding experience for

many middle school girls. While the ability to provide middle school girls with a

relatively short-duration positive experience with programming represents progress, it is

unlikely that a single two to three hour experience will be sufficient to convince girls to

pursue computer science. To begin to sway girls’ perceptions of computer science, we

will likely need to extend the length of time that girls are motivated to devote to computer

programming in order to broaden their exposure and deepen their confidence in their

ability to succeed in computer science. Determining the length of time girls should devote

to learning to program and which programming constructs and concepts girls should

master to have the greatest positive impact on girls’ interest and confidence is an open

question.

In working with the middle school girls who participated in the formative and summative

testing of Storytelling Alice, I found that while girls are often confident in their ability to

master Storytelling Alice, they have difficulty relating the process of creating stories in

Alice to computer science. Girls often seemed skeptical that their ability to create

animated movies implied an ability to learn to create computer software. Future work in

improving Storytelling Alice falls into two categories: 1) extending the length of time

over which girls remain engaged by programming in Storytelling Alice and 2) providing

support to enable girls to move towards advanced programming concepts that will help to

build their confidence and provide them with a context for understanding (and making

informed decisions about) computer science.

10.3.1 Extending Engagement with Computer Programming

Computer games, while not always educational, do keep users engaged in a computer

activity for lengthy stretches of time. One interesting area for future research is to

examine the the reward strategies used in games to determine if they can help to keep

users engaged in the activity of computer programming. There is one important

Chapter 10: Conclusions and Future Work 206

difference between gaming and Alice: games need to keep users interacting with any

aspect of the game whereas Storytelling Alice should keep users engaged in the activity

of programming, a subset of the possible activities within the program. In examining

potential reward strategies for Storytelling Alice, it is critical to consider not just whether

or not kids are motivated to continue interacting with the program but also the intellectual

merit of the activities they are choosing. Some potential additions to Storytelling Alice

may encourage users to spend more time with the program but discourage them from

spending their time on the programming aspects of the system.

One of the most commonly used rewards in computer games is granting users access to

new content: additional characters, clothing, tools, or new levels. Unfortunately, the cost

of generating large quantities of high-quality art assets for use in a research project is

prohibitive. However, based in part on the success of Storytelling Alice at getting middle

school girls interested in learning to program, Electronic Arts has donated the 3D

characters and animations from The Sims 2 for use in the next version of Alice. The Sims

is the all-time best-selling PC game and is one of the few games that has a larger female

than male player population, although it is widely played by children of both genders

(Smith 2006). Consequently, users are likely to recognize The Sims 2 assets. The

opportunity to use “real” characters from a familiar game to create more expressive

stories may help maintain users’ motivation for longer periods of time. The assets from

The Sims 2 afford an opportunity to explore using content-based rewards to keep users

engaged in programming within a storytelling version of Alice 3.

Chapter 10: Conclusions and Future Work 207

10.3.1.1 Custom Characters

Figure 10.1: A screenshot of the character-builder in The Sims 2. The user is currently choosing a hairstyle and

color for their Sim character.

Using the Sims characters, it will be possible to create a character-builder that will allow

girls to create their own characters. For example, users may elect to create Sims

characters that resemble themselves and their friends. While the ability to create specific

characters will probably be motivating for girls, it creates a risk that girls will elect to

spend the majority of their time perfecting the physical appearance of their characters

rather than using their characters in programs. Where girls who used Generic Alice often

chose to express themselves through “decorating” their Alice worlds rather than

programming, girls using Alice 3 may choose to express themselves through the physical

appearance of their characters. I would like to design an experiment to determine whether

girls will do more programming when they are given unrestricted use of the character-

builder or when they have to “earn” new characters by programming.

10.3.1.2 Very High-level Methods
In creating Storytelling Alice, I added a set of high-level methods that allowed users to

more easily create the kinds of stories that they envisioned. Constructing stories by

individually controlling each joint on a character’s body was overwhelming for some

users and frustratingly tedious for others. We are faced with the opposite problem in

incorporating the Sims characters and animations into Alice: the Sims characters come

Chapter 10: Conclusions and Future Work 208

with a large set of very high-level animations that characters can perform (~2000). The

animations from The Sims 2 are at a higher level than those provided in Storytelling

Alice. For example, in addition to walking and sitting, Sims characters can perform a

wide variety of very specific animations like jumping on a bed or making a sandwich.

However, unlike the character-specific methods in Storytelling Alice which are written

within Alice and can be edited by users, the animations that come with the Sims 2 models

are created in such a way that they will not be user editable or viewable as methods in a

programming language. Unlike in Alice 2 where characters animations are procedurally

generated, the Sims 2 animations are created through keyframing. While users will have

access to a large number of well-crafted character animations, users will not be able to

use character animations as programming examples or starting points for creating their

own animations.

The existence of a large library of high-quality animations allows us to ask a number of

important questions:

.

• If users have a large set of very specific actions on which to base their stories,

will they still learn a variety of programming constructs? In analyzing girls’

storyboards and the programs created by Storytelling Alice users, I found that

character actions like hugging another character or dribbling a basketball provide

the main motivations for the use of programming constructs like loops and

parameters arose. There is some risk that by providing users with a large set of

high-level animations we may remove the motivation to learn programming

constructs and concepts. Although it is possible to envision higher-level actions

such as washing a pile of dishes that could motivate concepts like loops, however

the actions that motivated the usage of more complex programming constructs in

girls’ storyboards (all created before interacting with Storytelling Alice), will

largely be provided with the Sims characters. To encourage users to explore more

complex programming constructs may require choosing a different domain like

controlling crowds or creating smart characters. These other domains may not be

as motivating to girls as storytelling.

Chapter 10: Conclusions and Future Work 209

• Can we give users a small “starter” set of animations and gradually unlock

additional high-level methods as users demonstrate mastery of different

programming constructs? A model of gradually unlocking animation content has

the nice property that girls who devote more time to programming will gain the

ability to create more visually appealing animations than beginning users, creating

a motivation to progress.

10.3.1.3 Increasing Expressiveness
Rather than providing an extensive library of pre-created actions (such as the library of

Sims animations), it may be desirable to create a smaller “starter” set of animations and

allow users to develop actions they need for their stories. To successfully create such a

system we must provide girls with a reasonable set of animations for animating

characters’ body parts. While the existence of the touch and keep touching methods

makes it easier to create animations involving physical contact with other characters or

objects, girls often want to create gesture based actions such as conversational gestures or

waving to another character. Studying how girls describe the gestures that they want their

characters to perform and creating animations that girls can easily compose to achieve

those gestures is another area for future work.

Users are often frustrated by the lack of facial expressions; characters’ faces are typically

images that cannot be animated. For example, a user who is telling a story in which a

character is sad or angry may want the character’s face to reflect their emotional state and

cry or look frustrated but the character’s face remains stuck in a permanent smile. Facial

animation is a difficult problem that has been explored in computer animation.

Techniques include the Facial Action Coding System (FACS) which combines the basic

motions of facial muscles (or action units) to create facial expressions (Ekman, Friesen et

al. 2002) and blending between pre-defined 3D facial shapes (Joshi, Tien et al. 2003).

Neither of these techniques is appropriate for use by middle school students without some

simplification. Performance animation, the use of a video camera to capture a

performance of target facial animations (Chai, Xiao et al. 2003) might also provide an

appropriate user interface.

Chapter 10: Conclusions and Future Work 210

In developing Storytelling Alice, I began with an early version of Alice 2. In Alice 2, all

characters can perform the same set of low-level animations inspired by 3D graphics.

Using the Alice 2 animations, it was possible for users to build any story for which there

were appropriate models. In early user testing of Alice 2, I found that many users

struggled to find a story idea that they wanted to pursue. In many ways, this seemed

similar to writer’s block. Through the StoryKits seminar and further user testing, I found

that the characters and animations in the gallery could provide a starting point for users’

stories. In Storytelling Alice, each character can perform a small set of unique

animations. Users often generate story ideas by constructing a sequence that motivates

the use of a particular character specific animation. The addition of a large number of

high-level animations for characters has the potential to make it more difficult for users to

find story ideas.

Further, there is a potential design challenge in providing users with access to a large

number of high-level animations while maintaining the property that the available

character-specific animations can serve as story inspiration. While preserving the story-

inspiration potential of animations is of particular importance in creating a programming

system for middle school girls, I suspect that helping users find story-inspiration will be

beneficial for a broad spectrum of users.

10.3.2 Simulating Movie Extras
Girls’ storyboards and the questions they asked during user testing revealed a need for the

ability to create film extras for their movies. Extras are the characters that fill in a scene:

the nameless students in a classroom, the people walking in the park, or the audience

members at a show. Girls often want to assign some basic behaviors to these characters to

add detail and believability to their scenes, but do not want to take the time to

individually script the behavior of each extra within the scene. Modeling the behavior of

extras would provide a context for discussing the use of computing as simulation.

Computational simulations also afford the opportunity to experiment with small changes

to starting conditions and observe the impact of those changes on the behavior of the

system. The realization that small changes in starting conditions can sometimes have a

large impact on the how events unfold is an important lesson. For middle school students,

Chapter 10: Conclusions and Future Work 211

it seems most appropriate to focus on enabling users to develop interesting behaviors for

groups of characters. Some systems for novice programmers have focused on simulation

(Repenning 1993; Smith, Cypher et al. 1994; Resnick 1996; Kloper and Begel 2006), but

none within the context of allowing users to create extras for animated movies. There is

also extensive work within the computer graphics community on optimizations that will

enable real-time rendering of small and large numbers (Aubel, Boulic et al. 2000;

Dobbyn, Hamill et al. 2005) of virtual humans at an acceptable frame-rate. Because

large-scale human simulation can be computationally expensive, providing simple

mechanisms for switching between high and low-cost representations of human beings

may enable users to explore performance issues without requiring them to understand all

of the low-level graphics details.

As with the development of the high-level animation set for storytelling, the development

of tools for controlling the motions of extras should be designed based upon study of the

types of extras girls want to add to their stories. It is possible that providing basic

structures such as flocking(Reynolds 1987) and selecting actions at random from a list

may provide sufficient support.

10.3.3 Achieving Goals without Complete Control
In The Sims video game, users do not have full control over their characters’ actions. If,

for example, a Sims character is feeling tired, they may not be willing to clean up the

kitchen without first taking a nap. Further, a user cannot instruct two Sims characters to

fall in love; the user will have to manipulate the moods of both characters such that they

fall in love. Rather than dictating the story to their characters, users essentially have to

coax the characters into performing a story. For some Sims players, this indirect control

is part of the appeal of the game. The fact that characters can only be indirectly coerced

rather than directed to perform certain actions may help to make those characters

believable as real people and reinforce users’ engagement with their task.

Based on the appeal of the Sims’ incomplete control, I would like to investigate scenarios

in which users have to achieve goals involving multiple characters but only have

programmatic control of a single character. For example, one goal might be to “make

Chapter 10: Conclusions and Future Work 212

character A become friends with character B.” Users can program the actions of

character A; character B’s actions and emotional state are computer-controlled. At the

beginning of the project, girls might create a strategy for developing friendship based on

a fixed set of initial conditions. As they become more experienced, they could adapt their

friendship strategy to handle a broader range of initial conditions. The program

controlling character A would have to select appropriate actions based upon character B’s

responses. To create a “friendship” program for character A would require use of logic

and conditional statements, concepts that do not arise frequently in girls’ stories. In some

respects, this is an alternative programming interface for shorter Sims-like scenarios.

10.3.4 Computer Games
Recently, there has been a strong interest in exploring using computer game related

examples to interest a larger audience of students in studying computer science. While I

strongly believe that storytelling provides a gentler introduction that is motivating for a

broader group of students, computer games can also be used to illustrate a variety of

complex concepts within computer science. As students become comfortable with the

basics of computer programming and are ready to tackle more complex materials, games

may provide a good source of motivating examples. However, because games still

differentially appeal to girls and boys, it will be important to carefully select which kinds

of games we ask students to create.

Currently, it is possible to create simulations and intelligent characters within Storytelling

Alice, but these types of projects are both complicated and awkward. To adequately

support storytelling, it was necessary to study the kinds of stories that girls wanted to

create and modify Storytelling Alice to more readily support girls in creating stories. To

make games and simulation style projects approachable for middle school girls will

require studying how girls think about and describe games and simulations and

developing and testing appropriate modifications to Alice.

Chapter 10: Conclusions and Future Work 213

10.4 Addressing Computer Science Pipeline Issues
Two of the challenges in attracting a larger and broader community of students to

computer science are 1) finding ways to reach students and 2) developing methods for

measuring our progress in attracting new students to computer science.

10.4.1 Broadening the Focus to All Students
While I concentrated primarily on creating a programming system that makes the process

of learning to program appealing for girls, my long term goal is to create a programming

system that provides a better introduction to computer science for all middle school

students, not just girls. I included some boys and underrepresented minority students in

the development of Storytelling Alice to help ensure that I did not make changes to the

system that made it appeal only to girls. However, formal verification that storytelling is

a good approach for everyone, not just girls, is an important next step. I would like to

repeat the evaluation of Storytelling Alice and Generic Alice with groups of middle

school students including boys, African-American, Hispanic, and other minority students.

I believe that the majority of changes I made to support storytelling will make the process

of learning to program more attractive for both boys and girls. However, in creating

Storytelling Alice, I added a small number of animations (i.e. kneel and fall down) to

support girls in commonly occurring storylines. In examining the kinds of stories that

boys and minority students create, I may find other animations that are necessary to

support the kinds of stories that they would like to create.

10.4.2 Integrating Alice into Schools
To have the maximum impact, we should consider how we are going to get Storytelling

Alice (or the systems that come after it) into the hands of the greatest number of girls.

Finding ways to integrate usage of Storytelling Alice into middle school curricula seems

to have the greatest potential for reaching a large number of girls. While I plan to

continue improving Storytelling Alice, the practicalities of integrating usage of Alice into

schools may inform the design of future versions of Storytelling Alice. There are several

possibilities for how Storytelling Alice might be used both in computer science courses

and in core classes like English or History.

Chapter 10: Conclusions and Future Work 214

10.4.2.1 Computer Science Courses
Arguably, the easiest way to integrate usage of Storytelling Alice into middle schools is

through computer science or computer skills courses. Unfortunately, computer science is

not a part of most middle school curricula. Consequently, if it is offered at all, it will tend

to be offered only as an elective and may be more likely to be offered at schools in

economically advantaged areas. Despite the relative rarity of computer science courses in

middle schools, taking curricular time in a computer science course to address issues like

relating Alice programming to general-purpose programming and providing students with

a more realistic view of the kinds of careers one can pursue with a computer science

degree is entirely appropriate. In non-computer science courses, these topics might be a

distraction both to teachers and students. In a computer science course, the important

issues moving forward will be extending the range of concepts that students are

motivated to tackle and helping them to relate their experiences with creating movies in

Alice to the broader discipline of computer science.

10.4.2.2 Non-Computer Science Courses
Integrating Alice into non-computer science courses may have the potential to reach a

much broader group of students because courses like English, history, and math are

required subjects of study for all students. So, finding ways to integrate usage of Alice

into these classes can greatly expand the numbers of students who are exposed to Alice.

Expanding the audience of students who have a positive first experience with computer

programming may help to significantly broaden the community of students interested in

computer science. Creating stories has the potential to get students to think about a

variety of issues that could be relevant across the middle school curriculum. In English

courses, Alice could be used to get students to consider how a character’s choices in a

novel they are studying affected how the story played out and think about how different

choices may have resulted in different circumstances. In history courses, students could

be asked to role-play as historical figures in order to encourage them to think more

deeply about the complexity of historical situations. Creating animated stories may have

a role in a variety of courses beyond English and history as well. However, in non-

computer science classes computer science concepts are unlikely to be at the forefront

Chapter 10: Conclusions and Future Work 215

and may become a distraction. While lesson plans for use in particular classes can help

teachers get started, teachers, many of whom feel overburdened already, are unlikely to

use Alice if they need to become competent programmers to successfully deploy Alice in

their classrooms. In this setting, what we want is to minimize what teachers need to

master but provide pathways in the Alice environment for students to learn about,

experiment with, and (hopefully) begin to master, a broader range of topics than those

necessary for completing their assignments.

10.4.3 Encouraging Exploratory Learning
Although Alice includes a lot of support to make the process of learning to program

easier by preventing syntax errors and helping users to visualize their programs as they

execute, there are still aspects of creating programs in Alice that are troublesome for

beginning programmers. For example, users may accidentally choose to open a

character’s method and begin editing it. Then, when they press the play button, nothing

happens because the method is not called anywhere. Users often have no understanding

of why their program does nothing when they press play and therefore are at a loss when

trying to figure out how to move forward. One could argue that the ability to make these

kinds of mistakes is acceptable within the context of a computer science course because

students will have access to a teacher who can help to explain concepts like methods and

recursion and it is important to maintain similarity with more standard programming

languages like Java and C++ to ease the transition to using these languages later.

However, in middle schools, students are unlikely to need to immediately transition to a

professional language like Java or C++. Further, help from teachers may not be as readily

available both because teachers are not as experienced with programming themselves and

because they do not want to devote class time specifically to computer programming-

related issues. To facilitate usage of Alice in non-computer science courses, it will be

important to make it safe for users to explore programming by minimizing the potential

for users to make mistakes that “break” their programs.

10.4.3.1 Supporting Informal Use
Because integrating any programming system into middle schools is likely to be a long

and complicated road, many researchers and educators focus on providing extra-

Chapter 10: Conclusions and Future Work 216

curricular opportunities to learn computer programming or the resources that will enable

children to teach themselves programming. While there are certainly fewer organizational

issues to work through, in many ways this is a more difficult path. Rather than competing

with typical school lessons and assignments, informal usage software has to compete

with students’ leisure activities. Explicitly incorporating a reward structure that helps to

maintain users’ engagement with Storytelling Alice will likely help increase the appeal of

using Alice as a leisure activity. In addition, developing an online community or local

animation festivals which enable users to share their work and see what others have done

may play a role in keeping users engaged.

Parents support and encouragement plays an important role in keeping children engaged

in activities over time. However, at present it seems far from certain that parents would

actively support their children’s usage of Alice. Teachers at the middle and high school

levels report that parents are currently hesitant to encourage their children to pursue

computer science. Media reports of outsourcing jobs overseas have convinced many

parents that computer science does not provide the kind of job security and opportunities

that they want for their children (Patterson 2005). In fact, the Bureau of Labor Statistics

predicts strong growth in computing related jobs; computer and mathematical science is

one of three occupational groups that are expected to account for nearly 75% of new

professional jobs. (Hecker 2005) Before parents are likely to encourage their children’s

interests in learning to program, it will likely be necessary to educate parents about the

projected needs for computer scientists.

10.4.4 Evaluating at Longer-Term Engagement
Although the long-term goal of my work is to draw a larger and more diverse group of

students into computer science, it was not feasible to evaluate my thesis based on the

number of girls who enroll in high school or college computer science courses in several

years. Particularly in the early stages of designing Storytelling Alice, it was important I

be able evaluate and iterate quickly. Metrics like the number of girls who sneak extra

time to work on their projects can provide insight into whether we are making progress in

making computer science appealing to girls in hours rather than years. As I extend the

length of time that girls spend programming in Storytelling Alice, it will be important to

Chapter 10: Conclusions and Future Work 217

develop metrics for evaluating girls’ motivation over days, weeks, and months rather than

hours. By developing a suite of metrics we can use to evaluate how successful a piece of

software is at engaging users over gradually lengthening periods of time, I believe that

we will be able to develop a deeper understanding of what factors contribute to girls’

engagement with computer science and how we can design programming systems and

curricula that help to interest more girls in studying computer science.

10.5 Moving Beyond Computer Science
Helping students develop critical thinking and problem solving skills is an important goal

for K-12 education (Skills 2006). Activities like Storytelling Alice may hold more

promise in imparting high level learning and thinking skills to students than teaching

computer science skills.

10.5.1 Teaching Communication
I have observed that the desire to share animated movies with friends provides a nice

entrée into developing communication skills. Unlike book reports or even short stories,

students are very motivated to share the movies they create. The process of sharing their

stories with other students helps students to realize which aspects of their stories they are

not effectively communicating to their audience. The potential for sharing movies with a

larger audience through Google Video or You Tube may provide additional motivation

for creating effective stories. Because the ability to communicate ideas is a fundamental

skill for all adults, one important avenue for future work might be to investigate the use

of Alice as a tool for teaching communication skills. This process might include

investigating different ways to capture audience feedback and present it in such a way

that users understand which aspects of their stories are and are not working and are

motivated to address the weaker parts.

10.5.2 Complex Reasoning
The world around us is filled with complex systems whose behavior depends on the

behaviors and interactions of smaller parts within the system: cars, weather, and

manufacturing plants, to name just a few. Yet our schools do little to prepare students to

work with and attempt to understand the behaviors of complex systems. On a day to day

basis, complex reasoning may provide students with the ability to work through problems

Chapter 10: Conclusions and Future Work 218

they encounter with household electronics or cars, even without specific training as

electricians or mechanics. On a more global scale, when we, as a country, make

environmental policies that will impact neighboring states, countries, and the rest of our

planet over many years, we would like our citizens to be able to recognize that seemingly

simple actions such as how much energy we consume in heating our homes can have

profound environmental effects. Particularly when students move into the domain of

creating simple simulations that have unanticipated behaviors, programming provides

children with some hands on experience dealing with complex systems that they create

themselves. When their programs do not behave as expected, children have to learn to

isolate the problems and solve them. They learn to ask questions that will allow them to

narrow the scope of a problem and they learn that a single malfunctioning piece within a

program may cause problems in seemingly unrelated parts of the program.

10.6 Conclusion
The results from my evaluation of Storytelling Alice suggest that storytelling is a

promising approach for attracting more middle school girls into computer science.

However, the results are based on short, four-hour workshops. To build on the success of

Storytelling Alice, I would like to concentrate both on extending the time that girls

devote to programming within Storytelling Alice and increasing the range of

programming concepts that girls master. Providing users with the ability to create more

detailed animations and control the behavior of film-style extras may help to motivate

users to explore a wider range of programming constructs. Developing social simulations

in which users have goals to achieve without complete control may also provide a

motivating environment that has the potential to introduce interesting programming

concepts. For example a simulation might provide users with a single character that they

can control programmatically and a goal such as “make your character become friends

with Jenny (another character).”

Storytelling Alice has the greatest potential for impact if it helps to draw all students to

computer science, not just girls. Two important avenues for future work are 1) to

formally evaluate the impact of the storytelling focus on boys and minority students and

2) to find ways to enable Storytelling Alice to reach the greatest number of students.

Chapter 10: Conclusions and Future Work 219

Schools provide a pathway that will enable us to reach the greatest number of students.

Because computer science is not a part of most middle school curricula, we should find

ways to integrate the use of Storytelling Alice into core classes such as English and

history. Supporting user exploration and providing ways for users to teach themselves

new programming concepts may help to maximize Storytelling Alice’s potential to draw

students into computer science while not requiring teachers to focus on teaching

computer science skills in their core classes.

Chapter 11: Programming Languages and Environments for Novice Programmers 220

Chapter 11: Programming Languages and Environments for Novice Programmers 221

Chapter 11 Programming Languages and
Environments for Novice Programmers

Note: This chapter is drawn from my ACM Computing Surveys paper entitled “Lowering the

barriers to programming: a taxonomy of programming environments and languages for novice

programmers” (June, 2005). I have added the Scratch, StarLogo TNG, JPie, and RAPUNSEL

systems to update the taxonomy.

11.1 Introduction
Learning to program can be very difficult for beginners of all ages. In addition to the

challenges of learning to form structured solutions to problems and understanding how

programs are executed, beginning programmers also have to learn a rigid syntax and rigid

commands that may have seemingly arbitrary or perhaps confusing names. Tackling all

of these challenges simultaneously can be overwhelming and often discouraging for

beginning programmers. Since the early 1960's, researchers have built a number of

programming languages and environments with the intention of making programming

accessible to a larger number of people. This chapter presents a taxonomy of these

languages and environments and discusses the challenges they address.

For the purposes of this chapter, we define programming as the act of assembling a set of

symbols representing computational actions. Using these symbols, users can express their

intentions to the computer and, given a set of symbols, a user who understands the

Chapter 11: Programming Languages and Environments for Novice Programmers 222

symbols can predict the behavior of the computer. This definition excludes many of the

“Programming by Demonstration” systems (Cypher 1993), where the computer observes

the user’s actions and uses internal heuristics to generate a program for the user. In these

systems, the user cannot accurately predict what program will be produced.

In this paper, we describe the high level organization of our taxonomy, present the

taxonomy and briefly describe all of the categories and systems within those categories.

We then present two additional tables: a table of the most influential systems and a

system comparison table. The system comparison table compares all systems in our

taxonomy, based on 1) what programming constructs they support and 2) their

approaches to making programming more accessible to novice programmers. Finally, we

summarize the approaches and discuss some possible avenues for future work in this

area.

11.2 Taxonomy
In creating a programming environment for novices, one of the first questions that must

be answered is why novices need to program. There are a variety of possible motivations

for learning to program: to pursue programming as a career path, to learn how to solve

problems in a structured and logical way, to build software customized for personal use,

to explore ideas in other subject areas, etc. The systems in this taxonomy (see Figure 1)

fall into two large groups: systems that attempt to teach programming for its own sake

and those that attempt to support the use of programming in pursuit of another goal, such

as teaching cognitive modeling to psychology students. Because these two goals place

very different constraints on systems, the taxonomy is organized first by the system

goals, either teaching or using programming, and, second, by the primary aspect of

programming that the system attempts to simplify. Each system appears in the taxonomy

only once. However, many of the systems in the taxonomy have built on the ideas of

earlier systems. Consequently, a system that was influenced by natural language

programming may not be classified with other natural language systems if supporting

natural language programming was not the systems’ primary contribution.

Chapter 11: Programming Languages and Environments for Novice Programmers 223

Figure 11.1: Taxonomy – Teaching Systems

Chapter 11: Programming Languages and Environments for Novice Programmers 224

Figure 11.2: Taxonomy- Empowering Systems

Chapter 11: Programming Languages and Environments for Novice Programmers 225

11.3 Teaching Systems

These systems were designed with the goal of helping people learn to program. Most of

the systems in this category are (or include) simple programming tools that provide

novice programmers exposure to some of the fundamental aspects of the programming

process. After gaining experience with a teaching system, students are expected to move

to more general-purpose, commercially available languages. A few systems attempt to

provide support in learning a more general language from the start. Because students

interacting with teaching systems are expected to transition to general purpose languages,

many teaching systems are intentionally similar to general-purpose languages. For

example, knowing that a student will eventually have to do “for loops” in a Java-style,

the designers of teaching languages are less likely to introduce a different style of

looping. Because general-purpose languages are not always designed with beginners in

mind, the systems in this category are juggling two possibly conflicting goals: making it

easier for beginners to get started programming, and giving students a background that

makes it easy for them to transition from the teaching system to a general-purpose

language.

The teaching systems focus on several areas that can be difficult for novice programmers.

The majority of the systems in this category address the mechanics of programming: both

expressing intentions to the computer and understanding the actions of the computer

(Norman 1986). Other systems attempt to place programming in a context that is

accessible and motivating to a wider audience of people, either by providing concrete

reasons for programming or by supporting novice programmers working together and

learning from one another.

11.3.1 Mechanics of Programming
The systems in this category are designed around the hypothesis that the primary barrier

in learning to program lies in the mechanics of writing programs. To successfully write a

program, users must understand several topics: how to express instructions to the

computer (e.g. syntax), how to organize these instructions (e.g. programming style), and

Chapter 11: Programming Languages and Environments for Novice Programmers 226

how the computer executes these statements. Systems in this category attempt to make it

easier for beginners to learn one of these three skills.

11.3.1.1 Expressing Programs
In most general-purpose languages, users create programs by typing sentences into a text

editor. Beginning programmers often have trouble translating their intentions into

syntactically correct statements that the computer can understand. The systems in this

category explore two possible avenues for making this process easier for beginning

programmers: improve the language such that beginners can more easily learn it or find

alternate ways for beginners to communicate their instructions to the computer.

11.3.1.1.1 Simplify Entering Code
Many general-purpose languages have been influenced by the need for sufficient power

to tackle arbitrary programming tasks and a desire to make the programming language

easier to implement, making the resulting languages unnecessarily difficult for beginning

programmers. The systems in this category examine three approaches to making

languages more approachable for beginning programmers: 1) simplifying the language,

2) tailoring the language for a specific, small domain of programming problems, and 3)

preventing syntax errors.

11.3.1.1.1.1 Simplify the Language
General-purpose languages typically include a large variety of syntactic elements that can

be particularly difficult for beginners because these syntactic elements don’t have an

obvious meaning. The languages in this category use a few simple observations to

decrease the number of potentially confusing syntactic elements encountered by

beginning users, while trying to maintain as much similarity as possible to general-

purpose languages. General-purpose languages often contain unnecessary syntax, use

commands whose names are unfamiliar or have different meanings in the programming

language than in standard English, have inconsistent uses for syntactic elements, or

include features inappropriate for beginning programmers. Using these observations, it is

possible to make a language syntactically easier for beginners to handle without

fundamentally changing the common control structures found in general-purpose

languages. Consequently, when a student moves from one of these languages to a

Chapter 11: Programming Languages and Environments for Novice Programmers 227

general-purpose language, they should be able to transfer their knowledge from the

teaching language.

BASIC: J.G. Kemeny and T. Kurtz, Dartmouth College, 1963 (Kurtz 1981)
Basic was designed to teach Dartmouth’s non-science students about computing

through programming. FORTRAN and ALGOL, the commonly used languages at the

time, were both large and complex. Kemeny and Kurtz believed that the students would

“balk at the seemingly pointless detail” (Kurtz 1981). After considering using subsets of

FORTRAN or ALGOL, Kemeny and Kurtz agreed they would have to create their own

language. The BASIC (Beginners All-purpose Symbolic Instruction Code) language was

designed to support a small set of instructions and remove unnecessary syntax. The

environment was designed to have rapid turn-around time and sacrifice computer time for

user time (in 1963, the computer science community was arguing against high level

languages because the compilation time was seemingly wasted computation).

Statements in BASIC consist of three parts: a line number (e.g. 110), an operator (e.g.

LET), and an operand (e.g. S = S + 1). All commands begin with an English word to

make the language easier for the novice; the designers believed that LET S= S + I would

be easier for students to understand than S = S + I. Figure 11.3(below) shows a simple

summation loop in both FORTRAN and BASIC. While the statements have a similar

structure, the BASIC program uses language more suitable for a novice, removes

elements like labels (e.g. 30) that require a more detailed understanding of the program

counter, and does not depend on spacing for syntactic meaning.

FORTRAN:
 do 30 i = 1, 10
 m = m + I
30 continue

BASIC:
100 FOR I = 1 TO 10
110 LET S = S + I
120 NEXT I

Figure 11.3:A for loop to compute the sum of the numbers from 1 to 10 written in FORTRAN and BASIC.

SP/k: R.C Holt et al, University of Toronto, 1977 (Holt, Wortman et al. 1977)
SP/k is a subset of PL/1 chosen for teaching introductory programming. The features of

the SP/k language were chosen to remove redundant constructs, inconsistencies in the

language that go against students’ intuitions (in PL/1 the expression 25 + 1/3 evaluates to

5.3333), constructs that are easily misused such as pointers, and constructs like

Chapter 11: Programming Languages and Environments for Novice Programmers 228

concurrent programming that are suited for advanced programmers. The difficulty of

compiling constructs was also considered. The result of pruning was a simpler language

for introductory programming that both students and teachers generally preferred over

FORTRAN. The authors also provided an order for introducing programming constructs

as a sequence of subsets of SP/k. SP/1 introduces expressions and output. By SP/8,

students have learned all of SP/k. By introducing things gradually, students can master a

small piece of the language at a time, allowing them to devote more time to problem

solving than memorizing the features of the language.

Turing: R.C. Holt and J.R. Cordy, University of Toronto, 1988 (Holt and Cordy
1988)
The Turing language was developed as both a general-purpose and instructional language

for the Computer Science Department at the University of Toronto. Consequently, while

the designers intended that Turing be used in teaching programming, the language design

was influenced by a desire to help expert programmers by including powerful

programming features. The Turing language contains all the features of Pascal (see

section 1.1.2.1) and adds dynamic arrays, modules, and varying length strings. In

addition, Turing simplifies the syntax by removing the requirement for headers declaring

the name of the program and semi-colons at the end of each statement.

Blue Language: M. Kolling and J. Rosenberg, University of Monash, 1996
(Kolling and Rosenberg 1996)
Blue is an object-oriented language designed to be taught as a first language. After using

Blue for a year, students are expected to move to an industrial language, such as C++.

The designers of the language used four criteria in creating Blue: there should be only

one way to do everything; the language should cleanly reflect the theoretical model; the

language should be readable so students can learn by reading examples; and the language

should explicitly support software engineering mechanisms like pre and post conditions.

The Blue language is a pure object-oriented language that supports single inheritance,

garbage collection, and strong static typing. Classes are defined in single files with a

structure that clearly reflects which routines others can call and which routines are

internal to the class by placing routines in separate internal and interface areas within the

file. Routine definitions include explicit pre and post conditions. Blue provides a single

Chapter 11: Programming Languages and Environments for Novice Programmers 229

loop structure that consists of a set of statements followed by a list of conditions that

should cause the loop to exit which can be used to create loops that function like

traditional for and while loops. Each loop exit condition can include statements to

execute if the loop exits on that particular condition. The designers of the language also

created an environment for beginning programmers that will be discussed separately.

JJ: J. Motil and D. Epstein, California State University and California Institute
of Technology, 1998 (Motil and Epstein 1998)
Full featured, general-purpose languages force beginning students to focus on the syntax

rather than the problem they are trying to solve in writing a program. JJ (Junior Java) is a

language designed to remove much of the syntactic complexity to allow students to focus

on the concepts of programming. It removes much of the punctuation such as braces and

semi-colons and has only one way to do anything; there is one integer type, one way to

create a comment, etc. The language also provides an easy migration to Java after the

first half of the semester. Students can either do this by hand or the environment can

convert their JJ code to Java automatically. Figure 11.4 shows an example of computing

weekly pay in JJ and the equivalent code in Java. Due to lack of adoption, the designers

of JJ have moved towards improving students’ classroom experiences with Java by

providing better compilation error messages and allowing students to program over the

web.

Computing weekly pay in JJ:
If (hours <= 40) then
 Set pay = 10 * hours
Else
 Set pay =
 400 + 15*(hours – 40)
EndIf

Output “The pay is “
Outputln pay

The same code in Java:
if (hours <= 40) {
 pay = 10 * hours;
} else {
 pay =
 400 + 15 * (hours – 40);
} // EndIf

System.out.print (“The pay is “);
System.out.println(pay);

Figure 11.4:A short segment of code to compute a worker’s weekly pay shown in both JJ and Java. Note the line
by line correspondence.

GRAIL: L. McIver, Monash University, 1999 (McIver 1999; McIver 2001)
GRAIL was developed in response to the hypothesis that “it is the unfamiliarity of

‘hieroglyphics’ (i.e. the language syntax) and the sheer complexity of the full theory that

Chapter 11: Programming Languages and Environments for Novice Programmers 230

are the primary stumbling blocks for the novice” (McIver 2001). Three guiding principles

governed the design of GRAIL: maintain a consistent syntax; use terms that novice

programmers are likely to be familiar with and avoid standard programming terms that

have different meanings in English; and include only constructs that are fairly simple and

have a “single, obvious syntax” (McIver 2001). These guidelines led to an imperative

language with many small differences from commonly used teaching languages such as

Pascal (see section 3.1.2 under New Programming Models). The list of changes is too

long to reproduce here, but we list a few to give the reader a feel for the kinds of changes

made for the GRAIL language. Rather than using * for multiplication, GRAIL uses x

because it is a symbol that novice programmers will understand from mathematics

classes. Values are assigned using an arrow indicating where the answer will be placed

since a = b is ambiguous. McIver removed pointers because they are difficult to use

correctly; using pointers it is very easy for beginners to create problems they cannot

easily understand or explain. The full details of the GRAIL language can be found in

McIver’s thesis.

11.3.1.1.1.2 Prevent Syntax Errors
One of the largest and most frustrating challenges for novice programmers is syntax. The

systems in this category are programming environments for existing languages such as

Pascal and Fortran that are designed to prevent users from making syntax errors using the

hierarchical structure of programs.

Cornell Program Synthesizer: T. Teitelbaum and T. Reps, Cornell University,
1981 (Teitelbaum and Reps 1981; Reps and Teitelbaum 1989)
The Cornell Program Synthesizer was a structure editor designed to prevent students

from making syntax errors. Using the synthesizer, students constructed programs by

adding pre-defined templates for statements in a programming language (see Figure 11.5

below). A template often contains placeholders for statements, conditions, or phrases.

These are essentially blanks for the user can fill in. To prevent syntax errors, the system

presented only templates that would be syntactically valid at the cursor’s current location.

Students could use the arrow keys to move to the next or previous place in their program

where they could add, remove, or edit a template based on the abstract syntax tree. While

the designers of the Cornell Program Synthesizer originally wanted to require programs

Chapter 11: Programming Languages and Environments for Novice Programmers 231

to always be syntactically valid, they found this requirement made certain kinds of edits,

such as changing a variable name, extremely difficult. In response, they changed the

Cornell Program Synthesizer to allow syntactically invalid statements but highlight to

draw the user’s attention.

An If-statement template in the Cornell Program Synthesizer:

IF (condition)
 THEN statement
 ELSE statement

Figure 11.5:This is an If-statement template as it appeared in the Cornell Program Synthesizer. The words
“condition” and “statement” are placeholders the user replaces with a condition (such as k < 1) or a

programming statement, respectively.

GNOME: P. Miller et al, Carnegie Mellon University, 1984 (Miller, Pane et al.
1994)
The GNOME environments were an attempt to make a structure editor for novice

programmers that was more versatile than the Cornell Program Synthesizer. GNOME

displayed programs hierarchically, encouraging students to think about programs as

hierarchical collections of procedures. Students navigated through their programs using

arrow keys that corresponded to movements in the abstract syntax tree; GNOME

displayed program segments in the familiar textual form. When the programmer

attempted to move the cursor after an edit, GNOME analyzed the program, reported any

syntax errors, and prevented the programmer from moving on until the program was

syntactically correct. The programmer could also request an analysis of the program at

any time. While this environment prevented syntax errors, it actually required students to

think more about syntax than they previously had: they needed to have a mental model of

the syntax tree to navigate through the system; the abstract syntax representation

sometimes differed from the textual representation (particularly with mathematical

equations); and the requirement for syntactic correctness sometimes prevented students

from making desired changes in the program because the fastest route to a correct

program required intermediate stages that were not syntactically correct. GNOME

environments were created for Karel the Robot, Pascal, Fortran, and Lisp.

MacGnome: P. Miller et al, Carnegie Mellon University, 1986 (Miller, Pane et al.
1994)

Chapter 11: Programming Languages and Environments for Novice Programmers 232

The MacGnome project attempted to cleanly integrate structure-editing capabilities of

GNOME with the text-editing model present in traditional programming editors. The

GNOME project demonstrated that students have difficulty navigating in the abstract

syntax tree; to alleviate this problem, MacGnome allowed students to navigate using

point and click with a mouse. In GNOME, students often had trouble modifying code

because of the requirement to maintain syntactic correctness. Rather than requiring

syntactic correctness at all times, the MacGnome project editors converted the syntax tree

into a textual representation to allow editing without syntactic constraints. Once the user

finished editing, it converted the modified code back to tree representation using an

incremental parser. By allowing students to edit code textually, the MacGnome

environment could not prevent syntax errors. However, MacGnome detected and reported

all syntax errors as soon as the code was parsed, allowing students to correct them before

moving to other sections of the program. The novice programming environments

produced as a result of the MacGnome project are called Genies.

11.3.1.2 Find Alternatives to Typing Programs
Despite the attempts to make programming languages simpler and more understandable,

many novices still struggle with syntax: remembering the names of commands, the order

of parameters, whether or not they are supposed to use parentheses or braces, etc.

Another large set of systems are designed around the belief that to enable novices to

understand what programming really is, we need to bypass the syntax problems

altogether. The systems in this category represent three major approaches to bypassing

syntax: creating objects that represent code that can be moved around and combined in

different ways, using actions of the user within the interface to define programs, and

providing multiple mechanisms for creating programs.

11.3.1.2.1 Construct Programs Using Graphical or Physical
Objects

The systems in this group use graphical or physical objects to represent elements of a

program such as commands, control structures, or variables. These objects can be moved

around and combined in different ways to form programs. Novice programmers need

Chapter 11: Programming Languages and Environments for Novice Programmers 233

only to recognize the names of commands and the syntax of the statements is encoded in

the shapes of the objects, preventing them from creating syntactically incorrect

statements.

TORTIS – Slot Machine: R. Perlman, MIT Artificial Intelligence Lab, 1976
(Perlman 1976)
The TORTIS Slot Machine is a physical interface that allows young children to control a

robotic turtle inspired by the Logo turtle (see section 4.1.2 under Make the Language

More Understandable); since the robotic turtle is very slow, a simulated on-screen

graphical version is provided for more advanced students. The Slot Machine consists of a

set of command cards and rectangular boxes (called rows), which represent procedures

and contain slots for command cards. Children created Slot Machine programs by placing

cards in slots of the rows and having the turtle execute the cards in order. The Slot

Machine provided several uniquely colored rows so that children could create different

procedures in each row. Children could call their procedures using a colored card

instructed the Slot Machine to execute the cards in the row corresponding to that color.

Pict: E. Glinert and S. Tanimoto, University of Washington, 1984 (Glinert and
Tanimoto 1984)
Pict allows novice programmers to create simple programs by connecting graphical icons

that represent commands. Pict allows users to build programs that do simple numeric

calculation using the addition and subtraction of integers, variable assignment, and

Boolean tests. To create a program, users select relevant icons (commands) from a menu

screen area and position them on a workspace screen area using a joystick. After

positioning icons on the workspace, the user can connect a pair of icons together by

clicking on the two endpoints in turn. When a user runs a program, Pict animates the

execution of the program by moving a white box along the execution path of the

program. Users can run a Pict program at any point in its development, if the running

program reaches a point where its behavior has not been specified, it will halt and notify

the user that additional programming is necessary.

Play: S. Tanimoto and M. Runyan, University of Washington, 1986 (Tanimoto
and Runyan 1986)

Chapter 11: Programming Languages and Environments for Novice Programmers 234

Play is a system designed to allow preliterate children to create graphical plays using an

iconic language. Stories consist of a linear sequence of actions that is displayed at the top

of the screen, above the story’s stage, as a sequence of icons similar to a comic strip. The

character, what the character should do, and one additional piece of information, typically

a direction to move, all selected from menus, specify each action in the story. Play also

provides a character editor where children can draw additional images of their characters

and compose those images to create new animations. Play does not allow children to use

more complicated control structures such as loops and conditionals or define procedures.

Show and Tell: T. Kimura et al, Washington University and Bell Labs, 1990
(Kimura, Choi et al. 1990)
Show and Tell is a data flow based visual language designed for children. A program in

Show and Tell consists of a series of connected boxes. A box can represent a value or an

operation on values. The program includes boxes that represent basic arithmetic

functions, system input and output, and some special purpose boxes that play sounds or

act as timers, etc. Children can build procedures by drawing their own icon for a box and

defining what should happen in the procedure using other boxes. Procedures can call

themselves. Because boxes are not permitted to form cycles or loops, users cannot

construct for and while loops. However, Show and Tell provides an iteration box that

provides bounded iteration, in other words, the function will continue repeating until a

boundary value is reached. If two connecting boxes contain different values (e.g. 2 and

3), they and their parent box are marked “inconsistent” and become invisible to the other

boxes. By checking for consistency and inconsistency in particular boxes, children can

represent simple Boolean conditions.

My Make Believe Castle: Logo Computer Systems Incorporated, 1995 (1995)
My Make Believe Castle is a play program for children ages 4-7 that contains activities

designed to help develop children’s problem solving, critical thinking, sequential

planning, and memory. The castle consists of a number of rooms, each containing an

activity. In the courtyard of the castle, characters such as the dragon, prince, princess, and

horse move around. When the user clicks on them with a particular tool, they will dance,

slip on banana peels, do somersaults, etc. After children have played in the courtyard

space, they can be introduced to a very simple, rule-based programming system. Editors

Chapter 11: Programming Languages and Environments for Novice Programmers 235

for each character allow children to specify which action a character should take when it

meets another specific character. A typical rule might be “Nicky dances when it meets

the horse” (see Figure 11.6). Rules are specified graphically; children select the action

using icons and the character that should trigger the action by selecting a picture of that

character.

Figure 11.6: A view of the My Magic Castle courtyard. The user is creating the rule “Nicky should dance when it

meets the horse.”

Thinkin’ Things Collection 3- Half Time: Edmark Corporation, 1995 (1995)

Half Time is one of the activities in the computer game Thinkin’ Things Collection 3.

The activity revolves around creating a half time show (see Figure 11.7). Users can select

characters from the top left and drag them onto the field; each half time show can have a

total of thirty characters across three types (such as tuba, percussion, and trumpet

players). At the bottom of the screen, there is a line for each of the three types of

characters in which users can drop instructions for them to perform. The available

instructions are similar to those of the Logo (see section 4.1.2 under Make the Language

More Understandable) turtle: move forward, turn left and right, turn randomly, pause,

pen down and up, etc. Programs are created by dragging the icons for instructions (shown

below the football field) into the lines for a particular type of character. Counted loops

are supported, but no other block statements are available.

Chapter 11: Programming Languages and Environments for Novice Programmers 236

Figure 11.7:A screenshot of Half Time from Thinkin Things Collection 3

LogoBlocks: A Begel, MIT Media Lab, 1996 (Begel 1996)
LogoBlocks is a graphical programming language designed for the Programmable Brick,

a precursor to the commercial Lego Mindstorms system (1998), developed by the MIT

Media Lab (see Figure 11.8). In LogoBlocks, labeled graphical shapes represent

commands in BrickLogo, an extension of Logo (see section 4.1.2 under Make the

Language More Understandable) that provides commands for the Programmable Brick.

These graphical blocks can be dragged off a tool palette on the side of the screen to a

main work area where they can be placed next to other blocks to form programs. Like

many visual programming environments, changes to programs may require the user to

move existing statements to make room for new ones. The parts in the palette can take

several forms, for example a block marked ‘A’ specifies the motor A as the recipient of

commands following it, but, by clicking on the ‘A’ block, the user can turn it into a ‘B’ or

an ‘AB’ block. Commands and conditionals also have multiple forms; the blocks in the

tool palette represent kinds of objects rather than all available objects. Commands and

conditionals requiring arguments have shapes with cutouts for placing the arguments so

that it is clear both that the command requires an argument, and the type of the argument

Chapter 11: Programming Languages and Environments for Novice Programmers 237

which is specified by the shapes of blocks that will fit into the cutout. LogoBlocks

includes support for procedures; users can attach commands to purple procedure blocks

and name their procedures.

Figure 11.8:A LogoBlocks program that waits for a light sensor to get a reading of less than 10 and then turns

motor A on for 20 seconds.

Pet Park Blocks: A. Cheng, MIT Media Lab, 1998 (Cheng 1998)
Pet Park Blocks is a graphical programming language, inspired by LogoBlocks, which

was developed for the Pet Park collaborative environment (described in 3.2.1 under

Networked Interaction). Animations are represented by notched squares that fit together.

Conditionals are represented by squares with half oval cutouts where conditions can be

added. Like LogoBlocks, programming constructs are kept in a palette from which users

can drag them onto an active area. Pet Park Blocks provides a button that allows users to

see their Blocks program as a textual program. This allows users to gradually transition to

text-based programming.

Drape: M. Overmars, Universiteit Utrecht, 2000 (Overmars)
Drape is a programming environment that allows users to draw pictures (see Figure 11.9).

There is a collection of pictorial icons on the left side of the interface that represent

Chapter 11: Programming Languages and Environments for Novice Programmers 238

different commands similar to the Logo (see section 4.1.2 under Make the Language

More Understandable) turtle commands: pen up, pen down, move in different directions,

move in shapes, etc. The icons can be dragged to the lines at the bottom of the screen that

represent the program; commands are executed from left to right. There are extra lines

associated with their own icons that can serve as procedure calls. The system does have

support for some predefined blocks such as repeat 10 times (shown as x10) However, to

apply the repeat 10 to more than a single object, the sequence needs to be enclosed in

brackets, which introduces the possibility for syntax errors in the form of mismatched

braces.

Figure 11.9:DRAPE Drawing and Programming Environment allows children to draw pictures.

Electronic Blocks: P. Wyeth and H. Purchase, University of Queensland, 2000
(Wyeth and Purchase 2000)
Unlike the graphical objects used to construct programs in other systems, Electronic

Blocks are physical Lego blocks designed to allow young children (ages 3-8) to create

Lego forms with interesting behaviors (see Figure 11.10). Preschool children can build

block towers that flash when they talk or cars that move when a flashlight shines on

them. Three types of blocks are provided: sensor blocks that can detect light, sound, and

touch; logic blocks that can compute AND, NOT, TOGGLE, and DELAY; and action

Chapter 11: Programming Languages and Environments for Novice Programmers 239

blocks that can produce light, sound, and motion. The syntax of Electronic Blocks is very

simple; the only requirements are that each stack includes a sensor block and an action

block and that the action block be at the bottom of that stack. Action blocks are smooth

on the bottom so they cannot be placed on top of other block types.

Figure 11.10:Electronic Blocks: the three sensing blocks are pictured on the left, the logic blocks in the middle,

and the action blocks on the right

Alice 2: Carnegie Mellon University, 2002 (2003)
Alice is a programming system for building 3D virtual worlds, typically short animated

movies or games. In Alice users construct programs by dragging and dropping graphical

command tiles and selecting parameters from drop-down menus. Figure 11.11 shows an

Alice screen as a user creates a simple animation. To add to the current animation, the

user drags a graphical tile labeled with the name of the desired action from the selected

object’s methods, in this case the IceSkater’s methods, displayed in the lower left panel.

When the user drops the tile, the system automatically cascades to menus that allow the

user to select valid parameters for the chosen method. In Figure 11.11 the user has just

dragged and dropped IceSkater turn from the panel and has chosen to have IceSkater turn

right one full turn. Students can also add standard programming control structures such as

if-statements and loops by dragging if and loop tiles from the top bar. Where many no-

typing programming systems present users with only a few of the standard programming

constructs, Alice allows students to gain experience with all of the standard constructs

taught in introductory programming classes without making syntax errors.

Chapter 11: Programming Languages and Environments for Novice Programmers 240

Figure 11.11:Building my first animation in Alice. In my first animation, IceSkater moves forward while she raises

her leg. Then, if IceSkater is close to a hole in the ice, she falls through it.

Magic Forest: Logotron, 2002 (2002)
Magic Forest (see Figure 11.12) allows children ages four and up to play with, change,

and create Activities that consist of 2D sprites that can move around, change appearance,

and react to simple events. Each sprite can be given a set of Rules (represented by a scroll

containing stones), a combination of an event and a list of things that should happen, in

order, after that event occurs. Both events and actions are represented by graphical stones

that can be identified by their icons, making it possible for children to learn how to use

Magic Forest without needing to know how to read. Magic Forest supports a variety of

events, such as mouse based events, events based on the relative positions of objects, and

message passing events. Actions might change the direction or speed of an object, the

appearance of an object, send a message, play sounds, or update the score. To add a new

rule to a sprite, a child selects an event from a scrolling list of available event stones,

clicks on it to pick it up, and then drops it onto a scroll associated with that sprite. The

child can then attach action tiles to the end of the event. As in Logoblocks, some tiles can

have multiple forms; a single tile can be used to increase the speed, heading, or size of an

Chapter 11: Programming Languages and Environments for Novice Programmers 241

object. Children can click on a tile to change which form it takes (increase speed,

heading, or size).

Figure 11.12:Magic Forest allows children to control the actions and appearances of 2D characters. This activity
has five characters: a witch, a cat, and three spiders. The witch has two rules controlling her behavior. The top

one (blue tile on a scroll) allows the user to move the witch around the scene. The second says that when the
witch touches another object, she should make a sound (e.g. laugh). The witch also has an empty scroll to which
the user can add new behaviors by selecting events and actions from the brown window at the top of the screen

and placing them together on her scroll.

JPie: Washington University, 2003 (Goldman 2003; Goldman 2004)
Particularly at the college-level, there are two competing goals for introductory

programming: 1) to introduce students to the ideas and concepts of computer science and

2) to train students in writing programs in a commercial programming language

(commonly Java). JPie is a programming environment that allows users to construct Java

programs (using any part of the Java 1.4. API) through direct manipulation, primarily

drag and drop. JPie is unique in providing not only access to all the programming

constructs typically taught in an introductory class, but also providing full access to the

Java API rather than providing methods for actors in a micro-world.

Chapter 11: Programming Languages and Environments for Novice Programmers 242

Figure 11.13: An image of the “Person” class within JPie. A person has a name and a birthday as well as
methods that for getting and setting the person’s name and birthday. In the methods panel, the user is editing

the “setName” method which takes a string value and places the value in the “name” variable.

11.3.1.2.2 Create Programs Using Interface Actions
The systems in the previous category used the metaphor of constructing programs by

arranging physical or graphical objects, the systems in this category use interface actions

(such as button presses or motion through space) or sequences of interface actions as the

building blocks of programs. Since most of these interfaces are on physical objects, the

interfaces either tend to provide a limited number or commands or require the user to

perform interface actions (such as pressing buttons) in a specific sequence, introducing

the possibility for sequences of actions that do not correspond to valid program

instructions.

TORTIS – Button Box: R. Perlman, MIT Artificial Intelligence Lab, 1976
(Perlman 1976)
The TORTIS Button Box is a physical interface that allows young children to control a

robotic turtle inspired by the Logo turtle. The Button Box provides a set of four boxes for

controlling the turtle that can be given to a child gradually. The first box provides buttons

Chapter 11: Programming Languages and Environments for Novice Programmers 243

that move and turn the turtle, pick up or put down the pen, turn a light on and off, and

sound a horn. The second box adds numbers such that a child can repeat a command

multiple times by pressing a number followed by a command. The third box adds a

program area where children can get the turtle to “remember” commands and then play

back remembered commands. The fourth and final box creates four procedures (named

by colors) that can call each other. The button box system did not allow students to edit

programs after creating them, making the gradual modification of programs difficult.

Roamer: D. Catlin, Valiant Technologies, 1989 (Catlin 1989)
Roamer is a programmable, mobile robot that has capabilities similar to those of the Logo

turtle: the Roamer can move forward and back, turn left and right, wait, and make

sounds. Programs are entered using a set of buttons, icons for the commands and a

number pad to indicate how far to move or turn and what sound to play. Buttons are also

provided for creating procedures and repeating statements. The Roamer can remember up

to 59 instructions in either the main program (the GO program) or numbered procedures

that can be called from the GO program or each other. An expansion set allows users to

add on sensors, two-state outputs, and a stepper motor, allowing a greater variety of

programs.

LegoSheets: Gindling et al, University of Colorado, 1995 (Gindling, Ioannidou et
al. 1995)
LegoSheets attempts to provide a gentle introduction to programming for the MIT

Programmable Brick by beginning with manual control of the elements of the brick and

gradually progressing to writing programs. Users are presented with a simulated version

of the Programmable Brick in which the parts can be manipulated; users can change the

speed of a motor connected to the simulated brick by typing in a value or using arrow

buttons to increase or decrease the value. Once users are comfortable with manipulating

the values of motors and observing the values of sensors in response to different types of

actions, they can double click on the representation of a motor or sensor and bring up a

rule editor for that object. The rule editor provides buttons to add conditionals or initial

values to control the behavior of the brick. Conditionals are provided in a template form

where users only have to type the names of objects they want to use and arithmetic

Chapter 11: Programming Languages and Environments for Novice Programmers 244

operations. There are also buttons for increasing and decreasing the priority of the current

rule.

Curlybot: P. Frei et al, MIT Media Lab, 2000 (Frei, Su et al. 2000)
Curlybot is an educational toy for children aged four years and older. It consists of a two-

wheeled vehicle with electronics that allow it to record its motions. The Curlybot has a

single button and a single LED. The LED is used to indicate whether it is in record mode

(red) or playback mode (green). When a child wants to record a motion, he or she pushes

the button, demonstrates the motion, and then pushes the button again, which stops

recording and starts replaying the motion. The motion is repeated until the button is

pushed again, turning Curlybot off. While Curlybot cannot provide the complexity of a

full programming language, it does allow children to gain intuition about repeated

motions. The designers describe how sensors could be added to Curlybot to allow

children access to if and while statements, but these additions have not been

implemented.

11.3.1.2.3 Provide Multiple Mechanisms for Creating Programs
Entering programs as text can be much harder than alternatives such as direct

manipulation or form filling but often gives the student more power. In a system that

provides multiple mechanisms for specifying programs and represents the resulting

program in all program formats, students can use an easier method of program

specification to help in learning a more complex, more powerful one. The system in this

category provides multiple methods, including standard text, for specifying programs so

that students can leverage the simpler methods to learn to program in a standard, textual

format.

Leogo: A. Cockburn and A. Bryant, University of Canterbury, 1997 (Cockburn
and Bryant 1997)
Leogo (see Figure 11.14) is a system that produces drawings similar to the Logo turtle

(see section 4.1.2 under Make the Language More Understandable). However, rather

than concentrating on one method for creating programs, it provides three: a typed syntax

similar to Logo, a direct manipulation interface in which the turtle is dragged around and

his actions are recorded, and an iconic language which contains templates for defining

Chapter 11: Programming Languages and Environments for Novice Programmers 245

structures and using common turtle commands. Motions are expressed in all code styles

simultaneously; when the turtle is dragged forward 15 units, the text window shows

forward 15, and the iconic window shows forward 15 in icons so it is possible to learn

some of the iconic and typed languages using direct manipulation.

Figure 11.14: The Leogo interface showing iconic, direct manipulation, and textual programming.

11.3.1.3 Structuring Programs
These systems concentrate on the structure of code and how it is organized rather than on

the syntax of short segments of code. This section includes systems that have tried new

paradigms for programming. There are two groups here – ones that are changing the

paradigm and ones that are trying to make changed paradigms more understandable

11.3.1.3.1 New Programming Models
These systems explore new paradigms for organizing code.

Pascal: N. Wirth, Institut fur Computersysteme, 1970 (Wirth 1993)
The first version of Pascal was created in 1970 for use in teaching programming,

particularly systems programming. At the time, the other available languages were

FORTRAN, COBOL, and Algol, none of which supported the Structured Programming

Chapter 11: Programming Languages and Environments for Novice Programmers 246

proposed by Dijkstra (Dijkstra 1969). Pascal was introduced in beginning programming

classes in 1971 to enable professors to teach Structured Programming to their students in

their first course. Although Pascal was designed with teaching in mind, the improvements

in the language can be seen as general improvements in programming languages. Algol,

one of the primary influences, had ambiguities in the ways nested ifs could be

interpreted; Pascal removed these. In addition, Pascal added new basic types and the

ability to define special purpose types through record statements.

Smalltalk: A. Kay and A. Goldberg, Xerox PARC, 1971 (Kay 1993)
The first version of Smalltalk was created in 1971 at Xerox PARC as the language for the

KiddyKomputer, Alan Kay’s original name for a portable computer designed for use by a

child. Where BASIC attempted to provide a simpler programming language by reducing

the number of commands and removing unnecessary syntax, the Learning Research

Group (LRG) at PARC concentrated on the model of programming. The group wanted to

create a programming language with a simple model of execution and a method of

programming that could accommodate a wide variety of programming styles. Smalltalk

was based around three ideas: (1) everything is an object, (2) objects have memory in the

form of other objects, (3) and objects can communicate with each other through

messages.

Playground: J. Fenton and K. Beck, Apple Computer, 1989 (Fenton and Beck
1989)
Playground is an object oriented programming environment designed to allow children to

create their own graphical objects and give them behavior. The programming model was

based on a biological metaphor in which all objects are independent “organisms”; the

model was influenced both by Minsky’s Society of Mind (Minsky 1986) and by classical

ethology (the study and description of animal behavior). Each object has its own sensors,

effectors, and processing elements so it can act independently. Programming in

Playground is rule-based; rules describe both the action and the circumstances under

which it should occur. Students specify rules for each object using a natural-language-

influenced scripting language. One of the suggested projects for the system is a virtual

aquarium with different species of fish and plankton that feed on each other. A fish might

Chapter 11: Programming Languages and Environments for Novice Programmers 247

have a rule that caused it to eat an algae cell if it saw one and was hungry. A larger fish

might eat a smaller fish.

Kara: R. Reichert, W. Hartmann, J. Nievergelt, M. Braendle, T. Schlatter ETH
Zurich, 2001 (Hartmann, Nievergelt et al. 2001)
Kara is a graphical programming language based on Karel the Robot that uses finite state

machines to organize procedures (see Figure 11.15 below). Kara can move, turn, pick up

and place clovers, and detect tree stumps and clovers; these commands and questions are

represented graphically. In each state, the user can ask questions of Kara’s current

position and, based on the answers to these questions, supply a sequential list of

instructions and the name of the next state in the machine. The finite state machine

diagram of the program is provided to show the structure of the program and to allow the

user to select a pre-existing state to edit. The use of the simple finite machine model for

programming allows the Kara environment to be completely graphical; no typing is

necessary, which is an advantage for beginning programmers. In addition, to aid the

transition from introductory programming in Kara to “real programming” the authors

have supplied JavaKara, an environment that provides a transition to Java, MultiKara, an

environment that introduces concurrent programming, and TuringKara, an environment

that allows students to experiment with Turing machines in a two dimensional plane.

Chapter 11: Programming Languages and Environments for Novice Programmers 248

Figure 11.15: A screenshot of Kara showing a finite state machine with three states: enter, exit, and stop. Below
the state machine are Kara’s instructions based on whether there are tree stumps beside her. Each line contains
instructions for a given scenario. For example, if there is a stump on Kara’s right and not on her left, she should

move forward and go to state enter.

11.3.1.3.2 Making New Models Accessible
Some programming styles, such as object-oriented programming, can be difficult for

beginners to understand but can be helpful either in organizing larger programs or

representing particular types of behaviors. Rather than requiring novice programmers to

learn multiple styles of programming, the systems in this category attempt to make these

more complex, but ultimately helpful, styles of programming accessible to novice

programmers.

Liveworld: M. Travers, MIT Media Lab, 1994 (Travers 1994)
Liveworld is an object oriented programming environment built to improve on

Playground (see section 3.1.2 under New Programming Models). In Playground, creating

and interacting with graphical elements is very simple, but interacting with the rules and

attributes that govern the behavior of the objects is much more difficult. Liveworld

attempts to create a graphical interface for the rules and attributes of objects so they are

more accessible to novice programmers. The interface is similar to a hierarchical browser

(see Figure 11.16 below); parts of objects can be opened, revealing the details of those

objects. The user can dive down and change the Lisp code controlling the behavior of

objects or simply use the objects, depending upon how much detail the user of the system

wants to see. This allows novice programmers to use more complicated objects as black

boxes, which would have been difficult in Playground.

if (> (ask self :distance-
senser)
 (ask self :last-
distance))
(ask self: turn-left (arand 0
180))
(ask self: turn-left (arand 0
10)))

Chapter 11: Programming Languages and Environments for Novice Programmers 249

Figure 11.16: (a) A simple world in Liveworld containing two objects, an oval and a turtle. The turtle is open so
that the user can see its details. (b) An example of Lisp code used in Liveworld to turn a turtle.

Blue Environment and BlueJ: M. Kolling and J. Rosenberg, University of
Sydney, 1996 (Kolling and Rosenberg 1996) (Kolling, Quig et al. 2003)
The Blue environment and BlueJ are development environments designed to support

object-oriented programming in the Blue language and Java, respectively. The authors of

the Blue environment and BlueJ believe that Integrated Development Environments

(IDEs) for object-oriented language should encourage users to develop and test individual

classes rather than requiring users to always create complete programs. Yet, most

common Integrated Development Environments (IDEs) for object-oriented languages

such as Java and C++ still require students to build full programs that have a single entry

point. In contrast, the Blue environment and BlueJ provide users with a class-testing

bench, which they can use to instantiate individual objects, call their methods, and inspect

their internal data. This allows users to test individual objects outside of the context of the

running program, better supporting an object-based design. The Blue environment and

BlueJ also support object-oriented programming by explicitly representing the

relationship between the objects in a graphical tree. Users can click on a particular class

to view the code for that class. Compiling and debugging are also supported in the

environment, similar to other commercially available IDEs.

Karel++: J. Bergin et al, Pace University, 1997 (Bergin, Stehlik et al. 2001)
Karel J Robot: J Bergin et al, Pace University, 2000 (Bergin, Stehlik et al. 1996)
J. Karel: B. Becker, University of Waterloo, 2004 (Becker 2004)

Karel J Robot, J.Karel, and Karel++ are versions of Karel the Robot that concentrate on

preparing students for object-oriented programming rather than procedural programming.

Karel J Robot and J Karel use Java-style syntax; Karel++ uses C++ style syntax. Rather

than creating procedures to teach Karel to turn right, students subclass a basic robot to

create a right-turning robot. These systems all leverage off the success of the original

Karel the Robot to attempt to introduce object-oriented programming early such that

thinking and programming in an object-oriented manner will seem more natural to

students.

Chapter 11: Programming Languages and Environments for Novice Programmers 250

11.3.1.4 Understanding Program Execution
A syntactically correct program may not perform the actions that the student author

intended. For beginning programmers, understanding how programs are executed and

how to find mistakes in their programs can be difficult. The systems in this category try

to help students understand what happens during the execution of programs, either by

placing programming into a concrete setting or by providing a physically based model of

how programs are executed in more general-purpose languages.

11.3.1.4.1 Tracking Program Execution

Atari 2600 BASIC: W. Robbinett, Atari, 1979 (Robinett 1979)
The Atari BASIC Cartridge allowed children to write short programs in a variant of the

BASIC language and watch them as they executed. Atari BASIC divided the screen into

six regions: the Program region, which displayed the child’s program; the Stack region,

which displayed expressions as they were evaluated; the Variables region, which

displayed each variable and its current value; the Output region, which displayed all

program output; the Graphics region, a 2D graphical region with sprites; and the Status

region, which displayed the current execution speed of the interpreter and the amount of

remaining memory. Atari BASIC contained simple support for observing what was

happening as the program executed, similar to the supports found in many debuggers. As

a child’s program ran, several parts of the display changed to reflect the current state of

the program: a program cursor showed the current line of code being executed; the stack

updated as expressions were added or evaluated; the values of variables changed as

appropriate; sprites might move in the graphics region; and the program might play a

sound.

Chapter 11: Programming Languages and Environments for Novice Programmers 251

Figure 11.17: A simple program in Atari 2600 BASIC. The areas of the screen update to show the current

position and state of the program.

11.3.1.4.2 Make Programming Concrete: Actors in Microworlds

Most introductory programs in general-purpose languages are fairly abstract; the

computer performs arithmetic operations on numbers and stores the results in invisible

registers, making it difficult for students to understand and correct problems in their

programs. The micro-world, inspired by the Logo turtle (see section 4.1.2 under Make the

Language More Understandable), attempts to make programming more concrete by

introducing students to programming constructs through controlling the behavior of an

actor in a simple, physically based world. The actors usually perform only a few actions,

resulting in small languages that students can master more quickly than general-purpose

languages. Micro-world based systems also typically include simulators that allow

students to watch the progress of their programs. These simulators require the states of

micro-worlds to be graphically visible. Using micro-worlds, students can quickly gain

familiarity with many of the control structures like if-statements and loops, allowing

them to devote more time and energy to mastering the syntax and new commands when

they move on to general-purpose languages.

Karel: R. Pattis, Carnegie Mellon University, 1981 (Pattis 1981)
Karel the Robot is one of the most widely-used mini-languages, originally designed for

use at the beginning of a programming course, before the introduction of a more general-

purpose language. Karel is a robot that inhabits a simple grid world (see Figure 11.18)

with streets running east-west and avenues running north-south. Karel’s world can also

Chapter 11: Programming Languages and Environments for Novice Programmers 252

contain immovable walls and beepers. Karel can move, turn, turn himself off, and sense

walls half a block from him and beepers on the same corner as him. A Karel simulator

allows students to watch the progress of their programs step by step. Unlike many of the

systems discussed in this paper, Karel is supported by a short textbook, making it easier

for teachers to incorporate Karel in their classes.

Figure 11.18: Left, a simple Karel world with Karel in a room and a beeper outside the door. On the right, a
program that will move Karel to the beeper’s location and have him pick up the beeper.

Students can create procedures using DEFINE-NEW-INSTRUCTION (see Figure 11.18),

but variables and data structures are not supported in the language. The syntax was

designed to be similar to Pascal (see section 3.1.2 under New Programming Models) to

ease the transition from Karel to Pascal after the first few weeks of an introductory

programming course. There are a number of other robot-based micro-worlds that are

described in a survey of mini-languages (Brusilovsky, Calabrese et al. 1997).

Josef the Robot: I. Tomek, Acadia University, 1983 (Tomek 1983)

Like Karel, Josef is intended to introduce programming to beginners using a robot, Josef,

in a simulated world. Josef lives in Wolfville, which is represented by an ASCII map;

users can replace the map of Wolfville with one of their own choosing. He knows how to

turn left and right, and move forward. The user can also set the speed at which Josef

moves. However, unlike Karel, Josef can say and listen for text strings, enabling input -

BEGINNING-OF-PROGRAM
 DEFINE-NEW-INSTRUCTION turnright AS
 ITERATE 3 TIMES
 turnleft;

 BEGINNING-OF-EXECUTION
 turnright;
 ITERATE 2 TIMES
 move;
 turnleft;
 ITERATE 2 TIMES
 move;
 turnleft;
 ITERATE 2 TIMES
 move;
 turnleft;
 move;
 pickbeeper;
 turnoff;
 END-OF-EXECUTION
END-OF-PROGRAM

Chapter 11: Programming Languages and Environments for Novice Programmers 253

output programs. Additionally, he can drop text markers (e.g. the string “cat”) similar to

Karel’s beepers anywhere in his world. Unlike Karel, Josef was intended for use in a full

semester of programming for non Computer Science majors. To support a full semester

of use, it includes many more programming constructs than Karel, such as parameters,

variables, and recursion.

Turingal: P. Brusilovsky, University of Pittsburgh, 1991 (Brusilovsky 1991)
Turingal is micro-world based language in which the actor is a Turing machine and the

world is the infinite tape designed to give students exposure to the standard programming

constructs as well as the classic Turing machine. The instructions in the language allow

the actor to move left and right along the infinite tape as well as read and write symbols

on the tape. Like Karel, the basic instructions are easy to visualize. The Turingal

language supports conditional, loop and case statements and procedures so that students

can gain experience with them in a visual setting. The language uses Pascal syntax (see

section 3.1.2 under New Programming Models) to ease the transition from Turingal to

Pascal. In support of a computer literacy course for Russian high school students,

Brusilovsky also created Tortoise, a micro-world based on Turingal which uses a two-

dimensional field of symbols to make it more attractive to younger students (Brusilovsky,

Calabrese et al. 1997).

11.3.1.4.3 Models of Program Execution
Rather than creating a language that has a simple, physical interpretation, the systems in

this category provide physically based metaphors for explaining actions in a more

general-purpose language. These metaphors can help students both to imagine the

execution of their programs and perhaps more clearly understand why their programs do

not perform as expected.

ToonTalk: K. Kahn, Animated Programs, 1996 (Kahn 1996)
ToonTalk uses a physical metaphor for program execution. In ToonTalk, cities and the

creatures and objects within those cities represent programs (see Figure 11.19). Most of

the computation takes place inside of houses where trainable robots live. Robots can

communicate with robots in other houses using birds that carry objects back to their

nests. Using interaction techniques commonly found in videogames, users can navigate

Chapter 11: Programming Languages and Environments for Novice Programmers 254

around the cities, pick up tools, and use those tools to affect objects. Users can construct

programs by entering the thought bubbles of robots and showing them what they should

do using standard ToonTalk tools.

Figure 11.19: A view of ToonTalk from inside a house. Marty the Martian provides information about objects

and what they can do.

Prototype 2: D. Gilligan, Victoria University, 1998 (Gilligan 1998)
Prototype 2 personifies the flow of control in a computer using a clerk following

instructions. The clerk can interact with calculators, I/O devices, worksheet machines,

and his clipboard in executing a program. Calculators represent the computer’s math

processor, I/O devices represent communication with the computer user, the clipboard

represents the program stack, and the worksheet machines produce stacks of worksheets

that represent the instructions in user-defined subroutines. Rather than imagining the

internals of a computer, a novice programmer can imagine the clerk walking around a

room interacting with calculators, I/O devices, worksheet machines, and his clipboard,

and executing the instructions specified on his clipboard. This model was used in the

creation of a programming by demonstration-based system in which the user plays the

part of the clerk and demonstrates the actions the clerk should take. The system records

these actions. While Prototype 2 uses an anthropomorphic metaphor, the system does not

Chapter 11: Programming Languages and Environments for Novice Programmers 255

include a graphical representation of the clerk and the objects in his world; instead it is a

standard graphical user interface with sections of the interface that represent each of the

objects in the clerk’s world (e.g. the calculator, I/O devices, etc.) that the novice

programmer can use to demonstrate how the clerk should behave.

11.3.2 Learning Support
Systems in the previous category examined ways to make the process of learning to

program easier by simplifying the mechanics necessary to write a program. The systems

in this category try to ease the process of learning to program by providing basic

educational supports such as progressions of projects that gradually introduce new

concepts or ways for students to connect with and learn from each other.

11.3.2.1 Social Learning
Some of the most effective learning is done in a social context where more than one

person is working with a problem. Since programming is known to be hard and children

often learn more effectively in groups, perhaps it may help the learning process to

provide a social context in which learning can occur. The systems in this category

investigate different methods for allowing students to work together: co-located and over

a network connection.

11.3.2.1.1 Side By Side
Most computer interfaces are designed for single users. Consequently, when groups of

children use a standard mouse, monitor, and keyboard setup in learning, one child tends

to dominate the process. The systems in this category use tangible interfaces to allow

multiple students in informal groups to work together in solving programming problems.

Because of the difficulty of representing the wide variety of programming constructs in a

tangible form, these systems concentrate on small subsets of programming.

AlgoBlock: H. Suzuki and H. Kato, NEC Information Technology Research
Laboratories, 1995 (Suzuki and Kato 1995)
The authors of AlgoBlock wanted to create an active learning community among children

learning to program in which children can share notes and techniques, and learn from

each other. They created AlgoBlock, a set of blocks, each of which corresponds to a

simple command in Logo. The blocks can be connected together to form programs that

Chapter 11: Programming Languages and Environments for Novice Programmers 256

control the movements of a submarine in a maze. The blocks are tangible and large

enough that they can be arranged on a desk that several students can work around. This

allows students to work with the blocks in a social context, learn from each other, and

communicate what they are learning. The tangible nature of the blocks made it easy for

children to take turns manipulating the blocks and communicate about which pieces

should be placed where. The AlgoBlock project demonstrates that, in a suitable

environment, children will work together in building programs. However, the blocks

supported a limited set of programming constructs; the children were not able to explore

concepts like procedures, parameters, or control structures.

Tangible Programming Bricks: T. McNerney, MIT Media Lab, 2000 (McNerney
2000)
Tangible Programming Bricks are physical Lego blocks that can be stacked together to

form programs. The designer’s intent in creating these was to provide a simple interface

to appliances and toys and to create a programming environment that would allow

children to collaboratively explore ideas. While the work concentrated on the hardware

implementation of the Lego blocks, the designer created three prototype environments

using Lego blocks that represent commands. To allow a greater variety of commands,

users could insert a small card (e.g. microchip) into a block. Each block could accept a

single card, allowing users to communicate with other blocks via IR transmission, supply

parameters to commands, sense the environment, or display variables. The three

prototype languages allowed children to teach toy cars to dance, kitchen users to program

microwaves, and toy trains to react to signals along the side of the tracks in unique ways.

By stacking blocks together with accompanying cards, if necessary, users could construct

simple programs.

11.3.2.1.2 Networked Interaction

Rather than trying to move away from the common single user, single computer

paradigm, the systems in this category attempt to allow students using different machines

to work together over the network. While the systems designed for students working side-

by-side can assume all children can see the state of the current program and what other

Chapter 11: Programming Languages and Environments for Novice Programmers 257

children are doing, programming systems designed for network use need to explicitly

support the exchange of this kind of information.

MOOSE Crossing: A. Bruckman, MIT Media Lab, 1997 (Bruckman 1997)
MOOSE Crossing is a networked programming environment built for children. It is an

adapted text-based MUD (multi-user dungeon) in which children can use an object-

oriented scripting language to create spaces and characters that inhabit a textual world

(see Figure 11.20). Children often create spaces and characters similar to those found in

text adventure games such as castles complete with secret passages that other children

can explore. Once their projects are completed, any child in the MOOSE Crossing

environment can interact with them. In addition, the environment allows children to view

the scripts controlling any object or character in the environment and chat with children

that are currently logged onto MOOSE Crossing. In general, children work alone on

projects but one child will often use another child’s project as an example. Children may

also ask another user for help or advice. The MOOSE Crossing community has provided

a source of help, role models, and positive feedback for users of the system as they create

their own projects.

on pet this
 tell player “You pet Rover.”
 if player member_of my friends
 emote “wags his tail.”
end
Figure 11.20: A MOOSE Crossing script that allows MOOSE users to pet Rover. When a user pets Rover, they

are told “You pet Rover.” If they are one of Rover’s friends, then Rover wags his tail.

Pet Park: A. DeBonte, MIT Media Lab, 1998 (DeBonte 1998)
Pet Park is an exploration of the ideas of MOOSE Crossing in a 2D graphical domain

rather than a textual one. Children can choose one of 5 dogs to be their pet. Each dog

comes with a few animations, such as wagtail, jump, walk, laugh as well as basic ones

like wait, turnLeft, say, etc. Users can combine these simple commands to create their

own animations using a textual scripting environment or a set of graphical blocks

representing each command. As in MOOSE Crossing, Pet Park is a networked

programming environment in which children can talk, ask each other for help, and show

off their creations. While in MOOSE Crossing, children create spaces by describing them

with text; in Pet Park, creating a space requires graphical objects. In response, the system

Chapter 11: Programming Languages and Environments for Novice Programmers 258

provides a variety of furniture, objects, and rooms. Furniture and rooms can be

programmed to react to simple events such as avatars coming near them.

Cleogo: A. Cockburn, University of Canterbury, 1998 (Cockburn and Bryant
1998)
Cleogo is a networked version of Leogo (described earlier) that allows children to see and

interact with the same Leogo workspace. Rather than concentrating on building a

community of programmers, Cleogo creates a shared environment, the current program

being edited, and allows multiple children to see and manipulate that environment.

Cleogo does not attempt to provide children with a way to communicate with each other

about their project. Instead, it assumes that they are either in the same room or can talk to

each other using the phone or some equivalent.

11.3.2.2 Providing a Motivating Context

Motivation can be a key element in learning; if students want to accomplish a particular

goal, obstacles they encounter while learning to program will not deter them as much.

The systems in this category attempt to provide beginning programmers with goals to

achieve through programming that the designers believe novice programmers will find

motivating.

Rocky’s Boots / Robot Odyssey: W. Robbinett, The Learning Company, 1982
(Robinett and Grimm 1982)
Rocky’s Boots was one of the first educational software products for personal computers

to successfully use an interactive graphical simulation as a learning environment. The

game allows children to connect logic gates (AND, OR, NOT and flip-flop) together to

create circuits using a joystick (see Figure 11.21). When the circuits are active, users can

watch the wires turn from white to orange as the electricity passes through them. The

game provides a series of puzzles of increasing difficulty in which the player is supposed

to separate the shapes matching a certain criteria from those that do not using logic gates,

sensors that can detect certain kinds of shapes, and a boot that, when activated by a true

value, kicks the current shape out of the line and off to one side. Robot Odyssey follows

the same basic pattern; the player connects gates together to solve problems. However,

Robot Odyssey includes a larger selection of objects that perform animated actions when

Chapter 11: Programming Languages and Environments for Novice Programmers 259

they are activated (like the shape-kicking boot), creating a wider set of possibilities for

the behaviors of circuits.

Figure 11.21: A puzzle from Rocky’s Boots in which the player is asked to create a circuit that separates blue

crosses from the other shapes. When the circuit is switched on, shapes move up the right side of the screen.
When they enter the white rectangle, the shape sensors to the right of the rectangle can detect them. The player

is asked to attach a sequence of logic gates to the sensor that will activate the boot (center) when a blue cross
enters the box. The boot, when activated, will kick the shape out of the rectangle.

AlgoArena: H. Kato and A. Ide, NEC Information Technology Research
Laboratories, 1995 (Kato and Ide 1995)
In AlgoArena, players write programs to control the behavior of sumo wrestlers fighting

tournaments. The programs are written in a language based on Logo. When a player has

completed a program, the player can log onto a website and have his or her wrestler fight

against another student’s wrestler. Over time, by analyzing the circumstances in which

the player’s sumo wrestler loses tournaments, the player is expected to learn more

complex ways to control the wrestler, perhaps querying the position and posture of their

opponent before deciding which moves to execute.

Robocode: M. Nelson, IBM Advanced Technology, 2001 (Nelson 2001)
Robocode is designed to help novices learn Java through programming a robotic

battletank for a “fight to the finish”. The tutorial teaches novices to subclass an existing

battletank robot and extend the robot’s capabilities using standard Java and a set of

Chapter 11: Programming Languages and Environments for Novice Programmers 260

classes written for the Robocode environment. Upon completion of a robot, users can

upload their creation to a number of websites or join a robotic battle league. The designer

of the system believes that the ability to program robotic battles will provide enough

motivation to get a novice programmer over the hurdles of beginning to program.

Scratch: M. Resnick et al., MIT Media Lab, 2006 (Maloney, Burd et al. 2005)
Scratch was designed to introduce programming to students in after-school computer

centers. Over the past ten years, approximately 2000 community technology centers

(CTCs) have opened throughout the United States. The goal of these CTCs is to provide

access to technology in economically-disadvantaged communities. However, while many

of the CTCs have developed communities of children interested in creating digital art

using Photoshop, few of the CTCs have developed a community of children who are

interested in computer programming. Because computer programming has the potential

to help children develop the ability to think about the potential for and challenges

associated with technology in our current society. Scratch is designed to leverage

childrens’ motivation to use and manipulate digital images (as they do in Photoshop) to

introduce programming. Users can import digital images to Scratch and create programs

that animate and modify (similar to photoshop filters) those images. Users construct

programs in Scratch by dragging and dropping blocks that represent program elements,

similar to the method of program construction used in LogoBlocks.

Chapter 11: Programming Languages and Environments for Novice Programmers 261

Figure 11.22: A View of the Scratch interface. In the left-most panel are the blocks (commands, functions,

control structures, and variables) that users can use in their programs. The center panel is the scripts panel,
where users can compose their programs. The right-most panel shows the 2D world that the user’s program

controls.

RAPUNSEL: K. Perlin, M. Flanagan, J. Plass, A. Hollingshead., NYU and Hunter
College, 2005 (Flanagan, Nissenbaum et al. 2005)
The goal of the RAPUNSEL project is to develop a programming environment that

makes learning to program an engaging activity for girls. In working with inner-city

teenagers at a computer center, the RAPUNSEL investigators created and tested a variety

of prototype programming environments. The development and testing of these

prototypes culminated in a programming-based game based in an imaginary world

inhabited by Peeps. Girls teach their Peep characters new dance moves by writing

programs in Java (a sequence of tutorials guides them through this process).

Chapter 11: Programming Languages and Environments for Novice Programmers 262

Figure 11.23: A screenshot of a RAPUNSEL prototype.

11.4 Empowering Systems

The systems in this category are built with the belief that the important aspect of

programming is that it allows people to build things that are tailored to their own needs.

Consequently, the designers of these systems are not concerned with how well users can

translate knowledge from these systems to a standard programming language. Instead,

they focus on trying to create languages and methods of programming that allow people

to build as much as possible.

11.4.1 Mechanics of Programming
The systems in this category are designed around the hypothesis that the primary barrier

for people attempting to use programming as a tool is the mechanical difficulties of

creating programs. Systems in this category examine ways of improving programming

languages and alternative ways for creating programs.

11.4.1.1 Code Is Too Difficult
Many researchers have examined the problem of making languages more understandable

and usable for novices. While progress has been made making programming languages

more understandable, there still are many barriers for novices trying to build their own

Chapter 11: Programming Languages and Environments for Novice Programmers 263

programs. These systems examine creating programs either through demonstrating

correct behavior or selecting actions through the interface.

11.4.1.1.1 Demonstrate Actions in the Interface
The systems in this category examine ways that users can program a system by showing

the system what to do through manipulating the interface, without relying on a

programming language.

Pygmalion: D. Smith, Stanford University, 1975 (Smith 1993)
Pygmalion was the first programming by demonstration system. Unlike many of the

systems that came after it which concentrated on graphical objects, Pygmalion attempted

to get people to write more abstract programs, such as a program to compute the factorial

of a number. However, rather than building factorial by typing statements in a

programming language, Pygmalion relied on editing an artifact. To create a factorial

program, the user creates an icon with two sub-icons, one for the input and one for the

output, and draws a symbol to represent factorial. The user can then enter remember

mode, in which all of the actions made by the user are remembered by the system.

Consequently, the user can program the computer by working out an example of how to

compute factorial. However, the user must anticipate the handling of the value one and

test whether or not the current value, say three, is equal to one, something that novices

may not be well prepared to do. If the user does not demonstrate his or her current actions

as the case for the current value not being equal to one, Pygmalion will not know that one

should be handled differently and, consequently, will not prompt the user to demonstrate

how one should be handled.

Programming by Rehearsal: W. Finzer and L. Gould, Xerox PARC, 1984 (Finzer
and Gould 1984)
Programming by Rehearsal was built to help non-programmers create educational

software. It is designed around a theater metaphor in which components of the interface

are performers that interact with one another on a stage by sending and responding to

cues. A user of the system would begin creating a piece of software by auditioning

performers to use as building blocks, selecting their cues via a pop-up menu and

observing their responses to those cues. The user would then copy the chosen performers

Chapter 11: Programming Languages and Environments for Novice Programmers 264

onto the stage, placing and sizing them appropriately. The rehearsal portion of

development consists of showing the performers what actions they should take in

response to user input or cues sent by other performers. Objects that accept user input,

such as buttons, have cue sheets that allow users to fill in their responses to those user

inputs. Users can press a closed eye icon to tell the system to begin observing their

actions. Then, by selecting cues from the menus of other performers, they can show the

system how to react to those cues. By pressing the eye icon again, users indicate they

have finished. The system comes with 18 basic performers that users can audition and use

in their own creations. Additionally, the system allows users to create new performers by

combining existing performers and teaching them new cues. While Programming by

Rehearsal does allow users to access the underlying programming languages (Smalltalk),

the system was designed to allow non-programmers to create educational software

without requiring them to program at the Smalltalk level.

Mondrian: H. Lieberman, MIT, 1992 (Liebermann 1993)
Mondrian is a programming by demonstration system for drawing and graphical editing

in which commands are shown with “domino” icons that depict the before and after states

for that command. To execute a command, users select the command icon and select the

object or area to which the command should be applied. The user can create new

commands in a storyboarding style by showing how to do each step in the new command.

These steps are displayed at the bottom of the screen in comic book format with a short

caption describing each step. Drawing a rectangle on the screen would show a box with

the new screen state captioned by “rectangle”. If the user then moves the rectangle, a

“move” domino would appear beside the “rectangle” domino in the definition of the new

command. New commands created by the user are displayed in the same domino style as

the commands built into the system. In addition, the system provides speech synthesis

capabilities to give an English description of what a command does.

11.4.1.1.2 Demonstrate Conditions and Actions

Like the previous category, the systems in this category try to avoid forcing users to

express their intentions in code. However, instead of demonstrating programs by

performing actions in the user interface, as the systems in the previous category did, the

Chapter 11: Programming Languages and Environments for Novice Programmers 265

systems in this category allow users to depict the conditions in which they want the

program to perform an action and the results of that action.

AgentSheets: A. Repenning, University of Colorado, 1991 (Repenning 1993;
Repenning and Ambach 1996)
In AgentSheets (see Figure 11.24), users can create simulations by specifying the

behavior of sprites in a 2-dimensional grid-based world. Sprites can move to new grid

positions, make sounds, and change appearance. Users can create programs using

graphical rewrite rules; users select conditions (configurations of icons in the world or

relative to each other) and show the system what should happen under these conditions

by moving the agents to their new positions. In addition, Agentsheets provides tools for

creating analogies between agents. For example, if a user wants a train to follow a set of

train tracks in exactly the same way that a car follows roads, he or she can use an analogy

tool to easily specify this. Use of analogies provides an easy way to reuse code.

Figure 11.24:A screenshot of a traffic light simulation in AgentSheets containing two rules. The first rule runs
continuously: every three seconds it triggers the second rule. The second rule looks at the current color of the

traffic light and changes it to the next one in the sequence green, yellow, red.

ChemTrains: B. Bell and C. Lewis, US West Advanced Technologies, University
of Colorado, 1993 (Bell and Lewis 1993)

Chapter 11: Programming Languages and Environments for Novice Programmers 266

ChemTrains is a pictorial rule-based language that attempts to make it easy for people to

create a wide variety of “behaving pictures”. ChemTrains is similar to Stagecast (see

below) in that users show both the conditions and results of a rule through pictures. In

ChemTrains the pictures used to specify conditions and results are interpreted as patterns

of connections rather than collections of pixels. For example, in simulating an AND gate,

if there is any box with a zero connected to the AND gate (from any direction and any

distance away), the output of that gate should become zero. A similar statement in

Stagecast would only work if the zero connected to the AND gate was always in the same

relative position to the AND gate. As in Stagecast, the order of the ChemTrains rules

dictates how they are applied; only the first matched rule is applied in each time slot.

Additionally, the ChemTrains pattern matcher can use variables; in ChemTrains,

variables are specially marked pictorial elements that can match any element of the

simulation display. The addition of variables allows users to create a wider range of

simulations.

Stagecast: D. Smith, A. Cypher, and J. Spohrer, Apple Computer, 1995 (Smith,
Cypher et al. 1994)
Stagecast, a commercial version of KidSim (see Figure 11.25), is an environment for

creating simulations. Children are presented with a grid-based world in which they can

create their own actors. Users define rules for the simulation by selecting a before

condition from the grid world and then demonstrating how that condition should change

(see Figure 11.25). When the simulation is started, when a section of the grid matches a

condition of one of the rules, the rule is applied. Stagecast applies only the first rule (in

top to bottom order) that matches a section of the grid.

Chapter 11: Programming Languages and Environments for Novice Programmers 267

Figure 11.25: This drawing shows an example of how users create rules in Stagecast. On the left side are the

conditions in which each rule should be applied. On the right, the results of each rule are shown. In this
drawing, if there is a raindrop with an empty space between below it, the raindrop should move down.

Otherwise, if there is a raindrop with an empty space on its right, it should move right.

11.4.1.1.3 Specify Actions

In these systems, the user creates programs by using the interface to specify the desired

behavior. The user does not see any code, but unlike in programming by demonstration

systems, the user does not show the computer what to do, he or she selects the program’s

actions.

Alternate Reality Kit: R. Smith, Xerox PARC, 1987 (Smith 1987)
The Alternate Reality Kit (ARK) is an environment in which users can build interactive

simulations. Users interact with objects built on a physical-world metaphor; each object

has an image, position, velocity, and can be influenced by forces. Users can pick up

objects, move them, drop them, or throw them using mouse gestures. Users can query or

change the state of objects by sending messages, represented by buttons, to those objects.

To connect a button to a particular object, the user drops the button onto that object. If the

object understands the message the button represents, the button “sticks” to the object,

otherwise it falls through. Buttons that require a parameter have a little “plug” where

users can hook up a value for the parameter.

Klik N Play: F. Lionet and Y. Lamoureux, Europress, 1994 (Lionet and
Lamoureux 1994)

Chapter 11: Programming Languages and Environments for Novice Programmers 268

Klik N Play is designed to allow the user to create simple level-based games. The

application has three modes: a storyboard editor, which allows the user to see all levels as

thumbnails, a level editor, and an event editor. The level editor allows the user to select

the background, add predefined objects to the level, and provides users with the ability to

create their own objects and animations for those objects. Users create animations frame

by frame with a bitmap editor and use controls to set the speed and motion of objects.

The event editor uses a table format and allows the user to specify actions for a variety of

predefined events (see Figure 11.26). Klik N Play’s events are based on collisions

between objects, mouse and keyboard input, time, the state of players, and the states of

variables and objects in the level. Corel distributed an updated version of Klik N Play that

granted users the rights to sell their games under the name Click and Create.

Figure 11.26: A view of the event editor in Klik N Play while the user builds a graphical piano program. The
user is currently specifying that when the “User clicks with left button on white piano key,” the game should

play “sample piano1.” The events are organized in table form based on their effects: all sound events are in the
first column, events on the user’s objects, piano keys in this screenshot, begin at column 5.

Emile: M. Guzdial, University of Michigan, 1995 (Smith 1987; Guzdial 1995)
Emile is a programming environment written in Hypercard(Goodman 1987) that allows

high school aged students to create physics simulations (see Figure 11.27 below). The

environment provides support or scaffolding (Merrill and Reiser 1993) that makes the

process of programming (everything from defining the problem and breaking it into goals

to defining the behavior of a button within the interface) easier for beginning students. As

Chapter 11: Programming Languages and Environments for Novice Programmers 269

the students become more comfortable with the environment, they can choose to use less

support. In Emile, beginning programmers create programs by assembling components:

buttons, textfields, and predefined actions. Using menus and dialog boxes, students can

select one or more actions that should happen when a given button is pressed and fill in

any necessary parameters for those actions. As they become more advanced, students

may begin to use mathematical expressions, create their own actions by combining other

actions, and eventually edit HyperTalk (Hypercard’s scripting language) code

themselves.

Figure 11.27: An editor for the Positive Gravity Button. When the mouse goes up, Emile will execute 4 actions:
Accelerated Motion 1, Stop Increasing 1, and Display a Value 1 (2 times). At the bottom of the screen, we can

see the code that Emile will execute. Underlined text corresponds to parameters (or slots) that the user can fill in
using menu options and dialog boxes.

11.4.1.2 Improve Programming Languages

The designers of many of the teaching languages are concerned with how well students

can transfer the knowledge they gain in the teaching language to more general-purpose

languages. Consequently, the designers of teaching languages have been hesitant to

deviate very far from these general-purpose languages. However, the systems in this

category endeavor to empower their users to create interesting programs; whether the

Chapter 11: Programming Languages and Environments for Novice Programmers 270

users of these systems can transfer their programming knowledge to more general-

purpose languages is not important. Consequently, the designers of these systems can

make changes to standard programming languages that the authors of teaching languages

might hesitate to make.

11.4.1.2.1 Make the Language More Understandable
These systems include languages that were developed with a focus on the language and

words novices use to describe situations. Most previous languages have been developed

with a focus on consistency between languages or on mathematical simplicity. These

languages instead focus on choosing words that the users of the system understand and

can use effectively without having to translate their words in their everyday vocabularies

into the words that the computer language uses for the same concept.

COBOL: C. Phillips et al, Department of Defense, 1960 (Sammet 1981)
COBOL is the COmmon Business Oriented Language, designed to support the creation

of business applications. It was intended to be usable by novice programmers and

readable by management; spoken English influenced many of the programming

constructs (see Figure 11.28). The designers also added “noise” words to increase the

readability of the language: ADD X TO Y rather than ADD X,Y.

IF X = Y <…>
IF GREATER <…>

 OTHERWISE <…>
Figure 11.28: A conditional statement in COBOL. Conditionals can use implied subjects and objects as seen in

the second and third lines of the conditional statement.

Logo: Seymour Papert, MIT, 1967 (Papert 1980)
The Logo programming language is a dialect of Lisp with much of the punctuation

removed to make the syntax accessible to children. It was intended to allow children to

explore a wide variety of topics, from mathematics and science to language and music.

The most well known part of Logo is the Logo turtle, which began as a robotic turtle that

could draw on the ground. It was later replaced by a simulated actor in a two dimensional

graphical world that can move, turn, and leave trails. The turtle’s directions are object-

centric; if a child tells the turtle to “forward 10”, the turtle will move in his own forward

direction rather than a direction defined by the screen. Many children have been

Chapter 11: Programming Languages and Environments for Novice Programmers 271

introduced to programming through making the turtle draw simple pictures. However, the

Logo language includes a wider variety of possibilities. Classes of children have written

music programs, programs that translate English to French, and many others. The Logo

language is an interpreted language with descriptive error messages. For example, if a

student typed “foward 10” instead of “forward 10” the system would respond with “I

don’t know how to foward.”

Alice98: M. Conway et al, Carnegie Mellon University, 1997 (Conway 1997)
Alice98 is a programmable 3D authoring tool, designed to make authoring interactive 3D

graphical worlds accessible to college-level, non-science majors. The authoring tool

consists of a scene layout editor in which the user can create their opening scene, and a

script tab in which the user can specify the behavior of the world. The programming

language in Alice is Python, with a few changes suggested by user testing: it is not case

sensitive and ½ evaluates to 0.5 rather than 0. However, Alice provides domain-specific

commands for manipulation of objects in 3D. The structure and naming of these domain-

specific commands were influenced greatly by user testing. As in Logo, commands

utilize object-centric notation: forward, backward, up, down, left and right are used to

describe direction. This description is equivalent to XYZ notation, but is much easier for

novices to understand. Similarly, the names of commands are drawn from the language

that users would choose to describe those actions; for example, translate became move,

scale became resize, and rate became speed. Alice commands can also be accessed with

varying degrees of detail. At the simplest, bunny.move only needs a direction. The user

can also specify how far bunny should move, how long the animation should take, what

speed he should move at, whether he should move in someone else’s coordinate system,

and different interpolation styles. This allows novices to begin by learning a very simple

command for moving the bunny and, as they gain more experience, learn to express

greater control over how the bunny moves through additional options. To help users

understand the behavior of their programs, Alice98 animates all changes to the state of

the program.

HANDS: J. Pane, Carnegie Mellon University, 2001 (Pane 2002)

Chapter 11: Programming Languages and Environments for Novice Programmers 272

The HANDS system was designed to allow children in 5th grade and older to create

games and simulations similar to the ones with which they play (see Figure 11.29 below).

The design of the system was informed by studies of the language that children with no

programming experience use in expressing solutions to programming problems. The

environment provides a concrete model of computation, represented by an agent,

HANDY the dog, who manipulates a deck of cards. All information used in a program is

stored on two-sided cards. The front of each card contains object-related data; the back

displays a picture of the object. The user can place cards on the surface of the table,

which represents the end-users’ view of the program. It includes queries and aggregate

operations that reduce the need for data structures and iteration through lists of items.

Children using the HANDS system perform better than children using a version of the

HANDS system that does not include queries and aggregate operations.

Figure 11.29: All data in HANDS is stored in cards, which the user can draw from a pile shown on the top right
of the screen. All the graphics (flowers and bees) and text on the screen are represented as facedown cards. One
card on the right has been flipped to face up so that the user can see and edit its properties. When cards are on
the board (in the center of the screen), only the image on their backs are visible. Users of HANDS can add code

into Handy's thought bubble by clicking on his picture in the upper left corner.

11.4.1.2.2 Improve Interaction with the Language
In addition to changing the language and the words used to describe programming

commands and constructs, another area for improvement is in the ways that people

Chapter 11: Programming Languages and Environments for Novice Programmers 273

interact with language. The systems in this category examine different methods for

creating programs in ways that are easier for novice programmers to understand and less

prone to errors. The systems use a variety of techniques from dataflow metaphors, to

menu selection, to physical proximity to allow users to express their intentions without

having to type traditional programming statements.

Body Electric: J. Lanier, VPL (Blanchard, Burgess et al. 1990)
Body Electric was designed as an authoring tool for a two-person virtual reality system.

Programs in Body Electric are data driven; raw data from sensors (such as positional

sensors on people) can be passed to the representation of the virtual world through

modules that are capable of transforming the data or generating events. These modules

are represented in the authoring environment as boxes connected by arrows in a flow

diagram. Users can create programs that modify and react to sensor data by sending the

sensor data through a sequence of modules. Programs are always live, allowing the

author to immediately see the results of changes. This allows worlds to be quickly

prototyped, tested, and modified.

Fabrik: Ingalls et al, Apple Computer, 1988 (Ingalls, Wallace et al. 1988)
Fabrik is a computational construction kit in which pieces of functionality (procedures)

appear as boxes with connectors. These boxes can be wired together to create a variety of

programs (see Figure 11.30). The user is supplied with a parts bin that includes simple

computational elements, such as string and integer manipulation, as well as interface

elements such as buttons, images, and lists. By dragging boxes into a working area and

connecting them together, the user can create programs. As in Body Electric, Fabrik

programs are always live so users can test as they are building. During development, user

interface elements and computational elements share screen space. However, once a

program is finished, the user can choose to view only the interface elements. In addition,

finished programs can be used as elements in subsequent programs, so the user can

extend the capabilities of the construction kit.

Chapter 11: Programming Languages and Environments for Novice Programmers 274

Figure 11.30: A Fabrik program to create a simple text file editor. In the top left text field, the user can enter a
search string for file names. The user’s string is passed to a file name pattern matcher and then to a GUI list

element. The user can then select the file they want to edit. When a file is selected, the name of the file is passed
to a module to retrieve its contents and the contents are passed into a text field for the user to edit.

Forms/3: M.Burnett et al, Oregon State University, 1995 (Burnett, Atwood et al.

2001; Hays and Burnett 2001)

Forms/3 is a visual programming language based on the spreadsheet paradigm, which is

designed to give end-users access to more powerful programming while maintaining the

ease-of-use associated with spreadsheets (see Figure 11.31 below). In Forms/3, users

create cells and provide mathematical expressions (which may rely on the values of other

cells) that the system will use to compute the value of those cells. To extend the kinds of

programs that users can write in Forms/3, the system provides users with the ability to

create their own data types (including graphical data types), use a system clock to create

time-based calculations and animations, and link spreadsheets together to allow

encapsulation of data and functionality.

Chapter 11: Programming Languages and Environments for Novice Programmers 275

Figure 11.31: A Forms/3 program which creates a graphical representation of a Person. The value for the head
is computed with a nested if-statement that selects an appropriate face based on the age (young < 20) and gender

of Person. The width and height of the body box are based on the Person’s weight and height. To view or edit
the equation associated with a given cell, the user can press the arrow symbol below the bottom right corner of

the cell.

Tangible Programming with Trains: F. Martin et al, MIT Media Lab, 1996
(Martin, Colobong et al. 1999)
Tangible Programming with Trains is a train set and collection of active train toys that

influence the behavior of the train. The Tangible Programming with Trains system was

designed to allow children to explore “pre-programming concepts – causality, interaction,

logic, and emergence” (Martin, Colobong et al. 1999). For example, a stop sign that

causes the train to stop or a sign that asks the train to turn on its lights. The active train

toys and the train can communicate via IR signals such that when the train is close to one

of these toys, the train will change its behavior appropriately. Children can place these

objects around the path of the train such that it will stop at a station or turn its lights on

when it goes through a tunnel.

Chapter 11: Programming Languages and Environments for Novice Programmers 276

Squeak Etoys: A. Kay et al, Disney, 1997 (Kay)
Squeak Etoys are designed to allow children to learn ideas by “building and playing

around with them” (Kay) either through interacting with simulations others have built or

creating their own simulations (see Figure 11.32). The Etoys environment provides

students with a variety of pre-made objects, from simple shapes to trashcans, and a

simple drawing tool with which students can create their own objects. All objects have

viewers that contain object-specific information as well as tiles that the student can drag

out of the viewer to build programs that control the behavior of the object. Programs can

change the position, orientation, size, and appearance of objects as well as play sounds.

Users can create simple if-statements in their program, but no other standard control

structures are included in the Etoys system. Users can trigger object behaviors based on a

variety of mouse events, or the behaviors can be started, stepped and stopped with a set of

pre-made buttons users can add to their simulations.

Figure 11.32: An Etoys simulation that makes the LadyBug follow the track. The user has dragged statements
from the LadyBug’s viewer (right) into a script (left) so that the LadyBug continually moves forward, turning

right when she is over red and left when she is over yellow. The script is currently paused, but if the user pressed
the “go” button, the LadyBug would start following the track.

Alice99: Carnegie Mellon University, 1999 (1999)
The developers of Alice98 (see section 2.1.2 under Make the Language More

Understandable) noticed that typing was difficult for many users. This system is a

Chapter 11: Programming Languages and Environments for Novice Programmers 277

follow-on system to Alice98 that focuses on exploring ways to reduce the amount of text

users have to type. In Alice98, users create both animations and events by typing

statements in a programming language. In Alice99, users create basic animation using

drag and drop: the user selects the character of interest from the tree of characters on the

left of the screen and drags that character into the animations window. When the user

drops the character in the animations window, a series of menus appears showing the

actions the character can take, such as move, turn, resize, etc, and the options for each of

those choices; a character can move forward, backward, left, right, etc. The drag and drop

system in Alice99 does not provide support for many of the traditional programming

constructs present in the Alice98 system; to create more complex programs, users must

still type. The animation editor can create only fully specified, linear animations. The

scripting system was left in place to allow advanced users to build complex worlds.

Alice99 also introduced an event editor that allowed users to specify events in a table

form in which they selected the event and the animation they wanted to trigger in

response to that event.

AutoHAN: A. Blackwell and R. Hague, University of Cambridge, 2001 (Blackwell
and Hague 2001)
The AutoHAN project grew out of the desire to provide a single programming interface

for the many home appliances that are being shipped with customization or programming

features. The goal of the project is to provide a language and interface that home users

can use to program their appliances to do simple tasks such as recording a particular TV

show, switching on an outside light when the doorbell rings, or starting the coffee pot

when the alarm goes off in the morning. This language must be usable by people who can

operate remote controls. The AutoHAN project elected to create a variety of physical

“media” cubes for this purpose. At their simplest, they operate as single button remote

controls that can be associated with a wide variety of appliances. For example, a play

cube can be associated with a CD player by holding it close to the CD player. Once the

association has been created, the user can press the cube’s button to play a CD. The user

can later associate that same play cube with a VCR and use it to play a movie.

Additionally, the cubes can be composed together to form programs, such as starting the

coffee pot when the alarm goes off. These programs can be stored by the AutoHAN

Chapter 11: Programming Languages and Environments for Novice Programmers 278

system for later use. The designers proposed two languages for the media cubes: one

based on ontological abstraction, the other based on linguistic abstraction. The

ontological language includes event cubes which reference changes of state in the home,

channel cubes which grant access to different channels of information, and aggregate

cubes which allow cubes to be grouped together to form a set (a set of events to react to,

for example). The linguistic language includes cubes that are linked to particular words in

English, for example, stop, go, and play. Cubes that support more abstract data roles such

as variables and lists are also included.

Physical Programming: J. Montemayor, University of Maryland, 2002
(Montemayor, Druin et al. 2002)
The Physical Programming work describes a method for children ages 4-6 to build

interactive story spaces using StoryRoom Kits that provide sensors and actuators that can

be used to augment everyday objects, such as chairs or teddy bears. The StoryRoom kits

allow children to create stories in which objects in the real world represent characters or

elements in the story the children are telling. Seeking stories in which one character is

asking a series of other characters where to find an object, character, or piece of

information work very well in this context. The Physical Programming method was

prototyped using Wizard of Oz techniques and the following tools: a foam hand to

indicate touch, a light for lighting up objects to draw attention to them, a sound box

which had a different sound associated with each side of the box, and a magic wand for

users to indicate when they were programming and when they wanted to tell a story using

their augmented story room. To create a program, a child associates sensors, actuators,

and props using the magic wand. For example, to have the teddy bear say something

when it is touched, the child would tap the hand and the teddy bear to indicate that the

bear should respond when touched, and one side of the sound box to indicate which

sound should be played when the teddy bear is touched. When the wand is put away, the

StoryRoom goes into “story” mode and the rules the child created are active.

Flogo: C. Hancock, MIT Media Lab, 2001 (Hancock 2001)
Flogo is a visual dataflow language designed to enable children to build more complex

robotic behaviors with their lego robotics kits. The designers of the system believe that

visualizing the temporal structure of a program is helpful in understanding how it works

Chapter 11: Programming Languages and Environments for Novice Programmers 279

(or why it does not work). The visual dataflow model is well suited to showing the

temporal structure of a program. Consequently, Flogo programs use a visual dataflow

model. Sensor outputs can be connected in the box and wires style to arithmetic

operations, Boolean tests, and motor controls. Flogo programs are always live; a change

in the inputs to the sensors will be immediately reflected in the representation of the

program, making Flogo a tinkering-friendly language even when the program a child is

working on is incomplete.

JiVE: J. Hintze and M. Masuch, Otto-von-Guericke University of Magdeburg,
2004 (Hintze and Masuch 2004)
JiVE is a programming environment inspired by Squeak Etoys that was designed to allow

children to easily create 3D interactive virtual worlds while learning mathematical

concepts. The authors of the system believe that if children draw their own characters,

they will be more motivated to animate them. Instead of providing a library of 3D

objects, JiVE allows users to draw 2-dimensional sketches of characters. The system then

inflates these drawings into 3-D objects for the world using a modification of the Teddy

algorithm(Igarashi, Matsuoka et al. 1999). As in Etoys, all objects have viewers that

contain information about the object and tiles the user can drag out to create programs.

While the Etoys system only allows users to create if-statements, JiVE includes for,

while, and repeat loops.

11.4.1.2.3 Integration with Environment

To write a program in most general-purpose languages, a user must type their program

into a text editor, compile the program, fix any syntax errors, build the program, and then

run it. For a novice programmer, this is a lot of steps and the time and effort involved in

making changes to a program can discourage experimentation. The systems in this

category integrate the environment in which users write programs with the environment

in which users run programs. Many of these systems also allow users to test the effects of

individual program statements so that they can experiment while building programs.

Boxer: A. diSessa and H. Abelson, University of California at Berkeley, 1986
(diSessa and Abelson 1986)

Chapter 11: Programming Languages and Environments for Novice Programmers 280

Boxer presents a hierarchical world composed of boxes that can contain other boxes (see

Figure 11.33). Rather than separating the act of programming, programming is integrated

into an environment that a typical person might use, primarily for text editing and

graphical layout. Boxer programs contain three types of boxes: standard boxes which can

contain text or program code, data boxes which contain string literals for use in programs,

and graphics boxes which contain graphical displays. The composition of the boxes has

meaning; it indicates that sub-procedures are parts of procedures and records are part of

databases. In general, sub-boxes are only accessible from inside a box. The boxes provide

the novice programmer with a simple mechanism for abstracting program and data

elements. Boxes also allow the novice to view program elements as black boxes that they

can use in their programs without fully understanding them. As users gain experience,

they can return to these black boxes and open them to discover how they work.

Figure 11.33:A phone number look up program written in Boxer. If a user enters a name in the “name” box and
presses the Function-1 key, Boxer will search through the entries in “list”, another box shown at the top of the

screen, and display the phone number associated with that name.

Hypercard: Bill Atkinson, Apple Computer, 1987 (Atkinson 1987; Goodman
1987)
Hypercard is described by its creator Bill Atkinson as “an authoring tool and a sort of

cassette player for information.” The application itself allows users to create stacks of

cards, somewhat like a Rolodex program, that contain images, text, and buttons. At their

simplest, buttons can trigger visual changes, make sounds, or show a new card. A

scripting language called Hypertalk is provided to allow users to build more functionality

Chapter 11: Programming Languages and Environments for Novice Programmers 281

into the stacks they author. Spoken English heavily influenced the Hypertalk language

itself; the language provides constructs such as the “first card” and the “last card”,

descriptors that are easily understandable to most users. In designing the system,

Atkinson concentrated on the user’s first experience with the tool. He focused on

supporting the user’s immediate success using Hypercard and tried to reveal features

gradually. A beginning user could learn to create cards and used text-editing tools before

moving on to graphics editing. The user could learn about using the message box as a

calculator before moving onto placing values in fields. By the time the user was ready to

write a full script, he or she would already be familiar with how to access information in

different parts of the interface.

cT: B. Sherwood and J. Sherwood, Carnegie Mellon, 1988 (Sherwood and
Sherwood 1988)
This system attempts to simplify the process of creating graphics-oriented programs by

providing higher-level primitives. Programs are created in an integrated environment

where users can see the results of their programs immediately. The cT environment also

provides a method for users to specify shapes using mouse clicks on the screen. Finished

programs can be executed as separate programs.

Visual AgenTalk: A. Repenning and J. Ambach, University of Colorado, 1996
(Repenning 1993; Repenning and Ambach 1996)
Visual AgenTalk is a programming environment based on an approach the designers of

the system call “Tactile Programming” which focuses on allowing users to manipulate

code in multiple contexts to aid comprehension, the construction of more complex

programs, and sharing between programmers. The designers of AgenTalk believe that

users should be able to drop code pieces (either commands or conditional statements) in

three contexts: the program editor, the programming world (the grid-based world in

which the program runs), and the collaboration world. Allowing users to drop code in the

programming world allows users to test the behavior of individual pieces of code without

running the whole program. This gives users a way to explore and begin to understand

code that they did not create. Visual AgenTalk also allows users to easily share code with

other users through the web.

Chapter 11: Programming Languages and Environments for Novice Programmers 282

Chart N Art: C. Digiano, University of Colorado, 1996 (DiGiano 1996)
Chart N Art is a graphical editor similar to MacDraw that reveals a programming

language. As designers manipulate the interface to create drawings and charts, the

equivalent programming statements are printed in a scrolling history area at the bottom.

These statements can be copied from the history area into an interaction pane, edited, and

executed. The interface provides operations on sets of objects as well as single objects,

allowing designers to learn how to specify sets of objects to manipulate using the

scripting language. The goal of the interface is to allow designers to automate the

creation of custom designed charts, giving them more control than graphing and charting

packages, but removing the necessity to draw every aspect of the chart by hand.

11.4.2 Activities Enhanced by Programming
The systems in this group look at programming as a way to enhance activities, either by

allowing greater control or creating opportunities to explore particular domains. Rather

than trying to create full general-purpose programming environments, the designers of

these systems have tailored the functionality in the programming languages to specific

domains.

11.4.2.1 Entertainment
These systems use programming to support entertaining activities. These systems use

programming models inspired by earlier systems to make programming more realizable

to novices and provide activities that the designers believe users will find enjoyable.

Pinball Construction Set: B. Budge, Exidy Software, 1983 (Budge 1983)
The Pinball Construction Set was written in 1983 to allow users to design and build their

own pinball machine simulations (see Figure 11.34). It provided a construction space, a

set of pinball parts, and bitmap editing capabilities to allow users to build themed pinball

machine simulations. Physical laws and behaviors were written into each part; each part

provided could be seen as acting on balls that collide with it in defined ways. In this

system, users can program by placing pinball parts in well-defined relationships. For

example, users may want to specify that when a ball hits a certain target, it is diverted

onto a ramp, and its path affected by a magnet.

Chapter 11: Programming Languages and Environments for Novice Programmers 283

Figure 11.34: A screenshot of the Pinball Construction Set. On the right is an empty pinball game; on the left are

a variety of parts that users can put into their pinball games.

The Incredible Machine: Sierra Entertainment, 1993. (1993)
In the Incredible Machine, the player is given a series of Rube Goldberg style challenges

(see Figure 11.35). For example, the player may be asked to construct a way to get a ball

to fall into a basket. Each challenge includes a short description and all the parts

necessary to create the machine described. Players can select parts and position them in

the world and then start the simulation to test their machine. When the simulation is

running, the parts respond as they would in the physical world. If users run into trouble,

they can ask for hints. More advanced users can use a free play mode to create their own

machines.

Chapter 11: Programming Languages and Environments for Novice Programmers 284

Figure 11.35: An easy challenge in The Incredible Machine: the player needs to help Mel (top left) get back to
his house. The puzzle has been solved by positioning the grey pipe, ramp, and a trampoline so that Mel will go

through the pipe, slide down the ramp, and bounce off the trampoline and over the barrier to get home.

Widget Workshop: Maxis, 1995 (1995)
Widget Workshop provides a series of puzzles that players attempt to solve by

connecting different components together using graphical wires. Each puzzle poses a

specific question (e.g. what colors of light do you add together to get white) and provides

a context in which to experiment with that question (e.g. red, green, and blue lights

controlled by switches that connect to a “light box” where they are combined). Widget

Workshop also provides a free play mode in which users can create their own widgets by

connecting pre-made parts together.

Bongo: A. Begel, MIT Media Lab, 1997 (Begel 1997)
Bongo enables children to create their own video games and share them with others

through the web. Bongo builds upon Starlogo (see section 4.2.2), and adds primitives for

playing sounds, changing shapes, and detecting collisions between characters on the

screen; it customizes Starlogo for use in the domain of games programming. High-level

movement of objects in the system can be done using drag and drop, but procedures are

Chapter 11: Programming Languages and Environments for Novice Programmers 285

created with text-based programming. Bongo supplies a command center that allows

users to test out code and observe its results.

Mindrover: Cognitoy, 2001 (2001)
Mindrover is a commercial game in which the user is a researcher on Europa, one of the

moons of Jupiter. In the researcher’s free time, he or she programs robotic rovers to race

around hallways and battle other rovers. The game allows users to program their rovers

using a drag and drop programming system, inspired by a data-flow visual programming

model and The Incredible Machine (see section 4.2.1). Users select pre-built components

(such as thrusters and steering wheels) and sensors, place them in a limited number of

slots on their rovers, and wire the components and sensors together to give their vehicles

certain behaviors. The programming model is similar to the box and wires approach seen

in Fabrik, Flogo, and Body Electric. Wires contain information about when signals are

sent from sensors to components and the actions triggered by those signals. Boolean gates

are provided to allow users to create more complex behaviors.

11.4.2.2 Education
These systems use programming to allow users to build, explore, and experiment with

models from different domains of knowledge to gain a stronger understanding of those

models. The programming languages are tailored for these specific domains.

SOLO: M. Eisenstadt, The Open University, 1983 (Eisenstadt 1983)
SOLO is a Logo-inspired, interpreted textual programming language designed for

cognitive psychology modeling. The typical psychology student has little computer

experience, no programming experience, occasional access to a computer, and often

works on projects in groups. The SOLO language provides psychology students with a

simple way to model cognitive processes through accessing and manipulating a simple

database of triples. Each triple represents a relationship: for example, “Fido isa dog”. The

language provides 10 commands that allow students to store triples, remove triples, test

for relationships via pattern matching, define procedures, iterate through triples, and view

and edit procedures. Students are able to quickly create simple models of human memory

and reasoning, similar to those discussed in introductory psychology classes, and use

these programs to reason about how cognition works.

Chapter 11: Programming Languages and Environments for Novice Programmers 286

Gravitas: R. Sellman, The Open University, 1992 (Sellman 1992)
Gravitas is an object-oriented discovery-learning environment that allows students to

experiment with Newtonian Gravitation. The environment includes both a graphical

interface controlled by the mouse and a textual Logo-based programming interface.

Students can control the x and y position, x and y velocity, x and y accelerations, and the

mass of the spherical objects in the world. Students typically start with the graphical

interface to Gravitas, and then, as they gain more experience they progress to typing

Logo commands.

Starlogo: M. Resnick, MIT Media Lab, 1996 (Resnick 1996)
Starlogo is a programmable modeling environment designed to allow students to explore

decentralized systems, such as ant colonies and traffic patterns. Users can write simple

rules that control thousands of objects and observe the patterns that arise as a result of

these rules. The Starlogo programming language is based on Logo (see section 4.1.2

under Make the Language More Understandable). However, instead of controlling a

single turtle, users control thousands of turtles. The Starlogo turtles have improved

senses: they can detect each other, nearby turtles, and scents in the world. Each pixel in

the world has additional capabilities. Rather than containing a single piece of information

(color), each pixel is modeled as a turtle that cannot move; it can contain an arbitrary

amount of information. Pixels in the world can affect the state of other pixels, causing

growth or dispersal of scent, for example.

Hank: Mulholland and Watt, The Open University, 1998 (Mulholland and Watt
1998)
Hank is a visual programming language designed for the same audience as SOLO:

psychology students who are constructing cognitive models of human behavior.

Consequently, the Hank language was designed with five goals in mind: support the

creation of cognitive models; consider the requirements of the non-programmer; support

group work; clearly show the execution path; and support paper-based use of the

language. Based on findings that spreadsheets tend to allow a number of interested people

to understand how the spreadsheet is being developed, Hank is a spreadsheet-based

language. The architecture of Hank is similar to the information processing architectures

taught to psychology students. There are three components: a database where information

Chapter 11: Programming Languages and Environments for Novice Programmers 287

can be stored and represented (i.e. long term memory), a workspace where information

can be worked upon (i.e. short term memory), and an executive component that carries

out processing, input, and output. Data is represented with fact cards that typically

represent relationships between entries, similar to a typical spreadsheet. Programs are

expressed on instruction cards using queries for entries on cards and arrows to indicate

what to do when entries are found or not. The execution model is explained using a dog

named Fido who performs programs according to a few simple rules. The authors

designed Fido to be similar to the Logo turtle, in the sense that he gives students a

physical being to imagine executing their programs, increasing the likelihood that they

will be able to accurately simulate their programs on paper. In addition, the environment

provides a comic strip representation of the execution of each program; by double

clicking on a cell in the comic strip, at student can view the related part of the program.

Starlogo TNG: E. Klopfer and A. Begel, MIT Teacher Education Program, 2006
(Klopfer and Yoon 2005)

Starlogo TNG combines the modeling aspects of Starlogo with the drag-and-drop

program creation of LogoBlocks to create a programming environment designed for

formal education. The system is designed to be used in classes ranging from computer

science to biology and mathematics in order to foster students’ development of critical

thinking skills and technology fluency. Unlike Starlogo, Starlogo TNG turtles are 3D

objects that can move through a 3D virtual world. Turtles can perform basic actions like

moving along the ground, turning, and changing colors. Users can define different types

or “breeds” of turtles and define new behaviors for them.

Chapter 11: Programming Languages and Environments for Novice Programmers 288

Figure 11.36: Part of a disease simulation program in StarLogo TNG. When two turtles collide, each turtle
checks to see whether the turtle it collided with is red. If the turtle’s collide is red, then it calls “Immunity.”

11.5 Additional System Information
We placed systems in our taxonomy based on the primary problem that particular system

was trying to address. However, many of the systems described in this paper have

incorporated ideas drawn from earlier systems. In this section, we try to pinpoint some of

the most influential systems, identify which approaches to making programming more

accessible each system has incorporated, and provide information about which

programming constructs are included.

Chapter 11: Programming Languages and Environments for Novice Programmers 289

11.5.1 System Influences

Table 11.1: System influences attempts to provide some insight into which systems have

most influenced the design of later programming systems for novice programmers using

the number of citations. The system with the most citations (from papers referenced by

this survey) appears first. Underneath the system name is the list of all references to it.

Table 11.1: System influences

11.5.2 System Attributes

Each system appears in our taxonomy only once but many have built on the lessons of

systems that have come before. This table attempts to show the major design influences,

including those that were not the primary contribution of the system. Figure X is intended

to address the following questions:

1. What style of programming does the programming environment or language support?

Chapter 11: Programming Languages and Environments for Novice Programmers 290

The systems in the taxonomy fell into six categories: procedural, functional, object-

oriented, object-based, event-based, and state-machine based.

2. What programming constructs are available?

We categorized each programming language as having a particular programming

construct only if the language included a single statement corresponding to that construct.

This excludes languages which do not explicitly support a given construct even if users

can replicate the behavior of that construct using a combination of other elements in the

language. For example, in a system that does not include a “for” loop, a user can create

the behavior of a “for” loop using a “while” loop and a variable. This system would be

classified as supporting “while” loops but not “for” loops.

3. How does code look in the programming environment or language?

The systems in our taxonomy represent programs using text, pictures, flow charts,

animation, forms users can fill in, finite state machines, and physical objects users can

manipulate.

4. What actions do users take to construct programs?

Users can construct programs by typing code, assembling graphical objects,

demonstrating actions through an interface, selecting from valid options or filling values

into a form, and assembling physical objects.

5. Does the programming environment provide additional support to enable users to

better understand the behavior of their programs?

Environments in our survey used several techniques to help users understand the behavior

of their programs. These included: 1) back stories designed to explain the world in which

programs execute and what actions are possible within those worlds, 2) debugging

support, 3) choosing commands with a physical interpretation (for example, move

forward or turn right) such that users can “act out” their programs, 4) allowing users to

make changes to a running program so that users can immediately see the effects of those

changes (liveness), and 5) the ability to generate example programs that correspond to

users’ interface actions.

6. Does the programming environment attempt to prevent syntax errors in any way?

Environments help to prevent users from making syntax errors by: 1) using the shape of

objects to suggest to users which program elements can be connected together (physical

Chapter 11: Programming Languages and Environments for Novice Programmers 291

shape affordance) 2) allowing users to select from valid options based on their current

position within the program 3) using syntax directed editing 4) allowing users to drop

graphical objects only in places where they would be syntactically correct and 5)

providing better syntax error messages to enable users to more easily recover from syntax

errors that do occur.

7. Have the designers of the language made any explicit attempt to make the language

easier to learn?

Language designers used a number of techniques to make programming languages easier

for novices to learn. These included: 1) limiting the domain so that there are fewer

commands for users to learn, 2) selecting user-centered keywords, 3) removing

unnecessary punctuation, 4) making statements in the programming language as close to

natural language as possible, and 5) removing any redundancy in the language.

8. Does the environment support users collaborating on programs?

Environments enabled three types of collaboration between users: 1) side by side based

collaboration in which two or more users were manipulating the same program on

computers that were located in the same room, 2) networked shared manipulation in

which users were in different locations but connected to a common network and could

collaborate while building a program and 3) networked shared results in which users

were in different location but connected to a common network and could share completed

programs or program fragments.

9. What were the primary considerations behind what the authors of the system

envisioned users creating with it?

The systems in the taxonomy fell into three categories: 1) fun and motivating systems

were designed to support a task the creators of the system believed users would find

enjoyable 2) useful systems were designed to enable users to solve a particular type of

problem 3) educational systems were created specifically to aid in teaching either

programming or another topic.

Chapter 11: Programming Languages and Environments for Novice Programmers 292

Table 2: System Attributes - part 1

Chapter 11: Programming Languages and Environments for Novice Programmers 293

Table 3: System Influences - part 2

Chapter 11: Programming Languages and Environments for Novice Programmers 294

Table 4: System Influences - part 3

Chapter 11: Programming Languages and Environments for Novice Programmers 295

11.6 Summary and Future Directions

The systems presented in this paper have tried to make programming accessible in three

main ways: simplifying the mechanics of programming, providing support for learners,

and providing students with motivation to learn to program. The majority of the systems

have focused on the mechanics of programming. Clearly, beginners need to feel that they

can make progress in learning to program. However, pure difficulty is not the only reason

that people hesitate to learn to program. There are a variety of sociological factors

(including students not seeing the relevance of programming or perceiving computer

science as being a socially isolating career path) that can prevent people from learning to

program. Creating environments that address some of these sociological barriers to

programming by supporting learners or providing interesting reasons to program have the

potential to attract a more diverse group of people to computer science. If the population

of people creating software is more closely matched to the population using software, the

software designed and released will probably better match users’ needs. In addition to the

potential benefits to society of having a diverse Computer Science population, we believe

that learning to program will benefit individuals both as a mode of thought and as

preparation for interacting with technology in daily life.

11.6.1 Mechanical Barriers to Programming

Most of the programming systems built for children and novice adults have focused on

making the mechanics of programming more manageable. Systems have removed

unnecessary syntax, designed languages that are closer to spoken English, introduced

programming in visible contexts (such as the Logo turtle) in which students can see the

immediate results of their commands, and explored alternatives to typing programs.

Using these ideas, it is possible to create a system that will allow a wider audience of

people to begin programming. While these systems do not take all of the challenges out

of programming, they can allow students to focus on the logic and structures involved in

programming rather than worrying as much about the mechanics of writing programs.

However, even with these improvements to a beginner’s first programming experience,

there are a number of questions that remain.

Chapter 11: Programming Languages and Environments for Novice Programmers 296

Many of the teaching languages have been heavily influenced by the prevalent general-

purpose languages of their time. Designers of these systems chose to make the

programming constructs and syntax very similar to those of the general-purpose

languages to ease the transition from teaching languages to general-purpose languages.

While it seems obvious that students need to understand the parallels between the

programming constructs in teaching and general-purpose languages, it is not clear how

closely and in what ways teaching languages must resemble general-purpose languages.

11.6.2 Sociological Barriers to Programming

In some ways, sociological barriers can be harder to address than mechanical ones

because they are harder to identify and some cannot be addressed through programming

systems. However, by studying particular groups of people who choose not to learn to

program, identifying the reasons behind their decisions, and trying to address those

reasons in our programming systems and textbooks, we may be able to attract a broader

audience of people to programming and Computer Science. The systems in the taxonomy

have identified and are beginning to address two kinds of sociological barriers to

programming: the lack of a social context for programming and the lack of compelling

contexts in which to learn programming.

11.6.2.1 Social Support
It can be easier and more fun to learn with a group of people. MOOSE Crossing

(Bruckman 1997) and, later Pet Park (DeBonte 1998) added support for social interaction

so that students using these systems can share projects, provide examples for each other,

and chat. Future communities might provide support for students helping each other learn

the interface and programming constructs, support students working on projects together,

or try to capture and strengthen the positive feedback that members of the community

give to each other through looking at and using each other’s work.

11.6.2.2 Reasons to Program
Several systems have tried to provide motivating contexts such as building robots,

fighting battles, and constructing machines in which to learn programming. While these

systems have been very effective for a segment of the population, they do not have broad

Chapter 11: Programming Languages and Environments for Novice Programmers 297

appeal. Newer systems are beginning to search for motivating contexts to introduce

programming that have broad appeal or appeal to groups that are under-represented in

computer science.

Chapter 11: Programming Languages and Environments for Novice Programmers 298

Appendix A: Storyboarding Worksheets 299

Appendix A: Storyboarding Worksheets

11.7 Worksheet 1
The first storyboarding worksheet that I used in formative testing was a guide that was
developed by Adam Shulman and is included on a website of curricular information for
“Project-Based Learning with Multimedia.” It is available at
http://pblmm.k12.ca.us/TechHelp/Storyboarding.html

Appendix A: Storyboarding Worksheets 300

Appendix A: Storyboarding Worksheets 301

Appendix A: Storyboarding Worksheets 302

Appendix A: Storyboarding Worksheets 303

Appendix A: Storyboarding Worksheets 304

Appendix A: Storyboarding Worksheets 305

Appendix A: Storyboarding Worksheets 306

Appendix A: Storyboarding Worksheets 307

Appendix A: Storyboarding Worksheets 308

Appendix A: Storyboarding Worksheets 309

Appendix A: Storyboarding Worksheets 310

11.8 Worksheet 2
The second worksheet included the full text of a folk tale (“The Tinker and the Ghost”)
and an example script and storyboard based on it. The worksheet was intended to serve as
an example to guide participants in creating a good storyboard.

Appendix A: Storyboarding Worksheets 311

The Tinker and the Ghost

Appendix A: Storyboarding Worksheets 312

Spain

From Favorite Folktales from Around the
World, edited by Jane Yolen

On the wide plain not far from the city of
Toledo, there once stood a great grey castle.
For many years before this story begins no one
had dwelt there, because the castle was
haunted. There was no living soul within its
walls, and yet on almost every night in the year
a thin, sad voice moaned and wept and wailed
through the huge, empty rooms. And on All
Hallow’s Eve a ghostly light appeared in the
chimney, a light flared and died and flared
against the dark sky.

Learned doctors and brave adventurers had
tried to exorcise the ghost. And the next
morning they had been found in the great hall
of the castle, sitting lifeless before the empty
fireplace.

Now one day in late October there came to the
little village that nestled around the castle
walls a brave and jolly tinker whose name was
Esteban. And while he sat in the marketplace
mending the pots and pans the good wives told
him about the haunted castle. It was All
Hallows Eve, they said, and if he would wait
until nightfall he could see the strange ghostly
light flare up from the chimney. He might, if
he dared go near enough, hear the thin, sad
voice echo through the silent rooms.

“If I dare!” Esteban repeated scornfully. “You
must know, good wives, that I – Esteban – fear
nothing, neither ghost nor human. I will gladly
sleep in the castle tonight, and keep this dismal
spirit company.”

The good wives looked at him in amazement.
Did Esteban know that if he succeeded in
banishing the ghost the owner of the castle
would give him a thousand gold pieces?

Esteban chuckled. If that was how matters
stood, he would go to the castle at nightfall and
do his best to get rid of the thing that haunted
it. But he was a man who liked plenty to eat

and drink and a fire to keep him company.
They must bring him a load of faggots, a side
of bacon, a flask of wine, a dozen fresh eggs,
and a frying pan. This the good wives gladly
did. And as the dusk fell, Esteban loaded these
things on the donkey’s back and set out for the
castle. And you may be very sure that not one
of the village people went very far along the
way with him!

It was a dark night with a chill wind blowing
and a hint of rain in the air. Esteban unsaddled
his donkey and set him to graze on the short
grass of the deserted courtyard. Then he
carried his food and his faggots into the great
hall. It was dark as pitch there. Bats beat their
soft wings in his face and the air felt cold and
musty. He lost no time in piling some of his
faggots in one corner of the huge stone
fireplace and in lighting them. As the red and
golden flames leaped up the chimney Esteban
rubbed his hands. Then he settled himself
comfortably on the hearth.

“That is the thing to keep off both cold and
fear,” he said.

Carefully slicing some of the bacon he laid it
in the pan and set it over the flames. How good
it smelled! And how cheerful the sound of its
crisp sizzling!

He had just lifted his flask to take a deep drink
of the good wine when down the chimney
there came a voice – a thin, sad voice – and
“Oh me!” it wailed, “Oh me! Oh me!”

Esteban swallowed the wine and set the flask
carefully down beside him.

“Not a very cheerful greeting, my friend,” he
said, as he moved the bacon on the pan so that
it should be equally brown in all its parts. “But
bearable to a man who is used to the braying of
his donkey.”

And “Oh me!” sobbed the voice, “Oh me! Oh
me!”

Esteban lifted the bacon carefully from the hot
fat and laid it on a bit of brown paper to drain.

Appendix A: Storyboarding Worksheets 313

Then he broke an egg into the frying pan. As
he gently shook the pan so that the edges of his
egg should be crisp and brown and the yolk
soft, the voice came again. Only this time it
was shrill and frightened.

“Look out below,” it called. “I’m falling.”

“All right,” answered Esteban, “only don’t fall
into the frying pan.”

With that, there was a thump, and there on the
hearth lay a man’s leg! It was a good leg
enough and it was clothed in the half of a pair
of brown corduroy trousers.

Esteban ate his egg, a piece of bacon and drank
again from the flask of wine. The wind howled
around the castle and the rain beat against the
windows.

Then, “Look out below,” called the voice
sharply. “I’m falling!”

Then there was a thump, and on the hearth
there lay a second leg, just like the first!

Esteban moved it away from the fire and piled
on more faggots. Then he warmed the fat in
the frying pan and broke into it a second egg.

And “Look out below” roared the voice. And
now it was no longer thin, but strong and lusty.
“Look out below! I’m falling”

“Fall away” Esteban answered cheerfully.
“Only don’t spill my egg!”

There was a thump, heavier than the first two,
and on the hearth there lay a trunk. It was
clothed in a blue shirt and a brown corduroy
coat.

Esteban was eating his third egg and the last of
the cooked bacon when the voice called again,
and down fell first one arm and then the other.
“Now,” thought Esteban, as he put the frying
pan on the fire and began to cook more bacon.
“Now there is only the head. I confess that I
am rather curious to see the head.”

And, “LOOK OUT BELOW!” thundered the
voice. “I’M FALLING –FALLING!”

And, down the chimney there came tumbling a
head!

It was a good enough head, with thick black
hair, a long black beard and dark eyes that
looked a little strained and anxious. Esteban’s
bacon was only half cooked. Nevertheless, he
removed the pan from the fire and laid it on the
hearth. And it is a good thing that he did,
because before his eyes the parts of the body
joined together, and a living man – or his ghost
– stood before him! And that was a sight that
might have startled Esteban into burning his
fingers with the bacon fat.

“Good evening,” said Esteban. “Will you have
an egg and a bit of bacon?”

“No, I want no food,” the ghost answered.
“But, I will tell you this, right here and now.
You are the only man, out of all those who
have come to the castle, to stay here until I
could get my body together again. The others
died of sheer fright before I was half finished.”

“That is because they did not have sense
enough to bring food and fire with them,” and
Esteban replied coolly. And he turned back to
his frying pan.

“Wait a minute!” pleaded the ghost. “If you
will help me a bit more, you will save my soul
and get me into the Kingdom of Heaven. Out
in the courtyard, under a cypress tree, there are
buried three bags – one of copper coins, one of
silver coins, and one of gold coins. I stole them
from some thieves and brought them here to
the castle to hide. But no sooner did I have
them buried than the thieves overtook me,
murdered me, and cut my body into pieces.
But they did not find the coins. Now you come
with me and dig them up. Give the copper
coins to the Church, the silver coins to the
poor, and keep the gold coins for yourself.
Then I will have expiated my sins and can go
to the Kingdom of Heaven.”

Appendix A: Storyboarding Worksheets 314

This suited Esteban. So he went out into the
courtyard with the ghost. And you should have
heard how the donkey brayed when he saw
them!

When they reached the cypress tree in a corner
of the courtyard: “Dig,” said the ghost.

“Dig yourself,” answered Esteban.

So the ghost dug, and after a time the three
bags of money appeared.

“Now will you promise to do just what I asked
you to do?” asked the ghost.

“Yes, I promise,” Esteban answered.
“Then,” said the ghost, “strip my garments
from me.”

This Esteban did, and instantly the ghost
disappeared, leaving his clothes lying there on
the short grass of the courtyard. It went straight
up to Heaven and knocked on the gate. Saint
Peter opened it, and when the spirit explained
that he had expiated his sins, gave him a
cordial welcome.

Esteban carried the coins into the great hall of
the castle, fried and ate another egg and then
went peacefully to sleep before the fire.

The next morning when the village people
came to carry away Esteban’s body, they
found him making an omelet out of the last of
the fresh eggs.

“Are you alive?” they gasped.

“I am,” Esteban answered. “And the food and
the faggots lasted through very nicely. Now I
will go the owner of the castle and collect my
thousand gold reales. The ghost has gone for
good and all. You will find his clothes lying
out in the courtyard.”

And before their astonished eyes he loaded the
bags of coins on the donkey’s back and
departed.

First he collected the thousand gold pieces
from the grateful lord of the castle. Then he
returned to Toledo, gave the copper coins to
his church, and faithfully distributed the silver
ones among the poor. And on the thousand
gold pieces he lived in idleness and great
contentment for many years.

Appendix A: Storyboarding Worksheets 315

Scene 1:

Appendix A: Storyboarding Worksheets 316

In the village – Esteban the gypsy is talking to villagers.

Esteban: Who lives in that huge castle?

Villager 1: No one – it’s haunted.

Esteban: Oh please.

Villager 2: No really, lots of people have DIED trying to get rid of that ghost.

Villager 1: If you’re brave enough to venture close to the castle, you can hear the ghost at
night wailing and carrying on.

Esteban: If I’m brave enough? I fear nothing and nobody. I’ll do better than going close
to the castle; I’ll sleep there.

Villager 1: If you can get rid of the ghost, the owner of the castle will give you a 1000
gold pieces as a reward.

Esteban: Then it’s settled. Just bring me some food and drink and some wood for a fire.

Scene 2:

Esteban is sitting in front of his fire in the castle cooking something in a frying pan.

Ghost: “Oh me! Oh me! Oh me!”

Esteban: “That’s not a very cheerful greeting, but I guess it’s alright for someone used to
having a donkey for company”

Ghost: “Oh me! Oh me! Oh me!”

Esteban eats from his pan.

Ghost: “Look out below, I’m falling”

Esteban: “Fall away, just don’t spill my egg!”

Ghosts leg falls from the sky and lands next to Esteban.

Esteban looks at the leg, shakes his head and goes back to eating.

Ghost: Look out below, I’m falling

Esteban: All right, just don’t fall into the frying pan

Appendix A: Storyboarding Worksheets 317

Ghost’s leg falls from the sky and lands next to Esteban

Esteban looks at the leg and then goes back to cooking over the fire

Ghost: Look out below, I’m falling

Torso falls.

Esteban doesn’t bother to look, he just eats his food.

Ghost: Look out below, I’m falling

An arm falls

Ghost: Look out below, I’m falling

Another arm falls

Esteban looks over at the body

Esteban thinks: Now he just needs a head – wonder what that will look like.

Ghost: Look out below, I’m falling

Head falls. Esteban looks over at body
Ghost stands up

Esteban: Good evening, would you like some food?

Ghost: No, I want no food. But I’ll tell you this, you’re the first to stay here until I could
get my body together. The others have all died of shock before I was even halfway
through.

Esteban: Guess they didn’t have the good sense to bring fire and food.

He turns back to the fire

Ghost: Wait – if you’ll help me, you can save my soul and get me into Heaven. Out in the
courtyard are three buried bags – one copper, one silver, and one gold. I stole them from
some thieves, but they caught me and cut me to pieces. They never found the coins
though. Give the copper to the church, the silver to the poor and keep the gold ones for
yourself.

Epilogue –

Appendix A: Storyboarding Worksheets 318

Esteban did as the ghost said and lived out his days as a rich man.

The ghost went to heaven.

The owner of the castle finally got to move in.

The end.

Appendix A: Storyboarding Worksheets 319

Appendix A: Storyboarding Worksheets 320

Worksheet 3

The third storyboarding worksheet guided participants through a 3-step storyboarding
process. In the first step, they created a DVD-box description of their story. In the second
step, they broke their story into scenes and created a more detailed description of each
scene. Finally, participants drew a storyboard for each scene.

Appendix A: Storyboarding Worksheets 321

Name:
Computer:

Storyboarding

Step 1- Story Description: Write a short (2-3 sentences) high-level description of your
movie below. You may want to think of this as the description that would appear on the
DVD box for your movie.

Examples:

Jennifer and her friends have never been part of the popular crowd. Despite their cruelty
to Jennifer and her friends, Jennifer has always wanted to be friends with the popular
girls. When her wish is unexpectedly granted, will she remain true to her old friends?

Melly and her dog are training to compete in a human-dog talent competition. But, when
Melly’s enemy and main competition see how far they’ve come, she decides to steal
Melly’s dog to prevent them from entering.

Patrick and Tina meet one day in the park and fall madly in love. Unfortunately, both are
dating other people. By sheer coincidence, both Patrick’s girlfriend and Tina’s boyfriend
can’t go to the dance on Friday, and they decide to go together. Both are shocked by who
they meet.

A group of soccer players on a trip to the state playoffs decide to go hiking in a nearby
park to relax before the big game. Will they manage to find their way back in time for the
state final or will their team have to forfeit?

Appendix A: Storyboarding Worksheets 322

Step 2- Scene Breakdown: Now that you have a basic overview of your story, you need
to decide what scenes you’ll use to tell your story. For the purposes of this class, your
story should have no more than four scenes. List out the scenes in your story and briefly
describe each one. Each of your scenes should have a specific purpose in the overall
context of your story.

As an example, let’s look at the wish story from the previous page:

Jennifer and her friends have never been part of the popular crowd. Despite their cruelty
to Jennifer and her friends, Jennifer has always wanted to be friends with the popular
girls. When her wish is unexpectedly granted, will she remain true to her old friends?

One way to present this story is….

Scene 1
Purpose: show that Jennifer and her friends are unpopular
Setting: school hallway
Action: Jennifer asks one of the popular girls if she’s going to go to the school play on
Friday. The girl refuses to acknowledge her. Jennifer’s best friend, Hilary comforts her
saying “You’re a great person, why would you want to be friends with someone so mean”

Scene 2
Purpose: show Jennifer wishing to become popular
Setting: in the park
Action: Jennifer stands at a wishing well and wishes that she could be popular. She tosses
in a penny.

Scene 3
Purpose: show Jennifer having become popular
Setting: school hallway
Action: Jennifer and Hilary are talking. One of the popular girls approaches Jennifer and
asks if she wants to come to the mall with them after school. Jennifer realizes that her
wish has come true.

Scene 4
Purpose: show Jennifer ignoring her former best friend because she’s not popular
Setting: skate park
Action: Hilary sees Jennifer with her new group of friends. Hilary walks over to them and
asks Jennifer if they can talk for a minute. Another girl in the group asks “Why would she
want to talk to you?” Jennifer answers with “Yeah, why would I?” and turns away. Hilary
looks sad and walks away.

Appendix A: Storyboarding Worksheets 323

Please use this sheet to list and describe the scenes in your movie.

Scene 1
Purpose:

Setting:
Action:

Scene 2
Purpose:

Setting:
Action:

Scene 3
Purpose:

Setting:
Action:

Scene 4
Purpose:

Setting:
Action:

Scene 5

Appendix A: Storyboarding Worksheets 324

Purpose:

Setting:
Action:
Step 3 – Drawing Storyboards: At this point, you should be ready to begin sketching
out what you think your movie should look like. In the movie industry, this process is
known as creating a storyboard. Before studios invest money in actors and sets, either
digital or real, studios create storyboards. Storyboards can help movie directors and
producers to work out problems with the story or how it will be presented without
needing actors and sets.

When you create your storyboards you should be thinking about where your characters
start in the scene, how they move, what they do, and what they say. You should also
think about where you want the camera to be – shots from far away can help your
audience to better understand where the scene takes place, close-up shots may help your
audience to feel more connected with the characters.

Below is what the first scene of the wish story might look like in storyboard form.
Please note: these are all stick figures, not major artistic endeavors. The point of making
a storyboard is to help you plan out how your movie will look. Your storyboards don’t
need to be beautiful: stick figures are fine; and, if you run into something that’s hard to
sketch quickly, you can describe it with words. As in the example below, you should
write a quick textual description underneath each picture to indicate what’s going on,
who’s talking, etc.

Appendix A: Storyboarding Worksheets 325

Appendix A: Storyboarding Worksheets 326

Appendix B: Surveys and Programming Quiz 327

Appendix B: Surveys and Programming Quiz

11.9 Pre-Workshop Survey

This was given to all participants of the summative evaluation at the beginning of the
evaluation workshops.

Appendix B: Surveys and Programming Quiz 328

Pre-Workshop Survey

Name:
Age:
Grade in School:

What kind of school do you go to? (Please circle one answer)
 a) a public school
 b) a private school
 c) I am home-schooled

How would you describe the grades on your report card? (Please circle one answer)
 a) Mostly A’s
 b) A’s and B’s
 c) Mostly B’s
 d) B’s and C’s
 e) Mostly C’s
 f) C’s and D’s
 g) Mostly D’s and below.
 h) I don’t get grades.

What are your favorite subjects in school? (Please circle all that apply)

a) English
b) History
c) Math
d) Science
e) Foreign Language
f) Government
g) Art
h) Music
i) Other: ______________________

During the last week (counting yesterday and backwards 6 days), how often did you use a
computer for any purpose?
Hours last week _______

What do you use computers for?

a) Only for schoolwork
b) Mostly for schoolwork and some for fun
c) About equally for schoolwork and fun
d) Mostly for fun and some for schoolwork
e) Only for fun.

Appendix B: Surveys and Programming Quiz 329

What is your skill level at using computers?
a) Poor or nonexistent
b) Fair
c) Good
d) Very good
e) Excellent

Have you ever written a computer program?

a) Yes
b) No
c) Don’t know

Have you ever made your own web page?
a) Yes
b) No
c) Don’t know

When something goes wrong with your computer, how frequently do you ask friends or
family members for help fixing it?

a) Very frequently
b) Somewhat frequently
c) Neither frequently nor infrequently
d) Somewhat infrequently
e) Very infrequently

When you want to install a new computer program, how frequently do you ask friends or
family members to help you install it?

a) Very frequently
b) Somewhat frequently
c) Neither frequently nor infrequently
d) Somewhat infrequently
e) Very infrequently

Do you think you could learn a computer language like Java or C++?

a) Definitely not
b) Probably not
c) Maybe yes, maybe no
d) Probably yes
e) Definitely yes

Would you be interested in taking a computer science class in high school?

a) Definitely not
b) Probably not
c) Maybe yes, maybe no
d) Probably yes
e) Definitely yes

Appendix B: Surveys and Programming Quiz 330

11.10 Post-Workshop Survey
After participants completed their 135 minutes working with their assigned version of
Alice, they were asked to complete a second survey.

Appendix B: Surveys and Programming Quiz 331

Post-workshop Survey
Name:

There are several statements about using the computer during the workshop today. Please
put an ‘X’ in one of the boxes to indicate whether you agree or disagree with each
statement.

Strongly
Disagree Disagree Not Sure Agree

Strongly
Agree

1 Using the computer during the workshop
today was fun.

2 Using the computer during the workshop
today was interesting.

3 Using the computer during the workshop
today was frustrating.

4 Using the computer during the workshop
today was boring.

There are several statements about the computer animation program you used during the
workshop today. Please put an ‘X’ in one of the boxes to indicate whether you agree or
disagree with each statement.

Strongly
Disagree Disagree Not Sure Agree

Strongly
Agree

1 The computer animation program I used
today is confusing.

2 The computer animation program I used
today is cool.

3 The computer animation program I used
today is annoying.

4 The computer animation program I used
today is easy to learn.

5 The computer animation program I used
today is entertaining.

If you used Alice (the computer animation program you used today) again, how long do
you think you could use it at one time without getting bored? (Please circle one answer)

a) Less than 1 hour
b) 1-2 hours
c) 2-3 hours
d) 3-4 hours
e) More than 4 hours

Appendix B: Surveys and Programming Quiz 332

Alice is currently being used to teach high school and college students. In what kinds of
classes is Alice used most frequently?
 a) Science classes
 b) Computer science classes
 c) Art classes
 d) Communications classes

If you had the computer animation program you used today (“Alice”) on a computer at
home, how often during the next month do you think you would use it? (Please circle one
answer)

a) Never
b) Once during the next month
c) Twice or three times during the next month
d) Once a week during the next month
e) More than once a week during the next month

Would you be interested in taking another Alice class?

a) Definitely not
b) Probably not
c) Maybe no, maybe yes
d) Probably yes
e) Definitely yes

Do you think you could create a world in Alice that you would be proud to show your
friends?

a) Definitely not
b) Probably not
c) Maybe no, maybe yes
d) Probably yes
e) Definitely yes

Do you think you could learn to use advanced features in the Alice program?

a) Definitely not
b) Probably not
c) Maybe no, maybe yes
d) Probably yes
e) Definitely yes

Do you think you could learn a computer language like Java or C++?

f) Definitely not
g) Probably not
h) Maybe yes, maybe no
i) Probably yes
j) Definitely yes

Appendix B: Surveys and Programming Quiz 333

Would you be interested in taking a computer science class in high school?
f) Definitely not
g) Probably not
h) Maybe yes, maybe no
i) Probably yes
j) Definitely yes

Can you imagine growing up to be a computer scientist?

a) Definitely not
b) Probably not
c) Maybe no, maybe yes
d) Probably yes
e) Definitely yes

How likely is it that you will tell anyone about your experience in the workshop today?

a) Very unlikely
b) Somewhat unlikely
c) Neither unlikely nor likely
d) Somewhat likely
e) Very likely

If you do plan to talk about your experience today, what will you say? (Please write your
answer below.)

What are the 3 best things about Alice?
1.

2.

3.

What are the 3 worst things about Alice?
1.

2.

3.

Appendix B: Surveys and Programming Quiz 334

11.11 Programming Quiz

After the post-survey, participants completed a short programming quiz.

Appendix B: Surveys and Programming Quiz 335

1. If you were to play the following 3 lines of code in Alice, which of the
following best describes what would happen?

a. First the black cat moves, then coach says apple, and finally sam turns.
b. First the coach says apple, then the black cat moves, and finally sam turns.
c. First sam turns, then the black cat moves, and finally the coach says apple.
d. First the black cat moves, then sam turns, and finally the coach says apple.

2. If you were to hit the play button for the Alice world pictured above, which
animation would you expect Alice to play?

a. Alice would play method 1.
b. Alice would play method 2.
c. Alice would play method 3.
d. Alice would play method 4.

Appendix B: Surveys and Programming Quiz 336

3. If you were to play this method in Alice, which of the following best describes
what would happen?

a. Sam would bark, move forward, say “Grrr!”, and turn right all at the same

time.
b. First sam would bark, then sam would move forward and say “Grrr!” at

the same time, and finally sam would turn right ½.
c. First sam would bark, then sam would move forward, then sam would say

“Grrr!”, and finally sam would turn right ½.
d. First sam would bark, then sam would move forward, say “Grrr!” and turn

right at the same time.

4. If you were to play this method in Alice, how many times would the coach say
“Ready, set, go!”

a. 1 time.
b. 2 times.
c. 3 times.
d. 4 times.

Appendix B: Surveys and Programming Quiz 337

5. If you were to play this method in Alice, how many times would the coach say
“Stop!”

a. 1 time.
b. 2 times.
c. 3 times.
d. 4 times.

6. If you were to play “World.scene 1 method” (below) in Alice, which words
would Joey say?

a. First, he would say “Sign,” and then “Library.”
b. First, he would say “Library,” then he would say “Belt,” and finally he

would say “Sign.”
c. First, he would say “Library,” and then “Sign.”
d. First he would say “Belt,” then he would say “Sign”, and finally he would

say “Library.”

Appendix B: Surveys and Programming Quiz 338

7. If you were to play “World.scene 1 method” (below) in Alice, which
character would say “Aaaah!” and “I’m scared?” Some extra information
you might need is pictured below “World.scene 1 method.”

a. None of the characters
b. Dave
c. Dora
d. Leon
e. Suzi

Appendix C: Generic and Storytelling Alice Reference Booklets 339

Appendix C: Generic and Storytelling Alice
Reference Booklets

11.12 Generic Alice Reference Booklet

Appendix C: Generic and Storytelling Alice Reference Booklets 340

Appendix C: Generic and Storytelling Alice Reference Booklets 341

Appendix C: Generic and Storytelling Alice Reference Booklets 342

Appendix C: Generic and Storytelling Alice Reference Booklets 343

Appendix C: Generic and Storytelling Alice Reference Booklets 344

Appendix C: Generic and Storytelling Alice Reference Booklets 345

Appendix C: Generic and Storytelling Alice Reference Booklets 346

Appendix C: Generic and Storytelling Alice Reference Booklets 347

Appendix C: Generic and Storytelling Alice Reference Booklets 348

11.13 Storytelling Alice Reference Booklet

Appendix C: Generic and Storytelling Alice Reference Booklets 349

Appendix C: Generic and Storytelling Alice Reference Booklets 350

Appendix C: Generic and Storytelling Alice Reference Booklets 351

Appendix C: Generic and Storytelling Alice Reference Booklets 352

Appendix C: Generic and Storytelling Alice Reference Booklets 353

Appendix C: Generic and Storytelling Alice Reference Booklets 354

Appendix C: Generic and Storytelling Alice Reference Booklets 355

Appendix C: Generic and Storytelling Alice Reference Booklets 356

References 357

References

(1993). The Incredible Machine, Sierra Games.

(1995). My Make Believe Castle, Logo Computer Systems, Inc.

(1995). Thinkin' Things Collection 3: Half Time, Edmark Corporation.

(1995). Widget Workshop, Maxis.

(1998). Lego Mindstorms Robotics Invention System, LEGO Systems, Inc.

(1999). Alice 99, Carnegie Mellon University.

(2001). Mindrover, Cognitoy.

(2002). Magic Forest, Logotron.

(2003). Alice 2, Carnegie Mellon University.

AAUW (1992). How Schools Shortchange Girls: A Study of Major Findings on Girls and
Education. New York, NY, Marlowe & Company.

AAUW (1996). Girls in the Middle: Working to Succeed in School. Washington, DC,
American Association of University Women Educational Foundation.

AAUW (1998). Gender Gaps: Where Schools Still Fail Our Children. Washington, DC,
American Association of University Women Educational Foundation.

AAUW (2000). Tech-Savvy: Educating Girls in the New Computer Age. Washington,
DC, American Association of University Women Educational Foundation.

Apple Designing Coachmarks.

Atkinson, B. (1987). Hypercard, Apple Computer.

References 358

Aubel, A., R. Boulic, et al. (2000). "Real-time display of virtual humans: levels of details
and imposters." Circuits and Systems for Video Technology 10(2): 207-217.

Baecker, R. (2002). Showing Instead of Telling. International Conference on the Design
of Communication, ACM Press.

Bartlett, J. (1992). Transparent Controls for Interactive Graphics. Palo Alto, CA, Digital
Equipment Corporation.

Becker, B. (2004). Robots: Learning to Program with Java. Waterloo, Self-published.

Begel, A. (1996). LogoBlocks: A Graphical Programming Language for Interacting with
the World. Electrical Engineering and Computer Science Department. Boston, MA, MIT.

Begel, A. (1997). Bongo: A Kids' Programming Environment for Creating Video Games
on the Web. Electrical Engineering and Computer Science Department. Cambridge, MA,
MIT.

Bell, B. and C. Lewis (1993). ChemTrains: A Language for Creating Behaving Pictures.
IEEE Symposium on Visual Languages.

Bergin, J., M. Stehlik, et al. (1996). Karel++: A Gentle Introduction to the Art of Object-
Oriented Programming. New York, NY, John Wiley & Sons, Inc.

Bergin, J., M. Stehlik, et al. (2001). Karel J. Robot: A Gentle Introduction to the Art of
Object-Oriented Programming.

Bier, E., M. Stone, et al. (1994). A taxonomy of see-through tools. Conference on Human
Factors in Computing Systems, ACM Press.

Bier, E., M. Stone, et al. (1993). Toolglass and magic lenses: the see-through interface.
Conference on Computer Graphics and Interactive Techniques, ACM Press.

Blackwell, A. and R. Hague (2001). AutoHAN: An Architecture for Programming the
Home. IEEE Symposia on Human-Centric Computing Languages and Environments,
Stresa, Italy.

Blanchard, C., S. Burgess, et al. (1990). Reality Built for Two: A Virtual Reality Tool.
Symposium on Interactive 3D Graphics, Snowbird, Utah.

Booher, H. R. (1975). "Relative comprehensibility of pictorial information and printed
words in proceduralized instructions." Human Factors 17(3): 266-277.

Bruckman, A. (1997). MOOSE Crossing: Construction, Community, and Learning in a
Networked Virtual World for Kids. MIT Media Lab. Boston, MA.

References 359

Brunner, C., D. Bennett, et al. (1998). Girl Games and Technological Desire. From
Barbie to Mortal Kombat. J. Cassell and H. Jenkins. Cambridge, MA, MIT Press: 72-88.

Brusilovsky, P. (1991). Turingal - the language for teaching the principles of
programming. Third European Logo Conference, Parma, Italy.

Brusilovsky, P., E. Calabrese, et al. (1997). "Mini-languages: A Way to Learn
Programming Principles." Education and Information Technologies 2(1): 65-83.

Budge, B. (1983). Pinball Construction Set, Exidy Software.

Burnett, M., J. Atwood, et al. (2001). "Forms/3: A First-Order Visual Language to
Explore the Boundaries of the Spreadsheet Paradigm." Journal of Functional
Programming 11(2): 155-206.

Carroll, J. and J. Carrithers (1984). "Training Wheels in a User Interface."
Communications of the ACM 27(8): 800-806.

Castell, S. d. and M. Bryson (1998). Retooling Play: Dystopia, Dysphoria, and
Difference. From Barbie to Mortal Kombat: Gender and Computer Games. J. Cassell and
H. Jenkins.

Catlin, D. (1989). Roamer, Valiant Technologies.

Catrambone, R. and J. Carroll (1987). Learning a Word Processing System with Training
Wheels and Guided Exploration. Conference on Human Factors in Computing Systems
and Graphical Interfaces.

CAWMSET (2000). Land of Plenty: Diversity as America's Competitive Edge in
Science, Engineering and Technology. Arlington, VA, Commission on the Advancement
of Women and Minorities in Science, Engineering, and Technology.

Chai, J.-x., J. Xiao, et al. (2003). Vision-based control of 3D facial animation.
SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, ACM
Press.

Cheng, A. (1998). A Graphical Programming Interface for a Children's Constructionist
Learning Environment. Electrical Engineering and Computer Science Department.
Boston, MA, Massachusettts Institute of Technology.

Cockburn, A. and A. Bryant (1997). "Leogo: An Equal Opportunity User Interface for
Programming." Journal of Visual Languages and Computing 8(5-6): 601-619.

Cockburn, A. and A. Bryant (1998). Cleogo: Collaborative and Multi-Metaphor
Programming for Kids. 3rd Asia Pacific Conference on Computer Human Interaction,
Japan.

References 360

College_Board (2004). 2004 A.P. Exam National Summary Report.

College_Board (2005). 2005 A.P. Exam National Summary Report.

Collins, W. A. and S. A. Kuczaj (1991). Developmental Psychology: Childhood and
Adolescence. New York, NY, Macmillan.

Conway, M. (1997). Alice: Easy-to-Learn 3D Scripting for Novices. School of
Engineering and Applied Science. Charlottesville, VA, University of Virginia.

Conway, M., S. Audia, et al. (2000). Alice: lessons learned from building a 3D system for
novices. Conference on Human Factors in Computing Systems, The Hague, The
Netherlands, ACM Press.

Cooper, S., W. Dann, et al. (2003). Teaching Objects-first in Introductory Computer
Science. SIGCSE, ACM Press.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration. Cambridge,
Massachusetts, MIT Press.

DeBonte, A. (1998). Pet Park: A Virtual Learning World for Kids. Electrical Engineering
and Computer Science. Boston, MA, MIT.

DiGiano, C. (1996). Self-Disclosing Design Tools: An Incremental Approach Toward
End-User Programming. Computer Science Department. Boulder, CO, University of
Colorado at Boulder.

Dijkstra, E. W. (1969). Structured Programming. Software Engineering Technologies,
Rome, Italy.

diSessa, A. and H. Abelson (1986). "Boxer: A Reconstructable Computational Medium."
Communications of the ACM 29(9): 859-868.

Dobbyn, S., J. Hamill, et al. (2005). Geoposters: a real-time geometry / imposter crowd
rendering system. Symposium on Interactive 3D Graphics and Games, Washington, DC,
ACM Press.

Dossey, J. A., I. V. S. Mullis, et al. (1988). The mathematics report card: Are we
measuring up? Princeton, NJ, Educational Testing Service.

Eisenstadt, M. (1983). "A User-Friendly Software Environment for the Novice
Programmer." Communications of the ACM 26(12): 1058-1063.

Ekman, P., W. Friesen, et al. (2002). Facial Action Coding System, A Human Face.

References 361

ETC What is the ETC?

Fennema, E. and J. Sherman (1977). "Sex Related Differences in Math Achievement,
Spatial Visualization and Affective Factors." American Educational Research Journal 14:
51-71.

Fenton, J. and K. Beck (1989). Playground: an object-oriented simulation system with
agent rules for children of all ages. Proceedings on Object-oriented Programming
Systems, Languages and Applications, New Orleans, LA.

Finzer, W. and L. Gould (1984). Programming by Rehearsal. Palo Alto, CA, Xerox Palo
Alto Research Center.

Fishkin, K. and M. Stone (1995). Enhanced Dynamic Queries via Movable Filters.
Conference on Human Factors in Computing Systems, ACM Press.

Flanagan, M., H. Nissenbaum, et al. (2005). New Design Methods for Activist Gaming.
Digital Games Research Association Conference.

Frankel, L. (2002). Research Facts and Findings: Identity Formation in Adolescence.

Frei, P., V. Su, et al. (2000). Curlybot: Designing a New Class of Computational Toys.
Conference on Human Factors in Computing Systems, Los Angeles, CA.

Furger, R. (1998). Does Jane Compute?: Preserving Our Daughters' Place in the Cyber
Revolution. New York, Warner Books, Inc.

GA (2003). Children, Families and the Internet 2003, Grunwald Associates.

Gilligan, D. (1998). An Exploration of Programming by Demonstration in the Domain of
Novice Programming. Computer Science. Wellington, Victoria, Victoria University: 176.

Gindling, J., A. Ioannidou, et al. (1995). LEGOsheets: A Rule-Based Programming,
Simulation and Manipulation Environment for the LEGO Programmable Brick. IEEE
Symposium on Visual Languages, Darmstadt, Germany.

Glinert, E. and S. Tanimoto (1984). "Pict: An Interactive Graphical Programming
Environment`." Computer 17(11): 7-25.

Goldman, K. (2003). A Demonstration of JPie: An Environment for Live Software
Construction in Java. Conference on Object-Oriented Programming Systems, Languages,
and Applications, ACM Press.

Goldman, K. (2004). "An Interactive Environment for Beginning Java Programmers."
Science of Computer Programming 53(1): 3-24.

References 362

Gomoll, K. Some Techniques for Observing Users, Advanced Technology Group, Apple
Computer.

Goodall, S. (1991). Online Help in the Real World. International Conference on Design
of Communication, ACM Press.

Goodall, S. (1992). Online Help: A Part of Documentation. International Conference on
Design of Communication, ACM Press.

Goodman, D. (1987). The Complete Hypercard Handbook. Birmingham, AL, Bamtam
Computer Books.

Guzdial, M. (1995). "Software-Realized Scaffolding to Facilitate Programming for
Science Learning." Interactive Learning Environments 4(1): 1-44.

Hancock, C. (2001). Children's Understanding of Process in the Construction of Robot
Behaviors. Symposium on Varieties of Programming Experiences, Seattle, WA.

Harrison, S. (1995). A Comparison of Still, Animated, or Nonillustrated On-Line Help
with Written or Spoken Instructions in a Graphical User Interface. Conference on Human
Factors in Computing Systems.

Hartmann, W., J. Nievergelt, et al. (2001). Kara: finite state machines, and the case for
programming as part of general education. IEEE Symposia on Human Centric Computing
Languages and Environments, Stresa, Italy.

Hays, J. and M. Burnett (2001). Guided Tour of Forms/3. 2004.

Hecker, D. (2005). "Occupational employment projections to 2014." Monthly Labor
Review(November 2005).

Hintze, J. and M. Masuch (2004). Designing a 3D Authoring Tool for Children. Second
International Conference on Creating, Connecting and Collaborating through Computing,
Kyoto, Japan.

Holt, R. and J. Cordy (1988). "The Turing Programming Language." Communications of
the ACM 31(12): 1410-1423.

Holt, R., D. Wortman, et al. (1977). "SP/k: A System for Teaching Computer
Programming." Communications of the ACM 20(5): 301-309.

Hudson, S., R. Rodenstein, et al. (1997). Debugging Lenses: A New Class of Transparent
Tools for User Interface Debugging. Symposium on User Interface Software and
Technology, ACM Press.

References 363

Igarashi, T., S. Matsuoka, et al. (1999). Teddy: a sketching interface for 3D freeform
design. International Conference on Computer Graphics and Interactive Techniques,
ACM Press.

Ingalls, D., S. Wallace, et al. (1988). Fabrik: A Visual Programming Environment. Object
Oriented Programming Systems, Languages, and Applications, San Diego, CA.

Jackson, J., J. Krajcik, et al. (1998). The Design of Guided Learner-Adaptable
Scaffolding in Interactive Learning Environments. Conference on Human Factors in
Computing Systems.

Joshi, P., W. Tien, et al. (2003). Learning Controls for Blend Shape Based Realistic
Facial Animation. SIGGRAPH/Eurographics Symposium on Computer Animation, San
Diego, CA, ACM Press.

Kafai, Y. (1995). Minds in Play. Hillsdale, NJ, Lawrence Erlbaum Associates.

Kahn, K. (1996). "Drawings on napkins, video-game animation, and other ways to
program computers." Communications of the ACM 43(3): 104-106.

Kato, H. and A. Ide (1995). Using a Game for Social Setting in a Learning Environment:
AlgoArena -- A Tool for Learning Software Design. Computer Supported Collaborative
Learning, Bloomington, Indiana.

Kay, A. Etoys and Simstories in Squeak.

Kay, A. (1993). "The Early History of Smalltalk." ACM SIGPLAN Notices 28(3): 69-96.

Kelleher, C. and R. Pausch (2005). "Lowering the Barriers to Programming: a survey of
programming environments and languages for novice programmers." ACM Computing
Surveys 37(2): 83-137.

Kimura, T., J. Choi, et al. (1990). Show and Tell: A Visual Programming Language.
Visual Programming Environments: Paradigms and Systems. E. P. Glinert, IEEE
Computer Science Press: 397-404.

Kloper, E. and A. Begel (2006). StarLogo TNG.

Klopfer, E. and S. Yoon (2005). "Developing Games and Simulations for Today and
Tomorrow's Tech Savvy Youth." Tech Trends 49(3): 33-41.

Knabe, K. (1995). Apple Guide: A Case Study in User-Aided Design of Online Help.
Conference on Human Factors in Computing Systems, ACM Press.

References 364

Kolling, M., B. Quig, et al. (2003). "The BlueJ system and its pedagogy." Journal of
Computer Science Education, Special Issue of Learning and Teaching Object Technology
12(4): 249-268.

Kolling, M. and J. Rosenberg (1996). Blue - A language for teaching object-oriented
programming. Proceedings of the twenty-seventh SIGCSE technical symposium on
Computer Science Education, Philadelphia, PA.

Kolling, M. and J. Rosenberg (1996). An Object-Oriented Program Development
Environment for the First Programming Course. Proceedings of the twenty-seventh
SIGCSE technical symposium on Computer Science Education, Philadelphia, PA.

Kramer, A. (1994). Translucent Patches. Symposium on User Interface Software and
Technology, ACM Press.

Kurtz, T. (1981). BASIC. History of Programming Languages. R. Wexelblat. New York,
Academic Press: 515-537.

Laurel, B. (2001). Utopian Entrepreneur. Cambridge, MA, MIT Press.

Liebermann, H. (1993). Mondrian: A Teachable Graphical Editor. Watch What I Do:
Programming by Demonstration. A. Cypher. Cambridge, MA, MIT Press.

Lionet, F. and Y. Lamoureux (1994). Klik and Play, Maxis.

Looser, J., M. Billinghurst, et al. (2004). Through the Looking Glass: The Use of Lenses
as an Interface Tool for Augmented Reality Interfaces. Conference on Computer
Graphics and Interactive Techniques, ACM Press.

Maloney, J., L. Burd, et al. (2005). Scratch: A Sneak Preview. International Conference
on Creating, Connecting, and Collaborating through Computing., Kyoto, Japan.

Marcia, J. (1980). Identity in Adolescence. Handbook of Adolescent Psychology. J.
Adelson. New York, NY, Wiley - Interscience.

Margolis, J. and A. Fisher (2002). Unlocking the Clubhouse: Women in Computing.
Cambridge, MA, MIT Press.

Martin, F., G. L. Colobong, et al. (1999). Tangible Programming with Trains.

McIver, L. (1999). Grail: A Zeroth Programming Language. Conference in Computers in
Education.

McIver, L. (2001). Syntactic and Semantic Issues in Introductory Programming
Education. Computer Science and Software Engineering. Melbourne, Australia, Monash
University.

References 365

McNerney, T. (2000). Tangible Programming Bricks: An Approach to Making
Programming Accessible to Everyone. MIT Media Lab. Cambridge, MA.

Merrill, D. C. and B. J. Reiser (1993). Scaffolding the acquisition of complex skills with
reasoning-congruent learning environments. Workshop in Graphical Representations,
Reasoning, and Communication from the World Conference on Artificial Intelligence in
Education, University of Edinburgh.

Microsoft Windows Family.

Miller, P., J. Pane, et al. (1994). "Evolution of Novice Programming Environments: The
Structure Editors of Carnegie Mellon University." Interactive Learning Environments
4(2): 140-158.

Minsky, M. (1986). The Society of Mind. New York, NY, Simon and Schuster.

Montemayor, J., A. Druin, et al. (2002). Physical Programming: designing tools for
children to create physical interactive environments. Conference on Human Factors in
Computing Systems, Minneapolis, MN.

Moskal, B., D. Lurie, et al. (2004). Evaluating the Effectiveness of a New Instructional
Approach. Technical Symposium on Computer Science Education, ACM Press.

Motil, J. and D. Epstein (1998). JJ: A Language Designed for Beginners (Less is More).

Mulholland, P. and S. Watt (1998). Hank: A Friendly Cognitive Modelling Language for
Psychology Students. IEEE Symposium on Visual Languages, Nova Scotia.

NCLB (2002). No Child Left Behind.

Nelson, M. (2001). Robocode, IBM Advanced Technologies.

Newburger, E. C. (2000). Home Computers and Internet Use in the United States: August
2000, U.S. Census Bureau.

Nielson, J. (1993). Usability Engineering. Boston, MA, Academic Press.

Norman, D. (1986). Cognitive Engineering. User Centered System Design: New
Perspectives on Human-Computer Interaction. D. Norman and S. Draper. Hillsdale, NJ,
Lawrence Erlbaum Associates.

Overmars, M. Drape: Drawing Programming Environment.

References 366

Palmiter, S., J. Elkerton, et al. (1991). "Animated demonstrations vs. written instructions
for learning procedural tasks: A preliminary investigation." International Journal of Man-
Machine Studies 34: 687-701.

Palmiter, S. and L. Elkerton (1991). An Evaluation of Animated Demonstrations for
Learning Computer-based Tasks. Conference on Human Factors in Computing Systems,
ACM Press.

Pane, J. (2002). A Programming System for Children that is Designed for Usability.
Computer Science. Pittsburgh, PA, Carnegie Mellon University.

Pane, J., B. Myers, et al. (2002). Using HCI Techniques to Design a More Usable
Programming System. HCC, IEEE Press.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York,
Basic Books.

Patterson, D. (2005). "Stop Whining About Outsourcing!" ACM Queue 3(9).

Pattis, R. (1981). Karel the Robot: A Gentle Introduction to the Art of Programming with
Pascal. New York, Wiley and Sons.

Pausch, R. Building Virtual Worlds.

Perlman, R. (1976). Using Computer Technology to Provide a Creative Learning
Environment for Preschool Children. Electrical Engineering and Computer Science.
Boston, MA, MIT.

Quintana, C., J. Eng, et al. (1999). Symphony: a case study in extending learner-centered
design through process space analysis. Conference on Human Factors in Computing
Systems, Pittsburgh, PA, ACM Press.

Repenning, A. (1993). Agentsheets: a tool for building domain-oriented visual
programming. Conference on Human Factors in Computing Systems.

Repenning, A. and J. Ambach (1996). Tactile Programming: A Unified Manipulation
Paradigm Supporting Program Comprehension, Composition, and Sharing. IEEE
Symposium on Visual Languages, Boulder, CO.

Reps, T. and T. Teitelbaum (1989). The Synthesizer Generator: A System for
Constructing Language-Based Editors. New York, NY, Springer-Verlang.

Resnick, M. (1996). StarLogo: An Environment for Decentralized Modeling and
Decentralized Thinking. Human Factors in Computing Systems, Vancouver, BC.

References 367

Reynolds, C. (1987). "Flocks, Herds, and Schools: A Distributed Behavioral Model."
Computer Graphics 21(4): 25-34.

Robinett, W. (1979). Atari 2600 Basic Cartridge, Atari Company.

Robinett, W. and L. Grimm (1982). Rocky's Boots/Robot Odyssey, The Learning
Company.

Roper (1999). The America Online/Roper Starch Youth Cyberstudy.

Sammet, J. (1981). The Early History of Cobol. History of Programming Languages. R.
Wexelblat. New York, Academic Press: 199-241.

Scaffidi, C., M. Shaw, et al. (2005). Estimating the Numbers of End Users and End User
Programmers. IEEE Symposium on Visual Languages and Human-Centric Computing,
IEEE.

Schneiderman, B. (1983). "Direct manipulation: A step beyond programming languages."
IEEE Computer 16(8): 57-69.

Selker, T., R. Barber, et al. (1996). Effective, Selective Presentation of Help Material in a
Graphical Environment: Experience with COACH/2, a graphical adaptive help system.,
IBM.

Sellman, R. (1992). Gravitas: An Object-Oriented Discovery Learning Environment for
Newtonian Gravitation. Proceedings of East-West Conference on Human-Computer
Interaction.

Shashaani, L. (1994). "Gender-Differences in Computer Experience and its Influence on
Computer Attitudes." Journal of Educational Computing Research 11(4): 347-367.

Sherwood, B. and J. Sherwood (1988). The cT Language. Champaigne, IL, Stipes
Publishing Company.

Skills, P. f. s. C. (2006). Results that Matter: 21st century skills and high school reform.

Smith, D. (1993). Pygmalion. Watch What I Do: Programming by Demonstration. A.
Cypher. Cambridge, MA, MIT Press.

Smith, D., A. Cypher, et al. (1994). "KidSim Programming Agents without a
Programming Language." Communications of the ACM 37(7): 54-67.

Smith, D., A. Cypher, et al. (2000). "Programming by example: novice programming
comes of age." Communications of the ACM 43(3): 75-81.

Smith, J. L. (2006). Living Dolls. Telegraph, Telegraph Media Group.

References 368

Smith, R. (1987). Experiences with the Alternate Reality Kit: An Example of the Tension
Between Literalism and Magic. Human Factors in Computing Systems.

Stone, L. J. and J. Church (1984). Childhood and Adolescence: A Psychology of the
Growing Person, 5th Edition. New York, Random House.

Sukaviriya, P., E. Isaacs, et al. (1992). Multimedia Help: A Prototype and an Experiment.
Extended Abstracts of Conference on Human Factors in Computing Systems.

Sun (2006). Trail: Creating a GUI with JFC/Swing.

Suzuki, H. and H. Kato (1995). Interaction-Level Support for Collaborative Learning:
AlgoBlock -- An Open Programming Language. Computer Supported Collaborative
Learning, Bloomington, IN.

Tanimoto, S. and M. Runyan (1986). Play: An Iconic Programming System for Children.
Visual Languages. S. K. Chang, T. Ichikawa and P. A. Ligomenides, Plenum Publishing
Corporation: 191-205.

Teitelbaum, T. and T. Reps (1981). "The Cornell Program Synthesizer: a syntax-directed
programming environment." Communications of the ACM 24(9): 563-573.

Tomek, I. (1983). The First Book of Josef: an introduction to computer programming.
Englewood Cliffs, New Jersey, Prentice Hall.

Travers, M. (1994). Recursive Interfaces for Reactive Objects. Human Factors in
Computing Systems, Boston, MA.

Tucker, A., F. Deek, et al. (2002). A Model Curriculum for K-12 Computer Science:
Report of the ACM K-12 Education Task Force Computer Science Curriculum
Committee, ACM.

Vegso, J. (2005). "Interest in CS as a Major Drops Among Incoming Freshmen."
Computing Research News 17(3).

Viega, J., M. Conway, et al. (1996). 3D Magic Lenses. Symposium on User Interface
Software and Technology, ACM Press.

Wallace, R., E. Soloway, et al. (1998). ARTEMIS: learner-centered design of an
information seeking environment for K-12 education. Conference on Human Factors in
Computing Systems, Los Angeles, California.

Wikipedia Tex Avery.

Wing, J. (2006). "Computational Thinking." Communications of the ACM 49(3): 33-35.

References 369

Wirth, N. (1993). "Recollections about the Development of Pascal." ACM SIGPLAN
Notices 28(3): 333-342.

Wyeth, P. and H. C. Purchase (2000). Programming without a computer: a new interface
for children under eight. First Australasian User Interface Conference, Canberra,
Australia.

