Algorithmsfor Flow Time Scheduling

Nikhil Bansal
December 2003
CMU-CS-03-209

School of Computer Science
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Avrim Blum, Chair
Bruce Maggs
Kirk Pruhs, University of Pittsburgh
R. Ravi

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

(©2003 Nikhil Bansal

This research was sponsored by the National Science Foundation (NSF) under grant nos.CCR-0105488,
CCR-0122581 and CCR-9902091, by the Pittsburgh Digital Greenhouse (PDG) and the IBM Corporation
through a generous graduate fellowship. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies, either expressed or implied, of
the NSF, the PDG, IBM, the U.S. government or any other entity.

Keywords: Approximation Algorithms, On-line Algorithms, Scheduling, Flow Time, Non-clairvoyant
Scheduling

Abstract

We study scheduling algorithms for problems arising in client-server systems. In the client-server setting,
there are multiple clients that submit requests for service to the server(s) over time. Typical examples
of such systems include operating systems, web-servers and database query servers. As there could be
multiple clients requesting a service, the goal of a scheduling algorithm is to provide service to the clients
in some reasonable way. A natural measure of the quality of service received by a client is its flow time,
defined as the time since the client submits a request until it is completed. In this thesis, we study some
fundamental problems related to minimizing flow time and its variants. These include ¢, norms of flow time,
weighted flow time, stretch (flow time divided by its service requirement) and completion time. We consider
these problems in various settings, such as online, offline, scheduling when the processing requirements are
unknown and scheduling when jobs can be rejected at some cost.

Acknowledgments

First of all, I would like to thank my advisor Avrim Blum for his infinite guidance, support and insights.
I will be indebted to him for all the ways in which I have grown as a researcher and especially for teaching
me how to think. Clearly, this thesis would not be possible without him.

| have been really fortunate to have Kirk Pruhs at such a close distance. He has been like a second
advisor to me. | am extremely grateful to him for sharing his invaluable ideas and his limitless enthusiasm
for research. A large part of this thesis has its origins in the discussions at the Pitt lunch trucks.

I want to thank all the theory folks at CMU for providing such a wonderful and stimulating research
environment. Special thanks to Avrim Blum, Tom Bohman, Alan Frieze, Anupam Gupta, Ryan Martin, R.
Ravi and Steven Rudich for their extraordinary classes.

Thanks to Shuchi Chawla, Kedar Dhamdhere, Amitabh Sinha, Jochen Konemann and Adam Wierman
for being such great friends, colleagues and collaborators. Many thanks to Ashwin Bharambe, Amit Manjhi,
Mahim Mishra and Bianca Schroeder for all the nice time | spent with them.

Finally, 1 would like to thank my parents for their unconditional love and encouragement and instilling
in me the love of learning. A special thanks to my friend Ageeth for all her love and understanding.

Contents

1 Introduction

1.1 Motivation e e
1.2 Model and Preliminaries e
1.3 Analysis Framework
1.3.1 Offline Analysis e
1.3.2 Online Analysis. e
1.3.3 Resource Augmentation e
1.4 Preliminaries e
15 Overviewof Results. e
16 Related Areas e

2 Scheduling to Minimize ¢, norms of Flow Time
2.1 Introduction
22 RelatedResults
2.3 General LowerBounds
24 Analysisof SIF e e
25 Analysisof SRPT e e
2.6 Flow Analysisof SETF e
2.7 Lower Bound forRound Robin
2.8 Concluding Remarks

3 Scheduling to Minimize Weighted Flow Time
3.1 Introduction
3.2 RelatedWork
3.3 Preliminaries
3.4 Algorithm
341 Analysis e e
3.4.2 ASemi-Online Algorithm
3.5 Weighted ¢, normsof Flow Time
351 TheClairvoyant Case i
3.5.2 TheNon-ClairvoyantCase i i e
3.6 Conclusionand OpenProblems.

4 Scheduling to Minimize Stretch
4.1 Introduction e e
42 RelatedWork

Vi

43 LowerBounds.
43.1 Clairvoyant Scheduling.
4.3.2 Non-clairvoyant Scheduling

4.4 Staticscheduling

45 Dynamic Scheduling

4.6 ConcludingRemarks

Minimizing Flow Time on Multiple Machines

5.1 Introduction
52 TotalFlowTime
53 Extensions.
5.4 Dependence on the number of machines
55 MaximumFlowTime
56 OpenProblems

Scheduling for Flow-Time with Admission Control

6.1 Introduction
6.2 AnOnline Algorithm
6.2.1 MinimizingFlow Time
6.2.2 MinimizingJob Idle Time
6.2.3 Varying Server Speeds
6.24 LowerBounds
6.3 Weighted flow time with weighted penalties
6.4 Weighted Flow time with Arbitrary Penalties
6.41 LowerBounds
6.4.2 Algorithm with Resource Augmentation
6.5 Conclusion

Results for Completion Time Scheduling via Flow Time

7.1 Introduction
7.2 Preliminaries
7.3 Results.
74 ConcludingRemarks
Possibilities for Improvement and Future Directions

8.1 Possibilities for Improvement L
8.2 Some Future Directions

Bibliography

CONTENTS

Chapter 1

| ntroduction

Scheduling can be described as allocating resources over time. The resources are modeled as machines
and the requests for resources are modeled as jobs with a service requirement. Given this broad definition,
scheduling has been studied in various scenarios such as practical computer systems, production planning
in factories, load balancing and so on. Scheduling problems constitute a substantial part of optimization,
and have been studied by researchers in various communities such as operations research, algorithms and
queueing theory.

In the last ten years or so, a major focus has been to study the performance of scheduling algorithms for
client-server systems. In a client-server system, there are multiple clients that submit requests for service
to the server(s) over time. Typical examples of such systems include operating systems, web-servers and
database query servers. In such systems, the most natural measure of the quality of service received by a
client is the flow time, defined as the time since the client submits a request until it is completed. Flow time
closely relates to the user experience as it measures the amount a user has to wait to get his jobs serviced. In
this thesis we look at some fundamental problems related to minimizing flow time and its variants.

1.1 Motivation

Our central motivating question is: What is a good scheduling algorithm for a client-server system? There
is no single answer to this question. The answer would depend on the particular type of scenario, such as

¢ Isasingle machine or multiple machines used to serve the requests? For example, a CPU may consist
of a single processor or multiple processors. Similarly, a web site might use several servers to serve
its content instead of a single one.

e |s the processing requirement of a job known upon its arrival? For example, in a web server serving
static documents, the time to serve a request is reasonably modeled by the size of the file which is
known to the server. On the other hand, an operating system typically has no idea of long it would
take to serve a request.

e Can the execution of a job be interrupted arbitrarily and resumed later from the point of interruption
without any penalty? There might be a significant overhead in some systems to switch between jobs.

o Are all jobs equally important? It might be important to give some jobs preferential treatment relative
to other jobs.

2 CHAPTER 1. INTRODUCTION

However, in spite of the specifics of the model, one can usually give some general guidelines.

First, one would like that the average time that users experience to finish their jobs is not too high. One
way to formalize this goal is to minimize the total flow time. Similarly, one might wish that most users re-
ceive similar performance, that is, it should not be the case that one set of users receives significantly worse
performance than others. This can be formalized by requiring that maximum flow time be minimized. Opti-
mum algorithms are known both for minimizing the total flow time and for minimizing the maximum flow
time. However, these algorithms are totally “incompatible” with each other. The algorithm for minimizing
the total flow time might lead to extremely high maximum flow time and similarly the algorithm for mini-
mizing the maximum flow time might lead to extremely high total flow time. Our first motivating problem
is to study algorithms which perform reasonably well on both the measures simultaneously. We formalize
this goal by introducing the problem of trying to minimize the £, norms of flow time. We study this problem
is different settings. In particular, whether the service requirement of a job is known upon its arrival or not,
whether all jobs are equally important or not and finally where is goal is to minimize the ¢, norms of a
related measure known as stretch (defined as the ratio of a job’s flow time to its service requirement).

Often in the real world, not all jobs are equally important. For example, some users might pay a higher
amount of money to their Internet service providers to receive a better quality of service, or a website
serving some content might have different quality of service guarantees for different classes of users and so
on. Sometimes such priorities might simply be inherent in the system. For example in operating systems,
the basic kernel operations receive the highest priority and similarly the 1/O related jobs receive a higher
priority than jobs involving a lot of processing. A standard way in the scheduling literature to formalize
the notion of varying degrees of importance is to associate a weight with a job which is indicative of its
priority. The goal then is to optimize some weighted measure of the flow times. Unfortunately, scheduling
in the weighted scenario is much less understood than in the unweighted scenario. A fundamental problem
that is not well understood is that of minimizing the total weighted flow time on a single machine. Prior
to our work, no “truly” online algorithm was known for the problem. Moreover no algorithm with an
O(1) approximation ratio was known even when there are just two different weights. In this thesis, we
give an O(1) approximation for the case where there are O(1) weights, and more generally an O(log W)
competitive algorithm where T is the ratio of the maximum to the minimum weight.

A third fundamental and open problem is understanding the approximability of the problem of minimiz-
ing the total flow time (unweighted) on multiple machines. Even for two machines, the best known result
is an O(logn) approximation algorithm, where n is the number of jobs. On the other hand, it might be
possible that there is a polynomial time approximation scheme even for the case of arbitrary number of ma-
chines. In this thesis, we give a quasi-polynomial time approximation scheme for the problem when there
are a constant number of machines. This suggests that a polynomial time approximation scheme is likely to
exist for this case.

In this thesis, we describe our progress on the problems mentioned above and some other related ques-
tions. A detailed summary of our work is given in Section 1.5. We begin by describing the model formally.

1.2 Model and Preliminaries

An instance of a scheduling problem consists of a collection of jobs 7 = {J1,...,J,} which arrive dy-
namically over time. The time when a job J; arrives is its release time and is denoted by r;. Each job has
a service requirement, also known as its size and is denoted by p;. We will also consider problems where
the jobs are weighted according to their importance, in this case the weight of a job J; is denoted by w;. B

1.2. MODEL AND PRELIMINARIES 3

will always denote the ratio of the maximum to minimum job size and W will always denote the ratio of the
maximum to minimum weight. The number of jobs is always denoted by n, and the number of machines
is always m. A schedule for a problem instance specifies, for each job, various intervals of time where this
job is executed. Figure 1.1 shows a possible schedule for n = 3 jobs and m = 1 machine. A scheduling
algorithm is a procedure to construct a schedule from an input instance.

J1 N

n= 3 jobs

r1i J 2z B .
_ — m=1 machine

r o J 3=

r3
S N7 ; * N - time
A A A
J_2 preempts J 2fnishes J 3finishesand J 1 resumes
Ji J 3begins execution

Flow Time
of J 3
Flow Timeof J 1 ‘

Figure 1.1: An example of a schedule

Typically scheduling problems are studied in three paradigms based on how the input is revealed.

Offline: In this paradigm, the entire input instance is known in advance and the goal usually is to give
an efficient (polynomial time) algorithm that produces the optimum or close to optimum schedule.

Online: In this paradigm, the existence of a job is revealed to the algorithm only when it arrives (i.e.
J; becomes known at time r;). Thus the online algorithm at any time has to make decisions based on the
partial knowledge of the jobs that have arrived by that time. This paradigm is perhaps the most natural
and appealing one in the context of scheduling as far as real world applications are concerned. The online
paradigm is further classified into two paradigms based on what information is revealed about a job when it
arrives.

e Online Clairvoyant Scheduling: In this paradigm, the size p; of a job J; is revealed to the algorithm
when it arrives at time ;. This models well for example the scenario in a web-server serving static
documents. Typically, the time to serve a request can be reasonably modeled by the size of the file
requested, which is known to the web-server.

¢ Online Non-clairvoyant Scheduling: In this paradigm, only the existence of the job J; is revealed to
the algorithm at time r;, and in particular the size of the job is unknown. The algorithm learns the
size of the job only when it meets its service requirement and terminates. This paradigm was first
introduced formally and studied by Motwani, Philips and Torng [59]. It closely models the scenario
faced for example by operating systems, since the system typically will have no idea of the amount of
processing required by a job.

4 CHAPTER 1. INTRODUCTION

Objective Functions

Given a schedule, the completion time ¢; for a job is the time at which it completes its service requirement.
The flow time f; of a job is time a job spends in the system. i.e. it is the difference between the completion
time and the release time (f; = c; — ;). Figure 1.1 shows the flow times of jobs .J; and .J3. The term flow
time unfortunately is not a standard one, often flow time is also referred to as response time, sojourn time,
latency or waiting time in the literature.

Another measure closely related to flow time is stretch. Given a schedule, the stretch s; of a job is the
ratio of its flow time and its size i.e. s; = f;/p;. Stretch can be thought of as normalized flow time, and
relates the waiting time of the users to their demands. In particular, it models the fact that users are usually
willing to wait longer for large jobs as opposed to short jobs. Again, stretch is sometimes referred to as
slowdown or normalized flow time in the literature.

Preemption

A schedule is non-preemptive if a job cannot be interrupted once it is started. In a preemptive schedule a job
can be interrupted arbitrarily and the execution can be resumed from the point of interruption without any
penalty (for example in Figure 1.1, the job J5 preempts .J;).

Being unable to preempt places a serious restriction on the quality of schedules with respect to the flow
time and stretch metrics. For online algorithms in the non-preemptive setting, one can usually construct a
simple example showing that any algorithm will be arbitrarily bad. Similarly, for approximation algorithms
one can usually construct a hard instance based on a standard construction due to Kellerer, Tautenhahn and
Woeginger [48], who use it to show an inapproximability result of Q(n!/3) for minimizing total flow time
non-preemptively on a single machine. Thus, flow time and stretch related objectives functions are almost
always studied in the preemptive model. In the thesis, we focus only on preemptive scheduling.

1.3 Analysis Framework

Throughout this thesis, we will use the standard worst case analysis.

1.3.1 Offline Analysis

For offline problems, the goal is to give an efficient (polynomial time) procedure to construct an optimum
solution. However, often the problems that arise are A/P-Hard and it is unlikely that optimum solutions
for these can be computed exactly in polynomial time. The goal then is to construct an algorithm which is
efficient and computes a solution that is provably close to optimum for every instance 7. Formally,
A (deterministic)® algorithm Alg for a minimization problem IT is called a p-approximation algorithm
if
Alg(I) < pOpt(I)

holds for every instance I of IT, where Alg(I) denotes the cost of Alg on I and Opt(I) denotes the optimum
cost on I. The number p is called the approximation ratio of the algorithm Alg. Usually one requires an

1One can al'so defi ne randomized approximation algorithms, however in this thesis we will only consider deterministic approx-
imation algorithms.

1.3. ANALYSIS FRAMEWORK 5

approximation algorithm to run in time polynomial in the input parameters such as the number of jobs. A
nice introduction to approximation algorithms can found in [37, 74].

1.3.2 Online Analysis

We use the standard technique of competitive analysis introduced in the seminal paper of Sleator and Tarjan
[71]. Anonline algorithm Alg is called c-competitive if the objective function value of the solution produced
by Alg on any input sequence is at most ¢ times that of the optimum offline algorithm on the same input.
Here, the optimum offline algorithm has complete knowledge about the whole input sequence in advance.
Formally,

A deterministic? online algorithm is called c-competitive if
Alg(I) < c Opt(I)

holds for every instance I. The number c¢ is called the competitive ratio of the algorithm Alg. Sometimes,
the definition is relaxed to allow a constant b (independent of the input sequence) such that

Alg(I) <cOpt(I)+b

Observe that there is no restriction on the computational resources of an online algorithm. Competitive
analysis of online algorithms can be imagined as a game between an online player and a malicious adversary.
If the adversary knows the strategy of the online player, he can construct a request sequence that maximizes
the ratio between the player’s cost and the optimum offline cost. A nice and in-depth treatment on online
algorithms and competitive analysis can be found in [19].

In the non-clairvoyant setting, the performance is measured in a similar way. In particular, an algorithm
is c-competitive if the objective function value of the solution produced by Alg on any input sequence is at
most ¢ times that of the optimum offline algorithm (and hence clairvoyant) on the same input.

1.3.3 Resource Augmentation

Sometimes competitive analysis turns out be overly pessimistic and the adversary is simply too powerful
and allows only trivial competitiveness results. An alternative form of analysis that has proven very useful
in the context of scheduling is resource augmentation, introduced by Kalyanasundaram and Pruhs [46]. The
idea here is to augment the online algorithm with extra resources in the form of faster processors.
Formally, let Alg, denote an algorithm that works with processors of speed s > 1. An online algorithm
is called s—speed, c—competitive if
Algy(I) < ¢ Opty(T)

holds for all input instances 1. Another way to view resource augmentation is that while we would like our
algorithm to perform almost as well as the optimum, we may be unable to do so if we allow the optimum the
same amount of resources. Thus, we compare the performance of our algorithm to that of the optimum where
the optimum is only allowed an s times slower processor. The typical goal in the resource augmentation
setting is to find an algorithm which is O(1) competitive with a modest amount of speed up. To understand
this goal, we first need to understand how client-server systems typically behave.

2Again, one can defi ne randomized online algorithms, and various notions of an adversary based on the kind of information
about the online algorithm available to it. However, we will only focus on deterministic online algorithms.

6 CHAPTER 1. INTRODUCTION

Average Average
QoS ag Qos ag !)
Online; |Optimal

Load Load

(@) (b)

Figure 1.2: (a) Standard QoS curve, and (b) The worst possible QoS curve of an (1 + ¢€)-speed O(1)-
competitive online algorithm.

Average QoS curves such as those in figure 1.2(a) are ubiquitous in server systems [51]. That is, there
is a relatively modest degradation in average QoS as the load increases until some threshold is reached —
this threshold is essentially the capacity of the system — after which any increase in the load precipitously
degrades the average QoS. The concept of load is not so easy to formally define, but generally reflects
the number of users of the system. If A is an (1 + €)-speed, c-competitive server scheduling algorithm,
and Opt,(I) < d- Opt,(I) then A is at worst (c - d)-competitive on input /. The loads in the usual
performance curve shown in figure 1.2(a) where Opt, () is not approximately Opt, (1) are those points
near or above the the capacity of the system. Thus the performance curve of a (1 + ¢)-speed, c-competitive
online algorithm A should be no worse than shown in figure 1.2(b). That is, A should scale reasonably well
up to quite near the capacity of the system. Thus an ideal resource augmentation result would be to prove
an algorithm is (1 + €)-speed, O(1)-competitive. More detailed discussion on resource augmentation and
its uses can be found in [46, 61, 63].

1.4 Preliminaries

A local view of Flow Time

Often while studying the performance of an algorithm Alg for some flow time related measure, it is helpful
to think of how the measure changes as a function of time. This usually has a nice physical description. For
example, at any time the rate of change of total flow time under Alg is simply the number of unfinished jobs
under Alg at that time. Similarly for weighted flow time Zj wj f;, it is easily seen that the rate of change is

equal to the total weight of unfinished jobs at that time.

This leads to a simple and often useful technique known as local-competitiveness. The idea is that, to
prove c-competitiveness of Alg it suffices to show that at all times ¢, the rate at which Alg increases is no
more than c times the rate at which any algorithm Opt can increase at that time. For example, to prove
that an algorithm is ¢ competitive for weighted flow time, it would suffice to show that at any time the total
weight of unfinished jobs under the proposed algorithm never exceeds c times the weight under any schedule
at that time.

The advantage of local-competitiveness is that it is often easier to show some local property of an
algorithm than to argue against globally optimum schedules. Of course, local-competitiveness is not always

14. PRELIMINARIES 7

applicable, it could be the case that no matter how good the online algorithm is globally, there are short
periods during which the adversary can perform significantly better.

Typical Scheduling Algorithms

Most often in scheduling, there are only a few algorithms which end up being analyzed for different prob-
lems. We now describe these and some associated basic results.

1. First In First Out (FIFO): At any time, work on the job which arrived the earliest.

Itis a folklore result that FIFOis optimal for minimizing the maximum flow time on a single machine.
2. Shortest Job First (SJF): At any time, work on the job that has the shortest size (p;).

3. Shortest Remaining Time First (SRPT): At any time, work on the job that has the least remaining
processing requirement at that time.

It is a folklore result that SRPT is optimal for minimizing the total flow time on a single machine.
Recently, it was shown that SRPT is 2-competitive for minimizing total stretch on a single machine
[60].

4. Shortest Elapsed Time First (SETF): At any time, work on the job that has received the least amount
of service at that time. Note that by the nature of the algorithm, at any time if two of more jobs
have the least amount of service, then they continue to have the least amount of service and share the
processor equally until a new jobs arrives.

A celebrated result of Kalyanasundaram and Pruhs is that SETFis (1+¢)-speed, (1+1/¢)-competitive
for minimizing total flow time non-clairvoyantly on a single machine [46].

5. Round Robin (RR): At any time, share the processor equally among all the jobs present at that time.
This policy is also referred to as Processor Sharing in the literature.

Algorithms when jobs have weights:

1. Highest Density First (HDF): At any time work on the job that has the largest weight to processing
time ratio. The ties are broken in favor of the partially executed job.

It is known that HDF is a (1 + €)-speed, (1 + 1/¢)-competitive algorithm for minimizing the total
weighted flow time [16].

2. Weighted Shortest Elapsed Time First (WSETF): For a job .J; with weight w; , let p;(¢) denote the
amount of work done on J; by time ¢. We define the normalized service of J; as ||J;||: = pi(t)/w;.
At all times, WSETF splits the processor among the jobs that have the smallest normalized service in

the ratio of their weights. For example, if J1, ... , Ji are the jobs that have the smallest normalized

service. Then J;, fori =1,... , k, will receive w; /(3 %_, w;) fraction of the processor. Note that for

all jobs J; that WSETF executes, the normalized service increases at the same rate and thus stays the
same.

One of the results of this thesis is that WSETFis (1 + €)-speed, (1 + 1/¢)-competitive for minimizing
the total weighted flow time non-clairvoyantly [7].

8 CHAPTER 1. INTRODUCTION

Non-Clairvoyant Scheduling

Finally, to place our results in the proper perspective we give a quick (and incomplete) history of non-
clairvoyant scheduling. Non-clairvoyant scheduling was first introduced in the context of online algorithms
by Motwani, Philips and Torng [59]. They studied the problem of minimizing the total flow time on a sin-
gle machine and showed that any deterministic algorithm is Q(n1/3) competitive and that any randomized
algorithm is 2(log n) competitive. On the positive side, Kalyanasundaram and Pruhs gave a randomized al-
gorithm with an almost matching competitive ratio of O(log n log log n) [45]. Later, Becchetti and Leonardi
improved the analysis of [45] to show that their algorithm in fact achieves a competitive ratio of O(logn)
[13]. Resource augmentation was also first introduced to deal with the problem of non-clairvoyance and
was used to show that SETFis (1 + ¢)-speed, (1 + 1/¢)-competitive [46].

1.5 Overview of Results

We now outline the problems considered in this thesis.

Minimizing the ¢, Norms of Flow Time

It is well known that SRPT is optimal for minimizing the total flow time. Similarly, FIFO is optimal of
minimizing the maximum flow time. However, each of the algorithms has its drawbacks. FIFO might have
a very poor average behavior (for example, consider n — 1 small jobs stuck behind a large job). Similarly,
a commonly cited reason against using SRPT in a real system is the fear that it may “starve” large jobs (i.e.
even though the average performance is good, there might be a few large jobs with extremely high flow
times). To strike a compromise between the sum and the maximum, we propose the ¢, norms of flow time
as a measure of good average performance and fairness. While £, norms of measures such as completion
time and load have been considered previously [30, 3, 5], no previous work has been done on flow time.

To get a feel for the problem, let us consider the case when p = 2. In this case, at any time, the
contribution of an unfinished job to the flow time squared is equal to two times its age (which is defined as
the time spent by the job thus far). Thus, at any time, the total flow time squared increases at the rate of the
total age of all the unfinished jobs at that time. This suggests that any reasonable algorithm for the problem
must try to avoid a lot of “old” jobs from building up.

We obtain the following results:

e W first show that there cannot be any randomized online algorithm with a competitive ratio of n°(%)
for 1 < p < oo. This is perhaps surprising as it may be tempting to believe that a suitable combination
of SRPT (keeps total number of jobs low) and FIFO (gets rid of old jobs) should yield a good online
algorithm.

e Motivated by the lower bounds above, we consider the problem in the resource augmentation model.
We show that SJF and SRPT are (1 + €)-speed, O(1)-competitive algorithms for minimizing all ¢,
norms of flow time.

Our proofs for these results use local competitiveness. We show that with a slight speed up, SJFand
SRPT not only keep the total number of jobs low, but also do not allow a buildup of old jobs. The
proof requires a careful accounting of the number of jobs of various ages at all times.

1.5. OVERVIEW OF RESULTS 9

| Algorithm | Speed | Competitive Ratio |
Any Clairvoyant Algorithm 1 n2M forl < p < oo
SF d+e O(1/e)
SRPT d+o) O(1/¢)
SETF (1+e) O(1/+7)
RR (1+e€) Q(n(1=2eP)/p)
Any Non- clairvoyant Algorithm | (1 + ¢) -

Table 1.1: Results for £, norms of Flow Time

Somewhat surprisingly, we also show that the policy RR which is aimed at giving a fair performance
to all jobs, does not have the above property. In particular, we show that even with a (1 + ¢€) speed up

(for e sufficiently small), RR has a competitive ratio of Q(n(1=22)/p),

e Finally, we consider this problem in a non-clairvoyant setting. We show that SETFis a (1 + ¢)-speed,
O(1)-competitive algorithm.

It can be shown that local-competitiveness does not yield useful results in this setting. To prove
this result for SETF we introduce a technique where, by a series of transformations we reduce the
problem of proving the result for SETF to a result about SJF. This technique is fairly general and
turns out to be useful to prove other results about non-clairvoyant algorithms. For example, we will
use this later to show non-trivial results about minimizing the total stretch and the ¢,, norms of stretch
non-clairvoyantly.

These results are summarized in Table 1.1 below.

Our results argue that the concern, that the standard algorithms aimed at optimizing average QoS might
unnecessarily starve jobs, is unfounded when the server is less than fully loaded. Results similar in spirit are
found in a series of papers, including [9, 27, 35, 65]. These papers argue that SRPT will not unnecessarily
starve jobs any more than Processor Sharing does under “normal” situations. In these papers, “normal”
is defined as there being a Poisson distribution on release times, and processing times being independent
samples from a heavily tailed distribution. More precisely, these papers argue that every job should prefer
SRPT to Round Robin under these circumstances. So informally our results and these papers reach the same
conclusion about the superiority of SRPT. But in a formal sense the results are incomparable.

Minimizing Weighted Flow Time

In many settings jobs have varying degrees of importance and this is usually represented by assigning
weights to jobs. A natural problem that arises in this setting is to minimize the total weighted flow time.
This problem is known to be A/P-Hard [53].

Since SRPT at any time has the minimum possible number of jobs in the system, it easily follows that
SRPT is an O(W') competitive algorithm for weighted flow time. Similarly, the policy that works on the
highest weight job at any time is easily seen to be an O(B) competitive algorithm. These were essentially
the best known guarantees for the problem until the recent work of Chekuri, Khanna and Zhu [23], who

10 CHAPTER 1. INTRODUCTION

gave an O(log? B) competitive semi-online® algorithm. There also show a lower bound of 1.61 on the
competitive ratio of any online algorithm. However, their work left some questions open. In particular, is
there an O(1) competitive algorithm for minimizing weighted flow time with arbitrary weights? A simpler
problem left open was whether there is an O(1) competitive algorithm even if there are only two different
job weights? Finally, they also ask if a there is “truly” online algorithm with a non-trivial competitive ratio.

In our work, we answer some of these questions. We give a “truly online” algorithm that is & competitive
if there are £ different job weights. Thus, this gives the first algorithm that is O(1) competitive for 2 different
job weights. Rounding the weights to powers of 2, it is easy to see that our algorithm gives an O(log W)
competitive algorithm for arbitrary weights.

Our algorithm is quite simple. We divide the jobs into O(log W) classes. At any time, the algorithm
works on the weight class with the greatest weight of unfinished jobs. Within a class jobs are processed in
the SRPT order. Thus, in a sense it tries to keep the total weight in each class low. However, the crucial
point to show is that the algorithm does not end up performing badly as it moves between various classes.
Our proof uses local competitiveness: We show that at any time, the total weight of unfinished jobs in our
algorithm is O(log W) times that under any other algorithm.

While the above algorithm has a guarantee in terms of W, using a standard trick, we show how this
algorithm can be modified to give an O(log n + log B) semi-online algorithm for the problem.

Interestingly, our results described above and those of [23] are also the best known guarantees for the
offline version of the problem. On the other hand, we do not even know if the problem is AP X -Hard.
Though a recent result of Chekuri and Khanna gives a quasi-polynomial time approximation scheme for
this problem [21], which suggests that a polynomial time approximation scheme is likely to exist for this
problem.

We next consider an extension of the problem where we seek to minimize the weighted ¢,, norms of

flow time, defined as (), wl-ff’)l/p. We study this problem both in the clairvoyant and non-clairvoyant
setting. From the lower bounds on minimizing the ¢, norms of unweighted flow time (mentioned in Table

1.1), it easily follows that there do not exist any n°(!) competitive clairvoyant (and hence non-clairvoyant)
algorithms for this problem, where 1 < p < cc.

We show that HDF and WSETF, the natural generalizations of SJF and SETF to the weighted case
are (1 + €)-speed, O(1)-competitive for minimizing the weighted ¢,, norms of flow time. To prove these
results, we give a general technique which reduces a weighted problem to an unweighted one, but requires
an additional (1 + €) speed up in the process.

Stretch Scheduling

Stretch as a measure of system performance has gained a lot of popularity in recent years. Stretch is very
appealing as it directly quantifies the time spent waiting by a user per unit amount of received service.
Often computer system designers consider stretch as a measure while demonstrating the superiority of their
system over others. Theoretically, stretch is reasonably well understood, at least in the clairvoyant setting. It
is known that SRPT is 2-competitive for minimizing the total stretch on a single machine [60]. On multiple
machines, O(1) competitive algorithms for minimizing total stretch in various settings [60, 23] are known.
In the offline setting, a PTAS is known for minimizing total stretch on a single machine [18, 21].

In this thesis we study this problem in the non-clairvoyant setting. The problem was posed in [13], and

3Their algorithm is semi-online asit requires the knowledge of B while scheduling the jobs.

1.5. OVERVIEW OF RESULTS 11

arises naturally is systems such as Operating systems, where the jobs sizes are unknown and where stretch
is considered to an important measures of user satisfaction.

Minimizing total stretch can be thought of as a special case of minimizing total weighted flow time,
where the weight of a job is inversely proportional to its size. However, what makes the problem interesting
and considerably harder in a non-clairvoyant setting is that the sizes (hence weights) are not known. Hence
not only does the online scheduler have no idea of job sizes, it also has no idea as to which job is more
important (has a higher weight). Formally, this hardness is seen by the fact that any randomized algorithm
is Q(min(n, B)) competitive for this problem.

To get a feel for minimizing stretch non-clairvoyantly, suppose there are n jobs of size 1,2,4,... 27!
all of which are released at time ¢ = 0. By scheduling these in the order of increasing job sizes, the optimal
clairvoyant algorithm has a total stretch of O(n). However, the non-clairvoyant has no way of figuring out
the size 1 job until it has spent at least 1 unit of time on all the size 1 jobs (or on about half the jobs if
the algorithm is randomized). Thus the size 1 job will have a stretch of Q(n). Arguing similarly for other
jobs implies that the total stretch is €2(n?), hence giving a lower bound of ©(n) on the competitive ratio.
Moreover, since all jobs arrive at t = 0, a speed up of k implies that the flow time reduces by & times and
hence with an O(1) speed up the competitive ratio is still ©2(n). The fact that neither resource augmentation
nor randomization seems to help is in sharp contrast to total flow time where a (1 + ¢)-speed gives a (1 + %)-
competitive algorithm [46], and randomization allows us to obtain an O(log n) competitive non-clairvoyant
algorithm [45, 13].

The only case where resource augmentation seems to help is when the job sizes are bounded. In this
case, we show the following results:

e SETFisa(1+e)-speed, O(log? B)-competitive algorithm for minimizing total stretch non-clairvoyantly.
We also also extend the results to the problem of minimizing ¢, norms of stretch.

The best lower bound with a (1 + ¢)-speed processor that we know of is 2(log B). The above result
on the competitiveness of SETF uses the technique of relating SETFto SJF.

o Finally, we also consider the static case, that is when all the request arrive at time ¢ = 0. In this case,
for the problem of minimizing the ¢,, norms of stretch, we give algorithms with matching upper and

lower bounds of ©(log B) on the competitive ratio.

Our results for stretch scheduling are summarized in Table 1.2 below.

Lower bound Lower bound
Problem Scenario | Speed SETF without speed up | with O(1) speed up
Static 1 O(n),0(og B) | Q(n), Q(log B) Q(n), Q(log B)
Dynamic (1+¢€) | O(og'™/? B) Q(n), QB) Q(n), Q(log B)

Table 1.2: Summary of results for minimizing the ¢, norms of stretch non-clairvoyantly.

Minimizing Flow Time on Multiple Machines

Scheduling on multiple machines has been an extensive area of research for several decades and an enormous
amount of literature exists of this topic. Two fundamental problems in this area whose offline complexity is

12 CHAPTER 1. INTRODUCTION

very well understood by now are the following:

1. Minimizing Makespan: Given m machines and n jobs all released at time ¢ = 0, assign jobs to the
machines such that maximum amount of work assigned to any machine is minimized.

Various efficient approximation schemes with running times polynomial in » and m are known for
this problem [41, 38, 44].

2. Minimizing total weighted completion time: Given m machines and n jobs with arbitrary releases
times, sizes and weights, find the schedule that minimizes the total weighted completion time.

A relatively recent paper [1] gives various efficient approximation schemes for this problem (and
several of its variants). Again the running time of these schemes in polynomial in n and m.

The natural extensions of these problems to the flow time case are minimizing the maximum flow time,
and minimizing the total (weighted) flow time. Unfortunately, these problems are not very well understood.
In this thesis, we make some progress in this direction. We begin by describing the prior work, and then our
work.

We first look at minimizing the total flow time. In the online setting, a celebrated result of Leonardi
and Raz [55] is that SRPT is O(log(min{ -, B})) competitive on identical parallel machines. They also
show a matching lower bound of Q(log(min{ >, B})) on the competitive ratio on any online algorithm. The
algorithm of [55] has been extended to various other restricted settings (such as eliminating migrations [6]
or immediately dispatching a job to a machine as it arrives [4]). Interestingly however, even in the offline
case these algorithms remain the best known algorithms for the problem. Even for the case of m = 2, it
is not known where an O(1) approximation algorithm for minimizing total flow time exists. On the other
hand, the only A/P-Hardness of the problem is known. In particular, it is not even known if the problem is
APX-Hard. Obtaining an O(1) approximation for this problem (even for the case of m = 2) has been a
major open problem in scheduling [67, 55, 6].

We obtain the following results:

e We give a quasi-polynomial time approximation scheme (QPTAS) for minimizing total flow time on
a constant number of machines. In particular, our algorithm produces a (1 + ¢) approximate solution

and has running time O(nmlog”/e2). Our result suggests that a PTAS is likely for this problem for
constant m.

While elegant approximation schemes are known for minimizing total completion time and makespan,
not many results are known for flow time. One difficulty in getting efficient approximation schemes is
that flow time is very sensitive to small changes in the schedule. For example, the usual techniques of
rounding the job sizes or release dates to powers of (1 + ¢) do not work. Our main idea is a technique

which allows us to store the approximate state under SRPT for any subset of jobs using O(log? n) bits

of information®. Moreover, this state description has sufficient information to allow us to compute the
new state as time progress and jobs are worked upon or when new jobs arrive.

e Next, we consider the problem of minimizing the total weighted flow time on multiple machines.
Recently, Chekuri and Khanna made the first break through for the weighted case by giving an el-
egant QPT AS in the single machine case [21] (As mentioned earlier, there is no PTAS known for

“4Reducing thisto O(log n) would imply a polynomial time approximation scheme.

1.5. OVERVIEW OF RESULTS 13

minimizing total weighted flow time even for the case of a single machine). However, their results do
not carry over to m > 1. The main difficulty is that if we consider a particular machine, an arbitrary
subset of jobs could be assigned to be processed on it. It was unclear how to encode this information
in sufficient detail using few bits. Our technique above, allows us to extend the result of [21] to a
constant number of machines.

e In our quasi-polynomial time approximations schemes, the running time depends exponentially on
the number of machines. This seems exorbitant given the existence of approximation schemes with
running times polynomial in m for the makespan and completion time problems. However, we show
that this dependence on m is unlikely to be improved for the flow time problem. In particular, we

show that obtaining an n°(Y) approximation algorithm with running time 27°vteg(n.m) for the weighted
flow time problem (even when all the weights are polynomially bounded in n) would imply that

NP C DTIME (npolvlosm),

Finally, we consider the problem of minimizing the maximum flow time on m machines. Notice that
if all the jobs are released at time 0, this reduces to the classical problem of makespan minimization, for
which a lot of previous work has been done [41, 38, 54, 44]. However, minimizing the maximum flow time
with general release times the only result known is a 3 — 2/m online algorithm [17], which in fact works
for arbitrary m. Obtaining a PTAS has been open for this problem [17, 67]. We partially solve the problem
by obtaining a PTAS for the special case where the number of machines m is a constant.

Combining Flow time Scheduling and Call Admission

We consider the problem of scheduling on a single machine to minimize flow time where the jobs can be
rejected at some cost. Formally, for each job, the processor pays for each time unit the job is present in
the system, and additionally a rejection cost is charged if this job is ever rejected. One motivation for this
problem arises from trying to formalize the scheduling decisions faced by a person in real life, where one
also has the flexibility to accept or reject a request. Ideally, one would like not to have too many jobs on ones
list of things to do (as this causes jobs to be delayed), or equivalently, one would like to have a small flow
time, and rejecting some fraction of jobs might be necessary for this to happen (but of course one cannot
ignore all work one is asked to do).

Scheduling problems with rejection costs have been considered previously in other settings. In particu-
lar, there has been work on minimizing makespan with rejection [12, 68, 39] and on minimizing weighted
completion time with rejections [29]. However, for the case of flow time, we do not know of any prior work.

We show the following results:

e First, we consider the simplest case where all jobs have the same rejection cost. We give a 2-
competitive algorithm for this case.

e In the more general setting where the rejection costs are allowed to be arbitrary, we show that no

randomized algorithm can be n°(1) competitive. This motivates us the consider the problem with
arbitrary rejection costs in the resource augmentation setting.

e In fact, we consider a more general setting where the jobs have arbitrary weights and arbitrary rejec-
tion costs. Here a job pays its weight for each time unit it is present, and a rejection cost if this job is
ever rejected. We give a (1+ ¢)-speed, O((log W +log C)?)-competitive algorithm, where C denotes
the maximum to minimum rejection cost ratio.

14 CHAPTER 1. INTRODUCTION

To solve this problem, we first consider the special case where jobs have arbitrary weights but same
rejection costs. We give an O(log? W) competitive algorithm for this case and show that the previous
problem can be reduced to this while losing a factor of (1 + ¢) in the speed.

Most of the techniques used to prove the results stated above are a combination of the techniques used
for the weighted flow time problem discussed previously.

Results for Completion Time Scheduling via Flow Time

Finally, we show how results for flow time problems (which possibly use excessive resource augmentation),
can be used to prove results about completion time problems (without any resource augmentation). While
completion time as a measure of performance is perhaps not very useful in the context of client-server
systems. It is of significant academic interest and has been studied extensively.

Our contribution is a technique to transform an algorithm for a flow time problem which possibly uses
resource augmentation to obtain an algorithm for the corresponding completion time problem which does
not use resource augmentation. Our transformation carries online algorithms to online algorithms and also
preserves non-clairvoyance. As a corollary of this result we will obtain O(1)-competitive online clairvoyant
and non-clairvoyant algorithms for minimizing the weighted ¢,, norms of completion time.

1.6 Related Areas

We wish to point out that the results considered in this thesis comprise a very small portion of the problems
considered in scheduling theory in general. Scheduling problems encompass a variety of different optimiza-
tion problems and are studied in a variety of settings such as worst case analysis and average case analysis.
Some books on the subject which provide a broad overview of the results and techniques are [20, 62, 58, 25].

We now describe some topics that have been extensively studied in the computer science literature, but
not considered in this thesis:

e Makespan Minimization: In these problems, typically there are multiple machines and the jobs are all
available starting at time ¢ = 0. The goal is to find a schedule such that all jobs can be finished by
some time 1". Often there are various other restrictions, such as jobs might have machine dependent
processing times, there might be various dependency constraints on when a job might be executed,
jobs can be migrated (i.e., same job can be executed on different machines) and so on. Another
widely studied class of makespan minimization problems are what are known as shop scheduling
problems. Here each job consists of various operations which must be executed sequentially. Often
there are constraints on how these operations might be scheduled, these different constraints give rise
to different types of “shop” scheduling problems.

e Scheduling with deadlines: This is also known as real time or due date scheduling. Here, in addition
to release times and sizes, job also have a deadline, before which the job must be executed. A nice
introduction to such problems can be found in [20, 26]. The goal typically in such problems is to com-
plete the maximum number of jobs by their deadlines, or to minimize various functions of tardiness
(defined as the amount by which a job exceeds its deadline).

Chapter 2

Scheduling to Minimize ¢, norms of Flow
Time

2.1 Introduction

The algorithms Shortest Remaining Processing Time (SRPT) and Shortest Elapsed Time First (SETF) are
generally regarded as the best clairvoyant and nonclairvoyant server scheduling policies for optimizing
average Quality of service (QoS). SRPT is optimal for average flow time. SETFisan (1+¢)-speed, (1+1/¢)-
competitive algorithm for average flow time [46] — no O(1)-competitive nonclairvoyant algorithm exists
for average flow time [59] — and a randomized variation RMLF of SETF is known to be asymptotically
strongly competitive amongst randomized algorithms for average flow time [13, 45, 59].

In spite of this, SRPT and SETF are generally not implemented in server systems. Apache, currently
most widely used web server [43], uses a separate process for each request, and uses a First In First Out
(FIFO) policy to determine the request that is allocated a free process slot [42]. The most commonly cited
reason for adopting FIFO s a desire for some degree of fairness to individual jobs [35], i.e. it is undesirable
for some jobs to be starved. In some sense FIFO s the optimally fair policy in that it optimizes the maximum
flow time objective. Operating systems such as Unix don’t implement pure SETF, or even pure MLF, the
less preempting version of SETF. Once again this is out of fear of starving jobs [72, 73]. Unix systems
adopt compromise policies that attempt to balance the competing demands of average QoS and fairness. In
particular, Unix scheduling policies generally raise the priority of processes in the lower priority queues that
are being starved [72].

The desire to optimize for the average and the desire to not have extreme outliers generally conflict. The
most common way to compromise is to optimize the ¢,, norm, generally for something like p = 2 or p = 3.
For example, the standard way to fit a line to collection of points is to pick the line with minimum least
squares, equivalently /5, distance to the points, and Knuth’s TEXtypesetting system uses the /s metric to
determine line breaks [49, page 97]. The /,,, 1 < p < oo, metric still considers the average in the sense that
it takes into account all values, but because x? is strictly a convex function of z, the £,, norm more severely
penalizes outliers than the standard ¢; norm.

This leads us to consider server scheduling algorithms for optimizing the £,, norms, 1 < p < oo, of flow

time. Formally, the ¢, norms of flow time is defined as 3", (f*)'/?. We will use FP(A) to denote the sum of
the p'" powers of flow time under an algorithm A.
In section 2.3, we show that that are no n°(*)-competitive online server scheduling algorithms for any

15

16 CHAPTER 2. SCHEDULING TO MINIMIZE ¢p NORMS OF FLOW TIME

| Algorithm | Speed | Competitive Ratio |
Any Clairvoyant Algorithm 1 n2M forl < p < oo
SF d+e O(1/e)
SRPT d+o) O(1/¢)
SETF (1+e) O(1/+7)
RR (1+e€) Q(n(1=2eP)/p)
Any Non- clairvoyant Algorithm | (1 + ¢) -

Table 2.1: Results for £, norms of Flow Time

¢, metric, 1 < p < oo of flow time. Perhaps this is a bit surprising, as there are optimal online algorithms,
SRPT and FIFQ, for the ¢; and /., norms. This negative result motivates us to fall back to resource aug-
mentation analysis. We first consider the standard online algorithms aimed at average QoS, that is, Shortest
Job First (SJF), SRPT, and SETF. We show that the clairvoyant algorithms, SJFand SRPT, are O(1 + ¢)-
speed, O(1/¢)-competitive for the ¢, norms of flow. We show that the nonclairvoyant algorithm SETF is

O(1 + €)-speed, O(1/e+2/P))-competitive for the £, norms of flow. We summarize our results in table 2.1.
Note that all of the results assume that p is constant, so that multiplicative factors, that are a function of p
alone, are absorbed into the constant in the asymptotic notation.

These resource augmentation results argue that the concern, that the standard algorithms aimed at opti-
mizing average QoS might unnecessarily starve jobs, is unfounded when the server is less than fully loaded.
It might be tempting to conclude that all reasonable algorithms should have such guarantees. However, we
show that this is not the case in section 2.7. More precisely, the standard Processor Sharing, or equivalently
Round Robin, algorithm is not (1 + €)-speed, O(1)-competitive for any ¢, norm of flow, 1 < p < oo and
for sufficiently small . This is perhaps surprising, since fairness is a commonly cited reason for adopting
Processor Sharing [72]. *

2.2 Related Results

The results in the literature that are closest in spirit to those here are found in a series of papers, includ-
ing [9, 27, 35, 65]. These papers also argue that SRPT will not unnecessarily starve jobs any more than
Processor Sharing does under “normal” situations. In these papers, “normal” is defined as there being a
Poisson distribution on release times, and processing times being independent samples from a heavily tailed
distribution. More precisely, these papers argue that every job should prefer SRPT to Round Robin (Proces-
sor Sharing) under these circumstances. Experimental results supporting this hypothesis are also given. So
informally our results and these papers reach the same conclusion about the superiority of SRPT. But in a
formal sense the results are incomparable.

There have been some prior results on scheduling problems with ¢, norms. Load balancing in the ¢,
norm is discussed in [2, 3, 5]. PTAS for £, norms of completion times, without release times, is given in
[30].

A seemingly related problem is that of minimizing the weighted flow time, studied recently by [23, 21,
7]. Observe that minimizing the sum of squares of flow time is equivalent to minimizing the weighted flow

1The results in this chapter are from [11].

2.3. GENERAL LOWER BOUNDS 17

time where the weight of a job at any time is equal to its age (hence the weights are linearly increasing
with time). However, the fact that the weights are changing makes our problem substantially different. For
example, [7] give an O(log W) competitive algorithm for weighted flow time (which would correspond
to an O(logn + log B) competitive algorithm in our case, since the maximum weight T in our case is
at most nB). However, our lower bounds in section 2.3 show that any randomized online algorithm is

Q(max{n'/®, B1/5}) competitive for minimizing flow time squared.

2.3 General Lower Bounds

Theorem 2.1 The competitive ratio of any randomized algorithm A against an oblivious adversary

for F?, 1 < p < oo, is n®*()). In particular, the competitive ratio of any randomized algorithm is
Q(nP—D/(eEp=1)),

Proof. We use Yao’s minimax principle for online cost minimization problems [19] and lower bound
the expected value of the ratio of the objective functions for A and Opt on input distribution which
we specify. The inputs are parameterized by integers L, «, and /3 in the following manner. A long
job of size L arrives at ¢ = 0. From time 0 until time L — 1 a job of size 1 arrives every unit of
time. With probability 1/2 this is all of the input. With probability 1/2, L2*5 short jobs of length
1/L7 arrive every 1/L? time units from time L until 2. — 1/LP.

Leta = gi_}, and 5 = 2. We now compute F?(A) and FP(Opt). Consider first the case that A

doesn’t finish the long job by time L“. Then with probability 1/2 the input contains no short jobs.
Then FP(A) is at least the flow of the long job, which is at least L?. In this case the adversary could
first process the long job and then process the unit jobs. Hence, F?(Opt) = O(LP + L* - LP) =
O(L**P). The competitive ratio is then Q(L*?~>~P), which is (L) by our choice of a.

Now consider the case that A finishes the long job by time L®. Then with probability 1/2 the
input contains short jobs. One strategy for the adversary is to finish all jobs, except for the big job,
when they are released. Then FP(Opt) = O(L® - 1P + L8 . (1/LP)P 4 L°P). It is obvious that
the dominant term is L, and hence, F'?(Opt) = O(L*?). Now consider the subcase that A has
at least L /2 unit jobs unfinished by time 3L /2. Since these unfinished unit jobs must have been
delayed by at least L/2, FP(A) = Q(L - L®P). Clearly in this subcase the competitive ratio is
Q(L). Alternatively, consider the subcase that A has at most L/2 unfinished jobs by time 3L%/2.
Since, the total unfinished by time 3L /2 is L, there must be at least Z'*” /2 unfinished small jobs,
and hence at least L'+ /4 small jobs that have been delayed for at least L /4 time units. By the
convexity FP, the optimal strategy for A from time 3L /2 onwards is to delay each small job by
the same amount. Thus A delays L®+# /2 small jobs (that arrive during 3L /2 and 2L) by at least
L/2. Hence in this case, FP(A) = Q(L>5 - LP). This gives a competitive ratio of Q(Lo+5+p—ap),
which by the choice of 3 is Q(L). L

2.4 Analysis of SJF

In this section we show that SJFis a (1 + €)-speed, O(1/eP)-competitive for the F'P objective function.

18 CHAPTER 2. SCHEDULING TO MINIMIZE {p NORMS OF FLOW TIME

We fix a time t. Let U(SJF,t) and U(Opt,t) denote the unfinished jobs at time ¢ in SJF and Opt
respectively, and D = U(SJF,t) — U(Opt,t). Let Age’(X,t) denote the sum over all jobs J; € X of
(t — r;)P~L. We will demonstrate the following local competitiveness condition for all times ¢

Age’ (D, 1) < O(1/e?)Age’ (U (Opt, 1), 1)

This will establish our desired results because F?(A) = p [, Age’(U (A, t),t)dt.

Before proceeding we introduce some needed notation. Let V (¢,) denote the aggregate unfinished
work at time ¢ among those jobs J; that satisfy the conditions in the list o. So for example, in the next
lemma we consider V (r;, J; € U(Opt,r;),7; < 145, p; < p;), the amount of work that Opt has left on jobs
J; that arrived before .J;, are shorter than J; and that Opt has not finished by time r;. Let P(«) denote the
aggregate initial processing times of jobs J; that satisfy the conditions in the list c.

We prove local competitiveness in the following manner. Let 1, ... , k denote the indices of jobs in D
such that p; < po ... < pi. Consider the jobs in D in the order in which they are indexed. Assume that we
are considering job J;. We allocate to J; an ep; /4(1+¢) amount of work from V' (¢, J; € U(Opt, t),r; < t—
e(t—ri)/(4(1+¢€)),p; < p;) that was previously not allocated to a lower indexed job in D. This establishes
O(1/€P) local competitiveness for 7 for the following reasons. The total unfinished work in each J; €
U(Opt, t) is associated with O(1/€) longer jobs in D. Since the jobs J; are (¢) as old as J;, the contribution
of to Age? (U (Opt, t),t) for J; is Q(eP~1) as large as the contribution of .J; to Age? (U (SJF, t),t).

We now turn to proving that this association scheme works, that is, the scheme never runs of work to
assign to the jobs in D. Consider a fixed job J; € D. Let ¢’ denote the time ¢ — ﬁ(t —r;). If this
scheme is going to fail on job J; then, informally, the amount of work on jobs of size < p; that Opt had left
at time r;, plus the work made up by jobs of size < p; that arrived during (r;, ¢'], minus the work that Opt
did during (r;, t], minus the work that is allocated to .J1, . .. , J; should be negative. The amount of work in
V(t,J; € U(Opt,t)) that is allocated to Jy, . .. , J; is at most

41 +¢)

P(J; € D,rj <ri,pj <pi)+

€
4(1+€)P(J] ED,Tj >Tiapj sz)

Moreover, as Opt can finish at most (¢ — r;) work during time (r;, ¢], it is sufficient to show that

V(ri, Jj € U(Opt,r3),m5 < 1iypj < pi) + P(rj € (ri, t'],p; < pi) — (¢ —73)
€

€
mP(Jj €D,rj>rip; <pi) =0

Or equivalently,

V(ry, J; € U(Opt, 1), 15 < 13,p5 < pi) + P(r; € (r5,t], pj < pi)
€

_mP(Jj S D,Tj < T3, Dj sz) +

€
mp(‘]j €D,rj>ri,p; <pi) = (t—ri) (2.1)

The rest of this section will be devoted to establishing equation 2.1. We know that

(t — T’i) > P(Jj c D, T > T4y Dj < pi) (22)

2.4. ANALY SIS OF SIF 19

since Opt had to finish all such jobs considered on the right hand side between time »; and time ¢. Then by
substitution, to prove equation 2.1 it suffices to prove:

V(ry, J; € UOpt, 1), 15 <1iypj < pi) + P(rj € (ri,t'], pj < pi)

445
¢ P(Jj €D, T < Ti, Dj < pi) > (+ e)(t - 1”1') (2.3)

C4(1+4e) = =41 +e)

We now concentrate on replacing the term V' (r;, J; € U(Opt,r;),7; < ri,p; < p;) in equation 2.3.
This is where the (1 + €) speed up is crucially used.

Lemma 2.2 For all times « and for all values p;,
V(u,J; € U(Opt,u),rj <u,pj < p;)

€
> . < p. R . . < p.
2 1T e(P(J] e U(SIF,u),pj <pi)+ 1 +€V(u, J; € U(SIF, u),pj < p;)
Proof. The proof is by induction on the time u. Whenever there is a job J; € U(SJF,u) with
p; < pi, then the right hand side of the inequality decreases at least as fast as the left hand side since
SJFhas a (1 + €)-speed processor. If the is no such job J;, then the right hand side of the inequality
is zero. [

Using lemma 2.2 with u = r;, then to prove equation 2.3 it is sufficient by substitution to prove:

€ 1
P(J: For) p: < ps 7. Fr) p: < p:
1+6 (J] GU(S] 7T’L>7pj _pl)+ 1+6V(TZ7'JJ S U(S] 7T2)7p] _pZ)
€
4 4 be
> —_— 2.4
- (4(1+e))(i) (2.4)

Since obviously, P(J; € U(SJF,r;),p; < pi) > P(J; € D,rj < ri,p;j < p;)andalso V(r;, J; €
U(SIF,r3),p; < pi) < P(J; € U(SI,ri),p; < p;),to prove equation 2.4 it suffices to show that

4+ 3e
41 +¢€)

4 + be

V(ri, J; € U(SIF,r3),p; < pi) + P(rj € (ri,t'],pj < pi) > (4(1 +€)

)t —13) (2.5)

During [r;,t'], SJF does (1 + €)(t' — r;) work on jobs shorter than J;. By algebraic simplification
(L4 €e)(t' —r;) = H2(t — r;). The jobs that SJFworked on during [r;, ¢] either had to arrive before r; or
during [r;, ']. Therefore, it trivially follows that

4+ 3e
4

(t—ri)) = V(ry,J; € USFri),p; <p;) — V(' J; € USIFr;),pj < pi)
+P(Tj S (ri7tl]7pj S pz) - V(tlvrj S (Ti7t/]7pj S pl)
By dropping the negative terms on the right hand side we get that:

4+ 3e
4

20 CHAPTER 2. SCHEDULING TO MINIMIZE {p NORMS OF FLOW TIME

or equivalently,

4
V(ri, J; € U(SIF,ri),p; < pi) + ——=P(rj € (ri,t'],pj < i) (2.6)

t_ .
(ri) 44 3e

< =
T 4+ 3¢

Hence by substitution using equation 2.6, to prove equation 2.5 it suffices to prove:

4+ 3¢

A1 +e)
4+ 5S¢

T (443 (1+e)

V(ri,J; € U(SIF,13),pj < pi) + P(r; € (ri,t'),pj < pi)
(V(ri, J; € U(SIF,ri),pj < pi) + P(rj € (ri,t'),pj < pi)] (2.7)

Now, it is easy to see that equation 2.7 is true since,

4+ 5e
1>—
T (443¢)(1+¢€)

and
44+ 3¢ S 4 4 be

41+¢€) — (4+3¢)(1+¢)

Thus we have proved our main theorem for this section.

Theorem 2.3 SJFis (1 + €)-speed, O(1)-competitive for the ¢, norms of flowtime, for p > 1.

2.5 Analysis of SRPT

In this section we prove identical results for SRPT. The analysis is somewhat more involved than that for
SJF because we need to handle the remaining times of jobs under SRPT more carefully.

Let us define the relaxed age, denoted by r Age?(J;, t), of a job J; at time ¢ to be 0 if (t — ;) < 8p;/e
and (t — r;)P~! otherwise.

Note that if F'(J;) < 8p;/e, thenp [, rAgeP(J;,t) = 0 and if F'(J;) > 8p;/e, then p [, rAgeP(J;, t) =
FP(J;) — (8p;/€)P. Thus, we always have that

FP(J;) < p /t rAgeP(Ji,t) + (8pi/e)?

Define rAge(X, t) and rS Age(X, t) for a set of jobs X as the sum of r Age’s and sAge’s of jobs in X.
Now, if we show that for all ¢,

rAgeP (U(SRPT,t) \ U(Opt,t),t) < O(1/eP)Age? (U (Opt,t),t)

then it follows that,
rAge? (U(SRPT,t),t) = O(1/e?)Age? (U (Opt,t),t)
and hence that

/rAgep(U(SRPT, t),t) = O(1/€P) /Agep(U(Opt,t),t)

t

2.5. ANALY SIS OF SRPT 21

Now since the flow time of J; it at least p;, it is easy to see that F?(SRPT) < [, rAge?(U(SRPT,t),t) +
52i(8pi/€)? = O(1/e)PFP(Opt).

To prove these, we modify the analysis for SJF as follows: Given a time ¢, define D to consist of only
those jobs which have age more that 8/¢ times their size, and which Opt has finished but are present under
SRPT. Mimicking the proof for SJF, for every job .J; in D will we show that we can associate ep; /4(1 + €)
units of work (which has not been already allocated to a lower indexed job in D) from some job of size < p;

Z((tffé))- Clearly, this implies that

in Opt and which has age at least
rAgeP (U(SRPT,t) — U(Opt,t),t) < O(1/€?)Age?(U(Opt, t),t)

For job J,, let rem(j,t) denote its remaining processing requirement at time ¢. We begin by a result
similar to Lemma 2.2.

Lemma 2.4 For all times « and values of p;,

€

1
+ Fp [V (u,J; € U(SRPT, u),p; < p;) — pi[2.8)

Proof. First observe that by the nature of SRPT, at any time « and any value p, there can be at most
one which has size greater than p and remaining time less than p. Thus the term

V(u, J; € U(SRPT,u), rem(j,u) < pi,p; > pi)

never exceeds p;.

We now prove the lemma by induction on the time w. Whenever there is a job in with size less
than p; or remaining time less than p; then the right hand side of the inequality decreases at least as
fast as the left hand side. If the is no such job J;, then the right hand side of the inequality is —p;
where as the left hand side is 0. Now, it might happen that SRPT works on some job of size > p;
and its remaining time becomes p; or less. However, it is easy to see that in this case the right hand
side is no more than 0.]

We now apply Equation 2.8 with u = r; to Lemma 2.3. We also use the obvious facts that

and
P(J; € U(SRPT,;),pj < pi) > V(ri,J; € U(SRPT,7;),pj < pi)

Thus it suffices to show that

44 3e 1
P(J; € U(SRPT,), p; < p;) + P(r; € (ri,], p; < pi) — .
4(1+e) (Jj € U(SRPT, i), pj < pi) + P(rj € (ri,t],pj < pi) = 7P
4
i t—ri) (2.9)

> (m)(

22 CHAPTER 2. SCHEDULING TO MINIMIZE ¢p NORMS OF FLOW TIME

Since SRPT does not finish .J; by time ¢ (and hence by time ¢’). It must be the case that (1+¢€)(t' —r;) <
V(ri,J; € U(SRPT,r;),rem(j) < p;) + P(r; € (r5,t'],p; < p;). Since,

V(ri, Jj € U(SRPT,r;),rem(j) < p;) < V(ry, J; € U(SRPT,13),p; < p;i) + pi
we get that

4+ 3e
4

Now, since p; < §(t — r;) (this is where we use that we are considering relaxed ages) we have that,

4+ 2¢
4

(t—ﬁ') S V(TZ',JJ' c U(SRPT, ri),pj sz) +P(Tj S (Ti,t/],pj sz) — Di (210)

Using 2.10, to prove 2.9 it suffices to show that

4+ 3e 1
——V(J; PT,7:),pj < pi) + P(rj € (ri, '], pj < pi) —
4(1+6)V(JJ€U(SR ,13), 05 < pi) + P(rj € (ri, '), pj < pi) e

Di

4+5 !
> <2(1+6—)(;+€)> [V (ri, J; € U(SRPT,13),pj < pi) + P(rj € (ri, '], pj < pi)] — pi(2.11)

However, comparing term by term, it is easy to see that equation 2.11 always holds. Thus we get that,

Theorem 2.5 SRPT is (1 + €)-speed, O(%)-competitive for the ¢, norms of flowtime, for p > 1.

2.6 Flow Analysis of SETF

Our goal is to show that SETF is (1 + ¢)-speed, O(1/e>72/P)-competitive for the £, norm of flowtime.
Recall that SETF is the non-clairvoyant algorithm that at any time works on the job that has received the
least amount of processing thus far. It can be seen that the local-competitiveness technique used in the
previous sections on clairvoyant scheduling does not work in the non-clairvoyant case. To prove our result,
we will consider a series of intermediate steps where we relate various scheduling algorithms to each other,
while losing a (1 + ¢) factor speed up at each step.

There are two steps in the analysis: Suppose first that we knew the value of ¢ (i.e. our non-clairvoyant
algorithm could use the value of ¢ while scheduling), for this case we give a non-clairvoyant algorithm
that we call MLF (described below) and relate it to Opt. We show that if MLF has a (1 + ¢) times faster
processor then FP(MLF) = O(1/e?P*2)FP(Opt). Next, we show that we can remove our dependence on
the knowledge of €. To do this we show that the performance of SETF with a (1 + ¢€) faster processor is no
worse than that of MLF. Since SETF does not require any knowledge of ¢, this will imply the result.

To compare MLF with Opt we will introduce a somewhat general technique which will also be used
later in Chapter 4 to prove results about minimizing the £, norms of stretch non-clairvoyantly. The main
idea is the following: We first relate the behavior of MLF on an arbitrary instance 7 to the behavior of SJF
on another instance £ derived from 7. The crucial step is then to relate the behavior of SJFon £ to the
behavior of SJFon 7. This reduces the problem of relating MLFto Opt to that of relating SJFto Opt. The

2.6. FLOW ANALYSISOF SETF 23

latter problem is usually easier. For our problem, we will simply use the result from the previous section
that SJFis (1 + €)-speed, O(1/¢)-competitive for minimizing ¢, norms of flow time. We now describe the
details.

Our MLFis a variation of the standard Multilevel Feedback Queue algorithm where the quanta for the
queues are set as a function of e. Let /; = e((1 4+ €)' — 1), > 0,and let ¢; = ;11 — £; = €2(1 + €)', > 4.
In MLFa job J; is in level k at time t if the work done on J; by time ¢ is > ¢, and < £;1;. MLF maintains
the invariant that it is always running the earliest arriving job in the smallest nonempty level.

Let SETF, (resp. MLF;) denote the algorithms SETFand ML F executed with an s speed processor. We
first show the relation between SETFand MLF.

Lemma 2.6 For any instance Z, and for any J; € Z, J; completes in SET F' . before .J; completes
in MLF;.

Proof. For any job J; € Z and any time ¢, let w(j,t) denote the work done on J; by time ¢.
For a job with w(j,t) < z, let rem<,(j,t) = min(p;,z) — w(j,), that is, the amount of work
that must be done on .J; until either .J; completes or until .J; has been processed for z units. Let
U(A,t,w(j,t) < z) denote the set of unfinished jobs in algorithm A at time ¢ which have less than
= work done on them. Let W<, (A1) denote >, iy(a 4 .u(ji)<a) €M<z (j). Now, as SETF is

always working on the job with least work done, it is easy to see that for all z and for any algorithm
A W<, (SETF, t) < W<, (A, t).
Suppose to reach a contradiction that there is some job J; which completes earlier in MLF;

than in SETF; .. Clearly MLF; must finish the work ngj(MLFl, r;) before time CJMLF1 since
MLF; will either complete or give p; units of processing by time C’]MLF1 to jobs arriving before r;.
Moreover, at time C]’.V”‘F1 all the jobs in U(MLF;, t) have at least p; /(1 + €) amount of work done

on them, otherwise J; wouldn’t be run by MLF; at time C]MLFl since there would be a lower level
job than J; at this time. Consider the schedule Ay that at all times ¢, runs the job that MLF, is
running at time ¢ (and idles if this job is already completed). Hence, A would have completed .J;,
and all previously arriving jobs with processing time less that p;, by time C’]MLF1 since Ay, has
a (1 + €)-speed processor. Hence, by the property of SETF from the previous paragraph, SETF; .

completes J; by time C]MLFH which is our contradiction. u

Lemma 2.6 implies that

FP(SETF(T),s) < FP(MLF(Z),s/(1 + ¢)) (2.12)

Now our goal will be to relate MLFand Opt. Let the original instance be Z. Let 7 be the instance obtained
from Z as follows. Consider a job .J; and let i be the smallest integer such that p; + ¢ < €(1 + €)®. The
processing time of J; in 7 is then e(1 + €)%, Let K be the instance obtained from 7 by decreasing each job
size by e. Thus, each job in K has size £, = €((1 + €)* — 1) for some k. Note that in this transformation

from Z to KC, the size of a job doesn’t decrease, and it increases by at most a factor of (1 + 6)2. Since MLF
is has the property that increasing the length of a particular job will not decrease the completion time of any

24 CHAPTER 2. SCHEDULING TO MINIMIZE ¢p NORMS OF FLOW TIME

job, we can conclude that

FP(MLRI),s/(1+¢€)) < FP(MLF(K),s/(1+¢)) (2.13)

Finally we create an instance £ by replacing each job of size ¢((1 + ¢)* — 1) job in KC by & jobs of size
90, q1,--- ,qr—1- Note that £, = qo + q1 + ... ,qr—1. For ajob of J; € K, we denote the corresponding
jobsin Lby Jjo, Jjrs-o Ty

Notice that any time ¢, SJIF(L) is working on a job J;, € L if and only if MLF(IC) is working on job
J; € K thatis in level b at time ¢. In particular, this implies that the completion time of J; in MLAK) is
exactly the completion time of some job J;, € SIF(L). Hence,

FP(MLF(K),s/(1+¢€)) < FP(SIFL),s/(1+¢)) (2.14)
By Theorem 2.3, we know that
FP(SIF(L),s/(1+¢€) = O(1/eP)FP(Opt(L), s/ (1 + €)?) (2.15)

We relate the optimal schedule for £ back to the optimal schedule for Z. To do this we first relate £ to 7
as follows. Let £(k) denote the instance obtained from 7 by multiplying each job size in 7 by €/(1 + ¢)*.
Next, we remove from £ (k) any job whose size is less than e2. We claim that £ = £(1) U L(2) U To
see this, let us consider some job .J; € 7 of size (1 + ¢€)®. Then, L(1) contains the corresponding job .J;, ,
of sizee/(1+€)-e(1+¢€)" = e*(1+¢€)"1 = ¢;—1. Similarly £(2) contains the job .J;, , of size ¢;_» and so
on. Thus, £ is exactly £(1) U £(2) U Summarizing, we have that the £(k)’s are geometrically scaled
down copies of .J and that £ is exactly the union of these £(k)’s.

Our idea at a high level is as follows: Given a good schedule of .7, we obtain a good schedule for £(k).
This will be easy to do as £(k) is a scaled down version of 7. Finally, we will superimpose the schedules
for each L£(k) to obtain a schedule for £. This will give us a procedure to obtain a good schedule for £ given
a good schedule for 7. To put everything in place, we need the following lemma which relates .7 and L (k).

Lemma 2.7 Let £L(k) be as defined above. Let F'(s, J;, G)) denote the flow time of job .J; € G when
SJFis run on G with a speed s processor. Then, for all x > 1,

F(e(l)™ s, iy, £R) < 2 (s, 0)

Proof. We first show that for all jobs J; € J, F(s,J;,J) < (1/s)F(1,J;, 7). Let w(x,s, J;)
denote the work done on job .J;, after = units of time since it arrived, under SJF using an s speed
processor. We will show a stronger invariant that for all jobs .J; and all times t, w((t—7r;)/s, s, J;) >
w(t —r;,1,J;).

Consider some instance where this condition is violated. Let .J; be the job and ¢ be the earliest
time for which w((t — r;)/s,s,J;) < w(t —r;,1,J;). Clearly, SJF, is not working on J; at
time ¢, due to minimality of ¢. Thus, SJF; is working on some other smaller job i. Since SJF;
is not working on ¢, SJF; has already finished i by some time ¢’ < ¢. However, this means that
w((t' —r),s,Ji) <w(t' —r;1,J;), which contradicts the minimality of ¢.

2.6. FLOW ANALYSISOF SETF 25

We now show the main result of the lemma. It is easy to see that the flow time of every job
J;(k) € L(k) (where J;(k) is job corresponding to .J; € J but scaled down by €(1 + ¢)~* times)
under SJFwith a speed (1 + €)% processor is at most that of the corresponding job Jj € J,under
SJF with a unit speed processor. Thus by the fact above, running SJFon £(k) with an - e(14-¢) 7*-
speed processor yields a 1/x times smaller flow time for each job in £(k) than the corresponding
jobin 7.

Lemma 2.8
FP(Opt(L),1+ 2€¢) = O(1/*)FP(SIFT),1)

Proof. Given the schedule SJF(7), we construct a following schedule A for £ as follows. The jobs
in £(k) are run with a speed z;, = (1 + ﬁe)—’“ processor using the algorithm SJF. Note that the
total speed required by A is at most

T; = € - = e — €
i=1 i=1 (1 + 1%6)1 1 - 1+2¢

By Lemma 2.7, FP(A(L(k)), 1 + 2¢) will be at most

€)~k p € kp R
(“ZQ) = (8133) times FP(SJHJ,1). Hence,

FP(A(L),142¢) i((lﬂe >z’p

Fr(SHJ). 1)~ & \([I+e?

<3t

= 0(1/€)
The proof then follows because Opt is at least as good as A. u

Hence by Lemma 2.8, Theorem 2.3, and the fact that that jobs lengths in 7 are at most (1 + ¢)? times
as long as they are in Z, we get that

FP(Opt(L), /(1 +€)*)

— 0(1/€) - FP(SF(J), >

A1290+07
= O(1/&*?) - FP(Opt(T),

(14 2€)(1+¢€)3
= O(1/e"*?) - FP(Opi(T),

(14 2¢)(1+ 6)5) (2.16)

By stringing together the inequalities 2.12, 2.13, 2.14, 2.15, 2.16, we find that

FP(SETAT), 5) = O(1/E7)PP (OPH(T), (55 57)

Hence, we obtain the result that

26 CHAPTER 2. SCHEDULING TO MINIMIZE ¢p NORMS OF FLOW TIME

Theorem 2.9 SETFis (1 + ¢)-speed O(1/¢2+2/P)-competitive non-clairvoyant online algorithm for
minimizing the ¢,, norm of flowtime.

2.7 Lower Bound for Round Robin

We now show that for every p > 1, there is an e > 0 such that Round Robin (RR) is not an (1 + ¢)-speed,
n°(M)-competitive algorithm for the £, norm of flow time. In particular we show that

Theorem 2.10 For any p > 1, there is an e > 0 such that even with a (1 + ¢) times faster processor
RR is not n°1) competitive for the ¢, norms of flow time. In particular, for e < 1/2p, RR is
(1 + ¢)-speed, (n(1=2¢P)/P)-competitive for the ¢, norms of flow time.

Proof. Suppose 0 < ¢ < 1/2p and RR has a processor of speed (1 + €). Consider the following
instance. Two jobs of size pg = 1 arrive at rp = 0. Next we have a collection of »n jobs whose

release times and sizes are defined as follows. The first job of size p; = po(1 — %) arrives at time

r1 = po. In general the i** job has size p; = (1 — %)pi_l and r; = Eé;ﬁ p;. The instance has the

following properties which are easily verified:

1.Except for one job of size 1 which arrives at time O, each job under SRPT has a flow time equal
to its size. The job of size 1 has flow time ¢’ = 1+ 3~7_ p;.

2.Under RRwith a (1 + ¢)-speed processor, at each time r;, all jobs (including the newly intro-
duced job) have exactly the same remaining processing time. In particular this means that, all
the jobs keep accumulating and finish simultaneously at time ¢ = (2po + >27_; pi) /(1 + €).

We now consider the relevant quantities. First observe that p; = T, _; (;.:? = %ngl(l—e/j).

Using the fact that for all 2 > 0, 1 — 2 < e~® we get that p; < 7e~ ()< where H (i) is the i'"
Harmonic number. Finally using that H (i) > In1, we get that p; < Z.J%lz’—e < j—(1+e)
We now upper bound FP(SRPT, 1), and hence F?(Opt,1). Observe that the flow time of the

the jobs that finishes the lastis 1 + > p; < 3272p; < Y252, = O(1). For all other

jobs, their flow time is exactly equal to their processing time, and hence the sum of the p** powers
of the the flow time of all these jobs is > (p% < Y22 j~UF9P = O(1), thus we get that
FP(SRPT,1) = O(1).

On the other hand, in RR each job with size p; has flow time at least (i + 2)p; (since this job
time-shares with at least i + 2 jobs throughout its execution). We now lower bound p;. Using the
fact that e 2 < 1 —x for 2 < §, we get that p; = 7IIi_, (1 — ¢/j) > e >, Since
H(i) < Ini+1weget,p; > 77 (ei) 72 = Q(i~(1+29). Thus (i + 2)p; = Q(i~¢). This gives us
that FP(RR, 1+) is at least 37", =2 which is Q(n°) for 2ep < 1 — 4. L

As a simple corollary, Theorem 2.10 implies that for p = 2, then RR is not O(1)-competitive even with
an (1+¢) speed up if e < 1.

2.8. CONCLUDING REMARKS 27

2.8 Concluding Remarks

It is interesting to note that the schedule produced by S.J F' using an (1 + €)-speed processor is O(1) com-
petitive for all £, norms simultaneously. On the other hand if no resource augmentation is allowed, one can
show (by slightly modifying the example in Theorem 2.1) that there does not exist single schedule for which
the ¢, norm of flow time is within n°() times that of the optimum schedule for all values of p. Hence, if one
considers the offline problem of trying to find an n°(") approximate schedule, then there has to be a different
schedule for each value of p. In this sense, this is another nice property of resource augmentation that it
allows us to prove a statement about a single schedule, which is otherwise not possible.

The results of this chapter for the clairvoyant case have recently been extended to the case of multiple
machines by Chekuri, Khanna and Kumar [22]. They show that a simple load balancing scheme developed
by Avrahami and Azar [4] is a (1 + €)-speed, O(1/¢)-competitive algorithms for minimizing the £,, norms
of flow time and stretch on multiple machines.

Some problems that remain open are the following:

Open Problem 2.1 What is the offline complexity of minimizing the ¢,, norms of flowtime? Is the
problem A/P-Hard?

Open Problem 2.2 Given a fixed p, 1 < p < oo. Is there a polynomial time algorithm with
approximation ratio n°(1) for minimizing the £, norm of flow time?

28

CHAPTER 2. SCHEDULING TO MINIMIZE ¢p NORMS OF FLOW TIME

Chapter 3

Scheduling to Minimize Weighted Flow
Time

3.1 Introduction

Often in server systems, not all jobs are treated equally. Some jobs might be more important than others.
For example, the Unix operating system has a priority parameter for jobs which can be set by the system
call nice [72]. Moreover, some operations such as keystrokes, or other input-output operations inherently
receive a higher priority as compared with other background or passive operations. Similarly in the pro-
posed differentiated services architecture for the Internet (known as Diffserv) [50], clients are classified into
premium or economy class based on the type of service level desired by them. The goal in such a setting is
to give better performance to the clients in higher priority classes, possibly at the expense of those in lower
priority classes.

Perhaps the simplest and most natural way to formalize setting with different priority classes is to assign
weights to jobs and then consider some weighted function of the flow time or a related measure that one is
interested in. In this chapter, we consider algorithms for several variants of the weighted flow time measure.

We first consider the most basic problem of minimizing the total weighted flow time on a single machine.
While SRPT is optimal for minimizing the total unweighted flow time, the weighted case is known to be
NP-Hard [53]. The first non-trivial result for this problem was due to Chekuri, Khanna and Zhu [23] who
gave an O(log? B) competitive semi-online® algorithm, where B is the ratio of the maximum and minimum
processing times of the jobs. They also show a lower bound of 1.61 on the competitive ratio of any online
algorithm. However, the work of [23] left a questions open. First, is there an O(1) competitive algorithm
for minimizing weighted flow time with arbitrary weights? A simpler problem left open was whether there
is an O(1) competitive algorithm even if there are only two different job weights? Finally, they also ask if
there a “truly” online algorithm with a non-trivial competitive ratio.

Our main result is the first “truly” online algorithm that is k£ competitive if the job weights belong to at
most & different arbitrary weight classes. Our result also gives the first O(1) competitive algorithm for the
case when there are O(1) different job weights. As a corollary, this gives a O(log W) competitive algorithm,
since we can simply round the weights up to a power of 2 which affects the quality of the solution by a factor
of at most 2. While the bounds of our algorithm are in terms of W, we also show how this algorithm can be
modified to give a semi-online algorithm with competitive ratio O(log n + log B). This modified algorithm

LIt is semi-online in the sense that it uses the knowledge of B while scheduling the jobs.

29

30 CHAPTER 3. SCHEDULING TO MINIMIZE WEIGHTED FLOW TIME

is semi-online in the sense that it assumes the knowledge of n,B and W while scheduling the jobs.
Next we consider the more general problem of minimizing the weighted ¢,, norms of flow time (i.e.

> wiff’)l/l’). Our motivation arises in trying to formalize the goals in CPU scheduling that arise in a
typical operating system such as Unix:

Goal A: Amongst jobs of the same priority, there should be some balance between optimizing for average QoS
and optimizing for worst case QoS.

Goal B: Higher priority jobs should get a greater share of the CPU resources, but lower priority jobs should
not be starved.

We consider this problem both in the clairvoyant and non-clairvoyant setting. The impossibility of
achieving an n°() competitive ratio for minimizing the weighted ¢, norms of flow time in the clairvoyant

setting (and hence the non-clairvoyant setting), for 1 < p < oo, follows from Theorem 2.1. Thus we
consider these problems in the resource augmentation model. We show that H D F', the natural generalization

of SJF to the weighted case, is (1 + ¢)-speed, O(1/¢?)-competitive for minimizing the weighted ¢, norms
of flow time in the clairvoyant setting. Similarly, W SETF, the natural generalization of SET'F'is (1 +¢€)-
speed, 0(1/62+2/P)-competitive for minimizing the weighted ¢,, norms of flow time in the non-clairvoyant
setting. For the special case of minimizing total weighted flow time non-clairvoyantly (i.e., p = 1), the
general results above give only a (1 + ¢)-speed, O(1/¢*)-competitive algorithm. However, we can improve
the result to give a (1 + ¢)—speed, (1 + 1/¢)-competitive algorithm? The results for the weighted ¢, norms
of flow time are summarized in Table 3.1 below:

| Algorithm | Speed | P | Competitive Ratio |
HDF T+e p=1 1+ 1/e[16]
HDF 14+e [[1<p<oo O(1/€%)
WSETF | 1 +¢ p=1 1+1/e
WSETF | 1+4¢€¢ |[1<p<oo O(1/e2+2/P)

Table 3.1: Resource augmentation results for the weighted £, norms of flow time.

The results for the case 1 < p < oo in Table 3.1 above are obtained from results in Chapter 2. To do
this, we introduce a general technique where the weighted problem is reduced to the unweighted case at the
expense of a (1 + ¢) faster processor and a 1/ factor additional loss in the competitive ratio.

This chapter is organized as follows: We first describe the related work in Section 3.2. In Section 3.3 we
give some intuition for the weighted flow time problem. In particular, we describe some simple algorithms
and show why they do not perform well. In Section 3.4 we present and analyze our O(log W) competitive
algorithm for weighted flow time. We then consider algorithms for the weighted ¢, norms of flow time in

Section 3.5 and finally conclude with some open problems in Section 3.6. 3

2This result fi rst appeared in [7], however we give amuch simpler proof of this result in this thesis.
3The resultsin this chapter are from [7] and [10].

3.2. RELATED WORK 31

3.2 Related Work

The first non-trivial result for the problem of minimizing weighted flow time on a single machine was due to
Chekuri, Khanna and Zhu [23] who gave an O(log? B) competitive semi-online (it requires the knowledge
of B beforehand) algorithm. They also show a lower bound of 1.618 on the competitiveness of any online
algorithm. If resource augmentation is allowed, it is known that HDFis a (1 -+ ¢)-speed, O(1/¢)-competitive
algorithm [16].

In the context of offline approximation, Chekuri and Khanna [21] give a (1-+¢) approximation algorithm
which has running time O (nOn W B/€)y Thys, their result gives a quasi-polynomial time approximation
scheme (QPTAS) when both W and B are polynomially bounded in n. Moreover, they also give a QP-
TAS for the case when only one of either W or B is polynomially bounded in n. Interesting however, no
polynomial time algorithm with o(n) approximation ratio is known for the case of arbitrary W and B.

No prior work is known for the problem of minimizing the weighted ¢,, norms of flow time.

3.3 Preliminaries

To get a feel for minimizing weighted flow time, we first describe some simple algorithms and give reasons
for their poor performance. Next, we show by an example that the algorithm of Chekuri et al. [23] has a
competitive ratio of Q(log B) even in the case when the job weights are either 1 or 2. This motivates the
goal of an O(1) competitive algorithm for a constant number of weight classes. We begin by showing that
local-competitiveness is necessary for obtaining a good algorithm for weighted flow time.

Local Competitiveness is Necessary:

Let O be the optimum algorithm and A some other algorithm. Let 1/,(¢) and W, (t) denote the total weight
of jobs present in O’s and A’s system respectively at time ¢. It is easy to see that for any algorithm A, the
total weighted flow time under A can also be expressed as [W,(t)dt. W,(t) < ¢W,(t) for some c at all
times ¢ (i.e. locally competitive), then clearly A is c-competitive. It turns out that local-competitiveness is
also necessary for obtaining a globally competitive algorithm [16]. The idea is that if W, (t) > ¢W,(t) at
some time ¢, then the adversary can start giving a stream of jobs of size ¢ — 0 and weight 1 every ¢ units of
time. This forces both O and A to work on the new stream. By making the stream long enough, adversary
can force the competitive ratio to be greater than c.

Thus any algorithm with a non-trivial competitive ratio must keep the total weight of alive jobs low at all
times. A natural strategy to consider is greedy, which at any time instant schedules the job with the highest

weight to remaining processing time. However this is easily shown to be Q(+/B) competitive [23]. The
problem is that the algorithm does not distinguish between a job with a high weight and correspondingly
high processing time and a small weight job with a small processing time (for example, a job of weight 1 and
size 1, and another job of weight W and size). Breaking ties badly, the naive greedy algorithm may be left
with a single job with a large weight and a small remaining processing time, while the optimum algorithm
only has the single job of small weight. On the other extreme, the algorithm which simply disregards the
size of the job and works on the highest weight job is easily shown to be B — competitive [23].

The O(log? B) competitive algorithm of [23] deals with the two problems above by striking a balance
between them. It processes a large weight job without regard to its ratio as long as the total weight of jobs

32 CHAPTER 3. SCHEDULING TO MINIMIZE WEIGHTED FLOW TIME

with a strictly better weight to remaining processing time ratio does not get too large.

However, even for the case when the job weights are either 1 or 2, the algorithm of [23] can be shown
to be Q(log B) competitive*. Consider the following scenario: At time ¢ = 0 two jobs, one of size B and
weight 2 and other of size B/2 and weight 1 are released. For i ranging from 1 to log B — 1, at each time
instant B(1 — 277%), one job of weight 1 and size B/2+! is released. Finally, at time ¢t = B(1 — 2¢*+1),
another job of size B /21 is released.

At time ¢ = 0, their algorithm will schedule the job of weight 2 and continue executing till time B. At
this stage the weight of the unfinished jobs will be (log B + 1). The optimum algorithm on the other hand
works only on jobs of weight 1 and hence finishes all jobs except the one of weight 2 by time B. Thus the
algorithm is locally %(logB + 1) competitive, and hence 2(log B) competitive.

The reason for the bad performance of the algorithm above is that it continues to work on the high weight
job even when a lot of smaller weight jobs keep accumulating. Our algorithm will be careful in this respect
and will in fact be 2-competitive for the 2 weight case. We next describe our algorithm and analyze it.

3.4 Algorithm

We now present our algorithm that we call Balanced SRPT, for minimizing weighted flow time. We then
analyze it and show that its analysis is tight. Finally we show that this algorithm can be modified to give an
O(logn + log B) competitive semi-online algorithm.

We assume that the weights of the jobs are drawn from the set {w1, wo, ... ,wi}, where w; < wq ... <
wy. We will refer to these as weight classes 1, ..., k. Without loss of generality®, we also assume that
w; /w;—1 isintegral for 1 < i < k. Let Q;(¢) (or just Q; when the time ¢ is evident from the context) denote
the set of alive jobs of class j at time ¢. For a collection of jobs X, we use W (X)) to mean the sum of the
weights of the jobs in X.

Balanced SRPT: At all times, consider the class j, that has maximum W (Q ;(t)), breaking ties in favor
of the higher weight class. Within @); execute the job with shortest remaining processing time.

Intuitively, the algorithm tries to balance the weight in various weight classes, while giving priority to
larger weights. It runs SRPT within each weight class. Note in particular that the algorithm favors jobs with
a higher weight. For example, if there are W — 1 (or even W) jobs of weight 1 and one job of weight W.
The algorithm works on the 1 weight job first.

3.4.1 Analysis

We now prove the k& competitiveness of Balanced SRPT.

First we give notation for describing some useful quantities. We denote our Balanced SRPT algorithm
by Bal and the optimum algorithm by Opt. The tuple (4,1) denotes job in weight class j that has the It"
largest remaining processing time among jobs in that class under Bal.

Define an order on 2-tuples of integers: We say that (j,1) < (j',1’) if and only if either of the following
two conditions is satisfied.

“The agorithm of [23] rounds up the weights of incoming jobs to an integral power of 4(log B + 1). Hence, it istrivially loses
a4(log B + 1) factor in competitive ratio. However, our example does not use this rounding to prove Q(log B) competitiveness.

SArbitrary weights can be rounded up to an integral power of 2 and we get the required property of integral ratios, while losing
only afactor of 2 in the competitive ratio.

34. ALGORITHM 33
1. wj-l<wj/-l’
2. wj-l=wy-l'andj < j'

Also, we say (5',1') < (4,1) if (4,1) £ (§/,1'). Note that (5/,1') < (4,1) and (4,1) < (§',7) holds iff
j =4 and [= ', and that < defines a total order on the 2-tuples. Intuitively, the notion < formalizes the
order in which Bal executes the jobs. In particular, at any time Bal executes the job which has the highest
priority according to the ordering <.

Let B(j,1,t) be the set of jobs that are alive at time ¢ under Bal and have priority no more than
that of job (j,7). Thus, B(j,1,t) consists of all jobs (j’,1") such that (;/,1') < (j,1) Let |B(j,1,t)] =
> ey rem(J;t), where rem(J, t) is the remaining time of job .J at time ¢. Figure 3.1 below describes
the sets of jobs B(j, [, t) for various of j and [.

The main proof idea will be to compare the “prefixes” | B(j, [, t)| with suitable prefixes of Opt. We now
define the prefix for Opt. Consider the jobs under Opt that are alive at time ¢, a valid packing P(j,[,¢) isa
sub-collection of jobs alive under Opt at time ¢, such that the total weight of the jobs in P(j,1,¢) is at most
wj - . Let | P(4,1,t)| denote the total remaining time of jobs contained in P(j,1,t).

Wi=1 W2=2 W3=4

Figure 3.1: An example illustrating the notation used. We have dropped the third argument from B.

We begin by observing some properties of these prefixes.

Observation 3.1 For h < jandany !, |B(j,1,t)| > |B(h,w;/wy, - 1,t)|.

Proof. It follows directly from the definition of the < relation that B(h, w;/wy, - I,t) € B(j,1,t),

for h < j, and hence |B(h,w;/wy, - 1,t)] € |B(j,1,t)|. For example, in Figure 3.1 B(1,4,t) C

B(2,2,t). L]

Let V(¢) denote the total amount of work remaining at time under Bal (this is also equal to the work
under any conserving policy and hence equal to the work under Opt at time).

Observation 3.2 At any time ¢, if Bal works on some job in B(j,1,t), then | B(j,,t)| = V (¢)

34

CHAPTER 3. SCHEDULING TO MINIMIZE WEIGHTED FLOW TIME

Proof. At any time ¢, Bal works on the job with the highest priority. Thus, if B(j,[,t) decreases at
time ¢, then the highest priority job must be in some position (5, ") such that (5',1") < (4,1). Thus,
all the alive jobs lie in B(j,1,t).]

Observation 3.3 Suppose a job J of weight w; and size | J| arrives at time ¢, and that it is inserted

in position h based on the remaining processing times among the weight w; jobs under Bal. Let t~
denote the time just before J arrives, then

1.Forall jandl, |B(j,1,t)| > |B(j,1,t7)|.
2.For all j and for all / such that I > w;/w;

. |B(j,1 — w;/w;, t7)| +|J| ifi>j
> -

Proof. Let f; be the smallest number for which (j,1) < (4, f;). Let |J'| denote the remaining
processing time of the job at position (i, f; — 1) at time ¢t~ (|.J’| = 0 if there is no job at position
(i, fi — 1)). Observe that if I > w;/w;, then for i > j, (4,0 —w;/w;) < (i, fi — 1) < (4,1) and
hence

|B(j,1,t)| > |B(j, 1 — wi/w;, t)] +|J| (3.1)

Similarly, for ¢ < j, we have that f; = w; - [/w; + 1 and hence (¢, w; - {/w; — 1) < (i, f; — 1) and
thus

1B(j, L t)] = |B(i, - wj/wi,t) = |B(i, 1 wj/wi — 1,8)] + |J'] 3.2)

We first show that | B(4,1,t)| > |B(j,1,t~)|. We have two cases.
1.If J ¢ B(j,1,t), then clearly, B(j,1,t) = B(j,l,t~) and hence |B(j,1,t)| = |B(j,1,t7)].

2.In the case when J € B(j,1,t), we argue as follows. Since J € B(j,l,t) by our assumption,
we must have that »~ < f;. Then, the only way in which B(j, [, t) differs from B(j,1,t7) is
that J is inserted in position (¢, k) and the jobs previously in positions (i, k), ..., (i, fi — 1)
move to positions (i,h + 1),..., (4, f;) respectively. Again, let |J’| denote the remaining
processing time of the job at position (i, f; — 1) at time ¢~. Thus, we have that |B(j,1,t)| =
|B(j,1,t7)| —|J'| +|J|. Since, h < f; — 1, it must be the case that |J'| < |.J|. Thus, we have
that |B(j,1,1)| > | B(j,1,t7)|.

For the second part of the observation, we again have two cases.

1.First, if J ¢ B(j,1,t), then it must be the case that | /| < |.J’|. Now it follows that, for i > j,

1B, L) = B, —wi/wj,)] + |J']
= [B(j, 1 — wi/wj, t)| + | J]
|B(j,1 — wifwj, t7)| +|J]

34.

ALGORITHM

Similarly, for i < j,

|B(j,0,t)] > |B(i,0 wj/w;,t)| (by Observation 3.1)
> |B(i,l - w;/w; — 1,t7)| + || (by Equation 3.2)
> B, wi/w; = L,t7) |+ I (as|J] < |[T])

2.Next, if J € B(j,1,t), it must be that |.J| > |J'|. Thus, we have that for i > j,

|B(j,1,t)] > |B@,Lt)| = ||+ |J]
|B(j,1 — w;i/w;,t7)|+|J| (by Equation 3.1)

V

Similarly, for i < j,
|B(i, 1 - wj/wi, t)| = || +1J]
|B(i, 1 - wj/wi — 1,t7)| + | J]

v

35

Recall that a valid packing P(j,, t) is any sub-collection of jobs alive under Opt at time ¢, such that the
total weight of the jobs in P(j,(,t) is at most w; - [.

Lemma 3.4 Atall times¢, forall 1 < j < kand [> 1, and any packing P(j,(,t) the following
invariant holds

[B(, L) = [P(4,1,1)] (3.3)

Proof. We will prove Equation 3.3 by induction on the arrivals in the system. First, by perturbing
the arrival times of jobs by an infinitesimal amount we can assume without loss of generality that
all the arrival times are distinct. Let 0 = ¢; < t5 < ... < t,, denote the arrival times of the n jobs.
Clearly, the invariant is true at ¢; = 0.

Suppose the invariant is true at some ¢;. We then show that the invariant 3.3 is true at all times
in the interval [t;,¢;11). For the sake of contradiction, let ¢t € [t;,¢;+1) be the first time when the
invariant 3.3 fails to hold. Let ¢ € (¢;,¢] be the last time when B(j, [, t") was decreasing.

Ift = ¢/, we know that | B(j,1,t)| = V/(t), and hence |B(j,1,t)| > P(j,1,t)|.

If ¢/ < t,and since | B(j, 1, t)| did not decrease during (¢, ¢'], and as there were no arrivals during
this time, we know that |B(j,1,t)| = |B(j,1,t")] = V(¢'). Moreover, we also have that for any
collection of jobs P(j,1,t), |P(j,1,t)] < |P(j,1,t")|, because Opt could have worked on some of
these jobs during [t/,¢]. Since |P(j,1,t)| < V(¢), if |B(j,1,t)| < |P(j,1,t)], then we have that
|B(4,1,t")] = |B(4,1,t)| < |P(j,1,t)| < |P(j,1,t")|, contradicting the fact that ¢ was the earliest
time when the invariant 3.3 fails to hold.

We now consider the case of job arrivals. Let ¢t~ denote the time instance just before time t.
Suppose there is an arrival at time ¢ and that the invariant 3.3 fails to hold at time ¢ then we show
that it could not be true for some packing at time ¢ .

36 CHAPTER 3. SCHEDULING TO MINIMIZE WEIGHTED FLOW TIME

Let P(j,1,t) denote the packing for which |B(j,1,t)| < |P(j,1,t)| and let J denote the job that
arrived at time .

First we note that if J ¢ P(j,1,t) then P(j,1,t) is also a valid packing at time ¢~, and
that |P(j,1,t)| = |P(j,I,t7)|. Also, by Observation 3.3 |B(j,1,t)| > |B(j,1,t7)|, hence if
|B(4,1,t)] < |P(j,1,t)|, then this would contradict the fact that | B(j,1,t7)| > |P(j,{,t7)|.

We now consider the case, when the new job is included in the packing P(j,1,t). We ¢ denote
the class of the job which arrives at time ¢. We consider two cases depending on whether i > j or

i<j.

i > j: By Observation 3.3 we know that, B(j,l,t) > B(j,l — w;/w;,t~) + |J|. Consider the
packing P’(j,1 — w;/w;,t™) attime ¢~ which is obtained from P(j,,) by removing the job
J. Then we have that | P(j,1,t)| = |P'(j,1 —w;/w;,t7)|+|J|. Thus, if B(j,1,t) < P(j,1,1),
then this would contradict the fact that | B(j,! — w;/wj, t™)| > |P' (4,1 — w;/w;, t7)].

i < j: By Observation 3.3 we know that, B(j,1,t) > B(i,w;/w;l — 1,t7)| + |J|. Again, we
consider the packing P’(z, w;l/w; — 1,¢t) at time ¢’ which is obtained from P(j,1,t) by
removing the job J. Then we have that |P(j,1,t)| = |P'(j,l — wi/w;,t7)| + |J|. Thus,
if B(j,1,t) < P(j,1,t), then this would contradict the fact that |B(i, w;l/w; — 1,t7)] >
[P (5, wilfwi = 1,£7)].

Theorem 3.5 The Balanced SRPT algorithm is & competitive for k& weight classes.

Proof. For any arbitrary time ¢, let opt(¢) denote the total weight of alive jobs under the optimum
algorithm. Clearly, opt(t) is a multiple of wy, since w;/w;_1 is an integer for each 1 < ¢ < k.
Choosing j = 1 and I = opt(t)/w, and considering the packing P(j,[,t) which contains all the
jobs present under the optimum algorithm. We get that |P(j,1,¢)| = V(¢), where V' (¢) is the total
volume of jobs at time ¢. By Lemma 3.3, we have that |B(j,1,t)| > |P(j,1,t)| = V(t). However,
since Bal is work-conserving we have that |B(j,1,t)| < V(¢) and hence | B(j,1,t)| = V(). Thus,
B(j,1,t) contains all the jobs, and since wt(B(j,1,t)) < k- w; -1 = k - opt(t), this implies the &
competitiveness. [

Analysis of Balanced SRPT is tight

We now show that the competitive ratio for the Balanced SRPT algorithm is tight. Consider following job
instance, in which for 1 < j < k, 2*~7 jobs of weight 27 arrive at time 0. The job of weight 2* has size 1
while rest of them have sizes e = 27*. Since all weight classes have an equal amount of weight, Balanced
SRPT would start working on the job of weight 2* and continue working on it till the job finishes.
Consider the scenario at time ¢t = (2% — 2)e < 1. At t, Balanced SRPT is still working of the job of
weight 2%, hence the total weight under Balanced SRPT is k2*. Where as, the optimal algorithm can finish

all the jobs of size e first by time ¢. In this case, the optimal algorithm has a weight of 2*. Thus Balanced
SRPT is locally k& competitive at time ¢, now we can make it globally & competitive, but giving a long stream
of weight 2* and size 2~ jobs.

3.5. WEIGHTED ¢{p NORMS OF FLOW TIME 37

The example above also suggests that any O(1) competitive algorithm for the weighted flow time prob-
lem must be designed to carefully balance the number of jobs with high densities and the jobs with high
weights.

3.4.2 A Semi-Online Algorithm

Given an instance I, assume without loss of generality that the job sizes are integers and that the smallest
job weight is 1. Suppose we know the values of the largest weight, largest job size and the total number of
jobs (i.e. W, B and n). Then we can modify the Balanced SRPT algorithm in the following way: Round the
weights up to the nearest power of 2. Consider only the jobs with weights between % and . Call these
jobs heavy. Run the Balanced SRPT algorithm on the heavy jobs, if at some time no heavy job is present,
work on any arbitrary job.

Let us the denote the instance when restricted to heavy jobs as ;. Let Opt(I;) and A(1},) denote the
weighted flow time of the optimum algorithm and our algorithm on I}, respectively.

When restricted to heavy jobs, by Theorem 3.5, the performance of the Balanced SRPT is no worse than
4(logn + log B) times the optimum (restricted to 7). Thus,

A(In) < 4(logn + log B)Opt(1) < 4(logn + log B)Opt(I)

Each non-heavy job can be delayed by at most by n.B. Since its weight is no more than W/n2B, it adds
at most 1W/n to the total weighted flow time. Since there are at most n non-heavy jobs, the total contribution
of these is no more than W. Since Opt(I) is lower bounded by W, we get.

A(I)

IN

A(In)+W
< 4(logn +log B)Opt(I) + W
< 4(logn +log B)Opt(I) + Opt(I)

Thus we get a semi-online algorithm which is O(log n + log B) competitive.

3.5 Weighted ¢, norms of Flow Time

We now consider the problem of minimizing the weighted ¢, norms of flow time. We first define some
needed notation. For an algorithm A on an input instance Z with an s speed processor, let F'P(A,Z, s)
denote the sum of the p** powers of the flow time of all jobs. Similarly, WFP(A,T,s) will denote the
sum of weighted p** powers of the flow time (i.e. > wifF) of all jobs. Finally, for the measure F?, let
Opt(FP,Z,s) denote the value of the optimum schedule for the F'? measure on Z with a speed s processor.
Let Opt(WFP,Z, s) denote the optimum value for the WFP? measure.

We now define the general transformation that we will use throughout this section.

Transforming a weighted to an unweighted instance: Given an instance Z, we define an instance Z’

as follows:

Consider a job J; € Z. The instance Z’ is obtained by replacing J; by w; identical jobs each of size p; /w;
and weight 1, and release time r;. We denote these w; jobs by J/,,... ,J!, . Let X; = {J/},...,J/,.}

) Yrwg " ? Frw;

denote this collection of jobs obtained from .J;. Note that all jobs in Z’ have the same weight.

38 CHAPTER 3. SCHEDULING TO MINIMIZE WEIGHTED FLOW TIME

3.5.1 The Clairvoyant Case

In this section we show that HDF, a natural generalization of SJFis a (1 + €)-speed, O(1/¢?)-competitive
online algorithm for minimizing the weighted ¢,, norms of flow time.

The main idea of the proof will be to reduce the weighted problem to an unweighted problem using the
transformation described above and then invoke the result for £, norms of unweighted flow time.

Lemma 3.6 For Z and Z’ as defined above,

Opt(FP,7',1) < Opt(WFP I,1) (3.4)

Proof. Let S be the schedule which minimizes the weighted /, norm of flow time for Z. Given
S, we create a schedule for Z' as follows. At any time ¢, work on a job in X; if and only if J; is
executed at time ¢ under S. Clearly, all jobs in X; finish when J; finishes execution, thus no job
in X; has a flow time higher than that of .J;. By definition, the contribution of J; to WFP? is wl-ff’.
Also, the contribution to the measure F'? of each of the w; jobs in X; will be at most ff, and hence
the total contribution of jobs in X to F” is at most w; f’ . Since the optimum schedule for Z’ can
be no worse than the schedule constructed above, the result follows. u

From Theorem 2.3 in Chapter 2 we know that SJFis (1 + €)-speed, O(1/¢)-competitive for the (un-
weighted) ¢, norms of flow time , or equivalently SJF is (1 + ¢)-speed, O(1/€?)-competitive for the P
measure. This implies that,

FP(SIF,T', 1+ €) = O(=)Opt(F?,T', 1) (3.5)

1
P

We now relate the performance of HDF on Z with a (1 + ¢) times faster processor to that of SJFon 7.
Recall that HDF is the algorithm that any time works on the job with the small ratio of service received to
its weight.

Lemma 3.7

WEP(HDF.Z,1+) < (14 L PP/ (SF T, 1) (36)
Proof. We claim that for every job J; € 7 and every time ¢, if .J; is alive at time ¢ under HDF with
a (1 + €) speed processor, then at least Tcwijobsin X; € 7’ are alive at time ¢ under SIFwitha 1
speed processor.

The claim above immediately implies the result for the following reason. Consider the time
t~ = (f; + r;)~ just before J; finishes execution under HDF. Then .J; contributes exactly w; ff to
WEFP(HDF,Z,1 + €), while the > ew; /(1 + €) jobs in X; that are unfinished by time ¢ contribute at
least ew; /(1 + €) ¥ to FP(SJF,Z’,1). Taking the contribution over each job, the result follows.

We now prove the claim. Suppose for the sake of contradiction that ¢ is the earliest time when
J; is alive under HDF and there are fewer than €/(1 + €)w; jobs from X; left under SJF. Since J;
is alive under HDF and HDF has a (1 + ¢) faster processor, it has spent less than p; /(1 + €) time
on J;, whereas SJF has spent strictly more than p; /(1 + €) time on X;. Thus there was a some time
t', such that r; < t' < t during which HDF was running .J; # .J; while SJFwas working on some

3.5. WEIGHTED ¢{p NORMS OF FLOW TIME 39

job from X;. Since ¢’ > r;, it follows from the property of HDF that .J; has higher density than that
of J;. This implies that jobs in X; have smaller size than X;. Since SJFworks on X at time ¢/, it
must have already finished all the jobs in X; by ¢’. Since .J; is alive at time ¢/, this contradicts our
assumption of the minimality of ¢. n

By Equations 3.5 and 3.6 we have that
WFP(HDF, T, (1 + €)%) = O(1/¢)**Opt(F?,T',1)

Combining this with Equation 3.4 we obtain that,

Theorem 3.8 HDFis (1 + €)-speed, O(1/¢2)-competitive for minimizing the weighted ¢,, norms of
flow time.

3.5.2 The Non-Clairvoyant Case

As in the analysis of HDF the main step of our analysis will be to relate the behavior of WSETF on an
instance Z with weighted jobs to that of SETF on another instance Z’ which consists of unweighted jobs.
We then use the results about (unweighted) ¢, norms of flow time under SETF to obtain results for WSETF.

Given an instance Z consisting of weighted jobs, let Z’ denote the instance defined as in Section 3.5.1
which consists of unweighted jobs. Suppose we run WSETFon 7 and SETF on Z’ with the same speed pro-
cessor. Then the schedules produced by WSETFand SETF are related by the following simple observation.

Lemma 3.9 Atany time ¢, ajob J; € Z is alive and has received p;(¢) units of service if and only if

each job in X; € 7' is alive and has received exactly p;(t)/w; amount of service. In particular, this
implies that if J; has flow time f; then each J/, € X, for k =1,... ,w; has flow time f;.

Proof. We view the execution of WSETF on Z as follows: If at any time WSETF allocates x units
of processing to a job of weight w;, then we think of it as allocating =/w; units of processing to
each of the w; jobs in the collection X;. Thus the normalized service of job .J; under WSETF is
exactly equal to the amount of service received by a job in X;. Since WSETF at any time shares
the processor among jobs with the smallest normalized service in the ratio of their weights, this is
identical to the behavior of SETF on Z’ which works equally on the jobs which have received the
smallest amount of service. u

Theorem 3.10 WSETFis a (1 + ¢)-speed, O(1/e*+2/?)-competitive non-clairvoyant algorithm for
minimizing the weighted ¢, norms of flow time.

Proof. By Lemma 3.9 we know that if J; € Z has flow time f;, then the w; jobs in X; have flow

time f;. Thus the £, norm of unweighted flow time for Z' is (3, w; f)'/? which is identical to the
weighted flow time for Z under WSETF, this implies that

WFP(WSETF,Z,1) = FP(SETF,7',1) (3.7)

By Lemma 3.4 we know that Opt(F?,7',1) < Opt(WFP,Z,1). By the main result of Section
7 in [11] about the competitiveness of SETF for unweighted ¢,, norms of flow time we know that

FP(SETF, T, (14 ¢)) = O(1/e*T)Opt(FP,T,1) (3.8)

40 CHAPTER 3. SCHEDULING TO MINIMIZE WEIGHTED FLOW TIME

Now, by Equations 3.7, 3.8 and 3.4 we get that
WFP(WSETF,Z,1 + ¢) = O(1/€***2)Opt(WFP,T,1)

Thus the result follows. n

Improved bounds for p = 1

Theorem 3.10 implies that for p = 1, WSETFis a (1 + ¢)-speed, O(1/e*) competitive algorithm. We now
show that WSETF s in fact (1 + €)-speed, O(1/€) competitive for p = 1.

To see this, we simply use the fact that SET'F is (1 + ¢)-speed, O(1/¢)-competitive for minimizing
total unweighted flow time [46]. Combining this with Equation 3.7 we have that

1
WFY(WSETF,T,1+ ¢) = F}(SETF,Z/,1 + ¢) < ~Opt(F*,7',1)
€

Finally, since Opt(F?,7’,1) < Opt(WFP?,Z,1) (by Lemma 3.4) the result follows.

3.6 Conclusion and Open Problems

In this chapter we gave an O(log W) competitive online algorithm for minimizing the total weighted flow
time on a single machine with preemptions. We also saw how resource augmentation results for weighted
flow time can often be obtained directly using results for the unweighted case.

An outstanding open problem is the following:

Open Problem 3.3 Is there an O(1) competitive online or a polynomial time O(1) approximation
algorithm for minimizing the weighted flow time on a single machine with preemptions?

Chapter 4

Scheduling to Minimize Stretch

4.1 Introduction

In this chapter we study problems related to minimizing stretch on a single machine with preemptions. We
will consider two problems:

1. Minimizing the total stretch.

2. Minimizing the ¢, norms of stretch.

Even though the first problem is a special case of the second (with p = 1), we discuss them separately
because the case of p = 1 is special and has also been studied prior to our work. Also, the first problem
is easier from the second in the sense: While a 2-competitive clairvoyant online algorithm is known for
minimizing the total stretch [60], however, as we shall see, there cannot be any online clairvoyant algorithm
that is n°(1) competitive for minimizing the £, norms of stretch for p > 1.

Stretch is a special case of weighted flow time where the weight of a job is inversely proportional to
its size. Hence, a (1 + €)-speed, O(1)-competitive algorithm for minimizing the ¢, norms of stretch in the
clairvoyant setting follows directly from the more general results on minimizing the weighted ¢,, norms of
flowtime (Theorem 3.8 in Chapter 3).

Minimizing stretch becomes more interesting the non-clairvoyant case. In this setting, the problem is
considerably harder than the weighted flow time problem. Not only does the online scheduler have no idea
of job sizes, it also has no idea as to which job is more important (has a higher weight). This is reflected in
the strong lower bounds for this problem. We will show that any algorithm is ©(n) and ©2(B) competitive
for minimizing total stretch. Even with randomization and a factor & speed up the stretch problem is at least
Q(n/k) competitive. Note especially that neither resource augmentation nor randomization seems to help.

This is in sharp contrast to weighted flow time where a (1 + ¢)-speed gives a (1 + %)-competitive algorithm

[7]. Similarly, for flow time there is a lower bound of »n'/3 for any deterministic algorithm, whereas using
randomization, algorithms which are O(logn) competitive can be obtained [45, 13]. The only case where
resource augmentation seems to help is when the job sizes are bounded. Our main result is that,

Theorem 4.1 SETFis a (1 + ¢)-speed, O(47 - log'*!/? B)-competitive algorithm for the £,
norm of stretch.

This result is almost tight, as also show that any randomized non-clairvoyant algorithm with an O(1)
speed is Q2(log B) competitive for any £,, norm of stretch.

41

42 CHAPTER 4. SCHEDULING TO MINIMIZE STRETCH

For the case of p = 1, Theorem 4.1 implies that SETF is a (1 + ¢)-speed, O(log? B)-competitive
algorithm for minimizing total stretch non-clairvoyantly. This is currently the best known upper bound for
this problem. The (1 + ¢)-speed, O(log? B) competitiveness of SETF for p = 1 was first shown in [8]. The
analysis technique from [8] was later simplified and extended in [11] for the case of general p > 1. The
table 4.1 summarizes our results for non-clairvoyant scheduling.

Lower bound Lower bound
Problem Scenario | Speed SETF without speed up | with O(1) speed up
Static 1 O(n),O(log B) | Q(n), Q(log B) Q(n), 2(log B)
Dynamic (1+¢€) | O(log'™/? B) Q(n),2B) Q(n), Q(log B)

Table 4.1: Summary of results for minimizing the ¢,, norms of stretch non-clairvoyantly.

This chapter is organized as follows: In Section 4.2 we discuss the previous work. In Section 4.3 we

show various lower bounds. We first show that there cannot exist any n°(!) competitive clairvoyant online
algorithm for minimizing the ¢,, norms of stretch for p > 1. Later we consider the lower bounds for non-
clairvoyant algorithms. Next, we give the positive results. In Section 4.4 consider the static case, (i.e., when
all requests arrive at time ¢ = 0) and show that SETF is the optimal algorithm up to constant factors. In

Section 4.5 we consider the dynamic case and prove Theorem 4.1. *

4.2 Related Work

Stretch of a job was first considered by Bender et al. [17]. Stretch as a metric has received much attention
lately [27, 75, 60, 16, 15, 6, 18], since it captures the notion of “fairness”. Note that a low stretch implies
that jobs are not delayed disproportionately to their size, hence smaller jobs are delayed less and large jobs
are delayed proportionately more. Muthukrishnan et al. [60] first studied total stretch, and showed that the
shortest remaining processing time (SRPT) algorithm achieves a competitive ratio of 2 for the single machine
and 14 for the multiple machine case. Note that SRPT requires the knowledge of job sizes and hence cannot
be used in the non-clairvoyant setting. In the offline case, there a PTAS is known for minimizing total stretch
on a single machine [18]. Recently, there have been various extensions and improvements [23, 6, 15, 18] to
the problem. However, all previous work looks at the problem in the clairvoyant setting. Since clairvoyant
scheduling does not accurately model many systems, there is significant interest in the non-clairvoyant
version of stretch.

4.3 Lower Bounds

4.3.1 Clairvoyant Scheduling

Theorem 4.2 The competitive ratio of any randomized algorithm A against an oblivious adversary

for [P, 1 < p < oo, is n®*(). In particular, the competitive ratio of any randomized algorithm is
Q(nP—1)/39%),

Theresultsin this chapter are combined from [8, 11, 7, 10].

4.3. LOWER BOUNDS 43

Proof. We use Yao’s minimax principle for online cost minimization problems [19] and lower bound
the expected value of the ratio of the objective functions of A and Opt on input distribution which
we specify. The inputs are parameterized by integers L, «, and /3 in the following manner. A long
job of size L arrives at ¢ = 0. From time 0 until time L — 1 a job of size 1 arrives every unit of

time. With probability 1/2 this is all of the input. With probability 1/2, L2*5 short jobs of length

1/L7 arrive every 1/LP time units from time L until 2. — 1/L7.
2p+1
p—1"
SP(A) and SP(Opt). Consider first the case that A doesn’t finish the long job by time L®. Then with

probability 1/2 the input contains no short jobs. Then SP(A) is at least the stretch of the long job,

We now consider the S? objective. In this case, a = and 8 = 1. We now compute

which is at least (L*/L)? = LP(®=1)_ In this case the adversary could first process the long jobs and
then process the unit jobs. Hence, SP(Opt) = O(1 + L - LP) = O(L**?). The competitive ratio is
Q(LeP—2=2P), which is Q(L) by our choice of a.

Now consider the case that A finishes the long job by time L*. Then with probability 1/2 the
input contains short jobs. One strategy for the adversary is to finish all jobs, except for the big

job, when they are released. Then SP(Opt) = O(L® - 1P + L™ . 1P 4 (L*/L)?). Algebraic
simplification shows that oo + 6 < ap — p for our choice of o and 3. Hence dominant term is
LP~P, and SP(Opt) = O(L*P~P). Now consider the subcase that A has at least L/2 unit jobs
unfinished at time 3% /2. Since these unfinished unit jobs must have been delayed by at least L /2,
SP(A) = Q(L - L*P). Clearly in this subcase the competitive ratio is Q(LP*1). Alternatively,
consider the subcase that A has finished at least L/2 unit jobs by time 3L /2. Then A has at least
L'*8 /2 released, and unfinished, small jobs at time 3L /2. By the convexity of SP when restricted
to jobs of size 1/L7°, the optimal strategy for A from time 31> /2 onwards always delays each small
job by the same amount (we can gift A the competition of the unit jobs at time 3.%/2). Thus A
delays L>* /2 short jobs by at least L/2. Hence in this case, SP(A) = Q(L*+F . LIB+DP), This
gives a competitive ratio of SP(A) = Q(Lo+A+Ar+2r—apr) By the choice of o and 3, this gives a
competitive ratio of Q(L?P+1). Using that n = O(L*+”) we obtain the desired lower bound. n

We note that Theorem 4.2 is not particularly tight. In particular, as p approaches infinity Theorem

4.2 does not yield any substantial lower bounds, however for p = oo, a lower bound of Q(n'/?) on the
competitive ratio of any deterministic online algorithm was shown by Bender et al [17].

4.3.2 Non-clairvoyant Scheduling
We now give lower bounds for the non-clairvoyant case. These lower bounds suggest that the only mean-
ingful parameter for which interesting results can be obtained is B, the bound on job sizes.

Bounded job sizes without resource augmentation

We show that any non-clairvoyant algorithm without speed up, deterministic or randomized is at least 2(B)
competitive for minimizing total stretch (hence it is 2(B) competitive for general £,, norms of stretch).

Theorem 4.3 Any non-clairvoyant algorithm, deterministic or randomized is at least 2(B) com-
petitive for total stretch, where B is the ratio of job sizes.

44 CHAPTER 4. SCHEDULING TO MINIMIZE STRETCH

Proof. Consider an instance where nB jobs of size 1, and n jobs of size B, arrive at time ¢t = 0. At
time ¢ = nB, the adversary gives a stream of m jobs of size 1 every unit of time.

The optimum algorithm finishes all jobs of size 1 by nB and continues to work on the stream of
size 1 jobs. The stretch incurred due to jobs of size B is at most n(2nB + m)/B and due to the jobs
of size 1 is nB + m. The deterministic non-clairvoyant algorithm, on the other hand, has to spend at
least one unit of processing on each job to determine if it has size 1 or B. Thus, by choosing the first
n jobs on which the non-clairvoyant algorithm works at least 1 unit to be of size B, it can be made
to have at least n jobs of size 1 remaining at time ¢ = nB. For the next m units after time ¢t = nB,
there will be at least n jobs of size 1. Thus, total stretch incurred is at least nm. Choosing n > B
and m > nB, it is easy to see that the competitive ratio is at least 2(B).

For the randomized case, we use Yao’s Lemma, and the input instance consists of nB + n jobs,
n of which are chosen randomly and have size B while the rest have size 1. Again, since any non-

clairvoyant algorithm has to spend at least 1 unit of processing to distinguish between at job of size
1 and B, it follows that by time ¢ = n.B, the algorithm will have at least z2n ~ n jobs of size 1

remaining in expectation. Thus the result follows. n

Lower bound with bounded size and resource augmentation

We now consider lower bounds when resource augmentation is allowed. We first consider a static (all jobs
arrive at time ¢ = 0) scheduling instance, and give an 2(log B) lower bound without resource augmentation.
While this in itself is weaker than Theorem 4.3, the scheduling instance being static implies that even
resource augmentation by k times can only help by a factor of k.

Lemma 4.4 For minimizing the total stretch, no deterministic or randomized algorithm can have
performance ratio better than Q(log B) for a static scheduling instance, where B is the ratio of the
largest to the smallest job size.

Proof. We consider an instance with log B jobs jo, . .. , jiog 5 SUch that job j; has size 2°.
We first look at how SJF behaves on this problem instance. The total stretch for SJFis

log B 1 i
Z 5 227 = O(log B)
i=0 =0

This basically follows from the fact that SJF has to finish jobs j1, ... ,j;_1 before it finishes j; by
the definition of our instance.
Now we show that for any non-clairvoyant deterministic algorithm A, the adversary can force

the total stretch to be Q(log? B). The rough idea is as follows: We order the jobs of our instance

such that for all 0 < i < log B, A spends at least 2° work on jobs j; 1, ... , jiog 5 before it finishes
job j;. In this case, the theorem follows because the total stretch of A on the given instance is

log B

3 21 (log(B) — i + 1) 2" = Q(log*(B)).
=1

It remains to show that we can order the jobs in such a way. Since A is a deterministic algorithm
that does not use the size of incoming jobs, we can determine the order in which jobs receive a

4.4. STATIC SCHEDULING 45

total of at least 2/ work by A. We let j; be the (log(B) — i + 1) job that receives 2¢ work for all
0 < i <log B. Itisclear that this yields the claimed ordering.

The example can be randomized to prove that even a randomized algorithm has total stretch no
better than Q(log B). The idea is to assume that the instance is a random permutation of the jobs

J0s 15+ - - s Jlog B~ Then to finish job j;, the scheduler has to spend at least 2 work on at least half of
Ji+1,- -+ Jlog B (in expectation). Thus its expected stretch is & (log B — i + 1) and the total stretch
is Q(log® B). We now use Yao’s Minimax Lemma to obtain the result. L]

As the input instance in Lemma 4.4 is static, a k-speed processor can at most improve all the flow times
by a factor of k. Hence the total stretch can go down by the same factor. This gives us the following theorem.

Theorem 4.5 Any k-speed deterministic or randomized, non-clairvoyant algorithm has an Q(log B/k)
competitive ratio for minimizing total stretch, in the static case (and hence in the online case).

Scheduling with general job sizes

The previous result also implies the following lower bound when job sizes could be arbitrarily large. In
particular, we can choose the job sizes to be 1, 2, ... 2" which gives us the following theorem.

Theorem 4.6 Any k-speed non-clairvoyant algorithm, either deterministic or randomized, has
Q(n/k) performance ratio for minimizing total stretch.

4.4 Static scheduling

Static scheduling is usually substantially easier than the usual dynamic scheduling (where jobs have arbitrary
release times), and the same is the case here. We do not need resource augmentation here, and we show that
the SETFis O(log B) competitive for all £, norms of stretch, hence matching the lower bound shown in the
previous section. We will prove this in two steps: We first show that S? for the optimum algorithm on any
input instance with n jobs is Q(nP*!/log? B). Then we show that SP for SETF on any input instance with
n jobs is O(nPT1).

In the static case, it is easily seen by a simple exchange argument that SJF is the optimal algorithm for
¢, norms of stretch for every p > 1. We now show a general lower bound on the ¢, norms of stretch under
SJFon any input instance.

Lemma 4.7 For any scheduling instance with n jobs all arriving at time 0, SJF has S? at least
Q(nPt1/log? B).

Proof. We first show that without loss of generality we can consider an input instance where the job
sizes are powers of 2. To see this, given instance I, We lower bound the total stretch under SJF as

follows: For a job of size z, we require SJFto work only 28] amount in order to finish the job and

we divide the flow time by 281 to get the stretch. Thus, we can round down all the job sizes to a
power of 2 and have the new stretch of each job within a factor of 4 of its stretch in original instance.

Given an instance Z consisting of n jobs. Let z1,z2... , 210 p denote the number of jobs of
sizes 2,4... , B respectively. We also have that > =; = n. Now, as there are at least x; jobs of size
2¢, the sum of the p** powers of flow time of the jobs of size 2¢ under SJFis at least Y ;7 | kP27 >

46 CHAPTER 4. SCHEDULING TO MINIMIZE STRETCH

2?12 /(p + 1). Thus the sum of the p* powers of stretch of such jobs is at least = /(p + 1).

i
Thus summing up over all job sizes the sum of the p** powers of stretch is at least xﬁ-’“/(? +1).

By convexity of the function f(z) = 2P for p > 0, this is at least log B(>", z;/ log B)P™! which
is Q(nP*!/log? B). "

Lemma 4.8 For a scheduling instance with n jobs, the £, norms of stretch under SETFis O(n'*+1/?).

Proof. For any job of size 27, the job waits at most for n other jobs to receive at processing of at
most 2¢. Thus the stretch of any job is at most n and hence the sum of the p*" power of stretch of all
the jobs is at most nP*! which implies the result. u

Combining the results of Lemmas 4.7 and 4.8, we get the following result:

Theorem 4.9 For static scheduling with bounded job sizes, the SETF algorithm is O(log B)-
competitive for minimizing the £, norms of stretch.

4.5 Dynamic Scheduling

We now prove Theorem 4.1. The analysis technique is similar to the analysis for flow time in Chapter 2,
Section 2.6.

We first compare SETF to an intermediate policy MLF, and then compare MLFto Opt. The variant of
M LF that we use is similar to that in Section 2.6. We describe it again below for completeness. Our MLF
is a variation of the standard Multilevel Feedback Queue algorithm where the quanta for the queues are set
as afunction of e. Let £; = ¢((1+¢)* —1),i > 0,and let ¢; = £; 41 — £; = €(1 +¢€)%,i > i. In MLFajob
Jj isin level £ at time t if the work done on J; by time ¢ is > /;, and < /1. MLF maintains the invariant
that it is always running the earliest arriving job in the smallest nonempty level.

Let SETF; (resp. MLF,) denote the algorithms SETF and MLF executed with an s speed processor. By
Lemma 2.6, it follows that

SP(SETH(T), 1+ ¢) < SP(MLF(T), 1) (4.1)

We now transform the input instance. Let the original instance be Z. Let 7 be the instance obtained
from Z as follows. Consider a job .J; and let i be the smallest integer such that p; + ¢ < (1 + ¢€)’. The
processing time of J; in 7 is then €(1 + ¢)°. Let K be the instance obtained from J by decreasing each job
size by e. Thus, each job in K has size ¢, = €((1 + ¢)¥ — 1) for some k. Note that in this transformation

from Z to K, the size of a job doesn’t decrease, and it increases by at most a factor of (1 + ¢)2. Since MLF
is has the property that increasing the length of a particular job will not decrease the completion time of any
job, we can conclude that

SP(MLF(ZT),1) < (14 ¢)*’SP(MLF(K), 1) (4.2)
Equations 4.1 and 4.2 together give us that

SP(SETF(Z), 1+ €) < (1 + €)*SP(MLF(K), 1) 4.3)

4.5. DYNAMIC SCHEDULING 47

We now create an instance £ by replacing each job of size ¢((1 + ¢)* — 1) job in K by k jobs of size
qis--. ,qr—1- Notethat £, = go+q1+... ,qr—1. Forajob of J; € K, we denote the corresponding jobs in
Lby Jjy, i, -, Jj._,. Notice that any time ¢, SJF(L) is working on a job J;, € £ if and only if MLF(K)
is working on job J; € K that is in level b at time ¢. In particular, this implies that the completion time of
J; in MLF(K) is exactly the completion time of some job .J;, € SIF(L). Hence,

FP(MLRK),s/(1+¢€)) < FP(SIFL),s/(1+¢€)) (4.4)

For a job of size ¢[(1+¢)* — 1] in K, the corresponding job of size €2(1 +¢)* € £ has equal flow time. Thus

the ratio of the contributions to the p'" power of stretch for £ and KC will be at least (E[i%?_]ﬂl])p, which is

—)P. Now since e[(1+¢)¥ —1] > 1 for all valid job sizes in K, we get that (1+¢) % < &

1—(1-6‘1-6) 1+€
and hence that (— —)P < (e(1 + ¢€))P. Thus we get that

(1ie)

at least (

SP(MLF(K), 1) < (e(1+ €))PSP(SIF(L), 1)

Now, applying Theorem 2.3 it follows that S?(SJF(L),1 + €) = O(1/€?)SP(Opt(L),1). Thus we get
that

SP(MLF(K),1) = O((1 + €)P)SP(Opt(L), 1) (4.5)

Let £(k) denote the instance obtained from 7 by multiplying each job size in 7 by €/(1 + €)*. Next,
we remove from £(k) any job whose size is less than e2. We claim that £ = £(1) U £(2) U. ... To see this,
let us consider some job .J; € J of size €(1 + €)’. Then, L(1) contains the corresponding job .J;, , of size
e/(L+¢€) e(l+e)'=e*(1+¢€)'t = g_;. Similarly £(2) contains the job .J;, , of size ¢;_» and so on.
Thus, Lisexactly L(1)UL(2)U....

Lemma 4.10 Let £(k) be as defined above. S(s, J;, G) denote the stretch of job .J; € G when SJF

is run on G with a speed s processor. Then, for all x > 1,

(1+ e)k
€x

Se(l+e) ™ a5 J;, L(Kk) < S(s,Ji, J)

Proof. Let F(s,J;,G)) denote the flow time of job J; € G when SJFis run on G with a speed s
processor. By Lemma 2.7, we have that

Fle(l+ &) 25,5, LK) < %F(s, 7,)

Since the size of jobs in £(k) are e(1 + ¢)~* times smaller than in 7, the result follows. n

We now prove the crucial result (similar to Lemma 2.8) that connects the performance of the optimum
algorithm on £ to the performance of SJFon J.

Lemma4.11
log:’fi: B

S7(OPH(L), 1+ €) = O(—

)SP(SIH(T), 1)

48 CHAPTER 4. SCHEDULING TO MINIMIZE STRETCH

Proof. We will construct a schedule for £ using the SJF schedule for 7.

Setxz; = e(l+e) " fori =1,...,log, log . (B/e), and x; = €/log;, (B/e) for i >
log1+e logl—i—e(B/e)‘

We run the jobs in £(7) using SJFon a speed x; processor, and imagine that all these executions

take place in parallel. Notice that the total speed up required is Ziigf*s(B/ﬁ) x; which is at most

1 + e. By, lemma 2.7, SP(SIF(L(i)), ;) is at most (1/27)SP(SIF(T),1). By simple algebraic
calculation it can be seen that

1 1
> ()P =0(5 logl L, B)

— Xy
%

Since the optimum schedule for £ is no worse than the schedule constructed above the result
follows. L

Combining equations 4.3, 4.5 and lemma 4.11, we get that

2 (1+ 6)3p p+1
SP(SETH(Z),(14¢)%) = O<T -logi . B)SP(SIHJT), 1) (4.6)
Now by Theorem 2.3 we have that
SP(SIHJ),14+¢€) =0(1/€?)SP(Opt(T), 1) 4.7

Also, since each job .J; € J has size at most (1 + €)? times more than the corresponding job J; € Z (and is
not smaller), we trivially have that

SP(0pt(T), (1 +¢)?) < SP(OpK(Z), 1) (4.8)
Now combining equations 4.6, 4.7 and 4.8 it follows that
SP(SETF, (1+ €)%, T) = O(— - logt! B)SP(OpH(T), 1)
) € 9 - 62p g1+6 p 9

or equivalently that

SP(SETF, (1 +¢)°,7) = O(-logP™ B)SP(Opt(Z), 1)

e3p+l1

This proves Theorem 4.1.

4.6 Concluding Remarks

Our result that SJFis a (1 + €)-speed, O(1/¢)-competitive algorithm for minimizing the ¢,, norms of stretch
in the clairvoyant setting has been recently extended by Chekuri, Khanna and Kumar [22]. They show that
load balancing scheme of [4] is a (1 + €)-speed, O(1/¢)-competitive algorithm for minimizing ¢,, norms of
stretch clairvoyantly on multiple machines.

The important open problems related to minimizing stretch are the following:

4.6. CONCLUDING REMARKS 49

Open Problem 4.4 Does there exista (1+¢)-speed, O(log B)-competitive algorithm for minimizing
the total stretch non-clairvoyantly?

Open Problem 4.5 Does there exist an offline polynomial time exact algorithm for minimizing

stretch on a single machine?

Minimizing the £, norms of stretch in the offline case is totally open.

Open Problem 4.6 Is there an approximation algorithm with non-trivial guarantees for minimizing

the £, norms of stretch in the clairvoyant setting?

A polynomial time approximation scheme for minimizing total stretch on a single machine is known
[18]. However nothing is known for the multiple machine case.

Open Problem 4.7 s there a polynomial time approximation scheme for minimizing stretch on
multiple machines?

50

CHAPTER 4. SCHEDULING TO MINIMIZE STRETCH

Chapter 5

Minimizing Flow Time on Multiple
Machines

5.1 Introduction

In this chapter we consider the offline problems of minimizing the total flow time and minimizing the
maximum flow time on multiple machines.

While SRPT is the optimum algorithm for minimizing the total flow time on a single machine, the
problem is A/P-Hard for the case of m > 2 machines. The first non-trivial result for the problem was
an O(log(min(n/m, B))) competitive algorithm for identical parallel machines due to Leonardi and Raz
[55]. They also show a tight lower bound of ©(min(logn/m,log B)) on the competitive ratio of any online
algorithm. The algorithm of [55] has been extended to various other restricted settings (such as eliminating
migrations [6] or immediately dispatching a job to a machine as it arrives [4]). Interestingly however, even
in the offline case these algorithms remain the best known algorithms for the problem. Even for the case of
m = 2, it is not known whether an O(1) approximation algorithm for minimizing total flow time exists. On
the other hand, only the N/P-Hardness of the problem is known. In particular, it is not even known if the
problem is AP X-Hard. Obtaining an O(1) approximation for this problem (even for the case of m = 2)
has been a major open problem in scheduling [67, 55, 6].

Our main result is an algorithm for minimizing total flow time which produces a (1 + ¢) approximate
solution and has running time n©(mlog n/€) Thus for a fixed m, this gives a quasi-polynomial time approx-
imation scheme. Our result suggests that a polynomial time approximation scheme is likely for minimizing
total flow time on O(1) machines.

The above result assumes that the machines are identical and that all jobs have equal weight. We extend
it to the case when the machines are unrelated (a job could have different processing time on different
machines) and additionally jobs are weighted. In this case, we give an approximation scheme with running
time nO(mmin(log? nW.log? nB)/€*) " prior to our work, Chekuri and Khanna gave an approximation scheme

with a running time of O(nlo8 Blog W/€3) for a single machine. Thus our result extends the result of [21] to
the case of multiple machines with almost matching running time.

The main idea used to obtain the above results is a technique which allows us to store the approximate
state under SRPT for any subset of jobs using O(log® n) bits of information®. Moreover, this state descrip-

'Reducing this to O(log n) would imply a polynomial time approximation scheme.

51

52 CHAPTER 5. MINIMIZING FLOW TIME ON MULTIPLE MACHINES

tion has sufficient information to allow us to compute the new state as time progress and jobs are worked
upon or when new jobs arrive. Thus, for each time ¢ (we show later we only need to consider O(n?) values
of time) and for each possible configuration, we can compute the best possible total flow time achievable
using dynamic programming.

The running time in the above algorithms has an exponential dependence in m. We show that it is
unlikely that this can be improved substantially (at least for the weighted case). In particular, we show that,
if m is part of the input, then obtaining an »°(1) approximation algorithm with running time nrolvlos(n.m) for
weighted flow time (even for the special case when W and B are polynomially bounded in n) would imply
that NP C DT IME (npelylogn),

Finally, we consider the problem of minimizing the maximum flow time on multiple machines. Again,
while FIFO is optimal for the single machine case, the problem is A/P-Hard for m > 2. Our main result
is a polynomial time approximation scheme for a constant number of unrelated machines. In particular, our
algorithm produces a (1 + ¢) approximate solution and has running time n°("/<), The only directly related
work is for the problem of minimizing the maximum flow time on identical machines. For this problem
Bender et al [17] give a 3 — 2/m competitive online algorithm, that in fact works for arbitrary m.

Observe that in the special when all the release times are 0, the problem of minimizing the maximum
flow time reduces to the classic problem of minimizing the makespan on multiple unrelated machines (also
referred to as the Generalized Assignment Problem in the literature). It is known that minimizing makespan
on multiple unrelated machines is AP X’-hard, when m is a part of the input [54]. This implies that depen-
dence on m in the running time of our algorithm cannot be improved substantially.

Before we begin, we describe some extra terminology used in the multiple machine setting. In the
unrelated machines setting, a job could possibly have different processing requirement on each machine.
In this case, the processing time of a job J; is described by an m-tuple (pj1, ... ,pjm), Where pj is the
processing time of .J; on machine k. An important issue while scheduling on multiple machines is that of
migration. A schedule is called migratory if it can move partially executed jobs from one machine to another.
Migration of jobs is usually considered unattractive as it incurs a huge overhead in practice. Throughout this
chapter we only consider non-migratory algorithms.

5.2 Total Flow Time

In this section we consider the problem of minimizing the total flow time on multiple machines when all
machines are identical and all jobs are unweighted.

Our high level idea is the following, we first show that the input instance can be rounded such that all
job sizes are integers in the range [1,722/¢] and all the release times are integers in the range [1,n3 /e]. We
then show how to store the approximate state under SRPT for any subset of jobs using O(log®n) bits of
information. Finally, we show how this implies an approximation scheme for the problem.

Let 7 be a problem instance with largest job size B. Without loss of generality we can assume that all
release dates are at most n.B and that all jobs finish execution by time 2n B (otherwise we could reduce the
problem into two disjoint problems). Let Opt denote the optimal schedule, we also abuse notation and use
Opt to denote the total flow time under the optimal schedule.

Lemma 5.1 Given Z, rounding up the job sizes and release dates to a multiple of eB/n? only
increases the optimal cost of this rounded instance by a factor of (1 + 2¢).

52. TOTAL FLOW TIME 53

Proof. Given a schedule for the original instance, rounding up the job sizes adds at most n-eB/n? =
eB/n to the flow time of each job. Similarly rounding up the release dates adds at most ¢ B /n? to
the flow time of each job. Thus, the total flow time is affected by at most 2e B < 2¢Opt. n

Let 7’ denote this rounded instance. By Lemma 5.1 we can assume that all job sizes are integers in the
range [1,n2/¢]. Similarly, as no release date in Z is more than 2n B, and the time is rounded to a multiple
eB/n?, all release dates in I’ are integers in the range [1,n3¢]. We will obtain a schedule S(Z’) with
optimum total flow time for Z’. Clearly, all events (arrivals and departures) under S(Z’) at integral times
in the range [1,2n3/¢]. Also, a schedule S(Z) for Z follows from S(Z’) and that the total flow time under
S(Z) is at most that under S(Z'). To see this, obtain S(Z) from S(Z’) by a scheduling a job in Z only when
the corresponding job in Z” is scheduled. If the job in Z finishes before the corresponding job in Z’ (since
the job in Z’ could be larger), then the scheduler idles for that time. Finally, since the release times for a job
in Z’ is no earlier than the corresponding job in Z, the schedule produced thus is a feasible schedule for Z.
Henceforth, we only consider Z'.

We now describe how to compute an approximately optimal schedule (i.e. up to a factor of 1 + O(e))
for Z'. We say that a job with size p; lies in class i, iff (1+¢€)"~! < p; < (1+¢)®. This divides the jobs into
O(% logn) classes. Note that the class of a job depends only on its initial processing time and hence does
not change with time. Consider the optimum algorithm. Let Sy (i, t) denote the jobs of class 7 on machine j
which are alive at time ¢. The lemma below gives an important property of the optimal schedule.

Lemma 5.2 Forall k = 1,... ,m and at all times ¢, at most one job in Si(7,t) has a remaining

processing time that is not in the range (1 + €)= and (1 + ¢)°.

Proof. As the shortest remaining processing time (SRPT) is optimal for minimizing the total flow
time on a single machine, we can assume that on each machine, the jobs assigned to it are processed
in the SRPT order.

Let us consider the class 4 jobs on a machine k. Since at any time we execute the job with
least remaining time, if a job from this class is executed, clearly it must be the one which has the
least remaining time in Sy (7,). Suppose for the sake of contradiction that there are two jobs with
remaining time less than (1 + €)1, say J; and .J,. Consider the time ¢ when .J; was worked upon
and its remaining became less than (1 + €)*~1. If J5 had remaining time less then (1 + ¢)*~! at ¢/,
then .J; should not have been worked upon (according to SRPT). If .J5 has not arrived by ¢’ or its
remaining time was greater than (1 + ¢)i~!, then the algorithm must have worked on .J, during ¢’
and the current time even though .J; has remaining processing time less then Js. n

We now define the state of the algorithm Q(t) at time ¢. For each class 7 and each machine j, we store
% + 1 numbers: the first % are the remaining processing times of the % jobs in S;(i,t) with the largest
remaining processing time; the last entry is the sum of the remaining processing times of the rest of the jobs
in S;(4,t). Notice that as each job has size at most n? /e, there are at most (n?/e)1/¢ = O(n?/¢) possible
choices for the first 1 /e entries and n?3 /e possible choices for the sum of remaining sizes. Finally, since
there there are at most O(log n/¢) classes and m machines, the total number of distinct states at any step is
at most nO(mlogn/e),

The following lemma shows how this information helps us in estimating the number of unfinished jobs
at any point of time.

54 CHAPTER 5. MINIMIZING FLOW TIME ON MULTIPLE MACHINES

Lemma 5.3 We can estimate the number of jobs in the system at time ¢ to within a factor of (1 + 2¢)
using the information in Q(t).

Proof. If there are fewer than 1/e jobs in level i, we know their number precisely because we store
their remaining processing times precisely. Let us now consider the case when there are more than
1/€ jobs in some level i.

Suppose at first that the remaining processing times of all these jobs lies between (1 +¢)*~! and
(1+ €)%, Then, by assuming that all the jobs have size (1 + ¢)*~! and computing the number of jobs
using the total remaining processing time, our estimate is off from the correct number by at most a
factor of (1 + €).

Finally, as at most one job in every level i lies outside the range (1 + ¢)*~! and (1 + ¢)*. Thus
our estimate above could be off by another job. However, there are at least 1 /e unfinished jobs. Thus
we get an estimate within a factor of (1 + 2e). n

Thus the algorithm to compute the approximately optimal schedule will be a large dynamic program
which will have a state for each time unit and each of the possible configurations of Q(¢) at that time. Thus

there will be at most O(n3 /) times nO(m1ogn/<*) states. As usual, with each state we store the value of the
least total flow time incurred to reach that state.

To complete the description of the dynamic program, we only need to show how to update the state of
the algorithm with time. When a new job arrives, we have m choices for the machine to which this job can
be assigned. Once a machine is decided, the size of the job determines the class to which it belongs. Also,
it is straightforward to update the state, as either the job is added to the first 1/¢ jobs in S} (i, t), or else if it
is smaller that the 1/ largest jobs in its class, then its size is added to the (1 /e + 1)*" entry. Now consider
the case when there are no arrivals. When the algorithm works on a job in level i on machine j, if there are
1/e or fewer jobs in level ¢, then we simply decrement the smallest of the remaining time entries by 1. Else,
if there are more than 1/¢ jobs, we decrement the total remaining processing time entry by 1. In general, we
will not know in which level the job with the least remaining processing time is present (as we do not have
this information in our state description). However, we can try out all possible O(logn/¢) choices for the
different levels for each machine ;5. The we have O(logn/e)™ total possible choices at each time step.

Finally, have computed the approximately optimal value of flow time, it is straightforward to compute
the path used to reach this value, which gives us the (1 + 2¢) optimal schedule for Z’. Finally by Lemma 5.1
this implies that

Theorem 5.4 The above algorithm gives a (1 + ¢) approximation for the problem of minimizing
total flow time on m identical machines and runs in time nO(mlogn/c*),

5.3 Extensions

We now give an algorithm for the more general case when the machines are unrelated and our measure is
weighted flow time. Let p} denote miny, pj;. Thus p; denotes the minimum size of j among all the machines.

LetQ = Zj pj, and suppose that the weights are integers in the range 1, ... , IW. For unrelated machines,
we define B = max;-; p} /p;f. Note that if the machines are identical, this definition of B corresponds
exactly to the maximum of minimum job size ratio. Also it is easily seen that) < nB min, p}.

5.3. EXTENSIONS 55

We will give an algorithm that produces a (1 + €) approximate solution and has running time
pO(mmin(lognB.lognW)?/*) - Qur algorithm will consist of two different algorithms. First is an algorithm
which has running time n°(" log” nW/€*) for the case when W < B. The other algorithm has running time

nO(mlog® nB/€) for the case when W > B

We first consider the case when W < B. By assigning each job to the machine where it takes the least
time, it is clear that nWW Q is an upper bound on Opt. Similarly, @ is a lower bound on Opt. Hence we will
assume that our algorithm simply never assigns a job .J; to machine & if p;;, > 2nW Q.

Next, as in lemma 5.1, it easily follows that rounding each p;; and release date up to the next multiple
of e /(Wn?) affects the total flow time of each job by at most eQ /W n. Since the maximum weight of any
job is at most W, this affects the total weighted flow time by at most eQ < eOpt. Moreover, we can also
assume that the release date of any job is at most 2nQ) (otherwise the problem can be decomposed into two

disjoint instance). Thus after rounding the release dates and sizes to multiples of €QQ/(Wn?), our algorithm
needs to consider only O(n3W/¢) time steps.

Next we round up the weights to powers of (1 + ¢€). Clearly, this affects the solution by at-most a (1 + ¢)
factor. Finally, observe that in the optimal schedule for this rounded instance, if we consider a particular
machine and restrict our attention to time intervals when jobs from a particular weight class are executed,
then these jobs are executed in the SRPT order.

With these observations we can directly give an algorithm based on the ideas in Section 5.2. For each
machine and each weight class, we maintain the states under SRPT. Since there are O(log IW/e) weight
classes, and there are O(lognW /e) size classes the number of states at each time step is bounded by
nO(mlog® nW/e%) " \\hen a job arrives, there are m choices corresponding to the machines it can be as-
signed. If there are no arrivals, for each machine, we need to decide which weight class to work on, and
with each weight class which size class to work on. Thus there (log? nWW /€)™ choices to choose from
at each time step. Finally, since all the release dates and sizes are integers between 1 and O(n3W/e), our
algorithm can be implemented directly as a dynamic program of size Wn3 /e times nO(mlog® nW/e%) " Thig
gives the desired bound on the running time.

We now consider the case when B < W. Defining @ as previously we see that again Opt is at most
n@QW. Since @ < nBmin, p}, it follows that each job has size at least) /nB on each machine. Finally,
since the maximum weight is W, it follows that Opt is also lower bounded by W@Q /nB.

Our algorithm now is as follows. We only consider jobs with weights between eI /n2B and . Jobs
with weight below 1/ /n2 B will be added to the schedule arbitrarily. Since each job has flow time at most
@, this adds at most eW Q/nB < eOpt. Similarly, rounding the job sizes and release dates to multiples of
€Q/n> B affect the total weighted flow time by at most n2W - eQ/n3B = eWQ/nB < ¢Opt.

Thus after rounding we have an instance where the job sizes and release dates are integers between 1 and
O(n?B) and the job weights are in the range W/n?B and W. Thus there are O(logn B /¢) weight classes
and O(log nB/¢) sizes classes. Applying the algorithm described above for the case W' < B and observing

that all release dates are bounded by n.3, we get that the running time of the algorithm is n ©(m lognB?/€%)
Thus we have shown that

Theorem 5.5 There is an algorithm for minimizing weighted flow time on multiple machines that
produces a (1 + ¢) approximate solution and runs in time nO(mmin(log nB logni)?/e%)

56 CHAPTER 5. MINIMIZING FLOW TIME ON MULTIPLE MACHINES

5.4 Dependence on the number of machines

It is known that both total unweighted flow time and maximum flow time on unrelated machines are AP X’ -
Hard for arbitrary m [40, 54]. However, an approximation scheme with a polynomial dependence on m
might be possible for identical parallel machines. We show a related but weaker negative result that, if m
is a part of the input, minimizing total weighted flow time is AP X-hard, even when both B and W are
polybounded in n.

Consider an instance of 3-Partition (SP15) in [31]. This consists of a set A of 3m elements, an integer
bound B > 0; for each = € A a integer size s(z) s.t. B/4 < s(x) < B/2ands.t. Y _,s(x) =mB. The
question is whether A can be partitioned into m disjoint sets A1, Ao, ... , A,, suchthat, foreach1 < i < m,
A; has 3 elements and > 4. s(a) = B. 3-Partition is known to be strongly A"P-Complete. In particular,
it is AN"P-complete for B = O(m?).

Given an instance of 3-Partition, we transform it as follows. There are m machines. Each elementz € A
corresponds to a job, with size s(z), weight m and is released at time ¢ = 0. Next at each time instance
t=B+i/m? fori=0,1,2,...,Bm?> m jobs each with size 1/m? and weight 1/m are released. Thus
the total number of these small jobs is BmS.

If the instance of 3-partition has a solution, then we construct a schedule as follows: We schedule the
jobs that arrive at ¢ = 0 according to the solution to the instance of 3-partition. Since each job finishes by
time ¢t = B, we can schedule the jobs of weight 1/m as they arrive. Now, each of the weight m job has flow
time at most 3B, and each of the BmS jobs of weight 1/m has flow time 1/m?2. Thus the total weighted
flow time is 3m - 3B - m + 1/m? - Bm® = O(Bm?).

On the other hand if there is no solution to the 3-partition instance, there is at least one weight m job
(call it J) unfinished by time B. In particular, the job J has at least one unit of work unfinished by time B.
Consider the situation by time Bm? /2, if J is still there, it contributes at least Bm*/2 to the flow time, else
there are least m? jobs of size 1/m? and weight 1/m piled up during the time interval [Bm? /2, Bm3], thus
contributing O(Bm?) to the total weighted flow time.

As B = O(m*)andand W = m? and n = BmS = O(m!'%), W and B are polybounded in the number
of jobs, and we have an inapproximability factor of Q(n'/10).
This implies that,

Theorem 5.6 There does not exist an n°(Y) approximation for minimizing weighted flow time on
multiple machines if m is a part of the input, even if W and B are polynomially bounded in n.

As a corollary, we also obtain that,

Theorem 5.7 There cannot exist an algorithm for weighted flow time on multiple machines (with
W and B polynomially bounded in ») that runs in time 27°vlos(n:m) and is an n°(1) approximation
unless NP C DTTZME (npolvlos(n)),

This shows that for the problem of minimizing of minimizing the total weighted flow time on multi-
ple machines (Theorem 5.5), the dependence of the running time on m in our algorithm is unlikely to be
improved.

55. MAXIMUM FLOW TIME 57

5,5 Maximum Flow Time

In this section we consider minimizing the maximum flow time on m unrelated machines. We give an

algorithm that runs in time O(n"/¢) and produces a (1 + €) approximation. We begin with some easy
observations.

1. As FIFO s optimum for minimizing the maximum flow time on a single machine. It follows that for
every machine, the jobs assigned to that machine are executed in FIFO order.

2. As in Section 5.3, let p; denote miny p;; and @ = >_; p;. By assigning each job to the machine
where it takes the least time, it is clear that () is an upper bound on Opt. Furthermore, we can assume
that all the release dates are at most @ and all jobs finish execution by time 2@ (else, the problem
can be reduced to two smaller problems). Finally, since there are n jobs, there is some j such that
p; > @ /n and hence this job has size at least (2 /n on every machine. Thus @/n is a lower bound on

Opt.

3. Let § > 0 be an arbitrary real number. Note that rounding up the release date of each job to the next
multiple of § increases the maximum flow time by at most §. Similarly, rounding up each p;; to the
next multiple of § and increase the maximum flow time by at most nd.

We now describe the algorithm. If some p;. > 2Q for some j, %k, we just set p;, = oo. Choose
§ = eQ/4n?. Round each p;;, and r; up to the next multiple of 5. Time increases in multiples of &, and all
events take place only at multiples of 5. Thus, we need to consider only O(n?) time steps.

The algorithm maintains a state of the (val, t, w1, ws, ... ,wy,,) Where ¢ denotes the time, w; represents
the total work present on each machine j, 1 < j < m at time ¢, and val is minimum value of the maximum
flow time that can be achieved at time ¢ and for the particular values of w;.

Itis trivial to update the state of the algorithm, at each time step or event. If there is an arrival J; at time
t, and if the algorithm assigns it to machine j, then the algorithm updates the state as w; = w; + p;; and
val = max{val, w; + p;; }. If no arrival takes place, the algorithm simply decrements w; for each non-zero
ws.

Thus the algorithm is a dynamic program of size O(n?/e) times n©(™/€) and updating an entry for a
state requires O(m) time. Thus we have that

Theorem 5.8 The maximum flow time on multiple unrelated machines and arbitrary release dates
can be approximated to within a factor of (1 + ¢) in time nO(™/¢).

5.6 Open Problems

The outstanding open problem is the following:

Open Problem 5.8 Is there a constant factor polynomial time approximation algorithm, or even
better, a PTAS, for minimizing the total flow time on multiple identical machines?

The above problem is open even for m = 2.

Our QPT AS for a constant number of machines suggests that a PTAS is likely for this problem. How-
ever, it could be the case that there is no polynomial time approximation scheme, or not even a constant
factor approximation algorithm, when m is part of the input. Settling this would be interesting.

58

CHAPTER 5. MINIMIZING FLOW TIME ON MULTIPLE MACHINES

Open Problem 5.9 Is the problem of minimizing unweighted flow time on multiple machines
AP X-Hard, if m is a part of the input?
For minimizing the maximum flow time, the obvious open question is

Open Problem 5.10 Does there exist a polynomial time approximation scheme for minimizing the
maximum flow time on m identical machines when m is a part of the input?

Chapter 6

Scheduling for Flow-Time with Admission
Control

6.1 Introduction

In this chapter, we consider the problem of scheduling on a single machine to minimize flow time where
the jobs can be cancelled at some cost. Formally, for each job, the processor pays for each time unit the
job is present in the system, and additionally a cancellation cost is charged if this job is ever cancelled.
For instance, if a job arrives at time 0, and then at time 3 we decide to cancel it, we pay ¢ + 3, where c is
the job cancellation cost of this job. Equivalently, at each time step we pay for the number of unfinished
jobs currently in the system plus any cancellations we decide to perform. One motivation for this problem
arises from trying to formalize the scheduling decisions faced by a person in real life, where one also has
the flexibility to accept or reject a request. Ideally, one would like not to have too many jobs on ones list of
things to do (as this causes jobs to be delayed), or equivalently, one would like to have a small flow time,
and rejecting some fraction of jobs might be necessary for this to happen (but of course one cannot ignore
all work one is asked to do).

We also consider a more strict measure called job-idle time. In the job-idle time measure, we pay at
each time step for the number of jobs currently in the system minus one (the one we are currently working
on), or zero if there are no jobs in the system. Because job idle time is smaller than flow time, it is a strictly
harder problem to approximate, and can even be zero if jobs are sufficiently well-spaced. Note that for the
flow time measure, we can right away reject jobs that have size more than ¢, because if scheduled, these add
at least c to the flow-time. However, this is not true for the job-idle time measure.

One issue with our definition of job-idle time is that it gives the machine credit for time spent on pro-
cessing jobs that are later rejected. For example, if we get a job at time 0, work on it for 3 time units, and
reject it at time 5, we pay ¢ + 2 rather than ¢ 4+ 5. A natural alternative would be to define the cost so that
no credit is given for time spent processing jobs that end up getting rejected. Unfortunately, that definition
makes it impossible to achieve any finite competitive ratio. In particular, if a very large job arrives at time
0, we cannot reject it since it may be the only job and Opt would be 0; but, then if unit-size jobs appear at
every time step starting at time t¢c, we have committed to cost tc whereas Opt could have rejected the big
job at the start for a cost of only c. In any case, our definition of job-idle time is a strictly harder measure to
approximate than flow time, and in some cases it produces cleaner results.

Our results are organized as follows: In section 6.2, we first consider a simpler problem where all the jobs
have the same rejection costs. We call this the Uniform Penalty Model. For this case, we give a 2-competitive

59

60 CHAPTER 6. SCHEDULING FOR FLOW-TIME WITH ADMISSION CONTROL

online algorithm for flow time and job-idle time with penalty. We also give a matching lower bound for job-
idle time. In Section 6.3, we consider the setting where jobs have weights and we consider weighted flow
time. We look at this problem in two models: In the first model, the cancellation costs are identical no matter
what the weight of the jobs. In the second model, the rejection costs are proportional to the job’s weight.

For both these cases we give an O(log? 1W) competitive algorithm. In Section 6.4, we consider the case
when jobs could have arbitrary penalties. We show that there cannot be any randomized algorithm which is

n°(1) competitive in this setting. We thus consider the problem in the resource augmentation model. In fact,
we consider a more general problem where we allows jobs to have arbitrary weights and arbitrary rejection
penalties. For this case we give a (1 + ¢)-speed, O(%(log W + log C)?)-competitive algorithm, where C' is
the ratio between the maximum to minimum rejection penalty.

Related Previous Work

Admission control has been studied for a long time in circuit routing (see, e.g., [19]). In these problems, the
focus is typically on approximately maximizing the throughput of the network. In scheduling problems, the
model of rejection with penalty was first introduced by Bartal et al [12]. They considered the problem of
minimizing makespan on multiple machines with rejection and gave a 1 + ¢ approximation for the problem
where ¢ is the golden ratio. Variants of this problem have been subsequently studied by [68, 39]. Seiden
[68] extends the problem to a pre-emptive model and improves the ratio obtained by [12] to 2.38.

More closely related to our work is the model considered by Engels et al [29]. They consider the problem
of minimizing weighted completion time with rejections. However, there are some significant differences
between their work and ours. First, their metric is different. Second, they only consider the offline problem
and give a constant factor approximation for a special case of the problem using LP techniques.

Preliminaries

To get a feel for this problem, notice that we can model the classic ski-rental problem as follows. Two unit-
size jobs arrive at time 0. Then, at each time step, another unit-size job arrives. If the process continues for
less than ¢ time units, the optimal solution is not to reject any job. However, if it continues for ¢ or more time
units, then it would be optimal to reject one of the two jobs at the start. In fact, this example immediately
gives a factor 2 lower bound for deterministic algorithms for job-idle time, and a factor 3/2 lower bound for
flow time.

To get a further feel for the problem, consider the following online algorithm that one might expect to
be constant-competitive, but in fact does not work: Schedule jobs using SRPT, but whenever a job has been
in the system for more than ¢ time units, reject this job, incurring an additional ¢ cost. Now consider the
behavior of this algorithm on the following input: m unit size jobs arrive at time 0, where m < ¢, and
subsequently one unit size job arrives in every time step for n steps. SRPT (breaking ties in favor of jobs
arriving earlier) will schedule every job within m time units of its arrival. Thus, the proposed algorithm
does not reject any job, incurring a cost of mn, while Opt rejects m — 1 jobs in the beginning, incurring a
cost of only n + (m — 1)c. This gives a competitive ratio of m as n — oo.

We now state some properties of the optimal solution (Opt) which will be useful in deriving our results.

Fact 6.1 If Opt rejects a job j, it is rejected the moment it arrives.

Fact 6.2 Given the set of jobs that Opt rejects, the remaining jobs must be serviced in the SRPT
order.

6.2. AN ONLINE ALGORITHM 61

Fact 6.3 In the uniform penalty model, if a job j is rejected, then it must be the job that currently
has the largest remaining time.

6.2 An Online Algorithm

In this section, we give online algorithms for minimizing flow time and job idle time in the uniform penalty
model.

6.2.1 Minimizing Flow Time

Flow time of a schedule can be expressed as the sum over all time steps of the number of jobs in the system
at that time step. Let ¢ be a counter that counts the flow time accumulated until the current time step. The
following algorithm achieves 2-competitiveness for flow time with rejections:

The Online Algorithm. Starting with ¢ = 0, at every time step, increment ¢ by the number of active
jobs in the system at that time step. Whenever ¢ crosses a multiple of ¢, reject the job with the largest
remaining time. Schedule active jobs in SRPT order.

Let the schedule produced by the above algorithm be .S and the set of rejected jobs be R.
Lemma 6.4 The cost of the algorithm is < 2¢.

Proof. This follows from the behavior of the algorithm. In particular, £'(S) is equal to the final
value in the counter ¢, and the total rejection cost c|R| is also at most ¢ because |R| increases by
one (a job is rejected) every time ¢ gets incremented by c. n

The above lemma implies that to get a 2-approximation, we only need to show that ¢ < Opt. Let us use
another counter) to account for the cost of Opt. We will show that the cost of Opt is at least) and at every
point of time ¢ > ¢. This will prove the result.

The counter ¢ works as follows: If Opt rejects a job, 1 gets incremented by c. Else, if ¢ = 1, then
¢ and v increase at the same rate (i.e. ¢ stays equal to ¢). Else v stays constant. By design, we have the
following:

Fact 6.5 At all points of time, ¢ > ¢.

Letk = L%J - L%j. Let n, and n,, denote the number of active jobs in Opt and A respectively. Arrange
and index the jobs in Opt and A in the order of decreasing remaining time. Let us call the & longest jobs of
A marked. We will now prove the following:

Lemma 6.6 Atall timesn, > n, — k.

Lemma 6.6 will imply Opt > 4 (and thus, 2-competitiveness) by the following argument: Whenever
increases by ¢, Opt spends the same cost in rejecting a job. When) increases at the same rate as ¢, we have
that v = ¢. In this case £k = 0 and thus Opt has at least as many jobs in system as the online algorithm.
Since the increase in ¢ (and thus 1)) accounts for the flow time accrued by the online algorithm, this is less
than the flow time accrued by Opt. Thus the cost of Opt is bounded below by ¢ and we are done.

We will prove Lemma 6.6 by induction over time. For this we will need to establish a suffix lemma. We
will ignore the marked jobs while forming suffixes.

62 CHAPTER 6. SCHEDULING FOR FLOW-TIME WITH ADMISSION CONTROL

Let P,(7) (called a suffix) denote the sum of remaining times of jobs i, ... ,n, in Opt. Let P,(i) denote
the sum of remaining times of jobs i + k,... ,ne in A (4,... ,n, — k among the unmarked jobs). For
instance, Figure 6.1 below shows the suffices for i = 2 and k£ = 2.

Algorithm A Opt
Marked Jobs = N \
k=2 SN —
B] 7] PJZ) ={Total rem.
1] sizeof jobs2... ng}
P(2)={Totd | — -
rem. size of -
jobsk+2...ng n=6 n=5

Jobs arranged in decreasing order of remaining processing time

Figure 6.1: Notation used in proof of Theorem 6.9

Lemma 6.7 At all times, for all i, P, (i) < P,().

Proof. (of Lemma 6.6 using Lemma 6.7) Using i = n, —k, we have P,(n,—k) > P,(n,—k) > 0.
Therefore, n, > n, — k. n

Proof. (Lemma 6.7) We prove the statement by induction over the various events in the system.
Suppose the result holds at some time ¢. First consider the simpler case of no arrivals. Furthermore,
assume that the value of k& does not change from time ¢ to ¢ + 1. Then, as A always works on the job
nq, P, (i) decreases by 1 for each i < n, — k and by 0 for i > n, — k. Since P,(i) decreases by at
most 1, the result holds for this case.

If the value of k& changes between ¢ and ¢ + 1, then since there are no arrivals (by assumption),
it must be the case that A rejects some job(s) and k& decreases. However, note that rejection of jobs
by A does not affect any suffix under A (due to the way P, (%) is defined). Thus the argument in the
previous paragraph applies to this case.

We now consider the arrival of a job J at time ¢. If J is rejected by Opt, the suffixes of Opt
remain unchanged and the value of k increases by 1. If J gets marked under A, none of the suffixes
under A change either, and hence the invariant remains true. If J does not get marked, some other
job with a higher remaining time than J must get marked. Thus the suffixes of A can only decrease.

If J is not rejected by Opt, we argue as follows: Consider the situation just before the arrival of
J. Let C be the set of unmarked jobs under A and D the set of all jobs under Opt. On arrival of J,
clearly J gets added to D. If J is unmarked under A it gets added to C else if it gets marked then
a previously marked job J’' € A, with a smaller remaining time than J gets added to C. In either
case, the result follows from Lemma 6.8 (see Proposition A.7, Page 120 in [56] or Page 63 in [36]),
which is a result about suffixes of sorted sequences, by settingC =C, D =D, d’ = Jand ' = J or
J'. L]

Lemma 6.8 LetC = {c; > o > ...} and D = {d; > ds > ...} be sorted sequences of non-
negative numbers. We say thatC < Dif 3-..,¢c; <> 5, d;foralli =1,2,.... LetCU {c'} be

6.2. AN ONLINE ALGORITHM 63

the sorted sequence obtained inserting ¢’ inC. Then,C < Dand ¢ <d = CU{d} < DU {d'}.

Thus we have the following theorem:

Theorem 6.9 The above online algorithm is 2-competitive with respect to Opt for the problem of
minimizing flow time with rejections.

6.2.2 Minimizing Job Idle Time

Firstly note that the job idle time of a schedule can by computed by adding the contribution of the jobs
waiting in the queue (that is, every job except the one that is being worked upon, contributes 1) at every time
step.

The same online algorithm as in the previous case works for minimizing job idle time with the small
modification that the counter ¢ now increments by the number of waiting jobs at every time step. The
analysis is similar and gives us the following theorem:

Theorem 6.10 The above online algorithm is 2-competitive with respect to Opt for the problem of
minimizing job idle time with rejections.

6.2.3 Varying Server Speeds

For a researcher managing his/her to-do list, one typically has different amounts of time available on differ-
ent days. We can model this as a processor whose speed changes over time in some unpredictable fashion
(i.e., the online algorithm does not know what future speeds will be in advance). This type of scenario can
easily fool some online algorithms: e.qg., if the algorithm immediately rejected any job of size > ¢ according
to the current speed, then this would produce an unbounded competitive ratio if the processor immediately
sped up by a large factor.

However, our algorithm gives a 2-approximation for this case as well. The only effect of varying pro-
cessor speed on the problem is to change sizes of jobs as time progresses. Let us look at the problem from
a different angle: the job sizes stay the same, but time moves at a faster or slower pace. The only effect
this has on our algorithm is to change the time points at which we update the counters ¢ and). However,
notice that our algorithm is locally optimal: at all points of time the counter ¢ is at most the cost of Opt,
and ¢ < v, irrespective of whether the counters are updated more or less often. Thus the same result holds.

6.2.4 Lower Bounds

We now give a matching lower bound of 2 for waiting time and 1.5 for flow time, on the competitive ratio
of any deterministic online algorithm.

Consider the following example: Two jobs of size 1 arrive at ¢ = 0. The adversary gives a stream of unit
size jobs starting at ¢ = 1 until the algorithm rejects a job.

Let x be the time when the algorithm first rejects a job. In the waiting time model, the cost of the
algorithm is « + c. The cost of the optimum is min(c, x), since it can either reject a job in the beginning, or
not reject at all. Thus we have a competitive ratio of 2.

The same example gives a bound of 1.5 for flow time. Note that the cost of the online algorithm is
2x + ¢, while that of the optimum is min(z + ¢, 2z).

64 CHAPTER 6. SCHEDULING FOR FLOW-TIME WITH ADMISSION CONTROL

Theorem 6.11 No online algorithm can achieve a competitive ratio of less than 2 for minimizing
waiting time with rejections or a competitive ratio of less than 1.5 for minimizing flow time with
rejections.

6.3 Weighted flow time with weighted penalties

In this section we consider the minimization of weighted flow time with admission control. We assume that
each job has a weight associated with it. Without loss of generality, we can assume that the weights are
powers of 2. This is because rounding up the weights to the nearest power of 2 increases the competitive
ratio by at most a factor of 2. Let a1, ao, ... ,a; denote the different possible weights, corresponding to
weight classes 1,2, ... , k. Let W be the ratio of maximum to minimum weight. Then, by our assumption,
k is at most log W. We will consider the following two models for penalty. The general case of arbitrary
penalties is considered in the next section.

Uniform penalty: Jobs in each weight class have the same penalty c of rejection.

Proportional penalty: Jobs in weight class j have rejection penalty ac.

For both these cases, we give an O(log? W) competitive algorithm. This algorithm is based on the

Balanced SRPT algorithm described in Chapter 3, Section 3.4 . We modify their algorithm to incorporate
admission control. The modified algorithm is described below.
Algorithm Description: As jobs arrive online, they are classified according to their weight class. Consider
the weight class that has the minimum total remaining time of jobs. Ties are resolved in favor of higher
weight classes. At each time step, we pick the job in this weight class with smallest remaining time and
schedule it.

Let ¢ be a counter that counts the total weighted flow time accumulated until current time step. For each

weight class j, whenever ¢ crosses the penalty c (resp. a;c), we reject a job with the largest remaining time
from this class.
Analysis: We will imitate the analysis of the weighted flow time algorithm. First we give an upper bound
on the cost incurred by the algorithm. Let £'(.S) be the final value of counter ¢. The cost of rejection, c|R|,
is bounded by k¢, because rejections | R;| in weight class j increase by 1 every time ¢ increases by c;. Thus
we have,

Lemma 6.12 The total cost of the algorithm is < (k + 1)¢

In order to lower bound the cost of optimal offline algorithm, we use a counter . The counter v works
as follows: Whenever Opt rejects a job of weight class j, ¢ gets incremented by c;. At other times, if
¢ = 1, then ¢ and v increase at the same rate (i.e. v stays equal to ¢), otherwise, v stays constant. By
design, we have the following:

Fact 6.13 At all points of time, v > ¢.

Now we show that ¢/ is a lower bound on k - Opt. Letm; = |[2] — [;2]. In both Opt and our
J J
algorithm, arrange active jobs in each weight class in decreasing order of remaining processing time. We
call the first m; jobs of weight class j in our algorithm as marked. Now ignoring the marked jobs, we can
use Theorem 3.5 from Chapter 3. We get the following:

6.4. WEIGHTED FLOW TIME WITH ARBITRARY PENALTIES 65

Lemma 6.14 The total weight of unmarked jobs in our algorithm is no more than k times the total
weight of jobs in Opt.

Proof. The proof is essential similar to that of Lemma 3.4. However, due to rejections, we need to
check a few more cases.

We first restate that lemma in terms suitable for our purpose. Let B(j,1) and P(j,[) denote
a prefix of the jobs in our algorithm and Opt algorithm respectively. Then, we define the suffixes
B(j,1) = J, — B(j,1) and P(j,1) = J, — P(j,1), where J, and J, are the current sets of jobs in
our algorithm and the Opt algorithm respectively.

Lemma 6.15 ([7]) The total remaining time of the jobs in the suffix B(j,1) is smaller than
the total remaining time of the jobs in P(j,1).

We now consider the cases that are not handled by Bansal et al.’s proof. If a job of weight class
J arrives and Opt rejects it, then the set of jobs with Opt does not change. On the other hand, m
increases by at least 1. In our algorithm, if the new job is among top m2; jobs in its weight class, then
it is marked and set of unmarked jobs remains the same. If the new job does not get marked, the
suffixes of our algorithm can only decrease, since some other job with higher remaining time must
get marked.

Similarly, when our algorithm rejects a job of class j, then the number of marked jobs m
reduces by 1. However, the rejected job had highest remaining time in the class j. Hence none of
the suffixes change.

Thus, we have established that the suffixes in our algorithm are smaller than the corresponding
suffixes in the Opt algorithm at all times. The argument from Theorem 3.5 gives us the result that
weight of unmarked jobs in our algorithm is at most & - Opt. u

To finish the argument, note that when the Opt algorithm rejects a job of weight class j, Opt increases
by c;. And v increases by kc;. On the other hand, when) and ¢ increase together, we have 1) = ¢. There
are no marked jobs, since m; = 0 for all 5. The increase in « per time step is same as the weight of all
jobs in our algorithm. As we saw in the Lemma 6.14, this is at most & times the total weight of jobs in Opt
algorithm. Thus, the total increase in ¢ is bounded by & - Opt.

In conjunction with Lemma 6.12, this gives us that

Theorem 6.16 For both the “Proportional Penalty Model”” and the “Uniform Penalty Model”,

the algorithm described in Section 6.3 is an O(log? W) competitive algorithm for minimizing the
weighted flow time with rejection costs.

6.4 Weighted Flow time with Arbitrary Penalties

In this section we will consider the case when different jobs have different weights and different penalties
of rejection. First we will show that even for the simpler case of minimizing unweighted flow time with two

different penalties, no algorithm can obtain a competitive ratio of o(ni) or o(C%). A similar bound holds
even if there are two different penalties and the arrival times of high penalty jobs are known in advance.
Then we will give an online algorithm that achieves a competitive ratio of O(%(log W + log C)?) using a
processor of speed (1 + ¢).

66 CHAPTER 6. SCHEDULING FOR FLOW-TIME WITH ADMISSION CONTROL

6.4.1 Lower Bounds
Theorem 6.17 For the problem of minimizing flow time or job idle time with rejection, and arbitrary

penalties, no (randomized) online algorithm can achieve a competitive ratio of o(ni) or o(C%).
Even when there are only two different penalties and the algorithm has complete knowledge of the
high penalty jobs (i.e., it knows the release times and sizes of these jobs in advance), no online

(randomized) algorithm can achieve a competitive ratio of o(n%).

Proof. Consider the following scenario for a deterministic algorithm. The adversary gives two
streams, each beginning at time ¢ = 0. Stream1 consists of k2 jobs, each of size 1 and penalty k2.
Stream2 consists of & jobs each of size k and penalty infinite.

Depending on what the online algorithm does by time &2, the adversary will decide whether it
should give a third stream of jobs. Stream3 consists of m = k* jobs, each of size 1 and penalty
infinite.

Let 3 denote the total remaining work of jobs of Stream2 that are left at time ¢t = k2. The
adversary gives Stream3 if y > k2/2.

First consider the case when y > k2/2. Observe that at time ¢t = k2, there are at least k/2 jobs
remaining. At this time, the online algorithm will work on jobs of Stream3 (using SRPT, since none
of these will be rejected). Thus we get a cost of at least mk/4 = k°/4. On the other hand, the
optimal offline algorithm rejects all the jobs of Stream1 and finishes jobs of Stream2 during the first
k? time steps. After time ¢ = k2 it can work on Stream3. Thus the total cost incurred by Opt is
k-k+k%-k2+m-1=0(k*). Thus, in this case the ratio of the optimal cost to the online cost is
at Q(k).

Second, if y < k2/2, the adversary does not give Stream 3. Note that if y < k2 /2, this means
that algorithm has spent more than k2 /2 time on Stream2, so less than k2 /2 jobs of Stream 1 could
have been finished by ¢+ = k2. Now suppose that the online algorithm rejects more than k2 /4 jobs.
Then it incurs a penalty of at least k% /4. On the other hand, if it rejects fewer than k2 /4 jobs, then
at least k2 /4 jobs remain at time &2, and finishing these adds up at least %(%)2 to the flow time. So
the online algorithm incurs at least a cost of Q(k4). In this case, the offline algorithm can first finish
Stream1 and then work on Stream2. Note that flow time of each Stream2 job is k2 + k. Thus the
total cost here is k? - 1 + k - (k* + k) = O(k3), which again implies a ratio of Q(k) as compared
with the optimal offline.

To obtain a lower bound on competitive ratio in terms of C, we simply replace the infinite penalty
by a penalty of k* (thus, both jobs is Stream2 and Stream3 have a penalty of k£*). Note that if the
online algorithm rejects Q(k) jobs of Stream2 (penalty k%), then it incurs a cost of at least (k%)
and we get a a lower bound of &. If it does not reject Q(k) jobs of Stream2, the argument above
works exactly like before. Now since C' = k*/k? = k2, we get a lower bound of Q(C'/?). Clearly,
the lower bound extends to the randomized case, as the adversary can simply send Stream3 with
probability 1/2.

Now consider the case of known high penalty jobs. We consider an instance with two types
of penalties: k2 and infinity. The sizes and arrival times of the infinite penalty jobs are known
in advance. Our example uses O(k®) jobs, and gives a lower bound of Q(k) = Q(n'/°) on the

6.4. WEIGHTED FLOW TIME WITH ARBITRARY PENALTIES 67

competitive ratio.

Let Stream1 consist of k2 jobs of size 1 and penalty k2, and Stream?2 consist of & jobs of size
k and infinite penalty, as before. Both arrive at time ¢ = 0. We redefine Stream3 to consist of &°

jobs, each of size 1/k and penalty k2. Note that the only infinite penalty jobs are in Stream 2, which
by assumption are known to the algorithm in advance. Jobs in both Stream1 and Stream3, have the
same penalty.

As before, it is easy to see that if Stream3 is not given, the optimum cost is O(k3). If the stream
is given, it is optimal to reject all jobs in Stream1 and work only on Stream2 and Stream3, which
gives a cost of O(k4).

In the online scenario, the adversary gives Stream3 at time t = k2, if and only if the total
remaining work of Stream2 jobs at that time is more than k2 /2. As before, if the remaining work of
Stream? is less than k2/2, then the algorithm has either rejected Q(k?) jobs of Stream1, or delays
them by Q(k2) time. In either case, the cost of the algorithm is at least Q(k*), implying a competitive
ratio is at least (k). If the remaining work of Stream2 is greater than k2 /2 and Stream3 is given,
then either Q(%3) jobs of Stream3 need to be rejected, giving a penalty of Q(k®), or else, Q(k) jobs
of Stream? are delayed for the duration of Stream3 i.e. Q(k*), which gives a cost of 2(k°). Thus,
the ratio is again at least (k). L]

6.4.2 Algorithm with Resource Augmentation

Now we will give a resource augmentation result for the weighted case with arbitrary penalties. Consider
first, a fractional model where we can reject a fraction of a job. Rejecting a fraction f of job j has a penalty
of fc;. The contribution to the flow time is also fractional: If an f fraction of a job is remaining at time ¢, it
contributes fw; to the weighted flow time at that moment.

Given an instance of the original problem, create a new instance as follows: Replace a job j of size p;,
weight w; and penalty c;, with ¢; jobs, each of weight w;/c;, size p;/c; and penalty 1.

Using the O(log? W) competitive algorithm for the case of arbitrary weights and uniform penalty, we
can solve this fractional version of the original instance to within O((log W + log C')?). Now we use a

(1 + €) speed processor to convert the fractional schedule back to a schedule for the original metric without
too much blowup in cost, as described below.

Denote the fractional schedule output in the first step by Sr. The algorithm works as follows: If Sr
rejects more than an e/2 fraction of some job, reject the job completely. Else, whenever S works on a job,
work on the same job with a (1 + ¢) speed processor. Notice that when the faster processor finishes the job,
Spstillhas 1 —€/2 —1/(1 + €) = O(e) fraction of the job present.

We lose at most 2/e times more than Sx in rejection penalties, and at most O(1/¢) in accounting for
flow time. Thus we have the following theorem:

Theorem 6.18 The above algorithm is O(2 (log W + log C)?)-competitive for the problem of min-
imizing weighted flow time with arbitrary penalties on a (1 + ¢)-speed processor.

68 CHAPTER 6. SCHEDULING FOR FLOW-TIME WITH ADMISSION CONTROL

6.5 Conclusion

In this chapter, we give online algorithms for the problems of minimizing flow time and job idle time when
rejections are allowed at some penalty, and examine a number of problem variants. There are a couple of
problems left open by our work.

Open Problem 6.11 It would be interesting to close the gap between the 1.5 lower bound and our
2-competitive algorithm for minimizing flow time with uniform penalties.

Open Problem 6.12 Is the offline version of the problem A/P-Hard for arbitrary rejection penalties?

Chapter 7

Results for Completion Time Scheduling via
Flow Time

7.1 Introduction

In this chapter we consider online algorithms for minimizing objective functions which depend on the com-
pletion times of jobs. While a performance guarantee on a measure based on completion time is not as useful
as a guarantee on flow time, this line of research has been of significant academic interest and often leads
to interesting insights and algorithmic techniques. A lot of these results can be found in the nice surveys on
the topic [47, 69, 52, 33, 62, 64]. More recent results which also simplify and unify the previous work can
be found in [1, 32, 24, 66, 57].

The completion time measure is usually quite robust with respect to various perturbations and changes
in the input instance such as changes in the release dates or the processing times of jobs. This robustness has
been exploited to give very general techniques which allow us to convert a result from a restricted setting to
a more general setting. Two previous results which fall in this paradigm are the following:

e Shmoys, Wein and Williamson [70] consider the problem of scheduling jobs on parallel machines to
minimize the maximum completion time in the online non-clairvoyant setting. They give a technique
for converting an existing offline p—approximation for a problem into a 2p—competitive online and
non-clairvoyant algorithm.

e Hall, Symoys and Wein [34] consider the problem of minimizing the weighted sum of completion
times in the online setting. They give a technique that converts a p—approximation algorithm for a
related problem called the Maximum Scheduled Weight Problem (see [34] for the problem definition)
into a 4p— approximation for the online completion time problem.

In this chapter, we give a result of similar flavor. We will give a technique to transform an algorithm for a
flow time problem which possibly uses resource augmentation to obtain an algorithm for the corresponding
completion time problem which does not use resource augmentation. Our transformation carries online
algorithms to online algorithms and also preserves non-clairvoyance. As a corollary of this result we will
obtain O(1)-competitive online clairvoyant and non-clairvoyant algorithms for minimizing the weighted ¢,,

norms of completion time. 1

1The results in the chapter are from [10].

69

70 CHAPTER 7. RESULTS FOR COMPLETION TIME SCHEDULING VIA FLOW TIME

7.2 Preliminaries

We first make precise the notion of a completion time measure corresponding to a flow time measure. Given
a schedule S for n jobs, this determines the flow times f1, ... , f,, and the completion times ¢y, ... , c,. Let
G be some function that takes as input n real numbers and outputs another real number. Given a schedule
S, we define the functions F and C as follows:

F(S)=6G(f1, f2,---, fn)

C(S)=G(c1,c2,... ,¢cn)

For example, if G(x1,... ,2,) = (33, wia?)'/?, then F and C are simply the weighted ¢, norms of flow
time and completion time respectively.
Our technique for converting a flow time result to a completion time result will require two properties
from the function G.
Definition 7.1 A function is said to be scalable if for any positive real number &, G(kx1, ... ,kx,) =
kG(x1,...,x,). In particular, if we scale all the flow times in a schedule by % times then F(S)
increases by k times.

We now motivate the next property that we require from the function G. We first point out a somewhat
surprising property of the £, norms of the completion time measure. While it is easy to see that minimizing
the total weighted flow time (i.e. ¢, norm with p = 1) is equivalent to minimizing the total weighted
completion time, this is not the case for p > 1. In particular, it could be the case that a schedule which is
optimum for the >_. f? measure is sub-optimal for . ¢7 measure and vice versa.

Consider the following instance with just two jobs. The first job has size 10 and arrives at ¢ = 0, the
second job has size 1 and arrives at ¢ = 8. A simple calculation shows that in order to minimize the total
flow time squared, it is better to first finish the longer job and then the smaller job. This incurs a total flow
time squared of 102 + 3% = 109, where as the other possibility which is to finish the small job as soon as
it arrives an then finish the big job incurs a total flow time squared of 112 + 12 = 122. On the other hand,
if we consider completion time squared, finishing the larger job first incurs a cost of 102 + 112. If instead
if finish the smaller job first, this incurs a cost of 92 + 112. Thus the optimal schedule for £, norms of flow
time need not be optimal for £, norms of completion time and vice versa.

Definition 7.2 We say that a function G is p-good if is satisfies the following condition:

Given a problem instance Z and any two arbitrary schedules S and S’ for Z. If F(S) < ¢F(S"),
then C(S) < pcC(S").

7.3 Results

Our main result is the following:

Theorem 7.3 Let G be a p-good function. If there is an s-speed, c-competitive online algorithm with
respect to the measure F (derived from G), then this algorithm can be transformed into another on-
line algorithm which is 1-speed, pcs-competitive with respect to the corresponding completion time
measure C. Moreover, non-clairvoyant algorithms are transformed into non-clairvoyant algorithms.

7.3. RESULTS 71

We now describe the transformation:

Let A be a s-speed, c-competitive algorithm for a flow time problem. Let Z be the original instance
where job J; has release date r; and size p;. The online algorithm (which we call B) is the defined as
follows:

1. When a job arrives at time r;, pretend that it has not arrived till time sr;.

2. Atany time ¢, run A on the jobs for which t > sr;

Proof. (of Theorem 7.3) Let I’ be the instance obtained from Z by replacing job .J; € Z by a job .J/
that has release date sr; and size sp;. Also, let Z” be the instance from Z by replacing the job .J; € 7
with a job J!” that has release date sr; and size p;.

Let Opt(F,Z,x) (resp Opt(C,Z,x)) denote the flow time cost (resp completion time cost) of
the optimum schedule on Z run using an x speed processor. We first relate the values of the optimum

schedules for Z and 7.
Fact 7.4 Opt(C,7',1) = sOpt(C,Z,1)
Proof. (of Fact 7.4:) Since the release times and sizes in Z’ are scaled by s times that
of Z, given a schedule S for Z, we can construct a schedule S’ for Z’ such that if some
event happens at time ¢ in Z, then the corresponding event in Z’ happens at time st. By the
scalability property of the function G, the value of the schedule S’ is exactly s times more

than that for S. Similarly, given any schedule for Z’ we can construct a schedule for Z with
value exactly s times smaller. Thus the result follows. =

By our resource augmentation guarantee for the algorithm A, we know that
F(A,T',s) < cOpt(F,I',1)
By the p-goodness of G the above guarantee on flow time implies that
C(A,T',s) < cpOpt(C,T',1) (7.1)
We now relate 7’ to Z".
Fact 7.5 C(A,7',s) = C(A,I",1)

Proof. (of Fact 7.5:) This follows as jobs in Z’ are s times longer than jobs in Z”, and
have exactly the same release times. So the schedule produced by A on Z’ using an s speed

processor is indistinguishable by schedule produced by A on Z” using a 1 speed processor.
|

Now, by definition of the algorithm B, executing the algorithm A on Z" with a speed 1 processor
is exactly the schedule produced by B on Z using a 1 speed processor. So the completion times are
identical. This implies that

C(B,Z,1)=C(A,Z7",1) (7.2)
Now using Facts 7.4 and 7.5 and Equations 7.1 and 7.2 it follows that
C(B,Z,1) < cpsOpt(C,I,1)

Thus we are done. u

72 CHAPTER 7. RESULTS FOR COMPLETION TIME SCHEDULING VIA FLOW TIME

Weighted /,, Norms of Completion Time

ForG(z1,...,zn) = (>, wi:cf)l/f’, it is easily seen that the scalability property is satisfied. We now show
that G is 2-good.

Lemma7.6 G(zy,...,x,) = (3, wix?)/P is 2-good for all p > 1.

Proof. Let S and S’ be two schedules and let fi,..., f, (resp. ci,...,¢,) and fi,... . f}, (resp.
..., c,) be the flow times (resp. completion times) under S and S’

We know that, (3, w; f)1/? < (32, wif'?)'/P. The weighted ¢, norms of completion times

under S (resp. under S’) can be written as (3°, w;(f; + r:)P)/P (resp. (32 w;(f] + ri)P)1/P).
By convexity, we have that

Z’Uji(fi +r)P < Z 2p_1wl-(flp +7?)
i i

< cPor—t Z wifzp + 2P Z wirf
i i

< @ Y w()
i

< PPN wi(f)
i

Thus the result follows. n

Thus by Theorems 3.8, 3.10 and 7.3 and Lemma 7.6 we get that,

Corollary 7.7 There exist O(1)-competitive clairvoyant and non-clairvoyant algorithms for mini-
mizing the weighted ¢, norms of completion time.

7.4 Concluding Remarks

The results obtained by using this technique are unlikely to be the tightest possible. For example, for the
problem of minimizing the weighted completion time on a single machine, our technique only gives a 4-
competitive algorithm while the best known deterministic algorithm achieves a competitive ratio of 2 [24].
Our results should be best viewed as providing a proof of existence of an O(1) competitive algorithm for a
completion time problem, if there exists any O(1)-speed , O(1) competitive algorithm for the corresponding
flow time problem.

Chapter 8

Possibilities for I mprovement and Future
Directions

8.1 Possibilities for Improvement

Two outstanding open problems that still remain in the area of flow time scheduling are

1. Is there an O(1) competitive algorithm (or even an approximation algorithm) for minimizing the total
weighted flow time on a single machine?

2. Isthere an O(1) approximation algorithm for minimizing the total flow time on multiple machines?

It is widely believed that there should be an O(1) competitive online algorithm for minimizing weighted
flow time. This belief is primarily based on two reasons. First, the inability to find an example that implies
a non-constant lower bound on the competitive ratio. Second, that there exist two algorithms which have
totally “different” guarantees, the first is the algorithm of Chekuri et al [23] that gives a bound of O(log? B),
which is purely in terms of job sizes, irrespective of the weights involved. The second is our O(log W)
competitive algorithm, the guarantee of which does not depend on job sizes at all. It seems that both these
algorithms are not the right answers to the problem.

One approach that seems promising is based on the recent work of Becchetti et al [14]. They give an
O(1) competitive algorithm for minimizing total flow time in the model where the size of a job is not known
exactly but only within an interval [2¢, 2¢+1) (formally this is known as semi-clairvoyant scheduling). The
interesting property of this algorithm is that at any time only a constant fraction of the unfinished jobs are
partially executed (unlike other algorithms like say SRPT or SJFwhere all jobs could be partially executed at
some time). In fact, it satisfies a stronger property that if there are two or more jobs, then for every partially
executed job there exists a unique larger job that is total i.e., not partially executed. If we could somehow
extend this algorithm to the weighted case, then there is hope that this gives an O(1) competitive algorithm
by the following argument: First we can charge the weight of the partially executed jobs under the online
algorithm to the total jobs, since this weight is only a constant factor of the weight of total jobs, we only
need to worry about the weight in total jobs. Second, using some kind of work conservation argument, we
can perhaps argue that the optimum algorithm too has at least a constant fraction of the weight contained in
the unfinished total jobs under the online algorithm.

Our quasi-polynomial time approximation scheme for minimizing total flow time on O(1) machines
suggests that there should be a PTAS for this problem. The reason for the extra log n in the exponent of the

73

74 CHAPTER 8. POSSIBILITIES FOR IMPROVEMENT AND FUTURE DIRECTIONS

running time of the algorithm presented in this thesis roughly comes for the following reason: We round
jobs sizes such that they range from 1 to n2. It seems that this cannot be avoided, in particular if we only
have a constant range for the sizes then we seem to lose too much in the approximation, as there errors could
build up over the n jobs. Thus we have Q(logn) job classes. Next, there does not seem a reasonable way
to look at the job classes separately while constructing the schedule. This type of idea works for obtaining
a PTAS for minimizing total stretch on a single machine [18] (essentially, since small jobs have a relatively
larger weight than large jobs, it suffices to schedule the small jobs optimally before moving on to jobs of a
higher size class). However, it is not clear if something similar could be done for flow time.

The algorithm SETFis (1 + ¢)-speed, O(log? B/¢*)-competitive for minimizing the total stretch non-
clairvoyantly (Chapter 4, Theorem 4.1). It seems that the right answer should be a (1 + €)-speed, O(log B)-
competitive algorithm. The main reason why we lose an additional factor of log B is that in our analysis is
that while considering the contribution to stretch, we replace the size of a job by the amount of processing
received by it (which could be much smaller). So, suppose if the input instance only had a single job of size
B, then while the stretch would be 1, our analysis would yield 2(log B) (as each time interval (2¢,2¢+1]
yields a constant amount to the total stretch). Since a non-clairvoyant algorithm cannot distinguish between
a small job and a big one until it has given some service to both the jobs, it is not clear how to avoid this in
the analysis.

8.2 Some Future Directions

Theoretical research in scheduling is closely tied with practice. Often new computer system architec-
tures/technologies and new performance measures used to experimentally evaluate a system lead to new
directions and problems in scheduling. For example, with the recent popularity of multicast and satellite
broadcasting systems such as Direct-TV, broadcast scheduling has received a lot of theoretical interest in
the last couple of years. As far as measures of performance are concerned, we believe that flow time will
continue to be of fundamental importance. Some issues that will need to be addressed however, to make the
theoretical results more relevant to practitioners seem to be the following:

1. Understanding the trade-off between preemptions and flow time: While it is known of non-preemptive
algorithms are not good at all, it might be interesting to see if almost optimal flow times can be
achieved via algorithms that requires “very” few preemptions. Some work in this direction has been
in [28].

2. Incomplete knowledge of jobs sizes: Often in a real system, while job sizes may not be known exactly
in advance, it is usually possible to get a rough idea of the job size by learning from past data etc.
This naturally leads to a setting that lies between the clairvoyant and the non-clairvoyant model. An
attempt at this has been recently made via the study of semi-clairvoyant scheduling [18, 14].

Bibliography

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Millis, M. Queyranne,
M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes for minimizing average weighted
completion time with release dates. In IEEE Symposium on Foundations of Computer Science, pages
32-43, 1999.

[2] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for scheduling. In ACM-SIAM
Symposium on Discrete Algorithms, pages 493-500, 1997.

[3] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balancing in the [, norm.
Algorithmica, 29(3):422-441, 2001.

[4] N.Avrahamiand Y. Azar. Minimizing total flow time and completion time with immediate dispacthing.
In Proceedings of 15" SPAA, pages 11-18, 2003.

[5] B. Awerbuch, Y. Azar, E. Grove, M. Kao, P. Krishnan, and J. Vitter. Load balancing in the /,, norm. In
IEEE Symposium on Foundations of Computer Science, 1995.

[6] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without migration. In
ACM Symposium on Theory of Computing, pages 198-205, 1999.

[7] N. Bansal and K. Dhamdhere. Minimizing weighted flow time. In Symposium on Discrete Algorithms
SODA, pages 508-516, 2003.

[8] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha. Non-clairvoyant scheduling for minimizing
mean slowdown. In Symposium on Theoretical Aspects of Computer Science (STACS), pages 260-270,
2003.

[9] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Investigating unfairness. In ACM
Sigmetrics, pages 279-290, 2001.

[10] N. Bansal and K. Pruhs. Server scheduling in the weighted ¢, norm. accepted to appear in LATIN,
2004.

[11] N. Bansal and K. Pruhs. Server scheduling in the I, norm: A rising tide lifts all boats. In ACM
Symposium on Theory of Computing (STOC), pages 242-250, 2003.

[12] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Multiprocessor scheduling
with rejection. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 1996.

75

76 BIBLIOGRAPHY

[13] L. Becchetti and S. Leonardi. Non-clairvoyant scheduling to minimize the average flow time on single
and parallel machines. In ACM Symposium on Theory of Computing (STOC), pages 94-103, 2001.

[14] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Semi-clairvoyant scheduling. In
Proc. of the 11th Annual European Symposium on Algorithms (ESAQ3), 2003.

[15] L. Becchetti, S. Leonardi, and S. Muthukrishnan. Scheduling to minimize average stretch without
migration. In Symposium on Discrete Algorithms, pages 548-557, 2000.

[16] L. Becchetti, S. Leonardi, A. M. Spaccamela, and K. Pruhs. Online weighted flow time and deadline
scheduling. In RANDOM-APPROX, pages 36-47, 2001.

[17] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling continuous
job streams. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 270-279, 1998.

[18] M. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stretch scheduling. In 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

[19] A. Borodin and R. El-Yaniv. On-Line Computation and Competitive Analysis. Cambridge University
Press, 1998.

[20] Peter Brucker. Scheduling Algorithms. Springer Verlag, 2001.

[21] C. Chekuri and S. Khanna. Approximation schemes for preemptive weighted flow time. In ACM
Symposium on Theory of Computing (STOC), 2002.

[22] C. Chekuri, S. Khanna, and A. Kumar. Multi-processor scheduling to minimize ¢, norms of flow and
stretch, 2003. unpublished manuscript.

[23] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for weighted flow time. In ACM Symposium on Theory
of Computing (STOC), 2001.

[24] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion
time scheduling. SIAM Journal on Computing, 31(1):146-166, 2001.

[25] R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling. Addison-Wesley Publishing
Company, 1967.

[26] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real-Time Systems. John Wiley &
Sons, 2002.

[27] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling in web servers. In USENIX
Symposium on Internet Technologies and Systems, pages 243-254, 1999.

[28] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 235(1):109-141, 2000.

[29] D. Engels, D. Karger, S. Kolliopoulos, S. Sengupta, R. Uma, and J. Wein. Techniques for scheduling
with rejection. European Symposium on Algorithms, pages 490-501, 1998.

[30] L. Epstein and J. Sgall. Approximation schemes for scheduling on uniformly related and identical
parallel machines. In European Symposium on Algorithms (ESA), pages 151-162, 1999.

BIBLIOGRAPHY 77

[31] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP Completeness.
W.H. Freeman and Company, New York, 1979.

[32] M.X. Goemans, M. Queyranne, A.S. Schulz, M. Skutella, and Y. Wang. Single machine scheduling
with release dates. SIAM Journal on Discrete Mathematics, 15:165-192, 2002.

[33] L. Hall. Approximation algorithms for scheduling. In Approximation algorithms for NP-hard prob-
lems, eds. D. S. Hochbaum, Chapter 1, pages 1-45. PWS Publishing Company, 1997.

[34] L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize average completion time: Off-line and
on-line algorithms. In ACM-SIAM Symposium on Discrete Algorithms, 1996.

[35] M. Harchol-Balter, M. Crovella, and S. Park. The case for srpt scheduling of web servers. Tech report,
MIT-LCS-TR-767.

[36] G. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press, 1952,
[37] D. S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing Company, 1997.

[38] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling problems
theoretical and practical results. Journal of the ACM (JACM), 34(1):144-162, 1987.

[39] H. Hoogeveen, M. Skutella, and G. Woeginger. Preemptive scheduling with rejection. European
Symposium on Algorithms, 2000.

[40] J. A. Hoogeveen, P. Schuurman, and G. J. Woeginger. Non-approximability results for scheduling
problems with minsum criteria. In Integer Programming and Combinatorial Optimization, volume
LNCS 1412, pages 353-366. Springer, 1998.

[41] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical processors.
Journal of the ACM (JACM), 23(2):317-327, 1976.

[42] http://httpd. apache. org/ docs/.
[43] http://ww. netcraft.con survey/.

[44] K. Jansen and L. Porkolab. Improved approximation schemes for scheduling unrelated parallel machin
es. In ACM symposium on Theory of computing, pages 408-417, 1999.

[45] B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly. In IEEE Symposium on
Foundations of Computer Science, pages 345-352, 1997.

[46] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM,
47(4):617-643, 2000.

[47] D. Karger, C. Stein, and J. Wein. Scheduling algorithms. In CRC handbook of theoretical computer
science, 1999.

[48] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproximability results for
minimizing total flow time on a single machine. In ACM Symposium on Theory of Computing (STOC),
pages 418-426, 1996.

78 BIBLIOGRAPHY

[49] D. Knuth. The TeXbook. Addison Wesley, 1986.

[50] J. Kurose and K. Ross. Computer Networking: A Top-Down Approach Featuring the Internet. Addison-
Wesley, 2001.

[51] J. Kurose and K. Ross. Computer networking: A top-down approach featuring the Internet. Addison-
Wesley, 2002.

[52] E. Lawler, J. Lenstra, A. Kan, and D. Shmoys. Sequencing and scheduling: algorithms and complex-
ity. In Logistics of Production and Inventory: Handbooks in Operations Research and Management
Science, volume 4, pages 445-522. North-Holland, 1993.

[53] J. Lenstra, A. Kan, and P. Brucker. Complexity of machine scheduling problems. Annals of Discrete
Mathematics, 1:343-362, 1977.

[54] J. Lenstra, D. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated parallel
machines. Mathematical Programming, 46:259-271, 1990.

[55] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In ACM Symposium on
Theory of Computing (STOC), pages 110-119, 1997.

[56] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications. Academic
Press, 1979.

[57] N. Megow and A. Schulz. Scheduling to minimize average completion time revisited: Deterministic
on-line algorithms. In Proceedings of the First Workshop on Approximation and Online Algorithms
(WAOA), 2003.

[58] T. Morton and D.W. Pentico. Heuristic Scheduling Systems : With Applications to Production Systems
and Project Management. Interscience, 1993.

[59] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical Computer Science,
130(1):17-47, 1994.

[60] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. Online scheduling to minimize average
stretch. In IEEE Symposium on Foundations of Computer Science (FOCS), pages 433-442, 1999.

[61] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmen-
tation. In ACM Symposium on Theory of Computing (STOC), pages 140-149, 1997.

[62] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, 1995.

[63] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. Handbook on Scheduling: Algorithms, Models
and Performance Analysis (to appear), CRC press.

[64] M. Queyranne and A. Schulz. Polyhedral approaches to machine scheduling, 1994. Preprint 408/1994,
Dept. of Mathematics, Technical University of Berlin.

[65] B. Schroeder and M. Harchol-Balter. Web servers under overload: how scheduling can help. CMU
technical report, CMU-CS-02-143.

BIBLIOGRAPHY 79
[66] A. Schulz and M. Skutella. The power of alpha-points in preemptive single machine scheduling.
Journal of Scheduling, 5:121-133, 2002.

[67] P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms for machine schedul-
ing: Ten open problems. Journal of Scheduling, 2:203 — 213, 1999.

[68] Steven S. Seiden. Preemptive multiprocessor scheduling with rejection. Theoretical Computer Science,
262(1-2):437-458, 2001.

[69] J. Sgall. Online scheduling. In Online Algorithms: The State of the Art, eds. A. Fiat and G. J.
Woeginger, pages 196-231. Springer-Verlag, 1998.

[70] D. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line. SIAM Journal on
Computing, 24(6):1313-1331, 1995.

[71] D.D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications
of the ACM, 28:202-208, 1985.

[72] A. Tanenbaum. Operating systems: design and implementation. Prentice-Hall, 2001.
[73] K. Thompson. Unix implementation. The Bell System Technical Journal, 57(6):1931-1946, 1978.
[74] V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[75] H. Zhu, B. Smith, and T. Yang. Scheduling optimization for resource-intensive web requests on server
clusters. In ACM Symposium on Parallel Algorithms and Architectures, pages 13-22, 1999.

80

BIBLIOGRAPHY

