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Abstract

In this thesis we will develop and analyze algorithms in multi-agent settings. We focus on two areas: that
of auctions, negotiation, and exchanges, which are of increasing interest to computer scientists with the rise
of e-commerce, and that of repeated bimatrix games and multi-stage games, which provide an interesting
test bed for agents that will be interacting with other intelligent agents. The main thrust of this thesis is
designing algorithms for agents who are missing critical information about the environment or other agents
(like what is going to happen in the future, or what the other agents’ motivations are) that perform well
compared to the optimal behavior which has this information.

In the area of auction design, we consider online double auctions (exchanges) for commodities, where
there are buyers and sellers trading indistinguishable goods who arrive and depart over time. We consider
this from the perspective of the broker, who decides what trades occur and what payments are made. The
broker may be interested in maximizing social welfare, maximizing its own profit, or maximizing market
liquidity. We devise an algorithm for a broker who does not know what agents will arrive in the future
that is within a logarithmic factor of the optimal offline algorithm, if the agents are truthful (although the
algorithm does not motivate them to bid truthfully). This is the best competitive ratio that can be achieved.
In the simpler bilateral trading problem with one buyer and one seller, we consider strategic agents and study
direct mechanisms where both agents are motivated to bid truthfully, partially direct mechanisms where one
agent is motivated to bid truthfully and the other agent will strategize, and general mechanisms where both
agents will strategize. Agents which have to strategize must have knowledge about the typical values that
buyers and sellers have in order to perform well. However, we show that higher efficiency for a broker who
does not have knowledge of the domain requires more strategizing on the behalf of the buyer and seller. For
instance, the broker can achieve a logarithmic factor of the optimal broker who knows the distributions if
the buyer is motivated to be truthful and the seller strategizes.

We also consider combinatorial auctions. We show a connection between query learning in machine
learning theory and preference elicitation. We show how certain natural hypotheses spaces that can be
learned with membership queries correspond to natural classes of preferences that can be learned with value
queries.

Finally, we consider repeated bimatrix games. One would like two reasonable agents who encounter
each other many times in the same setting (e.g. a bimatrix game) to eventually perform well together. We
show how a simple gradient ascent technique performs well in a bimatrix game, as well as in an arbitrary
online convex programming domain. We introduce the concept of response regret, an extension of traditional
concepts of regret, to account for the short-term effects that one agent’s actions have on the other agent,
which also can be extended to stochastic games and partially observable stochastic games. Two behaviors
that minimize internal response regret in a stochastic game or a partially observable stochastic game will
approach the set of correlated equilibria.

One of the hardest parts of working in a domain with other intelligent agents is defining what it means to
perform well and understanding what are the right assumptions to be made about the other agent. It is well
known that there exists an algorithm that has no regret against an arbitrary algorithm. Furthermore, it is
not hard to show that there exists an algorithm that achieves the minimum Nash equilibrium value against
a no-external-regret algorithm. However, we show here that no algorithm can achieve both these guarantees.
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Chapter 1

Introduction

A multi-agent environment is an environment where there are multiple agents, each with its own goals and
algorithms for achieving these goals. These agents can be either humans or computer programs. Examples
of multi-agent environments can range from stock markets to auctions to video games to classrooms to life
itself. How is behaving in the presence of other intelligent agents different than behaving in an unintelligent
environment? As an environment designer, how can one construct the rules for interaction to obtain globally
beneficial behavior? These are questions addressed by the areas of Game Theory and Mechanism Design,
respectively. The area of focus of this thesis is on incomplete knowledge in multi-agent environments. How
does an agent’s lack of full knowledge about the other agents and the environment affect its ability to achieve
its goals, and what algorithms should it use? How can an environment designer’s lack of full knowledge of the
agents affect its ability to obtain a globally beneficial behavior? We will address these questions in several
settings by combining game theory and mechanism design with techniques from competitive analysis and
computational learning theory.

1.1 Examples of Multi-Agent Environments

This section describes some examples of multi-agent environments that we will be studying in this thesis.
One example of a multi-agent environment is an online double auction, also known as an exchange. In

an online double auction, there is a set of indistinguishable goods, like Playstations, and there are agents
interested in buying or selling them who will be entering and leaving the market. Each buyer and seller has a
value on a Playstation, as well as an interval of time in which they are willing to trade. In other words, each
buyer (seller) has an arrival time when they enter the market and an expiration time when they leave the
market. There is also an auctioneer, or broker, that decides which agents trade and at what price. A buyer
and a seller can be matched if their intervals of time overlap, and the broker can make a profit matching
them if the price given by the buyer is higher than the price given by the seller. The auctioneer only learns
about a buyer or seller when it arrives, and cannot match an agent after it leaves the auction. Consider
this setting from the perspective of an auctioneer attempting to maximize profit. Even if buyers and sellers
reveal their true values and expiration times when they enter the market, it is difficult to determine what
to do with the current agents in the market if one has no knowledge of what agents will appear in the
future. For instance, if there is a buyer about to leave the market who values a Playstation at one hundred
dollars, and a seller who values a Playstation at fifty dollars who will be present for a while, should the
auctioneer initialize a trade, making $50, or wait for a buyer who values a Playstation more? If there is
another seller that is at eighty dollars and will expire soon, should the buyer be matched to that one instead?
Thus, incomplete information (on behalf of the auctioneer about who will arrive in the future) makes this
a challenging optimization problem. What if we add further uncertainty by allowing the buyers and sellers
to bid strategically, instead of revealing their true valuations? Then, the auctioneer has to discover how
to entice an agent to reveal its own valuation, as well as perhaps some of the information it has about the
valuations of others.



2 Introduction

Another example of a multi-agent setting is a combinatorial auction. In a combinatorial auction, there
is a set of buyers, and a set of items, and the auctioneer decides how to allocate the items to the buyers and
what fees to charge them. The difference between a sequence of single-item auctions and a combinatorial
auction is that in a combinatorial auction, we do not assume that the valuations are linear. It could be that a
group of items, e.g. airplane tickets and a hotel room, could be worth more together than apart. Also, some
items, e.g. two free dinners on the same night, could be worth less together than the sum of their separate
values. These properties make computing the optimal allocation difficult, even if the auctioneer knows all
of the desires of the buyers. As an additional problem, each buyer’s desires could be quite complex, and
the auctioneer may have difficulty in eliciting enough information about the buyer’s desires in a reasonable
amount of time.

Other examples of multi-agent settings we will discuss are infinitely repeated bimatrix games, stochastic
games, and partially observable stochastic games. In an infinitely repeated bimatrix game, two agents face
each other in the same situation, or state, an infinite number of times. In a stochastic game, two or more
agents interact in an environment with one or more states, and in each state the actions of each agent may
have a different effect on the utility of each agent and on the next state. In a stochastic game, the state is
known by each agent. In a partially observable stochastic game, each agent is unaware of the state, but makes
observations that are dependent on the underlying state. In these domains, we will study what algorithms
the individual agents should use. We will discuss what goals can be achieved by the agents in each of these
domains, and develop new algorithms to achieve those goals.

1.2 Definition of Competitive Ratio

This thesis deals with reasoning with incomplete knowledge. In other words, there are important pieces of
information that the mechanism or agents do not know, nor do they have a probability distribution over
possible values of these pieces of information. The competitive ratio is a measure used in computer science
to determine how well you can perform with incomplete knowledge.

As an example of a competitive analysis, consider the following problem. Imagine that you have an
umbrella on a rainy day, and various people come and offer you a price for it. Eventually, the rain will
stop, and then no one will buy it. However, you will at least still have an umbrella. We will make two
assumptions: no one is willing to pay more than 64 dollars for an umbrella (even if they have a nice suit),
and the umbrella is worth one dollar to you.

You would be really frustrated if you sold the umbrella for two dollars, and then someone came by and
offered you 60 dollars for it. On the other hand, if someone offered you 59 dollars, and you didn’t sell it and
then saw no one else, you would also be frustrated.

Two avoid such situations, one possible selling strategy is to give the umbrella to anyone who is willing
to pay 8 dollars for the umbrella. This creates a balance between the following two scenarios:

1. A first person comes and offers 7.99, and then no one else comes.

2. A first person comes and offers eight dollars, and then a second person comes and offers 64 dollars.

The worst-case competitive ratio is:

max
s∈all scenarios

profit of the optimal algorithm in s

your profit in s
.

In the first scenario, you could have gotten 7.99. Since you got 1 dollar, your ratio is 7.99. In the second
scenario, you could have gotten 64 dollars. Since you got 8 dollars, your ratio is 8. This is in fact the worst
case, so the competitive ratio is 8.

Thus, if you knew for certain that no one would bid above N dollars, then the best you could do
deterministically would be to choose a threshold of

√
N , for a worst-case competitive ratio of

√
N .
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Now, suppose you have a private source of randomness. You know the distribution over this randomness,
and are aware that it is not correlated with the scenario. Thus, you consider the ratio:

max
s∈all scenarios

profit of the optimal algorithm on s

your expected profit on s
.

It is important that the expectation be taken inside the denominator, instead of over the entire fraction,
which would change the result.

A good randomized algorithm would be to choose the threshold T according to:

Pr[T ≤ x] =
lnx− ln pmin

ln pmax − ln pmin
,

where pmax = 64 and pmin = 1. This is the solution suggested for the one-way trading problem [EYFKT92].
A simple integration shows that regardless of the scenario, the worst-case competitive ratio is ln pmax −
ln pmin, or approximately 2.3 in the above case.

What if, instead of actually having your umbrella, you know someone who is willing to sell their umbrella
for one dollar? How can you make a profit by finding someone willing to buy the umbrella for more? What
if there are more buyers and sellers who come and go over time? How can you make a profit? These are
some of the questions we answer in Chapter 2.

In Chapter 3, we are using a formalism where some of the scenarios themselves may have randomness:
i.e, where the optimal algorithm knows the distribution, but not the value, and you have access to neither,
similar to the analysis in [KL04]. Particularly, there is a buyer and a seller, who each have a valuation on an
item. However, the scenario will consist of the distribution over the possible valuations for the seller and the
distribution over the possible valuations for the buyer. Thus, in this case, the competitive ratio becomes:

max
s∈all scenarios

expected profit of the optimal algorithm on s

your expected profit on s
.

1.3 What is a Mechanism?

A mechanism is a way of arbitrating a formal negotiation between a group of people. For instance, an
election, a stock market, and an art auction are all examples of mechanisms.

Any mechanism is created by someone or something. Usually, one assumes that the structure of the
mechanism is governed by a fixed set of rules, and thus the agents inside the mechanism know both that
they cannot affect these rules, and that these rules will not change over time.

Often, a mechanism is designed such that the action of an agent is “obvious” given that agent’s desires,
or preferences. For instance, consider the following auction for a single item:

1. Each person interested in the item submits a sealed bid.

2. The bids are opened, and the person with the highest bid gets the item for the value of the second
highest bid.

This called a Vickrey auction. Regardless of the actions of the other agents, each agent can do no
better than submit as its bid its value for the item. This type of mechanism is called dominant-strategy
incentive compatible. This is a nice property, because it means that each agent can focus on its own
preferences.

In contrast, think of a sealed-bid English Auction, where the item goes to the highest bidder, but the
price paid is the highest bid. The mechanism designer suggests each agent bid its true value of the item, but
some agents may be motivated not to do this. If you value an item at $200 but are pretty sure that no one
else values it more than $100, then you might want to shade down your bid. Therefore, such a mechanism
is not incentive-compatible.

Another type of incentive-compatibility is illustrated by a reserve-price auction. Imagine there is one
buyer and one seller.
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1. The seller chooses a reserve price r.

2. The buyer states a value t. If t ≥ r, then the item is traded at price r: otherwise, it is not traded at
all.

As before, the buyer’s dominant strategy is to state its true value as t. However, in this mechanism, the
mechanism designer is not interested in the seller revealing its true value as r. If P (r) were the probability
that a random buyer values the item more than r, the mechanism suggests the seller to use a reserve price
maximizing:

r∗ = argmax
r

P (r)(r − v1)

where v1 is the value of the item to the seller. Thus, this mechanism is what is called Bayesian incentive-
compatible, as opposed to dominant strategy incentive-compatible, because we are assuming buyers come
from a distribution and ask for incentive-compatibility with respect to that distribution. If the seller knows
the distribution from which the buyer draws its utility, then it can and will follow the advice of the mechanism:
however, it may regret this after the true value of the buyer is revealed. This is similar to the concept of
Bayesian Nash equilibrium, where the strategy of each agent is optimal given its beliefs about the other
agent.

In addition to incentive-compatibility, another property one would like a mechanism to satisfy is individual
rationality: that is, each agent should not expect to lose from participating in the mechanism. For instance,
if the broker were to insist that the buyer accept the offer in the reserve-price mechanism, the buyer might
no longer want to participate in the mechanism.

1.4 The Revelation Principle

The Vickrey auction is an example of a larger principle in mechanism design called the revelation principle:
roughly, for any mechanism, one can construct an equivalent mechanism where each agent’s optimal behavior
is to reveal its preferences. This type of mechanism is a direct mechanism. For any set of preferences for
the agent, the new mechanism will have an outcome equivalent to the outcome of the old mechanism.

However, the revelation principle depends very heavily on the mechanism designer understanding the
market: for instance, in order to construct a mechanism equivalent to the stock market, one must be
knowledgeable about all of the values that all of the stocks have to all of the agents in the market. Thus,
for many real-world problems, the reduction is intractable. In addition to direct mechanisms, in this thesis
we consider two alternatives:

1. Do not worry about whether or not the agents will be truthful in a mechanism, and focus on the
algorithmic issues involved in making a profit. Since the mechanisms we consider are close to those
that are in existence, we are justified in assuming that people will bid “nearly truthfully”.

2. Consider mechanisms where agents have more complicated strategies. For instance, in the mechanisms
we present in Chapter 3, we either explicitly or implicitly elicit information about one agent from
another. This results in a balancing act, because if the mechanisms are too complicated, then one is
making unreasonable assumptions about the knowledge the agents have about the market. However,
if they are too simple, then it is difficult for the broker to obtain profit.

1.5 Original Results in Part I: Mechanism Design

Chapter 2 We study the problem of online market clearing where there is one commodity in the market
being bought and sold by multiple buyers and sellers whose bids arrive and expire at different times.
The auctioneer is faced with an online clearing problem of deciding which buy and sell bids to match
without knowing what bids will arrive in the future. For maximizing profit, we present a (randomized)
online algorithm with a competitive ratio of ln(pmax−pmin)+1, when bids are in a range [pmin, pmax],
which we show is the best possible. A simpler algorithm has a ratio twice this, and can be used
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even if expiration times are not known. For maximizing the number of trades, we present a simple
greedy algorithm that achieves a factor of 2 competitive ratio if no money-losing trades are allowed.
Interestingly, we show that if the online algorithm is allowed to subsidize matches — match money-
losing pairs if it has already collected enough money from previous pairs to pay for them — then
it can be 1-competitive with respect to the optimal offline algorithm that is not allowed subsidy.
That is, the ability to subsidize is at least as valuable as knowing the future. We also consider the
objectives of maximizing buy or sell volume, and present algorithms that achieve a competitive ratio
of 2(ln(pmax/pmin) + 1), or ln(pmax/pmin) + 1 if the online algorithm is allowed subsidization. We
show the latter is the best possible competitive ratio for this setting. For social welfare maximization
we also obtain an optimal competitive ratio, which is below ln(pmax/pmin). We present all of these
results as corollaries of theorems on online matching in an incomplete interval graph.

Some of our algorithms probabilistically select a threshold that is used later in making their decisions.
Even though this produces optimal competitive ratios, we show we can use online learning methods to
perform nearly as well as the best choice of threshold in hindsight, which may be much closer to the
offline optimum in certain stationary settings. We also consider incentive compatibility, and develop
a nearly optimal incentive-compatible algorithm for maximizing social welfare. Finally, we show how
some of our results can be generalized to settings in which the buyers and sellers themselves have online
bidding strategies, rather than just each having individual bids.

Chapter 3 Like in Chapter 2, we consider double auctions, but we focus on the motivations of the agents
(i.e. we do not assume they will be truthful) in a situation with only one buyer and one seller. The
broker wants to maximize his own expected profit, in terms of fees, for the exchange. We show that in
this setting, the more the broker can rely on the knowledge the buyer and seller have about the market,
the more profit it can make. We analyze the worst-case competitive ratio of the ex ante expected profit
of the broker with respect to the ex ante expected profit of the optimal broker aware of the distributions
from which the buyer’s and seller’s values are to be drawn. The best competitive ratio is Θ(vmax) if the
broker uses a direct mechanism, and Θ(log(vmax)) if it uses a mechanism which for one agent is always
truthful. There exists a complex indirect mechanism with a Bayes-Nash equilibrium that obtains as
much profit as the optimal broker. We also show a simple, parameterized mechanism that we believe
achieves 1− ε of the possible revenue.

Chapter 4 Preference elicitation — the process of asking queries to determine parties’ preferences — is
a key part of many problems in electronic commerce. For example, a shopping agent needs to know
a user’s preferences in order to correctly act on her behalf, and preference elicitation can help an
auctioneer in a combinatorial auction determine how to best allocate a given set of items to a given set
of bidders. Unfortunately, in the worst case, preference elicitation can require an exponential number
of queries even to determine an approximately optimal allocation. In Chapter 4 we study natural
special cases of preferences for which elicitation can be done in polynomial time via value queries.
The cases we consider all have the property that the preferences (or approximations to them) can be
described in a polynomial number of bits, but the issue here is whether they can be elicited using the
natural (limited) language of value queries. We make a connection to computational learning theory
where the similar problem of exact learning with membership queries has a long history. In particular,
we consider preferences that can be written as read-once formulas over a set of gates motivated by a
shopping application, as well as a class of preferences we call Toolbox DNF, motivated by a type of
combinatorial auction. We show that in each case, preference elicitation can be done in polynomial
time. We also consider the computational problem of allocating items given the parties’ preferences,
and show that in certain cases it can be done in polynomial time and in other cases it is NP-complete.
Given two bidders with Toolbox-DNF preferences, we show that allocation can be solved via network
flow. If parties have read-once formula preferences, then allocation is NP-hard even with just two
bidders, but if one of the two parties is additive (e.g., a shopping agent purchasing items individually
and then bundling them to give to the user), the allocation problem is solvable in polynomial time.
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1.6 Fundamentals of Game Theory

The second part of this thesis discusses the topic of learning in games, that is, the problem of multi-agent
interaction from the perspective of the agents rather than the mechanism designer. Before discussing this
topic, it is important to understand the fundamentals of game theory. This section contains a brief overview
of that field.

1.6.1 Bimatrix Games and Nash Equilibria

In a bimatrix game, there are two agents {1, 2}, and each agent i has a set of actions Ai. When a bimatrix
game is played, each agent chooses an action ai ∈ Ai privately at random. Then, the joint action (a1, a2)
is revealed. The utility of each agent i is represented by a function ui : A1 × A2 → R from the joint action
played to a real number representing the “happiness” of the ith agent. An example of bimatrix game is the
Prisoner’s Dilemma:

Game 1.2: The Prisoner’s Dilemma
D C

d -5,-5 -6,0
c 0,-6 -1,-1

In this game, there are two prisoners, 1 and 2, that have been captured committing some minor crime (for
which the sentence is one year). The first agent is asked to rat out the second agent for some major crime
(with a sentence of five years) they were not caught doing, in exchange for being pardoned on the minor one.
The second agent is given the same offer. Now, both prisoners saw such a possibility, so they made a pact
to not rat out each other. We assume for the sake of argument that the two agents feel no sympathy for one
another, and their utility is the opposite of how many years they will go to jail. When put in separate cells,
will they cooperate with each other, and both stay silent, each receiving a one year sentence, or will they
defect from their plan and rat each other out, and both receive five years in jail?

The first agent has two actions {d, c}, either (d)efect or (c)ooperate, indicated on the left side of the
table. The second agent has two options, either (D)efect or (C)ooperate, indicated on the top of the table.
In each entry of the table is a possible outcome. For instance, if the first agent (d)efects and the second
agent (C)ooperates, then the first agent receives a utility of u1(d, C) = 0 (does not go to jail) and the second
agent receives a utility of u2(d, C) = −6 (goes to jail for both crimes). This is indicated by the pair 0,−6 in
the top right entry of the table.

Now, consider this from the perspective of the first agent: since the actions of both agents are simultane-
ous, his action cannot affect the action of the second agent, so the first agent should assume that the second
agent’s action is fixed. If the second agent will defect, then the first agent achieves u1(d, D) = −5 if it defects
and u1(c, D) = −6 if it cooperates. Thus, the first agent would be happier defecting if the second agent
defected. Similarly, if the second agent will cooperate, then u1(d, C) > u1(c, C). Therefore, the first agent is
happier defecting regardless of what happens. Similarly, the second agent is happier defecting regardless of
what happens. The pair, (d, D) is called a Nash equilibrium, because given the strategy (plan of action,
possibly involving randomness) of one agent, the strategy of the other agent maximizes expected utility. It
is often argued that a Nash equilibrium is the only way that two rational agents would play.

Sometimes, there is no pair of deterministic actions that are a Nash equilibrium. The game below is like
“Rock-Paper-Scissors”, except if an agent loses it receives the same utility as if it had tied.

Game 1.4: Shapley’s Game
R P S

r 0,0 0,1 1,0
p 1,0 0,0 0,1
s 0,1 1,0 0,0

For any set S, define ∆(S) to be the set of all probabilities over S. For a distribution D and a boolean
predicate P , we use the notation Prx∈D[P (x)] to indicate the probability that P (x) is true given that x
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was selected from D, and D(x) to be the probability of x in the distribution D. An agent i may use a
mixed strategy βi ∈ ∆(Ai), where it plays an action at random according to a distribution. βi(ai) is the
probability of choosing ai while using βi. Define:

ui(β1, β2) =
∑

a1∈A1,a2∈A2

β1(a1)β2(a2)ui(a1, a2).

It is known [Nas50] that for any bimatrix game, there exists a Nash equilibrium (β∗
1 , β∗

2) ∈ ∆(A1)×∆(A2)
such that:

u1(β
∗
1 , β∗

2 ) = max
β1∈∆(A1)

u1(β1, β
∗
2 )

u2(β
∗
1 , β∗

2 ) = max
β2∈∆(A2)

u1(β
∗
1 , β2).

In other words, given the strategy of one agent, the other agent cannot improve its expected utility by
changing its strategy. A Nash equilibrium for Shapley’s Game is for each agent to choose an action uniformly
at random from all its actions. Finally, for each agent i define:

‖ui ‖ = max
(a1,a2)∈A1×A2

ui(a1, a2)− min
(a1,a2)∈A1×A2

ui(a1, a2).

1.6.2 Correlated Equilibria

Sometimes, when dividing chores, or deciding who has to perform some unpleasant task, people will “draw
straws”: that is, they each choose a straw from a fist, and whoever gets the shortest straw has to perform
the task. Or, they might draw pieces of paper from a hat. Sometimes such an agreement may be a priori
better for all agents then fighting, or being disorganized, et cetera.

For instance, in Shapley’s game, the expected utility of each agent in a Nash equilibrium is 1/3. It would
be better if the two agents avoided “ties”. One way to do this might be for one agent to play (p)aper, and
the other agent to play (s)cissors. They draw straws, and whoever draws the shortest straw plays paper.

Unfortunately, this agreement is somewhat flawed. If the second agent draws the shortest straw, and
believes the first agent would play (s)cissors, why wouldn’t the second agent play (R)ock? Thus, such an
agreement is not self-enforcing, because the agent who draws the shortest straw isn’t motivated to comply
with the agreement.

Imagine that instead of this public randomness, or the independent private randomness inherent
in mixed strategy Nash equilibria, what if one had a source of dependent private randomness. For
example, imagine that a referee, a third impartial agent, has a bag with six balls, labeled (r, P ), (r, S),
(p, R),(p, S),(s, R), and (s, P ). All the agents know the six balls in the bag. The referee now draws a ball
uniformly at random from the bag. It then privately informs the first agent of the first element of the pair
on the ball and the second agent of the second element of the pair on the ball.

Observe that the difference between this situation and the one before is that if the first agent is told to
play (r)ock, then with equal probability the second agent will have been told to play (S)cissors or (P)aper.
Thus, the first agent can do no better than play the action it has been told to play. Observe that if both
agents play as they are told, then both agents will have an expected utility of 1

2 .

In general, a correlated equilibrium is a joint distribution D ∈ ∆(A1 × A2) over the actions of the
agents. For any a∗

1 ∈ A1 on which D has positive probability, for any a∗
2 ∈ A2 on which D has positive

probability:

∑

a2∈A2

D(a∗
1, a2)u1(a

∗
1, a2) = max

a1∈A1

∑

a2∈A2

D(a∗
1, a2)u1(a1, a2)

∑

a1∈A1

D(a1, a
∗
2)u1(a1, a

∗
2) = max

a2∈A2

∑

a1∈A1

D(a1, a
∗
2)u1(a1, a2).
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In other words, if D is the distribution from which the referee draws a joint action, then given that one agent
chooses the action recommended by the referee, the other agent can do no better than choose the action
recommended by the referee.

Correlated equilibria also have a special significance in learning in multi-stage games. We will discuss
this further in the next section.

1.7 Multi-Stage Games

Multi-stage games are an important model in Artificial intelligence and game theory for three reasons. First,
they can be used to model the “social consequences” of an action: how the acceptable or unacceptable
behavior of one agent can be rewarded or punished by another agent. Secondly, they allow researchers to
model how agents could learn about each other by observing each other’s actions. Finally, when state is
implicitly or explicitly contained inside the model, they allow researchers to model learning how to solve
complicated problems where the “consequences” of the actions of an agent are not always immediately
apparent.

1.7.1 Repeated Bimatrix Games

Many people find the Nash equilibrium of the Prisoner’s Dilemma unsettling. For instance, one could imagine
two nations in the grips of a nuclear arms race. Each knows that if it obliterated the other nation, it would
be marginally safer. Each would like to strike back if it knew it would be struck. However, the US and
the USSR co-existed in such a precarious position for decades without annihilating each other. Is there
something wrong with the above analysis?

Observe that to cooperate in the Prisoner’s Dilemma is a strictly dominated action: that is, regardless
of the strategy of the other agent, cooperating never maximizes an agent’s expected utility. This implies
that cooperating is not in any Nash equilibrium or in any correlated equilibrium.

However, sometimes a situation can be better modeled as a repeated bimatrix game: that is, two
agents face each other in the same bimatrix game an infinite number of times. For instance, suppose that the
US knows that the USSR will retaliate against any nuclear strike today with a strike of its own tomorrow.
Also, the US believes there is a high probability that the USSR will not strike tomorrow unless the US strikes
today. Thus, it is now in the best interest of the US not to strike today.

Each time a bimatrix game is played is called a time step. Formally, one can consider the events in
a bimatrix game to form an infinite history h ∈ H∞, an infinite sequence of joint actions. Define hi to
be the ith joint action of the history h. In a discounted repeated bimatrix game, one has a discount
factor γ ∈ [0, 1], that can sometimes be considered the probability of continuing to the next time step, or
as a simple cognitive discounting of rewards that will not be received for some time. Given a discount factor
γ ∈ [0, 1] and a history h ∈ h∞, the utility of agent i is:

uγ
i (h) =

∞
∑

t=1

γt−1ui(hi).

The state of the repeated bimatrix game after t time steps can be represented by a finite history h ∈ Ht =
(A1 × A2)

t. H =
⋃∞

t=0 Ht is the set of all finite histories, including ∅, the history of length 0. |h| is the
length of history h.

The most important aspect of repeated bimatrix games is that both agents remember the entire history
of joint actions up until the last game played and can have their strategy in the current bimatrix game
depend upon it. A behavior for agent i is a function σi : H → ∆(Ai), a function from the history observed
to a strategy to play on the next time step.

In order to consider Nash equilibria in repeated games, we have to define the distribution over histories
when two agents play a repeated bimatrix game. Define h(t) to be the first t joint actions of history h. ht,i

is the action chosen in the tth time step by agent i. The probability of σi playing its part of history h ∈ H
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is:

Pσi
(h) =

|h|
∏

t=1

σi(h(t− 1))(ht,i).

In other words, the probability that at each time step t, given the history up until that point, agent i would
have chosen the action ht,i. The probability that the game begins with h when the behaviors σ1 and σ2 are
used is Pσ1,σ2

(h) = Pσ1
(h)Pσ2

(h). Define PT
σ1,σ2

∈ ∆(HT ) to be the associated probability distribution. The
principle can be extended to infinite histories, such that µσ1,σ2

is the measure over infinite histories when σ1

and σ2 are played, where for all h′ ∈ H :

µσ1,σ2
({h ∈ H∞ : h(t) = h′}) = Pσ1,σ2

(h′).

h(σ1, σ2) is a random variable indicating the history played. Thus, the expected utility of agent i when two
agents using the behaviors σ1 and σ2 play each other is:

uγ
i (σ1, σ2) = E[uγ

i (h(σ1, σ2))].

Define Σi to be the set of all behaviors for agent i. A Nash equilibrium is a pair of behaviors (σ∗
1 , σ∗

2), such
that:

uγ
1(σ∗

1 , σ∗
2) = max

σ1∈Σ1

uγ
1 (σ1, σ

∗
2).

uγ
2(σ∗

1 , σ∗
2) = max

σ2∈Σ2

uγ
2 (σ∗

1 , σ2).

It is interesting to note that if (β∗
1 , β∗

2) is a Nash equilibrium for a single stage of the repeated bimatrix game
then the behaviors that always use β∗

1 and β∗
2 are a Nash equilibrium for the whole repeated bimatrix game.

However, there can also be more complicated Nash equilibria that may be more beneficial for all of the
agents. For instance, consider the grim trigger behavior, which cooperates until it observes the other agent
defect. Then, if both agents use the grim trigger behavior, they will both cooperate ad infinitum. Since
defecting at any point for either agent would lower the utility, both agents using a grim trigger behavior is
a Nash equilibrium if γ is close to 1. This will yield a discounted utility of −1

1−γ for both agents, whereas

the equilibrium of both agents always defecting yields a utility of −5
1−γ . This will be discussed further in

Section 6.1.

1.7.2 External Regret

There are four types of regret discussed in this thesis:

• external regret

• internal regret

• external response regret

• internal response regret

We will define the first two here, and define the last two in Chapter 6.
External regret is a measure that can be taken on a history. Imagine two agents are playing Shapley’s

game, and the history after six time steps is:

h = {(r, R), (p, P ), (s, S), (s, P ), (r, S), (p, P )}.

One could imagine comparing how well the first agent did to an omniscient agent playing against a second
agent who chose the actions {R, P, S, P, S, P}. However, if the omniscient agent could do anything, then it
would get a utility of 1 on every time step. A more fair comparison is to imagine the omniscient agent builds
a simple robot, which can perform one action a∗

1 ∈ A1. It is sent down to one time step in the history h
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(chosen uniformly at random), and plays its action. Thus, if the omniscient agent built the robot to play p,
then in expectation the robot’s utility would be 1

2 . In general the utility of the robot would be:

1

|h|

|h|
∑

t=1

u1(a
∗
1, ht,2).

Now, if the omniscient agent builds a robot with the action with the maximum a priori utility (before t is
chosen, after the history h is known), then the expected utility of the robot is:

max
a∗

1
∈A1

1

|h|

|h|
∑

t=1

u1(a
∗
1, ht,2).

One can compare this to the utility obtained by the first agent on the same time step:

Rext
1 (h) = max

a∗

1
∈A1

1

|h|

|h|
∑

t=1

(u1(a
∗
1, ht,2)− u1(ht)) .

This is the external regret. A no-external regret behavior, is a behavior σ1 : H → ∆(A1) such that
for all δ > 0, there exists a time T , such that for every σ2 : H → ∆(A2):

Pr
h∈µσ1,σ2

[∀t > T, Rext
1 (h(t)) < δ] > δ.

Roughly, as time goes on, the external regret is dropping uniformly, regardless of the second agent’s behavior.

1.7.3 Internal Regret

Internal regret is a stronger concept than external regret. Consider the history from the previous section.
However, before introducing internal regret, let us consider a more natural concept of regret called swap
regret.

Imagine that the omniscient builds another robot: however, instead of having a single action the robot
has a function f : A1 → A1. Thus, when it arrives at some time step t, before it acts, it gets to see what the
first agent did on time step t, and have its own action depend on the action of the first agent. So, when the
time step is chosen uniformly at random, the expected utility of the robot is:

1

|h|

|h|
∑

t=1

u1(f(ht,1), ht,2).

Thus, if the omniscient builder chooses f to maximize the robot’s utility, and this is compared to the utility
obtained by the first agent, then the swap regret is:

Rswap(h) = max
f

1

|h|

|h|
∑

t=1

(u1(f(ht,1), ht,2)− u1(ht)) .

In the history above, the function would be f(r) = r, f(p) = s, and f(s) = s. In internal regret, the
omniscient agent chooses a single action a−

1 for the robot to replace, and a single action a∗
1 for the robot to

play. There is zero contribution to the internal regret on time steps where the first agent did not play a−
1 .

Rint(h) = max
a−

1
,a∗

1
∈A1

1

|h|
∑

t:ht,1=a−

1

(u1(a
∗
1, ht,2)− u1(ht)) .

This is the internal regret. In the above example, a−
1 = p, a∗

1 = s. The definition of a no-internal-regret
behavior is similar to the definition of a no-external-regret behavior.
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1.7.4 Internal Regret and Correlated Equilibria

One of the most interesting results in learning in multi-agent systems is that two no-internal-regret
algorithms will “converge” to the set of correlated equilibria. Particularly, imagine a history h generated
after T time steps. Imagine that there was a bag with |h| balls, and the tth ball was labeled with the joint
action ht. If the referee drew a ball from this bag as in Section 1.6.2, then neither agent could significantly
improve their utility by choosing a ball different from the one they saw. As T increases, the amount that
the agents could improve their utility drops to zero.

Observe that there is a significant difference between the equilibria here and the equilibria discussed in
Section 1.6.2. Because the correlated equilibria generated in this process are not necessarily the result of
a conscious choice, there is no guarantee that this is a good correlated equilibrium. We will return to this
point in Chapter 7.

1.8 Original Results in Learning in Games

Chapter 5 Convex programming involves a convex set F ⊆ Rn and a convex cost function c : F → R. The
goal of convex programming is to find a point in F which minimizes c. In online convex programming,
the convex set is known in advance, but in each step of some repeated optimization problem, one
must select a point in F before seeing the cost function for that step. This can be used to model
factory production, farm production, and many other industrial optimization problems where one is
unaware of the value of the items produced until they have already been constructed. We introduce an
algorithm for this domain. We also apply this algorithm to repeated games, and show that it is really
a generalization of infinitesimal gradient ascent, and the results in Chapter 5 imply that generalized
infinitesimal gradient ascent (GIGA) achieves no-external-regret: in other words, the algorithm almost
surely in the limit does almost as well as the best fixed action.

Chapter 6 The concept of regret is designed for the long-term interaction of multiple agents. However,
most concepts of regret do not consider even the short-term consequences of an agent’s actions: e.g.,
how other agents may be “nice” to you tomorrow if you are “nice” to them today. For instance, an
agent that always defects while playing the Prisoner’s Dilemma will never have any internal or external
regret. In Chapter 6, we introduce a new concept of regret, called response regret, that allows one to
consider both the immediate and short-term consequences of one’s actions. Thus, instead of measuring
how an action affected the utility on the time step it was played, we also consider the consequences of
the action on the next few time steps, subject to the dynamic nature of the other agent’s responses: e.g.
if the other agent always is nice to us after we are nice to it, then we should always be nice: however, if
the other agent sometimes returns favors and sometimes doesn’t, we will not penalize our algorithm for
knowing when these times are. We develop algorithms for both external response regret and internal
response regret, and show how if two agents minimize internal response regret, then they converge
to a correlated equilibrium in repeated bimatrix games, stochastic games, and partially observable
stochastic games.

Chapter 7 No-regret online learning algorithms are very natural strategies in the context of repeated zero-
sum games. E.g., algorithms such as randomized weighted majority, GIGA, and cautious fictitious play
guarantee expected payoff comparable to the optimal fixed strategy in hindsight, which is at least the
minimax optimum. In a nonzero-sum game, however, achieving good performance depends on both
agents being “reasonable”. Can an algorithm such as weighted majority guarantee the minimum Nash
equilibrium value solely under the assumption that the other agent is using a no-regret algorithm?
Can any no-regret algorithm? What about weighted majority playing against itself? In Chapter 7,
we explore these questions and demonstrate families of games where these conditions are insufficient
even to guarantee the minimum correlated equilibrium value. We also show that it is possible for
an arbitrary algorithm to obtain the minimum Nash equilibrium value against a no-internal-regret
algorithm whose utilities are unknown.
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1.9 Summary

In this thesis, we present several new algorithms: some for an auctioneer running a double auction or a
combinatorial auction, others for handling online convex programming problems, repeated bimatrix games,
or stochastic games. In addition, we clarify some of the issues in auctions and games. In double auctions,
there is a direct tradeoff between the complexity of the auction and the profit achievable by the auctioneer.
We show how a new type of regret allows for agents to account for how their actions affect the behavior of
the other agent. We show that, if the first agent wants to minimize regret, the assumption that the second
agent is regret minimizing is insufficient for the first agent to guarantee a reasonable utility.



Part I

Mechanism Design with Incomplete
Information





Chapter 2

Algorithms for Online Double
Auctions1

We study the problem of online market clearing where there is one commodity in the market being bought
and sold by multiple buyers and sellers whose bids arrive and expire at different times. The auctioneer is faced
with an online clearing problem of deciding which buy and sell bids to match without knowing what bids will
arrive in the future. For maximizing profit, we present a (randomized) online algorithm with a competitive
ratio of ln(pmax − pmin) + 1, when bids are in a range [pmin, pmax], which we show is the best possible.
A simpler algorithm has a ratio twice this, and can be used even if expiration times are not known. For
maximizing the number of trades, we present a simple greedy algorithm that achieves a factor of 2 competitive
ratio if no money-losing trades are allowed. Interestingly, we show that if the online algorithm is allowed
to subsidize matches — match money-losing pairs if it has already collected enough money from previous
pairs to pay for them — then it can be 1-competitive with respect to the optimal offline algorithm that is
not allowed subsidy. That is, the ability to subsidize is at least as valuable as knowing the future. We also
consider the objectives of maximizing buy or sell volume, and present algorithms that achieve a competitive
ratio of 2(ln(pmax/pmin) + 1), or ln(pmax/pmin) + 1 if the online algorithm is allowed subsidization. We
show the latter is the best possible competitive ratio for this setting. For social welfare maximization we
also obtain an optimal competitive ratio, which is below ln(pmax/pmin). We present all of these results as
corollaries of theorems on online matching in an incomplete interval graph.

Some of our algorithms probabilistically select a threshold that is used later in making their decisions.
Even though this produces optimal competitive ratios, we show we can use online learning methods to perform
nearly as well as the best choice of threshold in hindsight, which may be much closer to the offline optimum in
certain stationary settings. We also consider incentive compatibility, and develop a nearly optimal incentive-
compatible algorithm for maximizing social welfare. Finally, we show how some of our results can be
generalized to settings in which the buyers and sellers themselves have online bidding strategies, rather than
just each having individual bids.

2.1 Introduction

Electronic commerce is becoming a mainstream mode of conducting business. In electronic commerce there
has been a significant shift to dynamic pricing via exchanges (that is, markets with potentially multiple buyers
and multiple sellers). The range of applications includes trading in stock markets, bandwidth allocation
in communication networks, as well as resource allocation in operating systems and computational grids.
In addition, exchanges play an increasingly important role in business-to-business commerce, and several
independent business-to-business exchanges have been founded (e.g., ChemConnect). This sourcing trend

1This work appeared in [BSZ02].
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means that instead of one company buying from multiple suppliers, multiple companies will buy from multiple
suppliers. In another words, sourcing is moving toward an exchange format.

These trends have led to an increasing need for fast market clearing algorithms [SS01, SS02, SSGL01].
Also, recent electronic commerce server prototypes such as eMediator [San02] and AuctionBot [WWW98]
have demonstrated a wide variety of new market designs, leading to the need for new clearing algorithms.

This chapter analyzes a market for one commodity, for example, DELL stocks, pork bellies, electricity,
memory chips, or CPU time. As a running example, let us assume we have a market for Playstations. For
simplicity, assume that each buy bid and each sell bid is for a single unit of the commodity. Each bid arrives
at a particular point in time and is valid for some given length of time. For example, imagine a seller s arrives
at 1:00 PM, interested in selling a Playstation for fifty dollars. A buyer b arrives at 1:30 PM, interested in
buying a Playstation for a hundred dollars. An auctioneer (market-maker), an agent who matches buyers
and sellers, must decide if it wants to match b and s before 2:30 PM, when b will leave the market. Suppose
the auctioneer can pocket the difference when making a match and wants to maximize its profit. What is a
good strategy to decide whether or not match b and s without knowing what future buy/sell bids will be?
It could be that a second buyer b′ will enter the market at 3:00 PM willing to pay $150 for a Playstation
(see Figure 2.1), resulting in more money for the auctioneer. The auctioneer faces the tradeoff of clearing

s=(1:00−4:00,$50)

$150

1:00
Time

2:00 3:00 4:00
$0
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$100

V
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u
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b’=(3:00−3:30,$150)

b=(1:30−2:30,$100)

Figure 2.1: In this example, if the auctioneer bought a Playstation from s for 50 dollars at 2:30 and sold it
to b for 100 dollars, then it would make a net profit of 50 dollars. But, if the auctioneer waited until 3:30,
the auctioneer could make a net profit of 100 dollars.

all possible matches as they arise versus waiting for additional buy/sell bids before matching. Waiting
can lead to a better matching, but can also hurt because some of the existing buy/sell bids might expire
or get retracted as the bidders get tired of waiting. While the Securities Exchange Commission imposes
relatively strict rules on the matching process in securities markets like NYSE and NASDAQ [Dom93], most
new electronic markets (for example for business-to-business trading) are not securities markets. In those
markets the auctioneer has significant flexibility in deciding which buy bids and sell bids to accept. In this
chapter, the focus will be how well the auctioneer can do in those settings, and with what algorithms.

There has been some study using traditional game-theoretic techniques of designing mechanisms that are
robust even when the traditional common knowledge assumptions do not apply, such as in [BGM04, BM03,
Wil85, Wil87]. Also, there have been a wealth of results using competitive analysis for auctions where the
broker is the seller, such as [Har03, LN04, BKRW03].

2.1.1 Problem Definition

The auctioneer can formalize its situation as an online problem in which buy and sell bids arrive over time.
When a bid is introduced, the auctioneer learns the bid price and expiration time (though some of the simpler
algorithms will not need to know the expiration times). At any point in time, the auctioneer can match a
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Figure 2.2: Buy bids are represented by white bars, sell bids are represented by black bars, and pairs in
the matching by numbered dotted lines. In this example some of the issues facing the auctioneer trying to
maximize profit are apparent. Sometimes, it is better to choose a pair like 1 instead of matching the seller to
a higher-priced, longer-lasting buy bid, because the longer-lasting bid might be useful later. Also, sometimes
it is useful to ignore a buy bid that does not obtain much profit because a more expensive buy bid might
come along later, like in pair 3.

live buy bid with a live sell bid, removing the pair from the system. It will be convenient to assume that all
bids have integer-valued prices2(for example, money that cannot be split more finely than pennies) that lie
in some range [pmin, pmax].

Definition 2.1 A temporal clearing model consists of a set B of buy bids and a set S of sell bids. Each
bid v ∈ B ∪ S has a positive price p(v), is introduced at a time ti(v), and removed at a time tf (v). A bid v
is said to be alive in the interval [ti(v), tf (v)]. Two bids v, v′ ∈ B ∪ S are said to be concurrent if there is
some time when both are alive simultaneously.

Definition 2.2 A legal matching is a collection of pairs {(b1, s1), (b2, s2), . . .} of buy and sell bids such
that bi and si are concurrent.

An offline algorithm receives knowledge of all buy and sell bids up front. An online algorithm only learns
of bids when they are introduced. Both types of algorithms have to produce a legal matching, that is, a
buy bid and sell bid can only be matched if they are concurrent (see Figure 2.2). As usual in competitive
analysis [BEY98], the performance of the online algorithms will be measured against the optimal offline
solution for the observed bid sequence.3

2.1.2 Objectives

Competitive analysis of auctions (multiple buyers submitting bids to one seller) has been conducted by a
number of authors [LN04, GHW01, GHW00, BCG+01]. In this chapter, we present the first competitive
analysis of exchanges (where there can be multiple buyers and multiple sellers submitting bids). Exchanges
are a generalization of auctions — one could view an exchange as a number of overlapping auctions — and
they give rise to additional issues. For example, if a seller does not accept a buy bid, some other seller might.

The goal will be to produce online algorithms with optimal competitive ratios for each of the following
objective functions:

2Technically, it is assumed that the optimal algorithm is incapable of matching two bids which are closer than one unit in
value when it is attempting to maximize profit.

3This performance measure assumes that actions performed by the auctioneer do not influence the sequence of bids submitted
in the future. For instance, one does not worry that if one had acted differently, one might have seen a better sequence of bids.
This assumption is relaxed in Section 2.9.
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• Maximize profit. Each pair of buy and sell bids that are matched produces a profit, which is the
difference between the buy price and the sell price. The total profit is the sum of these differences,
over all matched pairs. The surplus could be divided in any way among the buyers, sellers, and the
auctioneer. If surplus is maximized, there is no way to make all of the parties better off. Offline, the
matching that optimizes profit can be found via weighted bipartite matching. We present a (random-
ized) online algorithm with competitive ratio ln(pmax− pmin) + 1, which we show is the best possible.
A simpler algorithm has ratio twice this, and can be used even if expiration times are not known.
These algorithms build on analysis of [EYFKT92] for the one-way-trading problem.4 We also show
how online learning results [LW94, FS96, BB00] can be used to produce algorithms with even stronger
guarantees in certain stationary settings.

• Maximize liquidity. Liquidity maximization is important for a marketplace for several reasons. The
success and reputation of an electronic marketplace is often measured in terms of liquidity, and this
affects the (acquisition) value of the party that runs the marketplace. Also, liquidity attracts buyers
and sellers to the marketplace; after all, they want to be able to buy and sell.

We analyze three common measures of liquidity: 1) number of trades, 2) sum of the prices of the
cleared buy bids (buy volume), and 3) sum of the prices of the cleared sell bids (sell volume). Under
criterion 1, the goal is to maximize the number of trades made, rather than the profit, subject to not
losing money. We show that a simple greedy algorithm achieves a factor of 2 competitive ratio, if no
money-losing trades are allowed. This can be viewed as a variant on the on-line bipartite matching
problem [KVV90]. Interestingly, we show that if the online algorithm is allowed to subsidize matches
— match money-losing pairs if it has already collected enough money from previous pairs to pay for
them — then it can be 1-competitive with respect to the optimal offline algorithm that is not allowed
subsidy. That is, the ability to subsidize is at least as valuable as knowing the future.

For the problems of maximizing buy or sell volume, we present algorithms that achieve a competitive
ratio of 2(ln(pmax/pmin) + 1) without subsidization. We also present algorithms that achieve a com-
petitive ratio of ln(pmax/pmin)+1 with subsidization with respect to the optimal offline algorithm that
cannot use subsidies. This is the best possible competitive ratio for this setting.

• Maximize social welfare. This objective corresponds to maximizing the good of the buyers and
sellers in aggregate. Specifically, the objective is to have the items end up in the hands of the agents
that value them the most. We obtain an optimal competitive ratio, which is the fixed point of the
equation r = ln pmax

rpmin
. The Greedy algorithm achieves a competitive ratio at most twice this.

Our best algorithms are developed in a more general setting we call the incomplete interval-graph match-
ing problem. In this problem, there are a number of intervals (bids), some of which overlap in time, but only
some of those may actually be matched (because the auctioneer can only match a buy to a sell, because the
prices must be in the correct order, etc.). By addressing this more general setting, one can produce a wide
variety of algorithmic results as corollaries.

Throughout most of the chapter, it is assumed that the agents are truthful, that is, they bid their true
valuations. Later on in Section 2.8, this assumption is removed.

2.2 An Abstraction: Online Incomplete Interval Graphs

In this section we introduce an abstraction of the temporal bidding problem that will be useful for producing
and analyzing optimal algorithms, and may be useful for analyzing other online problems as well.

Definition 2.3 An incomplete interval graph is a graph G = (V, E), together with two functions ti and tf
from V to [0,∞) such that:

4A somewhat related problem is online difference maximization [KT99]. However, in that setting, the focus is on the average
case (bids arrive in a random order) and the goal is to find a single pair of bids whose difference in rank is maximized.
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1. For all v ∈ V , ti(v) < tf (v).

2. If (v, v′) ∈ E, then ti(v) ≤ tf (v′) and ti(v
′) ≤ tf (v).

Call ti(v) the start time of v, and tf (v) the expiration time of v. For simplicity, assume that for all v 6= v′ ∈
V , ti(v) 6= ti(v

′) and tf (v) 6= tf (v′).5

An incomplete interval graph can be thought of as an abstraction of the temporal bidding problem where
the facts that bids come in two types (buy and sell) and have prices attached to them are ignored, and
instead there is just a black box “E” that given two bids v, v′ that overlap in time, outputs an edge if they
are allowed to be matched. The algorithms developed for this generalization will be key subroutines for all
the true problems of interest.

Now consider two problems on incomplete interval graphs: the online edge-selection problem and the
online vertex-selection problem. In the online edge-selection problem, the online algorithm maintains a
matching M . The algorithm sees a vertex v at the time it is introduced (that is, at time ti(v)). At this time,
the algorithm is also told of all edges from v to other vertices which have already been introduced. The
algorithm can now select an edge but only if both endpoints of the edge are alive. Once an edge has been
selected, it can never be removed. The objective is to maximize the number of edges in the final matching,
|M |.

In the online vertex-selection problem, the online algorithm maintains a set of vertices W , with the
requirement that there must exist some perfect matching on W . At any point in time, the algorithm can
choose two live vertices v and v′ and add them into W so long as there exists a perfect matching on W∪{v, v′}.
Note that there need not exist an edge between v and v′. The objective is to maximize the size of W . So,
the vertex-selection problem can be thought of as a less stringent version of the edge-selection problem in
that the algorithm only needs to commit to the endpoints of the edges in its matching, but not the edges
themselves.

It is easy to see that no deterministic online algorithm can achieve a competitive ratio less than 2 for the
edge-selection problem.6 A simple greedy algorithm achieves this ratio:

Algorithm 2.4 (Greedy) When a vertex is introduced, if it can be matched, match it (to any one of the
vertices to which it can be matched).

Theorem 2.5 The Greedy algorithm achieves a competitive ratio of 2 for the edge-selection problem.

Proof: Consider an edge (v, v′) in the optimal matching M∗. Define v to be the vertex which is introduced
first, and v′ to be the vertex which is introduced second. Then the algorithm will match either v or v′. In
particular, if v is not matched before v′ is introduced, then v′ will be matched (either to v or some other
vertex). Therefore, the number of vertices in the online matching M is at least the number of edges in M∗,
which means |M | ≥ |M∗|/2.

For the vertex-selection problem, we show the following algorithm achieves a competitive ratio of 1. That
is, it is guaranteed to find (the endpoints of) a maximum matching in G.

Algorithm 2.6 Let W be the vertices selected so far by the algorithm. When a vertex v is about to expire,
consider all the live unmatched vertices v′, sorted by expiration time from earliest to latest. Add the first pair
{v, v′} to W such that there exists a perfect matching on W ∪ {v, v′}. Otherwise, if no unmatched vertex v′

has this property, allow v to expire unmatched.

Theorem 2.7 (Main Theorem) Algorithm 2.6 produces a set of nodes having a perfect matching M which
is a maximum matching in G.

5All our results can be extended to settings without this restriction, and where ti(v) may equal tf (v). This is accomplished
by imposing an artificial total order on simultaneous events. Among the events that occur at any given time, bid introduction
events should precede bid expiration events. The introduction events can be ordered, for example, in the order they were
received, and so can the expiration events.

6Consider the following scenario: vertex u expires first and has edges to v1 and v2. Then, right after u expires, a new vertex
w arrives with an edge to whichever of v1 or v2 the algorithm matched to u.
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The proof of Theorem 2.7 appears in Section 2.11. The core of the proof is to show that if W is the set
of selected vertices, then at all times the following invariants hold:

H1: For any expired, unmatched vertex w, there does not exist any untaken vertex w′ such that there is
a perfect matching on W ∪ {w, w′}. (An untaken vertex is a vertex that has been introduced but not
matched.)

H2: For any matched vertex w, there does not exist an untaken vertex w′ such that there is a perfect
matching on W ∪ {w′} − {w} and tf (w) > tf (w′).

H3: For any two unexpired vertices w, w′ ∈W , there exists no perfect matching on W − {w, w′}.

The first invariant says that the algorithm is complete: it lets no matchable vertex expire, and expired
vertices do not later become matchable. The second and third invariants say that the algorithm is cautious.
The second invariant says that the algorithm favors vertices which expire earlier over those which expire
later. The third invariant states that the algorithm only matches vertices that it has to: no subset of the
set of vertices chosen has a perfect matching and contains all of the expired vertices7.

Since an untaken vertex is a vertex which has been introduced but not matched, no untaken vertices exist
at the start of the algorithm. Also, W is empty. Therefore, these invariants vacuously hold at the start.

Three events can occur: a vertex is introduced, a vertex expires without being matched, or a vertex expires
and is added with some other vertex to W . It is established in Section 2.11 that if all the invariants hold
before any of these events, then they hold afterwards as well. If the first invariant holds at the termination
of the algorithm, then no pair could be added to the set selected. The augmenting path theorem [Ber57]
establishes that the selected set is therefore optimal. A full proof appears in Section 2.11.

2.3 Profit Maximization

In this section we show how the above results can be used to achieve an optimal competitive ratio for
maximizing profit.

The first step is to convert the profit maximization problem to an incomplete interval graph problem
by choosing some θ to be the minimum profit which the auctioneer will accept to match a pair. So, when
translating from the temporal bidding problem to the incomplete interval matching problem, the auctioneer
inserts an edge between a concurrent buy bid b and a sell bid s if and only if p(b) ≥ p(s) + θ.

The Greedy algorithm (Algorithm 2.4) then corresponds to the strategy: “whenever there exists a pair of
bids in the system that would produce a profit at least θ, match them immediately.” Algorithm 2.6 attempts
to be more sophisticated: first of all, it waits until a bid is about to expire, and then considers the possible
bids to match to in order of their expiration times. (So, unlike Greedy, this algorithm needs to know what
the expiration times are.) Second, it can choose to match a pair with profit less than θ if the actual sets of
matched buy and sell bids could have been paired differently in hindsight so as to produce a matching in
which each pair yields a profit of at least θ. This is not too bizarre since the sum of surpluses is just the sum
of buy prices minus the sum of sell prices, and so doesn’t depend on which was matched to which.

Define M∗(Gθ) to be the maximum matching in the incomplete interval graph Gθ produced in the
above manner. Then, from Theorem 2.5, the greedy edge-selection algorithm achieves a profit of at least
1
2θ|M∗(Gθ)|. Applying Algorithm 2.6 achieves surplus of at least θ|M∗(Gθ)|.

So how should the auctioneer choose θ? If θ is deterministically set to 1, then the number of matched
pairs will be large, but each one may produce little surplus. If θ is deterministically set any higher than 1,
it is possible the algorithm will miss every pair, and have no surplus even when the optimal matching has
surplus.

Instead, as in [EYFKT92] and similar to the Classify-and-Randomly-Select approach [LT94, ABF96]
(see also [GPS00]), we will choose θ randomly according to an exponential distribution. Specifically, for all

7The paraphrasing of this last point is a bit more extreme than the others, but it turns out that if there exists a perfect
matching on W and a perfect matching on W ′ ⊂ W , then there exists two vertices v, v′ ∈ W − W ′ such that there is a perfect
matching on W − {v, v′}.
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x ∈ [1, pmax − pmin], let

Pr[θ ≤ x] =
ln(x) + 1

ln(pmax − pmin) + 1
,

where Pr[θ = 1] = 1
ln(pmax−pmin)+1 . Observe that this is a valid probability distribution. Let OPT be the

surplus achieved by the optimal offline algorithm.

Lemma 2.8 If θ is chosen from the above distribution, then E[θ|M∗(Gθ)|] ≥ OPT
ln(pmax−pmin)+1 .

Corollary 2.9 The algorithm that chooses θ from the above distribution and then applies Greedy to the
resulting graph achieves competitive ratio 2(ln(pmax − pmin) + 1). Replacing Greedy with Algorithm 2.6
achieves competitive ratio ln(pmax − pmin) + 1.

In Section 2.6 we prove a corresponding lower bound of ln(pmax − pmin) + 1 for this problem.

Proof (of Lemma 2.8): Focus on a specific pair (b, s) matched by OPT. Let Rθ(b, s) = θ if p(b)−p(s) ≥ θ
and Rθ(b, s) = 0 otherwise. Observe that θ|M∗(Gθ)| ≥

∑

(b,s)∈OPT Rθ(b, s) because the set of pairs of profit
at least θ matched by OPT is a legal matching in the incomplete interval graph. So, it suffices to prove that
E[Rθ(b, s)] ≥ (p(b)− p(s))/(ln(pmax − pmin) + 1).

To prove this, first observe that for x > 1, d
dx Pr[θ ≤ x] = 1

x(ln(pmax−pmin)+1) . So,

E[Rθ(b, s)] = Pr[θ = 1] +

∫ p(b)−p(s)

1

xdx

x(ln(pmax − pmin) + 1)

=
p(b)− p(s)

ln(pmax − pmin) + 1
.

One somewhat strange feature of Algorithm 2.6 is that it may recommend matching a pair of buy and
sell bids that actually have negative profit. Since this cannot possibly improve total profit, the auctioneer
can always just ignore those recommendations (even though the algorithm will think that the auctioneer
matched them).

2.4 Liquidity Maximization

The focus of this section is the online maximization of the different notions of liquidity: number of trades,
aggregate price of cleared sell bids, and aggregate price of cleared buy bids.

2.4.1 Maximizing the Number of Trades

Suppose that instead of maximizing profit, the auctioneer’s goal was to maximize the number of trades made,
subject to the constraint that each matched pair have non-negative profit. This can directly be mapped into
the incomplete interval graph edge-matching problem by including an edge for every pair of buy and sell bids
that are allowed to be matched together. So, the greedy algorithm achieves competitive ratio of 2, which is
optimal for a deterministic algorithm (see Section 2.6.3).

However, if the online algorithm can subsidize matches (match a pair of buy and sell bids of negative
profit if it has already made enough money to pay for them) then the auctioneer can use Algorithm 2.6,
and do as well as the optimal solution in hindsight that is not allowed subsidization. Specifically, when
Algorithm 2.6 adds a pair {b, s} to W , the auctioneer can match b and s together, subsidizing if necessary.
The auctioneer knows that it always has enough money to pay for the subsidized bids because of the property
of Algorithm 2.6 that its set W always has a perfect matching. The auctioneer is guaranteed to do as well
as the best offline algorithm which is not allowed to subsidize, because the offline solution is a matching in
the incomplete interval graph.
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2.4.2 Maximizing Buy or Sell Volume

A different important notion of liquidity is the aggregate size of the trades.

Definition 2.10 Given a matching M the buy-volume is

∑

(b,s)∈M

p(b).

The sell-volume is
∑

(b,s)∈M

p(s).

If the auctioneer wishes to maximize buy volume without subsidization, the auctioneer can use an algo-
rithm based on the greedy profit algorithm.

Algorithm 2.11 Choose a buy price threshold θ at random. Specifically, for all x ∈ [pmin, pmax], let

Pr[θ ≤ x] =
ln(x) + 1

ln(pmax/pmin) + 1
and let

Pr[θ = 1] =
ln(pmin) + 1

ln(pmax/pmin) + 1
.

When a buy bid b is introduced, if p(b) ≥ θ, and there exists an untaken, unexpired sell bid that can be
matched without subsidy, match them. When a sell bid s is introduced, if there exists an untaken, unexpired
buy bid b such that p(b) ≥ θ and the bids can be matched without subsidy, match them.

This algorithm achieves a competitive ratio of 2(ln(pmax/pmin)+1). The proof follows that of Lemma 2.8.
If the online algorithm is allowed to use subsidization, then the auctioneer can use Algorithm 2.6 as follows.

Algorithm 2.12 Choose a buy price threshold θ at random according to the distribution in Algorithm 2.11.
Convert the online problem into an incomplete interval graph. For each bid b, insert a vertex with an interval
[ti(b), tf (b)]. If a buy bid b and a sell bid s can be matched without subsidy, and p(b) ≥ θ, add an edge between
their respective vertices.

Run Algorithm 2.6 on the constructed graph. If Algorithm 2.6 chooses a buy bid b and a sell bid s, match
them. (If p(b) < p(s), then this match involves a subsidy.)

This achieves a competitive ratio of ln(pmax/pmin) + 1 with respect to the offline algorithm which does
not use subsidy. This is the best ratio that can be achieved (the proof is by threat-based analysis similar to
that in Section 2.6.1).

Maximizing sell volume is analogous to maximizing buy volume. The best competitive ratio we know
without using subsidy is 2(ln(pmax/pmin)+1). The best achievable with subsidy against an offline algorithm
not allowed to use subsidy is ln(pmax/pmin) + 1.

2.5 Maximizing Social Welfare

Maximizing social welfare means maximizing the sum of the valuations of the people who are left with an
item, that is, matched buyers and unmatched sellers. If B′ is the set of buy bids that were matched, and S′

is the set of sell bids that were unmatched, then the term which the auctioneer wishes to maximize is:

∑

b∈B′

p(b) +
∑

s∈S′

p(s).
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Equivalently, if M is the auctioneer’s matching, and S is the set of all sell bids, then what the auctioneer
wishes to maximize is:

∑

(b,s)∈M

(p(b)− p(s)) +
∑

s∈S

p(s).

Note that the second term cannot be affected by the algorithm (because of the assumption that the bids are
predetermined). Furthermore, adding a constant to the offline and online algorithms’ objective values can
only improve the competitive ratio. Therefore, Corollary 2.9 immediately implies the auctioneer can achieve
a competitive ratio of ln(pmax − pmin) + 1. However, the auctioneer can in fact do quite a bit better, as
shown in the following theorem.

Theorem 2.13 There exists an online algorithm for maximizing social welfare that achieves a competitive
ratio r that is the fixed point of the equation:

r = ln
pmax

rpmin
.

Furthermore, this is also a lower bound. Note that this competitive ratio is at most ln(pmax/pmin).

We prove the lower bound in Section 2.6. The basic idea of the algorithm is described here the full description
and analysis is in Section 2.13.

The basic idea is to follow the approach used by Lavi and Nisan [LN04] for the case of auctions, and to
select a price threshold at random according to a specific distribution. All trades occur at this price: if a
buy bid is below the price, it is ignored, and if a sell bid is above the price, it is ignored. Unlike the case
of auctions, however, multiple sell bids mean that the auctioneer will also have to decide which unignored
sell bids to match. As we will show, one can achieve the optimal competitive ratio by using Algorithm 2.6
together with an appropriate probability distribution on the threshold. In fact, Section 2.13 contains a more
general result that applies to suboptimal online matching algorithms as well, such as the Greedy algorithm.
This is useful because the Greedy algorithm is incentive-compatible (see Section 2.8.1). Thus the auctioneer
can achieve incentive-compatibility while remaining within a factor of 2 of the optimal competitive ratio.
For a full analysis, see Section 2.13.

2.6 Lower Bounds on Competitive Ratios

This section establishes that our analysis is tight for these algorithms. Specifically, no algorithm can achieve
a competitive ratio lower than ln(pmax − pmin) + 1 for the profit maximization problem, no algorithm can
achieve competitive ratio lower than the fixed point of r = ln pmax

rpmin
for social welfare, and no deterministic

algorithm can achieve a competitive ratio better than 2 for the trade volume maximization problem without
subsidization. We also show that no randomized algorithm can achieve a competitive ratio better than
4/3 for the trade volume maximization problem without subsidization, though we believe this is a loose
bound. Furthermore, on this problem it is impossible to achieve a competitive ratio better than 3/2 without
taking into consideration the expiration times of the bids. Also, we prove that the greedy profit-maximizing
algorithm does not achieve a competitive ratio better than 2(ln(pmax − pmin) + 1) (that is, the analysis of
this algorithm is tight).

2.6.1 A Threat-Based Lower Bound for Profit Maximization

In this analysis, we prove a lower bound for the competitive ratio of any online algorithm by looking at a
specific set of temporal bidding problems. Even if the algorithm knows that the problem is in this set, it
cannot achieve a competitive ratio better than ln(pmax − pmin) + 1. This is very similar to the analysis of
the continuous version of the one-way trading problem in [EYFKT92].

For this analysis, assume pmin = 0. Consider the situation where you have a sell bid at 0 that lasts until
the end. First, there is a buy bid at a, and then a continuous stream of increasing buy bids with each new
one being introduced after the previous one expired. The last bid occurs at some value y. Define D(x) to be
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the probability that the sell bid has not been matched before the bid of x dollars expires. Since it is possible
there is only one buy bid, if one wanted to achieve a competitive ratio of r, then D(a) ≤ 1− 1

r . Also, define
Y (y) to be the expected profit of the algorithm. The ratio r is achieved if for all x ∈ [a, pmax], Y (x) ≥ x/r.
Observe that Y ′(x) = −D′(x)x, because −D′(x) is the probability density at x.

Observe that one wants to use no more probability mass on a bid than absolutely necessary to achieve
the competitive ratio of r, because that probability mass is better used on later bids if they exist. Therefore,
for an optimal algorithm, D(a) = 1− 1

r , and Y (x) = x/r. Taking the derivative of the latter, Y ′(x) = 1/r.
Substituting, 1/r = −D′(x)x. Manipulating, D′(x) = − 1

rx . Integrating:

D(y) = D(a) +

∫ y

a

D′(x)dx

= 1− 1

r
− 1

r
ln
∣

∣

∣

y

a

∣

∣

∣
.

For the optimal case, the probability mass should be exhausted just as y approaches pmax. Therefore:

D(pmax) = 1− 1

r
− 1

r
ln
∣

∣

∣

pmax

a

∣

∣

∣
= 0

r = ln
pmax

a
+ 1.

Thus, setting a to 1, and shifting back by pmin, one gets a lower bound of ln(pmax − pmin) + 1.

2.6.2 Greedy Profit Maximization
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Figure 2.3: On this example, the greedy algorithm achieves a competitive ratio of 2(ln(pmax − pmin) + 1),
by with a very small probability matching b and s.

The following scenario shows that our analysis of the greedy profit algorithm is tight. Imagine that a buy
bid for $2 is introduced at 1:00 (and is good forever), and a sell bid for $1 is introduced at 1:30 (that is also
good forever). At 2:00, another buy bid for $2 is introduced, which expires at 3:00. At 3:01, another sell-bid
for $1 is introduced. In this scenario, the optimal offline algorithm achieves a profit of $2 (matching the first
buy bid to the last sell bid, and vice versa).

With a probability of 1 − 1
ln(pmax−pmin)+1 , θ > 1, and the greedy algorithm ignores all of the bids.

Otherwise (θ = 1), the greedy algorithm matches the first two bids for a profit of 1 and then cannot match
the second two. Therefore, the expected reward is 1

ln(pmax−pmin)+1 compared to an optimal of 2.
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Figure 2.4: Here, either s′ or s will arrive, but not both. Therefore, it is impossible to guarantee a competitive
ratio higher than 1/2 with a deterministic algorithm.

2.6.3 Lower Bound for Maximizing the Number of Trades

Here we establish that no deterministic algorithm can achieve a competitive ratio lower than 2 for maximizing
the number of trades without subsidization. Also, no randomized algorithm can achieve a competitive ratio
lower than 4/3. Furthermore, without observing the expiration times, it is impossible to achieve a competitive
ratio less than 3/2.

Imagine a sell bid s∗ for $1, is introduced at 1:00 and will expire at 2:00. At 1:01, a buy bid b is introduced
for $3, and will expire at 3:00. At 1:02, a buy bid b′ is introduced for $2, and will expire at 4:00.

There are two possible sell bids that can be introduced: either a sell bid s for $2.5 at 2:30, or a sell bid
s′ for $1.5 at 3:30. Observe that b can match s, and b′ can match s′. So if s is to appear, s∗ should match
b′, and if s′ is to appear, s∗ should match b. But when s∗ expires, the online algorithm does not know which
one of s and s′ will appear. So while a randomized algorithm can guess the correct match to make with a
probability of 1/2, the deterministic algorithm must make a decision of which to take before the adversary
chooses the example, and so it will choose the wrong match.
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Figure 2.5: Here, b and s will either both expire at 2:00 or both expire at 7:00.

Without observing the expiration times, it is impossible achieve a competitive ratio below 3/2. Imagine
that a sell bid is introduced at 1:00 PM for one dollar, and a buy bid is introduced at 1:30 PM for 2 dollars.
Should these be matched? Suppose an algorithm A matches them with probability p by 2:00 PM. If p ≤ 2/3,
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then they expire at 2:00 PM and no other bids are seen and the expected reward is less than or equal to
2/3 when it could have been 1. If p > 2/3, then the bids last all day. Moreover, there is another buy bid
from 3:00 PM to 4:00 PM for 4 dollars and another sell bid from 6:00 PM to 6:00 PM for 1 dollar. If the
first two bids were unmatched, then there is the possibility of a profit of 2 whereas the expected reward of
the algorithm is (1)p + 2(1 − p) ≤ 4/3. Therefore, no algorithm has a competitive ratio better than 3/2 on
these two examples. See Figure 2.5.

2.6.4 Lower Bound for Maximizing Social Welfare

Consider the derivation of the price threshold distribution given in Section 2.13. When α = 1, then N∗(T ) =
Nalg(T ) (see Section 2.13 for definitions). Suppose that the sequence described in Section 2.6.1 is observed.
For this sequence, the reward of the algorithm exactly equals RT (s), where s is the single sell bid. Therefore,
the price threshold distribution is optimal for this sequence, and no algorithm8 can achieve a competitive
ratio lower than the fixed point of the equation:

r = ln
pmax

rpmin
.

2.7 Combining Algorithms Online

The algorithm of Corollary 2.9 begins by picking a threshold θ from some distribution. It turns out that
under certain reasonable assumptions described below, the auctioneer can use standard online learning results
to do nearly as well as the best value of θ picked in hindsight. This does not violate the optimality of the
original algorithm: it could be that all thresholds perform a log factor worse than OPT. However, one can
imagine that in certain natural settings, the best strategy would be to pick some fixed threshold, and in
these cases, the modified strategy would be within a (1 + ε) factor of optimal.

The basic idea of this approach is to probabilistically combine all the fixed-threshold strategies using the
Randomized Weighted Majority (also called Hedge) algorithm of [LW94, FS96], as adapted by [BB00] for
the case of experts with internal state. In particular, at any point in time, for each threshold θ, one can
calculate how well the auctioneer would have done had it used this threshold since the beginning of time as a
pair (profitθ, stateθ), where profitθ is the profit achieved so far, and stateθ is the set of its current outstanding
bids. For example, one might find that had the auctioneer used a threshold of 5, it would have made $10
and currently have live bids {b1, b2, s1}. On the other hand, had the auctioneer used a threshold of 1, it
would have made $14 but currently have no live unmatched bids.

In order to apply the approach of [BB00], one needs to be able to view the states as points in a metric
space of some bounded diameter D. That is, the algorithm must be able to move from stateθ1

to stateθ2
at

some cost d(stateθ1
, stateθ2

) ≤ D. This will be true given the following assumption:9

Assumption: There is some a priori upper bound B on the number of bids alive at any one time.

We now claim that under this assumption one can view the states as belonging to a metric space of
diameter D ≤ Bpmax. Specifically, suppose the overall “master” algorithm tells the auctioneer to switch
from threshold θ1 to θ2. The auctioneer then conservatively only match buy/sell pairs if they are both in
stateθ2

(and have profit at least θ2). This guarantees that at worst the auctioneer makes B fewer matches
than it would have if it were in stateθ2

, and therefore, at worst the auctioneer’s profit is Bpmax less.

Now someone can plug in the Randomized Weighted-Majority (Hedge) algorithm to get the following
theorem.

8The competitive ratio of Lavi and Nisan [LN04] is lower than this because they compare their algorithm to the offline
Vickrey auction, not the optimal offline algorithm.

9This assumption can be weakened a bit and still allow the results to go through.



2.8 Strategic Agents 27

Theorem 2.14 Under the assumption above, for any ε > 0 (ε is given to the algorithm), the auctioneer can
achieve an expected gain at least

max
θ

[

(1− ε)profitθ −
2Bpmax

ε
log N

]

,

where N is the number of different thresholds.

The proof follows the exact same lines as [BB00] (which builds on [LW94, FS96]). Technically, the analysis
of [BB00] is given in terms of losses rather than gains (the goal is to have an expected loss only slightly worse
than the loss of the best expert). For completeness, we give the proof of Theorem 2.14 from first principles
in Section 2.12.

2.8 Strategic Agents

Up until this point of the chapter, it has been assumed that agents bid truthfully. Each agent has one
time interval during which it wants to trade and its valuation stays constant in that interval. This section
discusses bidding strategies that are more sophisticated in either of two ways. First, an agent may bid
strategically, that is, it might submit a bid that differs from its true valuation. To address this, we present
an incentive-compatible algorithm for social welfare maximization. Second, we consider the case of agents
whose bid values are allowed to change over time. We show that the Greedy profit maximization algorithm
maintains its competitive ratio even in this more difficult setting.

2.8.1 An Incentive-Compatible Mechanism for Maximizing Social Welfare

We design an algorithm that is incentive-compatible in dominant strategies. That is, each agent’s best
strategy is to bid truthfully regardless of how others bid. Bidding truthfully means revealing one’s true
valuation. Observe that because in a double auction it is impossible to be efficient in general [MS83], the
online VCG mechanism of [FP02] will not work in this domain.

Assume that each bidder wants to buy or sell exactly one item. Also assume that there is one window
of time for each agent during which the agent’s valuation is valid (outside this window, a seller’s valuation
is infinite, and a buyer’s valuation is negative infinity). For example, the window for a seller might begin
when the seller acquires the item, and ends when the seller no longer has storage space. A buyer’s window
might begin when the buyer acquires the space to store the item. Also assume that within this window, the
valuation of the item to the buyer or seller is constant. This is similar to the assumptions made in [Por04]
in the online scheduling domain.

First, consider a simpler setting with no temporal aspects. That is, everyone makes bids upfront to buy
or sell the item. In the mechanism, the auctioneer first decides a price T at which all trades will occur, if
at all. The auctioneer then examine the bids and only consider sell bids below T and buy bids above T . If
there are more sell bids than buy bids, then for each buy bid, the auctioneer select a random seller with a
valid bid to match it to (this is different from selecting a random sell bid if some sellers submitted multiple
bids). The auctioneer does the reverse if there are more buy bids than sell bids.

Now, there are three factors that affect the expected reward of an agent:

1. The agent’s valuation for the item. This is fixed before the mechanism begins, and cannot be modified
by changing the strategy.

2. The price of a possible exchange. This is set upfront, and cannot be modified by changing the strategy.

3. The probability that the agent is involved in an exchange.

The last factor is the only one that the agent has control over. For a buyer, if its valuation is below the
price of an exchange, then the buyer does not wish to exchange, and can submit one bid at its true valuation,
and it will have zero probability of being matched.
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The more interesting case is when the agent’s valuation is above the trading price. Now, the agent wishes
to maximize the probability of getting to trade. If the other agents submit at least one fewer buy bid above
T than the number of sell bids below T , then the agent is guaranteed a trade. On the other hand, if there
are as many or more buy bids than sell bids, then the agent would not be guaranteed to purchase an item.
Regardless of how many bids the agent submits, it will only have as much of a chance as any other buyer.
So, the agent loses nothing by submitting a single bid (at its true valuation).

A similar argument applies to sellers. Therefore, all of the agents are motivated to bid truthfully.10 An
important aspect of this is that the trading price does not depend on the bids.

This technique can be applied to the online problem.

Algorithm 2.15 Select a price threshold T at random before seeing any bids. Reject any sell bids above T ,
and any buy bids below T . If at any time, there are more remaining unmatched buy bids than sell bids, then
match a buy bid to a random seller (not a random sell bid). If there are more remaining unmatched sell bids
than buy bids, then match a sell bid to a random buyer (not a random buy bid). If there are an equal number
of remaining unmatched buy and sell bids, match all of them.

Under this algorithm, each agent is motivated to bid its true price. Furthermore, no agent can benefit
from submitting multiple bids or from only bidding for a fraction of its window.

This algorithm is an instance of the Greedy algorithm, because it always matches two bids when it can.
For each pair in the optimal matching (where the buy bid is above the price threshold and sell bid is below
the threshold), the above algorithm will select at least one bid. If the first bid introduced is not there when
the second bid arrives, then it was matched. If the first bid still remains when the second bid arrives, then
(since either all buy bids or all sell bids are selected), one bid or the other bid is selected from the pair. This
implies that the competitive ratio for the Greedy social welfare maximizing algorithm applies.

2.8.2 Incentive Compatibility for Maximizing Liquidity or Profit

We do not know if there exists an incentive-compatible algorithm that achieves a good competitive ratio for
liquidity or profit. Such an algorithm would have to be drastically different from the algorithm described
above. Imagine one sets a price of all transactions before any bids are seen (perhaps selecting the price from
a distribution). Now suppose that only one buy and sell bid, separated by a dollar, are submitted. Then
if and only if the price threshold is between the buy and sell bid will any profit be made. Since the buy
bid can be anywhere between pmax and pmin + 1, in the worst case selecting a good price is achieved with
probability at most (pmax − (pmin + 1))−1. So, no algorithm of this form can achieve a competitive ratio
better than this for either liquidity or profit maximization.

2.9 When Bids Depend on the Algorithm’s Actions: Stronger No-
tions of Competitive Ratio

So far in this chapter we have used the usual framework for competitive analysis, in which the algorithm’s
performance is compared to the optimal offline algorithm on the same request sequence. However, if the
event stream (bids) that the algorithm sees may depend on the algorithm’s past choices (e.g., think of a
bidder who increases his buy bid if he hasn’t been matched after a certain amount of time) then this notion
does not reflect the ratio of the auctioneer’s performance to the best it could have done. In other words, if
the auctioneer had behaved differently it might have made a lot more profit because it would have seen a
different sequence of bids.11

10This scheme is vulnerable to coalitions: if for a buyer b and a seller s, p(b) > p(s) > T , then b has a motivation to pay s

to decrease his offered price to below T , such that b can receive the item. If it is assumed there are no side payments, such
problems do not occur.

11This is a different (though related) issue than the notion of an oblivious versus adaptive adversary. In the adaptive-adversary
model, the bid sequence may depend on the algorithm’s actions, but the algorithm’s performance is still compared to the optimal
in hindsight on the same request sequence.
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If one allows arbitrary dependence of future bids on the algorithm’s actions, any online algorithm will
fail miserably under this stronger notion of competitive ratio. To see this, imagine that in the beginning
of the sequence, there are several buy bids, and one sell bid. One of the buy bids is special because if it is
matched, then there will be many more bids submitted, and if it is not matched, there will be no more bids
submitted. The optimal offline algorithm will match this special buy bid and end up making a huge profit,
but the online algorithm will not know which one of the buy bids is special.

However, surprisingly there are some natural dependencies that can be handled. Suppose that an agent
is interested in buying or selling a single unit, but instead of giving one bid for it, the agent gives several
bids over time (at most one bid active at a time) until the agent buys or sells the unit. For example, a
buyer might put in a bid for $100, and then if that bid has not been matched by time t1, replace that with
a bid for $200. So, if the online algorithm matches the $100 bid, then it never sees the $200 one. A natural
example of this is plane tickets. Mary wants to go on a flight, but does not want to pay what the flight is
worth to her. So she first puts in a low bid, and then gradually increases that bid over time, removing the
bid if she does not receive a flight before she has to commit to the trip. Similarly, the airlines might also
vary the price of a single seat on a plane over time.

We show that a competitive ratio of 2(ln(pmax − pmin) + 1) for profit maximization can still be achieved
in this setting by using the Greedy algorithm described earlier in this chapter.

The nature of the online graph is different in this model. The auctioneer can still represent the bids as
vertices and the matches as edges. If there is a single agent interested in a single unit, only one vertex will
be used to represent all of that agent’s bids (which differ based on when they are active and on price). This
will guarantee that the agent does not buy or sell more than one item. If there is, at some time, a buy bid
made by agent b for pr(b) and a sell bid made by agent s for pr(s) where pr(b) ≥ pr(s), then an edge from b
to s is inserted into the graph. Because a single vertex can represent multiple bids at different prices, there
may be different edges between two vertices at different times. Also, two vertices may enter, and at a later
time an edge may appear between them.

The algorithm remains the same: the auctioneer chooses a random profit threshold T according to the
same distribution as before and only include edges representing trades that achieve profit level at least T .
The algorithm selects from the edges greedily as they appear. This is still guaranteed to get a matching at
least half as large as optimal. To see this, observe that at least one vertex from every edge in the optimal
matching is selected by the algorithm. When an edge arrives, either one of the vertices has already been
taken, or both are free. If both are free, they will be matched to each other, or at least one of them will be
matched to another edge that happened to be introduced simultaneously. Thus, after an edge is introduced,
at least one of its vertices has been selected.

This technique also works for maximizing liquidity. However, maximizing social welfare in this setting
is a bit trickier. One problem is that it is not totally clear how social welfare should be defined when the
valuations of the participants change with time. If only the buyers’ valuations change with time, then one
natural definition of social welfare for a matching M is

∑

b∈B′

pM (b) +
∑

s∈S′

p(s),

where B′ is the set of matched buy bids, S′ is the set of unmatched sell bids, and pM (b) is the value of
b’s bid at the time the match was made. In that case, the Greedy algorithm still achieves its near-optimal
competitive ratio. This is perhaps surprising since the online algorithm is at an extra disadvantage, in that
even if it magically knew which buyers and sellers to match, it still would need to decide exactly when to
make those matches in order to maximize social welfare.

2.10 Lemmas on Matchings*

This section contains the proofs of some lemmas required for the proof of the main theorem in Section 2.11.
Some standard facts and definitions from graph theory will be used; for a review, see [Koz91]. Paths will
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be represented as sets of edges, although sometimes it will be easier to write them as a sequence of vertices.
V (P ) is the set of vertices of a path P . Some well known lemmas will also be used:

Lemma 2.16 Given W ⊂ V , a perfect matching M on W , and v, v′ ∈ V − W , if there exists some
augmenting path P with respect to M from v to v′, then M ⊕ P is a perfect matching on W ∪ {v, v′}.

Lemma 2.17 The symmetric difference of two matchings M and M ′ consists of alternating paths and
alternating cycles with respect to M .

Lemma 2.18 A vertex v ∈ V is the endpoint of an alternating path in the symmetric difference of two
matchings M and M ′ if and only if it is in V (M)⊕ V (M ′).

Proof: Suppose a vertex is in V (M) ⊕ V (M ′). Then it has an incident edge in either M or M ′, but not
both. Hence, it can only have one incident edge in M ⊕M ′, making it an endpoint of an alternating path.

Suppose a vertex is at the endpoint of an alternating path in M ⊕M ′. Then it has one edge in M ⊕M ′.
Observe that if it has an odd number of edges incident to it in M ⊕M ′, the number of edges in M to it
plus the number of edges in M ′ to it is also odd. But since the latter is bounded by zero and two, it is one.
Therefore, the vertex cannot be in both V (M) and V (M ′).

Augmenting paths capture some of the local properties of matchings. But they do not capture how to
remove elements from a matching, or how to replace an element. Since these are important concepts in the
online setting, we introduce some other types of paths. These paths have properties very similar to those of
augmenting paths.

Definition 2.19 An abridging path with respect to a matching M is an alternating path whose first and
last edges are in M . A replacement path with respect to M is an alternating path whose first edge is in
M , and whose last endpoint is not in V (M).

Lemma 2.20 Given v, v′ ∈ W , and a perfect matching M on W , if there exists some abridging path P with
respect to M from v to v′, then M ⊕ P is a perfect matching on W − {v, v′}.

The proof is similar to the proof of Lemma 2.16.

Lemma 2.21 Given v ∈ W and v′ ∈ V − W , and a perfect matching M on W , if there exists some
replacement path P with respect to M from v to v′, then M ⊕ P is a perfect matching on W ∪ {v′} − {v}.

The proof is similar to the proof of Lemma 2.16.

Lemma 2.22 Suppose W and W ′ are subsets of V , and there exists a perfect matching on W and a perfect
matching on W ′, then there exists a partition of W ⊕W ′ into sets of size two:

{{a1, b1}, {a2, b2}, . . . , {ak, bk}},

such that for all 1 ≤ i ≤ k, there exists a perfect matching on W ⊕ {ai, bi}.

Proof: Define M to be a perfect matching on W and M ′ to be a perfect matching on W ′. Then M ⊕M ′

consists of a set of alternating paths and cycles. Here, the only concerns are the paths. Since these paths
only begin and end at points in W ⊕W ′, one can partition W ⊕W ′ where each set is the set of endpoints
of a path in M ⊕M ′. Consider a set in this partition {a, b}, where P is the path between the two elements
of the set. There are three possibilities:

1. Both vertices are in W ′ −W . Then P is an augmenting path, and M ⊕ P is a perfect matching on
W ∪ {a, b} = W ⊕ {a, b}.

2. One vertex is in W − W ′ and one vertex in W ′ − W . In this case, the path P is a replacement
path. Without loss of generality, assume a ∈ W − W ′. Then M ⊕ P is a perfect matching on
W ∪ {b} − {a} = W ⊕ {a, b}.
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3. Both vertices are in W −W ′. The first and last edges are not in M ′, because a and b are not in W ′.
Also, the first and last edges are in M ⊕M ′ ⊆ M ∪M ′. Therefore, the first and last edges are in M ,
and P is an abridging path. M ⊕ P is a perfect matching on W − {a, b} = W ⊕ {a, b}.

Corollary 2.23 If W ⊆ V has a perfect matching, but it is not one of the largest sets that has a perfect
matching, then there exists v, v′ ∈ V −W such that W ∪ {v, v′} has a perfect matching.

2.11 Proof of Theorem 2.7 (Main Theorem)*

Assume W is the set of selected vertices. Recall that if t is the current time, we say that a vertex w is
expired if tf (w) < t, we say w is unmatched if w /∈ W , and we say w is untaken if ti(w) ≤ t and w /∈ W .
Define H1,H2, and H3 as follows:

H1: For any expired, unmatched vertex w, there does not exist any untaken vertex w′ such that there is a
perfect matching on W ∪ {w, w′}.

H2: For any matched vertex w, there does not exist an untaken vertex w′ such that there is a perfect
matching on W ∪ {w′} − {w} and tf (w) > tf (w′).

H3: For any two unexpired vertices w, w′ ∈W , there exists no perfect matching on W − {w, w′}.

Let H denote the conjunction of the three invariants H1, H2, and H3. It will be proven that if these invariants
of the algorithm hold before an event occurs, they will hold after the event. The possible events that can
occur are a vertex being introduced, expiring without being matched, or expiring and being added.

Lemma 2.24 If H holds before a vertex ŵ is introduced, H holds after the event.

Proof: The proofs for all three parts of H are below.

H1: Consider w to be an expired, unmatched vertex. For contradiction, assume that M is a perfect matching
on W ∪ {w, ŵ}. Define v such that (ŵ, v) ∈ M . Observe that tf (v) > ti(ŵ), so v has not expired.
Define M ′ = M − {(ŵ, v)}. Then, M ′ is a perfect matching on W − {v} + {w}. Since w has expired
and v has not expired, tf (w) < tf (v). This contradicts the inductive hypothesis H2.

H2: Suppose that w ∈ W and tf (w) > tf (ŵ). Suppose for contradiction there is a perfect matching M for
W ∪ {ŵ} − {w}.
Define v such that (ŵ, v) ∈ M . Observe that tf (v) > ti(ŵ), so v has not expired. Neither has w,
since tf (w) > tf (ŵ) > ti(ŵ). However, M − (ŵ, v) is a perfect matching on W − {w, v}. This is a
contradiction of H3.

H3: This cannot have any effect.

Lemma 2.25 If H holds before a vertex w expires without being matched, H holds after the event.

Proof: Proofs for all three parts of H are below.

H1: Suppose w′ is an untaken vertex. We need to prove that there does not exist a perfect matching on
W ∪ {w, w′}. There are two cases:

(a) Assume w′ expired. By H1 (switching the roles of w and w′), we already know there is no perfect
matching on W ∪ {w, w′}.

(b) Suppose w′ is not expired. Then, if W ∪{w, w′} had a perfect matching, then w would have been
matched.
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H2,H3: This cannot have any effect.

Lemma 2.26 If H holds before a vertex v expires and is added with v′, H holds after the event.

Proof: Proof for all three parts of H are below.

H1: Suppose w is an expired, unmatched vertex, and w′ is an untaken vertex. A proof by contradiction is
below that there does not exist a perfect matching on W ∪ {v, v′, w, w′}.
Observe that there exists a perfect matching on W . If there existed a perfect matching on W ∪
{v, v′, w, w′}, then by Lemma 2.22 one of the following conditions holds:

(a) There exists a perfect matching on W ∪ {v′, w}. This would contradict H1.

(b) There exists a perfect matching on W ∪ {v, w}. This would contradict H1.

(c) There exists a perfect matching on W ∪ {w, w′}. This would contradict H1.

H2: Consider an arbitrary vertex w in W ∪ {v, v′}, and an arbitrary untaken vertex w′. Assume that
W ∪ {v, v′, w′} − {w} is a perfect matching. It must be proven that tf (w′) ≥ tf (w).

(a) w = v. Then W ∪ {v, v′, w′} − {w} = W ∪ {v′, w′}. So by H1, w′ has not expired. Then
tf (w′) ≥ tf (w), because w is just expiring.

(b) w = v′. Then W ∪ {v, v′, w′} − {w} = W ∪ {v, w′}. So by H1, w′ has not expired. Thus if
tf (w) > tf (w′), then w′ would have been added instead of w.

(c) w ∈ W . Then by Lemma 2.22 applied to W and W ∪ {v, v′, w′} − {w}, one of the following
conditions holds:

i. W ∪ {v} − {w} and W ∪ {v′, w′} have perfect matchings. Then by H1, w′ has not expired,
and tf (w) < tf (v), so w has expired.

ii. W ∪ {v′}− {w} and W ∪{v, w′} have perfect matchings. Then by H1, w′ has not expired, so
tf (w′) ≥ tf (v′). Also, tf (w) ≤ tf (v′).

iii. W ∪ {w′} − {w} has a perfect matching. Then by H2, tf (w′) ≥ tf (w).

H3: A vertex v expires and is added with v′. Suppose that w, w′ ∈ W ∪{v, v′}. Assume that W ∪ {v, v′}−
{w, w′} has a perfect matching. It must be proven that w or w′ has expired. Consider three cases:

(a) w = v. Then w has expired.

(b) w = v′. Then W ∪ {v, v′} − {w, w′} = W ∪ {v} − {w′}. Thus by H2, tf (v) ≥ tf (w′), so w′ has
already expired.

(c) w ∈ W . Then by Lemma 2.22 applied to W and W ∪ {v, v′} − {w, w′}, one of the following
conditions holds:

i. W ∪ {v} − {w} has a perfect matching. By H2, tf (v) ≥ tf (w), so w has expired.
ii. W ∪ {v} − {w′} has a perfect matching. By H1, tf (v) ≥ tf (w′), so w′ has expired.
iii. W − {w, w′} has a perfect matching. By H3, either w or w′ has expired.

Proof (of Theorem 2.7): A proof by induction is below that H holds at the termination of the algorithm.
First, observe that H1, H2, and H3 are all properties of introduced vertices, so when there are no vertices
introduced, they cannot be violated. This is the base case. Inductively, by Lemmas 2.24, 2.25, 2.26, if
these properties hold before an event, they hold afterward as well. Thus, H holds at the termination of the
algorithm. Specifically, H1 implies that there exists no {v, v′} ⊆ V −W such that W ∪ {v, v′} has a perfect
matching. By Corollary 2.23, W is one of the largest sets with a perfect matching.
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2.12 Proof of Theorem 2.14 (Combining Algorithms Online)*

The setting is there are N algorithms (“experts”) and the auctioneer can switch from one to another at cost
≤ D. At each time step (introduction of a bid) the algorithms experience gains between 0 and gmax. (we
use gmax instead of pmax because we will be using “p” for probabilities). At any point in time, the overall
“master” algorithm will be a probability distribution over the N base algorithms. Specifically, the auctioneer
can use the standard multiplicative-weights algorithm [LW94, FS96] as follows:

• Begin with each base algorithm having a weight wi = 1. Let W =
∑

i wi. Our probability distribution
over base algorithms will be pi = wi/W .

• After each event, update the weights according to the rule:

wi ← wi(1 + ε̂)gi/gmax ,

where gi is the gain of the ith algorithm, and ε̂ is defined below. Then update the probability distri-
bution pi accordingly. Note: if ~p is the old distribution and ~p′ is the new distribution, one can do this
such that the expected movement cost is at most D

2 L1(~p, ~p′) where L1(~p, ~p′) is the L1 distance between
the two distributions.

Theorem 2.27 If one uses ε̂ = εgmax

2D , and under the assumption that D ≥ gmax, the above algorithm
produces an expected gain at least

OPT(1 − ε)− 2D

ε
lnN,

where OPT is the gain of the best of the N base algorithms in hindsight.

Proof: Suppose the algorithm currently has weights w1, . . . , wn, observes a gain vector g1, . . . , gn and then
updates the weights to w′

1, . . . , w
′
n, where w′

i = wi(1 + ε̂)gi/gmax . Let W =
∑

i wi and let W ′ =
∑

i w′
i. Let

pi = wi/W and let p′i = w′
i/W ′.

The expected gain of the online algorithm from this event is
∑

i pigi, which we will call Et if this is event
t. The expected cost due to moving from probability distribution ~p to distribution ~p′ is at most

D
∑

i:p′

i
>pi

(p′i − pi) ≤
D

W

∑

i:p′

i
>pi

(w′
i − wi) ≤

D

W
(W ′ −W ) = D

(

W ′

W
− 1

)

,

where the first inequality above uses the fact that W ′ ≥ W , and the second inequality uses the fact that
w′

i ≥ wi for all i, not just the ones such that p′i > pi.
The next step in the analysis is to upper bound W ′ as a function of W . To do this, one can use the fact

that for x ≤ 1, (1 + α)x ≤ 1 + xα. So,

W ′ ≤
∑

i

wi

(

1 +
ε̂gi

gmax

)

= W
∑

i

pi

(

1 +
ε̂gi

gmax

)

= W

(

1 +
ε̂

gmax
Et

)

.

This upper bound on W ′ is useful in two ways. First, one can now analyze the expected movement cost:
D(W ′/W − 1) ≤ D( ε̂

gmax
Et). So, the total expected gain for event t is at least Et(1− Dε̂

gmax
).

Second, one can use this to give an upper bound on the total weight Wfinal at the end of the process:

Wfinal ≤ N
∏

t

(

1 +
ε̂

gmax
Et

)

.

This upper bound can be compared to a lower bound

Wfinal ≥ (1 + ε̂)OPT/gmax ,
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which is simply the final weight of the best of the N algorithms. Taking logs on the upper and lower bounds
to Wfinal and using the fact that ln(1 + x) ∈ [x− x2/2, x] for x ∈ [0, 1]:

(OPT/gmax)(ε̂− ε̂2/2) ≤ (OPT/gmax) ln(1 + ε̂) ≤ lnN +
∑

t

ln(1 +
ε̂

gmax
Et) ≤ lnN +

ε̂

gmax

∑

t

Et.

So,
∑

t

Et ≥ OPT(1 − ε̂/2)− gmax

ε̂
lnN.

Finally, using the fact that the total expected gain Galg (with movement costs included) is at least (1 −
Dε̂

gmax
)
∑

t Et, and using the definition ε̂ = εgmax/(2D):

Galg ≥ OPT(1− ε̂/2)(1− ε/2)− (1− ε/2)
2D

ε
lnN ≥ OPT(1− ε)− 2D

ε
lnN.

2.13 Proof of Bound for Global Welfare (Theorem 2.13)*

Before the algorithm is described, a few definitions must be stated. First, associate utilities from trades
with specific sell bids. Define S to be the set of sell bids. Fix an optimal matching M∗. Define Ropt : S →
[pmin, pmax] to be the valuation of the person who received the item from seller s in the optimal matching.
If s trades with b, then Ropt(s) = p(b). If s does not trade, then Ropt(s) = p(s).

For an arbitrary matching M , define Mb,s̄(T ) to be the number of pairs in M where the buy bid is greater
than or equal to T and the sell bid is less than T . Similarly, define Mb,s(T ) to be the number of pairs in
M where the buy bid and sell bid are both greater than or equal to T . Define Ms(T ) to be the number of
unmatched sell bids greater than or equal to T .

This section focuses on algorithms which work by first selecting a price threshold and then reducing
the resulting problem to an incomplete interval graph and applying some algorithm. Suppose that α is the
reciprocal of the competitive ratio of the underlying online incomplete interval graph matching algorithm,
that is, α is a lower bound on the fraction of potential trades actually harnessed. So, for any optimal online
matching algorithm (such as Algorithm 2.6), α = 1. For the Greedy algorithm, α = 0.5.

Define N∗(T ) to be the number of agents (buyers and sellers) that end up with an item in the optimal
matching M∗, and have valuation greater than or equal to T . So,

N∗(T ) = |{Ropt(s) ≥ T |s ∈ S}| = M∗
b,s̄(T ) + M∗

b,s(T ) + M∗
s (T ).

Let Malg be a matching obtained by an online algorithm. Define Nalg(T ) to be the number of agents
(buyers and sellers) that end up with an item in the matching Malg, and have valuation greater than or
equal to T . Then,

Nalg(T ) ≥ αM∗
b,s̄(T ) + M∗

b,s(T ) + M∗
s (T ) ≥ α N∗(T ).

The social welfare achieved by the algorithm is at least

Nalg(T ) T + (|S| −Nalg(T ))pmin = (Nalg(T ))(T − pmin) + |S|pmin.

Because T > pmin, this is an increasing function of Nalg(T ), so the algorithm achieves a social welfare of at
least

(α N∗(T ))(T − pmin) + |S|pmin.

Arithmetic manipulation yields

N∗(T )[αT + (1 − α)pmin] + (|S| −N∗(T ))pmin.
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By substitution:

|{Ropt(s) ≥ T |s ∈ S}| [αT + (1 − α)pmin] + |{Ropt(s) < T |s ∈ S}| pmin.

By defining RT (s) = αT + (1 − α)pmin when Ropt(s) ≥ T and RT (s) = pmin otherwise, the algorithm is
guaranteed to achieve a social welfare of at least

∑

s∈S

RT (s).

So, we have divided the social welfare on a per sell bid basis. In the rest of this section it is described
how to design a price threshold distribution so as to maximize the competitive ratio associated with one
sell bid in the worst case, similar to that in [EYFKT92]. This will complete the online algorithm for social
welfare maximization.

We will attempt to achieve a competitive ratio of r for some arbitrary r ≥ 1. Define D(x) to be the
probability that the threshold is above x. Define y = Ropt(s) and z = Ralg(s). Observe that if y = rpmin,
then even if z = pmin, the competitive ratio is achieved. Therefore, D(rpmin) = 1. Also, there is no
need for the threshold to be above pmax, so D(pmax) = 0. Also, define Y (y) to be the expected value
of Ralg(s) if Ropt(s) = y. The ratio r is achieved if for all x ∈ [rpmin, pmax], Y (x) ≥ x/r. Note that
Y ′(x) = −D′(x)(αx + (1− α)pmin), because −D′(x) is the probability density at x.

Observe that one wants to use no more probability mass on a bid than absolutely necessary to achieve the
competitive ratio of r, because that probability mass is better used on later bids if they exist. In other words,
the algorithm should hold out as long as possible. Therefore, for an optimal algorithm, D(rpmin) = 0, and
Y (x) = x/r. The derivative of the latter is Y ′(x) = 1/r. Substitution yields 1/r = −D′(x)(αx+(1−α)pmin),
so D′(x) = − 1

r(αx+(1−α)pmin) . Integration yields

D(y) = 1 +

∫ y

rpmin

D′(x)dx

= 1−
∫ y

rpmin

dx

r(αx + (1− α)pmin)

= 1− 1

rα

[

ln

∣

∣

∣

∣

y +
1− α

α
pmin

∣

∣

∣

∣

− ln

∣

∣

∣

∣

rpmin +
1− α

α
pmin

∣

∣

∣

∣

]

.

The probability mass should expire as y approaches pmax. Therefore,

D(pmax) = 1− 1

rα

[

ln

∣

∣

∣

∣

pmax +
1− α

α
pmin

∣

∣

∣

∣

− ln

∣

∣

∣

∣

rpmin +
1− α

α
pmin

∣

∣

∣

∣

]

= 0.

r =
1

α

[

ln

(

pmax +
1− α

α
pmin

)

− ln

(

rpmin +
1− α

α
pmin

)]

.

Solving the above equation for r will result in the optimal competitive ratio, that can then be used to
calculate the price threshold probability distribution D(x).

So, for Algorithm 2.6,
r = ln pmax − ln rpmin

For the Greedy algorithm,
r = 2 [ln(pmax + pmin)− ln((r + 1)pmin)] .

In order to better understand this competitive ratio, one can derive an upper bound on it:

r ≤ 1

α

[

ln

(

pmax +
1− α

α
pmin

)

− ln

(

pmin +
1− α

α
pmin

)]

≤ 1

α
[ln pmax − ln pmin] .
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So, for Algorithm 2.6,
r ≤ ln pmax − ln pmin.

For the Greedy algorithm,
r ≤ 2 [ln pmax − ln pmin] .

2.14 Conclusions and Open Questions

In this chapter, we derived bounds on competitive ratios for a number of basic online market clearing
problems. These include the objectives of maximizing profit, maximizing liquidity according to several
natural measures, and maximizing social welfare. Using the abstraction of online incomplete interval graphs,
we obtained algorithms that achieve best-possible competitive ratios for most of these problems, and for the
rest we are within a factor of two of the best that is achievable online. For the objective of maximizing
number of trades, we demonstrate that by allowing the online algorithm to subsidize matches with profits
from previous trades, we can perform as well as the optimal offline algorithm without subsidy. Thus the
ability to subsidize trades is at least as powerful as knowing the future, in this context.

It is a somewhat unfortunate fact about competitive analysis that no algorithm can guarantee better
than a logarithmic ratio for maximizing profit. This lower bound occurs because the performance of the
online algorithm is being compared to an incredible goal: the best performance of any arbitrary algorithm
in hindsight. However, if the comparison class is a fixed, finite set of algorithms (such as the class of all
fixed-threshold algorithms), and if the data is not too “bursty”, then one can use online learning results to
achieve a 1 + ε ratio, as we demonstrate in Section 2.7.

We also consider the issue of incentive compatibility, and show that the Greedy algorithm is incentive-
compatible for the goal of maximizing social welfare. Thus, losing only a factor of 2 in competitive ratio the
auctioneer can achieve this desirable property. In fact, we show the Greedy algorithm is quite robust in that
it maintains its competitive ratio even if bidders are allowed to modify their bids over time, making the task
even harder on the online algorithm.

Open problems

As mentioned in Section 2.8.2, we do not know any incentive-compatible algorithm that achieves good
competitive ratio for maximizing liquidity or profit. We know that such an algorithm would need to have a
different character than the ones in this chapter.

There is also a gap between the best upper bound (2) and the best lower bound (3/2) for algorithms for
the incomplete interval graph vertex-selection problem when expiration times are unknown. Algorithm 2.6
achieves an optimal matching but it needs to know the expiration times in advance. Related to this question,
we do not know if the Greedy algorithm can be improved upon for the setting of Section 2.9 in which a
bidder may submit a bid whose value varies with time.

There has also been recent interest in offline clearing algorithms for combinatorial exchanges where a
bid can concern multiple distinguishable items (possibly multiple units of each) [San02, SS00, SSGL02]. A
bid could state, for example, “I want to buy 20 IBM, buy 50 DELL, sell 700 HP, and get paid $500”. As
we transformed the online clearing problem to an online matching problem in an incomplete interval graph,
the online problem of maximizing profit or liquidity in a combinatorial exchange can be transformed to
the problem of finding a matching on an incomplete interval hypergraph online. While we can show with a
simple example that a maximum matching cannot be achieved online in the hypergraph problem, it might
be possible to achieve a matching with an expected size no less than half of the maximum one.

One direction of future research is to extend these results to settings where there is a broker who can
carry inventory of the commodity (sell short and long) rather than simply deciding which bids to match.



Chapter 3

Incentive Compatible Bilateral
Trading

Like in Chapter 2, we consider double auctions, but we focus on the motivations of the agents (i.e. we do
not assume they will be truthful) in a situation with only one buyer and one seller. The broker wants to
maximize his own expected profit, in terms of fees, for the exchange. We show that in this setting, the more
the broker can rely on the knowledge the buyer and seller have about the market, the more profit it can
make. We analyze the worst-case competitive ratio of the ex ante expected profit of the broker with respect
to the ex ante expected profit of the optimal broker aware of the distributions from which the buyer’s and
seller’s values are to be drawn. The best competitive ratio is Θ(vmax) if the broker uses a direct mechanism,
and Θ(log(vmax)) if it uses a mechanism which for one agent is always truthful. There exists a complex
indirect mechanism with a Bayes-Nash equilibrium that obtains as much profit as the optimal broker. We
also show a simple, parameterized mechanism that we believe achieves 1− ε of the possible revenue.

3.1 Introduction

Imagine you have a web site, and you want to have people come to your site to buy and sell some item (e.g.
Playstations). Suppose that you were unfamiliar with the Playstation market, with the prices for which they
were typically bought and sold. What is a good way to make money from the exchange? This is one of
the problems studied in the last chapter, but then it was assumed that the agents would bid truthfully. In
this chapter, we consider the case that agents bid strategically, based on their knowledge of the distribution
the other bidders are drawn from. We assume just a single buyer and a single seller, and consider how an
uninformed broker (who does not know the distributions the buyer and seller are drawn from) can design
a mechanism that rational buyers and sellers will be motivated to participate in. We will measure how
much utility the broker obtains when the agents behave rationally, and compare that to how much utility
an informed broker (who does know the distributions) could expect to obtain in the same situation.

Specifically, in this chapter we will consider a single buyer and a single seller attempting to trade a single
item through a broker, called a bilateral trade mechanism. Both buyer and the seller have their own private
values for the item. Often, we will talk about the optimal broker, a broker that knows a lot about the
buyer and seller, and given certain restrictions, maximizes its own expected profit. However, we will assume
that the brokers we design have minimal knowledge about the buyer and the seller. We will make a minimal
assumption that the broker knows a range [0, vmax] in which all agents’ values for the item will be, but does
not know the values or the distributions from which the values were drawn. We will compare our algorithms
to the optimal broker that knows the distributions from which the buyer and seller were selected, but not
necessarily the values the particular buyer and seller have for the item. We will also make the assumption
that the optimal broker can obtain in expectation at least 1 dollar from the buyer and the seller.

We will show how the broker can leverage the knowledge that the buyer and the seller have about the
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market in order to improve its own revenue. Particularly, we will introduce three mechanisms. The first
mechanism is a direct mechanism, and the buyer and seller are both motivated to reveal their true values
for the item. This should be easy for them to do, but the broker will not make much profit. The second
mechanism is a partially direct mechanism, where the buyer is motivated to reveal its true value. The seller
has a more complex task, and thus must know something about the buyer to perform optimally. The broker
obtains a reasonable amount in the partially direct mechanism. Finally, in the last mechanism, which is
an indirect mechanism, both agents will have to figure out a “reserve price” for the other agent. In this
mechanism, both agents will need to determine a complex strategy: however, the broker will obtain almost
as much revenue as a broker would who knew from what distributions the buyer and seller were drawn.
We show that each of these mechanisms is within a constant factor of the optimal competitive ratio in
the mechanisms’ respective settings. However, the fundamental reason that these results are interesting is
because that the optimal competitive ratios in these settings are all drastically different from each other.

In Section 3.2, we will go over the formalisms required to study this problem, and the definition of
competitive ratio used. In Section 3.3, we will introduce the mechanisms we will study in this chapter and
give the results about their performance, as well as the optimal performance of each type of mechanism. In
the remainder of the chapter, we will prove the results, and then conclude.

3.2 Formal Setting

In this section, we describe the setting formally. We will model the buyer and seller as traditional quasilin-
ear agents, and when the distributions are unknown, restrict ourselves to mechanisms that are ex-interim
incentive compatible and ex-interim individually rational for any pair of distributions for the buyer and the
seller (see below for definitions). The formalism here is based on that in [Mye81].

3.2.1 Model of the Agents

The standard risk-neutral, quasilinear model will be used for the agents in this chapter. Define y1 to be the
total amount of money received by the seller. Assume that the seller has some type v1, the seller’s value of
the item. Assume the seller has a quasilinear preference: that is, the utility of the seller is y1− v1 if there is
a trade, and y1 if there is no trade.

The buyer is modeled similarly. Define y2 to be the total amount of money paid by the buyer. Assume
that the buyer has some type v2, the buyer’s value of the item. Assume the buyer has a quasilinear preference:
that is, the utility of the buyer is v2 − y2 if there is a trade, and −y2 if there is no trade.

Without loss of generality, assume that 0 ≤ v1 ≤ vmax and 0 ≤ v2 ≤ vmax. Assume that the seller and
buyer were each drawn from a distribution: that is, the value v1 was drawn from some cumulative distribution
F1 : [0, vmax]→[0, 1], and the value v2 was drawn from some cumulative distribution F2 : [0, vmax]→[0, 1].
Define f1 and f2 to be the associated probability density functions. For each i, assume that there is some
subinterval [ai, bi] ⊆ [0, vmax], called the support of Fi, where fi is finite and strictly positive, and outside
of which fi is zero. This is so that previous results derived in [Mye81] and [MS83] will be valid.

In addition to such distributions, we will consider distributions where there exists some t1 such that
Pr[v1 = t1] = 1 and/or some t2 such that Pr[v2 = t2] = 1. These can be considered as the limit of a
sequence of distributions of the above form (like the Dirac δ-function). Often, worst-case analysis will be
easiest with such distributions. We will describe all expectations in terms of the density functions, and the
discrete analogs of these should be clear. Although before the mechanism begins the value v1 is known only
to the seller, and v2 is known only to the buyer, it is assumed that F1 and F2 are known to the buyer and
the seller, but not to the broker. Assume that the buyer and seller are risk-neutral, in that at any moment,
they choose the action which maximizes their expected gain.

Often we will consider the situation at three key times: ex ante, before the agents types are drawn, ex
interim, after the agents know their own types, but before the mechanism begins, and ex post, after the
mechanism has completed.
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3.2.2 Model of the Mechanisms

A mechanism is basically an algorithm involving input from rational agents. Often, it can be represented by
simply stating what each of the agents will do at each step. Let Θ1 be the set of all strategies for the seller.
Let Θ2 be the set of all strategies for the buyer. Let ∆([0, vmax]) be the set of all distributions of the form
described above. Formally, a mechanism for a bilateral trade can be represented by five functions:1

1. p : Θ1 ×Θ2→[0, 1], the probability that there will be a trade dependent on the strategies of the buyer
and the seller,

2. x1 : Θ1 ×Θ2→R, the expected2 amount of money received by the seller,

3. x2 : Θ1 ×Θ2→R, the expected payment of the buyer,

4. σ1 : [0, vmax]×∆([0, vmax])2→Θ1, a “suggested” strategy for the seller to use, given its value and the
distributions over buyers and sellers,3 and

5. σ2 : [0, vmax]×∆([0, vmax])2→Θ2, a “suggested” strategy for the buyer to use.

Given θ1 ∈ Θ1 is used by the seller and θ2 ∈ Θ2 is used by the buyer, then the seller receives in expectation
x1(θ1, θ2), the buyer pays in expectation x2(θ1, θ2), and the trade occurs4 with probability p(θ1, θ2). Thus,
the expected values of the agents in this case are:

U1(t1, θ1, θ2) = x1(θ1, θ2)− t1p(θ1, θ2)

U2(t2, θ1, θ2) = t2p(θ1, θ2)− x2(θ1, θ2)

If F1 is the distribution of the seller, F2 is the distribution of the buyer, v1 is the value of the seller, and v2

is the value of the buyer, then the mechanism suggests the seller will use a strategy σ1(v1, F1, F2) and the
buyer will use a strategy σ2(v2, F1, F2). Will the agents be motivated to participate in the mechanism and
use these strategies? One can evaluate the expected value of participating in the mechanism for each agent
given that the other agent is using the strategy σi with a value drawn from Fi:

U1(t1, θ1, F1, F2) =

∫ vmax

0

U1(t1, θ1, σ2(s2, F1, F2))f2(s2)ds2

U2(t2, θ2, F1, F2) =

∫ vmax

0

U2(t2, σ1(s1, F1, F2), θ2)f1(s1)ds1.

Consider the motivations of the buyer and seller. A mechanism is ex-interim individually rational if for
all F1 ∈ ∆([0, vmax]), for all F2 ∈ ∆([0, vmax]), for all possible v1 in the support of F1, and all possible v2 in
the support of F2, for all θ1 ∈ Θ1, and all θ2 ∈ Θ2:

U1(v1, σ1(v1, F1, F2), F1, F2) ≥ 0

U2(v2, σ2(v1, F1, F2), F1, F2) ≥ 0.

Thus, the seller and the buyer are both motivated to participate. A mechanism is ex-interim incentive-
compatible if for all F1, F2, θ1, θ2, v1, v2:

U1(v1, σ1(v1, F1, F2), F1, F2) ≥ U1(v1, θ1, F1, F2)

U2(v2, σ2(v1, F1, F2), F1, F2) ≥ U2(v2, θ2, F1, F2).

1If we were concerned with the ex post results of the mechanism, then we would need to be more precise, considering not
just the expected payment and money received but also the correlation between the actual payment and the probability that
there will be a trade.

2There may be randomness due to either the buyer, the seller, or the mechanism itself.
3For example, in a direct mechanism, σ1(v1, F1, F2) = v1.
4These expectations are not conditioned on whether the trade occurs. Of course, the actual payments will depend on whether

or not a trade occurs.
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Thus, if they play the game, the seller and the buyer are motivated to follow the strategies specified by σ1

and σ2, respectively. Observe that these properties must hold regardless of the distributions F1 and F2.
This is stronger than assumptions traditionally made in the economics literature. However, since the broker
is unaware of the distributions of the buyer and seller, it must make its mechanism compatible with any
distributions.

The broker’s ex-post expected revenue is:

U0(θ1, θ2) = x2(θ1, θ2)− x1(θ1, θ2).

The broker’s ex ante expected revenue is:

U0(F1, F2) =

∫ vmax

0

∫ vmax

0

U0(σ1(s1, F1, F2), σ2(s2, F1, F2))f2(s2)f1(s1)ds2ds1.

In a simple class of mechanisms, called direct mechanisms, σ(v1, F1, F2) = v1 and σ(v2, F1, F2) = v2. The
revelation principle states, given fixed F1 and F2 and an indirect mechanism (p, x1, x2, σ1, σ2) there exists
a direct mechanism (p′, x′

1, x
′
2, σ

′
1, σ

′
2) such that for all v1 in the support of F1, and all v2 in the support of

F2:

x′
1(v1, v2) = x1(σ1(v1, F1, F2), σ2(v2, F1, F2))

x′
2(v1, v2) = x2(σ1(v1, F1, F2), σ2(v2, F1, F2))

p′(v1, v2) = p(σ1(v1, F1, F2), σ2(v2, F1, F2)).

Thus, given the values of the buyer and the seller, the mechanism simply implements the strategies σ1

and σ2. In economics this principle allows researchers to focus solely on direct mechanisms. However, the
revelation principle assumes that the distributions of the buyer and seller are known to the broker. In the
model discussed here, this is not the case. Thus, more complex mechanisms must be analyzed for which the
revelation principle does not hold.

3.2.3 The Optimal Offline Mechanism and the Competitive Ratio

In this chapter, we will compare our performance to the optimal offline mechanism. In other words,
the mechanism that, given knowledge of F1 and F2, maximizes the ex ante expected utility of the broker,
U∗

0 . The constraints of incentive compatibility and individual rationality are identical to before. Now, the
optimal mechanism for maximizing the broker’s revenue can be implemented, as it is described in [MS83].

In order to make it possible to achieve a finite competitive ratio for partial and indirect mechanisms, we
will insist that U∗

0 (F1, F2) ≥ 1. Given an online mechanism M where the utility of the broker is U0(F1, F2),
the worst-case competitive ratio is:

CR(M) = max
F1,F2∈∆([0,vmax])2:U∗

0
(F1,F2)≥1

U∗
0 (F1, F2)

U0(F1, F2)

This represents how many times more revenue the optimal restricted mechanism achieves than the mechanism
we design. We attempt to minimize this number, based on vmax.

3.3 Descriptions of the Mechanisms

The key observation of this chapter is that the only parts of the mechanism capable of observing F1 and
F2 are σ1 and σ2. However, σ1 and σ2 are implemented by the seller and buyer. The extent to which the
agents can, in effect, help implement the mechanism is the degree to which the broker can leverage their
knowledge of the market to obtain more profit. This effect can be studied by looking at three different types
of mechanisms:
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1. Direct mechanisms, where σ1(v1) = v1 for all v1 ∈ [0, vmax], and σ2(v2) = v2 for all v2 ∈ [0, vmax].
Thus, σ1 and σ2 are trivial for the buyer and the seller to construct, and they need no knowledge of
the other agent’s distribution in order to implement the mechanism.

2. Partially direct mechanisms, where either σ1(v1) = v1 for all v1 ∈ [0, vmax], or σ2(v2) = v2 for all
v2 ∈ [0, vmax]. Thus, for example, if σ(v2) = v2 for all v2 ∈ [0, vmax], then the seller only needs to
worry about the complexities of the broker and the distribution of the buyer, not the buyer’s strategy.

3. Indirect mechanisms, where σ1 and σ2 can be arbitrary functions. Thus, both agents must consider
the strategy of the other agent when planning their own strategies.

These three types of mechanisms capture the various degrees of strategizing required of the buyer and seller
by the broker. For all three types, we have developed mechanisms that have competitive ratios that are
within a constant factor of the optimal worst-case competitive ratio. However, the optimal competitive
ratio for each of these domains is drastically different. In this section, we will introduce a mechanism for
each domain, and prove that two of them are ex-interim incentive compatible and ex-interim individually
rational.5

3.3.1 Direct Mechanisms

An example of a direct mechanism is a double reserve price mechanism. Observe that the parameter Z is
known to all agents in advance.

Mechanism 3.1: Double Reserve Price Mechanism
Parameters: A joint probability distribution over [0, vmax]2, Z ∈ ∆([0, vmax]2).
Protocol:

1. The seller states a bid t1.

2. The buyer states an offer t2.

3. The broker selects z1, z2 jointly at random according to Z.

4. If z1 ≥ t1 and z2 ≤ t2, the buyer pays z2 to the broker, and the broker pays z1 to the seller, and
the item is traded.

Seller’s Suggested Strategy: Set t1 = v1.
Buyer’s Suggested Strategy: Set t2 = v2.

Before considering the choice of Z, let us see why the mechanism is ex interim incentive compatible. If
the buyer bids its true value t2 = v2, is the seller motivated to bid t1 = v1? Consider the four possible
outcomes:

1. v2 < z2. Regardless of the bid of the seller, there will be no trade.

2. v2 ≥ z2 and v1 > z1. There will be no trade if the seller is truthful. However, the seller is not interested
in trading the item for z1. Therefore, it can do no better than reveal its true price.

3. v2 ≥ z2 and v1 = z1. The seller is indifferent to trading the item for z1.

4. v2 ≥ z2 and v1 < z1. The seller wants to trade, and will do so if it is truthful.

Thus, regardless of the type of the buyer or the values z1, z2, the seller can do no better than reveal its true
type. Also, observe that in each case, the seller’s value is nonnegative. Thus, it is motivated to participate
in the mechanism. The argument that the mechanism is individually rational and incentive-compatible for
the buyer is similar.

5The indirect mechanism is more complex, and the motivations of the agents in it are discussed in Section 3.4.3
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Now, let us consider Z. In order to obtain a competitive ratio linear in vmax, choose z1 uniformly at
random from [0, vmax − 1/4], and Choose z2 to be z1 + 1/4.

Theorem 3.2 If the prices for the double reserve price mechanism are selected in the above fashion, then
the competitive ratio is no more than 16(vmax − 1/4).

This is not an especially good competitive ratio, but it is not possible to do much better with a direct
mechanism.

Theorem 3.3 It is not possible to achieve a competitive ratio less than bvmaxc+1
3 with a direct mechanism.

The interpretation is clear: no online direct mechanism obtains much revenue. The proof of Theorem 3.2
is in Section 3.4.1, and the proof of Theorem 3.3 is in Section 3.5.1.

3.3.2 Partially Direct Mechanisms

We introduce the following mechanism, where the buyer only needs to reveal its value for the item, but
the seller needs to know the prior on the buyer’s value to maximize its utility. Assume the function F0 :
[0, vmax] → [0, 1] is known to all agents in advance (a good choice of F0 is discussed later in this section).
Define

F̃2(x) = 1− lim
ε→0−

F2(x + ε).

This is the probability that v2 ≥ x.

Mechanism 3.4: Posting Fee Mechanism
Parameters: A right-continuous function, F0 : [0, vmax]→ [0, 1].
Protocol:

1. The buyer tells the broker in private t2.

2. The broker selects a posting fee f according to F0 such that Pr[f ≤ x] = F0(x).

3. The broker reveals the posting fee.

4. The seller has the option to terminate the mechanism at this point.

5. If the seller chooses to continue, it can state a price q and pay the broker f .

6. If t2 ≥ q, then a trade takes place, and the buyer pays the seller q.

Seller’s Suggested Strategy: Terminate mechanism if f > maxq∈[0,vmax] F̃2(q
′)(q′ − v1).

Otherwise, choose q ∈ argmaxq′∈[0,vmax] F̃2(q
′)(q′ − v1).

Buyer’s Suggested Strategy: Set t2 = v2.

A good choice of F0 is described later in this section. This mechanism is a little more difficult to analyze,
because it could be the case that the seller has a negative utility at the end. However, a risk-neutral seller
will be willing to take that risk in order to benefit from the mechanism if its expected utility is nonnegative.

First, we prove that an optimal strategy for the buyer is t2 = v2, regardless of the strategy of the seller.
Consider the four possible outcomes:

1. The seller terminates the auction early. The buyer’s bid is then irrelevant.

2. If t2 < q, then no trade takes place. The buyer would not be interested in the item at a price of q, so
revealing its true price is optimal.

3. If t2 = q, then the buyer is indifferent to trading.
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4. If t2 > q, then a trade takes place. The buyer wants to trade if v2 > q, so revealing its value was the
optimal strategy.

Thus, the buyer is motivated to bid its true value. Clearly, its utility is nonnegative.
We will analyze the strategy for the seller from the end to the beginning, so that we can understand the

effects of the strategy of the seller near the end of the game on the earlier choices of seller at the beginning.
The expected utility of the seller if it accepts the fee and bids q is F̃2(q)(q − v1) − f . Thus, in order to
maximize its profit, the seller should select a price

q∗ = argmax
q∈[0,vmax]

F̃2(q)(q − v1).

Consider when the seller terminates the mechanism early. If the mechanism is terminated early, the seller’s
expected value is zero. If the seller does not terminate the mechanism, it receives:

max
q∈[0,vmax]

F̃2(q)(q − v1)− f.

Define R(v1, F2) = maxq∈[0,vmax] F̃2(q)(q − v1). There are three possibilities:

1. If f > R(v1, F2), then the seller will terminate the mechanism early.

2. If f < R(v1, F2), then the seller is motivated to allow the mechanism to continue.

3. If f = R(v1, F2), then the seller is indifferent. Assume that in this case the seller allows the mechanism
to continue.

Thus, an optimal strategy for the seller is:

1. Terminate the mechanism early if and only if f > R(v1, F2).

2. Choose a price argmaxq∈[0,vmax] F̃2(q)(q − v1).

This strategy and the truthful strategy for the buyer form a Bayesian-Nash equilibrium by construction.
Observe that the expected utility of each agent given its own value for the item is at least zero. One
interesting point raised by this mechanism is that the seller may, after the mechanism is completed, wish
that it hadn’t participated, i.e. the mechanism is not ex-post individually rational. But the seller is still
motivated to participate in the mechanism given all the information it has when the mechanism begins . Thus,
in running such a mechanism, risk-neutral agents would be motivated to participate, so the mechanism is
ex-interim incentive compatible.

In order to obtain a good competitive ratio for this mechanism, we use the distribution we developed in
Section 2.3.

Choose some ε ∈ (0, 1). For all x ∈ [ε, vmax], define:

F0(x) =
ln(x) − ln ε + 1

ln(vmax)− ln ε + 1
.

Theorem 3.5 The posting fee mechanism with the above distribution achieves a competitive ratio of

ln(vmax)− ln ε + 1

1− ε
.

Theorem 3.6 No partially direct mechanism can achieve a worst-case competitive ratio of less than ln(vmax)+
1.

This bound is fairly tight: the difference is based on the fact that the optimal broker may at times achieve
a value below 1, even if its expected revenue is 1. The proof of Theorem 3.5 is in Section 3.4.2, and the proof
of Theorem 3.6 is in Section 3.5.2.
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3.3.3 Indirect Mechanisms

We introduce two indirect mechanisms. One achieves a competitive ratio of 1, and the other attempts to
achieve a lower communication complexity.

Optimal Online Mechanism

One way that a mechanism designer can truthfully extract something that is known to everyone but the
mechanism designer is for the mechanism designer to ask everyone, and then compare their answers.

Mechanism 3.7: Optimal Online Mechanism
Parameters: none
Protocol:

1. The buyer states privately to the broker F ′
1 and F ′

2.

2. The seller states privately to the broker F ′′
1 and F ′′

2 .

3. If F ′
1 6= F ′′

1 or F ′
2 6= F ′′

2 then the mechanism terminates.

4. Otherwise, the broker runs the optimal mechanism of [MS83] with F ′
1 and F ′

2 as inputs for the dis-
tributions of the buyer and the seller, maximizes the broker’s profit subject to individual rationality
and incentive compatibility given F1 = F ′

1 and F2 = F ′
2.

Seller’s Suggested Strategy: State F ′′
1 = F1, F ′′

2 = F2, and be truthful during the final step.
Buyer’s Suggested Strategy: State F ′

1 = F1, F ′
2 = F2, and be truthful during the final step.

Theorem 3.8 There exists an online indirect mechanism that achieves as much revenue in ex ante expec-
tation as the optimal broker.

Proof: Observe that since the optimal offline mechanism is individually rational, if both agents reveal the
same distributions, the utility is non-negative. Neither agent has anything to gain if it lies about F1 and F2

while the other agent tells the truth about F1 and F2, because its utility will then be zero.

One drawback of this mechanism is that it may be difficult or impossible for both agents to communicate
their beliefs to the mechanism. Also, not all Bayesian Nash equilibria for this mechanism achieve an optimal
utility. Suppose that the seller’s value is 0 with a probability 1 and the buyer’s value is 1 with a probability 1.
Then the optimal mechanism achieves a profit of 1. However, in the above mechanism, there exists a second
Nash equilibrium. Suppose that the agents both state that F1(x) = F2(x) = x. Then the broker implements
a mechanism where the agents trade at a price of 1/2, and the broker receives no profit. Therefore, through
a very weak collusion, the mechanism breaks down. Thus, we present a different mechanism that may do
well in this setting.

Profit-Sharing Mechanism

We introduce the following mechanism, where the broker shares a small fraction α of its profit (or loss) with
some randomly chosen agent. α is known to all agents in advance.
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Mechanism 3.9: α Profit-Sharing Mechanism
Parameters: A fraction α ∈ (0, 1).
Protocol:

1. The broker chooses some α ∈ (0, 1)

2. The seller states r2 and t1.

3. The buyer states r1 and t2.

4. The mechanism flips a fair coin.

5. If the coin is heads, then z1 = r1 and z2 = r2 − α(r2 − r1).

6. If the coin is tails, then z2 = r2 and z1 = r1 + α(r2 − r1).

7. If z1 ≥ t1 and z2 ≤ t2, then there is a trade, the buyer pays the broker z2, and the broker pays the
seller z1.

This mechanism attempts to mimic the mechanism in [MS83] for maximizing the broker’s revenue. In
their mechanism, the broker selects a reserve price z1 for the seller based on the value of the buyer and a
reserve price z2 for the buyer based on the value of the seller. However, the broker needs to know F1 and
F2 to properly implement the mechanism in [MS83].

If α was infinitesimally small, then the seller would really care about r1 − z1. Only when it is indifferent
to this direct profit does the seller care about the profit of the broker. However, it is motivated to maximize
the profit of the broker when it is indifferent to this direct profit. Thus, the broker is influencing the
agents to implement the optimal auction for it. The constraints of incentive compatibility and individual
rationality are identical to before. Now, the optimal mechanism for maximizing the broker’s revenue can be
implemented, as it is described in [MS83].

For indirect mechanisms, we have the following two results that suggest that α profit-sharing mechanisms
may be near optimal for sufficiently small α.

Theorem 3.10 Given that Pr[v1 = 0] = 1, then the α profit-sharing mechanism achieves at least 1 − α of
the optimal revenue, for a competitive ratio of 1

1−α .

Theorem 3.11 If F1 and F2 have a positive probability on only a finite number of values, then there exists
an α∗ such that for all α ≤ α∗, the α profit-sharing mechanism achieves at least 1−α of the optimal revenue.

A Pareto-optimal equilibrium is an equilibrium where there exists no equilibrium where the buyer and
the seller both achieve more revenue in expectation. The open problem is:

Open Problem 3.12 Does there exist a pair F1, F2, and a Pareto-optimal equilibrium σ1, σ2, such that the
α profit-sharing mechanism receives in ex ante expectation less than 1− α of the optimal broker’s revenue?

We conjecture that no such Bayes-Nash equilibrium exists.

Conjecture 3.13 If the buyer and the seller choose a Pareto-optimal equilibrium, then the α profit-sharing
mechanism receives in ex ante expectation at least 1− α of the optimal broker’s revenue.

3.4 Proofs of Upper Bounds*

The following property of expectations will be useful in analyzing partially direct and partially indirect
mechanisms. Define I(x) to be the indicator function, to be 1 if x is true and 0 if x is false.

Lemma 3.14 For any random variable X where E[X ] ≥ 1, for all ε ∈ [0, 1],

E[XI(X ≥ ε)] > (1 − ε)E[X ]
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Proof: Observe that
E[XI(X ≥ ε)] + E[XI(X < ε)] = E[X ]

However, it is the case that:
E[XI(X < ε)] < ε < εE[X ]

The lemma follows directly.

This lemma means that if one ignores “small profits” less than ε, the remaining profit of the optimal
broker will be a large portion (1− ε) of its total profit.

3.4.1 Direct Mechanism

Lemma 3.15 The optimal auction mechanism has an expected revenue of less than

U∗
0 (F1, F2) ≤

∫ vmax

0

∫ vmax

0

(s2 − s1)I(s2 ≥ s1)f2(s2)f1(s1)ds2ds1

Proof: Define

U∗
1 (F1, F2) =

∫ vmax

0

U∗
1 (s1, σ

∗
1(s1), F1, F2)f1(s1)ds1

U∗
2 (F1, F2) =

∫ vmax

0

U∗
2 (s2, σ

∗
2(s2), F1, F2)f2(s2)ds2

The possibility for profit in the mechanism comes from the difference between the value of the buyer and
the value of the seller. Observe that

U0(F1, F2)+ U1(F1, F2) + U2(F1, F2) ≤
∫ vmax

0

∫ vmax

0 (s2 − s1)I(s2 ≥ s1)f2(s2)f1(s1)ds2ds1

Also, U1(F1, F2) ≥ 0 and U2(F1, F2) ≥ 0, because the optimal broker is individually rational. Thus, the
bound holds.

Proof (of Theorem 3.2): First, observe from the previous lemma:

U∗
0 (F1, F2) ≤

∫ vmax

0

∫ vmax

0

(s2 − s1)I(s2 ≥ s1)f2(s2)f1(s1)ds2ds1

Observe that U∗
0 (F1, F2) ≥ 1, so the right side is greater than or equal to 1 as well. By Lemma 3.14 with

ε = 1/2:

U∗
0 (F1, F2) ≤ 2

∫ vmax

0

∫ vmax

0

(s2 − s1)I(s2 ≥ s1 + (1/2))f2(s2)f1(s1)ds2ds1

Given v2 ≥ v1+(1/2), there is a probability of v2−v1−(1/4)
vmax−1/4 that z1 ≥ v1 and z2 ≤ v2. Also, v2−v1−(1/2) ≥

(v2− v1)/2. Thus, when v2 ≥ v1 +(1/2), the expected value is greater than 1
4

v2−v1

2(vmax−1/4) , because if z1 ≥ v1

and z2 ≤ v2, then mechanism gets a revenue of 1/4. Therefore:

U0(F1, F2) ≥
∫ vmax

0

∫ vmax

0

s2 − s1

8(vmax − 1/4)
I(s2 ≥ s1 + (1/2))f2(s2)f1(s1)ds2ds1.

The statement of the theorem follows directly.

3.4.2 Partially Direct Mechanisms

Before analyzing the posting fee mechanism, consider a related mechanism, called a reserve price mechanism.
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Reserve Price Mechanism

A reserve price mechanism is of the form:

Mechanism 3.16: Reserve Price Mechanism
Parameters: none
Protocol:

1. The buyer privately sends its type t2 to the broker.

2. The seller selects a price q∗ = R(v1, F2).

3. If t2 ≥ q∗, then the trade takes place, and the buyer pays q∗ to the seller.

By an argument similar to that in Section 3.3.2, the mechanism is incentive compatible and individually
rational.

Lemma 3.17 The reserve-price mechanism maximizes the profit of the seller.

This is a simple case of the result in Section 6 of [Mye81].

Lemma 3.18 Given the seller’s value is v1, the expected profit obtained by the seller in the reserve price
mechanism is no less than the expected profit of the optimal broker.

Corollary 3.19

U0(F1, F2) ≤
∫ vmax

0

R(s1, F2)f1(s1)ds1.

Proof: To see why this is the case, consider the mechanism for the optimal broker. Suppose that the
broker was aware of v1 without having to extract it from the seller. Then the broker would be capable of
achieving the same profit as the seller, by buying the item from the seller at v1 if a trade were to occur.

The Posting Fee Mechanism

Proof (of Theorem 3.5): By the last corollary, the expectation of R(v1, F2) is greater than U∗
0 (F1, F2).

Thus:

E[R(v1, F2)I(R(v1, F2) ≥ ε)] ≥ (1− ε)U∗
0 (F1, F2).

Suppose that R(v1, F2) = R for some R ∈ [ε, vmax]. If the broker chooses a fee f greater than R, it receives
no revenue. If the broker chooses a fee f less than or equal to R, it receives a revenue of f . This is exactly the
domain for which the distribution in Section 2.3 was designed. Normally, the lower bound of the distribution
would be 1. However, ε can be easily scaled up to 1. Due to the scaling, the upper bound on the distribution
becomes vmax

ε , the logarithm of which is ln vmax − ln ε. Thus, we can achieve a fraction 1
ln vmax−ln ε+1 of

R(v1, F2), and at least a fraction 1−ε
ln vmax−ln ε+1 of U∗

0 (F1, F2) in expectation.

3.4.3 Indirect Mechanisms

Lemma 3.20 In the α profit-sharing mechanism, regardless of the strategies of the agents with respect to r1

and r2, it is always a dominant strategy for the seller to declare t1 = v1 and for the buyer to declare t2 = v2.

Proof: This is analogous to the derivation of the incentive compatibility in the double reserve price mech-
anism.
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Deterministic Seller

Lemma 3.21 If Pr[v1 = 0] = 1, and the seller is using the strategy t1 = v1, then in equilibrium the buyer
uses the strategy where t2 = v2 and r1 = 0.

Proof: First, without loss of generality one can assume t1 = v1 and t2 = v2 from the previous lemma.
Consider the two values of the coin.

1. The coin is tails. Then the buyer’s only concern with regards to r1 is to maximize the chance of a
trade. If r1 = 0, then the seller will be willing to trade.

2. The coin is heads. Then t1 ≤ z1 if and only if r1 ≥ 0. If the agents trade, then the lower the value of
r1, the more revenue the buyer achieves. Also, the chance of trade is might be increased when r1 is
decreased (so long as it is still nonnegative). Thus, r1 = 0 is an optimal choice.

Therefore, r1 = 0 is the optimal choice.

Proof (of Theorem 3.10): Observe that the optimal broker’s revenue is

U∗
0 (F1, F2) = R(0, F2) = max

x
xF̃2(x).

By the above lemmas, r1 = 0, v1 = t1, and v2 = t2. The seller earns nothing if the coin is heads. If the coin
is tails, then the seller’s expected profit is αr2F̃2(r2). Thus, the seller chooses r2 = argmaxr∈[0,vmax] F̃2(r).

Returning to the situation where the coin is heads, the buyer will agree to a trade if v2 ≥ r2(1 − α).
Thus, the expected revenue of the broker is:

U0(F1, F2) = (1/2)r2(1− α)F̃2(r2(1− α))

+(1/2)r2(1− α)F̃2(r2)

≥ (1− α)r2F̃2(r2)

From the way the seller selects r2, one can reason:

U0(F1, F2) ≥ (1− α)R(0, F2)

≥ (1− α)U∗
0 (F1, F2)

Discrete Distributions

In order to understand how the α-profit sharing algorithm works on a discrete distribution, the performance
of the optimal broker must first be analyzed.

The optimal broker is basically a combination of two optimal auctions: the optimal auction for some
imaginary seller given the distribution of the buyers, and an optimal reverse auction for some imaginary
buyer given the distribution of the sellers. One way of defining if the optimal broker decides to trade is if
there is some value v such that an imaginary seller with a valuation of v running an optimal auction could
trade with the real buyer, and an imaginary buyer running an optimal reverse auction could trade with the
real seller. We will go deep into the proof for this in the discrete case in Section 3.6, but for now we will just
describe what this means formally.

Assume that the seller has possible values {s1, . . . , sm} = S, where for all i ∈ {1, . . . , m− 1}, si < si+1.
The buyer has possible values {b1, . . . , bn} = B, where for all j ∈ {1, . . . , n− 1}, bj < bj+1. The probability
that the seller has a value s ∈ S is f1(s), and the probability that the buyer has a value b ∈ B is f2(b).
Suppose there is some arbitrary mechanism. By the revelation principle, given that the broker knows the
distributions f1 and f2, the broker can construct an equivalent mechanism that simply requests the types of
the seller and buyer, and has the same probability of trade for every pair of types, and the same distribution
over expected payments for every pair of types.
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Define p(si, bj) to be the probability of a seller of type i trading with a buyer of type j. Define x1(si, bj)
to be the payment given to the seller. Define x2(si, bj) to be the payment taken from the buyer. Observe
that:

U0 =
∑

s∈S,b∈B

(x2(s, b)− x1(s, b)) f1(s)f2(b)

is the profit of the broker. Define

x̄1(s) =
∑

b∈B x1(s, b)f2(b) x̄2(b) =
∑

s∈S x2(s, b)f1(s)
p̄1(s) =

∑

b∈B x(s, b)f2(b) p̄2(b) =
∑

s∈S p(s, b)f1(s)
U1(s) = x̄1(s)− sp̄1(s) U2(b) = bp̄1(b)− x̄2(b)

The mechanism is ex interim incentive-compatible if for all s, s′ ∈ S:

U1(s) ≥ x̄1(s
′)− sp̄1(s

′)

and for all b, b′ ∈ B:
U2(b) ≥ bp̄2(b

′)− x̄2(b
′).

The mechanism is ex interim individually rational if for all s ∈ S, b ∈ B:

U1(s) ≥ 0 and U2(b) ≥ 0.

Thus, the expected gains from trade for agents of any type is nonnegative.
Now, subject to these constraints, we can derive the optimal broker. We begin by thinking about an

imaginary seller who wants to run an auction with the buyers. Informally, we will define (−∞, C2(b)] to
be the set of valuations of sellers who could trade with b as part of an optimal auction. Since we need
to prove this is the form of that set, we begin with a little groundwork. Define F1(si) =

∑i
î=1 f1(sî), and

F2(bj) =
∑j

ĵ=1
f2(sĵ). As before, an imaginary seller with valuation s ∈ (−∞, bn] would choose a reservation

price in the set:
R2(s) = argmax

v∈B
(1− F2(v) + f2(v))(v − s).

This set is nonempty. We can think of a buyer b ∈ [s1, +∞) which could hold a reverse reserve-price auction
with a reserve price in the set:

R1(s) = argmax
v∈S

(1− F1(v) + f1(v))(v − s).

One can consider the set of all imaginary sellers who could trade with a buyer b:

T2(b) = {s ∈ (−∞, bn] : b ≥ min
b′∈R2(s)

b′}.

Now, observe that sellers with a negative value have been included. Thus, for any b, there is a seller with a
sufficiently small value such that it would be willing to trade. Also, there is an upper bound. Thus, one can
find the least upper bound, or supremum:

C2(b) = sup
s∈T2(b)

s.

Moreover, the set T2(b) is an interval (−∞, C2(b)], as we prove here. Observe that if an imaginary seller s is
willing to trade with b, then an imaginary seller with a lower valuation would also be willing to trade. C2(b)
is in T2(b) because imaginary sellers with valuations arbitrarily close to C2(b) are in T2(b), so it must be an
optimal choice for C2(b) to choose a reserve price below b as well6. For the seller, define T1 and C1 similarly.

T1(s) = {b ∈ (−∞, s1] : s ≤ min
s′∈R2(s)

s′}.

6If one fixes the holdout price to be b′, the utility of an imaginary seller is a continuous function of s. Thus, if one continuously
increases the utility of the imaginary seller from a value s′ where it had an optimal utility of b′ to a point s′′ where it had an
optimal utility of b′′, there was some point s′′′ when both b′ and b′′ were optimal.
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C1(s) = inf
b∈T1(s)

b.

It is again the case that T1(s) = [C1(s), +∞). It will be helpful to notice that both C1 and C2 are increasing
functions, because of the nature of reserve price auctions. Now, remember that there should be a trade
between s and b if there exists a valuation v such that an imaginary seller with value v could trade with s
in the optimal auction, and an imaginary buyer with value v could trade with b in the optimal auction. In
other words, s and b should trade if and only if T1(s) ∩ T2(b) 6= ∅, i.e. if C1(s) ≤ C2(b). The optimal broker
is of the form:

Mechanism 3.22: Optimal Discrete Mechanism
Parameters: none
Protocol:

1. The seller privately reveals s.

2. The buyer privately reveals b.

3. Compute C1(s) and C2(b).

4. If C1(s) > C2(b), then no trade occurs.

5. Otherwise, set x1 = maxt1∈S:C1(t1)≤C2(b) t.

6. Set x2 = mint2∈B:C2(t2)≥C1(s).

7. Trade the item.

Seller’s Suggested Strategy: State s = v1.
Buyer’s Suggested Strategy: State b = v2.

Lemma 3.23 Mechanism 3.22 is incentive compatible.

Proof: Observe that, given an arbitrary bid s′ of the seller, then there exists a value b′ such that if the
buyer gives a value greater than or equal to b′, it will trade at b′, and if it gives a value less than b′, it will
not trade. Thus, regardless of the action of the seller, it is motivated to reveal its true value. Similarly, the
seller is motivated to reveals its true value.

Theorem 3.24 The above mechanism achieves the optimal revenue for the broker.

The proof is in Section 3.6.
For all s ∈ S, define M2(s) to be the price a buyer pays to trade with a seller of type s, i.e. the minimum

b ∈ B that trades with s. If no buyer trades with s, define M2(s) to be bn. Define M1(b) to be the price a
seller pays to trade with a buyer of type b. If no seller trades with b, define M1(b) to be s1. Observe that
M1 and M2 are monotonically increasing functions.

The following lemma helps to clarify the meaning of M1 and M2.

Lemma 3.25

M1(b) ∈ argmax
s′∈S

(C2(b)− s′)(F1(s
′))

M2(s) ∈ argmax
b′∈B

(b′ − C1(s))(f2(b
′) + 1− F2(b

′))

Now, this setting is ideal for the α profit-sharing mechanism, because given fixed f1 and f2, the broker
can make α small enough such that any gains from profit-sharing are dominated by ordinary gains.
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Define r2 : S→R such that r2(s) is the declaration of r2 of a seller of type s. Define r1 : B→R such that
r1(b) is the declaration of r1 of a buyer of type b. Assume that the agents bid their values for t1 and t2.

So, before continuing, describe how small α must be. First define the diameter of the sets D(S, B) =
maxb∈B b − mins∈S s. Assume that this is positive, or else the problem is trivial. Also, Define the value
quanta to be smallest difference between values:

QV (S, B) = min
v,v′∈B∪S:v 6=v′

|v′ − v|.

The probability quanta is the smallest probability:

QP (S, B, f1, f2) = min

(

min
s∈S

f1(s), min
b∈B

f2(b)

)

.

Now, define α∗:

α∗ =
QP (S, B, f1, f2)QV (S, B)

D(S, B)

Basically, D is the largest value in the system, and QP (S, B, f1, f2)QV (S, B) is the smallest. So, if α < α∗,
even αD < QP (S, B, f1, f2)QV (S, B).

First, one can establish a simple bound on r1 and r2.

Lemma 3.26 If agents bid their values for t1 and t2, then each seller has an optimal choice for r1 in [b1, bn],
and each buyer has an optimal choice for r2 in [s1, sm].

Proof: Observe that if r1(s) < b1, then s can increase r1(s) to b1, and at least as many trades will occur.
Also, s might increase its gain from trade. If r1(s) > bn, then there will only be a trade only if the coin is
heads. If the coin is heads, then r1(s) can be decreased without loss to the buyer. Thus, r1(s) = bn is no
worse. By a similar argument r2(b) ∈ [s1, sm].

The next few lemmas leverage the constraint on α. The first three lemmas characterize to some degree
how matches are affected by r1 and r2.

Lemma 3.27 If 0 < α < α∗ and for some b ∈ B it is the case that r1(b) ≤ si, and r2(si′) ∈ [b1, bn], then
si′ will never match b if i′ > i.

Proof: If r2(si′) ≤ r1(b), then z1 ≤ si < si′ . If r2(si′) > r1(b), then:

z1 ≤ r1(b) + α(r2(si′)− r1(b))

Since r2(si′ ) ≤ bn, and r1(b) ≥ s1, then:
z1 ≤ r1(b) + αD

Since si′ −QV (S, B) ≥ si:
z1 ≤ si′ −QV (S, B) + αD

Because α < α∗, QV (S, B) > αD. Thus, z1 < si′ , and therefore there will never be a trade.

Lemma 3.28 If 0 < α < α∗ and for some s ∈ S it is the case that r2(s) ≥ bj, and r1(bj′ ) ∈ [s1, sm], then
bj′ will never match s if j′ < j.

The proof is similar to that above.

Lemma 3.29 If 0 < α < α∗, and for all b ∈ B, r1(b) ∈ S and (r1(b) ≤ b or r1(b) = s1), and r1 is weakly
increasing, then for any i ∈ {1, . . . , m}, for any j ∈ {1, . . . , n− 1}, if r2(si) ∈ [si, bj], then for all j′ > j, si

is matched to bj′ with probability 1 if and only if r1(bj′ ) ≥ si.

Proof: The proof is similar to that above. If r1(bj′) ≤ bj′ and r2(si) ≤ bj′ , then z2 ≤ bj′ .
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The following two lemmas will allow a focus on simple behaviors of the two agents.

Lemma 3.30 If 0 < α < α∗, and for all b ∈ B, r1(b) ∈ S, and (r1(b) ≤ b or r1(b) = s1), and r1 is weakly
increasing, then there is a best response for the seller where r2 ∈ B.

Proof: Given some si ∈ S, define j = maxj∈1...n:bj≤r2(si). Define v = r2(si) − bj . A proof below shows
that si does no worse if v = 0. By Lemma 3.28, for all j′ < j, si will not match bj′ , regardless of the value
of v. The case where n = j, v can be made zero by Lemma 3.26. Define U(x) to be utility of si if it selects
r2 = x. There are three different situations, based on r1(bj):

1. r1(bj) < si. Then, it is the case that r1(bj) ≤ si−1. Thus by Lemma 3.27, si never matches bj. By
Lemma 3.29, si will still match the same agents if r2(si) = bj+1.

2. r1(bj) > si. Then, it is the case that r1(bj) ≥ si+1. Observe that if v > 0, then si can only possibly
match bj and receive the value r1(bj) − s1 if the coin is heads, but if v = 0, then si and bj always
match. Also, the gain from v > 0 is only received by the seller if the buyer’s type is greater than bj

and the coin is tails. Thus:

U(bj)− U(v + bj) ≥ (1/2)f2(bj)(r1(bj)− si)− α(1/2)(1− F2(bj))(v)

Since

v < D

r1(bj)− si ≥ si+1 − si

≥ QV (S, B)

f2(bj) ≥ QP (S, B, f1, f2)

1− F2(bj) ≤ 1

It is the case that:

U(bj)− U(v + bj) ≥ (1/2)QP (S, B, f1, f2)QV (S, B) − α(1/2)D

Because α < α∗:
U(bj)− U(v + bj) > 0

Thus, the seller can use v = 0.

3. r1(bj) = si. There are three cases:

(a) If (bj+1 − bj)(1 − F2(bj)) > f2(bj)(bj − si), then U(bj+1) > U(v + bj).

(b) If (bj+1 − bj)(1 − F2(bj)) < f2(bj)(bj − si), then U(bj) ≤ U(v + bj).

(c) If (bj+1 − bj)(1 − F2(bj)) = f2(bj)(bj − si), then U(bj) = U(v + bj) = U(bj+1).

Thus, in these cases, the seller can use bj+1 or bj.

In any situation, there is always a value for r1 ∈ B that is just as good or better than any arbitrary value.

Lemma 3.31 If 0 < α < α∗, and for all s ∈ S, r2(s) ∈ B, and (r2(s) ≥ s or r2(s) = bn), and r2 is weakly
increasing, then there is a best response for the buyer where r1 ∈ S.

The proof is the mirror image of the one above.

Lemma 3.32 If 0 < α < α∗, and the buyer uses a strategy r1(b) = M1(b), then the seller is motivated to
use the strategy r2(s) = M2(s).
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Proof: Consider the motivations of a single seller of type s ∈ S. Observe that M1 is an increasing function
and (M1(b) ≤ b or M1(b) = s1), so that by Lemma 3.30, the optimal strategy for s is to bid t1 = s and
r1 ∈ B. Consider two cases:

1. There exists a b ∈ B where M1(b) = s. Then, by the definition of M2:

M2(s) = min
b∈B:M1(b)=s

b

Now, s will not desire to select any b ∈ B where b < M2(s), because s and b will never trade. It will
never set r2(s) greater than any b where M1(b) > s, because it would not risk losing M1(b)− s profit.
If M1(bn) = s, define b′ = bn, and otherwise define b′ = minb∈B:M1(b)>s b. Thus, if the seller is of type
s, it will play according to:

r2(s) ∈ argmax
v∈B:M2(s)≤v≤b′

(f2(v) + (1− F2(v)))(v − s) (3.1)

Now, by Lemma 3.25:

M2(s) ∈ argmax
v∈B

(f2(v) + (1− F2(v)))(v − C1(s)).

In order to compare these, we bound the maximum value obtainable in (3.1):

max
v∈B:M2(s)≤v≤b′

(f2(v) + (1− F2(v)))(v − s) = max
v∈B:M2(s)≤v≤b′

(f2(v) + (1− F2(v)))(v − s)

Thus, r2(s) can equal M2(s).

2. For all b ∈ B, M1(b) 6= s. Then M2(s) = minb∈B:M1(b)>s b. s will never set r2(s) above M2(s), because
it would not want to lose M1(M2(s)) − s profit. s will never set r2(s) below M2(s), because it can
never match with b < M2(s) regardless of where it sets r2(s). Thus, it is optimal again for r2 to select
M2(s).

Lemma 3.33 If 0 < α < α∗, and the seller uses a strategy r2(s) = M2(s), then the buyer is motivated to
use the strategy r1(b) = M1(b).

The proof is the mirror image of the one above.

Lemma 3.34 If 0 < α < α∗, the seller uses a strategy r2(s) = M2(s), and the buyer uses the strategy
r1(b) = M1(b), then the two agents trade if and only if they would have traded in the optimal mechanism.

Proof: For any b ∈ B, s ∈ S, if M1(b) ≥ s and M2(s) ≤ b, then clearly there will be a match. If not, then
by Lemma 3.27 and Lemma 3.28, they will not be matched.

Proof (of Theorem 3.11): From Lemma 3.32 and Lemma 3.33, if 0 < α < α∗, the agents bid according
to the optimal auction. Also, from Lemma 3.34, they will trade if and only if they would have traded in the
optimal auction. Because an α fraction of the profit of the broker is returned to the buyer or the seller, the
broker receives 1− α of the optimal broker’s profit.

3.5 Proofs of Lower Bounds*

This section contains proofs for lower bounds of the achievable competitive ratios for direct mechanisms
and partially direct mechanisms. These lower bounds require the utilization of the incentive compatibility,
individual rationality, and the ignorance of the distribution of the mechanism that is being analyzed.
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3.5.1 Direct Mechanisms

In [Mye81], the revenue equivalence principle for a seller’s auction states that any two ex interim incentive
compatible mechanisms for the buyers that have the same allocation rule have the same revenue for the seller
(to within an additive constant over all types of buyers). Here, we prove a revenue equivalence principle
for an online direct mechanism in the double auction setting if it is incentive compatible over arbitrary
distributions of the buyer and the seller. In [MS83], they find an optimal mechanism for maximizing the
broker’s revenue if the distributions of the buyer and seller are known. Many of the techniques they use are
applicable here.

Theorem 3.35 If an online direct mechanism is incentive compatible, then for all t1,t2, p(t1, t2) is weakly
decreasing in t1 and weakly increasing in t2, and:

U1(t1, t2) = U1(vmax, t2) +

∫ vmax

t1

p(s1, t2)ds1

U2(t1, t2) = U2(t1, 0) +

∫ t2

0

p(t1, s2)ds2

Corollary 3.36 The utility of the broker is:

U0(t1, t2) = (t2 − t1)p(t1, t2)

−
[

U1(vmax, t2) +

∫ vmax

t1

p(s1, t2)ds1

]

−
[

U2(t1, 0) +

∫ t2

0

p(t1, s2)ds2

]

≤ (t2 − t1)p(t1, t2)

−
∫ vmax

t1

p(s1, t2)ds1

−
∫ t2

0

p(t1, s2)ds2

Proof: This proof follows quite closely the beginning of Theorem 1 of [MS83]. Basically, the only distri-
butions that really matter are the deterministic distributions. Assume that, at the beginning, there exists a
t1 such that Pr[v1 = t1] = 1 and a t2 such that Pr[v2 = t2] = 1. The incentive compatibility constraint can
be written in the following form. For any t′1:

U1(t1, t2) ≥ x1(t
′
1, t2)− t1p(t′1, t2)

Similarly:
U1(t

′
1, t2) ≥ x1(t1, t2)− t′1p(t1, t2)

From these two equations, it follows that:

(t′1 − t1)p(t1, t2) ≥ U1(t
′
1)− U1(t

′
1) ≥ (t′1 − t1)p(t′1, t2)

If t′1 > t1, then p(t1, t2) ≥ p(t′1, t2), so p(·, t2) is decreasing. Since p1 is decreasing, it is Riemann
integrable, and so the above equation implies that

∂U1(t1, t2)

∂t1
= −p(t1, t2)

at almost every t1. Thus:

U1(t1, t2) = U1(vmax, t2) +

∫ vmax

t1

p(s1, t2)ds1
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A similar argument for the buyer shows that:

U2(t1, t2) = U2(t1, 0) +

∫ t2

0

p(t1, s2)ds2

Define n = bvmaxc. Consider the n pairs of distributions, {(F 1
1 , F 1

2 ), . . . , (Fn
1 , Fn

2 )}. For (F i
1 , F

i
2), it is the

case that the seller is deterministically i− 1, and the buyer is i. Observe that the optimal broker achieves a
value of 1. If p is the algorithm, define

p1 = min
i∈{1...n}

p(i− 1, i).

From Lemma 3.36, observe that the competitive ratio of i is no more than 1
p1

. We now show a recursive
bound that will show an upper bound on p1.

Lemma 3.37 Define pt such that:
pt = min

i∈{t...n}
p(i− t, i).

If the mechanism is ex-post weakly budget balanced then for all t > 1:

pt ≥
t + 1

3
p1

Proof: Define

p∗t =

{

p1 if t = 1
t+1
3 p1 otherwise.

This lemma can be proven by recursion. Assume that the theorem holds for all t′ < t. Now, observe that,
for any integer a ∈ {t, n}:

U0(a− t, a) ≤ (t)p(t1, t2)−
∫ vmax

a−t

p(s1, a)ds1 −
∫ a

0

p(a− t, s2)ds2

Since p is nonnegative, decreasing in its first argument, and increasing in its second argument, this can be
bounded above by:

U0(a− t, a) ≤ tp(a− t, t)−
∫ a−1

a−t

p(s1, a)ds1 −
∫ a

1+a−t

p(a− t, s2)ds2

≤ tp(a− t, t)−
a−1
∑

s1=1+a−t

p(s1, a)−
a−1
∑

s2=1+a−t

p(a− t, s2).

Moreover, by the definition of pt′ , this can be bounded above by:

U0(a− t, a) ≤ tp(a− t, t)− 2

t−1
∑

t′=1

pt′ .

Now, observe that if the mechanism is ex-post weakly budget balanced, the expected utility of the broker
must be nonnegative regardless of the types of the agents. Thus

0 ≤ tp(a− t, t)− 2
t−1
∑

t′=1

pt′

p(a− t, t) ≥ 2

t

t−1
∑

t′=1

pt′
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By the inductive hypothesis

p(a− t, t) ≥ 2

t

t−1
∑

t′=1

p∗t′ .

Since a is any integer in {t, . . . , n}:

pt ≥
2

t

t−1
∑

t′=1

p∗t′ .

A bit of algebra can be used to derive the lemma.

Proof (of Theorem 3.3): From the above lemma, p(0, n) ≥ n+1
3 p1. This implies that p1 ≤ 3

n+1 , and the

competitive ratio is no less than bvmaxc+1
3 .

3.5.2 Partially Direct Mechanisms

A proof follows for a mechanism that is truthful for the seller. The case where the mechanism is truthful
for the buyer is analogous. Since the goal is a lower bound, make the broker’s job easier by giving it more
information. Fix the seller’s price to be zero. Inform the broker not only that the seller’s price is zero, but
that it is always zero. Also, inform the broker that the buyer has a single, deterministic value, but not what
that value is. Thus, after being given the type of the buyer v2, the mechanism is aware of F1, F2, v1, and v2.
Therefore, the revelation principle holds, and the focus can now be on direct mechanisms. In fact, a result
from [Mye81], rewritten for the simpler case here, will be useful.

Lemma 3.38 If the mechanism is incentive compatible for the buyer, then:

1. p is increasing.

2. tp(t)− x2(t) = (0p(0)− x2(0)) +
∫ t

0
p(s)ds.

Using this lemma, we can prove the following result.

Lemma 3.39 Suppose there is an indirect mechanism M . Given that the mechanism designer is aware of
the fact that the seller’s valuation is 0 with probability 1, and the fact that there exists a value t2 such that
Pr[v2 = t2] = 1, but not the value t2, the mechanism designer can construct a reserve price mechanism that
achieves the same expected revenue as M for the broker regardless of F2 or v2.

Proof: The revelation principle holds, because the broker is aware of F1, F2, v1, and v2 after the it has
received the buyer’s bid v2. Therefore, there exists an optimal online mechanism that is a direct mechanism.
One can consider this mechanism to consist of three functions: x1 : [0, vmax] → R, x2 : [0, vmax] → R and
p : [0, vmax] → R. x1(t) is the expected payment from the broker to the seller if the buyer reports t. x2(t)
is the expected payment from the buyer to the broker if the buyer reports t. p(t) is the probability that the
buyer receives the item.

In order to be individually rational for the seller, x1(t
∗)− 0p(t∗) ≥ 0. Therefore, x1(t

∗) ≥ 0. Thus, since
x1 needs to be minimized in order to maximize the broker’s profit, x1 = 0 is optimal.

Use Lemma 3.38, rewriting the result as:

x2(t) = tp(t) + x2(0)−
∫ t

0

p(s)ds.

If x2 is maximized, the broker’s revenue is maximized. Observe that by the individual rationality of the
buyer, 0p(0)− x2(0) ≥ 0, x2(0) ≤ 0, so for the maximum revenue, x2(0) = 0, and:

x2(t) = tp(t) + x2(0)−
∫ t

0

p(s)ds.
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Consider a different mechanism: the broker selects a reserve price z for the buyer according to the distribution
where Pr[z ≤ t] = p(t). It is valid to consider p as a distribution because it is increasing. This mechanism
has a revenue of:

R(t) =

∫ t

0

s Pr[z = s]ds

Using integration by parts where u(s) = s and v(s) =
∫ s

0 Pr[z = r]ds = p(s):

R(t) = tp(t)−
∫ t

0

p(s)ds

Thus, a holdout price mechanism where Pr[z ≤ t] = p(t) is the optimal mechanism.

Proof (of Theorem 3.6): Observe that the problem is only easier if v1 = 0 with probability 1, and that
the mechanism is aware of F1. By Lemma 3.39, one can assume that the optimal mechanism is a randomly
chosen holdout price.

Now, observe that the optimal distribution for selecting a holdout price is identical to the selection of a
threshold in Section 2.3. Thus, one cannot do better.

3.6 The Optimal Discrete Mechanism*

This section contains a proof that Mechanism 3.22 is indeed the optimal offline discrete broker. The proof
is similar to that found in [MS83]. First we describe two functions V1 and V2 which are similar (though not
always identical to) the functions C1 and C2 described in Section 3.4.3. Section 3.6.1 describes how V1 and
V2 can be useful in describing the maximum utility obtainable by the broker given a rule for when to trade.
Section 3.6.2 compares the Vi to the Ci, in order to prove that the mechanism in Section 3.4.3 is indeed
optimal.

3.6.1 The Optimal Profit Given a Trading Rule p

Consider the general formulation of a discrete mechanism introduced in Section 3.4.3.

Lemma 3.40 If a mechanism (p, x1, x2) is incentive-compatible, then p̄1 is decreasing and for all si ∈ S:

U1(si) ≥ U1(sm) +
m
∑

î=i+1

(sî − sî−1)p̄1(sî).

Proof: Observe that the incentive-compatibility of (p, x1, x2) implies that for any si ∈ S\sm:

U1(si) = x̄1(si)− sip̄1(si) ≥ x̄1(si+1)− sip̄1(si+1)

U1(si+1) = x̄1(si+1)− si+1p̄1(si+1) ≥ x̄1(si)− si+1p̄1(si)

Arithmetic yields:

si+1(p̄1(si)− p̄1(si+1)) ≥ x̄1(si)− x̄2(si+1) ≥ si(p̄1(si)− p̄1(si+1)).

Thus, since si+1 > si, p̄1 is decreasing. Arithmetic also yields:

U1(si) ≥ U1(si+1) + (si+1 − si)p̄1(si+1)

The lemma follows by induction.
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Lemma 3.41 If a mechanism (p, x1, x2) is incentive-compatible, then p̄2 is increasing and for all bi ∈ B:

U2(bi) ≥ U2(b1) +
i−1
∑

î=1

(b ˆi+1 − bî)p̄2(bî).

The proof is similar to that of the previous lemma.

For all i ∈ {1, . . . , m}, define:

V1(si) =

{

si + F1(si−1)(si−si−1)
f1(si)

if i > 1

s1 if i = 1

For all j ∈ {1, . . . , n}, define:

V2(bj) =

{

bj − (1−F2(bj))(bj+1−bj)
f2(bj) if j < n

bn if j = n

These functions are closely related to C1 and C2. If the distribution F2 is regular, V2 = C2. Particularly,
V2(bi) is the point where a seller is indifferent between a reserve price of bi and a reserve price of bi+1. We
will return to this relationship later.

While C1 and C2 are useful functions for determining the optimal auction, V1 and V2 are useful in their
own right in describing the optimal utility obtainable by a broker given a function p(si, bj).

Theorem 3.42 Given (x1, x2, p) that is incentive-compatible and individually rational, the expected utility
of the broker is less than:

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (V2(bj)− V1(si)) p(si, bj).

Moreover, if p̄1 is decreasing and p̄2 is increasing, then there exists an x′
1 and x′

2 such that (x′
1, x

′
2, p) is

incentive-compatible, individually rational, and achieves the upper bound.

Proof: Observe that, for all si ∈ S, bj ∈ B

U0(si, bj) = p(si, bj)(bj − si)− U1(si, bj) + U2(si, bj).

Taking the expected value of both sides yields

U0 =

m
∑

i=1

n
∑

j=1

f1(si)f2(bj)p(si, bj)(bj − si)−
m
∑

i=1

f1(si)U1(si)−
n
∑

j=1

f2(bj)U2(bj).
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By Lemma 3.40 and Lemma 3.41:

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj)p(si, bj)(bj − si)

−U1(sm)−
m−1
∑

i=1

f1(si)
m
∑

î=i+1

(sî − sî−1)p1(sî)

−U2(b1)−
n
∑

j=2

f2(bj)

j−1
∑

ĵ=1

(bĵ+1 − bĵ)p2(bĵ)

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj)p(si, bj)(bj − si)

−U1(sm)−
m
∑

i=2

F1(si−1)(si − si−1)p1(si)

−U2(b1)−
n−1
∑

j=1

(1− F2(bj))(bj+1 − bj)p2(bj)

By individual rationality, assume that U1(sm) ≥ 0 and U2(b1) ≥ 0.

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj)p(si, bj)(bj − si)

−
m
∑

i=2

F1(si−1)(si − si−1)

m
∑

j=1

f2(bj)p(si, bj)

−
n−1
∑

j=1

(1 − F2(bj))(bj+1 − bj)

n
∑

i=1

f1(si)p(si, bj)

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj)p(si, bj)(bj − si)

−
m
∑

i=2

F1(si−1)

f1(si)
(si − si−1)

m
∑

j=1

f1(si)f2(bj)p1(si, bj)

−
n−1
∑

j=1

1− F2(bj)

f2(bj)
(bj+1 − bj)

n
∑

i=1

f1(si)f2(bj)p(si, bj)

Using the definition of V1 and V2, one can obtain the upper bound. If one chooses x1(sm) and x2(b1) such
that U1(sm) = U2(b1) = 0, and chooses x1 and x2 such that the bounds in Lemma 3.40 and Lemma 3.41 are
tight, then the result here is tight as well.

As the above lemma shows how to measure the optimal profit achievable with a given p, the lemma below
shows how for some p (where the trade is deterministic when the buyer and seller are known) to choose a
price function that achieves this profit for the broker.

Lemma 3.43 Given a mechanism (x1, x2, p), such that p is decreasing in its first argument and increasing
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in its second argument, for all si ∈ S, bj ∈ B, p(si, bj) ∈ {0, 1}, and:

x1(si, bj) =

{

maxsi:p(si,bj)=1 si if p(si, bj) = 1

0 if p(si, bj) = 0

x2(si, bj) =

{

minsi:p(si,bj)=1 bj if p(si, bj) = 1

0 if p(si, bj) = 0,

Then:

U0 =
m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (V2(bj)− V1(si)) p(si, bj).

Proof: Observe that if for any bj ∈ B, p(sm, bj) trades, then x1(sm, bj) = 0. Thus, U1(sm) = 0. By
induction it can be proven that the above mechanism is tight according to Lemma 3.40. First, we can prove
that for all si < sm, for all bj ∈ B, U1(si, bj) = U1(si+1, bj) + (si+1 − si)p(si+1, bj). There are three cases:

1. p(si, bj) = p(si+1, bj) = 0. Then x1(si, bj) = x1(si+1, bj) = 0, and U1(si, bj) = U1(si+1, bj) = 0, so
U1(si, bj) = U1(si+1, bj) + p(si+1, bj)(si+1 − si).

2. p(si, bj) = p(si+1, bj) = 1. Then x1(si, bj) = x1(si+1, bj). Thus,

U1(si, bj) = x1(si+1, bj)− sip(si+1, bj)

U1(si, bj) = x1(si+1, bj)− si+1p(si+1, bj) + (si+1 − si)p(si+1, bj)

U1(si, bj) = U1(si+1, bj) + (si+1 − si)p(si+1, bj).

3. p(si, bj) = 1, and p(si+1, bj) = 0. Then x1(si+1, bj) = 0, and x1(si, bj) = si. Thus:

U1(si, bj) = x1(si, bj)− sip(si, bj)

U1(si, bj) = si − si1

U1(si, bj) = 0

U1(si, bj) = U1(si+1, bj) + (si+1 − si)p(si+1, bj)

Now, for all si < sm:

U1(si) =

n
∑

j=1

U1(si, bj)f2(bj)

=

n
∑

j=1

U1(si+1, bj)f2(bj) + (si+1 − si)p(si+1, bj)f2(bj)

= U1(si+1, bj) + (si+1 − si)p1(si+1)

By induction, this function U1 is tight. Similarly, one can prove that U2 is tight.

Thus, it is clear that if V1 = C1 and V2 = C2, then this mechanism is optimal, because then p(si, bj) = 1
when V2(bj)− V1(si) ≥ 0, and p(si, bj) = 0 when V2(bj)− V1(si) < 0. However, this is not always the case.

3.6.2 Comparing Vi and Ci

This section is similar to the proof in [Mye81], except we develop it here for the discrete case. If a function
F2 is regular, then V2 is increasing: that means for each buyer’s valuation bj is there is a valuation s ∈ R
for an imaginary seller which can choose bj as an optimal reserve price,like in Figure 3.1. If this is the case,
then C2 = V2. However, not all distributions are regular.
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Figure 3.1: Here, there is a uniform distribution and V2 is increasing. Consider an imaginary seller with
valuation s that wants to maximize its expected profit. If s < 5, it should use a holdout price of 9. If
s ∈ (V (i), V (i+1)), it should use a holdout price of i+1. If s = V (i), it can use a holdout price of i or i+1.
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Figure 3.2: Observe that there is a high probability on the lowest bid. In this case, there is no imaginary
seller who would choose 10 as a holdout price. If s < 7, the seller should use 9 as a holdout price. If s > 7,
the seller should use 12. If s = 7, the seller could use either 9, 11, or 12 as a holdout price (but not 10).

Define F̃2(bj) = 1 + f2(bj) − F2(bj). Observe that for any two values bj , bj′ ∈ B where bj 6= bj′ , there
exists a unique valuation sj,j′ for an imaginary seller such that:

F̃2(bj)(bj − sj,j′) = F̃2(bj′)(bj′ − sj,j′ ).

Thus, for a seller with this valuation bj and bj′ are equally useful as holdout prices. Solving for sj,j′ , we
obtain:

sj,j′ =
F̃2(bj)bj − F̃2(bj′ )bj′

F̃2(bj)− F̃2(bj′)
.

These valuations are very useful in determining in whether a valuation bj of a buyer would be ever useful
as a holdout price. Observe that b1 is useful for a seller with a very low valuation, and bn is useful if the
valuation is higher than bn−1. Particularly, if and only if there exists j′ and j′′ such that j′ < j < j′′ and
sj,j′ > sj,j′′ , then bj is never useful, i.e. useful as a holdout price. This is because below sj,j′ , bj′ is a better
holdout price than bj . Above sj,j′′ , bj′′ is a better holdout price than bj′′ .

What is the maximum seller that will trade with bj when j < n? First, define bj′ to be the highest useful
bid that is less than or equal to bj . Define bj′′ to be the lowest useful bid that is strictly greater than bj .
Observe that by definition, there are no bids between bj′ and bj′′ that are useful, therefore at sj′,j′′ , bj′ and
bj′′ are both optimal. Thus, C2(bj) = sj′,j′′ . If bj and bj+1 are useful, then C2(bj) = sj,j+1 = V2(bj).
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Now consider the function H : B → R defined as:

H2(bj) =

j−1
∑

j′=1

V2(bj′ )f2(bj′).

Using the definition of V2, the above can be rewritten as:

H2(bj) =

j−1
∑

j′=1

F̃2(bj′)bj′ − F̃2(bj′+1)bj′+1.

Thus, telescoping yields:
H2(bj) = F̃2(b1)b1 − F̃2(bj)bj .

Similarly, we can define:

G2(bj) =

j−1
∑

j′=1

C2(bj′)f2(bj′ ).

It is interesting to observe that G2 is in a sense the convex hull of H2.

Lemma 3.44 For all useful values bj, G2(bj) = H2(bj).

Proof: This can be proved by induction. First, observe that H2(b1) = G2(b1) = 0. Now, assume that for
some useful bj′ , bj was the highest useful value strict less than bj . By the inductive hypothesis, H2(bj) =
G2(bj). Also, as described above,

H2(bj′ )−H2(bj) = F̃2(bj)bj − F̃2(bj′)bj′ .

Since for all j′′ where j < j′′ < j′, j′′ is not useful, then C2(j
′′) = C2(j):

G2(bj′)−G2(bj) =

j′−1
∑

j′′′=j

C2(bj)f2(bj′′′ ) = (F̃2(bj)− F̃2(bj′))C2(bj).

Thus, since C2(bj) = sj,j′ :

G2(bj′)−G2(bj) = (F̃2(bj)− F̃2(bj′ ))
F̃2(bj)bj − F̃2(bj′)bj′

F̃2(bj)− F̃2(bj′)
= H2(bj′ )−H2(bj).

Thus, the difference between H2 on two useful points equals the difference between G2 on two useful points,
completing the proof.

Lemma 3.45 For all bj ∈ B, G2(bj) ≤ H2(bj).

Proof: Since the previous lemma establishes this for useful bj, let us assume that bj is not useful. Suppose
bj′ is the highest useful bid less than or equal to bj. Then:

G2(bj) = G2(bj′) +

j−1
∑

j′′=j′

C2(bj′′ )f2(bj′′ )

= G2(bj′) +

j−1
∑

j′′=j′

C2(bj)f2(bj′′ )

= G2(bj′) + C2(bj)(F̃2(bj′)− F̃2(bj))

H2(bj) = H2(bj′) + bj′ F̃2(bj′ )− bjF̃2(bj)

= G2(bj′) + bj′ F̃2(bj′)− bjF̃2(bj)
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Suppose bj′′ is the lowest useful bid strictly greater than bj. Then C2(bj) = sj′,j′′ . Because bj is not useful,
sj,j′ > sj′,j′′ , i.e. by the time the seller’s valuation is high enough such that bj is better than bj′ , bj′′ is
better than both of them.

G2(bj) < G2(bj′ ) + sj,j′ (F̃2(bj′)− F̃2(bj))

G2(bj) < G2(bj′ ) +
F̃2(bj)bj − F̃2(bj′)bj′

F̃2(bj)− F̃2(bj′)
(F̃2(bj′ )− F̃2(bj))

G2(bj) < G2(bj′ ) + F̃2(bj′)bj′ − F̃2(bj)bj

G2(bj) < H2(bj)

Finally, for an increasing function p2(bj), define p′2(bj) = p2(bj)− p2(bj−1) if j > 1, and p′2(b1) = p2(b1).

Similarly, all of these results hold for a seller as well. Specifically, define:

bi,i′ =
F1(si)si − F1(si′ )si′

F1(si)− F1(si′)

H1(si) =

n
∑

i′=i+1

V1(si)f1(si) = F1(sm)sm − F1(si)si

G1(si) =

n
∑

i′=i+1

C1(si)f1(si)

p′1(si) =

{

p1(si)− p1(si+1) if i < m

p1(sm) if i = m

A useful seller’s value si is an optimal holdout price in a reverse auction for some buyer. As for buyers, one
can show that:

Lemma 3.46 For all useful values si, G1(si) = H1(si). For all si ∈ S, G1(si) ≥ H1(si).

The proof is similar to those above.

There is a simple observation about sums to be made here, similar to integration by parts.

Fact 3.47 Given u, w, U , and W are real-valued functions on the integers between 1 and n, U(j) =
∑j−1

j′=1 u(j′), and W (j) =
∑j

j′=1 w(j′), then
∑n

j=1 u(j)W (j) = U(n)W (n)−∑n
j=1 U(j)w(j).

Proof (of Theorem 3.24): First, we know from Theorem 3.42 that given a p(si, bj) that is decreasing in
its first argument and increasing in its second:

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (V2(bj)− V1(si)) p(si, bj). (3.2)

For the mechanism described in Section 3.11 p = p∗, where:

p∗(si, bj) =

{

1 when V2(bj) ≥ V1(si)

0 when V2(bj) < V1(si).
(3.3)

Observe that p(si, bj) might not be decreasing in its first argument if V1 was not increasing, and p(si, bj)
might not be increasing in its second argument if V2 was not decreasing. Thus, we rewrite Equation (3.2) in
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order to consider the effects of using C1 and C2:

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (C2(bj)− C1(si)) p(si, bj)

+

n
∑

j=1

(V2(bj)f2(bj)− C2(bj)f2(bj)) p2(bj)

−
m
∑

i=1

(V1(si)f1(si)− C1(si)f1(si)) p1(si)

If we use Fact 3.47, where U = H2 −G2 and V = p2, then:

n
∑

j=1

(V2(bj)f2(bj)− C2(bj)f2(bj))p2(bj) = (H2(bn)−G2(bn))p2(bn)−
n
∑

j=1

(H2(bj)−G2(bj)) p′2(bj).

Similarly:

n
∑

i=1

(V1(si)f1(si)− C1(si)f2(si))p1(si) = (H1(s1)−G1(s1))p1(s1)−
n
∑

i=1

(H1(si)−G1(si)) p′1(si).

Observe that since bn and s1 are useful:

n
∑

j=1

(V2(bj)f2(bj)− C2(bj)f2(bj))p2(bj) =

n
∑

j=1

(G2(bj)−H2(bj)) p′2(bj).

n
∑

i=1

(V1(si)f1(si)− C1(si)f2(si))p1(si) =

n
∑

i=1

(G1(si)−H1(si)) p′1(bi).

Observe that if p2 is increasing and p1 is decreasing, then p′2 and p′1 are both non-negative. Since G1(si) ≥
H1(si), and H2(bj) ≥ G2(bj), then:

n
∑

j=1

(V2(bj)f2(bj)− C2(bj)f2(bj))p2(bj) ≤ 0

n
∑

i=1

(V1(si)f1(si)− C1(si)f2(si))p1(si) ≥ 0.

This implies that:

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (C2(bj)− C1(si)) p(si, bj).

By Equation (3.3), and the fact that p(si, bj) ∈ [0, 1]:

U0 ≤
m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (C2(bj)− C1(si)) p∗(si, bj).

It remains to be proven that Mechanism 3.22 achieves this utility. Observe that if G2(bj) 6= H2(bj), then
bj is not useful, and therefore j > 1 and C2(bj) = C2(bj−1), thus p∗2(bj) = p∗2(bj−1) and p∗2(bj) − p∗2(bj−1).
Therefore:

n
∑

j=1

(V2(bj)f2(bj)− C2(bj)f2(bj))p
∗
2(bj) = 0.
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Similarly,
n
∑

i=1

(V1(si)f1(si)− C1(si)f2(si))p
∗
1(si) = 0.

Thus, if p = p∗:

m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (V2(bj)− V1(si)) p∗(si, bj) =
m
∑

i=1

n
∑

j=1

f1(si)f2(bj) (C2(bj)− C1(si)) p∗(si, bj).

Thus, since p∗1 is decreasing and p∗2 is increasing, there is an x1 and x2 that make it an optimal trading rule.
By Lemma 3.43, the optimal rule is that described in Mechanism 3.22.

3.7 Future Work

Clearly, work could be done to make these upper and lower bounds on the competitive ratios closer to each
other for the direct and partially direct mechanisms. However, the most interesting areas of future research
are:

1. extensions of these mechanisms to the situation where sellers and buyers are bidding over time, and

2. discovering if the α-profit sharing mechanism is 1
1−α competitive for all pairs of distributions F1, F2

and all α ∈ (0, 1).

The extensions would be simple. For instance, a direct mechanism posts z1 and z2 at the beginning,
and then greedily matches buyers above z2 with sellers below z1. A partially direct mechanism can charge
a posting fee for bids and offers, but can allow agents to accept bids and offers for free. Finally, the broker
can allow agents to give their own best estimate at the best reserve price for them to be matched with. The
broker would want allow this reserve price to change over time.

The first may require some research to be completed in economics first. What type of equilibria exist in
these type of mechanisms? The latter is perhaps the more tractable problem, but it is still difficult. The first
step is to prove it for discrete distributions where the buyer and seller only have three or four values each.
This can most likely be solved by a computer, and would give more evidence to its general applicability.

3.8 Conclusions

If the broker is not knowledgeable about a market, then it must rely on the knowledge of the buyer and
seller. If the mechanism simply requests the type of an agent, then the agent is incapable of communicating
a wealth of useful information. This is formalized in the following three results.

1. The optimal competitive ratio for a direct mechanism is Θ(vmax).

2. The optimal competitive ratio for a partially direct mechanism is Θ(ln vmax).

3. The optimal competitive ratio for an indirect mechanism is Θ(1).

However, in these later mechanisms, the broker is trusting that the agents understand the market. If
they do not, then catastrophic outcomes can result. These algorithms are simple enough so that they can be
extended to scenarios where buyers and sellers submit their offers and bids over time. An interesting area
of future work is to consider the incentive-compatibility constraints of the online mechanism.
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Chapter 4

Preference Elicitation Algorithms1

Preference elicitation — the process of asking queries to determine parties’ preferences — is a key part of
many problems in electronic commerce. For example, a shopping agent needs to know a user’s preferences
in order to correctly act on her behalf, and preference elicitation can help an auctioneer in a combinatorial
auction determine how to best allocate a given set of items to a given set of bidders. Unfortunately, in
the worst case, preference elicitation can require an exponential number of queries even to determine an
approximately optimal allocation. In this chapter, we study natural special cases of preferences for which
elicitation can be done in polynomial time via value queries. The cases we consider all have the property
that the preferences (or approximations to them) can be described in a polynomial number of bits, but the
issue here is whether they can be elicited using the natural (limited) language of value queries. We make a
connection to computational learning theory where the similar problem of exact learning with membership
queries has a long history. In particular, we consider preferences that can be written as read-once formulas
over a set of gates motivated by a shopping application, as well as a class of preferences we call Toolbox
DNF, motivated by a type of combinatorial auction. We show that in each case, preference elicitation can
be done in polynomial time. We also consider the computational problem of allocating items given the
parties’ preferences, and show that in certain cases it can be done in polynomial time and in other cases it
is NP-complete. Given two bidders with Toolbox-DNF preferences, we show that allocation can be solved
via network flow. If parties have read-once formula preferences, then allocation is NP-hard even with just
two bidders, but if one of the two parties is additive (e.g., a shopping agent purchasing items individually
and then bundling them to give to the user), the allocation problem is solvable in polynomial time.

4.1 Introduction

We now switch from the study of auctions involving a single type of item to combinatorial auctions in
which there are N items and a bidder’s value for a subset may be quite different (more or less) than the
sum of the bidder’s values of the individual items in the subset themselves. The focus of this chapter will
be on preference elicitation, the problem of how an auctioneer can efficiently elicit the information it
needs about the bidders’ preferences in order to make the optimal allocation of the items to the bidders. In
most auctions where multiple (say, n) distinct items are being sold, a bidder’s valuation for the items is not
additive. Rather, the bidder’s preferences generally exhibit complementarity (a bundle of items is worth
more than the sum of its parts—e.g., a flight to Hawaii and a hotel room in Hawaii) and substitutability (a
bundle is worth less than the sum of its parts—e.g., a flight to Hawaii and a flight to the Bahamas on the same
day). Combinatorial auctions where agents can submit bids on bundles (sets of items), are economically
efficient auction mechanisms for this setting. The computational problem of determining the winners, given
the bids, is a hard optimization problem that has recently received significant research attention.

An equally important problem, which has received less attention, is that of obtaining enough preference

1This work appeared previously in [ZBS03].
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information from the bidders so that there is a basis for allocating the items (usually the objective is to
maximize the sum of the bidders’ valuation functions). There are 2n − 1 bundles, and each agent may
need to bid on all of them to fully express its preferences. This can be undesirable because there are
exponentially many bundles to evaluate, and furthermore determining one’s valuation for any given bundle
can be computationally or cognitively expensive. So in practice, when the number of items for sale is even
moderate, the bidders will not bid on all bundles. Instead, they may wastefully bid on bundles that they
will not win, and they may suffer reduced economic efficiency by failing to bid on bundles they would have
won.

Recently, an approach has been proposed where the auctioneer is enhanced by elicitor software that
incrementally elicits the bidders’ preferences by querying them (based on the preference information elicited
so far) [CS01, CS02b, CS02a]. In the worst case, an exponential amount of communication is required to
allocate the items even approximately optimally, if the bidders can have general preferences [NS02]. (This
holds even when bidders can dispose of extra items for free, that is, their valuation functions are monotone.)
However, experimentally, preference elicitation appears to help quite a bit [HS02, HS04]. Nonetheless, the
amount of querying can be prohibitively large when the bidders have general (monotone) preferences.2

An analogous issue arises with shopping agents. Consider the following scenario. Alice goes to her
software agent and asks it to help her purchase a vacation. In order to act on her behalf, the agent first
needs to find out Alice’s preferences (how much is a trip to Hawaii worth compared to a trip to the Bahamas,
does it substantially increase the value to her if she can get some entertainment booked in advance, etc.).
Then, after scouring the Internet, the agent needs to solve the computational problem of deciding on the
best vacation package—the one that maximizes Alice’s valuation minus the cost of the trip. In this scenario,
there is no auctioneer. Rather, the elicitor is the buyer’s helper. Again, the amount of querying can be
prohibitively large when the buyer has general (monotone) preferences.

In this chapter we study natural classes of preferences that we show can be elicited in polynomial time
with value queries, and yet are rich enough to express complementarity and substitutability. We consider
a setting in which there is a universe of n items, and a user has different valuations over different subsets
of these items. The auctioneer (or software agent) can get information about these preferences using value
queries: proposing a bundle and asking the user for her valuation of that bundle. This is the same as the
notion of a membership query in computational learning theory.

The restrictions that we place on the preferences will imply that the preferences can be compactly
represented. This means that preference elicitation would be easy if the elicitor was allowed to ask “give
me a computer program for (an approximation to) your preferences”. But, in practice, a human will not be
able to express her preferences by uttering a formula that completely captures them. Value queries are a
standard and much more natural communication protocol.

We begin by arguing that read-once formulas over a certain set of gates (defined below) can express many
natural preference functions. We then show that if the user’s preferences can be expressed as a read-once
formula of this form, then preference elicitation can be done in polynomial time using value queries (this
builds upon work of Angluin et al. [AHK93] and Bshouty et al. [BHHK94, BHH95] for learning over classes
of gates motivated from learning theory).3

More precisely, we assume the bidder’s preferences can be described as a read-once formula over {0, 1}n
(an input x ∈ {0, 1}n corresponds to the bundle containing the items i such that xi = 1) using gates
{SUM, MAX, ALL}, with real-valued multipliers on the inputs. A read-once formula is a function that can
be represented as a tree (“read-once” means that even the initial inputs may only have out-degree 1). A
SUM node sums the values of its inputs; a MAX node takes the maximum value of its inputs; an ALL node
sums its inputs unless one of the inputs is zero, in which case the output is 0. For convenience, we will
sometimes view inputs as x ∈ {0, 1}n and sometimes as x ⊆ {1, . . . , n}. Each input i also has a positive

2Ascending combinatorial auctions [BdVSV01, PU00, WW00] can be viewed as a special case of the preference elicitation
framework where the queries are of the form: “Given these prices on items (and possibly also on bundles), which bundle would
you prefer the most?”.

3The reason for so much work on read-once formulas is that Angluin [Ang88] shows that reconstructing read-twice functions
from membership (value) queries alone can require an exponential number of queries, even if the function is simply an OR of
ANDs (a monotone DNF).
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real-valued multiplier vi (representing the intrinsic value of that item). For example, a legal function on 3
inputs might be ALL(2x1, MAX(10x2, 4x3)), which gives value 12 to the input 110, 6 to the input 101, and
0 to the input 011.

Read-once formulas of this type allow for many natural preferences. For example, suppose items are
flights and hotel rooms in different locations (e.g., input xi,j,0 represents the ith flight to location j, and
xi,j,1 represents the ith hotel room in location j) and a couple want to take just one trip. Then for each
location j the couple could compute ALL(MAX{vi,j,0xi,j,0}i, MAX{vi,j,1xi,j,1}i), and then at the root of
the tree the couple would take a MAX over the different destinations.4

We then generalize our results by considering a broader class of gates. Let MAXk output the sum of the
k highest inputs, and ATLEASTk output the sum of its inputs if there are at least k positive inputs, and
0 otherwise. Finally, we consider GENERALk,l, a parameterized gate capable of representing all the above
types of gates. We show that read-once preferences including all of these gates can be elicited in a polynomial
number of queries. We also give positive results for the setting where preferences are approximately read-once
formulas with MAX and SUM gates.

In addition to the elicitation problem, we study the computational allocation problem of determining
how the items should be divided among agents with read-once preferences. We show that once the preference
function f is known, the problem of finding the subset of items x that maximizes f(x) − g(x), where g is
a linear cost function (or equivalently, maximizing f(x) + g({1, . . . , n} − x), where g is a linear valuation
function), can be done in polynomial time. This is natural for the case of a shopping agent that buys items
individually on the web for a user with valuation function f . However, if g is a general read-once formula,
then we show this optimization is NP-complete.

Finally, we consider the class of preferences that can be expressed as monotone polynomials. E.g.,
f(x) = ax1x2 + bx2x3x4 + cx3x4. We call this class Toolbox DNF because it captures settings where each
agent has a set of tasks to accomplish (one per term in the polynomial), each task requiring a specific set of
tools (the variables in the term) and each having its own value (the coefficient on that term). For example,
the tools may be medical patents, and producing each medicine requires a specific set of patents. The value
of a set of items to the agent is the sum of the values of the tasks that the agent can accomplish with those
items. We show that Toolbox DNF preferences can be elicited in a polynomial number of value queries, and
that given two agents with Toolbox DNF preferences, the items can be optimally allocated in polynomial
time using network flow.

More broadly, in the combinatorial auctions literature, the issue of preference elicitation is often put as
“The problem is easy if preferences are linear, and hard if preferences are arbitrary. What if preferences
are somewhat linear?” Our answer is that if one defines “somewhat linear” as read-once (with certain types
of gates) or as Toolbox DNF, then preference elicitation with value queries is easy, while still allowing
preferences that exhibit interesting behavior.

4.2 Eliciting read-once formulas over {SUM, MAX, ALL}
Define a read-once formula to be canonical if no internal node in the tree has a child with the same label. It
is not hard to see that for the node functions {SUM, MAX, ALL} We can assume without loss of generality
that the formula is canonical. In particular, for these gates, if a node and its child are of the same type we
can just merge them. As a warmup, consider the easier problem of eliciting when there are no ALL gates.

Lemma 4.1 One can elicit read-once formulas over {SUM, MAX} using O(n2) value queries.

Proof: Let S = {1, . . . , n}. The elicitor will ask two sets of questions:

1. For every a ∈ S, what is f({a})? This is n questions.

2. For every pair a, b ∈ S what is f({a, b})? This is n(n− 1)/2 questions.

4Notice that the multiplicative values at the leaves may not be uniquely specified: if there is only one flight and one hotel
in a particular destination, and their combined value is $1000, then this can be arbitrarily split into values v, 1000 − v for the
flight and hotel in the formula.
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Notice that an item a ∈ S is in the tree if and only if f({a}) > 0. Call the set of items in the tree
T . Second, notice that if the least common ancestor (LCA) of two inputs a and b is a SUM node, then
f({a, b}) = f({a}) + f({b}), whereas if the LCA is a MAX node, then f({a, b}) = MAX(f({a}), f({b})).
The elicitor can therefore use the answers to its queries to construct a graph G with the vertices representing
the items in T , and an edge between two vertices if their least common ancestor is a MAX gate.

The elicitor now determines the structure of the tree root-down. Notice that if the root node of the
formula is a SUM gate, then there will be no edges in G between any two vertices in different subtrees of
the root and the graph will be disconnected. On the other hand, if the root node is a MAX gate, then every
item in the first subtree will be connected to every item in the other subtrees. Since there are at least two
subtrees, this means that if the root is a MAX, then the graph is connected.

So, if the graph is disconnected, the elicitor places a SUM gate at the root, partitions the items into
subtrees according to the connected components of the graph, and then recursively solves to discover the
structure of each subtree. Formally, the elicitor is using the fact that if fi is the ith subtree and Si are the
items in subtree fi, then for any S′ ⊆ Si, f(S′) = fi(S

′). On the other hand, if the graph is connected,
the elicitor places a MAX gate at the root, partition the items into subtrees according to the connected
components of the complement of the graph, and then recursively solve for the subtrees. Here the elicitor is
using the fact that in the complement of the graph, there is an edge between two nodes if and only if the
lowest common ancestor is a SUM node, so the elicitor can use the same argument as before.

Finally, the elicitor sets the leaf multipliers vi to the values given by the n unary queries asked in step 1.

We now proceed to our first main theorem.

Theorem 4.2 One can elicit read-once formulas over
{SUM, MAX, ALL} gates using O(n2) value queries.

The high-level outline of the proof is as follows. First, notice that if one thinks of a value greater than
zero as being true and a value equal to zero being false, then MAX and SUM act as OR, and ALL acts
as AND. The elicitor can now apply an algorithm of Angluin et al. [AHK93] that exactly learns (elicits)
read-once formulas of AND and OR gates using membership (value) queries to determine the AND/OR
structure. Next the elicitor expands each OR gate back into a tree of MAX and SUM using the algorithm of
Lemma 4.1. One complication is that to apply that technique here the elicitor needs to deal with two issues:
(1) the elicitor only gets to observe the output of the full tree, not the specific subtree, and (2) the elicitor
can only directly manipulate the inputs to the full tree, not the inputs to the specific subtree. Finally, the
elicitor needs to find a consistent set of value multipliers for the inputs.

Definition 4.3 Given a read-once formula f consisting of SUM, MAX, and ALL gates, define the Boolean
image of f to be the function g where for all sets of items S, g(S) is true if and only if f(S) > 0.

As noted above, the Boolean image of a read-once formula f over {SUM, MAX, ALL} is equivalent to
a read-once monotone Boolean formula with an AND gate wherever f has an ALL gate, and an OR gate
wherever f has a MAX or SUM gate. This direct mapping may produce a non-canonical tree (because of
a SUM node beneath a MAX node, for instance). The canonical Boolean image is the tree in which all
subtrees of OR nodes have been merged together.

Definition 4.4 Given a canonical real-valued read-once formula f and its canonical Boolean image g, define
bool(u) for a node u in f to be its associated node in g. For a given node v in g, let r(v) be the highest node
in bool−1(v) (the one closest to the root of f).

Theorem 4.5 (Angluin et al. [AHK93]) There is an algorithm that exactly identifies any monotone
read-once formula over {OR, AND} using O(n2) queries.

The elicitor can use Theorem 4.5 to elicit the canonical Boolean image of f , but the elicitor now needs
to expand each OR node back into a subtree of {MAX, SUM}. The next two lemmas show how to do this.
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Observe that the only test required to determine the structure of a {MAX, SUM} tree is a test of equality
of value between two sets. Lemma 4.6 will describe how to perform such a test when the function one is
interested in is not the root. Lemma 4.7 shows how to treat the inputs to this OR node like items to elicit
the label of their least common ancestor.

Lemma 4.6 Suppose one has g, the canonical Boolean image of f , and v is a node of g. Let u = r(v).
Then, for two sets of items Sa and Sb, one can determine if u(Sa) = u(Sb) in two queries.

Proof: Suppose that S′ is the set of items that are descendants of v, and Z = S − S′ is all other items.
Without loss of generality, the elicitor can assume Sa, Sb ⊆ S′. Notice that it is possible f(Sa) = f(Sb)
but u(Sa) 6= u(Sb) if v has an ancestor labeled AND. It is also possible that f(Sa

⋃

Z) = f(Sb

⋃

Z) but
u(Sa) 6= u(Sb) if u had a MAX gate as a parent.

Thus, the elicitor constructs a set R that is the items x ∈ Z such that the LCA of v and x is an AND
node. This is identical to the set of all items in Z that have an ALL node as a LCA with u. This means that
for every ALL node that is an ancestor of u, its children that are not ancestors of u have positive output.
Also, for every MAX node that is an ancestor of u, its children that are not ancestors of u have zero value.
Thus, if c is the sum of the values of the children of the ancestors of u on input R, then u(Sa)+c = f(Sa

⋃

R)
or u(Sa) = f(Sa

⋃

R) = 0. Thus, u(Sa) = u(Sb) if and only if f(Sa

⋃

R) = f(Sb

⋃

R).

Lemma 4.7 Suppose one has g, the canonical Boolean image of f , and suppose v1 and v2 are siblings in g
with an OR parent. Then one can determine whether the LCA of r(v1) and r(v2) is a MAX or SUM in four
queries.

Proof: Let v3 be the parent of v1 and v2, and let ui = r(vi). Observe that no node on the path between
u1 and u3 is an ALL gate, and no node on the path between u2 and u3 is an ALL gate. Also, the LCA of
u1 and u2 is a descendent of u3. Suppose that Si is the set of items that are descendants of vi. The LCA of
u1 and u2 is a MAX node if and only if u3(S1

⋃

S2) = u3(S1) or u3(S1

⋃

S2) = u3(S2). Using Lemma 4.6,
this can be tested using four queries.5

Lemma 4.8 Suppose one has g, the canonical Boolean image of f , and an internal node v in g with k
children. Then, one can determine the subtree corresponding to bool−1(v) in 2k(k− 1) queries, and how the
leaves of that subtree map to the children of v.

Proof: If v is an AND gate, then bool−1(v) is an ALL gate. So, the elicitor simply constructs one ALL
gate with children that are leaves labeled with the children of v.

If v is an OR gate, define u = r(v). Define v1, . . . , vk to be the children of v, and define ui = r(vi). Using
Lemma 4.7, the elicitor can determine whether the LCA of each pair ui, uj is a MAX or SUM in 4 queries
for a total of 4k(k−1)/2 = 2k(k−1) queries. The elicitor can now apply the graph decomposition technique
from the proof of Lemma 4.1 to compute the whole subtree.

Lemma 4.9 Given the structure of a read-once formula f over {MAX, SUM, ALL}, one can determine a
consistent set of values (multipliers) on the leaves using at most 3n value queries, where n is the number of
items.

The proof is in Section 4.7.

Proof (of Theorem 4.2): The overall algorithm works as follows. Apply the algorithm from [AHK93] to
get the Boolean image of g. Use Lemma 4.8 to find the fine structure of f . Observe that overall all of the
internal nodes have less than 2n total children, so the total number of queries is less than 4n(2n− 1). Then
use Lemma 4.9 to find the weights.

5In reality, one can use less than four queries per test.
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4.3 Eliciting read-once preferences over more general operators

The elicitor can also elicit preferences with more general gates that we call ATLEASTk, MAXk, and
GENERALk,l. An ATLEASTk node returns the sum of its inputs if it receives a positive value on at
least k inputs. Otherwise, it returns zero. This is a generalization of the ALL node. A MAXk node returns
the sum of the k highest-valued inputs. A GENERALk,l gate returns the sum of the l highest-valued inputs
if and only if at least k inputs are positive, otherwise it returns zero. We restrict k to be less than or equal
to l. Every read-once gate discussed in this chapter is a specific instance of a GENERALk,l gate.

For instance, imagine that on a vacation to the Bahamas, Alice wanted entertainment. If she got to go
out on at least three nights, then the trip would be worthwhile. Otherwise, she would rather stay home. Each
night, she takes the maximum valued entertainment option. Then there is an ATLEAST3 node combining
all of the different nights.

In a different situation, imagine that Joe wants a more relaxing vacation in Hawaii, where he does not
want to go out more than three nights. In this case, a MAX3 gate will be useful. For each night, he chooses
the best possible entertainment given to him. Then, he takes the best three nights of entertainment.

Finally, imagine that Maggie wants a moderately active vacation, and is interested in going to Paris for
a week, and wants at least three but no more than four nights of entertainment. Then a GENERAL3,4 gate
will describe her preferences.

Theorem 4.10 A read-once GENERALk,l function can be learned in polynomial time.

The proof sketch is in Section 4.9.

4.4 Allocation with read-once preferences

Suppose there are two parties with preference functions f and g and the elicitor wants to maximize social
welfare, that is, find the allocation (A, S−A) that maximizes f(A)+ g(S−A). In this section we show that
if one of these functions (say, g) is additive (that is, the value of a bundle is the sum of the values of the
items in the bundle) and the other (say, f) is read-once, then the elicitor can find the optimal allocation in
polynomial time. However, if both f and g are read-once formulas—even containing just ALL, MAX, and
SUM gates—then the allocation problem is NP-hard.

Another way to think of maximizing social welfare when g is linear is to think of g as a “cost” function,
and the elicitor is maximizing f(A) − g(A). For example, a software agent wants to find the set of items
A that maximizes the difference between the value of A to its user and the cost of A, when items are each
purchased separately.

4.4.1 Read-once valuation function and additive valuation function

Theorem 4.11 Given one party with a known MAX-SUM-ALL read-once valuation, and another party with
a known additive valuation, there exists a polynomial-time algorithm for maximizing their joint welfare.

Proof: The idea is that the elicitor recursively learns two things about each node u of f : what subset S′

of the items that are descendants of u maximizes u(S′) − g(S′), and what subset S′′ of the items that are
descendants of u maximizes u(S′′)− g(S′′) given the restriction that u is positive.

Observe that this is trivial if u is a leaf. If not, assume that u1, . . . , uk are the children of u, and that Si

are the items that are descendants of ui. Define S′
i ⊆ Si to be the items that maximize ui(S

′
i)− g(S′

i), and
S′′

i ⊆ Si to be the items that maximize ui(S
′′
i )− g(S′′

i ) given that ui(S
′′
i ) is positive.

If u has an ALL label, then S′′ =
⋃k

i=1 S′′
i . If u(S′′)− g(S′′) > 0, then S′ = S′′. Otherwise, S′ = ∅. This

justifies the need for maintaining both sets.
If u has a SUM label, then S′ =

⋃k
i=1 S′

i. Define j to be the index of the child of u that loses the least
from being positive. More formally,

j = argmin
i∈{1...k}

(ui(S
′
i)− g(S′

i))− (ui(S
′′
i )− g(S′′

i )) .
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Then the elicitor finds that S′′ = S′′
j

⋃

(

⋃

i6=j S′
j

)

.

If u has a max label, then define a to be the index of the best S′
i, or more formally:

a = argmax
i∈{1...k}

u(S′
i)− g(S′

i).

Then S′ = S′
a. Define b to be the index of the best S′′

i , or more formally:

b = argmax
i∈{1...k}

u(S′′
i )− g(S′′

i ).

Then S′′ = S′′
b .

Each of these sets can be found in polynomial time, so the runtime is polynomial.

Theorem 4.12 Given one party with a known GENERALk,l read-once valuation, and another party with a
known additive valuation, there exists a polynomial-time algorithm for maximizing their joint welfare.

The proof is similar to the one above.

4.4.2 NP-hardness of allocation among two parties

Theorem 4.13 Given two agents with known valuations
which are MAX-SUM-ALL read-once functions, it is NP-hard to find an allocation whose welfare is more
than 1

2 of the welfare of the optimal allocation.

The proof is in Section 4.10.

Notice that achieving welfare of at least half the optimal is easy because the elicitor can simply give all
the items to the agent who values the total the most. This shows that it is NP-hard to do any better.

4.5 Learning preferences that are almost read-once

In this section, we will consider the setting where a person’s valuation function is a δ-approximation of a
read-once function: given that the person’s valuation function is f , there exists a read-once function f ′ such
that for all sets S, then |f(S) − f ′(S)| < δ. This algorithm works only for the case of read-once formulas
over {MAX, SUM}.

Observe that, for any class of polynomial-size circuits (like those described in the previous sections), the
set of preference functions that can be represented has a low topological dimension in comparison to the
topological dimension of the class of all preference functions. However, the set of approximate {MAX, SUM}
functions has the same dimension as the set of all preference functions.

Theorem 4.14 Given black-box access to f , a δ-approximation of a read-once function consisting of MAX
and SUM nodes, a function g can be learned in n(n− 1)/2 queries such that for any set of items S′, it is the
case that |g(S′)− f(S′)| < 6δ|S′|+ δ.

Proof: Define f ′ to be the read-once function such that |f − f ′| < δ, and let va = f ′({a}). The key behind
this algorithm is that the elicitor will throw away all items a where va < 4δ, because they will interfere with
the LCA test. In order to achieve this, the elicitor throws away a if f({a}) < 5δ. Observe that if va ≥ 6δ,
then a will not be thrown away.

We now argue that the test for LCA is correct if all the items a have a value va ≥ 4δ or more. Consider the
following test for the LCA of a and b: a and b have a max node as an LCA if and only if f({a, b}) ≤ f({a})+2δ
or f({a, b}) ≤ f({b}) + 2δ.
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Assume that the LCA is a max node. Then f ′({a, b}) = f ′({a}) or f ′({a, b}) = f ′({b}). Without loss of
generality, assume that f ′({a, b}) = f ′({a}). Then:

f({a, b}) < f ′({a, b}) + δ

f({a, b}) < f ′({a}) + δ

f({a, b}) < (f({a}) + δ) + δ

f({a, b}) < f({a}) + 2δ

Assume that the LCA is a SUM node. Then f ′({a, b}) = f ′({a}) + f ′({b}) > f ′({a}) + 4δ. This implies
that f({a, b}) > f({a}) + 2δ. Similarly, f({a, b}) > f({b}) + 2δ.

Given this LCA test, the elicitor can learn the structure of the tree as in Lemma 4.1. The elicitor
associates the value f({a}) to the leaf with item a, even though this value might be off by almost δ. Now,
observe that if the elicitor throws away items not in S′, then this does not affect the difference between
f ′(S′) and g(S′). Also, incorrectly calculating the value of an item not in S′ does not affect this difference.
Now, for each item in S′, the elicitor can get an error at most less than 6δ, because the elicitor threw out
an item of value just below 6δ. Also, there is a difference of less than δ between f ′ and f .

4.6 Toolbox DNF

We now consider another natural class of preferences that we call Toolbox DNF, that can be elicited in
polynomial time via value queries. In Toolbox DNF, each bidder has an explicit list of m bundles S1, . . . , Sm

called minterms, with values v1, . . . , vm respectively. The value given to a generic set S′ is assumed to be
the sum of values of the Si contained in S′. That is,

v(S′) =
∑

Si⊆S′

vi.

These preferences are natural if, for example, the items are tools or capabilities and there are m tasks to
perform that each require some subset of tools. If task i has value vi and requires set of tools Si, then
these preferences represent the value that can be attained by any given collection of tools. We show that
Toolbox-DNF can be elicited in time polynomial in the number of items and the number of minterms.

Theorem 4.15 Toolbox DNF can be elicited using O(mn) value queries.

Proof: The elicitor will find the minterms one at a time in an iterative fashion. The elicitor can clearly
test for the presence of some minterm by simply testing if v(S) > 0. The elicitor can then repeatedly remove
elements to find a minimal positive set S1 in n queries. That is, v(S1) > 0 but for all x ∈ S1, v(S1−{x}) = 0.
This will be the elicitor’s first minterm, and the elicitor will set v1 = v(S1).

At a generic point in time, the elicitor will have found minterms S1, . . . , Si with associated values
v1, . . . , vi. Let vi be the Toolbox-DNF given by the terms found so far; that is,

vi(S′) =
∑

Sj⊆S′:j≤i

vj .

Define v̄i = v − vi. Observe that v̄i is also a toolbox function, namely, v̄i(S′) =
∑

Sj⊆S′:j>i vj . Also, the

elicitor can “query” v̄i at any set S′ by querying v(S′) and subtracting vi(S′). Thus, the elicitor can find a
minterm of v̄i using the same procedure as above, and this will be a new minterm of v. The elicitor simply
continues this process until at some point the elicitor finds that v̄m(S) = 0 and the elicitor is done.

Theorem 4.16 Given two agents with Toolbox-DNF preferences having m1 and m2 minterms respectively,
optimal allocation can be done in time polynomial in n and m1 + m2.
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Proof: Construct a node-weighted bipartite graph with one node on the left for each of the first agent’s
minterms, and one node on the right for each of the second agent’s minterms. Give node i a weight vi (where
vi is defined with respect to the associated agent). An edge is drawn between a node on the left and a node
on the right if the associated minterms share any items.

Notice that any independent set I on this graph represents a legal allocation. The first agent gets all
items in minterms associated with nodes in I on the left, and the second agent gets all items in minterms
associated with nodes in I on the right. This is legal because that if an item is in a node on the left and
a node on the right, then there is an edge between these nodes, and only one of them would be in I. If
remaining items are thrown away, then the total welfare of this allocation is equal to the total weight of
independent set I.

Similarly, any legal allocation corresponds to an independent set of the same total weight. If the allocation
gives set A1 to agent 1, and A2 to agent 2, then just pick the nodes on the left whose bundles are in A1, and
the nodes on the right whose bundles are in A2.

Thus, the allocation problem reduces to finding a maximum weight independent set in a bipartite graph,
which can be solved via maximum flow. Specifically, it is a standard result that the complement of I, which
is a minimum-weight vertex cover, corresponds directly to the minimum cut in an associated flow-network.

4.7 Learning the Weights*

There are some situations where there are multiple consistent values for the leaves of the function f . For
example, if a plane ticket and hotel are fed into an ALL gate, and together they are worth $1000, then any
pair of values (x, 1000 − x) are consistent for the leaves. The algorithm will be guaranteed to learn some
consistent set of values.

The elicitor will use a recursive technique to learn the tree. At each node, the elicitor will either learn
the function f ′ at that node, or a function f ′′ such that there exists some c ∈ R such that for all S′′, if
f ′(S′′) > 0 then f ′(S′′) = f ′′(S′′) + c, otherwise f ′′(S′′) = 0. We call such an f ′′ a shift of function f ′, even
though the shift is only on the inputs where f ′ > 0. In the case that we learn a shift f ′′, the function that
we learn will be “shiftable” in the sense that it will be easy to make an additive increase or decrease of the
value of the function on all positive inputs by recursively shifting the values of the subfunctions. This will
be done as a postprocessing step. An example of a function that is not shiftable is a SUM node with two
leaves as children.

For easier recursive application, we will allow leaves to have positive and negative values, and find a
function where each node computes a real value and a boolean value. If the boolean value is false, the real
value will be zero. Leaves will return true and their associated real value if the item is in the input, false
and zero otherwise. SUM nodes will return the OR of the boolean values of their children and the sum of
their real values. MAX nodes will return the OR of their children and the highest real value of a true child
if this is true, otherwise zero. This means that if one child has a negative real value and is true, and one
child has a zero real value and is false, MAX will return the negative value. ALL will return the AND of
its children and the sum of its children’s real values. The result of the tree is the real value returned by the
root. Observe that this is identical to the original if the values of the leaves are all positive.

Definition 4.17 A shiftable node is defined recursively.

1. A leaf is shiftable.

2. A SUM node is never shiftable.

3. A MAX node is shiftable if all of its children are
shiftable.

4. An ALL node is shiftable if at least one of its children is shiftable.
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Define a tree to be shiftable if its root is shiftable, and a function to be shiftable if the representative tree is
shiftable.

Lemma 4.18 Suppose that f is a read-once function that is shiftable. The elicitor can construct a new
read-once function f ′ such that f ′ = f + c for all inputs where f returns a true value.

Proof: The elicitor performs this construction recursively, only modifying the values of the leaves. For a
leaf node, it is sufficient to add c to its value. This is the base case.

If the tree is shiftable and not a leaf, the read-once function has a MAX or ALL label at the root.
Assume the root is a MAX node. In this case, the elicitor knows that the value of the tree, if it is true,

will be the value of one of the subfunctions f1, . . . , fk. Observe that all subfunctions are shiftable. Thus, by
the inductive hypothesis, the elicitor can change each subfunction such that f ′

i = fi + c.
Assume the root is an ALL node. In this case, the elicitor knows that the value of the tree, if it is true,

will be the value of the sum of the subfunctions f1, . . . , fk. Now, there must exist some subfunction fi that
is shiftable. Therefore, the elicitor can change the value of this subfunction such that f ′

i = fi + c, and leave
the remaining subfunctions unchanged.

Lemma 4.19 Given the structure of a read-once function f and a node N , suppose that f ′ is the true
function associated with N . One can determine values for the leaves that are descendants of N such that the
resulting function f ′′ is a shift of f ′, using at most (3/2)n queries, where n is the number of nodes that are
descendants of N . If f ′ is not shiftable, then we guarantee that f ′′ = f ′.

Proof: This is proven inductively on the depth of the tree. This holds for a leaf. Now consider trees of
larger depth. Define S′ to be the items that are descendants of N . The first step is to show that the elicitor
can construct a set R similar to that of Lemma 4.6. Define R to be the set of all items that have an ALL
gate as an LCA with N and are not descendants of N .

Thus, in an argument similar to Lemma 4.6, there exists a c ∈ R such that for all S′′ ⊆ S′, f(S′′ ∪R) =
f ′(S′′) + c.

Now, define N1, . . . , Nk to be the children of N . Define f ′
i to be the function associated with each Ni,

and Si to be the items that are descendants of Ni. Recursively for each subtree, we can discover a fi such
that there exists a ci ∈ R where for all S, fi(S) = f ′

i(S) + ci. In order to obtain these functions, the elicitor
requires (3/2)(n− k) queries.

Suppose that N has a MAX label. Then if one of the subtrees, say i, is not shiftable, then fi(Si) =
f ′

i(Si) = f ′(Si), so fi(Si) + c = f(Si ∪ R). Thus, with one query the elicitor can discover c. Then, for
each subtree fj that is shiftable, the elicitor can find cj . It is true that f ′

j(Sj) + c = f(Sj ∪ R), and so
cj = fj(Sj)− f ′

j(Sj) = fj(Sj)− (f(Sj ∪R)− c). Thus, the elicitor can find a function equal to f ′
j when Nj

is true by finding f ′′
j = fj − cj . This requires overall less than or equal to k queries.

However, if N has a MAX label and all the subtrees are shiftable, then the tree is shiftable. However,
the elicitor can still construct a set of functions f ′′

i such that for all i, for all S′′ ⊆ S′ such that Ni is true,
f ′′

i (S′′) = f ′
i(S

′′) + c. This can be done by defining c′i = fi(Si)− f(Si ∪R), and then f ′′
i = fi − c′i. Observe

that f ′′
i = fi − (fi − (f ′

i + c)) = f ′
i + c when the input makes Ni true.

Suppose that N has an ALL label. Then the elicitor directly makes f ′′ = ALLk
i=1f

′
i . N is true if and

only if all Ni are true, and in this case
∑k

i=1 f ′
i =

∑k
i=1(fi + ci) = (

∑k
i=1 fi) + (

∑k
i=1 ci). Thus, if all of the

subtrees of Ni are not shiftable, then f ′′ = f ′.
The most complex case is when N has a SUM label. In this case, the elicitor can learn the value of each

subtree exactly. The elicitor measures f(S1 ∪ S2 ∪R), f(S1 ∪R), and f(S2 ∪R). Observe that

f(S1 ∪ S2 ∪R)− f(S2 ∪R) = f ′(S1 ∪ S2)− f ′(S2)

= f ′
1(S1).

If k > 2, then for each i > 2 the elicitor measures f(S1 ∪ Si ∪R). Thus, for each 1 ≤ i ≤ k such that the ith
subtree is shiftable, we can calculate c′i = fi(Si)− f ′

i(Si), and construct f ′′
i = fi − c′i. This requires at most

k + 1 ≤ 3k/2 queries.
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Proof (of Lemma 4.9): One can elicit values such that there exists a c such that if the root is true,
f ′(S′) = f(S′) + c using (3/2)(m− 1) queries, where m is the number of nodes in the tree (which can be no
more than twice the number of items). If f is not shiftable, the elicitor is done. If f is shiftable, one can use
a single query on the set of all items S to find c = f ′(S)− f(S). Then one can compute f ′ − c.

4.8 Learning a MAXl Tree*

Assume that the tree is canonical, that no MAX1 node v has a MAX1 child v′, because the children of v′

can be made children of v. Also, no node is labeled MAX0, because such nodes and their descendants can
be removed from the tree without affecting the output.

A large number of definitions are listed below, grouped for ease of reference. S′, S′′ are sets of items and
v, v′ are nodes.

• Define r to be the root node.

• Define T = {a ∈ S : f(a) > 0}.

• Define L(v) to be l if v is labeled MAXl.

• Define C(v) to be the children of v.

• Define D(v) to be the items that are descendants of v.

• Define DP (v) = {D(v′) : v′ ∈ C(v)}.

• Define C(v, S′) = {v′ : v′ ∈ C(v), D(v′) ∩ S′ 6= ∅}.

• A set S′ is dependent if there exists some a ∈ S′ such that f(S′) = f(S′\{a}).

• A set is independent if it is not dependent.

• A set S′ is a minimal dependent set if it is dependent and there exists no dependent proper subset
S′′ ⊂ S′.

• A set S′ is pairwise independent if no subset of S′ of size 2 is dependent.

• A node v is a witness for a set S′ if L(v) < |C(v, S′)|.

• A set S′ represents v if L(v) + 1 = |S′| = |C(v, S′)|+ 1.

• Given a graph G which has the items in T as nodes, G is legal if for all a, b ∈ T that are connected,
LCA(a, b) 6= r.

• Given a graph G of T , define R(G) to be the collection of sets such that for each set S′ ∈ R(G), S′

contains exactly one item from each connected component in G.

The elicitor will attempt to find DP (r) and L(r) using a polynomial number of value queries6. The
elicitor will do this by constructing a legal graph and then adding edges to it. The intermediate outcome of
the algorithm depends on L(r):

• L(r) = 1: The elicitor will quickly find that L(r) = 1 and be able to use an applicable trick.

• L(r) = |C(r)|: DP (r) will be the connected components of the graph.

• 1 < L(r) < C(r). The elicitor will eventually find a set S′ that represents r, and use it to find DP (r).

6In the remaining discussion, the phrases “The elicitor can” or “one can” will indicate one can find some set, partition, or
value with a polynomial number of value queries.
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The elicitor will not need to know L(r) in advance, the elicitor will find it in the course of the algorithm.
Below there are some useful lemmas about witnesses, representatives and dependent sets. The algorithm
follows directly.

Fact 4.20 1. A set S′ is dependent if and only if it has a witness.

2. If S′ is dependent and S′ ⊆ S′′, then S′′ is dependent.

3. If S′ is independent and S′ ⊇ S′′, then S′′ is independent.

4. A minimal dependent set S′ represents some node v.

5. A set S′ that represents some node v is a minimal dependent set.

6. A set {a, b} ⊆ T is dependent if and only if
L(LCA(a, b)) = 1.

7. The subset of a pairwise independent set is pairwise independent.

8. If S′ is pairwise independent, then it has no witnesses v where L(v) = 1.

Lemma 4.21 The elicitor can determine if L(r) = 1. If L(r) = 1, the elicitor can find DP (r). If L(r) > 1,
the elicitor can find a legal graph G such that for all S′ ∈ R(G), S′ is pairwise independent.

Proof: The elicitor constructs a graph with nodes in T , connecting two items {a, b} if and only if they are
a dependent set. By an argument similar to that of Lemma 4.1, if G is connected, then the root is a MAX1

node. In this case, the connected components of the complement of G is DP (r), and L(r) = 1.
If G is not connected, then the root is not a MAX1 node. Thus, L(r) > 1. For all edges (a, b) in the

graph G, L(LCA(a, b)) = 1, and therefore LCA(a, b) 6= r.
Consider an arbitrary S′ ∈ R(G). If {a, b} ⊆ S′, then there is no edge between a and b. Thus, {a, b} is

independent, and S′ is pairwise independent.

The elicitor will be constructing more legal graphs by adding edges.

Fact 4.22 If all S′ ∈ R(G) are pairwise independent, and G′ has all of the edges of G, then all S′ ∈ R(G)
are pairwise independent.

The primary reason that dependent sets are useful is because they are easily found.

Fact 4.23 Given a set S′′, one can find a minimal dependent set S′ such that S′ ⊆ S′′.

Lemma 4.24 Given a pairwise independent set S′′, a minimal dependent set S′ ⊆ S′′ that represents some
unknown node v, and an element a ∈ S′′, one can determine if a ∈ D(v). Specifically, a ∈ D(v) if and only
if there exists some b ∈ S′ such that S′\{b} ∪ {a} is dependent.

Corollary 4.25 One can find D(v) ∩ S′′.

Corollary 4.26 Given a legal graph G, a pairwise independent set S′′ ∈ R(G), and a minimal dependent
set S′ ⊆ S′′, one can find if S′ represents r.

Proof: If a ∈ D(v), then either:

• For all b ∈ S′, LCA(a, b) = v. Then for all b ∈ S′, (S\{b})∪ {a} represents v and is dependent.

• There exists some b ∈ S′ where LCA(a, b) 6= v. In this case, (S\{b}) ∪ {a} represents v and is
dependent.
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If a /∈ D(v), then take an arbitrary b ∈ S′, and define S′′′ = S′\{b}. The elicitor will prove that S′′′∪{a}
does not have a witness.

First, observe that L(v) = |C(v, S′)|−1 = |C(v, S′′′)| = |C(v, S′′′∪{a})|. Observe that S′′′ is independent.
For all v′ 6= v, C(v′, S′′′) ≤ 1. Thus, C(v′, S′′′ ∪ {a}) ≤ 2. However, since S′′′ ∪ {a} ⊆ S′′ is pairwise
independent, it has no witness where L(v′) = 1, so it cannot have any witness.

Lemma 4.27 Given a pairwise independent set S′′, a minimal dependent set S′ ⊆ S′′, an element a ∈
D(v) ∩ (S′′\S′), and an element b ∈ S′, then LCA(a, b) 6= v if and only if
(S′\{b}) ∩ {a} is dependent and for all c ∈ S′\{b}, (S′\{c}) ∩ {a} is independent.

Corollary 4.28 Given a legal graph G, a pairwise independent set S′′ ∈ R(G), and a minimal dependent
set S′ ⊆ S′′ that represents v, one can find DP (v).

The proof is similar to that above.

Lemma 4.29 The elicitor can learn MAXl tree using a polynomial number of value queries.

The algorithm is as follows:

1. Begin with a legal graph G such that all S′ ∈ R(G) are pairwise independent.

2. Choose an S′ ∈ R(G).

3. If S′ is independent, then L(r) = |C(r)|, and the components of the graph G are DP (r).

4. If S′ is dependent, then find a minimal dependent set S′′ ⊆ S′.

5. If S′′ represents the root, then L(r) = |S′′| − 1, and one can find DP (r).

6. If S′′ does not represent the root, then for all pairs a, b ∈ S′′, add an edge (a, b) in G. Continue from
step 2.

This algorithm will terminate because |S′′| > 1, and therefore the elicitor is always adding edges to the
graph in step 6.

4.9 Proof Sketch for GENERALk,l Preferences*

Observe that the boolean image of a GENERALk,l node is a THRESHk node, a node that is true if at
least k inputs are true, and false otherwise. So, the boolean image of a read-once GENERALk,l function
is a read-once THRESHk function. An algorithm to learn such functions is discussed in [BHHK94]. Like
learning a {SUM, MAX, ALL} function, when the elicitor is learning a GENERALk,l function, the elicitor
can begin by learning the boolean image.

THRESH1 nodes represent one or many GENERAL1,l nodes, just like OR nodes can represent one or
many MAX or SUM nodes. Also, THRESHk nodes, when k > 1, represents exactly one GENERALk,l node
for some l ≥ k.

The elicitor can calculate the output of a specific node to within an additive factor, by forming a set like
in Lemma 4.6. Using equality tests, one can learn the MAXl structure corresponding to a THRESH1 node.
Thus, with an equality test, the elicitor can learn the structure of the original function.

As before, the weights can be computed in polynomial time. The elicitor will recursively learn a function
for each node that may be off by a fixed constant value on sets where the original function is positive. Again,
the elicitor can think about shifting subfunctions as necessary. The concept of a shiftable node is defined
recursively.

1. A leaf is shiftable.

2. Suppose an internal node is labeled GENERALk,l and has m children.
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(a) If k = l < m and all the children are shiftable, the node is shiftable.

(b) If k = l = m and there is a shiftable child, the node is shiftable.

(c) Otherwise, the node is not shiftable.

The tree is learned recursively from the bottom. One can learn a shiftable tree within a constant factor on
all positive inputs and a tree that is not shiftable exactly.

The elicitor can recursively learn the function for each node, perhaps being off by a constant value on
the positive values. As before, if a node is not shiftable, the elicitor can learn the function exactly. If k < l,
then it is analogous to a SUM gate. If k = l = m, then it is analogous to the ALL gate. If k = l < m, then
it is loosely analogous to the MAX gate. This is the hardest case where the elicitor solves a simple system
of linear equalities in order to determine how to much to shift each subfunction.

4.10 Proving Approximate NP-Hardness*

Begin with a SAT instance, which will be translated into an instance of optimally allocation. The maximum
global welfare will be 2 if the instance is satisfiable, and 1 otherwise. Thus, in order to get more than 1/2 of
the optimal welfare, an algorithm must solve an NP-complete problem. Let {C1, . . . Ck} denote the clauses
of the given formula, and let X = {x1, . . . , xn} denote the variables.

The plan is that Agent I’s valuation will be 1 if the allocation represents an assignment to the variables and
0 otherwise. Agent II’s valuation can be equal to 1 if the allocation represents a satisfying assignment, and
will be 0 if it does not represent a satisfying assignment. If the allocation does not represent an assignment,
the value is between zero and 1 inclusive.

A variable xi will be represented by two sets of items: Pi = {p1
i , . . . , p

k
i } and Ni = {n1

i , . . . , n
k
i }. If Agent

I has all the items in set Ni, then xi is “positive”. If Agent I has all the items in set Pi, then the variable is
“negative”. If every variable is either positive or negative, then the allocation is called “legal”. The function:

fi = MAX
(

ALLk
j=1p

j
i , ALLk

j=1n
j
i

)

is k if xi is positive or negative, zero otherwise. Agent I’s valuation is:

vI =
1

nk
ALLn

i=1fi.

Observe that vI = 1 if each variable is positive or negative, and vI = 0 otherwise.
Now, the set Dj will be used to represent the clause Cj . Dj is defined as follows: pj

i is in Dj if and only if

xi occurs positively in Cj . nj
i is in Dj if and only if xi occurs negatively in Cj . So, given that the allocation

is legal, observe that:
max
a∈Dj

a

is 1 only if there is a variable occurring positively in j which is not negative according to the allocation, or
a variable occurring negatively in j which is not positive according to the allocation. Also, this function is
never more than 1. The valuation of Agent II is:

vII =
1

k
ALLk

j=1MAX{a : a ∈ Dj}.

This function is never greater than 1. If the allocation is legal but does not correspond to a satisfying
assignment, the value is zero.

Suppose that there is a satisfying assignment. Then for each variable xi, if it is positive give all pj
i to

Agent II and all nj
i to Agent I, and if it is negative give all nj

i to Agent II and all pj
i to Agent I. This

allocation has a value 2.
Thus, if the assignment is not legal, the first agent has value 0 and the total value is less than or equal to

1. If the assignment is legal but not a satisfying assignment, the total value is 1. The optimal global welfare
is 2 if there is a satisfying assignment, and 1 otherwise.



4.11 Conclusions and future work 81

4.11 Conclusions and future work

Elicitation of real-valued preferences is a key capability in many allocation problems, especially in electronic
commerce. When multiple items are to be allocated, preference elicitation is difficult because the parties’
preferences over items are generally not additive due to complementarity and substitutability. In this chapter
we studied the elicitation of real-valued preferences over subsets of items, showing that read-once preferences
over a natural set of gates (a restriction that is still powerful enough to capture complementarity and
substitutability), and toolbox DNF preferences, can be elicited in a polynomial number of value queries.
Such elicitation can be used by a shopping agent to elicit its user’s preferences. It can also be used to elicit
bidders’ preferences in a combinatorial auction (answering the value queries truthfully can be made an ex
post equilibrium by using Clarke pricing [CS01]—assuming the agent has read-once preferences). We also
showed that if the party’s preferences are close to read-once, then a good approximation of the preferences
can be elicited quickly.

We also studied the complexity of the computational problem of allocating the items given the parties’
preferences. We showed that this is NP -hard even with just two parties with read-once valuations. However,
in the natural setting where only one of the parties has a read-once valuation and the other has an additive
valuation function, the allocation problem is solvable in polynomial time.

There are several interesting avenues for future research along these lines. For one, in these multi-item
allocation problems, what is the limit on the generality of preferences that can be elicited in polynomial time
via value queries? Second, when there are multiple parties, one agent’s preferences can be used to decide
what information needs to be elicited from another party in order to determine an optimal (or approximately
optimal) allocation of items. This has been the driving motivation in the work on preference elicitation in
combinatorial auctions [CS01, CS02b, CS02a, HS02, HS04], but our work in this chapter did not yet capitalize
on this extra power. In the future, it would be interesting to harness this power, together with the possibilities
that preference restrictions open, to design effective goal-driven preference elicitation algorithms.
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Part II

Learning in Games





Chapter 5

Online Convex Programming1

Convex programming involves a convex set F ⊆ Rn and a convex cost function c : F → R. The goal of
convex programming is to find a point in F which minimizes c. In online convex programming, the convex set
is known in advance, but in each step of some repeated optimization problem, one must select a point in F
before seeing the cost function for that step. This can be used to model factory production, farm production,
and many other industrial optimization problems where one is unaware of the value of the items produced
until they have already been constructed. We introduce an algorithm for this domain. We also apply this
algorithm to repeated games, and show that it is really a generalization of infinitesimal gradient ascent,
and that generalized infinitesimal gradient ascent (GIGA) achieves no-external-regret: in other words, the
algorithm almost surely in the limit does almost as well as the best fixed action.

5.1 Introduction

Imagine a farmer who decides what to plant each year. She has certain restrictions on her resources, both
land and labor, as well as restrictions on the output she is allowed to produce. How can she select which
crops to grow without knowing in advance what the prices will be? Here we present an algorithm based on
gradient descent that will earn her almost as much as she could given that she knew all prices in advance but
produced the same amount of each crop year after year. This is an example of an online convex programming
problem.

Online convex programming is a generalization of the well-studied experts problem [FS99, LW89]. Imagine
that a decision maker has n experts, each of which has a plan at each step with some cost. At each time
step, the decision maker selects a probability distribution over experts. If x ∈ Rn is defined such that xi is
the probability that he selects expert i, then the set of all probability distributions is a convex set. Also, the
cost function on this set is linear, and therefore convex.

This chapter presents an algorithm for general convex functions based on gradient descent. The algorithm
applies gradient descent in Rn, and then moves back to the set of feasible points. There are three beneficial
properties of this algorithm. The first is that gradient descent is a simple, natural algorithm that is widely
used, and studying its behavior is of intrinsic value. Secondly, this algorithm is more general than the
experts setting, in that it can handle an arbitrary sequence of convex functions, which had not been solved.
Finally, in online linear programs, this algorithm can in some circumstances perform better than an experts
algorithm. While the bounds on the performance of most experts algorithms depends on the number of
experts, these bounds are based on other criteria, which may sometimes be better. This relationship is
discussed further in Section 5.4, and further comments on related work can be found in Section 5.5. The
main theorem is stated and proven in Section 5.2.1.

The algorithm that motivated this study was infinitesimal gradient ascent [SKM00], which is an algorithm
for repeated games. First, this result shows that infinitesimal gradient ascent is a no-regret behavior [FL98],

1This work previously appeared in [Zin03].
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and secondly it shows that GIGA, a nontrivial extension developed here of infinitesimal gradient ascent to
games with more than two actions, is a no-regret behavior. GIGA is defined in Section 5.3.2 and is proven
to be a no-regret algorithm in Section 5.3.3.

Also, Bansal et al. [BBCM03] use the results of this chapter in the oblivious routing domain.

5.2 Online Convex Programming

Definition 5.1 A set of vectors S ⊆ Rn is convex if for all x, x′ ∈ S, and all λ ∈ [0, 1], λx+(1−λ)x′ ∈ S.

Definition 5.2 For a convex set F , a function f : F → R is convex if for all x, y ∈ F , for all λ ∈ [0, 1],

λf(x) + (1 − λ)f(y) ≥ f(λx + (1− λ)y).

If one were to imagine a convex function R2 → R, where the function described the altitude, then the
function would look like a valley.

Definition 5.3 A convex programming problem consists of a convex feasible set F and a convex cost
function c : F → R. The optimal solution is the solution that minimizes the cost.

An example of a convex programming problem is that of a farmer who knows the restrictions on labor and
land before she begins, and also knows the demand for her goods in advance.

Suppose that the farmer is not aware of the demand for her products before she begins. She knows that
the corresponding cost function is convex, but she is unaware of its actual values. After the year is over and
she has sold her items, she then becomes aware of her profit, and can use this to plan the next year. This is
an instance of an online convex programming problem.

Definition 5.4 An online convex programming problem consists of a feasible set F ⊆ Rn and an
infinite sequence {c1, c2, . . .} where each ct : F → R is a convex function.

At each time step t, an online convex programming algorithm selects a vector xt ∈ F . After the
vector is selected, it receives the cost function ct.

Because all information is not available before decisions are made, online algorithms do not reach “solutions”,
but instead achieve certain goals. See Section 5.2.1.

Define ‖x‖ =
√

x · x and d(x, y) = ‖x− y‖. Throughout the remainder of the chapter we will make
seven assumptions:

1. The feasible set F is bounded. There exists N ∈ R such that for all x, y ∈ F , d(x, y) ≤ N .

2. The feasible set F is closed. For all sequences {x1, x2, . . .} where xt ∈ F for all t, if there exists a
x ∈ Rn such that x = limt→∞ xt, then x ∈ F .

3. The feasible set F is nonempty. There exists an x ∈ F .

4. The cost is differentiable. For all t, ct is differentiable 2.

5. The cost derivatives are bounded. There exists an N ∈ R such that for all t, for all x ∈ F , ‖∇ct(x)‖ ≤
N .

6. The cost derivatives are computable. For all t, there exists an algorithm, given x, which produces
∇ct(x).

7. The projection onto F is computable. For all y ∈ Rn, there exists an algorithm which can produce
argminx∈F d(x, y). We define the projection P (y) = argminx∈F d(x, y).

Given this machinery, we can describe our algorithm.

2Although we make the assumption that ct is differentiable, the algorithm can also work if there exists an algorithm that,
given x, can produce a vector g such that for all y, g · (y − x) ≤ ct(y) − ct(x).
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Algorithm 5.5 Greedy Projection Select an arbitrary x1 ∈ F and a sequence of learning rates η1, η2, . . . ∈
R+. In time step t ≥ 1, after receiving a cost function ct, select the next vector xt+1 according to:

xt+1 = P
(

xt − ηt∇ct(xt)
)

.

The basic principle at work in this algorithm is quite clear if we consider the case where F ⊆ R2 and the
sequence {c1, c2, . . .} consists of a single repeated cost function c. In this case, our algorithm is operating
in a valley that does not change over time. The boundary of the feasible set is the edge of the valley. By
proceeding along the direction opposite the gradient, we walk down into the valley. By projecting back into
the convex set, we move along the edge of the valley.

5.2.1 Analyzing the Performance of the Algorithm

We measure the performance of an algorithm in comparison to the best algorithm in hindsight that knows
all of the cost functions and selects one fixed vector.

Definition 5.6 Given an algorithm A, and a convex programming problem (F, {c1, c2, . . .}), if {x1, x2, . . .}
are the vectors selected by A, then the cost of A until time T is

CA(T ) =
T
∑

t=1

ct(xt).

The cost of a static feasible solution x ∈ F until time T is

Cx(T ) =
T
∑

t=1

ct(x).

The regret of algorithm A until time T is

RA(T ) = CA(T )−min
x∈F

Cx(T ).

Our goal is to prove that when nt = t−1/2, the average regret RA(T )/T of Greedy Projection
approaches zero. In order to state our results about bounding the regret of this algorithm, we need to
specify some parameters. First, define:

‖F ‖ = max
x,y∈F

d(x, y),

‖∇c‖ = sup
x∈F,t∈{1,2,...}

‖∇ct(x)‖.

Here is the first result derived in this chapter:

Theorem 5.7 If ηt = t−1/2, the regret of the Greedy Projection algorithm (G) satisfies:

RG(T ) ≤ ‖F ‖
2√T

2
+

(√
T − 1

2

)

‖∇c‖2.

Therefore, lim supT→∞ RG(T )/T ≤ 0.

The first part of the bound is because we might begin on the wrong side of F . The second part is because
we always respond after we see the cost function.

Proof: First we show that without loss of generality, for all t there exists a gt ∈ Rn such that for all x,
using gt · x in place of ct(x) does not change the behavior of G or decrease the regret of G.
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First, begin with arbitrary {c1, c2, . . .}, run the algorithm and compute {x1, x2, . . .}. Then define gt =
∇ct(xt). If we were to change ct such that for all x, ct(x) = gt · x, the behavior of the algorithm would be
the same. Would the regret be the same?

Because ct is convex, for all x:

ct(x) ≥ (∇ct(xt)) · (x − xt) + ct(xt).

Therefore, for all x∗ ∈ F : ct(x∗) ≥ gt · (x∗ − xt) + ct(xt). Thus:

ct(xt)− ct(x∗) ≤ ct(xt)−
(

gt · (x∗ − xt) + ct(xt)
)

≤ gt · xt − gt · x∗.

Thus the regret would be at least as much with the modified sequence of functions.

We define for all t, yt+1 = xt − ηtg
t. Observe that xt+1 = P (yt+1). We will bound the regret of not

playing action x∗ on time step t.

yt+1 − x∗ = (xt − x∗)− ηtg
t.

(yt+1 − x∗)2 = (xt − x∗)2 − 2ηt(x
t − x∗) · gt + η2

t ‖gt ‖2. (5.1)

Observe that in the expression of the form a2−2ab+b2 in Equation 5.1, a2 is a potential, 2ab is the immediate
cost, and b2 is the error (within a factor of 2ηt). We will now begin to fully flush out these properties. For
all y ∈ Rn, for all x ∈ F , (y − x)2 ≥ (P (y)− x)2 [GW00]. Also, ‖gt ‖ ≤ ‖∇c‖. So:

(xt+1 − x∗)2 ≤ (xt − x∗)2 − 2ηt(x
t − x∗) · gt + η2

t ‖∇c‖2.

(xt − x∗) · gt ≤ 1

2ηt

(

(xt − x∗)2 − (xt+1 − x∗)2
)

+
ηt

2
‖∇c‖2.

Now, by summing we get:

RG(T ) =

T
∑

t=1

(xt − x∗) · gt

≤
T
∑

t=1

(

1

2ηt

(

(xt − x∗)2 − (xt+1 − x∗)2
)

+
ηt

2
‖∇c‖2

)

(5.2)

≤ 1

2η1
(x1 − x∗)2 − 1

2ηT
(xT+1 − x∗)2 +

1

2

T
∑

t=2

(

1

ηt
− 1

ηt−1

)

(xt − x∗)2 +
‖∇c‖2

2

T
∑

t=1

ηt

Observe that − 1
2ηT

(xT+1−x∗)2 is negative. Because x1, . . . , xT and x∗ are in F , (x1−x∗)2 ≤ ‖F ‖2, . . . , (xT−
x∗) ≤ ‖F ‖2.

RG(T ) ≤ ‖F ‖2
(

1

2η1
+

1

2

T
∑

t=2

(

1

ηt
− 1

ηt−1

)

)

+
‖∇c‖2

2

T
∑

t=1

ηt

≤ ‖F ‖2 1

2ηT
+
‖∇c‖2

2

T
∑

t=1

ηt. (5.3)
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Now, if we define ηt = 1√
t
, then:

T
∑

t=1

ηt =

T
∑

t=1

1√
t

≤ 1 +

∫ T

t=1

dt√
t

= 1 +
[

2
√

t
]T

1

= 2
√

T − 1.

Plugging this into Equation 5.3 yields the result.

5.2.2 Regret Against a Dynamic Strategy

Another possibility for the offline algorithm is to allow a small amount of change. For instance, imagine that
the path that the offline algorithm follows is of limited size.

Definition 5.8 The path length of a sequence A′ = {x1, . . . , xT } is:

T−1
∑

t=1

d(xt, xt+1).

The cost of the sequence A′ is:

CA′(T ) =

T
∑

t=1

ct(xt).

Define A(T, L) to be the set of sequences with T vectors and a path length less than or equal to L.

Definition 5.9 Given an algorithm A and a maximum path length L, the dynamic regret RA(T, L) is:

RA(T, L) = CA(T )− min
A′∈A(T,L)

CA′(T ).

Theorem 5.10 If η is fixed, the dynamic regret of the Greedy Projection algorithm satisfies:

RG(T, L) ≤ 7‖F ‖2
4η

+
L‖F ‖

η
+

Tη‖∇c‖2
2

.

Proof: Define zt to be the optimal dynamic sequence at time t. As with Equation 5.2, we can argue that:

RG(T ) ≤ 1

2

T
∑

t=1

1

η

(

(xt − zt)2 − (xt+1 − zt)2
)

+
‖∇c‖2

2

T
∑

t=1

η

=
1

2η

T
∑

t=1

(

(xt)2 − (xt+1)2
)

+
1

2

T
∑

t=1

1

η
2(xt+1 − xt) · (zt) +

Tη‖∇c‖2
2

=
1

2η

(

(x1)2 − (xT+1)2
)

+
1

η
xT+1 · zT − 1

η
x1 · z1 +

T
∑

t=2

1

η
(zt−1 − zt) · (xt) +

Tη‖∇c‖2
2

.

Without loss of generality, assume 0 ∈ F . Thus for any a, b ∈ F , it is the case that ‖a‖ ≤ ‖F ‖,
‖b‖ ≤ ‖F ‖, and − ‖F‖2

4 ≤ a · b ≤ ‖F ‖2 (a · b is maximized when a = b and ‖a‖ = ‖F ‖, and minimized when
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a = −b and ‖a‖ = ‖F ‖/2). So, xT+1 · zT ≤ ‖F ‖2 and −x1 · z1 ≤ ‖F‖2

4 . Also, (x1)2 − (xT+1)2 ≤ ‖F ‖2, and
since for any a, b ∈ F , a · b ≤ ‖a‖‖b‖, (zt−1 − zt) · xt ≤ d(zt−1, zt)‖F ‖. Therefore:

RG(T ) ≤ 7‖F ‖2
4η

+

T
∑

t=2

1

η
d(zt−1, zt)‖F ‖+

Tη‖∇c‖2
2

≤ 7‖F ‖2
4η

+
L‖F ‖

η
+

Tη‖∇c‖2
2

.

Observe that, although the average regret appears constant in T , if one has a fixed T as a target and chooses
η = 1√

T
, then the average regret approaches zero as the chosen target is a larger T .

5.2.3 Lazy Projection

This section defines a different algorithm that performs surprisingly well.

Algorithm 5.11 (Lazy Projection) Select an arbitrary x1 ∈ F and a sequence of learning rates η1, η2, . . . ∈
R+. Define y1 = x1. In time step t, after receiving a cost function, define yt+1:

yt+1 = yt − ηt∇ct(xt), (5.4)

and select the vector:
xt+1 = P (yt+1). (5.5)

Theorem 5.12 Given a constant learning rate η, Lazy Projection’s (L) regret is:

RL(T ) ≤ ‖F ‖
2

2η
+

η‖∇c‖2T
2

.

The proof is in Section 5.6. There are two ways of viewing this guarantee. The first is that the algorithm
approaches a low (although not zero) average regret. The second is that, for a target number of steps T , one
can choose η = 1/

√
T . Thus, by partitioning time into a number of periods of increasing length (i.e., each

period is quadruple the size of the one before, and the learning rate is half), and resetting the algorithm at
the beginning of each period, the average regret will drop to zero in the limit.

It is interesting to note that lazy projection with ηt = t−1/2 will not always result in the average regret
being low. For example, if one imagines F = [0, 1], x1 = 1, and ‖∇c‖ = 1. Then, for T/3 time steps,
ct(x) = x. For 2T/3 time steps, ct(x) = −x. The algorithm will always play 1, and have an average regret
of 1/3 after time T .

5.3 Generalized Infinitesimal Gradient Ascent

This section establishes that repeated games are online linear programming problems, and an application of
our algorithm is a no-external-regret behavior.

5.3.1 Oblivious Deterministic Environments

A behavior3 is an oblivious deterministic behavior if it plays the same sequence of actions regardless of the
actions of the agent. We will use this type of behavior to bridge the gap between the results in online linear
programming and repeated games.

Formally, a behavior σ2 : H → ∆(A2) is an oblivious deterministic behavior if there exists a function
r : {1, 2, . . .} → A2 where for all h ∈ H :

Pr
a2∈σ2(h)

[a2 = r(|h|+ 1)] = 1.

3For the basic definitions in repeated bimatrix games, see Section 1.7.1.
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5.3.2 Formulating a Repeated Game as an Online Linear Program

For simplicity, suppose that we consider the case where A1 = {1, . . . , n}. Before each time step in a repeated
game, we select a distribution over actions. This can be represented as a vector in a n-standard closed
simplex, the set of all points x ∈ Rn such that for all i, xi ≥ 0, and

∑n
i=1 xi = 1. Define this to be F .

Since we have a utility u1 instead of cost c, we will perform gradient ascent instead of descent. The utility
u1 is a linear function when the second agent’s action becomes known.

Algorithm 5.13 (Generalized Infinitesimal Gradient Ascent) Choose a sequence of learning rates
{η1, η2, . . .}. Begin with an arbitrary vector x1 ∈ F . Then for each time step t:

1. Play according to xt: play action i with probability xt
i.

2. Observe the action ht,2 of the other agent and calculate:

yt+1
i = xt

i + ηtu1(i, ht,2),

xt+1 = P (yt+1).

where P (y) = argminx∈F d(x, y), as before.

In this online convex programming problem, ‖F ‖ ≤
√

2, and ‖∇c‖ ≤
√

|A1|‖u1 ‖. For any h ∈ H , define
Rext,a(h) to be the regret in comparison to using the action a ∈ A1. Formally:

Rext,a(h) =
1

|h|

|h|
∑

t=1

u1(a, ht,2)− u1(ht).

Now, we can apply Theorem 5.7 to get the following result:

Theorem 5.14 If ηt = t−1/2, the expected average regret of GIGA for all oblivious deterministic behaviors
σ2 : H → ∆(A2), for all a1 ∈ A1, for all T is:

Eh∈µσ1,σ2
[Rext,a1(h(T ))] ≤ 1√

T
+

(

1√
T
− 1

2T

)

|A1||u1|2.

5.3.3 Self-Oblivious Behavior

It is important to observe that the above is more a method of constructing a behavior than an actual behavior
of the form σ1 : H → ∆(A1). By proper simulation, the above can be reformulated into a function from
histories to distributions over actions.

Before we begin, we fix x1. Then, whenever we see a history h ∈ Ht, we simulate how we would
have constructed x2, . . . , xt based on the actions of the second agent. Thus, given x1, the above can be
reformulated into σ1 : H → ∆(A1) for any game.

Moreover, σ1 here is self-oblivious, in that it only depends on the history of actions of the second agent.
Define A∗

2 =
⋃∞

i=0 Ai
2, and Π2 : H → A∗

2 such that for all h ∈ H ,

Π2(h) = {h1,2, h2,2, h3,2, . . . , h|h|,2}

Definition 5.15 A behavior σ1 is self-oblivious if there exists a function f : A∗
2 → ∆(A1) such that for

all h ∈ H, σ1(h) = f(Π2(h)).

Self-oblivious algorithms are robust (in the way we formally define in Lemma 5.16) against adaptive adver-
saries, those that change their technique based on past actions of the behavior.

GIGA is self-oblivious, in that the strategy in the current time step can be calculated given x1 (a constant)
and the past actions of the second agent. It should be noted that not all algorithms are self-oblivious. For
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instance, Kalai and Vempala [KV02] describe an algorithm that is not self-oblivious, because it uses a
“random seed” at the beginning that an adaptive adversary could learn over time and then use in some
settings.

The following lemma compartmentalizes the technique used at the end of [FS99].

Lemma 5.16 Given a self-oblivious behavior σ1, if for every ε > 0 there exists a T such that, for all
deterministic, oblivious behaviors σ2 : H → ∆(A2), for all a1 ∈ A1, for all t > T :

Eh∈µσ1,σ2

[

Rext,a1(h(t))
]

< ε,

then σ1 is a no-external-regret behavior. Therefore, GIGA is a no-external-regret behavior.

The proof is in Section 5.7.

5.3.4 Lazy Projection and Fictitious Play

There have been some techniques presented to smooth fictitious play in [FL95], and here we present a very
simple version that has much of the “spirit” of fictitious play.

Algorithm 5.17 (Z Fictitious Play)Choose η > 0. At time step t define:

yt
i =

t−1
∑

j=1

ηu1(i, hj,2).

In other words, yt
i/η is the total reward one would have received if one had played action i over the entire

history. Define:
xt = P (yt) = argmin

x∈∆(A1)

d(x, yt).

Play according to xt in time step t.

This algorithm is an instance of Lazy Projection. Whereas cautious fictitious play [FL95] will play a strategy
that is almost what fictitious play would do all of the time, Z Fictitious Play plays exactly what fictitious
play would do most of the time, except on time steps where the past utility of some of the best actions in
A1 are sufficiently close in value to make Z Fictitious Play randomize.

5.4 Converting Old Algorithms

In this section, in order to compare our work with that of others, we show how one can näıvely translate
algorithms for mixing experts into algorithms for online linear programs, and online linear programming
algorithms into algorithms for online convex programs. This section is a discussion and no formal proofs are
given.

5.4.1 Formal Definitions

We begin with defining the experts problem.

Definition 5.18 An experts problem is a set of experts E = {e1, . . . , en} and a sequence of cost vectors
c1, c2, . . . where for all i, ci ∈ Rn.

On each time step t, an expert algorithm (EA) first selects a distribution Dt ∈ ∆(E), and then
observes a cost vector ct.

We assume that the EA can handle both positive and negative costs for the experts. If not, the EA can
be easily extended by shifting the values into the positive range.

Now, we define an abstract online linear programming problem.
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Definition 5.19 An online linear programming problem is a closed convex polytope F ⊆ Rn and a
sequence of cost vectors c1, c2, . . . where for all i,ci ∈ Rn.

On each time step t, an online linear programming algorithm (OLPA) first plays a distribution
Dt ∈ ∆(F ), and then observes a cost vector ct.

An OLPA can be constructed from an EA, as described below.

Algorithm 5.20 Define v1, . . . , vk to be the vertices of the polytope for an online linear program. Choose
E = {e1, . . . , ek} to be the experts, one for each vertex.

On each time step t, receive a distribution Dt from the EA, and select vector vi if expert ei is selected.
Define c′ ∈ Rk such that c′i = ct · vi. Send EA the cost vector c′ ∈ Rk.

The optimal static vector must be a vertex of the polytope, because a linear program always has a solution
at a vertex of the polytope. If the original EA can do almost as well as the best expert, this OLPA can do
at least as well as the best static vector.

Note that both EAs and Greedy Projection can be used to solve OLPA. The second observation is that
most EA have bounds that depend on the number of experts. The number of vertices can be exponential
with respect to the number of constraints, and arbitrarily high even for a fixed diameter. Therefore, any
normal expert’s bound is incomparable to our bound on the regret of Greedy Projection.

There are some EAs that begin with a distribution or uneven weighting over the experts. These EAs
may be able to obtain guarantees based on the diameter of the feasible region in this scenario, because a
distribution where a cluster of vertices close together (which will all have similar utilities) has the same total
starting weight as a lonely vertex with no close neighbors may result in a having a lot of weight on vertices
“close” to the optimal vertex in a short period of time.

5.4.2 Converting an OLPA to an Online Convex Programming Algorithm

There are two reasons that Algorithm 5.20 will not work for an online convex program. The first is that
an online convex program can have an arbitrary convex shape as a feasible region, such as a circle, which
cannot be described as the convex hull of any finite number of points.

The second reason is that a convex function may not have a minimum on the edge of the feasible set.
For instance, if F = {x : x · x ≤ 1} and c(x) = x · x, the minimum is in the center of the feasible set.

Now, this first issue is difficult to handle directly4, so we will simply assume that the OLPA can handle
the feasible region of the online convex programming problem. This can be either because the OLPA can
handle an arbitrary convex region as in [KV02], or because the convex region of the convex programming
problem is a convex polytope.

We handle the second issue by converting the cost function to a linear one. In Theorem 5.7, we find
that the worst case is when the cost function is linear. This assumption depends on two properties of the
algorithm; the algorithm is deterministic, and the only property of the cost function ct that is observed is
∇ct(xt).

Now, we form an Online Convex Programming algorithm.

Algorithm 5.21 (Exact) On each time step t, receive Dt from the OLPA, and play xt = EX∈Dt [X ]. Send
the OLPA the cost vector ∇ct(xt).

The algorithm is discrete and only observes the gradient at the point xt, thus we can assume that the
cost function is linear. If the cost function is linear, then:

EX∈Dt [ct(X)] = ct(EX∈Dt [X ]).

xt may be difficult to compute, so instead of explicitly calculating xt, we can sample.

4 One can approximate a convex region by a series of increasingly complex convex polytopes, but this solution is undesirable
because the number of experts is proportional to the complexity of the polytope.
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Algorithm 5.22 (Approx) Select the number of samples s1, s2, . . . to be taken each time step. On each
time step t, sample X1, . . . , Xst

independently from the distribution Dt. Play:

zt =
1

st

st
∑

i=1

Xi.

Send OLPA the cost vector ∇ct(zt).

We will bound the worst-case difference between Approx and Exact. There are several difficulties in doing
so. The first is that Approx is a randomized algorithm, so although it only eventually takes the derivative at
a single point, it has a probability of taking the derivative at one of many points, and so both the value and
the derivative matter at those points. Secondly, the long-term strategy of the adversary, how it forces the
algorithm to move in certain directions, might depend on the random result. Therefore, we try to separate
the random element from the deterministic element in a new game. At time step t:

1. Receive Dt from the OLPA.

2. Sample X1, . . . , Xst
independently from distribution Dt.

3. Calculate and reveal to the adversary zt = 1
st

∑st

i=1 Xi.

4. Calculate and reveal to the adversary xt = EX∈Dt [X ].

5. The adversary selects gt, ht ∈ Rn where ‖gt ‖, ‖ht ‖ ≤ ‖∇c‖.
6. Send the OLPA gt.

This game updates the OLPA in the same fashion as the Exact algorithm. We define the super regret S as:

S(T ) =

T
∑

t=1

ht · (zt − xt) +

T
∑

t=1

gt · xt − min
x∗∈F

T
∑

t=1

gt · x∗.

We can relate this super regret to the regret of both the Exact and Approx algorithms.

The second half of the super regret is the regret of the Exact algorithm on a sequence of linear functions.

E[S(T )] = E[

T
∑

t=1

ht · (zt − xt)] + RExact(T ).

We can bound E[ht · (zt − xt)] based on the number of samples taken:

E[ht · (zt − xt)] ≤ E[‖∇c‖d(zt, xt)]

= ‖∇c‖E[d(zt, xt)].

Without loss of generality, we assume that xt = 0, 0 ∈ F .

E[d(0, zt)] =
1

st
E





√

∑

i,j

XiXj



 .

For a random variable Y :

E[Y ] ≤
√

E[Y 2].
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We use this fact to prove that:

E[d(0, zt)] ≤ 1

st

√

√

√

√

√E





∑

i,j

Xi ·Xj





=
1

st

√

∑

i

E
[

‖Xi ‖2
]

≤ 1

st

√

st‖F ‖2

=
‖F ‖√

st

E[S(T )] ≤ ‖∇c‖‖F ‖
T
∑

t=1

1√
st

+ RExact(T )

By choosing st = t,
∑T

t=1
1√
st
≤ 2
√

T − 1. Thus, by selecting st properly:

E[S(T )] = ‖∇c‖‖F ‖(2
√

T − 1) + RExact(T )

We will now prove that S(T ) ≥ RApprox(T ). Imagine that in the Approx algorithm, each time step the
adversary knew in advance the random selection zt before selecting the cost function ct. This only increases
the regret. In the new game, the adversary selects gt = ∇ct(zt). Therefore:

ct(zt)− ct(x∗) ≤ gt · (zt − x∗)

≤ gt · (zt − xt + xt − x∗)

≤ gt · (zt − xt) + gt · (xt − x∗)

The adversary selects ht to be a vector of length ‖∇c‖ in the direction of zt − xt.

ht · (zt − xt) = ‖∇c‖d(xt, zt)

≥ ‖gt ‖d(xt, zt)

≥ gt · (zt − xt)

So, finally:

ct(zt)− ct(x∗) ≤ ht · (zt − xt) + gt · xt − gt · x∗

T
∑

t=1

(

ct(zt)− ct(x∗)
)

≤
T
∑

t=1

ht · (zt − xt) +

T
∑

t=1

gt · xt − min
x∗∈F

T
∑

t=1

gt · x∗

RApprox(T ) ≤ S(T )

Therefore, for the proper number of samples:

E[RApprox(T )] ≤ RExact(T ) + ‖∇c‖‖F ‖(2
√

T − 1)

5.5 Related Work

Kalai and Vempala [KV02] have developed algorithms to solve online linear programming, which is a spe-
cific type of online convex programming. They were attempting to make the algorithm behave in a lazy
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fashion, changing its vector slowly, whereas here we are attempting to be more dynamic, as is highlighted in
Sections 5.2.2 and 5.3.3.

These algorithms were motivated by the algorithm of [SKM00] which applies gradient ascent to repeated
games. We extend their algorithm to games with an arbitrary number of actions, and prove that it is a
no-external-regret algorithm. There has been extensive work on regret in repeated games and in the experts
domain, such as [Bla56, FV99, Fos99, FS99, FL95, FL99, Han57, HMC00, HMC01a, LW89]. What makes
this work noteworthy in a very old field is that it proves that a widely-used technique in artificial intelligence,
gradient ascent, has a property that is of interest to those in game theory. As stated in Section 5.4, experts
algorithms can be used to solve online linear programs and online convex programming problems, but the
bounds may become significantly worse. For example, if the feasible region is a regular polygon of diameter
1, then Greedy projection will do well regardless of the size of the polygon, but the experts algorithm bounds
will decay as the number of vertices increase.

There are several studies of online gradient descent and related update functions, for example [CBLW94,
KW97, HW01, KW01]. These studies focus on prediction problems where the loss functions are convex
Bregman divergences. In this chapter, we are considering arbitrary convex functions, in problems that may
or may not involve prediction.

In the offline case, [DDL99] have done work on proving that gradient descent and projection for arbitrary
Bregman distances converges to the optimal result.

Two of the most notable extensions to the problem in this chapter involve settings where the complete
convex function is not observed, only the cost of the algorithm. Particularly, [BM04] show that one can
handle arbitrary linear cost functions against an adaptive adversary, and [FKM04] show that one can handle
arbitrary convex cost functions against an oblivious adversary.

5.6 Proof of Lazy Projection*

In analyzing Greedy Projection, we had one potential: the distance from the optimal point. In analyzing
Lazy Projection, we have two potentials: the distance from yt to the optimal point (ideal potential), and the
distance to the set F (projection potential). The ideal potential is “good”, in the sense that we grow distant
from the optimal point when we are performing better than the optimal point. However, the projection
potential is “bad”, in the sense that the farther we go from F , the more difference there is between the
vector we wanted to use (yt) and the vector we did use (xt). What makes Lazy Projection work is that these
two potentials cancel each other.

For all y ∈ Rn, for all closed, convex sets F ⊆ Rn, define d(y, F ) = minx∈F d(y, x).

The following two lemmas are the subcomponents of our general proof. We prove them in Section 5.6.3.

Lemma 5.23 (ideal potential) For any convex set F and any linear cost sequence ct, defining yt as in
Equation 5.4 with a fixed learning rate η, and any x∗ ∈ F :

T
∑

t=1

(

ct(yt)− ct(x∗)
)

≤ ‖F ‖
2

2
− d(yT+1, x∗)2

2η
+

Tη‖∇c‖2
2

Lemma 5.24 (projection potential) For any convex set F and any linear cost sequence ct, defining yt

and xt as in Equations 5.4 and 5.5:

T
∑

t=1

(

ct(xt)− ct(yt)
)

≤ d(yT+1, F )2

2η

In Section 5.6.1, we present an example highlighting the issues of Lemma 5.24. In Section 5.6.2, we prove
the critical connection between the n-dimensional case and the one-dimensional case. In Section 5.6.3, we
complete the proofs of Lemma 5.23, Lemma 5.24, and Theorem 5.12.
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5.6.1 A Motivating Example

In order to motivate the following technical lemmas, consider an example. Choose F = {x ∈ R : x ≤ a}. If
yt ≥ a, xt = P (yt) = a. Assume that η = 1 and the cost function at time t is ct(x) = gt ·x. We will attempt
to bound the following difference D:

D =

T
∑

t=1

ct(P (yt))− ct(yt).

D is how much less cost we would have accrued had we played the point yt instead of xt. Assume that for
all t, yt > a. So,

D =

T
∑

t=1

(

ct(a)− ct(yt)
)

.

Since gt = yt+1−yt (a result of the assumptions made at the beginning of the section applied to Equation 5.4)
, then:

D =
T
∑

t=1

(yt+1 − yt) · (yt − a).

Define zt = d(yt, F ) = minx∈F d(yt, x) = yt − a. The equation becomes:

D =

T
∑

t=1

(zt+1 − zt)zt. (5.6)

We can use the following lemma here:

Lemma 5.25 For all a, b ∈ R:

(a− b)b ≤ a2 − b2

2
.

Proof: This is an algebraic manipulation of 0 ≤ (a− b)2.

Thus, we can form a potential:

D ≤
T
∑

t=1

(zt+1)2 − (zt)2

2

D ≤ (zT+1)2 − (z1)2

2

D ≤ (zT+1)2

2
.

The key step that varies from the general case is that in general (yt+1−yt) · (yt−P (y)) 6= (zt+1−zt)(zt),
so Equation 5.6 does not hold. However, we prove in the next section that the dot product is always less.

5.6.2 Geometric Lemmas

This section contains the technical details of the proof.

Lemma 5.26 Given a convex set F ⊆ Rn, if y ∈ Rn and x ∈ F , then (y−P (y)) · (x−P (y)) ≤ 0. In other
words, the angle between y,P (y), and x is not acute (see Figure 5.1).
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y

x
P(y)

F

Figure 5.1: Lemma 5.26

Proof: We will prove the contrapositive of the theorem. Consider a point x′ ∈ F such that (y−x′)·(x−x′) >
0. We will prove x′ 6= P (y). For all λ ∈ [0, 1], define:

z(λ) = (1 − λ)x′ + (λ)x = x′ + λ(x − x′).

We will prove that for small positive values of λ, y is closer to z(λ) than it is to x′. Since F is convex, z(λ)
is in F . Now,

(y − z(λ))2 = (y − x′ − λ(x − x′))2

= λ2(x − x′)2 − 2λ(y − x′) · (x− x′) + (y − x′)2.

Observe that for 0 < λ < 2(y−x′)·(x−x′)
(x−x′)2 , (y − z(λ))2 < (y − x′)2. Thus, P (y) 6= x′.

x

y’

y

Figure 5.2: Lemma 5.27

Lemma 5.27 Given y, x, y′ ∈ Rn, then (see Figure 5.2)

(y − x) · (y′ − y) ≤ d(y, x)(d(y′, x)− d(y, x)).

Proof: We begin with a simple example. Suppose that x, y, y′ ∈ R2, x = (0, 0), and y = (1, 0). We can
prove that the property holds for these three vectors.

(y − x) · (y′ − y) = (y′
1 − 1),

d(y, x)(d(y′, x)− d(y, x)) =
√

(y′
1)

2 + (y′
2)

2 − 1

≥ (y′
1)− 1.

Now, suppose that for a specific y, x, y′, we have proven that the property holds. Then, it will hold for
y + a, x + a, y′ + a (a translation), because:

((y + a)− (x + a)) · ((y′ + a)− (y + a)) = (y − x) · (y′ − y)

≤ d(y, x)(d(y′, x)− d(y, x))

= d(y + a, x + a)(d(y′ + a, x + a)− d(y + a, x + a)).
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Also, if it holds for y,x,y′, then it will hold for ky, kx, and ky′ (a scaling), because:

(ky − kx) · (ky′ − ky) = k2(y − x) · (y′ − y)

≤ k2d(y, x)(d(y′, x)− d(y, x))

= d(ky, kx)(d(ky′, kx)− d(ky, kx)).

Also, the property is invariant under a rotation. Define AT to be the transpose of the matrix A, and aT to
be the transpose of the vector a. Suppose that R is an orthonormal matrix (where RT R = I). Now, for all
a, b ∈ Rn:

(Ra) · (Rb) = (Ra)T Rb = aT RT Rb = aT b = a · b,
d(Ra, Rb) =

√

(R(a− b)) · (R(a− b)) =
√

(a− b) · (a− b) = d(a, b).

We can now prove that if the property holds for y,x,y′, then it will hold for Ry, Rx, Ry′.

(Ry −Rx) · (Ry′ −Ry) = (R(y − x)) · (R(y′ − y))

= (y − x) · (y′ − y)

≤ d(y, x)(d(y′, x)− d(y, x))

= d(Ry, Rx)(d(Ry′, Rx)− d(Ry, Rx)).

Observe that we can think of R2 as embedded in Rn without changing distance or dot product. Any three
vectors y, x, y′ can be obtained from (0, 1, 0, . . . , 0), (0, 0, 0, . . . , 0), (y′

1, y
′
2, 0, . . . , 0) using translation, scaling,

and rotation. So, the property holds for all vectors y, x, y′.

x’

y’
y’’

y

x

Figure 5.3: Lemma 5.28

Lemma 5.28 Given y, x, x′, y′ ∈ Rn, where (y − x) · (x′ − x) ≤ 0(i.e., the angle yxx′ is not acute), then
(see Figure 5.3):

(y − x) · (y′ − y) ≤ d(y, x)(d(y′, x′)− d(y, x)).

Corollary 5.29 Given y, y′ ∈ Rn, if z = d(y, P (y)) and z′ = d(y′, P (y′)):

(y − P (y)) · (y′ − y) ≤ z(z′ − z) ≤ (z′)2 − z2

2
.

Proof: If y = x, then the result is trivial. Thus, assume y 6= x. We begin with a simple case, as before.
We assume y, x, x′, y′ ∈ R3, y = (1, 0, 0), x = (0, 0, 0), and x′

3 = 0.
Throughout the next part of the proof, we prove that the worst case occurs when x = x′. We do this by

defining y′′ = y′ − x′ + x, and replacing y′ with y′′ and x′ with x. Observe first that d(y′′, x) = d(y′, x′).
Observe that (y− x) · (y′− y) = y′

1− 1, and (y− x) · (y′′− y) = y′
1− x′

1− 1. Since (y− x) · (x′ − x) = x′
1,

x′
1 ≤ 0. Thus, (y − x) · (y′ − y) ≤ (y − x) · (y′′ − y), so the relationship only gets tighter as we force x = x′.

Thus, the property holds for these vectors by Lemma 5.27.
As in Lemma 5.27, we can prove that the property is invariant under a transformation, rotation, or

scaling.
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5.6.3 Completing the Proof

Now, we complete the proofs. The first part is similar to Theorem 5.7, and the second is a generalization of
the argument in Section 5.6.1.

Proof (of Lemma 5.23, ideal potential): First, define A (the quantity we are trying to bound):

A =

T
∑

i=1

(

ct(yt)− ct(x∗)
)

.

Without loss of generality, for all t there exists a gt such that ct(x) = gt · x.

A =

T
∑

t=1

gt · (yt − x∗).

By definition, yt+1 = yt − ηgt. Similar to Theorem 5.7:

yt+1 − x∗ = yt − x∗ − ηgt

(yt+1 − x∗)2 = (yt − x∗ − ηgt)2

gt · (yt − x∗) =
(yt − x∗)2 − (yt+1 − x∗)2

2η
+

η

2
‖gt ‖2

gt · (yt − x∗) ≤ (yt − x∗)2 − (yt+1 − x∗)2

2η
+

η‖∇c‖2
2

.

Summing, we get:

A ≤
T
∑

t=1

(

(yt − x∗)2 − (yt+1 − x∗)2

2η
+

η‖∇c‖2
2

)

A ≤ (y1 − x∗)2 − (yT+1 − x∗)2

2η
+

Tη‖∇c‖2
2

.

Since y1, x∗ ∈ F :

A ≤ ‖F ‖
2

2η
− d(yT+1, F )2

2η
+

Tη‖∇c‖2
2

.

Proof (of Lemma 5.24, projection potential): First, define B (the quantity we are trying to bound):

B =
T
∑

t=1

(

ct(xt)− ct(yt)
)

=

T
∑

t=1

(

ct(P (yt))− ct(yt)
)

.

Without loss of generality, for all t there exists a gt such that ct(x) = gt · x.

B =
T
∑

t=1

gt · (P (yt)− yt).
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Also, gt = yt−yt+1

η . Thus:

B =
1

η

T
∑

t=1

(yt − yt+1) · (P (yt)− yt)

=
1

η

T
∑

t=1

(yt − P (yt)) · (yt+1 − yt).

Using Corollary 5.29:

B ≤ 1

η

T
∑

t=1

d(yt+1, F )2 − d(yt, F )2

2

≤ d(yT+1, F )2

2η
.

Proof (of Theorem 5.12): Since lazy projection is a deterministic algorithm, and it only considers
∇ct(xt), then the worst case is a linear function. Therefore, we only need to consider linear functions.

RG(T ) =
T
∑

t=1

(

ct(xt)− ct(x∗)
)

=

T
∑

t=1

(ct(xt)− ct(yt)) +

T
∑

t=1

(ct(yt)− ct(x∗)).

Thus, by Lemma 5.23 and Lemma 5.24:

RG(T ) ≤ ‖F ‖2
2η

− d(yT+1, F )2

2η
+

Tη‖∇c‖2
2

+
d(yT+1, F )2

2η

≤ ‖F ‖2
2η

+
Tη‖∇c‖2

2
.

5.7 Proof of No-Regret*

Our analysis of regret first fixes a behavior σ1, a time step T , an ε > 0 and an action a1 ∈ A1. Then, we
attempt to develop a behavior σ2 for the second agent that maximizes the value:

Pr
h∈P T

σ1,σ2

[Rext,a1(h) > ε].

We will use Doob’s Decomposition from the theory of stochastic processes to divide the regret into an
“expected” part and a “random” part. We will then bound the expected part of the regret to be lower than
the worst case oblivious deterministic second agent, due to the fact that the behavior we are studying is
self-oblivious. Then, we will bound the random part with an old result from the theory of martingales.

We first introduce some concepts from stochastic processes that will be useful later in the proof.

Definition 5.30 A martingale difference sequence is a sequence of variables X1, X2, . . . such that for
all k, for all sequences X1, . . . , Xk:

E[Xk+1|X1, . . . , Xk] = 0
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Lemma 5.31 (Azuma’s Lemma) [Hoe63]: If X1, X2, . . . is a martingale difference sequence, and for all
i, |Xi| ≤ b, then:

Pr

[

k
∑

i=1

Xi > a

]

≤ exp

(

− a2

2b2k

)

.

Now, Doob’s Decomposition allows us to construct a martingale difference sequence out of an arbitrary
random sequence Z1, Z2, . . . by:

Yi = Zi −E[Zi|Zi−1, . . . , Z1]

Corollary 5.32 If Z1, Z2, . . . is a sequence of random variables and |Zi| ≤ b, then:

Pr

[

k
∑

i=1

Zi −E[Zi|Zi−1, . . . , Z1] > a

]

≤ exp

(

− a2

8b2k

)

.

Define Rext,a1 : A1 × A2 → R such that Rext,a1(a′
1, a2) = u1(a1, a2) − u1(a

′
1, a2). In this spirit of Doob’s

Decomposition, we define the functions Vσ1
: H → R and V rem

σ1
: H → R:

Vσ1
(h) =

1

|h|

|h|
∑

i=1

Ea′

1
∈σ1(h(i−1))[R

ext,a1(a′
1, hi,2)]

V rem
σ1

(h) = Rext,a1(h)− Vσ1
(h).

Vσ1
(h) represents the regret we expected on each time step given what happened in the past. V rem

σ1
(h)

represents the deviation from that expected regret.

Lemma 5.33 For any self-oblivious σ1, for any T , a1 ∈ A1, there exists an oblivious, deterministic behavior
σ∗

2 for the second agent such that, for all h ∈ HT :

Vσ1
(h) ≤ Eh∈P T

σ1,σ∗

2

[Rext,a1(h)].

Proof: Observe that HT is a finite set. Define h∗ ∈ HT :

h∗ = argmax
h∈HT

Vσ1
(h)

Now, choose some a′
2 ∈ A2, and define σ∗

2 such that:

Pr
a2∈σ∗

2
(h)

[a2 = h∗
|h|+1,2] = 1 if |h| < T

Pr
a2∈σ∗

2
(h)

[a2 = a′
2] = 1 if |h| ≥ T.

By construction, σ∗
2 is a deterministic, oblivious behavior. σ∗

2 will play the actions in Π2(h
∗) for the first T

time steps. Observe, that since σ1 is self-oblivious, the distribution of the actions of σ1 at time
step i is the same when σ∗

2 plays the actions in Π2(h
∗), as when the past history is h∗(i − 1).

Therefore:

1

T

T
∑

i=1

Ea′

1
∈σ1(h∗(i−1))[R

ext,a1(a′
1, h

∗
i,2)] = Eh∈P T

σ1,σ∗

2

[Rext,a1(h)].

We can use this fact to bound Rext,a1 with high probability. Define:

|u1| = max
(a1,a2)∈A1×A2

u1(a1, a2)− min
(a1,a2)∈A1×A2

u1(a1, a2).
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Lemma 5.34 If for a self-oblivious behavior σ1 and an a1 ∈ A1, for every ε > 0 there exists a time t such
that for every oblivious, deterministic behavior σ2 for the second agent, for every time T > t:

Eh∈P T
σ1,σ2

[Rext,a1(h)] < ε.

Then, for any arbitrary behavior σ′
2:

Pr
h∈P T

σ1,σ′

2

[Rext,a1(h) > 2ε] < exp

(−T ε2

8|u1|2
)

.

Proof: Choose σ′
2 to be any arbitrary behavior and T > t. From Lemma 5.33, we can define a oblivious,

deterministic behavior σ∗
2 such that:

Vσ1
(h) ≤ Eh∈P T

σ1,σ∗

2

[Rext,a1(h)] < ε.

Thus, we have captured the “expected” part of the regret in an arbitrary behavior for the second agent.
Now, for all i ∈ {1, . . . , T}, we define Yi:

Yi(h) = Rext,a1(hi)−Ea′

1
∈σ1(h(i−1))[R

ext,a1(a′
1, hi,2))].

For all h ∈ H ,

V rem
σ1

(h) =
1

T

T
∑

i=1

Yi(h),

Rext,a1(h) = Vσ1
(h) +

1

T

T
∑

i=1

Yi(h)

< ε +
1

T

T
∑

i=1

Yi(h).

For all i, for all h ∈ H i:

Eh′∈P i

σ1,σ′

2

[Yi(h
′)|Y1(h) = Y1(h

′) . . . Yi−1(h) = Yi−1(h
′)] = 0.

In other words,5 given any possible sequence Y1, . . . , Yi−1, Yi has an expected value of zero. Also, for all i,
for all h ∈ H , |Yi(h)| ≤ 2|u1|. Therefore, by Azuma’s Lemma:

Pr
h∈P T

σ1,σ′

2

[

T
∑

i=1

Yi(h) > Tε] < exp

(−T ε2

8|u1|2
)

,

Pr
h∈P T

σ1,σ2∗

[Rext,a1(h) > 2ε] < exp

(−T ε2

8|u1|2
)

.

Lemma 5.35 If for a behavior σ1, for every ε > 0 there exists a time t such that for every oblivious,
deterministic σ2, for every a1 ∈ A1, for every time T > t:

Eh∈P T
σ1,σ2

[Rext,a1(h)] < ε.

then, for any arbitrary behavior σ′
2:

Pr
h∈P T

σ1,σ′

2

[Rext
1 (h) > 2ε] < |A1|exp

(−T ε2

8|u1|2
)

.

5For a distribution D ∈ ∆(S), for a function f : S → R, and a predicate Q, we use the notation Ex∈D[P (x)|Q(x)] to indicate
the expected value of f(x) given Q(x) is true when x is drawn from D.
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Proof:

Pr
h∈P T

σ1,σ′

2

[Rext
1 (h) > 2ε] = Pr

h∈P T

σ1,σ′

2

[∃a1 ∈ A1, R
ext,a1(h) > 2ε]

≤
∑

a1∈A1

Pr
h∈P T

σ1,σ′

2

[Rext,a1 > 2ε]

≤ |A1|exp

(−T ε2

8|u1|2
)

.

Proof (of Lemma 5.16): For a given ε > 0, we wish to find t′′′ such that:

Pr
h∈µσ1,σ2

[∃T > t′′′, Rext
1 (h(T )) > ε] < ε.

We begin by decomposing the infinite sequence of events. Now, for all t:

Pr
h∈µσ1,σ2

[∃T > t, Rext
1 (h(T )) > ε] ≤

∞
∑

T=t+1

Pr
h∈µσ1,σ2

[Rext
1 (h(T )) > ε]

≤
∞
∑

T=t+1

Pr
h∈P T

σ1,σ2

[Rext
1 (h) > ε].

Define ε′ = ε/2. There exists a t′ such that, for all T > t′:

Pr
h∈P T

σ1,σ2

[Rext
1 (h) > 2ε′] < |A1|exp

(−T (ε′)2

8|u1|2
)

.

Summing we get, for all t ≥ t′:

Pr
h∈µσ1,σ2

[∃T > t, Rext
1 (h(T )) > ε] ≤

∞
∑

T=t+1

|A1|exp

(−T (ε)2

32|u1|2
)

.

This is a geometric series. For simplicity, define r:

r = exp

( −(ε)2

32|u1|2
)

.

The important fact is that 0 < r < 1. Calculating the sum:

Pr
h∈µσ1,σ2

[∃T > t, Rext
1 (h(T )) > ε] ≤ |A1|rt+1

1− r
.

Define t′′:

t′′ =
1

ln r
ln

(

(1− r)ε

|A1|

)

− 1.

Thus, for all t > t′′:
|A1|rt+1

1− r
< ε.

Thus, if t′′′ = dmax(t′, t′′)e:

Pr
h∈µσ1,σ2

[∃T > t′′′, Rext
1 (h(T )) > ε] ≤ ε.
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5.8 Conclusions and Future Work

This chapter has defined an online convex programming problem. We have established that gradient descent
is a very effective technique on this problem. This work was motivated by trying to better understand the
infinitesimal gradient ascent algorithm, and the techniques developed we applied to that problem to establish
an extension to infinitesimal gradient ascent that is no-external-regret.

The simplicity of the algorithm allows for the expansion of these results into other areas. For instance, here
we deal with a Euclidean geometry: what if one considered gradient descent on a non-Euclidean geometry,
like [Ama98, MW01]? Also, the simplicity of GIGA allows for this algorithm to be extended for even stronger
results, like WoLF[BV01].



106 Online Convex Programming



Chapter 6

Response Regret

The concept of regret is designed for the long-term interaction of multiple agents. However, most concepts
of regret do not consider even the short-term consequences of an agent’s actions: e.g., how other agents may
be “nice” to you tomorrow if you are “nice” to them today. For instance, an agent that always defects while
playing the Prisoner’s Dilemma will never have any internal or external regret. In this chapter, we introduce
a new concept of regret, called response regret, that allows one to consider both the immediate and short-
term consequences of one’s actions. Thus, instead of measuring how an action affected the utility on the time
step it was played, we also consider the consequences of the action on the next few time steps, subject to the
dynamic nature of the other agent’s responses: e.g. if the other agent always is nice to us after we are nice
to it, then we should always be nice: however, if the other agent sometimes returns favors and sometimes
doesn’t, we will not penalize our algorithm for knowing when these times are. We develop algorithms for
both external response regret and internal response regret, and show how if two agents minimize internal
response regret, then they converge to a correlated equilibrium in repeated bimatrix games, stochastic games,
and partially observable stochastic games.

6.1 Introduction

In a repeated bimatrix game, if the first agent uses a traditional no-external-regret behavior, then it considers
how well it could have done with a fixed action assuming that the actions of the second agent are fixed. For
instance, consider the Prisoner’s Dilemma (see Section 1.6.1). In this game, if the first agent always defects,
and the second agent cooperates on the first time step and then always defects, then the first agent has zero
external regret.

Observe that the above history could be generated if the second agent was playing tit-for-tat: always
playing what the first agent played on the time step before. And, if the second agent was playing tit-for-tat,
the first agent could have done significantly better by always cooperating. However, traditional external
regret does not measure this regret, and in fact if both agents always cooperate, the first agent will have a
positive external regret.

To handle such issues, we introduce response regret. Response regret is a compromise between doing
what is optimal given the other agent’s behavior (which is impossible without knowing the other agent’s
behavior in advance) and doing as well as the best from some class of functions given the second agent is
unaffected by the first agent’s actions. This is similar to research where one considers how well one could do
if the world were a finite state automata. Response regret basically considers the short-term effects of any
actions that an agent makes.

Assume that we are playing a discounted repeated Prisoner’s Dilemma (see Section 1.7.1) with a discount
factor of γ = 2/3. Suppose that the second agent has the following strategy (called a grim-trigger [OR94, p.
141] behavior):

1. If the other agent has never defected, cooperate.
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2. Otherwise, defect.

This is a behavior for the second agent that can be represented as a function σ2 : H → ∆(A2). What should
the first agent do? If the first agent always cooperates, then it receives a utility of −3. If the first agent
defects on a time step, then after that time step it should always defect. Thus, it will receive −1 on each
time step before it defects, 0 on the first time step it defects, and −5 after that. If the first time step it
defects on is t, then it will receive a utility of:

(−1)

(

1 + . . . +

(

2

3

)t−2
)

+ (0)

(

2

3

)t−1

+ (−5)

(

(

2

3

)t

+

(

2

3

)t+1

+ . . .

)

.

This reduces to:

−3− 7

(

2

3

)t−1

.

This approaches −3 as t approaches infinity. Thus, it is better never to defect, and any behavior for the
first agent that never defects if the second agent always cooperates is a best response to the grim-trigger
behavior. The grim-trigger behavior is therefore a best-response to itself (an equilibrium).

When both agents use a behavior that always defects, their discounted utilities are both −15. When they
both use the grim-trigger behaviors, they always cooperate and receive a discounted utility of −3. Thus, by
considering equilibria of the repeated game, one can perform better.

This brings up an important aspect of traditional no-external-regret algorithms. In the Prisoner’s
Dilemma, they will almost surely converge to almost always defecting. Can the concept of regret be modified
to allow for agents to take advantage of equilibria of this form?1

This chapter will discuss convergence of “the average joint behavior” to the set of correlated equilibria,
similar to [FV97] observing the empirical frequency distribution converging to the set of correlated equilibria
of the bimatrix game, but different in that we discuss convergence to a correlated equilibrium of the repeated
game.

In Section 6.2, we will begin by discussing one of the main drawbacks of traditional no-regret algorithms.
Then we will show how our concept of external response regret resolves this issue. In Section 6.3, we will
show how to modify Exp4 [ACBFS02] to work in this domain. In Section 6.4, we will show how a stronger
concept of regret, called epoch regret, allows us to utilize older algorithms. In Section 6.5, we introduce
internal response regret, and show how two no-internal-response-regret agents will converge in the limit to
the set of correlated equilibria of the repeated game. In Section 6.6, we extend these concepts of response
regret to a more general type of game where the agents do not observe each others’ actions but instead make
some observation determined by the environment based on the last joint action and the history of all actions
and observation up to that point. This generalizes POMDPs (partially observable markov decision processes)
and stochastic games, and in this domain we can again converge to the set of all correlated equilibria.

6.2 Preliminaries

In this section, we introduce external response regret. We show how it is a natural extension of external
regret when we think about external regret as playing against a robot built by an omniscient builder in a
trial. We show an example of how two situations with the same history but different behaviors for the second
agent can have drastically different response regret for the first agent. We also show how, even if the first
agent and the robot (see below) use the same behavior, zero response regret is not guaranteed.

1An earlier algorithm [dFM03] does almost as well as the best expert even taking into account the actions of the other agent,
but only if the environment is flexible: effectively, at least for the experts used, the environment is “forgiving” and one can
recover from any mistake in the past. Our guarantees hold even if the environment is inflexible, and our measure of regret itself
takes into account the flexibility of the environment.
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6.2.1 Traditional Regret and the Omniscient Builder

Consider the following formulation of traditional external regret. We want to build a good behavior σ1 :
H → ∆(A1) for our agent to play against some agent playing σ2 : H → A2, a deterministic behavior. We
compare ourselves to an omniscient builder. The omniscient builder observes σ1 and σ2 play for T time steps
and generate a history h ∈ HT . The builder constructs a robot that can play one action a∗

1 ∈ A1. Now, after
its construction, the robot is placed uniformly at random at some point in the history h. It plays for one
time step, t and compares its performance on that time step to that of the first agent. Thus, if the robot is
placed at time t, the robot chooses the action a∗

1 and the second agent chooses the action ht,2. Thus, the
robot receives a utility of u1(a

∗
1, ht,2), and the first agent receives a utility of u1(ht) on the same time step.

Thus, the expected (with respect to t) difference is:

1

|h|

|h|
∑

t=1

(u1(a
∗
1, ht,2)− u1(ht)) .

Now, if the omniscient builder builds a robot to maximize its expected utility, this becomes:

max
a∗

1
∈A1

1

|h|

|h|
∑

t=1

(u1(a
∗
1, ht,2)− u1(ht)) .

In other words, the builder knows the history, but not when in the history the robot will play. This is the
traditional external regret. Now, in the prisoner’s dilemma, such a robot would always want to defect. This
is because even though the robot is dropped into a repeated game, it only plays one time step, and never
sees the consequences of its actions on later time steps.

Now in external response regret, we have the robot play for a longer period of time, which we will call
a trial. Now the omniscient builder constructs a robot with a behavior σ∗

1 : H → A1. The robot is again
placed at some time step t chosen uniformly at random. After each time it plays a time step, a coin is
flipped. With a probability of γ, it plays another time step, unless time step |h| has been played (the trial
cannot last past the end of the observed history).

Define h(t) to be the first t joint actions of a history h, and define σ2,h(h′) = σ2(h ◦ h′). Thus, if the
robot is placed at time step t, then it will observe a behavior of σ2,h(t−1). Define the discounted utility of
the ith agent for T time steps playing h to be:

uγ,T
i (h) =

T
∑

t=1

γt−1ui(ht).

Define uγ,T
i (σ1, σ2) = E[uγ,T

i (h(σ1, σ2))]. Thus, the expected utility of the robot in a trial given it begins at
time step t is:

u
γ,(|h|−t)+1
1 (σ∗

1 , σ2,h(t−1)).

Thus, this is the utility of playing from time step t to |h| with a discount factor of γ assuming the second
agent begins at t with the same behavior that it was using before. The expected difference between the
performance of the robot and the performance of the first agent in a trial is:

1

|h|

|h|
∑

t=1

(

u
γ,(|h|−t)+1
1 (σ∗

1 , σ2,h(t−1))− u
γ,(|h|−t)+1
1 ((ht, ht+1, . . . , h|h|))

)

.

Define Σ′
i to be the set of all deterministic behaviors for the ith agent. When the omniscient builder designs

the robot to maximize the robot’s expected utility, the expected difference on a trial becomes:

Rrext,γ(h, σ2) = max
σ∗

1
∈Σ′

1

1

|h|

|h|
∑

t=1

(

u
γ,(|h|−t)+1
1 (σ∗

1 , σ2,h(t−1))− u
γ,(|h|−t)+1
1 ((ht, ht+1, . . . , h|h|))

)

.
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This is the external response regret: the expected difference in utility in a trial between the omniscient
builder’s robot and the first agent. Examples of this quantity in certain scenarios follow in the next section.
Importantly, we show later that external response regret can be estimated in some cases, but it cannot be
not known exactly without knowing σ2.

6.2.2 Measuring What Could Have Been

Consider the following history h: the first agent σ1 always defects for one hundred time steps. The second
agent cooperated on the first time step, and always defected thereafter. Did the first agent choose a reasonable
behavior?

Now, from the perspective of traditional external regret, this is a very reasonable behavior: a robot
dropped to play for one time step would always defect, and thus given the above history, the traditional
external regret would be zero.

However, the external response regret of the first agent in this scenario would depend on how the second
agent would have responded if the first agent had cooperated. For instance, the second could have been
playing tit-for-tat, grim-trigger, or could have been oblivious to any actions of the first agent. In a tit-for-tat
behavior, one always plays the action the other agent played on the last time step (starting with cooperate
on the first time step). The difference between tit-for-tat and a grim-trigger behavior is that the tit-for-tat
behavior is “forgiving”. Observe that the second agent could have played either behavior and generated h.
However, Rrext,2/3(h, GRIM) and Rrext,2/3(h, TFT ) are quite different, as we show below. Roughly, the
reason is the first agent was doomed from the beginning of the second time step playing grim trigger, but
when playing tit-for-tat, the first agent could have improved its situation at any time up until the very end.

If the first agent was playing against grim-trigger, then it could have conceivably done much better from
the first time step. However, given its behavior on the first time step, it could have done no better than it
did. The omniscient builder would design a robot that always defects in this scenario (i.e., behave the same
as the first agent), and therefore the first agent would not have any external response regret. The same
would be the case if the second agent was completely oblivious to the first agent.

If the first agent was playing against tit-for-tat, then it could have improved its outcome at any time by
playing cooperate. The omniscient builder knows this and designs a robot that cooperates for 99 time steps,
and then defects.2 The first time step that the robot plays, it does 1 worse than σ1. However, on second
and later time steps, the second agent will cooperate with the robot, and thus the robot will have four more
utility than σ1 on later time steps. The average trial lasts about 3 time steps,3 so the external response
regret is about 7.4

Now, observe that it is impossible for the first agent to compute its own response regret during the game.
This is similar to the situation in [ACBFS02], where they consider a traditional regret setting where one
does not know what the outcome of the other actions would have been.

6.2.3 Doing As Well As Slow Grim Trigger

Consider the slow grim trigger behavior. This behavior is like grim trigger and it begins by always
cooperating. Instead of defecting after the other agent has defected once, slow grim trigger waits until the
other agent has defected twice. Imagine that the first agent does not want to do as well as any robot that
the omniscient builder constructs, but wants to do at least as well in a trial as a robot playing slow grim
trigger.

Consider a behavior called noisy tit-for-tat. With a 90 percent probability, it does what the other agent
did on the previous time step. With a 10 percent probability, it does the opposite. Observe that, if slow
grim trigger and noisy tit-for-tat play against each other, they will begin by mostly cooperating. However,

2This defection on the one hundredth time step is because it is certain that the trial will end. However, the chance of the

trial lasting one hundred time steps is 1

100

(

2

3

)100
≈ 3 × 10−20.

3Precisely, 2.98 + 2
(

2

3

)100
= 2.98 ± 5 × 10−18.

4Taking into account the exact average trial length and the defection of the robot on its hundredth time step, the exact

external response regret is 6.92 + 8.01
(

2

3

)100
= 6.92 ± 2 × 10−17.
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after an average of about twenty time steps, noisy tit-for-tat will have defected twice. Thus, if the first agent
uses slow grim trigger against noisy tit-for-tat for a long time, the first agent will not do well. But, if the
first agent uses slow grim trigger against noisy tit-for-tat for a short time, the first agent will probably do
well.

Thus, if the first agent just played slow grim trigger from the beginning, after one thousand time steps,
it would always defect and the noisy tit-for-tat agent would be defecting 90 percent of the time. However,
if the robot begins a trial at any later point in the history, it will begin by cooperating. The first time step,
noisy tit-for-tat will probably defect. Afterwards, noisy tit-for-tat will probably cooperate for a while. If
γ = 2/3, with a probability of about 1/6, the trial will not last long enough for tit-for-tat to defect again.
Thus, the first agent will on average perform more poorly than slow grim trigger on the trial.

Since we are comparing against a robot that arrives at a random time, it seems reasonable that restarting
the behavior in some fashion would work. For instance, we could play slow grim trigger over again every
ten time steps, or every one thousand time steps. Now, the above example shows that restarting after every
one thousand time steps (or more infrequently) will not work. However, restarting a behavior over a shorter
period may not work either: perhaps the behavior does something special after ten time steps, but before
then achieves no utility.5

In the following sections, we will divide time into epochs, and then use fairly standard techniques on
these epochs. An epoch is a set of sequential time steps, and the set of all epochs partitions all the time
steps. However, it is important to understand that we do not know that the robot begins its trial at the
beginning of an epoch, so that simply minimizing regret in a haphazard fashion from the beginning of an
epoch is insufficient. We will return to this point with an example in Section 6.4.3.

6.3 Applying an Experts Algorithm

Here, we state Hedge from [ACBFS02], and EpochExp4, a variant of Exp4 from [ACBFS02]. EpochExp4
achieves a low external response regret. Before beginning, let us assume that the utility of the first agent on
any time step is between 0 and ‖u1 ‖. Let us divide the time steps into epochs of length k. We can think of
ourselves playing a deterministic behavior of the form:

σ1 :
k−1
⋃

t=0

Ht → A1

on each epoch. Observe that since the epoch is only k time steps, we are only interested in the first k
responses. Thus, there are a finite number of behaviors. If at the end of an epoch, we knew how well every
behavior would have done had we played it, we could use the following algorithm:

5There is a subtle balance that shows more promise than either of these techniques: by choosing to randomly restart a
behavior σ∗

1
with a probability of 1 − γ, one can do in expectation almost as well in a trial as σ∗

1
. This will be useful in future

research.
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Algorithm 6.2: Hedge
Parameters: A real number η > 0.
Initialization: Set Gi(0) = 0 for i = {1, . . . , N}.

Repeat for epoch τ = 1, 2, . . . until game ends

1. Choose behavior iτ according to the distribution p(τ) where

pi(τ) =
exp(ηGi(τ − 1))

∑N
j=1 exp(ηGi(τ − 1))

2. Receive the reward vector x(τ) and score gain xit
(τ).

3. Set Gi(τ) = Gi(τ − 1) + xi(τ) for i = 1, . . . , N .

Thus, xi(τ) would be the utility of behavior i on epoch τ . However, although we do not know the value of
xi(τ), we can form an unbiased estimator, a random variable we can observe that has the same expected
value as what we want to observe.

The following example elucidates some of the issues of constructing an unbiased estimator. Imagine that
there is an Italian restaurant that sometimes has a special on linguini. Imagine that we went to a Italian
restaurant every day, and they had a special on linguini 30 times over the course of one hundred days. Now,
over the next one hundred days, instead of going to the restaurant every day, we go there every even day.
Surprisingly, we never saw the special at all. However, this may be because that the special is only offered
on odd days. Over the next one hundred days, we flip a fair coin each day, and only if it is heads do we go
to that restaurant. We see the special 15 times over those days. Now, it may be that they don’t offer the
special as much any more, but we coincidentally go every time they offer it. However, it is more likely that
since we go half as often, we only see the linguini special half the time it is there, so we should estimate that
the number of times the special was offered was the number of times we saw it multiplied by two.

Now, on days when we don’t go to the restaurant, we do different things. Sometimes on our way to the
Italian restaurant, we pass a food court. If the food court is open, we can go there instead, and choose
either Chinese food or Vietnamese food. But if it is closed, we can go to the Italian restaurant or the Greek
restaurant. Observe that there are several behaviors here, which are conditional on whether or not the food
court is open.

I Italian always

G Greek always

CI Chinese if the food court is open, Italian otherwise.

CG Chinese if the food court is open, Greek otherwise.

VI Vietnamese if the food court is open, Italian otherwise.

VG Vietnamese if the food court is open, Greek otherwise.

On some day, imagine we choose a behavior according to the distribution:

Pr[I] = 0.1 Pr[G] = 0.2 Pr[CI] = 0.1 Pr[CG] = 0.1 Pr[V I] = 0.2 Pr[V G] = 0.3.

Now, observe that if some day, the food court is closed, and we go to eat Italian food, then our behavior
could have been I,CI, or VI. Thus, when we measure the performance on this day, we know that if we had
chosen any of the above behaviors, we would have gotten the performance we achieved. Given the fact that
the food court was closed, the probability of us performing as we did that day was Pr[I ∨ CI ∨ V I] = 0.4.
Thus, whatever utility we measure, we multiply by 2.5 = 1

0.4 (like we multiplied by 2 when the probability
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was 1
2 ), and attribute it to all of the possible behaviors that could have generated what we did that day. We

can apply the same technique to estimate the utility of behaviors we do not observe.
Define Si to be the possible histories if behavior i is played, and si to be the deterministic behavior i

itself. Define:

στ :

k−1
⋃

k′=0

Hk′ → ∆(A1)

to be the behavior on epoch τ before iτ is selected: in other words:

στ (h)(a1) =

∑

i:h∈Si,si(h)=a1
pi(τ)

∑

i:h∈Si
pi(τ)

.

Define hτ = (hk(τ−1)+1, . . . , hkτ ) to be the history of epoch τ . Then:

x̄i(τ) =

{

uγ
1
(hτ )

Pστ (hτ ) if hτ ∈ Si,

0 otherwise.

This is an unbiased estimator of the utility of using si on each epoch. Here, we present a simplified version
of Exp4 for this setting.

Algorithm 6.4: EpochExp4
Parameters: Reals η > 0 and β ∈ (0, 1]
Initialization: Initialize Hedge(η).
Repeat for τ = 1, 2, . . . until game ends

1. Get the distribution p(τ) from Hedge.

2. Select behavior iτ to be j with probability p̂j(τ) = (1 − β)pj(τ) + β
K . Define σ′

1 to be the
random behavior.

3. Receive reward xit
(τ) ∈ [0, 1].

4. Feed the simulated reward vector x̂(τ) back to Hedge, where x̂j(τ) is the simple unbiased
estimator of the utility of j given that we played σ′

1.

Theorem 6.5 For any ε > 0, γ > 0, there exists a k,β,η, and T such that EpochExp4 has an expected
external response regret (with discount factor γ) of less than ε after T epochs of length k.

Applying this algorithm achieves low external response regret. Increasing k and decreasing β and η over
time slowly enough makes the external response regret approach zero. There is a temptation here to think
that any algorithm that works in a non-stochastic bandits setting will work here when we consider epochs
to be time steps of a larger game. However, as we show in Section 6.4.3, this is not the case. In addition,
the algorithm should “handle subroutines well”. We describe this formally in Section 6.4.5.

6.4 Using Epoch Regret to Analyze External Response Regret

One problem with dealing with external response regret is that one never really knows all the consequences
of an action. Thus, in order to make this problem more tractable for traditional online learning algorithms,
we place hard limits on how long we measure the effects of an action.

In epoch regret, one first partitions the time steps into epochs. For each epoch τ ∈ {1, . . . , T}, define bτ

to be the first time step in the epoch, fτ to be the final time step of the epoch.
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The optimal algorithm still starts at a random point in time. However, the trial ends deterministically if
the epoch in which it began ends. If a trial begins in epoch τ at time t, the expected difference between the
utility of the robot using σ∗

1 and the utility of the agent generating h during the trial is:

u
γ,(fτ−t)+1
1 (σ1, σ2,h(t−1))− u

γ,(fτ−t)+1
1 ((ht, ht+1, . . . , hfτ

)).

Thus, fτ , the end of the epoch, has replaced |h|, the end of the history h, as the hard deadline for the end
of the trial. For a history h played against a deterministic agent σ2 : H → A2, define the epoch regret to be:

Repochext,γ(h, σ2) =
1

|h| max
σ1∈Σ′

1

T
∑

τ=1

fτ
∑

t=bτ

(

u
γ,(fτ−t)+1
1 (σ1, σ2,h(t−1))− u

γ,(fτ−t)+1
1 ((ht, ht+1, . . . , hfτ

))
)

.

6.4.1 The Epoch Penalty

Here, we measure how different the epoch regret and the external response regret can be. We do this
by considering a measure halfway in-between. Imagine that, if a trial reaches the last time step of an
epoch, then that time step is played, the trial ends, and then the robot receives an additional utility of

γ
1−γ maxa1,a2

u1(a1, a2), and the first agent receives an additional utility of γ
1−γ mina1,a2

u1(a1, a2). We will
call the expected difference between the robot’s utility and the first agent’s utility the hybrid regret.
Observe that the utility added is the maximum expected utility remaining for the robot at that point in an
external response regret trial, and the minimum expected utility remaining for the first agent at that point
in a external response regret trial. Thus, hybrid regret exceeds external response regret.

The difference between hybrid regret and epoch regret depends on the probability of reaching the last
time step, which in turn depends on the length of the epoch. If all epochs are of length k, with a probability
of 1

k , one begins in the last time step. If one begins on the second-to-last time step, there is a probability
of γ of reaching the last time step. If one begins on the first time step, there is a probability of γk−1 of
reaching the last time step. Thus, the probability of reaching the last time step on a trial is:

1

k

(

1 + γ + . . . + γk−1
)

=
1− γk

k(1− γ)
.

If the trial does reach the end of the epoch, the difference between the epoch trial and the hybrid trial is ex-

actly ‖u1 ‖ γ
1−γ . Thus, the expected difference between the epoch regret and the hybrid regret is ‖u1‖ γ(1−γk)

k(1−γ)2 ,

which we call the epoch penalty. This is the maximum difference between the external response regret
and the epoch regret, because the hybrid regret exceeds the external response regret. As k →∞, this epoch
penalty goes to zero. Thus, if one wishes to minimize external response regret, it is sufficient to minimize
epoch regret if one increases the length of the epochs over time. Therefore, in the remainder of the section,
we will focus on how EpochExp4 minimizes epoch regret.

6.4.2 Giving More Information to the Robot

Imagine that, when the robot is placed at a point in the history, it is informed of the joint actions that
occurred from the beginning of the epoch up until the last joint action before it arrived in the history. This
additional information can only increase the utility of the robot (it can always simply ignore the information).

However, this is the robot to which we will compare. The reason for this is that it allows us to assume
that if the robot is at some time step t, it will have the same information and the same motivations regardless
of where it began, resolving one major issue of response regret.

For each h′ ∈ H , define Eh′ to be the epochs that begin with h′, formally:

Eh′ = {τ : h′ = (hbτ
, hbτ+1, . . . , hbτ+|h′|−1)}.

Now, we can consider the regret if we restrict where the robot starts to be |h′| steps after the beginning of
epochs that start with h′. Define:

Rγ
h′(σ2, h) = max

σ1∈Σ′

1

1

|Eh′ |
∑

τ∈Eh′

(

u
γ,(fτ−(bτ+|h′|))+1
1 (σ1, σ2,h(bτ+|h′|−1))− u1(h

′
bτ +|h|, h

′
bτ +|h|+1, . . . , h

′
fτ

)
)

.



6.4 Using Epoch Regret to Analyze External Response Regret 115

Since the robot now “knows” how the epoch begins and what step of the epoch it is on (but not which
epoch), this type of regret is stronger than the epoch regret. We consider the regret when the robot’s trial
begins t time steps after the beginning of the epoch, but the robot knows how the epoch began,

Rγ
t (σ2, h) =

1

T

∑

h′∈Ht

|Eh′ |Rγ
h′(σ2, h).

6.4.3 The Complexity of Epoch Regret

Before beginning the proof that EpochExp4 minimizes external response regret, it is important to under-
stand how other similar techniques would not work, thus justifying some of the complexity of the proof. It
is clear that EpochExp4 makes R0 approach zero, because R0 is the external regret of a repeated game
where each epoch is considered a time step. Thus, the guarantees in [ACBFS02] still hold.

However, what is more interesting are the quantities R1, . . . , Rk−1. An arbitrary non-stochastic regret-
minimization algorithm treating epochs as time steps does not always make these (or Repochext) approach
zero, as we demonstrate below.

Consider a simple game of Matching Pennies. Imagine that each epoch is of length 2. On time steps
{3, 7, 11, . . . , 4i+ 3, . . .}, the second agent plays T , otherwise it plays H , regardless of the actions of the first
agent. On time steps {1, 5, 9, . . . , 4i + 1, . . .} the first agent plays h, otherwise it plays t.

Epoch 1 2 3 4
Time Step 1 2 3 4 5 6 7 8
First Agent h t t t h t t t
Second Agent H H T H H H T H
Epoch Regret Contribution6 2γ 2 2γ − 2 2 2γ 2 2γ − 2 2
Rγ

0 Contribution7 2γ 2γ − 2 2γ 2γ − 2

Thus, in the first time step of each epoch, the first agent “guesses” correctly, and in the second step it
“guesses” wrong. The robot starting uniformly from the beginning of some epoch would have to make a
guess about what to do in the first time step, but it would always get the second time step correct. Thus,
if the discount factor is less than 1/2, Rγ

0 < 0 for this history. This indicates that an algorithm that was
minimizing external regret from the beginning of each epoch could have generated this history.

However, observe that Rγ
1 is in fact 2: if the robot is started at random at the second time step of some

epoch, it will play H , and always be right, whereas in the above history, the first agent is always wrong on
the second time step. In general, the epoch regret approaches 0.5 + γ. The omniscient builder’s robot plays
the action h always.

6.4.4 Handling Multiple Scenarios and Subroutines with Hedge and Exp4

As the last section showed, using an arbitrary regret minimizer treating epochs as time steps will not be
sufficient. Therefore, we need to show how Hedge and Exp4 have special properties that are useful to
minimize R1, . . . , Rk−1. In particular, minimizing R1 involves minimizing regret at the end of the epoch
given the first action of each agent in that epoch. This section shows how Exp4 (and sometimes Hedge)
elegantly handles the situation where time steps are distinguished into two sets by some event generated by
the world, or when the time steps are distinguished by some action of the algorithm itself. The examples in
this section help to illustrate the general technique used in Section 6.4.5 to show how EpochExp4 handles
the partitioning of epochs by the first few joint actions in the epoch, which is a hybrid of the two situations
we discuss here.

6 Expected Utility of always playing h from this point until the end of the epoch minus the observed discounted utility until
the end of the epoch.

7Expected Utility of always playing h for the entire epoch minus the observed discounted utility until the end of the epoch.
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Hedge and Multiple Scenarios

Imagine that there was a situation with a number of time steps, where on each time step t:

1. The world is either in state St = A or St = B. This is known to us before we act on a time step. One
of the following two decisions must be made:

2. If the world is in state A, should we use A1 or A2? After the choice, we observe ut(A1) and ut(A2).

3. If the world is in state B, should we use B1, B2, or B3? After the choice, we observe ut(B1), ut(B2),
and ut(B3).

There are two ways to formulate this situation:

1. Run two copies of Hedge: one on time steps when the world is in state A, another when the world is
in state B. For each state, regret will be minimized over the rounds where the world is in that state.

2. Run one copy of Hedge: The experts are now six pairs: (A1, B1), (A1, B2), (A1, B3), (A2, B1),
(A2, B2), and (A2, B3). Each action means, “use my first part if the state is A, and my second part if
the state is B.” This randomization technique is closer to the one used in EpochExp4.

The interesting part is, regardless of the actions of the algorithm, the sequence of states of the world, or
utilities, these two formulations will act identically, having the same distribution over {A1, A2} if the state
is A, and the same distribution over {B1, B2, B3} if the state is B.

Formally, define

GAi
(t) =

∑

t′:t′≤t,St′=A

ut′(Ai),

GBj
(t) =

∑

t′:t′≤t,St′=B

ut′(Bj),

GAi,Bj
(t) = GAi

(t) + GBj
(t).

Define yt to be the expert selected at time t, and at to be the action. Thus, if we use two copies of Hedge,
and the state St = A, then:

Pr[yt = at = Ai] =
exp(ηGAi

(t− 1))
∑2

i′=1 exp(ηGAi′
(t− 1))

.

If we use only one copy of Hedge, then:

Pr[yt = (Ai, Bj)] =
exp(ηGAi,Bj

(t− 1))
∑2

i′=1

∑3
j′=1 exp(ηGAi′ ,Bj′

(t− 1))
.

If the state st = A, then:

Pr[at = Ai] =

3
∑

j′=1

Pr[yt = (Ai, Bj′)]

=

∑3
j′=1 exp(ηGAi,Bj′

(t− 1))
∑2

i′=1

∑3
j′=1 exp(ηGAi′ ,Bj′

(t− 1))

=

∑3
j′=1 exp(ηGAi

(t− 1)) exp(ηGBj′
(t− 1))

∑2
i′=1

∑3
j′=1 exp(ηGAi′

(t− 1)) exp(ηGBj′
(t− 1))

=
exp(ηGAi

(t− 1))
∑2

i′=1 exp(ηGAi′
(t− 1))

.

Thus, both formulations are identical. This implies that even when our experts are more complicated,
for each state Hedge is still minimizing regret on the rounds when the world is in that state.
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Exp4 and Multiple Scenarios

Just as there are two formulations of Hedge in the above scenario, there are also two formulations of Exp4.
Let us assume we do not observe the utility of actions on time steps that we do not take them: i.e., we only
observe the utility actually received.

Then, if we are in state A and choose action A2, then we see u(A2), as well as u(A2, B1), u(A2, B2), and
u(A2, B3), for that time step. This means that it is still the case for any time step that:

x̂Ai,Bj
(t) =

{

x̂Ai
(t) if st = A

x̂Bj
(t) if st = B.

Thus, as before, the probabilities are identical in the two formulations. This implies that for each state,
Exp4 is also minimizing regret over rounds where the world is in that state, even when it is using more
complicated experts.

Exp4 and Multiple Subroutines

Imagine that there was a situation with a number of time steps, where on each time step, the following
decisions needed to be made:

1. Should we choose technique A or B?

2. If we choose A, should we use A1 or A2?

3. If we choose B, should we use B1, B2, or B3?

Now, imagine that one faced this situation repeatedly. In this case, one has five experts: A1, A2, B1, B2,
and B3. Imagine we observe only the utility of the action we choose: thus, Exp48 is a good algorithm to
use.

For a moment, let us ignore how A or B is selected. On time steps where B was selected, did we do as
well as the best of B1, B2, or B3?

Let us consider the two cases: exploration (where we select an action uniformly at random) and exploita-
tion (where we select an action according to pi(t)).

If we know we are exploring, and we know we selected B1, B2, or B3, then we are equally likely to have
chosen any of them.

If we know we are exploiting, and we know we selected B1, B2, or B3, then the probability of choosing
Bj is:

Pr[at = Bj |at ∈ {B1, B2, B3}] =
Pr[at = Bj ]

∑3
j′=1 Pr[at = Bj′ ]

=
exp(ηGBj

(t− 1))
∑

X∈{A1,A2,B1,B2,B3} exp(ηGX(t− 1))
÷

3
∑

j′=1

exp(ηGBj′
(t− 1))

∑

X∈{A1,A2,B1,B2,B3} exp(ηGX(t− 1))

=
exp(ηGBj

(t− 1))
∑3

j′=1 exp(ηGBj′
(t− 1))

Now, the key behind interpreting this is to observe that if at 6= Bj , then x̂Bj
(t) = 0. Thus, if we ran Exp4

only on time steps where we first chose to use Technique B, we would still be seeing the same output from
Hedge.

8In this case, Exp3 and Exp4 from [ACBFS02] are equivalent.
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So, the real difference is the ratio between exploration and exploitation: if technique B is worse than
technique A, then given that we are using technique B, we are probably exploring. It is interesting to
note that the property described in this section does not hold for Hedge. The conclusion is that even for
each subroutine the regret is being minimized over rounds where that subroutine is used in exploitation (as
opposed to exploration).

6.4.5 Handling Regret of Later Rounds: A Formal Model

Now that we have established that an arbitrary regret minimization algorithm applied to the epochs will
not necessarily minimize epoch regret, yet that Exp4 has some interesting properties that might allow it to
minimize R1 . . . Rk−1. In this section, we show that EpochExp4 does in fact minimize epoch regret.

We are concerned about whether or not modifying the behavior in each epoch after a certain history h
was observed will improve the performance. This is a generalization of the above two situations, because h
is observed at the beginning of an epoch because the first agent (as with multiple subroutines) and second
agent (as with multiple scenarios) both played actions in it. We will show in this section how on epochs
where h was played, it is as if we had been running a special regret-minimizing algorithm there, modulo the
ratio of exploration to exploitation.

Observe that in some epochs, the behavior that is chosen will never generate a history beginning with
h, like in the previous section with multiple subroutines. On other epochs, the behavior of the second agent
will never generate h, like in the previous section with multiple scenarios.

Define Hk
h to be the set of all histories of length k that begin with h:

Hk
h = {h ◦ h′ : h′ ∈ Hk−|h|}.

A deterministic behavior can be represented by the set of histories it can generate. One can also represent a
“restricted” behavior that does not have a plan of action for every outcome in a similar way. We will define
a T -restricted deterministic behavior, a generalization of a “sleeping expert”, as a set of histories S it
will try to play such that:

1. If h′′ ∈ S, and j < |h′′|, then h′′(j) ∈ S.

2. For all h′′, h′ ∈ S, if |h′| ≤ |h′′|, if for all j ∈ {1, . . . , |h′|} it is the case that h′′
j,2 = h′

j,2, then h′ = h(j).

3. For all h′ ∈ T , there exists an h′′ ∈ S such that |h′′| = k and for all j ∈ {1, . . . , k}, h′′
j,2 = h′

j,2.

4. If h′′ ∈ S and |h′′| = k, then h′′ ∈ T .

A T -restricted deterministic behavior is like a sleeping expert. Thus, a Hk
h restricted deterministic behavior

σ1 does not have a plan of action if the second agent deviates from the history h. A Hk restricted deterministic
behavior would simply be a normal deterministic behavior. Define

B(h) = {h′ ∈ Hk : ∀j ∈ {1, . . . , |h|}, h′
j,1 = hj,1 if h(j − 1) = h′(j − 1)}

to be the set of all histories such that the first agent does not deviate from h until the second agent deviates
from h. Define R(σ1) to be the set of all deterministic behaviors that completes σ1. Given a unrestricted
(i.e. normal) deterministic behavior i, the weight of that behavior on epoch τ is:

Wτ (i) = exp(ηGi(τ − 1)).

Define Wτ =
∑

i Wτ (i).
The weight of an unrestricted behavior is proportional to its probability assigned by the Hedge subroutine

of EpochExp4:

pi(τ) =
Wτ (i)

Wτ
.
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The full weight of a restricted behavior is the sum of all the deterministic behaviors that form it:

Wτ (σ1) =
∑

i∈R(σ1)

Wτ (i).

The probability that is assigned by Hedge to the set of behaviors that agree with σ1 is:

pσ1
(τ) =

Wτ (σ1)

Wτ
.

However, observe that if we have already observed h at the beginning of the epoch, then the probability is
higher. Define Wt(h) to be the sum of the weights of all the behaviors i such that contain h ∈ Si. Then the
probability that we are playing a behavior that agrees with σ1 given that we have observed h is:

pσ1|h(τ) =
Wτ (σ1)

Wτ (h)
.

Also, the restricted weight of a T -restricted behavior σ1 can be considered to be the weight associated
with all epochs where the outcome was in T . Define σt

1 to be the behavior of the algorithm on the τth epoch.
Define hτ to be the history on the τth epoch. Define Gσ1,T (τ) as the weighted reward obtained on epochs
that had outcomes in T :

Gσ1,T (τ ′) =
∑

{τ :hτ∈T,τ<τ ′}

uγ
1 (h)

Pστ
1
(hτ )

.

Now, define the internal weight of σ1 to be:

W int
τ (σ1, T ) = exp(ηGσ1,T (τ − 1)).

We define W int
τ (h) to be the sum of the internal weights of all Hk

h behaviors. The following lemma generalizes
the observations of Section 6.4.4.

Lemma 6.6 For any Hk
h -restricted deterministic behavior σ1:

W int
τ (σ1, H

k
h)

W int
τ (h)

=
Wτ (σ1)

Wτ (h)
= pσ1|h(τ).

Proof: We observe how two restricted behaviors can be combined to form a single unrestricted behavior.
First, consider Bk

h = {h′ : ∀j ∈ {0, . . . , |h| − 1}, h′(j) = h(j)⇒ h′
j+1,1 = hj+1,1} to be the set of all histories

of length k where if there were any deviations from h in h′, the second agent caused the first deviation. First,
observe that a Bk

h-restricted behavior is a normal behavior, because for any h′ ∈ Hk, there is an h′′ ∈ Bk
h

such that for all j, h′
j,2 = h′′

j,2. This is because Bk
h really only restricts the actions of the first agent. Also,

Hk
h ⊆ Bk

h. Now, if we consider (Bk
h\Hk

h)-restricted behavior σ′′
1 , and a Hk

h-restricted behavior σ1, then we
observe that the behavior represented by Sσ1

∪Sσ′′

1
is a normal deterministic behavior, which we call σ′′′

1 . It
is the case that:

Wτ (σ′′′
1 ) = exp(ηGσ′′′

1
(τ − 1))

= exp(ηGσ′′

1
,Hk

h
(τ − 1) + ηGσ1,Bk

h
(τ − 1))

= W int
τ (σ′′

1 , Hk
h)W int

τ (σ1, B
k
h).

This is because any history that can be an outcome of σ′′′
1 is either an outcome of using σ′′

1 or an outcome
of using σ1.

Observe that any behavior in R(σ1) can be formed by combining a (Bk
h\Hk

h)-restricted deterministic
behavior with σ1 in the above fashion. Define Ck

h to be the set of all (Bk
h\Hk

h)-restricted behaviors. Then:

Wt(σ1) = W int
t (σ1)

∑

σ′′

1
∈Ck

h

W int
t (σ′′

1 ).
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Now, observe that for some σiv
1 :

Wt(σ
iv
1 ) = W int

t (σiv
1 )

∑

σ′′

1
∈Ck

h

W int
t (σ′′

1 ).

Thus, the two behaviors internal and full weights are proportional. The result follows.

What we have shown is that the algorithm after it plays any history h more or less behaves as if there
were a unique version of EpochExp4 running at that point.

Define

x̂σ1
(t) =







uγ
1
(ht)

p
σt
1
(ht) if ht ∈ σ1,

0 otherwise.

However, there are some differences. First, observe that the behavior in an epoch following a history that
EpochExp4 is learning to avoid is going to be disproportionately exploratory: the reason EpochExp4 got
there in the first place is probably because it was choosing a path that had not performed well in the past.

But, overall, at every length of history, the amount of overall exploration is fixed. Thus, it makes sense
to bound the average regret starting from some time step k′ in each epoch. In order to do this, define a
k′-partial behavior as a behavior represented by a function of the form σ∗

1 :
⋃k

k′′=k′ Hk′′ → A1. Thus, if
on each epoch, we replaced our behavior by σ∗

1 , how much better would we have done? Define στ
2 : H → A2

to be the behavior of the second agent on the τth epoch. Define (σ∗
1 |σ′

1) to be the randomized behavior that

plays like σ′
1 for the first k′ time steps and like σ∗

1 afterwards. Define Σk′,k
1 to be the set of all k′-partial

behaviors. Then for all σ1 ∈ Σk′,k
1 , define:

Gk′

σ1
(T) =

T
∑

τ=1

uγ,k
1 ((σ1|στ

1 ), στ
2 ),

Gk′

max(T) = max
σ1∈Σk′,k

1

Gk′

σ1
(T).

This is the maximum utility obtainable by changing the behavior at the end of each epoch to be some fixed
behavior. The expected gain of the algorithm is:

EGEpochExp4(T) =

T
∑

τ=1

uγ,k
1 (στ

1 , στ
2 ).

The important aspect is that the behavior during the first k′ time steps of each epoch are not changed.
Define ΦM (x) as in [ACBFS02]:

ΦM (x) =
eMx − 1−Mx

M2
.

Theorem 6.7 Define K = |A1|k, and K ′ = |A1|k−k′

. Define N ′ to be the number of Hk
h behaviors if

|h| = k′. Define v = K‖u1‖
β(1−γ) . For any k′ < k, it is the case that:

EGEpochExp4(T) = EGk′

max(T)−
(

β +
K ′Φv(η)

η

‖u1 ‖
1− γ

)

EGk′

max(T)− (1− β)|Hk′ |
η

lnN ′.

Proof: Remember that we have assumed that all utilities of the first agent on a time step are between 0

and ‖u1 ‖. Observe that x̂ is bounded above by v. First, x is bounded above by ‖u1‖
1−γ . Second, when the

agent explores, the first agent has an equal probability of playing any sequence (A1)
k. Thus, Pστ

1
(hτ ) is

bounded below by β
K .
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Observe that any k′-partial behavior σ∗
1 can be decomposed into a set {σh

1 }h∈Hk′ , where for each h ∈ Hk′

,

σh
1 is a Hk

h -restricted behavior. Observe that, for all h ∈ Hk′

, for the probabilities returned by Hedge over
the Hk

h -restricted behaviors on epochs where h is played, for any Hk
h restricted deterministic behavior σ1:

∑

τ∈Eh

∑

σ′

1
∈Hk

h

pσ′

1
|h(τ)x̂σ′

1
(τ) ≥

∑

τ∈Eh

x̂σ1
(τ) − lnN ′

η
− Φv(η)

η

∑

τ∈Eh

∑

σ′

1
∈Hk

h

pσ′

1
|h(τ)x̂σ′

1
(τ)2.

Observe the deviation from the proof of Theorem 8.1 of [ACBFS02] in the next step. Remember that Pστ
1
(h)

is the probability of στ
1 playing h. If ht(k′) = h, then:

∑

σ′

1
∈Hk

h

pσ′

1
|h(τ)x̂σ′

1
(τ) ≤ uγ,k

1 (hτ )

(1− β)Pστ
1
(h)

.

Define ρτ
1 to be the deterministic behavior selected on epoch τ .

∑

σ′

1
∈Hk

h

pσ′

1
|h(τ)x̂σ′

1
(τ)2 ≤ x̂ρτ

1
(hτ )

(1 − β)Pστ
1
(h)

‖u1 ‖
1− γ

.

Similarly to the arguments in [ACBFS02]:

∑

τ∈Eh

xρτ
1
(τ) ≥ Pστ

1
(h)(1− β)

∑

τ∈Eh

x̂σ1
(τ) − Pστ

1
(h)

1 − β

η
lnN − Φv(η)

η

∑

τ∈Eh

uγ,k
1 (hτ )

‖u1 ‖
1 − γ

.

The Pστ
1
(h) can be dropped :

∑

τ∈Eh

xρτ
1
(τ) ≥ (1− β)

∑

τ∈Eh

x̂σ1
(τ) − 1− β

η
lnN − Φv(η)

η

∑

τ∈Eh

uγ,k
1 (hτ )

‖u1 ‖
1− γ

.

Summing over all h ∈ Hk′

yields for any k′-partial behavior σ∗
1 :

E[

T
∑

τ=1

xρτ
1
(τ)] ≥ (1− β)

T
∑

τ=1

E[uγ,k
1 ((σ∗

1 |στ
1 ), στ

2 )]− 1− β

η
|Hk′ | lnN ′ − Φv(η)

η

T
∑

τ=1

uγ,k
1 (hτ )

‖u1 ‖
1 − γ

.

Consider the set of k′-partial behaviors that play a fixed sequence in (A1)
k−k′

after any h is observed

in an epoch. The sum of the utilities of these K ′ behaviors must exceed
∑T

τ=1 uγ,k
1 (hτ ), and they each

independently achieve less than EGk′

max.

E[
T
∑

τ=1

xρτ
1
(τ)] ≥ (1 − β)

T
∑

τ=1

E[uγ,k
1 ((σ∗

1 |στ
1 ), στ

2 )]− 1− β

η
|Hk′ | lnN ′ − Φv(η)

η

T
∑

τ=1

K ′EGk′

max

‖u1‖
1− γ

.

Thus, when we take the maximum σ∗
1 over all k′-partial behaviors, we obtain our desired result.

Theorem 6.8 Define K = |A1|k, v = K
β

‖u1‖
1−γ . After T epochs of length k, EpochExp4 has an expected

external response regret of less than:

1− (1/γ)k

k(1− (1/γ))

(

β +
KΦv(η)

η

‖u1 ‖
1− γ

) ‖u1 ‖
1− γ

+
1− (1/γ)k

k(1− (1/γ))

1− β

Tη
|Hk| ln |A1|+ ‖u1 ‖

γ − γk+1

k(1− γ)2
.

Proof:

E[Rγ
k′ ] =

1

T

(

1

γ

)k′

(

EGk′

max(T)− EGEpochExp4(T)
)

.

The epoch regret is less than the average of Rγ
t , for all t ∈ {0, . . . , k − 1}. Observe that EGk′

max(T) ≤ ‖u1‖
1−γ T.

Taking this into account and adding the epoch penalty yields the result.
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6.5 Internal Response Regret

Traditional internal regret in a repeated bimatrix game can be framed in the following way. First, an
algorithm interacts with an environment, and a history is observed. Then, an omniscient builder, who knows
the environment and the history played, builds a robot that is placed at a point uniformly at random in
the history, but doesn’t know which one. Before the robot acts, it observes the next action that the other
agent would have made, and then chooses an action.9 As with the external version, internal response regret
can be formed by having the trial extend to another time step with a probability γ. On this next step, the
robot finds out what the algorithm would have done in the next step, given the robot’s original deviation.
Formally, we can imagine that we simulate the behavior of the algorithm after every history and show the
results to the omniscient builder before we begin.

Now, in order to formally think of how the robot will play, we have to extend the concept of a “behavior”
to include a “suggestion” for the next action. Thus, an optimal agent has a function of the form

σ′′
1 :

∞
⋃

t=0

Ht × (A1)
t+1 → A1,

i.e., its choice given the history of the actions its seen, the suggestions its received in the past, and a suggestion
of what to do next. Define Σ′′

1 to be the set of all such deterministic functions. As before, we can consider
a history to be a function of three behaviors: the suggestion giving function σ1 : H → A1, the suggestion
taking function σ′′

1 :
⋃∞

t=0 Ht× (A1)
t+1 → A1, and a deterministic behavior for the other agent σ2 : H → A1.

Defining it recursively, if h′ = h(σ1, σ
′′
1 , σ2), then:

h′
t,1 = σ′′

1 (h′(t− 1), {σ1(h
′(0)), σ1(h

′(1)), . . . , σ1(h
′(t− 1)})

h′
t,2 = σ2(h

′(t− 1))

Thus, in order to decide what to do next, σ′′
1 asks σ1 what it would do. Then, σ′′

1 takes the history and
the suggestions of σ1 into account, and makes a decision. σ2 just decides based on the history. Define
uγ,k

1 (σ1, σ
′′
1 , σ2) = uγ,k

1 (h(σ1, σ
′′
1 , σ2)).

Given a deterministic behavior σ1 : H → A1, a deterministic behavior σ2 : H → A2, and a history h that
they both would play, then the internal response regret is:

Rint(σ1, σ2, h) = max
σ′′

1
∈Σ′′

1

1

|h|

|h|
∑

t=1

(

u
γ,(t−|h|)+1
1 (σ1,h(t−1), σ

′′
1 , σ2,h(t−1))− u

γ,(t−|h|)+1
1 (ht, . . . , h|h|)

)

.

Now, like before, we will consider an epoch version, and then give more information to the robot. Particu-
larly, we will assume, if the robot is placed in an epoch, then it is aware of the deterministic behavior selected
by the first agent during that epoch. Unfortunately, this means that the experts now become more com-
plicated than before. This deterministic behavior must involve responses to things that could not possibly
happen if that deterministic behavior was followed. For instance, even if Alice believes that in order to get
lunch, she should go to an Indian restaurant and order chicken saag, she should still have a contingency plan
in the event that she (or the robot in her situation) instead deviates and ends up in a Mexican restaurant.

Therefore, if the epochs are of length k, our experts are of the form σ1 :
⋃k−1

t=0 Ht → A1. If we assume
that we only observe the outcome of choosing the deterministic behavior that was chosen, then we can use
the algorithm from [HMC01b].

As before, we will consider a type of regret that is dependent on history. Particularly, we will define
Eh′,σ1

to be the set of epochs which began with h′ and the first agent played σ1 :
⋃k−1

t=0 Ht → A1. Observe
that now we need not supply a suggestion to the robot, because it could compute for itself the action that
the first agent took. Thus, we define:

Rh′,σ1
(σ′′

1 , σ2, h) = maxσ′

1
∈Σ′

1

1
|Eh′,σ1

|
∑

τ∈Eh′,σ1

(

u
γ,fτ+1−(bτ+|h′|)
1 (h(σ′

1, σ2,h(bτ+|h′|−1)))

−u
γ,fτ+1−(bτ+|h′|)
1 ((hbτ +|h′|, . . . , bfτ

)
)

.

9Actually, this is closer to the concept of swap regret (see Section 1.7.3).
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If Σk
1 is the set of all deterministic behaviors of the form σ1 :

⋃k−1
t=0 Ht → A1, then

1

|h|
∑

h′∈⋃k−1

t=0
Ht,σ1∈Σk

1

|Eh′,σ1
|Rh′,σ1

(σ′
1, σ2, h) ≥ Rint(σ

′
1, σ2, h).

However, observe that Rh′,σ1
will approach zero if R∅,σ1

will approach zero. If not, then every time σ1 was
used, a different behavior could be used after h′ to increase the utility.

This establishes that:

Theorem 6.9 Any internal regret-minimizing algorithm that only requires that it sees the outcome of its
own action can be converted into a internal response regret-minimizing algorithm by making R∅,σ1

approach
zero.

The remarkable thing about traditional internal regret is that if two agents play against each other while
minimizing internal regret, they in some sense converge to the set of all correlated equilibria. A correlated
equilibrium (with rational probabilities) can be represented in the following way. Imagine a referee has a
bag of balls, and each ball is labeled with a joint action. Before it begins, the referee shows the bag to both
agents. It then privately selects a ball uniformly at random, and whispers in each agent’s ear its part of the
joint action. The interesting thing is that each agent, given what they know about the balls in the bag, and
the fact that they know the referee will drawn one at random and read it accurately, they can do no better
than use the action the referee whispers in its ear. An ε-correlated equilibrium can be represented in the
same way, except that the agents can improve by no more than ε by choosing some other action other than
the one whispered by the referee.

The sense in which the two no-traditional-internal regret behaviors converge is as follows: imagine two
agents played a history finite history h. A referee has a bag of |h| balls: the ith ball is labeled hi. According
to the above procedure, the balls in the bag represent an ε-correlated equilibrium, and as the history grows
longer, ε gets smaller.

Now, this can be extended to correlated equilibria of repeated games as well, and there are several
different possibilities. Imagine now that instead of having joint actions, each ball had an deterministic
behavior for each action. Now, instead of telling each agent its entire deterministic behavior, the referee only
tells each agent its next move. If neither agent could do better than listen to the referee, the distribution
over deterministic behaviors is a correlated equilibrium. If either couldn’t do more than ε better, then it is
an ε-correlated equilibrium.

Imagine that the first agent acts according to σ1 : H → A1, the second agent acts according to σ2 : H →
A2, and the history observed is h. Now, imagine that the referee has |h| balls, and writes (σ1,h(i), σ2,h(i)) on
the ith ball. As we argue below, this distribution would converge to a correlated equilibrium of the repeated
game if both agents are minimizing internal response regret.

Observe that the actions of each agent can be considered to be the recommendations of the referee. If
two algorithms A and B are placed at a point chosen uniformly at random in a history generated by two
algorithms C and D minimizing internal response regret, then neither A nor B can do much better than
simply doing what either C or D did.

Theorem 6.10 If two agents minimizing internal response regret play against each other and generate h,
then for any ε > 0, with high probability, given a long enough history h, a joint distribution over behaviors
determined by their behaviors and the history of play h in the above manner is an ε-correlated equilibrium.

Observe that this correlated equilibrium is not necessarily subgame perfect. For example, imagine the
following variant of tit-for-tat in the Prisoner’s Dilemma: if the other agent cooperated the last time step,
then cooperate, otherwise defect 9/10 of the time. Now, if the agents both use this behavior, then it is not
in either’s best interest to ever defect: the retaliation makes it not worth it. However, since this is the case,
they will almost never defect, and thus they will almost never need to retaliate against a defection. Internal
response regret is minimized, and yet a correlated equilibrium that is not subgame perfect is reached.

Thus, it is an open question whether there exists an achievable variant of internal response regret where
if all agents use this variant, they will converge to a subgame perfect correlated equilibrium.
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6.6 Multi-Stage Games

A two agent multi-stage game is a generalization of a POMDP or a stochastic game. On each stage, each
agent i selects an action from Ai. Then, it receives an observation from Oi, as well as a utility dependent
on its observation according to the function ui : Oi → R. For now, assume that Ai and Oi are finite. Thus,
the events in a single time step are (a1, a2, o1, o2). Define H∗

i , the set of all histories for the ith agent, to be:

H∗
i =

∞
∑

t=0

(Ai ×Oi)
t.

The environment can be represented by a single function:

ρ : H∗
1 ×H∗

2 ×A1 ×A2 → ∆(O1 ×O2).

Thus, the observations on a time step are a function of the histories before that time step and the actions
of the agents on that time step. A behavior for agent i is a function of the form:

σi : H∗
i → ∆(Ai).

Now, often it will be convenient to consider the environment from the perspective of agent i:

ρi : H∗
i ×Ai → ∆(Oi).

ρ1 can be constructed from ρ and σ2, and ρ2 can be constructed from ρ and σ1. For some arbitrary h ∈ H∗
1 ,

some arbitrary a1 ∈ A1, to determine ρ1(h, a1), one must first construct a posterior belief of the history
observed by the second agent h′, given that h was observed by the first agent. Then, given this posterior
belief, one must find a posterior belief of the action taken by the second agent on this time step, a2. Finally,
one finds a posterior belief of the observation about to be made.

6.6.1 Response Regret in the Multi-Stage Game

We focus on a definition of regret based solely on σ1 and ρ1, completely ignoring ρ and σ2. We imagine
again the omniscient builder observing the history of both agents as well as any random outcomes of our
actions or the actions of the environment. Then, we imagine the builder’s robot being placed uniformly at
random at any place in the history in the situation of the first agent, and then playing for a number of time
steps chosen from a hypergeometric distribution. As it plays, for external response regret, it only observes
the observations the first agent would have made. For internal response regret, it observes the observations
and the actions the first agent would have made.

Formally, assume ρi is deterministic, i.e. ρi : Hi × Ai → Oi. Assume that when we de-randomize the
behavior of the first agent, we get σi : Hi → Ai. Define Σ′′′

i to be the set of all such behaviors. Observe that
a history can be a function of a behavior and an environment. Thus:

R(ρi, h) = max
σi∈Σ′′′

i

|h|
∑

t=1

(

u
γ,(|h|−t)+1
1 (σi, ρi,h(t−1))− u

γ,(|h|−t)+1
i ((ht, . . . , h|h|))

)

.

h(t) is the first t time steps of the history h. ρ1,h(t−1) is the environment of the first agent after h(t− 1) is
observed.

As before, this situation can be easily handled by dividing the time steps into epochs, and using a variant
of Exp4.

Now, in order to formally define internal response regret, we need to define a behavior in this setting
that can take advice, a function of the form:

σ′
i :

∞
⋃

t=0

(Ai ×Oi)
t × (Ai)

t+1 → Ai.
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Define Σiv
i to be the set of all such behaviors. As with internal response regret, we can define a history

h(σi, σ
′
i, ρi) as a function of a deterministic suggestion giving behavior σi : Hi → Ai, a suggestion taking

behavior σ′
i, and a deterministic environment ρi : Hi×Ai → Oi. Given a deterministic behavior σi : Hi → Ai,

a deterministic environment ρi : Hi×Ai → Oi, and a history h that they both would play, then the internal
response regret is:

Rint(σi, ρi, h) = max
σ′′

i
∈Σiv

1

|h|
∑

t=1

(

u
γ,(|h|−t)+1
i (h(σi,h(t−1), σ

′′
i , ρi,h(t−1)))− u

γ,(|h|−t)+1
i ((ht, ht+1, . . . , h|h|))

)

.

As before, we can divide time into epochs and use the algorithm from [HMC01b]. Multiple agents will
converge to the set of correlated equilibria in the same fashion as before.

6.6.2 Multi-Stage Games as a Generalization of Other Frameworks

The multi-stage game is a generalization of many things. For instance, if one imagined that the environment
ρ ignored the history and the observation of each agent was the joint action pair they played together, then
a multi-stage game would just be a repeated bimatrix game. On the other hand, if the observation of each
agent was a joint action and some state s ∈ S, and the next observation was a function of the state in
the previous observation and the most recent actions of the agents, then a multi-stage game would be a
stochastic game.

The Markovian nature of the state transitions in a stochastic game can be explicitly represented by
restricting the environment ρ within which one wants to minimize regret. However, such an assumption will
probably not be very useful unless it is also assumed that the second agent is Markovian as well. If the other
agent is attempting to learn as well, this is not a good assumption. Thus, it may be best to simply treat the
system as a multi-stage game, and ignore the meanings of the observations made.

The hardest to prove is the fact that a multi-stage game can represent a partially observable environment
with state. Imagine that there is some initial prior distribution over the states: this is never explicitly
represented in the history of either agent: however, the observations of each agent will be drawn from a
posterior distribution dependent upon the posterior distribution of the state given the previous actions and
observations of both agents. Thus, at any point in time, it is unclear what state the game is in, and in
fact may never be clear, even if an infinite history is accessible. Again, one can assume some Markovian
properties about the states and observations, as well as a bound on the size of the underlying state space.
These may or may not be useful in increasing the convergence rate.

6.6.3 Stochastic Games and Correlated Equilibria

Stochastic games are an extension of repeated games, where the world has a state s ∈ S. The state at time
step t + 1 is a function T : S × A1 × A2 → ∆(S) of the state at time t and the joint action taken. The
immediate utility of each agent is a function ui : A1 ×A2 × S → R of the current state and the joint action
taken. A history of an entire game is an infinite sequence of triples h ∈ (A1 × A2 × S)∞. The utility of an
agent given a history is analogous to before:

uγ
i (h) =

∞
∑

t=1

γt−1ui(ht).

Although one can consider Nash equilibria of behaviors that depend upon the entire history, in a stochastic
game, there always exists a simple Nash equilibrium of the form (f1, f2) where fi is a function fi : S → ∆(Ai),
from the current state to a mixed strategy to use next [Sha53]. Similarly, a correlated equilibrium can be of
the form f : S → ∆(A1×A2), where the referee makes a suggestion to each agent at each state. People have
tried to use techniques that have been successful on Markov decision processes (stochastic games with only
one agent) on stochastic games. It was thought that if one could compute the expected discounted utility of
each joint action for each state, then one could find the Nash (or correlated) equilibrium by simply finding
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A

Alice gets 0
Bob gets 0

Alice sends owl
Alice gets 0
Bob gets 3

Bob keeps owl
Alice gets 3
Bob gets 1

Alice keeps owl
Alice gets 1
Bob gets 0

B

Bob sends owl

Figure 6.1: The Owl Game (or Marty’s Game): when Alice keeps the owl, she gets 1 and Bob gets 0. When
Alice sends the owl, she gets 0 and he gets 3. When Bob keeps the owl, she gets 3 and he gets 0. When Bob
sends the owl, he gets 0 and she gets 0. The discount factor is 0.99.

a Nash (or correlated) equilibrium for each state independently. The following example shows why this is
impossible, because the only Nash equilibrium is randomized, even though one agent is acting in any state.

Alice and Bob, brother and sister, bought an owl together. Since they live apart, they send it back and
forth. Each sibling can keep the owl as long as he or she likes. However, after they bought it, Alice and
the owl realized they did not like each other very much. But she really does not like sending the owl back
and forth to Bob (it tends to bite and scratch her). She loves it when the owl is at Bob’s place. Bob, on
the other hand, likes the owl. Since Alice keeps the owl in a cage, the owl is always happy to see Bob, and
both Bob and the owl really enjoy it when the owl comes to him. However, they both get bored when the
owl just hangs around the house. When Bob sends the owl back to Alice, the owl gets depressed, and this
depresses Bob. Bob hates it when the owl is gone.

Now, imagine that Bob likes receiving the bird so much, he is willing to send it out if he gets to receive
it back the next day. This situation is very strange: the game has two states: Alice has the owl, or Bob has
the owl. Each agent, when it has the bird, can either send the owl or keep it one more day. Observe that
there is no deterministic Nash equilibrium where each agent just chooses one action.

Alice sends the owl, Bob keeps it Because Bob likes receiving the owl so much, he will send it to Alice
just to get it back the next day.

Both send the owl Alice is getting scratched all the time. She realizes that it would be better if she just
kept it.

Alice keeps the owl, Bob sends it Bob realizes he will not get the owl back if he sends it, so he no longer
wants to part with it.

Both keep the owl Alice now wants to get rid of the bird by sending it to Bob.

The only equilibrium where both agent’s strategies only depend on the state is randomized. However,
realize that the reason that each agent randomizes is not to attempt to outguess the other agent, but to make
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the other agent indifferent the time steps before the agent randomizes. The reason that the techniques for
Markov decision processes work so well is because that from every time step, the agent only needs to think
about the future. But, in order to construct a Nash equilibrium for a stochastic game that is only dependent
on state, an agent needs to choose its behavior in order to effectively justify choices other agents have made
in the past. In fact, given the expected utilities of all the actions in all the states, everything looks like an
equilibrium locally, even though globally there is only one Nash equilibrium (or correlated equilibrium).

In this section, we have shown that traditional techniques of local optimization useful in MDPs and zero-
sum stochastic games fail to find a Nash equilibrium or correlated equilibrium in a nonzero-sum stochastic
game. But, as we have shown previously, it is possible to converge

6.7 Conclusion

In this chapter, we have introduced external and internal response regret in repeated bimatrix games and
multi-stage games. In introducing a concept of regret to multi-stage games that considers the short-term
consequences of the actions of the agent, we have constructed a reasonable way to act in stochastic games.
Two agents minimizing internal response regret will converge to the set of correlated equilibria. This has
been one of the primary objectives of learning in stochastic games.
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Chapter 7

Regret Minimization

No-regret online learning algorithms are very natural strategies in the context of repeated zero-sum games.
E.g., algorithms such as randomized weighted majority, GIGA, and cautious fictitious play guarantee ex-
pected payoff comparable to the optimal fixed strategy in hindsight, which is at least the minimax optimum.
In a nonzero-sum game, however, achieving good performance depends on both agents being “reasonable”.
Can an algorithm such as weighted majority guarantee a minimum Nash equilibrium value solely under the
assumption that the other agent is using a no-regret algorithm? Can any no-regret algorithm? What about
weighted majority playing against itself? We explore these questions and demonstrate families of games
where these conditions are insufficient even to guarantee the minimum correlated equilibrium value. We also
show that it is possible for an arbitrary algorithm to obtain the minimum Nash equilibrium value against a
no-internal-regret algorithm whose utilities are unknown.

7.1 Introduction

Hedge [ACBFS02]1 is a very effective algorithm in zero-sum games. For instance, consider Rock-Paper-
Scissors:

Game 7.2: Rock-Paper-Scissors
R P S

r 0,0 -1,1 1,-1
p 1,-1 0,0 -1,1
s -1,1 1,-1 0,0

In this game, regardless of how the second agent plays, the first agent using Hedge will almost surely
get at least zero averaged over all time steps. Also, if the second agent did something foolish, e.g. played
S on seven out of every ten time steps, then Hedge will almost surely get at least 0.4. If Agent 1 and
Agent 2 both use Hedge, then both agents will receive zero value on average as they cycle around the Nash
equilibrium.

In nonzero-sum games, however, interesting things can happen. Consider Shapley’s Game.

Game 7.4: Shapley’s Game
R P S

r 0,0 0,1 1,0
p 1,0 0,0 0,1
s 0,1 1,0 0,0

Empirical tests show that Hedge will in fact spiral outward away from the Nash equilibrium in this
game. This spiraling behavior is beneficial in Shapley’s game, but highly detrimental in the Augmented
Shapley Game.

1See Section 6.3 for a definition.
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Game 7.6: Augmented Shapley Game
R P S G

r 0,0 0,1 1,0 2,0.34
p 1,0 0,0 0,1 2,0.34
s 0,1 1,0 0,0 2,0.34
g 0.34,2 0.34,2 0.34,2 2.01,2.01

Each agent can play Shapley’s Game, or be “giving”. The only Nash equilibrium is that both agents are
giving. However, suppose we start Hedge with all agents having equal weights on all actions. In this case
(see Fig. 38) both agents will again cycle, and have the probability of playing g or G drop exponentially.
Thus, even though both agents would receive 2.01 if they played the Nash equilibrium, they both get less
than 1.

While in a zero-sum game the minimax value is the only interesting value, in a nonzero-sum game, there
are at least three interesting values for the first agent.

1. The safe value, or minimax value, that a no-external-regret algorithm is guaranteed regardless of who
it plays.

2. The minimum correlated equilibrium value, or the lowest expected value for the first agent in any
correlated equilibrium of the single-shot game,2 which a no-internal-regret algorithm is guaranteed
when it plays another no-internal-regret algorithm.

3. The minimum Nash equilibrium value, or the lowest expected value for the first agent in any Nash
equilibrium of the single-shot game.

The minimax value is always less than or equal to the minimum correlated equilibrium value, which is always
less than or equal to the minimum Nash equilibrium value. In the Augmented Shapley Game, the minimax
value and the minimum correlated equilibrium value are both 0.34. The minimum Nash equilibrium value
is 2.01. Thus, in a nonzero-sum game, getting the minimax value or minimum correlated equilibrium value
is not always a very helpful guarantee. In fact, our first result is:

Theorem 7.7 There exists a game (the Augmented Shapley Game) where the minimum Nash equilibrium
value is strictly greater than the minimum correlated equilibrium value.

A simple combination of this result with a result from [FV97] shows that there exist two no-internal-regret
algorithms that play against each other and achieve a value below the minimum Nash equilibrium value.

But what if we have control over one of the algorithms? It is of course impossible to get the minimum Nash
equilibrium value against any arbitrary algorithm. But what if the first agent knew that the second agent was
achieving no-external-regret? It is known that if we have control over both algorithms, we can in self-play
guarantee the minimum Nash equilibrium value, by having both algorithms always play the lexicographically
first Nash equilibrium.3 This can also be achieved while simultaneously achieving no regret.4 However, why
would one play the lexicographically first Nash equilibrium, as suggested in [CS03] and [BT02]? This is like
in the Teaching problem[GK91],5 where if one is allowed to choose the Teacher and the Learner, one can
use a very efficient but unnatural language to communicate the knowledge of the Teacher to the Learner.
Instead, in this paper we consider the situation where we have control of only one of the agents, but the
other is an arbitrary no-regret agent. Having the second agent use a no-external-regret algorithm is like
having the Learner choose a consistent hypothesis. If the first agent is allowed to behave arbitrarily, then
we can prove:

2We define these in terms of the single-shot game because for a repeated bimatrix game with average reward, there is always
a Nash equilibrium where the first agent gets its minimax value.

3One could also choose the lexicographically first equilibrium of those that maximize the sum of the expected utilities of the
agents.

4[CS03] prove a slightly weaker result.
5In the Teaching problem, there is a Learner, who knows a set X and a hypothesis space H of functions of the form

h : X → {0, 1}, and a Teacher, who knows some h ∈ H. The problem is to have the Teacher communicate to the Learner the
hypothesis h by presenting a set of labeled examples consistent with h. One way to study the problem is to design a Teacher
work with any consistent Learner: any Learner that “learns” a hypothesis consistent with the labeled examples.
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Figure 7.1: Two agents playing the Augmented Shapley Game using Hedge. Typical behavior if p = 0 for
all actions for both agents. The erratic noise at the beginning is the result of randomly chosen actions.
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Theorem 7.8 There exists an algorithm for the first agent that takes as input the utilities of both agents
and will achieve the minimum Nash equilibrium value with any no-external-regret algorithm for the second
agent.

The proof is in Section 7.8. The basic idea is that the first agent can simply compute a Nash equilibrium,
and each round play a strategy near it. Since the second agent achieves no-external-regret, it will approach
a best response to the first agent’s algorithm.

The drawback with such a result is the lack of symmetry in the reasoning of the first agent. How can the
first agent expect the second agent to achieve no-external-regret if the first agent itself is not doing so? Our
main negative result is:

Theorem 7.9 There exists a repeated bimatrix game such that for any no-external-regret algorithm A for
the first agent there exists an no-external-regret algorithm B for the second agent such that the first agent
using A will not achieve its minimum correlated equilibrium value when the second agent is using B.

Corollary 7.10 There exists a repeated bimatrix game such that for any no-external-regret algorithm A for
the first agent there exists an no-external-regret algorithm B for the second agent such that the first agent
using A will not achieve its minimum Nash equilibrium value when the second agent is using B.

The proof sketch of the theorem is in Section 7.4. The corollary follows because the minimum Nash
equilibrium value is higher than the minimum correlated equilibrium value. Now, in addition to no-external-
regret algorithms like Hedge, there are also no-internal-regret algorithms [FV97, HMC00]. What happens
if one makes the stronger assumption that the second agent achieves no-internal-regret?

If the first agent is unaware of the second agent’s utilities, can the first agent achieve its own minimum
Nash equilibrium value? Observe that what makes this difficult is that the first agent can never be sure of
its own minimum Nash equilibrium value, because it is dependent on the utilities of the second agent. We
have achieved the following result:

Theorem 7.11 There exists an algorithm for the first agent that takes as input only the first agent’s utilities
and, for all nondegenerate bimatrix games, achieves the minimum Nash equilibrium value against every no-
internal-regret algorithm for the second agent.

The proof is in Section 7.11. A nondegenerate bimatrix game [Sha74] is roughly a game where there are
no special relationships between the utilities of the two agents or the utility of one agent for any two joint
actions. Thus, any bimatrix game becomes nondegenerate if all of the utilities are perturbed. However, as
stated before, two arbitrary no-internal-regret algorithms are not guaranteed the minimum Nash equilibrium.
The big open question that remains is:

Open Problem 7.12 For any bimatrix game, does there exist a no-internal-regret algorithm for the first
agent, such that for any no-internal-regret algorithm for the second agent, the first agent will achieve the
minimum Nash equilibrium value?

In this chapter, we present proof sketches of these last three theorems. Observe that the results here
are more general than those presented in [HMC03], where they analyze a particular class of algorithms for
which the change in the ith agent’s strategy (distribution over actions) from one time step to the next is
only a function of the other agent’s current strategy and the utility of the ith agent: in other words, agents
are not considering the whole history, which may be useful in general. Here, we are considering arbitrary
no-external-regret behaviors, and prove that agents not only cannot converge to a Nash equilibrium, but that
they cannot achieve the minimum utility they would receive in a Nash equilibrium or even in a correlated
equilibrium.
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7.2 Formal Definitions

If NE is the set of all Nash equilibria for the single-shot game, then the minimum Nash equilibrium
value for the first agent is

min
(β1,β2)∈NE

u1(β1, β2) .

If CE is the set of all correlated equilibria for the single-shot game, then the minimum correlated
equilibrium value for the second agent is:

min
D∈CE

u1(D) .

Internal and external regret for the second agent are defined symmetrically. Finally, we define what it
means to achieve a minimum Nash equilibrium value.

Definition 7.13 The first agent achieves a value v against a set of algorithms B for the second agent if
for every σ2 ∈ B, for every δ > 0 there exists a function f where limT→∞ f(T ) = v such that with probability
at least 1− δ, for all T :

1

T

T
∑

t=1

u1(ht,1, ht,2) > f(T ) .

For all β1 ∈ ∆(A1),
6 define BR(β1) ⊆ ∆(A2) to be all best responses of the second agent to β1. For an

action a2 ∈ A2, define BR−1(a2) to be the set of all strategies to which a2 is a best response. The support
of a strategy β1 is the set of all actions that have strictly positive probability, {a1 ∈ A1 : β1(a1) > 0}. If a
game is nondegenerate, and (β1, β2) is a Nash equilibrium, then:

1. Only actions in the support of β2 are best responses to β1, and vice-versa.

2. For all a2, a
′
2 ∈ A2, u1(β1, a2) 6= u1(β1, a

′
2).

7

3. If BR−1(a2) is nonempty, then its interior is nonempty and for all a′
2 ∈ A2, the interior of BR−1(a2)

does not intersect BR−1(a′
2).

If a game does not have these properties, then almost any small perturbation of its utilities will cause it to
have them.

7.3 Playing against a No-External-Regret Algorithm

It is quite simple to prove that, if one knows the utilities of a no-external-regret algorithm, and one does not
care about regret, then one can achieve the minimum Nash equilibrium value. Define V : ∆(A1)→ R:

V (β1) = min
β2∈BR(β1)

u1(β1, β2) .

V is the utility the first agent is guaranteed if it plays β1 and the second agent plays a best response to β1.

Lemma 7.14 If the first agent plays the strategy β1 every time step, and the second agent achieves no-
external-regret, then the first agent achieves a value V (β1).

Proof Sketch: Suppose that the empirical frequency of the second agent up until time T is β̄T,2. In other
words, for each action a2 ∈ A2, the second agent has played action a2 on T β̄T,2(a2) time steps on or before
time step T . If the first agent plays a fixed distribution, then β̄T,2 almost surely must approach BR(β1)
for the second agent’s average external regret to approach zero. If this is the case, then the first agent will
achieve a value of V (β1).

6For a set S, ∆(S) refers to the set of all distributions over S.
7This is not standard, but does result from a perturbation of the utilities. Observe that this implies that zero-sum games

are degenerate.
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One cumbersome aspect of V is that since it has discontinuities it may not have a global maximum.
But, the next lemma shows that it does achieve values that are greater than or equal to the minimum Nash
equilibrium value.

Lemma 7.15 There exists a β′
1 ∈ ∆(A1) such that V (β′

1) is greater than or equal to the minimum Nash
equilibrium value.

Proof Sketch: We will sketch the proof for nondegenerate games. Additional complexities do arise in
degenerate games, but the basic ideas are the same.

For a Nash equilibrium β1, β2, suppose that A′
2 ⊆ A2 is the support of β2. Because the game is

nondegenerate, then A′
2 contains all actions that are best responses to β1, so if for all a2, a

′
2 ∈ A′

2,
u1(β1, a2) = u1(β1, a

′
2), then V (β1) = u1(β1, β2), proving our result.8 If this is not the case, then define

amax
2 = argmaxa2∈A′

2
u1(β1, a2), and amin

2 = argmina2∈A′

2
u1(β1, a2). Observe that u1(β1, a

max
2 ) > u1(β1, β2),

because u1(β1, a
max
2 ) > u1(β1, a

min
2 ), β2(a

min
2 ) > 0, and u1(β1, β2) is a weighted average of u1(β1, a

max
2 ),

u1(β1, a
min
2 ), et cetera. Because u1(β1, a

max
2 ) is strictly greater than u1(β1, β2), there exists an open neigh-

borhood W of β1 where for all β′
1 ∈W , u1(β

′
1, a

max
2 ) > u1(β1, β2).

In any game, the region BR−1(amax
2 ) is convex. In a nondegenerate game, the interior of BR−1(amax

2 )
is nonempty, and thus every open neighborhood on the boundary of BR−1(amax

2 ) intersects the interior.
Since β1 ∈ BR−1(amax

2 ), its neighborhood W intersects the interior of BR−1(amax
2 ). Thus, choose β′′

1

to be a point in this intersection. The only best response to β′′
1 is amax

2 , because it is in the interior of
BR−1(amax

2 ) and the game is nondegenerate, so V (β′′
1 ) = u1(β

′′
1 , amax

2 ). Because β′′
1 ∈W , it is the case that

u1(β
′′
1 , amax

2 ) > u1(β1, β2). Thus, in this case V (β′′
1 ) is strictly greater than the minimum Nash equilibrium

value.

Proof (of Theorem 7.8): The above two lemmas can be combined into a proof of Theorem 2. First,
calculate the minimum Nash equilibrium value, and choose a β1 such that V (β1) equals or exceeds this
value, and have the first agent play β1 every time step. Then, the first agent will achieve V (β1) if the second
agent achieves no-external-regret. Since V (β1) is greater than or equal to the minimum Nash equilibrium
value, the result directly follows.

7.4 The Proof Sketch of Theorem 7.9

Now, first we fix σ∗
1 to be an arbitrary no-external-regret algorithm for the first agent. We construct a

no-external-regret algorithm σ∗
2 such that σ∗

1 does not achieve the correlated equilibrium value against σ∗
2 .

We will first construct a deterministic algorithm σ2 such that when the first agent uses σ∗
1 and the second

agent uses σ2, the first agent will have a low average utility, below its correlated equilibrium value. σ2 will
not achieve no-external-regret, but if it is playing σ∗

1 almost surely it will eventually have low regret. We
can do this because we have chosen σ2 specifically for σ∗

1 , and so σ2 can be considered to know the strategy
of σ∗

1 before each time step. Then, we construct σ∗
2 from σ2, where with high probability σ∗

2 always “agrees”
with σ2 if it is playing against σ∗

1 , but σ∗
2 also achieves no-external-regret.

In Section 7.4.1, we define the game. In Section 7.4.2, we define σ2, and establish that it has low regret
with high probability against σ∗

1 , and σ∗
1 has low value against σ2 with high probability. In Section 7.4.3,

we extend σ2 to σ∗
2 .

7.4.1 The Difficult Game

The game we design will have three pairs of actions for the second agent. HCA and HCB with A and B
form a coordination game. LCA and LCB are strictly dominated by HCA and HCB respectively, and also
form a coordination game with A and B. LZA and LZB are also strictly dominated by HCA and HCB

8However, if the game is truly nondegenerate, this will only hold if A′

2
is a singleton.
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respectively, and form a constant-sum game9 with A and B. Thus, the second agent has three possible games
to choose from. Here we make a rough argument for why the game has the properties it has: in the next
section, we show how σ2 uses these properties.

The idea behind σ2 is simple. We want to play strictly dominated strategies. By playing strictly dom-
inated strategies, we can make σ∗

1 receive a utility that is not at all related to its value at a correlated
equilibrium.

What we must not allow is for the first agent to simply play its part of a fixed Nash equilibrium, like in
the last section. Thus, alternately we will lead the first agent to be more inclined to play one action, and
then another, keeping it away from playing its part of any single Nash equilibrium all the time.

Now, because σ2 is designed with a specific σ∗
1 in mind, we can “predict” the distribution of the first

agent on the next time step. Thus, we will play an action that is almost a best response to the distribution
of the first agent on every time step.

The game is as follows:

Game 7.17: Attractive Dominated Strategies
HCA HCB LCA LCB LZA LZB

A 1 + g1,1 + g2 0 + g1,0 + g2 1,1 0,0 1,0 0,1
B 0 + g1,0 + g2 1 + g1,1 + g2 0,0 1,1 0,1 1,0

We will set g1 = 1000 and g2 = 1
512 . The lowest-valued Nash equilibria (or correlated equilibrium) for the

first agent is when the first agent plays A and B with equal probability, and the second agent plays HCA
and HCB with equal probability. This Nash equilibrium has a utility of g1 + 1/2 for the first agent. σ2 will
be constructed to only use the actions LCA, LCB, LZA, and LZB. The first agent will never see a value
higher than 1, and the difference between its value obtained and its value at a correlated equilibrium is at
least g1 − 1

2 = 999.5. We choose g2 = 1
512 , sufficiently small such that the second agent does not regret too

much not playing HCA and HCB.

7.4.2 The Deterministic Algorithm σ2

The deterministic algorithm σ2 works in “phases”, labeled alternately A and B. Each phase lasts 8 times
the length of the last phase. During an A phase, σ2 uses LCA and LZA, and the first agent is motivated to
play A. During a B phase, σ2 uses LCB and LZB, and the first agent is motivated to play B.

The following chart represents the σ2 strategy:

σ1 more likely10

to play x next time step
x = A x = B

During an A Phase LCA LZA
During a B Phase LZB LCB

So, when σ1 is more likely to play A, while HCA is a best response, LCA and LZA achieve in expectation
only g2 = 1

512 less than HCA.
For the first agent, during an A phase it is a best response to play A, and during a B phase it is a best

response to play B. Because the phases are so long, any σ1 will eventually find itself playing A more than
B in an A phase, and B more than A in a B phase.

To summarize, σ2 is using strictly dominated actions, so that the first agent’s utilities are completely
unrelated to its minimum correlated equilibrium value. However, σ2 obtains a bit of regret from using strictly
dominated actions. σ2 needs to do almost as well as the best static action in order to minimize its regret.
It achieves this by forcing σ1 to be highly dynamic, and then exploiting this dynamic to compensate for the
regret caused by playing dominated strategies. We will find that eventually, when the regret of σ1 falls below

1
1038 , we can do strictly better than the best fixed action, achieving a regret less than zero.

9The sum of the utilities for any outcome is 1.
10If equally likely, go with A.
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7.4.3 Making σ2 No-Regret

We will now construct σ∗
2 . We will need σ2, and some no-external-regret algorithm σ′

2. σ∗
2 will begin by

playing exactly like σ2. After some fixed time step t0, it will begin to watch its regret. If at any point in
time after time step t0, the regret of σ∗

2 goes above zero, it switches to using σ′
2, feeding it the actions as

though the game had just begun. It is not hard to argue that it achieves no-external-regret.
If σ∗

2 is playing σ∗
1 , then after some time t, with probability p the regret is always less than zero. If t0

is sufficiently large, the chance that σ∗
2 will ever switch to σ′

2 is small, so with a high probability σ∗
2 never

plays HCA or HCB if it is against σ∗
1 , causing σ∗

1 to not get its minimum Nash equilibrium value.

7.5 Playing against a No-Internal-Regret Algorithm

Can the first agent achieve the minimum Nash equilibrium value if the second agent achieves no-internal-
regret, even if the first agent does not know the utility function of the second agent? If the game is
nondegenerate, then this can be achieved. The trick is to simultaneously achieve the value of some Nash
equilibrium while at the same time confirming that it is a Nash equilibrium.

The fundamental difficulty we face here is that even if the other agent achieves no-internal-regret, we
don’t know how fast it is minimizing internal regret, because achieving no-internal-regret is an asymptotic
property. Thus, we will never know if the actions we have observed in the past are representative of the
other agent’s utility or just arbitrary actions.

However, we can resolve this issue with the knowledge that almost certainly, eventually the actions of
the other agent represent its utility. Thus, while we cannot have even a probabilistic faith in a test that
is performed once at any time, if a test is performed an infinite number of times, almost surely it will be
accurate.

7.5.1 Testing a Pure Strategy Nash Equilibrium

For example, consider testing if there is a pure Nash equilibrium where you, the first agent, play a1 and
the second agent plays b1. If this is the case, because the game is nondegenerate, b1 will be the only best
response to a1. Suppose it is currently time step 100, and you have never played a1. First, make a guess:
“If I play a1 for 9, 900 out of 10, 000 time steps, then I expect the other agent to play b1 at least half the
time.” So, if b1 is a best response to a1, and the second agent is minimizing its regret fast, then it will play
b1 at least half the time. Then, so long as the other agent is playing b1 half the time, you can continue to
play a1. Eventually, the second agent will play b1 more and more often.

However, if some other action b2 is really a best response to a1, then the other agent will eventually start
playing b2 more often, and you will realize that your assumption about the existence of a Nash equilibrium
there might be wrong.

Of course, that is not the only reason your test failed. For instance, playing a1 99 out of 100 times may
not have b1 as a best response, even if playing a1 does. Also, the second agent’s regret just might not be that
low yet. Thus, later on, if no other pure or mixed equilibria have been found, you should try this equilibrium
again, and play a1 999 out of 1000 times before you move on to test another equilibrium. If a1 and b1 form
an equilibrium in a nondegenerate game, then there is some p < 1 such that b1 is a best response to playing
a1 a p fraction of the time, and anything else a fraction 1−p of the time. Thus, we can test for pure strategy
equilibria and play a hypothetical pure strategy Nash equilibrium while continuing to test it.

7.5.2 Testing a Mixed Strategy Nash Equilibrium

Here, we will briefly discuss testing if there exists a mixed strategy Nash equilibrium in a region. First, we
choose some sufficiently small region R ⊆ ∆(A1), where all distributions in R have the same support A′

1,
and guess that there is a Nash equilibrium in R. We will specifically avoid any strategy β1 ∈ ∆(A1) where
there exists a1, a

′
1 ∈ A1 such that u1(β1, a1) = u1(β1, a

′
1), because we have excluded such strategies from

being part of a Nash equilibrium in a nondegenerate game. We will test if, in this region, there is a best
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response with some support A′
2 ⊆ A2. Observe that since we know our own utilities, this implies a specific

distribution β2 for the other agent. We find an action amax
2 ∈ A′

2 such that

min
β1∈R

u1(β1, a
max
2 ) > max

β1∈R
u1(β1, β2) .

For a sufficiently small R, this action will exist. We also make rough guesses about where the region
BR−1(a2) is for each of the actions in A′

2. The majority of the time we play a strategy in the interior of
where we think BR−1(amax

2 ) is.
Because when the other agent plays amax

2 we get strictly more than the minimum Nash equilibrium value,
we do not always have to guarantee getting the minimum Nash equilibrium value every time step. We can
sometimes spend short periods playing strategies to see how the other agent responds. Using these short
tests, we can verify if our assumption about the existence of a Nash equilibrium in the region R × {β2} is
correct.

7.6 Related Work

In the literature, no-external-regret algorithms are sometimes called universally consistent behaviors. Many
no-external-regret algorithms have been invented and studied[FV97, FV99, FS99, FL95, FL98, FL99, Han57,
HMC00, HMC01a]. The two works most closely related to this chapter are [FL95] and [FV97], in which they
develop lower bounds instead of upper bounds on the value. In [FL95], they introduce universal consistency
(no-regret) and prove that algorithms that are no-regret are safe, achieving the minimax value. In [FL98],
the definition of no-regret behaviors is strengthened. In [FV97], they prove that conditionally universally
consistent (no-internal-regret) algorithms converge to correlated equilibria, and thus achieve the minimum
value of any correlated equilibrium.

There have been many studies about how Nash equilibria can and cannot be reached in certain cir-
cumstances. Fictitious play [Rob51, Bro51] is probably the earliest example where on each time step, each
agent plays a best response to the current empirical frequencies played by the others. Shapley [Sha64]
showed how the empirical distributions did not converge to a Nash equilibria in a specific game. Kalai and
Lehrer [KL93] prove that one can approach within ε of an ε-Nash equilibrium of the repeated game with
Bayesian updates from certain priors, even if the priors are not common. However, there has been a great
deal of research demonstrating that constructing these priors is not trivial [Nac97, MS99, FY01]. Another
recent study is [FY02], where the behaviors use near-optimal strategies in response to some “hypothesis”
on the distribution over the next joint probability distribution of the agents given the past m joint actions.
These algorithms with a probability greater than 1 − ε will play ε-equilibria after some time t. Neither of
these methods are in general no-regret, but either might be modified in some fashion to make them so.

Another related area in game theory is bounded rationality, where the agents are not assumed to have an
accurate model of the world or even to be capable of forming one. In this field, various types of assumptions
are made about the memory and computational resources of the agents [Rub98]. In this chapter, we are
making restrictions on the goals of the agents as opposed to their computational capabilities. Also, we
compare the performance of the algorithm to the utility obtained in a traditional Nash equilibrium, as
opposed to equilibria in restricted strategy spaces.

A final type of analysis is analyzing and experimenting with self-play [SKM00, BV01, CS03]. This is
a good way to develop behaviors that converge; however any behaviors developed in such an environment
should be analyzed when interacting with other established classes of behaviors. Also, restraint is required
in developing such algorithms, because one can easily develop behaviors that collaborate in a very unnatural
fashion.

7.7 Conclusion

In this chapter, we have studied what utility can be achieved if the other agent achieves no-external-regret.
External regret is a natural assumption to make, being a property that has been independently discovered by
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First Agent First Agent First Agent
Arbitrary No-External-Regret No-Internal-Regret

Second Agent CAN: Safe Value. CAN: Safe Value. CAN: Safe Value.
is Arbitrary CAN’T: MCEV, MNEV. CAN’T: MCEV, MNEV. CAN’T: MCEV, MNEV.

Second Agent CAN: Safe Value, MCEV, CAN: Safe Value. CAN: Safe Value.
No-External-Regret MNEV. CAN’T: MCEV, MNEV. CAN’T: MCEV, MNEV.

Second Agent CAN: Safe Value, MCEV, CAN: Safe Value, MCEV. CAN: Safe Value, MCEV.
No-Internal-Regret MNEV. UNKNOWN: MNEV. UNKNOWN: MNEV.

Second Agent CAN: Safe Value, MCEV, CAN: Safe Value, MCEV. CAN: Safe Value, MCEV.
No-Internal-Regret MNEV. UNKNOWN: MNEV. UNKNOWN: MNEV.
(Utilities unknown)

Figure 7.2: Summary of results. In each column is a class A of behaviors for the first agent. In each row
is a class B of behaviors for the second agent (the fourth row contains results for the case where the first
agent does not know the utilities of the second agent). In each cell is listed the utilities that can and cannot
be achieved by a first agent from the class A against every behavior for the second agent from the class B:
safe value, minimum correlated equilibrium value (MCEV), or minimum Nash equilibrium value (MNEV).
CAN MNEV indicates there exists a behavior σ1 in A, such that for every behavior σ2 in B, σ1 achieves
the minimum Nash equilibrium value against σ2. CAN’T MNEV indicates for every behavior σ1 in A there
exists a behavior σ2 in B such that σ1 does not achieve the minimum Nash equilibrium value against σ2.
UNKNOWN indicates an open problem.

many people [Han57, Meg80, FL95, LW89]. Here we show that if one assumes the other agent is no-external-
regret, then one can easily achieve the minimum Nash equilibrium value. However, this result is unsatisfying,
because the algorithm we design that achieves the minimum Nash equilibrium value does not itself achieve
no-external-regret. In fact, we show that there does not exist a no-external-regret algorithm that can achieve
the minimum correlated equilibrium value against an arbitrary no-external-regret algorithm.

The reason that achieving the minimum Nash equilibrium value is an interesting goal is that it can be
significantly higher than the values that natural external regret minimizing algorithms get in some games.
Philosophically, there is a difference between a correlated equilibrium that two no-internal-regret algorithms
converge to and a correlated equilibrium that two humans agree upon as a self-enforcing contract. It is
unlikely that two humans would ever agree upon a correlated equilibrium where both agents receive relatively
low utility. But, because the convergence of two no-internal-regret algorithms to the set of correlated
equilibria is an emergent behavior instead of a conscious choice, it is not surprising that they might choose
to play a correlated equilibrium that is not a good one.



Chapter 8

Future Work

Below are some of the interesting directions this research can be taken.

• Does there exist an incentive-compatible online mechanism for maximizing profit in the temporal
bidding problem that achieves at least a log factor of the profit of the optimal offline mechanism?

• In preference elicitation, one can consider the related problem of preference verification: verifying that
a given allocation is optimal. If one imagines that the preferences are strictly increasing, i.e. giving one
more item to someone always increases his or her utility, how are the number of value queries required
to compute the optimal allocation related to the number of value queries required to verify the optimal
allocation? Is the competitive ratio polynomial in the number of items?

• In online convex programming, there have been several results that have extended gradient descent
to situations where the entire cost function is unknown, and only the algorithm’s cost is observed.
However, does there exist an algorithm that can minimize the cost with high probability against an
adaptive adversary?

• Minimizing response regret can be very useful if one believes that one’s actions have a short-term effect
on the behavior of the other agent or the state of the environment. However, in practice response
regret may take a long time to minimize. What are ways of relaxing response regret so that it can be
minimized more efficiently? Particularly, if one has ideas about what behaviors may be useful in an
environment, can one use this information to modify the concept of response regret?

• In this thesis, we have shown that assuming the other agent achieves no-external-regret is not a very
useful way of modeling an intelligent agent. Can one algorithm both achieve no-internal-regret against
an arbitrary algorithm and achieve a minimum Nash equilibrium value assuming the other agent
achieves no-internal-regret? In general, is there any natural way to represent the belief that the other
agent might possibly be intelligent?

We have studied how one can perform well with incomplete information in the presence of other agents.
We have studied both how one can design an environment and how one can design an agent in an existing
environment. In mechanism design, we assume the agents are rational, that they have accurate beliefs about
the world and act optimally based on those beliefs. In an arbitrary game, such an assumption may be less
justified, because there may be no a priori optimal plan of action. If we cannot assume the other agents are
rational, then what assumptions should we make about them?

In most Bayesian frameworks (like finite domains or discounted Markov decision processes), what should
or should not be done is obvious from the beliefs that the agents have (i.e., the problem is more computational
than philosophical). In a way, a measure of regret is like a belief about what basic strategies might be useful
and how they could be combined to achieve a high utility. To discover the relationships between regret and
equilibria, it is first necessary to use regret as a belief, something that can justify each distribution over
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actions chosen during an infinitely repeated game. As researchers, we should focus both on developing new
and more useful measures of regret, as well as being more restrictive with regards to judging whether a
behavior is really justified by a measure of regret. The final goal should be a concept of regret such that all
behaviors justified by that concept of regret converge to the convex hull of the set of Nash equilibria.
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