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Abstract 

Advances in computing and networking are prompting users to change their expectations about 
the availability of computing.  Instead of making primary use of a single machine, users may 
expand their computer-supported tasks across multiple locations, and they may work on some 
tasks for days or even months.  It is well known that such tasks typically involve several 
applications and information resources, making it a chore to rebuild the state of devices and 
software for resuming a task interrupted somewhere else or sometime ago. 

Unfortunately, current systems offer little support for scaling task management in space and in 
time, and consequently users are torn between taking advantage of increasingly pervasive 
computing systems, and the price (in attention and skill) that they have to pay for using them. 

This dissertation describes a new approach to the scalability of task management in space, across 
heterogeneous environments, and in time, allowing users to recover tasks interrupted long ago.  
The approach is based on high-level models of what users need from the computing environment 
for each of their tasks.  Such models are exploited at run-time by an infrastructure that 
automatically configures the computing environment, on demand, on behalf of users. 

We present an architectural framework that grounds our approach, and that embodies new 
system design principles that hold independently of the particular infrastructure implementing 
the framework.  As part of the framework, we present a utility-theoretic model that enables 
finding the best match between user needs and the capabilities and resources in the environment. 

We evaluate our research from three perspectives.  First, from a user’s perspective, we validate 
that the infrastructure: (a) delivers the capabilities for scaling task management in space and in 
time; (b) that it reconciles the competing requirements of sparing users from routine 
configuration chores, while enabling them to take full advantage of the surrounding computing 
environments; and (c) that it is usable by non-experts.  Second, from a software architect’s 
perspective, we evaluate the benefits and limitations of the architectural framework supporting 
our approach.  And third, from a systems perspective, we validate that the infrastructure exhibits 
a performance that makes it usable on a daily basis. 
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To Afonso 
(b. 1996) 
 
 
 Alegria da Criação 
 (Joy of Creation) 
 

Plantei a semente da palavra 
 antes da cheia matar o meu gado 
ensinei a meu filho a lavra e a 
 colheita num terreno ao lado. 
 
A palavra rompeu 
 cresceu como a baleia 
no silêncio da noite 
 há lua cheia 
vi mudar estações 
 soprar a ventania 
brilhar de novo o Sol 
 sobre a baia. 
 
Fui um bom engenheiro 
 um bom castor 
amei a minha amada 
 com amor 
de nada me arrependo 
 só a vida 
me ensinou a cantar 
 esta cantiga. 

 
 José Afonso 
 (1929 – 1987) 
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Chapter 1 

Introduction 

It is well known that computer users may simultaneously handle several tasks, such as preparing 
presentations, writing reports, or answering email, constantly shifting their attention between 
those tasks.  This fact was observed twenty years ago [11], and it certainly holds today [25]. 

One important property of such tasks is that they typically involve several applications and 
information assets.  For instance, for preparing a presentation, a user may edit slides, refer to a 
couple of papers on the topic, check previous related presentations, and browse the web for new 
developments.  Existing work on desktop management has addressed this property, from early 
work on Rooms [18], through recent work such as the GroupBar [84]. 

Another, increasingly important property of user tasks is that they may span multiple locations.  
Advances in ubiquitous computing are prompting people to change their expectations towards 
the availability of computing [2].  Rather than being bound to a specific device, users may desire 
to take full advantage of the computing systems accessible to them, much as they take advantage 
of the furniture in each physical space.  In the example above, a user may start working on the 
presentation while in his or her office, continue at the office of a collaborator, and pick the task 
up later at home.  Ideally, the user should not have to carry a machine around, just as people 
don’ t have to carry their own chairs.  If they so desire, users should be able to resume their tasks, 
on demand, with whatever computing systems are available. 

Yet another important property of user tasks is their duration and recurrence.  Users may work 
on some tasks for days or even months.  Tasks may need to be referred back to or restarted after 
the user thought they were done.  For instance, a user may need to find a presentation given last 
year, so that it can be updated with the latest data and developments for an upcoming meeting.  
And note that this is not a question of finding one file that resulted from the task, but a question 
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of finding the task (definition) itself, so that it can be reactivated or used as a template to create a 
similar task.  In fact, some tasks recur periodically; or to be more precise, users may periodically 
carry out distinct instances of the same kind of task.  For instance, if a user prepares monthly 
reports, although such tasks share some characteristics, each has its own identity and may 
diverge from the common pattern: in July the user might need to include some slides for top 
management, but not in August. 

The Problem 

Unfortunately, current computer systems offer little support for the properties above, and users 
carry the burden of configuring the computing environment1 every time they resume a task 
interrupted somewhere else, or sometime ago.  Users have to deal with finding and starting 
suitable hardware and software components; and they have to deal with accessing the relevant 
information.  

In the example of preparing a presentation, introduced above, suppose that the user wants to pick 
up the task at home using the local computing capabilities, after having interrupted it at the 
office.  It will be up to the user to: 

− Recall which services were required from the environment for preparing the presentation 
(edit slides, review related materials, browse the web, etc.). 

− Map those services into the set of applications available at home, which may be distinct 
from the ones at the office, for instance if different operating systems are involved.  

− Recall which files/web addresses were being consulted and manipulated, and ensure access 
to those files. 

− Activate the necessary applications and recover their user-perceived state: open files, 
recover the working position within those files, recover the layout of windows, recover 
important application settings, etc. 

To make matters worse, users are required to manage resources and dynamic change in mobile 
computing environments. Mobile computing is increasingly available; however, wireless 
networks and mobile devices expose users to wide variations of resources, such as battery and 
bandwidth.  To obtain the desired level of quality of service, users need to be aware of the 
demand that alternative computing modalities pose on limited resources.  Moreover, a setup that 
corresponds to the user’s expectations at some point may be unacceptable a few moments later: 
for example, in heavily networked environments, remote servers constantly change their 
response times and even availability. 

                                                       

1  The computing environment is the set of devices, applications, services and resources that are accessible 
to a user at a particular location.  The accessible devices and software determine the environment’s 
capabilities (what it can do), while the resources (things like bandwidth and battery) influence how well 
it can carry out those capabilities. 
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A consequence is that users are torn between taking advantage of the increasingly pervasive 
computing systems, and the price (in attention and skill) that they have to pay for using them. 

Ideally, users should have easy access to their tasks, no matter where or when those tasks were 
interrupted before.  Furthermore, a good solution should satisfy two competing requirements: 

− Users should be able to take full advantage of the computing environment at each location, 
if they so desire, and as required by their tasks. 

− To the extent possible, users should be spared from the routine chores of configuring and 
reconfiguring the computing environment to support their tasks. 

Take the example of resuming at a different location the task of preparing a presentation, above.  
Ideally the user would be able to browse his currently pending tasks, no matter where they were 
defined, and upon indicating that he wished to resume preparing the presentation, the required 
applications would be automatically identified in the local environment, activated, and their 
user-perceived state reconstructed according to the last time the user worked on that task. 

How Existing Solutions Fall Short 

Several approaches have been developed to assist users with carrying out their tasks.  However, 
these approaches fall short with respect to simultaneously addressing the scalability of task 
management in space and time, and the competing requirements of taking full advantage of 
available capabilities while saving user overhead.  Specifically, this subsection outlines the 
limitations of five existing technologies: desktop managers, remote access using thin clients, mo-
bile devices, mobile code, and internet suspend-resume.  Chapter 2 elaborates on related work. 

Current desktop managers enable users to associate several applications with one task by 
keeping the applications within a specific workspace area, and to quickly switch between tasks 
by flipping from one workspace area to another (e.g., [28,50,58]).  Existing desktop managers 
assume the primary use of one machine, and therefore do not address user mobility.  
Nevertheless, it would be tempting to combine desktop managers with a solution for user 
mobility, such as the ones discussed below. 

Thin clients enable remote access to the user’s computing server (e.g., [12,66]).  Unfortunately, 
this approach has two serious drawbacks.  First, it relies on a stable, fairly high-bandwidth, 
connection – something that is frequently not available to a mobile user.  Second, thin clients fail 
to take advantage of local resources, and, in particular, of the ever-increasing capabilities of 
mobile devices, smart spaces, etc. 

The use of mobile devices such as laptops and PDAs grants ubiquitous access to a user’s 
personalized devices and software.  However, while promoting the self-sufficiency of users, this 
approach offers no support for taking advantage of other devices and computing capabilities in 
the users’  vicinity.  For example, a user that joins a teleconference using his wireless PDA while 
walking down the hall has no automatic support for taking advantage of the large display, wired 
connectivity, and sophisticated teleconferencing application at the office he just entered. 

Another approach to user mobility is based on mobile code, which is capable of migrating 
between devices (e.g., [13,67]).  Mobile code examines the characteristics of each environment it 
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is migrated to, and using internal logic, chooses appropriate interaction modalities.  However, 
this approach relies on the compatibility of the virtual machines in all devices where the code 
will be migrated to.  Furthermore, it relies on the ability of mobile applications to recognize and 
handle the characteristics of each device and other software components in the environment.  
Unfortunately, there is no guarantee that a mobile application will be able to run on every device 
that the user chooses to utilize.  Even if it does run, there is no guarantee that it will provide a 
quality of service comparable to a local, custom built application.  Furthermore, this approach 
doesn’ t enable users to take full advantage of the wealth of existing software, since it requires 
the development of all new applications equipped for mobility, and often requires significant 
extensions to operating systems for distributed access to data and services. 

An approach for mobility that requires no changes to existing software is based on migrating the 
contents of the whole virtual memory between machines: internet suspend-resume [54].  This 
approach, however, is limited to cases where users move only among machines with compatible 
hardware, and therefore fails to enable users to take advantage of diverse environments. 

In summary, the approaches above do not address simultaneously the requirements of (a) scaling 
task management in space and time, (b) enabling users to take full advantage of the capabilities 
around them, and (c) saving users from routine configuration chores.  Some approaches do a 
good job at addressing some of the requirements, but do a poor job at addressing the others. 

Thesis 

This dissertation describes a new approach to the scalability of task management in space and in 
time, for the class of tasks that can be found in an office.  The approach is based on high-level 
models of what users need from the computing environment for each of their tasks.  Such 
models are exploited at run-time by an infrastructure that automatically configures the 
environment, on demand, on behalf of users.  Specifically, this dissertation shows that: 

High-level models of user tasks can be used to address the scalability of task management in 
space, across heterogeneous environments, and in time; while simultaneously (a) enabling 
users to take full advantage of the capabilities and resources accessible in each environment; 
and (b) relieving users from routine chores associated with configuring and managing those 
environments. 

The model of each task includes the definition and the state of the task.  The task definition 
represents the collection of services involved in that task.  For instance, for preparing a monthly 
report, the user may edit the report text, work on a data spreadsheet, and prepare accompanying 
slides for presenting the highlights.  The state of the task captures a snapshot of the user-
perceived state of each service: things such as layout of windows, files being worked on, cursor 
positions and application settings. 
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The scalability of task management in space and time is addressed as follows: 

− By adopting a model of tasks that represents what users need for each task, we can 
reactivate a task at any time, and at any location, matching the user’s needs with the 
services available in each environment. 

− By making such a model independent of specific applications, we can reactivate the task on 
different platforms. For instance, for the task of preparing a report, we capture the fact that 
the user needs to edit a text document, not that MS Word is involved in the task. 

− By using the programming interfaces (APIs) exposed by applications, we capture a high-
level model of the user-perceived state.  Those APIs are used later to reconstruct the user-
perceived state of the task, as needed. 

− By giving tasks a persistent semantic identity (which goes beyond a name, or a set of 
currently active applications) we enable users to find and manipulate tasks, regardless of 
where or how long ago those tasks were defined. 

The competing requirements of enabling users to take full advantage of computing 
environments, while reducing the associated configuration overhead, are addressed as follows: 

− By finding the available components that best fit the user’s needs for each task, the 
infrastructure enables users to take full advantage of diverse environments.  Furthermore, 
by keeping track of user preferences with respect to quality of service, of resource demand 
posed by alternative computing modalities, and of resource availability, the infrastructure 
can select the optimal configuration and carry out dynamic adaptation to changes in the 
environment. 

− By automatically configuring environments, on demand, and by continuously adapting to 
changes in the environment, the infrastructure reduces the burden of routine configuration 
and reconfiguration chores for the user. 

Challenges 

Demonstrating the thesis above entails three top-level challenges:  first, we need models of user 
tasks that serve the goal of this research.  Second, we need to build an infrastructure that exploits 
such models for configuring and continuously adapting the environment to the requirements of 
ongoing user tasks.  And third, we need to incorporate mechanisms into the infrastructure that 
enable users to describe and operate on their tasks.  The following subsections discuss these 
challenges in turn, and Chapters 3, 4, and 5 discuss in depth how each is addressed.  

Modeling User Tasks  

Considerable work has addressed modeling user tasks with goals such as (a) to assist or direct 
the user during complex, multi-step tasks (e.g., [6,36,81,100]), (b) to predict what the user may 
be doing next (e.g., [4,44]), and (c) to assist designers in analyzing and building computer 
systems (e.g. [47,60,96,99] – see Chapter 2 for related work). 
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In this dissertation, the goal is different: task models are used to reconstruct a configuration of 
services in the environment, and to dynamically adjust that configuration in the face of changes 
in resource availability.  Although some research in Human Computer Interaction has exploited 
user models to build self-configurable computer systems, its focus has been on the usability of 
individual applications, specifically on automatically adapting user interfaces to diverse device 
characteristics (e.g., [16,52,89]). 

The main role of task models in this research is to provide users with a notion of task that 
involves the coordinated use of a set of services in an environment, and that can be suspended 
and resumed as a whole.  In this context, task models must be detailed enough to support the 
automatic configuration of the environment, reconstructing, to the extent possible, the user-
perceived state of the services involved in the task.  However, since different environments may 
have very different applications and interaction models, task models should not attempt to 
capture detailed models of how the user interacts with concrete applications.  In other words, 
task models must be abstract enough to be environment-independent, but precise enough to 
allow for the instantiation of the task using the concrete capabilities of the current environment. 

Additionally, to address the heterogeneity of ubiquitous computing environments, and the fact 
that their resources are subject to frequent variation, task models should capture user preferences 
relative to functionality and to Quality of Service (QoS).  Preferences relative to functionality 
play a key role in choosing among alternative configurations for supporting a task.  For instance, 
if a task involves editing a text document and two distinct text editors are available in the 
environment, which should be activated?  The answer depends on how the user appraises the 
functionality of each editor for the task at hand.  For editing natural language, the user may 
prefer an editor with automatic spell checking, but for editing a computer program that feature 
may hinder more than help. 

Preferences relative to QoS play a key role in guiding the policies for adaptation to resource 
variation.  For that, however, we need to take into account that QoS is seldom expressed along a 
single dimension.  For instance, suppose that the user is watching a video over a network link 
and that the bandwidth suddenly drops.  Should an adaptive video player reduce the frame rate, 
or the image quality? The answer depends on the user’s preferences for the current task.  If the 
user is watching a sports event, he may prefer frame rate to be preserved at the expense of image 
quality.  For watching a documentary on painting, the opposite might be preferable.  Task 
models should capture the QoS tradeoffs that are appropriate for each task. 

Furthermore, user preferences should be expressive enough to represent which reconfigurations 
are safe to be carried out automatically, without user intervention, and which are potentially 
disruptive and should be run by the user. 

Finally, to address scalability in time, task models must establish an enduring identity that 
enables users to find (and resume, if necessary) tasks long after they are gone from the list of 
currently active tasks.  Furthermore, task models should enable task browsing based on fuzzy 
remembrances, rather than expecting users to remember a specific task identifier, its precise 
classification, or when exactly the task was carried out.  For instance, if a user needs to find “ the 
report on the trip to Pittsburgh that I wrote last year,”  he may not remember the name of the file 
(Pittsburgh may not be mentioned in the name) and may have no idea under which directory it 
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was filed.  However the user may remember incidental facts about the report, such as the topic 
and who he collaborated with, and should be able to easily find the report based on whatever he 
remembers. 

In summary, we need to define a computable model of user tasks that (a) describes the 
coordinated use of a set of services, in an environment-independent fashion; (b) captures user 
preferences relative to features and QoS; and (c) supports finding tasks after they disappear from 
the list of currently active tasks. 

Infrastructure for Task Management 

The purpose of the infrastructure is to automatically configure the environment, on demand, on 
behalf of users.  Specifically, given a task model (and the user’s intention to resume that task) 
the infrastructure is responsible for (a) determining the set of devices and software components 
that best match the user’s needs for the task; (b) activating those components, reconstructing the 
user-perceived state, possibly adjusting resource allocation among them to meet the QoS 
requirements for the task; and (c) continuously monitoring for changes in the environment that 
would prompt a reconfiguration, and enacting reconfigurations, as appropriate. 

In the context of daily task management, users constantly switch between tasks, incrementally 
change their needs for the ongoing task (e.g., by adding or removing services) and may change 
their QoS preferences midway through a task.  For instance, during a task that involves 
automatic translation of natural language, a user may prefer faster responses over accuracy of 
translation during the introductory part of the conversation, but may prefer the opposite once the 
conversation becomes more involved.  Of course, such changes in the user task may prompt the 
infrastructure to perform a reconfiguration, just as changes on the environment would. 

We need to extend existing software frameworks for adaptation, to account for adaptation to 
changes originating both in the environment, and in user tasks. In fact, current research on 
adaptive software systems has focused on adapting to changes in the environment (fault 
tolerance, or adaptation to changing resources, such as battery and bandwidth) and most have 
assumed that the user’s needs and preferences are relatively static. 

Scaling task management in space implies dealing with heterogeneity of devices and software.  
Allowing users to take advantage of the computing systems accessible to them in different 
locations implies that the infrastructure has to accommodate devices ranging from mobile 
phones, to personal computers, to smart rooms; and has to deal with the plethora of software that 
comes with those devices.  The design of the infrastructure needs to make it easy to 
accommodate existing, out-of-the-box software, while avoiding becoming locked into 
proprietary frameworks of interaction between components. 

The fact that computing environments are increasingly distributed implies that the infrastructure 
must handle variations of resources and service availability as a normal situation, rather than 
exposing it to the user as exceptional (faulty) behavior.  The increasing pervasiveness of smart 
spaces is causing a shift in the paradigm of computer use: from single-device, tightly integrated 
interaction (e.g., desktop and laptop computers), to multiple-device, loose interaction.  For 
instance, for the task of preparing a review of a video clip, a user may watch the clip on a large 
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wall-mounted display, dictate notes into a mobile phone, and transcribe the notes using speech 
recognition software running on a remote server.  For such distributed setups, the infrastructure 
needs to monitor and proactively address situations like the depletion of the battery in the mobile 
phone, or the connectivity to a particular remote server. 

While research on fault tolerance adopted a binary model of faults (either a component is fine, or 
there is a fault) some research on resource-adaptive applications adopted utility-theoretic models 
for comparing alternative computation strategies.  Fault tolerant systems often have a system-
wide view of the status of components, but unfortunately that view normally misses finer aspects 
of QoS.  In contrast, resource-adaptive applications address the QoS aspects, but normally 
confine their view to the internal computing tactics of a single application.  For instance, an 
adaptive natural-language translator running on a handheld may execute sophisticated algorithms 
on a remote server when bandwidth is plentiful, but may have to rely on simple local algorithms 
when the connection is flaky.  In either case, the computation is “correct”  in the sense that a 
translation is provided, but the quality (accuracy) of the translation is likely to be much better in 
the first case. 

To find the best match between the user’s needs and what the system has to offer, we need to 
devise a model of QoS that supports both a system-wide view and local fine-grain adaptation to 
resource changes.  Such a model plays a key role in guiding both the initial configuration of the 
system and ongoing adaptation to changes. 

Once we devise such a model of QoS, we need a design for the infrastructure that exploits it 
consistently, while, if possible, taking advantage of existing results in system-wide adaptation 
and resource-adaptive applications (e.g. [55,62,64]). 

In summary, the infrastructure needs to support (a) adaptation to dynamic changes both in the 
environment and in task requirements; (b) heterogeneity and distribution of devices and software 
components in the environment; (c) a model of QoS for guiding configuration and adaptation; 
and (d) an architectural framework for integrating the model of QoS with system-wide 
adaptation and resource-adaptive applications. 

Describing and Operating on User Tasks 

To make the infrastructure usable by non-expert users on a daily basis, it needs to be endowed 
with mechanisms that enable users to describe and operate on their tasks.  The design of such 
mechanisms needs to consider the requirements targeted by this research, as elaborated below.  

Users may wish to work on their tasks in environments with very different capabilities.  
Therefore, it will be important for users to obtain an indication, at a glance, of the feasibility of 
each of their tasks in the current environment.  To avoid overwhelming the users with 
information that is likely to be irrelevant, an initial perspective should be limited to the tasks a 
user may want to work on at the present time and location.  Of course, users should always be 
able to find and recover their tasks, whether or not those tasks are listed on the initial 
perspective.  Furthermore, users should be able to use past tasks as templates for creating new, 
similar ones. 
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Once a user decides which task(s) to work on, it should be easy for him to resume the task as a 
unit, activating the configuration of all services involved in the task, and bringing up all the 
relevant materials.  Likewise, once a user decides to suspend work on a task, it should be easy 
for him to capture a snapshot of the task and deactivate all the involved services. 

The mechanisms for describing user tasks should be simple to use, yet powerful enough to 
capture the task models discussed above.  There is a range of options, from offering users a 
programming language for describing tasks, to relying on artificial intelligence techniques for 
learning tasks by observation.  In choosing such mechanisms, two aspects need to be considered: 
the effort required of users for describing their tasks, and how much knowledge about those 
tasks can captured by the infrastructure.  If little knowledge can be acquired, there is little the 
infrastructure can do on the users’  behalf.  If the mechanisms for acquiring that knowledge are 
too cumbersome, users may get discouraged and not use the infrastructure at all. 

These mechanisms should have a low entry cost for users and deliver incremental benefits for 
incremental effort.  If the mechanisms for describing tasks demanded a significant initial 
investment, using the infrastructure to manage simple tasks would not pay off.  Ideally, users 
should be able to reap some of the benefits of task management, even with very little effort put 
into describing their tasks.  The more effort users are willing to put in describing their tasks, the 
better job the infrastructure for task management can do. 

These mechanisms should also be explicit about the assumptions they make, and they should 
make it easy for users to correct incorrect assumptions.  To provide a low cost of entry, we need 
to employ defaults to fill in models that would otherwise be incomplete.  However, every default 
embodies assumptions about what the user intended.  Rather than trying to second-guess users, 
those assumptions need to be made clear, and it must be easy for users to clarify what they really 
want. 

In summary the mechanisms for operating on user tasks should (a) be simple to use, yet 
powerful enough to capture the task models defined above; (b) have a low entry cost and deliver 
incremental benefits for incremental effort; and (c) be explicit about the assumptions they make, 
and make it easy for users to make adjustments if those assumptions are at odds with the users’  
actual desires. 

Summary of the Research 

For this dissertation, I implemented an infrastructure that scales task management in space and 
in time.  This research is part of a wider initiative in ubiquitous computing: Project Aura [35]. 

The infrastructure supports task management in the sense that it supports suspending and 
resuming user tasks as a coordinated set of services in the environment.  Scalability in space is 
supported by allowing users to suspend tasks in one location and to resume them at another 
location, provided an installation of the infrastructure is available (see Figure 1.1).  Scalability in 
time is supported by allowing users to browse their tasks regardless of how long ago those tasks 
were defined, or completed, and to resume them, if appropriate. 
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The approach for scalable task management described in this dissertation reduces the users’  
overhead with configuring computing environments, while enabling users to take full advantage 
of those environments.   

The following subsections summarize my research directed at each of the top-level challenges 
enumerated in the previous section, namely: (a) the interfaces for users to interact with the 
infrastructure for describing and operating on their tasks; (b) modeling user tasks for supporting 
scalable task management; and (c) designing and building an infrastructure for the automatic 
configuration of computing environments.  These subsections also summarize the strategy for 
validating the thesis, as well as the contributions of this dissertation. 

Describing and Operating on Tasks 

Task management promotes user tasks to first class entities in computer systems, and thus 
enables users to operate directly on their tasks.  Such operations treat as a unit the set of services 
(e.g. provided by applications) and materials (e.g. files) involved in a task.  For instance, a user 
may suspend a task at the office and resume it in a coffee shop.  However, to enable users to 
operate on their tasks, the infrastructure needs to be made aware of what is involved in each task.   

The infrastructure includes interfaces for users to (a) describe their tasks, (b) operate on their 
tasks, and (c) find and recover their tasks.  The interfaces implemented for supporting each of 
these aspects are summarized below. 

The model of interaction for describing what is involved in a task is grounded in the widespread 
metaphor of drag-and-drop.  For instance, suppose that a user, Fred, is about to start writing a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 Scaling task management in space. 
Users move from one location to another and may want to resume their tasks with the local capabilities. 
The Task Management layer keeps track of what users need from the computing environment for each task. 
The Managed Environment layer keeps track of the available capabilities and coordinates their configuration. 
The models of user tasks and personal information resources are shared via distributed file access mechanisms. 
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paper.  Once Fred indicates he wants to create a new task description, a dedicated window is 
associated with that task, where Fred may consult and update the task description. 

Fred may incrementally drop files that are relevant to the task into the description window.  By 
dragging a file from standard file browsers and dropping it into the task description window, the 
infrastructure creates a reference to the file, but the file itself is not moved or copied. 

When a file or internet shortcut is dropped, a default service is associated with it, for instance 
edit spreadsheet, if the file is a spreadsheet.  Fred can change the service associated with each 
file, and he can also add services independently of files.  For instance, Fred may add an edit text 
service for the paper he wants to write (but for which he has no file yet). 

Users can operate on tasks either through the task description window or through the task 
dashboard, which shows the equivalent of a to-do list (see Figure 1.2).  The task dashboard 
shows each user the list of tasks on which he may want to work on, and offers control over 
which tasks to access at which environments.  For instance, a user may choose not to resume a 
task involving sensitive information at an untrusted environment. 

The dashboard also shows an evaluation of how feasible is each task in the current environment. 
For evaluating a task’s feasibility, the infrastructure identifies candidate applications and devices 
for supporting the services involved in the task, and estimates the availability of required 
resources (such as battery and bandwidth). 

When users indicate their intention of resuming a task, the infrastructure finds and activates 
appropriate applications to supply the services and handle the materials involved in the task.  
When users indicate their intention of suspending a task, the infrastructure saves the files and 
deactivates the applications involved in the task (more on this in the subsection on the 
Infrastructure for Task Management, below). 

Users may find their tasks based on circumstantial facts such as the purpose of the task, who 
collaborated on it, when was it due, etc.  For that, and in addition to describing the services 
involved in a task, users may associate circumstantial facts with their tasks.  We developed a 
task browser, called lamp, that employs a metaphor similar to web browsing (see Figure 1.3). 

Chapter 5 elaborates on these interfaces and on how they address the specific challenges 
identified in the previous section.  In the interest of scoping this dissertation, we restricted the 
research to tasks carried out by a single user (cooperative work is not addressed).   

 

Figure 1.2 Example task dashboard. 
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Models of User Tasks 

The role of task models in this research is to enable the automatic configuration of computing 
environments.  Task models capture what users need from the computing environment for each 
of their tasks.  These models are exploited at run-time by the infrastructure for automatically 
configuring the environment on behalf of users.   

Task models enumerate which services are needed for each task, and whether and how those 
services should be interconnected.  To account for the diversity in computing environments, the 
types of services required by a task are represented in abstract terms: play video, edit text, edit 
slides, etc.  For instance, suppose that a user, Fred, is preparing a review of a video clip.  While 
Fred works on his laptop, which runs MS Windows, viewing the clip is supported by Windows 
Media Player.  However, when Fred reaches his office, he would like to take advantage of the 
large screen on his powerful desktop, which runs Linux.  If Fred’s task model includes the fact 
that he needs Media Player, the task cannot be instantiated on Fred’s desktop.  However, there is 
no good reason why, if Fred so desires, the video couldn’ t be played by whatever media player is 
available on Fred’s desktop.  By modeling tasks in abstract terms, whenever Fred reaches an 
environment, these services required for his task can be dynamically mapped to available 
suppliers that have the capability to provide them. 

To address heterogeneity and resource variations in the environment, task models represent the 
user’s preferences with respect to alternative ways to carry out the task and preferred quality of 
service tradeoffs.  In this research, user preferences are expressed formally as utility functions.  
Then, finding the best match between what the user needs and what the environment has to offer 
corresponds to maximizing a utility function, where the environment’s capabilities and available 
resources act as constraints in the maximization process.  To make preferences easier to both 
elicit and process, we split them into three parts: first, configuration preferences capture 
preferences with respect to the set of services to support a task.  Second, supplier preferences 

 

Figure 1.3 Example search for tasks. 
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capture the desired features of the individual service suppliers; and third, QoS preferences 
capture the acceptable levels of quality of service and preferred tradeoffs. 

To reduce the overhead for users in configuring the environment for their tasks, task models 
include a snapshot of the user-perceived state of each task.  The user perceived-state includes 
things such as layout of windows, files being worked on, cursor positions and application 
settings.  For example, for the edit text service, the snapshot would include the current cursor 
position, whether spell checking is currently activated, etc.  Similarly to naming services, the 
snapshot of the user-perceived state is represented in abstract, application-independent terms. 

An installation of the infrastructure can automatically configure the environment for user tasks, 
as long as the corresponding models (and information resources, such as user files) are available.  
In the current implementation, installations of the infrastructure access task models and 
information resources via a distributed file access system (see Figure 1.1). 

Chapter 3 elaborates on the form and function of the task models adopted in this dissertation. 

Infrastructure for Task Management 

The role of the infrastructure for task management is to support the notion of user task as a 
coordinated set of services.  For that, the infrastructure exploits task models for automatically 
configuring the environment on behalf of users. 

To automatically configure the environment, first, the infrastructure needs to know what to 
configure for; that is, what users need from the environment to carry out their tasks.  Second, the 
infrastructure needs to know how to best configure the environment: it needs to know which 
capabilities and resources are available in the environment, and it needs mechanisms to 
optimally match those to the user needs. 

My research introduces an architectural framework, the Aura framework, where each of these 
two problems is addressed by a distinct software layer: (1) the Task Management layer, called 
Prism, determines what users need from the environment at a specific time and location; and (2) 
the Managed Environment layer determines how to best configure the environment to support 
user needs (see Figure 1.1). 

Prism caters to user needs and preferences, capturing the corresponding task models.  The 
interfaces described in the previous subsection are the visible part of Prism.  When a user 
accesses a new environment, Prism coordinates accessing all the information related to the user 
tasks, and cooperates with the Managed Environment layer to find the best match for the user 
needs.  When users indicate their intention to resume or suspend tasks, Prism coordinates 
reconstructing the user-perceived state of the resumed task, or saving the state of the suspended 
task, as appropriate. 

The Managed Environment layer (ME) is responsible for monitoring the availability of suppliers 
and resources, and for optimally matching the incoming requests from Prism to the available 
alternatives.  Upon resuming a task, the ME maps the service requests to the concrete suppliers 
that best match the user preferences.  While tasks are being carried out, the ME monitors the 
environment for failures and opportunities for improvement.  Should an alternative configuration 
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become more attractive, the ME is the first to reason whether to replace one or more suppliers to 
reach the desired configuration.  A cost of change is factored into this reasoning, since users may 
perceive a cost whenever they are interacting directly with a supplier targeted for replacement. 

The Aura framework takes advantage of the knowledge about user tasks and preferences 
captured by Prism to guide adaptation policies inside resource-aware applications.  Designs that 
rely on ad hoc mechanisms inside applications to capture knowledge about user tasks make it 
hard to have a consistent view across applications, and to transfer that knowledge to a different 
set of applications when a task is resumed in another environment.  In contrast, the Aura 
framework promotes a consistent system-wide awareness of user needs and preferences, and 
makes it easy to disseminate that knowledge to wherever it is needed. 

Such design of the Aura framework made it easier to implement the ME layer, allowing for   
resource-aware applications coming out of complementary research to be cleanly integrated and 
controlled [9,10].  Implementing the ME layer also benefited from dovetailing with complemen-
tary research in algorithms for maximizing of utility functions [70], and from the collaboration 
of several students, under the coordination of Bradley Schmerl, who wrapped existing 
applications to serve as service suppliers in the Aura framework. 

The infrastructure was tested on Windows and Linux, including the migration of user tasks 
between the two.  The delay introduced by the infrastructure during the automatic configuration 
of the environment is typically less than 1 second, and therefore mostly imperceptible when 
coupled with starting up applications. 

Chapter 4 elaborates on the Aura architectural framework, on the infrastructure that implements 
the framework, and on the evaluation of the infrastructure from a systems perspective. 

Thesis Validation 

A key component of evaluating this research is validating the thesis stated above.  This entails 
demonstrating the following premises: that the proposed models of user tasks can be used to (i) 
scale task management in space, and (ii) in time; that an infrastructure that exploits such models 
(iii) enables users to take full advantage of computing environments, and that using that same 
infrastructure (iv) poses less overhead to users than configuring the environment themselves.2 

To validate that the proposed approach supports scaling task management I built an 
infrastructure that does it.  Specifically, with respect to the scalability in space, the infrastructure 
enables users to suspend tasks in one environment and to resume those same tasks in another 
environment, while addressing the challenges of heterogeneity and distribution.  With respect to 
the scalability in time, the infrastructure enables users to access tasks long after their completion. 

Validating that users are enabled to take full advantage of the surrounding computing 

                                                       

2  The overhead of using the infrastructure is compared against users configuring the environment 
themselves because that represents the state of the art for scaling task management in space across 
heterogeneous environments (see Chapter 6). 
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environment is demonstrated by construction.  The infrastructure for task management is 
endowed with the capability to find the best match between the user’s needs and the available 
components and resources.  Furthermore, the optimality of that match is continuously 
maintained in the face of dynamic changes both in user tasks and in the environment.  Such 
optimality includes mechanisms for guiding fine-grain adaptation to resource variation, such as 
those provided by resource-adaptive applications. 

Finally, validating that the infrastructure reduces the overhead for users is demonstrated by 
comparing the overhead of interacting with the infrastructure against the overhead of interacting 
with the raw environment.  Specifically, we analyze the overhead for defining tasks, and for 
suspending and resuming those tasks, both with and without the assistance of the infrastructure. 

Chapter 6 addresses validating the thesis in detail. 

Contributions 

This dissertation offers contributions at three levels: an approach to scaling task management in 
space and time, an architectural framework that supports the approach, and an infrastructure 
that implements the framework.  Chapter 8 elaborates on the contributions summarized below. 

The main contribution of my research is demonstrating that high-level models of user tasks can 
be exploited to address user mobility beyond traditional office environments, with significant 
advantages over other current approaches (see How Existing Solutions Fall Short, above).  
Specifically, the proposed approach provides a number of innovative and important capabilities: 

− Scales in space, across heterogeneous environments, allowing users to suspend a task in one 
environment and resume it on another environment running a different set of applications 
and devices. 

− Scales in time, allowing users to find and recover tasks defined or completed long ago. 

− Reconciles two competing requirements: enabling users to take full advantage of the 
environments around them at different locations, while simultaneously reducing the 
overhead incurred by users when configuring computing environments. 

− Offers users control over which tasks to access at which environments, thus enabling 
control over which environments are allowed to manipulate sensitive materials, and saving 
resources by activating only the services required by the tasks that users intend to work on. 

− Accounts for user preferences with respect to alternative ways of carrying out their tasks, 
and with respect to quality of service tradeoffs. 

The architectural framework that supports our approach clarifies the responsibilities and 
interaction protocols between the components of an infrastructure for task management.  This 
architectural framework provides a number of innovative and important features: 

− Defines a new software layer dedicated to gathering knowledge about user tasks, thus 
promoting system-wide awareness of user tasks and preferences. 

− Defines a component dedicated to managing the environment based on abstract models of 
user tasks and on a global view of the environment, thus promoting coherent system-wide 
configuration and adaptation decisions. 
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− Optimally matches user needs and preferences to environment capabilities, using a utility-
theoretic framework. 

− Coordinates dynamic adaptation at three levels: fine-grain adaptation policies within 
resource-aware applications; adaptation to changes in the capabilities of an environment; 
and adaptation to changes in the requirements of user tasks. 

The infrastructure that implements this framework accomplishes a number of important goals: 

− Demonstrates the capabilities of the approach and the features of the architectural 
framework by providing a working implementation of an infrastructure for task 
management that is usable on a daily basis. 

− Demonstrates that non-expert users can understand and manipulate the functionality 
delivered by the infrastructure. 

− Provides a foundation for research that supports affordable integration of legacy 
applications, and that imposes a low buy-in cost to extensions to the infrastructure. 

Plan of Dissertation 

Chapter 2 compares the research presented in this dissertation with related work in desktop/task 
management, and more broadly with other work that represents and exploits models of user 
tasks.  Since task management involves the automatic configuration and reconfiguration of the 
computing environment, we also compare our research with work in self-configurable systems, 
resource-aware systems, and context-aware systems. 

The next three chapters address in turn the challenges associated with modeling user tasks, with 
building an infrastructure for scalable task management, and with providing that infrastructure 
with mechanisms for users to describe and operate on tasks.  Chapter 3 focuses on the formal 
aspects of modeling user tasks as a coordinated set of services; of modeling user preferences 
with respect to the way their tasks will be supported in the environment; and of giving tasks a 
persistent semantic identity that supports browsing.  Chapter 4 focuses on the part of the 
infrastructure facing the environment, and dedicated to configuring it.  This chapter describes the 
architectural framework underlying the infrastructure: the responsibilities of the principal 
components, as well as their coordination.  Additionally, this chapter describes and evaluates the 
current implementation of the infrastructure.  Chapter 5 focuses on the part of the infrastructure 
facing the user, specifically on the mechanisms for users to describe and operate on their tasks. 

Chapter 6 demonstrates how the proposed approach supports the thesis put forth in this 
dissertation.  For that, it takes each of the premises underlying the thesis and argues how they are 
satisfied by the solutions presented in the previous chapters.  Chapter 7 discusses important 
design and engineering decisions that we tackled during our research.  It also discusses some 
important points that were only partially addressed, or left out of this dissertation, because of 
scoping considerations.  Finally, Chapter 8 summarizes the contributions of this research and 
points at directions for future work. 



Chapter 2 

Related Work 

This dissertation relates to work in two broad areas: first, research on representing and exploiting 
knowledge about user tasks; and second, research on self-configurable (adaptive) systems. 

The first section below focuses on research related to user tasks.  Specifically, we compare our 
work with other research on desktop/task management; with research on the related problem of 
assisting users to carry out complex tasks; and more broadly with research that represents and 
exploits models of user tasks. 

The second section focuses on research on adaptive systems.  Specifically, we compare our work 
with research on adaptation (a) to changes in service availability and quality of service, (b) to 
resource variability, and (c) to changes in the physical context surrounding the user. 

User Tasks 

This section compares our work with other research that employs models of user tasks, in one 
form or another.  Specifically, the first subsection below focuses on task management, taken in 
the sense adopted in this dissertation, that is, of suspending and resuming tasks. 

The second subsection focuses on the related problem of providing assistance to users on their 
tasks.  The third subsection takes a broader perspective of the research areas where task models 
have been used, and compares the forms that such models take in each of those areas. 
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Task Management 

The idea of desktop management was launched with Rooms, in 1987 [18].  Users aggregate sets 
of applications and information resources in virtual areas of the desktop, called “ rooms.”   To 
work on different tasks, users relocate between “ rooms.”   This idea originated in the world of 
desktop personal computers (workstations), where an underlying assumption is that users carry 
out their computer-supported tasks primarily on one machine.  An additional limitation of this 
approach is that it does not easily scale to large numbers of tasks over extended periods.  Busy 
users may intermittently touch on dozens of different tasks over the course of a workweek, and 
this strategy keeps all the applications consuming resources and cluttering the workspace 
presented to the user. 

Early work in ubiquitous computing experimented with the idea that users are mobile, and may 
utilize available devices in their vicinity.  That work uses OS-level mechanisms driven by 
location-sensing components to automatically “ teleport”  (make accessible) a user’s desktop to 
the nearest display within a smart space, such as an augmented home.  Examples of this are 
1994’s work on teleporting X Windows desktops [74]; and Microsoft’s Easy Living project, 
with results published in 2000 [15], where a set of smart rooms senses the location of users and 
migrates PC desktops, or simple tasks such as listening to music. 

These two ideas, desktop management and user mobility, came together in 2000 with work that 
treated user tasks as a set of applications that is independent of a particular device.  Examples of 
this are Georgia Tech’s project Kimura [57], where collections of applications migrate across 
displays within a smart room; and early work in Carnegie Mellon’s Project Aura [94], that 
targets the migration of user tasks across machines at different locations. 

The following two years saw the publication of work that addressed making smart spaces 
amenable to cooperative tasks.  Some of this work targeted generic office-like domains, for 
example Stanford’s ICrafter [71], and University of Illinois’  project Gaia [75]; while others 
targeted more specific domains, such as University of Washington’s Labscape project, which 
addresses conducting biology experiments in a lab [6], or University of Aarhus’  Pervasive 
Healthcare project, which addresses the work of healthcare professionals in a hospital [21]. 

This research shares with ours the goal of supporting task management for mobile users, where 
tasks may involve several services in the environment, and environments may contain 
heterogeneous devices.  

However, this research supports user mobility by migrating applications, which are mapped to 
local devices.  In contrast, our research introduces a new approach for supporting user mobility 
based on migrating high-level descriptions of user tasks, which are mapped to local applications. 

Furthermore, this research either rebuilds operating systems from the ground up to support user 
tasks [75], or custom-builds, or at least significantly extends existing applications to work over 
custom-built infrastructures for distributed data exchange and code mobility [6,21,71].  In 
contrast, our research supports task management as a new software layer on top of existing 
operating systems, and accommodates the integration of legacy applications.  
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At the apex of minimizing changes to existing operating systems and applications is the Internet 
Suspend-Resume (ISR) project at Intel Research [54].  Here, one extension at the operating 
system level enables the migration of the contents of the whole virtual memory from one 
machine to another.  This approach targets cases where users don’ t carry a personal computer 
around, but can use available “community”  machines.  However, such a solution is limited to 
cases where user tasks are supported by a single machine, and where users move only among 
machines with compatible hardware.  In contrast, our approach makes no assumptions on the 
homogeneity of devices or software. 

Furthermore, the ISR approach supports user tasks at a very coarse grain: everything that is 
active in a user’s machine constitutes the user task, which is then migrated, as a whole, to the 
next machine.  Although representing user tasks at such coarse grain requires no involvement 
from the user in discriminating which activities pertain to which task, it also offers no 
discriminating power on what the user actually wants to resume working on at the new location. 

In contrast, our research explicitly represents which services and information resources (such as 
files) are involved in each task.  Once that is known, our infrastructure automatically tracks the 
user-perceived state of those services (window sizes, cursors, etc.).  Such capability enables 
users to discriminate which tasks they wish to resume at each location, and to swiftly switch 
among tasks (by activating/deactivating the corresponding services) at the same location. 

Assistance with Tasks 

In this dissertation, we focused on task management as the ability to suspend and resume tasks 
as a unit.  A problem related to that, and that extends the scope of task management as we 
treated it herein, is providing assistance to users on their tasks. 

Broadly, research on task assistance can be divided in two groups: one where the system guides 
or facilitates users in carrying out their tasks; and another where the system additionally may 
carry out tasks, or parts of tasks, on behalf of users. 

An example of research on guiding users through tasks is the Adtranz train repair system [81], 
published in 1998, where the system guides technical staff through diagnosing problems, loads 
and presents relevant schematics, and facilitates communication with experts, as necessary.  
More recent research addresses daily life, often focusing on the needs of special groups, such as 
elderly people, or people in debilitated health situations.  Examples are Georgia Tech’s Smart 
Home [1], MIT’s House_n [46], and the University of Rochester’s Smart Medical Home [83]. 

Research on automated agents took task assistance one step further by enabling systems to carry 
out tasks on behalf of users.  Examples of this are the RETSINA framework, with applications in 
domains such as financial portfolio management, ecommerce and military logistics [88]; and 
more recently Carnegie Mellon’s RADAR project, which focuses on the office domain, 
automating such tasks as processing email, scheduling meetings, and updating websites [72]. 

For scoping reasons, providing assistance to users on the flow of complex tasks was not 
addressed in this dissertation (see Chapter 8, Future Work). 
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Task Modeling  

A variety of research areas have addressed the broad problem of task modeling, with some work 
focusing on the modeling aspects proper (what to model), and other work on the process of 
capturing task models. 

Research on task models can broadly be grouped into three categories.  In the first category, 
tasks represent plans of actions to be carried out by an automated system, where an action 
corresponds to a computation or actuation of a mechanical device.  Examples can be found in 
robotics, in distributed systems, and agent-based systems (e.g., [29,65,82]). 

In the second category, tasks are carried out by humans, or by a mix of human and computers. 
Here, task descriptions play the role of guiding users along complex tasks.  Examples can be 
found in the workflow modeling of business processes, and in some agent-based systems, where 
the description of the actions is in a form suitable to be interpreted by humans, such as “ fill out 
form x”  or “schedule a team meeting”  (e.g., [6,36,81,100]).  In these models, beyond the type 
and plan of actions there is little or no content to be exploited by a computer system.  Examples 
can also be found in human computer interaction, where designers employ software usage 
models for analyzing and building computer systems, and often to constrain the interaction 
sequences allowed at run-time (e.g., [47,60,96,99]). 

In the third category, task models represent the expectations and/or needs of users with respect to 
computational support for their tasks, which is an orthogonal problem to modeling task plans 
(first and second categories, above).  Research in task management, namely this dissertation, 
focuses on this perspective of user models.  Such models are either interpreted by automated 
tools at development-time to generate task-specific systems, or by computer systems at run-time 
to generate task-specific configurations. 

The most significant related work in this third category is research in applications that 
automatically adapt their user interfaces to the characteristics of the available devices (e.g., 
[16,52,89]).  Like work in tools for developing user interfaces [60], this work focuses on 
deciding which interaction widgets to bring up and how to place them on the screen.  In contrast, 
our work focuses on deciding which high-level services (such as editing text) should be activated 
and which applications are best to supply them.  Furthermore, while the success criteria of 
configuring user interfaces is the usability of the interfaces (which face tough competition from 
interfaces configured by human designers), in our work the success criteria is reducing the 
overhead of end-users in activating applications for their tasks (see the evaluation in Chapter 6). 

With respect to the process of capturing task models, research falls into two groups.  In the first 
group, task models are explicitly defined by a human.  The research cited so far in this 
subsection, including our own, belongs to this group.  Here, the human defining the models is 
typically an expert; except in task management, where end-users define their own tasks. 

In the second group, the system includes functionality to learn models of user tasks, or to infer 
when users are carrying out specific tasks.  Examples of this research can be found in the fields 
of Artificial Intelligence and Human Computer Interaction (e.g., [4,44,80,90,98]). 
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For scoping reasons, learning models of user tasks was not addressed in this dissertation (see 
Chapter 8, Future Work). 

Adaptive Systems 

This section compares our work with research on adaptive systems.  The infrastructure for task 
management we developed for this dissertation is an adaptive system in the sense that it adapts 
to changes in user tasks and in the capabilities and resources in the computing environment. 

The first subsection below focuses on systems that adapt to changes in service availability and 
quality of service (QoS).  Examples of these are fault-tolerant and load-balancing systems.  The 
second subsection focuses on systems that adapt to changes in resources, such as battery and 
bandwidth.  Finally, the third subsection focuses on systems that adapt to changes in the physical 
context of users, such as user location and focus of attention. 

Service Awareness 

Fault-tolerant and load-balancing systems represent the earliest form of service-aware systems.  
Fault-tolerant systems react to component failure, compensating for errors using a variety of 
techniques such as redundancy and graceful degradation (e.g., [24,43]).  Such systems have been 
prevalent in safety-critical systems or systems for which the cost of off-line repair is prohibitive 
(e.g., space systems, telecom, power control systems, etc.).  Here the primary goal is to prevent 
or delay large-scale system failure. 

Load balancing systems use quantitative models of QoS (typically response time) to dynamically 
assign requests to a pool of known servers (e.g., [14]). 

More recent research in model-based adaptation puts these two ideas together: quantitative 
models of QoS to guide the adaptation policies, and the ability to hot-swap components.  
Typically, as in load balancing, the pool of available components is known at deployment time, 
or it is updated with human intervention.  These systems use global system models, such as 
architectural models, as a basis for system reconfiguration (e.g., [20,37]). 

Our research builds on work in model-based adaptation, adding the problem of dynamic 
discovery of services (and components that supply those services).  Work in distributed systems 
and ubiquitous computing has addressed mechanisms for service discovery.  Examples of such 
mechanisms are MIT’s INS, Sun’s Jini, and IETF’s SLP [3,5,79]. 

With the popularization of systems based on web services, there have been multiple efforts to 
normalize the way of describing and accessing web services.  Examples of such efforts are 
DAML/OWL, UDDI, and WSDL [26,92,97].  In this work, however, the description of physical 
properties, such as the location of the component supplying a web service, is irrelevant. 

In contrast, the location of a service supplier may be crucial in task management, if the user 
needs to interact physically with such a supplier.  Our research shares with previous work in 
ubiquitous computing the requirement of describing physical properties of service suppliers [3].  
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However, the problem of representing and enforcing strategies to scope the search for service 
suppliers based on physical properties remains an open problem (see Chapter 8, Scoping the 
Environment). 

Resource Awareness 

Resource-aware systems react to resource variation: components adapt their computing 
strategies so they can function optimally with the current set of resources (bandwidth, memory, 
CPU, power, etc.).  Many of these systems emerged with the advent of mobile computing over 
wireless networks, where resource variability becomes a critical concern [8,30,55,62,64]. 

While most of this research focuses on one component at a time, in contrast, our work tackles 
the problem of multi-component integration, configuration, and reconfiguration.3 

Furthermore, the adaptation policies in such resource-aware systems are typically determined 
internally by each component, and often hard-coded.  However, which adaptation policies are 
appropriate at each moment depends on the user preferences for the current task.  And user 
preferences change dynamically, as users switch between tasks, or even in the middle of a task. 

In contrast, our research associates user preferences to each task, and provides mechanisms to 
communicate those preferences dynamically to all the components supporting the task.  Such 
preferences determine the appropriate resource allocation and adaptation policies.  

For that, we build on previous work in mechanisms to determine the optimal resource scheduling 
and allocation among competing components, based on the requirement for the task (e.g., [33, 
48,56,63,73]).  Specifically, separate but complementary research to this dissertation developed 
the algorithms that we use [70], which in turn are based on Knapsack algorithms [69]. 

We also build on research on resource-aware systems that support programming interfaces to 
dynamically configure the appropriate adaptation policies (e.g., [9]). 

Context Awareness 

Context-aware systems react to variations in the physical context around users.  Examples of 
observed variables are: user location, attention focus, physical activity (sitting, driving…), 
emotional state (relaxed, working, in distress…), privacy (who else is in the vicinity), etc.  There 
is a considerable body of work in sensing such variables (e.g., [7,42,68,78]). 

Typical context-aware systems represent such awareness as collections of interpreted rules 
(clauses of the form “ if context then action” ), or embedded logic in the code.  Examples are 
found in research in ubiquitous computing (e.g., [17,41,95]). 

                                                       

3 Although somewhat related, this kind of automatic configuration is distinct from the automatic 
configuration being investigated in other research [53].  There, configuration is taken in the sense of 
building and installing new applications into an environment, whereas here, it is taken in the sense of 
selecting and controlling applications so that the user can go about his tasks with minimal disruption. 
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While the architectural framework that we define accommodates context-aware applications, 
task management itself can be made context-aware.  For instance, tasks can be suspended 
automatically when a user leaves the room; or a desired task, such as navigation assistance, can 
be resumed automatically when a user enters his car. 

In our architectural framework, we allow for the definition of rules that constrain which tasks 
should be carried out on which environments (see Chapter 5, Tasks at a Glance).  However, for 
scoping reasons, we did not specify the representation of such rules, nor incorporated 
mechanisms for context awareness in the infrastructure.  For that, we would build on 
complementary research on mechanisms for delivering context information (e.g., [49]), which in 
turn build on research on context sensing (cited above). 

 



Chapter 3 

Modeling Tasks 

The role of task models in this research is to enable the automatic configuration of computing 
environments.  Task models capture what users need from the computing environment for each 
of their tasks (see also the discussion in Chapter 7, Sophistication of Task Models).  These 
models are exploited at run-time by an infrastructure that automatically configures the 
environment on behalf of users. 

This chapter focuses on the internal representation of task models, which is exploited by the 
infrastructure, while Chapter 5 addresses how these models may be viewed and constructed by 
users. 

The task models adopted in this work address the three fundamental properties of scalable task 
management discussed in Chapter 1.  First, task models provide a handle for the coordinated use 
of a set of services in the environment.  Second, to address scalability in space, and in particular 
heterogeneity and resource variations in the environment, task models represent the user’s 
preferences relative to features and Quality of Service (QoS).  Third, to address scalability in 
time, task models establish an enduring identity that enables users to find tasks long after they 
are gone from the list of currently active tasks.  The following sections discuss these properties 
in turn. 

Coordinated Use of Services 

A fundamental property in task management is that user tasks typically involve several 
applications and information resources.  For instance, for preparing a presentation, a user may 
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edit the slides, refer to a couple of papers on the topic, check previous related presentations, and 
browse the web for new developments.  Sometimes a task is supported by a loose collection of 
services; other times services may need to be interconnected, for instance to pipe data between 
them. 

To provide a handle for the coordinated use of a set of services in the environment, task models 
need to represent three aspects: the set of services to be used, how they are interconnected, and 
the user-perceived state of the task (refer to Figure 3.1 for a summary of the terminology used in 
this dissertation). 

The main challenge in representing these aspects is establishing the level of abstraction: task 
models must be abstract enough to be environment-independent, but precise enough to allow for 
the instantiation of the task using the concrete capabilities of the current environment.  The 
following three subsections discuss the appropriate level of abstraction for the three aspects.  
The fact that the chosen level of abstraction is precise enough to support the automatic 
configuration of environments is addressed in Chapter 4. The fourth subsection presents a formal 
specification for the internal representation of these aspects of task modeling. 

Identifying Services 

Suppose that a user, Fred, is preparing a review of a video clip.  While Fred works on his laptop, 
which runs MS Windows, viewing the clip is supported by Windows Media Player.  However, 

task An everyday activity such as preparing a presentation or writing a report.  Carrying out a task may 
require obtaining a configuration of services from an environment, and accessing several materials. 

configuration Set of possibly interconnected services that together support a task. 

service Either (a) a service type, such as editing text, or (b) the occurrence of a service proper, such as 
editing a given document.  For simplicity, we will let these meanings be inferred from context. 

environment The set of suppliers, materials and resources accessible to a user at a particular location. 

supplier A component (application and/or device) in the environment offering services – e.g. MS Word. 

material An information asset such as a file or data stream. 

resource What is consumed by suppliers while providing services.  Examples are: CPU cycles, memory, 
battery, bandwidth, etc. 

context Set of human-perceived attributes such as physical location, physical activity (sitting, walking…), 
or social activity (alone, giving a talk…). 

user-perceived 
state of a task 

User-perceived set of properties in the environment that characterize the support for the task.  
Specifically, the user-level settings (preferences, options) associated with each of the services 
supporting the task, the materials being worked on, user-interaction parameters (window size, 
cursors…), and the user preferences for the task. 

user 
preferences 

Task-specific preferences with respect to alternative configurations for supporting the task, 
alternative suppliers to support a service, and user expectations towards quality of service (QoS). 

QoS Evaluation of properties (QoS dimensions) of a service perceived by a user while performing a task. 

QoS dimension An aspect of QoS, such as response time, accuracy, image resolution, frame rate, etc.  

Figure 3.1 Summary of the terminology used in this dissertation. 
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when Fred reaches his office, he would like to take advantage of the large screen on his powerful 
desktop, which runs Linux.  If Fred’s task model includes the fact that he needs Media Player, 
the task cannot be instantiated on Fred’s desktop.  However, there is no good reason why, if Fred 
so desires, the video couldn’ t be played by whatever video player is available on Fred’s desktop. 

To account for the diversity in computing environments, the types of services required by a task 
are represented in abstract terms: play video, edit text, edit slides, etc.  In this example, Fred’s 
task would require two services: play video on the video clip, and edit text on Fred’s notes.  
Whenever Fred reaches an environment and expresses his desire to resume the video review 
task, these services can be dynamically mapped to available suppliers that have the capability to 
provide them.  Naturally, the infrastructure needs to share a vocabulary of service names, or 
otherwise be able to resolve name equivalences (see also the discussion in Chapter 7, Service 
Naming and Substitutability, and related work in Chapter 2, Service Awareness).   

State Snapshot 

Similarly to identifying services, the snapshot of the user-perceived state for each service is 
represented in abstract, application-independent terms.  The user perceived-state includes things 
such as layout of windows, files being worked on, cursor positions and application settings.  For 
example, for the edit text service, the snapshot would include the current cursor position, 
whether spell checking is currently activated, etc. 

Furthermore, the representation of the user-perceived state must be such that it can be processed 
by applications with different degrees of sophistication.  For instance, while finding a text editor 
that supports spell checking in a rich environment may not be a problem, a basic text editor 
running on a small platform might not support that feature, or even be aware of what spell 
checking means.  Therefore, the format of the representation must be such that a given service 
supplier is able to extract the information it can recognize, without being thrown off by 
information it does not know how to handle.   

The requirements of descriptive service names and of accommodating different levels of 
sophistication are addressed by adopting an XML-based representation of task models. 

The modular nature of task models allows for independent dictionaries of terms to be 
maintained.  Specifically, the component of the infrastructure that deals with mapping services 
to suppliers, needs to be aware of service names, but not of the terms used to describe the state 
snapshot of each service.  Suppliers that offer, for example, a text editing service need to be 
aware of their own service name (edit text) and of the terms used to describe the state snapshot 
of text editing (spell checking, etc.), but not of the terms used to describe any other service. 

Interconnecting Services 

Although tasks are supported by a coordinated set of services, in many cases those services need 
not communicate with each other.  For instance, in the task of preparing a presentation, each of 
the services interacts with the user, but not among each other: it is up to the user to manually 
transfer relevant snippets of information among them, as necessary. 
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However, in other cases the services need to be interconnected for the task to be adequately 
supported.  For example, suppose that a user, Fred, needs to talk to a foreign speaker using real-
time automatic translation.  For that, Fred’s task involves three services: speech recognition, 
(text) translation, and speech synthesis.  The output of the speech recognizer needs to be piped to 
the input of the translator, and the output of the translator to the input of the speech synthesizer. 

Task models support the establishment of (point-to-point) connections between service ports (in 
this context, just a generic term for input or output).  This concept can be used while being 
oblivious of the concrete mechanisms used by the service suppliers: opening a session on a 
point-to-point connector (in a software-architectural sense), activating a publish-subscribe 
mechanism over an event bus (multi-point connector), etc.  Under the premise of leaving the 
connector-specific knowledge with the infrastructure, task models represent connections by 
identifying the services to be connected and the port types on those services (see also the 
discussion in Chapter 7, Service Interconnection). 

In this chapter we use a variant of BNF customized for the XML representation of task models.  
A specification in BNF is structured in rules.  A rule defines the syntactic form of a symbol.  The 
symbol being defined is called a non-terminal, and appears to the left of the : : = sign.  The 
syntactic form is characterized by the expression to the right of the : : = sign.  A syntactic symbol 
that is not further defined by a rule is called terminal.  In BNF, alternative is denoted by a 
vertical bar, |, and parenthesis are used for grouping (the standard mathematical interpretation).  
Square brackets, [], and curly brackets, { } , are also grouping operators, with the added meaning 
that anything inside square brackets is optional, and anything inside curly brackets can be 
repeated zero or many times. 

To simplify reading the specification, we drop the convention of surrounding non-terminal 
symbols with angle brackets.  In the variant adopted herein, whether a symbol is a terminal or 
non-terminal is established by context (see below).  Furthermore, since the task models are built 
on top of XML syntax, we augment the operators of BNF with the following: 
E : : = t :  A;  C 

defines a type E of XML elements with tag t , attributes A, and children C, where t  is a terminal 
symbol, A is an expression containing only terminals (the attribute names), and C is an 
expression containing only non-terminals (the child XML elements).  So, for instance the rule 
Book = book:  year  I SBN;  Ti t l e { Aut hor }  

allows the following as a valid element: 
<book year =” 2004”  I SBN=” 123” > 
  <t i t l e>. . . </ t i t l e> 
  <aut hor >. . . </ aut hor > 
  <aut hor >. . . </ aut hor > 
</ book> 

where the non-terminals Ti t l e and Aut hor  (with contents elided above) would have their own 
definition rules in the grammar, with t i t l e and aut hor  as the corresponding XML tags. 

Figure 3.2 Summary of the variant of Backus-Naur Form used in this dissertation. 
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Specification 

While the three subsections above discussed what goes into task models for representing the 
coordinated use of services, this subsection focuses on how we represent those models.  
Specifically, we introduce a grammar that defines the syntax of such models.  We also provide 
an example model representing the the task of reviewing a video clip. 

For the specification of the task models used in this dissertation, we follow a variant of the 
Backus-Naur Form (BNF, see for instance [45]) summarized in Figure 3.2.  In this setting, a 
particular task model is a sentence allowed, or generated, by the grammar. 

Figure 3.3 shows the grammar for modeling tasks as a set of possibly interconnected services.  A 
task (model) is an XML element with tag aur aTask, with one i d attribute, and with one Pr ef s  
child, followed by an arbitrary number of Ser vi ceSnapshot , Mat er i al Snapshot , and Conf i g 
children.  The id of a task is unique for each user.  A task may be carried out using one of several 
alternative service configurations – see section User Preferences, below.  Configuration names 
are local to each task model. 

Services stand for concepts such as edit text, or browse the web, and materials are files and data 
streams manipulated by the services.  A service may manipulate zero or many materials; for 
instance, text editing can be carried out on an arbitrary number of files simultaneously.  That 
relationship is captured by the Uses clauses within the Ser vi ce element.  Service ids are local to 
each task model.  Materials are given an enduring identity, which includes an id, unique for each 
user, and information such as where to find that material – a path in the file system, or a URL.  
More on this in section Task Identity, below. 

Task : : = aur aTask:  i d;  
Pr ef s { Ser vi ceSnapshot  |  Mat er i al Snapshot  |  Conf i g}  

 
Ser vi ceSnapshot  : : = ser vi ce:  i d t ype;  
 Settings 
Mat er i al Snapshot  : : = mat er i al :  i d;  
 State 
 
Conf i g : : = conf i gur at i on:  name wei ght ;  
 {  Ser vi ce |  Connect i on }  
 
Ser vi ce : : = ser vi ce:  i d;  
 { Uses}  
Uses  : : = uses:  mat er i al I d;  
 
Connect i on : : = connect i on;  i d t ype;  
 At t ach QoSPr ef s 
At t ach : : = at t ach:  ;  
 Fr om To 
Fr om : : = f r om:  ser vi ceI d por t ;  
To : : = t o:  ser vi ceI d por t ;  

Figure 3.3 Grammar for specifying task models. 
The italicized symbols Settings and State are service- and material-specific, and are 
not defined herein.  The symbols Pr ef s and QoSPr ef s are defined in the next section. 
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The snapshot of the user-perceived state of the task is captured in the Settings and State 
elements.  The Settings element captures the state that is specific to a service, and shared by all 
materials manipulated by that service, while the State element captures the state that is specific 
to each material.  The boundaries between which attributes of the state snapshot are represented 
within each of these elements are somewhat arbitrary.  Both these elements are not further 
defined in this specification, since their content is specific to the type of service or material.  
Such content is treated as a black box by all components of the infrastructure, except by those 
that provide the particular type of service, say text editors for edit text. 

<aur aTask i d=" 34" > 
  <pr ef er ences> 
    <ser vi ce t empl at e=" def aul t "  i d=" 1" / > 
    <ser vi ce t empl at e=" def aul t "  i d=" 2" / > 
  </ pr ef er ences> 
  <ser vi ce t ype=" pl ay Vi deo"  i d=" 1" > 
    <set t i ngs mut e=" t r ue" / > 
  </ ser vi ce> 
  <mat er i al  i d=" 11" > 
    <st at e> 
      <vi deo st at e=" st opped"  cur sor =" 0" / > 
      <posi t i on xpos=" 645"  ypos=" 441" / > 
      <di mensi on hei ght =" 684"  wi dt h=" 838" / > 
    </ st at e> 
  </ mat er i al > 
  <ser vi ce t ype=" edi t  Text "  i d=" 2" > 
    <set t i ngs> 
      <f or mat  over t ype=" 0" / > 
      <l anguage checkLanguage=" 1" / > 
    </ set t i ngs> 
  </ ser vi ce> 
  <mat er i al  i d=" 21" > 
    <st at e> 
      <cur sor  posi t i on=" 31510" / > 
      <scr ol l  hor i zont al =" 0"  ver t i cal =" 7" / > 
      <zoom val ue=" 140" / > 
      <spel l checki ng enabl ed=" 1"  l anguage=" 1033" / > 
      <wi ndow hei ght =" 500"  xpos=" 20"  wi dt h=" 600"  mode=" mi n"  ypos=" 100" / > 
    </ st at e> 
  </ mat er i al > 
  <conf i gur at i on name=" al l "  wei ght =" 1. 0" > 
    <ser vi ce i d=" 2" > 
      <uses mat er i al I d=" 21" / > 
    </ ser vi ce> 
    <ser vi ce i d=" 1" > 
      <uses mat er i al I d=" 11" / > 
    </ ser vi ce> 
  </ conf i gur at i on> 
  <conf i gur at i on name=" onl y v i deo"  wei ght =" 0. 7" > 
    <ser vi ce i d=" 1" > 
      <uses mat er i al I d=" 11" / > 
    </ ser vi ce> 
  </ conf i gur at i on> 
</ aur aTask> 

Figure 3.4 Example task model for reviewing a video clip. 
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The Connect i on element represents service interconnection as discussed in the previous 
subsection.  Note that Pr ef s and QoSPr ef s are defined in the section User Preferences. 

Figure 3.4 shows an example task model for reviewing a video clip.  This example was captured 
while running the infrastructure described in Chapter 4.  The user defined two alternative 
configurations for this task: one including both playing the video and taking notes, the other, 
playing the video alone.  Both services use a single material: play video uses a video file, with 
material id 11, and edit text uses a text file, with material id 21. 

The user perceived state of the task is represented as the current service settings, under each 
service, and the current state of each material.  For instance, the state of the video includes the 
fact that the video is stopped at the beginning (the cursor is set to 0 time elapsed), and it 
indicates the position and dimensions of the window showing the video. 

Whenever a specific material is manipulated in more than one task, each task model keeps its 
own representation of the material’s state.  For instance, a spreadsheet with experiment results 
may be manipulated during the task of realizing the experiments, as well as during the task of 
writing a paper on the results.  In the event of both tasks being active simultaneously, 
coordinating the access to the shared material is handled by the service suppliers, since that 
coordination depends on the type of access (read only, read-write…) as well as on the semantics 
of the service (for instance, on whether it makes sense to open separate views of the material). 

User Preferences 

An important property of user tasks is that they may span multiple locations.  Prompted by 
advances in computing and networking, people have increased expectations towards the 
availability of computing.  Furthermore, users may like to take full advantage of the computing 
environments accessible to them, much like they take advantage of the furniture in each space. 

However, such computing environments may be very diverse.  For instance, in a smart room at 
the office, a user may be surrounded by powerful devices running sophisticated applications; but 
at a coffee shop, the user may have to rely on his handheld and a flaky wireless connection. 

The infrastructure can do a much better job at automatically configuring the environments on a 
user’s behalf, if it knows what the user prefers in different circumstances.  This section focuses 
on the internal representation of user preferences, which is exploited by the infrastructure to find 
the best match between what the user needs for a given task, and what the environment has to 
offer.  Chapter 5 discusses how these models may be viewed and constructed by users 

In this work, user preferences are expressed formally as utility functions.  This enables turning 
the problem of finding the best match between what the user needs and what the environment 
has to offer into a maximization problem.  Of course, that maximization is constrained by the 
availability of capabilities and resources in the environment. 

To make preferences easier to both elicit and process, we split them (and their formal reification, 
utility functions) into three parts: first, configuration preferences capture preferences with 
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respect to the set of services to support a task.  Second, supplier preferences capture the desired 
features of the individual service suppliers; and third, QoS preferences capture the acceptable 
levels of quality of service and preferred tradeoffs. 

Furthermore, we make a simplifying assumption: these aspects are modeled independently of 
each other.  That is, the function for each aspect captures the user’s preferences for that aspect 
independently of the others.  For instance, a user, Fred, may state that he prefers response time to 
be under 3 seconds, and that he prefers supplier A to supplier B.  However, under the 
independence assumption, Fred cannot express that he would like response times to be under 1 
second whenever supplier B is used, and that he would be willing to wait up to 3 seconds when 
supplier A is used.  This assumption has important simplification properties, both for the 
maximization algorithms, and for the elicitation of preferences (see also Chapter 5, Preferences 
and the discussion in Chapter 7, QoS Tradeoffs). 

The possible values of utility, the utility space, provide a formal representation of how useful 
each alternative environment configuration is with respect to a specific task.  In other words, 
utility is a measure of user happiness with respect to the possible outcomes of the configuration 
process.  We encode utility in the interval [0, 1] of the real numbers, where 0 utility corresponds 
to the configuration being unacceptable for the task; and 1 corresponds to user satiation, in the 
sense that increasing the capabilities of the environment will not improve the user’s perception 
of usefulness for the specific task. 

The overall utility is given by the product of the three parts above.  In semantic terms, if the user 
considers any of the utility parts to be inadequate (value close to 0) the overall utility will reflect 
the inadequacy.  For the user to be satisfied (overall utility close to 1) all three parts need to be 
satisfactory.  Note that by encoding each of the parts in the interval [0, 1], the overall utility falls 
within the same interval.  The following three subsections address these three parts in turn, and 
the fourth specifies how these are represented in the task models adopted herein. 

Configuration Preferences 

Users may be willing to use different sets of services in different circumstances.  For instance, 
suppose that a user, Fred, wants to watch the video broadcast of a sports event, but the network 
connection at the current location is especially poor.  Fred may be willing to forsake playing the 
video in favor of allotting the meager bandwidth to playing only the audio with a fair quality.  
Suppose further that Fred needs to take notes on the video that he is watching.  If there is a 
convenient microphone and speech recognition software, Fred prefers to dictate the notes, but he 
is otherwise willing to type the notes.  During automatic configuration, configuration preferences 
play a key role in choosing among the alternative sets of services for supporting the task. 

A task model may include more than one alternative set of services for supporting the task.   In 
the example above, considering the video vs. audio option, and the dictating vs. writing option, 
there are four alternatives for supporting Fred’s task. 

Configuration preferences represent user happiness with respect to each alternative.  Formally, 
let Ct denote the set of alternative service configurations for task t; for instance, the set 
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containing video&dictate, video&write, etc. for Fred’s task above.  The configuration 
preferences are a discrete mapping between Ct and the utility space U 

�

 [0,1]: 

Definition 3.1 UCh tConfig →:  

In the example above, Fred may signal that he will be happy watching the video and dictating 
the notes, ok with writing them, and so forth, by setting hConfig(video&dictate)=1,  
hConfig(video&write)=0.7, etc.  Eliciting configuration alternatives and their assigned preference 
is a topic for Chapter 6.  Note that the mapping hConfig is given by the attributes Conf i g. wei ght  
in Figure 3.3. 

Supplier Preferences 

Users may be willing to use different service suppliers in different circumstances.  For instance, 
suppose that Fred starts reviewing the video at home, using MS Word as a supplier for editing 
his notes, and decides to resume that task at the office, where he has a desktop running Linux.  If 
only Linux native text editors are available, say Emacs and Vim [38,93], Fred may prefer using 
Emacs to Vim (or vice-versa). During automatic configuration, supplier preferences play a key 
role in choosing among alternative components to provide a given service. 

A task model includes supplier preferences for every service in the task.  Supplier preferences 
may discriminate as many or as few specific suppliers as the user wishes, and must include the 
user happiness for a supplier other than those discriminated.  This strategy covers the corner 
cases where the user may wish to specify that only one specific supplier is acceptable, or that 
any supplier will be acceptable.  Supplier preferences also include the user happiness in the case 
that no supplier is found to provide the service.  This supports comparing the utility of degraded 
modes of operation – when some of the services in the task cannot be supported in the current 
environment.  (See also the discussion in Chapter 7, Supplier Preferences.) 

Formally, let Ps denote the set of suppliers that the user cared to discriminate for service s, 
augmented with the values other and none.  For instance, Pedit text for Fred’s task above might 
include MS Word, Emacs, Vim, other and none.  The supplier preferences4 for service s are a 
weighted discrete mapping5 between Ps and the utility space U 

�

 [0,1]: 

Definition 3.2 ]1,0[,: ∈→• ssSupp
w
Supp wUPhh s  

In the example above, Fred may signal that he clearly prefers Emacs over Vim by setting 
hSupp(Emacs)=1 and hSupp(Vim)=0.3.  He may also signal that he is open to try other suppliers by 
setting hSupp(other)=0.5 – in fact, that means that he prefers to try a non-discriminated supplier 

                                                       

4  This framework can easily be extended to include preferences with respect to supplier warm-up time 
(the user may prefer a supplier that will be available sooner) and with respect to the cost of changing a 
supplier in the middle of a task [85]. 

5  In the definitions throughout this dissertation read the large dot as “where,”  or “such that.”  
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than to use Vim (of course, the opposite might be represented by flipping these values).  Fred 
may also signal that taking notes is desirable but not crucial for his task by setting 
hSupp(none)=0.2.  Note that a value of 0.2 means that Vim will be activated if there is no other 
alternative.  If the value for none were higher than the one for Vim, having no supplier would be 
marked as preferable to having Vim. 

The weight ws reflects how much the user cares about the choice of supplier for s.  These 
weights are a convenient instrument to scale the preferences with respect to the choice of 
supplier for each service.  By assigning ws a low value (close to 0) the overall utility is 
desensitized to the choice of supplier for service s.  Eliciting supplier preferences is a topic for 
Chapter 6. 

QoS Preferences 

Users may prefer to have different QoS tradeoffs for a given service in different tasks.  For 
instance, suppose that Fred is watching a video over a network link and that the bandwidth 
suddenly drops.  Should an adaptive video player reduce the frame rate, or the image quality? 
The answer depends on Fred’s preferences for the current task.  If Fred is watching a sports 
event, he may prefer frame rate to be preserved at the expense of image quality.  For watching a 
documentary on painting, the opposite might be preferable. 

Furthermore, the preferred QoS tradeoffs may change during the task.  For instance, during a 
task that involves automatic translation of natural language, Fred may prefer faster responses 
over accuracy of translation during the introductory part of the conversation, but he may prefer 
the opposite once the conversation gets more involved. 

While the simplest form of expressing a tradeoff is to indicate which dimension is preferred, this 
form has very limited expressive power.  For instance, a user might indicate that response time is 
preferred over accuracy of translation.  However, how short of a response time will satiate the 
user?  And even if accuracy is less important, what if it degrades so much that the translations 
become unusable?  A clearly more powerful form is to express the thresholds that characterize a 
tradeoff.  For example, if Fred requires highly accurate translations, he may be willing to wait up 
to 30 seconds for an answer. 

In this work, QoS tradeoffs are set by expressing user happiness with the level of quality 
provided along each QoS dimension.  In the example above, when Fred prefers faster responses 
over accuracy of translation, the QoS preferences set stricter happiness thresholds for response 
time and looser thresholds for accuracy.  The tradeoff can be reversed by relaxing the thresholds 
on response time and tightening the thresholds on accuracy. 

QoS preferences play a key role in guiding the adaptation policies within resource-adaptive 
applications while users carry out their tasks [10]. Additionally, during automatic configuration, 
QoS preferences play a role in choosing among alternative service suppliers, and in determining 
the optimal resource allocation among the several service suppliers involved in a task [70].   
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To play those roles, task models need to include the QoS preferences for the user-perceived QoS 
dimensions in every service and connection in the task.  (Eliciting these is prevented from 
becoming a daunting chore by using templates – more on this in Chapter 6). 

To make preferences easier to both elicit and process, we make two simplifying assumptions 
(see also the discussion in Chapter 7, QoS Tradeoffs).  First, QoS preferences are modeled 
independently for each QoS dimension.  Second, QoS preferences fall into two categories: those 
characterized by enumeration, and those characterized by numeric values.  For QoS dimensions 
with an enumerated domain, for instance translation accuracy, with values high, medium and 
low, user preferences are encoded as a discrete mapping to the utility space. 

For QoS dimensions with a numeric domain, for instance response time, user preferences are 
encoded using a predefined vocabulary of functions.  The question then becomes which 
vocabulary of functions to choose in a continuum between generic mathematical functions, such 
as multiplication, exponentiation, etc., and a reduced set of functions.  Supporting an arbitrary 
function has the advantage of being expressive.  However it has two strong disadvantages: first, 
parsing and evaluating the functions are harder the more generic the vocabulary; second, and 
most importantly, it is very hard to elicit which arbitrary function represents user preferences.  
Choosing a restricted set of high-level functions makes both these aspects easier, but it brings up 
the research question of choosing an appropriate vocabulary. 

As a working hypothesis, for QoS dimensions with a numeric domain, we distinguish two 
intervals: one where the user considers the quantity to be good enough for his task; the other 
where the user considers the quantity to be insufficient.  Sigmoid functions characterize such 
intervals and provide a smooth interpolation between the limits of those intervals (see Figure 
3.5).  Sigmoids are easily encoded by just two points: the values corresponding to the knees of 
the curve; that is, the limits good of the good-enough interval, and bad of the insufficient 
interval.6  The case of when less-is-better, e.g. response time, is just as easily captured as the 
case where more-is-better, e.g. accuracy, (as in Figure 3.5) by flipping the order of the good and 
bad values. 

                                                       

6  Also amenable to this working hypothesis would be a piece-wise linear function F, where F(x) takes 
an arbitrarily small positive value for x

�
bad, F(x)=1 for x� good, and follows a linear interpolation 
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Formally, let Qs denote the set of user-perceived QoS dimensions for service s.  For instance, 
Qtranslation for Fred’s task above would include response time and accuracy.  Let Dom(d) denote 
the domain of QoS dimension d � Qs; for instance, Dom(response time) is the set of positive real 
numbers, scaled in seconds.  The QoS preferences for service s are given by a family of 
weighted functions (one for each d � Qs): 

Definition 3.3 ( ) ]1,0[,: ∈→• ddQoS
w

dQoS wUdDomhh d  

Where hQoS d is either a discrete mapping or a sigmoid, as discussed above.  The weights wd 
reflect how much the user cares about the quality along dimension d.  These weights are a 
convenient instrument to emphasize the preferred QoS: by assigning wd a low value (close to 0) 
the overall utility is less affected by variations of quality along dimension d. 

Specification 

Figure 3.6 shows the grammar for modeling user preferences (see also Figure 3.3).  The top 
element, tagged pr ef er ences, contains a child for the preferences of each service in the task.  
Service preferences are identified by (service) i d, and in their simplest form they mention the 
t empl at e to be applied and have no children.  If the value of the t empl at e attribute is cust om, 
then service preferences will have both Suppl i er Pr ef s and QoSPr ef s children. 

Supplier preferences are defined as a table (discrete mapping) with an arbitrary number of 
entries: pairs <x, f _x>, with x in Ps, and f _x in U.  This table defines hSupp in Definition 3.2.  The 
attribute wei ght  corresponds to ws, and t ype is necessarily t abl e. 

QoS preferences have as many QoSDi mensi onPr ef s children as QoS dimensions for the service, 
corresponding to the family of functions hQoS d in Definition 3.3.  Note that Funct i on can either 
be a Tabl e or a Si gmoi d, which is indicated by the value of the attribute t ype, and that the 
attribute wei ght  corresponds to wd. 

Pr ef s : : = pr ef er ences:  ;  
 { Ser vi cePr ef s}  
Ser vi cePr ef s : : = ser vi ce:  t empl at e i d;  
 [ Suppl i er Pr ef s QoSPr ef s]  
Suppl i er Pr ef s : : = suppl i er : ;  
 Tabl e 
QoSPr ef s : : = ut i l i t y :  combi ne;  
 { QoSDi mensi onPr ef s}  
QoSDi mensi onPr ef s : : = QoSdi mensi on:  name;  
 Funct i on 
Funct i on : : = Tabl e |  Si gmoi d 
Tabl e : : = f unct i on:  t ype wei ght ;  
 { Ent r y}  
Ent r y : : = ent r y:  x f _x;  
Si gmoi d : : = f unct i on:  t ype wei ght ;  
 Thr eshol ds 
Thr eshol ds : : = t hr eshol ds:  good bad uni t ;  

Figure 3.6 Grammar for specifying user preferences. 



36 

Figure 3.7 shows an example of custom preferences (not defined by a template) for the service 
play video in Figure 3.4.  Note that the supplier preferences discriminate two suppliers, 
RealPlayer and Media Player, with a preference for the latter.  Note also that the QoS 
preferences discriminate three dimensions: frame rate and video compression, defined as 
sigmoids, and audio quality, defined as a table. 

A task model such as the one above, defines configuration preferences, supplier preferences, and 
QoS preferences, with semantics given by Definition 3.1 through Definition 3.3.  This model is 
the basis for calculating the utility of each alternative configuration of services (more on this in 
Chapter 4, Finding the Best Match). 

Task Identity 

In addition to spanning multiple locations, another important property of user tasks is their 
duration and recurrence.  Users may work on some tasks for days or even months, and tasks may 
need to be resumed after users thought they were done.  For instance, a user may need to prepare 
periodic reports, or he may need to find a specific report that he wrote last year. 

  <pr ef er ences> 
    <ser vi ce t empl at e=" cust om"  i d=" 1" > 
      <suppl i er > 
        <f unct i on t ype=" t abl e"  wei ght =" 1" > 
          <ent r y x=" Real Pl ayer "  f _x=" 0. 7" / > 
          <ent r y x=" Medi aPl ayer "  f _x=" 1" / > 
          <ent r y x=" none"  f _x=" 0. 001" / > 
          <ent r y x=" ot her "  f _x=" 0. 5" / > 
        </ f unct i on> 
      </ suppl i er > 
      <ut i l i t y  combi ne=" pr oduct " > 
        <QoSdi mensi on name=" f r ameRat e" > 
          <f unct i on t ype=" si gmoi d"  wei ght =" 1" > 
            <t hr eshol ds good=" 20"  bad=" 5"  uni t =" f ps" / > 
          </ f unct i on> 
        </ QoSdi mensi on> 
        <QoSdi mensi on name=" compr essi on"  t ype=" f l oat " > 
          <f unct i on t ype=" si gmoi d"  wei ght =" 0. 5" > 
            <t hr eshol ds good=" 80"  bad=" 30"  uni t =" per cent " / > 
          </ f unct i on> 
        </ QoSdi mensi on> 
        <QoSdi mensi on name=" audi o" > 
          <f unct i on t ype=" t abl e"  wei ght =" 1" > 
            <ent r y x=" on"  f _x=" 1" / > 
            <ent r y x=" of f "  f _x=" 0. 001" / > 
          </ f unct i on> 
        </ QoSdi mensi on> 
      </ ut i l i t y> 
    </ ser vi ce> 
    <ser vi ce t empl at e=" def aul t "  i d=" 2" / > 
  </ pr ef er ences> 

Figure 3.7 Example custom preferences for service play video in Figure 3.4. 
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Users should be able to refer to their tasks after they are gone from their desktop.  Note that this 
is different than finding a file that resulted from carrying out a particular task.  Users should be 
able to find a task itself, so that it can be reactivated, if necessary, or used as a template to create 
a similar task.  For example, a user, Fred, may want to update a report that he prepared the 
previous year with some new data.  For that, Fred finds and reopens that task.  By doing that, 
Fred not only has access to the file containing the report proper, but also to all the services and 
sources of information that Fred originally used for preparing the report, laid out in the exact 
same way as Fred last used them. 

However, users should not be expected to remember a specific task identifier, a precise 
classification, or when exactly the task was carried out.  Today, if a user needs to find a file 
containing “ the report on the trip to Pittsburgh that I wrote last year,”  he may not remember the 
name of the file and may have no idea under which directory it was filed.  However, modern 
operating systems support scanning the file system based on a partial file name, or based on 
some piece of file content.  In fact, the metaphor of finding information based on pieces of that 
same information is being explored with great success by the World Wide Web. 

In this work, task models carry information about the task.  This may include a name, due date, 
the purpose or goals for the task, who collaborated7 on it, links to other tasks, etc.  Task links are 
references to other tasks, and, just like hyperlinks in a document, allow the quick navigation 
between related tasks.  None of these items are mandatory or have to be unique, including the 
task name.  Users are free to enter as much or as little information about their tasks as they feel 
appropriate: for short-lived tasks unlikely to be referred to after completion, users may enter no 
information at all.  In addition to user-provided information, task models also gather 
automatically harvested information such as the log of when and where the user worked on each 
task. 

                                                       

7  Like all other aspects of the information, this is purely informative: recall that in this dissertation we 
are not addressing the coordination issues of Computer-Supported Cooperative Work (CSCW). 

TaskI nf o : : = t ask:  st at e i d;  
 Descr i pt i on Hi st or y Li nks 
 
Descr i pt i on : : = descr i pt i on:  ;  
 Name Not es Col l abor at or s 
Name : : = name :  ;  
Not es : : = not es :  ;  
Col l abor at or s : : = col l abor at or s:  ;  
 
Hi st or y : : = hi st or y:  due cr eat ed;  
 { Accessed}  
Accessed : : = accessed:  at  st op st ar t ;  
 
Li nks : : = l i nks:  ;  
 { Li nk}  
Li nk : : = l i nk:  l abel  t I d;  

Figure 3.8 Grammar for specifying information about a task. 
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Storing such information about tasks enables users to search for their tasks later on.  Much like 
an Internet search, users can search for their tasks based on anything they remember about those 
tasks.  One can think of each term in the information about a task as enabling one classification 
scheme. Each such classification scheme distinguishes all the tasks referring to that term from 
the tasks that don’ t.  This is in stark contrast with the single hierarchical classification scheme 
currently offered by the directory structure in file systems, and much closer to the approach used 
by web search engines.  Eliciting information about tasks, and searching based on that 
information is covered in Chapter 5. 

Figure 3.8 shows the grammar for specifying information about a task.  The two attributes are 
the task st at e (either pending or closed, i.e. completed) and the task’s internal i d, for cross-
referencing (the same as in Figure 3.3 and in the task links, below).  The task description holds 
three free form text elements containing the optional task name, notes and collaborators (a 
semicolon-terminated list of names).  The Li nks element contains user-specified labeled links to 
related tasks: the l abel  pertains to the directional link, i.e., to the relationship between the 
present task and the referenced one.  The Hi st or y element contains mostly automatically 
harvested information: the timestamp of task creation and the log of accesses (when and where 
the user worked on the task).  The due date is user-specified. 

Figure 3.9 shows an example of information about the task of reviewing a video clip, which 
appeared in Figure 3.4.  The task represented in this example would match queries such as 
“soccer semifinals,”  or “newsletter July 04.”   See Chapter 5, Finding Tasks for details about 
expressing queries. 

 

<t ask st at e=" pendi ng"  i d=" 34" > 
  <descr i pt i on> 
    <name>r evi ew semi f i nal s game</ name> 
    <not es>comment ar y on t he Eur opean Soccer  Champi onshi p games 
           f or  t he company newsl et t er </ not es> 
    <col l abor at or s>Bar ney; </ col l abor at or s> 
  </ descr i pt i on> 
  <hi st or y due=" 2/ 07/ 04"  cr eat ed=" 30/ 06/ 04 9: 51 PM" > 
    <accessed at =" home"  st op=" 30/ 06/ 04 10: 32 PM"  st ar t =" 30/ 06/ 04 9: 53 PM" / > 
    <accessed at =" of f i ce"  st op=" 1/ 07/ 04 10: 03 AM"  st ar t =" 1/ 07/ 04 9: 27 AM" / > 
  </ hi st or y> 
  <l i nks> 
    <l i nk l abel =" t eam A pr evi ous game"  t I d=" 27" / > 
    <l i nk l abel =" t eam B pr evi ous game"  t I d=" 23" / > 
  </ l i nks> 
</ t ask> 

Figure 3.9 Example information about the task of reviewing a video clip in Figure 3.4. 



Chapter 4 

Infrastructure for Task Management 

The role of the infrastructure for task management is to support the notion of user tasks as 
coordinated sets of services.  In the previous chapter, we introduced task models that capture 
what users need from the computing environment for each of their tasks.8  These models are 
exploited at run-time by the infrastructure for automatically configuring and reconfiguring the 
environment on behalf of users. 

To play this role adequately, the infrastructure needs to address the challenges discussed in 
Chapter 1.  First, in the context of task management, users constantly switch between tasks, 
incrementally change their needs for the ongoing task (e.g., by adding or removing services) and 
may change their Quality of Service (QoS) preferences in the middle of a task.  Therefore, the 
infrastructure needs to address adaptation to dynamic changes both in the environment and in the 
ongoing user tasks. 

Second, scaling task management in space implies dealing with distribution and heterogeneity of 
devices and software in the environment.  Allowing users to take advantage of the computing 
systems accessible to them in different locations implies that the infrastructure has to 
accommodate devices ranging from mobile phones, to personal computers, to smart rooms; and 
has to deal with the plethora of software that comes with those devices.  Furthermore, the 
distribution of computing environments implies that the infrastructure needs to handle variations 
of resources and service availability as a normal situation, rather than exposing it to the user as 
exceptional (faulty) behavior. 

                                                       

8  Refer to Figure 3.1 for terminology. 
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Third, to enable users to take full advantage of the capabilities of the environment, the 
infrastructure needs to find the best match between the user’s needs and what the environment 
has to offer.  To accomplish that, it is not enough to have a binary model of whether applications 
are working correctly or there is a fault.  The infrastructure needs a quantitative framework to 
evaluate the alternative ways to configure the environment for supporting a task, both during the 
initial configuration of the environment, and during the ongoing adaptation to changes. 

Fourth, the infrastructure needs to be designed in such a way that the quantitative models are 
exploited consistently to drive both system-wide configuration and adaptation, and local 
adaptation policies within resource-aware applications. 

The rest of this chapter discusses an architectural framework for building infrastructures for task 
management: the Aura framework.  The four sections below walk through the architectural 
decisions that address each of the challenges above, and that are embodied in this framework.  
The fifth section presents and evaluates a working implementation of the Aura framework. 

Two Sources of Change 

The computing environment around mobile users changes constantly.  Each time users resume 
their tasks in a new location, they may find a different set of devices and software to work with.  
Even when users remain on the same location, resources may change.  For example, in heavily 
networked environments, remote servers constantly change their response times and even 
availability.  When using mobile devices, resources such as battery and bandwidth may fluctuate 
widely. 

In addition, users’  needs change as they switch between tasks, update the required set of services 
and materials, or adjust their QoS preferences for an ongoing task.  For example, while browsing 
an e-commerce site over a poor connection, the user may want to skip loading pictures in favor 
of faster response times, but he may be willing to wait for the pictures to load once he reaches 
the page with the desired product.  An example of adding services: as a task of preparing a report 
progresses, the user may add working on a spreadsheet, or he may add browsing the web for 
newly discovered sources of data. 

The infrastructure for task management can be seen as an adaptive system.  Typical adaptive 
systems hold a model of the universe of discourse.  Those systems continuously monitor that 
universe, and act on it in order to optimize some goal function.  Here, the universe of discourse 
has two parts that evolve independently of each other and that the infrastructure monitors: user 
tasks and environment.  The purpose of the infrastructure is to maximize the utility of the 
environment with respect to the user preferences (see Finding the Best Match, below) by acting 
on (configuring) the environment. 

To automatically configure the environment, first, the infrastructure needs to know what to 
configure for; that is, what users need from the environment to carry out their tasks.  Second, the 
infrastructure needs to know how to best configure the environment: it needs to know which 
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capabilities and resources are available in the environment, and it needs mechanisms to 
optimally match those to the user needs. 

In the Aura framework, each of these two problems is addressed by a distinct software layer: (1) 
the Task Management layer determines what users need from the environment at a specific time 
and location; and (2) the Managed Environment layer determines how to best configure the 
environment to support user needs. 

Figure 4.1 summarizes the roles of these software layers and also shows a third layer, the 
Environment, which contains the applications and devices that support user tasks.  Configuration 
issues aside, these applications interact with the user in the same way as they would without the 
presence of the infrastructure.  The infrastructure steps in only to automatically configure those 
applications on behalf of the user. 

Figure 4.2 shows the top-level components within these layers and the connectors9 between 
them.  In the Task Management layer, Prism acts as a user proxy, coordinating the suspending 
and resuming of user tasks.  The Context Observer monitors the physical context of the user 
(location, etc.) and reports relevant events back to Prism, the Environment Manager (EM), and 
context-aware applications.  In the Managed Environment layer, the EM offers the mechanisms 
to configure the services required by user tasks.  The Suppliers offer the abstract services that 
tasks are composed of: text editing, video playing, etc. 

The main focus of this dissertation is on Prism and its interactions with the Environment 
Manager and the Suppliers.  For scoping reasons, incorporating context-awareness into task 
management was only marginally addressed in this dissertation (see Chapter 2, Context 
Awareness and also Chapter 5, Tasks at a Glance). 

The following subsections elaborate on the roles of the components in Figure 4.2 and on the 
rationale for the interactions between them.  Appendix A provides concrete scenarios of 
interaction and a formal specification of the protocols of interaction. 

                                                       

9  In architectural terms, a connector is a model of the interaction protocols and a set of design 
constraints on the mechanism of communication (e.g., synchronous vs. asynchronous). 
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(Prism) 

what does 
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− monitor the user’s task, context and preferences 

− map the user’s task to requests for services in the environment 

− represent complex tasks: decomposition, plans, context dependencies 

Managed 
Environment 

 

how to best 
configure 

the environment 

− monitor environment capabilities and resources 

− map service needs, and user-level state of tasks to available suppliers 

− continuously optimize the utility of the environment relative to the task 

Environment 
support the 
user tasks 

− monitor relevant resources 

− manage fine grain QoS/resource tradeoffs 

Figure 4.1 Software layers of the Aura framework. 
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Changes in User Tasks 

Prism plays the main role in adapting to changes in user tasks and preferences.  Prism holds 
knowledge about user tasks and preferences in the form of the models presented in Chapter 3.  
Such knowledge is used to coordinate the configuration and reconfiguration of the environment 
upon changes in user needs.   

For instance, when a user is authenticated in a new environment, Prism coordinates accessing all 
the information related to the user tasks, and cooperates with the Managed Environment layer to 
find the best match for the user needs.  Prism also monitors indications from users to know when 
a user intends to resume a task, or to suspend a task being carried out.  

Upon getting indication to suspend a task, Prism captures the user-perceived state of the task for 
later use. When the user indicates that a task should be resumed, Prism coordinates 
reconstructing the user-perceived state of the task.  Likewise, when a user modifies the set of 
services involved in an ongoing task, Prism saves or reconstructs the state of the dismissed or 
added services, as appropriate.  Furthermore, Prism communicates the user’s QoS preferences to 
resource-aware service suppliers, so that they can enforce the appropriate adaptation policies 
(see Adaptation at Three Levels, below). 

The Task Management layer may also capture more complex representations of user tasks 
including task decomposition (e.g., task A is composed of subtasks B and C), plans (e.g., C 
should be carried out after B), and context dependencies (e.g., the user can do B while sitting or 
walking, but not while driving).  However, for scoping reasons discussed in Chapter 7, 
Sophistication of Task Models, complex representations of user tasks such as these are not 
covered in this dissertation. 

Operating System
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Figure 4.2 Component and connector view of the Aura architectural framework. 
The layers on the right-hand side correspond to the software layers introduced in Figure 4.1. 



  Chapter 4. Infrastructure for Task Management 

  43 

Changes in the Environment 

The Managed Environment (ME) layer plays the main role in adapting to changes in the 
environment.  The ME layer is responsible for monitoring the availability of suppliers and 
resources, and for optimally matching the incoming requests from Prism to the available 
alternatives.  Upon resuming a task, the ME maps the service requests to the concrete suppliers 
that best match the user preferences (see Finding the Best Match, below). 

While a task is being carried out, an alternative configuration may come to offer a better match 
than the current configuration.  This may happen either because (a) resource variations degraded 
the observed QoS, or some supplier failed (which can be thought of as degrading the QoS all the 
way to zero); or because (b) some suppliers became accessible or resource variations made them 
more attractive in terms of forecast QoS. 

Whenever an alternative configuration becomes more attractive, the ME layer is the first to 
reason about whether to replace one or more suppliers to reach the desired configuration.  A cost 
of change is factored into this reasoning, since users may perceive a cost whenever they are 
interacting directly with a supplier targeted for replacement.  Of course, if the supplier in 
question failed, that cost is unavoidable, and the ME layer should proceed to activate the best 
alternative supplier anyway. 

If, on the other hand, the current configuration is functional but the alternative is attractive 
despite the cost of change, the ME layer may coordinate with Prism on whether and when to 
perform the swap.  For instance, if the supplier playing a video is about to be replaced, the user 
may wish to finish viewing the current scene; or if a supplier supporting taking notes is about to 
be swapped, the user may wish to finish his train of thought.  Prism would take these decisions 
either based on its knowledge of the user tasks or by prompting the user for a decision.  See [85] 
for details about representing reconfiguration policies and cost of change. 

Heterogeneity and Distribution 

To support user mobility, the framework must accommodate the distribution and heterogeneity 
of computing environments.  Allowing users to take advantage of the computing environments 
in different locations implies that the infrastructure has to interact with diverse software and 
devices.  Furthermore, the increasing pervasiveness of smart spaces is causing a shift in the 
paradigm of computer use: from single-device, tightly integrated interaction (e.g., on a desktop 
computer), to multiple-device, loose interaction. 

The designs of the Managed Environment (ME) layer and of the connectors represented in 
Figure 4.2 play a key role in addressing the heterogeneity and distribution of environments.  The 
following subsections describe how these challenges are addressed in the Aura framework. 
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Heterogeneity 

The ME layer holds abstract models of the environment.  These models provide a level of 
indirection between the user’s needs, expressed in environment-independent terms, and the 
concrete capabilities of each environment.  This indirection is used to address heterogeneity: 
when a user needs a service, such as speech recognition, the ME layer finds and configures a 
supplier for that service among the ones available in the environment.  Note that by virtue of 
these abstract models, Prism is aware of which services are available in each environment, but 
not how (i.e., by which applications) those services will be delivered. 

The role of mapping user needs into the concrete capabilities of the environment is played by a 
generic (environment-independent) component within the ME layer: the Environment Manager.  
Specifically, the Environment Manager (EM) constructs abstract models of the environment and 
interacts with Prism for matching user needs with the available suppliers.  (See Verifying the 
Protocols of Interaction, below.) 

The ME layer also translates the environment-independent models of user-perceived state and 
QoS preferences issued by Prism into the specific capabilities of each supplier.  While holding 
abstract knowledge about the environment is a generic role, interfacing with the specific 
capabilities of each supplier is, of course, supplier-specific. 

The supplier-specific translation of task models is made by the Supplier components (see Figure 
4.2).  In each environment, the ME layer holds many Suppliers, corresponding to the 
applications and devices in the environment. 

In practice, most Suppliers are implemented by wrapping existing applications to conform to the 
infrastructure’s APIs.  Rather than requiring writing a new portfolio of applications, this 
approach makes it easy to integrate legacy applications into the infrastructure.  For instance, in a 
Unix-based environment, Emacs, and Vim may each be wrapped to become a supplier of text 
editing services; in a Windows-based environment, MSWord and Notepad may each be wrapped 
to supply the same service (see Chapter 7, Software Engineering of Service Suppliers). 

The capitalized term Supplier refers to the wrapper code (residing in the ME layer).  That code 
presents the infrastructure with a normalized way to access all the functionality necessary to 
configure the specific service supplier: to activate and deactivate the service, to capture and 
reconstruct the user-perceived state, and to enforce the resource-adaptation policies that derive 
from the QoS preferences. 

Distribution 

Computing environments are increasingly distributed.  The Suppliers, especially, may be 
scattered across different devices, some of which may be remote to the user’s location.  
Connectivity may vary widely, from high-speed wired connections, to fluctuating wireless (radio 
or infrared) connections. 

Because of distribution, the design of the connectors in Figure 4.2 is crucial to determine the 
infrastructure’s resilience and ability to be proactive.  Specifically, we targeted three goals: the 
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responsiveness of components should not be hindered by blocking on communication; whenever 
a component generates information that is relevant to others, it should pass it with no need to 
wait for a request; and to facilitate proactive reconfiguration, the EM should keep models of the 
environment that are as up-to-date as possible.10 

The responsiveness of the infrastructure is critically influenced by the choice for the modality of 
communication: synchronous vs. asynchronous, client-server, etc.  In synchronous communica-
tion, the originating (calling) component blocks on the reply of the target (called) component.  
However, in our case, each component needs to play its role, in real-time, doing the best it can 
with the available information and without blocking on another component’s reply.   

For example, the EM should not stop monitoring the capabilities of the environment, or replying 
to requests of Prism on account of being blocked on the reply of a remote Supplier – which may 
have become disconnected.  Likewise, Prism should not stop responding to changes in the user’s 
task when waiting for the reply of some other component. 

Therefore, all communication between the components in Figure 4.2 is asynchronous (non-
blocking). 

Furthermore, whenever a component generates information that is relevant to others, it should 
have the ability to communicate it immediately without having to wait for a request.  For 
example, when Prism first needs to resume a task, it requests the EM to find the best match of 
Suppliers in the environment.  However, if later the environment changes in a way that justifies a 
reconfiguration, the EM may take the initiative of coming back to Prism suggesting the 
reconfiguration, or just informing Prism that it performed the reconfiguration, depending on 
what was agreed for the particular Supplier. 

Rather than relying in push or pull models with strict timings, the communication between the 
components in Figure 4.2 is peer-to-peer (any component may take the initiative).   

Additionally, to facilitate proactive reconfiguration, the EM needs to be aware of the state of the 
environment.  Specifically, the EM needs to make sure that the Suppliers actively supporting 
user tasks are up and running. 

The Aura framework puts the burden of proof on the Suppliers: they must emit a “heart-beat”  
signal to the EM reporting on the level of QoS being achieved with the current resources.  In the 
absence of “heart-beat”  (discounting network delays and losses) the EM assumes that the 
Supplier failed and proceeds to reconfiguration.  The QoS reports are also used by the EM to 
periodically evaluate alternatives against the current configuration (more in Finding the Best 
Match, below). 

                                                       

10 Defining meaningful strategies for scoping the environment is a crucial and open problem: see Chapter 
8, Future Work. 
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Verifying the Protocols of Interaction 

An important step towards assuring that the infrastructure behaves as intended is verifying the 
protocols of interaction between the components in Figure 4.2.  Because the protocols follow an 
asynchronous, peer-to-peer modality (see above) it is important to ensure that they are deadlock 
free, and also to verify liveness conditions expressing that the components are able to recover 
from faults.   

Specifically, we specified the interactions between Prism and the EM, between Prism and the 
Suppliers, and between EM and the Suppliers using Finite Sequential Processes, FSP [59], a 
process algebra similar to Hoare’s CSP.  We then used the LTS automatic checker [59] to verify 
the desired properties.  Process algebras such as FSP allow for the verification of the sequence of 
interactions but fail to capture complex state and how it is affected by the interactions. 

To reduce chattiness, the communication between Prism and the EM is session oriented.  
Specifically, for each task that the user may want to work on, Prism starts a session with the EM.  
Each session keeps as state the service definitions and user preferences, as defined in Chapter 3.  
Naturally this state can be updated incrementally, as users add or remove services from their 
tasks. Thanks to the state kept by the EM for each session, Prism may issue budget requests for 
alternative configurations (see Finding the Best Match, below), or reconfiguration requests, just 
identifying the services by id thus avoiding repeating the service definitions and preferences in 
each request. 

To clarify the state shared by Prism and the EM for each session, and how it is affected by each 
interaction, we specified it using the Zed specification language and verified its consistency 
using the Zed checker [87].  These models proved a valuable tool during the low-level design 
and implementation of the EM. 

See Appendix A for both the FSP and Zed specification of the protocols. 

Finding the Best Match 

To enable users to take full advantage of the capabilities of the environment, the infrastructure 
needs to find the best match between the user’s needs and what the environment has to offer.  
However, the set of services to be configured in the environment is not always uniquely 
determined.  In fact, users may have several tasks on which they are willing to work. 

For instance, a user, Fred, may be willing to take notes on a promotional video; but if the video 
cannot be played with adequate fidelity, maybe because of insufficient bandwidth, Fred may be 
willing to work on his weekly report instead.  Additionally, each task may have more than one 
way of being supported.  For instance, Fred may dictate, type, or write on a pad for taking notes 
on the video. 

To assist users in deciding which task to work on, and to find the best alternative configuration 
to support that task, the infrastructure performs a quantitative evaluation of all the alternatives.  
The two top layers described in Figure 4.1 cooperate in this analysis. 
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Prism generates the alternatives for what a user may want, while the EM evaluates how well the 
environment can support each alternative.  For each alternative configuration within each 
possible task, Prism generates a budget request to the EM.  That request contains the model of 
the configuration, in the form defined in Figure 3.3, and of the user preferences, in the form 
defined in Figure 3.6.  The quantitative evaluation of each alternative is supported by the notion 
of utility (see Chapter 3, User Preferences). 

The utility of a configuration c depends on the supplier assigned for each service, and on the 
levels of quality for each QoS dimension.  For instance, in Fred’s video review example (see 
Chapter 3, Supplier Preferences) the configuration video&write will have a different utility 
depending on whether Emacs or Vim are chosen as the supplier for the edit text service.  Also, 
the utility, as Fred perceives it, depends on the levels of quality observed at each moment.  If, 
because of fluctuating bandwidth, the video player reduces the frame rate below Fred’s 
happiness threshold (the good value of the sigmoid), the utility for c decreases. 

Formally, let Sc denote the set of services and connections in configuration c, and Pc denote the 
union of the sets of possible suppliers Ps for each s� Sc.  Let p:Sc

� Pc denote one particular 
supplier assignment for each s�  Sc.

11  Also, let Dc denote the union of the sets of QoS 
dimensions Ds for each s�  Sc, and Qc denote the union of the quality domains Dom(d) for each 
d � Dc.  Let q:Dc

� Qc denote an observation of the levels of quality for each d � Dc.  The overall 
utility of the environment for configuration c is given by:  
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where the user preferences h are given by Definition 3.2 and Definition 3.3.  Combining the user 
preferences by multiplication corresponds to an and semantics: overall utility is good, only if 
each and every preference can be met satisfactorily. 

To maximize the utility of the environment, the EM explores all possible supplier assignments to 
the services in the task, and all possible quality levels that are achievable with the current 
resources.  Formally, given a budget request for configuration c and a forecast of the available 
resources in the environment, the EM determines the supplier assignment, p̂ , and the forecast 
levels of QoS, q̂ , that maximize the utility:12 
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The algorithms involved in solving Formula 4.2 come from research by Vahe Poladian that is 
separate, but complementary to this dissertation [70].  Other research addresses forecasting 
available resources (e.g., [62]). 

                                                       

11  As a technicality, if no supplier preferences are elicited for connections, as it is the case with the 
present syntactic form, that is, Ps=

�
 if s is a connection, set hSupp trivially to 1. 

12  Read the vertical bar as “given.”   For instance U(c|p,q) is read: the utility of configuration c, given a 
supplier assignment p and forecast levels of QoS q. 
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The last step in computing the feasibility of a task belongs to Prism, which weighs the utility of 
each alternative configuration of services, by the user’s preference for that configuration.  
Formally, the achievable utility of the environment for configuration c, ( )qpcU ˆ,ˆ , is returned to 
Prism, which then computes the preferred configuration, ĉ , among the alternatives Ct for task t, 
using the configuration preferences in Definition 3.1: 

Formula 4.3 ( ) ( )qpcUchConfig
Cc t

ˆ,ˆmaxarg ⋅
∈

 

Prism then advises the user (more on this in Chapter 5) on the feasibility of each task t, given the 
current conditions of the environment.  The feasibility of a task t is defined as: 

Definition 4.4 ( ) ( )qpcUchtF Config ˆ,ˆˆˆˆ)( ⋅=  

As discussed in the previous sections, the EM periodically evaluates the utility of the current 
configuration, feeding the levels of QoS reported in “heart-beat”  messages from the Suppliers 
into Definition 4.1.  The EM then runs the maximization in Formula 4.2 over the alternative 
supplier assignments and resource allocations, and decides whether a reconfiguration should be 
considered.  More on this in the next section. 

Adaptation at Three Levels 

An important problem is to coordinate the adaptation policies enforced within resource-aware 
applications with the system-wide configuration and reconfiguration carried out at the Task 
Management and Managed Environment layers of the infrastructure. 

Existing sophisticated applications are able to change their internal behavior to make the most of 
the available resources.  For instance, a virtual reality application with strict timing constraints 
may use sophisticated graphics rendering algorithms when CPU is plentiful, but simpler 
algorithms when CPU is scarce.  Furthermore, adaptation strategies may include the dynamic 
reconfiguration of distributed components.  For instance, an adaptive natural language translator 
running on a handheld may run sophisticated algorithms on a remote server when bandwidth is 
plentiful, but may have to rely on simpler local algorithms when the connection is flaky. 

Integrating such adaptive applications into the Aura framework brings up two questions.  First, 
where should we draw the line between the kinds of adaptations managed internally by the 

level adapts to time scale 

Task 
Management − changes in user tasks and preferences minutes 

Managed 
Environment − changes in service availability and trends in QoS seconds 

Applications − changes in resources milliseconds 

Figure 4.3 Adaptation role of each level. 
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applications, and the kinds managed by the EM and Prism?  Second, how can we coordinate the 
adaptation policies enforced by the applications with the policies at the Task Management and 
Managed Environment levels?  Below we review the roles of Prism and EM concerning 
adaptation, summarized in Figure 4.3, and the following two subsections address these 
questions, in turn. 

At the Task Management level, changes in user tasks cause Prism either to adjust the service 
composition of currently active configurations, or to activate or deactivate whole configurations.  
For that, Prism interacts with the EM to evaluate how well alternative service configurations can 
be supported in the environment, and once a decision is reached, Prism requests the EM to carry 
out a specific reconfiguration in the environment.  Reconfiguration at this level is triggered by 
human actions and occurs at a human time-scale (minutes). 

At the Managed Environment level, reconfiguration consists of swapping suppliers for services 
that were requested by Prism.  This is triggered whenever the configured set of suppliers in the 
environment no longer offers the best utility for the requested set of services.  Broadly, there are 
two causes for that: first, a change in the capabilities of the environment, such as current 
suppliers failing or becoming disconnected, or new suppliers becoming available.  For instance, 
suppose that a user initiated a teleconference using his handheld while walking down the hall: 
new suppliers become available to the user when he enters an office with a large screen and 
good teleconferencing capabilities.  The second cause for reconfiguration is significant resource 
variation, which may result in dropping the QoS offered by the currently active suppliers below 
what is possible to achieve from another set of suppliers. 

Based on periodic “heart-beat”  messages (see previous sections) the EM periodically evaluates 
the current environment configuration against possible alternatives.  If a better alternative is 
found for a currently active supplier, the EM may proactively swap the supplier, or it may 
coordinate with Prism on whether and when to swap it (see Changes in the Environment, above).  
This kind of evaluation takes place at a time-scale of a few seconds. 

Below, we discuss the interplay between the adaptation at the two levels above, and the 
adaptation at the level of applications.  

Integrating Adaptive Applications 

Recent research on adaptive applications introduced mechanisms for the dynamic 
reconfiguration of distributed components in response to resource changes (e.g., [8,31]).  For 
example, an application for translating natural language running on a handheld may run 
sophisticated algorithms on a remote server when bandwidth is plentiful, and simpler local 
algorithms when the connection is poor.  Typically such applications evaluate alternatives and 
perform reconfigurations at a time-scale of hundreds of milliseconds, or less. 

To support integrating such adaptive applications into the Aura framework we need to answer 
questions like:  should the identification and configuration of remote components be managed by 
the EM, or internally by the applications?  Is there a rigid line of responsibility, or is there room 
for hybrid solutions? 
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Complex applications may take advantage of the mechanisms offered by the EM to find and 
configure distributed components (see Chapter 7, Service Decomposition).  However, if off-the-
shelf applications include customized mechanisms to configure their own distributed 
components, that should not be an impediment for their integration into the framework. 

The current design of the Aura framework accommodates the integration of applications, 
regardless of their use of internal mechanisms for adaptation.  However, to enable the EM’s role 
with respect to resource allocation, such applications should expose a model of their QoS 
behavior to the EM (see [85] for details).  Based on that model, the EM views, activates, and 
manages the corresponding Supplier as a unit: all internal behavior is treated as a black box by 
the EM.  Furthermore, adaptive applications should be amenable to have their adaptation 
policies determined externally (by Prism) and passed dynamically, as appropriate (see below). 

Coordinating Policies 

A persistent problem for adaptive applications is to determine the adaptation policies that users 
would like to see enforced.  This problem would be easier if QoS were expressed along a single 
dimension: whenever resources are plentiful, make the QoS “better.”  For instance, a media 
player playing a video stream over a network connection can adjust the fidelity of the video 
depending on the available bandwidth.  If the bandwidth improves, it can increase the video 
fidelity. 

Unfortunately, QoS is seldom expressed along a single dimension.  In the example of playing a 
video, above, when bandwidth improves should the media player increase the frame rate, the 
image quality, or both?  The answer depends on the user preferences for the current task.  If the 
user is watching a sports event, he may prefer frame rate to be privileged at the expense of image 
quality.  For watching a documentary on painting, the opposite might be preferable. 

To make matters worse, resource adaptation policies should be coordinated among the several 
applications supporting a task.  For example, suppose that the user is watching the video on a 
PDA, and that he wants to take notes on the video using speech recognition.  Suppose also that, 
when bandwidth is plenty, the (adaptive) speech recognizer may ship the utterances to a remote 
server and receive the results of the recognition.  If the media player aggressively uses the 
available bandwidth, it may render the speech recognizer inoperative, or helplessly slow.  One-
size-fits-all fairness policies enforced by the operating system or networking levels may not 
result in the resource allocation that delivers the best results for the user’s task. 

Clearly, determining the appropriate QoS tradeoffs and optimal resource allocation among the 
several applications supporting a task is a hard problem to solve at the level of applications. 

The Aura framework addresses this problem as follows.  First, the EM calculates the optimal 
resource allocation among the suppliers, as part of the maximization in Formula 4.2.  Second, 
Prism holds the QoS preferences that drive the preferred QoS tradeoffs for the task (see 
Definition 3.3 and Figure 3.6).  These are passed to the Suppliers upon activation of a service 
and whenever there are changes: for instance, if the user preferences change in the middle of a 
task. 
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Implementation 

This section describes the implementation of the Aura framework constructed for this 
dissertation.  For practicality, this implementation makes the following assumptions (see also the 
discussion of design and engineering decisions in Chapter 7, as well as Chapter 8, Future Work): 

− Each task is accessed by a single user (cooperative tasks between multiple users is beyond 
the scope of this dissertation). 

− The user interacts with a single instance of the infrastructure at any given time and location. 
This assumption will have to be dropped to account for situations such as the user carrying 
around a laptop with an instance of the infrastructure, and entering a location containing 
another instance of the infrastructure, say his office.  Presumably, the user will expect the 
two infrastructures to cooperate so that he can access all the capabilities seamlessly. 

− A distributed file system is available wherever the user may want to access his tasks.  For 
situations where this option is not practical, the infrastructure can easily be extended for 
using other file access mechanisms, such as https. 

− The Suppliers handle issues of data format compatibility.  For instance, a Supplier of text 
editing services should recognize alternative document formats and perform the appropriate 
transformations, as necessary. 

The current version of the infrastructure includes Java implementations of Prism and the EM, as 
well as implementations of several Suppliers.   

The following two subsections describe the implementation of Prism and the Suppliers, while 
the implementation of the EM was carried out by Vahe Poladian [70], according to the 
specifications described herein.  The third subsection below presents an evaluation of the 
performance of the infrastructure. 

Prism 

Figure 4.4 shows a sketch of the internal composition of Prism. The interactions among the 
components of Prism are realized as (Java) method calls, and the interactions with the distributed 
file system use the standard (Java) file system API.  The asynchronous, peer-to-peer interactions 
corresponding to the connectors in Figure 4.2 are implemented as the exchange of XML 
messages over TCP/IP. 

The Speakeasy component handles the identification and authentication of users, as well as 
obtaining the encryption keys for accessing the task models and personal materials of each user. 

Once a user is authenticated with the infrastructure, a Task Manager component is created for 
him or her.  A Task Manager contains two subcomponents: first, a Dashboard lists the tasks that 
the authenticated user may wish to work on.  Second, Lamp supports browsing the past and 
present tasks, based on the persistent task identity defined in Chapter 3. 
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The Dashboard creates a Focus component for each task listed.  An instance of Focus interprets 
and manipulates the corresponding task model, as defined in Chapter 3.  Each Focus starts a 
session with the EM, following the Prism-EM protocol mentioned in the previous sections.   

Chapter 5 elaborates on the functionality of the Dashboard, Lamp, and Focus. 

Suppliers 

A number of students coordinated by Bradley Schmerl collaborated in implementing suppliers 
by wrapping BabelFish (web-based translator), Excel (spreadsheet), Festival (speech 
synthesizer), Internet Explorer, GNU Emacs (text editor), Media Player, MSWord (text editor), 
PowerPoint (slide editor), Sphinx (speech recognizer), and Xanim (media player).  Each of the 
suppliers was developed using the most convenient language to access the application’s APIs, 
ranging from C/C++, to Java, to Lisp.  We have tested the infrastructure on Windows and Linux 
platforms, including the migration of user tasks between the two.13 

Chapter 7, Software Engineering of Service Suppliers, discusses what we learned from our 
experience in implementing the suppliers mentioned above. 

 

                                                       

13  Naturally, task migration is constrained by the suppliers available under each platform.  At present, 
only Suppliers for Emacs and Xanim were developed for Linux. 
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Figure 4.4 Internal composition of Prism. 
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Evaluation 

This subsection focuses on evaluating the performance of the infrastructure.  See Chapter 6 for 
the thesis validation and Chapter 7 for a discussion of the design and engineering decisions. 

For evaluating the performance, we focused on metrics that determine the user perception of 
whether the infrastructure is usable on a daily basis.  Broadly, there are three groups of such 
metrics: first, once a user authenticates, how long does it take to have an operational Dashboard; 
second, how long does it take to search tasks using Lamp; and third, how long does it take to 
suspend and resume tasks. 

With respect to the first and second groups of metrics above, we expect the values to depend on 
the number of tasks defined by the user.  Specifically, we expect that the higher the number of 
tasks, the longer to find out which tasks should be listed in the Dashboard, the longer it will take 
to search for a task, and the larger the memory footprint.  We measured the memory footprint, 
since that may critically influence performance in small devices. 

To measure the performance variation with respect to the number of tasks, we populated a large 
number of task definitions (see Chapter 3, Task Identity) using data extracted from random text 
documents.  Since we want to support the definition of hundreds of new tasks per year of usage, 
we created about 10,000 task definitions.  We then repeatedly divided the task directory size in 
half to obtain the variation of the performance with respect to the number tasks. 

The experiments below were carried out on a IBM ThinkPad 30 laptop running Windows XP 
Professional, with 512 MB of RAM, 1.6 GHz CPU, and WaveLAN 802.11b card.  Prism and the 
EM each run on a Hot Spot JRE from Sun Microsystems, version 1.4.0_03. 

For the first group of experiments, we measured (a) the latency d of reading the user’s directory 
of tasks, (b) the latency s of searching for the pending tasks (the ones that should be listed in the 
Dashboard), and (c) the latency f of finding the feasibility of one task.  The overall latency 
between authentication and the availability of an operational Dashboard is d+s+n.f, where n is 
the number of tasks listed on the Dashboard. 
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Figure 4.5 Latency of dashboard availability after user authentication. 
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The diamond-shaped points in Figure 4.5 correspond to the latency d of reading the user’s 
directory of tasks, currently implemented over the file system. The square-shaped points 
correspond to the latency s of searching the pending tasks (the ones that should be listed in the 
Dashboard) after the directory was read.  As expected, the latency grows linearly with the 
number of tasks, being under 1 second for well over 2000 task definitions. 

The latency f of finding a task’s feasibility is on average 200 ms (standard deviation 50 ms).  
Recall that this involves the constrained maximization of the utility function for each of the 
alternative configurations (Formula 4.2).  These numbers were obtained from tasks ranging from 
4 to 24 alternative combinations of suppliers for the required services.  The performance 
variation is due to the different numbers of services in the task, and QoS profile of the suppliers. 

For the second group of experiments, we measured the latency of searching tasks using Lamp 
and the memory footprint of the infrastructure.  As expected, see Figure 4.6, both grow linearly 
with the number of tasks, after a significant number of tasks have been created.  The current 
implementation keeps the task directory in memory, after it has been read after authentication.  
Of course, the penalty in memory footprint is compensated by the swift search times: less than 1 
second for a search such as the one illustrated in Chapter 5, even against 10,000 task definitions. 

Should the memory footprint become an issue, for instance when deploying the infrastructure on 
a handheld computer, the task directory can be read for every search.  The memory footprint of 
Prism would drop to 16 MB, and the latency of each search would be increased by the latency of 
reading the directory (Figure 4.6). 

The memory footprint of the EM ranges linearly from 7 MB to 15 MB when it holds the 
descriptions of 20 up to 400 services in the environment.  By comparison, a “hello world”  Java 
application under the used Java Runtime Environment (JRE) has a memory footprint of 4.5 MB, 
and a Java/Swing application that shows a “hello world”  dialog box has a memory footprint of 
12 MB. 
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Figure 4.6 Latency of task searching and memory footprint of Prism. 
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For the third group of experiments, we measured the latency of suspending and resuming tasks.14  
For resuming a task, the infrastructure takes an average of 700 ms (standard deviation 200 ms) to 
activate all the required services.  For suspending a task, the infrastructure takes an average of 
170 ms (standard deviation 20 ms) to obtain a snapshot of the user-level state and deactivate the 
involved services. 

In conclusion, the latencies for obtaining an operational Dashboard after authentication, and for 
searching tasks, are well within the usual values for obtaining an operational desktop after 
authentication, and for searching files, respectively.  Furthermore, the latency introduced by the 
infrastructure for suspending and resuming tasks is mostly insignificant when coupled with 
starting up applications.  What a user clearly perceives is that applications quickly recover the 
user-perceived state where a task was previously interrupted, and that all services associated 
with that task start up as a unit. 

 

                                                       

14 The experiments were conducted with tasks containing between 1 and 5 services, but it should be noted 
that this latency is overhead introduced by the infrastructure in the service activation/deactivation 
protocols.  The activations themselves may then proceed in parallel in a modern operating system.  
Consequently, the resume/suspend latency introduced by the infrastructure is mostly constant, rather 
than growing proportionally to the number of services in a task. 



Chapter 5 

Describing and Operating on Tasks 

This chapter focuses on the part of the infrastructure that enables users to describe and operate 
on their tasks.  Task management promotes user tasks to first-class entities in the system and 
thus enables users to operate directly on their tasks. 

Such operations treat as a unit all the services and materials involved in a task.15  For instance, a 
user may suspend a task at home and resume it at the office.  To support scalable task 
management, the infrastructure needs to address the three key properties: treating tasks as 
coordinated set of services, scalability in space, and in time.  

First, the mechanisms available to users for describing their tasks should be simple to use, yet 
powerful enough to capture the task models defined in Chapter 3.  Second, describing tasks 
should have a low entry cost and provide incremental benefit for incremental effort.  And third, 
the mechanisms for describing tasks should be clear in the assumptions made, and make it easy 
for users to make adjustments and modifications. 

The following sections discuss the user interfaces we incorporated in the infrastructure for users 
to operate on tasks, and to describe tasks, in turn. 

                                                       

15 Refer to Figure 3.1 for terminology. 
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Operating on Tasks 

The fundamental tenet of task management is that users should be able to refer to, and 
manipulate as a unit, the collection of services and materials involved in a task.  As such, users 
can perform operations on a task, such as suspending it, resuming it, or closing it once they 
believe they are done with the task.  Applying such operations to tasks changes their state, and 
pushes tasks through a life cycle. 

Mobile users may like to take full advantage of the computing systems accessible to them, much 
like they take advantage of the furniture in each space.  However, for carrying out their tasks in 
different locations, users may have to deal with environments with very different capabilities. 

Therefore, it is important for users to know, at a glance, of the feasibility of carrying out each of 
their tasks in the current environment.  To prevent overwhelming users with information that is 
likely to be irrelevant, the view over a user’s tasks should be limited to the tasks that the user 
may want to work on at the present time and location. 

Scalability of task management in time means that users may want to recover tasks closed long 
ago, to reopen them, or to create a new instance of a recurring task.  Of course, users should 
always be able to find their tasks, and operate on them as necessary, whether or not those tasks 
appear on the task view mentioned above. 

The three subsections below address each of these topics. 

Tasks at a Glance 

Mobile users that wish to take full advantage of the computing environments at each location 
may interact with many different devices ranging from mobile phones, to personal computers, to 
smart rooms.  Given the differences in those environments, some tasks may be better supported 
than others; and which tasks are well supported may change from one environment to the next. 

Additionally, users might want to constrain the context in which some tasks should be carried 
out.  For instance, a work-related task involving confidential data may be carried out at the 
company’s premises, but not at the café; or watching a movie may only be carried out after 
business hours. 

To address environment variability, the infrastructure should provide users with a clear 
indication of the feasibility of each of their tasks in the current environment.  The question is: 
how to show that information to users?  And even before that, how to show the tasks that a user 
may want to work on?  Many current desktop managers present tasks as the set of services itself, 
normally in a well-defined area of the screen.  In that case, the user identifies tasks either by 
visually recognizing the windows corresponding to the set of services, or by remembering their 
location on the screen.  However, the amount of screen real estate required by this technique 
grows rapidly with the number of tasks – as does the amount of other resources, if the services 
are kept active. Therefore this technique is limited to rich environments such as smart rooms. 
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Taking advantage of the persistent identity defined for tasks (see Chapter 3 and also Task 
Identity, below) the infrastructure lists the relevant tasks on a Dashboard.  Figure 5.1 shows an 
example Dashboard for Fred.  Tasks are listed by name, and the feasibility of the task in the 
current environment is listed alongside.  Of course, this technique works best when users assign 
tasks names that are meaningful to them, at least for the duration of the task, i.e. while it is listed 
in the Dashboard.  As discussed in Chapter 3, task names don’ t have to be unique, or even be 
present:  users can always find (identify) their tasks using information other than the name (see 
also Finding Tasks, below). 

Task feasibility, as defined in Definition 4.4, is a real number between zero and one.  To make it 
easier to recognize feasibility visually, the current version of the infrastructure codifies it in four 
intervals.  Figure 5.1 shows these intervals ranging from a happy face ( ), for values close to 
one, to a neutral face, to a frown, down to a red cross ( ), for values close to zero.  In the figure, 
the task review semifinals game has very low feasibility, presumably because the current 
environment lacks the services or the resources to play the movie adequately. 

To avoid listing information that is likely to be irrelevant, by default the Dashboard lists only 
tasks that are pending and enabled.  A task is pending until the user decides that the task is 
completed and closes it (see Task Life-cycle, below).  A task is enabled if it might be carried out 
at the present time and location, according to user-defined context constraints (see Task Identity, 
below).  In Figure 5.1, all the listed tasks are pending and enabled for the current context, but 
reviewing the game is not feasible with the current resources. 

Users can always access all their tasks using a query mechanism (see below), and drop any task 
of interest on the Dashboard.  Once a task is dropped on the Dashboard, its feasibility is 
evaluated and listed. 

Finding Tasks 

Scaling task management in time means that users may want to refer to their tasks after they are 
gone from the list of currently pending tasks – that is, after they are gone from the Dashboard 
introduced above.  Additionally, users may want to refer to tasks that are not listed because they 
were not marked as enabled for the current context.  In the latter case, a user may want to adjust 

 

Figure 5.1 Fred’s list of pending tasks on the dashboard. 
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the context constraints, or he may want to access a task despite the constraints.  Whatever the 
case, users may need to find any of their tasks and access them. 

Taking advantage of the information associated with tasks, the infrastructure includes a task 
browser, called Lamp (see the discussion in Chapter 7, Finding Past Tasks).  Figure 1.3 shows 
an example search for Fred.  Lamp presents a metaphor similar to web search engines, allowing 
users to enter searched keywords in the look for field. 

Searching consists of computing the similarity between the index of searched keywords and the 
index of terms for each task.  Lamp builds an index of terms for each candidate task, which 
contains the terms present anywhere in the task’s model, as defined in Chapter 3, Task Identity. 
This includes the task name, notes on the purpose or goals, due date, when and where the task 
was accessed, etc.  For computing the similarity, each searched keyword that is present in the 
index scores one point. 

However, unlike keywords, dates are not amenable to exact matching.  For instance, Fred may 
remember that he wrote a paper in the summer of 2004, but may have no idea of the exact dates. 

Date criteria are expressed in the fields before and after, which allow the specification of a 
timeframe of interest.  If no timeframe criterion is specified, all tasks will be searched.  If a 
before date is entered, only the tasks that were created, accessed or due before the specified date 
will be considered.  For instance, due on Aug 23, 2004 satisfies before 8/30/04.  If both a before 
and after dates are specified only tasks with at least one date in the specified interval will be 
searched for keywords. 

Lamp’s search results are sorted by similarity, and include all the tasks that match at least one of 
the searched keywords – and that satisfy the timeframe criteria.  In the current implementation, if 
no searched keywords and no timeframe criteria are entered, the search returns all the tasks that 
the user ever defined. 

 

Figure 5.2 Search for papers accessed before 8/30/04. 
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Task Life-cycle 

Task management turns user tasks into first class entities in computer systems.  As such, users 
can perform operations on a task.  For instance, when a user decides to resume working on a 
task, the infrastructure configures all services involved in the task, and recovers the user-
perceived state of the task as of the last time the task was interrupted.  Similarly, once a user 
decides to suspend working on a task, the infrastructure captures a snapshot of the user-
perceived state of the task and deactivates all the involved services.  Once a user believes he no 
longer needs to work any further on a task, he may close the task.  If later on he decides 
otherwise, he may reopen the task. 

Additionally, we provide two operations as a lightweight mechanism for swapping among active 
tasks without deactivating the services.  Users may switch active tasks between the foreground 
and the background of their attention, by selecting the focus and unfocus operations, 
respectively.  For instance, upon an unfocus operation, applications with a GUI may react by 
minimizing their windows; data streaming servers may react by not streaming data (without 
closing the connection,) etc. 

Figure 5.3 shows a state transition diagram for user tasks.  States are represented as boxes and 
transitions as arcs annotated by the first letter of the triggering operation. 

Users may operate on tasks by selecting the options in the popup menu associated with each 
entry in the Dashboard (see Figure 5.1).  The operation entries on the Dashboard’s popup menu 
are enabled or disabled depending on each task’s state.  Tasks change state as a result of the 
operations.16 

When a task is first created it becomes pending.  Pending tasks become active after being 
resumed, and go back to pending upon suspension.  Pending or active tasks can be closed.  
Closed tasks do not show on the dashboard, by default, but can be browsed using Lamp, dropped 
back into the Dashboard, and operated on, as necessary.  Note that the state active is a sub-state 
of pending: an active task is still pending.  Note also that foreground and background are sub-
states of active: when a task is resumed, it goes to the foreground. 

                                                       

16  As mentioned earlier in the Tasks at a Glance subsection, users can associate context constraints with a 
task, constraining its appearance on the Dashboard to certain locations, timeframes, or other context 
properties.  However, enabled is not a task state since it doesn’ t depend on the operations on tasks, but 
rather a selection of tasks determined by the user’s context and the constraints associated to each task. 
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Figure 5.3 State transition diagram for a task. 
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Describing Tasks 

As discussed previously, the mechanisms for describing user tasks should be simple to use, yet 
powerful enough to capture the required task models.  Additionally, the mechanisms should have 
a low entry cost and deliver incremental benefits for incremental effort.  Finally, the mechanisms 
for describing tasks should also be explicit about the assumptions they make, and they should 
make it easy for users to correct incorrect assumptions. 

These goals guided the design of the mechanisms for describing user tasks.  The following 
subsections present the mechanisms that allow users to describe each part of the task models 
introduced in Chapter 3. 

Coordinated Use of Services 

The fundamental tenet of task management is that users should be able to refer to, and 
manipulate as a unit, the collection of services and materials involved in a task.  Therefore, the 
baseline model of a task needs to include the services and materials involved in that task. 

To make the mechanisms for describing tasks accessible to the average computer user, their 
model of interaction is grounded in the familiar metaphor of drag-and-drop.  Users associate 
materials with a task by dropping them into the task definition window.  When that happens, a 
default service is chosen, based on the type of material, but users may always override the 
default service selection.  Users may also include services in a task independently of materials. 

To illustrate this, we present a simple scenario of a user, Fred, who is about to write a paper.  
Fred considers opening the relevant files and applications on a need-to basis, using standard OS 
mechanisms.  However, since this task will persist for the next few weeks, Fred decides to create 
a task definition (see Figure 5.4).  Initially, Fred includes only editing the paper, and he does that 
by pressing the down arrow at the bottom-left of the (empty) task definition window and 

 

Figure 5.4 Fred’s task definition for writing a conference paper. 
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selecting edit text.  The text editor activated by the infrastructure brings up a (default) blank 
document and Fred starts working.  As Fred browses the web, he decides to associate a relevant 
web page with the task, so that it is brought up automatically every time the task is resumed.  To 
do that, Fred drags the page shortcut out of the browser and into the more field at the bottom of 
the task window (the default service browse web appears automatically).  Later, Fred decides to 
start entering the performance data on a spreadsheet.  Again, Fred simply drags the file produced 
by the data-gathering tool, from the file system explorer into the more field and selects edit 
spreadsheet for it. 

The services listed in the task definition window support popup menus for deletion and for 
bringing up the preferences associated to that service (see below).  Materials also support popup 
menus for disassociating them with the task.  

Recall from Chapter 3, Configuration Preferences that the infrastructure can do a much better 
job in configuring diverse environments if it knows what the user prefers in different 
circumstances.17 The right-hand side of Figure 5.4 defines alternative operation-mode 
configurations and their order of precedence.  The (default) full configuration includes all the 
activities defined for the task.  In addition to that, Fred defined the skip web degraded-mode 
configuration for when the circumstances are such that either a browser or connection are not 
available, or that the quality of service is so poor (for instance, due to low bandwidth) that Fred 
would rather focus on the other activities.  Fred also defined the paper only configuration for last 
resort circumstances, for instance when having only a handheld with extremely limited 
resources.  Fred can define as many or as few operating modes as he feels appropriate. 

Preferences 

User preferences play a key role in addressing the heterogeneity of computing environments, and 
the fact that their resources are subject to frequent variation.  The model of user preferences seen 
in Chapter 3 spans three aspects: first, configuration preferences focus on the alternative sets of 
services to support a task; second, supplier preferences focus on the choice of particular service 
suppliers for each service within a task; and third, QoS preferences focus on the acceptable 
levels of quality of service and preferred tradeoffs.  The latter are the most complex. 

The expressiveness of these models is key to address the variability of environments.  However, 
that same expressiveness may imply a non-trivial user investment for building and fine-tuning 
such models. 

To lower the entry cost of describing user preferences, the infrastructure provides defaults and 
templates, as appropriate.  When describing a new task, users specify their preferences by 
building on the provided defaults.  A convenient mechanism for cloning task models is also 
available, which enables users to describe new tasks starting from existing ones as templates (see 
also the discussion in Chapter 7, Task Recurrence). 

                                                       

17  Chapter 3 also defines models for the interconnection of services, but for scoping reasons, the current 
implementation of the infrastructure makes no provision for describing service interconnection. 
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The infrastructure provides a set of templates for the QoS preferences of each service type.  Each 
template encodes a common QoS tradeoff.  For instance, take the natural language translation 
service mentioned in Chapter 3.  The service has two QoS dimensions: response time and 
accuracy.  The latency of recognizing each utterance has a numeric domain and is expressed in 
seconds.  The accuracy of translation reflects how much the meaning is preserved: with high 
accuracy, the meaning is mostly preserved; with medium accuracy, the meaning is roughly 
preserved; and with low accuracy, the meaning may be distorted. 

For the language translation service, the infrastructure currently provides two templates: the 
default template, and the accurate template.  The default template has stricter constraints on 
response time than the accurate template, but is willing to tolerate a lower accuracy of 
translation. 

Users may switch between the two templates in the selection box shown at the bottom-right in 
Figure 5.5 (a).  The area above the selection box shows the meaning of the selected template.  
There is a tab corresponding to each QoS dimension for the service: a sigmoid is shown for the 
numeric dimensions, with the good and bad thresholds highlighted, and a table is shown for 
enumerated dimensions.  To make it easier to interpret visually, the infrastructure codifies the 
utility space in the same four intervals used in the Dashboard: from a happy face, for values 
close to one, down to a red cross, for values close to zero.  The slide bar associated with each 
dimension corresponds to the weights wd in Definition 3.3, and captures how much the user 
cares about variations along that dimension. 

In addition to seeing the precise meaning of their selection, users may adjust their preferences 
for each task, as required.  After selecting the custom check-box to the left of the template 
selection box, users may depart from the templates and set their preferences directly.  The good 
and bad thresholds of sigmoid curves may be adjusted by dragging the green (lighter) and red 
(darker) handles, respectively.  The entries in tables may be easily changed by selecting the 
utility for each value in the domain. 

The preference templates associated with each service include not only QoS preferences, but 
also supplier preferences.  The supplier preferences are show as an extra tab alongside the QoS 
preferences (see Figure 5.5).  Of course, supplier preferences are shown as a table. 

 

  

(a) (b) (c) 

Figure 5.5 QoS preferences for the language translation service. 
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At least one template, the default, is provided for each service type.  Every time users add a 
given service to a task, the default preference template for that service is applied.  Users may 
then switch to another template, if provided, or customize the QoS and supplier preferences for 
the task.18  The customization applies for the particular entry of the service in the particular task. 

Finally, configuration preferences are described by the slide bars associated with each 
configuration in Figure 5.4.  The bar under each configuration Ct corresponds to a maplet Ct

� U 
in Definition 3.1, and by default, such maplets map to the value 1. 

Task Identity 

Entering information that defines a task’s identity plays a key role in the ability to find that task 
later on (see Finding Tasks, above).  In the current implementation, users may enter a task name, 
due date, notes (e.g., on the purpose or goals), and who collaborated on it (see tabs summary and 
details in Figure 5.6).  None of these items are mandatory or have to be unique, including the 
task name, and users are free to enter as much or as little information as they feel appropriate. 

To lower the cost of entering such information, some is harvested automatically: the created date 
and the log of places and dates the task was resumed and suspended (tab history in Figure 5.6).19 

In addition to task browsing, another way of finding tasks is by establishing relationships among 
tasks.  Users may then follow a stream of relationships to find related tasks.  The generic 
relationships supported by the models defined in Chapter 3 allow for structured relationships, 
such as task decomposition.  To support such structured relationships, the mechanisms for 
describing tasks would have to restrict and assign a specific meaning to the possible kinds of 
relationships. 

                                                       

18  For scoping reasons, the current implementation of the infrastructure includes no user interfaces for 
adding new templates or change defaults, although that can be done by updating XML files. 

19  The tab enabled in Figure 5.6 would support editing the context constraints for the task – not included 
in the dissertation for scoping reasons. 

   

Figure 5.6 Defining the identity of Fred’s task for writing a conference paper. 
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The current version of the user interfaces for describing tasks allows relationships to be freely 
established among tasks, with no restrictions on (or interpretation of) the kind of relationship.  
Users may therefore build unrestricted graphs, much like inserting hyperlinks on web pages. 
Double-clicking on a task link brings up the window describing the corresponding task. 

Task relationships are created using drag-and-drop.  For example, a relationship between a task 
t1 and a task t2 is established by dropping a link to t2 in the links table for t1 (see summary tab in 
Figure 5.6).  The relationship may be freely labeled by the user (the default label is related).  
Links to tasks can be obtained anywhere the task is listed (Lamp, Dashboard, other links tables, 
etc.) or in the shortcut icon to the left of the task name in the summary tab. 



Chapter 6 

Thesis Validation 

This dissertation describes a new approach to the scalability of task management in space and in 
time.  The approach is based on high-level models of what users need from the computing 
environment for each of their tasks.  Such models are exploited at run-time by an infrastructure 
that automatically configures the environment on behalf of users.  Specifically, in this 
dissertation, we argue that: 

High-level models of user tasks can be used to address the scalability of task management in 
space, across heterogeneous environments, and in time; while simultaneously (a) enabling 
users to take full advantage of the capabilities and resources accessible in each environment; 
and (b) relieving users from routine chores associated with configuring and managing those 
environments. 

Validating this thesis entails demonstrating the following premises: that the proposed models of 
user tasks can be used to (i) scale task management in space, and (ii) in time; that an 
infrastructure that exploits such models (iii) enables users to take full advantage of computing 
environments, and that using that same infrastructure (iv) poses less overhead to users than 
configuring the environment themselves. 

To validate that our approach supports scaling task management in space and time we built an 
infrastructure that does it.  Validating that users are enabled to take full advantage of the 
surrounding computing environment is demonstrated by construction.  Finally, validating that 
the infrastructure reduces the overhead for users is demonstrated by comparing the overhead of 
interacting with the infrastructure against the overhead of interacting with the raw environment. 

The four sections below focus on each of the premises in turn. 



  Chapter 6. Thesis Validation 

  67 

Scalability in Space 

An increasingly important property of user tasks is that they may span multiple locations.  For 
instance, a user may start working on the presentation while in his or her office, continue at the 
office of a collaborator, and pick the task up later at home.  If they so desire, users should be 
able to resume their tasks with whatever computing systems are available at each location.  Also, 
the increasing pervasiveness of smart spaces is causing a shift in the paradigm of computer use: 
from single-device, tightly integrated interaction, to multiple-device, loose interaction.  
Scalability in space implies addressing the heterogeneity and distribution of environments. 

This section summarizes the features of the infrastructure that support scalability in space and 
address the associated challenges, as discussed in Chapter 1. 

Chapters 4 and 5 described an infrastructure for task management that automatically configures 
a computing environment on behalf of users.  To know what to configure for, this infrastructure 
exploits the models of user tasks defined in Chapter 3. 

An installation of the infrastructure will be able to configure the environment for a given task t 
provided that (a) a model for t is available, (b) the materials involved in t are available, and (c) 
the services required for t are available in the environment. 

Conversely, users will be able to resume the tasks of their choice at any location where they can 
(i) find an installation of the infrastructure, and (ii) provide that installation with enough 
information and authorizations to access (a) and (b) above.  For the purposes of this dissertation, 
we will consider scalability only to the locations where users can satisfy (i), either by finding a 
device that grants them access to an installation, or by carrying one such device on them.  We 
will also assume that users are able to satisfy (ii), either by securing network access and 
providing information such as URLs and access passwords, or by carrying a personal storage 
device with the relevant task models and materials. 

From the point of view of the infrastructure, securing the access to task models and materials, 
conditions (a) and (b) above, is addressed by incorporating results from networking and 
distributed file access (e.g. [76]) – in addition to the obvious ability for reading a personal 
storage device presented by a user. 

An important research aspect addressed by this dissertation is the matching between task models 
and the services available in the environment.  If task models were expressed in terms of the 
concrete applications used in a particular environment, the tasks could not be resumed in an 
environment where the same applications are not available. 

By making task models independent of specific applications, and expressing them in terms of 
high-level services, we can reactivate tasks across heterogeneous environments.  For instance, 
for the task of preparing a report, we capture the fact that the user needs to edit a text document, 
not that MS Word is involved in the task.  Note that the ability of handling heterogeneity does 
not curtail taking advantage of a preferred set of applications, wherever they are available.  For 
that, task models register the supplier preferences for the services involved on each task. 
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By including an environment-independent representation of the user-perceived state in task 
models, and by using the programming interfaces (APIs) in existing, native applications, we 
capture and reconstruct the user-perceived state of tasks across heterogeneous environments.  
The XML-based representation of the user-perceived state enables suppliers with different 
degrees of sophistication to extract the aspects of the state that they recognize, while preserving 
the representation of the aspects they don’ t know how to handle.  The supplier code that wraps 
native applications acts as a specialized translator for the features of each application. 

By exchanging asynchronous configuration and monitoring messages between the managing 
components of the infrastructure and the service suppliers, we can configure distributed 
environments and react appropriately to failure in components or communication.  The 
interaction protocols among the infrastructure’s components discussed in Chapter 4, 
Heterogeneity and Distribution, enable the configuration and reconfiguration of distributed 
environments. 

Scalability in Time 

Another increasingly important property of user tasks is their duration and recurrence.  Users 
may work on some tasks for days or even months; and tasks may need to be referred back to 
after users thought they were done.  For instance, a user may need to find “ the report on the trip 
to Pittsburgh that I wrote last year.”   Also, users may periodically carry out distinct instances of 
the same kind of task, for instance, preparing monthly reports. 

By presenting users with a list of tasks they may want to work on, in which a task is included 
until dismissed as completed, we enable users to quickly access their tasks, regardless of where 
or how long ago those tasks were last worked on.  The Dashboard presented in Chapter 5, Tasks 
at a Glance, presents a list of the pending tasks that are also enabled for the current environment, 
according to user-defined context constraints.  Users may act on the listed tasks not only for 
suspending and resuming them, but also for closing or re-opening them, as necessary. 

By giving tasks a persistent semantic identity we enable users to find their tasks, regardless of 
where or how long ago those tasks were defined or completed.  The Lamp presented in Chapter 
5, Finding Tasks enables users to browse their tasks using a metaphor similar to web browsing.  
The information that supports browsing is circumstantial information about tasks: a name, due 
date, the purpose or goals for the task, who collaborated on it, etc.  Users may enter as much or 
as little such information as they wish, using the mechanisms presented in Chapter 5, Task 
Identity. 

By offering a mechanism for replicating task models, we enable users to easily create new 
instances of recurring tasks.  The mechanisms for defining tasks presented in Figure 5.4 include 
the capability to clone task models, which then may be modified from the original, as needed. 
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Taking Full Advantage 

Users take full advantage of an environment when its configuration best matches the users’  
needs.  Users express what they need from the environment for each of their tasks: which 
services they need, the preferred suppliers for those services, and the preferred levels of Quality 
of Service (QoS).  Environments can be configured in a variety of ways: there may be several 
alternative suppliers for a given service, and resources may be allocated differently among the 
service suppliers to best meet the users’  preferred levels of QoS. 

Users may contribute to establishing a best match by choosing to work on tasks that are well 
supported by the current environment.  For instance, a user may be willing to take notes on a 
promotional video; but if the video cannot be played with adequate fidelity, maybe because of 
insufficient bandwidth, the user may be willing to work on his weekly report instead. 

Once an optimal match is established for a given task, its optimality should be maintained even 
in the face of dynamic changes in user needs and in the environment.  User needs may change 
during a task: new services may be added or removed, and users may adjust the preferred QoS 
tradeoffs to suit their evolving intentions.  In networked environments, remote components 
constantly change their response times and even availability, and resources may fluctuate 
widely.  For users to take full advantage of the environment, it is not enough to match the users’  
needs when a task is resumed.  The environment’s configuration should be reevaluated, and 
adjusted as appropriate, while the user is working on the task. 

By solving Formula 4.2, the infrastructure determines the optimal supplier assignment and 
resource allocation that best matches the user’s needs.  The Environment Manager (EM), 
presented in Chapter 4, keeps track of the suppliers available in the environment, of their 
resource demand for different computing modalities, and of resource availability.  The task 
models presented in Chapter 3, and captured by Prism, hold the alternative configuration of 
services that may support a task, and the user preferences relative to suppliers and to QoS 
tradeoffs.  Given one such model, the EM uses Formula 4.2 to determine the optimal supplier 
assignment and resource allocation, and the corresponding utility as defined by Definition 4.1. 

By consulting the Dashboard (Chapter 5, Tasks at a Glance), users can make an informed 
decision about which tasks they wish to resume working on.  Prism interacts with the EM to 
determine the achievable utility for each alternative configuration of services in each task.  Then 
Prism uses Formula 4.3 to determine the feasibility of each task and presents that to users via the 
Dashboard. 

By periodically reevaluating Formula 4.2, the infrastructure detects opportunities for 
improvement, and may reconfigure the environment, as appropriate.  Following the protocols 
discussed in Chapter 4, Adaptation at Three Levels, the infrastructure monitors changes both in 
the user’s task and in the environment.  Prism detects and reacts to changes in user tasks and 
preferences; and the EM monitors and reacts to changes in supplier availability.  In addition to 
opportunistic reactions to such changes, the EM monitors trends in the QoS being offered to the 
user and compares the current configuration against possible alternatives in the environment by 
reevaluating Formula 4.2.  In case a better alternative is detected, the EM may reallocate 
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resources among suppliers, or it may cooperate with Prism to determine whether and when to 
reassign suppliers. 

By passing the preferred QoS tradeoffs to service suppliers, the infrastructure guides resource-
adaptive applications in enforcing fine-grain adaptation policies.  Following the protocols 
discussed in Chapter 4, Adaptation at Three Levels, Prism guides the policies of resource-
adaptive applications according to the QoS tradeoffs preferred at each moment.  Research 
complementary to this dissertation verified that resource-aware applications can dynamically 
change their adaptation policies in response to Prism’s guidance [10].   

Reducing the Overhead 

When a user resumes a task interrupted somewhere else, or sometime in the past, the 
environment needs to be configured for supporting that task: suitable suppliers need to be found 
and activated, the relevant materials need to be accessed, and the user-perceived state of the task 
needs to be recovered. 

Whatever actions a user needs to take to trigger, enable, or oversee the configuration of the 
environment constitute a task as well.  From a strictly technical perspective in human-computer 
interaction, users carry out tasks while interacting with a computer system: users interact with 
devices such as keyboard and mouse, and with abstractions such as windows, menus and buttons 
(e.g. [19]).  From this perspective, the universe of user tasks appears rather uniform. 

However, from a user’s perspective not all tasks have the same nature.  When asking a typical 
user what he or she is doing, one may get answers like “writing a report”  or “preparing a 
presentation.”   These are the tasks that we focused on elsewhere in this dissertation, and for the 
purposes of this section let us call them the users’  main tasks, m-tasks, or simply tasks.  
Nonetheless, to a lesser or greater extent, users must also participate in the configuration of the 
environment for each of their m-tasks.  Let us call these the configuration tasks, or c-tasks. 

Users do not choose to perform c-tasks: c-tasks are imposed on users by the nature of computer 
systems.  The more frequent and the more complex the c-tasks, the more distracting they 
become.  Looking into c-tasks is especially relevant in mobile and ubiquitous computing 
systems, where users are forced to cope with drastic variations of resources and of availability of 
services [77].  Nevertheless, as we will demonstrate, reducing the complexity of c-tasks also 
benefits the users of conventional computer systems, such as personal computers on a wired 
network. 

Task management systems change the c-tasks users need to perform.  When interacting with a 
raw environment for resuming a task, users have to deal with finding and starting suitable 
hardware and software components, they have to deal with accessing the information resources, 
and with reconstructing things such as layout of windows, cursor positions and application 
settings.  When interacting with a task management system, users need to find the task they want 
to work on and indicate they want to resume it.  The task management system automatically 
configures the environment on the users’  behalf.  For that, however, users must have previously 
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defined the task with the task management system, and that constitutes an extra c-task relative to 
the situation of the raw environment. 

In this section we argue that the infrastructure described in Chapters 4 and 5 reduces the 
overhead associated with the c-tasks involved in scalable task management.  For that, we 
demonstrate that the infrastructure either reduces, or does not increase the overhead associated 
with each of the three fundamental properties of scalable task management seen in Chapter 1:  
first, we analyze the effect on the overhead while suspending and resuming m-tasks as 
coordinated sets of services.  Second, we analyze the effect on the overhead while scaling task 
management in space, across heterogeneous environments subject to dynamic change.  And 
third, we analyze the effect on the overhead while scaling task management in time. 

For those analyses, we compare the overhead of using the infrastructure against users 
configuring the environment themselves, because that represents the state of the art for scaling 
task management across heterogeneous environments. 

The following three subsections analyze the impact on the c-tasks associated with each of the 
fundamental properties, in turn.  The forth subsection discusses the overall impact. 

Coordinated Use of Services 

Task management systems provide users with a notion of task that involves the coordinated use 
of a set of services in an environment, and that can be suspended and resumed as a whole.  
However, to reap the benefits of easily suspending and resuming their tasks, users must pay the 
cost of defining their tasks. 

In this subsection we first analyze the overhead of defining a new task; then we analyze the 
benefits of using the infrastructure for suspending and resuming tasks.  Finally, we present a 
cost-benefit analysis over time, as tasks go through successive cycles of being suspended and 
resumed. 

We use a count of operations as a baseline proxy for the overhead associated with these c-tasks.  
Such operations represent interactions between users and the environment or the infrastructure.  
The model of operations is kept at a coarse level, such as opening an application, or resuming a 
task, since the analysis needs to hold across heterogeneous environments.  In particular, it would 
not make sense to go down to the level of the particular commands, menu selections, or mouse 
clicks used in a particular operating system, or application.  That said, care is taken so that 
operations correspond to single, comparable interactions.  Furthermore, care is taken so that 
operations put side by side have comparable latencies.  For instance, as demonstrated in Chapter 
4, Evaluation, resuming a task using the infrastructure has a comparable latency to opening the 
same applications individually. 

Figure 6.1 shows an example of the overhead associated with using the infrastructure for 
defining a task.  For concreteness, we consider an example task of preparing a presentation, 
where a user, Fred, edits the slides, refers to a couple of papers on the topic, and browses the 
web for new developments.  The column on the left shows the steps involved in starting to work 
on the presentation without the presence of the infrastructure.  The second column shows the 
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steps involved in starting to work on the presentation and defining that as an m-task with the 
infrastructure.  The column on the right shows the overhead introduced by using the 
infrastructure in terms of operations, as defined above. 

Note that some steps are common, such as looking for relevant papers; some are added, such as 
creating a new task definition with the infrastructure; and some may be changed, such as 
opening an application directly versus including a service/material in the task.  For the latter 
case, the rationale for the comparison is included in the figure.  Note also that saving the task 
definition after including each service prompts the infrastructure to configure the environment 
accordingly, therefore finding and activating suppliers for the latest additions to the task. 

This example illustrates the rule that, for defining a task with the infrastructure, users perform at 
most two operations for each service/material they want to include in the task definition (one to 
add the service/material, and optionally another to save the definition), plus one for creating the 
task definition itself.20  Quantitatively, let n denote the number of entries (lines) corresponding to 
services/materials in a task definition window such as the one illustrated in Figure 5.4, then, the 
overhead for defining the task is at most 2n+1 operations. 

Figure 6.2 shows an example of the benefit associated with using the infrastructure for 
suspending Fred’s presentation task.  As before, the column on the left shows the steps involved 
in suspending the task without the assistance of the infrastructure; and the second column shows 
the same with the infrastructure’s assistance. The third column shows the benefit of using the 
infrastructure, in terms of the count of operations saved by using the infrastructure. 

                                                       

20 The cost of naming and entering information about the task is addressed in Figure 6.2. 
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(†) We’ ll consider that the infrastructure introduces no overhead: for opening an application, users 
issue a command, click on some icon, etc.; for adding the slide editing service to the new task, 
users click one button and make a list selection in Figure 5.4. 

(‡) Same as above; for adding the papers to the new task, users drag the papers from some file view in 
the operating system and drop them into the more area in Figure 5.4. 

Figure 6.1 Decomposition of starting to work on/defining an example m-task of preparing a presentation, 
and overhead incurred by (extra operations while) using the infrastructure. 
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This example illustrates the claim that by using the infrastructure to suspend a task, users save at 
least as many operations as services/materials in their task, minus one operation for telling the 
infrastructure to suspend the task.  Quantitatively, let n be as before, then, the benefit of using 
the infrastructure for suspending a task is at least n–1 operations. 

Figure 6.3 shows an example of the benefit associated with using the infrastructure for resuming 
Fred’s presentation task.  The layout of the example is the same as in Figure 6.2. 

This example illustrates the claim that by using the infrastructure to resume a task, users save at 
least two operations for each service/material in the task (one to start a supplier, and another to 
recover the user-perceived state), minus operation for telling the infrastructure to resume the 
task.  Quantitatively, let n be as before, then, the benefit of using the infrastructure for resuming 
a task is at least 2n–1 operations. 

Figure 6.4 plots a cost-benefit analysis of using the infrastructure over time, based on the results 
above for defining, suspending, and resuming tasks.  The horizontal axis shows task life-cycle, 
starting with definition, and being successively suspended and resumed.  The vertical axis shows 
the cumulative count of operations saved by using the infrastructure (negative values correspond 
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(†) We’ ll consider that the infrastructure introduces no benefit (or overhead).  For naming newly 
created files, users need to think of names and storing locations for everyone of them, and they 
need to feed those to the applications.  For entering information about the task, users may enter as 
much or as little as they want in Figure 5.6.  If a user enters just a name for the task, the overhead 
would be 1 instead of n, thus bumping up the benefit to n-1. 

(‡) We’ ll consider that the user could perform saving and closing with a single operation.  This is a 
conservative estimate, since in many applications users have to perform separate operations for 
saving and closing files: first saving, then closing; or closing and then confirm saving. 

Figure 6.2 Decomposition of suspending the m-task defined in Figure 6.1,  
and benefit from (operations saved while) using the infrastructure. 
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(†) We’ ll consider that users have fresh on their minds where the files are stored, and that all the 
relevant files and links are stored in the same location.  This is a conservative estimate. 

(‡) We’ ll consider that users can recover the user-perceived state of each file, and the associated app, 
with a single operation.  This would correspond, for instance, to recover the editing position on a 
text file.  In many cases users may need to recover more of the user-perceived state, making this a 
conservative estimate. 

Figure 6.3 Decomposition of resuming the m-task defined in Figure 6.1,  
and benefit from (operations saved while) using the infrastructure. 
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to a cost of using the infrastructure).  Analytically, these curves are given by: 

Definition 6.1 ( ) ( ) ( ) srssrnrnsnn ≤≤−≥≥•−+−++− 1,0,,112112  

where n is the number of entries (lines) corresponding to services/materials in a task definition 
window such as the one illustrated in Figure 5.4; and s and r denote the number of suspend and 
resume operations, respectively.  The graph shows curves for the values of n from 1 through 5. 

The conclusion from this analysis is that the benefits of using the infrastructure are larger, and 
realized faster, the more services/materials are involved in a task.  Although defining a task has 
larger overhead the more the services/materials involved, that overhead is recovered quicker, 
especially during resume operations.  For instance, a task with 5 services/materials starts off with 
a definition overhead of 11 operations, but it breaks even on the first resume, and by the fourth 
resume it saved the user more than 40 operations.  In contrast, according to this baseline model, 
a task with only one service/material only breaks even on the third resume, and saves the user 
few operations over time.  However, defining such a task with the infrastructure would be more 
rewarding whenever the cost of recovering the user-perceived state is significant (see note ‡ in 
Figure 6.3). 

From Definition 6.1, it is clear that no task will break even on the first suspend, but any task 
with n

�
3 will break even on the first resume.  Note also that the cost-benefit model expressed in 

Definition 6.1 is additive.  For instance, if a user originally defines a task with n=4 and then adds 
two new services/materials the third time around he works on it, the resulting curve is given by 
the curve for n=4 up until the second resume, and adding the curve for n=2 from that point on.  
This corresponds to the intuition that when users make incremental additions to a task definition, 
they pay the overhead of making those changes and then the savings increase since the 
infrastructure can automatically configure more services on the users’  behalf. 
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Figure 6.4 Cost-benefit of using the infrastructure over the number of suspend-resume cycles. 
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Scalability in Space 

The infrastructure presented in Chapter 4 supports the scalability of task management in space, 
across heterogeneous environments subject to dynamic change.  Users may wish to resume their 
tasks in different locations, with whatever computing systems are available.  When accessing 
services in networked environments, the availability of the suppliers for those services may 
change dynamically.  Furthermore, the resources necessary to provide those services may 
fluctuate widely, leading to fluctuations of performance which may affect the user’s task. 

The previous subsection modeled the overhead of suspending and resuming tasks as a 
coordinated set of services independently of environment heterogeneity.  That is, provided users 
have the necessary knowledge to configure each environment, the count of operations in the c-
tasks will not change due to heterogeneity. 

However, environment heterogeneity may cause resuming a task without the infrastructure to 
become harder for users.  The operations on the first column in Figure 6.3 may become harder, 
since users reaching a new environment need to decide on a possibly different set of applications 
to activate (different relative to the previous environment).  Moreover, users need to recover the 
user-perceived state using the specific features of those new applications.21  How much harder 
these operations become depends on the users’  familiarity with each environment.  Assuming 
that the infrastructure offers similar features and interactions across environments, there would 
be no significant changes on the second column in Figure 6.3. 

If a user doesn’ t have the necessary knowledge to configure the new environment, the 
infrastructure may prevent that from being a showstopper.  When faced with a new environment 
users may not know which applications to invoke for each service, or how to invoke them 
(commands, parameters, etc.).  Nevertheless, given the convergence of user interface metaphors, 
users may be able to use those applications, once started automatically by the infrastructure. 

The infrastructure also contributes to reduce the overhead due to faults in service supply, and to 
help users take full advantage of the environment.  In distributed environments, the availability 
of service suppliers may change dynamically: the suppliers supporting a task may fail or become 
inaccessible, and new, preferred suppliers may join the environment dynamically.  By 
continuously monitoring the environment and performing appropriate reconfigurations, the 
infrastructure saves users the overhead of doing that themselves. 

Finally, the infrastructure contributes to reduce the overhead due to resource fluctuations.  
Provided resource-adaptive applications are available in the environment, the infrastructure 
automatically guides those applications in enforcing the fine-grain adaptation policies adequate 
to each task.  Without such guidance, it is hard for applications to determine which policies to 
apply, and in most cases end up applying one-size-fits-all policies.  It is then up to users to 

                                                       

21 Note that analyzing the impact of heterogeneity is limited to the c-tasks.  Although users may find it 
easier to carry out their m-tasks in some environments, that is not relevant for analyzing the effects of 
introducing the infrastructure to handle the automatic configuration of environments. 
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bridge the gap, and configure the policies themselves every time a task is resumed, or to endure 
the effects of policies that are not adequate to their intent.    

Research complementary to this dissertation carried out user studies on the usability of the 
infrastructure for enforcing QoS tradeoffs [10].  In that study, 10 out of 10 participants were 
receptive to the idea of specifying different QoS tradeoffs in different circumstances, and were 
able to specify the tradeoffs appropriate to different scenarios using the features presented in 
Chapter 5, Preferences.  Moreover, the authors observed with 95% statistical significance that 
the participants were able to recognize a correlation between the adaptive behavior of the 
suppliers and the specified tradeoffs. 

Scalability in Time 

The infrastructure described in Chapters 4 and 5 supports the scalability of task management in 
time, enabling users to resume long lasting tasks and to find tasks that were completed long ago.  
Users may work on some tasks for days or even months; and some tasks may need to be referred 
back to after users thought they were done. 

The previous subsection on the Coordinated Use of Services modeled the overhead of 
suspending and resuming tasks independently of how long those tasks last.  As long as a task is 
marked as pending, it is listed in the Dashboard, and the benefits of using the infrastructure to 
resume it are as discussed before.22 

                                                       

22 For this specific case – resuming a pending task in the same environment – one may also compare the 
overhead of using the infrastructure against using a traditional desktop manager:  these would be 
equivalent, as long as the desktop manager keeps a persistent record of the pending tasks, that is, is able 
to reconstruct the desktop after a shutdown. 
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(†) We’ ll consider that the notion of task brings no measurable benefit, although one might argue that 
it is easier to remember domain-related facts about a task, than system-related facts about files and 
directories.  Recent tools index the content of files and allow users to browse the file system in a 
similar fashion to browsing the web (e.g., [39]) thus bridging some of the gap between domain 
reminiscences and file system.  

(‡) We’ ll consider that finding one material will be enough to situate all relevant materials.  This is a 
conservative estimate, since if the relevant materials are scattered, the user may need as many 
searches as materials in the task, as opposed to a single search for the task. 

Figure 6.5 Decomposition of finding an m-task completed long ago,  
and benefit from using the infrastructure. 
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Figure 6.5 shows the decomposition of finding an m-task completed long ago.  The column on 
the left shows the steps for finding the task without the assistance of the infrastructure, that is, of 
finding the materials involved in the task.  The second column shows the steps for finding the 
task using the infrastructure.  Note that the costs of entering the information about tasks are 
already accounted for during suspend (Figure 6.2). 

The infrastructure offers mechanisms for finding tasks that are similar to existing mechanisms 
for browsing the web, and for finding files in the file system. The most significant difference is 
that searching for a task (using the infrastructure) corresponds to one search, while searching for 
the materials involved in a task (without the infrastructure) may require several searches.  
However, we conservatively claim no benefits since the materials involved in a task may be 
stored adjacently. 

Overall Reduction 

By reducing the overhead associated with suspending and resuming a coordinated set of 
services, task management brings benefits to users of traditional environments.  We quantified 
the costs and benefits associated with providing a notion of task, in terms of high-level 
interactions between users and the environment.  That cost-benefit model is independent of 
issues related to scalability in space and in time, including issues of heterogeneity and dynamic 
change.  We analyzed the cost-benefit over time, and identified that handling a task as a unit 
brings more benefit the more services/materials are involved in the task. 

Scaling task management in space and time brings additional benefits to users.  We discussed 
how the infrastructure contributes to reducing the overhead when working across heterogeneous 
environments, and when dealing with situations that may occur in distributed or mobile 
environments: recovery from faults, proactive identification of better solutions, and guiding fine-
grain resource-adaptation policies.  We also discussed how scaling task management in time, 
although necessary for practicality, does not significantly change the cost-benefit balance. 

Although this chapter makes a convincing case, ultimately the benefits of scaling task 
management in space and time need to be evaluated with real users working on real tasks.  The 
success of systems for automatic configuration and self-tuning depends on many real-life factors 
that cannot be captured adequately by models, benchmarks, or even scripted user studies.   At 
least equally important for that success is the practicality and ease of use for the average user. 

Nevertheless, the results of user studies such as [10], and of deploying the infrastructure with a 
selected group of users, clearly indicate that users react well to the concepts and functionality 
delivered by the infrastructure. 



Chapter 7 

Discussion 

This chapter discusses important design and engineering decisions that we tackled during our 
research, as well as aspects where our research interfaces with complementary research.  We 
also discuss some aspects that were partially addressed because of scoping considerations, but 
limit the selection to aspects that extend the research herein: broader topics that deserve their 
own separate research are discussed in Chapter 8, Future Work.  

The following three sections discuss decisions related to modeling user tasks, to the 
infrastructure for the automatic configuration of environments, and to the mechanisms for 
describing and operating on tasks, respectively. 

Modeling User Tasks 

Since the topic of this dissertation is task management, most of the points for discussion focus 
on the modeling of user tasks.  The two subsections below discuss decisions concerning the level 
of sophistication at which to model user tasks, and how to support task recurrence.  The three 
following subsections discuss issues related with matching demand for services to the supply in 
the environment: service naming, substitutability, decomposition, and interconnection.  The two 
subsections at the end focus on guiding the choice of alternative suppliers and their 
configuration: modeling supplier preferences and Quality of Service (QoS) tradeoffs. 
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Sophistication of Task Models 

Possibly the most important decision for the research presented in this dissertation was selecting 
the level of sophistication for representing user tasks.  We based our decision on the working 
hypothesis informally depicted in Figure 7.1.  The horizontal bar shows a range of options for 
the sophistication of task models: from having no such models (users manually assemble the 
applications necessary for their tasks and recover the user-perceived state of those applications), 
to capturing a snapshot of isolated services, all the way up to modeling the cognitive aspects of 
carrying out the tasks.  

Our working hypothesis was that large benefits to the user result from relatively simple 
representations of tasks, and the more sophisticated those representations, the less significant the 
added benefit.  In other words, we expect the overall benefit for the user to increase 
monotonically with the sophistication of task models, but that increase will be more significant 
in the low end of the spectrum. 

On the other hand, experience tells us that the effort involved in designing sophisticated task 
models, and building the mechanisms that exploit those models, increases significantly with the 
sophistication of the models.  This is not to say that research on the upper end of the spectrum is 
not desirable, however, for practicality, we aimed not to go past the sweet spot of effort vs. 
benefit. 

Specifically, for this research we targeted a level of sophistication that was expected to yield 
significant benefits for users, with an engineering effort commensurate with the scope of a 
dissertation.  The decision we took, as documented in Chapter 3, was to model the coordinated 
use of a set of services, including the snapshot of the user-perceived state of those services, and 
user preferences with respect to the alternative ways the task may be rendered in the 
environment.  Chapter 6 demonstrated that such models, and the infrastructure that exploits 
them, deliver significant benefits to users. 

From the validation work in Chapter 6, it seems plausible that the more significant benefits for 
the user are achieved by the first levels of sophistication.  Although user preferences play a key 
role in reducing user overhead in the face of strong dynamism in the environment, for frequent 
situations where the environment is relatively stable, the most benefit is attained by the ability to 
suspend and resume tasks (recovering their state). 
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Figure 7.1 Expected added engineering effort and added user benefit 
as a function of the level of sophistication of task models 



80 

How much benefit the upper levels of sophistication will yield is a topic of future research (see 
Chapter 8, Future Work). 

Task Recurrence 

In daily activities, it is common for some tasks to recur.  For instance, preparing monthly reports, 
or preparing weekly class sessions.  Although occurrences of recurring tasks share some 
characteristics, each has its own identity and presumably its own materials (e.g. the monthly 
report that gets produced). 

To save users from defining similar tasks over and over again, it is desirable to support the 
notion of recurring task.  Specifically, users should be allowed to indicate they need to start 
working on a new occurrence, say, of preparing a monthly report. 

The question that arises is how to represent the common characteristics of recurring tasks, 
simultaneously ensuring the identity and variability specific to each occurrence.  One possibility 
is the explicit definition of task types; another possibility is using an existing occurrence as a 
template. 

Generally speaking, types have the advantage of supporting verification and traceability.  For 
instance, given a task t, typing information would allow recognizing whether t is an instance of a 
given type, say, preparing a weekly class session.  Should the user change the definition of t, 
typing information supports verifying if t still conforms to the type.  Furthermore, should the 
user change definition of the type itself, we can trace all the occurrences of the type and signal 
the required updates or conflicting definitions. 

In the task management domain, however, we believe that the user overhead of defining and 
maintaining a type system for tasks outweighs the benefits.  When a user defines a recurrent 
task, it is not clear cut which characteristics are common, and should be enforced by typing, and 
which should be left open to variability.  Furthermore, when creating a new instance of a 
recurrent task, it would be frustrating to users to have to update the type definition every time the 
requirements for the new task conflict with the original type specification. 

The decision we took was to support recurring tasks with the informal notion of templates.  
When a user decides to start working on a new occurrence of a recurring task, he may copy the 
definition of an existing occurrence (using the button labeled T in Figure 5.6) and then modify it 
as desired.  Currently, no link is automatically created between the new occurrence and the task 
used as template, although users may create such links explicitly, using the mechanisms 
described in Chapter 3, Task Identity. 

Service Naming and Substitutability 

The naming of services plays a key role in matching service demand with service supply.  For 
instance, if a user task requires a play video service, the infrastructure will look for a supplier 
that advertises a play video service.  However, one cannot always expect a perfect match of 
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vocabularies in every environment.  For instance, suppose that in some environment no supplier 
announces play video, but some suppliers announce play media.23 

The question that arises is where the knowledge about service substitutability should reside:  the 
demand side (models of user tasks), or the supply side (somewhere in the environment)?  To 
answer this question, we need to distinguish two kinds of substitutability: goal substitutability 
and functional substitutability. 

Goal substitutability is determined by what users want to achieve with a task.  For instance, for 
taking notes on a video clip, a user may be willing to either type or to dictate the notes, requiring 
an edit text service or a speech recognition service, respectively.  These two services then 
become substitutable in the context of the clip reviewing task; however, the same user may find 
dictating a research paper cumbersome.  Clearly, this kind of substitutability should be 
represented in the models of user tasks.  In our research, we represented goal substitutability as 
alternative service configurations in task models. 

Most work in substitutability coming from research in service ontology focuses on functional 
substitutability.  Underlying that work, there are two possible perspectives for naming: either 
naming an abstract service, e.g. printing, or sending fax; or naming an abstract supplier, e.g. 
printer, or fax machine.  Each perspective offers a tradeoff with respect to naming and 
substitutability knowledge.   

The perspective of naming services is more intensive on naming standards and advertising, but 
less intensive on substitutability.  For instance, suppose that fax machines can also print 
documents (format issues aside).  Both printers and fax machines would agree on a standard for 
naming services, e.g. printing, and advertise them: a fax machine would advertise printing and 
sending fax.  In this simple example, substitutability is obtained for free in service advertising. 

The perspective of naming suppliers is less intensive on naming standards and advertising, but 
more intensive on substitutability.  In the example above, printers would advertise themselves as 
printer and fax machines as fax machine.  The knowledge that fax machine can substitute for 
printer would have to be explicitly represented. 

Under either perspective, functional substitutability is clearly environment-specific knowledge 
and should reside somewhere in the environment: either on the suppliers that announce all 
services that they are capable of providing, or on a broker for supplier substitutability. 

Support for functional substitutability is a topic of active research in the area of service ontology, 
and work on task management can dovetail on that research. 

                                                       

23 A general notion of service substitutability involves describing services more extensively than just 
naming. For instance, it may involve describing the types of materials/parameters associated with 
providing the service, the supported value ranges, etc.  However, the points we make using service 
naming are valid for more complete service descriptions. 
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Service Decomposition 

Service decomposition is an important aspect of matching service demand with service supply 
that extends the idea of functional substitutability with one-to-many mappings.  For instance, if a 
user task requires a speech-to-speech translation service, and none can be found in the 
environment, maybe the service can be assembled from parts; e.g. speech-recognition, language 
translation, and speech synthesis. 

The questions that arise are: is there an ideal level of decomposition for naming services?  
Where should the knowledge about service decomposition reside? And who needs to know 
about how a composite service is actually being delivered? 

Concerning the level of decomposition for naming services, it is not likely that a single definitive 
answer will ever crystallize.  On the demand side, users with different degrees of expertise will 
ask for things at different levels: an inexperienced user will try to get more abstract services, 
hiding internal details as much as possible, while an expert user may want to have more control 
over which, and how the parts are configured.  The same user may want to have more control 
over the structure supporting a critical task, but be willing to take an off the shelf solution for a 
low priority task.  On the supply side, it is to be expected that sophisticated environments, such 
as smart rooms, will have higher-level, well-tuned components, while poorer environments, such 
as handhelds, will have a collection of generic parts that can be assembled to deliver a similar 
function but in a less polished way. 

Concerning where should the knowledge about service decomposition reside, as argued before 
with respect to goal vs. functional substitutability, that knowledge resides on either the demand 
side, whenever users want to be specific about what is being asked; or in the supply side, 
whenever users wish to rely on technical knowledge resident in the environment.  Specifically, 
Prism knows as much or as little about what a user wants as the user tells it:  if the user asks for 
a speech-to-speech service, that’s what Prism will try to obtain from the environment; if the user 
asks for three services interconnected in a certain way, that also is what Prism will try to obtain 
for the user.  How a requested service can be assembled in a particular environment depends on 
the capabilities of (i.e. the existing parts in) that environment. 

Concerning who needs to know about how a composite service is actually being delivered, that 
knowledge may have to be exposed all the way up to the user, even if the knowledge to assemble 
the composite service resides in the environment.  For instance, suppose that a requested service 
is actually being provided by an assembly of parts.  The user may have to interact with several 
applications, meaning several UIs, rather than an integrated one.  Prism has to be aware of what 
exactly is being provided in lieu of what was requested, even if for nothing more than explaining 
it to the user. 

Our architectural framework supports these alternatives.  The task models described in Chapter 3 
support requesting either a (composite) service, or an assembly of services (parts), or requesting 
both as alternative service configurations for supporting the task.  

When building the infrastructure, we experimented with building a supplier that announces a 
composite service (speech-to-speech translation) and that requests the necessary parts from the 
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EM.  In this case, suppliers act as specialized (decentralized) repositories for the knowledge 
about service decomposition.  Whether having a centralized component with such knowledge 
would be a better solution is a matter for further investigation. 

Service Interconnection 

In addition to enumerating the services required for each task, an important role of task models 
is to indicate whether and how those services are interconnected.  For instance, to carry out 
speech-to-speech translation, three services may need to be interconnected: speech recognition, 
language translation, and speech synthesis. 

The question that arises is where the knowledge about service interconnection should reside: in 
task models, or in the environment?  Before answering this question let’s examine an example in 
the physical world.  Suppose that a user, Fred, wants to hook up a desktop PC.  Fred uses the 
power cable to connect the power outlet to the PC’s power input, the video cable to connect the 
video output to the monitor’s video in, and so on.  Fred doesn’ t need to be familiar with the pin 
layout of the video cable, or with the specifications of the electrical signals that go in each pin. 

There are two levels of knowledge with respect to interconnecting services in the environment. 
The knowledge that can be asked from non-expert users is high-level knowledge about the types 
of inputs and outputs, and which get attached to which.  For instance, Fred may decide to 
connect the services as described above, or he may decide not to use speech recognition in some 
circumstances, and hook the input of the translator to some text input device, instead. 

The level of knowledge that is required to verify that interconnection is possible, and to 
dynamically interconnect services, is the level captured by software architecture description 
languages (ADLs).  ADLs such as Acme, or their XML-based counterparts, such as xArch, may 
represent the signatures of the interaction ports and details about the interaction protocols 
[27,34].  This level of knowledge is held by software architects and system’s specialists. 

The decision we took is to represent user-level knowledge in task models, and to represent 
software architecture-level knowledge in the environment.  Clearly, service suppliers need to be 
aware of the specifications of their own ports (if nothing else to advertise them to a component 
in charge of interconnection). 

However, whether to centralize knowledge about verifying and establishing interconnections in a 
component such as the Environment Manager (e.g. [20]), or to decentralize some of it to the 
service suppliers themselves is a topic for further investigation. 

Supplier Preferences 

User preferences play a key role when selecting service suppliers among the alternatives in the 
environment.  For services with little or no direct user interaction, such as media playing or 
language translation, the choice among suppliers is mostly driven by the forecasted quality of 
service.  For services with a heavy component of user interaction, such as text or slide editing, 
the choice is mostly driven by the available features and by the users’  familiarity with the way 
those features are delivered. 
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One question that arises is how to model user preferences with respect to the suppliers’  features 
and to the users’  familiarity with the way they are delivered. (The subsection on QoS Tradeoffs, 
below, addresses the quality-related question.) 

At one end of the spectrum, user preferences may be modeled by identifying the preferred 
suppliers.  The decision we took, embodied in Definition 3.2, expresses preferences as a discrete 
mapping between a known set of suppliers and a normalized utility space U 

�

 [0,1].  With this 
modeling approach, a user, Fred, might note his preference of text editor Emacs over Vim by 
assigning Emacs a utility close to 1, and a lower value to Vim.  To account for unknown 
suppliers, a wildcard value, other, is added to the set of known suppliers.  So, for instance, if 
Fred sets the utility value for Vim higher than the value for other, that means Fred would prefer 
to use Vim than to try an unknown text editor.  

At the other end of the spectrum, preferences may be expressed as an abstract model of service 
features.  With this modeling approach, Fred might express that he would prefer a text editor that 
supports pointing devices and accelerator keys.  This approach however, relies on a vocabulary 
to describe features that is shared between the user (and possibly the task modeling tools) and all 
the candidate service suppliers across all the environments the user want to work on.  Another 
problem to solve is how to build models of user familiarity with the way features are delivered.  
For instance, Fred may be familiar with the accelerator keys in Emacs, but may have trouble if 
the same features are delivered by an unknown editor using a different set of accelerator keys. 

A sophisticated solution might permit supplier preferences to be expressed either way, or better 
yet, combined in a rich format.  For instance, Fred might express that he would be happy with 
either MSWord or with a WYSIWYG24 editor that supports pointing devices and spell checking.  
Finding a good balance between the expressiveness and usability of such modeling forms is 
topic for further investigation. 

QoS Tradeoffs 

Another question related to the mechanisms for selecting among alternative suppliers is how to 
model user preferences with respect to the quality of service (see also the subsection on Supplier 
Preferences, above).  As we discussed in previous chapters, quality of service (QoS) is often 
multi-dimensional.  For instance, for watching a video, users may care about frame update rate 
and about image quality; for automatic translation, users may care about both the accuracy and 
the latency of translation. 

At one end of the spectrum, user preferences may be modeled by indicating which QoS 
dimension a user cares the most.  In the example, a user, Fred, might indicate that response time 
is preferred over accuracy of translation; and the infrastructure would then configure the 
environment so that response time is optimized.  Although tradeoffs are explicitly captured – in 
the example above Fred is trading off accuracy for response time – they are so at a very coarse 
grain.  Finer grain questions cannot be answered in this solution: for instance, how short of a 

                                                       

24 Common acronym for What You See Is What You Get. 
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response time will satiate the user?  And even if accuracy is less important, what if it degrades so 
much that the translations become unusable? 

At the other end of the spectrum, preferences may be expressed as an arbitrary function between 
the multivariate quality space and the normalized utility space U 

�

 [0,1].  For instance, Fred 
might indicate that he would be happy with medium translation accuracy, as long as latency 
remains under 1 second, and that he will be happy to wait 5 seconds for highly accurate 
translations.  Although fully expressive, designing mechanisms to elicit this form of preferences 
from non-expert users is a hard problem, and even more so if more than two QoS dimensions are 
involved.  Additionally, the algorithms used by the infrastructure for finding the optimal 
configuration need to accommodate an arbitrary multi-dimensional utility function. 

The decision we took, embodied in Definition 3.3, lies between these two extremes: user 
preferences are expressed independently for each dimension.  For instance, Fred might indicate 
that he would be happy with response times under 1 second, but accept response times of 5 
seconds; and also that he would be happy with highly accurate translations, but would accept 
medium accuracy.  Figure 7.2 (a) shows the net effect of combining these two (independent) 
utility functions by multiplication.  Combining independent utilities by multiplication corre-
sponds to an and semantics: overall QoS is good, only if it is good along each and every 
dimension.  In the figure, the shaded areas labeled good and bad correspond to the portions of 
the quality space where the utility is consistently high, or low, respectively.  The curves between 
the two areas are isoutility, or indifference curves, along which the utility remains constant. 

Although mathematically less expressive than an arbitrary multivariate function, in practical 
terms the expressiveness of this solution seems adequate.  The main reason for this is that 
automatic configuration is guided my maximizing the utility function – and in a maximization 
process, variations are the important aspect, not the absolute values that are reached.  For 
instance, note that the highlighted isoutility curve in Figure 7.2 (a) expresses similar preferences 
to the ones in the example arbitrary function mentioned in the previous paragraph. 

 
 

good 

 
bad 

 

5 

high accuracy 

1 
la

te
nc

y 
(s

) 

medium low 

 
good 

 

 
 
 
 

bad 
 8 

high accuracy 

1 
la

te
nc

y 
(s

) 

medium low 

(a) (b)  

Figure 7.2 Two different tradeoffs obtained by multiplying independent utility functions 
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One drawback of expressing preferences independently for each dimension is that tradeoffs are 
not represented explicitly.  Looking at the combined plot in Figure 7.2 (a) it becomes apparent 
that the utility function is allowing wider variation along the accuracy axis than along latency.  If 
the available resources decrease, a configuration algorithm based on utility optimization will 
tradeoff accuracy for latency; or in other words, latency will be preserved at the expense of 
accuracy. 

However, the very notion of tradeoff is not absolute.  Upon a fluctuation of resources, both 
dimensions are likely to change, and since they are not expressed in the same scale, which 
dimension is more affected is subject to the observer’s interpretation. 

The meaning of a tradeoff only congeals when compared against another tradeoff.  Figure 7.2 
illustrates how two clearly distinct tradeoffs can be obtained by changing user preferences along 
each dimension independently.  In Figure 7.2 (b), Fred got stricter on accuracy and no longer 
thinks medium accuracy translations are acceptable.  On the other hand, Fred is willing to 
tolerate response times up to 8 seconds.  A configuration algorithm based on utility optimization 
now has more wiggling room – than in Figure 7.2 (a) – along the latency axis. 

Although tempting to represent user preferences as concrete tradeoffs, such concrete tradeoffs 
can only be determined given concrete values of resource availability.  Specifically, it would be 
tempting to find a representation that could answer questions like: when the user wants highly 
accurate translations, how much latency should he expect?  However, the answer to that is not a 
constant, but a function of the available resources. 

For user preferences to play their role in guiding the automatic configuration of diverse 
environments, those preferences need to remain environment-independent.  Nevertheless, such 
preferences can be superimposed on the concrete conditions of each environment to determine 
the levels of QoS attainable at each moment. 

Infrastructure for Task Management 

This section focuses on important aspects where our work concerning building the infrastructure 
interfaces with complementary research.  The four subsections below discuss issues related to 
the impact of user mobility on privacy, to guidelines for implementing service suppliers (both 
with respect to APIs and to data representation,) and to the interconnection of suppliers. 

User Mobility vs. Privacy 

Privacy is an important concern for mobile users.  If users are to resume their tasks at different 
locations using local devices and software, how can their privacy be assured? 

In many circumstances this may not be an issue.  For instance, mobile workers within premises 
administered by their company may trust the computing environment in a colleague’s office as 
much as they trust the environment in their own office.  On the other hand, mobile users may 
have concerns about the kind of assurances offered by the environment at their favorite café. 
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The privacy concerns that arise from scaling task management in space can be addressed by the 
combination of the following three mechanisms.  First, individual encryption keys can be 
assigned to each task; second, users may express constraints on which tasks can be resumed 
where; and third, secure file systems guarantee that only the applications involved in supporting 
a task see the contents of the manipulated files. 

Assigning individual encryption keys to each task is the base to guarantee that granting access to 
one task does not compromise the contents of other tasks.   Those keys may be used to encrypt 
both the task model and the materials manipulated by task.  For instance, suppose that a user, 
Fred, wants to work on reviewing a video clip at a café.  Upon Fred’s authentication, only the 
key for reviewing the video clip needs to be granted to the local infrastructure so that Fred can 
resume his task.  Even if the (untrusted) infrastructure or other software components at the café 
manage to read other files pertaining to Fred, they lack the encryption keys to make sense of 
those files. 

Furthermore, if keys are made to expire so that new keys need to be granted for every access to a 
task, the log of key requests can be used to detect unauthorized access attempts. 

Expressing constraints on which tasks can be resumed where facilitates the automatic 
distribution of keys upon user authentication.  For instance, once Fred authenticates at the café, 
the Dashboard described in Chapter 5, Tasks at a Glance, obtains access only to the tasks that are 
pending and enabled at the café. 

The decision we took is that such constraints provide a default, but do not prevent authenticated 
users to browse and resume any of their tasks.  For instance, Fred may decide that he needs to 
resume a task he would not normally work on at the café.  For that, he provides the local 
infrastructure with the necessary information to obtain the corresponding access keys. 

Secure file systems guarantee that only the applications holding a valid key see the contents of 
encrypted files.  These file systems keep only encrypted data on permanent storage and 
decrypt/encrypt the data into the memory space of the application holding the access key (e.g. 
[32]).  For instance, if a supplier is granted a key to manipulate a material in the file system, only 
that supplier sees (in its memory space) the decrypted contents of the file.  Even if other software 
in the environment obtains the location of the material in the file system, it will not be able to 
access its contents.  A similar argument can be made for accessing data streams over the 
network, for instance, by using https. 

Together, these three mechanisms guarantee that users control which tasks are accessed by 
which computing environments, and that once a task is accessed, only the infrastructure and the 
suppliers directly involved in supporting the task access the associated information. 

Mechanisms such as discussed above are available from other work on authentication, security 
and privacy, and incorporating them into the task management infrastructure is a matter for 
further work. 
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Software Engineering of Service Suppliers 

There is one assumption made by legacy application designs that most significantly stands in the 
way of integrating such applications into scalable task management systems.  That assumption is 
that an application is primarily used by one user, and that a user will primarily use the same 
application to obtain a given service.  In other words, the assumption is that there is a one-to-one 
mapping between users and applications. 

However, application design should assume that such mapping is many-to-many.  A mobile user 
may encounter many applications that could provide the desired service at different locations.  
Conversely, an application running on a device sitting at a shared space, such as a meeting room, 
or a coffee shop may provide services to many users over the course of a single day. 

There is an immediate design consequence of adopting a many-to-many assumption: the 
persistent state of a service needs to be transferred among the applications providing that service. 

When assuming a one-to-one mapping, persistent state such as user preferences and application 
settings can simply be stored internally and recovered the next time the (same) user starts the 
application.  Furthermore, persistent application data, such as documents being edited, may be 
stored in proprietary formats. 

In contrast, when a mobile user resumes a task at some new location, the application chosen to 
provide a service in the task needs to recover the persistent state captured when the user last 
worked on that particular task (potentially using some other application at a different location). 

For enabling the transference of the persistent state of services, two design requirements need to 
be met: first, applications need to expose APIs for exporting and importing the persistent state; 
and second, the representation of the state needs to be intelligible by other applications providing 
the same service.  The rest of this subsection focuses on the APIs, while the following subsection 
discusses issues associated with the representation of the service state. 

Many modern applications expose APIs for setting and capturing the state of the application 
(often via standards such as COM or CORBA [22,23]).  In our experience, the effort for 
developing a new supplier by wrapping such an application is about two weeks time-on-task for 
an experienced student.  Specifically, this includes implementing the capture and recovery of 
basic user-perceived state.  For example, the user-perceived state for a web browser would 
include the current page, navigation history, window position and size, scroll, etc. 

Other applications define no clear APIs for that purpose but publish the application’s source 
code.  For wrapping such applications, the amount of effort varies widely with the complexity of 
the code and the prior experience of the person doing the wrapping. 

However, the application market is maturing in the sense that increasingly more applications 
include documented APIs for setting and capturing the application’s state. 

Furthermore, to make it easier to develop Supplier wrappers for legacy applications, we 
developed a generic set of classes (both in Java and C++) that support the exchange of messages 
with Prism and the EM, and a generic representation of the service state to be mapped.   
Integrating an application as a service supplier in the infrastructure consists of extending those 
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generic classes and interfacing with the application’s specific APIs.  This is joint work with 
Vahe Poladian. 

Controlling the resource adaptation policies of an application proved to be more challenging 
(e.g., for Media Player and Xanim).  These applications tend to fall into two fields: first, those 
coming from research or open-source projects, for which controlling the policies, although 
possible, can involve considerable effort.25  Second, commercial software, which either doesn’ t 
expose APIs to control the adaptation policies, or for which we could not observe a reliable 
correlation between the controls transmitted to the application and its actual behavior. 

However, the application market seems to be maturing also in this respect: in recent experiments 
with RealOne Player we could observe a good correlation between the control knobs for the 
resource-adaptation polices and the application’s actual behavior. 

Representation of Service State 

The second design requirement for enabling the transference of the persistent state of services 
(see previous subsection) is that the representation of the state needs to be intelligible by other 
applications providing the same service.  Here, we can distinguish two parts to the state of 
services: first, preferences and settings, such as window size and cursors, and second, persistent 
application data, such as files being edited. 

Representing preferences and settings in XML (see Chapter 3, State Snapshot) enables that part 
of the state to be manipulated by applications with different degrees of sophistication. 
Specifically, sophisticated suppliers may interpret all or most of the settings, while simple 
suppliers interpret only the settings they know about and leave others undisturbed.  For example, 
suppose that a user, Fred, is editing a text document with an editor that supports spellchecking 
and that keeps a representation of the settings associated with spellchecking; for instance, which 
language to check against.  Later, Fred resumes this task on a PDA using a simple text editor that 
cannot instantiate the state pertaining spellchecking.  However, once Fred returns to the more 
sophisticated environment, that part of the state can be interpreted and recovered. 

The compatibility of data formats is arguably the hardest problem associated with making the 
representation of the service state intelligible across applications.  In the example above, suppose 
that the sophisticated text editor in the first environment supports rich formatting.  When Fred 
resumes his task on the PDA, the available editor doesn’ t support rich formatting and Fred 
allows a conversion to a simpler format that the unsophisticated editor can handle.  Back at the 
sophisticated environment, Fred now has the previous version of his document containing the 
painstakingly added formatting, but none of the updates, and the new version of the document 
containing the updates, but none of the formatting.  Clearly, this is a problem that one-shot 
format conversion cannot address. 

                                                       

25  Other research is addressing the problem of reducing the effort involved with extending applications 
for adaptation [9]. 



90 

Ideally, persistent data pertaining to a service would be seamlessly accessible by any application 
providing that service: simple applications would access the basic data (e.g. plain text) while 
sophisticated applications would additionally access the more sophisticated information (e.g. text 
formatting). 

One possible step in this direction is to keep a log of operations whenever a supplier needs to 
make a conversion to a simpler format.  That log of operation can be replayed (automatically, to 
the extent possible) back at a sophisticated environment, so that the operations affect all layers of 
data.  However, developing effective strategies for representing and accessing persistent data 
across applications with different degrees of sophistication is still an open problem, and a matter 
for further work. 

Interconnection of Service Suppliers 

How service interconnection is supported plays an important role in the QoS of complex 
configurations.  For instance, suppose that to carry out speech-to-speech translation, three 
services are interconnected: speech recognition, language translation, and speech synthesis.  
How the results of the speech recognition are passed to translation, and how the results of 
translation are passed to speech synthesis is key to the overall latency of the service.  
Furthermore, suppose that the secrecy of the translated utterances is a concern: the availability of 
adequate mechanisms in the interconnections is key to offering overall assurances. 

Legacy applications may have their own mechanisms for interconnection, typically taking 
advantage of standard mechanisms available at the operating system or networking levels.  As 
discussed in Chapter 4, Heterogeneity, legacy applications are made available to the 
infrastructure as service suppliers by wrapping them with Supplier code. 

The wrapper code around legacy applications may have access to controlling the application’s 
mechanisms for interconnection via the APIs, or may resort to interconnect applications via 
standard operating system mechanisms: e.g. piping the input/output streams of the applications, 
or taking the data and sending it across a TCP connection. 

A question that arises is: could the infrastructure change the QoS properties of the connectors in 
a configuration of services?  For instance, by substituting increased performance connectors for 
default ones, or by adding secrecy guaranties to existing connectors that provide none. 

Research in the area of software architectures addresses modifying and adding properties to 
existing connectors by wrapping [86].  Incorporating such results and clarifying the roles of 
centralized reasoning in the Environment Manager vs. specialized reasoning in the Supplier 
wrappers is a matter for further work. 

Describing and Operating on Tasks 

This section focuses on important decisions we took concerning the mechanisms available for 
users to describe and operate on their tasks.  The two subsections below discuss issues related to 
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the impact of the principle of offering incremental benefit for incremental effort, and to the 
approach we chose for enabling users to find past tasks. 

Incremental Benefit for Incremental Effort 

A fundamental guiding principle that we adopted is that of offering incremental benefit for 
incremental effort (sometimes called gentle slope systems [61]).  With the interfaces we designed 
for describing tasks, users are able to reap significant benefits from task management, even with 
little effort put into describing their tasks.  Furthermore, the more effort users are willing to put 
in describing their tasks, the better job the infrastructure for task management can do. 

Specifically, users can benefit from suspending and resuming tasks just by associating the 
relevant files and services with the task definition.  When a user provides such a minimal task 
description, the user preferences for that task take on default values. However, distinct user 
preferences may be associated with each service within each task. 

The infrastructure currently includes predefined preference templates for each service type.  
Such templates specify both supplier preferences and QoS preferences.  At least one template, 
the default, is provided, and depending on the service type, more templates may be available.  
For instance, for web browsing, an additional fast template is currently defined, which specifies 
strict constraints for the response time but is tolerant of not loading pictures. 

Whenever the preferences specified by the default template fail to capture the user’s intent for 
the service within the particular task, the user may quickly associate another set of preferences 
with the service by selecting another template, as illustrated in Figure 5.5 (a).  If the user is not 
satisfied by the preferences in the available templates, he may fine-tune the preference 
specification for the service, as illustrated in Figure 5.5 (b,c).   

The current implementation reads the template definitions from configuration files, which may 
be edited for personalizing and adding new templates.  Extending the task definition interfaces to 
make personalizing templates easier for non-expert users is a matter for further work. 

Finding Past Tasks 

The ability to find past tasks plays an important role in the usability of an infrastructure for task 
management.  Although sophisticated mechanisms are currently available for finding files in the 
file system, such as the Google Desktop Search [39], such mechanisms are not a substitute for 
finding the task definitions themselves.  Tasks may need to be referred back to, and restarted, 
long after the user thought they were done.  For instance, a user may need to find a presentation 
given last year, so that the associated spreadsheet can be updated with the latest data, and the 
slides updated with new developments for an upcoming meeting. 

There are two main alternatives for finding past tasks.  The first is to provide a time slider that 
allows users to backtrack time (much like a time slider in video playing software); the second is 
to provide mechanisms for browsing tasks based on information related to those tasks. 
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Equipping desktop managers with a time slider enable users to revert the aspect of their desktop 
to the specified time.  This approach is convenient for small time scales, but it becomes awkward 
for time scales of months or years, especially if users don’ t have a precise idea of when they 
worked on the tasks they are looking for.  Worse, while this concept makes sense if all the tasks 
take place on the same desktop, it might be problematic to reconstitute the state of past tasks that 
took place across different locations, and maybe in computing environments with different 
capabilities than the current one. 

The decision we took, embodied in the Lamp component described in Chapter 5, was to support 
finding tasks by browsing.  Users may associate circumstantial information to tasks, thus 
establishing a persistent task identity that constitutes the basis for browsing. 

In addition to the pragmatic aspects above, we believe that allowing users to browse their tasks 
highlights the notion of task as a first class entity, as opposed to a time cursor, in which users 
manipulate time as a first class entity to reach their tasks. 
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Conclusion and Future Work 

This dissertation investigated the use of high-level models of user needs and preferences for 
scaling task management in space and in time.  Past research has employed user models for 
achieving other goals; for instance, guiding users along complex tasks, helping designers during 
the analysis and development of systems that support specific user tasks, and automatically 
deriving user interfaces adapted to the characteristics of diverse devices (see Chapter 2).  
Broadly, that research had mixed success, mostly because the benefit for end users was not 
always clear:  often the goal of employing such user models was to constrain the behavior of end 
users, or to reduce the cost of system development. 

My research focused specifically on reducing user overhead with task management across 
heterogeneous computing environments and across long periods of time.  The importance of 
improving the experience for end users has increased dramatically with the developments in 
ubiquitous computing over the past decade.  Users are increasingly surrounded by devices 
capable of computing in many forms: portable personal computers and organizers, cell phones, 
media and game consoles, processors embedded in cars, etc.  Thanks to connectivity, which is 
quickly becoming universally available, many of those devices are already able to browse 
information on the web, and will increasingly be used to store and access personal information. 

I believe that the next decade will bring a significant shift in the way software is designed.  
Today, software is application-centric.  An application assumes that one user will be using it, 
and that the user will always use that same application to carry out his tasks.  Consequently, each 
application places itself in the center of the universe, and users must approach each and reconcile 
the differences to carry out their tasks. 
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In the future, software will be user-centric.  Users will use many applications running on many 
devices indistinctively to carry out their tasks.  And applications sitting on shared spaces, such as 
meeting rooms and coffee shops may serve the needs of many users over the course of a single 
day.  Therefore, models of what users need and prefer for each of their tasks will play a key role 
in coordinating the configuration of devices and software for supporting such tasks.26 

This dissertation takes a step in this direction.  Specifically, it introduced an approach for scaling 
task management in space and in time that is based on high-level models of what users need 
from the computing environment for each of their tasks.  Such models are exploited at run-time 
by an infrastructure that automatically configures the environment on behalf of users. 

This approach reconciles the competing requirements of reducing the overhead incurred by users 
when configuring computing environments, while simultaneously enabling users to take full 
advantage of the environments around them at different locations. 

The scalability of task management was demonstrated by defining models of user tasks, and by 
building an infrastructure that supports scalable task management.  Chapter 3 specified how to 
build models of user tasks, while Chapters 4 and 5 described an architectural framework for 
scalable task management and an infrastructure that fits that framework.  The infrastructure sup-
ports task management in the sense that it supports suspending and resuming user tasks as a 
coordinated set of services in the environment.  Scalability in space is supported by allowing 
users to suspend tasks at one location and to resume them at another location at will, provided an 
installation of the infrastructure is available.  Scalability in time is supported by allowing users 
to browse their tasks regardless of how long ago those tasks were defined, or completed.  
Chapter 6 argued how the models and infrastructure support scalable task management. 

Chapter 6 also demonstrated how the infrastructure reconciles two competing requirements: 
reducing user overhead while simultaneously enabling users to take full advantage of the 
environment.  Taking full advantage was demonstrated by construction: the utility-theoretic 
framework presented in Chapter 4 enables the infrastructure to find the best match between the 
user’s needs and the available components and resources in the environment.  This utility-
theoretic framework works based on the precise modeling of user needs and preferences 
described in Chapter 3.  Chapter 4 also described the internal workings of the infrastructure for 
monitoring and adapting to dynamic changes, thus keeping the optimality of the match. 

Reducing the overhead for users was demonstrated in Chapter 6 by comparing the overhead of 
interacting with the infrastructure against the overhead of interacting with the raw environment.  
We compared against users configuring the environment themselves because that represents the 
state of the art for scaling task management in space across heterogeneous environments.  
Specifically, we isolated relevant configuration tasks – defining, suspending and resuming main 
tasks – and introduced a quantitative model for comparing user overhead. 

                                                       

26 Furthermore, while the models investigated in this dissertation focused on tasks concerning information 
processing, with services such as text editing, in the future, user models will be exploited to actuate on 
the physical context of the user; for instance, to set the preferred temperature of an office, or to 
automatically adjust the settings of a chair in a meeting room. 
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Starting with an analysis independent of scalability, we have shown how the benefits of using 
the infrastructure accrue with the number of suspend-resume cycles, and how those benefits are 
more significant the more services and materials are involved in a task.  Then we discussed how 
scaling task management in space, across heterogeneous environments, increases the benefits of 
using the infrastructure and how scalability in time does not significantly increase the benefits 
already gained with automating task management and with scaling it in space. 

Overall, this dissertation evaluated our research from three perspectives.  First, Chapter 6 
evaluated our approach for task management by validating the research thesis.  Second, Chapter 
7 evaluated the architectural framework that supports our approach by discussing the benefits 
and limitations of the framework and its current implementation.  And third, Chapter 4, 
Evaluation, evaluated the performance of the infrastructure that implements the framework. 

Contributions 

This dissertation offers contributions at three levels: an approach to scaling task management in 
space and time, an architectural framework that supports the approach, and an implementation of 
the framework.  The following subsections elaborate on the contributions of each of these. 

Contributions of the Approach 

The main contribution of my research is demonstrating that high-level models of user tasks can 
be exploited for scaling task management beyond traditional office environments.  Below, we 
elaborate on the specific contributions of the approach, which hold regardless of the specific 
architectural framework defined in this dissertation, or the infrastructure we provide: 

− Scaling in space.  We have shown how to build task models that reflect user needs and 
preferences in a way that is independent of the specifics of each environment.  Specifically, 
tasks are described as a coordinated set of abstract services, such as editing text, rather than a 
set of applications, such as MSWord.  Additionally, these models capture abstract representa-
tions of the user-perceived state of the services and of the user preferences relative to quality 
of service tradeoffs.  We have also shown how these abstract models can be dynamically 
mapped into the specific capabilities of each environment.  These ideas enable scaling task 
management in space, across heterogeneous environments, in the sense that users may 
suspend a task in one environment, and resume it in another environment running a different 
set of applications and devices. 

− Scaling in time.  We have shown how to endow task models with circumstantial facts about 
the tasks they represent so that algorithms akin to web browsing can be applied to that 
information.  This idea enables scaling task management in time, in the sense that it allows 
users to find and recover tasks defined or completed long ago. 

− Reconciling two competing requirements.  We have shown that an automated task 
management system reduces the overhead associated with configuring the computing 
environment for each task.  We have shown how a task management system can find the best 



96 

match between user needs and the capabilities of the environment.  Putting these two ideas in 
practice by the same infrastructure reconciles the requirements of reducing the configuration 
overhead, while simultaneously enabling users to take full advantage of the environments 
around them at different locations. 

− Offering control over which tasks to resume.  We have shown how having explicit task 
models enables task management systems to discriminate individual tasks.  We have shown 
how offering users the equivalent of a to-do list, or task dashboard, enables them to control 
which tasks to resume on different circumstances.  These ideas enable environments to save 
resources, by activating only the services required by the tasks that users intend to work on.  
We have also discussed how privacy mechanisms can associate different access keys to 
different tasks.  On top of the ones above, this idea enables users to control which files are 
accessed from which environments, allowing for sensitive materials to be manipulated only 
by trusted environments. 

Contributions of the Architectural Framework 

The architectural framework that supports our approach clarifies the responsibilities and 
interaction protocols between the components of an infrastructure for task management.  Here 
we list the contributions of the framework, which hold regardless of the specific infrastructure 
we provide for implementing the framework: 

− Task Management layer.  We have shown how to obtain knowledge about user needs and 
preferences for each task, and how to represent it in a new software layer for task 
management.  We have described the protocols to disseminate this knowledge thus 
coordinating resource allocation and adaptation policies in service suppliers.  Designs that 
rely on ad hoc mechanisms inside applications to capture knowledge about user tasks make it 
very hard to have a consistent view across applications, and to transfer that knowledge to a 
different set of applications when a task is resumed in an another environment.  In contrast, 
our design promotes a consistent system-wide awareness of user needs and preferences, and 
makes it easy to disseminate that knowledge wherever it is needed. 

− Environment Manager.  We have shown how to obtain an environment-wide view of the 
capabilities of a computing environment, and how to update that view in the face of dynamic 
changes.  We have also described how the EM gathers information about the quality of 
service being delivered by active service suppliers.  The EM plays a key role in finding the 
best match between abstract representations of user needs and the concrete capabilities of 
each environment.  The EM also plays a key role in detecting and adapting to coarse-grain 
changes in the environment, such as changes in the availability of suppliers, and to trends in 
resource availability. 

− Utility-theoretic framework.  We have shown how to quantify user preferences and how to 
exploit that in a utility-theoretic framework for finding the best match between user needs 
and preferences, and environment capabilities. Specifically, we quantified preferences 
relative to alternative service configurations, relative to alternative suppliers for each service, 
and relative to multiple dimensions of quality of service.  Separate research provided the 
algorithms that exploit the utility-theoretic framework to derive the optimal assignment of 
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suppliers to requested services, the optimal resource allocation among those suppliers, and 
the optimal fine-grain resource-adaptation policies within those same suppliers. 

− Coordinating dynamic adaptation at three levels.  We have investigated the nature of 
changes related to task management and separated them into three levels: changes in user 
tasks, changes in the availability of service suppliers and coarse-grained trends in quality of 
service, and fine-grain changes in resource availability.  We have defined an architectural 
framework for monitoring and reacting to these kinds of changes, and clarified the 
responsibilities and interactions between the layers responsible for each.  We have shown 
how to incorporate the utility-theoretic framework mentioned above for coordinating the 
overall behavior of this architectural framework. 

Contributions of the Infrastructure 

The infrastructure that implements the architectural framework provides a working foundation 
for research in task management and complementary areas.  Here we list the contributions of this 
infrastructure: 

− Demonstrates the feasibility of the approach and features of the framework.  We have 
shown that the approach is feasible by providing an infrastructure for task management that 
supports the anticipated capabilities.  This infrastructure also demonstrates how the features 
of the architectural framework deliver practical benefits: the infrastructure not only delivers 
the features, it does so with a performance that makes it usable on a daily basis. 

− Demonstrates usability by non-experts.  By carrying out user studies with a general 
academic population, we have shown that people other than the author can understand and 
manipulate the concepts in the approach.  Specifically, by deploying the infrastructure with 
about 10 voluntary students and researchers who used it freely, we could confirm that users 
can define, suspend and resume tasks with the infrastructure.  Furthermore, scripted user 
studies performed with a general academic population confirm that users can understand and 
manipulate quality of service tradeoffs in environments with fluctuating resources. 

− Provides a foundation for research.  By providing a working infrastructure with a clear and 
well documented design, we make it possible to reuse it, or its components, for future and 
complementary research.  The infrastructure imposes a low buy-in cost to future extensions 
since it makes no assumptions on their internal structure or programming language.  The only 
constraint to such extensions is that they be able to exchange XML messages with the 
existing components over TCP.  Within this constraint, the infrastructure supports the 
affordable integration of legacy applications by wrapping them with code that translates 
between their specific programming interfaces (APIs) and the infrastructure’s communication 
protocols. 

Future Work 

Although desktop management has been around for two decades, the changes brought about by 
the increasing pervasiveness of computing make task management an exciting research area.  
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The increasing pervasiveness of smart spaces is causing a shift in the paradigm of computer use: 
from single-device, tightly integrated interaction, to multiple-device, loose interaction.  The 
physical environment around users is increasingly endowed with sensors and actuators, and 
computer-supported tasks are blending with daily activities and artifacts, such as cell phones, 
cars, TV sets and refrigerators. 

These changes also stimulate research in complementary areas, such as the management of 
adaptation to changes in the computing environment (see for instance work by Vahe Poladian 
and Shang-Wen Cheng [20,70]), the development of resource-aware applications (see for 
instance work by Rajesh Balan [8,9]), as well as in other areas such as context-aware systems 
and natural human-computer interfaces (e.g., language, vision, and gesture). 

Focusing on the future development of the work herein, I envision extending the architectural 
framework towards supporting more complex user tasks, and towards clarifying the software 
engineering requirements for applications as service suppliers in this framework. 

Specifically, I envision research on extending the role of the infrastructure for mediating the 
delegation of tasks, on scoping the computing environment, on task-aware proactive suppliers, 
on offering guidance on complex tasks, and on learning complex task models.  The following 
subsections elaborate on each of these topics, in turn. 

Delegation 

The problem that we addressed in this dissertation can be characterized as automatically creating 
the conditions for a task to be carried out, on demand.  By creating the conditions we mean 
activating a coordinated set of services in a computing environment, for which suppliers need to 
be identified and configured.  The entity creating those conditions we called “ infrastructure for 
task management,”  or task management system.  

In this dissertation, just like in traditional desktop management systems, humans appear 
exclusively as users of the system.  Users define tasks with the task management system, request 
tasks to be suspended and resumed, and the role of users in the tasks is not characterized further. 

Taking a richer view of daily activity, humans frequently delegate parts of tasks to other 
humans.  For instance, suppose that a user, Fred, needs to prepare a presentation.  For that, Fred 
may edit the slides, and refer to a couple of papers on the topic.  Now suppose that some of the 
papers Fred is interested in are available only as archived hardcopies.  Creating the conditions 
for Fred’s task requires physically getting the hardcopies from the archive:  maybe Fred can get 
them, maybe Fred’s assistant, or maybe the office robot.  In our framework, this corresponds to 
considering humans as candidate suppliers for the service of getting the paper hardcopies from 
the archive.  Which supplier gets assigned to the service may depend on properties such as 
proximity, availability, and willingness, if known. 

But if humans are to participate in tasks as service suppliers, the infrastructure must have the 
mechanisms to guide and monitor that participation.  Although from a high-level perspective in 
task management, guiding humans is akin to configuring an automated supplier, it is sure to pose 
a new set of problems.  A task management system can activate and configure a piece of 
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software by using its API; but how can it “activate”  and “configure”  a human supplier?  Maybe 
Fred’s assistant is amenable to getting the hardcopies if asked to do so via an appropriate 
notification, but how can the task management system monitor whether Fred’s assistant is 
working on that, or has forgotten about it?27 

The challenge becomes developing a single framework that successfully combines the ability to 
guide humans as participants in tasks, with the ability to automatically configure computing 
environments for those same tasks.  Guiding human participation in tasks has been addressed in 
other areas, such as business process modeling and generic task modeling systems (e.g., 
[36,81,100]).  However, in that research, the responsibility of acting on the environment to 
create the conditions for those tasks was also left to humans. 

And if humans can both play the role of user of a task management system and participate in a 
task as a service supplier, could an automated “agent”  transcend the role of service supplier and 
become a user too?  In other words, can an automated “agent”  request the task management 
system to define, suspend and resume a task?  And if the task requires human intervention, can 
we think in terms of the infrastructure delegating a task to a human? 

Dedicated systems, often embedded, do that today: for instance, door bells, fire alarms, etc. A 
part of the system is charged with the task of continuously monitoring a particular situation, and 
upon detection triggers a new task, normally involving human participation.  In the door bell 
example, upon detection of a visitor, some notification is issued to a human, who then proceeds 
to open the door.  Although trivial, this example illustrates the triggering of a task by an 
automated agent.  The triggered task may involve a combination of automated suppliers, e.g. for 
the bell notification service, and humans, e.g. for getting the door. 

Extending task management to facilitate delegation of tasks, whether the originator of tasks is a 
human or an automated “agent,”  is an important and hard problem.  Task delegation is prevalent 
in human organizations, and having automated support to facilitate and control task delegation 
can play an important role in reducing the overhead for users and improving overall productivity 
and accountability. 

Scoping the Environment 

When addressing the problem of automatically creating the conditions for a task to be carried 
out, an important matter is how far to search for service suppliers; or in other words, what the 
limits of the computing environment are. 

In this dissertation we assumed that an environment’s borders are set administratively, much like 
the borders of local network domains are set today:  when an Environment Manager searches for 
candidate suppliers for a given service, it restricts the search to its administratively set domain.  
Internet searches stand in stark contrast: any search is a global search, although web search 
engines impose their own search heuristics.  DNS (Domain Naming Service – the internet 

                                                       

27 The completion of tasks and flow between related tasks is a separate idea, and is discussed in the 
subsection on Guidance on Tasks. 
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service that translates domain names into IP addresses) takes a hierarchical approach: when a 
local server cannot perform a translation, it asks the upper level, and so forth.  

However, it is not clear that such a hierarchical approach is well suited for supplier searching in 
the context of task management.  In fact, there is a tension between organizing searches 
according to supply-side priorities (organizational or geographic boundaries), and organizing 
searches according to demand-side priorities (what is important to each user). 

Specifically, mobile users may prefer to concentrate on suppliers that are familiar, or accessible 
to them, and for that, searches may need to work seamlessly across administratively set 
boundaries.  For example, a user working at a coffee shop and looking for a printing service may 
want to consider a printer at the office, where the hardcopies will be needed in the morning, even 
though there are no organizational links between the two locations. 

However, although the demand-side priorities may help directing the search to suppliers that 
users will consider attractive, one cannot expect users to have full knowledge of the possibilities 
available to them.  Therefore, searches also need to consider supply-side knowledge about 
suppliers that may be attractive to the user, whether or not he knows about them. 

Scoping the search for suppliers is an increasingly important problem for mobile users, since the 
availability of commodity computing is becoming more prevalent.  To address this problem, we 
need to develop a framework that successfully integrates both demand-side (user) priorities and 
supply-side (environment) information. 

Proactive Suppliers 

Another matter that comes up when addressing the problem of automatically creating the 
conditions for a task to be carried out is how readily available are the services that users need.  
This matter gains more relevance when the services go beyond manipulating software 
components to actuate on physical properties in the environment surrounding users. 

In the architectural framework presented in this dissertation, service suppliers are essentially 
passive.  Suppliers wait to be activated by the Environment Manager, and after that they accept 
information from the Task Manager about the user-perceived state to be set and preferences with 
respect to quality of service.  This approach is adequate when the services can be set up quickly, 
as was the case for the software applications we worked with in the office environment. 

However, how fast a service can be set up may become an issue, for instance, for services where 
the user-perceived state includes physical properties, such as the temperature of a cup of coffee.  
In the approach that we took so far, an Environment Manager may factor in the warm up time of 
alternative suppliers when finding the best match for the user’s needs (see Chapter 3, Supplier 
Preferences).  Nevertheless, there is no assurance that in the end the user will be getting the best 
service, compared to an alternative where the warm up delay could be eliminated. 

An alternative approach would be for suppliers to proactively obtain information about 
prospective services and to prepare for those.  Suppliers may ask the Task Manager what are 
likely requests in the near future, or they can use internal mechanisms to anticipate future 
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requests: for instance, history-based detection of patterns of usage.  Suppliers may then prepare 
in advance for the anticipated demand and publicize the availability of the customized service. 

However, preparing in advance may carry a risk for suppliers: resources may be wasted if the 
demand doesn’ t come forth, or suppliers may miss the target if the demand that comes forth is 
significantly different than anticipated.  Resources in computing environments are increasingly 
abundant and wasting may not be an issue, especially for resources that get wasted anyway if not 
used, as is the case for CPU cycles.  As far as energy, warming up a cup of coffee may be 
inconsequential if the user ends up not drinking it, but warming up a whole house in anticipation 
of people coming home at a certain time may become an issue if they come in later, or not at all. 

Furthermore, proactive suppliers may pose unwanted overhead on users.  Even well-meant 
efforts of proactive suppliers may hinder more than help users, if the users’  goals are 
misunderstood and the suppliers’  actions have perceivable effects in the environment. 

Balancing the advantages and risks of proactive suppliers is a hard problem that is likely to 
require sophisticated mechanisms both to anticipate user needs and to guard against taking 
action when there is a risk of being more harmful than helpful. 

Guidance on Tasks 

In addition to automatically creating the conditions for a task to be carried out, another important 
problem to be addressed by task management systems is offering guidance on which tasks to 
carry out.  Such guidance takes two basic forms: either passive guidance, where users take the 
initiative to consult the task management system, or active guidance, where the task 
management system takes the initiative to resume or suspend tasks without the direct 
intervention of humans. 

In this dissertation we adopted a simple model of tasks, where there is very restricted 
information about the chaining of tasks, about the association of tasks with particular physical 
contexts, or about the timing of tasks.  Although task models include links for related tasks, the 
mechanisms on top of that targeted task browsing and not offering guidance on which tasks 
should be worked on.  The Dashboard presented in Chapter 5, Tasks at a Glance, advises on the 
feasibility of tasks in the current environment, and we discussed how it could restrict the view to 
tasks enabled at a particular location, but again there is no base for inferring which tasks should 
be favored in a particular context.  Finally, the information about a task kept timestamps for the 
creation and due date, but again the mechanisms on top of that targeted task browsing and not 
offering guidance based on timing constraints. 

Tasks frequently have interdependencies such as causality (if task A is carried out, task B should 
also be carried out) and ordering.  A significant body of work addresses complex models of 
tasks, and a frequent way of modeling complex tasks is task decomposition: carrying out task C 
really corresponds to carrying out tasks A and B – as far as the problem of creating the 
conditions to carry out a task is concerned, only the tasks that stand as leafs in a decomposition 
need to be addressed.  Commonly, this work takes a prescriptive view of tasks, which is 
adequate to guide automated “agents”  in carrying out complex tasks [82,88], or, although 
prescriptive, the models are meant to be interpreted only by humans [36,100]. 
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However, the way humans carry out tasks is often haphazard, riddled with interleaving, and 
heavily influenced by physical and social context.  The human brain is trained in extracting the 
important rules from a model and adapting task execution to changing circumstances, or simply 
to its whims.  Even a technician doing something as structured as a biology experiment in a lab 
may interleave several experiments, doing manual operations for one while waiting for some 
equipment to produce results for another; he may change the usual procedure if he thinks of an 
alternative way of achieving the desired goals [6]; or he may drop what he is doing at a loss of 
the results, if a higher priority request comes in. 

The challenge becomes to successfully combine human goals and behavior with the automated 
actions of a task management system.  It is risky to offer unsolicited guidance: on one hand, the 
task of responding to a fire situation should be started the moment a fire is detected; on the other 
hand, upon detection that the house cat ran out of food, the task of refilling the cat feeder can 
wait until someone is nearby the cat food, or until enough time has gone by for that to become a 
problem.  Even in restricted areas in the office domain, offering unsolicited guidance is 
notoriously hard, as efforts like Microsoft’s Clippy demonstrated [44]. 

Rather than having a one-size-fits-all approach to guidance on tasks, users should be able to 
decide on which tasks28 guidance should be offered, and which to be let freeform.  Furthermore, 
users should be able to determine levels of guidance, such as: provide active guidance (that is, let 
the task management system take the initiative to start or stop tasks automatically), issue an 
unsolicited reminder, issue a reminder only if the user takes no action after some time, issue a 
reminder only if asked for clarification, etc. 

Learning Task Models 

Bearing in mind the goal of reducing user overhead in the context of task management, an 
important aspect is the overhead associated with defining task models.  This aspect gains more 
importance the more complex the task models become; for instance, when task models aim at 
capturing enough knowledge to offer guidance during complex tasks.  And since task definitions 
evolve as work progresses, work on this aspect must focus both on the initial definition and on 
incremental updates. 

In this dissertation, the task management system relied on users to explicitly define their tasks 
and preferences; and we discussed a quantitative model of the overhead associated with defining 
the set of services and materials in a task in Chapter 6, Reducing the Overhead. 

Previous work targeted learning models of tasks by observation (e.g., [4,80,98]), but it is very 
hard to learn task models by observing the natural behavior of users (see discussion in the 

                                                       

28  Taking the perspective of task decomposition, offering guidance on a complex task corresponds to 
guiding a user through the decomposition steps.  Taking the perspective of flow at the level of the leafs 
(the ones that matter for the automatic configuration of the environment) guidance is with respect to 
the transitions between tasks: when one gets done, what should the user work on next. 
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subsection Guidance on Tasks, above).  A more promising approach relies on a training phase, 
where users walk the system through tasks, in a similar way they would for a novice person. 

There seem to be advantages in making training explicit.  By making it easier for the system to 
learn task models, and to separate what belongs to each task, the system can do a better job at 
automatically creating the conditions for those tasks later on.  By making it clear for users when 
the system is being trained (a) it builds a foundation of shared assumptions, (b) it calibrates the 
expectations of users, and (c) it makes it possible to distinguish exceptional situations that are 
unlikely to be repeated from deliberate incremental updates to the task definition. 

But if training is to be made explicit, the next question is what training metaphor to use.  The 
overhead of training is likely to be less significant the closer the interactions for training the 
system are to the natural interactions for carrying out the tasks.  For instance, in the desktop 
paradigm covered in this dissertation, it is natural to drag and drop files into a task definition 
window, since that’s the kind of interaction familiar to users in the office domain.  However, for 
tasks carried out using the instruments in a biology lab, or using artifacts in a home, it may be 
awkward to present an interface for defining tasks that follows the same interaction metaphors as 
the one for the office domain. 

The research challenge is to develop a framework for learning task models that accommodates 
appropriate metaphors for a range of domains, that makes it easy for users to train the system, 
and that delivers incremental benefits for incremental effort. 

Epilogue 

The research underlying this dissertation used extensively basic principles and techniques from 
software architecture and formal specification.  We used a variant of context-free grammars to 
specify the syntax of task models, and utility-theoretic models to specify its semantics (Chapter 
3).  We used layered and component-connector models to lay out the software architecture of the 
infrastructure for task management.  We used event-sequence diagrams and FSP to specify the 
interactions between the components of the infrastructure, and Zed to specify the state changes 
in those components as a result of the interactions.  We used math again to specify how to find 
the best match between user needs and environment capabilities (Chapter 4, [85]).  Finally, we 
used a quantitative model for the cost-benefit analysis of using the infrastructure (Chapter 6). 

Although that is not reflected in the thesis statement or its validation, the contribution of those 
basic principles and techniques for this research is reflected in the soundness of the research 
results and in the usefulness of the contributions. 

A specific principle being investigated in software architecture, and extensively used in this 
dissertation, is an utility-theoretic approach to designing the programming interfaces (APIs) of 
software components.  Traditionally, components would deterministically provide a set of 
outputs given a set of inputs; any deviation to the expected outputs would signify that an error 
occurred.  With the popularization of applications streaming media over networks, it became 
obvious that the quality of output varies with factors uncorrelated with the inputs, namely with 
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the available resources.  Database queries in mobile environments became another arena for 
experimenting with this principle: depending on the available resources, which may include how 
long the user is willing to wait, the reply will be more or less complete, or accurate.  For 
instance, if asking for a maximum value, the reply may be only approximate if not all records 
could be scanned. 

In this dissertation, the interactions with service suppliers take root in utility-theoretic principles:  
service suppliers announce the achievable levels of quality of service (possibly multi-
dimensional) as a function of available resources; and choosing one supplier over another is 
based on the forecasted quality of service for the current conditions. 

This dissertation contributes with a data point for the applicability and usefulness of both the 
basic principles and the specific utility-theoretic approach to designing software components.  
The long-term validation of the research results herein will confirm the validity of this data 
point. 



References 

1. G. Abowd, A. Bobick, I. Essa, E. Mynatt, W. Rogers: The Aware Home: Developing Technologies for Successful 
Aging. Proc. of AAAI Workshop on Automation as a Care Giver, Alberta, Canada, July 2002. 

2. G. Abowd, E. Mynatt: Charting Past, Present and Future Research in Ubiquitous Computing. ACM Transactions 
on Computer-Human Interaction, Vol. 7:1, pp 29-58, March 2000. 

3. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley: The design and implementation of an intentional 
naming system.  Proc. of the 17th Symposium on Operating System Principles. Kiawah-Island Resort, North 
Carolina, December 1999. 

4. D. Albrecht, I. Zukerman, A. Nicholson, A. Bud:  Towards a Bayesian model for keyhole plan recognition in large 
domains.  Proc. 6th Int. Conference on User Modeling (UM '97), pp 365-376. Wien, Jameson, Paris and Tasso 
(Eds.) Springer, New York, 1997. 

5. K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, A. Wollrath:  The Jini Specification. Addison-Wesley, 1999.  
See also http://www.sun.com/software/jini/ 

6. L. Arnstein, S. Sigurdsson, R. Franza: Ubiquitous Computing in the Biology Laboratory, Journal of Lab 
Automation (JALA).  Vol. 6:1, March 2001. 

7. S. Baker, T. Kanade: Hallucinating faces. Proc. of the Fourth International Conference on Automatic Face- and 
Gesture-Recognition, Grenoble, France, March 2000. 

8. R. Balan, M. Satyanarayanan, S. Park, T. Okoshi: Tactics-Based Remote Execution for Mobile Computing. Proc. 
of the 1st International Conference on Mobile Systems, Applications, and Services (MobiSys’03), pp 273-286, San 
Francisco, May 2003. 

9. R. Balan, J.P. Sousa, M. Satyanarayanan: Meeting the Software Engineering Challenges of Adaptive Mobile 
Applications. Carnegie Mellon University Technical Report CMU-CS-03-11, 2003. 

10. R. Balan, J.P. Sousa, V. Poladian, M. Satyanarayanan: Guiding Adaptation through User-Specified Tradeoffs. 
Submitted for publication. 

11. L. Bannon, A. Cypher, S. Greenspan, M. Monty: Evaluation and analysis of user’s activity organization. Proc. of 
CHI’83, pp 54-57, ACM, New York, 1983. 

12. A. Berson. Client/Server Architecture. McGraw Hill, 1996. 

13. K. Bharat L. Cardelli. Migratory applications. Proceedings of the 8th Annual ACM Symposium on User Interface 
Software and Technology, Pittsburgh, Pa., November 1995. 

14. T. Bourke. Server Load Balancing. O’ Reilly, 2001. 

15. B. Brumitt, et al.: EasyLiving: Technologies for Intelligent Environments.  Proc. 2nd Int’ l Symposium on 
Handheld and Ubiquitous Computing (HUC2000). LNCS 1927 pp 12-29. Gellersen, Thomas (Eds.), Springer-
Verlag, September 2000 



106 

16. P. Brusilovsky.  Adaptive Hypermedia, User Modeling and User Adapted Interaction, Ten Year Anniversary 
Issue, Kobsa (Ed.), Vol. 11:1/2 , pp. 87-110, Kluwer Academic Publishers, 2001. 

17. J. Burrell, G. Gay, K. Kubo, N. Farina. Context-Aware Computing: a Test Case.  UbiComp 2002: Ubiquitous 
Computing, Proceedings of the 4th International Conference, Borriello and Holmquist (Eds.), LNCS 2498, pp 1-
15, Göteborg, Sweden, September 2002. 

18. S. Card, A. Henderson Jr.: A multiple, virtual workspace interface to support user task switching. Proc. of 
CHI+GI'87, pp 53-59, ACM. New York, 1987. 

19. S. Card, T. Moran, A. Newell: The Psychology of Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum 
Associates, 1983. 

20. S. Cheng, A. Huang, D. Garlan, B. Schmerl, P. Steenkiste: Rainbow: Architecture-Based Self Adaptation with 
Reusable Infrastructure, IEEE Computer Vol. 37:10, October 2004. 

21. H. Christensen, J. Bardram.  Supporting Human Activities – Exploring Activity-Centered Computing.  Proc. of 
the 4th International Conference on Ubiquitous Computing (UbiComp 2002), Borriello and Holmquist (Eds.), 
LNCS 2498, pp 107-116, Göteborg, Sweden, September 2002. 

22. COM: Component Object Model Technologies, Microsoft. http://www.microsoft.com/com. 

23. CORBA: Common Object Request Broker Architecture, Object Management Group. http://www.corba.org/ 

24. F. Cristian: Understanding Fault-Tolerant Distributed Systems. Communications of the ACM, Vol. 34:2, pp 56-78, 
ACM, 1991. 

25. M. Czerwinski, E. Horvitz, S. Wilhite: A diary study of task switching and interruptions, Proc. of the 2004 
Conference on Human Factors in Computing Systems, p.175-182, April 24-29, 2004, Vienna, Austria 

26. The DAML Services Coalition (multiple authors): DAML-S: Web Service Description for the Semantic Web, 
Proc. Int’ l Semantic Web Conference (ISWC), 2002.  See also http://www.daml.org/. 

27. E. Dashofy, D. Garlan, A. Koek, B. Schmerl:  xArch: an XML Standard for Representing Software Architectures. 
http://www.isr.uci.edu/architecture/xarch/ 

28. Deskman Desktop Manager http://www.microsoft.com/windowsxp/downloads/powertoys/xppowertoys.mspx. 

29. D. Doubleday, M. Barbacci. Durra: A Task Description Language User’s Manual.  Software Engineering Institute 
Technical Report CMU/SEI-92-TR-36, http://www.sei.cmu.edu/publications/documents/doc.list/1992.htm, 
December 1992. 

30. J. Flinn, E. de Lara, et al.: Reducing the Energy Usage of Office Applications. Proc. IFIP/ACM International 
Conference on Distributed Systems Platforms (Middleware), 2001. 

31. J. Flinn, D. Narayanan, M. Satyanarayanan.  Self-Tuned Remote Execution for Pervasive Computing.  
Procceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), Schloss Elmau, Germany, 
May 2001. 

32. Flinn, J., Sinnamohideen, S., Tolia, N., Satyanarayanan, M. Data Staging on Untrusted Surrogates. Proceedings of 
the 2nd USENIX Conference on File and Storage Technologies, pp 15-28, San Francisco, CA, 2003. 

33. K. Gajos. Rascal: a Resource Manager for Multi Agent Systems In Smart Spaces. Proceedings of The Second 
International Workshop of Central and Eastern Europe on Multi-Agent Systems (CEEMAS 2001), Kraków, 
Poland, 2001. 

34. D. Garlan, R. Monroe, D. Wile. Acme: Architectural Description of Component-Based Systems.  Foundations of 
Component-Based Systems, Leavens and Sitaraman (Eds.), Cambridge University Press, pp 47-68, 2000. 

35. D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste: Project Aura: Toward Distraction-Free Pervasive 
Computing.  IEEE Pervasive Computing, April-June 2002. 

36. D. Georgakopoulos, M. Hornick, A. Sheth: An Overview of Workflow Management: From Process Modelling to 
Workflow Automation Infrastructure, Journal of Distributed and Parallel Databases, Vol. 3:2, 1995. 

37. I. Georgiadis, J. Magee, J. Kramer. Self-Organising Software Architectures for Distributed Systems. Proc. ACM 
SIGSOFT Wksp on Self-Healing Sys. (WOSS’02). Nov. 2002. 

38. The GNU Emacs text editor (multiple authors). http://www.gnu.org/software/emacs/emacs.html. 

39. Google Desktop Search. http://desktop.google.com/ 

40. R. Grimm, T. Anderson, B. Bershad, D. Wetherall. A system architecture for pervasive computing. Proceedings of 
the 9th ACM SIGOPS European Workshop, pp 177-182, Kolding, Denmark, September 2000. 



  Chapter 8. Conclusion and Future Work 

  107 

41. A. Harter, A. Hoper, P. Steggles, A. Ward, P. Webster. The Anatomy of a Context-Aware Application. 
Proceedings of the Fifth ACM/IEEE International Conference on Mobile Computing and Networking, pp 59-68, 
Seattle, Washington, August 1999. 

42. J. Hightower, G. Borriello.  Location Systems for Ubiquitous Computing. Computer Vol. 34:8, pp 57-66, 2001. 

43. M. Hiltunen, R. Schlichting: Adaptive Distributed and Fault-Tolerant Systems, International Journal of Computer 
Systems Science and Engineering, 11(5):125-133, September, 1996. 

44. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, K. Rommelse. The Lumiere project: Bayesian user modeling for 
inferring the goals and needs of software users.  Proceedings of the Fourteenth Conference on Uncertainty in 
Artificial Intelligence, pp 256-265, Madison, Wisconsin, 1998. 

45. International Standards Organization (ISO) Extended Backus-Naur Form, ISO/IEC 14977:1996(E), www.iso.org. 

46. S. Intille: Designing a home of the future. IEEE Pervasive Computing, vol. April-June, pp. 76-82, 2002. 

47. R. Jacob: A Specification Language for Direct Manipulation Interfaces. ACM Transactions on Graphics, Vol. 5:4, 
pp 283-317, ACM, 1986. 

48. Jones, M., Rosu, D., Rosu, M.: CPU Reservations and Time Constraints: Efficient, Predictable Scheduling of 
Independent Activities. Proc ACM Symp Operating Systems Principles (SOSP), 1997. 

49. G. Judd, P. Steenkiste. Providing Contextual Information to Pervasive Computing Applications. Proc. IEEE 
International Conference on Pervasive Computing (PERCOM), Dallas, 2003. 

50. The K Desktop Environment. http://www.kde.org/ 

51. H. Kautz, L. Arnstein, G. Borriello, O. Etzioni, D. Fox: An Overview of the Assisted Cognition Project, AAAI-
2002 Workshop on Automation as Caregiver: The Role of Intelligent Technology in Elder Care, 
http://www.cs.washington.edu/homes/kautz/papers/. 

52. A. Kobsa: Generic User Modeling Systems. User Modeling and User Adapted Interaction, Ten Year Anniversary 
Issue, Kobsa (Ed.), 11 (1/2), pp. 49-63, Kluwer Academic Publishers, 2001. 

53. F. Kon, et al.: Dynamic Resource Management and Automatic Configuration of Distributed Component Systems. 
Proc. USENIX Conference on OO Technologies and Systems (COOTS), 2001. 

54. M. Kozuch, M. Satyanarayanan:  Internet Suspend/Resume.  Presented at the Fourth IEEE Workshop on Mobile 
Computing Systems and Applications, Calicoon, NY.  Available as Intel Research Report IRP-TR-02-01, Jun. 1, 
2002. 

55. E. de Lara, D. Wallach, W. Zwaenepoel: Puppeteer: Component-based Adaptation for Mobile Computing. Proc. 
3rd USENIX Symposium on Internet Technologies and Systems (USITS), 2001. 

56. C. Lee et al.: A Scalable Solution to the Multi-Resource QoS Problem. Proc. IEEE Real-Time Systems Symposium 
(RTSS), 1999. 

57. B. MacIntyre, E. Mynatt, S. Voida, K.Hansen, J. Tullio, G. Corso.  Support For Multitasking and Background 
Awareness Using Interactive Peripheral Displays.  Proc. ACM User Interface Software and Technology 
(UIST’01), Orlando, Florida, November 2001. 

58. The MacUpdate Desktop Manager. http://www.macupdate.com/info.php/id/12682 

59. J. Magee, J. Kramer. Concurrency, State Models & Java Programs.  J. Wiley & Sons, 1999. 

60. B. Myers, S. Hudson, R. Paush: Past, Present and Future of User Interface Software Tools. ACM Transactions on 
Computer-Human Interaction (TOCHI) Vol. 7:1, pp 3-28, ACM Press, March 2000. 

61. B. Myers, D. Smith, B. Horn: Report on the ‘End-User Programming’ Working Group.  Languages for Develop-
ing User Interfaces. Jones and Barlet (Eds.), Boston, MA, 1992. 

62. D. Narayanan, J. Flinn, M. Satyanarayanan: Using History to Improve Mobile Application Adaptation. Proc. 3rd 
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), 2000. 

63. Neugebauer, R., McAuley, D.: Congestion Prices as Feedback Signals: An Approach to QoS Management. Proc 
ACM SIGOPS European Workshop, 2000. 

64. B. Noble, et al.: Agile Application-Aware Adaptation for Mobility. Proc of the 16th ACM Symp on Operating 
Systems Principles (SOSP’97), October 1997. Operating Systems Review 31(5), ACM Press, 276-287. 

65. M. Paolucci, O. Shehory, K. Sycara, D. Kalp, A. Pannu. A Planning Component for RETSINA Agents. Lecture 
Notes in Artificial Intelligence, Intelligent Agents VI. M. Wooldridge and Y. Lesperance (Eds.) 1999. 

66. PC Anywhere. http://www.symantec.com/pcanywhere/Consumer/index.html 

67. T. Phan, K. Xu, R. Guy, R. Bagrodia. Handoff of application sessions across time and space. Proceedings of the 
IEEE International Conference on Communications (ICC 2001), June 2001. 



108 

68. R. Picard, Affective Computing. MIT Press, Cambridge, Massachusetts. 1997. 

69. D. Pisinger: An exact algorithm for large multiple knapsack problems. European Journal of Operational 
Research, 114, (1999). 

70. V. Poladian, J.P. Sousa, D. Garlan, M. Shaw: Dynamic Configuration of Resource-Aware Services. Proceedings 
of the 26th International Conference on Software Engineering - ICSE 2004, IEEE Computer Society, pp. 604-613,  
Edinburgh, UK,  May 2004. 

71. S. Ponnekanti, B. Lee, A. Fox, P. Hanranhan. ICrafter: A Service Framework for Ubiquitous Computing 
Environments. UbiComp 2001: Ubiquitous Computing, Proceedings of the 3rd International Conference, Abowd, 
Brumitt and Shafer (Eds.), LNCS 2201, pp 56-75, Atlanta, Georgia, September 2001. 

72. The Radar Project at Carnegie Mellon University. http://www.radar.cs.cmu.edu/external.asp 

73. R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek. Practical Solutions for QoS-Based Resource Allocations. 
Proceedings of the 19 th IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998. 

74. T. Richardson, F. Bennett, G. Mapp, A. Hopper. Teleporting in an X Window System Environment. IEEE 
Personal Communications Magazine, 1(3), pp 6-12, 1994. 

75. M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, K. Nahrstedt. Gaia: A Middleware 
Infrastructure to Enable Active Spaces.  IEEE Pervasive Computing, pp 74-83, Oct-Dec 2002. 

76. M. Satyanarayanan. Mobile Information Access. IEEE Personal Communications, Vol. 3, No. 1, February 1996. 

77. M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal Communications, pp 10-17, 
Aug 2001. 

78. A. Schmidt et al. Context Acquisition based on Load Sensing.  UbiComp 2002: Ubiquitous Computing, 
Proceedings of the 4th International Conference, Borriello and Holmquist (Eds.), LNCS 2498, pp 333-350, 
Göteborg, Sweden, September 2002. 

79. Service Location Protocol. http://www.ietf.org/html.charters/svrloc-charter.html and also http://www.openslp.org 

80. S. Shearin, H. Lieberman.  Intelligent Profiling by Example.  Proc. International Conference on Intelligent User 
Interfaces (IUI 2001). Sante Fe, New Mexico, January 2001. 

81. D. Siewiorek et al. Adtranz: A Mobile Computing System for Maintenance and Collaboration. Proceedings of the 
2nd IEEE International Symposium on Wearable Computers, pp 25, IEEE Computer Society, 1998. 

82. R. Simmons, D. Apfelbaum. A Task Description Language for Robot Control. Proceedings Conference on 
Intelligent Robotics and Systems, Vancouver Canada, October 1998. 

83. The Smart Medical Home at the University of Rochester. http://www.futurehealth.rochester.edu/smart_home 

84. Smith, G., Baudisch, P. et al. GroupBar: The TaskBar evolved. Proceedings of OZCHI’03, Brisbane, Australia, 
2003. 

85. J.P. Sousa, D. Garlan: The Aura Software Architecture: an Infrastructure for Ubiquitous Computing. Carnegie 
Mellon Univ. Technical Report CMU-CS-03-183, 2003. 

86. Spitznagel, B., Garlan, D. A Compositional Formalization of Connector Wrappers. Proceedings of the 2003 
International Conference on Software Engineering (ICSE'03), Portland, Oregon, USA, May 3 - 10, 2003. 

87. J. Spivey: The Z Notation: A Reference Manual. Prentice Hall International Series in Computer Science, Prentice-
Hall, 1992. 

88. K. Sycara, M. Paolucci, M. van Velsen, J. Giampapa. The RETSINA MAS Infrastructure. Joint issue of 
Autonomous Agents and MAS, Vol. 7, Nos. 1 and 2, July, 2003. 

89. P. Tandler.  Software Infrastructure for Ubiquitous Computing Environments: Supporting Synchronous 
Collaboration with Heterogeneous Devices.  UbiComp 2001: Ubiquitous Computing, Proceedings of the 3rd 
International Conference, Abowd, Brumitt and Shafer (Eds.), LNCS 2201, pp 96-115, Atlanta, Georgia, 
September 2001. 

90. L. Terveen, L. Murray. Helping users program their personal agents. Proc. of the 1996 Conference on Human 
Factors in Computing Systems, CHI’96. Vancouver, Canada, April 1996. 

91. J. Trevor, D. Hilbert, B. Schilit:  Issues in Personalizing Shared Ubiquitous Devices.  Proc. of the 4th 
International Conference Ubiquitous Computing (UbiComp 2002), Borriello and Holmquist (Eds.), LNCS 2498, 
pp 56-72, Göteborg, Sweden, September 2002. 

92. The Universal Description, Discovery and Integration protocol (UDDI). http://www.uddi.org/ 

93. The Vim text editor. http://www.vim.org/. 



  Chapter 8. Conclusion and Future Work 

  109 

94. Z. Wang, D. Garlan. Task Driven Computing. Carnegie Mellon University Technical Report CMU-CS-00-154, 
http://reports-archive.adm.cs.cmu.edu/cs2000.html, May 2000. 

95. R. Want, A. Hopper, V. Falcão, J. Gibbons. The Active-Badge Location System. ACM Transactions on 
Information Systems, Vol. 10:1, pp 91-102, ACM, 1992. 

96. A. Wasserman, D. Shewmake: Rapid Prototyping of Interactive Information Systems. ACM Software Engineering 
Notes, Vol. 7:5, pp 171-180, ACM, 1982. 

97. The Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl  

98. D. Weld, Recent Advances in AI Planning.  AI Magazine, 20(2), pp 93–123, 1999. 

99. J. Whittaker, M. Thomason. Markov Analysis of Software Specifications. ACM Transactions on Software 
Engineering and Methodology. 2(1) pp 93-106, 1993. 

100. A. Wise, “Little-JIL 1.0 Language Report,”  Department of Computer Science, University of Massachusetts at 
Amherst, Technical Report 98-24, April 1998. 



Appendix A 

This appendix complements Chapter 4 by specifying the protocols of interaction between Prism 
and the EM, between Prism and Suppliers, and between the EM and Suppliers – and how those 
interactions affect the state kept by the EM.  This specification plays an important role in making 
sure that they are deadlock free, and also in verifying liveness conditions, such as the ability to 
recover from faults.  Additionally, these models proved a precious tool during the low-level 
design and implementation of the infrastructure. 

Prism – EM Protocol 

The interaction between Prism and the EM is structured around the notion of task session.  A 
session is created for each task that Prism needs to evaluate the feasibility in the current 
environment.  To evaluate the feasibility of a task, Prism issues budget requests for each 
alterative configuration of services.  If and when the user decides to resume a task, Prism issues 
a setup request. 

Prism initiates a session for task t whenever the user starts working on task t, and closes the 
session whenever the user interrupts or finishes working on that task.  Figure 4.2 shows an event 
sequence diagram that illustrates a typical task session.29  Prism starts a task session by sending 
the EM a newTask message.  The EM reply, cr eat edTask, includes an id for the task session 
that will be attached to the exchanged messages throughout the session.  Note that many sessions 
between Prism and the EM may be active concurrently, for one or more users.  The session is 
terminated by a di sband message issued by Prism, to which the EM replies with a t askGone 
message. 

                                                       

29  The interactions between the EM and Suppliers are elided for simplicity: see the section on the 
Protocol EM – Suppliers. 
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Once a session is started, Prism obtains estimates for the utility that the environment can offer 
for the user’s task by sending budget  messages to the EM.  Since there may be alternative 
configurations of services to support a given task, Prism will send one budget  message for each 
of those candidate configurations.  For example, for taking notes, either text editing or speech 
recognition services may be used.  To each budget  request, the EM replies with a t askLayout .  
For each service requested within a budget , the t askLayout  indicates the Supplier that best 
matches the request among those currently available in the environment, as well as the Quality 
of Service (QoS) achievable with the current resources.  The t askLayout  also indicates the 
overall utility for the configuration.  A budgeting exchange is also initiated by Prism whenever 
there are changes in the user’s context or intent that justify a reevaluation of alternative 
configurations for the same task. 

After the user requests a task to be resumed, Prism issues the corresponding set up message to 
the EM.  Once the services are set up in the environment (see the section on the Protocol EM – 
Suppliers, below), the EM replies with a t askLayout  containing the up-to-date description of the 
configuration supporting those services.  Note that since there is a time lag between a budget  

and the set up, there may be some differences in what is achievable in the environment.  Ideally, 
the contents of the two corresponding t askLayout  messages will be the same, but Prism must be 
prepared to double check that, and either accept the differences, or if they are too significant, 
look for other alternatives and request a reconfiguration. 

Of course, the capabilities of the environment may change, for better or for worse, during a task 
session.  For example, a Supplier involved in the activated configuration may fail or become 
disconnected; a new Supplier that is a better match for a requested service may become 
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Figure A.1 Event sequence diagram for the communication between Prism and the EM. 
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available; or the resource conditions may change so much, that a different choice of Suppliers 
with distinct resource demands may be preferable.  It is up to the EM to monitor the environment 
and promptly detect such situations.  The EM will then reexamine the best match for the 
requested services, and it will either carry out the reconfiguration autonomously, or issue a 
t askLayout  message to Prism containing a reconfiguration suggestion.  Upon receiving a 
t askLayout , Prism may wish to study other alternatives to support the task, which it can do by 
issuing budget  messages, but it will eventually settle on a reconfiguration and send the 
corresponding set up message. 

Figure A.2 shows the FSP specification for the protocol of interaction between Prism and the 
EM.  The permissible sequence of messages exchanged during a task session is specified by the 
TaskSessi on process.30  After a cr eat edTask, the protocol accepts either a budget  or set up, 
leading to the Answer Req process, a t askLayout  initiated by the EM, or a di sband, leading to 
the Di sbandSess process.  In the case Prism initiates a budget  or set up, the EM is expected to 
reply with a t askLayout  message.  In the case Prism initiates a di sband request, the EM is 
expected to reply with a t askGone confirmation.  In both these cases, if the EM fails to reply, the 
protocol will engage in the noEMr epl y event, leading to the Rest ar t EM process.  Of course, the 
noEMr epl y event does not correspond to a real message, but rather to a timeout within Prism 
leading to a state change in the protocol of interaction.  Similarly, the r eset EM event does not 
correspond to a message, but to Prism activating a mechanism for rebooting the EM.  Notice that 
after a t askGone message, the protocol goes back to the initial state awaiting the start of a new 
session with the cr eat edTask message.31  The Cr eat eSess process states that after a newTask 

                                                       

30  Note that in FSP, the originator of each message (or event, in process-algebra terms) is unspecified, so 
a trace permitted by this specification should be understood as a possible sequence of messages 
observed in the channel between Prism and the EM, with the direction of communication abstracted 
away. 

31  In FSP, processes are not dynamically created and terminated, but rather transition back and forth from 
an active state to an inactive state, where all they can accept is the event corresponding to the 
“creation.”  

TaskSessi on = (  cr eat edTask    - > Mor eTaskReq ) ,  
Mor eTaskReq = (  { budget , set up}  - > Answer Req 
              |  t askLayout      - > Mor eTaskReq     / /  EM' s i ni t i at i ve 
              |  di sband        - > Di sbandSess ) ,  
Answer Req   = (  t askLayout      - > Mor eTaskReq 
              |  noEMr epl y      - > Rest ar t EM ) ,  
Di sbandSess = (  t askGone       - > TaskSessi on 
              |  noEMr epl y      - > Rest ar t EM ) ,  
Rest ar t EM   = (  r eset EM        - > Mor eTaskReq ) .  
 
Cr eat eSess  = (  newTask - > t [ i d: TI d] . cr eat edTask - > Cr eat eTask ) .  
 
| | Pr i smEM   = (  Cr eat eSess 
             | |  f or al l  [ i d: TI d]  t [ i d] : TaskSessi on )  
             /   {  noEMr epl y /  { t [ TI d] } . noEMr epl y,  
                  r eset EM   /  { t [ TI d] } . r eset EM } .  

Figure A.2 FSP specification for the connector Prism-EM. 
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message is initiated by Prism, the EM is expected to reply with a cr eat edTask message 
indicating the id for the session. 

The Prism-EM protocol is given by the parallel composition of the process for creating new 
sessions, Cr eat eSess, and of some arbitrary number of processes of type TaskSessi on.  In the 
FSP specification, this arbitrary number of processes of the same type is achieved by prefixing 
the process (and consequently the events within that process) by a label (t ) and a number (i d, in 
the arbitrary range TI d).  The process Cr eat eSess and each specific t [ i d] . TaskSessi on 
process interact by sharing the event t [ i d] . cr eat edTask – this models a new task session being 
created and named.  Furthermore, all t [ i d] . TaskSessi on processes share the noEMr epl y and 
r eset EM events making sure all task sessions agree on when the EM needs to be restarted.  This 
synchronization in the process model is achieved by relabeling all t [ i d] . noEMr epl y events to a 
single event noEMr epl y, and the same for r eset EM. 

Prism – Suppliers Protocol 

Figure A.3 shows an event sequence diagram that illustrates a typical interaction between Prism 
and a Supplier.  After Prism receives confirmation from the EM that Suppliers have been 
activated to support the user’s task, Prism reconstitutes the user-level state of the task by sending 
a set St at e message to each of the Suppliers.  Examples of user-level state are which files the 
user is working on, as well as user-interaction parameters such as cursors, window size, etc.  
Prism recaptures the updated state from the Suppliers by sending a get St at e message to each, 
and receiving back a st at eSnapshot .  Recapturing the state of the Suppliers is done whenever 
there are changes in the user’s context or intent that hint that the task is about to be suspended.  
It may also be done periodically, to ensure recovery of an almost up-to-date state in the case a 
Supplier fails. 
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. . .  
 

Figure A.3 Event sequence diagram for the communication between Prism and the Suppliers. 

| | Pr i smSuppl i er  = f or al l  [ i d: TI d]  t [ i d] : Set Get St at e.  
Set Get St at e  = (  set St at e - > Set Get St at e 
               |  get St at e - > (  st at eSnapshot  - > Set Get St at e 
                             |  noSuppRepl y   - > Set Get St at e ) ) .  

Figure A.4 FSP specification for the connector Prism-Suppliers. 
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Figure A.4 shows the FSP specification for the protocol of interaction between Prism and the 
Suppliers.  For each task session, the protocol admits any sequence of set St at e and get St at e 
messages, with the proviso that a st at eSnapshot  reply is expected after each get St at e.  
Similarly to the noEMr epl y  event in the Prism-EM connector, noSuppRepl y corresponds to a 
timeout within Prism rather than to an exchanged message.  In this case, however, Prism will not 
take any action to recover/restart the Supplier.  Prism relies on the EM to diagnose and propose 
the replacement of faulty Suppliers.  Therefore, Prism will wait for some indication from the 
EM, or otherwise try to get the state again.  The following section addresses combining these 
two protocols within Prism. 

Prism 

Figure A.5 shows the FSP specification for the behavior of Prism.  That behavior is the parallel 
composition of the process for creating new sessions, I nvokeTask, of an arbitrary number of 
task session interactions with the EM, Task, and of the same number of interactions with 
Suppliers, UseSupp.  The processes I nvokeTask and Task state Prism’s view of the processes 
Cr eat eSess and TaskSessi on, respectively, in the Prism-EM protocols (they are restated here 
for completeness of the specification of Prism’s behavior).  Notice also that, as before, the events 
noEMr epl y and r eset EM are shared among the processes for all task sessions.  

The glue between the two protocols Prism-EM and Prism-Supplier is specified by the UseSupp 
process.  For simplicity, the messages exchanged with all the Suppliers supporting one user’s 
task are modeled as single events.  For instance, the set St at e event corresponds to sending 
set St at e messages to all such Suppliers.  The central rule governing this protocol is that after 

| | Pr i sm     = (  I nvokeTask 
             | |  f or al l  [ i d: TI d]  t [ i d] : Task 
             | |  f or al l  [ i d: TI d]  t [ i d] : UseSupp )  
             /   {  noEMr epl y /  { t [ TI d] } . noEMr epl y,  
                  r eset EM   /  { t [ TI d] } . r eset EM } .  
 
I nvokeTask  = (  newTask - > t [ i d: TI d] . cr eat edTask - > I nvokeTask ) .  
 
Task        = (  cr eat edTask    - > Cr eat edTask ) ,  
Cr eat edTask = (  { budget , set up}  - > Get Layout  
              |  t askLayout      - > Cr eat edTask     / /  EM' s i ni t i at i ve 
              |  di sband        - > Di sbandTask ) ,  
Get Layout    = (  t askLayout      - > Cr eat edTask 
              |  noEMr epl y      - > Rest ar t EM ) ,  
Di sbandTask = (  t askGone       - > Task 
              |  noEMr epl y      - > Rest ar t EM ) ,  
Rest ar t EM   = (  r eset EM        - > Cr eat edTask ) .  
 
UseSupp     = (  set up - > Set St at e 
              |  { t askLayout , noEMr epl y, di sband}   - > UseSupp ) ,  
Set St at e    = (  t askLayout  - > set St at e - > Set Get St at e 
              |  noEMr epl y  - > UseSupp ) ,  
Set Get St at e = (  { set St at e, get St at e, noEMr epl y}  - > Set Get St at e 

Figure A.5 FSP specification for the behavior of Prism. 
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receiving a t askLayout  in response to a set up, the state of the Suppliers must be set.  Therefore, 
initially, the UseSupp process looks for set up events and is permissive to other messages – for 
instance, t askLayout  may occur is response to a budget.  After the set up event, the Set St at e 
process looks for the corresponding t askLayout , after which it issues a set Sat e, or in case the 
EM fails to respond, it resets to UseSupp.  After the initial set St at e, the Set Get St at e process 
allows Prism to issue any number of set St at e and get St at e messages.  However, if a 
t askLayout  is received at this stage, it will correspond to the EM’s initiative to substitute a 
Supplier.  In such a case, Prism must decide whether to keep the supplier or to request a 
replacement by issuing a set up (in UseSupp).  Notice that both keepSupl i er  and 
r epl aceSuppl i er  are local events just for the purpose of modeling Prism’s decision.  
Additionally, as a consequence of a change in user intent, Prism may decide to request a change 
in the configuration by issuing a set up and waiting for the corresponding t askLayout  (in 
Set St at e).  Naturally, disbanding the task session resets the process to its initial state. 

Protocol EM – Suppliers 

Figure A.6 shows an event sequence diagram that illustrates a typical interaction between the 
EM and a Supplier.  After the EM receives a set up request from Prism, it activates the Supplier, 
indicating the bounds on resource consumption, and it attaches the Supplier’s ports as requested 
in the set up message.  Both the act i vat e and at t ach messages are acknowledged by the 
Supplier upon successful completion.  After the supplier is activated, it issues periodic QoS 
reports to the EM.  If the resources in the environment change significantly, the EM may 
establish new resource bounds for the Supplier by sending it an adj ust  message with the new 
bounds.  Eventually, the EM will receive a disband message from Prism and proceeds to 
deactivate the Supplier.  Notice that the EM makes sure the Supplier is up and properly attached 
before returning a t askLayout  to Prism.  Subsequent adjustments to resource bounds and 
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Figure A.6 Event sequence diagram for the communication between the EM and the Suppliers. 
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deactivation are not subject to the same constraint, and therefore, acknowledgments are not 
required. 

Figure A.7 shows the FSP specification for the protocol of interaction between the EM and the 
Suppliers.  For each task session, the protocol is given by the process ManageSupp.  Again, for 
simplicity, a single event models the interaction with all the Suppliers involved in a task session.  
For instance, the event act i vat e models sending messages to all the suppliers to be activated 
for the task session.  To activate a Supplier, the pair act i vat e, followed by ackAct i vat e, must 
be observed.  If the Supplier needs to be attached, the pair at t ach, followed by ackAt t ach, will 
also be observed.  Otherwise, attachment is skipped – in FSP this is modeled by the hidden event 
noAt t ach.  Notice that deactivating a Supplier is accomplished by a single message exchange, 
deact i vat e.  Notice also that the timeout event noSuppl i er Repl y, in case the Supplier fails to 
acknowledge an act i vat e or at t ach, resets the protocol – Section 0 explains how this timeout 
is handled within the EM.  During monitoring, a Supplier issues periodic QoS reports, 
(represented by pQoSr epor t , since FSP events cannot start with a capital letter) and may receive 
an arbitrary number of adjustments to its resource bounds, adj ust .  Note that the protocol allows 
act i vat e events during the monitoring phase.  There are two reasons for this.  The first is that, 
as a consequence of later set up requests, the same Supplier may receive additional activations 
for other services.  The second reason is a feature of the simplification explained above, where 
the communication with all Suppliers for the task session is modeled as a single process: again 
as a consequence of later setup requests, other Suppliers may need to be activated.  Naturally, 
deactivation resets the protocol. 

EM 

The EM plays a central role in intermediating between the user’s needs, for which Prism acts as 
a proxy, and the applications and devices in the environment.  As such, the EM keeps models of 
both the capabilities of the environment, and of the user’s needs, as transmitted by Prism.  In 
addition to the FSP model of the EM’s behavior, this section shows a Z model of the state kept 
by the EM as a result of the interactions with both Prism and the Suppliers.  This state model is 
only as detailed as necessary to clarify the effects of such interactions. 

| | EMSuppl i er  = f or al l  [ i d: TI d]  t [ i d] : ManageSupp.  
 
ManageSupp   = (  act i vat e        - > Act i vat eSupp 
               |  deact i vat e      - > ManageSupp ) ,  
Act i vat eSupp = (  ackAct i vat e     - > At t achSupp 
               |  noSuppl i er Repl y - > ManageSupp ) ,  
At t achSupp   = (  at t ach   - > (  ackAt t ach       - > Moni t or Supp 
                             |  noSuppl i er Repl y - > ManageSupp )  
               |  noAt t ach                      - > Moni t or Supp ) ,  
Moni t or Supp  = (  pQoSr epor t  - > Moni t or Supp 
               |  adj ust      - > Moni t or Supp 
               |  act i vat e   - > Act i vat eSupp      / /  ot her  Ser vi ces 
               |  deact i vat e - > ManageSupp )  
              \  { noAt t ach} .  

Figure A.7 FSP specification for the connector EM-Suppliers. 
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Figure A.8 shows the FSP specification for the behavior of the EM.  That behavior is the parallel 
composition of the process for creating task models, Cr eat eTaskModel , of an arbitrary number 
of processes to update as many task models, Updat eTaskModel , and of the same number of 
processes to manage the corresponding configuration of Suppliers in the environment, 
ManageEnv.  The processes Cr eat eTaskModel  and Updat eTaskModel  state the EM’s view of the 
processes Cr eat eSess and TaskSessi on, respectively, in the Prism-EM protocols (they are 
restated here for completeness of the specification of EM’s behavior).  Notice that the 
noEMr epl y event is not seen by the EM since it corresponds to a timeout within Prism.  Notice 
also that the observation of the event mi ssQoSr epor t s prompts the EM to issue a t askLayout  
with a reconfiguration suggestion to Prism (more on this below). 

The glue between the two protocols Prism-EM and EM-Supplier is specified by the ManageEnv 
process.  As before, for simplicity, the messages exchanged with all the Suppliers supporting one 
task are modeled as single events.  For instance, the act i vat e event corresponds to sending 
act i vat e messages to all such Suppliers.  The implementation of the EM can use standard 

| | EM = (  Cr eat eTaskModel  
      | |  f or al l  [ i d: TI d]  t [ i d] : Updat eTaskModel  
      | |  f or al l  [ i d: TI d]  t [ i d] : ManageEnv )  
      /   {  r eset EM /  { t [ TI d] } . r eset EM } .  
 
Cr eat eTaskModel   = (  newTask - > t [ i d: TI d] . cr eat edTask - > Cr eat eTaskModel ) .  
 
Updat eTaskModel   = (  cr eat edTask       - > Cr eat edTaskModel  ) ,  
Cr eat edTaskModel  = (  { budget , set up}     - > I ssueLayout  
                   |  mi ssQoSRepor t s    - > I ssueLayout       / /  EM 
i ni t i at i ve 
                   |  r eset EM           - > Cr eat edTaskModel  
                   |  di sband           - > RemoveTaskModel  ) ,  
I ssueLayout       = (  t askLayout         - > Cr eat edTaskModel  
                   |  r eset EM           - > Cr eat edTaskModel  ) ,  
RemoveTaskModel   = (  t askGone          - > Updat eTaskModel  
                   |  r eset EM           - > Cr eat edTaskModel  ) .  
 
ManageEnv    = (  set up      - > Act i vat eSupp 
               |  pQoSr epor t  - > deact i vat e - > ManageEnv 
               |  r eset EM    - > ManageEnv ) ,  
Act i vat eSupp = (  act i vat e   - > (  ackAct i vat e     - > At t achSupp 
                               |  noSuppl i er Repl y - > I ssueLayout  )  
               |  deact i vat e - > I ssueLayout  
               |  r eset EM    - > ManageEnv ) ,  
At t achSupp   = (  at t ach     - > (  ackAt t ach       - > I ssueLayout  
                               |  noSuppl i er Repl y - > I ssueLayout  )  
               |  sk i pAt t ach - > I ssueLayout  
               |  r eset EM    - > ManageEnv ) ,  
I ssueLayout   = (  t askLayout  - > Moni t or Supp 
               |  r eset EM    - > ManageEnv ) ,  
Moni t or Supp  = (  adj ust          - > Moni t or Supp 
               |  pQoSr epor t      - > Moni t or Supp 
               |  mi ssQoSRepor t s - > I ssueLayout    / /  r epor t  t o Pr i sm 
               |  r eset EM        - > Moni t or Supp 
               |  set up          - > Act i vat eSupp 
               |  di sband - > deact i vat e - > { t askGone, r eset EM}  - > ManageEnv)  
              \  { ski pAt t ach} .  

Figure A.8 FSP specification for behavior of the EM. 
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concurrency mechanisms, such as barriers, to wait for the reception of all the relevant 
acknowledge messages, and only then, from the protocol specification point of view, consider 
that it observed the corresponding ackAct i vat e event.  The activation and attachment of 
Suppliers is triggered upon receiving a set up request.  In the case all the acknowledgements are 
received, that is, upon the successful activation and attachment of the requested Suppliers, the 
EM issues a t askLayout  with the complete configuration.  In the case some of the 
acknowledgements timeout, the event nosuppl i er Repl y is observed, and a t askLayout  is still 
issued but this time with a possibly incomplete configuration.  In this latter case, the EM may try 
to find and activate alternative, possibly less optimal Suppliers before returning the t askLayout .  
Notice that a set up may request some of the Suppliers in the current configuration to be 
deactivated (see Act i vat eSupp process).  No acknowledgment is needed for deactivation before 
issuing the updated t askLayout . 

After the first set up for a task session, the EM monitors the configuration according to the 
Moni t or Supp process.  Active Suppliers in a configuration periodically issue QoS reports to the 
EM.  The EM uses these reports to evaluate the utility of the current set of suppliers against 
possible alternatives in the environment and may come up with an advantageous reconfiguration.  
Furthermore, when the EM notices that a particular Supplier fails to issue QoS reports, it will try 
to replace that (presumably) faulty Supplier: in the FSP model this is represented by the event 

 [Id, Description, UtilityValue, Supplier] 
���

EMTaskModel
�������������������������������������������������������������

�
serviceDesc: Id �  Description �
knownServices: �  Id �
suppPrefs: �  Supplier �  UtilityValue 	������������������������������

�
dom serviceDesc = knownServices 
������������������������������������������������������������������������������

���
EMEnvModel 

�������������������������������������������������������������
�

knownSuppliers: �  Supplier �
supplierMapping: Id �  Supplier �
activeServices: �  Id 	������������������������������

�
dom supplierMapping = activeServices �
ran supplierMapping �  knownSuppliers 
������������������������������������������������������������������������������

���
EM 
�����������������������������������������������������������������������

�
EMTaskModel �
EMEnvModel �
bestChoice: Description �  �  Supplier �  Supplier 	������������������������������

�
activeServices �  knownServices 
������������������������������������������������������������������������������

 

Figure A.9 Z model of the state kept by the EM as a result of the Prism-EM communication. 
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mi ssQoSr epor t s, leading to the I ssueLayout  process.  In either case, and according to the 
autonomy policies for swapping Suppliers, the EM may have to confirm with Prism that the 
reconfiguration is appropriate/opportune before carrying out. Nonetheless, the EM has full 
autonomy to adj ust  the resource bounds on the Suppliers. 

After each (re)configuration of the environment, made in response to a set up request, the EM 
updates a persistent checkpoint of its models.  In case the EM implementation fails, those 
persistent checkpoints enable restarting the EM without having to reconfigure the environment 
from scratch.  That is, the Suppliers can continue to support the user’s task, while Prism, upon 
detecting the EM’s lack of response will restart the EM and reissue any pending set up request.  
The handling of the r eset EM event in the ManageEnv process captures the fact that an 
environment reconfiguration is transactional in the following sense: if the EM fails anywhere 
between a set up and the corresponding t askLayout , no intermediate state is recovered.  In such 
a case, any Suppliers that were activated by the incomplete reconfiguration will be detected and 
deactivated by the EM: the EM will react to QoS reports from Suppliers it does not recognise as 
being active by sending them a deact i vat e message. 

Figure A.9 shows the Z model of the state kept by the EM as a result of the interactions with 
Prism and the Suppliers.  For each task session, the EM keeps both a model of the task as 
communicated by Prism, EMTaskModel, and of the environment that supports that task, 
EMEnvModel.  The task model consists of two pieces: (1) a table of service descriptions indexed 
by service id, serviceDesc; and (2) the user preferences with respect to the choice of Suppliers 
for each service, suppPrefs.  The model of the environment consists of two pieces: (1) the 
supplierMapping, which maps the id of each active service to the Supplier providing that 
service; and (2) the knowSuppliers set, which includes all the Suppliers that register with the 
EM, and is shared among all task sessions.  For the sake of simplicity, the schema for the EM 
represents a single task model and environment model.  Notice that the set of active services (the 
ones being currently provided by a Supplier) is a subset of the known services (the ones with a 
description transmitted by Prism).  This is because Prism may explore a number of alternatives 
before settling on a set of services to support the user’s task.  Notice also that the bestChoice 
function corresponds to the algorithms within the EM that, given a service description, select the 
best fit among a given set of Suppliers.  Figure A.10 shows the effect of a r egi st er  message 
sent by a Supplier: only the set of known Suppliers in the EMEnvModel is updated with the new 
supplier. 

���
register 

�������������������������������������������������������������������
�

∆EMEnvModel �
newSupplier?: Supplier 	������������������������������

�
knownSuppliers' = knownSuppliers �  

�
newSupplier?��

supplierMapping' = supplierMapping �
activeServices' = activeServices 
������������������������������������������������������������������������������

 

Figure A.10 Z model of the effect of the r egi st er  message on the state kept by the EM. 
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Figure A.11 shows the effect of a budget  message sent by Prism.  The purpose of this type of 
message is to run a “what if?”  scenario against the current conditions in the environment.  As 
such, a budget indicates the ids for the services to be hypothetically activated, deactivated 
(disbanded), or have the current Supplier replaced.  Additionally, a budget  piggybacks 
information for updating the task model: the relevant service descriptions, newServDescs, and an 
update on the user preferences with respect to Supplier choices, newSuppPrefs.  Note that in the 
schema, the task model is affected, but the environment model is only observed.  Consequently, 
the EM computes temporary values for the candidate services to be activated; the candidate 
Suppliers to choose from (all the known Suppliers, except for the ones that the user is unhappy 
with – the ones to be replaced); and the candidate configuration (the best choice of Suppliers for 
the candidate services).  The utility value for the candidate configuration will be returned by the 
t askLayout  message in reply to the budget . 

Figure A.12 shows the effect of a set up message sent by Prism.  The purpose of this type of 
message is to set up or change the configuration of Suppliers currently supporting the user’s 
task.  Like a budget , a set up piggybacks information for updating the task model.  However, a 
set up indicates the ids for the services to be effectively added or removed from the 
configuration.  Consequently, the EM updates both the task and environment models (and of 
course, sends the appropriate messages to the affected Suppliers, as described in the protocol 
specification).  The environment model is updated in the following way: (1) the set of active 
services is cleared of the disbanded service ids, and appended with the newly activated ones; (2) 
the supplier mapping is cleared of the mappings for the disbanded or replaced services, and 

���
budget 

�������������������������������������������������������������������������������������������
�

∆EMTaskModel �
ΞEMEnvModel �
EM �
addServices?: �  Id �
replaceServices?: �  Id �
disbandServices?: �  Id �
newServDescs?: Id �  Description �
newSuppPrefs?: �  Supplier �  UtilityValue �
utility!: UtilityValue 	������������������������������

�
disj 

�
addServices?�  replaceServices?�  disbandServices?��

addServices? �  replaceServices? �  disbandServices? �  knownServices' �
knownServices' = knownServices �  dom newServDescs? �
serviceDesc' = serviceDesc �  newServDescs? �
suppPrefs' = suppPrefs �  newSuppPrefs? �
let candidateServices ���  activeServices \ disbandServices? �  addServices? �
  � let candidateSuppliers ���    knownSuppliers \ 

�
s: replaceServices? � supplierMapping s ��

      � let candidateConfig ���   
�

s: candidateServices  � bestChoice 
���

serviceDesc s� �  candidateSuppliers� ��
          � utility! = suppPrefs' candidateConfig 
������������������������������������������������������������������������������������������������������

Figure A.11 Z model of the effect of the budget  message on the state kept by the EM. 
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added with the best choices for the services to be added, or to have their suppliers replaced, 
among the candidate Suppliers.  As before, the candidateSuppliers are all the known Suppliers, 
except for the ones that the user is unhappy with. 

 

 

 

 

 

���
setup

�����������������������������������������������������������������������������������������
�

∆EMTaskModel �
∆EMEnvModel �
EM �
addServices?: �  Id �
replaceServices?: �  Id �
disbandServices?: �  Id �
newServDescs?: Id �  Description �
newSuppPrefs?: �  Supplier �  UtilityValue 	������������������������������

�
disj 

�
addServices?�  replaceServices?�  disbandServices?��

addServices? �  replaceServices? �  disbandServices? �  knownServices' �
knownServices' = knownServices �  dom newServDescs? �
serviceDesc' = serviceDesc �  newServDescs? �
suppPrefs' = suppPrefs �  newSuppPrefs? �
activeServices' = activeServices \ disbandServices? �  addServices? �
knownSuppliers' = knownSuppliers �
let candidateSuppliers ���   knownSuppliers \ 

�
s: replaceServices? � supplierMapping s ��

  � supplierMapping'   = supplierMapping �
                                        \ 

�
d: disbandServices? �  replaceServices? � � d �  supplierMapping d� ��

                                        �  
�

s: addServices? �  replaceServices? �
                                                  � �

s �  bestChoice 
���

serviceDesc s� �  candidateSuppliers� � �
��������������������������������������������������������������������������������������������������
 

Figure A.12 Z model of the effect of the set up message on the state kept by the EM. 


