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Abstract

Many applications dealing with large data structures carefiefrom keeping them in com-
pressed form. Compression has many benefits: it can allopragentation to fitin main mem-
ory rather than swapping out to disk, and it improves cachtopeance since it allows more
data to fit into the cache. However, a data structure is oréfuliff it allows the application to
perform fast queries (and updates) to the data.

This thesis describes compact representations of sewgras of data structures includ-
ing variable-bit-length arrays and dictionaries, seplargbaphs, ordered sets, text indices, and
meshes. All of the representations support fast queriest support fast updates as well. Sev-
eral structures come with strong theoretical results. £the structures come with experimental
results showing good compression results. The compresgadstiuctures are usually close to
as fast as their uncompressed counterparts, and sometieesir due to caching effects.
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Chapter 1

Introduction

Many applications dealing with large data structures carefiefrom keeping them in compressed form.
Compression has many benefits: it can allow a represent&tifinin main memory rather than swapping

out to disk, and it improves cache performance since it alovere data to fit into the cache. However, a
data structure is only useful if it allows the applicatiorpterform fast queries (and updates) to the data.

There has been considerable previous work on compact datauses [68, 91, 29, 46]. However, most
of the previous work has been exclusively theoretical, at the structures are too complex to implement
or suffer from very high associated constant factors. Furtthe compression techniques used in previous
work have been ad-hoc and are usually specific to the datetwteubeing compressed. This work uses a
unified approach based on difference coding to achieveipahcbmpact representations for a wide variety
of structures.

This thesis describes compact representations of seypes bf data structures including variable-bit-
length arrays and dictionaries, separable graphs, orderey] text indices, and meshes. All of the rep-
resentations support fast queries; most support fast epdet well. Several structures come with strong
theoretical results:

e The variable-bit-length dictionaries generalize recemion dynamic dictionaries [29, 103] to variable-
length bit-strings.

e The ordered set structure supports a wider range of opesatian previous compact structures for
sets [29, 96].

e The graph structures represent a generalization of previauk [46, 65, 68, 91, 40] and are the first
dynamic compact structures known.

All of the structures come with experimental results shgagood compression results. The compact data
structures are usually close to as fast as their uncompresamterparts, and sometimes are faster due to
caching effects.

These data structures are united by a common theme: the ubtfeoénce codingsee Section 2.4)
to represent data by its difference from other, previousigvin, data. For example, a compact graph
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Structure Chp Space (in bits) Operations

Arrays{sy ... sn} 3.2 o, Isil) O(1) lookup

O(1) exp amortinsert
Dictionaries 3.3 | O3, max(|s;| — logn, 1) + |t;|) O(1) lookup
{(s1,t1) ... (Sn,tn)} O(1) exp amortmap
Cardinal Trees 3.4 | O, 1+ log(1+ c(parentv)))) O(1) parent /child
(cardinality ofv is ¢(v)) (semidynamic) O(1) exp amorinsert /delete
Ordered Sets 4 O3, log(siy1 — s4)) O(klog W) union /intersect
{s1...sn} (k is Block Metric [31])

many more

Graphs (vtx separable)| 5.2 O(n) (static) O(1) getDegree

O(1) adjacent
O(1) per neighbotistNeighbors

Graphs (edge separable)5.3 O(n) (semidynamic) as above, plus

O(1) exp amortinsert /delete
Text Indices 6 14.4% additional compression same as original index
2D Simplicial Meshes | 7.3 O(n) (semidynamic) O(1) findTriangle (v1,v2)
(well shaped) O(1) exp amorinsert /delete
3D Simplicial Meshes | 7.3 O(n) (semidynamic) O(1) findTetrahedron (v1,v2,v3)
(well shaped) O(1) exp amortinsert /delete

Table 1.1: Space bounds and operations supported for carsttactures. Structures that are marked as
semidynamidiave space bounds that depend on the locality of a vertehrighfsee Section 5.2 for details).

structure represents the neighbors of a vertex by the diftex between the neighbor label and the original
vertex label. For many structures this is combined with abeling scheme which ensures that most of
the differences encoded are small. (This relabeling effeshown visually in Figure 1.1.) The variable-
bit-length arrays and dictionaries represent a generaidveork for creating compressed queryable data
structures. This represents an improvement for many sirest which would otherwise need to be built
ad-hoc.

We describe our data structures @snpact meaning that they use a number of bits that is within a
constant factor of the optimal bound. The structures, aadtunds corresponding to those structures, are
summarized in Table 1.1.

Arrays and Dictionaries (Chapter 3). In the design of compact data structures, two useful bugldin
blocks are the variable-bit-length “array” and dictionatyuctures. The “array” structure maintains a set of
bit strings numbered. .. (n — 1), permitting constant-timeokup and expected amortized constant-time
update operations. The dictionary structure permits constanétookup and expected constant-time
map operations in which both keys and data are variable-lenigtstiings. In each case the space usage is
within a constant factor of optimal. This represents a gaization of recent work on dynamic dictionaries
[29, 103] to variable-length bit strings (although it doed match the optimal constant on the high-order
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term of its space usage).

Using these variable-bit-length data structures it is ipbs$o implement a wide variety of compressed
data structures with fast queries. One example is a congatagpresentation of cardinal trees in which
the degree can vary per node (described in Section 3.4).irginde parent or théth child of a node
takes constant time, and the space usage is within a corfatdot of optimal. Other applications appear
throughout this thesis.

Section 3.5 presents experimental results from using tttedary to store variable-bit-length data de-
scribing edges in a tetrahedral mesh (see Chapter 7 for netads)y. The dictionary can be implemented
using various types of difference codes representing réiftetradeoffs between compression and speed.
Using thebyte codgdescribed in Section 2.3), the dictionary is a factof.6f more space-efficient than a
naive hashtable structure. For small input sizes the diatipis a factor ofl.7 slower than the hashtable;
for larger input sizes, the two are nearly equivalent in dp@ée difference is due to caching effects, in that
the dictionary can fit into cache much better than the hakhtab

Ordered Sets (Chapter 4). One important application for data compression is in themachrepresenta-
tion of ordered sets. Chapter 4 presents a compact repagisenfor sets of integers from some fixed range
U = {0...m — 1}. The representation supports a wide range of operatione widintaining the data in

a compressed form. This is based on a technique for modifgxigting ordered-set data structures (such
as balanced trees) to maintain the data in compressed foim stiti supporting all operations in the same
time bounds.

For example, applying this technique to a functional immatation of treaps produces a compressed
data structure which supports rapid set union and inteseciperations. The time required to compute
the union or intersection of two sef, S, is optimal O(k log W) wherek is the Block Metric of
Carlsson, Levcopoulos, and Petersson [31]. The spacereelqoer setS is O(|S| log %) bits, which
matches the information-theoretic lower bound. This israprovement over the dynamic compressed-set
structures of Brodnik and Munro [29] and Pagh [96], which lameed on hashing and thus do not support
fast union and intersection.

Representations of ordered sets are useful for many appfisa In particular, search engines maintain
posting listswhich describe, for each possible search term, the set ofidets containing that term. These
posting lists are represented as ordered sets of documenittems. The compact functional treaps described
above provide a means to maintain posting lists in compdegsen while still permitting fast union and
intersection operations.

Section 4.7 contains experimentation describing the padiace of compressed red-black trees (using
the C STL implementation) and functional treaps. For thgdar problem size tested (insertion and deletion
of 218 elements from/ = {0...230 — 1}), the compressed red-black trees took twice as long but used
only 1/3 as much space as the uncompressed trees. The quality ofessigmr is better for denser sets (as
predicted by the space bound given above).

Separable Graphs (Chapter 5). Recently there has been a great deal of interest in compaeisenta-
tions of graphs [125, 72, 65, 82, 64, 105, 92, 68, 91, 40, 462851, 119, 22]. Using difference coding

3



it is possible to create several different compact reptesiens for separable graphs. (A graph is defined
to beseparableif it and all its subgraphs can be partitioned into two apprately equally sized parts by
removing a relatively small number of vertices.)

The representations are based on relabeling the vertioag grmph separators (as shown in Figure 1.1),
then encoding a vertex’'s neighbors by their difference ftbm original vertex. The first representation
given is a simple static structure based on edge separ#tersecond is a more general structure based on
vertex separators. The third representation is a dynaimizaf the first representation, supporting adding
and removing edge&, v2) in expected amortized (|v1| + |v2|) time (where|v| is the degree ob). It
makes use of the variable-bit-length array structure frdmapfer 3. The fourth representation is a dynamic
structure that supports adding and removing edges in eegp@chortized) (1) time using the variable-bit-
length dictionary structure from Chapter 3. The static @spntations us€@(n) bits for separable graphs.
The dynamic representations usén) bits as well, but the space bound is “semidynamic” in thaefiehds
on the labeling of the vertices remaining good as the grappdsated.

The static representations described here are an improxamwer the work of Deo and Litow [46] and
He, Kao and Lu [65], who use separators for graph compredsibmo not support queries. They are a
generalization of the work of Jacobson [68], Munro and Raffah and Chuang et. al. [40], who support
gueries on compressed planar graphs (but not the more geaseof separable graphs). The dynamic
representations we describe are the first compressed dywgmagih representations we know of.

Section 5.7 contains detailed experimentation for the &rst third representations. Using the byte
code, the static representation is less tha¥ slower than a standard neighbor-array representation, but
uses a factor o8 less space. The dynamic representation uses a factbtess space than a linked-list
representation. The time performance of a linked-listesentation is strongly dependent on the locality of
the linked-list pointers. The compressed dynamic reptatien is usually faster than a linked-list, and is
within 20% of the linked-list's speed even when the linked-list is laid in order.

Text Indices (Chapter 6). The idea of separator-based reordering (from Chapter 5alsanbe applied
to the problem of index compression. This gives a heuristihitique which uses document relabeling to
reduce the space used when representing posting listser®drskets (as described in Chapter 4).

Posting lists are kept compressed using difference codbifference coding produces the best com-
pression when the data to be compressed has high localitgn #ie numbers to be stored in the lists are
clustered rather than randomly distributed over the imtief®, ..., » — 1}. (In fact, the Binary-Interpolative
code of Moffat and Stuiver [88] was designed to take advantdguch locality.) Locality is produced when
similar documents are close together in the numbering. &belering technique renumbers the documents
to accomplish this.

Section 6.4 contains experimentation involving compressin index of disks 4 and 5 of the TREC
database. The reordering algorithm runs in a matter of raghahd improves the compression quality by
over14%.

When this material was first published, there had been ndquework on the subject. Since then,
several authors [113, 115, 11] have addressed the topidr ddwributions are discussed in Section 6.1.
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Before reordering After reordering
Vtx | Neighbors| Differences Vitx | Neighbors| Differences
1 4,5,7,8 31,21 1 2,4 1,2
2 7,8 51 2 1,34 -1,2,1
3 5,6 2,1 3 2,5 -1,3
4 1,7 -3,6 4 1,2,5,6 -3,1,3,1
5 1,3,8 -4,2,5 5 3,4,6,7 -2,1,2,1
6 3,8 -3,5 6 4,5,8 -2,1,3
7 12,4 -6,1,2 7 5,8 -2,3
8 1,2,5,6 -7,1,3,1 8 6,7 -2,1

Figure 1.1: Several of our compression techniques use laelelg step to ensure that the vertex labels of a
graph have good locality. This decreases the cost of diftereoding the edges.

Meshes (Chapter 7). Difference coding can also be used in compact represensata triangular and
tetrahedral meshes. Standard mesh representations usanaumi of 6 pointers (at least4 bytes) per
triangle in 2D or8 pointers §2 bytes) per tetrahedron in 3D. The compact representatiessritted here
use as little a$ bytes per triangle or.5 bytes per tetrahedron. This is important for many applicetisince
meshes are often limited by the amount of RAM available.

Chapter 7 describes two mesh representations. One is bastdring difference-encoded triangles (or
tetrahedra) in a variable-bit-length dictionary struet(as described in Chapter 3) and has constant expected
amortized time for insertion and deletion of simplices. tieer representation is based on difference coding
and storing the cycle of neighbors around a vertex in 2D octfote of vertices around an edge in 3D. That
representation takes(|v|) expected time for dealing with a vertex of degteg but the compression has a
more favorable constant.

This is the first work we know of dealing with dynamic compessneshes.

Section 7.6 contains experimentation involving the repmétion that compresses based on cycles. The
representation is used to construct 2D and 3D Delaunay reeshike 2D representation is aboli%
slower than Shewchuk’s Triangle code [110]; the 3D reprediem is slightly faster than our beta version
of Shewchuk’s Pyramid code [109].

A Parallel Meshing Algorithm (Chapter 8). The Delaunay meshing algorithm from Chapter 7 can be
parallelized. The variable-bit-length dictionary sturet is modified to support locks to prevent concurrent
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access. Experimentation shows that the resulting algorian rapidly generate a mesh of ow@rbillion
tetrahedra (using.51 billion vertices randomly chosen from the unit cube). Thgodathm took 6036
seconds fo64 processors on an HP GS 1280 SMP machine; this was a speeduRofcompared to its
performance on one processor. All data (including vertetdinates, mesh connectivity data, and the work
gueue) fit within a memory footprint df97GB of RAM.



Chapter 2

Preliminaries

This chapter discusses some concepts which will be usefulidinout this document.

2.1 Terminology

Throughout this thesis, when dealing with a graphve letn denote the number of vertices Gfandm
denote the number of edges Gf The degree of a vertex is written |v|. Without loss of generality we
assume all vertices have degree at l@ast

Given a bitstrings we let|s| denote the number of bits in the string.

We denote a dictionary entry mapping kieyo datad by ((k), (d)). For some applications either the
key or data may be a tuplé(k,, k2), (d1,d2)).

All logarithms are base.

2.2 Processor Model

Throughout all of our work we assume the processor word ferggi bits, for somew > log|C|, where
|C'| is the total number of bits consumed by our data structurat Bhwe assume that we can use-bit
word to point to any memory we allocate. We assume the procespports operations including bit-shifts
(multiplication or division by powers df) as well as bitwise AND, OR, and XOR.

For some theoretical bounds we make useabfe-lookupoperations. A table-lookup operation makes
use of alookup tableof size2¢" entries. Each entry in the table contains the result of tleraijwn on the
bitstring corresponding to the entry. Examples of tableklgp operations are given in Section 2.3 and 2.5.

If each entry contain®(ew) bits, then the total space used by the lookup tabl@ (& cw) bits. By
simulating a word size 0®(log |C|) this can often be reduced to less thah, and thus made a low order
term, while running in constant time. Note that it is alwaypsgble to simulate smaller words with larger
words with constant overhead by packing multiple small vgardo a larger one.
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Unary | Binary | Gamma Nibble
1 1 1 1 0000
2 01 10 010 0001
3 001 11 011 0010
4 | 0001 | 100 00100 0011
5 | 00001| 101 00101 0100 DECODE-GAMMA (B)
6 110 00110 0101 =0
7 111 00111 0110 do
8 1000 | 0001000 | 0111 Pl ‘[bl]]
9 e 1001 | 0001001 | 10000000 loop while(first-one (5] = ew)
10 ... 1010 | 0001010 | 10010000 ~— B[0...24]
11 L. 1011 0001011 | 10100000 return ((int) v, 20 + 1)
12 ... 1100 | 0001100 | 10110000
13 ... 1101 | 0001101 | 11000000
14 ... 1110 | 0001110 | 11010000
15 ... 1111 0001111 | 11100000
16| ... 10000 | 000010000( 11110000
17 ... 10001 | 000010001| 10000001

Figure 2.1: Left: The Unary, Binary, Gamma and Nibble cod&ight: Pseudocode for theeCODE
GAMMA algorithm.

2.3 Variable-Length Coding

A variable-length codeepresents a positive integerusing a variable number of bits. An example of a
variable-length code is thenary code which represents usingv — 1 zeroes followed by a one. Another
example is thebinary code which represent® using the(|lg(v)| + 1)-bit binary representation af.
Examples of these codes are shown in Figure 2.1.

When using variable-length codes for compression, it ifulise concatenate large numbers of codes
together for storage. For this it is convenient to pefix-free codesA prefix-free code is a variable-length
code for which there do not exist positive integerg v’ such that the code faris a prefix of the code for
v’. Prefix-free codes have the property that, when the codesday integers are concatenated, the resulting
string has a unique decoding.

As an example, the binary code is not a prefix-free code: tiveggst0110 can be read as the concate-
nation of the codes fds and2, the concatenation of the codes fband6, the single code fo22, et cetera.
It is possible to convert the binary code into a prefix-fredecby prepending to each codeword a number
of zeroes equal to that codeword’s length minus one. Thig é®thegamma cod¢50]. The gamma code
is only one of a wide class of prefix-free codes (see [136] fanyrothers). For theoretical work this thesis
will use gamma codes as they are easy to describe and coaltggasy to encode and decode.
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Decoding gamma codes. Using a lookup table of siz&(2¢* log(ew)) it is possible to decode gamma
codes inO(% + 1) time, where|s| is the length of the code (andis a parameter). Given a bitstring
which is the concatenation of several gamma codes, theitiigoppECODEGAMMA finds the size of the
first code and the value it represents.

The first step is to compute the location of the firsh B. For this the algorithm makes use of a pre-
computed lookup tablirst-one , defined as follows: 1b is a bitstring of sizew, thenfirst-one (b)
gives the location of the firgtin b (or ew if b contains nas). The algorithm examinesv-bit chunks ofB
until it finds a chunk containing at least ome The algorithm uses the table to find the bit-position of the
first 1, and from this deduces the total bit-length of the gamma .cdtie algorithm extracts the code from
B using shifts. Once the code is extracted, decoding it isvetgrit to reinterpreting it as a binary integer.
Pesudocode for this algorithm is shown in Figure 2.1.

For many of the applications we will examine, all values efezbin our data structures will #(|C/)
(where|C| is the number of bits used by the structure). For these agifalits we use a table word size of
h’%ﬂ, giving a space usage 6f(|C| log |C|), which iso(|C|). The time required fODECODE-GAMMA is

O (i), which isO(1).

Byte-aligned codes. Gamma codes are easy to describe in theory; however, foemwitation the use of
large lookup tables is undesirable. It is more conveniemtdk with a class obyte-aligned codesThese
codes have sizes that fall along byte boundaries, making #esy to manipulate.

These codes are special 2-, 4-, and 8-bit versions of a morergeé:-bit code which encodes integers
as a sequence @ktbit blocks. We describe the-bit version. Each block starts witha@ntinue bitwhich
specifies whether there is another block in the code. Anémtes encoded by checking whether it is less
than or equal t@*~!. If so, a single block is created with a 0 in the continue bit tire binary representation
for ¢ — 1 in the otherk — 1 bits. If not, the first block is created with a 1 in the contirhieand the binary
representation fofi — 1) mod 2*~! in the remaining bits (themod is implemented with a bitwise and).
This block is then followed by the code foti — 1)/25~!| (the / is implemented with a bitwise shift).

The 8-bit version of this code is particularly fast to enceael decode since all its memory accesses
are byte-aligned (and since it makes use of fewer contintg. birhe 4-bit version (nibble code) and 2-
bit version (snip code) are often more space-efficient, beitsamewhat slower since they require more
bit-manipulation during encoding and decoding.

As an optimization, to further improve the time-performaraf the 8-bit code, for that code we do
not subtract one fromat each iteration. Thus we store the binary representafi¢gh aod 2°~!) in each
block, followed if necessary by a code fp‘r/2’f‘1j . This can sometimes use more space, but it permits faster
encoding and decoding since those operations require drdpifts (rather than addition and subtraction).
We refer to this variant as theyte code Performance of these codes is compared in detail in Selstibn

Throughout the rest of this thesis we will assume that aliatde-length codes used are prefix-free
codes.



2.4 Difference Coding

Variable-length codes are a way to compactly represenesalthich are “on average” small. For many
applications, the data to be represented are not smallsjahmvever, it is often possible to represent a
value by its difference from previously known values. Thsuténg difference is more likely to be small.
This is known aglifference coding

One common form of difference coding is in the encoding ofteoée integers from the sefl ... n}.
An information-theoretic lower bound on the space needadpcesent: elements fromm possibilities is
Q(log (™)) bits; assumingy < m/2, this isQ(nlog 2).

Letx; ...z, be the integers to be stored, in sorted order suchathat x;. 1. 1 is stored directly, but
the remaining values are represented by their differerara the previous values, xo — x1, x3 — T2, x4 —
xs3,...,Tn, — Tp_1. The codes are concatenated into a single bitstring foagéor

Gamma codes requitdlg(v) | + 1 bits to represent a value If the differences above are represented
by gamma codes, then the total space requir@dligz,)| + 1+ > (2|lg(z; — x;—1)] + 1) bits. The worst
case (greatest space usage) for this expression occursthéners are equally spaced (that is; ~ %m).
The space usage is thénn log ™) bits, which is within a constant factor of the optimal bourideg by
information theory.

In fact it is not necessary to use gamma codes to achievedHizrmance; any code usir@(log v) bits
to store a value will suffice. We call such a codelagarithmic code

In our example here the goal was to encode a set of values{ftom m}. In subsequent chapters we
will explore many more applications for difference coding.

2.5 Decoding Multiple Gamma Codes

Suppose that a set of integers. . . z;, are difference coded and concatenated into a bitsfBinghis section
describes how to quickly access the encoded data. In partieue consider the problem: givas and a
valuew, find the greatest such thatz; < v. To do this it is necessary to decode and sum the gamma codes
for z1, 29 — x1, 23 — 22, ... until, after summing + 1 codes, the total reaches Our algorithm will return

the valuer; and the bit-position of the gamma code fgt , — ;.

One method for solving this problem would use tEE=ODEGAMMA operation from Section 2.3, which
can decode a gamma code of lengthin O(% +1) time. To decode codes of total lengthS| would require
O( 15 4 i) time. This section will describe th®UM-GAMMA -FAST operation, which uses a more powerful

ew
table-lookup step to decodeodes of total lengthS| in O(% + 1) time.
To decode multiple gamma codes at once,gh&-GAMMA -FAST algorithm makes use of two lookup
tablessum-of-codes andend-of-codes ,defined as follows: given a bitstrirbgf sizeew, sum-of-codes  (b)
gives the sum of all the full gamma codeshiandend-of-codes  (b) gives the bit-position of the end of
the last full gamma code il Using these tables ttesmM-GAMMA -FAST algorithm can decode and sum up
to ew gamma codes at once. If the algorithm encounters a gammaof@itee greater thaew (that is, if
end-of-codes  (b) evaluates to zero), it applies tbeCODEGAMMA algorithm as a subroutine.
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SUM-GAMMA -FAST(B, v)
{—0
t—20
do
b— B[l... L+ ew—1]
s «—sum-of-codes  [b]
e —end-of-codes  [b]
if (s =0) then
(s,e) —DECODEGAMMA (B[{...|B| —1])
if (t4+s>v)then
(s,e) < (sum-up-to- (v — t)[b],end-up-to- (v —t)[b])
return (t+s,¢+e)
t—t+s
{—"{l+e
loop while(¢ < |BJ)
return (¢, ¢)

Figure 2.2: Pseudocode for ts@m-GAMMA -FAST algorithm.

The sUM-GAMMA -FAST algorithm always decodes at least bits of code per two lookup steps. (The
first lookup step decodes all but the last codg, iand the second lookup step decodes at least the last code.)
Thus the time needed to deco@ébits usingSUM-GAMMA -FAST is O(%).

The algorithm decodes chunks of bits until the sum of all ganomdes decoded reaches or exceeds
v. At this point the algorithm requires an array of additiotedlessum-up-to- v andend-up-to- wv.
These give the sum and ending bit-position, respectivélthedmaximal number of (consecutive) gamma
codes inb whose sum is less than The algorithm uses separate tables for each valuefi@m 2 to 2%,
Using the appropriate tables the algorithm computes andn®the result irO(1) time. Pseudocode for
this algorithm is shown in Figure 2.2.

It remains to bound the space used by these lookup table$ dEdbe lookup tables described above
stores, for each di“* entries, a value betweéhand2<”. There areD(2?) tables allocated, so the total
cost isO(2%“ew) bits. As in Section 2.3, for applications in which the latgeslues stored ar®(|C|),
this expression can be made a low order term while still nugii constant time.

2.6 Rank and Select

It is quite straightforward to store a group of prefix-freales if access time is not a concern. The codes
can be concatenated into one large bitstihgince the codes are prefix-free, they can be uniquely delcode
one-by-one. However, for some applications it is necesgagccess individual codes—in particular, to
access th¢/" code stored iO(1) time.

This problem has been studied extensively [68, 90] and iallyscalled theseLECT problem. Given a
bitstring S of sizen bits, SELECT(S, i) is a query which returns the position of tié 1 in S. These queries
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can be resolved usingselect data structurereated by preprocessirty Munro [90] presented an algorithm
which usedD(1) time to answeBELECT queries using an auxiliary data structureogi) bits.

The SELECT data structure permits access to individual codes as felldwet the bitstringS have size
equal toB. If any codei begins at positiory in B, then letS[j] = 1. All other locations inS are set td.
The location of the'" code inB is given bySELECT(S, 7).

The inverse of theELECT operation is calle®ANK. Given a bitstringS of sizen bits, RANK () returns
the number of s that occur before positighin S. Jacobson [68] showed thRANK queries can be resolved
in O(1) time using arv(n)-bit RANK data structure.

In practice we find that the(n)-bit data structures have high associated constants—egaldiess, the
need to maintain the-bit bitstring S makes thev(n) bound on the auxiliary data structure moot. For our
experiments we generally usgn)-bit data structures of our own devising.

2.7 Graph Separators

Let S be a class of graphs that is closed under the subgraph rel&tis defined to satisfy g (n)-separator
theoremif there are constants < 1 andg > 0 such that every graph ifi with n vertices has a cut set with
at mosts f(n) vertices that separates the graph into components with sttamovertices each [81].

In this thesis we are particularly interested in the comgicesof classes of graphs for whigh{n) is

n® for somec < 1. One such class is the class of planar graphs, which satisﬁelsseparator theorem.
The results will apply to other classes as well: for examipldler et al. [85] demonstrated that every well-
shaped mesh iR¢ has a separator of size(n'~'/%). We define a graph to kmeparableif it is a member
of a class that satisfies ari-separator theorem.

A class of graphs hasounded densityf every n-vertex member ha®(n) edges. Lipton, Rose, and
Tarjan [80] prove that any class of graphs that satisfieg (@ogn)!*“-separator theorem with > 0 has
bounded density. Hence separable graphs have boundetydensi

Another type of graph separator isetige separatorA class of graphs$ satisfies g (n)-edge separator
theoremif there are constants < 1 and3 > 0 such that every graph i with n vertices has a set of at
most3 f(n) edges whose removal separates the graph into componehtatwibsian vertices each. Edge
separators are less general than vertex separators: eagly with an edge separator of sizalso has a
vertex separator of size at mastbut no similar bounds hold for the converse. This thesismstly deal
with edge separators, but will show theoretical resultgfaphs with vertex separators.

For theoretical purposes we will assume the existence ofaphgseparator algorithm that returns a
separator within the(n¢) bound. For experimental purposes we find that the Metis [éLfiktic graph
separator library works well.
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Chapter 3

Compact Dictionaries With
Variable-Length Keys and Data

3.1 Introduction

The dictionary problem is to maintain anelement set of keys; with associated data (“satellite data})*

A dictionary isdynamicif it supports insertion and deletion as well as the lookuprafion. In this paper
we are interested in dynamic dictionaries in which both thgskand data are variable-length bitstrings.
Our main motivation is to use such dictionaries as buildifacks for various other applications. As an
example application we present a representation of cdritiees with nodes of varying cardinality. Other
applications of our variable-bit array and dictionary stwe appear in Sections 4.2, 5.3, 5.4, and 7.3.

We assume the machine has a word length log |C|, where|C'| is the number of bits used to represent
the collection. We assume the size of each stfinig> 1, |¢;| > 1 for all bitstringss; and¢;.

There has been significant recent work involving data strestthat use near optimal space while sup-
porting fast access [68, 91, 40, 29, 96, 57, 102, 51, 15, IU&.dictionary problem in particular has been
well-studied in the case of fixed-length keys. The inform@tiheoretic lower bound for representing
elements from a universé is B = log[ (V)] = n(log |U| — logn) + O(n). Cleary [42] showed how to
achieve(1 + €) B + O(n) bits with O(1/¢?) expected time for lookup and insertion while allowing détel
data. His structure used the techniquegobtienting[74], which involves storing only part of each key in a
hash bucket; the part not stored can be reconstructed urigdex of the bucket containing the key. Brod-
nik and Munro [29] described a static structure usihg o(B) bits and requiring)(1) time for lookup; the
structure can be dynamized, increasing the space co&t/&) bits. That structure does not support satellite
data. Pagh [96] showed a static dictionary usthg- o( B) bits andO(1) query time that supported satellite
data, using ideas similar to Cleary’s, but that structurddoot be easily dynamized.

Recently Raman and Rao [103] described a dynamic dictiostincture usingB + o(B) bits that
supports lookup irO(1) time and insertion and deletion (1) expected amortized time. The structure
allows attaching fixed-lengtht(-bit) satellite data to elements; in that case the spacedisuB + n|t| +

1This chapter is based on work with Guy Blelloch [17].
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o(B + n|t|) bits. None of this considers variable-bit keys or data.

Our variable-bit dictionary structure can store pairs), (¢;)) usingO(m) space wheren = » . (max(1, |s;|—
logn) + |t;|). Note that if|s;| is constant andk;| is zero thenO(m) simplifies toO(B). Our dictionary
supports lookup irD(1) time and insertion and deletion (1) expected amortized time.

Our dictionary makes use of a simpler structure: an “arr&yicsure that supports an arrayrofocations
(1,...,n)with lookup and update operations. We denoteithelement of an arrayl asa;. In our case each
location will store a bitstring. We present a data structheg uses)(m + w) space wheren = > | |a;]
andw is the machine word length. The structure supports lookogs(i) worst-case time and updates in
O(1) expected amortized time. Note that if all bitstrings werme $ame length then this would be trivial.

Cardinal Trees. As an example application we present a representation dfnzdrtrees (aka tries) in
which each node can have a different cardinality. Queri@sreguest the:*” child, or the parent of any
vertex. We can attach satellite bitstrings to each vertepddtes can add or delete thé child. For an
integer labeled tree the space boundign) wherem = 3y (log c(p(v)) + log v — p(v)]), andp(v)
andc(v) are the parent and cardinality of respectively. Using an appropriate labeling of the vegia
reduces t® . log c(p(v)), which is asymptotically optimal. This generalizes prexioesults on cardinal
trees [10, 102] to varying cardinality. We do not match thérogl constant in the first order term.

Experimentation. We present experimental results for our dictionary stmgctun a trace of operations
performed by a simplicial meshing algorithm [14]. We analylze structure’s performance using difference
codes that are optimized for speed and for compression. Wipax the structure to a naive hashtable; the
hashtable is slightly more time-efficient than our struetiut uses a factor @5 — 8.5 more space.

3.2 Arrays

We define avariable-bit-length array structuréo be one that maintains bitstrings . .. a,,, supporting
update andlookup operations. (Arupdate changes one of the bitstrings, potentially changing its
length as well as the data. laokup returns one of the bitstrings to the user.) Our array reptasen
supports strings of sizé < |a;| < w; it performs lookups inO(1) time and updates iM(1) expected
amortized time. Strings of size more tharmust be allocated separately, anebit pointers to them can be
stored in our structure. The memory allocation system usethis must be capable of allocating or freeing
|s| bits of memory in timeOD(|s|/w), and may us€(|s|) space to keep track of each allocation. It is well
known how to do this€.g, [8]).

Overview. We begin with an overview of our array structure. We pantittbe stringsa; into blocksof
contiguous elements, containing on aver&ev) bits of data per block. We maintain the blocks in a
conventional data structure (such as a hashtable) @3ing bits per block. We keep an auxiliary bit-array
that allows us to determine which block contains a given el@nin constant time. We keep auxiliary
data with each block that allows us to locate any elementimvitie block in constant time. Using these
operations we can supparpdate andlookup in constant time.
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We now present the structure in more detail.

Our structure consists of two parts: a set of bloéksand an index/. The bitstrings in the array are
stored in the blocks. The index allows us to quickly locatehitock containing a given array element.

Blocks. A block B; is an encoding of a series of bitstrings (in increasing grdgra;+1, - .., a;1x. The
block stores the concatenation of the strihgs- a;a;41 . . . a; 11, together with information from which the
start location of each string can be found. It suffices toestosecond bitstring, such thab, contains al at
position if and only if some bitstringy;, ends at positiorj in b;.

A block B; consists of the paifb;, ;). We define the size of a block to k| = Z?:o laiyi|. We
maintain the strings of our array in blocks of size at mosiVe maintain the invariant that, if two blocks in
our structure are adjacent (meaning, for samane block containg; and the other containg_. 1), then the
sum of their sizes is greater than

Index structure. The indexI for our array structure consists of a bit arraji . .. n] and a hashtablél.
(In practice we use an optimized, space efficient variantr@shtable.) The arrag is maintained such that
Ali] = 1if and only if the stringa; is the first string in some blocB; in our structure. In that case, the
hashtabled maps: to B;.

The hashtablg? must useO(w) bits (that is,0(1) words) per block maintained in the hashtable. It
must support insertion and deletion in expected amorti2éd time, and lookup in worst-cage(1) time.
Cuckoo hashing [97] or the dynamic version of the FKS petfiasthing scheme [47] have these properties.
If expected rather than worst-case lookup bounds are adgepthen a standard implementation of chained
hashing will work as well.

Bit-Select and Bit-Rank. We assume that the processor supports two special oper@iorsELECT and
BIT-RANK, defined as follows. Given a bitstring of length w bits, BIT-SELECT(s, ) returns the least
position j such that there areones in the range[0] ... s[j]. BIT-RANK(s, j) returns the number of ones
in the ranges[0] . . . s[j]. These operations mimic the function of tlemk andselect data structures, as
described in Section 2.6.

If the processor does not support these operations, we galerment them using constant-time table-
lookup, similar to the table-lookup described in Sectidn 2.

Operations. We begin by observing that no block can contain more thamntstrings (since blocks have
maximum sizew and each bitstring contains at least one bit). Thus, frompgjtion A[k], the distance
to the nearest one in either direction is at mestTo find the nearest one on the left, we let= Ak —
w]...A[k — 1] and computeIT-SELECT(s, BIT-RANK (s, w — 1)). To find the nearest one on the right, we
lets = Ak +1]... A[k + w] and computeIT-SELECT(s, 1). These operations take constant time.

To access a string, our structure first searchdsfor the block B; containinga. This is simply a
search onA for the nearest one on the left 6f The structure performs a hashtable lookup to access the
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target blockB;. Once the block is located, the structure scans the indegdrto find the location ofyy.
This can be done usirgT-SELECT(b,, k — i + 1).

If a; is updated, its blockB; is rewritten. If B; becomes smaller as a result of an update, it may need to
be merged with its left neighbor or its right neighbor (orljotin either case this takes constant time.

If B; becomes too large as a result of an update,tat is split into at most three blocks. The structure
may create a new block at positiénat positionk + 1, or (if the new|a| is large) both. To maintain the size
invariant, it may then be necessary to jd with the block on its left, or to join the rightmost new block
with the block on its right.

All of the operations on blocks and ohtakeO(1) time since shifting and copying can be dandits
at a time. Access operations éhtakeO(1) worst-case time; updates tak¥1) expected amortized time.

We define the total length of the bitstrings in the structawrdém = O(>_!, |a;|). The structure
containsn bits in A plus O(w) bits per block; there ar®(m/w + 1) blocks, so the total space usage is
O(m + w). This gives us the following theorem:

Theorem 3.2.1 Our variable-bit-length array representation can storéshiings of lengthl < a; < w in
O(w + >_7; |a;]) bits while allowing accesses if(1) worst-case time and updates @(1) amortized
expected time.

3.3 Dictionaries

Using our variable-bit-length array structure we can impat space-efficient variable-bit-length dictio-
naries. In this section we describe dictionary structuheg tan store a set of bitstrings ... s,, for

1 < |sil < w+ logn. (We can handle strings of length greater thant logn by allocating mem-
ory separately and storingw@-bit pointer in our structure.) Our structures use spége:) bits where
m =Y (max(|s;| — logn,1) + |t;]).

We will first discuss a straightforward implementation whe® chained hashing that permitq1)
expected query time and(1) expected amortized update time. We will then present anemehtation
based on the dynamic version [47] of the FKS perfect hastthgrae [52] that improves the query time to
O(1) worst-case time.

Quotienting. For representing sets of fixed length elements a space bsuableady known [96]: to
represent: elements, each of size| bits, requiresO(n(|s| — logn)) bits. A method used to achieve this
bound isquotienting every element € U is uniquely hashed into two bitstrings, s” such thats’ is a

log n-bit index into a hash bucket andl contains|s| — log n bits. Togethers’ ands” contain enough bits to
describes; however, to add to the data structure, it is only necessary to stdra the bucket specified by
s'. The idea of quotienting was first described by Knuth [74 ti8adb.4, exercise 13] and has been used in
several contexts [42, 29, 103, 51]. Previous quotientitgses, however, were not concerned with variable
length keys, and so the strings they produce do not have the length properties we. nee

In this chapter we develop our own variable-bit-length gritng scheme. For this scheme to work, we
will need the number of hash buckets to be a power of two. WHeti; be the number of bits quotiented,
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and assume there a2é hash buckets in the structure. As the number of entries goovghrinks, we will
resize the structure using a standard doubling or halvihgrse so tha2? ~ n.

Hashing. For purposes of hashing it will be convenient to treat thsthitgss; as integers. Accordingly
we reinterpret, when necessary, each bitstring as thebme@resentation of a number. To distinguish
strings with different lengths we prepend.do eachs; before interpreting it as a number. We denote this
padded numerical representationspby x;.

We say a familyH of hash functions ont@? elements ik-universalif for randomh € H, Pr(h(z1) =
h(z2)) < k/27[32], and isk-pairwise independerit for randomh € H, Pr(h(z1) = y1 A h(z2) = y2) <
k/2%4 for anyx; # xo in the domain, angy, y» in the range.

We wish to construct hash function§ h”. The functionh’ must be a hash functioif : {0, 1} +4+! —
{0,1}9. The binary representation af (x;) must contain; fewer bits than the binary representation:of
Finally, it must be possible to reconstrugtgivenh/(z;) andh” (z;).

For clarity we break:; into two words, one containing the low-ordebits of x;, the other containing
the remaining high-order bits. The hash functions we use are

T; = x; div 29 z; = x; mod 29
W' (z;) =T W (z;) = (ho(Ti)) © z;

wherehy is any 2-pairwise independent hash function with ra@fge-or example, we can use:
ho(zi) = ((az; + b) mod p) mod 27

wherep > 27 is prime anda, b are randomly chosen from. .. p. Givenh' andh”, these functions can be
inverted in a straightforward manner:

z; = h" xz; = ho(h")® W

We can show that the family from whidH are drawn is 2-universal as follows. Given # x5, we have

Pr(h/(z1) = b (22)) = Pr(ho(T1) ® 21 = ho(T2) ® 25)
= Pr(hQ(Tl) D ho(fg) =2 @&2)

The probability is zero ift; = 7o, and otherwise it is< 2/2%¢ (by the 2-pairwise independence kf).
ThusPr(h/(z1) = I/ (22)) < 2/22%4.

Note also that selecting a function frafh requiresO(log n) random bits.

Dictionaries. Our dictionary data structure is a hash table consistingwafrable-bit-length arrayl and
a hash functiort’, h”’. To insert((s;), (¢;)) into the structure, we comput¢ ands; and inserts!! andt; into
buckets’.
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It is necessary to handle the possibility that multiplengtsi hash to the same bucket. To handle this
we prepend to each string or ¢; a gamma code (as described in Section 2.3) indicating igther(This
increases the length of the strings by at most a constamrfadte concatenate together all the strings in a
bucket and store the result in the appropriate array slot.

If the concatenation of all the strings in a bucket is of sireater thanw, we allocate that memory
separately and storewebit pointer in the array slot instead.

The gamma code for the length of an element can be read inarartghe with the use of a lookup
table, as described in Section 2.3. The length of any eleisent|C|) (where|C| is the total size of the
data structure), so using a lookup table word of $izg |C|) /2 makes the table size(2(1°21€1)/2 og |C|) =
o(|C|) while still allowing O(1) time decoding.

Thus it takesD(1) time to decode any element in the bucket (reading the gamdeafoothe length, then
extracting the element using shifts). Each bucket has ¢egesizeO(1) elements (since our hash function
is universal), so lookups for any element can be accompishexpected) (1) time, and insertions and
deletions can be accomplished in expected amortizgd time.

The bitstring stored for each has sizeO(max(|s;| — ¢, 1)); the bitstring fort; has sizeO(|¢;]). Our
variable-bit-length array increases the space by at moshatant factor, so the total space used by our
variable dictionary structure @(m) for m = > (max(|s;| — logn, 1) + |t;]).

Perfect Hashing. We can also use our variable-bit-length arrays to implenaedynamized version of
the FKS perfect hashing scheme. We use the same hash funktidri as above, except that maps to
{0, 1}leen+1 rather thar{0, 1}!°6 ™. We maintain a variable-bit-length array®f buckets, and as before we
store each paifs’, ¢;) in the bucket indicated by,.

If multiple strings collide within a bucket, and their totigihgth isw bits or less, then we store the
concatenation of the strings in the bucket, as we did withngtahashing above. However, if the length
is greater thanw bits, we allocate a separate variable-bit-length arrayidoeghe elements. If the bucket
containedk items then the new array has abddtslots—we maintain the size and hash function of that
array as described by Dietzfelbinger et. al. [47].

In the primary array we storew@a-bit pointer to the secondary array for that bucket. We obaing cost
of this pointer, and th& (w)-bit overhead for the array and hash function, to the coshefut bits that
were stored in that bucket. The space bounds for our steiédliow from the bounds proved in [47]: the
structure allocates onl(n) array slots, and our structure requires oflfl) bits per unused slot. Thus the
space requirement of our structure is dominated bythe) bits required to store the elements of the set.

Access to elements stored in secondary arrays takes wagsteonstant time. Access to elements stored
in the primary array is more problematic, as the potentiallpits stored in a bucket might contafi(w)
strings, and to meet a worst-case bound it is necessary tthincbrrect string in constant time.

We can solve this problem using table lookup (similar to theicribed in Section 2.5). The table needed
would range ovef0, 1} % {0,1}*, and would allow searching in a strimgof gamma codes for a target
codeb. Each entry would contain the index dnof b, or the index of the last gamma codeditif b was not
present. The total space used would288’ log(ew); the time needed for a query would BE1/¢). By
simulatingw = log |C| and choosing = 1/4, the table usage can be made a lower order term while still

18



running inO(1) time.

This gives us the following theorem:

Theorem 3.3.1 Our variable-bit-length dictionary representation caro bitstrings of any size using
O(m) bits wherem = > (max(|s;| — logn,1) + ¢;) while allowing updates i (1) amortized expected
time and accesses (1) worst-case time.

3.4 Cardinal Trees

A cardinal tree (aka trie) is a rooted tree in which every nbdsc slots for children any of which can be
filled. We generalize the standard definition of cardina¢sréo allow each node to have a different,
denoted as(v). For a nodey we want to support returning the parerit) and thei’” child v[i], if any. We
also want to support deleting or inserting a leaf node.

We consider these operations “semidynamic”: the time bsumitl hold for any sequence of opera-
tions, but the compression achieved will depend on the iladpeif the vertices. If the tree changes shape
significantly, the vertices may need to be relabeled to raainthe space bounds.

We begin with a dictionary-based representation for catdiees. For each vertexwe store a dictio-
nary entry((v), (c(v), p(v) — v))—that is, the dictionary mapsto the pair(c(v), p(v) — v). (To encode
a pair of values, we gamma code each value and concatenatedterm a bitstring.) For each child af
we store an entry(v, i), (v[i] — v)). Given this representation we can support cardinality iqgeeparent
queries, and child queries.

Lemma 3.4.1 The representation we describe supports parent and chitdigs inO(1) time and insertion
and deletion of leaves i@ (1) expected amortized time. With a variable-bit-length diadiry the space used
is O(m) bits wherem = )y (log c(p(v)) + log |p(v) — v]).

Proof. The space usage of our variable-bit-length dictionarycstine ism = 3_ e p ([t| + max(1, [s| —
log |D|)). The first type of dictionary entry we store(i&, i), (v[i] — v)). The cost of storing is absorbed
by thelog |D|. The cost of storing for each vertex is théog ¢(p(v)) above. The cost of storin@[i] — v)
for each child is the same as the cost of stoyifig) — v for each vertex, so it is handled by the; |p(v) — v
given above.

The second type of entry we store({®), (c(v), p(v) —v)). As before, the is absorbed by thing | D|.
The cost of storing(v) — v for each vertex is thiog |p(v) — v| given above. The cost efv) is charged to
the first child of the vertex if(v) > 0; otherwise the cost i©(1) bits and is charged to tHeg [p(v) — v|.

Any treeT can be separated into a set of trees of size at st by removing a single node. Recur-
sively applying such a separator on the cardinal tree defireparator tre€; over the nodes. An integer
labeling can then be given to the nodes/obased on the inorder traversal’fif. We call such a labeling a
tree-separator labeling

Lemma 3.4.2 For all tree-separator labelings of tre€s = (V, E) of sizen, >, ,)cp(loglu — v|) <
O(n) +2 1 e log(max(d(u), d(v))).
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Proof. Consider the separator trég = (V, E;) on which the labeling is based. For each nodee denote
the degree of by d(v). We letT(v) denote the subtree @ that is rooted at. Thus|T(v)| is the size of
the piece ofl" for which v was chosen as a separator.

There is a one-to-one correspondence between the ddgasl edgeds;. In particular consider an
edge(v,v') € E, between a vertex and a childv’. This corresponds to an edge, v”) € T, such that
v" € Ts(v'). We need to account for the log-differenieg |v — v”’|. We havelv — v"| < |T4(v)| since all
labels in any subtree are given sequentially. We partitienedges into two classes and calculate the cost
for edges in each class.

First, if d(v) > /|Ts(v)| we have for each edge,v”), log|v — v"| < log |Ts(v)| < 2logd(v) <
2log max(d(v),d(v")).

Second, ifd(v) < \/|Ts(v)| we charge each edde, v") to the nodey. The most that can be charged to a
node is\/|Ts(v)| log |Ts(v)| (one pointer to each child). Note that for any tree in whiatefieery nodey, (A)
|Ts(v)| < 1/2|Ts(p(v))], and (B) costv) € O(|Ts(v)|¢) for somec < 1, we have) ., cos{v) € O(n).
Therefore the total charge @3(n).

Summing the two classes of edges giG8s$1’|) + 23, , e log(max(d(u), d(v))).

Theorem 3.4.1 Cardinal trees with a tree-separator labeling can be storedD(m) bits, wherem =
2 vev (1 +10g(1 + ¢(p(v))))-

Proof. We are interested in the edge cdst(T') = »_ i (log|v — p(v)|). Substitutingp(v) for u in
Lemma 3.4.2 gives:

E(T) < O(n)+2) log(max(d(v),d(p(v))))

veV

< O(n)+2)  d(v) +logd(p(v))

veV

= O(n) +4n+2) logd(p(v))

veV

< O(n)+2)  log(1 +c(p(v)))

veV

With Lemma 3.4.1 this gives the required bounds.

3.5 Experimentation

To understand the time- and space-efficiency of our dictipiséructure we tested it using a real-world
application: an algorithm to perform 3D Delaunay tetrahéidation (described more fully in Chapter 7).
For that structure it was necessary to map edggs, ) to blocks of data. Edges could be inserted or deleted,
and the data could be updated. We used a variant of our dietiGgstructure to support these operations.

For our tests we captured traces of the updates and lookuplséd in constructing a mesh of between
215 and2?° vertices. We used these traces to test our variable-tthedictionary structure implemented
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VarArray(Nibble) || VarArray(Byte) Hashtable

#vixs | Updates | Lookups | Time | Space | Time | Space || Time | Space
215 1019320 | 1498357 || 0.795| 11.12 | 0.632| 14.46 | 0.382| 96.17
216 2043269 | 3006491 | 1.59 11.10 1.27 | 14.56 || 0.883| 96.23
217 4108355 | 6052525 | 3.34 | 11.32 | 2.63 | 14.65 || 2.07 | 96.40
218 8267102 | 12180810| 6.96 11.43 554 | 14.82 || 4.56 | 96.70
219 16590922| 24442256| 14.3 | 11.34 | 11.5| 14.83 | 12.6 | 96.81
220 33217081| 48919922| 29.6 11.56 23.7 | 14.87 || 22.3 | 96.71

Table 3.1: Time (in seconds) and space (in bytes per verteg)ore and update data for each edge in a
tetrahedral Delaunay mesh.

using two coding techniques: tigte-alignedandnibble-alignedcodes, as described in Section 2.3. (The
byte-aligned code is optimized for good time performanckilerthe nibble-aligned code is preferred for

a high compression ratio.) For each test we ran all of thedpskrom the trace, using one byte of data
(rather than the larger amount of data from the original iappbn). We compared the results to those for a
standard bucketed hash table. The bucketed hashtabléa#yirfaster but loses its advantage for large sizes;
we suspect this is because it requires too much memory tothieinache. The results from our experiments
are shown in Table 3.1; further implementation details arergbelow.

Dictionary Structure. The data structure we use to represent this information i®difroation of our
variable-bit-length dictionary structure. Every edag, vy) is mapped to a bucket from an array |0f|
buckets. We use quotienting to sawg |V| bits from the cost of storing each key, as described in Sectio
3.3: we let

K =uv,— v, B =, ® ho(K)

and store key« in bucket numbeiB. For the base hash functidy we use a random number table of size
256: ho(K) = table[K & 255].

Additionally, we note that our 3D meshing algorithm showssiderable locality of access, in that fre-
qguently it performs many accesses to vertices with simélaels. Accordingly we restrict the hash function
ho to a smaller rangd(..G — 1]. This effectively partitions the buckets in the array intogps of sizeZ,
to be determined later. We keep some information associgiteceach group (to be discussed later).

The description of our dictionary structure in Section $8dfies that the buckets should be elements of
a variable-bit-length array structure, so that underfuikets should not cause a space penalty. The variable-
bit-length array structure has a significant constant eaaththough; for our application we instead keep
the buckets sufficiently full that underfull buckets do natise problems.

Initially each bucket is allocated a fixed number of bytes.mifre space is required, the bucket is
allocated additional blocks of memory from a secondary pbblocks, as required. The last byte in a block
stores a one-byte pointer to the next block, if there is ombis(makes use of a hashing trick—see Section
5.5 for details.) To preserve memory locality, the secopganl of blocks and allocation structures are kept
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separately for each bucket group. The space cost of theatibacstructure is amortized over the cost of the
buckets in the group.

The original meshing application contains a great deal td dar bucket (in the form of vertex lists for
each data item); accordingly it uses a bucket group&ize 16. This application uses less data per bucket,
SO we amortize the allocation structure over a larger graagx(s = 64.

The byte-aligned code is less space-efficient (but more éffieient) than the nibble code. Accordingly
we allocate more space for the dictionary using the bytali code.

After some experimentation we chose to allocHidoytes for each bucket initially when using the byte-
aligned code, and to allocate additional memory in blocks lojtes. We allocat@.7 secondary blocks for
each bucket, and can expand the secondary block pool if seges

The nibble code is more space-efficient than the byte codtesdictionary does not require as much
space when using it. Using the nibble code we initially aled bytes per bucket rather than, and0.65
secondary blocks per bucket rather tian

In each case the sizes are chosen such that &56ubf bucket groups require additional blocks to be
allocated from the secondary block pool.

Hashtable. We compare our structure to a naive hashtable. Eref, data) pair in the structure uses
one listnode containing «byte word each foy,, v, and the data, and a@nbyte pointer to the next node.
On our64-bit architecture the listnodes are rounded up to the nean@sl size, making ther?4 bytes each.
(On a32-bit architecture the listhodes would be orily bytes each.) Each bucket uses @Ayte pointer
as well. As in the variable-bit-length dictionary struetuwe keegV’| buckets in the hashtable.

3.6 Discussion

We have presented two data structures, the variablesithearray and dictionary structure, which can serve
as useful building blocks for other structures. The stmagthave strong theoretical bounds(1) lookup
and amortized expected(1) update operations. Our experimentation here, and furttp@ranentation in
Chapters 5, 7, and 8, shows that (variants of) the strucameaseful in practice as well.

For practical applications we maodify the structure as dised in Section 3.5 above. We divide the
structure into groups, each with its own subhashtable, firore locality of access. For the variable-bit-
length dictionary structure we do not use an underlyingaldet-bit-length array structure; instead we choose
settings that keep the buckets of the dictionary close 1o kihally, we use our own memory allocator to
assign blocks to store difference codes.

Further details of our implementation of the dictionarysture can be found in Chapter 7.
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Chapter 4

Compact Representations of Ordered Sets

4.1 Introduction

In this chapter we describe a data structure to compacthesept an ordered s&t= {s1, s2,...,8n},8; <
si+1, from a universd/ = {0,...,m — 1}.! This data structure supports a wide variety of operatiors an
can operate in a purely functional setting [69]. (In a puifelyctional setting data cannot be overwritten.
This means that all data is fully persistent.)

This data structure has many applications, especiallyardtsign of search engines. Memory consid-
erations are a serious concern for search engines. Someeagathsngines index billions of documents,
and even this is only a fraction of the total number of pagethennternet. Most of the space used by a
search engine is in the representation ofraerted indexa data structure that maps search terms to lists of
documents containing those terms. Each entryp§sting lis) in an inverted index is a list of the document
numbers of documents containing a specific term. When a quremultiple terms is entered, the search
engine retrieves the corresponding posting lists from mgnuerforms some set operations to combine
them into a result, and reports them to the user. It may beatdsito maintain the documents ordered,
for example, by a ranking of the pages based on importande {8ing difference coding (as described in
Section 2.4) these lists can be compressed into an arraysafisingb or 6 bits per edge [136, 88, 12], but
such representations are not well suited for merging listkfterent sizes.

The data structure we describe can be used to representirgpagtfrom a search engine. The struc-
ture supports dynamic operations including set union atetsaction while maintaining the data within a
constant factor of the information-theoretic bound. Alsioce it operates in a purely functional setting, the
search engine can perform set operations on posting lift®uwtispending time and memory to make copies
of the sets.

There has been significant research on compact representdtsets taken frond/. An information-
theoretic bound shows that representing a set ofisifer n < Z) requiresQ(log (")) = Q(n log Z£t2)
bits. Brodnik and Munro [29] demonstrate a structure thagpgsmal in the high-order term of its space
usage, and supports lookup@i(1) worst-case time and insert and delet&ifl) expected amortized time.

1This chapter is based on work with Guy Blelloch [13].
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Pagh [96] simplifies the structure and improves the spacedsosdlightly. These structures, however, are
based on hashing and do not support ordered access to thdataaaample, they support searching for a
precise key, but not searching for the next key greater &) lthan the search key. Pagh’s structure does
support theRank operation (as described in Section 2.6) but only statica#ly without allowing insertions
and deletions. As with our work they assume the unit cost RAddehwith word size(log |U|).

The set union and intersection problems are directly réladethe list merging problem, which has
received significant study. Carlsson, Levcopoulos, an@rBsdn [31] considered a block metic =
Block(S1, S2) which represents the minimum number of blocks that two eddistsS;, Se need to be
broken into before being recombined into one ordered ligting this metric, they show an information-
theoretic lower bound dR(k log Mk‘sﬂ) on the time complexity of list merging in the comparison mode

Moffat, Petersson, and Wormald [86] show that the list mmeggiroblem can be solved ((k log W)

time by any structure that suppofest split and joinoperations. A split operation is one that, given an or-
dered sefS and a valuey, splits the set into setS; containing values less thanand.S; containing values
greater tham. A join operation is one that, given seis andSs, with all values inS; less then the least value
in Sz, joins them into one set. These operations are saidfadbé they run inO(log(min(|S1], |S2]))) time.

In fact, the actual list merging algorithm requires onlytttige split and join operations run 0 (log |S1|)
time.

In this chapter we present two representations for ordesgésl sThe first, in Section 4.2, is a simple
representation using the variable-bit-length dictiorfamy,n Section 3.3. It is simple to describe but does not
support the full range of operations that we need for a pgsi#t data structure.

Our second representation, described in Section 4.4 artb8dc5, is a compression technique which
improves the space efficiency of structures for orderedtakés fromU. Given a base structure supporting
a few basic operations, our technique can improve the sieistspace bound t0(n log mT*") bits. Our
technique allows a wide range of operations as long as tleegugmported by the base structure.

Section 4.6 gives experimental results for the second septation. To show the versatility of the
compression technique, we applied it to two separate daiatstes: red-black trees [60] and functional
treaps [6].

4.2 Representation With Dictionaries

Here we describe a representation for ordered sets basadt @ar@able-bit-length dictionary from Section
3.3.

We would like to represent ordered sétsf integers in the rang@, ..., m — 1). In addition to lookup
operations, an ordered set needs to efficiently supporiegputtrat depend on the order. Here we consider
findNext and finger searchindindNexton a keyk; findsmin{k, € S|ks > k1 }; fingerSearcton a finger
key k1 € S and a keyks findsmin{ks € S|ks > k2}, and returns a finger th;. Finger searching takes
O(logl) time, where = [{k € S|k1 < k < ka}|.

To represent the set we use a red-black tree on the elemeatsiilMiefer to vertices of the tree by the
value of the element stored at the vertex, uge refer to the size of the set, and without loss of generality
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we assumer < m/2. For each element we denote the parent, left child, right child, and red-blfial as
p(v), l(v), r(v), andgq(v) respectively.

We represent the tree as a dictionary containing entriekeofdrm ((v), (I(v) — v, r(v) — v,q(v))).
(We could also add parent pointes§y) — v without violating the space bound, but in this case they are
unnecessary.) It is straightforward to traverse the tremftop to bottom in the standard way. It is also
straightforward to implement a rotation by inserting antktieg a constant number of dictionary elements.
Assuming dictionary queries take(1) time, findNextcan be implemented i@ (log n) time. Using a hand
data structure [20], finger searching can be implemente@(iog ) time with an additionalO(log? n)
space. Membership také¥1) time. Insertion and deletion take(log n) expected amortized time. We call
this data structure dictionary red-black tree

It remains to show the space bound for the structure.

Lemma 4.2.1 If a set of integersS C {0,...,m — 1} of sizen is arranged in-order in a red-black tre®&
theny", 1 (log [p(v) — vl) € O(nlog(m/n)).

Proof. Consider the elements of a setC {0,...,m—1} organized in a set of levels(S) = {Ly, ..., L},
L; C S.If |L;] <a|Liy1],1 <i<l,a > 1, we say such an organization igeper level coveringf the
set.

We first consider the sum of the log-differences of cross teognwithin each level, and then count
the pointers in the red-black trees against these pointews. any setS C {0,...,m — 1} we define
nexie, S) = min{e’ € SU {m}le’ > e}, andM(S5) = 3, 5log(nex(j, S) — j). Since logarithms are
concave, the sum is maximized when the elements are eveatgdp Thus\/(S) < |S|log(m/|S|). For
any proper level covering of a setS this gives:

Yo ML) < > |Lillog(m/|Li)
Li€L(S) Laiek
1<l
< Y a”'IS|log(a'm/|S]))
=0
< 2+m\5\10g(m/\5\)
€ O(|S[log(m/|S]))

This represents the total log-difference when summed a@ibsnext” pointers. The same analysis bounds
similarly defined “previous” pointers. Together we callgbeross pointers

We now account for each pointer in the red-black tree againstof the cross pointers. First partition
the red-black tree into levels based on the number of bladesiin the path from the root to the node. This
gives a proper level covering witlhh = 2. Now for each node, the distance to each of its two children is at
most the distance to the previous or next element in its I&ustrefore we can account for the cost of the left
child against the previous pointer and the right child agiamext pointer. The sum of the log-differences of
the child pointers is therefore at most the sum of the lofeihces of the next and previous cross pointers.
This gives the desired bound.
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Theorem 4.2.1 A set of integer$' C {0, ..., m—1} of sizen represented as a dictionary red-black tree and
using a compressed dictionary us@sén log((n + m)/n)) bits, and supports find-next queries@{log n)
time, finger-search queries (log ) time, and insertion and deletion i (log n) expected amortized time.

Proof. (outline) Recall that the space for a compressed dictioisdsgunded by)(m) wherem = 3, . p(max(1, |s[—
log |D|) + |t|). The keys uséog |D| bits each, and the size of the data stored in the dictionavpusded
by Lemma 4.2.1. This gives the desired bounds.

The representation described here is powerful, but it suppoly the operations allowed by a red-black
tree. (Also, it cannot be easily made purely functional. Tlext representation we describe will support a
greater range of operations.

4.3 Supported Operations
Our ordered-set structures can support the following djpers
e Search ~ (Search T): Givenuz, return the greatest (least) element$fthat is less than or equal
(greater than or equal) to.
e Insert : Givenz, return the set’ = S U {z}.

e Delete : Givenz, return the sef’ = S\ {z}.

e FingerSearch —(FingerSearch T): Given a handle (or “finger”) for an elemenin S, perform
Search ~ (Search *)forzin O(logd) timewhered = [{s € S |y <s<x V z < s < y}|.

e First ,Last : Return the least (or greatest) elemenfin

e Split : Given an element, return two sets’ : {y € S |y <z} andS” : {y € S | y > =z}, plusz
ifitwasin S.

e Join : Given setsS’, S” such thatvz € S’,Vy € 8",z < y, returnS = S’ U S”.

e (Weighted)Rank : This operation assumes that a weightr) is provided with every elementas
it is inserted. Given an elemen; this operation finds = mGSEm<yw($)' In the unweighted variant,
all weights are considered to ke

¢ (Weighted)Select : This operation assumes that a weighitr) is provided with every element
x as it is inserted. Given, this operation finds the greatessuch thatxeSEKyw(a:) < r. It returns
bothy and the associated sum. In the unweighted variant, all ie#yle considered to de

Given any ordered dictionary structufeusingO (n log m) bits to storen values fromJ = {0, ..., m—
1}, the blocking technique we demonstrate produces an ordetesiructure usin@(n log mT*") bits. This
is within a constant factor of the information-theoretigviey bound. Our technique requires that the target
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machine have a word size 6f(logm). This is reasonable sindeg m bits are required to distinguish the
elements of/. Our technique also makes use of a lookup table ofGize>* log m) for a parametes: > 0.
(For most of the applications in this thesis we could use ketabsize O(2") entries; we could simulate
w = log |C| and choose to make the table size a low-order term. Here, though, we d@assumen is
related toC'|. We must decode gamma codes of sizem in constant time, so we must explicitly count the
costO(m?>* log? m) against our space usage.)

Our data structure works as follows. Elements in the strecawedifference codedas described in
Section 2.4) and stored in fixed-length blocks of gt@ogm). The first element of every block is kept
uncompressed. The blocks are kept in a dictionary strugwitd the first element as the key). The data
structure needs to know nothing about the actual implentientaf the dictionary. A query consists of first
searching for the appropriate block in the dictionary, amehtsearching within that block. We provide a
framework for dynamically updating blocks as inserts andtés are made to ensure that no block becomes
too full or too empty. For example, inserting into a block htigverflow the block. This requires it to be
split and a new block to be inserted into the dictionary. Tperations we use on blocks correspond almost
directly to the operations on the tree as a whole. We use-tableip to implement the block operations
efficiently.

Our structure can support a wide range of operations, dépgrh the operations the dictionafy
supports. In all cases the cost of our operation3(is) instructions and)(1) operations orD.

If the input structureD supports th&earch —, Search T, Insert ,andDelete operations, then our
structure supports those operations.

If D supportsFingerSearch  and supportdnsert and Delete at a finger, then our structure
supports those operations.

If D supportsFirst , Last , Split , andJoin , then our structure supports those operations. If the
bounds forSplit andJoin on D are O(log min(|D; |, |D2|)), then our structure meets these bounds
(despite the) (1) calls to other operations).

If D supportsWeightedRank ,then our structure suppofank. If D supportsVeightedSelect
then our structure suppor&elect . Our algorithms need the weighted versions so that they sarthe
number of entries in a block as the weight.

The catenable-list structure of Kaplan and Tarjan [69] caadbapted to support all of these operations.
The time bounds (all worst-case) &log n) for Search —, Search *, Insert ,andDelete ; O(logd)
for FingerSearch ,whered is as defined abov&)(1) for First andLast ; andO(log min(|D1|,|Dz|))
for Split andJoin . Our structure meets the same bounds. As another exampleeprasentation based
on a simpler dictionary structure based on Treaps [108]atppll these operations in the time listed in the
expected case. Both of these can be made purely functiosa. third example, our representation using a
skip-list dictionary structure [100] supports these operes in the same time bounds (expected case) but is
not purely functional.
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{306, 309, 312, 314, 315, 319}

306 [3]3] 2]y 4]

[0100110010011] 013 010 I 0010

Figure 4.1: The encoding of a block of si26. In this case the universe has si#24, so the head is
encoded withl 0 bits.

4.4 Block structure

Our representation consists of two structures, nested asiarm of structural bootstrapping [30]. The base
structure is thélock In this section we describe our block structure and theaijmers supported on blocks.
Then, in Section 4.5, we describe how blocks are kept in asredddictionary structure to support efficient
operations.

The block structure, the given dictionary structure andemmbined structure all implement the same
operations except that the block structure has an additiBNvadSplit  operation, and only the given
dictionary supports the weighted versionsRdnk and Select . For clarity, we refer to operations on
blocks with the prefixB (e.g, BSplit ), operations on the given dictionary structure with thefipré®
(e.g, DSplit ), and operations on our combined structure with no prefix.

Block encoding. A block B; is an encoding of a series of values (in increasing ordgrs, . .., vx. The
block is encoded aslag m-bit representation of;, (called the “head”) followed by difference codes (as in
Section 2.4) fory — vy, v3 — ve, ..., v — vk_1. (See Figure 4.1 for an example.) We say thatdize

of a blocksize (B) is the total length of the difference codes contained im lhack. In particular we are
interested in blocks of siz@(log m) bits.

It is important for our time bounds that the operations orckdoare fast—they cannot take time pro-
portional to the number of values in the block. We make useabletlookup for fast decoding, as de-
scribed in Section 2.5, using a table word sizendbg m for some parametet. Since blocks have size
O(log m), thesum-gamma-fast algorithm from that section allows access to any value inblbek in
O(2%™ ) — O(1/a) time. The cost of the lookup tables feam-gamma-fast is O(m?2* log m) bits.

alogm
We useM to denote the maximum possible length of a difference codehd case of gamma codes,
M = 2|log m| + 1 bits. Throughout Sections 4.4 and 4.5 we will assume the igaroma codes.

We define the following operations on blocks. All operatioeguire constant time assuming constant
« and that the blocks have siz&log m). Some operations increase the size of the blocks; we deserib
Section 4.5 how the block sizes are bounded.

BSearch — (BSearch *): Given a valuev and a blockB, these operations return the greatest (least)

value inB that is less than or equal (greater than or equal) this is an application of theum-gamma-fast rou-
tine.
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Blnsert : Given a valuev and a blockB, this operation inserts into B. If v is less than the head for
B, then our algorithm encodes that head by its difference fr@nd adds that code to the block. Otherwise,
our algorithm searcheB for the valuev; that should precede. The gamma code far; ; — v; is deleted
and replaced with the gamma codesdor v; andv; 1 —v. (Some shift operations may be needed to make
room for the new codes. Since each shift aff&efog m) bits, this requires constant time.)

BDelete : Given a blockB and a valuev; contained inB, this operation deletes; from B. If v; is
the head forB, then its successor is decoded and made into the new heat Otherwise, our algorithm
searches3 for v;. It deletes the gamma codes fgr— v;_; and forv;; — v; and replaces them with the
gamma code fov; 1 — v;_1. (Part of the block may need to be shifted. As in the Inser ctis requires
a constant number of shifts.)

BMidSplit : Given a blockB of sizeb bits (whereb > 2M), this operation splits off a new block’
such thatB and B’ each have size at ledst2 — M. It searches3 for the first code: that starts after position
b/2 — M (using the second array stored with each table entry). Fhemlecoded and made into the head
for B’. The codes after are placed inB’, andc and its successors are deleted fr®nB now contains at
mostb/2 bits of codes, and contained at mosd/ bits, soB’ contains at leadi/2 — M bits. This takes
constant time since codes can be copi¥tbg m) bits at a time.

BFirst : Given a blockB, this operation returns the head Br
BLast : Given a blockB, this operation scans to the end®fand returns the final value.

BSplit : Given a blockB and a valuey, this operation splits a new block’ off of B such that all
values inB’ are greater than and all values inB are less tham. This is the same e&BMidSplit  except
thatc is chosen by a search rather than by its positioBiThis operation returns if it was in B.

BJoin : The join operation takes two block8 and B’ such that all values i3’ are greater than the
greatest value fronB. It concatenate$3’ onto B. To do this it first finds the greatest valuwen B. It
represents the head from B’ with a gamma code for’ — v and appends this code to the endRf It
appends the remaining codes frato B. This takes constant time since codes can be capigek m)
bits at a time.

BRank: To support thd8Rank operation thesum-gamma-fast lookup tables need to be augmented:
along with the sum of the gamma codes in a chunk, the tablesrteambntain information on the number of
codes decoded. To find the rank of an elemeniithin a block B, our algorithm searches for the element
while keeping track of the number of elements in each chuippskl over.

BSelect : To support thdBSelect operation thesum-gamma-fast lookup tables need to be aug-
mented: in addition to the information needed BRank, each chunk needs to have an array containing
the decoded values. (The table needed for thisrh&sentries of(a logm)2%1°8™ bits each; the total is
O(m?>log m) bits, which does not alter the tables’ asymptotic space texitp.) To find the element with
a given rank, our algorithm searches for the chunk contgittiat element, then accesses the appropriate
index of the array.
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4.5 Representation

To represent an ordered s€t= {s1, s2,...,5,},8 < si+1, our approach maintainS as a set of blocks
B; where B; = {sp,, 5p,41,---,5p,,,—-1}. The valuesh; ...b; are maintained such that the size of each
block is between\/ and4M/. The first block and the last block are permitted to be smétien /. (Recall
that M = 2[logm| + 1 is the maximum possible length of a gamma code.) This prgpennaintained
throughout all operations performed Sn

Lemma 4.5.1 Given any sefS fromU = {0,...,m — 1}, let|S| = n. Given any assignment 6f such
thatVB;, M < size(B;) < 4M, the total space used for the blocksl¢n log “£™).

Proof. We begin by bounding the space used for the gamma codes. Sh®gamma code the differences
between every pair of consecutive elements'iis

n

2(2 llog(s; — si—1)] +1).

=2

This sum is maximized when the values are evenly spaced imtieval 1 ...m; at that point the sum is
S o(2log 2 + 1), which isO(nlog 2 + n) = O(nlog Z2).

The gamma codes contained in the blocks are a subset of tseconsidered above (since the head of
each block is not gamma coded). For evkrym bits used by a head there are at ledstbits used by
gamma codes; sincdel > 2log m the amount of additional space used by heads is at most halfised by

gamma codes.

The blocksB; are maintained in an ordered-dictionary structireThe key for each block is its head.
We refer to operations oy with a prefix D to differentiate them from operations on blocks and from the
interface to our representation as a whol@.may useO (log m) bits to store each value. Since each value
stored inD contains©(log m) bits already, this increases our space bound by at most @acoriactor.
Our representation, as a whole, supports the followingaifmers. They are not described as functional but
can easily be made so: rather than change a block, our &godbuld delete it from the structure, copy it,
modify the copy, and reinsert it into the structure.

Search ~: First, our algorithm call®Search ~(k), returning the greatest blodk with headk’ < k.
If ¥ = k, returnk’. Otherwise, calBSearch —(k) on B and return the result.

Search *: First, our algorithm callSearch —(k), returning the greatest blodk with headk’ < k.
If ¥ = k, returnk’. Otherwise, calBSearch *(k) on B. If this produces a value, return that value;
otherwise, calDSearch *(k + 1) and return the head of the result.

Insert : First, our algorithm call©Search —(k), returning the blockB that should contairk. (If
there is no block with head less than our algorithm use®Search *(k) to find a block instead.) Our
algorithm then call8Insert (k) on B. If size(B) > 4M, our algorithm callBMidSplit on B and
usesDInsert to insert the new block.
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Delete : First, our algorithm call®Search —(k), returning the blockB that contains the target ele-
mentk. Then our algorithm callBDelete (k) on B. If size(B) < M, our algorithm use®Delete to
deleteB from D. It usesDSearch ~ to find the predecessor @f andBJoin to join the two blocks. This
in turn may produce a block which is larger in size thad, in which case 8MidSplit  operation and a
Dinsert operation are needed as in timsert case.

(Under rare circumstances, deleting a gamma-coded eldnoemta block may cause it to grow in size
by one bit. If this causes the block to exceld in size, this is handled as in tiesert  case.)

We define a “finger” to an elementto consist of a finger to the block containingv in D.

FingerSearch : Our algorithm callDFingerSearch (k) for the blockB’ which containgk. It then
callsBSearch —(k) and returns the result.

First : Our algorithm callDFirst and therBFirst and returns the result.
Last : Our algorithm calldDLast and therBLast and returns the result.

Join : Given two structuredD; and D5, our algorithm first checks the size 8 = DLast(D;) and
By = DFirst(Ds). If size(By) < M, our algorithm use®Split to removeB; and its predecessor,
BJoin to join them, andMidSplit  if the resulting block is oversized. It usBgoin to join the resulting
block(s) back ontd;. If size(By) < M, our algorithm joinsB; onto its successor using a similar method.
Then our algorithm usd3Join to join the two structures.

Split : Given an elemenk, our algorithm first callDSplit (k), producing structure®; and D-.
If the split operation returns a block, then our algorithm useBDelete on B to delete the head, uses
DJoin to join B to D9, and returng Dy, k, D). Otherwise, our algorithm calBSplit (k) on the last
block DLast (D,). If this produces an additional block, this block is joinaato Ds.

Rank: The weighted rank of a block is defined to be the number of efgmit contains. Our algorithm
callsDSearch (k) to find the blockB that should contai®. It callsDWeightedRank (B)andBRank(k)
and returns the sum.

Select : The size of a block is defined to be the number of elementsniianas. Our algorithm uses
DWeightedSelect (r)to find the blockB containing the target, then usBSelect with the appropriate
offset onB to find the target.

Lemma 4.5.2 For an ordered universé&/ = {0,...,m — 1}, given an ordered dictionary structure (or
comparison-based ordered set structufehat usesO(n log m) bits to storen values, our blocking tech-
nique produces a structure that us@én log ”J’Tm) bits.

1. If D supportsDSearch —, DSearch +, DIinsert ,andDDelete , the blocked set structure supports
those operations using(1) instructions and)(1) calls to operations oD.

2. If D supportsDFingerSearch , the blocked set structure suppofisgerSearch in O(1) in-
structions and one call tDFingerSearch . If D supportsDinsert andDDelete at a finger,

31



union (S1,52)
if S1 = null then
return Sy
if So = null then
return Sy
(S24,v,528) < DSplit  (S2,DFirst  (S1))
Sp — union (S25,51)
return DJoin (S24,58)

Figure 4.2: Pseudocode fouaion operation.

then the blocked set structure supports those operatiomg) (1) instructions andO(1) calls to
Dinsert andDDelete at a finger.

3. If D supports théDFirst , DLast ,DSplit ,andDJoin operations, then the blocked set structure
supports those operations usity 1) instructions andD(1) calls to operations oD.

4. If D supports thddWeightedRank operation, then the blocked set structure supportsRhek op-
eration inO(1) instructions and one call tbWeightedRank . If D supports thdWeightedSelect  op-
eration, then the blocked set structure supports3eéect operation usingD(1) instructions and
one call toDWeightedSelect

The proof follows from the descriptions above.

4.6 Applications

By combining theSplit andJoin operations it is possible to implement efficient set uniaterisection,
and difference algorithms. An example implementatiouion is shown in Figure 4.2. ISplit and
Join runinO(log|D;|) time, then these set operation algorithms ru@it log M +k) time, where

k is the least possible number of blocks that we can break thdi$ig into before reforming them into one
list. (This is the Block Metric of Carlsson et al. [31].)

As described in the introduction, the catenable ordereédtisicture of Kaplan and Tarjan [69] can be
modified to support all of the operations described here irsta@ase time. (To do this, we uSplit as
our search routine; to suppdfingerSearch  we define a finger fok to be the result when the structure
is split onk. To support weighted Rank and Select, we let each node irtrinetwre store the weight of its
subtree.) Thus our representation using their structuppats those operations in worst-case time using
O(nlog "*Tm) bits. This structure may be somewhat unwieldy in practicsydver.

If expected-case rather than worst-case bounds are abteplaeaps [108] are an efficient alternative.
Treaps can be made to support the Split and Join operatiofipping the pointers along the left spine of
the trees—each node along the left spine points to its parstgad of its left child. To split such a treap on
a keyk, an algorithm first travels up the left spine until it reachdeey greater thah, then splits the treap
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|U| | |S] Insert Times Delete Times Space Needed
Standard| Blocked | Standard| Blocked | Standard| Blocked
220 1 210 1 0.001 0.004 0.001 0.003 12 4.62
220 | 2121 0.010 0.016 0.012 0.013 12 3.80
220 | 214 | 0.061 0.067 0.058 0.076 12 3.02
220 | 216 | 0.363 0.348 0.343 0.369 12 2.28
220 1 218 1 2.007 1.790 | 1.920 1.901 |12 1.64
225 | 2101 0.004 0.001 0.000 0.006 12 6.37
225 | 2121 0.009 0.013 0.010 0.017 12 5.67
225 | 214 | 0.062 0.073 0.058 0.087 12 4.96
225 | 216 | 0.351 0.393 0.347 0.465 12 4.18
225 | 218 1 1,875 2.071 | 1.828 2.365 |12 3.42
230 1 210 1 0.001 0.005 0.002 0.003 12 8.15
230 | 2121 0.012 0.013 0.011 0.019 12 7.43
230 | 214 | 0.061 0.078 0.062 0.093 12 6.68
230 | 216 | 0.357 0.424 0.346 0.515 12 5.89
230 | 218 1 1,865 2.283 | 1.798 2.745 |12 5.33

Table 4.1: Performance of a standard treap implementatosus our blocked treap implementation, aver-
aged over ten runs. Time is in seconds; space is in bytes he&r.va

as normal. Seidel and Aragon showed that the expected paithlef such a traversal 9(log |71|). By
copying the path traversed this can be made purely fundtiona

4.7 Experimentation

We implemented our blocking technique in C using both treaqusred-black trees. Rather than the gamma
code, we use the nibble code, as described in Section 2.3.e¥dmd blocks nibble-by-nibble rather than
with a lookup table as described above. For very large pnafleising such a table might improve perfor-
mance.

We use a maximum block size of 46 nibbles (23 bytes) and a nuimirsize of 16 nibbles (8 bytes). We
use one byte to store the number of nibbles in the block, fotad of 24 bytes per block.

We combined our blocking structure with two separate treectires. The first is our own (purely
functional) implementation of treaps [6]. Priorities amngrated using a hash function on the keys. Each
treap node maintains an integer key, a left pointer, andrd pginter, for a total ol 2 bytes per node. In our
blocked structure each node also keeps a pointer to its bBicice each block 184 bytes, the total space
usage ist0 bytes per treap node.

The second tree structure is the implementation of redklitaes [60] provided by the RedHat Linux im-
plementation of the C++ Standard Template Library [114].08&d thenap<int, unsigned char*>
template for our blocked structure and #$et<int> template for the unblocked equivalent. A red-black
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|U| | |S] Insert Times Delete Times Space Needed
Standard| Blocked | Standard| Blocked | Standard| Blocked
220 1 210 1 0.001 0.002 0.000 0.003 20 5.49
220 | 212 | 0.004 0.006 0.003 0.014 20 455
220 | 2141 0.013 0.033 0.023 0.054 20 3.62
220 | 216 | 0.064 0.136 0.100 0.230 20 2.74
220 | 218 10,357 0.559 | 0.538 0.972 |20 1.97
225 | 210 1 0.001 0.003 0.000 0.000 20 7.66
225 | 212 | 0.004 0.008 0.004 0.015 20 6.80
225 | 214 | 0.012 0.037 0.022 0.056 20 5.96
225 | 216 | 0.064 0.152 0.098 0.247 20 5.02
225 | 218 1 0.384 0.634 | 0.583 1.066 | 20 4.10
230 1 210 10.000 0.003 0.002 0.003 20 9.79
230 | 2121 0.003 0.010 0.005 0.015 20 8.91
230 | 2141 0.013 0.040 0.020 0.060 20 8.01
230 | 216 | 0.066 0.170 0.100 0.262 20 7.08
230 | 218 10,385 0.714 | 0.589 1.143 | 20 6.39

Table 4.2: Performance of a standard red-black tree impitatien versus our blocked red-black tree im-
plementation, averaged over ten runs. Time is in secondsgesp in bytes per value.

tree node includes a key, three pointers (left, right, arémi® and a byte indicating the color of the node.
Since a C compiler allocates memory to data structures itipies of4, this requires a total df0 bytes per
node for the unblocked implementation, at&lbytes for our blocked implementation.

We ran our simulations on a 1GHz processor with 1GB of RAM.

For each of our tree structures we tested the time neededdd end delete elements. We used universe
sizes of220, 225 and23°, with varying numbers of elements. Elements were choseomniy from U. All
elements in the set were inserted, then deleted in the satae dWe calculated the time needed for insertion
and deletion and the space required by each implementatichgomputed the average over ten runs.

Results for the treap implementations are shown in Table @ur blocked version uses considerably
less space than the non-blocked version; the improvemdigtigeen a factor of.45 and 7.3, depending
on the density of the set. The slowdown caused by blockingsdout is usually less thas0%. (In fact,
sometimes the blocked variant runs faster. We suspectsthisdause of caching and memory issues.)

Results for the red-black tree implementations are showrable 4.2. Here the space improvement is
between a factor df and10. However the slowdown is sometimes as muchs%.

Note that the STL red-black tree implementation is signifiljefaster than our treap implementation. In
part this is because our treap structure is purely functi@ral thus persistent). The red-black tree structure
is not persistent.

For our treap data structure we also implemented the segayemalgorithm described in Section 4.6.
We computed the time needed to merge sets of varying sizesnivarse of siz&?°. Results are shown in
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|A] | |B] Union Time
Standard| Blocked
2141210 10.003 0.011
2t | 2121 0.015 0.036
214 | 214 1 0.036 0.086
216 1 210 1:0.005 0.014
216 | 2121 0.028 0.048
216 | 2141 0,067 0.157
216 | 216 1 0.151 0.370
218 | 210 1.0.006 0.015
218 | 212°1.0.043 0.059
218 | 21 1 0.119 0.208
218 | 216 1 0.293 0.703
218 1 218 1 0.616 1.540

Table 4.3: Performance of our serial merge algorithm imeleted using standard treaps and blocked treaps.
All values are averaged over ten runs. The universe si2®€isTime is in seconds.

Figure 4.3. The slowdown caused by blocking was at nhog%o.
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Chapter 5

Compact Representations of Graphs

5.1 Introduction

We are interested in representing graphs compactly whjpating queries and updates efficierttlf.he

goal is to store large graphs in core memory for use with stahdlgorithms requiring random access. Our
representations have applications to computation on lgrgehs €.g, the link graph of the web, telephone
call graphs, or graphs representing large meshes), andliticedcan be used for medium-size graphs on
devices with limited memory (e.g. map graphs on a hand-helicd). Furthermore even if the application

is not limited by physical memory, the compact represematican be faster than standard representations
because they have better cache characteristics. Our myqres confirm that this is the case on many real-
world graphs.

For random graphs the space that can be saved by graph ceioprissquite limited—the information-
theoretic lower bound for representing a random grapgh(is: log %2), wheren is the number of vertices,
andm is the minimum of the number of edges, or the number of edgtsicomplement. This bound can
be matched by using difference encoded adjacency listg,[&4B6 for sparse graphs the approach only saves
a small constant factor over standard adjacency lists.uRrattly most graphs in practice are not random,
and considerable savings can be achieved by taking adwaafagructural properties.

Probably the most common structural property that realdvgraphs have is that they have small sep-
arators. As described in Section 2.7, a graph has smallaepsiif it and its subgraphs can be partitioned
into two approximately equally sized parts by removing atreély small number of vertices. The expected
separator size of a random grapl®ign), for m > 2n. Planar graphs hav@(n!/?) separators [81] and play
an important role in any partitioning of 2-dimensional spasuch as 2-dimensional triangulated meshes. In
fact there has been considerable work on compressing iaajins (see related work below). Even graphs
that are not strictly planar because of crossings, suchHeshene and power networks, tend to have small
separators. More generally, nearly all graphs that are tsedpresent connections in low dimensional
spaces have small separators. For example most 3-dimahsi@shes have (n?/3) separators [85], as do
most nearest-neighbor graphs in 3-dimensions. Furtherrmany graphs without pre-defined embeddings

This chapter is based on work done with Guy Blelloch and lashq{45, 16].
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in low dimensional spaces have small separators [132]. ¥a&mple, the link structure of the web has small
separators, as our experiments show.

In this chapter we are interested in compact representatibseparable graphs (as described in Section
2.7). We describe four possible representations, eacly asin) bits and supporting constant-time degree
gueries and listing of the neighbors in constant time peght®r. Three of the four representations support
constant-time adjacency queries as well. We assume thégyeap unlabeled—we are free to number the
vertices. Even if a graph is not strictly separal#deg( some component cannot be effectively separated),
our representations are likely to do well since they will goass the components that are separable. Our
computational model is a Random-Access-Machine with emtdtme operations o0 (log n)-bit words.

We take advantage of th@(log n)-bit parallelism in our algorithms.

Related Work. There has been considerable work on compressing unlabedgtisy Turan [125] first
showed that-vertex planar graphs can be compressedd@nto) bits. The constant in front of the high order
term was improved by Keeler and Westbrook [72], and He, Kablan[65] later describe a technique that
is optimal in the first order term. These results generatizzny graph with constant genus [82]. There have
also been many results for sub-classes of planar graphsasuirkes, triangulated meshes or triconnected
planar graphs [72, 64, 105]. For dense graphs, Naor [92]ritbesca representation that reduces a lower
order term over what is required by an adjacency matrix.

None of this work considers implementing fast queries. Bsop [68] first showed how planar graphs
can be represented usidyn) bits while permitting adjacency queries @(logn) time. Munro and Ra-
man [91] improved the time for adjacency queriesXd ) time. Chuang et. al. [40] improved the constant
on the high order term for the space bound. All of these teghes were based on using representations for
balanced parentheses. It seems unlikely the techniquesxehd to the general case of graphs with small
separators.

Using separators to compress graphs has been consideée.b&feo and Litow [46] showed that
separators can be used to compress graphs with bounded tgefys) bits. He, Kao and Lu [65] use
planar-graph separators to compress planar graphs to timabpmumber of bits within a low-order term.
Chakrabarti et al. [33] describe an experimental approacktdmpressing graphs that are represented as
sparse matrices. None of these techniques, however, duppoies.

There has been additional related work for the special csepoesenting the link structure of the
Web [28, 1, 119, 22]. For this case, authors have taken aayardf the high degree of similarity between
individual web pages. Authors have developed techniquesefiresenting the outlinks of one page by its
difference from the outlinks of another page. Exploitinig §imilarity allows strong compression: Boldi and
Vigna [22] get3 to 5 bits per link on a webgraph dfl8 million pages, not counting the indexing structure.
However, the references between compressed nodes meantuhigle nodes must be decompressed per
query. Also, it is not clear that general separable graphddivaave the similarity property they exploit.

Chakrabarti et al. [34] consider graph compression fronptspective of data mining: by examining
the compressed representation of a graph, they seek tongagit into its underlying structure. They make
use of the graph-separator technique described here.
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Our Structures. All of our data structures are based on recursively sepayati graph and using the
separators to renumber the vertices (first numbering orgraph, then the other). Because of the properties
of small separators, most edges will connect vertices tleatlase in this numbering. We take advantage of
this property in encoding the edges.

The time to construct our representation depends on thertemded to recursively separate the graph
(all other aspects take linear time). A polylogarithmic epgmation of the separator size is sufficient for
our bounds so the Leighton-Rao separator [78] gives a poljeddime separator for graphs satisfying an
O(n), ¢ < 1 edge-separator theorem. For special graphs more effickrions are knowre.g, for planar
graphs [81] and well shaped meshes [85]. In practice fasidimgs work well for most graphs [71].

Our static graph representations are based on a diffei@ded adjacency list (as described in Section
2.4). We sort the neighbor indices for each vertex, and stwalifferencesi between adjacent pairs of
neighbors using a logarithmic code. The vertex encodingscancatenated and indexed usingedect
structure (see Section 2.6) for fast access.

For graphs which allow edge separators, we show how to refabevertices using a recursive edge-
separator decomposition (@&dge separator trge We show that this relabeling, combined with difference
coding, reduces the cost of an adjacency tabl@ o) bits. This permits degree queriesdr1) time and
neighbor queries i (1) time per neighbor. To support constant time adjacency gsiewe describe a
separate structure based on directing the graph such thatrtites have bounded outdegree, then storing
only the out-edges from each vertex.

For graphs which require vertex separators, we usatex separator treto relabel the graph. A vertex
of degreed is assigned “shadow labels,” and each adjacency list that refers todasasdifferent label. An
auxiliary data structure (making use of table lookup) cam tie shadow labels to a unique label for each
vertex inO(1) time. We show that the space required for thi®i3:) bits. Adjacency queries are handled
as in the edge-separator case.

Both of the representations described above are static.thittegraph representation we present is a
semidynamiwersion of the first representation using the variabldesiggth array structure of Section 3. It
permits dynamic updates to vertices: the neighbors of a&xeran be rewritten in expected(|v|) time,
where|v| is the degree of the vertex. We say the representation iglgearic since, although edges can be
inserted and deleted at will, the space usage of the repegsendepends on the locality of the new edges
with respect to the initial ordering.

The fourth representation we present is a semidynamicseptation which permits dynamic updates to
individual edges in expected(1) time. It is based on the variable-bit-length dictionarysture of Section
3. Edges are compressed and stored in the dictionary usingealtlist-like structure which allows access
to individual elements i©(1) time.

We implemented the first and third data structures descritbesde and present results from extensive
experimentation. We compare several methods for findingraggrs and for indexing the structure. We
present results from several different prefix codes. We @vefhe performance of our representations on
two machines with different cache characteristics. We ammpur code to an array representation and to
several variants of a linked-list representation. Finallg present experimental results from two algorithms
making use of the application. Our experiments show thatrepiresentations mostly dominate standard
representations in terms of both space and query times. ypanaic representation is slower than adjacency
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lists for updates.

In Section 5.2 we discuss our two static graph represengatitn Section 5.3 and 5.4 we discuss our
dynamic representations. In Section 5.5 we describe defpdcific to our implementation. In Sections 5.6
and 5.7 we report on experiments analyzing time and spackotbrthe static and dynamic graphs. Our
comparisons are made over a wide variety of graphs inclugiaghs taken from finite-element meshes,
VLSI circuits, map graphs, graphs of router connectivityd dink graphs of the web. All the graphs are
sparse. To analyze query times we measure the time for a-fiegitsearch (DFS) over the graph. We
picked this measure since it requires visiting every edgetix once (in each direction) and since it is a
common subroutine in many algorithms.

For static graphs we compare our static representationjéacenty arrays. An adjacency array stores
for each vertex an array of pointers to its neighbors. Thess/s are concatenated into one large array
with each vertex pointing to the beginning of its block. Trepresentation takes about a factor of two less
space than adjacency lists (requiring only one word for etiettted edge and each vertex). For our static
representation we compare four codes for encoding diffe®ngamma codes, snip codes, nibble codes,
and byte codes. The different codes represent a tradeefebattime and space.

Averaged over our test graphs, the static representatitinbyte codes uses 12.5 bits per edge, and the
snip code uses 9 bits per edge. This compares with 38 bitsdger fer adjacency arrays. Due to caching
effects, the time performance of adjacency arrays depdgdgicantly on the ordering of the vertices. If
the vertices are ordered randomly, then our static reptaisem with byte codes is between 2.2 and 3.5
times faster than adjacency arrays for a DFS (dependingeom#thine). If the vertices are ordered using
the separator order we use for compression, then the byt isdoktween .95 and 1.3 times faster than
adjacency arrays.

For dynamic graphs we compare our dynamic representatian tptimized implementation of adja-
cency lists. The performance of the dynamic separatorebesgresentation depends on the size of blocks
used for storing the data. We present results for two settimge optimized for space and the other for time.
The representation optimized for space uses 11.6 bits jgeraut the one optimized for time uses 18.8 bits
per edge (averaged over all graphs). This compares withtg@ér edge for adjacency lists.

As with adjacency arrays, the time performance of adjacéstsydepends significantly on the ordering
of the vertices. Furthermore, for adjacency lists the perémce also depends significantly on the order in
which edges are insertedq, whether adjacent edges end up on the same cache line). ftmewf the
separator-based representation does not depend onansertier. It is hard to summarize the time results
other than to say that the performance of our time-optimiegtesentation ranges from .9 to 8 times faster
than adjacency lists for a DFS. The .9 is for separator andetinear insertion, and on the machine with
a large cache-line size. The 8 is for random ordering andomnidsertion. The time for insertion on the
separator-based representation is up to 4 times slowemttjanency lists.

In Section 5.8 we describe experimental results analytiagérformance of two algorithms. The firstis
a maximume-bipartite-matching algorithm and the secondisrgplementation of the Page et al. page-rank
algorithm [95]. In both algorithms the graph is used manyesrover so it pays to use a static representation.
We compare our static representation (using nibble cod#ék)bath adjacency arrays and adjacency lists.
For both algorithms our representation runs about as fdsister, and saves a factor of between 3 and 4 in
space.
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All experiments run within physical memory so our speedup f@thing to do with disk access.

5.1.1 Real-world graphs have good separators

An edge-separator is a set of edges that, when removedjgeta graph into two almost equal sized parts
(see [104] for various definitions of “almost equal”). Siarlly a vertex separator is a set of vertices that
when removed (along with its incident edges) partitionsagplgrinto two almost equal parts. The minimum
edge (vertex) separator for a graph is the separator thamizes the number of edges (vertices) removed.
Informally we say that a graph has good separators if it amsuibgraphs have minimum separators that are
significantly better than expected for a random graph ofi#ts. Having good separators indicates that the
graph has some form of locality—edges are more likely tachttaear” vertices than far vertices.

Along with sparsity, having good separators is probablyntiost universal property of real-world graphs.
The separator property of graphs has been used for manygaspiocluding VLSI layout [4], nested dis-
section for solving linear systems [80], partitioning gramn to parallel processors [116], clustering [118],
and computer vision [112]. Although finding a minimum separdor a graph is NP-hard, there are many
algorithms that find good approximations [104]. Here weftyrieview why graphs have good separators.

One reason that many graphs have good separators is belsaysed based on communities and hence
have a local structure to them. Link graphs for the web haw g®parators since most links are either
within a local domain or within some other form of communigid. computer science researchers, infor-
mation on gardening, ...). This is not just true at one lewvel, gither local or not), but is true hierarchically.
Most graphs based on social networks have similar proger@ach graphs include citation graphs, phone-
call graphs, and graphs based on friendship-relations.adh\Watts and Strogatz [132] conjecture that
locality is one of the main properties of graphs based orasoeitworks.

Another reason many graphs have good separators is tharieynbedded in a low dimensional space.
Most meshes that are used for various forms of simulatian (mite element meshes) are embedded in two-
or three-dimensional space. 2D meshes are often planaoial not always) and hence satisfy@fm'/?)
vertex-separator theorem [81]. Well shaped 3D meshes awrkio satisfy arO(nz/ 3) vertex-separator
theorem [85]. Graphs representing maps (roads, powes:lipipes, the Internet) are embedded in a little
more than two dimensions. Road maps are very close to plexeept in Pittsburgh. Power-line graphs
and Internet graphs can have many crossings, but still hemyegood separators. Graphs representing the
connectivity of VLSI circuits also have a lot of locality s ultimately they have to be laid out in two
dimensions with only a small constant number of layers oheations. It is well understood that the size
of the layout depends critically on the separator sizes][126

Clearly certain graphs do not have good separators. Expamndphs by their very definition cannot
have small separators.

5.2 Static Representation

We will consider three kinds of queries: degree queriegghimrhood queries, and adjacency queries. A
degree query returns the degree of a vertex. A neighborhoedydjsts all the neighbors of a given vertex.
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An adjacency query tests whether two vertices are adjacent.

Our primary data structure ighifference coded adjacency lisepresented as an ordered set and encoded
as described in Section 2.4. We assume the vertices hageingbels. If a vertex has neighbors1, vs,
vs, ..., vg IN sorted order, then the data structure encodes the diffese; — v, vo — vy, v3 — va, ...,
vg — vg—1 contiguously in memory. The differences are encoded usigdagarithmic code (as described
in Section 2.3). The value, — v might be negative, so we store a sign bit for that value. Asthe of each
encoded list we also store a code for the number of entrideifigt.

We form anadjacency tableby concatenating the adjacency lists together in the ortigheovertex
labels. To access the adjacency list for a particular vestexneed to know its starting location. If we
haven vertices and a total ad(n) bits in the lists, keeping a@(log(n))-bit pointer for each vertex would
exceed our space bound; instead, we uselectdata structure (as described in Section 2.6) to store the sta
locations using)(n) bits.

Lemma 5.2.1 An adjacency table supports degree querieifl) time, and neighborhood queries in
O(|v|) time, whergu| is the degree of the vertex being queried.

Proof. Theselectoperation allows access to the adjacency list for any vémteanstant time. Any)(log(n))-
bit valuev can be decoded in constant time (usingdbeode-gamma routine from Section 2.3), so it takes
O(d) time to decode the contents of the list.

Edge Separators. We begin by discussing the case of graphs that admit edgessersa Our data structure
for this case is highly practical and is used as the basisuperperimentation. We will later describe an
extension to vertex separators. We note that, in practiegfownd that all the real-world graphs we tested
were edge-separable.

Our algorithm builds an edge-separator tree for the tanggilgby recursively computing an edge sep-
arator for each subgraph. The resulting separator treaicsnone leaf for each vertex in the graph. The
vertices are labeled in order from left to right using a traaéof the separator tree.

Lemma 5.2.2 Suppose that the edges in a gra@tare encoded in such a way that each edgg v-) uses
O(log |v1 — wvg]) bits. If G is a member of a class of edge-separable graphs, and itscesrtre labeled
using an edge-separator tree, then the total space usedctuderall the edges i©(n) bits.

Proof. If a node of the separator tree containsertices, then its separator contaién®) edges. Each of
those edges connects a pair of vertices which are at maptrt in the labeling, so the cost of the edges in
that separator i©(n‘logn). Because the graph is edge-separable, it h@3(afi) separator that guarantees
each side of the partition will contain at mast vertices. LetS(n) be an upper bound on the the number
of bits used to encode the edges of a graph witrertices. If we letoe < a < 1 — «, S(n) satisfies the
recurrence:

S(n) < S(an) + S(n — an) + O(nlogn)

This recurrence solves t(n) = O(n) (e.g, using induction assuming(n) < kin — kyn®, c < ¢ < 1).
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Consider an adjacency table representation which repreties neighbors of by their direct differ-
ences fromw: v — v,v9 — v,v3 — v,v4 — v,.... By Lemma 5.2.2 the space usage of that representation
would beO(n) bits. Our adjacency table representation instead sortedtiees and represents the differ-
encesy; — v, vy — v1, U3 — Vg, V4 — V3, . ... ThiS representation is an improvement over the diredtidince
representation; it also uséxn) bits.

If, for a given labeling of the vertices, the sum of the edgstebas the property

Z log |v1 — va| < kn,
(vi,v2)€EE

we call the labelink-compact We have shown that an edge separator tree produces a k-colaipaling
for classes of graphs which are edge-separable. This pyopél be useful for discussions of dynamic
graphs.

Adjacency Queries. Using the difference-coded adjacency table describedegboe can find all the
neighbors of a vertex in optim#(d) time. However, resolving adjacency queries also také$) time,
since it requires decoding the adjacency list of either v to see if it contains the other vertex. To answer
adjacency queries in constant time, we first convert theetaggaph to a directed graph with bounded in-
degree.

Lemma 5.2.3 If a class of undirected graphs satisfies«fiseparator theorem, then it is possible to direct
the edges of any graph in that class so that the resulting lytegs bounded in- (or out-) degree.

Proof. We make use of the fact from Section 2.7 that any class of graptisfying such a theorem must
have bounded density. We present an algorithm that dirketedges of such a graph so as to ensure that
the result has bounded in-degree.

Given a graph= and a density bound, our algorithm first selects the sgtof vertices inG that have
degree at mosib. At least half of the vertices i must have this property. Our algorithm greedily directs
all edges that have verticeslinsuch that those edges point toward vertice¥ irT his cannot cause vertices
in V to exceed their in-edge bound, and it does not add in-edgestioes that are not ilY. Our algorithm
then subtract$” from G and repeats the process on the remaining graph. When adlesedre eliminated,
the process is complete, and no vertex has an in-degreegtean2b.

To handle adjacency queries we buildiaredge adjacency tablinat, for any vertex, lists the label
u corresponding to each in-edge, v). To do this we start with a full adjacency table (usifgn) bits
as described above) and discard the neighbors corresgptalivut-edges. To test if verticesandv are
adjacent, an algorithm examines the adjacency list infGondor « and forv, and returngrue if either
vertex appears in the other’s list. This takegl) time since the lists are constant length.

It remains to calculate the space usage of the new table.dighborv; is discarded from a difference-
encoded list, then the two differences,; — v; andv; — v;_1 are replaced with the differencg,; —
v;—1. Since all the differences are integral, we hayg(v;11 — v;—1) < log(viy1 — v;) + log(v; — vi—1);
asymptotically the space usage decreases. (For gamma toelesexist cases where deleting an entry
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BUILDTREE(V, E)
if |E| = 1then
return V'

(Vas Vaeps Vo) < FINDSEPARATOR(V, E)
E, —{(u,v) € ElueV,VveV,}
FE,—FE—-FE, / \

Va,sep — Va U ‘/sep
%,sep — WJ U Vsep

T, < BuildTree(Vy sep, Fa)
Ty, < BuildTree(Vy sep, Ep)
return SeparatorTredy, Viep, It)

Figure 5.1: The BILD TREE algorithm, and an example of the partition it produces.

from the list may increase the length of the list by one bit.isTéan contribute at mos?(n) bits to the
table.) The new table is formed by discarding entries froratdet of sizeO(n) bits, so the new table has
sizeO(n) bits as well.

This gives us:

Lemma 5.2.4 If class of undirected graphs satisfies afrseparator theorem, then an in-edge adjacency
table for a graph in that class us&¥(n) bits and supports adjacency queries(xil) time.

Vertex Separators. We now deal with the more general case of classes of graphshvelliow vertex
separators. As before, our algorithm builds a separaterftcen the target graph, then uses it to order the
vertices. The algorithm for building the separator treeivemy in Figure 5.1. Without loss of generality, we
assume that the graph separator algorithm always returepaaiegor with at least one vertex on each side
(unless the target graph is a clique). If the target is a eligque assume the separator contains all but one of
the vertices, and that the remaining vertex is on the leé sftthe partition.

The algorithm we describe produces a separator tree in whielseparator vertices at one level are
included in both of the subgraphs at the next level [80]. S&imach call to BILD TREE partitions the edges,
and the base case contains a single edge, the separatoiiltieaver one leaf per edge. Consider a single
vertex with degreel. Every time it appears in a separator, its edges are pagiionto two sets, and the
vertex is copied to both recursive calls. Since the vertdkapipear ind leaves, it must appear ith— 1
separators, so it will appear th— 1 internal nodes of the separator tree. Thgée- 1 total appearances
define their own binary tree for the vertex, which we call $hedow tredor that vertex. An example is
shown in Figure 5.2.

We label the appearance of vertices in the separator treesreely: first the vertices on the left, then
the vertices in the separator, then the vertices on the. igttie that a vertex of degreewill receive2d — 1
labels: one for each time it appears in the separator treegine for each node in its shadow tree). We call
the label assigned to the root of a shadow treerdlog label and use this label as the representative of the

44



Figure 5.2: The separator tree, and a shadow tree corresigoiaca vertex of degree.

vertex. (The labeling of representatives is sparse, butameuse theselectandrank data structures (see
Section 2.6) to efficiently convert it to a dense represantgt We refer to labels assigned to the leaves of a
shadow tree as thehadow label®f that vertex. Note that, if a vertex has degieéhen its root label will

be a shadow label.

Property 5.2.1 The separator tree of an-vertex bounded-density graph is assigrieg:) contiguous la-
bels.

This property holds since a vertex of degreis assigne®d — 1 labels, giving a total ofm — n labels,
and sincen = O(n) for bounded density graphs. If a graph is separable, thegraftihs in the separator
tree have this property.

We will represent graphs using two data structures. The fireshadow adjacency tahlavill map the
root label of each vertex to an adjacency list of shadow fabghe second, th®ot-find structure will map
each shadow label to the label of its root.

The Shadow Adjacency Table. The shadow adjacency tableontains a difference coded adjacency list
for each vertex, which is accessed using the root label ofeéhtex. If verticesu andv have shadow labels
v’ andv’, and a leaf of the separator tree contgias v'), then the adjacency list far containsu’ and the
adjacency list for: containsy’.

Lemma 5.2.5 For classes of graphs satisfying ari-separator theorem with < 1, anyn-vertex member
has a shadow adjacency table with{n) bits.

Proof. Consider the adjacency list and shadow tree for a vartekdegreed. There is a one-to-one cor-
respondence between thdabels in the adjacency list and tddeaves of the shadow tree, and the corre-
sponding labels differ by-1. We charge the difference between each adjacent pair afextg list labels to

the least common ancestor of the corresponding leaves shmow tree. If the ancestor is a separator in a
graph withs vertices, then the difference @3(s) (by property 5.2.1), so the difference code usgkg(s))

bits. We treat the first difference in the ligt, — v, as a special case, and charge its bits to the root label.
Note that this charges every node in the shadow tree at mist. tw
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We have charge® (log(s)) bits to every appearance of a vertex in a separator for a gvihls vertices.
Recall that the target graph hagia® separator that guarantees that each side of the partitibcomitain
at mostan vertices. LetS(n) be an upper bound on the the number of bits used to encode la grtipn
vertices. If we letv < a < 1 — o, S(n) satisfies the recurrence:

S(n) < S(an + pn) + S(n — an) + O(n°logn)

This recurrence solves t§(n) = O(n) (e.g, using induction assuming(n) < kin — kan®, ¢ < ¢ < 1).
The number of bits to encode the lengths of each list is balibg€) (n) since the total number of edges is
O(n) and the logarithm is a concave function.

We note that even if the separators are polylogarithmic @pprations of the best cut, the recurrence still
solves toO(n).

The Root-Find Structure. The shadow adjacency table can find a set of shadow labelsspomding to
the neighbors of any root label. We now describe a data steithat maps shadow labels to their root
labels. We begin with a structure that allows us to perforakigps inO(min(log(n), d)) time for a vertex
of degreed; we then show how to improve the structure so that we can perfioese lookups i@ (1) time.

To allow root lookups, we assign to each label a pointer tgéeent, encoded using the difference
between the two labels, and indexed usingetectdata structure. (We use a one-bit token per label to
indicate whether it is the root of its shadow tree.) If thegodrof a label is in a separator of a graph with
s vertices, then the pointer uge(log s) bits (by property 5.2.1). We charge the two child pointershie
parent, resulting in the same recurrence as in Lemma 5.21%én) bits. Using parent pointers, we can
climb the tree from a shadow label to its root. The separagerisO(log(n)) levels high, and the height of
the shadow tree is less than the number of nodes it contairtiBegotal time i) (min(log(n),d)).

To achieve a constant-time bound we use a blocking structMeedivide the labels into three categories
based on their location in the separator tree. The categlatyehis in will determine the size of the pointer
we allocate to each of its two children.

Labels appearing as separators in graphs containing aldgaﬁ (n) vertices will be placed in the first
category; we allocate a fulD(log(n))-bit root pointer for each of their children. Labels whichpepr as
separators in graphs containing betwda@gjﬁ (n) andlogl%c(logﬁ(n)) vertices will be placed in the
second category; they cannot have any children with a ldia¢ldiffers by more thar@(logﬁ(n)), SO

for their children we use af(log logﬁ(n)) = O(log(log(n)))-bit offset pointer. These pointers will
point to the topmost second-category label that is an amice$tthe child label in question; that label is
guaranteed to have a first-category parent (if it has a paitealt). Labels in graphs containing less than
ny = logT=¢ (log1~< (n)) vertices will be considered “leaf labels” and will be pladadhe third category.
Rather than encoding these vertices explicitly, we willae the graphs in which they appear. We will
consider a maximal block of contiguous leaf labels to be af'f#ock”.

We examine each leaf block and remove from it all of the pgpeiriters that point to locations outside
of the block; labels that had such pointers are marked asothte of their shadow trees. We then make a
table that lists all of the distinct leaf blocks in the dataisture, and replace the individual leaf blocks with
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pointers into the table. The leaf blocks (with the parenhfms removed) all have less thapvertices, so
each individual block require®(n;) bits to encode. This means there can be at rogat™) distinct leaf
blocks, so the size of the pointer required per leaf blockse @(n;) bits. There are(n/ny) pointers, so
this is within our space bound.

We now examine the table, which containg2*"+) leaf blocks. We provide each shadow label in each
leaf block with anO(log(n;))-bit pointer to its greatest ancestor within that block.

To shrink the number of graphs in the table we had to strip thytament pointers that pointed out of
the leaf graphs themselves. We include these pointers ggp@maix to each leaf table pointer. The space
for these pointers has already been charged to first- anchd@adegory labels in the tree. We index the
pointers using another application of a@lectdata structure. For each leaf block we also store the label of
the first entry modulay, (call thisvy). We charge thisog(n;,) space to thé(n;) space of the table pointer.
Each leaf block therefore contains a table pointer, an apipgandvy..

Given a shadow label, we use the following procedure to find the root of its shadme.t We first use
theselectdata structure to find a pointer to the leaf bldckontainings. We computes — v, modulon, to
find the index of the entry i corresponding ta. That entry contains a pointer to the greatest ancestor of
sin L. If this ancestor is not a root, we examine the appendix ofd@htblock to find the greatest second-
category ancestor’ of s. We use theselectdata structure again to find the greatest first-categorysamce
s" of s’ (if needed). These operations all require constant time.

Lemma 5.2.6 The root-find structure allows constant-time lookup of tbetdabel corresponding to any
shadow label, and use&3(n) bits.

Proof Outline. There areD(n/log(n)) labels that receivébg(n)-bit pointers and Qf/ log(log(n))) labels
that receive) (log(log(n)))-bit pointers; the space for these pointer®is:). There are)(n/n;) leaf table
pointers, each usin@(n;) bits; this space is alsO(n). The table contain®(2*") entries, each of which
containsn,, pointers ofO(log(ny)) bits each; the total space usedig2*™ n; log(n;)) which is sublinear.

The time bound is described above.

Adjacency queries can be handled usingrardge shadow adjacency tablas in the edge-separator
case (see Lemma 5.2.4), we begin by directing the graph sallhzertices have constant in-degree. We
then discard from the shadow adjacency table all entriegsponding to out-edges.

Theorem 5.2.1 For a class of graphs satisfying arf-separator theorem, any-vertex member can be rep-
resented ir0(n) bits while supporting adjacency queries and degree quémi€X 1) time and neighborhood
queries inO(1) time per neighbor.

Proof. To resolve degree queries and neighborhood queries we Usalave adjacency table. Extracting
the degree from a shadow adjacency table t&k@g time since it is encoded first; extracting the neighbor-
hood takegD(d) time (Lemmas 5.2.1 and 5.2.6). To resolve adjacency quesesse an in-edge shadow
adjacency table. For an adjacency query on verticandv, we need only examine andv in the second
table since eithefu, v) or (v, u) will be in the table. This take®(1) time since the lists are constant length.

a7



5.3 Semidynamic Representation

Using the variable-bit-length array structure from Sett®2, we can build a graph representation that
supports insertion (and deletion) of edges in the graphodigh the insertions and deletions are dynamic,
the space bound depends on the vertex labeling remalnocampact. Thus we describe our representation
as a whole asemidynamic

In the static data structure, the data for each vertex isatenated and stored in one chunk of memory,
with a separate index to allow finding the start of each vertaxthe dynamic data structure, the data for
each vertex is simply stored in the variable-bit-lengtrapstructure. The new representation, like the old,
supports degree queries @(1) time and neighbor listing i (|1]) time per neighbor. In addition, the
new representation allows insertion or deletion of edgeselyiting the data for the associated vertices.
Inserting or deleting an edde, v2) requiresO(|v1| + |v2|) expected time.

The space bound for the data structur@%,w)ebﬂlog |v1 — vo| bits. For ak—compact labeling of
the graph this igD(kn) (see Lemma 5.2.2). If the graph to be compressed is edgeaddpathen the
initial labeling will be k—compact for constant; however, the space bound for the structure depends on
the labeling remaining—compact. Note that, for graphs having a fixed embedding inadinensional
space, any labeling which takes advantage of the embeddihgemain k—compact as long as the edges
have locality.

5.4 Semidynamic Representation with Adjacency Queries

Using the variable-bit dictionary structure from SectioB,3ve can build a graph representation supporting
adjacency queries as well as neighbor queries.

Theorem 5.4.1 All n-vertex graphs with &-compact labeling can be stored@(k|V/|) bits while allowing
updates inD(1) amortized expected time and querieifil) worst-case time.

Proof. We begin by describing our graph structure in an uncompdefsen, and then describe how it is
compressed.

Our structure represents a graph as a dictionary of edgeseddpes incident on each vertex are cross
linked into a doubly linked list. Consider a vertexand some ordering on its neighboring vertices . . , vg.
We represent each edge, v;), 1 < ¢ < d using the dictionary entr{{u, v;), (vi—1,v;+1)). (Thatis,(u, v;)
is the key, andv;_1,v;11) is the associated data.) We defipe= v4.1 = u and for each vertex we include
an entry((u, u), (vg,v1)).

Given this representation we can support adjacency testeighbor listing, and insertion and deletion
of edges, using functions of the dictionary. Pseudocodéhtese operations is shown in Figure 5.3.

In its uncompressed form this dictionary consundes 1 entries for each vertex of degrde The total
number of entries is therefof&®| + | E|. The space used G((|E| + |V |)w).
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ADDEDGE(u, v)
(vp, Uy) «—LOOKUP((u,u))
INSERT((u, w), (vp,v))
INSERT((u, v), (u,vy))

ADJACENT(u, v)
return (LOOKUP((u,v)) # null)

FIRSTEDGE(u)
(vp, Uy) «—LOOKUP((u,u))
return v,

DELETEEDGE(u, v)
(vp, Uy) «—LOOKUP((u,v))
(Vpp, v) «—LOOKUP((u, vp))
(U, Vp ) <—LOOKUP((u, vy,))
INSERT((w, vp ), (Vpp, Un))
INSERT((w, Ur, ), (Up, Unn))
DELETE((u,v))

NEXTEDGE(u, v)
(vp, Uy) «—LOOKUP((u,v))
return v,

Figure 5.3: Pseudocode to support our graph operations.

Compression. To compress this structure we make use of difference codiegsimply store each dictio-
nary entry using differences with respectdtoThat is to say, rather than store an ey, v;), (vi—1,vi+1))
in the dictionary, we instead stoféu, v; — u), (vi—1 — u, vi41 — u)).

We use our variable-bit-length dictionary to store theiestrThe encoding of in each entry requires
log |V| bits; the dictionary absorbs this cost using quotientinge $pace used, then, is proportional to the
cost of encoding; — u, v;—1 — u, andv;+1 — u, for each edgéu, v;) in the dictionary. We compress these
differences by representing them with gamma codes (with Isitg). The cost to encode each edgg v2)
with a logarithmic code i® (log [v; — v2]). Each edge appea€¥(1) times in the structure, so the total cost
to encode all the edges)s ,, ,,)cp 108 [v1 — v2l.

For ak-compact labeling}_ ,,, ,,)ep 10g [v1 — v2| is O(kn) (see Lemma 5.2.2).

5.5 Implementation

Separator trees. We implemented three base algorithms for constructing -sdgearator trees. Two of
our algorithms are top-down; they begin with a graph andmseely compute its edge-separators. The
remaining algorithm is bottom-up; it collapses edges ofgtaph, combining vertices into multivertices.

The first algorithm we consideredfs generates separators through breadth-first search (BERS).
algorithm finds an “extremal” vertex,, by starting a BFS at a random vertex and using the last vertex
encountered. The algorithm starts a second BR§ aind continues until it has visited half of the vertices
in the graph. This is taken as the partition. We apply the Befgsator recursively to produce a separator
tree.

Our second algorithmietis uses the Metis [71] graph partitioning library to constracseparator
tree. Metis uses a multilevel partitioning technique in eththe graph is coarsened, the coarse graph is
partitioned, and the result is projected back onto the waigiraph using Kernighan-Lin refinement. This
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class of partitioning heuristic is the best known at thistifh30]. We apply Metis recursively to produce a
separator tree.

Our third algorithm,bu (for “bottom-up”), begins with the complete graph and repdly collapses
edges until a single vertex remains. There are many hagitat can be used to decide in what order to
collapse the edges. After some experimentation, we sedtidtie priority metric;‘(’gg‘(%)), wherew(E sp)
is the number of edges between the multiverticeand B, ands(A) is the number of original vertices
contained in multivertex4. The resulting process of collapsing edges creates a sepémee, in which
every two merged vertices become the children of the resuliultivertex. To improve performance we

also use a variant dfu, which we callbu-bpq that uses a bucketed priority queue witflog n) buckets.

There is a certain degree of freedom in the way we construeparator tree: when we partition a
graph, we can arbitrarily decide which side of the partiticgth become the left or right child in the tree. To
take advantage of this degree of freedom we can use an oatiarizalledchild-flipping A child-flipping
algorithm traverses the separator tree, keeping tracleafdkdes containing vertices which appear before and
after the current node in the numbering. (These nodes gamesto the left child of the current node’s left
ancestor and the right child of the current node’s right atwg If those nodes a®;, and Ny, the current
node’s children aréV; and N5, and 45 denotes the number of edges between the vertices in two hodes
then our child-flipping heuristic rotate¥; and NV, to ensure thatn, N, + En,ng > Eny N, + ENyNg-

This heuristic can be applied to any separator tree as arposfsing phase.

Indexing structures. Our algorithms use a select data structure to map the vedmbers to the bit
position of the start of the appropriate adjacency list. Wehgnceforth call this théndexing structureWe
implemented four versions, representing different tréfddmetween space required and lookup time.

The simplest indexing structuréjrect, stores an array of offset pointers, one for each vertex.hEac
pointer use® (log(n)) bits, giving a total of©(nlog(n)) bits. Only one memory access is required to
locate the start of any vertex, making this method very fast.

We implemented a structurgndirect, that uses)(n) bits and has constant access time. This is signif-
icantly simpler than the(n)-bit structure of Munro [90]. To index the vertices, we firstide them into
blocks oflog(n) vertices each. We divide the blocks into subblocks, eachha€hvcontains a minimal
number of vertices totaling at lealstog(n) bits for some constarit. We store dog(n)-bit pointer to each
block in a global array, and we store él{log(n))-bit pointer to each subblock at the start of its parent
block. Each block also contains a bit vector with one bit patax. A vertex’s bit is set ta if that vertex is
the first in its subblock. This all requirgg(n) bits. We consider two settings &f £ = 1 (indirect-1) and
k = 16 (indirect-16).

To find the location of any vertex we first perform an array lgpko find the location of the block
containing the target vertex. We then examine that blocit’sdxtor to see which subblock the vertex is
in, find the subblock offset using the subblock pointers, dadode the subblock. This all takes constant
time—determining the subblock and decoding the subblookbcgh be implemented using table lookup on
©(log(n)) bits in constant time.

As a compromise between the two indexing structures we denaiclass of structures callsemidirect
based on allocating one full pointer for each groupkofertices, and representing the remainder of the
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offsets as differences. Threemidirect-4structure uses a one-word pointer per four vertices andhiieset
ten-bit offsets into a second word. If one of the offsets dadi in ten bits, they are stored elsewhere, and
the second word is a pointer to them.

The semidirect-16structure stores the start locations for sixteen vertinds/é 32-bit words. The first
word contains the offset to vertéx—that is, the first of the sixteen vertices being represeniée second
word contains three ten-bit offsets from the first vertextéots of verticed, 8, and12. The next three words
contain twelve eight-bit offsets to the remaining twelvetiees. Each of the twelve vertices is stored by an
offset relative to one of the four vertices already encodket.example, the start of vertéx is encoded by
its offset from the start of vertek2. As before, if at any point the offsets do not fit in the spacavioled,
they are stored elsewhere, and the table contains a pointteem.

Codes and Decoding. We considered several logarithmic codes for use in our sgmtations. In addition
to thegamma cod¢50] we considered thenip code nibble code andbyte codeas described in Section
2.3.

We also implemented a variant Huffman code. Rather thae stfrequency table and Huffman tree for
the entire range of possible differences, we truncated the table086 entries. Any gaps larger than that
were coded using an escape sequence and then stored usinipgvflits. (In all cases fewer that?; of
gaps were ovet096 in length.) To decode the Huffman codes we used a decodite ¢dlvidth 8 bits. At
most thirty leaves of the Huffman tree represented codesvofdength8 or less, but those leaves always
represented at leas5% of the weight of the tree. If a codeword was longer ti8abits, the decoding table
gave a pointer to the eighth level of the tree, and the remeaiofithe word was decoded using the tree.

Dynamic Structure. Our dynamic structure manages memory in blocks of fixed Sike. data structure
initially contains an array with one memory block for eachtse. If additional memory is needed to store
the data for a vertex, the vertex is assigned additionakisicallocated from a pool of spare memory blocks.
The blocks are connected into a linked list.

When we allocate an additional block for a vertex, we use gfattie previous block to store a pointer
to the new one. We use a hashing technique to reduce the sihesa pointers to only 8 bits. To work
efficiently the technique requires that a constant fractibthe blocks remain empty. This requires a hash
function that maps (addres3,pairs to addresses in the spare memory pool. Our repréisentasts values
of 7 in the ranged) to 127 until the result of the hash is an unused block. It then usasvillue ofi as the
pointer to the block.

If the hash function is drawn from a uniform family, and themoey pool is at mos80% full, then the
probability that this technique will fail is at mos30'2® ~ 4 x 10713, In practice we use a hash function
h(a,i) = pa + r[i] mod s wherea is the addresg; is a prime,r is a table ofl 28 random numbers, andis
the size of the memory pool. This is sufficient to fill the pambtightly more thar80%.

To help ensure memory locality, a separate pool of contigumemory blocks is allocated for each 1024
vertices of the graph. If a given pool runs out of memory, tesized. Since the pools of memory blocks
are fairly small this resizing is relatively efficient.

For graph operations that have high locality, such as regeatertions to the same vertex, it may be
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Max
Graph Vixs Edges | Degreg Source

auto 448695|6629222 37 | 3D mesh [130]
feocean| 143437| 819186 6 3D mesh [130]
ml4b | 214765|335803§ 40 | 3D mesh [130]
ibm17 | 185495(4471432 150 circuit [3]

ibm18 | 210613(444372Q0 173 circuit [3]

CA 1971281 5533214 12 |street map [127]
PA 10909203083796 9 |street map [127]]
googlel | 916428|5105039 6326 | web links [56]
googleQ| 9164285105039 456 | web links [56]
lucent | 112969| 363278| 423 routers [107]
scan 228298| 640336 1937 | routers [107]

Table 5.1: Properties of the graphs used in our experiments.

inefficient to repeatedly encode and decode the neighboasveftex. We implemented a variant of our
structure that uses caching to improve access times. Whentexus queried, its neighbors are decoded
and stored in a temporary adjacency list structure. Memarryhiis structure is drawn from a separate pool
of list nodes of limited size. The pool is managed in first istfut (FIFO) mode. A modified vertex that

is flushed from the pool is written back to the main data stm&cin compressed form. We maintain the
uncompressed adjacency lists in sorted order (by neiglabet) to facilitate writing them back.

5.6 Experimental Setup

Graphs. We drew test graphs for our experiments from several sou8fe$/esh graphs from the online
Graph Partitioning Archive [130], street connectivity ging from the Census Bureau Tiger/Line data [127,
117], graphs of router connectivity from the SCAN projed@7], graphs of webpage connectivity from the
Google [56] programming contest data, and circuit grapbmfthe ISPD98 Circuit Benchmark Suite [3].
The circuit graphs were initially hypergraphs; we conweitteem to standard graphs by converting each net
into a clique. Properties of these graphs are shown in TakleFor edges we list the number of directed
edges in the graph. For the directed graphs (googlel ande©dgve take the degree of a vertex to be the
number of elements in its adjacency list.

Machines and compiler. The experiments were run on two machines, each with 32-bitgmsors but
with quite different memory systems. The first uses a .7GHzie® Ill processor with .1GHz frontside
bus and 1GB of RAM. The second uses a 2.4GHz Pentium 4 pracegho8GHz frontside bus and 1GB
of RAM. The Pentium IIl has a cache-line size of 32 bytes, while Pentium 4 has an effective cache-line
size of 128 bytes. The Pentium 4 also supports quadruples laad hardware prefetching, which are very
effective for loading consecutive blocks from memory, bottvery useful for random access. The Pentium 4
therefore performs much better on the experiments witingtepatial locality (even more than the factor of
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3.4 in processor speed would indicate), but not particplagll on the experiments without spatial locality.
All code is written in C and C++ and compiled using g++ (3.218ng RedHat Linux 7.1.

Benchmarks. We present times for depth-first-search as well as timesfmling and inserting all edges.
We select a DFS since it visits every edge once, and visitgdtiees in a non-trivial order exposing caching
issues better than simply reading the edges for each vertmeiar order. Our implementation of DFS uses
a character array of length to mark the visited vertices, and a stack to store the varticeeturn to. It
does nothing other than traverse the graph. For readingdipesewe present times both for accessing the
vertices in linear order and for accessing them in randorerodd both cases the edges within a vertex are
read in linear order. For inserting we insert in three dédfdrordersiinear, transposeandrandom Linear
insertion inserts all the out-edges for the first vertexnttiee second, etc.. Transpose insertion inserts all
the in-edges for the first vertex, then the second, etc.. Mhatiean in-edgéi, j) for vertex;j goes into the
adjacency list of vertexnot j. Random insertion inserts the edges in random order.

We compare the performance of our data structure to thaaoflard linked-list and array-based data
structures, and to the LEDA [84] package. Since small diffiees in the implementation can make signifi-
cant differences in performance, here we describe impodigtails of these implementations.

Adjacency lists. We use a singly linked-list data structure. The data streaiges aertex-arrayof length

n to access the lists. Each array elemetntains the degree of vertéxand a pointer to a linked list of the
out-neighbors of vertex. Each link in the list contains two words: an integer indextfte neighbor and
a pointer for the next link. We use our own memory managemanthe links using free lists—no space
is wasted for header or tail words. The space required igter2n + 2m + O(1) words (32 bits each
for the machines we used). Assuming no deletions, sequietibgation returns consecutive locations in
memory—this is important for understanding spatial Idgali

In our experiments we measured DFS runtimes after insdiimgdges in three orders: linear, transpose,
and random. These insertion orders are described abovein3érion orders have a major effect on the
runtime for accessing the linked lists—the times for DFSyMar up to a factor of 11 due to the insertion
order. For linear insertion all the links for a given verteRlWwe in adjacent physical memory locations
giving a high degree of spatial locality. This means when djacency list is traversed, most of the links
will be found in the cache—they are likely to reside on the sarache line as the previous link. This is
especially true for our experiments on the Pentium 4 whichlZ8-byte cache lines (each cache line can fit
16 links). For random insertion, and assuming the graph dogft in cache, accessing every link is likely
to be a cache miss since memory is being accessed in compimtelom order.

We also measured runtimes with the vertices labeled in twlersr randomizedandseparator In the
randomized labeling the integer labels are assigned ralyddmthe separator labeling we use the labeling
generated by our graph separator—the same as used by ouressinp technique. The separator labeling
gives better spatial locality in accessing both the veaeay and the visited-array during a DFS. This is
because loading the data for a vertex will load the data farlnevertices which are on the same cache-line.
Following an edge to a neighbor is then likely to access axertarby in the ordering and still in cache.
If linear insertion is used, the separator labeling alsorowes locality on accessing the links during a DFS.
This is because the links for neighboring vertices will offall on the same cache lines. We were actually
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surprised at what a strong effect labeling based on separadol on performance. The performance varied
by up to a factor of 7 for the graphs with low degree and the rimachith 128-byte cache lines.

Adjacency Array. The adjacency array data structure is a static represemtdtistores the out-edges of
each vertex in an edge-array, with one integer per edgerftlexiof the out neighbor). The edge-arrays for
the vertices are stored one after the other in the order ofdhices. A separate vertex-array points to the
start of the edge-array for each vertex. The number of ogeg0f vertex can be determined by taking the
difference of the pointer to the edge array for veri@nd the edge array for vertéxt 1. The total space
required for an adjacency arrayns+ m + O(1) words. For static representations it makes no sense to
talk about different insertion orders of the edges. The mmdeof the vertex labeling, however, can make a
significant difference in performance. As with the linkést-Hata-structure we measured runtimes with the
vertices labeled in randomized and separator order. Alseithslinked lists, using the separator ordering
improved performance significantly, again by up to a factdf.o

LEDA. We also ran all our experiments using LEDA [84] version 4.40Lr experiments use the LEDA
graph object and use théorall _outedges andforall _vertices for the loops over edges and
vertices. All code was compiled with the flageDA CHECKINGOFFE For analyzing the space for the
LEDA data structure we use the formula from the LEDA book [Bdge 281]:52n + 44m + O(1) bytes.
We note that comparing space and time to LEDA is not reallysiaice LEDA has many more features than
our data structures. For example the directed graph datetste in LEDA stores a linked list of both the
in-edges and out-edges for each vertex. Our data struataigstore the out-edges. LEDA also stores the
edges in a doubly-linked list allowing traversal in eithé@edtion and a simpler deletion of edges.

5.7 Experimental Results

Our experiments measure the tradeoffs of various paramteur data structures. This includes the type
of prefix code used in both the static and dynamic cases, anbldck size used and the use of caching in
the dynamic case. We also study a version that differencedescout-edges relative to the source vertex
rather than the previous out-edge. This can be used by apiplie which need control of the ordering of the

out-edges. For example, our compact representation ofisiaipneshes (described in Chapter 7) encodes
out-edges relative to the source vertex.

5.7.1 Separator Algorithms.

In analyzing the efficiency of our techniques, there areettparameters of concern: the query times, the
time to create the structures, and the space usage. Thesmge has two components: the space for the
adjacency lists, and the space for the indexing structule tifne to create the structure is dominated by
time to order the vertices. There is a time/space tradedifiden the time used to order the vertices and
the space needed for the adjacency table (spending moretiroedering produces better compression of
the encoded lists). There is also a space/time tradeoffdsgtwthe space used for the indexing structure
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dfs metis-cf bfs bu-bpq bu-cf Degree
T, | Space|| T/T1 | Space| T/T; | Space| T/T | Space| T/T, | Space|| Space
auto 0.79s| 9.88 | 153.11| |5.17| | 27.69| 5.96 | 7.54 | 5.90 | 14.59| 552 | 0.56
feocean || 0.06s| 13.88 || 388.83| 7.66 || 61.00 17.16| 8.45 || 34.83| 7.79 || 1.15
ml4b | 0.31s| 10.65| 181.41| |4.81|| 32.0 | 5.85 || 8.16 | 545 || 15.32| 513 | 0.54
ibm17 | 0.44s| 13.01| 136.43| |6.18| || 21.38| 9.40 | 11.0 | 6.79 || 20.25| 6.64 | 0.36
ibm18 | 0.48s| 11.88| 129.22| |5.72| || 22.54| 829 | 9.5 | 6.24 || 17.29| 6.13 | 0.40
CA 0.76s| 8.41 || 382.67| 4.38 | 88.22| 7.05 || 14.61| 4.90 || 35.21| |4.29] || 1.66
PA 0.43s| 8.47 || 364.06| 4.45 | 79.09| 7.03 || 13.95| 4.98 || 33.02| |4.37|| 1.64
googlel | 1.4s| 7.44 | 186.91 47.12| 8.68 | 12.71| 4.18 | 40.96| 4.14 || 0.82
googleO| 1.4s | 11.03| 186.91| 6.78 | 47.12| 13.11 | 12.71| 6.21 || 40.96||6.05/ || 0.95
lucent | 0.04s| 7.56 || 390.75| 5.52 || 55.0 | 15.24 || 19.5 | 5.54 | 45.75| [5.44| | 1.43
scan 0.12s| 8.00 || 280.25| 5.94 | 38.75| 18.05| 23.33| 5.76 || 81.75| |5.66| | 1.45
|Ag | | 10.02 || 252.78] 5.52 || 47.26] 9.66 | 13.65| 5.86 || 34.54| 5.56 || 1.00 |

Table 5.2: The performance (time used and compressionvad)ief several of our ordering algorithms,
compared to a depth-first-search ordering. Space is in éitegge for encoding the edgds;is in seconds
and the other times are normalized to it. The space to entmdddgree of each vertex is listed separately
(in bits per edge).

Array Our Structure
Rand | Sep Byte Nibble Snip Huffman DiffByte
Graph T T/T, | Space| T/T, | Space| T/T; | Space| T/T: | Space| T/T, | Space| T/T1 | Space

auto 0.268s| 0.313| 34.17 | 0.294| 10.25| 0.585| 7.42 | 0.776| 6.99 | 0.828| 6.81 | 0.399| 12.33
feocean | 0.048s| 0.312| 37.60 | 0.312| 12.79 | 0.604| 10.86| 0.791| 11.12| 0.813| 10.83| 0.374| 13.28
m14b 0.103s| 0.388| 34.05 | 0.349| 10.01 | 0.728| 7.10 | 0.970| 6.55 | 1.078| 6.37 | 0.504| 11.97
ibm17 0.095s| 0.536| 33.33 | 0.536| 10.19 | 1.115| 7.72 | 1.400| 7.58 | 1.621| 6.93 | 0.747| 12.85
ibm18 0.113s| 0.398| 33.52 | 0.442| 10.24 | 0.867| 7.53 | 1.070| 7.18 | 1.301| 6.44 | 0.548| 12.16
CA 0.920s| 0.126| 43.40 | 0.146| 14.77 | 0.243| 10.65| 0.293| 10.55| 0.304| 11.46 | 0.167| 14.81
PA 0.487s| 0.137| 43.32 | 0.156| 14.76 | 0.258| 10.65| 0.310| 10.60 | 0.314| 11.19| 0.178| 14.80
lucent 0.030s| 0.266| 4195 | 0.3 1453 | 05 | 11.05| 0.566| 10.79 | 0.600| 11.06 | 0.333| 14.96
scan 0.067s| 0.208| 43.41 | 0.253| 15.46 | 0.402| 11.84| 0.477| 11.61| 0.493| 11.67 | 0.298| 16.46
googlel | 0.367s| 0.226| 37.74 | 0.258| 11.93 | 0.405| 8.39 | 0.452| 7.37 | 0.790| 7.01 | 0.302| 13.39
googleO| 0.363s| 0.250| 37.74 | 0.278| 12.59 | 0.460| 9.72 | 0.556| 9.43 | 0.689| 9.03 | 0.327| 13.28

Avg 0.287| 38.202| 0.302| 12.501| 0.561| 9.357| 0.696| 9.07 | 0.803| 8.98 | 0.380| 13.662

Table 5.3: Performance of oatatic algorithms compared to performance of an adjacency aragsenta-
tion. Space is in bits per edge; time is for a DFS, normalipetthé first column, which is given in seconds.
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List || Array Direct semidirect-4 indirect-1 indirect-16
Ty T/T, \| T/T, | Space|| T'/T, | Space|| T/T, | Space| T/T, | Space
auto 0.60| 0.39 || 0.83 | 2.17 || 0.83 | 1.08 | 0.98 | 1.0 133 | 04
feocean || 0.08 | 0.53 || 1.07 | 5.6 1.09| 28 146 | 2.36 | 2.21 | 0.79
m14b 0.29| 038 || 0.81 | 2.05| 0.82| 1.02 | 097 | 0.94 | 1.30 | 0.39
ibm17 0.39| 0.38 || 0.83 | 1.33 || 0.85| 0.7 0.95| 0.68 || 1.12 | 0.36
ibm18 0.38| 0.36 || 0.80 | 152 | 0.82 | 0.79 | 0.93 | 0.78 | 1.14 | 0.37
CA 0.56| 0.60 | 0.95| 114 | 1.03| 5.7 195 | 2.87 || 431 | 1.13
PA 0.31] 059 || 0.96 | 11.32| 1.03 | 566 | 1.94 | 2.87 | 4.26 | 1.11
googlel || 0.49| 0.48 || 0.88 | 5.74 || 0.92 | 2.89 || 1.43 | 1.78 | 245 | 0.67
googleO|| 0.49| 0.47 || 098 | 5.74 || 1.02 | 2.88 || 1.51 | 2.05 || 2.36 | 0.76
lucent 0.03| 055 || 1.22 | 9.95 | 1.27 | 498 | 211 | 3.06 | 3.83 | 1.11
scan 0.06| 055 | 1.20 | 11.41| 1.28| 573 || 230 | 3.41 | 436 | 1.2
Avg 048 || 096 | 6.20 || 1.00 | 3.11 || 1.50 | 1.98 | 2.61 | 0.75

Figure 5.4: The performance of various direct and indiradeking schemes on our Pentium IIl. Space is
measured in bits per eddg; is in seconds and the other times are normalized to it. Gnaphs compressed
using gamma codes.

and the time needed for queries (using more space for theimglstructure gives faster query times). Our
experiments demonstrate these tradeoffs. Timings givemdre from the Pentium IlI.

Table 5.2 illustrates the tradeoff between the time needggnerate an ordering, and the space needed
by the compressed adjacency lists that use that orderingthEse experiments we use gamma codes for
compression. In addition to the separator schemes distuss8ection 5.5, we include a very simple
ordering based on a depth-first-search post-order nungpefithe graphs. In generélu-cf and metis-cf
produce the highest quality orderingg$ (ndicates that it performs child flipping). The bottom uptteitjue
(bu-cf), however, is significantly faster. We include results barbpq(no child flipping, and approximate
priorities) since its ordering is almost as gooddasct but is a factor of three faster. Thésalgorithm does
well on regular graphs but badly on highly irregular graphs.

For the rest of our experiments we chose liecf ordering, which gave the best performance on many
of our test graphs while being significantly faster timaatis-cf

5.7.2 Indexing structures

Figure 5.4 illustrates the tradeoff between the query time the space needed for the indexing structure,
and also compares query times to standard uncompressedtadetires. To measure query time we use
the time to execute a depth-first search (DFS). This is a nedd® measure since it requires visiting all
the edges once. We compare the performance of our reprigsestéo that of standard linked-list and
array-based graph representations. The linked-list septation uses two 32-bit words per edge, one for
the neighbor label and one for the next pointer in the linkstd The array-based representation stores the
neighbor indices of each vertex contiguously in one largayawith the lists for the vertices placed one after
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Direct semidirect-4 semidirect—16\
Graph T Space|| T Space|| T Space
auto 0.351 4 0.343| 2.00 || 0.345| 1.25
feocean || 0.056 4 0.055| 2.00 || 0.056| 1.25
m14b 0.158 4 0.155| 2.00 || 0.156| 1.25
ibm17 0.219 4 0.216| 2.00 || 0.216| 1.25
ibm18 0.208 4 0.204| 2.00 || 0.206| 1.26
CA 0.527 4 0.518| 2.00 || 0.529| 1.25
PA 0.291 4 0.285| 2.00 || 0.290| 1.25
googlel | 0.342 4 0.332| 2.00 || 0.333| 1.27
googleO|| 0.378 4 0.370| 2.00 || 0.371| 1.25
lucent 0.026 4 0.027| 2.00 || 0.028| 1.25
scan 0.051 4 0.050| 2.00 || 0.052| 1.25

Figure 5.5: Comparison of the semidirect-16 indexing $tmgcto other structures implemented on our new
codebase on our Pentium lll. Space is given in bytes penyditee is given in seconds required for a DFS.
Graphs were compressed using nibble codes.

the other. It uses one 32-bit word per edge. Both represensatise an array to index the vertices using
an additional 32-bit word per vertex. We note that linketsligre well suited for insertions and deletions,
while, like our representation, arrays are best suitedtiticsgraphs. For all versions of DFS we use one
byte (8 bits) per vertex to mark whether it has been visited.

The results show that for the direct and semidirect-4 imgstructure our compressed representation
is slightly faster than the linked-list representation.isTig not surprising since although there is overhead
for decoding the adjacency lists, the cache locality isiSgantly better (loading a single cache line can
decode many edges). Our representation is slower than thg-lsased representation. This is also not
surprising since the array-based representation also @@ gpatial locality (the edges of a vertex are
adjacent in memory), but does not have decoding overheachoiéethat the graph sizes are such that for
all representations the graphs fit into physical memory butat fit into the cache (except perhaps lucent,
scan and feocean).

The semidirect-4 indexing structure saves a factor of twepace over the direct structure while re-
quiring little extra time; we conclude that it is the most gireal of the indexing structures tested. After
completing these experiments, though, we migrated to a welsbase, supporting a wider variety of cod-
ing techniques. Within this new codebase we developed thmédgect-16 indexing structure. Table 5.5
presents a comparison of the semidirect-16 structure taliteet and semidirect-4 structures. (Since the
indirect structures were complex and performed poorly, idendt reimplement them for further testing.)
The semidirect-16 structure saved about six bits per vertex the semidirect-4 structure while causing
virtually no slowdown. Accordingly we use it exclusivelyfiarther experiments.
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3 4 8 12 16 20
Graph T Space| T/Ty | Space| T/T; | Space| T/T; | Space| T/T: | Space| T/T: | Space
auto 0.318s| 11.60| 0.874| 10.51| 0.723| 9.86 | 0.613| 10.36| 0.540| 9.35 | 0.534| 11.07
feocean | 0.044s| 14.66 | 0.863| 13.79| 0.704| 12.97 | 0.681| 17.25| 0.727| 22.94 | 0.750| 28.63
mi4b 0.146s| 11.11| 0.876| 10.07 | 0.684| 9.41 | 0.630| 10.00| 0.554| 8.92 | 0.554| 10.46
ibm17 0.285s| 12.95| 0.849| 11.59| 0.614| 10.44| 0.529| 10.53 | 0.491| 10.95| 0.459| 11.39
ibm18 0.236s| 12.41| 0.847| 11.14| 0.635| 10.12| 0.563| 10.36| 0.521| 10.97| 0.5 | 11.64
CA 0.212s| 10.62| 0.943| 12.42| 0.952| 23.52| 1.0 | 35.10| 1.018| 46.68 | 1.066 | 58.26
PA 0.119s| 10.69| 0.941| 12.41| 0.949| 23.35| 1.0 | 34.85| 1.025| 46.35| 1.058| 57.85
lucent 0.018s| 13.67| 0.888| 14.79 | 0.833| 22.55| 0.833| 31.64 | 0.833| 41.22 | 0.888| 51.09
scan 0.034s| 15.23| 0.941| 16.86| 0.852| 26.39 | 0.852| 37.06 | 0.852| 48.08 | 0.882| 59.34
googlel | 0.230s| 11.91| 0.895| 12.04| 0.752| 15.71| 0.730| 20.53| 0.730| 25.78 | 0.726 | 31.21
googleO| 0.278s| 13.62 | 0.863| 13.28 | 0.694| 15.65| 0.658 | 19.52 | 0.640| 24.24 | 0.676 | 29.66
Avg 12.58| 0.889| 12.62| 0.763| 16.36| 0.735| 21.56 | 0.721| 26.86 | 0.736 | 32.78

Table 5.4: Performance of our dynamic algorithm using mbtdes with various block sizes. For each
size we give the space needed in bits per edge (assuminglebtngks to leave the secondary hash table
80% full) and the time needed to perform a DFS. Times are niimathto the first column, which is given
in seconds.

5.7.3 Static representations

Table 5.3 presents results comparing space and DFS tim#efetatic representations for all the graphs on
the Pentium 4. (Tables 5.6 and 5.7 present summary resulisiaer set of operations on both the Pentium
Il and Pentium 4.) In Table 5.3 all times are normalized ®fihst column, which is given in seconds. The

average times in the bottom row are averages of the normldiizess, so the large graphs are not weighted
more heavily. All times are for a DFS.

For the adjacency-array representation, times are givethéovertices ordered both randomly (Rand)
and using our separator ordering (Sep). As can be seen, dieeray can affect performance by up to a
factor of 8 for the graphs with low average degree.,(PA and CA), and a factor of 3.5 averaged over all the
graphs. This indicates that the ordering generated by gsaphration is not only useful for compression,
but is also critical for performance on standard represienis (we will see an even more pronounced effect
with adjacency lists). The advantage of using separat@rsitd enhance spatial locality has been previously
studied for use in sparse-matrix vector multiply [122, GR2]t not well studied for other graph algorithms.
For adjacency arrays the ordering does not affect space.

For our static representation, times and space are givelodiordifferent prefix codes: Byte, Nibble,
Snip and Gamma. The results show that byte codes are signiifidaster than the other codes (almost
twice as fast as the next fastest code). This is not surgrigiven that the byte codes take advantage of
the byte instructions of the machine. The difference is sdaege on the Pentium lll (a factor of 1.45). It
should be noted that the Gamma codes are almost never InetteEhip codes in terms of time or space.

We also include results for the DiffByte code, a version af loyte code that encodes each edge as the
difference between the target and source, rather than tieeatice between the target and previous target.
This increases the space since the differences are largeequire more bits to encode. Furthermore each
difference requires a sign bit. It increases time both stheee are more bits to decode, and because the
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sign bits need to be extracted. Overall these effects wdtserpace bound by an averagel 6% and the
time bound by an average 25%.

Comparing adjacency arrays with the separator structueesew that the separator-based representation
with byte codes is a factor of 3.3 faster than adjacency amth random ordering but about 5% slower
for the separator ordering. On the Pentium Il the byte cadtesalways faster, by factors of 2.2 (.729/.330)
and 1.3 (.429/.330) respectively (see Table 5.7). The cessed format of the byte codes means that they
require less memory throughput than for adjacency arrays i$ what gives the byte codes an advantage on
the Pentium 11l since more neighbors get loaded on each daeheequiring fewer main-memory accesses.
On the Pentium 4 the effective cache-line size and memooytiput is large enough that the advantage is
reduced.

Table 5.6, later in the section, describes the time coshaplsi reading all the edges in a graph (without
the effect of cache locality).

5.7.4 Dynamic representations

A key parameter for the dynamic representation is selectiegsize of the blocks used to store difference
codes. Large blocks are inefficient since they contain whgpace; small blocks can be inefficient since
they require proportionally more space for pointers to otilecks. In addition, there is a time cost for

traversing from one block to the next. This cost includesltbe time for computing the hash pointer and
the potential time for a cache miss. Because of this largarkislare almost always faster.

Table 5.4 presents the time and space for a range of block. sii® results are based on nibble codes
on the Pentium 4 processor. The results for the other codétharPentium Il are qualitatively the same,
although the time on the Pentium 11l is less sensitive to fbelbsize. For all space reported in this section
we size the backup memory so that i8¥% full, and include the0% unused memory in the reported space.
As should be expected, for the graphs with high degree therddnlock sizes are more efficient while for the
graphs with smaller degree the smaller block sizes are nfficeeat. It would not be hard to dynamically
decide on a block size based on the average degree of the (@napize of the backup memory needs to
grow dynamically anyway). Also note that there is a timeesp@madeoff and depending on whether time or
space is more important a user might want to use larger blgoksme) or smaller blocks (for space).

Table 5.5 presents results comparing space and DFS timésefatynamic representations for all the
graphs on the Pentium 4. It gives six timings for linked listsresponding to the two labeling orders and
for each labeling, the three insertion orders. The spacalfftihese orders is the same. The table also gives
space and time for two settings of our dynamic data structlirme Opt and Space Opt. Time Opt uses
byte codes and is based on a block size that optimizes%iBpace Opt uses the more space-efficient nibble
codes and is based on a block size that optimizes space.

As with the adjacency-array representation, the vertegllatdering can have a large effect on perfor-
mance for adjacency-lists, up to a factor of 7. In additionhi label ordering, the insertion ordering can
also make a large difference in performance for adjaceisty-IThe insertion order can cause up to a factor
of 11 difference in performance for the graphs with high agerdegree (e.g. auto, ibm17 and ibm18) and

2\We actually pick a setting that optimiz&% S whereT is time andS is space. This is because the time gains for larger blocks
become vanishingly small and can be at a large cost in regasisace. For space optimal we optimiz&®.
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Linked List Our Structure

Random Vitx Order Sep Vix Order Space Opt Time Opt

Rand | Trans| Lin Rand | Trans| Lin Block | Time Block | Time
Graph Ty T/Ty | T/Th | T/Ty | T/Ty | T/Ty | Space| Size | T/T, | Space| Size | T/T1 | Space
auto 1.160s| 0.512| 0.260| 0.862| 0.196| 0.093| 68.33 16 | 0.148| 9.35 20 | 0.087| 13.31
feocean | 0.136s| 0.617| 0.389| 0.801| 0.176| 0.147| 75.21 8 0.227| 12.97 10 | 0.117| 14.71
m14b 0.565s| 0.442| 0.215| 0.884 | 0.184| 0.090| 68.09 16 | 0.143| 8.92 20 | 0.086| 13.53
ibm17 0.735s| 0.571| 0.152| 0.904 | 0.357| 0.091| 66.66 12 | 0.205| 10.53 20 | 0.118| 14.52
ibm18 0.730s| 0.524| 0.179| 0.890| 0.276| 0.080| 67.03 10 | 0.190| 10.13 20 | 0.108| 14.97
CA 1.240s| 0.770| 0.705| 0.616| 0.107| 0.101| 86.80 3 0.170| 10.62 5 0.108| 15.65
PA 0.660s| 0.780| 0.701| 0.625| 0.112| 0.109| 86.64 3 0.180| 10.69 5 0.115| 15.64
lucent 0.063s| 0.634| 0.492| 0.730| 0.190| 0.142| 83.90 3 0.285| 13.67 6 0.174| 20.49
scan 0.117s| 0.735| 0.555| 0.700| 0.188| 0.128| 86.82 3 0.290| 15.23 8 0.170| 28.19
googlel | 0.975s| 0.615| 0.376| 0.774| 0.164| 0.096| 75.49 4 0.211| 12.04 16 | 0.125| 28.78
googleO| 0.960s| 0.651| 0.398| 0.786| 0.162| 0.108| 75.49 5 0.231| 13.54 16 | 0.123| 26.61
Avg 0.623| 0.402| 0.779| 0.192| 0.108| 76.405 0.207| 11.608 0.121] 18.763

Table 5.5: The performance of odynamic algorithms compared to linked lists. For each graph we give
the space- and time-optimal block size. Space is in bits gge;etime is for a DFS, normalized to the first
column, which is given in seconds.

a factor of 7.5 averaged over all the graphs (assuming thieeerare labeled with the separator ordering).
The effect of insertion order has been previously repomeagl (84, page 268] and [36]) but the magnitude of
the difference was surprising to us—the largest factor we Ipaeviously seen reported is about 4. We note
that the magnitude is significantly less on the Pentium Ithuts smaller cache-line size (an average factor
of 2.5 instead of 7.5). The actual insertion order will of s®idepend on the application, but it indicates
that selecting a good insertion order is critical. We notsyéver, that if users can insert in linear order, then
they are better off using one of the static representatiwhg;h allow insertion in linear order.

For our data structure the insertion order does not have ignifisant effect on performance. This is
because the layout in memory is mostly independent of trertios order. The only order dependence is
due to hash collisions for the secondary blocks. Since eash fny is pseudo-random within the group, the
location of the backup blocks has little effect on perforg®nin fact our experiments (not shown) showed
no noticeable effect on DFS times for different insertiodess.

Overall the space optimal dynamic implementation is abdat#®r of 6.6 more compact than adjacency
lists, while still being significantly faster than linkedts in most cases (up to a factor of 7 faster for randomly
inserted edges). On the Pentium 4 linked lists with lineaeition and separator ordering take ab@it
less time than our space-optimal dynamic representatidri @ less time than our time-optimal dynamic
representation. On the Pentium lll, linked lists with linéasertion and separator ordering take about a
factor of 1.2 more time than our space optimal dynamic regmagion and 1.7 more time than our time
optimal dynamic representation.

Times for insertion are reported in Tables 5.6 and 5.7.
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Read Find Insert

Graph DFS | Linear | Random| Next | Linear | Random| Transposg Space
ListRand 1.000| 0.099 | 0.744 | 0.121| 0.571 | 28.274 3.589 76.405
ListOrdr 0.322| 0.096 | 0.740 | 0.119| 0.711 | 28.318 0.864 76.405

LEDARand | 2.453| 1.855| 2.876 | 2.062| 16.802| 21.808 16.877 | 432.636
LEDAOTrdr 1.119| 0.478 | 2.268 | 0.519| 7.570 | 20.780 7.657 | 432.636
DynSpace 0.633| 0.440 | 0.933 | 0.324| 14.666| 23.901 15.538 | 11.608
DynTime 0.367| 0.233 | 0.650 | 0.222| 9.725 | 15.607 10.183 | 18.763
CachedSpace 0.622| 0.431 | 0.935 | 0.324| 2.433 | 28.660 8.975 13.34
CachedTime | 0.368| 0.240 | 0.690 | 0.246| 2.234 | 19.849 6.600 19.073

ArrayRand | 0.945| 0.095| 0.638 | 0.092| — — — 38.202
ArrayOrdr 0.263| 0.092 | 0.641 | 0.092| — — — 38.202
Byte 0.279| 0.197 | 0.693 | 0.205| — — — 12.501
Nibble 0.513| 0.399 | 0.873 | 0.340| — — — 9.357
Snip 0.635| 0.562 | 1.044 | 0.447| — — — 9.07

Gamma 0.825| 0.710 | 1.188 | 0.521| — — — 9.424

Table 5.6: Summary of space and normalized times for vadpeasations on the Pentium 4.

Read Find Insert
Graph DFS | Linear | Random| Next | Linear | Random| Transposg Space
ListRand 1.000| 0.631| 0.995 | 0.508| 1.609 | 17.719 3.391 76.405
ListOrdr 0.710| 0.626 | 0.977 | 0.516| 1.551 | 17.837 1.632 76.405

LEDARand | 3.163| 2.649 | 3.038 | 2.518| 17.543| 19.342 17.880 | 432.636
LEDAOTrdr 2.751| 2.168 | 2.878 | 1.726| 11.846| 19.365 11.783 | 432.636
DynSpace 0.626| 0.503 | 0.715 | 0.433| 17.791| 22.520 18.423 | 11.608
DynTime 0.422] 0.342 | 0.531 | 0.335| 13.415| 16.926 13.866 | 17.900
CachedSpace 0.614| 0.498 | 0.723 | 0.429| 2.616 | 25.380 7.788 13.36

CachedTime | 0.430| 0.355| 0.558 | 0.360| 2.597 | 20.601 6.569 17.150

ArrayRand | 0.729| 0.319 | 0.643 | 0.298| — — — 38.202
ArrayOrdr 0.429| 0.319| 0.639 | 0.302| — — — 38.202
Byte 0.330| 0.262 | 0.501 | 0.280| — — — 12.501
Nibble 0.488| 0.411 | 0.646 | 0.387| — — — 9.357
Snip 0.684| 0.625| 0.856 | 0.538| — — — 9.07

Gamma 0.854| 0.764 | 1.016 | 0.640| — — — 9.424

Table 5.7: Summary of space and normalized times for vaopeasations on the Pentium 111
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5.7.5 Timing Summary.

Tables 5.6 and 5.7 summarize the time complexity of varierations using the data structures we have
discussed. For each structure we list the time required Jf 8, the time required to read all the neighbors
of each vertex (examining vertices in linear or random grdee time required to search each vertefor

a neighborv + 1, and the time required to construct the graph by linear, aamdr transpose insertion.
All times are normalized to the time required for a DFS on ga@ehcy list with random labeling, and the
normalized times are averaged over all graphs in our dataset

List refers to adjacency lists. LEDA refers to the LEDA implentation. For List, LEDA and Array,
Rand uses a randomized ordering of the vertices and Ordrthisesparator ordering. The times for DFS,
Read, and Find Next reported for List and LEDA are based aaliinsertion of the edgesd,, this is the
best case for them). Dyn refers to a version of our dynamia siaticture that does not cache the edges for
vertices in adjacency lists. Cached refers to a versiondbes. For the “DynSpace” and “CachedSpace”
structures we used a space-efficient block size; for “DyreTiand “CachedTime” we used a time-efficient
one. Array refers to adjacency arrays. Byte, Nibble, Snigp @amma refer to the corresponding static
representations.

Note that the cached version of our dynamic algorithm is gelyeslightly slower, but for the linear and
transpose insertions it is much faster than the non-cackesion. Those insertions are the operations that
can make use of cache locality. For linear insertion our edalynamic representations are a factor of 3-4
times slower than adjacency lists on the Pentium 4 and arfat&bout 1.5 slower on the Pentium 1.

LEDA is significantly slower and less space-efficient tham t¢ither representations, but as previously
mentioned LEDA has many features these other represemaim not have.

5.7.6 Randomized Graphs

To emphasize the fact that real-world graphs have good s&psy we created randomized versions of
several of the graphs in our test set. The randomized ver$iave the same vertex count, edge count, and
degree distribution as the original graphs, but edges adoraly assigned as follows. Each vertex receives
a number of slots equal to its degree in the previous grapbryEdge is randomly assigned two slots from
the set of all empty slots. Duplicate edges and self-edgediatarded after the process is over; this reduces
the edge count of the randomized graphs slightly.

For several graphs we compared the compression achievds amigjinal graph to that of the random-
ized graph. We compute the compression achieved with bytescand snip codes, not counting the cost of
an index. We compare this to the naive ratéogfn bits per edge that could be achieved with a flat code. In
all cases the compression is significantly worse when thehgsarandomized.

The “Google” graph is an undirected version of googlel anogleO.
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Original Random
Graph | Byte | Snip | Byte | Snip | logn
auto 9.58 | 6.31| 20.37| 26.43| 18.78
ibm17 | 9.80 | 6.30 | 16.72| 22.27| 17.50
lucent | 11.42| 7.71| 15.79| 15.71| 16.79
google| 9.93 | 6.22| 19.82| 25.22| 19.81

Table 5.8: The compression (in bits per edge) achieved withcodes on various real-world graphs. When
the edges in a graph are randomized to remove locality (lmuddgree distribution is maintained), the
compression worsens significantly.

5.8 Algorithms

Here we describe results for two algorithms that might héeerteed for potentially very large graphs:
Google’'s PageRank algorithm and a maximum bipartite magchigorithm. They are meant to represent a
somewhat more realistic application of graphs than a sifpis.

PageRank. We use the simplified version of the PageRank algorithm [86& algorithm involves finding
the eigenvector of a sparse matfix-¢) A+eU, whereA is the matrix representing the link structure among
pages on the web (normalized},is the uniform matrix (normalized) ands a parameter of the algorithm.
This eigenvector can be computed iteratively by maintairdrvector R and computing on each sfep—=

((1 —€)A + eU)R;_;. Each step can be implemented by multiplication of a vecyoa Bparse 0-1 matrix
representing the links id, followed by adding a uniform vector and normalizing acritesresulting vector
to account for the out degrees (sindeneeds to be normalized). The standard representation airaesp
matrix is the adjacency array as previously described. Wgpeoe an adjacency-array implementation with
several other implementations.

We ran this algorithm on the Google out-link graph foriterations withe = .15. For each represen-
tation we computed the time and space required. Figure &®the results. On the Pentium lIll, our static
representation with the byte code is the best. On the Pentjuime array with ordered labeling gives the
fastest results, while the byte code gives good compressgibiout sacrificing too much speed.

Bipartite Matching. The maximum bipartite matching algorithm is based on reptiasg the graph as a
network flow and using depth first search to find augmentingdt takes a bipartite graph from vertices
on the left to vertices on the right and assigns a capacity@fhch edge. For each edge the implementation
maintains a 0 or 1 to indicate the current flow on the edge.opps$ahrough the vertices in the left set using
DFS to find an augmenting path for each vertex. If it finds opeghes one unit of flow through and updates
the edge weights appropriately. Even though conceptuadgtaph is directed, the implementation needs to
maintain edges in both directions to implement the depgt-$iearch. To avoid an(n?) best-case runtime,

a stack was used to store the vertices visited by each DFS&sththentire bit array of visited vertices did
not need to be cleared each time. This optimization is sugdes the LEDA book [84, page 372]. We also
implemented an optimization that does one level of BFS leefoe DFS. This improved performance by
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Time (sec) | Space
Representation Pl P4 | (ble)
Dyn-B4 30.40| 11.05| 17.54
Dyn-N4 32.96| 12.48| 13.28
Dyn-B8 26.55| 9.23 | 19.04
Dyn-N8 30.29| 11.25| 15.65
Gamma 38.56| 15.60| 9.63
Snip 34.19| 13.38| 9.43
Nibble 26.38| 10.94| 9.72
Byte 21.09| 8.04 | 12.59
ArrayOrdr 21.12| 6.38 | 37.74
ArrayRand 33.83| 27.59| 37.74
ListOrdr 30.96| 6.12 | 75.49
ListRand 44.56| 28.33| 75.49

Table 5.9: Performance of our PageRank algorithm on differepresentations.

40%. Finally we used a strided loop through the left verticssng a prime number (11) as the stride. This
reduced locality, but greatly improved performance sihesaverage depth of the DFS to find an unmatched
pair was reduced signficantly.

Since the graph is static the static representations afieisaf. We ran this algorithm using our byte
code, nibble code, and adjacency array implementationg bitharray for the 0/1 flow flags is accessed
using the same indexing structure (semidirect-16) as umeactessing the adjacency lists. A dynamically
sized stack is used for the DFS and for storing the visitetiogsr during a DFS. We store 1 bit for every
edge (in each direction) to indicate the the current flowt Idvievery vertex to mark visited flags, and 1 bit
for every vertex on the right to mark whether it is matched.

The maximum bipartite matching algorithm was run on a maodifiersion of the Google-out graph.
Two copies were created for each vertex, one on the left aadarthe right. The out links in the Google
graph point from the left vertices to the right ones. Theltesare given in Figure 5.10. The memory listed
is the total memory including the representation of the kyrdpe index for 0/1 flow flags, the flow flags
themselves, the visited and matched flags and the stacksillforee representations we assume the same
layout for this auxiliary data, so the only difference in spas due to the graph representation. The space
needed for the two stacks is small since the largest DFSvesalnder 10000 vertices.

5.9 Discussion

Here we summarize what we feel are the most important orisimgmresults of the experiments.

First we note that the simple and fast separator heuristiosed seems to work very well for our pur-
poses. This is likely because the compression is much lesgise to the quality of the separator than other
applications of separators, such as nested dissection F80@]nested dissection more sophisticated separa-
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Time (sec) | Space
Representation PIll | P4 | (ble)

Nibble 75.8| 27.6 | 13.477
Byte 59.9| 19.9| 16.363
ArrayOrdr 57.1| 18.6| 41.678
ArrayRand 83.2| 28.0| 41.678

Table 5.10: Performance of our bipartite maximum matchiggrithm on different static representations.

tors are typically used. It would be interesting to studyttieoretical properties of the simple heuristic. For
our bounds rather sloppy approximations on the separatersudficient since any separator of size®,
¢ < 1 will give the required bounds, even if actual separatorshiriig much smaller.

We note that all the “real-world” graphs we were able to find bmall separators—much smaller than
would be expected for random graphs. This is a property dfwvedd graphs that is sometimes not properly
noted.

Our experiments indicate that the additional cost needatktmde the compressed representation is
small or insignificant compared to other costs for even aordlgn as simple as depth-first search. As
noted, under most situations the compressed represergaie faster than standard representations even
though many more operations are needed for the decodings sB@ms to be because the performance
bottleneck is accessing memory and not the bit operatioad t@ decoding. The one place where the
standard representations are slightly faster for DFS iswtsing separator orderings and linear insertion
on the Pentium 4.

We were somewhat surprised at the large effect that diffeveterings had on the performance on the
Pentium 4 for both adjacency lists and adjacency arrays. pEn®rmance differed by up to a factor of
11, apparently purely based on caching effects (the numbedges traversed is identical for any DFS
on a fixed graph). The differences indicate that performamrabers reported for graph algorithms should
specify the layout of memory and ordering used for the vestid he differences also indicate that significant
attention needs to be paid to vertex ordering in implemerfist graph algorithms. We note that the same
separator ordering as used for graph compression seemshkovery well for improving performance on
adjacency lists and adjacency arrays. This is not surgrisiimce both compression and memory layout can
take advantage of locality in the graphs so that most aceesseclose in the ordering.

In our analysis we do not consider applications that havgrafssant quantity of information that needs
to be stored with the graphs, such as large weights on thesemtgabels on vertices. Clearly such data
might diminish the advantages of compressing the grapbtstet: We note, however, that such data might
also be compressed. In fact the locality of the separat@litadpcould be useful for such compression. For
example on the web graphs, vertices nearby in the vertexiogdare likely to share a large prefix of their
URL. Similarly, for the finite-element meshes, verticesrbgan the vertex ordering are likely to be nearby
in space, and hence might be difference encoded.

The ideas used in this chapter can clearly be generalizethév structures beyond simple graphs. For
example, the reordering-via-separator idea is used in €h&p and the simplicial mesh data structure of
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Chapter 7 is also based on difference coded adjacency lists.

Our work could be adapted to an out-of-core setting. Theedeser in total memory usage from com-
pression is not so important in an out-of-core setting; h@reby compressing the data we can increase the
amount that can fit in cache. The locality provided by ourdedng could also be very useful to an out-of-
core algorithm. One complication that could arise involtles algorithm to perform the reordering: most
of the reordering algorithms we present assume that théngrtapcture can be held in RAM. This problem
could be addressed by using a crude partitioning algoriththeahigh levels, then a more sophisticated
reordering algorithm the subgraphs reached a manageable si
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Chapter 6

Index Compression through Document
Reordering

6.1 Introduction

In this chapter we are interested in the compressionwfrted indices An inverted index is a collection
of posting lists each of which is a subset of the dét= {1...m}. The compressed posting lists must
be stored individually (since they may need to be accessiddually). However, by using properties of
the index as a whole it is possible to improve the compressiondividual lists. This chapter describes a
heuristic relabeling technique: it uses a permutation kabed the elements d¥ in order to improve the
compression of posting lists.

There are many possible representations for compressédgbsts (some were discussed in Chapter
4). However, in this chapter our focus is on the quality of poassion achievable for an index. Accordingly,
in this chapter we consider compression using the differecled representation discussed in Section 2.4,
which is more compact than those of Chapter 4. The reordéeicignique we describe would apply to the
structures of Chapter 4 as well.

Compact inverted indices are very important in the desigseafch engines, where memory consider-
ations are a serious concern. Some web search engines ildmskof documents, and even this is only
a fraction of the total number of pages on the Internet. Mb#h® space used by a search engine is in the
representation of an inverted index which maps search terimsts of documents containing those terms.
Each posting list in an inverted index is a list of the docutmemmbers of documents containing a specific
term. When a query on multiple terms is entered, the seargimemetrieves the corresponding posting lists
from memory, performs some set operations to combine th&rainesult, sorts the resulting hits based on
some priority measure, and reports them to the user.

A naive posting list data structure would simply list all tiecument numbers corresponding to each
term. This would requirglog(n)] bits per document number, which would not be efficient. Tespace,
the document numbers are sorted and then compressed difgergnce codingas described in Section

1This chapter is based on work with Guy Blelloch [12].
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2.4).

In general, a difference-coding algorithm will get the tEmhpression ratio if most of the differences are
very small (but one or two of them are very large). Severdienst[87, 23] have noted that this is achieved
when the document numbers in each posting list have higlitppcBhese authors have designed methods to
explicitly take advantage of this locality. These methoclsieve significantly improved compression when
the documents within each term have high locality. Howeaktizcompression methods thus far have been
devoted to passive exploitation of locality that is alrepdgsent in inverted indices.

Here, we will study how to improve the compression ratio dfedence coding on an inverted index
by permuting the document numbers to actively create lgcali the individual posting lists. One way
to accomplish this is to apply a hierarchical clusteringhtegue to the document set as a whole, using
the cosine measure as a basis for document similarity. @aritim can then traverse the hierarchical
clustering tree, applying a numbering to the documents exscibunters them. Documents that share many
term lists should be close together in the tree and therelose together in the numbering. This is similar
to the graph-reordering algorithm of Chapter 5.

We have implemented this idea and tested it on indexing datathe TREC-8 ad hoc track [129] (disks
4 andb5, excluding the Congressional Record). We tested a varfatpdes in combination with difference
coding. Our algorithm was able to improve the performandh@best compression technique we found by
fourteen percent simply by reordering the document numbEne improvement offered by our algorithm
increases with the size of the index, so we believe the imgmm@nt on larger real-world indices would be
greater.

Conceptually, ouoRDER-INDEX algorithm is divided into three parts. The first pat)ILD -GRAPH,
constructs a document-document similarity graph from aexn The second par§PLIT-INDEX, makes
calls to the Metis [71] graph partitioning package to rewaly partition the graphs produced IBwiLD -
GRAPH. It uses these partitions to construct a hierarchical etusg tree for the index. The third part of
our algorithm,ORDER-CLUSTERS applies rotations to the clustering tree to optimize thdedng. It then
numbers the documents with a simple depth-first traversghefclustering tree. At all levels we apply
optimizations and heuristics to ensure that the time and ongmequirements of our algorithm will scale
well.

In practice, constructing the full hierarchical clustgriwould be infeasible, so the three parts of our
algorithm are combined into a single recursive procedua¢ ritakes only one pass through the clustering
tree.

Related Work. When this research was originally published [12], there magprevious work dealing
with index compression by reordering. Since then sevetaraduthors have examined the subject. Shieh
et al. [113] published concurrently, presenting a reassgt method based on the Traveling Salesman
Problem. They achieveth% compression over the original ordering, but the reordephgse took much
longer: they reordet.8 documents/second on a collection 130k documents, whereas we achie3@)
documents/second and% compression on a similar collection.

Blanco and Barreiro [11] use heuristics to improve the T@8Beld algorithm (most notably, they use
dimensionality reduction through singular value deconitfmg. They present an algorithm achievifgp
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to 8% compression on two collections 80k documents, with a speed of abol®5 documents/second.
It is unclear how their algorithm’s RAM requirements congér ours. We note, however, that the largest
index they test i430k, whereas Silvestri et al. [115] were able to use our algorito reorder ove600, 000
documents inGB of RAM. (Blanco and Barreiro incorrectly claim that theoab figure was only0, 000
documents.)

Silvestri et al. [115] presented several algorithms whigravmuch faster and used only two-thirds as
much memory as our algorithm (using our default settings},their best algorithm achieved only two-
thirds as much compression as ours. We note that their casiprequality deteriorates for larger indices
(whereas our algorithm achieves better compression oarlandices).

The remainder of this chapter is organized as follows. 8Sedii2 formalizes the problem. Section 6.3
describes our algorithm in detail. Section 6.4 demongrtte performance of our algorithm when run on
the TREC-8 database.

6.2 Definitions

We describe an inverted indéas a set of terms . . . ¢,,,. For every ternt; there is an associated list of|
document numbers; ; . .. di t,]- The document numbers are in the raige d; ; < n. We are interested in
the cost of representing these documents using a diffextze Thus we define, first;(d;) = si1 ... s,
to be the sequence of documeitdts, rearranged so that ; < s; ;11 forall j. Thatis,s; is the sorted version
of the sequence of documents (For convenience we also defisgy = 0 for all 7.) Then, if we have an
encoding scheme which requiresc(d) bits to store the positive integet, we can write the cost’ of
encoding our index as follows:

c(I) = Z > elsig—sij)

We wish to minimizeC'(I) by creating a permutation which reorders the document numbers. Since
c is convex for most useful encoding schemes, this means wktoaesuster the documents to improve the
locality of the index.

6.3 Our Algorithm

Document Similarity.  Up to this point, we have viewed an inverted index as a setrofdgeach of which
contains some subset of the documents. Now it will be coeverio consider it as a set of documents, each
of which contains some subset of the terms. Specifically, ameopnsider a document to be an element of
{0,1}™, where thei element of a document isif and only if the document contains tertn Eventually

our algorithm will need to compute centers of mass of grodmouments, and then it will be convenient
to allow documents to contain fractional amounts of termsat-is, to represent a document as an element
of ®™.
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Our algorithm uses theosine measurt® determine the similarity between a pair of documents:

A*B

A B) = :
OB = @ )

Build-Graph. Using this similarity measure owuUILD-GRAPH algorithm can construct a document-
document similarity graph. For large databases, creatfnlj graph withn? edges is not feasible. However,
most of the documents contain only a small fraction of thelte¢t of terms. It seems reasonable that the
graph might be sparse: many of the edges in the similaritgtgnaight actually have a weight of zero. This
is especially true if we remove common “stopwords” from ddagation, as described below.

To save spac&UILD -GRAPH uses the following method to generate the graph. Considéntiex to be
a bipartite document-term graph from whighiLD -GRAPH needs to generate a document-document graph.
For each term in the document-term graph, our algorithmieéites that term and inserts edges (weighted
with the cosine measure) to form a clique among that nodeghhbers. After eliminating all of the terms
in the document-term grapBUILD -GRAPH has produced a document-document graph which contains an
edge between every pair of documents that shares a comnmon ter

If term ¢; contains|t;| documents, theBUILD-GRAPH will compute O(Y", |t;|?) cosine measures in
computing the edge graph. Our algorithm can improve thiswdalightly by being careful never to com-
pute the same cosine measure more than once, but the weestramber of cosine measures will still be
O [t

However,BUILD -GRAPH does not actually need all this information in order to repre the structure
of the similarity graph. In particular, a lot of the docuneiri the index are likely to be “trivially” similar
because they share terms such as “a”, “and”, or “the”. Thet fnequently occurring terms in the index
are also the least important to the similarity measure. Ramgahe edges corresponding to those terms
should not have much of an impact on the quality of the ordefas demonstrated in Section 6.4), while it
should decrease the work required BriLD-GRAPH considerably. Thus, when generating the graph, our
algorithm creates cliques among the neighbors of only thesas with less than a threshold number of
neighborsr. All other terms are simply deleted from the graph. (Thisitegue is similar to that used by
Broder et al. [27] for identifying near-duplicate web pageRBseudocode for this part of our algorithm is
shown in Figure 6.1.

Split-Index. OnceBUILD-GRAPH has produced a similarity graph, the next step is to derivieraichical
clustering of that graph. There are a large number of hibreaitclustering techniques that we could choose
from (for example, those of [24, 135], and additional refees from those papers), but most of those
techniques are not designed for data sets as large as theverse dealing with. Many of them, in fact,
require as input ai®(n?) similarity matrix. We do not have enough space or time to esamstruct a
matrix of that size, much less run a clustering algorithmtoRurthermore, this problem has certain special
features which are not captured by any general clusteriggrithms. Therefore we have created our own
hierarchical clustering algorithm based on graph partitig.

A naive hierarchical clustering algorithm would work addels. Given an index, compute a similarity
graph from that index. Partition the graph into two piecesnt@ue partitioning on the subgraphs until all
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SPLIT-INDEX(]): BUILD-GRAPH(I):

I’ — suBsampPLHI, |I]P) G < new Graph
G < BUILD-GRAPH(I") foreachd; in I
(G1, G3) <+ PARTITION(G) foreachtin d;
dy — Gy.centerofmass if [t] < 7 then
dy — Gs.centerofmass foreachds in DOCLIST(¢)
I, I, — empty indices e «— new Edge(;, d2, cOYd1, d2))
foreachdin I adde to G
if cog(d, di) > codd, ds) then return G
addd to I;
else
addd to I

return (I, 1)

Figure 6.1: OuBUILD-GRAPH andsPLIT-INDEX algorithms.

pieces are of size one. Use the resulting partition treeeasltistering hierarchy.

Unfortunately, this algorithm uses too much memory. ®un.b-GRAPH algorithm requires less than
the full O(n?) memory, but it is still infeasible to apply it to the full inde Instead,SPLIT-INDEX uses a
sampling technique on the index: at each recursive stegb#znples some fraction of the documents from
the original index. It run®8UILD-GRAPH on this subindex and partitions the result. Once it has doise t
SPLITFINDEX uses the subgraph partition to partition the original indexdo this, it computes the centers
of mass of the two subgraph partitions. It then partitioresdocuments from the original index based on
which of the centers of mass they are nearest to. PseudosodeLiT-INDEX is shown in Figure 6.1.

An interesting point to note is thaPLIT-INDEX recreates the document similarity graph at each node of
the recursion tree. This offers oRUILD -GRAPH algorithm significantly more flexibility when creating the
similarity graph:BUILD-GRAPH only needs to create the graph in such a way thafithepartition made
on it will be a good one. This allomBUILD-GRAPH to use a very small value of. if a term occurs more
than, say, 10 times at a given partition level, it is likely that any padit SPLIT-INDEX computes will have
documents containing this term on both sides anyway. BwsD-GRAPH ignores that term until later
iterations.

Order-Clusters. OncesPLIT-INDEX has produced a hierarchical clusterioggDER-INDEX uses that clus-
tering to create a numbering of the leaves. To do this it perfoan inorder traversal of the tree. At each
step, however, it needs to decide which of the two availakleitipns to traverse first. In essence, our
ORDER-CLUSTERSalgorithm looks at every node in the hierarchy and decidesthér or not to swap its
children.

Within any given subtreé, there are four variables to consider. We denote the childfé& by I; and
I>. We also defind;, and Iy to be the documents that will appear to the immediate leftragid of S in the
final ordering. (At the first recursion we initializg, and/x to place equal weight on each term. This causes
infrequently-occurring terms to be pulled away from the dhédof the ordering.) SInCORDER-CLUSTERS
operates with a depth-first traversal, we tdkeo be the left child ofS’s left ancestor, andy, to be the right
child of S’s right ancestor.ORDER-CLUSTERStracks the centers of mass of each of these clusters, and it
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\\ Assigns the numbers betweéandh

ORDERCLUSTERYIy, I1, I3, IR): \\ to the documents of an inddx

my, «— I.centerofmass \\  which must have exactlh — £ + 1)

my < Iy.centerofmass \\ documents.

meo < Is.centerofmass ORDER-INDEX(I, ¢, h, Ir,, IR):

mp < Ir.centerofmass if £ = hthen

s1 < coqmyg, m1) * comp, m2) I.v|0].number «— ¢

s «— coYmy, mg) * cCOmpg, m1) else

if so > sl then (11, I3) < SPLIT-INDEX(])
return (Is, I1) (I, Is) < ORDER-CLUSTERYIy, I1, I5, IR)

else ORDERINDEX(I1, £, m — 1, Iy, I5)
return (I, Io) ORDER-INDEX(I3, m, h, I1, IR)

Figure 6.2: OUDRDER-CLUSTERSaNdORDER-INDEX algorithms.

rotates/; and/; so as to place similar clusters closer together.
Pseudocode fabRDER-CLUSTERSand for the main body of our algorithm is shown in Figure 6.2.

6.4 Experimentation

Compression Techniques. We tested several common difference codes to see how mudioverpent
our algorithm could provide. The codes we tested included#ia code, Golomb code [54], and arithmetic
code. These codes are described in more detail by WittenfaM@ind Bell in [136]. We also tested the
binary interpolative compression method of Moffat and ®&ui87]. This code was explicitly designed to
exploit locality in inverted indices, so it gained the masinh our algorithm.

We did not count the cost of storing the sizes of each termesihat cost would be invariant across
all orderings. We did count the cost of storing an arithmtglde for arithmetic coding, but this cost was
negligible compared to the cost of storing the bulk of thedat

Testing. To test our algorithm we used the ad-hoc TREC indexing détksd and5 (excluding the Con-
gressional Record). This data contairi@d094 documents an@47990 distinct words, and occupied about
one gigabyte of space when uncompressed. We tested thfexeiforderings of the data in combination
with the difference codes described above. First, we testatidom permutation of the document numbers
as a baseline for comparison. Second, we tested the defdeltimy from the TREC database. We noted
that this was already a significant improvement over a rano@laring, indicating that there is considerable
locality inherent in the TREC database. Third, we testedotidering produced by our algorithm. Results
are shown in Figure 6.3.

Analysis. The Golomb code is near-optimal for the encoding of randodidyributed data, and in fact it
was the best code for the Random ordering. However, the dotmde is not convex, so it does not benefit
from locality.
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\ | Random| Identity | Ordered|
Binary 20.0 20.0 20.0

Delta 7.52 6.46 5.45
Golomb| 5.79 5.77 5.78
Arith 6.82 6.03 5.19

Interp 5.89 5.29 4.53

Figure 6.3: The improvement (in bits per edge) our algorithifers for different coding schemes using
disks4 and5 of the TREC database.

Index | Random| ldentity | Ordered| Improvement| Improvement
Size over Random| over Identity
32943 5.73 5.44 4.87 14.9% 10.4%
65886 5.75 5.43 4.78 16.9% 12.0%
131773 5.77 5.41 4.71 18.4% 13.0%
263547 5.78 5.36 4.63 19.9% 13.7%
527094| 5.79 5.29 4.53 21.8% 14.4%

Figure 6.4: The improvement offered by our algorithm insesaas the size of the index (measured in
documents) increases.

The locality inherent in the TREC database made the intatipel code the most efficient code for the
identity ordering. Interpolative coding usé@9 bits per edge, an improvement of ab8ui% over the best
encoding with a random document ordering.

Using the ordering produced by our algorithm, however, tiherpolative code needed an average of only
4.53 bits per edge to encode the data21a&8% improvement over the best coding of a random ordering, and
a14.4% improvement over the best coding of an identity ordering.

Index size. To measure the effect of index size on our algorithm, we deste algorithm on various
subsets of the full index. These subsets were formed byyegabsampling documents from the full dataset.
For each subset we evaluated the best compression usingl@amaidentity, or ordered permutation of
the documents. The random permutation was best coded withi@® code; the identity and ordered
permutations were coded with interpolative codes. FigudesBows the results of our tests. Interestingly,
the improvement offered by our algorithm increases as tteecdithe index increases.

Parameter Tuning. Our algorithm uses two parameters. The first parameteis a threshold which
determines how sensitive OBUILD -GRAPH algorithm is to term size. If a term has|¢;| > 7, our algorithm
will still consider it when calculating cosine measurest Will not add any edges to the similarity graph
because of it.

Table 6.5 shows the performance of our algorithm (on a subkéte full dataset containing one-
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=
Rand| 1 | 2 | 5 | 10 | 15 | 20 | 40
Time(s) 51.81] 81.62] 120.7| 163.7| 196.4] 225.0] 304.8
Delta | 7.44 | 6.56 | 6.04 | 5.95 | 594 | 590 | 5.89 | 5.88
Arith | 6.73 | 6.11 | 569 | 562 | 561 | 558 | 557 | 556
Interp | 5.81 | 5.29 | 4.97 | 4.89 | 4.87 | 4.86 | 4.86 | 4.85

Figure 6.5: The performance (in bits per edge) of differemues ofr on one-sixteenth of the TREC
indexing data.

p
Rand| 75 | 5 [ 25| 1 | O
Time(s) 70.07 ] 60.59| 163.7 | 454.8| 518.9

Delta 744 | 6.27 | 6.05 | 594 | 5.83 | 5.83
Arith 6.73 | 588 | 570 | 5.61 | 552 | 5.52
Interp 581 | 507 | 495 | 487 | 4.83 | 484

Figure 6.6: The performance (in bits per edge) of differemiugs ofp on one-sixteenth of the TREC
indexing data. Note that our algorithm’s running time isagee withp = .75 than withp = .5. This is
because the aggressive subsampling results in unbalaactiibps, increasing the recursion depth of the
algorithm.

sixteenth as many documents) with different values-ofChoosingr to be less tharb causes too few
edges to be included in the similarity graph, but increasibgyond that was not beneficial on the index we
studied. We chose = 10 to be safe.

The second parameter, determines how aggressively our algorithm subsampledatee On an index
of sizen, the algorithm extracts one out of every”| elements to build a subindex. Table 6.6 shows the
performance of our algorithm with different values @f Our algorithm does not perform too badly even
with a very largep, but there is still a clear tradeoff between time, space aradity. We chose = .25 in
our experiments as a suitable balance between these cencern

Graph Compression. Our algorithm can also be used to enhance the performanderedce coding in
graph compression. (Chapter 5 discussed separator hlgsrior graphs which can be manipulated within
main memory. This algorithm, with its subsampling techesjucan be applied to graphs which are much
larger; however, the compression produced is weaker.)dplgcompression, for each vertex of the graph,
an algorithm stores an adjacency list of the vertices thatesan edge with that vertex. The vertices are
numbered, so it is only natural to apply a difference codeotnress each list. If we view the vertices as
terms and the adjacency lists as posting lists, we can applglostering technique to renumber the vertices
of the graph.

To test our clustering technique on graph data we used an®RIEC dataset: the TREC-8 WT2g web
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| Code

| Random| Identity | Clustered| Ordered|

Binary
Delta
Golomb
Arith
Interp

18.0
175
13.3
14.4
13.4

18.0
4.92
12.7
4.32
5.83

18.0
4.58
12.4
3.82
5.66

18.0
4.52
12.6
3.75
5.58

Figure 6.7: The performance of our algorithm on the TREC-82¢/Web track. The “Clustered” column

describes the performance of our algorithm without the fiatdtion step.

data track. That track can be represented as a directed graph7428 web pages, where hyperlinks

are edges. For best compression, we stored the in-edgher(thain the out-edges) of each vertex in our
adjacency lists. The number of in-edges for each vertex wae wariable than the number of out-edges,
meaning that some adjacency lists were very dense and thyzressed very well. The performance of our

algorithm on the in-link representation is shown in Tablg 6.
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Chapter 7

Compact Representations of Simplicial
Meshes in Two and Three Dimensions

7.1 Introduction

In this chapter we are interested in compressed repreggrgaif meshes that permit dynamic queries and
updates to the mesh.The goal is to solve larger problems while using standardloamaccess main-
memory algorithms. We present data structures for reptiegetwo and three dimensional simplicial
meshes. (By a simplicial mesh we mean a pure simplicial complex of dimensi, which is a mani-
fold, possibly with boundary [49].) The data structuressup standard operations on meshes including
traversing among neighboring simplices, inserting anétdw simplices, and the ability to store data on
simplices. For a class of well shaped meshes [85] with badiddgree, these operations each take constant
time. Although our data structures are not as compact ag ttesigned for disk storage, they still save a
factor of between 5 and 10 over standard representations.

Compressed meshes are very important: For many applisatienspace required to represent large
unstructured meshes in memory can be the limiting factdnérsize of a mesh. Standard representations of
tetrahedral meshes, for example, can require 300-500 pgtagertex. There has been previous work which
deals with larger meshes by maintaining the mesh in extenmshory. To avoid thrashing, this requires
designing algorithms for which the access to the mesh idubreorchestrated. Although several such
external memory algorithms have been designed [55, 45,3338, 7, 124, 5], these algorithms can be
much more complicated than their main-memory counterpans can be significantly slower.

The field of compressed meshes has received consideratadiatt [44, 61, 121, 98, 105, 120, 70, 66,
53]. In three dimensions, for example, these methods campEss a tetrahedral mesh to less than a byte
per tetrahedron [120]—about 6 bytes/vertex (not includiegex coordinates). These techniques, however,
are designed for storing meshes on disk or for reducing rmess$on time, not for representing a mesh in
main memory. They therefore do not support dynamic queriegpdates to the mesh while in compressed
form.

1This chapter is based on work with Guy Blelloch, David Casland Clemens Kadow [14].
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Our data structures are described in Section 7.3 and 7.4.t&ke advantage of the separator properties
of well-shaped meshes [85] and make use of our results imgrampression (see Chapter 5). In particular
our technique uses separators to relabel the vertices sudhizes that share a simplex are likely to have
labels that are close in value. Pointers are then differemoeded using variable length codes. For the
2D case we present two mesh representations. One repitaseiigabased on storing, for each edge, the
triangles that contain that edge. This is described in 8ecii3. The other representation is based on
radially storing the neighboring vertices around eachexerfhis is described in Section 7.4. Both of our
representations generalize readily to 3D and greater diines.

Section 7.5 describes an implementation of our data siriatsing the representation that stores the
neighboring vertices for each vertex. Section 7.6 presexperimental results. The implementation uses
about 5 bytes per triangle in 2D and about 7.5 bytes per &drain in 3D when measured over a range
of mesh sizes and point distributions. We present expetsneased on using our representation as part
of incremental Delaunay algorithms in both 2D and 3D. We usarant of the standard Bowyer-Watson
algorithm [25, 131] and the exact arithmetic predicatestav&huk [111] for all geometric tests. We also
present experiments based on a Delaunay refinement algdtitt removes triangles with small angles by
adding new points at their circumcenters. All space is rigglin terms of the total space including the space
for the vertex coordinates and all other data structuresimed, by the algorithm. The results for 1 Gbyte of
memory are summarized as follows.

e We can generate a 2D Delaunay mesh with 110 million triangfesGbytes for the mesh, .44 Gbytes
for the vertex coordinates, and about .1 Gbytes for auyiliiata used by the algorithm). Compared
to the Triangle code [110] (the most efficient we know of) olgoathm uses a factor of 3 less
memory. It is about 10% slower than Triangle’s divide-aotguer algorithm and much faster than
its incremental algorithm.

e We can generate a 3D Delaunay mesh with 100 million tetrahgdb Gbytes for the mesh, .17 Gbytes
for the vertex coordinates, and .08 Gbytes for auxilianaflaCompared to the Pyramid code [109],
our algorithm uses a factor of 3.5 less memory, and is abdkit faSter.

e We can generate a refined 2D Delaunay mesh with 80 milliondles with no angle less than 26%.
This version dynamically generates new labels, and usextsa level of indirection in our data-
structure.

Our data structure can be used in conjunction with exterrexhory algorithms. Also, although we
describe our implementation only for 2D and 3D simplicialstmes, the ideas extend to higher dimensions.
These topics are discussed, briefly, in Section 7.7.

7.2 Standard Mesh Data Structures

There have been numerous approaches for representingictostd meshes in 2 and 3 dimensions. Some
are specialized to simplicial meshes and others can be wsaddre general polytope meshes. For the
purpose of comparing space usage, we review the most comiihiese data structures here. A more

complete comparison for 2D structures can be found in a gap&ettner [73].

78



In two dimensions most approaches are based on eitherlggangedges. The simplest data structure
is based on triangles. Each triangle has three pointeretodlghboring triangles, and three pointers to its
vertices. Assuming no data needs to be stored on triangledgas, this data structure uses 6 pointers per
triangle. Storing data requires extra pointers. Shewahtikangle code [110] and the CGAL 2D triangula-
tion data structure [21] both use a triangle-based datatsner To distinguish the three neighbors/vertices
of a triangle, a handle to a triangle typically needs to idelan index from 1 to 3. The data structure used
by Triangle, for example, includes such an index in the @oitd each neighbor (in the low 2 bits) so that a
neighbor query not only returns the neighbor triangle, btunns in which of three orders it is held.

There are many closely related data structures based ors,edghiding the doubly connected edge
list [89], winged-edge [9], half-edge [133], and quad-ed§8] structures. In addition to triangulated
meshes, these data structures can all be used for polygasties In these data structures each edge
maintains pointers to its two neighboring vertices and igimgoring edges cyclically around the neighbor-
ing faces and vertices. Each edge might also maintain peitbethe neighboring faces and to edge data.
The most space efficient of these data structures can mafotaéach edge a pointer to the two neighboring
vertices and to just two neighboring edges, one around emehand vertex. Assuming no data needs to be
stored on a face or edge, this requires 4 pointers per edgeh ¥an a manifold triangulation is equivalent to
the 6 pointers per triangle used by the triangle structiité € 3/2|T'|). The half-edge data structure [133],
used by CGAL [73], LEDA [84] and HGAM [58], maintains two sttures per edge, one in each direc-
tion. These half-edges are cross referenced, requiringteante/o pointers per edge. The winged-edge and
guad-edge structures maintain pointers to all four neighgoedges, requiring 6 pointers per edge (9 per
triangle).

In three dimensions there are analogous data structured b#ber on tetrahedra or on faces and edges.
Again the simplest data structure is to use a structure pexhiedron. Each tetrahedron has 4 pointers to
adjacent tetrahedra, and 4 to its corner vertices. Assumirgata this requires 8 pointers per tetrahedron.
This data structure is used by Pyramid [109] and CGAL [21]e Tdce and edge data structures are often
called boundary representations (b-reps). Such boundg@ngsentations are more general than the tetra-
hedron data structures, allowing the representation gft@oé meshes, but tend to take significantly more
space. Dobkin and Laszlo [48] suggest a data structure lmasedge-face pairs, which in general requires
6 pointers per edge-face. For tetrahedral meshes this tlatiuse can be optimized to 9 pointers per face
(6 to the adjacent faces rotating around its 3 edges, andI8todrner vertices). This corresponds to 18
pointers per tetrahedron. Weiler’s radial-edge repregient [134], Brisson’s cell-tuple representation [26],
and Lienhardt’s G-map representation [79] all take morespa

In summary, the most efficient standard data structureswfliial meshes use 6 pointers per triangle
in 2D and 8 pointers per tetrahedron in 3D. At least one exdmater is required to store data on triangles in
2D or tetrahedra in 3D.

7.3 Representation Based On Edges

In this section we discuss our 2D representation based ossedte representation is very similar to the
graph representation from Section 5.4, although its 3D igdimation is somewhat different. We begin with
an uncompressed representation, and then describe homnfiress it.
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Each edg€a, b) in a 2D meshM can be a part of at most two faces (triangles). If the facegare c)
and(b, a, d), then our representation stores the (key, data)(paib), (¢, d)) in a dictionary structure. (This
is similar to the winged-edge structure of Baumgart [9].eptdhat all references are to vertex labels rather
than pointers.) If the orientation of the mesh needs to bentaiaied, then the verticesd are kept in a
consistent order; otherwise the order does not matter.dfadrthe faces is missing, the vertex for that face
is replaced with a special tokén ((a, b), (c,0)).

To save space, edges are kept in a consistent directione dittionary storesa, b), then it does not
also storgb, a). The proper direction for an edge is determined by some sitesk (for example, all edges
are stored aéa, b) wherea < b).

Our structure supports the operati@earch ,insert , anddelete , as follows:

search (a,b): finds all vertices: such thata, b, ¢) form a face inM. This is a single dictionary lookup.

insert (a,b,c): adds the facéa, b, c) to M. This requires updating the dictionary entrieserb), (b, c),
and(c, a). If an entry is already in the dictionary, itstoken is replaced with the appropriate vertex;
otherwise, the entry is created wittd @oken.

delete (a,b,c): deletes the facé, b, c) from M. This requires updating the dictionary entries forb),
(b,c), and(c, a) by replacing the appropriate vertices wittiokens. If an entry hag tokens in both
its data slots, it is deleted.

This interface supports traversing the mesh by repeatedations okearch . The variable-bit-length
dictionary structure allows us to suppsdarch in O(1) time andinsert anddelete in O(1) expected
amortized time. Data can be stored on the mesh by includinghie dictionary entries.

To compress this data structure we use difference codingdodeb, ¢, andd relative toa. That is, in
our dictionary we store tuples of the forftu, b — a), (¢ — a,d — a)). The difference$ —a, c—a, andd —a
are gamma coded (as described in Section 2.3); a sign biatadi whether each difference is negative.

We use a variable-bit-length dictionary to store the endoglgtries, as described in Section 3.3. The
dictionary absorbs th€&(log |V'|)-bit cost of representing. It remains to account for the gamma coded
differencesb — a, ¢ — a, d — a. We charge the cost of storing— b to the edg€a, b), the cost of storing
a — cto the edg€da, ¢), and the cost of storing — d to the edgda, d). Each edgéa, b) is charged at most
five times, and the cost in each cas®idog |a — b|). This gives us:

Theorem 7.3.1 Our 2D simplicial mesh representation using our variabledictionary US@Q(Z(a,b)eE log |a—
b|) bits whereF is the1—skeleton (that is, the set of edges) of the mesh.

If the vertices of the mesh are givernkecompact labeling (as described in Section 5.2), then the re
resentation of the mesh will use(|V|) bits. We note that well-shaped meshes (of fixed dimensiott) wi
bounded degree have small separators [85], and so the s@gaea algorithm from Section 5.2 is guaran-
teed to find &-compact labeling. Further, 2D meshes are planar and thugsdmaall vertex separators [81];
2D meshes with bounded degree have small edge separatoedl.as w
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Although the representation permits dynamic insertiorts @ggletions, the)(|V|)-bit space bound de-
pends on the labeling remaining k-compact. For this reasdeascribe our representationsesnidynamic
similar to our graph representations from Sections 5.3 athd 5

In practice for well-shaped meshes, it is possible to find adgabeling by taking advantage of the
spatial embedding of the vertices. Rather than edge sepsratur algorithms make use of— y cuts to
partition the vertices for relabeling. Since edges in mossimes have high locality, this gives a labeling
which is very good in practice. More details are given in ®ect.5.

Generalization to 3D. Our representation has a natural generalization to 3D basetioring faces (tri-
angles) of the mesh. Each fage b, c) in M can be a part of at most two tetrahedra. If the tetrahedra are
(a,b,c,d) and(a,c,b,e), then our representation stores the tuple ((a,b,c), (theg)dictionary structure.

To save space, each fate b, c) is stored using only one ordering—for example, the ordeimghich
a<b<ec

The operationsearch ,insert ,anddelete are supported just as in the 2D case. The data structure
is compressed by difference coding: rather than ((a,ld@®)), the structure stores ((a,b-a,c-a), (d-a,e-a)) in
a variable-bit-length dictionary.

We now examine the space usage of our 3D representation.idtfmndry absorbs thieg |V |-bit cost of
representing using quotienting. We charge the cost of storfrga andc— a to the facga, b, ¢); we charge
the cost ofd — a to the face(a, b, d) and ofe — a to the facg(a, b, €). Each face is charge@(1) times, and
each time the charge 3(max(log |a—b|,1og |[a—¢|,log |b—c¢|)) = O(log |a —b|+1og |a—c|+1og |b—c|).
This gives a bound aD(3_, , e r log la — b| +log la — ¢ + log [b — c[), where[" is the2-skeleton (that
is, the set of faces) of the mesh.

In fact we can prove a stronger bound on the space usage:

Lemma 7.3.1 Let F' be the2—skeleton (the set of faces) of a 3D simplicial mesh. A&k thel —skeleton
(the set of edges) of the mesh. Then any mesh representatiospace US&Q@(Z(a,b,c)eF log |a — b| +
log la — ¢| + log b — c]) bits also has space usag¥(} _ , ;< log |a — b]) bits.

Proof. We wish to charge the cost of each fdeeb, ¢c) € F to one of its adjoining edges. An edge, b)

can be assigned a chargelef |a — b|. We define thestrongest edgesf a face(a, b, ¢) to be the two edges
with the greatest difference between their vertices. Famgle, ifa < b < cand|a — b| > |b — ¢|, then
(a,b) and(a, c) are the strongest edges. Note thet|a — b| > log |b — ¢| andlog |a — b| ~ log |a — ¢|, SO

we can charge th@(log |b — a| + log |c — a| 4 log |c¢ — b|) cost of the face to either of its strongest edges.
However, we must ensure that no edge is charged morefiantimes.

Let thestar of a vertexS(v;) be the set of simplices (edges, faces, and tetrahedra)icioigta;. Let the
closureof the starC'(S(v;)) be the set of simplices if(v;) together with the lower-dimensional simplices
contained in them. Then we define tivek of the vertexL(v;) = C(S(v;)) — S(v;) to be the set of faces,
edges, and vertices that share tetrahedra withut do not contain;.

Let V(L(v;)) and E(L(v;)) be the vertices and edges in the linkwf(these correspond to the set of
edges and faces containimgin the mesh).L(v;) is a two-dimensional surface, so Euler’s rule applies: we
know that|E(L(v;))| < 3|V (L(v;))].
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We will now direct all of the edges ift(L(v;)) in such a way as to ensure that no vertex.¢b;) has
indegree greater than This can be done iteratively: At each step, find a vertex V' (L(v;)) of degrees
or less. (Euler’s rule guarantees that this is possiblergdDiall edges containing into v, and then delete
v and all its edges fronL(v;). At termination, all edges have been directed, and no véréaxreceived
indegree greater than

Now, recall that vertices i (L(v;)) correspond to edges containingin the 3D mesh, and that edges
in E(L(v;)) correspond to faces. For each fdeg, v;,vy), if the face’s strongest edges are, v;) and
(vi,v), then examine the corresponding edge, v,) € E(L(v;)). If the edge is directed towards;,
charge the cost of the face to the edgg v;); otherwise, charge it to the edge;, vy,).

Each edge is charged at most five times at each of its endpsi&sach edge is charged ©y1) faces.
The charge in each casdig |a—b| for an edgga, b). Thus the total space usedd$}_ , ;)< p(log [a—b]))
bits.

As in the 2D case, if thé-skeleton of the mesh haskacompact labeling, then the representation of the
mesh will useO(|V]) bits.

7.4 Representation Based On Vertices

In this section we discuss our 2D mesh representation basegrtices. Our representation is based on
storing the cycle of neighbors, in order, around each vertéxe mesh. (The cycle of neighbors of a vertex
is also known as itéink.) This is similar to the half-edge structure of Weiler [133Me note, however,
that all references are to vertex labels instead of poirtesther higher-dimensional simplex structures,
allowing us to compress based on vertex labels. We beginamthncompressed representation, and then
describe how to compress it.

For each vertex in a 2D mesW our representation stores the cycle of neighboring vextidde cycle
is ordered radially around the vertex in the orientatiorhef tomplexg.g, clockwise.

If there are holes in the mesh, then the cycle for vesitexay be split into multiple “paths” of connected
vertices. Each path is stored separately.

The entry for each vertex begins with a gamma code for

, the degree of that vertex.

Our structure supports the operati@earch ,insert , anddelete , as follows:

search (a,b): finds all vertices: such thata, b, ¢) form a face in). This requires searching the cycle of
neighbors of: for the predecessor and successab. of

insert (a,b,c): adds the facéa, b, c) to M. This requires updating the entry for each vertex. For exam-
ple, the entry for vertex is searched for the path, ending withb and the pathP. beginning withc.
If no P, or PP, are found, then new paths of lengthare created to contain the missing vertices. The
pathsP, and P. are concatenated. The same process is applied to the cytgghibors for vertices
bandc.
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Figure 7.1: The neighborhood and corresponding differ@ock data for vertex 314. The first entry, 6, is
the degree of the vertex. Other entries are the offsets afalghbors.

delete (a,b,c): deletes the facéu,b,c) from M. This requires updating the entry for each vertex. For
example, the entry for vertaxis searched for the path containihgaindc. The path is split in two
betweerb andc. If either of the resulting paths has lendtht is deleted. The same process is applied
to the cycle of neighbors for verticésande.

This interface supports traversing the mesh by repeatedations ofsearch . The time required for
an operation om is O(|a|); in bounded-degree meshes thi€ifl ).

We compress this data structure using difference codirtperahan storé, ¢, d, e, . .. in the entry for
a, we storeb — a,c — a,d — a,e — a, .. ., as shown in Figure 7.1. The differences are gamma codeag(usi
a sign bit) and concatenated. If the entry for a vertex castaiultiple paths, the paths are concatenated in
the entry; each gamma code is followed by a flag to indicatenvame path ends and the next begins. The
entry for each vertex is stored in a variable-bit-lengttaastructure, as described in Section 3.2.

To analyze the space usage of this representation, ob$etveach edgéu, b) is stored twice: once in
the entry fora and once in the entry fdr. In each case the cost of the gamma cod@ (g |a — b|). The
cost of storing a gamma code for the degree of each vertesssti@an two bits per edge. Thus the total
space used iI9(3_ , ;e log la — b]) bits.

As in Section 7.3, if the vertices of the mesh are giveit@mpact labeling (as described in Section
5.2), then the representation of the mesh will (e ) bits.

Generalization to 3D. In 2D our representation mapped each vertex to the cycleighbers around that
vertex. In 3D our representation maps each edge to the cinkighbors around that edge. In other words,
for each edgéa, b) in the mesh, the representation stores the set of vertiaéshire a face with bothand

b. (This is known as thénk of the edge.) The cycle is ordered radially around the edg¢fesimrientation of
the complexg.g, clockwise. This is similar to the Dobkin and Laszlo [48] mesructure.

To save space, edges are kept in a consistent directione dittionary storesa,b), then it does not
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also storgb, a). The proper direction for an edge is determined by some sitesk (for example, all edges
are stored aéa, b) wherea < b).

The operationsearch (a,b,c),insert (a,b,c,d), anddelete (a,b,c,d) are implemented as in the
2D case, except that searches and updates are now perfomeetfjes rather than vertices. For example,
when insertinga, b, ¢, d) into the mesh, the entries for the edgesb), (a, ¢), (a,d), (b, c), (b,d), and(c, d)
need to be updated. The updates themselves are still justtarrabjoining paths (for inserts) or splitting
paths (for deletes).

Note that there is considerable redundancy in the storageawe described. To resolve a search for
(a,b,c), our structure could query the edge far, b), (b, c), or (c,a), and get the same result in any case.
We can decrease the space requirement of our structure wiitipde optimization: our structure stores only
arepresentative subsef the edges in the mesh. Specifically, it stores only thoges@, b) for which the
labelsa andb are either both odd, or both even. (These edges are callptk$entative edges”.) This still
permits the structure to resolve queries since any triafagle ¢) must contain vertices with either two even
or two odd labels.

As in the 2D case, we compress the structure using differeodiag. For each representative edgg)
with associated cycle of verticesc, d, e, f, ..., we store the table entr{a,b — a), (k,c — a,d — a,e —
a, f—a,...))in avariable-bit-length dictionary structure (as desetiin Section 3.3). Theis stored using
alog |V|-bit representation; the other values are gamma coded archtmmated. The dictionary absorbs
the cost of storing:; it remains to account for the other differences.

Every face(a, b, ¢) in M contributes at most three gamma coded values to the repaéisaen an entry
for ¢ in the cycle of the edgéu, b), an entry forb in the cycle of(a, ¢), and an entry for in the cycle of
(b, c). Each of those gamma coded values has 6ideg |a — b| + log |b — ¢| + log|a — ¢|). The space
used for the cycles of vertex labels is th0§} _ , ;, e log|a — b + log|a — c| + log [b — c|) bits, which
by Lemma 7.3.1i€(3_, 4y log la — b|) bits. The table entry for each edge, b) stores an additional
b — a term which requires anothéog |a — b| bits, which is within our space bound. Storing a gamma
code fork, the number of vertices in the cycle, requi@él) bits per edge. Thus the total space usage is
O(Z(a’b)eE log |a — b]) bits. Again, using &-compact vertex labeling this reducesgn) bits.

Data can be added to the mesh by including it in the dictioeatyies. For example, if data is associated
with a tetrahedroria, b, ¢, d), the data is stored between the verticesdd in the table entry for the edge
(a,b). Each tetrahedron will have multiple representative edg#swhich to associate data; the data needs
to be stored only with one of the representative edges (chiosa fixed manner to make lookup easy). We
make use of this in the compressed data structure. Spelgifialata is to be stored ofu, b, ¢, d) where
a < b < ¢ < d, then at least one of the edggs b), (a,c), or (b,c) must be a representative edge; our
structure stores the data on one of those edges, in thatafrgezference.

7.5 Implementation

To decide which of our structures to implement we examinedsgface usage of each structure. We assume
that the average cost of a difference code is the same i sittueture, and count the number of difference
codes used by each structure.
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In 2D our representation based on edges uses a table(émtty- a), (c—a,d—a)) per edge. Encoding
a is free (because of quotienting), but there are three cddesdsper edge. The 3D generalization of that
structure uses a table entfy, b — a,c — a), (d — a,e — a)) per face. Again the is free, and the cost is
four codes stored per face.

In 2D our representation based on vertices uses two codesfbr edgéa, b): it storesb in the entry
for a anda in the entry forb. The 3D generalization potentially stores each face, ¢) three times (once
each in the entries fafu, b), (b, ¢), and(c, a)), but each edge has>@% chance of not being stored, so the
expected space usagelis codes stored per face. (There is some small overhead pestmtgd, but this is
negligible compared to the expense per face.)

Our representation based on edges has stronger time béunofs (nO (1) time rather thar®(|a|) time
where|a| is the degree of the vertex being examined) but uses more spauticularly for 3D. Accordingly
we chose to implement the representation based on vertices.

Generating Labels. Our space bounds for our compressed structureCide, , <z 10g la — b|) bits.
Achieving good compression with this structure relies owirfig a k-compact ordering, as described in
Section 5.2. To achieve this, our algorithm relabels théces using a technique basedoty cuts. Given

a set of points, the technique first finds which of thandy axes has the greatest diameter. It finds the
approximate median in that coordinate and partitions thetpon either side of that median. The points on
one side are labeled first, then the points on the other sidis.iF done recursively to produce a labeling in
which points that are near each other have similar labels ilsimilar to the separator-tree based labeling
scheme from Section 5.2 except that it is based on the causdirof the vertices rather than on the edges.

If not all vertices are known before the algorithm begins; algorithm can assign a sparse labeling
to the initial vertices. When a new vertex is added, it isgesil a label that is close to the labels of its
neighbors.

2D Triangulation. Our 2D compressed data structure is implemented as follows.
For difference encoding our structure usesrtible codeo store values, as described in Section 2.3.

It is sometimes necessary to store an extrabbitith a valuev. This is accomplished with a shift
operation:v’ «+ 2v + b. In particular, if any value might be negative, our differercoder stores its absolute
value plus a sign bits” — 2|v| + sign(v).

A vertex is represented with a nibble code for the degreeef/éntex, followed by nibble codes for the
differences to each of the vertex’s neighbors. Our impleatamn stores two additional “special-case” bits
with each neighbor to provide information about the trigntjflat precedes it in the link. One bit is set to
indicate a gap in the link; it indicates that there is no tgiarpreceding that neighbor in the mesh. The other
bit is set when data is associated with the triangle pregettiat neighbor. In this case, the code for that
neighbor is followed with a nibble code representation efdhata.

As an optimization, note that for many vertices none of trecid-case bits will be set. Our implemen-
tation stores a bit with the degree of each vertex to indidatene of its special-case bits are set; if this is
so, those bits are omitted in the encoding of that vertex.

85



Block | Blocks Total
Size Needed Space
5 745,151| 10,086,381
6 475,263 9,998,531
7 283,559| 9,920,446
8 164,660| 10,101,104
9 94,105| 10,537,195
10 53,399 11,179,987
11 30,496| 11,974,072

Figure 7.2: The number of extra blocks neededfSrvertices on a uniform distribution in 2D, and the total
space required if we allocag®% more blocks than are needed.

The variable-bit-length array used in our implementat®somewhat different from that described in
Section 3.2. The version of Section 3.2 was developed faemdly short bitstrings, and it is able to pack
multiple bitstrings into one array slot to avoid wasted spduae to underfull buckets. For our application,
each bitstring represents a vertex, and underfull blocksat a problem. Instead, the concern is efficiently
allocating additional storage for overfull buckets.

Our array implementation stores the nibble codes for eadBwe an array containing one seven-byte
block per vertex. If a block overflows (that is, if the storageded is greater than seven bytes), additional
space is allocated from a separate pool of seven-byte bldtkslast byte of the block stores a pointer to the
next block in the sequence. Our implementation uses a lpsbimnique to ensure that the pointer never
needs to be larger than one byte. This requires a hash farttizd maps (addres$), pairs to addresses in
the spare memory pool. Our implementation tests valugsimthe range) to 127 until the result of the
hash is an unused block. It then uses that valueasfthe pointer to the block. Under certain assumptions
about the hash function, if the memory pool is at mi@st full, the probability that this technique will fail
to find ani < 127 is at most 75128 ~ 1016,

If the vertices are labeled sparsely (so that new labels egeberated dynamically), our implementation
also makes use of a hash mapping between labels and vertekldeks. One byte of memory is allocated
per label; if the label is in use, this byte contains a hashtpoito the first data block for that vertex.

One bit is stored with each block to indicate whether theenirblock is the last in the sequence. For
the first block this bit is stored with the degree of the verfex subsequent blocks it is stored as the eighth
bit of the one-byte pointer to that block.

There is a tradeoff in the sizes of the blocks used. Largekblace inefficient since they contain unused
space; small blocks are inefficient since they require spacpointers to other blocks. In addition, there
is a cost associated with computing hash pointers by segydbr unused blocks in the memory pool.
Figure 7.2 shows the tradeoff between these factors for @lauday triangulation algorithm run &1°
uniformly distributed points in the unit square. We chosdaglbsize of7 since it gives the most efficient
use of space.

To improve the efficiency of lookups our implementation useaching system. When a query or update
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Block | Blocks Blocks Used
Size | Allocated | 210 [ 25 [ 220
2 0.55n 59% | 67% | 70%
4 1.3n 90% | 90% | 88%
6 1.55n 90% | 90% | 87%
8 1.3n 78% | 73% | 75%
10 1.8n 30% | 51% | 63%

Figure 7.3: The number of blocks of each size that are akbalcfalr ann-vertex 3D mesh, and the percentage
of blocks that were used far = 210, 215 and22°.

is made, the blocks associated with the appropriate vereexlecoded. The information is represented in
uncompressed form as a list with one vertex in the link pemel# of the list. The lists are kept in a FIFO
cache with a maximum capacity of 2000 nodes. Update opaeratitay affect the lists while they are in the
cache. The lists are encoded back into blocks when they afeefliiufrom the cache.

3D Tetrahedralization. The main difference between our 3D structure and our 2D tstreids the need

to keep track of edges rather than vertices. For the 2D simidt sufficed to keep an array slot for each
vertex; for the 3D structure we need to allocate space fon edge stored by the representation. We do
not use a true hashing-based dictionary structure to keeg tf the edges. Instead our 3D data structure
keeps a map from each vertexo all of its representative out-edges. This is stored asferehce coded
list of the corresponding neighbors. The code for each meigh' is followed by a code for the number
of nibbles in the encoding of the representative efdge’), and a pointer to the first block containing the
data for that edge. (The pointer is stored using the samethiakhas above to keep pointer sizes small.)
Every representative edge has its own block allocated fremtemory pool, with the capability to allocate
additional blocks if needed.

When an edge is queried, our implementation loads only #iddi one vertex and for the edge itself
into the cache. It does not need to decompress the other adpising that vertex.

Since the number of nibbles needed per representative edgée variable, our data structure allocates
from pools of2, 4, 6, 8, or 10-byte blocks to reduce wasted space. The number of blockacim gool was
determined experimentally and is shown in Figure 7.3. Tha siaucture ensures that each pool always has
at leastl0% free space; if a block cannot be allocated from a given pbeldata structure looks for a larger
one. The initial block for each vertex comes from a sepanaig &ontaining blocks of size.

Dynamic point generation. To support dynamic point generation we use an expanded $alaeke. If a
total of n vertices are to be generated, we allow Zarpossible labels. Each label receives a one-byte hash
pointer which, if the label is in use, points to the initiattadlock for the corresponding vertex. The initial
vertices are spread evenly across the label space.
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Incremental Delaunay Algorithm. We implemented a Delaunay triangulation algorithm in twd tmee
dimensions using our compressed data structure. We empbowell-known Bowyer-Watson kernel [25,
131] to incrementally generate the mesh. During the coureealgorithm a Delaunay triangulation of the
current pointset is maintained. An incremental step issgnew vertex into the mesh by determining the
faces (or, in 3D, tetrahedra) that violate the Delaunay itimmd Those faces form the Delaunagvity. The
edges (or, in 3D, faces) that bound the cavity are calledhtiizon The mesh is modified by removing the
faces in the cavity and connecting the new vertex to the boriz

The cavity is connected, so it can be found by a local searcth@wurrent mesh. When a pointis
inserted, the cavity is determined by a search starting ffwerface that containegl To achieve optimal
runtime bounds we use the idea of Clarkson and Shor [41] amttaiaan association of every poiptnot
yet inserted into the mesh with the fagehat containg. The search for the cavity gfwill start att,,. Their
algorithm keeps the history of the mesh and uses that histdocate thef, for eachp as it is inserted. In
contrast we do not keep the mesh history but maintain thecigimm of noninserted pointsto containing
facest, on the current mesh.

At each incremental step all points on faces that were in #vitychave to be reassociated with new
faces using lineside tests (or, in 3D, planeside testsy;abcounts for the dominant cost of the algorithm.
We have carefully implemented thalldozingidea described in [18] and extended it to three dimensions.

Our implementation does not require extra memory for this i points since at any time a point is
either a vertex in the mesh or in one such list. The memorwtiibbe used to store the vertex in the mesh
can first be used as a list node.

The algorithm maintains a work queue of faces whose int®igontain points. When no faces contain
points {.e., all have been added to the mesh), the algorithm terminates.

In this scenario all points are known at the beginning. Weegate labels for the input points using
cuts along coordinate directions as described earlier.riiémes reported in the next section include this
preprocessing step.

Delaunay Refinement. To test our implementation’s performance for the case whem points are dy-
namically generated at runtime, we implemented a 2D Delauafinement code in the style of Rup-
pert [106]. We augment a Delaunay triangulation by addimguoncenters of badly shaped triangles while
maintaining the Delaunay property. When the initial trialadion is built we walk through the mesh once
and check the quality of each face, queuing the ones nofygagjsa preset minimum angle bound. The
same work queue used in the triangulation phase of the #Higois used to store the list of triangles to be
split.

Whenever a new point is generated the algorithm assigns a new label by consgiéhi@horizon
verticesH of the cavity created by and calculating the valuethat minimizes the sum of tHeg norms to
H. It then finds the closest label tothat is not yet used.

In the pure triangulation code, all vertices are known atitbginning, so we can store the point coor-
dinates and the first level vertex arrays densely. In theeafent code we can only fill these arrays up to
about85% before the open address hashing takes prohibitively lorgalb require extra memory for the
additional map from the label space to the vertices.
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Distribution | # Pts| # Extra Blocks| Time(s)
uniform 218 70,823 3.16
normal 218 72,239 3.52
kuzmin 218 72,917 4.36
line 218 66,297 3.64
uniform 220 288, 255 13.25
normal 220 292, 580 14.41
kuzmin 220 292,709 21.34
line 220 276, 124 15.86

Figure 7.4: The number of extfabyte blocks needed to store triangular Delaunay meshesfmus point
distributions using our structure and the runtime of our 2plementation.

7.6 Experimentation

We report experiments on a Pentium 4, 2.4GHz system, ruriR@aHat Linux Kernel 2.4.18, GNU C/C++
compiler version 3.0.1. For all geometric operations dide, planeside, incircle, and insphere tests) we use
Shewchuk’s adaptive precision geometric predicates [1\ME] use single-precision floating-point numbers
to represent the coordinates. For every problem settingsemedthe results of our experiments were very
consistent over multiple runs. Therefore we do not repargea of results for identical runs.

2D Delaunay. We tested our 2D implementation on data drawn from sevesdfilolitions to assess its
memory needs for non-uniform data sets. We ran tests on Hogviing distributions: Uniformly random,
normal, kuzmin, and a line singularity. Details on thesdritlistions can be found in [19]. In Figure 7.4
we report the number of extra (overflow) 7-byte blocks usedttme Delaunay meshes of various point
distributions and the runtime of our implementation. It denseen that the runtime varies by about 40%
while the number of extra blocks varies by about 10%. Furntivge the number of extra blocks used comes
to only about 28% of the number of default blocks needed, wisoone per vertex. In our experiments
we set the number of extra blocks available to 35% of the nurobelefault blocks. The extra blocks
therefore fill to about 80% of capacity. Given this settirigg total space we require for the mesh.i5 x 7
bytes/vertex, which is 4.725 bytes/triangle.

Next, we compare runtime and memory usage of our implementtd Shewchuk’s Triangle [110] code
which is the most efficient code reported by Boissonnat ef2a]. In Figure 7.5 we report the runtime of
our (incremental) code vs. Triangle’s divide-and-concurad its incremental implementation. We report the
total memory use of both codes in Figure 7.6 and break dowmeaumnory use for the simplicial mesh, point
coordinates and the work queue in Figure 7.7. While usinfgghsut a third of the memory our code runs
about10% slower than Triangle’s divide-and-conquer implementatmd is about an order of magnitude
faster than Triangle’s incremental implementation. In cane50% of the memory is used to represent the
mesh40% to store the coordinates, amntd% for the work queue.
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Distribution | # Pts| # Bytes used Time(s)
uniform 216 | 2,525,309 9.26
normal 216 | 2 572,659 9.38
kuzmin 216 1 2 571,769 | 11.23
line 216 | 2 264,465 8.77
uniform 218 110,135,321 | 39.59
normal 218 110,463,761 | 41.89
kuzmin 218 110,444,195 | 45.04
line 218 19,372,669 | 38.97

Figure 7.8: The number of bytes needed for occupied blockstdie tetrahedral Delaunay meshes for
various point distributions and the runtime of our 3D impéartation.

3D Delaunay. As in 2D we tested our 3D implementation on the same four pdisttibutions. In our
3D structure we allocate memory blocks of different size cdmpare the memory needs for various point
distribution, we report the number of bytes used to storeupied blocks in Figure 7.8. As in 2D the
runtimes differ, but the memory needed is nearly indepenadfthe distribution.

For the distributions we tested we found that our meshesagwed roughly6.5 tetrahedra per vertex.

We compare our 3D implementation with uniform random datShewchuk’s Pyramid code [109]
Figures 7.9 and 7.10 show the runtime and the memory usagereF7.11 breaks down the memory usage
of our code.

In comparison our implementation runs slightly faster asesuonly about one third of the memory. In
3D the representation of the mesh uses ali6lt of the total memory (about.5 bytes per tetrahedron,
which is slightly undes0 bytes per vertex for the distribution we tested); point domaites and work queue
account forl8% and7%, respectively.

2D Delaunay refinement. For our 2D Delaunay refinement code we compare runtime andomyense

to our pure 2D Delaunay code, as shown in Figures 7.12 and THefigures show problem size in terms
of the final number of faces in the mesh. In the pure Delaundg calln points are known initially; in the
refinement code, only /2 points are known initially and the other/2 are generated and labeled on the fly
as described in Section 7.5. We refine the mesh up to a mininmgie af26.85°.

The runtimes for the two versions are almost identical. Wedn@bout30% more memory in the re-
finement code. Additional memory is needed for the map frdmelkato vertices and for slack in the point
coordinate array and the first level vertex array neededuphashing technique.

\We note that the version of Pyramid we are using is a Betagelea
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7.7 Discussion

The representation we described can be used as an altert#ixternal memory (out-of-core) representa-
tions, when the mesh is within a factor of five or so of fittingnemory relative to a standard representation.
Our representation has the advantage that it allows ranadoesa to the mesh without significant penalty,
and can therefore be used as part of standard in-memornyithlgsr(or even code) by just exchanging the
mesh interface.

In conjunction with external-memory techniques. For very large problems our representation can be
used in conjunction with external-memory techniques. &incour representation the ordering of the ver-
tices is designed to be local (it is based on the quad/ocdizeemposition), and the blocks of memory for
vertices are laid out in this ordering, nearby vertices mntesh will most likely appear on the same page.
(One problem is that, if the data for a vertex overflows, ogtidhary structure assigns a new block for the
overflow data using a hash, which has no locality. In Chaptge &orrect this by, essentially, breaking the
large dictionary ovefV| vertices into an array of smaller ones fid vertices each.) Using this representa-
tion, algorithms that have a strong bias to accessing thé toeally (e.g., see the recent work of Amenta,
Choi and Rote [5]) will tend to have good spatial locality amork well with virtual memory when it does
not fit into physical memory.

Generalizations tod-dimensions. The idea of storing the link of every — 2 dimensional simplex gen-
eralizes to arbitrary dimension. The compression teclenalso generalizes to arbitrary dimension, but is
likely to be ineffective for large dimensions. This is besauhe size of the difference codes depends on
the separator sizes [15], which in turn depends on the dimen€hoosing an effective way to select the
representative subset of tde- 2 dimensional simplices will depend on the dimension and doded to

be considered to use our representation on dimensionggthah three. We have not done any experimen-
tation to analyze the effectiveness of our techniques oredgions greater than three, or to compare our
representations to other representations.

Vertex Relabeling Schemes. Our system ofc- y- z cuts for relabeling vertices is effective, but crude. It
could be improved using ehild-flipping optimization as discussed in Chapter 5. Essentially, whakimg

a cut, the relabeling algorithm can use information fromt gasgs to decide which side of the cut should
receive the higher part of the label space.

A further improvement might involve labeling the verticesing a Hilbert curve. We experimented
briefly with using a Hilbert curve library to relabel the vieds, but found that the relabeling time required
was too great compared to the increase in compression pehvidther authors, such as Papadomanolakis
et al. [99], have been able to successfully use a Hilbertectovelabel the vertices of a tetrahedral mesh for
locality.

Point Location. In addition to the use of Hilbert curves, Papadomanolak&.atiescribe a technique for
rapid point location based on locality of vertex labels. Talfihe tetrahedron containing a vertex, they locate
the nearest point in Hilbert space and walk through the meshet destination. Since our mesh structure
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has locality of vertex labels as well, it might be possibledmbine this technique with our work to produce
a savings in both time (in bulldozing the points to allow farr goint location) and space (since the work
gueue could be replaced with a more compact structure).
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Chapter 8

Compact Parallel Delaunay
Tetrahedralization

8.1 Introduction

In Chapter 7 we presented a compact data structure for exneg 2D and 3D meshes, accompanied
by a sequential algorithm using the structure for Delaumaydgulation. In this chapter we show how to
parallelize the algorithm. We describe changes that wedert@mthe algorithm and data structure.

For the 3D case we present experimental results. When weaserthe problem size and number of
processors by a factor 6fl, the vertex insertion rate increases by a factogi7. However, we cannot
call this a “speedup” measurement since the runs are orrafiffgob sizes and the algorithm performs
O(nlogn) work for the distributions we test. The amount of work perfed by the64-processor run
is more than64 times greater than the amount performed by the one-procesep so the ratid37.17
underestimates somewhat the actual speedup of the algorith

These results could be useful for many applications dealiily large 3D meshes. As an example, the
Quake project [123] makes use of hexahedral meshes of sittelupi billion grid points. That application
uses an out-of-core algorithm to generate the mesh, anchezabkedra to decrease the number of elements
in the mesh. Our structure can manipulate tetrahedral mesftthat size in main memory: witbd proces-
sors it generated a mesh containingl billion vertices andl0 billion tetrahedra using512 seconds and
197GB of RAM. The vertices were chosen uniformly at random fréwa tinit cube.

The compactness of our data structure is preserved: wherstiicture of Chapter 7 uséd bytes
per vertex for3D mesh data, our structure here ug&ss bytes per vertex counting overhead for faster
decoding and for synchronization. With the addition of gp#ur vertex coordinate24 bytes per vertex)
and temporary storage for the meshing algoriti2® jytes per vertex), the total memory footprint of our
algorithm is130 bytes per vertex. This is a significant improvement overddeash representations, which
can require300 to 500 bytes per vertex just for meshing data.

The algorithm as presented is only used to construct a Dajamesh over a given set of points; however,
the generalization to Delaunay refinement described fors#rpiential version would also apply in the
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parallel case.

We have tested our algorithm on the uniform, gaussian, kuzarid line singularity distributions (see
[19] for details). For those distributions its time and spasage are nearly independent of the distribution
used. We also tested our algorithm on real-world data: afs&éBmillion grid points from the Quake
project [123]. The fact that the vertices were at grid popased some challenges to our application, but we
were able to overcome this using small random perturbations

Our algorithm is a shared-memory parallel version of theanmental insertion algorithm from Chapter
7. To review, during the course of the algorithm a Delaunangulation of the current pointset is main-
tained. An incremental step inserts a new vertex into thehnbgsdetermining the elements that violate
the Delaunay condition. We use the idea of Clarkson and SHdrgnd maintain an association between
uninserted vertices and the tetrahedra containing thatiee® We keep a work queue of tetrahedra whose
interiors contain points; threads draw tetrahedra at nanttom the queue for processing. Threads lock
pieces of the mesh as they prepare to insert a vertex; if adhseunable to obtain a lock, it aborts the
insertion and draws a different job from the queue instead.

We have implemented several optimizations to improve thallgh performance of the algorithm. In
particular, we bootstrap the algorithm by growing the mesfuentially (using the Pyramid algorithm of
Shewchuk [109]) until it is sufficiently large to avoid exea®& contention between threads. We then run
parallel point-location to associate all uninserted eesdiwith simplices in the mesh. The main incremental
algorithm begins once this point-location step is complete

Information in our data structure is stored by vertex lahseing difference coding for compression. To
improve the quality of difference coding, we preprocesdripat vertices, relabeling them using y- = cuts
so that vertices that are close spatially have similar &abel

Our basic data structure is a variant on the 3D representfition Section 7.4. The structure is modified
to improve data locality: it is divided into groups 6f vertices, and hashing is only performed within each
group. (That is, an edge, v') is stored in the hashtable corresponding to the group aontgi.) Groups
can be locked individually to prevent concurrent access blfipte threads.

In this chapter we describe the changes made to parallelizalgorithm. We discuss our locking
mechanism and several means of decreasing contention éretilveeads for locks. In our experimental
results section we present results from running the alyurivith varying queueing disciplines and varying
point distributions. We analyze the speedup and the timespade efficiency of the algorithm for up ¢d
processors.

Related Work. There has been significant previous work on parallel Delalgorithms, using three
main approaches to avoid conflicts between threads.

The first approach is that of divide-and-conquer: The megteursively) partitioned in two regions,
with each partition built by a separate processor. The ldogenveen the regions must be constructed
separately. Aggarwal [2] described an algorithm which trmesed the border by joining the regions after
they were built. Chen et al. [35] described an algorithm Wwhassigned certain points to both regions;
this resulted in some duplicate work but meant that jointmg regions involved only discarding duplicate
triangles. Hardwick [63], Blelloch et al. [19], and Lee et [@7] describe an algorithm that projects the 2D
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points to a paraboloid in 3D, compute the lower convex hult| ase that to derive a border before building
the regions. These algorithms only work in two dimensions.

The second technique for parallel Delaunay meshes invaheeemental insertion (using the Bowyer-
Watson kernel [25, 131]). Most algorithms for incrementedrtion avoid collisions by assigning a region
of the mesh to each processor. Operations involving maltiggions of the mesh are handled by message-
passing between processors. For this technique it is reagetssperform load-balancing between regions
while still ensuring that each region’s border is small. IhtRis was done by Okusanya and Peraire [93] and
Chrisochoides and Sukup [39].

The region-per-processor technique was also used by €haogites and Nave [37, 38] to produce a 3D
parallel algorithm for a message-passing architecturechvii the detail in that work involved minimizing
the latency from interprocessor communication, a problédritivwe can avoid since our concern is with a
shared-memory machine. Also, our work is on a greater scalelargest mesh iS000 times larger than
theirs.

Kohout et al. [76, 75] describe a 2D incremental insertiagoathm which does not assign a region to
each processor; instead, all processors draw from a glalgaleg similar to our own work. They report a
speedup of up t6.84 on eight processors. Their algorithm uses a DAG data steid¢tr point location
(whereas our algorithm associates points with tetrahedsate memory). Kohout et al. also give a good
survey of related work.

None of these consider space-efficiency of their repredenta The only compact dynamic mesh rep-
resentation we know of is our own, described in Chapter 7.

Compressed Meshes. There has been considerable work involving compressedaaddh, 61, 121, 98,
105, 120, 70, 66, 53]. In three dimensions these methodsarapress a tetrahedral mesh to less than a byte
per tetrahedron [120]—about 6 bytes/vertex (not includiegex coordinates). These techniques, however,
are designed for storing meshes on disk or for reducing rmess$on time, not for representing a mesh in
main memory. They therefore do not support dynamic queriegpdates to the mesh while in compressed
form.

Another option for handling larger meshes is to maintainttesh in external memory. To avoid thrash-
ing, this requires designing algorithms for which the asdesthe mesh is carefully orchestrated. Several
such external memory algorithms have been designed [5513183, 128, 7, 124]. Of particular note is
the bucketed randomized insertion order scheme of Amerah E], which improves the memory locality
of an out-of-core tetrahedralization algorithm by altgrthe insertion order of the vertices. This insertion
order might combine with our own work to form an improved otHdeore algorithm using compressed data
structures with very strong memory locality. We discuss fhither in Section 8.5.

8.2 The Algorithm

The sequential version of our algorithm is described inidet&hapter 7; we will summarize it here.
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Locality. For several purposes, involving both compression quality lacality of memory access, we
found it important to ensure that vertices that were closgially (eg, those likely to share edges in the
mesh) had similar labels. To ensure this, as a preprocestpgve relabeled the vertices usingy- = cuts.

Given a set of points, our algorithm first finds which of they, andz axes has the greatest diameter. It
finds the approximate median of that diameter and partitioagoints using that median. The points on one
side are labeled first, then the points on the other side. i$hisne recursively (and in parallel) to produce
a labeling in which points that are near each other haveainabels. This is similar to the separator-based
technique for graph relabeling from Section 5.2 except ithatcurs before any edges have been added to
the graph.

If not all vertices are known before the algorithm begins; algorithm can assign a sparse labeling
to the initial vertices. When a new vertex is added, it isgesidl a label that is close to the labels of its
neighbors. In previous work [14] we presented results foretabnay refinement algorithm that made use
of this technique; this algorithm could be made parallel gtraightforward fashion.

Sequential Insertion. We employ the well-known Bowyer-Watson kernel [25, 131]rtorementally gen-
erate the mesh. The algorithm maintains a Delaunay triatigual of the current pointset at all times. An
incremental step inserts a new vertex into the mesh by detemgnthe elements that violate the Delaunay
condition. Those elements form the Delaumayity. The faces that bound the cavity are calledhbezon
The mesh is modified by removing the elements in the cavitycamthecting the new vertex to the horizon.

To achieve optimal runtime bounds we use the idea of ClarksohShor [41] and maintain an associa-
tion of every point not yet inserted into the mesh with the tetrahedgptihat containg. The search for the
cavity of p starts at,,. With each tetrahedron we keep data indicating which uniedgoints are contained
in it. We maintain a work queue of tetrahedra which contaimso

At each step, the algorithm draws a tetrahedron from the fsbthe queue. The algorithm checks that
the tetrahedron is still in the mesh (that is, that an updasenot deleted that tetrahedron since it was added
to the queue). If so, the algorithm extracts a peiftom the tetrahedron and performs the insertion. It uses
the bulldozingidea described in [18] to reassociate points from the cawitii new tetrahedra. Any new
tetrahedra that contain points are added to the back of thie quzue.

This algorithm has an expectéd{n log n) runtime if the elements for insertion are picked at random.

8.2.1 Parallel version.

The parallel version of the algorithm is the same as the sdigleversion except that every thread draws
work from the queue. To avoid overlapping reads and writésden threads we use data locks in two ways:
on the mesh and on the work queue. All data locks are “teg&siaather than “wait-locks”: if a thread fails
to acquire a lock, it aborts the operation rather than waitom the lock to become free.

The meshing data structure stores edges in a variabledmth dictionary structure, as described in
Section 7.4. To improve memory locality, vertices are dididnto groups of siz€/, and each vertex group
has its own hashtable in which to store edge data. (In ourrerpats we usés; = 16.) With each vertex
group we store a lock, so that only one thread may accessrihgh gt a time. The space cost of the lock is
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amortized over thé& vertices in the group.

As athread explores the cavity for a pojnit secures the lock on each vertex it encounters. (Reall th
the vertices have been relabeled so that vertices withaiitaibels are close together; it is likely that many
of the vertices for a cavity may share the same few locks.) thfread encounters a vertex that is locked
by another thread, it aborts the insertion: it releasesfalbdocks and returns the tetrahedron to the work
gueue. Otherwise, once the thread has secured the lock$ ointlad cavity, it performs the insertion as
normal and releases the locks when finished.

The work queue is also secured by locks to prevent concuaetsess. In the parallel version fpr
processors the work queue contalfig subqueues. (We experimented with several queue confignsati
see Section 8.4 for details.) Each subqueue has its ownatefdack; when a thread accesses the work
gueue, it probes the subqueues at random until it acquiedstk on one. The thread operates on the queue
(adding a number of tetrahedra to be processed, or randofirycéng a tetrahedron for processing) and
then releases the lock.

In rare cases it may be necessary for a thread to allocate memgory using calls tonalloc . (For
example, this is needed if a hashtable overflows.) To do thisesad must wait until it acquires a global
lock. This is the only time in our algorithm when a thread wait acquire a lock.

Contention. When the mesh is very small compared to the number of threpelsating on it, there is
danger of contention: multiple threads may all competelierdsame few vertices, such that for a long time,
no thread is able to acquire enough vertex locks to perforinsertion in a certain area of the mesh. This
may result in a few very large tetrahedra remaining untodchkéth many uninserted vertices on them,
while other areas of the mesh are tetrahedralized to a findutes. When a thread finally acquires enough
locks to handle the tetrahedron, the associated cavityryslamge. In addition to the obvious inefficiencies,
the space required to hold the full cavity in the cache is iciemable; this places strain on the caching and
memory allocation structures, which is undesirable.

An easy solution to the contention problem is to hold someaitis back at the start of the algorithm.
Experimentally we find that restricting the density of tlie4o one pe2'* vertices in the mesh is sufficient
to eliminate contention almost entirely. Unfortunatelyistcauses other types of slowdown: for the initial
214 vertex insertions, only one thread is active in the mesh.

To see why this is a problem, consider the time complexity wdréex insertion. We assume that finding
the cavity for a vertex requires constant time per insert{@mis is the case for bounded-degree meshes in
the absence of contention. With random data, for exampbd, eavity contains an average2if tetrahedra).
However, our algorithm must also perform planeside testth® uninserted vertices that lay in the deleted
tetrahedra. 1% of then vertices have been inserted, then there are an exp@c¢tetk) vertices per insertion
that require planeside tests. (In particular, the firstrinse performed require€(n) planeside tests for the
uninserted vertices.) Performing all of these tests with thmead is inefficient.

Bootstrapping via Pyramid. To run our algorithm in parallel, we need to build the mesfiicightly large
that all threads can use it at once. To do this we make use qiaaate tetrahedralization algorithm—the
serial Pyramid algorithm of Shewchuk. That algorithm idetdi#nt from ours in that it does not associate
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uninserted vertices with tetrahedra; instead, to insedrtexv, it walks through the mesh using plane-side
tests to locate the tetrahedron that should contain

Our bootstrapping algorithm works as follows. Giververtices andg processors, we first relabel the
vertices using:- y- z cuts, as in the standard algorithm. We then sarhiplertices for insertion via Pyramid.
(We could perform the sampling at random; however, sincdabels are assigned using y- z cuts, we
instead sample at evenly spaced intervals. This producesra avenly spaced distribution.) Once the
Pyramid mesh data structure is built, we perform point locabn the remaining vertices to associate them
with tetrahedra in the mesh.

Each processor performs point location on a contiguouskhdbwertices. Since this does not involve
modifying the mesh it produces no conflicts between thre&tewchuk’s point location routine allows us
to begin the walk from any tetrahedron in the mesh. Since énces have high spatial locality (due to our
reordering viac- y- z cuts), we begin the walk for each vertexrom the tetrahedron that contained vertex
v — 1. The cost for this point location is thus quite low.

When all the vertices have been mapped to tetrahedra, tlzenRYymesh structure is deallocated. The
work queue is allocated, and the tetrahedra are insertedt.ifi he space used for Pyramid is reused for the
work queue, so that it does not add to the total space cose@lgjorithm.) Our parallel insertion algorithm
then begins as normal.

There is a tradeoff between insertion of vertices using $hews mesh-walking code and our bulldoz-
ing code. If there are total points, and: points have been inserted into the mesh, then insertingtexver
using our code required(n/k) work (spent using planeside tests to reassociate the poitits cavity with
new tetrahedra). The cost of the same insertion using Pylram‘)(k%) serial time, which is equivalent to
@(pk:i) work.

To optimize performance we must selecdt auch that these costs are balanced. Solving the expression

r= p/ﬁ yieldsk = (%)%. For our experimental setup, however, we alwaysmuse 2245p: the same:

should be valid throughout. Experimentally we find thaghould be betwee!® and2?° for best perfor-
mance. With64 processors, our initial mesh needs roug?dy vertices to avoid contention. Accordingly
we use bootstrapping @ vertices for all of our tests.

Cleanup. As the algorithm nears termination, it may occur that onlg cegion of the mesh still contains
uninserted vertices. In this case, the algorithm may erteowontention. To prevent this, threads leave
the mesh as the number of remaining uninserted verticegaees: threadl leaves the mesh when fewer
than2048k uninserted vertices remain. Since the last insertions @ite cppid (as they involve almost no
planeside tests), this does not cause significant slowdown.

8.3 Data Structure

Here we summarize the data structure we use to represenDonre3hes. The structure is adapted from
that of Chapter 7. We have made several modifications. Restash the edges of our structure explicitly.
The previous implementation stored a pointer to each edge fine bucket corresponding to its first vertex.
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Our new data structure hashes on the full edge as descriti#sktion 7.4. Second, we divide the hashtable
into groupscontaining data fot; = 16 vertices each, and assign a data lock to each group. Thirdsee
a simplified memory-allocation system. Our representatiom Chapter 7 used a system that allocated
memory blocks of size, 4, 6, 8, or 10 bytes, depending on the space required. Our new repreisentat
allocates only fixed-length blocks of size six bytes. Founth take special care to avoid thread contention
for memory pages by allocating all data for a vertex groupointiguous memory.

The data structure supports the following operations:

e add (v, ve, v3,v4,d) adds the (oriented) tetrahedrom , v,, v3, v4) to the mesh, with associated data
d. For our applicationl is the label of an uninserted point contained within theatetdron.

find (v1,v2,v3) searches the mesh for the tetrahedron containing the {edetriangle(v;, v, v3).
It returnsv, and the associatet

delete (v1,v,vs3,v4) deletes the tetrahedron from the mesh.

lock (v) attempts to lock the vertexand returns a boolean indicating success or failure.

unlock () releases all locks owned by the calling thread.

As in the sequential version of our algorithm, our structtoges thdink for a set of edgesl{simplices).
The link of an edge is the oriented cycle of vertices that echio both endpoints of the edge (see Figure
8.1 for an example). Not all edges are stored: only edgesdegtwertices having the same even-odd parity
are kept in the dictionary structure. This still permits agdsolvefind queries since any triangle must
contain at least one such edge. Also, edges are only stomwkidirection, determined according to a hash
function.

All vertices in the link for an edgév,v’) are stored by vertex label, and compresseddifference
coding[136] with respect ta. The difference code we use is thgte-aligned codérom Section 2.3. We
chose this code because it is rapid to encode and decodeqasbed in Section 5.7). The datlafor a
tetrahedron is stored as described in Section 7.5. For qalicapion, this data is the label of an uninserted
point that is contained in the tetrahedron. This data is difference encoded with respecti#o

The codes for all of the data and vertices in an edge’s linkcaneatenated. The resulting bit-string is
stored in a variable-bit dictionary structure as describe8ection 7.4.

Uninserted Points. It may occur that a tetrahedron contains more than one utéuspoint. We represent
these points using a linked list. We keep an amayt [0..N — 1] such that, if poinp is contained within
a tetrahedron, thenext [p] is the index of another point within the same tetrahedron-(bif there is no
such point). The first point in the list is stored with the &edron in the mesh data structure.

Memory Locality. In an environment in which multiple threads are accessingta structure, it is im-
portant to ensure that memory accesses involved in a quety gosmall set of cache lines. Hashtables
have notoriously poor memory locality; to address this, \wedd the vertices into vertex groups of size
G. (We usedz = 16 in our experiments.) Each vertex group is allocated wittoits hashtablei., its
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Figure 8.1: The neighborhood and corresponding differeocke data for the edgsl4 — 311. The first
entry, 5, is the degree of the vertex. Other entries are the offsdtseafieighbors fron314.

own variable-bit-length dictionary); all data associateith the hashtable is kept in the same contiguous
block. (In rare cases the hashtable may require resizinghioh case the additional memory must be al-
located elsewhere. For the settings we chose this happaghlya 5% of the time.) Edges are stored in
the hashtable corresponding to their first vertex. Alondhhie hashtable data we keep a data lock, shared
by the G vertices of the vertex group; a thread must acquire the loakder to read from or write to the
hashtable.

Caching. To improve the efficiency of lookups our implementation usesching system. When a query

or update is made, the codes associated with the appropdgee are decoded. The information is repre-
sented in uncompressed form as a linked list with one listrpmt vertex in the link of the edge. The lists are
kept in a cache which is specific to the thread performing treygor update. Update operations may affect
the lists while they are in the cache. As part of an updateafipdication may delete simplices, producing

holes in the mesh; however, we maintain the invariant thgedidks that are written out of the cache must
be full cycles. Thus the cache is only flushed after a new xéntertion is complete.

8.4 Experimentation

Experimental Setup. We ran our experiments aachel.psc.edu [101], a pair of HP GS 1280 SMP
machines with 64 1.15-Ghz EV67 processors each. The opgrsyistem was Tru64 Unix. We used the
OpenMP [94] library to provide parallel functionality. Oaoode was written in C and C++; we compiled
using the commandxx -O -fast -arch ev7 -tune ev7 -omp

There were 4 Gbytes of RAM available per processor. Giverspace usage (discussed below) this was
sufficient to build a mesh of abo2t*® (about23 million) vertices per processor.
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processors: 1 2 4 8 16 32 64

Total runtime | 3202s| 3769s| 4352s| 4435s| 4686s| 5090s| 5512s
Parallel loop | 2995s| 3553s| 4063s| 4159s| 4416s| 4725s| 5064s
so, Vixs/p/sec | 7130 | 5388 | 4221 | 3990 | 3454 | 3170 | 2853
$10, VIXs/p/sec| 7768 | 6809 | 6183 | 6043 | 5779 | 5439 | 5101
s15, Vixs/p/sec| 7678 | 7152 | 6596 | 6510 | 6263 | 5935 | 5712

Init Fails 0 3.8M | 54M | 6.2M | 6.5M | 6.7M | 6.7M
Dig Fails 0 40K | 65K | 80K | 90K | 99K | 106K
Rep Fails 0 1.IM | 22M | 29M | 3.1M | 3.3M | 3.2M

Table 8.1: Performance measurements per processor folgmuitlam. We inserte@?* (about 23 million)
vertices per processor.

We used the exact arithmetic predicates of Shewchuk [11HlIfgeometric tests. Additionally we used
the beta version of Shewchuk’s Pyramid code [109] to bampstur main parallel algorithm.

Main Results. We ran our algorithm on points with the uniform distributiosing betweenl and 64
processors. In all cases we us&d?> (about 23 million) points per processor. We used a fixed amoin
bootstrappingZ?° vertices) for each run. In the one-processor case our #igotook3202 seconds, for an
average o410 vertices/second. In th&l-processor case our algorithm averagads vertices/second per
processor. The vertex insertion rate increased by a fa€td8r.67. This ratio actually underestimates the
speedup of our algorithm since the amount of work per verisgried i (log n) (for the distributions we
test). After accounting for this discrepancy we get a sppedd6.27.

We decompose the runtime of our algorithm into several fadieee Table 8.1). The total runtime listed
includes all steps of the algorithm from y- z reordering to termination. The next time measurement given
includes only the parallel loop (that is, without the bo@tpping, reordering, or initialization phases). For
convenience of analysis we divide the parallel loop istiEgess . . . s15, each of which involves inserting
1/16 of the total pointset. (Note that involves slightly fewer insertions than the others sincgoés not
include the2?® vertices used in bootstrapping.) For eaclsgfsio, ands;5 we give the number of vertices
inserted per processor per second. The higher cost ofrestdigs is due to the large amount of point-location
work performed during these steps.

Finally, we give three measures of contention. A lock falig classed as anitialization failure if the
thread fails to obtain the lock on one of the vertices in tligirtetrahedron, or dig failureif the thread fails
to obtain the lock on a subsequent vertex while performimginisertion. If the failure occurs immediately
after a previous failure, it is instead classed aspeat failure We give the average number of each type of
failure per processor.

The64-processor run inserted 518,041, 200 points, producing0, 274, 246, 916 tetrahedra. As far as
we know this is the largest tetrahedral Delaunay mesh tteabban generated.
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Init Rep | Maximum Runtime
Discipline Fails | Fails | Queue Sizeg (main loop)
FIFO (2p) 113M | 234M 181M 4620s
FIFO (10p) | 51M | 23M 160M 4321s
QR (2p) 68M | 19K 257M 4165s
QR (10p) 37M | 11K 200M 4234s
RAND (2p) 32K | 107 595M 4249s
RAND (10p) | 32K 47 589M 4300s

Table 8.2: Impact of various queueing disciplines on ouowligm using22”-> (about190M) vertices and
processors.

Queueing Disciplines. In our algorithm there is a central work queue from which latetads draw tetra-
hedra for processing. To avoid concurrency issues, theegisedivided into a number of subqueues; when
a thread wishes to access the queue, it chooses randomlyHeosubqueues until it finds one that is not in
use. Here we discuss the issues involved in design of the gueke.

We considered three possible queueing disciplines for auk ueue. The first we considered was the
standard FIFO queueing discipline. A concern with this atbm is that, on completion of an insertion, our
threads may add to the queue a large number of tetrahedralltebaire the same vertex (the newly inserted
point). If two or more threads attempt to handle the tetrededsulting from a single push, then most (or
all) of the threads will encounter locked vertices and abaritie job.

A second discipline we considered was the random queue (RAtéDahedra are added to the tail of
the queue but extracted at random from any point within treuqu This ensured that our threads’ access
patterns were random. Unfortunately we found experimgnthht it led to larger queue sizes than the
FIFO queue: large numbers of “garbage” tetrahedra (thastenthlonger existed in the mesh) collected in
the queue and were not removed until near the end of the #iguri

The third option we considered was the “queue-random” plise (QR), a compromise between the
first two disciplines. A thread would initially attempt toaiv a tetrahedron from the front of the queue; if
work on that tetrahedron failed due to contention, the threauld next draw from a random point within
the queue.

In addition to experimenting with various queueing discigs, we performed experiments with vary-
ing the numbers of subqueues in the work queue. The FIFO quedescipline problem occurred when
multiple threads accessed the same subqueue within a shotrd of time; by increasing the number of
subqueues we hoped to make this event less likely. pHmocessors we experimented with usizygand
10p subqueues.

The results of our experiments are shown in Table 8.2. Weaifyasck failures adnitial failures or as
repeat failuresdepending on whether the thread had encountered a lockefilst prior to the current one.
The increase in failures for the FIFO queueing disciplinguie dramatic, and the increase in queue size for
the random disciplines equally so. However, the corresjpgnithcrease in runtime was fairly small since
most of the failures occurred before significant work wagquared. Thus, we chose to minimize the space
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One processoR?* vertices Eight processorg?”® vertices
Additional Additional
Distribution | Time | Bytes/Vtx Distribution | Time | Bytes/Vtx
uniform 3136s 4.30 uniform 4296s 4.69
normal 3164s 4.67 normal 4301s 4.79
kuzmin 3182s 4.56 kuzmin 4478s 4.80
line 3147s 2.80 line 4301s 3.67

Table 8.3: Space used and time required by our algorithmanous distributions.

used by the work queue: for our experiments we use the FIFQaijg discipline withl0p subqueues.

Space usage. Our algorithm allocates space for several purposes. Thexepordinates usg4 bytes
per vertex (three eight-byte floating-point values). Thaynext [p], used to link together vertices in the
same tetrahedron, usdsbytes per vertex. For the work queue we allocate two entregsvertex, each
containing three integers b, ¢, for a total of24 bytes per vertex. (To find the fourth vertex of a tetrahedron,
the algorithm performs a lookup dn, b, c).)

The mesh structure divides vertices into groups-of= 16; for each group it allocates a structure of
1160 bytes, or72.5 bytes per vertex. This includes blocks of memory for storifference codes (one
7-byte block and ten 6-byte blocks per vertex, as describetkction 7.5), structures to handle allocation
of the memory, and a pointer to an additional block of membngetessary. It also includes a data lock.

When the hashtable for a group overflows, additional mem®mllocated from the heap. We chose
settings such that this occurs @8.8% — 15.4% of groups in the tests for Table 8.1, with the overflow
becoming more likely for larger input sizes. The cost.iB) — 4.77 additional bytes per vertex.

The algorithm allocates some fixed-size structures as watihes and pools of linked list nodes), but
the memory for these is negligible. The total space cost @ioratgorithm, then, is less thar80 bytes per
vertex, meaning that oui0-billion-tetrahedron computation uséd7GB of RAM.

Point Distributions. We tested our algorithm on several different distributiohdata, including uniform,
Gaussian, kuzmin, and line-singularity distributionstdile on these distributions can be found in [19]. For
each distribution we ra2?** vertices on one processor a2id-® vertices on eight processors. We computed
the total runtime required and the number of additional $pfamnemory per vertex allocated. (The numbers
given are in addition to th&24.5 bytes per vertex required in all cases.) Results are showabte 8.3.

We also ran tests on real-world data: a set of grid pointschasean octree decomposition generated by
the Quake project [123]. The problem of computing a tetreddetesh over grid points proved difficult, as
our algorithm was not designed to handle the perfectly fteahedra that result when four vertices lie at the
vertices of a square. To handle this we introduced smallalanperturbations: we added a small random
value to each coordinate of each vertex.

Even after doing this, though, we encountered some diffiauith the tetrahedralization. Our insertion
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Random Boundary| Contention| Time
Perturbation Size (Rep Fails)| (sec)
(fully random) 9K 16M 3132
0—1 99K 20M 3054
0—.5 138K 62M 3230
0—.2 203K 316M 3895
0—.1 274K 836M 3954
0—.05 370K 2207M 7397
0—.02 525K 7976M | 16544
0—.01 (too much contention, aborted

Table 8.4: Performance of our algorithm 27 fully random points (from the unit cube) vers& points
derived from the Quake project [123]. The points providedeha very large boundary, resulting in con-
tention for the lock on the four bounding vertices. Addingdamness to the point locations makes less of
the boundary “visible” to the boundary vertices, making piheblem more tractable.

algorithm begins with a single tetrahedron on four artifitieundary” verticesv; . . . v4, chosen such that
the tetrahedron contains all of the points to be inserted.th&spoints are inserted, the vertices. . . v4
connect to the boundary of the mesh. For the random distitmitve tested this did not pose a problem:
the boundary of the mesh was no more than a few thousandasgtanost. For our octree-decomposition
data, however, the boundary of the mesh was much larger. @dyeel of the vertices; ... v, grew large
enough that there was significant contention between psoceattempting to perform insertions near the
boundary of the mesh. This decreased the performance ofganthm considerably.

We were able to solve the problem by adding more randomnesgetpoints. The smallest distance
between any two points in our octree-decomposition databwemts; we added a random value betwé@en
and1 to every vertex coordinate. By doing this we decreased thadary of the mesh to a reasonable size.
Results are shown in Table 8.4.

One interesting feature of our octree-decomposition das g labeling. For random data, as a pre-
processing step our algorithm relabels the points using = cuts (as described in Section 8.2). For our
octree-decomposition data we found this step was unnegedba points came preordered, with a label-
ing that produced compression superior to what our relappeligorithm provided. (For uniformly-random
points with our reordering, the mesh data2éf vertices required.13G blocks for edge data. For the octree
points with our reordering, mesh data requifeddG blocks for edge data. For the octree points without
reordering, mesh data required7G blocks, which left the hashtables somewhat underfull.yokdingly,
the results in Table 8.4 use the labeling provided by the. data

8.5 Future Work

Out-Of-Core Algorithms.  Our algorithm and data structure could be extended to wodhiout-of-core
setting: because the vertices are relabeled for localibgtraf the memory accesses for an insertion should
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be very close together. Keeping the representation comgueseans that more of it could fit in RAM
at once. Unfortunately, our algorithm as described perfoimsertions in a random order. This could be
improved by using a BRIO (“biased randomized insertion o)dgs] to provide some locality between
insertions. The work queues of our algorithm would need teepéaced with a series @#(log n) groups of
work queues, one for each level of the BRIO.

High-Degree Meshes. We have shown that the algorithm behaves well on severaltdisons as long as
the maximum degree of a vertex is bounded. When the meshicentartices of high degree (as for the
octree-decomposition data, as discussed in Section &gl ;dmpeting threads suffer from contention for
the high-degree vertices. Experimentally it seems thatode is tolerant of four vertices with total degree
138K (out of a total ofl 28 M vertices shared amorggprocessors), but performance suffers when the degree
grows larger.

Part of this problem is from our coarse-grained locking namitm: we divide our data structure into
hashtables, and force threads to lock each hashtable tkegsacWe allocate one hashtable per 16
vertices, and store the data for each edge in a hashtablesporrding to one of its vertices. We require
that a thread acquire the lock on all of the vertices adjgirifre cavity before performing an update. For
correctness it is only necessary to lock dugesadjoining the cavity, not the vertices. A more conservative
locking mechanism might be able to exploit this to toleraighkdegree vertices. However, to do this it
would be necessary to distribute the edges of a high-degmgexvevenly among many hashtables, which
might sacrifice the good memory-locality properties of thgresentation.

Also, even with this improvement, there exist 3D meshes irclvall vertices have high degree. Itis
not clear how any parallel incremental-insertion alganittould handle such meshes efficiently.
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