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Abstract

Functional languages are considered useful in part because their applicative structure makes it
easier to reason about the value returned by a program (its extensional behavior). When one wants
to analyze intensional behavior, such as the time a program takes to run, some of the advantages
of functional languages turn into disadvantages. In particular, most functional languages treat
functional types as standard data types; however, the time it takes to use a functional type (that
is, applying it to a value) depends not only on the type but also on the applied value. Also, a
number of functional languages use lazy data types, so that we may need to handle cases where
parts of a data value do not need to be evaluated. The time it takes to work with such data types
depends not only on the type itself but how much of it has already been examined. It is particularly
difficult to reason compositionally, in a syntax-directed manner, about intensional behavior of such
programs.
In this dissertation we develop a compositional semantics for functional programs that allows us to
analyze the time a program takes to run (in terms of the number of times certain operations are
required). Our system uniformly handles both higher-order types and lazy types, by using internal
costs (time needed to use an expression) as well as external costs (time needed to evaluation an
expression). We create semantics for programs using either call-by-value evaluation strategy (where
arguments are always evaluated) or call-by-name (where arguments are only evaluated when used).
The technique we use to create the semantic functions is almost identical for both evaluation
strategies and should be easily adjustable to other languages.
We then use the created semantics in several ways. First, we use the semantics to directly relate
programs based on their intensional behavior. We also examine some example programs and com-
pare their behavior with call-by-value and call-by-name evaluation. Lastly, we examine a more
complex program, pattern matching using continuations, and derive some nonintuitive results.
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Chapter 1

Introduction

Early low-level programming languages closely imitated the actions of the computer to simplify the
translation of a program into machine instructions. Over time, however, our ability to translate
programs has become more sophisticated, resulting in a number of programming languages designed
to more closely match a specification of the desired result rather than a set of instructions. In
particular, functional languages are designed so that programs resemble mathematical specifications
more than machine instructions. Because of this property, it is often clear that a program will always
return a correct result, but it may be more difficult to understand those internal properties that
closely relate to machine instructions, such as the amount of time a program takes to run or the
amount of memory needed in the process.

Functional languages typically share a number of properties. Perhaps the most important
property of a functional language is the applicative structure of programs. Programs in a “pure”
functional language typically consist of a series of function definitions. There are no assignment
statements; instead of for or while loops a programmer uses recursion. Even in “impure” functional
languages that also include assignment statements, programs are frequently written in such a style
that assignments are the exception rather than the rule.

Another important aspect of functional programs is their treatment of functions as “first-class
citizens.” Many imperative languages treat procedures and functions differently from other data
such as integers; for example, one cannot necessarily store a procedure in an array. In a functional
language, however, functions are treated as data just as integers or lists are and can be passed
to other functions as parameters, returned as results, or used as part of a data structure such
as a list or tree. Apart from the simplicity (in concept) of treating all data types equally, such
languages have several advantages. One is the ability to define general functions that manipulate
data structures and then use them to create a wide variety of programs. For example, map applies a
function to each element of a list; thus whenever we want a program that performs some conversion
on each element of a list, we can simply use map. The function map is also polymorphic in that
its behavior can be used for lists of any type (relative to the mapped function) and its behavior is
essentially the same in each case. Another advantage is to be able to partially evaluate a procedure
by applying it to some but not all of its arguments. The result is a procedure or function that takes
the rest of the arguments. This can result in savings when a procedure is called many times with
many of the same arguments.

There are some functional languages where functions are not first-class citizens; in particular,
they do not allow functions to take other functions as arguments. Such languages are considered
“functional” primarily because they do not allow assignments. These languages are called first-
order functional languages; functional languages that allow functions as arguments are then called
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higher-order functional languages.
A third appealing property of functional languages (although not unique to them) is the

widespread use of type constructors. Type constructors allow us to define data types without
necessarily knowing much about the actual implementation; for example, we know that a list has
a head, containing an element of some data type, and a tail, which is another list, and we can
abstract away from implementation details. This facilitates analysis in two ways: by suppressing
implementation details that do not affect the value of data, the analysis becomes much simpler;
and by restricting the operations on data types we can guarantee that no element of the data type
has an invalid form (such as a circular list). The drawback is that because implementation details
are hidden, it may be harder to determine the amount of space they require or the time taken by
operations on data.

Lastly, many functional languages allow lazy evaluation, either directly, as an integral part of
the language, or indirectly, via higher-order types. When we speak of lazy evaluation, we usually
mean at least one of two different optimizations. First, any evaluation is postponed until needed,
avoiding possibly costly work if the result is never used. We also can manipulate data structures
that are theoretically infinite as long as we only need to examine a finite amount of the structure.
Second, evaluation can be memoized ; that is, the result of an evaluation can be saved so that it
can be looked up if needed again, avoiding re-evaluation.

Programmers and researchers thus often find functional languages very attractive. The applica-
tive structure, lack of side effects, and use of flexible type constructors make it easier to design
programs at a high level of abstraction, thus making it easier to prove program correctness. Fur-
thermore, if we know that evaluation of one part of an expression has no side effects, it is easy
to analyze the expression compositionally. It is also possible to substitute part of an expression
with another of equal value and know that the overall result is unchanged; this property is known
as referential transparency . Such properties make the extensional analysis (i.e., analysis of input-
output properties) of functional programs reasonably simple. Additionally, the use of higher-order
and lazy data types increases the expressive power and elegance of programs; a program written in
a functional language is frequently shorter than the equivalent program written in an imperative
language.

These advantages do come with a cost: As programs resemble function declarations more than
machine instructions, it may be more difficult to determine the appropriate instructions needed
for the computer to run them. Analyzing internal properties such as space and time complexity
becomes more difficult when much of the work done by the computer is hidden from the programmer.
Because the compiler or interpreter handles all space allocation invisibly, we may not know exactly
how much space is allocated for a given data structure or how much time is taken managing the
space. Furthermore, for certain types it may be difficult to define what we mean by time complexity.
For example, consider the function

twice = λf.λx.f(f(x))

The time it takes to compute twice f x is dependent on the size of x, the complexity of f , and
the size of the output of f on x. A standard definition for the complexity of an algorithm is a
function from the size of the input to the time it takes to compute the output; however such a
definition does not work for programs such as twice, which needs not only the complexity of f
but the size of f(x). A similar situation holds for lazy data structures; for example, we can easily
show that a program that calculates the length of a list will take time proportional to the length of
the list. Lazy lists, however, may not be completely evaluated, thus the time needed to find their
lengths includes the time taken to finish evaluating the structure of the list, adding a potentially
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large amount of time. Furthermore, when various parts of an evaluation are delayed we may have
difficulty predicting if and when evaluation will occur, adding to the problem of predicting the time
it takes to evaluate a program.

1.1 Types of Semantic functions

1.1.1 Denotational vs. Operational

In this dissertation there will be two independent classifications of semantic functions. The first,
common to most discussions of semantics is the distinction between operational semantics and de-
notational semantics. In general, an operational semantics for a programming language is provided
as a collection of rules describing the steps taken by an abstract machine during expression evalu-
ation. Many operational semantics come in one of two forms: transition (or single-step) semantics
and natural (or big-step) semantics. A transition semantics for a language describes the rules for
making a single action in the process of an evaluation. For example, if we let e −→ e′ mean that
the expression e reduces to e′ in one step, then the following could be rules for the evaluation of an
application:

e1 −→ e′1
e1e2 −→ e′1e2 (lam x.e)e2 −→ [e2/x]e

where [e2/x]e indicates the expression e with e2 substituted for all free occurrences of x. Conversely,
a natural operational semantics describes how to find the result of an expression in one big step.
The equivalent to the transition rules above would thus be

e1 =⇒ lam x.e [e2/x]e =⇒ v

e1(e2) =⇒ v

where e =⇒ v means that e evaluates to the (final) result v.
A denotational semantics, on the other hand, is a function mapping expressions to meanings,

which typically are some form of mathematical entity. In particular, a denotational semantics forms
the meaning of an expression from the meanings of its syntactic subparts. The natural deduction
rule for application listed previously was not derived from the rules for evaluating e1 and e2, but
from rules for e1 and [e2/x]e. If we say that [[e]] is the denotational meaning of an expression e,
however, then the equivalent definition for an application would look something like the following:

[[e1(e2)]] = [[e1]]([[e2]])

i.e., the meaning of e1(e2) only requires the meanings of e1 and e2. This property, called composi-
tionality , can often be an advantage to analysis as we do not have to account for anything but the
expression itself and knowledge of the mathematical structure of the collection of meanings.

It is not always clear whether it is better to use an operational semantics or a denotational
semantics. Depending on the exact language and semantics in use, either the denotational semantics
or the operational semantics can be more intuitively “correct,” thus in cases where the correctness
of the definition is the goal, it is best to use the form that is more intuitively correct regardless
of whether it is an operational or denotational semantics. In cases where the relation between the
semantics and the computer instructions is important, an operational semantics is more likely to be
the appropriate one to use. In cases where compositionality is a goal, a denotational semantics will
be desired. If the desired semantics is not the one that is most obviously correct, another type of
semantics will frequently be used as well, and then the two forms of semantics will need to be shown
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to correspond in some useful fashion. In this dissertation the operational semantics is arguably more
intuitive and closer in spirit to machine-level implementation, but for ease of analysis we want a
compositional semantics. Therefore we create a denotational semantics for analysis, and compare
it with the operational semantics to show that our semantics is computationally reasonable.

1.1.2 Extensional vs. Intensional

Another way of classifying semantics concerns the level of abstraction at which a semantics is
pitched. A semantics (operational or denotational) is extensional if it is primarily concerned with
the final result and not other aspects of computation such as the time it takes to complete, the
amount of space required, or the path traversed during computation. Conversely, a semantics is
intensional precisely when it is concerned with such internal details. These two classifications are
relative more than absolute, as the definition of “final result” and “internal details” may vary
depending on the purpose of the semantic model.

Most traditional semantic models focus on extensional properties alone. Sometimes, to get a
extensional definition, one must start with an intensional one and then abstract away the internal
details, as was done for the example in the game semantics of [1]. In particular, a transition
semantics technically is concerned with the path of a computation as well as the final result, but
in practice when using a transition semantics we ignore the path and consider only the extensional
properties. In this dissertation, however, the intensional properties are what is of interest so the
semantics used must be intensional, although we also need to relate it to an extensional semantics.

1.2 Complexity versus Cost

Whenever we mention the cost of an expression or program, we are referring to a precise evaluation
time, measured in some number of basic operations (recursive calls, CPU operations, etc.). Costs
come in two varieties, the more abstract macro cost counts major operations such as function
applications, and the more concrete micro cost counts low-level operations such as register accesses,
which often better reflect the actual time it takes for the expression to be evaluated.

Complexity , on the other hand, refers to an asymptotic relation between the measure of the
input to a function and the time it takes to determine the output. For example, the complexity of
the reverse function for lists is typically written as O(n), where n is the length of the list, meaning
that the cost of reversing the list is bounded by a linear function on n for sufficiently large lists.
Those who analyze the efficiency of algorithms traditionally work with complexities because exact
costs are frequently machine or compiler dependent. Language profilers, however, work with costs,
primarily because determining costs is an easy task for a computer to do and in many cases the
goal of a profiler is to find extra costs, such as constants costs, that asymptotic complexity analysis
would not necessarily distinguish as significant.

In this dissertation we will concentrate on cost information rather than complexity. Our primary
reason is one of feasibility: there is no standard for measuring the size of input for some data
types, particularly higher-order types. We will, however, work only with macro costs, as our
semantics would otherwise only be relevant to a particular machine whereas we want to find a more
abstract notion of evaluation time. Furthermore, using macro costs, the semantic functions will be
more easily converted to complexity functions (where it is possible to define complexity) because
complexity functions also usually measure time by counting high-level operations. Our semantic
functions will have sufficient mathematical structure so that measures and final costs can be derived
from the more precise cost analysis. For example, the call-by-value semantics will tell us that the
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cost of the length function that computes the length of a list is

n(t+ + ttail + tfalse) + (n + 1)(tnil? + tapp + trec) + ttrue

where n is the actual length of the list, and the costs represent the major actions of applying a
function (tapp ), unrolling a recursive definition (trec), taking the tail of a list (ttail), taking either
the false (tfalse) or true (ttrue) branches of a conditional, and adding two integers (t+). From this
information we can determine that the time it takes to run length is O(n), i.e., is proportional to
the length of the list.

1.3 Evaluation Strategies

When evaluating an application, there is more than one way to handle the argument. The argument
could be evaluated first and the result handed to the calling function. This type of evaluation is
called strict or call-by-value. Alternatively, the argument could be saved and evaluated only when
needed. If the argument is evaluated every time it is needed, the evaluation strategy is called
call-by-name. If the result of evaluating the argument is saved so reevaluation is not necessary, the
evaluation strategy is called call-by-need . Thus when evaluating the expression

(lam x.lam y.x + x) e1 e2

The expression e1 is evaluated once for call-by-value and call-by-need, but twice for call-by-name,
while the expression e2 is evaluated once by call-by-value, and not at all by call-by-need and call-by-
name. If it takes a lot of time to evaluate e1, then the call-by-value and the call-by-need strategies
will take significantly less time to evaluate the overall expression. On the other hand, if it takes
a long time to evaluation e2, then the call-by-name and call-by-need evaluations strategies will be
faster than the call-by-value.

It would thus seem that the call-by-need evaluation strategy would always be the most efficient.
In practice, however, there is considerable overhead and complexity involved in keeping track of
unevaluated expressions and updating the results of evaluation. For that reason there are many
functional languages (e.g., Lisp, SML) that implement call-by-value evaluation. Even those lan-
guages that implement call-by-need (e.g., Haskell, Miranda) will often use strictness analysis to
determine which arguments will always be evaluated, and use call-by-value evaluation on those
arguments.

1.4 The Semantics

The goal of this work is the development of a denotational profiling semantics of higher-order strict
and non-strict functional languages in order to analyze complexity behavior of programs in such
languages. We are particularly interested in describing the costs of programs where part of the
computation is delayed — either because an argument is needed or because a data type is lazy.
The specific language in use throughout this work is relatively simple — essentially the λ-calculus
with conditionals, recursion, and constants. This language is a generalization of PCF ([39]) in
that we do not explicitly define the constants. It will be analyzed under two evaluation strategies:
call-by-value and call-by-name. We discuss possibilities for analysis under call-by-need evaluation
in section 6.2.4.

The desired semantics for the language under both evaluation strategies will satisfy the following
properties:
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Compositionality: The meaning of an expression will be dependent only on the meaning of its
subparts. We can thus analyze the properties of an expression without needing to know in
what context the expression occurs. In particular, the context can affect the cost associated
with evaluating an expression under the call-by-name strategy, so the compositional semantics
must contain sufficient information so that its meaning is still accurate regardless of the
context.

Soundness: We will relate all the semantic functions to a relatively abstract operational model:
one that other researchers ([37]) have studied. One particularly important relationship we will
show is that the denotational semantics is sound. A denotational semantics is sound relative
to an operational semantics if, whenever an expression e evaluates to v under the operational
semantics, the (extensional) meanings of e and v are the same. With intensional semantics
the relationship is more complicated; e.g., if e evaluates to v in time t in the intensional
operational semantics, then the denotational meaning of e should be closely related to the
meaning of v except that it should also include an additional cost of t. Once we define the
intentional semantics we will make precise the meaning of “including an additional cost.”

Adequacy: Another important relationship between the denotational and operational semantics
concerns the behavior of programs that fail to terminate. A denotational semantics is adequate
when a program fails to terminate in the operational model precisely when its denotational
meaning indicates non-termination. With soundness and adequacy we can generally use the
denotational model to analyze properties of programs and know that the properties hold for
the operational model as well. In this dissertation the adequacy property will also ensure
that, although the mathematical model may contain cost in unusual locations, the meaning
of an expression will either indicate non-termination or be essentially a pairing of a final value
and the cost it took to evaluate it.

Separability: Each intensional semantic function will have a related extensional semantics, one
that gives the same final results but does not contain any consideration of costs. It is impor-
tant to be able to recover this semantics to make sure that the intensional semantics treats
the data the same way it would extensionally. We will be defining each semantic function
such that we can easily obtain their extensional versions.

Furthermore, the semantic functions are robust and flexible in that the technique used to define
the semantic functions applies to more than one operational semantics and more than one language.
Thus the overall structure for both semantic functions will be very similar, each based on the same
general cost construction. In addition we can easily add new constants, or adjust the meaning of
old ones, and show that the new language is still sound, adequate, and separable. These properties
indicate that other semantic functions may also be created to work with a variety of languages or
operational definitions.

1.5 Related Work

When a program contains neither high-order nor lazy data types, we can analyze its complexity
using many of the same techniques that have been used to analyze the complexity of imperative
programs (e.g., see [2]). In these cases the applicative nature of functional programming is helpful,
making it easy to convert a program to a functional description of its complexity. Some early
work in automatic cost or complexity calculations ([50], [22]) took advantage of the structure of
functional programs to develop recursive definitions of program complexity ([22]) or cost ([50]).
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Other researchers ([6], [13], [37], [45]) have studied the costs of lazy first-order programs. Be-
cause not all elements of an expression are necessarily evaluated, lazy programs tend to be more
difficult to analyze than their strict counterparts. The approach taken in these cases was to keep
track of how much of the result of an expression is needed, based on the context in which the expres-
sion is used. The solutions were elegant for first-order functions but did not extend to higher-order
types. The problem encountered was that the techniques for specifying that only a partial result
was ever going to be used was inadequate when the data type was a function. Sands ([37]), did
manage to get a higher-order approximation, but the approximation was sometimes very poor;
Sands himself gives an example where the actual cost and the approximated cost can differ by
almost an arbitrary amount. Sands did develop a semantics for analyzing macro costs of higher
order lazy functional languages, but it was not compositional and did not handle memoization.

There have also been some examples of higher-order profiling semantics for call-by-value seman-
tics ([41] and [12]). In [41], while Shultis did include some variant of internal costs for functional
types (called tolls) the semantics was not proven sound relative to any model and was not suffi-
ciently abstract to easily generalize to other systems. The first technique Gurr used in [12] is very
similar to the technique used in this dissertation; we have managed, however, to generalize the
technique to non-strict languages and make the technique more flexible. Gurr shifted instead to
a more abstract system that was not only mathematically more complex and aimed at a different
goal: comparing programs in different languages. Both Gurr and Shultis did not have any method
to add costs except by primitive functions, and thus they were unable to track properties like the
number of application or recursive calls, which, in practice, are often more relevant than the number
of integer additions.

Greiner ([10]) created profiling semantics for a higher-order call-by-value language. His goal
was to describe time and space costs for parallel languages. His techniques worked well for that
goal but do not address the goals of this thesis; his semantics was not compositional nor did it
handle any form of laziness outside of high-order types.

The primary way our semantic functions differ from their predecessors is in the use of an explicit
internal cost. Unlike external cost, which refers to the cost of a computation, internal cost refers to
the cost of delayed computations. This includes both the cost of applying a function (as opposed
to the cost of evaluating the function itself) and the cost of evaluating the subparts of lazy data
structures such as lazy lists. While other researchers ([41], [12]) included some form of internal
cost, it only applied to function types. Furthermore, the meanings of expressions combined data
and internal cost in such a way that it was not clear that the original extensional meaning was
maintained. With separability, we can clearly determine which part of the meaning of a expression
is related to internal cost and which to extensional data, and thus also ensure that the intensional
semantics is consistent with an extensional semantics.

1.6 About this Document

In this dissertation we analyze two evaluation strategies. Chapters 3 and 4 cover the semantic
definitions and the proofs that the properties described in section 1.4 hold for both strategies. In
Chapter 2 we define the language itself and its extensional behavior, both operationally, with a
traditional natural semantics, and denotationally. To make the transition to a profiling semantics
easy and clear, we first define the denotational semantics using standard techniques. We then
convert the semantics to an equivalent one that is significantly easier to extend to an intensional
semantics. This chapter also includes the background for mathematical concepts used later.

In Chapter 3 we concentrate on the call-by-value evaluation strategy. First we provide an
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operational semantics including cost, similar to the one without cost but including a specific cost
for each transition. Next we present the motivation and requirements for a particular cost structure
used throughout the dissertation, followed by the profiling semantics. We show that this semantics is
sound, adequate, and separable. We also show that there is a concrete example of a cost structure
satisfying all the necessary requirements. At the end of the chapter we examine some simple
programs to see how the semantics can be used to analyze complexity.

In Chapter 4 we consider the call-by-name evaluation strategy. The primary emphasis in this
chapter is defining a sound, adequate, and extensional semantics for the call-by-name evaluation
strategy using the same cost structure and general techniques as we did for the call-by-value eval-
uation strategy. The examples at the end of the chapter not only demonstrate how to use the
semantics to analyze complexity but also demonstrate some problems that occur when evaluating
the cost of partially evaluated data structures.

In Chapter 5 we use the profiling semantics to analyze the complexity of a non-trivial program,
one that performs regular expression matching using high-order functions. We show that the
complexity of this program is interesting and has some non-intuitive properties.

Chapter 6 summarizes the previous three sections and explores some possibilities for future
work. We also discuss the analysis of semantics emulating the call-by-need evaluation strategy and
show both the problems with our approaches and some suggestions for further research.



Chapter 2

The Extensional semantics

2.1 Introduction

One purpose of a profiling semantics is to provide a better understanding of the behavior of various
programs (such as the twice program given in the introduction). Thus we will need to be able to
correlate the intensional description of a program with its extensional meaning to ensure that our
semantics is sensible. We must also ensure that the language in use has enough structure to define
interesting programs. For that reason the language in this paper has abstractions (to form higher
order functions), recursion (to allow programs with interesting profiling behavior), and some form
of either pattern matching or conditionals (to allow recursive programs with base cases).

We thus work with a standard simply-typed functional language, similar to a subset of ML,
with conditionals, recursion and primitive constants. It is essentially a generalization of PCF ([39])
where the constants are not initially specified; the definitions of the primitive constants are separate
from the definitions of the rest of the language. This allows us to choose constants and data types
as needed for examples without changing the overall proofs of soundness and adequacy; instead,
we only need show that the new constants and data types satisfy certain assumptions.

In section 2.2 we give the formal definition of the language. We then, in section 2.3, give
an operational semantics for both the call-by-value and the call-by-name evaluation strategies.
In section 2.4 we give the definition of the denotational semantics. We begin with the standard
fixed-point account of recursion using domains. This version, however, is too specific; we need a
more abstract definition that will better enable us to add abstract cost. Therefore we adjust the
semantics in two ways: using category theory for the semantic definitions, and a monad to handle
the treatment of non-termination. Both adjustments lead to a more abstract definition that is
based on a collection of properties sufficient to form sound and adequate semantic functions. We
also show, in section 2.4.6, that the usual domain-theoretic semantics can be recovered by making
the obvious choice of category and monad.

Soundness and adequacy are as important for the extensional semantics as for the intensional, so
in sections 2.5 and 2.6 we discuss these properties. In chapters 3 and 4 we show that the soundness
of the extensional semantics can be derived from the soundness of the intensional semantics and
from separability. Thus in this chapter we only state the soundness properties and defer the proofs
of soundness until later chapters. We do, however, prove adequacy in this chapter because the
adequacy of the extensional semantics is needed to prove the adequacy of the intensional semantics.
In later chapters we show how we use the adequacy of the extensional semantics and separability
of the intensional semantics to prove adequacy of the various intensional semantics.

In the last section of this chapter we give the extensional categorical semantics for a number of

9
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constants, chosen either to aid in examples or to justify the assumptions made about them.
Most of the background theory covered in this chapter is described in either [11] (for the

operational and domain-theoretic semantics) or [3] (for the category theory).

2.2 Language syntax

Because we treat constants separately from the rest of the language, the language syntax listed
here is technically for a family of languages, not for a single language. Thus we will be able to
use rather complicated languages for examples without needing the extra complexity for the more
central proofs. These proofs will generally be based on certain assumptions made about constants;
after the proofs we also show that many commonly used constants satisfy those assumptions.

Formally, we define the syntax of the language(s) as follows:

e ::= x | c | e(e) | lam x.e | rec x.e

| if e then e else e

where c ranges over some set Const of constants. As the language contains conditionals we need
at least two constants, true and false.

For each constant, let ar(c) be its arity , that is, the number of arguments needed; we assume
that each constant has only one arity. Let ar(true) and ar(false) each be 0.

Next let Construct ⊆ Const be a set of constants designated as constructors. These constants
are used to form values; for example, pair is a constructor so pair v1v2 is a value whenever v1 and
v2 are values. In contrast, fst is not a constructor, so fst v will never be a value. As all constants
of arity 0 form values, we consider them all to be constructors.

All constructors of arity 1 or more are either strict or lazy . Strict constructors evaluate each
argument and form values from the results, while lazy constructors form values from their arguments
without evaluating them. The distinction is only relevant for call-by-name evaluation; in call-
by-value evaluation we treat all constructors as strict. Let S-Construct be the set of strict
constructors and L-Construct be the set of lazy constructors.

It is not critically important that the language be strongly typed; in [6] the authors performed a
similar study (first order only) on a Lisp-like language without types. Types, however, are still very
useful. The primary reason we use types is to simplify the denotational semantics; we will never
need to consider the behavior of incorrectly typed expressions such as true 3. Furthermore, the
simply-typed λ-calculus with recursion is well studied, thus making it easy to match extensional
behavior.

In order to give types to expressions, however, there needs to be a general method for including
types, such as products and lists, without restricting the definition to those specific types. Therefore
let δ range over a set of type constructors, i.e., partial functions from types to types. For example,
the function δ×(τ1, τ2) is τ1 × τ2, while the function δlist(τ) converts a type τ to the type of lists
where the elements of each list has type τ . We also use several ground types, represented as g; one
such type that we must include is bool for handling conditionals.

Formally the set of types τ is defined as follows:

τ ::= g | τ → τ | δ(τ1, . . . , τn)

To give types for the constants, for each type τ let Constτ be the set of constants having type
τ . We require that Const =

⋃
τ Constτ ; that is, each constant c has at least one type. We do

not, however, require that each Constτ be disjoint from each other; a constant can be polymorphic
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and have more than one valid type. For example, for any pair of types τ1, τ2, fst can have type
(τ1 × τ2) → τ1. Constbool = {true, false} and true, false are in no other set Constτ .

The types for each constant must match their arity. Therefore if c ∈ Constτ1→...→τn→τ , where
τ is not a functional type, then c must have arity n.

A type of an expression is dependent on a type environment Γ = x1 : τ1, . . . , xn : τn which
assigns types to variables. We assume that the xi’s are always distinct. If Γ = x1 : τ1, . . . , xn : τn,
and x does not equal any xi in Γ, then Γ, x : τ = x1 : τ1, . . . , xn : τn, x : τ .

We say that an expression e has type τ under the environment Γ if the expression Γ ` e : τ
is derivable from the rules listed in Figure 2.1. We say that e has type τ if ` e : τ . We use the
notation x : τ ∈ Γ to mean that Γ = Γ′, x : τ, Γ′′ for some type assignments Γ′ and Γ′′. It is quite
possible for an expression to have more than one type; the expression lam x.x has type τ → τ for
any type τ .

A program is a typeable closed expression. When defining constants it is permissible to place
additional restrictions on programs; for example, we can declare that a program may not contain
certain constants even though such constants may be used for operational evaluation.

x : τ ∈ Γ
Γ ` x : τ

c ∈ Constτ

Γ ` c : τ

Γ, x : τ ′ ` e : τ

Γ ` lam x.e : τ ′ → τ

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1(e2) : τ

Γ, x : τ ` e : τ

Γ ` rec x.e : τ

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Figure 2.1: Typing rules for functional languages

2.2.1 An example language

Simply assuming certain general properties of the constants will make the central proofs of sound-
ness and adequacy more concise; however, in any specific instance, using a given collection of
constants we will need to prove that the assumptions hold. To show that the assumptions are
reasonable we need to indicate that the assumptions are likely to hold for constants we are likely
to encounter. Therefore in this section we define a particular language, called FL (Functional
Language). FL is similar to the well-known language PCF ([39]), except that instead of the integer
constants pred and succ it includes the standard arithmetic constants plus products, sums and
lists. With these types we can demonstrate that the assumptions that we make about constants
are likely to be reasonable because many commonly used data types are closely related to some
combination of products, sums, and lists.

The ground types for FL are bool and nat. In addition there are three type constructors: the
binary type constructors, × and +, plus the unary type constructor, list. For convenience, we will
write the binary type constructors in infix notation; i.e. τ1 × τ2 instead of ×(τ1, τ2).

The constants are listed in Figure 2.1, where n can be any natural number, and τ , τ1 and τ2

can be any type. We write n for the syntactic numeral corresponding to n.
The constructors are pair, inl, inr, and cons. When examining the call-by-name or call-by-

need evaluation strategies, cons, inl, and inr are lazy constructors and pair is a strict constructor.
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Constant Arity Type
Integer Constants

n 0 nat
≤ 2 nat → nat → bool
= 2 nat → nat → bool
+ 2 nat → nat → nat
−̇ 2 nat → nat → nat
× 2 nat → nat → nat

Product Constants
pair 2 τ1 → τ2 → τ1 × τ2

fst 1 τ1 × τ2 → τ1

snd 1 τ1 × τ2 → τ2

Sum Constants
inl 1 τ1 → τ1 + τ2

inr 1 τ2 → τ1 + τ2

case 3 τ1 + τ2 → (τ1 → τ) → (τ2 → τ) → τ

List Constants
nil 0 list(τ)
cons 2 τ → list(τ) → list(τ)
head 1 list(τ) → τ
tail 1 list(τ) → list(τ)
nil? 1 list(τ) → bool

Table 2.1: FL Constants, their arities and types
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We use the following syntactic sugar with FL:

• Integer addition, multiplication, etc., are written as e1 +e2, e1×e2, etc., instead of +(e1)(e2).

• The case statement case e1e2e3 is written as case e1 of left : e2 right : e3.

• The product expression pair e1e2 is written as <e1, e2>.

• List consing (cons e1e2) is written as e1::e2 and we assume that :: associates to the right,
i.e., e1 :: e2 :: e3 = e1::(e2::e3). Also, the notation [e1, e2, . . . , en] is used to represent the list
e1 :: e2 :: . . . :: en :: nil.

2.3 The extensional operational semantics

The call-by-value operational semantics is listed in Figure 2.2 and the call-by-name operational
semantics is listed in Figure 2.3. We write e⇒v v to mean that e evaluates (operationally) to v
using the call-by-value evaluation strategy; similarly, we write e⇒n v to mean that e evaluates to v
using the call-by-name evaluation strategy. Both operational semantics closely resemble standard
natural semantics given for each evaluation strategy, as seen in [11]. We chose this particular form
of abstract operational semantics to make it easy to add costs to cover higher level operations (such
as the application of a function) rather than lower level operations (such as the access of a memory
location).

The primary difference between these semantic definitions and those in sources like [11] concerns
the treatment of constants. As we are separating constants in the definitions and proofs, there are
separate judgments for each constant c of the form

vapply(c, v1, . . . , vi) ⇒ v and napply(c, e1, . . . , ei) ⇒ v

where i is some integer less than or equal to the arity of c. In each case the judgment means that c
applied to the given arguments (v1, . . . , vi or e1, . . . , ei) evaluates (using the respective evaluation
strategy) to v. For the call-by-value semantics, when a constant c is applied to an expression e, e is
first evaluated to a value v, then the judgment vapply(c, v) ⇒ v′ is used to determine the effect of
applying c to v. When there is more than one argument, each ei is evaluated, but cv1 . . . vi evaluates
to itself when the vi’s are results of evaluations and when i is less than the arity of c. Eventually
we encounter a judgment of the form vapply(c, v1, . . . , vn) ⇒ v, which contains the final result. For
call-by-name, the individual arguments are not evaluated when forming the intermediate results.
Thus for call-by-name, ce1 . . . ei evaluates to itself when i is less than the arity of c. When all the
arguments are available, we use a judgment of the form napply(c, e1, . . . , en) ⇒ v; the proof tree
containing this judgment may or may not contain evaluations of some or all of the ei’s.

As we have not specified all of the constants, we cannot list all the rules for constant application
judgments; nevertheless, as seen in Figure 2.4 (for call-by-value) and Figure 2.5 (for call-by-name),
some rules are standard. For example, no evaluation occurs for partially applied constants, so we
can define a set of rules for them. Additionally, if c is a constructor, then its only action is to form
a value.

We assume that all other rules have the form

e′1⇒v v′1 . . . e′k⇒v v′k
vapply(c, v1, . . . , vn) ⇒ v
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c⇒v c lam x.e⇒v lam x.e

e1⇒v lam x.e′ e2⇒v v′ [v′/x]e′⇒v v

e1(e2)⇒v v

[rec x.e/x]e⇒v v

rec x.e⇒v v

e1⇒v true e2⇒v v

if e1 then e2 else e3⇒v v

e1⇒v false e3⇒v v

if e1 then e2 else e3⇒v v

e1⇒v cv1 . . . vi e2⇒v vi+1 vapply(c, v1 . . . , vi+1) ⇒ v

e1(e2)⇒v v

Figure 2.2: Operational semantics for a call-by-value functional language

c⇒n c lam x.e⇒nlam x.e

e1⇒nlam x.e′ [e2/x]e′⇒n v

e1(e2)⇒n v

[rec x.e/x]e⇒n v

rec x.e⇒n v

e1⇒ntrue e2⇒n v

if e1 then e2 else e3⇒n v

e1⇒nfalse e3⇒n v

if e1 then e2 else e3⇒n v

e1⇒n ce′1 . . . e′i napply(c, e′1, . . . , e′i, e2) ⇒ v

e1(e2)⇒n v

Figure 2.3: Operational semantics for call-by-name functional language
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i < ar(c)
vapply(c, v1, . . . , vi) ⇒ cv1 . . . vi

n = ar(c) c ∈ Construct
vapply(c, v1, . . . , vn) ⇒ cv1 . . . vn

Figure 2.4: Standard rules for vapply(c, v1, . . . , vn) ⇒ v

napply(ce1, . . ., ei) ⇒ ce1 . . . ei
(i < ar(c))

napply(ce1, . . ., ear(c)) ⇒ ce1 . . . ear(c)
(c ∈ L-Construct)

e1⇒n v1 . . . en⇒n vn

napply(c, e1, . . ., en) ⇒ cv1 . . . vn
(c ∈ S-Construct, n = ar(c))

Figure 2.5: Standard rules for napply(c, e1, . . ., en) ⇒ v

for call-by-value, or
e′1⇒n v′1 . . . e′k⇒n v′k

napply(c, e1, . . . , en) ⇒ v

for call-by-name, where n is the arity of c and the e′j and v′j can be any expression, although
typically there will be some relation between the e′j and the arguments to c. All this assumption
means is that any premises to a rule (apart from side conditions) are straight evaluations and that
there are no other rules for insufficiently applied constants. For example, one rule for application
of integer addition in FL (using call-by-value) is

vapply(+, 2, 4) ⇒ 6

More generally, for any natural numbers n, m,

vapply(+, n,m) ⇒ n + m

All the call-by-value addition rules are covered by the preceding rule because we use the constant
application judgment only with fully evaluated arguments. For the call-by-name case, however, the
arguments are unevaluated so the equivalent rule for addition is

e1⇒n n e2⇒n m

napply(+, e1, e2) ⇒ n + m

2.3.1 Properties of the operational semantics

There are some critical properties of both operational semantics which we will need before we show
that the denotational semantics is sound. The main two, type soundness and value soundness, are
fundamental properties but do require assumptions about the unspecified rules concerning constant
application.

There are three possible ways to define a value relative to an operational semantics. The first,
and most fundamental, is that a value is the result of an evaluation. The second is that a value
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v−value c v−value lam x.e

v−value cv1 . . . vi−1 v−value vi

v−value cv1 . . . vi
(i < ar(c))

v−value cv1 . . . vn−1 v−value vn

v−value cv1 . . . vn
(n = ar(c) and c ∈ Construct)

Figure 2.6: Values of the call-by-value semantics

n-value c

n-value lam x.e

n-value ce1 . . . ei
(i < ar(c))

n-value ce1 . . . ear(c)
(c ∈ L-Construct)

n-value v1 . . .n-value var(c)

n-value cv1 . . . var(c)
(c ∈ S-Construct)

Figure 2.7: Values of the call-by-name semantics

is an expression that evaluates to itself. The last is that a value is an expression that satisfies
some explicitly defined rules. An operation semantics is value sound if the first two definitions are
equivalent; i.e., if e evaluates to a value v, then v must evaluate to v as well. This property holds
for both the call-by-value and call-by-name semantics if one assumes that any additional rules for
constants are also value sound.

We can also explicitly give the definition of a value for both the call-by-value and call-by-name
semantics. Because the operational semantics are different there are two definitions for values. For
the call-by-value semantics we say that v is a value if v−value v holds, where Figure 2.6 contains
the rules for v−value v. Similarly, for the call-by-name semantics, v is a value if n-value v holds,
where Figure 2.7 contains the rules for n-value v.

For both evaluation strategies it is easy to show (by induction on the structure of evaluation)
that if e⇒v v then v−value v and if e⇒n v then n-value v. Similarly it is not difficult to show
that if v−value v then v⇒v v and if n-value v then v⇒n v. Thus all three definitions for value
are equivalent.

It is also true that any value for the call-by-value semantics is also a value for the call-by-name
semantics. This does not necessarily hold in the other direction.

The other critical property needed is type soundness. An operational semantics is type sound
if for all closed expressions e whenever e evaluates to v and has type τ , then v must have type τ
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as well. Formally, the call-by-value semantics is type sound if for all closed expressions e whenever
e ⇒v v and ` e : τ , then ` v : τ . Similarly the call-by-name semantics is type sound if for all
closed expressions e whenever e⇒n v and ` e : τ , then ` v : τ . Again it is not difficult to show, by
induction on the structure of evaluation, that both operational semantics given are type sound if
one assumes that the unspecified rules for constant application are also type sound.

2.4 The Denotational Semantics

The operational semantics given in the previous section is intuitive and easy to understand but not
compositional. For a semantics to be compositional the behavior of an expression must depend only
on the behavior of its subparts. This property holds for some rules of the operational semantics
(such as conditionals), but not in others (such as application or recursion). Compositionality is
desirable because we know that the meaning of an expression e is dependent only on the subparts
of e. If we add new constants or new language constructs, we automatically know that the meaning
of e is unaffected.

The primary difficulty in defining a compositional semantics lies in the definition of recursion.
The problem is that the behavior of a recursive expression is inherently self-referential; for example,
one possible definition for the expression rec x.e might be

M[[rec x.e]]ρ = M[[e]]ρ[x 7→ M[[rec x.e]]ρ] (2.1)

where ρ maps variables to semantic meanings and ρ[x 7→ d] equals the partial function ρ′ where
ρ′(x) = d and ρ′(y) = ρ(y) for y 6= x.

The problem with this equation is that M[[rec x.e]] appears on both sides of the equation.
Therefore it is necessary to ensure that such an equation has a solution and, if there is more than one
solution, to specify which one is intended. Furthermore, if an expression does not (operationally)
terminate but is otherwise well formed, we still need to give it a meaning; it may be part of an
expression that does terminate. For example, rec z.z does not terminate in that there is no value
v such that rec z.z⇒v v or rec z.z⇒n v. The expression lam x.rec z.z, however, does terminate
under both evaluation strategies, evaluating to itself.

2.4.1 Domains and least fixed points

The conventional way (see [38]) to obtain a compositional semantics is through the use of domain
theory and fixed points. For example, to find the meaning of rec x.e, we would first define a
function F as follows:

F (f) = M[[e]]ρ[x 7→ f ]

Any fixed point of f has the property that F (f) = f , that is, it is a potentially valid definition
of M[[rec x.e]] in equation 2.1. Furthermore, if F is function from a set D to itself, the following
conditions guarantee the existence of a fixed point:

• D is partially ordered

• D is strict , that is, D has a least element, denoted ⊥ or ⊥D

• D is ω-complete, that is, for every chain of elements d1 ≤ d2 ≤ . . . in D, there exists a least
upper bound in D, denoted

⊔∞
i=1 di

• F is ω-continuous, that is, F preserves both the ordering on D and the limits of chains
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A set D, equipped with the above requirements, is called an ω-complete partial order . Because
it is also part of one of the more common models of the fixed-point semantics, such sets are also
frequently what is meant by the term domain. In this dissertation, a domain is precisely an
ω-complete partial order.

We can find a fixed point by taking the least upper bound of the sequence ⊥ ≤ F (⊥) ≤ . . . This
fixed point also has the property of being the least fixed point under the ordering in D.

For the particular expression rec x.x, the function F becomes the identity function; as all
elements of D are fixed points the least fixed point is ⊥ (as can also be seen by taking the limit of
the chain F (n)(⊥) = ⊥). Operationally, as noted earlier, rec x.x does not evaluate to any value.
Furthermore, as rec x.x can have any type we know that for each type there is a non-terminating
expression, and its meaning is ⊥. We show in section 2.6 that ⊥ is precisely the meaning of (closed,
well-typed) non-terminating expressions.

Another way to think about the order used for domains is that it relates to the amount of
information that is known about the related expression. There is no useful information that can be
known about rec x.x and any attempt to evaluate the expression leads to non-termination. Thus
its meaning, ⊥, is the least element in the domain. On the other hand, we know everything about
the meanings of true and false and they can be fully evaluated safely, so their meanings will be
greater than ⊥ and unrelated to each other. For an intermediate example, we can safely determine
that true::rec x.x is not nil, and we can evaluate its head, but not its tail. Therefore we would
expect that ⊥ is less than (or equal to) the meaning of true::rec x.x which is less than the meaning
of true::nil. For strict lists, evaluating any part of a list means fully evaluating the list, so the
meaning of true::rec x.x would be ⊥; however, for lazy lists evaluation stops once we know that
the list involves a cons, so we would expect that its meaning would be something other than ⊥.

2.4.2 Extensional semantics with domains

Unlike the operational semantics, the denotational semantics is not defined solely on closed expres-
sions; one cannot always define the meaning of a closed expression compositionally without needing
the meaning of non-closed expressions because there are closed expressions (such as abstractions)
that contain non-closed subexpressions. Therefore the meaning of an expression depends not only
on the expression itself but also on the meanings assigned to its free variables. We additionally add
types both to remove from consideration expressions with type errors (as we did for the operational
semantics) and to simplify the domains used. Thus when we talk about the meaning of an expres-
sion e we are actually talking about the meaning of the judgement that e has type τ given type
environment Γ, written as Γ ` e : τ . This meaning will be a function from environments consistent
with Γ to a domain associated with type τ .

Before defining the function itself, we need to define an environment for valid type assignments
Γ and an interpretation for each type τ . For each τ , let T [[τ ]] be a domain. In this section we
only concentrate on the types that will always be present; in section 2.7 we examine the meanings
of possible additional types. For the boolean type let T [[bool]] be the domain B⊥ consisting of
the elements {⊥, tt,ff}, where ⊥ is the least element and tt and ff are unrelated to each other.
For functional types, the interpretation will differ depending on whether we are considering the
call-by-name evaluation strategy or the call-by-value evaluation strategy. For call-by-value, any
expression of functional type will not terminate if applied to a non-terminating expression; this
property does not necessarily hold for call-by-name. A function f from one domain to another
is strict if f(⊥) = ⊥. For the call-by-name semantics the meaning of τ1 → τ2 is the domain of
ω-continuous functions from T [[τ1]] to T [[τ2]], written as [T [[τ1]] ⇒ T [[τ2]]]. For the call-by-value
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Extensional Extensional
with domains with categories Intensional

Call-by-value:
types T V

D [[τ ]] T V
E [[τ ]] T V[[τ ]]

environments T V
D [[Γ]] T V

E [[Γ]] T V[[Γ]]
expressions VD[[Γ ` e : τ ]] VE[[Γ ` e : τ ]] V[[Γ ` e : τ ]]

constants CV
D [[c]] CV

E [[c]] CV[[c]]
Call-by-name:

types T N
D [[τ ]] T N

E [[τ ]] T N[[τ ]]
environments T N

D [[Γ]] T N
E [[Γ]] T N[[Γ]]

expressions ND[[Γ ` e : τ ]] NE[[Γ ` e : τ ]] N [[Γ ` e : τ ]]
constants CN

D [[c]] CN
E [[c]] CN[[c]]

Table 2.2: Semantic function nomenclature

semantics the meaning of τ1 → τ2 is the domain of strict ω-continuous functions from T [[τ1]] to
T [[τ2]], written as [T [[τ1]] ⇒◦ T [[τ2]]].

There are several ways to define environments; for our purposes we have chosen to state that
given a type environment Γ, [[Γ]] is the set of environments consistent with Γ, where an environment
is a partial function from variables to a collection of domains and an environment ρ is consistent
with Γ if for each x : τ in Γ, ρ(x) is in T [[τ ]].

Remark: So far we have used the same function name to describe the semantics for both
the call-by-name and call-by-value evaluation strategies. As they are not the same function, it
would be more accurate to use different names. Similarly, we will want to distinguish between
the extensional semantics defined in this chapter from the intensional semantics defined in the rest
of the dissertation, and between the semantic functions defined in this section and the functions
defined in section 2.4.6 (using category theory). Table 2.2 lists the function names to be used
throughout the dissertation.

One of the more common definitions used for a denotational semantics (for example, see [11])
is sufficient whenever all one is interested in is the behavior of expressions of ground type. There
is, however, a problem: There are terminating expressions (not of ground type) whose meanings
are ⊥ (such as lam x.rec z.z). This problem occurs because we are not distinguishing between
a terminating expression of functional type that never returns when applied and an expression
of functional type that never terminates in the first place. In situations where the only values of
interest are of ground types, it may be appropriate not to distinguish between the two; for example,
for the call-by-name, any expression of ground type containing lam x.rec z.z can have that part
of the expression replaced with rec z.z without affecting the final result. For this dissertation,
however, we will be linking non-termination with intensional cost, so we require that ⊥ precisely
represents the non-terminating expressions of all types, not just of ground types.

The solution to the problem is to lift the meaning of function types. Given a domain D, its lift,
D⊥ is the domain D with an additional least element added, i.e., D⊥ = D ∪ {⊥}. We originally
defined the meaning of a boolean type as a lifted domain; we could have also defined the pre-order
B as the discretely ordered set {tt, ff}. Then B⊥ is the same domain we previously defined.

With lifts, let

T V
D [[τ1 → τ2]] = [T V

D [[τ1]] ⇒◦ T V
D [[τ2]]]⊥ and T N

D [[τ1 → τ2]] = [T V
D [[τ1]] ⇒ T V

D [[τ2]]]⊥



20 CHAPTER 2. THE EXTENSIONAL SEMANTICS

T V
D [[τ1 → τ2]] = [T V

D [[τ1]] ⇒◦ T V
D [[τ2]]]⊥

VD[[Γ ` x : τ ]]ρ = ρ(x)
VD[[Γ ` c : τ ]]ρ = CV

D [[c : τ ]]

VD[[Γ ` if e1 then e2 else e3 : τ ]]ρ =





VD[[Γ ` e2 : τ ]]ρ if VD[[Γ ` e1 : bool]]ρ = tt
VD[[Γ ` e3 : τ ]]ρ if VD[[Γ ` e1 : bool]]ρ = ff
⊥ otherwise

VD[[Γ ` lam x.e : τ ′ → τ ]]ρ = up(strict(λd.VD[[Γ, x : τ ′ ` e : τ ]]ρ[x 7→ d]))
VD[[Γ ` e1(e2) : τ ]]ρ = (down(VD[[Γ ` e1 : τ ′ → τ ]]ρ))(VD[[Γ ` e2 : τ ′]]ρ)
VD[[Γ ` rec x.e : τ ]]ρ = fix(λd.VD[[Γ, x : τ ` e : τ ]](ρ[x 7→ d]))

Call-by-value

T N
D [[τ1 → τ2]] = [T V

D [[τ1]] ⇒ T V
D [[τ2]]]⊥

ND[[Γ ` x : τ ]]ρ = ρ(x)
ND[[Γ ` c : τ ]]ρ = CN

D [[c : τ ]]

ND[[Γ ` if e1 then e2 else e3 : τ ]]ρ =





ND[[Γ ` e2 : τ ]]ρ if ND[[Γ ` e1 : bool]]ρ = tt
ND[[Γ ` e3 : τ ]]ρ if ND[[Γ ` e1 : bool]]ρ = ff
⊥ otherwise

ND[[Γ ` lam x.e : τ ′ → τ ]]ρ = up(λd.ND[[Γ, x : τ ′ ` e : τ ]]ρ[x 7→ d])
ND[[Γ ` e1(e2) : τ ]]ρ = (down(ND[[Γ ` e1 : τ ′ → τ ]]ρ))(ND[[Γ ` e2 : τ ′]]ρ)
ND[[Γ ` rec x.e : τ ]]ρ = fix(λd.ND[[Γ, x : τ ` e : τ ]](ρ[x 7→ d]))

Call-by-name

Figure 2.8: Denotational semantics using domains for call-by-value and call-by-name

For any domain D let the function up : D → D⊥ be the inclusion function and let the function
down : D⊥ → D be the function such that down(⊥) is the least element of D and for all x ∈ D,
down(up(x)) = x. Also, if f⊥ is a function from D⊥ to D′

⊥, let strict(f⊥) be the function such that
strict(f⊥)(⊥) = ⊥ and strict(f⊥)(up(x)) = f⊥(up(x)); that is, strict(f⊥) is the strict version of f⊥.
Figure 2.8 contains the adjusted semantics.

Assuming that the definition of the constants properly matches the operational semantics, we
have the following soundness properties:

Theorem 2.4.1 For any closed expression e of type τ ,

1. If e⇒v v then VD[[ ` e : τ ]] = VD[[ ` v : τ ]]

2. If e⇒n v then ND[[ ` e : τ ]] = ND[[ ` v : τ ]]

Proof. The proof can be found in a number of sources, including [11]. 2

A semantic definition if adequate if ⊥ solely represents non-termination. We have the following
adequacy properties:

Theorem 2.4.2 For any closed expression e of type τ ,

1. VD[[ ` e : τ ]] 6= ⊥ if and only if for some value v, e⇒v v, and
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2. ND[[ ` e : τ ]] 6= ⊥ if and only if for some value v, e⇒n v.

Proof. The proof can be found in a number of sources, including [11]. 2

2.4.3 Categories

While domains are sufficient for most forms of analysis, for our purposes we would rather use a
more abstract representation, in this case category theory. By using category theory we can not
only better separate the algebraic properties we desire from those that are inherently part of a
domain-based model, but we can also define and prove many properties with the domain model in
mind and still have the proven properties available when we eventually shift to a non domain-based
model.

There are many publications explaining the basic categorical concepts used in this thesis.
Pierce’s book [31] is a good introduction, [3] is aimed for computer scientists, while [23], writ-
ten for mathematicians, is often cited in the literature.

Formal Definitions

A category C consists of three parts:

• A collection of objects

• A collection of morphisms, Hom(A,B), for each pair of objects A and B. A morphism in
Hom(A,B) can be described either as a morphism from A to B or as a morphism f : A → B.
If f : A → B, then A is said to be its domain and B is its codomain.

• For each triple of objects A, B, C, a composition operator ◦ : that combines a morphism in
Hom(A,B) and a morphism in Hom(B,C) into a morphism in Hom(A,C). For example, if
f : A → B and g : B → C, then g ◦ f : A → C.

These parts must satisfy the following requirements:

1. Existence of identity morphisms: For each object A there exists a morphism idA : A → A
such that for any f : A → B and g : C → A, f ◦ idA = f and idA ◦ g = g.

2. Associativity of composition: If f : A → B, g : B → C, and h : C → D, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f

There are a number of categories where the objects are sets (with possibly some added structure)
and the morphisms are (structure-preserving) functions. The simplest one is Set; an object in Set
is a set, and a morphism from A to B in Set is a (total) function from A to B; composition in
Set is standard function composition. Similarly, domains form a category, Dom, where objects
are domains, morphisms are ω-continuous functions and composition is also the standard notion
of function composition. Other categories include the category of groups and homomorphisms and
the category of partial orders and monotone functions.

There are also categories whose morphisms are not functions. Any two categories C1 and C2

can be used to form a product category C1 × C2. An object in C1 × C2 is a pair of objects (A1, A2)
from C1 and C2, respectively, and a morphism (f, g) : (A1, A2) → (B1, B2) in C1 × C2 is a pair
of morphisms f : A1 → B1 in C1 and g : A2 → B2 in C2. Composition is performed pairwise;
(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′), and the identity morphism on an object (A1, A2) is (idA1 , idA2).
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Similarly, given a category C we can form another category Cop, called the opposite category .
The objects of Cop are the objects of C, but the morphisms are reversed, that is, f is a morphism
from A to B in Cop exactly when f is a morphism from B to A in C.

The category of domains gives us a starting point for determining a denotational semantics
using categories. Ideally we would want the denotational semantics with domains to be a special
case of the denotational semantics with categories (or at least equivalent to a special case). For
the denotational semantics with domains, the meanings of types are domains and the meaning of
(typed) expressions are continuous functions; therefore, we expect that the meaning of types in the
categorical semantics will be objects while the meaning of expressions will be morphisms.

Some categories have objects and morphisms with special “universality” properties. An object
in a category C is terminal if for any object A there exists exactly one morphism from A to the
terminal object. If a category has a terminal object we usually write 1 to denote some distinguished
terminal object; the unique morphism from A to 1 is then denoted !A.

Suppose that f : A → B and g : B → A. If g ◦ f = idA and f ◦ g = idB then A and B are
isomorphic with f and g being isomorphisms. Many categorical definitions are only unique “up
to isomorphism.” For example, the definition of a terminal object does not uniquely determine an
object, but all terminal objects in a given category are isomorphic.

Comparisons between categories are often more important than particular categories or mor-
phisms. A functor F from a category C to a category D (written F : C → D) consists of a function
(also written as F ) from objects of C to objects of D and a function (again written as F ) on
morphisms where for each morphism f : A → B in C, Ff is a morphism in D from FA to FB.
Furthermore for each object A of C, F idA = idFA, and for each pair of morphisms f : A → B and
g : B → C in C, F (g ◦ f) = Fg ◦ Ff .

A special kind of functor is a forgetful functor. Forgetful functors generally go from a category
of structured objects to a category of similar objects with less structure. For example, there is a
forgetful functor from Dom to Set; that functor simply “forgets” the ordering of the domains and
extracts the underlying set.

For any object B in C and any category D, there is a degenerate “constant” functor B from D
to C, where, for all objects A in D, BA = B and, for all morphisms f : A → B, Bf = idB. Another
simple functor of note is the identity functor I from a category to itself, which maps objects and
morphisms to themselves. In Dom, let LA = A⊥ and for f : A → B, let Lf : LA → LB be the
function such that Lf(⊥) = ⊥ and Lf(up(a)) = up(f(a)). Then L is a functor, called the lifting
functor, from Dom to itself.

Given two functors F, G : C → D, a natural transformation α : F
·→ G, is a collection of

morphisms such that for each object A in C, αA : FA → GA in D and for each morphism f : A → B
in C, αB ◦ Ff = Gf ◦ αA. A natural isomorphism is a natural transformation α such that for each
object A, αA is an isomorphism. For any category with a terminal element 1, ! is a natural
transformation from the identity functor I to the degenerate functor 1. Also, in Dom, up is a
natural transformation from I to L.

A functor of two arguments from categories C1 and C2 is a functor (of one argument) from
C1×C2. A functor F from C to D is contravariant if it satisfies the above requirements except that
F (f ◦ g) = Fg ◦ Ff ; formally a contravariant functor is just an ordinary functor from the opposite
category Cop to D.

Category theorists often use diagrams to display equations. A diagram is a directed graph where
the nodes are objects and the edges are morphisms. Such a diagram commutes if all paths between
a pair of objects consisting of a least two edges correspond to equal morphisms. It is common in
the category theoretic setting to use commuting diagrams to represent or display equations; for
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Figure 2.9: Naturality requirement

example, the diagram in Figure 2.9 represents the condition required for naturality.
In our semantics we will use functors and natural transformations in a number of ways, but one

use is worth noting here. The semantic functions given for domains do not include any constructed
data types. The semantics given for categories will specify that constructed data types will be
formed using functors. While we only need to know how the functors act on objects in order to
show soundness and adequacy overall, the functors’ actions on morphisms help convince us that
the data types are well formed and provide the structure needed to prove soundness of particular
constants.

Cartesian closed categories

One of the most important discoveries made concerning semantics and categories is that the se-
mantics of the simply typed λ-calculus is closely aligned with Cartesian closed categories ([19]).
Even though our language differs from the simply typed λ-calculus in that we include different
evaluation strategies plus elements such as conditionals, Cartesian closed categories are invaluable
conceptually.

A product of two objects A and B is an object, written as A×B, together with two projection
morphisms π1 : A × B → A and π2 : A × B → B such that for all morphisms f : C → A and
g : C → B, there is a unique morphism 〈f, g〉 from C to A × B satisfying π1 ◦ 〈f, g〉 = f and
π2 ◦ 〈f, g〉 = g. For all morphisms f : A → C and g : B → D, we define f × g : A×B → C ×D to
be 〈f ◦ π1, g ◦ π2〉. A category has binary products if every pair of objects has a product.

There may be more than one way to form products from a given pair of objects. In particular,
both A × B and B × A are products of A and B. All products derived from the same objects,
however, are isomorphic to each other. Thus A × B is isomorphic to B × A and A × (B × C) is
isomorphic to (A×B)× C. Furthermore, if 1 is a terminal object, we can easily show that A× 1
is isomorphic to A. Some (natural) product isomorphisms are of frequent use in this dissertation;
these are listed in Figure 2.10. Note that αr and αl are mutual inverses, while β and φ are their
own inverses (relative to their subscripts, i.e., βA,B and βB,A are inverses).

With products and terminal elements we can define n-ary products for all n. While all definitions
of n-ary products are isomorphic, for precision we use the following, also defined in [11]:

Definition 2.4.1 Given a category C with finite products and n objects A1, . . . , An, let the product
×(A1, . . . , An) be defined inductively as follows:

• ×() = 1

• ×(A1, . . . , An) = ×(A1, . . . , An−1)×An
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βA,B: A×B → B ×A = 〈π2, π1〉
αr

A,B,C : (A×B)× C → A× (B × C) = 〈π1 ◦ π1, π2 × id〉
αl

A,B,C : A× (B × C) → (A×B)× C = 〈id× π1, π2 ◦ π2〉
φA,B,C,D: (A×B)× (C ×D) → (A× C)× (B ×D) = 〈π1 × π1, π2 × π2〉

Figure 2.10: Commonly used product isomorphisms

Given ×(A1, . . . , An) and 1 ≤ i ≤ n, let πn
i be the i’th projection, i.e. πn

n = π2 and for i < n,
πn

i = πn−1
i ◦ π1.

Furthermore, if for each 1 ≤ i ≤ n, fi : C → Ai, let 〈〉(f1, . . . , fn) : C → ×(A1, . . . , An) be
defined inductively as follows:

• 〈〉() = !C , and for n > 0,

• 〈〉(f1, . . . , fn) = 〈〈〉(f1, . . . , fn−1), fn〉

An exponentiation for a pair of objects A and B is an object [A ⇒ B] and a morphism appA,B

from [A ⇒ B]×A to B such that for all objects C and all morphisms f : C ×A → B there exists
a unique morphism curry(f) : C → [A ⇒ B] such that f = appA,B ◦ (curry(f) × idA). Given a
morphism g : C → [A → B] we define uncurry(g) : C ×A → B to be appA,B ◦ (g × idA).

A category is Cartesian closed if it has binary products, a terminal object, and every pair of
objects A and B has an exponentiation. It follows that the category has finite products.

Both Set and Dom are Cartesian closed. For Set, the product object A×B is the set of pairs
from A and B, the exponentiation object [A ⇒ B] is the set of functions from A to B, and app
performs standard function application. For Dom, the product object A×B is the domain of pairs
from A and B, ordered pairwise, the exponentiation object [A ⇒ B] is the domain of ω-continuous
functions, ordered element-wise, and app is again standard function application. Exponentiation
models hom-sets within the category; note that in both cases the exponentiation object is the
hom-set itself (with ordering added, in the case of Dom).

Both products and exponentiation produce bifunctors: the product functor, −×− from C × C
to C and the exponentiation functor [− ⇒ −] from Cop × C to C. Given f : A → B and g : C → D,

f × g = 〈f ◦ π1, g ◦ π2〉 : A× C → B ×D

and we define
[f ⇒ g] = curry(g ◦ app ◦ (id× f)) : [B ⇒ C] → [A ⇒ D]

If C is a Cartesian closed category, then Hom(C, A×B) is isomorphic to Hom(C, A)×Hom(C,B)
(in Set) and Hom(C ×A,B) is isomorphic to Hom(C, [A ⇒ B]). These isomorphisms are needed
for the definition of enriched categories in section 2.4.3.

There are many uses for products: aside from modeling products in the language itself we will
need them to form environments. We need exponentiation to model function types.

Other constructions

A category has binary coproducts if for every pair of objects A and B, there is an object A+B and
a pair of injection morphisms inl : A → A + B and inr : B → A + B, such that for all morphisms
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f : A → C and g : B → C, there is a unique morphism [f, g] from A+B to C satisfying [f, g]◦inl = f
and [f, g] ◦ inr = g. For all morphisms f : A → C and g : B → D, we define f + g : A + B → C + D
to be [inl ◦ f, inr ◦ g]. Thus −+− is also a functor from C × C to C.

Set has coproducts; the coproduct of A and B is their disjoint union. Dom does not have
coproducts; the disjoint union of A and B does not have a least element. By either adding a
least element (resulting in a separated sum) or sharing the least elements (result in a smashed
sum) we get an object with some but not all of the properties of coproducts. For example, with
smashed sums the construction [f, g] only satisfies the required equations when f and g are both
strict. For separated sums there is no unique construction [f, g] satisfying the other requirements.
As coproducts are needed to construct sums and lists, we wanted a way to have coproducts in
our categories. It is not possible to have coproducts, Cartesian closure, and still guarantee that all
morphisms on a single domain have fixed points. The only category satisfying all those requirements
is the trivial category with one element and one morphism. [15]

In domain theory, the traditional solution to this problem is to relax the requirement that all
objects have coproducts. Another common solution, however, is to relax the requirement for fixed
points, and we choose to use that solution in this dissertation. Thus instead of the category Dom
we instead use PDom, the category of pre-domains (and continuous functions), that is, ω-complete
partial orders that do not need to have a least element. This category is Cartesian closed and has
coproducts. It is not true, however, that for all D and all f : D → D, f will have a fixed point;
for example, the function not : B → B defined as not(tt) = ff and not(ff) = tt does not have
a fixed point. If, however, a pre-domain D is known to have a least element (i.e., is actually a
domain), then we can still guarantee that a continuous function f : D → D has a (least) fixed
point. Therefore to use this category we must ensure that we only calculate fixed points on string
pre-domains.

One extra advantage we obtain with PDom is that we can use the L functor to convert pre-
domains to domains. We can then generalize the process to any category that has a functor
L satisfying certain properties, as described in section 2.4.5. Thus we not only can use other
categories besides PDom, but the semantics that follows from this treatment explicitly models the
behavior of non-termination. As properties of non-termination are closely related to properties of
cost accounting, this enables us to better model the behavior of costs.

Category theory and fixed points

While a Cartesian closed category is sufficient to model the λ-calculus, it is no longer sufficient
once we add fixed points. The fixed point construction in [3] states that when the hom-sets are
domains (i.e., there is a strict, ω-complete partial ordering on the morphisms) then given a function
f : D → D, there is a morphism fix(f) : 1 → D such that f ◦ fix(f) = fix(f). For this dissertation,
however, we would prefer instead to convert a morphism f : A×D → D to a morphism from A to
D instead, where A represents the environment. On the basis of constructions from other sources
([49], [28]) we can construct a similar but more directly useful fixed point operator.

Definition 2.4.2 A category C is PDom-enriched if each hom-set is (also) an element of PDom
and for any objects A, B, and C of C, composition is (also) a morphism in PDom from the product
Hom(A,B)×Hom(B,C) to Hom(A,C), i.e., composition is ω-continuous.

The “(also)” in the above definition reminds us that the hom-sets are also sets and composition
is also a function, so C is also a category in the usual sense.



26 CHAPTER 2. THE EXTENSIONAL SEMANTICS

Any category can be considered trivially PDom-enriched by using the discrete ordering on all
of the hom-sets. A non-trivial example of an enriched category is PDom itself, where the ordering
on the hom-sets is the usual pointwise ordering. Also, Dom is PDom enriched, with the added
property that all orderings are strict.

A PDom-enriched category is Cartesian closed if it is Cartesian closed in the usual sense, and
the isomorphisms on the hom-sets generated by Cartesian closure (noted in the previous section) are
morphisms in PDom, that is, they are ω-continuous functions. In this way currying and product
formation preserve the orderings of the hom-sets in the category. Thus the two isomorphisms be-
tween Hom(C ×A,B) and Hom(C, [A ⇒ B]), namely curry and uncurry, are continuous. Therefore,
for any f, f ′ : C → [A ⇒ B], f ≤ f ′ if and only if app ◦ (f × idA) ≤ app ◦ (f ′ × idA).

Similarly, for products the isomorphisms are φ(h) = (π1 ◦h, π2 ◦h) and φ−1(f, g) = 〈f, g〉, where
(f, g) indicates a pair of morphisms in Set (or PDom). Thus if f, f ′ : C → A and g, g′ : C → B,
then 〈f, g〉 ≤ 〈f ′, g′〉 if and only if

φ〈f, g〉 = (π1 ◦ 〈f, g〉, π2 ◦ 〈f, g〉) = (f, g) ≤ φ〈f ′, g′〉 = (f ′, g′)

i.e., if and only if f ≤ f ′ and g ≤ g′. Also, since φ and φ′ are continuous, if f0 ≤ f1 ≤ . . . is a chain
of morphisms from C to A and g0 ≤ g1 ≤ . . . is a chain of morphisms from C to B, then

∞⊔

n=0

〈fn, gn〉 = 〈⊔∞
n=0 fn,

⊔∞
n=0 gn〉

Furthermore, by the continuity of composition,

(
∞⊔

n=0

gn) ◦ (
∞⊔

n=0

fn) =
∞⊔

n=0

(gn ◦ fn)

as well.
For fixed points we need something analogous to ⊥. Let an object D in C be strict if there

exists a morphism ⊥D : 1 → D such that for every f : A → D, ⊥D ◦ !A ≤D f . For strict objects, it
is then possible to generate (least) fixed points:

Theorem 2.4.3 Suppose that D is a strict object of C, and that f : D′ × D → D. Then there
exists a least morphism fixpD,D′(f) : D′ → D such that f ◦ 〈idD′ , fixpD,D′(f)〉 = fixpD,D′(f).

Proof. This is essentially the proof shown in [3] with the extra object D′ included.
For n ≥ 0, let fn : D′ → D be defined inductively as follows:

f0 = ⊥D ◦ !D′

fn+1 = f ◦ 〈idD′ , fn〉

First we must show that this forms a chain f0 ≤ f1 . . .. By strictness f0 ≤D f1. If fn−1 ≤D fn

then 〈idD′ , fn−1〉 ≤D′×D 〈idD′ , fn〉 by the component-wise ordering of products, so

fn = f ◦ 〈idD′ , fn−1〉 ≤D f ◦ 〈idD′ , fn〉 = fn+1

Thus by induction on n, fn is a chain of morphisms from D′ to D.
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Now let fixpD,D′(f) =
⊔∞

n=0 fn. Note that by the continuity of products and composition,

f ◦ 〈idD′ , fixpD,D′(f)〉 = f ◦ 〈idD′ ,
⊔∞

n=0 fn〉
=

⊔∞
n=0(f ◦ 〈idD′ , fn〉)

=
⊔∞

n=0 fn+1

= fixpD,D′(f)

Let h : D′ → D such that f ◦ 〈idD′ , h〉 = h. By strictness f0 ≤ h, and if fn ≤ h then

fn+1 = f ◦ 〈idD′ , fn〉 ≤ f ◦ 〈idD′ , h〉 = h

Thus h is an upper bound of the fn’s, so fixpD,D′(f) =
⊔∞

n=0 fn ≤ h. 2

Alternatively, we can define a collection of morphisms fixD : [D ⇒ D] → D as the fixed point
operator, with the property that app ◦ 〈id[D⇒D], fixD〉 = fixD, and fixD is the least morphism with
such a property. The latter is derivable from the former: fixD is equal to fixp[D⇒D],D(app), and if
f : D′ ×D → D, then fixp(f) = fixD ◦ curry(f). While the latter form more closely resembles the
fixed-point constructor used with domains, in this document we use fixp because it both works well
with the denotational semantics and does not require the explicit use of application.

One more property of fixp beyond the general fixed point properties is useful. This result is not
surprising given the relationship just described between fixp and fix.

Lemma 2.4.4 Let D0, D, and D′ be objects of C, let f be a morphism from D×D′ to D′, and let
g be a morphism from D0 to D. Then

fixpD0,D′(f ◦ (g × idD′)) = fixpD,D′(f) ◦ g

Proof. For n ≥ 0, let fn : D → D′ and f ′n : D0 → D′ be defined inductively as follows:

f0 = ⊥D′ ◦ !D f ′0 = ⊥D′ ◦ !D0

fn+1 = f ◦ 〈idD, fn〉 f ′n+1 = f ◦ (g × idD′) ◦ 〈idD, f ′n〉

Thus fixpD,D′(f) =
⊔∞

n=0 fn and fixpD0,D′(f ◦ (g × idD′)) =
⊔∞

n=0 f ′n.
Now note that f0 ◦ g = ⊥D′ ◦ !D ◦ g = ⊥D′ ◦ !D0 = f ′0 by the uniqueness of !. Also if f ′n = fn ◦ g

then
f ′n+1 = f ◦ (g × idD′) ◦ 〈idD, f ′n〉

= f ◦ 〈g, fn ◦ g〉
= f ◦ 〈idD, fn〉 ◦ g
= fn+1 ◦ g

Thus by induction for all n ≥ 0, f ′n = fn ◦ g and by the continuity of composition

fixpD0,D′(f ◦ (g × idD′)) =
⊔∞

n=0 f ′n
=

⊔∞
n=0(fn ◦ g)

= (
⊔∞

n=0 fn) ◦ g
= fixpD,D′(f) ◦ g

2
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2.4.4 Monads

In 1989 Moggi noted that the categorical construct called a monad can be used as a general method
for modeling certain structures of functional languages ([24]). Since then, researchers have used
monads for many purposes, either as part of a semantic definition or as the basis for constructs
in functional languages themselves (see [46]). In essence, monads provide a uniform method for
handling general procedures such as initializing or combining structures.

There are two different ways to define a monad. The first method uses standard categorical
definitions: A monad is a functor C along with two natural transformations η : I

·→ C and
µ : C2 ·→ C, satisfying the following properties for all objects A:

• µA ◦ ηCA = idCA

• µA ◦ CηA = idCA

• µA ◦ CµA = µA ◦ µCA.

The other method involves a structure called a Kleisli triple. A Kleisli triple is a function C
from objects to objects along with, for each object A, a morphism ηA : A → CA and, for each
morphism f : A → CB, a morphism f∗ : CA → CB, satisfying the following:

• f∗ ◦ ηA = f

• ηA
∗ = idCA

• For all morphisms g : B → CD, g∗ ◦ f∗ = (g∗ ◦ f)∗

Each Kleisli triple (C, η, (−)∗) gives rise to a monad (C, η, µ), where µA = idCA
∗ and for any

morphism f : A → B, Cf = (ηB ◦ f)∗. Similarly, every monad determines a Kleisli triple, where
f∗ = µB ◦ Cf . Which version is used, therefore, becomes a matter of personal preference. In this
dissertation we will typically use the Kleisli triple functions plus the definition of C on morphisms;
we therefore also make frequent use of the following derived properties combining the two forms:

Cg ◦ f∗ = (Cg ◦ f)∗ and g∗ ◦ Cf = (g ◦ f)∗

A large number of constructions in computer science can be described by a monad. We will
make particular use of the monad formed from the lifting functor L along with up and down.
The function f∗ returns ⊥ when the input is ⊥ and applies f otherwise. In Set the power set
function also forms a monad: If PA is the powerset of A, then ηA(a) = {a} and for f : A → PB,
f∗(X) =

⋃
x∈X f(x).

Strong monads

In practice, constructions that can be represented as monads often need some additional morphisms
or natural transformations to handle tasks unique to that construction; for example, the lifting
monad needs the natural transformation ⊥ from 1 to L to describe non-termination. Many monads,
moreover, need some way of interacting with products. In particular, when examining the semantics
of high-order functional languages, we need a method for combining a monad with products to
enable a valid definition of function application (fortunately, there is no need for any extra properties
to handle currying). Category theory already defines a class of monads containing the extra power.
A monad is said to be strong if there exists a natural transformation τ from C −×− to C(−×−)
(i.e., τA,B : CA×B → C(A×B)) satisfying the following four properties:



2.4. THE DENOTATIONAL SEMANTICS 29

C(A×B)

CA×B

CA CA×B

A×B

C(A×B)

­
­

­
­

­
­À

τ

-
Cπ1

J
J

J
J

J
Ĵ
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Figure 2.11: Strength requirements for a monad

• Cπ1 ◦ τA,B = π1

• Cαr
A,B,D ◦ τA×B,D ◦ (τA,B × idD) = τA,B×D ◦ αr

CA,B,D

• τA,B ◦ (ηA × idB) = ηA×B

• µA×B ◦ CτA,B ◦ τCA,B = τA,B ◦ (µA × idB)

The category where C is defined must obviously have products for this definition to make any sense.
We can also define the above properties using only the Kleisli triple notation by replacing the

requirement that τ is natural and the last property with the following (see Figure 2.11):

• τA′,B′ ◦ (f∗ × g) = (τA′,B′ ◦ (f × g))∗ ◦ τA,B.

The two definitions are equivalent.
There is a another way to denote strength. Rather than use a left-handed natural transformation

τ as above we can instead use a natural transformation ψA,B : CA × CB → C(A × B) satisfying
certain commutative diagrams as shown in in the following theorem. This natural transformation
“pushes” C outside of a product and does so in a uniform way in that there are no properties that
are specific to the left or right side of a product.

Theorem 2.4.5 Suppose that for each pair of objects A and B, there exists a morphism ψA,B from
CA× CB to C(A×B) satisfying the following properties (also see Figure 2.12):

• Cπ1 ◦ ψA,B ◦ (id× ηB) = π1

• Cπ2 ◦ ψA,B ◦ (ηA × id) = π2
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Figure 2.12: Strength properties with ψ

• ψA,B ◦ (ηA × ηB) = ηA×B

• ψA,B×D ◦ (idCA × ψB,D) ◦ αr
CA,CB,CD = Cαr

A,B,D ◦ ψA×B,D ◦ (ψA,B × idCD)

• ψA′,B′ ◦ (f∗ × g∗) = (ψA′,B′ ◦ (f × g))∗ ◦ ψA,B

Then (C, η, (−)∗, τ) is a strong monad, where τ = ψ ◦ (id× η).

Proof. Straightforward. 2

It is possible, but more difficult, to derive such a morphism ψ from a strength τ . The problem
is that there are two plausible ways to define a suitable ψ:

ψ1 = τA,B
∗ ◦ CβB,CA ◦ τB,CA ◦ βCA,CB

and
ψ2 = CβB,A ◦ τB,A

∗ ◦ CβA,CB ◦ τA,CB

These two morphisms ψ1 and ψ2 are not necessarily the same as they involve different orders of
composition. For some monads the ordering is irrelevant, but for others it is not. As we do not wish
to artificially restrict our semantics by imposing such an order, especially as both forms satisfy the
requirements of Theorem 2.4.5, when we need some form of strength we will use ψ rather than τ .

The lifting monad is strong: ψ is the function that takes the smashed product of two domains,
i.e., ψ(⊥, d2) = ψ(d1,⊥) = ⊥, but ψ(up(d1), up(d2)) = up(d1, d2). The powerset functor is also
strong, with ψ(X,Y ) = {(x, y) | x ∈ X, y ∈ Y }.
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2.4.5 The lifting monad in enriched categories

The lifting monad will be needed to define an adequate extensional semantics in such a way that
the semantics can be easily modified to an adequate intensional semantics. That the study of non-
termination and time complexity are related is no surprise; one way to determine if a part of an
expression is not evaluated is to replace it with an expression that is known not to terminate. If
the expression as a whole still terminates then that sub-expression must not have been evaluated.

The lifting monad, however, is only defined on PDom (or other closely related categories). We
need a version that is not dependent on the objects being ordered sets and the morphisms being
functions. One possible definition comes from knowing that LA is similar to a coproduct A + 1
with extra ordering requirements; to be precise, if U is the forgetful functor from PDom to Set,
then U(LA) is isomorphic (in Set) to 1+UA. The ordering requirements mean that the definition
is limited to enriched categories, but the definition given below requires no additional properties of
a category.

Definition 2.4.3 In a PDom-enriched category C, the lift of an object A consists of an object,
written as LA, together with two morphisms upA : A → LA and ⊥A : 1 → LA such that the
following hold:

1. LA is strict and ⊥A is the least element of Hom(1, LA).

2. For any morphisms: f, g : C → A, upA ◦ f ≤ upA ◦ g if and only if f ≤ g.

3. If x : 1 → LA, then either x = ⊥A or, for some x′ : 1 → A, x = upA ◦ x′.

4. For any x : 1 → A, upA ◦ x 6= ⊥A

5. For any morphisms f : A → B and x : 1 → B with x◦ !A ≤ f , there exists a unique morphism
fx : LA → B such that fx ◦ upA = f and fx ◦ ⊥A = x.

A category has lifts if each of its objects has a lift.

The first two requirements specify the ordering of LA: ⊥ is the least element and all other
elements of A keep the same relative order. Note that the if part of requirement #2 always holds
by the monotonicity of composition. The next two enforce the separate nature of ⊥; for most
set-like categories, they will follow from the final requirement. The final requirement is a close
variant of the coproduct definition. The major change is the requirement that x ◦ ! ≤ f ; without it
fx may not be monotone. For functions it is equivalent to requiring that the value to which ⊥ is
mapped less than or equal to any other element in the range of f .

Lifting as defined on PDom satisfies the requirements for lifts just defined. Furthermore the
requirements are sufficient to ensure that (L, (−)⊥, up) is a Kleisli triple, where f⊥ = f⊥. Thus
if we let Lf = (up ◦ f)⊥ = up ◦ f⊥, L becomes a functor, and (L, up, down) is a monad, where
down = id⊥ = id⊥. Also ⊥ is a natural transformation from 1 to L.

Even if a category has lifts and products, however, L may not be strong. To get strength, we
need to define an equivalent to the smashed product function.

Definition 2.4.4 A category with lifts and products has smashed products if for every pair of
objects A and B there exists a morphism smashA,B from LA × LB to L(A × B) such that the
following properties hold (also see Figure 2.13):

1. Lπ1 ◦ smashA,B ◦ (id× upB) = π1
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2. smashA,B ◦ (upA × upB) = upA×B

3. smashA,B×C ◦ (idLA × smashB,C) ◦ αr
LA,LB,LC = Lαr

A,B,C ◦ smashA×B,C ◦ (smashA,B × idLC)

4. smashA′,B′ ◦ (f⊥ × g⊥) = (smashA′,B′ ◦ (f × g))⊥ ◦ smashA,B

5. For all objects A,B, smashA,B ◦ (⊥A × idLB) = ⊥A×B ◦ !1×LB,

6. For all objects A,B, smashA,B ◦ β = Lβ ◦ smashB,A.

L(A×B) is called the smashed product of LA and LB.

The first four requirements are the same as four of the five requirements of strength; the last
strength requirement is derivable from the rest and from the last requirement of smashed products,
which show that the smashed products are order-independent. Thus in any category with lifts and
smashed products the lifting monad is also strong. The remaining requirement covers the behavior
of smash with ⊥; the property that smash ◦ (id×⊥) is also ⊥ can be derived from the rest.

PDom has smashed products, where smash(⊥, y) = smash(x,⊥) = ⊥, and

smash(up(x), up(y)) = up(〈x, y〉)

Note that if we let A′ = LA and B′ = LB in PDom (i.e, if A′ and B′ are both domains), then
there is a standard smashed product of A′ and B′, written A′ ⊗B′, where

A′ ⊗B′ = {⊥} ∪ {〈a, b〉 | a ∈ A′, b ∈ B′, a 6= ⊥, b 6= ⊥}

i.e., the smashed product identifies all pairs of the form 〈⊥, b〉 or 〈a,⊥〉 with ⊥. It is clear that
A′ ⊗ B′ = L(A × B); therefore, the traditional smashed product for domains is an example of
smashed products as defined in this section.

2.4.6 The categorical denotational semantics

Computer scientists have used category theory for denotational semantics in a variety of ways.
In particular, the notion of Cartesian closure has been shown to closely model the simply-typed
λ-calculus ([19]). The semantics we derive in this section also has roots in the semantics of the
λ-calculus but we have made three significant changes: First, the semantics also explicitly includes
additional language constructs such as recursion and conditionals. Second, our semantics not only
handles additional constants, but is set up so that the constants can remain as a parameter in our
framework, to be instantiated as needed. Third, the semantics models non-termination through
the use of the lifting monad.

To derive the semantic function, we first start with the semantics defined in Figure 2.8 which
uses domains. We then add semantic definitions for the data types not yet covered and define
environments in a manner consistent with category theory. We then convert one semantic function
to the other.

When possible, we convert the call-by-value and call-by-need versions in parallel. In some
cases, such as with conditionals, the conversions are the same for both; for others, such as with
abstractions, the conversions are quite different.
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Figure 2.13: Smashed product requirements
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Types

The first notable difference concerning the meaning of types is that the denotational model assumes
that all the types are strict while the categorical model adds strictness explicitly through the functor
L. To have proper access to the unlifted objects, the meaning of a type τ in the categorical model
(T V

E [[τ ]] or T N
E [[τ ]]) must therefore refer to the unlifted object. When we want the strict object,

we use LT V
E [[τ ]] or LT N

E [[τ ]]. Because the denotational meanings of a type (T V
D [[τ ]] and T N

D [[τ ]])
are always strict, when converting the semantics we compare T V

D [[τ ]] to LT V
E [[τ ]], not to T V

E [[τ ]].
Similarly, for the call-by-name version, T N

D [[τ ]] will be compared to LT N
E [[τ ]].

This difference requires that the meanings of ground types must also change. Instead of flat
domains such as N⊥ and B⊥, we set the meaning of ground types to objects such as the discretely
ordered sets N and Bool. Formally, for each ground type g we let Ag be some object in C. There
are no ordering (or any other) requirements on Ag although in practice Ag will be discretely ordered
except when built by non-strict constructors (in the call-by-name semantics). In section 2.4.7 we
will define the meaning of bool for the general categorical model.

The domain model did not give meanings to constructed data types. There are, however,
standard definitions for data types such as products and sums and we can use those to help de-
termine the more general case for the categorical model. A typical definition for products defines
the meaning of τ1 × τ2, T V

D [[τ1 × τ2]], to be T V
D [[τ1]] ⊗ T V

D [[τ2]] for the call-by-value semantics and
(T N

D [[τ1]] × T N
D [[τ2]])⊥ for the call-by-name semantics, where A ⊗ B is the smashed product as de-

fined in the previous section. The use of smashed products corresponds to the strictness of the
pairing operator; if either component fails to terminate, the pair itself fails to terminate as well.
For standard call-by-name semantics, pairing is non-strict, so the subparts can be ⊥. The external
lift distinguishes non-terminating pairs from a terminating pair with non-terminating components.
Similarly, for sums, T V

D [[τ1 + τ2]] is the smashed sum T V
D [[τ1]] ⊕ T V

D [[τ2]] while T N
D [[τ1 + τ2]] is the

separated sum T N
D [[τ1]] + T N

D [[τ2]].
With lifts, it is simple to represent smashed products, smashed sums, and separated sums

categorically. The smashed product of LA and LB is L(A×B), while the smashed sum is L(A+B).
Similarly, the separated sum of LA and LB is L(LA + LB). Therefore we can directly translate
the meanings just given to the categorical setting:

T V
E [[τ1 × τ2]] = T V

E [[τ1]]× T V
E [[τ2]] T N

E [[τ1 × τ2]] = LT N
E [[τ1]]× LT N

E [[τ2]]
T V

E [[τ1 + τ2]] = T V
E [[τ1]] + T V

E [[τ2]] T N
E [[τ1 + τ2]] = LT N

E [[τ1]] + LT N
E [[τ2]]

The converted version above suggests a good choice for the general case: Suppose that for each
constructed data type function δ of n arguments there exists some n-ary functor Fδ on C. For prod-
ucts F×(A,B) would be A × B, and for sums F+(A,B) would be A + B. Then T V

E [[δ(τ1, . . . , τn)]]
would be Fδ(T V

E [[τ1]], . . . , T V
E [[τn]]) and T N

E [[δ(τ1, . . . , τn)]] would be Fδ(LT N
E [[τ1]], . . . , LT N

E [[τn]]). Con-
ceptually, as all call-by-value data types are evaluated strictly, we know that the data types will
always be constructed from terminating arguments; we therefore do not need to include the pos-
sibility that an argument might not terminate. Conversely, for the call-by-name data types, the
arguments may not be evaluated when a data type is constructed; we must therefore include the
possibility of non-termination when interpreting the data type.

Lastly, we must determine the meaning of functional types. For the call-by-name semantics
the translation is straightforward: As T N

D [[τ1 → τ2]] = [T N
D [[τ1]] ⇒ T N

D [[τ2]]]⊥ given that T N
D [[τ ]] is

translated to LT N
E [[τ ]], then we should specify that

LT N
E [[τ1 → τ2]] = L[LT N

E [[τ1]] ⇒ LT N
E [[τ2]]] and T N

E [[τ1 → τ2]] = [LT N
E [[τ1]] ⇒ LT N

E [[τ2]]]
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For the call-by-value semantics the translation is more complicated because T V
D [[τ1 → τ2]] is the

domain [T V
D [[τ1]] ⇒◦ T V

D [[τ2]]]. The problem is that the domain of strict continuous functions does
not directly correspond to categorical exponentiation. We can, however, derive a meaning for call-
by-value functional types without resorting to the call-by-name meaning (which would anyway later
cause problems when figuring out the meaning of abstractions). Because we always know a strict
function’s value on ⊥, a strict function is uniquely defined by its action on the unlifted portion of
its input. This means that [A ⇒ LB] and [LA ⇒◦ LB] are isomorphic in Dom, with isomorphisms
φ : [LA ⇒◦ LB] → [A ⇒ LB], defined as φ(f)(a) = f(up(a)), and φ−1 : [A ⇒ LB] → [LA ⇒◦ LB],
defined as φ−1(g) = g⊥. Now we have access to a categorical form of exponentiation, so we can set

T V
E [[τ1 → τ2]] = [T V

E [[τ1]] ⇒ LT V
E [[τ2]]]

Conceptually, since the arguments to call-by-value functions are always evaluated first, the only
part of a function we need to model is its behavior on terminating inputs; we already know its
behavior on non-terminating inputs.

Environments

For domains an environment ρ is a usually defined as partial function from variables to a domain
consisting of the meaning of all types. The standard categorical definition of an environment is
typically an n-ary product; given a type environment Γ = x1 : τ1, . . . , xn : τn, an environment object
consistent with Γ is the product T V

D [[τ1]]× . . .×T V
D [[τn]] (or, more precisely, ×(T V

D [[τ1]], . . . , T V
D [[τn]])).

For a given Γ the two definitions have an obvious correspondence in Dom; applying an environment
to xi corresponds to taking the i’th projection.

Therefore for the call-by-value semantics, let

T V
E [[Γ]] = ×(LT V

E [[τ1]], . . . , LT V
E [[τn]])

The call-by-name semantics treats environments identically, so let

T N
E [[Γ]] = ×(LT N

E [[τ1]], . . . , LT N
E [[τn]])

There is some question as to whether we need to include L in the call-by-value semantics, as
variables derived from abstractions are guaranteed to be bound to terminating values. Variables
derived from recursion, however, have no such guarantee, and so we must include the possibility that
variables do not terminate in some environments. This is because we are allowing the general form
of recursion, rec z.e, instead of a common but more restricted form where e must be a syntactic
value of functional type.

With these definitions of types and environment, given an expression e such that Γ ` e : τ , its
call-by-value meaning, VE[[Γ ` e : τ ]], is a morphism from T V

E [[Γ]] to LT V
E [[τ ]]. Similarly its call-by-

name meaning, NE[[Γ ` e : τ ]], is a morphism from T N
E [[Γ]] to LT N

E [[τ ]]. The next several sections
describe how we derive the categorical meaning of an expression from the domain-theoretic meaning.

Variables

There is nothing particularly unusual in the definition of variables for either semantics; as noted, if
Γ = x1 : τ1, . . . , xn : τn, the equivalent to applying an environment ρ to a variable xi is taking the
i’th projection. Therefore let

VE[[Γ ` xi : τi]] = πn
i : T V

E [[Γ]] → LT V
E [[τi]]

NE[[Γ ` xi : τi]] = πn
i : T N

E [[Γ]] → LT N
E [[τi]]
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2.4.7 Abstraction

To convert the meaning of abstractions we need to make several changes: we need to convert to the
product form of environments, we need to convert to a categorical form of exponentiation (currying
as opposed to function definition), and, for the call-by-value semantics, we need to convert to the
altered form of the exponentiation itself.

We first convert the call-by-name semantics, as its conversion is simpler. From Figure 2.8, the
domain-theoretic definition was given as

ND[[Γ ` lam x.e : τ ′ → τ ]]ρ = up(λd.ND[[Γ, x : τ ′ ` e : τ ]]ρ[x 7→ d])

For product environments, the result of appending a value d to an environment can be represented
as a pair 〈ρ, d〉, giving us

up(λd.ND[[Γ, x : τ ′ ` e : τ ]]〈ρ, d〉)
Furthermore, in Dom, curry(f)(x) = λy.f〈x, y〉, so by shifting to curry we get

up(curry(ND[[Γ, x : τ ′ ` e : τ ]])ρ)

and, by noting that, in Dom, (f ◦ g)(x) = f(g(x)), we end up with

ND[[Γ ` lam x.e : τ ′ → τ ]]ρ = (up ◦ curry(ND[[Γ, x : τ ′ ` e : τ ]]))ρ

We can now safely drop ρ from both sides of the equation. Thus we let

NE[[Γ ` lam x.e : τ ′ → τ ]] = up ◦ curry(NE[[Γ, x : τ ′ ` e : τ ]])

For call-by-value, the meaning of an abstraction given in Figure 2.8 was

VD[[Γ ` lam x.e : τ ′ → τ ]]ρ = up(strict(λd.VD[[Γ, x : τ ′ ` e : τ ]]ρ[x 7→ d]))

Using the same conversions just used for the call-by-name case we get

up ◦ (strict(curry(VD[[Γ, x : τ ′ ` e : τ ]])ρ))

To get a result showing the desired form it is necessary to both remove the strict function and
move the environment ρ to a place where we can drop it safely. First we note that the function
strict(curry(VD[[Γ, x : τ ′ ` e : τ ′]])ρ) is an element of [T V

D [[τ ′]] ⇒◦ T V
D [[τ ]]] and what we want is an

element of [T V
E [[τ ′]] ⇒ LT V

E [[τ ]]]. Let f be a morphism from A × LB to LC. Then applying the
isomorphism φ (between [LB ⇒◦ LC] and [B ⇒ LC]) to strict(curry(f)ρ), we get that for any
b ∈ B,

φ(strict(curry(f)ρ))b = strict(curry(f)ρ)(up(b))
= curry(f)ρ(up(b))
= f(ρ, up(b))
= (f ◦ (id× up))(ρ, b)
= curry(f ◦ (id× up))ρb

Therefore φ(strict(curry(f)ρ)) = curry(f ◦ (id × up))ρ. Now ρ can safely be dropped from both
sides of the equation leaving

VE[[Γ ` lam x.e : τ ′ → τ ]] = up ◦ curry(VE[[Γ, x : τ ′ ` e : τ ]] ◦ (id× up))
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Application

The primary complication involved in converting the meaning of an application comes from the use
of down in both the call-by-name and call-by-value semantics. In the categorical setting, while we
can define a morphism down from L(LA) to LA for any object A, there is no guarantee that there
is such a morphism from LA to A even if A is strict. Therefore we cannot directly convert down.
Instead we get the same effect by using the lifting operation (−)⊥ on the result. To see this, let
f : A → L[LB ⇒ LC] in Dom and let g : A → LB. Then for any a ∈ A

(app⊥ ◦ smash ◦ 〈f, up ◦ g〉)(a) = app⊥(smash(f(a), up(g(a))))

=

{
app⊥(⊥) if f(a) = ⊥
app⊥(up(f ′, g(a))) if f(a) = up(f ′)

=

{
⊥ if f(a) = ⊥
app(f ′, g(a)) if f(a) = up(f ′)

= (down(fa))(ga)

Therefore we can substitute app⊥ ◦ smash ◦ 〈f, up ◦ g〉, which is well defined for any Cartesian
closed category with lifts and smashed products, for app ◦ 〈down ◦ f, g〉. For the call-by-name
semantics, this substitution is all we need, because Figure 2.8 defined application as

ND[[Γ ` e1(e2) : τ ]]ρ = (down(ND[[Γ ` e1 : τ ′ → τ ]]ρ))(ND[[Γ ` e2 : τ ′]]ρ)

We therefore can define call-by-name application as

NE[[Γ ` e1(e2) : τ ]] = app⊥ ◦ smash ◦ 〈NE[[Γ ` e1 : τ ′ → τ ]], up ◦ NE[[Γ ` e2 : τ ′]]〉
The meaning given for call-by-value application,

VD[[Γ ` e1(e2) : τ ]]ρ = (down(VD[[Γ ` e1 : τ ′ → τ ]]ρ))(VD[[Γ ` e2 : τ ′]]ρ)

has the same form, but VD[[Γ ` e1 : τ ′ → τ ]]ρ is an element of L[T V
D [[τ ′]] ⇒◦ T V

D [[τ ]]] so we also need
to convert it to an element of a domain of the form L[A ⇒ LB]. We can manage the conversion
with the isomorphism φ−1, obtaining

app⊥ ◦ smash ◦ 〈Lφ−1 ◦ VE[[Γ ` e1 : τ ′ → τ ]], up ◦ VE[[Γ ` e1 : τ ′]]〉
but φ−1 is only defined for domains. We still need a categorical form that is equivalent (for domains)
to the last equation. By case analysis we can show that, for domains,

app⊥ ◦ smash ◦ 〈Lφ−1 ◦ f, up ◦ g〉 = app⊥ ◦ smash ◦ 〈f, g〉
which lacks φ−1. To see this, let f : A → L[B ⇒ LC], g : A → LB and let a ∈ A. Then if
f(a) = up(f ′) and g(a) = up(g′),

(app⊥ ◦ smash ◦ 〈Lφ−1 ◦ f, up ◦ g〉)(a)
= app⊥(smash(Lφ−1(up(f ′)), up(up(g′))))
= app⊥(smash(up(f ′⊥), up(up(g′))))
= app(f ′⊥, up(g′))
= app(f ′, g′)
= (app⊥ ◦ smash)(up(f ′), up(g′))
= (app⊥ ◦ smash ◦ 〈f, g〉)(a)
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Otherwise, if f(a) = up(f ′) and g(a) = ⊥, then

(app⊥ ◦ smash ◦ 〈Lφ−1 ◦ f, up ◦ g〉)(a)
= app⊥(smash(up((f ′)⊥), up(⊥)))
= app((f ′)⊥,⊥)
= ⊥
= (app⊥ ◦ smash)(up(f ′),⊥)
= (app⊥ ◦ smash ◦ 〈f, g〉)(a)

Lastly, if f(a) = ⊥, then

(app⊥ ◦ smash ◦ 〈Lφ−1 ◦ f, up ◦ g〉)(a)
= app⊥(smash(Lφ−1(⊥), up(g(a))))
= ⊥
= (app⊥ ◦ smash ◦ 〈f, g〉)(a)

We have thus explored all possible cases for f(a) and g(a), so we have shown that there is an
equivalent form for call-by-value application that is not dependent on domains, namely

VE[[Γ ` e1(e2) : τ ]] = app⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : τ ′ → τ ]],VE[[Γ ` e2 : τ ′]]〉

Conditionals

The call-by-value meaning of a conditional expression is

VD[[Γ ` if e1 then e2 else e3 : τ ]]ρ =





VD[[Γ ` e2 : τ ]]ρ if VD[[Γ ` e1 : bool]]ρ = tt
VD[[Γ ` e3 : τ ]]ρ if VD[[Γ ` e1 : bool]]ρ = ff
⊥ if VD[[Γ ` e1 : bool]]ρ = ⊥

and the call-by-name meaning is similar. To convert this to a categorical setting we need to define
a boolean object in the category and separate the third case above out so that we can use the lifting
structure instead. Both T V

D [[bool]] and T N
D [[bool]] are the flat domain {tt, ff,⊥}, with ⊥ the least

element. Therefore we would expect that T V
E [[bool]] and T N

E [[bool]] would be something equivalent
to the discretely ordered domain {tt,ff}. We need, however, a categorical definition of booleans, so
assume that B is some object in the category with two morphisms, tt, ff : 1 → B, and assume that
for each object A, there exists a morphism condA from B× (A×A) to A such that

• condA ◦ 〈tt ◦ !A×A, idA×A〉 = π1, and

• condA ◦ 〈ff ◦ !A×A, idA×A〉 = π2

As for the ordering, assume that tt and ff are unrelated in the predomain Hom(1,B). Then we
can say that B is a boolean object. Note that there may be several valid boolean objects for any
category.

Any Cartesian closed category that has coproducts for which inl : 1 → 1+1 and inr : 1 → 1+1
are unrelated has a boolean object, namely B = 1 + 1, with tt = inl, ff = inr, and

condA = app ◦ ([curry(π1 ◦ π2), curry(π2 ◦ π2)]× idA×A)
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In PDom, 1 + 1 is isomorphic to the discrete domain {tt,ff}; and the definition of cond satisfying
the requirements is

cond(x, 〈a, b〉) =

{
a if x = tt
b if x = ff

The next step is to convert the standard definition to one using cond. As with application, the
case where the input is ⊥ can be handled by lifting cond. The function cond⊥, however, has as
input an object of the form L(B × (LA × LA)) (A must be lifted in order for cond⊥ to be well-
defined). From the meanings of the subparts of the conditional expression it is possible to construct
a morphism from the environment object to an object of the form LB× (LA×LA). Then we can
use the morphism smash ◦ (id× up) to get from LB× (LA×LA) to L(B× (LA×LA)). Therefore
a tentative categorical meaning for conditionals is (for call-by-value)

VE[[Γ ` if e1 then e2 else e3 : τ ]]
= cond⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : bool]], up ◦ 〈VE[[Γ ` e2 : τ ]],VE[[Γ ` e3 : τ ]]〉〉

We will now show that the above equation is equivalent to the original definition.
Let z ∈ LB and a1, a2 ∈ LA. Then

cond⊥ ◦ smash ◦ (id× up)(z, 〈a1, a2〉)
= cond⊥(smash(z, up(〈a1, a2〉)))
=

{
cond⊥(⊥) if z = ⊥
cond⊥(up(b, 〈a1, a2〉)) if z = up(b)

=

{
⊥ if z = ⊥
cond(b, 〈a1, a2〉) if z = up(b)

=





⊥ if z = ⊥
a1 if z = up(tt)
a2 if z = up(ff)

We can derive the meaning of conditionals for call-by-name in a similar manner, obtaining

NE[[Γ ` if e1 then e2 else e3 : τ ]]
= cond⊥ ◦ smash ◦ 〈NE[[Γ ` e1 : bool]], up ◦ 〈NE[[Γ ` e2 : τ ]],NE[[Γ ` e3 : τ ]]〉〉

The verification that his formulation is equivalent to the non-categorical definition is straight-
forward and omitted.

Recursion

The definition given for a recursive expression rec x.e is the same for both call-by-name and
call-by-value; if for each environment ρ, f(ρ) is the meaning of e, the meaning of rec x.e is

fix(λd.f(ρ[x 7→ d]))

Using products for environments and the morphism fix defined in Chapter 2 this becomes

fix(λd.f〈ρ, d〉)
or

fix ◦ curry(f)
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We can also write the above construction using fixpD,D′ : Hom(D′ ×D, D) → Hom(D′, D),
leading to a simpler but equivalent definition. Thus let

VE[[Γ ` Γ : rec x.e]]τ = fixp(VE[[Γ, x : τ ` e : τ ]])

and
NE[[Γ ` Γ : rec x.e]]τ = fixp(NE[[Γ, x : τ ` e : τ ]])

Constants

One standard method for defining the meaning of arity 0 constants (for either the call-by-name
or call-by-value) is to have a separate function C[[−]] that would take a constant c of type τ to a
morphism from 1 to T [[τ ]]. The meaning of c would then be C[[c : τ ]] ◦ !. The original meanings
of true and false, tt and ff respectively, have such a form. With the different interpretation of
booleans, their meanings translate to up ◦ tt ◦ ! and up ◦ ff ◦ !.

For constants with an arity greater than 0 in most cases a semantic definition is given only
for the constant applied to all its arguments. For example, the semantic definitions in [11] for the
product constants are

VD[[Γ ` <e1, e2> : τ1 × τ2]]ρ = smash(VD[[Γ ` e1 : τ1]]ρ,VD[[Γ ` e2 : τ2]]ρ)

for the call-by-value semantics, and

ND[[Γ ` <e1, e2> : τ1 × τ2]]ρ = up(ND[[Γ ` e1 : τ1]]ρ,ND[[Γ ` e2 : τ2]]ρ)

Because the language used in this dissertation includes partially applied constants we needed a
method for handling them as well. It is, of course, possible to use just the standard definition of
arity 0 constants including functional meanings for functional constants. There are two problems
with this approach. The first is that the meanings become quite complicated; for example, fst,
of type τ1 × τ2 → τ1, would have as its meaning up ◦ curry(up ◦ π1 ◦ π2). For pairing, the meaning
would be even more complicated. The other problem is that the action of a constant function is
not dependent on the particular constant itself until all arguments are present and evaluated, so
determining properties such as soundness for each constant would entail much redundancy. Thus it
is simpler to define the meaning of a constant as a morphism from the product of all its argument
objects to the resulting object; that is, if c has arity n and type τ1 → . . . → τn → τ , then the
call-by-name meaning of c, CN

E [[c : τ ]], would be a morphism from ×(LT N
E [[τ1]], . . . , LT N

E [[τn]]) to
LT N

E [[τ ]]. For the call-by-value meaning, we know the behavior of c applied to any non-terminating
expression so we do not need to lift the meaning of the input types. Thus CV

E [[c : τ ]] would be a
morphism from ×(T V

E [[τ1]], . . . , T V
E [[τn]]) to LT V

E [[τ ]].
We still need to convert the meaning of a constant into a valid meaning of an expression

consisting of a constant. To get the general meaning of a constant in the call-by-value semantics,
we need to convert CV

E [[c : τ ]] to a morphism from 1 to LT V
E [[τ ]]. For a constant of arity 1 and type

τ ′ → τ , this requires converting a morphism from ×(T V
E [[τ ′]]) (i.e., 1 × T V

E [[τ ′]]) to LT V
E [[τ ]] to a

morphism from 1 to LT V
E [[τ ′ → τ ]] (i.e., 1 to L[T V

E [[τ ′]] ⇒ LT V
E [[τ ]]]). Currying gives us a morphism

from 1 to [T V
E [[τ ′]] ⇒ LT V

E [[τ ]]]; We can then use up to convert to L[T V
E [[τ ′]] ⇒ LT V

E [[τ ]]]. The
use of up also corresponds to the operational property that a solitary constant always successfully
evaluates (to itself).

Now suppose that c is a constant of arity 2 and type τ1 → τ2 → τ . Then CV
E [[c : τ ]] is a morphism

from ×(T V
E [[τ1]], T V

E [[τ2]]) to LT V
E [[τ ]], where

×(T V
E [[τ1]], T V

E [[τ2]]) = (1× T V
E [[τ1]])× T V

E [[τ2]]
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We need to convert this to a morphism from 1 to LT V
E [[τ1 → τ2 → τ3]], which is equal to L[T V

E [[τ1]] ⇒
L[T V

E [[τ2]] ⇒ LT V
E [[τ ]]]]. It is clear that up ◦ curry(up ◦ curry(CV

E [[c : τ ]])) is such a morphism.
Therefore we can convert CV

E [[c : τ ]] by repeatedly applying the function raise⊥(f) = up◦curry(f).
To see that raise⊥ has the proper form, first let [A ⇒L B] denote [A ⇒ LB]. Then we can write
T V

E [[τ1 → . . . → τn]] more succinctly as [T V
E [[τ1]] ⇒L . . . ⇒L T V

E [[τn]]].

Theorem 2.4.6 If f : (. . . (A0 ×A1)× . . .)×An → LA, then

raise
(n)
⊥ (f) : A0 → L[A1 ⇒L . . . ⇒L An ⇒L A]

Proof. By induction on n. If n = 0, then raise
(0)
⊥ (f) = f : A0 → LA as desired. Now assume that

the lemma holds for n− 1 ≥ 0. Then, by the induction hypothesis,

raise
(n−1)
⊥ (f) : A0 ×A1 → L[A2 ⇒L . . . ⇒L An ⇒L A]

so

curry(raise(n−1)
⊥ (f)) : A0 → [A1 ⇒ L[A2 ⇒L . . . ⇒L An ⇒L A]]

i.e.,

curry(raise(n−1)
⊥ (f)) : A0 → [A1 ⇒L . . . ⇒L An ⇒L A]

To get a morphism from A0 to L[A1 ⇒L . . . ⇒L An ⇒L A] we can just compose with η. Therefore
raise

(n)
⊥ (f) = η ◦ curry(raise(n−1)

⊥ (f)) has the desired form. 2

As a special case, the above lemma shows that if f : ×(T V
E [[τ1]], . . . T V

E [[τn]]) → LT V
E [[τ ]], then

raise
(n)
⊥ (f) is a morphism from 1 to T V

E [[τ1 → τn → τ ]]. Therefore a possible meaning for constants
is

VE[[Γ ` c : τ ]] = raise
(ar(c))
⊥ (CV

E [[c : τ ]]) ◦ !

With this definition CV
E [[true : bool]] would be up◦ tt, so VE[[Γ ` true : bool]] would be up◦ tt◦ !

as expected.
To see that the above definition is reasonable for constants of higher arity, let us look again

at the meaning of pairing. Since pair has arity 2, CV
E [[pair : τ1 × τ2]] must be a morphism from

(1 × T V
E [[τ1]]) × T V

E [[τ2]] to LT V
E [[τ1 × τ2]] = L(T V

E [[τ1]] × T V
E [[τ2]]). An obvious value to give for

CV
E [[pair]] is the isomorphism up ◦ (π2 × id). We must now show that this definition is equivalent

to the definition taken from [11], i.e., if ρ : 1 → T V
E [[Γ]], then VE[[Γ ` pair e1e2 : τ1 × τ2]] ◦ ρ should

be smash ◦ 〈VE[[Γ ` e1 : τ1]] ◦ ρ,VE[[Γ ` e2 : τ2]] ◦ ρ〉. We verify this as follows:
First, if VE[[Γ ` e2 : τ2]] ◦ ρ is ⊥, then

VE[[Γ ` pair e1e2 : τ1 × τ2]] ◦ ρ
= app⊥ ◦ smash ◦ 〈VE[[Γ ` pair e1 : τ2 → τ1 × τ2]],VE[[Γ ` e2 : τ2]]〉 ◦ ρ
= app⊥ ◦ smash ◦ 〈VE[[Γ ` pair e1 : τ2 → τ1 × τ2]] ◦ ρ,⊥〉
= app⊥ ◦ ⊥
= ⊥
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Similarly, if VE[[Γ ` e1 : τ1]] ◦ ρ = ⊥, then

VE[[Γ ` pair e1e2 : τ1 × τ2]] ◦ ρ
= app⊥ ◦ smash ◦ 〈VE[[Γ ` pair e1 : τ2 → τ1 × τ2]],VE[[Γ ` e2 : τ2]]〉 ◦ ρ
= app⊥ ◦ smash ◦ 〈app⊥ ◦ smash ◦ 〈VE[[Γ ` pair : τ1 → τ2 → τ1 × τ2]],

VE[[Γ ` e1 : τ1]]〉 ◦ ρ,VE[[Γ ` e2 : τ2]] ◦ ρ〉
= app⊥ ◦ smash ◦ 〈app⊥ ◦ smash ◦ 〈VE[[Γ ` pair : τ1 → τ2 → τ1 × τ2]],⊥〉,

VE[[Γ ` e2 : τ2]] ◦ ρ〉
= app⊥ ◦ smash ◦ 〈⊥,VE[[Γ ` e2 : τ2]] ◦ ρ〉
= ⊥

Note that the above equations hold regardless of the constant’s value; they reflect the call-by-
value nature of the semantics.

Lastly suppose that for some y1 : 1 → T V
E [[τ1]] and y2 : 1 → T V

E [[τ2]], VE[[Γ ` e1 : τ1]]◦ρ = up◦ y1

and VE[[Γ ` e2 : τ2]] ◦ ρ = up ◦ y2. Then

VE[[Γ ` pair e1e2 : τ1 × τ2]] ◦ ρ
= app⊥ ◦ smash ◦ 〈app⊥ ◦ smash ◦ 〈VE[[Γ ` pair : τ1 → τ2 → τ1 × τ2]] ◦ ρ,

VE[[Γ ` e1 : τ1]] ◦ ρ〉,VE[[Γ ` e2 : τ2]] ◦ ρ〉
= app⊥ ◦ smash ◦ 〈app⊥ ◦ smash ◦ 〈raise(2)

⊥ (CV
E [[pair : τ1 → τ2 → τ1 × τ2]]) ◦ ! ◦ ρ,

up ◦ y1〉, up ◦ y2〉
= app⊥ ◦ smash ◦ 〈app⊥ ◦ smash ◦ 〈up ◦ curry(raise(1)

⊥ (up ◦ (π2 × id))) ◦ !, up ◦ y1〉, up ◦ y2〉
= app⊥ ◦ smash ◦ 〈app⊥ ◦ up ◦ 〈curry(raise(1)

⊥ (up ◦ (π2 × id))) ◦ !, y1〉, up ◦ y2〉
= app⊥ ◦ smash ◦ 〈app ◦ 〈curry(raise(1)

⊥ (up ◦ (π2 × id))) ◦ !, y1〉, up ◦ y2〉
= app⊥ ◦ smash ◦ 〈raise(1)

⊥ (up ◦ (π2 × id)) ◦ 〈!, y1〉, up ◦ y2〉
= app⊥ ◦ smash ◦ 〈up ◦ curry(up ◦ (π2 × id)) ◦ 〈!, y1〉, up ◦ y2〉
= up ◦ (π2 × id) ◦ 〈〈!, y1〉, y1〉
= up ◦ 〈y1, y2〉

which is the smashed product.
We still need to convert the call-by-name meaning of a constant, CN

E [[c]], to a morphism from 1
to T N[[τ1 → . . . → τn → τ ]]. The function raise⊥ also successfully performs the conversion; if c has
type τ ′ → τ , then raise⊥(CN

E [[c]]) is a morphism from 1 to L[LT N
E [[τ ′]] ⇒ LT N

E [[τ ]]] = LT N
E [[τ ′ → τ ]].

Essentially the additional L found in an argument to a higher-arity constant is matched by the
additional L found in the input to an element of functional type.

Figure 2.14 contains the categorical semantics for both the call-by-name and call-by-value se-
mantics.

2.5 Soundness

A denotational semantics is sound relative to an operational semantics if the meanings given to
expressions are consistent with the rules for the operational semantics. For example if an operational
semantics declares that two expressions are equivalent (e.g., if true then e1 else e2 ≡ e1) then
we would expect that the denotational semantics gives both expressions the same value. For our
particular operational semantics, we interpret operational properties such as “e evaluates to v” as
specifying that the (final) value of e is v, so we would expect that the denotational semantics gives
the same meaning to e as to v. Formally,
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T V
E [[g]] = Ag

T V
E [[δ(τ1, . . . , τn)]] = Fδ(T V

E [[τ1]], . . . , T V
E [[τn]])

T V
E [[τ1 → τ2]] = [T V

E [[τ1]] ⇒ LT V
E [[τ2]]]

T V
E [[x1 : τ1, . . . , xn : τn]] = ×(LT V

E [[τ1]], . . . , LT V
E [[τn]])

VE[[Γ ` c : τ ]] = raise
(ar(c))
⊥ (CV

E [[c : τ ]]) ◦ !T V
E [[Γ]]

VE[[x1 : τ1, . . . , xn : τn ` xi : τi]] = πn
i

VE[[Γ ` lam x.e : τ ′ → τ ]] = up ◦ curry(VE[[Γ, x : τ ′ ` e : τ ]] ◦ (id× up))
VE[[Γ ` e1(e2) : τ ]] = app⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : τ ′ → τ ]],VE[[Γ ` e2 : τ ′]]〉
VE[[Γ ` if e1 then e2 else e3 : τ ]] = cond⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : bool]],

up ◦ 〈VE[[Γ ` e2 : τ ]],
VE[[Γ ` e3 : τ ]]〉〉

VE[[Γ ` rec x.e : τ ]] = fixp(VE[[Γ, x : τ ` e : τ ]])
CV

E [[true : bool]] = up ◦ tt
CV

E [[false : bool]] = up ◦ ff

The categorical call-by-value semantics

T N
E [[g]] = Ag

T N
E [[δ(τ1, . . . , τn)]] = Fδ(LT N

E [[τ1]], . . . , LT N
E [[τn]])

T N
E [[τ1 → τ2]] = [LT N

E [[τ1]] ⇒ LT N
E [[τ2]]]

T N
E [[x1 : τ1, . . . , xn : τn]] = ×(LT N

E [[τ1]], . . . , LT N
E [[τn]])

NE[[Γ ` c : τ ]] = raise
(ar(c))
⊥ (CN

E [[c : τ ]]) ◦ !T N
E [[Γ]]

NE[[Γ ` xi : τi]] = πn
i

NE[[Γ ` lam x.e : τ ′ → τ ]] = up ◦ curry(NE[[Γ, x : τ ′ ` e : τ ]])
NE[[Γ ` e1(e2) : τ ]] = app⊥ ◦ smash ◦ 〈NE[[Γ ` e1 : τ ′ → τ ]],

up ◦ NE[[Γ ` e2 : τ ′]]〉
NE[[Γ ` if e1 then e2 else e3 : τ ]] = cond⊥ ◦ smash ◦ 〈NE[[Γ ` e1 : bool]],

up ◦ 〈NE[[Γ ` e2 : τ ]],
NE[[Γ ` e3 : τ ]]〉〉

NE[[Γ ` rec x.e : τ ]] = fixp(NE[[Γ, x : τ ` e : τ ]])
CN

E [[true : bool]] = up ◦ tt
CN

E [[false : bool]] = up ◦ ff

The categorical call-by-name semantics

Figure 2.14: Denotational semantics using category theory and the lifting monad
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Definition 2.5.1 For the call-by-value evaluation strategy, a denotational semantics V is sound if
for all closed expressions e of type τ , e⇒v v implies that

V[[` e : τ ]] = VE[[ ` v : τ ]]

For the call-by-name evaluation strategy, a denotational semantics N is sound if for all closed
expressions e of type τ , e⇒n v implies that

N [[` e : τ ]] = NE[[ ` v : τ ]]

We use the term “extensional” to apply to the semantics found in this chapter because the
semantics does not distinguish between an expression and its final value. With an intensional se-
mantics we are also interested in properties of an expression besides its final value. Therefore we
would expect that even when e⇒v v the intensional meanings of e and v may differ. The differ-
ence, however, should be directly related to the intensional properties described by the intensional
operational semantics.

Given an intensional and an extensional semantics for the same language, the intensional se-
mantics is separable if the extensional semantics can be extracted from it. We will show in the
next few chapters that separability also implies that the extensional semantics is sound whenever
the intensional semantics is sound. Intuitively, intensional soundness compares both the internal
and external properties, so if we remove the intensional part of the semantics we should still expect
that the extensional parts maintain the desired relationship. Therefore we will postpone the proofs
that VE is sound relative to the call-by-value operation semantics ant that NE is sound relative to
the call-by-name extensional semantics until we have first shown that the intensional versions are
sound.

2.6 Adequacy

A denotational semantics is adequate relative to an operational semantics if expressions that fail
to terminate in the operational semantics are precisely the expressions that denote ⊥ in the de-
notational semantics, that is, the denotation meaning of an expression e is not ⊥ if and only the
expression terminates in the operation semantics. Because we based our categorical semantics on
an adequate domain-based semantics, we would expect our categorical semantics to be adequate
as well. It is, and the proof that it is adequate is similar to the proof that the domain-based
semantics is adequate. Therefore we will only summarize the proofs in this section; the full proofs
can be found in Appendix A. Unlike soundness, we do need a formal proof of the adequacy of
the extensional semantics because we derive the adequacy of the intensional semantics from the
adequacy of the extensional semantics.

The proof that the domain-based semantics is adequate comes from [11]. To alter it into a
proof that our semantics is adequate requires changes in two main areas: the difference between
a domain-theoretic formulation and our category-theoretic formulation and the use of unspecified
constants and data structures. The change from domain theory to category theory involves only
minor details; the addition of unspecified constants and data structures, however, requires some
new assumptions. The assumptions made about constants differ slightly between the proofs for
the call-by-name and call-by-value semantics, but the assumptions made about data types are
independent of the evaluation strategy.

For data types, we need to be able to examine subparts of both the syntactic expressions
and their categorical meanings. We do this by defining deconstructors. Let δ be a n-ary type
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constructor and Fδ the related n-ary functor in C. Then assume that for each 1 ≤ i ≤ n, there is
a set Pi of natural transformations such that for each i, each p ∈ Pi, and any objects A1, . . . , An,
pA1,...,An is a morphism from Fδ(A1, . . . , An) to LAi. These transformations allow us to recover the
subparts of a data type. The requirement of naturality guarantees that the deconstructors depend
only on the structure of the datatype and not its contents. For example, in the product functor
F×(A,B) = A × B, there are two deconstructors: p1 = upA ◦ π1 and p2 = upB ◦ π2. We lift the
result of a deconstructor so that we can handle cases where a datatype may not always “contain”
a substructure of a certain type. For example, if C has coproducts and F+(A,B) is A + B, then
inl ◦ a does not contain any elements from B and inr ◦ b does not contain any elements from A.
Thus to define deconstructors to both A and B, we must consider the possibly that there is no
relevant value of A or B in the original element. Such cases are represented by ⊥ in LA or LB.
Therefore, the two deconstructors for F+(A,B) are p1 = [upA,⊥ ◦ !B] and p2 = [⊥ ◦ !A, upB]. We
include potentially multiple deconstructors for each i because for some data types, such as arrays
or lists, there may be more than one component for each subtype.

Each denotational deconstructor has an equivalent syntactic deconstructor used to perform the
same action but using expressions not meanings. Therefore assume that for each deconstructor
p there exists an expression ep with one free variable x such that x : δ(τ1, . . . , τn) ` ep : τi.
For example, given the definitions of p1 and p2 in the previous paragraph let ep1 = fst(x) and
ep2 = snd(x). At the general level we do not need to explicitly specify how the value of ep

relates to p because the definition of adequacy for constructed data types implicitly includes the
relationship between the syntactic and categorical deconstructors. In practice, however, we find
that the following relation holds given a deconstructor p from type δ(τ1, . . . , τn) to τi, its related
expression ep, an a closed expression e of type δ(τ1, . . . , τn):

p⊥ ◦ VE[[e : δ(τ1, . . . , τn)]] = VE[[[e/x]ep : τi]]

for the call-by-value semantics, and

(down ◦ p)⊥ ◦ NE[[e : δ(τ1, . . . , τn)]] = NE[[[e/x]ep : τi]]

for the call-by-name semantics. For the first product deconstructor p1 this is the same as saying
that

Lπ1 ◦ VE[[e : τ1 × τ2]] = VE[[fst(e) : τ1]]

for the call-by-value semantics, and

π1
⊥ ◦ NE[[e : τ1 × τ2]] = NE[[fst(e) : τ1]]

for the call-by-name semantics, i.e., that taking the first projection via a deconstructor is equivalent
to applying fst.

In addition to examining subparts, we need to be able to describe how types are constructed
from the subparts, in case there is more than one possible construction. This corresponds to types
where we must do a case analysis to determine its structure, as in coproducts or lists, instead of
just pulling out it subparts, as in products. The adequacy proof contains a relation -V between
expressions and their meanings and the relation must not hold unless expressions of a given data
type are combined in a way compatible with their meanings. We want, however, only to examine
which of several possible constructions were actually used, and to ignore the actual contents.

A simple method for describing structure without content is to use the object Fδ(1, . . . ,1). The
object Fδ(1, . . . ,1) contains the changeable structural information of Fδ without containing any
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information particular to subparts themselves. Then given any element z : 1 → T V
E [[δ(τ1, . . . , τn)]],

its structure can be described by composing z with LFδ(!, . . . , !). In particular, to compare z
with a closed value v of type δ(τ1, . . . , τn), we simply compare the morphisms LFδ(!, . . . , !) ◦ z and
LFδ(!, . . . , !) ◦ VE[[v : δ(τ1, . . . , τn)]]. For products, F×(1,1) = 1× 1 ∼= 1, indicating that there is no
need to check amongst various possible constructions. For lists, however, Flist(1,1) is isomorphic
to the discrete set of integers, indicating that when comparing lists we need to compare length as
well as contents.

2.6.1 Call-by-value adequacy

The general plan of the proof is to define a type-indexed family of relations -V
τ between morphisms

z from 1 to LT V
E [[τ ]] and closed expressions e of type τ such that z -V

τ e and z 6= ⊥ implies that
e ⇒v v for some value v. Then we show that this relation holds between expressions and their
meanings. To define this relationship, we define a related family of relationships, -V∗

τ between
morphisms from 1 to T V

E [[τ ]] and values of type τ . These relationships are thus define by mutual
induction on the structure of the type τ :

Definition 2.6.1 For each type τ , let -V
τ be a relation between morphisms from 1 to LT V

E [[τ ]] and
closed expressions of type τ , defined as follows: given z : 1 → LT V

E [[τ ]] and ` e : τ , z -V
τ e if

1. z = ⊥T V
E [[τ ]], or

2. There exists a closed value v of type τ and a morphism y : 1 → T V
E [[τ ]] such that e⇒v v,

z = up ◦ y, and y -V∗
τ v, where -V∗

τ is a relation between morphisms from 1 to T V
E [[τ ]] and

closed values of type τ , defined as follows:

• y -V∗
g v if y ≤ VE[[v : τ ]]

• y -V∗
δ(τ1,...,τn) v if for each deconstructor p ∈ Pi, p ◦ y -V

τi
[v/x]ep and if

up ◦ Fδ(!, . . . , !) ◦ z ≤ LFδ(!, . . . , !) ◦ VE[[v : δ(τ1, . . . , τn)]]

• y -V∗
τ ′→τ v if for all y′ : 1 → T V

E [[τ ′]] and closed values v′ such that y′ -V∗
τ ′ v′,

app ◦ 〈y, y′〉 -V
τ v(v′)

Because -V
τ is defined in terms of -V∗

τ , and -V∗
τ is defined in terms of -V

τ ′ , where τ ′ is a structural
subpart of τ , the relationships are well defined.

It is straightforward to show that if v is a closed value of type τ , and z -V
τ v, then either z = ⊥

or for some y : 1 → T V
E [[τ ]], z = up ◦ y and y -V∗

τ v. Similarly, if v is a closed value of type τ , then
y -V∗

τ v implies that up ◦ y -V
τ v.

In section 2.7.5 we show how the rules for type constructors translate to an more intuitive
definition for coproducts, and in Appendix A we show the same for products and lists.

The adequacy proof follows from the proof that VE[[e : τ ]] -V
τ e for all (well typed) closed

expressions. That proof depends on some assumptions made about constants. We could simply
state that CV

E [[c]] is adequate, but then proving that individual constants are adequate would require
redundant proofs that partially applied constants are adequate. Instead we make assumptions only
about the fully applied constants and prove that the assumptions imply that partially applied
constants are adequate as well.
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Definition 2.6.2 For any constant c of type τ1 → . . . → τn → τ and arity n, a morphism f
from ×(T V

E [[τ1]], . . . , T V
E [[τn]]) to LT V

E [[τ ]] is adequate for c if, for all morphisms yi : 1 → T V
E [[τi]]

(1 ≤ i ≤ n) and closed values vi of type τi such that up ◦ yi -V
τi

vi,

f ◦ 〈〉(y1, . . . , yn) -V
τ cv1 . . . vn

By this definition, CV
E [[true : bool]] is adequate for true and CV

E [[false : bool]] is adequate for
false.

The rest of the proof that VE[[e]] -V
τ e is shown in Appendix A. With this lemma, we can now

prove adequacy:

Theorem 2.6.1 (Adequacy, part 1) Suppose that ` e : τ . Then VE[[e]] 6= ⊥ implies that there
exists a value v such that e⇒v v.
Proof. Suppose that VE[[e]] 6= ⊥. Then as VE[[e]] -V

τ e, there exists a value v such that e⇒v v. 2

Adequacy also requires that if e⇒v v then VE[[e]] 6= ⊥. To prove this we need soundness and
the property that the meaning of a syntactic values is never ⊥. As we have not yet formally proven
soundness, we must delay this portion of the proof to the next chapter.

2.6.2 Call-by-name adequacy

The proof of adequacy for the call-by-name semantics is very similar to the proof for the call-by-
value semantics. One primary difference is that we cannot necessarily describe the structure of a
value v of type δ(τ1, . . . , τn) as LFδ(!, . . . , !) ◦NE[[v : δ(τ1, . . . , τn)]]. The reason is that the subparts
of v may be unevaluated expressions, and, if v is also recursively defined, we may need to know
adequacy of the call-by-name semantics in order to prove adequacy, leading to a circular proof.

To avoid this problem we define, for each constructed type δ(τ1, . . . , τn), a function Kδ[[−]]
from values to morphisms from 1 to Fδ(1, . . . ,1). We can then compare the structure of a mor-
phism z from 1 to LT N

E [[δ(τ1, . . . , τn)]] and a value v : δ(τ1, . . . , τn) by comparing the morphisms
L(Fδ(!, . . . , !)) ◦ z and up ◦ Kδ[[v : δ(τ1, . . . , τn)]]. Our original structure definition,

LFδ(!, . . . , !) ◦ NE[[v : δ(τ1, . . . , τn)]]

is then equivalent to up ◦ Kδ[[v : δ(τ1, . . . , τn)]]. For example, for any value v of type τ1 × τ2,
K×[[v : τ1 × τ2]] : 1 → 1× 1 is 〈1,1〉 (which, in the case of products, is the only possible morphism
as 1× 1 is a terminal object). See section B.2.4 for the (recursive) definition used for lists.

Appendix B contains the details of the call-by-name adequacy proof.

2.7 The FL constants

When we defined the extensional semantics using category theory we made certain assumptions
about the meanings of ground types, constructed data types, and their constants. In this section we
will show that we can satisfy these assumptions for all the types and constants used in FL. Because
we are proving that assumptions are satisfied, in this section (and whenever we are explicitly dealing
with FL) we will be explicitly working with the category PDom. Thus we can use prior knowledge
of domains to aid in proving the assumptions.

There were no particular assumptions made about ground types themselves (except that relevant
objects exist) but for constructed data types we need to show that the construction is a functor. As
we have deferred the proof of soundness to future chapters we have not yet made any assumptions
relating to soundness. We will, however, have to show that the constants are adequate; we will do
so for a few constants at the end of this section and defer the rest to Appendices A and B.
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2.7.1 Natural numbers

The denotational meaning of nat (Anat) is the discretely ordered predomain of natural numbers
N = {0, 1, . . .}. For each m ∈ N, let nm : 1 → N represent the element m. Let plus be the morphism
from N×N to N, defined by the function plus(n,m) = n+m (i.e., plus◦〈nn, nm〉 = nn+m). Similarly,
times(n,m) = n ∗m, and minus(n, m) = 0 if n < m and n−m otherwise. Lastly let leq(n,m) = tt
if n ≤ m and ff otherwise, and let eq(n,m) = tt if n = m and ff otherwise. Because N (and thus
N×N) is discretely ordered, all functions from N or N×N are automatically continuous and thus
are valid morphisms in PDom.

Figure 2.15 contains the definitions of the constants given for natural numbers: first the call-by-
value meanings followed by the call-by-name meanings. The product (iso-)morphisms seen in these
definitions are used to convert the general product ×() to forms needed by the specific constants.
Interestingly, if we define an n-ary version of smash, where

nsmash(0) = up and nsmash(n) = smash ◦ (nsmash(n− 1)× id)

then for all the constants c in Figure 2.15,

CN
E [[c]] = CV

E [[c]]
⊥ ◦ nsmash(n)

where n is the arity of c. This relationship holds for all ground type constants which evaluate their
arguments strictly.

2.7.2 Products

For products, we take advantage of the knowledge that PDom has categorical products. Therefore
we simply set F× to be the product bifunctor. Then we can easily derive the meaning of the
product constants from the product constructions and morphisms, as seen in Figure 2.16. The
extra complexity in the call-by-name meaning of pair comes from treating pairing strictly while
not treating the meaning of the product type strictly; if pair were a lazy constant its meaning
would be simply up ◦ (π2 × id), the same as its call-by-value meaning (although with different
domains and co-domains).

2.7.3 Sums

Just as we can represent products in FL with categorical products in PDom, we can represent sums
in FL with categorical coproducts. Therefore let F+ be the coproduct functor −+−. The standard
coproduct constructs, however, are not designed to handle combinations of products and coproducts
easily. We can, however, use them to define an intermediate function on morphisms. What we need
is a general construction to handle case analysis on objects of the form (A + A′)×B as well as the
usual construction (A + A′). We can define such a construction for any Cartesian closed category.
Specifically, for morphisms f : A×B → C and f ′ : A′×B → C, let case(f, f ′) : (A + A′)×B → C
be uncurry([curry(f), curry(f ′)]). As a function in PDom, this definition becomes

case(f, f ′)(x, b) =

{
f(a, b) if x = inl(a)
f ′(a′, b) if x = inr(a′)

The relevant properties of case are that case(f, f ′) ◦ (inl× id) = f and case(f, f ′) ◦ (inr× id) = f ′.
With case we now can easily define the meaning for all the sum constants, listed in Figure 2.17.

Because inl and inr are lazy constructors, their meanings are the same for the call-by-value and
call-by-name semantics. The call-by-name meaning of case is quite different largely because we
want to avoid evaluating the second and third arguments unless we know they will be used.
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CV
E [[n]] = up ◦ nn

CV
E [[=]] = up ◦ eq ◦ (π2 × id)
CV

E [[≤]] = up ◦ leq ◦ (π2 × id)
CV

E [[+]] = up ◦ plus ◦ (π2 × id)
CV

E [[−̇]] = up ◦minus ◦ (π2 × id)
CV

E [[×]] = up ◦ times ◦ (π2 × id)

Call by value

CN
E [[n]] = up ◦ nn

CN
E [[=]] = Leq ◦ smash ◦ (π2 × id)
CN

E [[≤]] = Lleq ◦ smash ◦ (π2 × id)
CN

E [[+]] = Lplus ◦ smash ◦ (π2 × id)
CN

E [[−̇]] = Lminus ◦ smash ◦ (π2 × id)
CN

E [[×]] = Ltimes ◦ smash ◦ ◦(π2 × id)

Call-by-name

Figure 2.15: Extensional meanings of the integer constants

CV
E [[pair]] = up ◦ (π2 × id)
CV

E [[fst]] = up ◦ π1 ◦ π2

CV
E [[snd]] = up ◦ π2 ◦ π2

Call-by-value

CN
E [[pair]] = L(up× up) ◦ smash ◦ (π2 × id)
CN

E [[fst]] = π1
⊥ ◦ π2

CN
E [[snd]] = π2

⊥ ◦ π2

Call-by-name

Figure 2.16: Extensional meanings of the product constants
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CV
E [[inl]] = up ◦ inl ◦ π2

CV
E [[inr]] = up ◦ inr ◦ π2

CV
E [[case]] = case(vleft, vright) ◦ (π2 × id) ◦ αr

vleft = app ◦ β ◦ (id× π1)
vright = app ◦ β ◦ (id× π2)

Call-by-value

CN
E [[inl]] = up ◦ inl ◦ π2

CN
E [[inr]] = up ◦ inr ◦ π2

CN
E [[case]] = (case(nleft, nright))⊥ ◦ smash ◦ (π2 × up) ◦ αr

nleft = app⊥ ◦ smash ◦ β ◦ (up× π1)
nright = app⊥ ◦ smash ◦ β ◦ (up× π2)

Call-by-name

Figure 2.17: Extensional meanings of the sum constants

2.7.4 Lists

Unlike sums and products, we have not already defined a construction in PDom suitable for lists.
Because it is a recursive data type, its definition is slightly more complicated. Furthermore, the
meaning of the list type differs between the call-by-value and call-by-name semantics. For the
purposes of defining constants, in both cases we will need a functor List on PDom and morphisms
related to the constants nil, cons, etc. There are two general methods for defining lists in PDom:
First, we could simply give a direct definition of a domain and define the morphisms as functions.
Second, we could define the predomain of lists as the solution to a recursive domain equation.
While the first method is more understandable in the short run, the latter method allows us to
change the definition easily when we encounter both lazy lists (for the call-by-name) and lazy lists
with costs.

Given an object A, let List (A) be a solution to the equivalence

List (A) ∼= 1 + (A× List (A)) (2.2)

where ∼= indicates that the two predomains are related by an isomorphism, and, for a morphism
f : A → B, let List (f) be the (least) solution to the equation

List (f) = foldB ◦ (id + (f × List (f))) ◦ unfoldA (2.3)

where foldA : 1+A×List (A) → List (A) and unfoldA : List (A) → 1+A×List (A) are the isomorphism
described earlier.

The theory of recursive domain equations tells us that both equations have (least) solutions. In
particular, given a domain A, the set {[a1, . . . , an] | n ≥ 0, a1, . . . , an ∈ A}, ordered element-wise,
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is a solution to equation 2.2. In that case

foldA(inl(∗)) = [ ], foldA(inr(a, [a1, . . . , an])) = [a, a1, . . . , an]

and unfoldA is the obvious inverse. Furthermore we can see that the mapping function,

map(f)[a1, . . . , an] = [f(a1), . . . , f(an)]

is the least solution to equation 2.3.
With List , fold and unfold, we now have enough information to define the list constants. Let

nilA = foldA ◦ inl : 1 → List (A)
hdA = [⊥A, upA ◦ π1] ◦ unfoldA : List (A) → LA

consA = foldA ◦ inr : A× List (A) → List (A)
tlA = [⊥A, up ◦ π2] ◦ unfoldA : List (A) → LLlist (A)

null?A = [tt,ff ◦ !] ◦ unfoldA : List (A) → B

hd and tl need to lift their results because otherwise they would be undefined on empty lists.
For the call-by-name semantics, we need a form of lazy lists. In particular as cons does not

evaluate its arguments, lists must include the possibility of having no tail (represented as having ⊥
for a tail). We also will need to include infinite lists as they can be represented by such expressions
as rec l.true::l. We can define such a domain as a (least) solution to the domain equation

Llist (A) ∼= 1 + (A× LLlist (A))

with lfoldA and lunfoldA as the isomorphisms and, for f : A → B, Llist (f) as the (least) solution to
the equation

Llist (f) = lfoldB ◦ (id1 + (f × LLlist (f))) ◦ lunfoldA

Again from domain theory we know that the equations have solutions; one such solution is to let
Llist (A) be

List (A) ∪ {[a1, . . . , an,⊥] | n > 0 and a1, . . . , an ∈ A} ∪ {[a1, a2, . . .] | ∀n > 0, an ∈ A}
The lists are ordered element-wise, except that a list l of the form [a1, . . . , an,⊥] is less than any list
of at least n elements whose first n elements are greater than the element in the same position of
l. With the these definitions established we can define equivalent morphisms for the list constants:

lnilA = lfoldA ◦ inl : 1 → Llist (A)
lhdA = [⊥A, upA ◦ π1] ◦ lunfoldA : Llist (A) → LA

lconsA = lfoldA ◦ inr : A× LLlist (A) → Llist (A)
ltlA = [⊥A, π2] ◦ lunfoldA : Llist (A) → LLlist (A)

lnull?A = [tt,ff ◦ !] ◦ lunfoldA : Llist (A) → B

These definitions are the same as the ones for the strict lists except for ltlA, indicating that the tail
of a lazy list is the primary difference between the two types of list.

In practice, we care little about the precise definition of the list object and care more about how
the previous morphisms interact with each other and with List (f) or Llist (f). These interactions
are listed in Figure 2.18; for most of this dissertation we will limit ourselves to these properties.
Note that the morphisms hd, lhd, etc., are all natural transformations. As they affect the list
without regards to the contents, they are precisely the type of morphisms we would expect to be
natural.

Figure 2.19 contains the meanings for the list constants themselves. The call-by-name meaning
of head contains a double lift because not only do we have to handle the case where the input to
head is ⊥, but the case where the head of the list is ⊥ as well.
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hdA ◦ nilA = ⊥A lhdA ◦ lnilA = ⊥A

hdA ◦ consA = upA ◦ π1 lhdA ◦ lconsA = upA ◦ π1

hdB ◦ List f = Lf ◦ hdA lhdB ◦ Llist f = Lf ◦ lhdA

tlA ◦ nilA = ⊥A ltlA ◦ lnilA = ⊥A

tlA ◦ consA = upA ◦ π2 ltlA ◦ lconsA = π2

tlB ◦ List f = LList f ◦ tlA ltlB ◦ Llist f = LLlist f ◦ ltlA
null?A ◦ nilA = tt lnull?A ◦ lnilA = tt

null?A ◦ consA = ff ◦ ! lnull?A ◦ lconsA = ff ◦ !
null?B ◦ List f = null?A lnull?B ◦ Llist f = lnull?A

List f ◦ nilA = nilB Llist f ◦ lnilA = lnilB
List f ◦ consA = consB ◦ (f × List f) Llist f ◦ lconsA = lconsB ◦ (f × LLlist f)

Figure 2.18: Properties of strict and lazy lists

CV
E [[nil]] = up ◦ nil

CV
E [[cons]] = up ◦ cons ◦ (π2 × id)
CV

E [[head]] = hd ◦ π2

CV
E [[tail]] = tl ◦ π2

CV
E [[nil?]] = up ◦ null? ◦ π2

Call-by-value

CN
E [[nil]] = up ◦ lnil

CN
E [[cons]] = up ◦ lcons ◦ (π2 × id)

CN
E [[head]] = (id⊥ ◦ lhd)

⊥ ◦ π2

CN
E [[tail]] = ltl⊥ ◦ π2

CN
E [[nil?]] = Llnull? ◦ π2

Call-by-name

Figure 2.19: Extensional meanings of the list constants
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2.7.5 Adequacy of the extensional constants

The proof that the extensional semantics is adequate depends both on the definition of decon-
structors for the data types and on the assumptions made about constants. While we leave the
details of the adequacy proof to the appendices, in this section we will discuss definitions of the
deconstructors and will show how we can use them to convert the general adequacy assumptions
into specific conditions that resemble familiar adequacy requirements.

For deconstructors, there are three data types affected: products, sums, and lists. Products
and sums each need two deconstructors, one for each subtype. Therefore let P1 = {p×1} where
p×1 : A×B → LA is upA ◦ π1 and let P2 = {p×2} where p×2 : A×B → LB is upB ◦ π2. Similarly
for sums let P1 = {p+1} where p+1 : A + B → LA is [upA,⊥ ◦ !B] and let P2 = {p+2} where
p+2 : A + B → LB is [⊥ ◦ !A, upB]. For lists (either lazy or strict) we need a deconstructor for each
(potential) element of the list, setting the deconstructor to ⊥ when such an element does not exist.
For strict lists, let PL = {pLn}∞n=1 where pL1 : ListA → LA is hd and, for n > 1, pLn = pLn−1

⊥ ◦ tl.
Similarly, for lazy lists, let PLZ = {pLZ

n
}∞n=1 where pLZ

1
: LlistA → LA = lhd and, for n > 1,

pLZ
n

= pLZ
n−1

⊥ ◦ ltl.
Each deconstructor needs a related expression describing the deconstruction syntactically. For

products there are constants describing the same function as the deconstructors themselves, so we
have e×1 = fst(x) and e×2 = snd(x). Expressions of sum type are deconstructed with the case
constant so we must use that to form the related expressions. Therefore let

e+1 = case x of left : lam y.y right : rec z.z

and
e+2 = case x of left : rec z.z right : lam y.y

For either lazy or strict lists, while the deconstructors do not match the constants we defined
for FL, the morphisms we used to build the deconstructors do. Therefore we can let eL1 = head(x)
and, for n > 1, eLn = eLn−1(tail(x)) ≡ head(tail(n−1)(x)). These expressions are sufficient for
both types of list.

The proofs that the constants are related to the constructed data types follows two steps: First,
we interpret the general definition of -V

δ(τ1,...,τn) and -N
δ(τ1,...,τn) for a specific data type, giving a

more concise method for determining if the relation holds. We then apply that method to show
that each constant is adequate.

Appendix A contains the details of the proofs plus the proofs of adequacy for the ground type
constants. In the rest of this section we show that the general definition for the adequacy of sum
types is equivalent to what we would define for adequacy had we lacked a general method. Thus if
we were to define -V

τ1+τ2 without recourse to a general definition, we would then say that z -V
τ1+τ2 v

if and only if one of the following holds:

• z = ⊥,

• For some y : 1 → T V
E [[τ1]], z = up ◦ inl ◦ y, v = inl(v′), and up ◦ y -V

τ1 v′, or

• For some y : 1 → T V
E [[τ1]], z = up ◦ inr ◦ y, v = inr(v′), and up ◦ y -V

τ2 v′.

We will show that the general definition holds precisely when the above conditions hold.
Suppose that z -V

τ1+τ2 v. Then by definition

L(! + !) ◦ z ≤ L(! + !) ◦ VE[[v]]τ1 + τ2, p+1
⊥ ◦ z -V

τ1 [v/x]e+1 , and p+2
⊥ ◦ z -V

τ2 [v/x]e+2

As z : 1 → L(T V
E [[τ1]] + T V

E [[τ2]]) in PDom, we know that there are three possibilities for z:
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1. z = ⊥ (all properties hold trivially).

2. z = up ◦ inl ◦ y. Then L(!+ !) ◦ z = up1+1 ◦ inl. The value v can only be of the form inl(v′) or
inr(v′) for some v′. If the latter, then VE[[v : τ1 + τ2]] = up ◦ inr ◦ y′, where VE[[v′]] = up ◦ y′.
This is inconsistent with the knowledge that ÃL(!+!) ◦ z = up ◦ inl, so v must be of the form
v = inl(v′) for some closed value v′ of type τ1. Furthermore,

up ◦ x = [up,⊥ ◦ !] ◦ inl ◦ x = p+1
⊥ ◦ z -V

τ1 [v/x]e+1

and
[v/x]e+1 = case inl(v′) of left : lam y.y right : rec z.z

so up ◦ x -V
τ1 case inl(v′) of left : lam y.y right : rec z.z. Lastly, clearly

case inl(v′) of left : lam y.y right : rec z.z⇒v v′

so up ◦ x -V
τ+1 v′ as well.

3. z = up ◦ inr ◦ y. Using similar arguments as the previous case, we can show that v must have
the form inr(v′) for some value v′ and up ◦ y -V

τ2 v′.

Now suppose that the three conditions stated earlier hold. If z = ⊥ then z -V
τ1+τ2 v trivially.

Suppose that z = up◦ inl◦y, v = inl(v′) and up◦y -V
τ1 v′. Then we know that p+1

⊥◦z -V
τ1 [v/x]e+1 .

Furthermore,
L(! + !) ◦ z = up ◦ inl = L(! + !) ◦ VE[[v : τ1 + τ2]])

Finally,
p+2

⊥ ◦ z = [⊥ ◦ !, up] ◦ inl ◦ y = ⊥
so

p+2
⊥ ◦ z -V

τ2 case inl(v) of left : rec z.z right : lam y.y ≡ [v/x]e+2

Therefore z -V
τ1+τ2 v.

Using similar arguments we can show that if z = up ◦ inr ◦ x, v = inr(v′) and up ◦ x -V
τ2 v′ then

z -V
τ1+τ2 v as well.
For call-by-name, given a morphism z : 1 → T N

E [[τ1 + τ2]] and a closed value v of type τ1 + τ2,
we can show that z -N

τ1+τ2 v if and only if one of the following holds:

• z = ⊥,

• For some z′ : 1 → LT N
E [[τ1]] and closed expression e of type τ1, z = up ◦ inl ◦ z′, v = inl(e),

and z′ -N
τ1 e.

• For some z′ : 1 → LT N
E [[τ2]] and closed expression e of type τ2, z = up ◦ inr ◦ z′, v = inr(e),

and z′ -N
τ2 e.

The proof that this holds is similar to the previous proof.



Chapter 3

Call-by-value

3.1 Introduction

In this chapter we add cost to the call-by-value semantics. An evaluation strategy is called call-by-
value if the input to functions is always evaluated before the function itself is called; i.e., the function
operates solely on the values of the expressions. For example, when evaluating an expression such
as (lam x.e)(3 + 3) the expression 3 + 3 is evaluated first, resulting in the value 6, then e is
evaluated, with x bound to 6. The earliest functional languages (Lisp) and many current ones
(Scheme, SML) are implemented as call-by-value even though the λ-calculus is frequently defined
with a call-by-name semantics. There are several reasons for the preference, but the primary one is
that call-by-value is easier to implement than call-by-need and usually more efficient than call-by-
name. To handle most cases in which we must avoid evaluating part of an expression (such as with
if (nil?(l)) then 0 else head(l)), call-by-value languages add primitive constructs, not only if
as we do here, but multi-part case statements, pattern matching, and the use of non-strict versions
of or and and as special constructs.

Another reason why call-by-value languages are frequently used is that analysis of the complexity
of programs (without higher-order types) is easier than call-by-name, because we always know which
parts of a program are being evaluated. For this reason, in this dissertation we add cost to the call-
by-value semantics before the call-by-name. Even though adding costs to the operational semantics
is straightforward, we can be reassured to find that the complexity analysis of programs derived from
these costs is consistent with what we would expect to find from other forms of analysis. Therefore
if we use similar techniques to add costs to the call-by-name semantics we can be confident that
the costs derived reflect actual costs.

In this chapter we first add cost to the operational semantics defined in the previous chapter.
The addition is straightforward and provides a basis for judging the addition of cost to the denota-
tional semantics. We use the cost-equipped operational semantics to calculate the costs of a small
example.

In section 3.3 we devise a cost structure in category theory that defines the way cost is added
to the denotational semantics. We begin with both a standard technique for adding costs and
our knowledge of monads, and then derive the necessary requirements for a sound, adequate, and
separable denotational semantics. The cost structure not only allows us to add cost to the meaning
of the program, but will also give us a function, C, on objects that allows us to clearly distinguish
between denotational values, i.e., data that has no computational component (such as the integer
2) and computations, i.e., results of computing expressions. This distinction is similar to the one
made by the lifting monad in the previous chapter.

55
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In section 3.3.1 we show how the cost structure can be used to derive an intensional denotational
semantics from the extensional one from Chapter 2. We also give a functor E that smoothly converts
the intensional semantics back to the extensional one. In section 3.4 we prove that the intensional
denotational semantics is sound. We also show that the meanings of the results of operational
evaluation are closely related to denotational values.

In section 3.5 we show that the intensional semantics is adequate. By proving adequacy and
soundness we not only show that the denotational semantics closely matches the operational se-
mantics, but we also show that the meaning of a closed expression has one of only two simple
forms. With this knowledge we are better able to examine specific examples as we can then make
a number of simplifications not otherwise possible.

When we define cost structures in section 3.3 we do not list any non-trivial examples. In
section 3.6 we do so. We first create another structure, called an arrow cost structure, that is
simpler than the standard cost structure but which can still be used to derive a cost structure by
using a type of category called an arrow category . In section 3.6.3 we show that an arrow cost
structure exists in PDom.

In section 3.7 we give meanings to the constants in FL and show that they satisfy all the
necessary assumptions. We then use these constants in section 3.8 to calculate the meanings of
several simple examples. We also derive abbreviations for the meaning of a number of expressions
so that we can clearly see the meaning of an expression using notation designed for that particular
problem instead of notation based on standard categorical structures.

In section 3.9 we introduce an ordering on costs and extend it to an ordering on the meanings
of programs. This ordering can be used to show that one program is faster than another, or that a
program transformation improves speed. We show that this ordering is compositional and it relates
well to an operationally defined ordering.

In section 3.10 we summarize the results of this chapter.

3.2 Call-by-value operational semantics

Figure 3.1 lists the intensional operational semantics. It is closely related to the semantics listed
in chapter 2 with the main difference that both the evaluation judgment, e

t⇒v v, and the constant
application judgment, vapply(c, v1 . . . , vn) t⇒ v, include a cost t. This element refers to the cost of
the operation; we assume that it is an element of some set T of costs. T always contains the identity
element 0 and has a binary operator + such that 〈T, 0, +〉 forms a monoid. The symbols ttrue, tfalse,
tapp, and trec also represent elements of T , not necessarily distinct from each other or from 0. We do
not assume that + is commutative; we can prove soundness and adequacy without that assumption.
For simplicity, however, we do usually assume that + is commutative when examining examples,
thus writing 2tapp + tfalse instead of tapp + tfalse + tapp.

There is no added cost when evaluating constants or abstractions because syntactic values
such as these do not require further evaluation. Logically, values represent the final result of an
evaluation so there should be no need to evaluate them again. For the same reason no additional
cost is added when applying constants of arity greater than 0. If necessary, one can add one-time
costs to programmatic “values” such as abstractions with the use of a special constant, such as abs
of arity 1, with the application rule

vapply(abs, v) tabs⇒ v

If we limit initial programs so that lam x.e is not allowed except when enclosed by an abs (making
abs equivalent to the fun construct in ML), each initial use of an abstraction would add the cost
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c
0⇒v c lam x.e

0⇒v lam x.e

e1
t1⇒v cv1 . . . vi e2

t2⇒v vi+1 vapply(c, v1, . . . , vi+1)
t′⇒ v

e1(e2)
t′+t2+t1⇒v v

[rec x.e/x]e t⇒v v

rec x.e
t+trec⇒v v

e1
t1⇒v true e2

t2⇒v v

if e1 then e2 else e3
t2+ttrue+t1⇒v v

e1
t1⇒v false e3

t3⇒v v

if e1 then e2 else e3
t3+tfalse+t1⇒v v

e1
t1⇒v lam x.e′ e2

t2⇒v v′ [v′/x]e′ t′⇒v v

e1(e2)
t′+tapp+t2+t1⇒v v

Figure 3.1: Operational semantics for a call-by-value functional language

i < ar(c)
vapply(c, v1, . . . , vi)

0⇒ cv1 . . . vi

n = ar(c) c ∈ Construct

vapply(c, v1, . . . , vn) 0⇒ cv1 . . . vn

Figure 3.2: Known rules for vapply(c, v1, . . . , vn) t⇒ v

of tabs, but further evaluations of that abstraction would add 0 cost. Similar constructions can also
be used to add a one-time cost to other values. Thus even though abstractions and other syntactic
values have 0 cost it is possible to track the creation of such values.

Figure 3.2 lists the rules for constants that are known to always apply. These include rules for
constructors, which form values and have no additional effect, and rules for insufficiently applied
constants (such as pair 3). With all constants, we assume that no “work” (apart from evaluating
the arguments themselves) occurs until all the arguments are present. This assumption is consistent
with both an intuitive concept of the application of such constants and other definitions of cost, as
in [37].

As the addition of cost does not alter the result of evaluation, the proofs that the intensional
operational semantics is value and type sound are identical to the proofs for the extensional seman-
tics.

3.2.1 Operational Example

By calculating the complexity of the following simple recursive program, we illustrate that the costs
added to the operational semantics are reasonable:

length = rec len.lam l.if nil?(l) then 0 else 1 + len(tail(l))

The program calculates the length of a list.
To properly determine the cost of applying length we need an alternate method for displaying

natural semantics; the layout used so far becomes confusing when the derivation is complex. Instead
we use a form devised by [20]. Rather than write e

t⇒v v we write

e :
[t]⇒v v
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vapply(+, n,m)
t+⇒ n + m vapply(tail, v1::v2)

ttail⇒ v2

vapply(nil?, nil) tnil?⇒ true vapply(nil?, v1::v2)
tnil?⇒ false

Figure 3.3: FL constants needed for length

Sub-derivations are entered in the middle, indented and marked with brackets, e.g., one of the
conditional rules would be displayed as

if e1 then e2 else e3 :[
e1 :
[t1]⇒v true[
e2 :
[t2]⇒v v2

[t1 + t2 + tif ]⇒v v2

instead of
e1

t1⇒v true e2
t2⇒v v2

if e1 then e2 else e3
t1+t2+tif⇒v v2

We can further simplify the layout to improve clarity. Dots (. . . ) replace parts of expressions
when they are both understood and not needed to determine the next step in the evaluation.
Furthermore, we simply list any evaluation that has been previously derived without rederiving it.
We also display short evaluations with no subparts using the standard notation e

t⇒v v.
Before calculating the cost of applying length we also need to specify the rules for the integer

and list constants used in the program. Figure 3.3 contains the application rules for the non-
constructor constants. The rules are the same as those given in Chapter 2 except that in each case
an additional constant cost (t+, tnil?, and ttail) is included.

We start with the simplest case, evaluating length(nil):

length(nil) :


length ≡ rec len.lam l.if . . . :[
lam l.if nil?(l) then 0 else 1 + length(tail(l)) :
[0]⇒v lam l.if . . .

[trec]⇒v lam l.if . . .[
nil

0⇒v nil


if nil?(nil) then 0 else 1 + length(tail(nil)) :


nil?(nil) :[
nil? 0⇒v nil?[
nil

0⇒v nil[
vapply(nil?, nil) tnil?⇒ true

[tnil?]⇒v true[
0 0⇒v 0

[ttrue + tnil?]⇒v 0
[ttrue + tnil? + tapp + trec]⇒v 0
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If e is any value such that e
t⇒nnil, then evaluating length(e) is much the same:

length(e) :[
length

trec⇒v lam l.if . . .[
e

t⇒v nil[
if nil?(nil) then 0 else 1 + length(tail(nil)) :
[ttrue + tnil?]⇒v 0

[ttrue + tnil? + tapp + trec + t]⇒v 0

We thus have the following derived rule which we can use in future examples:

e
t⇒v nil

length(e)
ttrue+tnil?+tapp+trec+t⇒v 0

Our next example it also very simple; it computes the length of a list of the form v::nil. In
this example we also omit evaluations such as c

0⇒v c when obvious.

length(v::nil) :[
length

trec⇒v lam l.if . . .


if nil?(v::nil) then 0 else 1 + length(tail(v::nil)) :


nil?(v::nil) :[
vapply(nil?, v::nil) tnil?⇒ false

[tnil?]⇒v false


1 + length(tail(v::nil)) :


length(tail(v::nil)) :


tail(v::nil) :[
vapply(tail, v::nil) ttail⇒ nil

[ttail]⇒v nil
[ttrue + tnil? + tapp + trec + ttail]⇒v 0[

vapply(+, 1, 0)
t+⇒ 1

[t+ + ttrue + tnil? + tapp + trec + ttail]⇒v 1
[t+ + ttrue + 2tnil? + tapp + trec + ttail + tfalse]⇒v 1

[t+ + ttrue + 2tnil? + 2tapp + 2trec + ttail + tfalse]⇒v 1

To find the overall complexity, we need to know the cost of applying length to lists in general.
We can determine this cost by induction on the length of the list:

Theorem 3.2.1 Suppose that e
t⇒v [v1, . . . , vn]. Then length(e) t′⇒v n, where

t′ = n(t+ + ttail + tfalse) + (n + 1)(tnil? + tapp + trec) + ttrue + t

Proof. By induction on n. We have already shown the cases where n = 0 and where n = 1. Suppose
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that n > 0 and that the theorem holds for n− 1. Then

length(e) :[
length

trec⇒v lam l.if . . .[
e

t⇒v [v1, . . . , vn]


if nil?([v1, . . . , vn]) then 0 else 1 + length(tail([v1, . . . , vn])) :


nil?([v1, . . . , vn]) :[
vapply(nil?, [v1, . . . , vn]) tnil?⇒ false

[tnil?]⇒v false


1 + length(tail([v1, . . . , vn])) :


length(tail([v1, . . . , vn])) :


tail([v1, . . . , vn]) :[
vapply(tail, [v1, . . . , vn]) ttail⇒ [v2, . . . , vn]

[ttail]⇒v [v2, . . . , vn]
[(n− 1)(t+ + ttail + tfalse) + n(tnil? + tapp + trec) + ttrue + ttail]⇒v n− 1 ∗[

vapply(+, 1, n− 1)
t+⇒ n

[(n− 1)(tfalse) + n(t+ + ttail + tnil? + tapp + trec) + ttrue]⇒v n
[n(tfalse + t+ + ttail + tapp + trec) + (n + 1)tnil? + +ttrue]⇒v n

[n(tfalse + t+ + ttail) + (n + 1)(tnil? + tapp + trec) + +ttrue + t]⇒v n

The spot marked with an (∗) indicates where we use the induction hypothesis. 2

From this theorem we find that the cost of applying length is proportional to the length of the
input list. This result is consistent with other standard approaches to determining the complexity
of length.

3.3 Adding cost to the denotational semantics

In the extensional denotational semantics from Chapter 2, the meaning of a well typed expression
was a morphism from an object A0, representing the environment, to an object D representing the
possible results. One method for adding cost is to change the meaning of an expression so that
it is a morphism from A0 to an object D × T, where T is some object representing the cost of
evaluation. The resulting semantics, however, is rather complex. For example, the meaning of an
application e1(e2) might look like

(id×m) ◦ αr ◦ (app×m) ◦ φ ◦ 〈f1, f2〉

where f1 and f2 are the meanings of e1 and e2, respectively, m : T ×T → T combines costs, and
αr and φ are product isomorphisms as defined in Figure 2.10 of Chapter 2.

More importantly, if we only use D × T, we cannot easily change the semantics to include
other possible structures that might work as well or better for the intensional semantics. Instead,
we would prefer to find an abstract method for adding cost for which this method using products
would be a valid example.

If we had chosen to use products, we would find, while defining the semantics, that we would
frequently need certain general operations. To define a value, we would need to initialize an
element so it had 0 cost (for example, the meaning of true would be 〈tt, 0〉). Also, if the value
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of an expression e was the result of evaluating a subexpression e′, we would need to be able
to take the meaning of e′ and add possible additional costs accumulated while evaluating other
parts of e plus constant costs created by the structure of e itself. For example, when evaluating
if e1 then e2 else e3, if e1 evaluates to true, then the meaning of if e1 then e2 else e3 is the
meaning of e2 plus the cost of evaluating e1 and the constant cost ttrue for evaluating a (true)
conditional. Lastly we would need to combine costs from completely separate subevaluations, most
noticeably when evaluating pairs (<e1, e2>) but also when evaluating applications.

We can describe most of these operations using a strong monad. Furthermore, for any object
A with certain properties (relating to the ability to add costs together as described in detail in
section 3.6.3) the product functor −×A forms a strong monad. Therefore, it seems reasonable to
begin with a strong monad (or, more precisely, a Kleisli triple with strength) as our cost structure.

Thus let C be a function from objects to objects. C adds the ability to handle cost to an
object. To add an initial (0) cost, let ηA : A → CA for any object A. To compose multiple
morphisms of the form f : A → CB, we want to be able to “lift” f to a morphism from CA → CB,
so for each morphism f : A → CB let f∗ : CA → CB. Finally to combine costs directly, let
ψA,B : CA×CB → C(A×B) for any objects A and B. Lastly we need the ability to add non-zero
constant costs. Given the monoid T of costs defined in the previous section, for any t ∈ T and any
object A, let [[t]]A : CA → CA. The morphism [[t]] adds the cost t while leaving everything else
unchanged.

These elements enable us to define a sound intensional semantics, but not one that is necessarily
separable or adequate. For that we require a method for recovering the extensional semantics from
the intensional. Thus let E be a functor that converts the intensional semantics to the extensional.
By making E a functor we do not require that the intensional and extensional semantics be in
the same category. Let CE refer to the category of the extensional semantics and CI refer to the
category of the intensional semantics. Then C, η, (−)∗, ψ, and [[−]] all operate in CI, while E is a
functor from CI to CE.

We will refer to the data (C, η, (−)∗, ψ, [[−]], E) as a cost structure on T . We next must determine
what properties are required for soundness, adequacy, and separability. In particular, it will be
useful to know if not all properties of a strong monad are needed. By specifying a smaller set of
required properties we have a more precise description of the process of adding cost.

We require only four properties of a cost structure in order to form a sound semantics, all of
them involving [[−]]. The first two properties formalize the concept that [[t]] adds cost t; we require
that [[0]] = id and that [[t2]] ◦ [[t1]] = [[t1 + t2]].

The third property is that f∗ ◦ [[t]]◦η = [[t]]◦f . This property essentially states that the method
of combining cost used by (−)∗ is to add the input cost after evaluating the input data. It also
means that [[t]] adds cost differently than f∗. In particular, [[t]] does not necessarily equal ([[t]] ◦ η)∗.
When t = 0, the property turns into the Kleisli triple property that f∗ ◦ η = f .

The fourth property needed controls how ψ combines costs in comparison with [[t]]. With the
call-by-value semantics, if we choose the rule that ψ ◦ ([[t1]] × [[t2]]) = [[t1 + t2]] ◦ ψ, we find that +
must then be commutative. To see how the rule implies commutativity, note that

ψ ◦ ([[t1]]× [[0]]) ◦ ([[0]]× [[t2]]) = [[t1]] ◦ ψ ◦ ([[0]]× [[t2]])
= [[t1]] ◦ [[t2]] ◦ ψ
= [[t2 + t1]] ◦ ψ

but also
ψ ◦ ([[t1]]× [[0]]) ◦ ([[0]]× [[t2]]) = ψ ◦ ([[t1]]× [[t2]])

= [[t1 + t2]] ◦ ψ
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Using the rule that ψ ◦ ([[t1]]× [[t2]]) = [[t2 + t1]] ◦ ψ instead does not solve the problem, as can be
seen by reducing ψ ◦ ([[0]]× [[t1]]) ◦ ([[t2]]× [[0]]) both ways.

If instead we require that ψ ◦ ([[t1]] × [[t2]]) ◦ (η × η) is either [[t1 + t2]] ◦ η or [[t2 + t1]] ◦ η we
are forced to follow the second approach, removing the need to assume commutativity. Intuitively,
the property states that ψ combines costs directly, but the property is limited to only those cases
where we know the entire cost of the input.

We still need to decide whether to require that ψ ◦ ([[t1]] × [[t2]]) ◦ (η × η) equals [[t1 + t2]] ◦ η
or [[t2 + t1]] ◦ η. Both versions form sound semantics; we choose the latter form to better match
the similar requirement that [[t1]] ◦ [[t2]] = [[t2 + t1]]. With this choice, the order of evaluation can
often be reflected by reading the costs from right to left. When the cost t is 0, the above property
reduces to one of the properties of a strong monad (using ψ) seen in Figure 2.12.

These four properties are sufficiently limited so that C would not even need to be a functor.
In practice, however, we should expect that any particular cost structure will be a strong monad
simply because the requirements are very natural. In particular, we will be calling a cost structure
proper if it also defines a monad and strong if it also defines a strong monad. All known examples
of cost structures will be shown to be also strong.

To guarantee separability we need further requirements. If we require that E[[t]]A = idEA for all
objects A in CI and costs t, then we can apply E to generate a sound extensional semantics from
the intensional. This requirement simply states that [[t]] has no extensional effect.

The extensional semantics, however, needs to be the same as the one developed in Chapter 2.
Then we can use the adequacy of that semantics to prove adequacy of the intensional semantics.
In section 3.3.1 we construct the intensional semantics by replacing the lifting monad with the
equivalent constructs from the cost structure and add constant costs where needed. To recover the
extensional semantics, therefore, we require that E be a representation, i.e., it preserves products,
exponents, fixed points, and conditionals. Furthermore, we require that E applied to each element
of (C, η, (−)∗, ψ) gives us the lifting monad (L, up, (−)⊥, smash).

To guarantee adequacy we need properties that deal with ⊥. First, for any object A in CI,
CA must be strict. This property also ensures that fixed points are always well defined. Second,
because non-terminating expressions are the same for both semantics, for any f : 1 → CA, we
require that f = ⊥ if and only if Ef = ⊥ as well. Intuitively, this property states that there is no
intensional cost for non-terminating expressions.

More generally, we need a property concerning ordering so that we can ensure that fixed points
behave as expected. Suppose that g, g′ : 1 → CA, and t, t′ are costs such that [[t]]◦η◦g ≤ [[t′]]◦η◦g′.
We need to be able to say something about the relation of t and t′ and of g and g′. In particular
we want g ≤ g′. For the ordering on costs, the relation ≤ is for fixed points, and thus refers to the
amount of information about a meaning, not relative speed or amount of time taken so far. We
either know the cost of an operation or do not; this implies that costs are discretely ordered. Rather
than require that t = t′, however, we require that [[t]] = [[t′]]. This allows definition of [[−]] where
some distinct costs are given the same meanings, such as a trivial cost function where [[t]] = [[0]] for
all costs t. Thus we require that if [[t]] ◦ η ◦ g ≤ [[t′]] ◦ η ◦ g′ then [[t]] = [[t′]] and g ≤ g′.

Definition 3.3.1 Let T be a monoid set, CE be a Cartesian closed, PDom-enriched category with
lifts and conditionals, and let CI be a Cartesian closed, PDom-enriched category with conditionals.
Then a cost structure of T on CI over CE is a sextuple (C, η, (−)∗, ψ, [[−]], E), where

• C is a function on objects of CI

• For any object A in CI, ηA : A → CA
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• For any morphism f : A → CB, f∗ : CA → CB

• For any objects A, B in CI, ψA,B : CA× CB → C(A×B)

• For any object A in CI and any cost t ∈ T , [[t]]A : CA → CA

• E is a functor from CI to CE.

and the following properties hold:

Soundness Properties:

1. For all objects A
[[0]]A = idCA

2. For all objects A and all t1, t2 ∈ T ,

[[t2]]A ◦ [[t1]]A = [[t1 + t2]]A

3. For all f : A → CB and all t ∈ T ,

f∗ ◦ [[t]]A ◦ ηA = [[t]]B ◦ f

4. For all t1, t2 ∈ T and pairs of objects A1 and A2,

ψA1,A2 ◦ ([[t1]]A1
× [[t2]]A2

) ◦ (ηA1 × ηA2) = [[t2 + t1]]A1×A2
◦ ηA1×A2

Separability properties:

1. E is a representation of Cartesian closed, PDom-enriched categories with conditionals.

2. E(C, η, (−)∗, ψ) is the lifting monad, i.e., for all objects A of CI, E(CA) = L(EA),
EηA = upEA, Ef∗ = (Ef)⊥, and EψA,B = smashEA,EB.

3. For all costs t, E[[t]]A = idEA.

Adequacy properties:

1. For all objects A, CA is strict.

2. For all x : 1 → CA, x = ⊥ if and only if Ex = ⊥.

Ordering property:

1. For all z, z′ : 1 → CA and all costs t, t′, if [[t]] ◦ η ◦ z ≤ [[t′]] ◦ η ◦ z′, then [[t]] = [[t′]] and
z ≤ z′.

The category CE is the cost structure’s extensional category , while CI is its intensional category .
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Figure 3.4: Soundness properties of cost structures

Soundness properties 2-4 are shown as diagrams in Figure 3.4.

Definition 3.3.2 A cost structure (C, η, (−)∗, ψ, [[−]], E) of T on CI over CE is proper if (C, η, (−)∗)
is a Kleisli triple on CI, i.e., (C, η, (id)∗) is a monad on CI. The cost structure is strong if
(C, η, (id)∗, τ) is a strong monad, where τ = ψ ◦ (id× η).

As the soundness property 3 implies the first property of a Kleisli triple, to prove that a cost
structure is proper we need only to show that the following holds:

• For all objects A,
(ηA)∗ = idCA

• For all morphisms f : A → CB and g : B → CD,

g∗ ◦ f∗ = (g∗ ◦ f)∗

Similarly, as the soundness property 4 implies one of the strength properties of ψ and thus τ ,
to prove that a cost structure is strong we need to show that it is proper and the following holds:

• For all objects A and B,
Cπ1 ◦ τA,B = π1

• For all objects A, B, and D,

τA,B×D ◦ αr
CA,CB,CD = Cαr

A,B,D ◦ τA×B,D ◦ (τA,B × idCD)
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• For all morphisms f : A1 → CB1 and g : A2 → B2,

τB1,B2 ◦ (f∗ × g) = (τB1,B2 ◦ (f × g))∗ ◦ τA1,A2

We can also guarantee that a cost structure is strong with some relatively straightforward
conditions on CI and C. A category is well pointed if for all morphisms f , g : A → B, whenever for
all x : 1 → A, f ◦ x = g ◦ x, then f = g.

Theorem 3.3.1 Suppose that CI is well pointed, and that (C, η, (−)∗, ψ, [[−]], E) is a cost structure
on CI over CE. Further suppose that for any object X and any element z : 1 → CX, either z = ⊥
or z = [[t]] ◦ η ◦ x for some t ∈ T and x : 1 → X. Then (C, η, (−)∗, ψ, [[−]], E) is a strong cost
structure.

Proof. Before we can show that the cost structure is strong, we first note that the separability and
adequacy properties give us the following properties of the cost structure and ⊥:

• For all f : A → CB
f∗ ◦ ⊥A = ⊥B

• For all costs t and objects A,
[[t]]A ◦ ⊥A = ⊥A

• For all objects A1 and A2,

ψA1,A2 ◦ (⊥CA1 × idCA2) = ⊥C(A1×A2)◦!1×CA2

and
ψA1,A2 ◦ (idCA1 ×⊥CA2) = ⊥C(A1×A2)◦!CA1×1

For example, by the separability properties 1 and 2,

E(f∗ ◦ ⊥) = (Ef)⊥ ◦ ⊥ = ⊥

thus by the adequacy property 2, f∗ ◦ ⊥A must be ⊥ as well.
We can now show that (C, η, (−)∗) is a Kleisli triple. To do this we only need to show that the

other two Kleisli triple properties hold. The proofs of both are by case analysis on morphisms from
1 to CA; we include proof that g∗ ◦ f∗ = (g∗ ◦ f)∗.

• For f : A → CB and g : B → CD, g∗ ◦ f∗ = (g∗ ◦ f)∗

Let z : 1 → CA. If z = ⊥, then

g∗ ◦ f∗ ◦ z = ⊥ = (g∗ ◦ f)∗ ◦ z

Otherwise, there exists a cost t and a morphism x : 1 → A such that z = [[t]] ◦ η ◦ x. Then

(g∗ ◦ f)∗ ◦ z = (g∗ ◦ f)∗ ◦ [[t]] ◦ η ◦ x
= [[t]] ◦ g∗ ◦ f ◦ x Soundness prop. 3

and
g∗ ◦ f∗ ◦ z = g∗ ◦ f∗ ◦ [[t]] ◦ η ◦ x

= g∗ ◦ [[t]] ◦ f ◦ x
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Now f ◦ x : 1 → CB. If f ◦ x = ⊥, then

[[t]] ◦ g∗ ◦ f ◦ x = ⊥ = g∗ ◦ [[t]] ◦ f ◦ x

Otherwise, there exists a cost t′ and a morphism x′ : 1 → B such that f ◦ x = [[t′]] ◦ η ◦ x′.
Thus

[[t]] ◦ g∗ ◦ f ◦ x = [[t]] ◦ g∗ ◦ [[t′]] ◦ η ◦ x′

= [[t]] ◦ [[t′]] ◦ g ◦ x′ Soundness prop. 3
= [[t′ + t]] ◦ g ◦ x′ Soundness prop. 2
= g∗ ◦ [[t′ + t]] ◦ η ◦ x′ Soundness prop. 3
= g∗ ◦ [[t]] ◦ [[t′]] ◦ η ◦ x′ Soundness prop. 2
= g∗ ◦ [[t]] ◦ f ◦ x

Therefore (g∗ ◦ f)∗ ◦ z = g∗ ◦ f∗ ◦ z, so (g∗ ◦ f)∗ = g∗ ◦ f∗.

We next show that the three extra strength properties are satisfied. Again, the proofs are
similar to the one above; we only list one of the properties.

• Cαr
A1,A2,A3

◦ τA1×A2,A3 ◦ (τA1,A2 × idA3) = τA1,A2×A3 ◦ αr
CA1,A2,A3

Let z : 1 → (CA1 ×A2)×A3. Then z = 〈〈z1, x2〉, x3〉, where z1 : 1 → CA1, x2 : 1 → A2 and
x3 : 1 → A3. Suppose that z1 = ⊥. Then as noted

ψ ◦ (⊥× id) = ⊥ ◦ !

so for any morphism y : 1 → CA,
ψ ◦ 〈⊥, g〉 = ⊥

Therefore
Cαr ◦ τ ◦ (τ × id) ◦ z

= Cαr ◦ ψ ◦ (id× η) ◦ (ψ × id) ◦ 〈〈⊥, η ◦ x2〉, x3〉
= Cαr ◦ ψ ◦ (id× η) ◦ 〈⊥, x3〉
= Cαr ◦ ψ ◦ 〈⊥, η ◦ x3〉
= Cαr ◦ ⊥
= ⊥
= ψ ◦ 〈⊥, η ◦ 〈x2, x3〉〉
= τ ◦ 〈⊥, 〈x2, x3〉〉
= τ ◦ αr ◦ z

Otherwise, there exists a cost t and a morphism x1 : 1 → A1 such that z1 = [[t]] ◦ η ◦ x1.
Therefore

Cαr ◦ τ ◦ (τ × id) ◦ z
= Cαr ◦ ψ ◦ (id× η) ◦ (ψ × id) ◦ 〈〈[[t]] ◦ η ◦ x1, η ◦ x2〉, x3〉
= Cαr ◦ ψ ◦ (id× η) ◦ 〈[[t]] ◦ η ◦ 〈x1, x2〉, x3〉
= Cαr ◦ ψ ◦ 〈[[t]] ◦ η ◦ 〈x1, x2〉, η ◦ x3〉
= Cαr ◦ [[t]] ◦ η ◦ 〈〈x1, x2〉, x3〉 Soundness prop. 4
= [[t]] ◦ η ◦ αr ◦ 〈〈x1, x2〉, x3〉 Soundness prop. 3
= [[t]] ◦ η ◦ 〈x1, 〈x2, x3〉〉 Soundness prop. 4
= ψ ◦ ([[t]]× η) ◦ (η × id) ◦ 〈x1, 〈x2, x3〉〉
= τ ◦ 〈[[t]] ◦ η ◦ x1, 〈x2, x3〉〉
= τ ◦ αr ◦ 〈〈[[t]] ◦ η ◦ x1, x2〉, x3〉
= τ ◦ αr ◦ z

Therefore Cαr ◦ τ ◦ (τ × id) = τ ◦ αr.



3.3. ADDING COST TO THE DENOTATIONAL SEMANTICS 67

2

For any category C that is Cartesian closed, PDom enriched, and has lifts, we can define a trivial
strong cost structure (L, up, (−)⊥, smash, id, I) on C over C, where all costs equal 0. In section 3.6.3
we present a non-trivial example of a cost structure and describe a technique for generating an
intensional category CI plus a cost structure on it from a structure defined solely on CE.

3.3.1 Semantic definitions with cost

Figure 2.14 in the previous chapter lists a denotational semantics using the lifting monad. The
lifting monad handles the strictness properties of the semantics; however, these strictness properties
are also closely related to cost properties; if part of an expression is not evaluated, then there is no
cost associated with it, and it can be safely replaced with a non-terminating expression. Therefore
the first step in converting the extensional semantics to an intensional one is to replace all of the
items associated with the lifting monad with the equivalent items from the cost structure. We can
safely replace them because a cost structure has lifting built into it: that is why E converts C to
L (instead of I) and why CA must be strict.

Specifically, we take the categorical semantics with lifts, and replace all uses of L with C, up
with η, (−)⊥ with (−)∗, and smash with ψ. We also replace the function raise⊥ with raise, where
raise(f) = η ◦ curry(f). The change to the cost structure, however, requires a change in categories,
so we must find meanings of ground types and constructed data types in CI. Therefore, we assume
that for each ground type g there is an object AV

g in CI such that EAV
g = Ag. Similarly, we assume

that for each type constructor δ of arity n, there is an n-ary functor FV
δ on CI such that for all

objects A1, . . . , An in CI, EFV
δ (A1, . . . , An) = Fδ(EA1, . . . EAn). As the meaning of most constants

are not specified, we cannot define CV[[c]] in terms of its extensional meaning CV
E [[c]]; instead, for each

constant c we assume that CV[[c]] is chosen so that ECV[[c]] = CV
E [[c]]. For conditionals, we specified

that CI has conditional objects, so AV
bool is that object, CV[[true]] = η ◦ tt, and CV[[false]] = η ◦ff.

Therefore, converting the lifting monad to the cost structure changes the semantics to the one in
Figure 3.5.

We still lack an intensional semantics; as currently defined, all expressions would have 0 cost.
To add cost explicitly, we must determine the points where costs are added in the operational
semantics and add them to the denotational semantics at equivalent points.

There are four operational rules that add extra cost: the two conditional rules, the rule for
recursion, and the rule for applying an abstraction. With the morphisms in a cost structure, it is
possible to add cost simply by composing part of the semantic definition with [[t]] for some cost
t. For the conditionals, each branch has a different cost; therefore, we must add the additional
costs to the meanings of e2 and e3. For recursion, the additional cost occurs with each expansion;
this means that we should add [[trec]] within the fixed point constructor. Lastly, for application of
the λ-expression, the added cost cannot be added into the denotational definition of application
because that definition covers application of constants as well, where there is no added cost. We
can, however, add it into the curried part of the definition of an abstraction; the cost then would
not appear until the abstraction was applied. The final intensional semantics appears in Figure 3.6.

By design, this semantics is closely related to the extensional semantics, and the separability
conditions of the cost structure ensure that we can recover the extensional semantics from the
intensional. In particular, for any type τ , ET V[[τ ]] = T V

E [[τ ]] and whenever Γ ` e : τ , then
EV[[Γ ` e : τ ]] = VE[[Γ ` e : τ ]], that is, applying E to the intensional semantics returns the
extensional semantics. This is proven formally below:
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T V[[g]] = AV
g

T V[[δ(τ1, . . . , τn)]] = FV
δ (T V[[τ1]], . . . , T V[[τn]])

T V[[τ1 → τ2]] = [T V[[τ1]] ⇒ CT V[[τ2]]]
T V[[x1 : τ1, . . . , xn : τn]] = ×(CT V[[τ1]], . . . , CT V[[τn]])

V[[Γ ` c : τ ]] = raise(ar(c))(CV[[c : τ ]]) ◦ !T V[[Γ]]

V[[Γ ` xi : τi]] = πn
i

V[[Γ ` lam x.e : τ ′ → τ ]] = η ◦ curry(V[[Γ, x : τ ′ ` e : τ ]] ◦ (id× η))
V[[Γ ` e1(e2) : τ ]] = (app)∗ ◦ ψ ◦ 〈V[[Γ ` e1 : τ ′ → τ ]],V[[Γ ` e2 : τ ′]]〉
V[[Γ ` if e1 then e2 else e3 : τ ]] = (cond)∗ ◦ ψ ◦ 〈V[[Γ ` e1 : bool]],

η ◦ 〈V[[Γ ` e2 : τ ]],V[[Γ ` e3 : τ ]]〉〉
V[[Γ ` rec x.e : τ ]] = fixp(V[[Γ, x : τ ` e : τ ]])
CV[[true : bool]] = η ◦ tt
CV[[false : bool]] = η ◦ ff

where raise(f) = η ◦ curry(f).

Figure 3.5: Call-by-value intensional semantics before cost is added

T V[[g]] = AV
g

T V[[δ(τ1, . . . , τn)]] = FV
δ (T V[[τ1]], . . . , T V[[τn]])

T V[[τ1 → τ2]] = [T V[[τ1]] ⇒ CT V[[τ2]]]
T V[[x1 : τ1, . . . , xn : τn]] = ×(CT V[[τ1]], . . . , CT V[[τn]])

V[[Γ ` c : τ ]] = raise(ar(c))(CV[[c : τ ]]) ◦ !T V[[Γ]]

V[[Γ ` xi : τi]] = πn
i

V[[Γ ` lam x.e : τ ′ → τ ]] = η ◦ curry([[tapp]] ◦ V[[Γ, x : τ ′ ` e : τ ]] ◦ (id× η))
V[[Γ ` e1(e2) : τ ]] = (app)∗ ◦ ψ ◦ 〈V[[Γ ` e1 : τ ′ → τ ]],V[[Γ ` e2 : τ ′]]〉
V[[Γ ` if e1 then e2 else e3 : τ ]] = (cond)∗ ◦ ψ ◦ 〈V[[Γ ` e1 : bool]],

η ◦ 〈[[ttrue]] ◦ V[[Γ ` e2 : τ ]],
[[tfalse]] ◦ V[[Γ ` e3 : τ ]]〉〉

V[[Γ ` rec x.e : τ ]] = fixp([[trec]] ◦ V[[Γ, x : τ ` e : τ ]])
CV[[true : bool]] = η ◦ tt
CV[[false : bool]] = η ◦ ff

where raise(f) = η ◦ curry(f).

Figure 3.6: Call-by-value intensional semantics
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Lemma 3.3.2 For all n, Eraise(n)(f) = raise
(n)
⊥ (Ef).

Proof. By straightforward induction on n. 2

Theorem 3.3.3 For all types τ , ET V[[τ ]] = T V
E [[τ ]].

Proof. By induction on the structure of τ . All cases are straightforward, we show the case for
function types.

Case τ = τ1 → τ2:

ET V[[τ1 → τ2]] = E[T V[[τ1]] ⇒ CT V[[τ2]]]
= [ET V[[τ1]] ⇒ ECT V[[τ2]]]
= [ET V[[τ1]] ⇒ LET V[[τ2]]] separability of E
= [T V

E [[τ1]] ⇒ LT V
E [[τ2]]] induction hypothesis

= T V
E [[τ1 → τ2]]

2

Lemma 3.3.4 For all type environments Γ, ET V[[Γ]] = T V
E [[Γ]].

Proof. By straightforward induction on the size of Γ. 2

Theorem 3.3.5 For any expressions e such that Γ ` e : τ , EV[[Γ ` e : τ ]] = VE[[Γ ` e : τ ]].

Proof. By induction on the structure of e. Again the cases are straightforward; we include the case
for conditionals.

Case e = V[[Γ ` if e1 then e2 else e3 : τ ]]:

EV[[Γ ` if e1 then e2 else e3 : τ ]]
= E(cond∗ ◦ ψ ◦ 〈V[[Γ ` e1 : bool]],

η ◦ 〈[[ttrue]] ◦ V[[Γ ` e2 : τ ]], [[tfalse]] ◦ V[[Γ ` e3 : τ ]]〉〉
= Econd∗ ◦ Eψ ◦ 〈EV[[Γ ` e1 : bool]],

Eη ◦ 〈E[[ttrue]] ◦ EV[[Γ ` e2 : τ ]], E[[tfalse]] ◦EV[[Γ ` e3 : τ ]]〉〉)
E is a representation

= (Econd)⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : bool]],
up ◦ 〈VE[[Γ ` e2 : τ ]],VE[[Γ ` e3 : τ ]]〉〉

separability of E and
induction hypothesis

= cond⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : bool]],
up ◦ 〈VE[[Γ ` e2 : τ ]],VE[[Γ ` e3 : τ ]]〉〉

= VE[[Γ ` if e1 then e2 else e3 : τ ]]

2

We will use this relationship to prove both that the extensional semantics is sound (based on
the soundness of the intensional semantics) and that the intensional semantics is adequate (based
on the adequacy of the extensional semantics).
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3.4 Soundness of the categorical model

The extensional semantics is sound if whenever e⇒v v and e has type τ , then VE[[ ` e : τ ]] equals
VE[[ ` v : τ ]]. For the intensional semantics, we would not expect the meaning of e to be the same
as v because v has no cost associated with its evaluation while e does. Adding the cost t to the
meaning of v results in the equation V[[ ` e : τ ]] = [[t]] ◦ V[[ ` v : τ ]]. In this section we prove that
this equation holds for the intensional semantics when e

t⇒v v.
The soundness proof follows the same general outline as the soundness proof in [11], with a few

notable exceptions. One difference, of course, is the addition of cost. Another is the need to prove
explicitly that values have 0 cost. Lastly, because we handle constants differently than standard
sources do, we include special lemmas concerning them.

The soundness proof is divided into five parts. The first part contains general technical lemmas
which allow certain simplifications. The second part contains the proof of the substitution lemma
and its sub-lemmas. The third part defines the assumptions made about constants and proves some
useful lemmas concerning them. The fourth part contains the proof of some critical properties
concerning values. Finally the last part gives the soundness proof.

3.4.1 Technical Lemmas

Properties of n-ary products and C

Definition 3.4.1 Given a category C with finite products and objects A1, . . . , An, for 1 ≤ i ≤ n,
let βn

i be the natural isomorphism from ×(A1, . . . , Ai−1, Ai, . . . , An) to ×(A1, . . . , Ai, Ai−1, . . . , An)
defined inductively on n− i as follows:

• βn
n = 〈π1 × id, π2 ◦ π1〉

• For i < n, βn
i = βn−1

i × idAn .

Lemma 3.4.1 (βn
i properties) If 1 ≤ i ≤ n and i is not equal to k or k− 1, the following holds:

• πn
k = πn

k−1 ◦ βn
k

• πn
k−1 = πn

k ◦ βn
k

• πn
i = πn

i ◦ βn
k

where πn
k is the k’th projection of an n-ary product.

Proof. Clear from the universal properties of products; also see [11], pg. 71. 2

Lemma 3.4.2 (×(−) property) Let A1, . . . , An, C, C ′ be objects in C and for 1 ≤ i ≤ n, let
fi : C → Ai and g : C ′ → C. Then

〈〉(f1, . . . , fn) ◦ g = 〈〉(f1 ◦ g, . . . , fn ◦ g)

Proof. Clear from the universal properties of products. 2

The next lemma covers simplifications used frequently in the soundness proof.

Lemma 3.4.3 For any h : A×B → CD, f : D′ → A, g : D′ → B, and t1, t2 ∈ T ,
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1. h∗ ◦ ψA,B ◦ 〈[[t1]]A ◦ ηA ◦ f, [[t2]]B ◦ ηB ◦ g〉 = [[t2 + t1]]D ◦ h ◦ 〈f, g〉

2. app∗ ◦ ψA,B ◦ 〈[[t1]]A ◦ ηA ◦ curry(h) ◦ f, [[t2]]B ◦ ηB ◦ g〉 = [[t2 + t1]]D ◦ h ◦ 〈f, g〉
Proof. Follows easily from the properties of products and cost structures. 2

By setting t1 or t2 to 0 we also have lemmas for the equations that lack added costs.

Switch, Drop and Substitution lemmas

With a precise definition for n-ary products, the order and number of variables in a type environ-
ment affect its meaning (though the different meanings are equivalent). We need the Switch and
Drop lemmas to describe the differences, making it possible to prove the Substitution Lemma.

Lemma 3.4.4 (Switch Lemma) Let

Γ = x1 : τ1, . . . , xk−1 : τk−1, xk : τk, . . . , xn : τn

Γ′ = x1 : τ1, . . . , xk : τk, xk−1 : τk−1, . . . , xn : τn

Then if Γ ` e : τ ,
V[[Γ ` e : τ ]] = V[[Γ′ ` e : τ ]] ◦ βn

k

Proof. By straightforward induction on the structure of e. 2

Lemma 3.4.5 (Drop Lemma) If Γ ` e : τ and x is not free in e, then

V[[Γ, x : τ ′ ` e : τ ]] = V[[Γ ` e : τ ]] ◦ π1

Proof. By straightforward induction on the structure of e. 2

Lemma 3.4.6 (Substitution Lemma) Suppose that Γ, x : τ ′ ` e : τ and Γ ` e′ : τ ′. Then

V[[Γ ` [e′/x]e : τ ]] = V[[Γ, x : τ ′ ` e : τ ]] ◦ 〈id,V[[Γ ` e′ : τ ′]]〉
Proof. By induction on the structure of e. All cases are straightforward; we list one of the variable
cases and the case when e is an abstraction below.

Case e = x (τ ′ = τ):

V[[Γ ` [e′/x]x : τ ]] = V[[Γ ` e′ : τ ]]
= π2 ◦ 〈id,V[[Γ ` e′ : τ ]]〉
= V[[Γ, x : τ ` x : τ ]] ◦ 〈id,V[[Γ ` e′ : τ ]]〉
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(T V[[Γ]]× CT V[[τ1]])× CT V[[τ ′]] CT V[[τ2]]

T V[[Γ]]× CT V[[τ1]] (T V[[Γ]]× CT V[[τ ′]])× CT V[[τ1]]

T V[[Γ]]× T V[[τ1]] (T V[[Γ]]× CT V[[τ ′]])× T V[[τ1]]-〈id, g〉 × id

?

id× η

?

id× η

-〈id, g〉 × id

?

〈id, g ◦ π1〉

?

V[[Γ, x : τ ′, y : τ1 ` e′′ : τ2]]

³³³³³³³³³³³³³³³³³³1
β

(k+2)
(k+2)

-
V[[Γ, y : τ1, x : τ ′ ` e′′ : τ2]]

Figure 3.7: Part of the proof of Substitution Lemma, when e = lam y.e′′. The lower right triangle
follows from the Switch Lemma

Case e = lam y.e′′ (τ = τ1 → τ2):

Let g = V[[Γ ` e′ : τ ′]] and n be the number of variables in Γ. We can assume that y 6= x and
y is not free in e′. By the induction hypothesis

V[[Γ ` [e′/x]lam y.e′′ : τ1 → τ2]]
= V[[Γ ` lam y.[e′/x]e′′ : τ1 → τ2]]
= η ◦ curry([[tapp]] ◦ V[[Γ, y : τ1 ` [e′/x]e′′ : τ2]] ◦ (id× η))
= η ◦ curry([[tapp]] ◦ V[[Γ, y : τ1, x : τ ′ ` e′′ : τ2]]

◦ 〈id,V[[Γ, y : τ1 ` e′ : τ ′]]〉 ◦ (id× η))

By the Drop Lemma V[[Γ, y : τ1 ` e′ : τ ′]] = g ◦ π2. Figure 3.7 shows that

V[[Γ, y : τ1, x : τ ′ ` e′′ : τ2]] ◦ 〈id, g ◦ π2〉 ◦ (id× η)
= V[[Γ, x : τ ′, y : τ2 ` e′′ : τ2]] ◦ (id× η) ◦ (〈id, g〉 × id)

Thus

V[[Γ ` [e′/x]lam y.e′′ : τ1 → τ2]]
= η ◦ curry([[tapp]] ◦ V[[Γ, x : τ ′, y : τ1 ` e′′ : τ2]] ◦ (id× η) ◦ (〈id, g〉 × id))
= η ◦ curry([[tapp]] ◦ V[[Γ, x : τ ′, y : τ1 ` e′′ : τ2]] ◦ (id× η)) ◦ 〈id, g〉
= V[[Γ, x : τ ′ ` lam y.e′′ : τ1 → τ2]] ◦ 〈id, g〉

as required.

2

3.4.2 Constants

Even though we do not know precisely what constants may be in use, we must make some assump-
tions about the meaning of constants in order to prove soundness. These assumptions are in two
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forms: simple structural assumptions about constructors (whose behaviors are known) and more
complicated assumptions about fully applied non-constructor constants. We do not have to assume
anything about partially applied constants; we already know their behavior, and the structure given
them through the raise function has sufficient information for the soundness proof.

The assumptions made for non-constructor constants are more complicated than those for con-
structors because their operational rules in some cases require additional evaluation. For example,
one of the operational rules for the case constant is

v1(v) t⇒v v′

apply(case inl(v) v1, v2)
t+tcase⇒ v′

To prove that a particular meaning for case is sound, we need to be able to assume a soundness
relation between v1(v) and v′. Given that the soundness proof depends on the soundness of con-
stants, one cannot safely assume that a soundness relationship exists. The relation, however, will
hold (via a structural induction hypothesis) whenever we need the soundness of case. Therefore it
will be sufficient to define soundness of constants relative to specific soundness assumptions about
sub-evaluations.

Definition 3.4.2 CV[[c : τ ]] is sound at c if the following two properties hold:

1. If c is a constructor then CV[[c : τ ]] factors through ηT V[[τ ]], that is, there exists a morphism g

such that CV[[c : τ ]] = ηT V[[τ ]] ◦ g. Otherwise

2. For all operational rules of the form

e1
t1⇒v v′1 . . . ek

tk⇒v v′k
vapply(c, v1, . . . , vn) t⇒ v

where n is the arity of c, suppose that for all 1 ≤ i ≤ k and any types τ ′i , ` ei : τ ′i implies
that V[[ei : τ ′i ]] = [[ti]] ◦ V[[v′i : τ ′i ]]. Then if c has type τ1 → . . . → τn → τ ′ and for 1 ≤ j ≤ n,
each value vj has type τj and there exist a morphism fj such that V[[vj : τj ]] = ηT V[[τj ]] ◦ fj ,

CV[[c : τ ]] ◦ 〈〉(f1, . . . , fn) = [[t]] ◦ V[[v : τ ′]]

CV[[−]] is sound if for all c ∈ Constτ , CV[[c : τ ]] is sound at c.

Note that CV[[true : bool]] is sound at true and CV[[false : bool]] is sound at false because
they are both constructors (of arity 0) and their meanings factor through η.

Applied constants

One reason we defined CV[[−]] on products and then used raise to convert the meaning of constants
is the desire to simplify the meaning of curried constants applied to values. Thus there is a useful
lemma describing the meaning of cv1 . . . vn:

Lemma 3.4.7 (Constant Application) Suppose that c ∈ Constτ1→...→τn→τ has arity n, that
0 ≤ i ≤ n, and that for 1 ≤ j ≤ i, Γ ` vj : τj. Furthermore suppose that for 1 ≤ j ≤ i, there exists
a morphism fj such that

V[[Γ ` vj : τ ]] = η ◦ fj

Then
V[[Γ ` cv1 . . . vi : τi+1 → . . . → τn → τ ]] = raise(n−i)(CV[[c]]) ◦ 〈〉(f1, . . . , fi)
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Proof. By induction on i. Let τ ′ = τi+1 → . . . → τn → τ . If i = 0 then

V[[Γ ` c : τ ]] = raise(n)(CV[[c : τ ]]) ◦ !T V[[Γ]]

= raise(n−0)(CV[[c : τ ]]) ◦ 〈〉()

If i > 0 then

V[[Γ ` cv1 . . . vi : τ ′]]
= V[[Γ ` (cv1 . . . vi−1)(vi) : τ ′]]
= app∗ ◦ ψ ◦ 〈V[[Γ ` cv1 . . . vi−1 : τi → τ ′]],V[[Γ ` vi : τi]]〉
= app∗ ◦ ψ ◦ 〈raise(n−(i−1))(CV[[c]]) ◦ 〈〉(f1, . . . , fi−1), induction hypothesis

V[[Γ ` ei : τi]]〉
= app∗ ◦ ψ ◦ 〈raise((n−i)+1)(CV[[c]]) ◦ 〈〉(f1, . . . , fi−1), η ◦ fi〉 by assumption
= app∗ ◦ ψ ◦ 〈η ◦ curry(raise(n−i)(CV[[c]])) ◦ 〈〉(f1, . . . , fi−1), η ◦ fi〉
= raise(n−i)(CV[[c]]) ◦ 〈〈〉(f1, . . . , fi−1), fi〉 Lemma 3.4.3
= raise(n−i)(CV[[c]]) ◦ 〈〉(f1, . . . , fi)

2

3.4.3 Values

The next step shows that values have zero cost denotationally. Because we need this lemma available
to prove specific constants sound, we cannot assume in its premise that all constants are sound.
We can, however, safely assume that constructors are sound.

Lemma 3.4.8 Suppose that for all constructors c, CV[[c : τ ]] factors through η. Then for any value
v and type enviroment Γ such that Γ ` v : τ , V[[Γ ` v : τ ]] factors through η.

Proof. By induction on the structure of v (as a value).

Case v = c:

If the arity of c is 0, then by assumption there exists a morphism f ′ such that CV[[c : τ ]] = η◦f ′.
Thus

V[[Γ ` c : τ ]] = raise(0)(CV[[c : τ ]]) ◦ !T V[[Γ]]

= CV[[c : τ ]] ◦ !T V[[Γ]]

= η ◦ f ′ ◦ !T V[[Γ]]

If the arity of c is not 0, then

V[[Γ ` c : τ ]] = raise(ar(c))(CV[[c : τ ]]) ◦ !T V[[Γ]]

= η ◦ curry(raise(ar(c)−1)(CV[[c : τ ]])) ◦ !T V[[Γ]]

Case v = lam x.e: Follows directly from the definition of V[[Γ ` lam x.e : τ ′ → τ ]].

Case v = cv1 . . . vi, i < ar(c):

Because Γ ` cv1 . . . vi : τ , there exist types τ1, . . . , τn, where n is the arity of c, and a type
τ ′ such that c ∈ Constτ1→...→τn→τ ′ , τ = τi+1 → . . . → τn → τ ′ and for each 1 ≤ j ≤ i,
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Γ ` vj : τj . Also as each vj is a value, by the induction hypothesis there exists an fj such
that V[[Γ ` vj : τj ]] = η ◦ fj . Thus

V[[Γ ` cv1 . . . vi : τ ]]
= raise(n−i)(CV[[c]]) ◦ 〈〉(f1, . . . , fi) Lemma 3.4.7
= η ◦ curry(raise(n−i−1)(CV[[c]])) ◦ 〈〉(f1, . . . , fi) i < n

Case v = cv1 . . . var(c), c ∈ Construct:

Let n = ar(c). As Γ ` v : τ , there exist types τ1, . . . , τn such that c ∈ Constructτ1→...→τn→τ

and for each 1 ≤ i ≤ n, Γ ` vi : τi. Also as each vi is a value, by the induction hypothesis
there exists an fi such that V[[Γ ` vi : τi]] = η ◦ fi. Furthermore as c is a constructor, there
exists a morphismf ′ such that CV[[c]] = η ◦ f ′. Therefore

V[[Γ ` cv1 . . . vn : τ ]]
= raise(n−n)(CV[[c]]) ◦ 〈〉(f1, . . . , fn) Lemma 3.4.7
= CV[[c]] ◦ 〈〉(f1, . . . , fn)
= η ◦ f ′ ◦ 〈〉(f1, . . . , fn)

2

3.4.4 Soundness proof

Theorem 3.4.9 Suppose ` e : τ and e
t⇒v v and CV[[c]] is sound for each constant c. Then

V[[e : τ ]] = [[t]] ◦ V[[v : τ ]]

Proof. By induction on the structure of the derivation of e
t⇒v v.

Case c
0⇒v c and lam x.e

0⇒v lam x.e:

Both follow directly from the soundness property stating that [[0]] = id.

Case
e1

t1⇒v lam x.e′ e2
t2⇒v v′ [v′/x]e′ t′⇒v v

e1(e2)
t′+tapp+t2+t1⇒v v

:

Because ` e1(e2) : τ , there exists a type τ ′ such that ` e1 : τ ′ → τ and ` e2 : τ ′.

By value soundness, we know that v′ is a value, so by Lemma 3.4.8 there exists a morphism
y′ : 1 → T V[[τ ′]] such that V[[v′ : τ ′]] = η ◦ y′. Furthermore, by the induction hypothesis

V[[e1 : τ ′ → τ ]] = [[t1]] ◦ V[[lam x.e′ : τ ′ → τ ]]
= [[t1]] ◦ η ◦ curry([[tapp]] ◦ V[[x : τ ′ ` e′ : τ ]] ◦ (id× η)),

V[[e2 : τ ′]] = [[t2]] ◦ V[[v′ : τ ′]] = [[t2]] ◦ η ◦ y′, and
V[[[e2/x]e′ : τ ]] = [[t′]] ◦ V[[v : τ ]]
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Thus

V[[e1(e2) : τ ]]
= app∗ ◦ ψ ◦ 〈V[[e1 : τ ′ → τ ]],V[[e2 : τ ′]]〉
= app∗ ◦ ψ ◦ 〈[[t1]] ◦ η ◦ curry([[tapp]] ◦ V[[x : τ ′ ` e′ : τ ]]

◦ (id× η)), [[t2]] ◦ η ◦ y′〉
= [[t2 + t1]] ◦ [[tapp]] ◦ V[[x : τ ′ ` e′ : τ ]] ◦ (id× η) ◦ 〈id, y′〉 Lemma 3.4.3
= [[t2 + t1]] ◦ [[tapp]] ◦ V[[x : τ ′ ` e′ : τ ]] ◦ 〈id,V[[v′ : τ ′]]〉
= [[t2 + t1]] ◦ [[tapp]] ◦ V[[[v′/x]e′ : τ ]] Substitution Lemma
= [[t2 + t1]] ◦ [[tapp]] ◦ [[t′]] ◦ V[[v : τ ]]
= [[t′ + tapp + t2 + t1]] ◦ V[[v : τ ]]

Case
e1

t1⇒v cv1 . . . vi e2
t2⇒v v′ vapply(cv1 . . . vi, v

′) t′⇒ v

e1(e2)
t′+t2+t1⇒v v

:

Because ` e1(e2) : τ , there exists a type τ ′ such that ` e1 : τ ′ → τ and ` e2 : τ ′. By type
soundness this means that ` cv1 . . . vi : τ ′ → τ so there exist types τ1, . . . , τi such that for
each 1 ≤ j ≤ i, ` vj : τj .

By the induction hypothesis

V[[e1 : τ ′ → τ ]] = [[t1]] ◦ V[[cv1 . . . vi : τ ′ → τ ]]

and
V[[e2 : τ ′]] = [[t2]] ◦ V[[v′ : τ ′]]

Furthermore, by value soundness each of v1, . . . vi are values, so by Lemma 3.4.8 for each
1 ≤ j ≤ i, there exists a morphism yj such that V[[vj : τj ]] = η ◦ yj . Similarly, as v′ is a value
there exists a morphism y′ such that V[[v′ : τ ′]] = η ◦y′. Lastly as cv1 . . . vi is not fully applied,
it is a value, thus there exists a morphism y such that V[[cv1 . . . vi : τ ′ → τ ]] = η ◦ y.

Next note that

V[[e1(e2) : τ ]]
= app∗ ◦ ψ ◦ 〈V[[e1 : τ ′ → τ ]],V[[e2 : τ ′]]〉
= app∗ ◦ ψ ◦ 〈[[t1]] ◦ V[[cv1 . . . vi : τ ′ → τ ]], [[t2]] ◦ V[[v′ : τ ′]]〉 induction hypothesis
= app∗ ◦ ψ ◦ 〈[[t1]] ◦ η ◦ y, [[t2]] ◦ η ◦ y′〉 as noted
= [[t2 + t1]] ◦ app ◦ 〈y, y′〉 Lemma 3.4.3
= [[t2 + t1]] ◦ app∗ ◦ ψ ◦ 〈η ◦ y, η ◦ y′〉 Lemma 3.4.3
= [[t2 + t1]] ◦ app∗ ◦ ψ ◦ 〈V[[cv1 . . . vi : τ ′ → τ ]],V[[v′ : τ ′]]〉
= [[t2 + t1]] ◦ V[[cv1 . . . viv

′ : τ ]]

There are three possible types of derivations for apply(cv1 . . . vi, v
′) t′⇒ v: when i < n − 1,

when i = n− 1 and c is a constructor, or when i = n− 1 and c is not a constructor. For the
first two cases, v = cv1 . . . viv

′ and t′ = 0, so

V[[e1(e2) : τ ]] = [[t2 + t1]] ◦ V[[cv1 . . . viv
′ : τ ]]

= [[t′ + t2 + t1]] ◦ V[[v : τ ]]
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Otherwise the derivation for vapply(cv1 . . . vi, v
′) t′⇒ v is of the form

e′1
t′1⇒v v′1 . . . e′k

t′k⇒v v′k
vapply(cv1 . . . vi, v

′) t′⇒ v

By the induction hypothesis for any 1 ≤ j ≤ k and any type τ ′j , if e′1 has type τ ′j then

V[[e′j : τ ′j ]] = [[t′j ]] ◦ V[[v′j : τ ′j ]]

Therefore by the assumption of soundness for constants

[[t′]] ◦ V[[v : τ ]]
= CV[[c]] ◦ 〈〉(y1, . . . , yi, y

′)
= raise(n−n)(CV[[c]]) ◦ 〈〉(y1, . . . , yi, y

′)
= V[[cv1 . . . viv

′ : τ ]] Lemma 3.4.7
= V[[v1(v2) : τ ]]

Thus
V[[e1(e2) : τ ]] = [[t2 + t1]] ◦ V[[cv1 . . . viv

′ : τ ]]
= [[t2 + t1]] ◦ [[t′]] ◦ V[[v : τ ]]
= [[t′ + t2 + t1]] ◦ V[[v : τ ]]

Case
e1

t1⇒v true e2
t2⇒v v

if e1 then e2 else e3
t2+ttrue+t1⇒v v

:

Because ` if e1 then e2 else e3 : τ , we know that ` e1 : bool and ` e2 : τ . Furthermore by
the induction hypothesis and Lemma 3.4.8

V[[e1 : bool]] = [[t1]] ◦ V[[true : bool]]
= [[t1]] ◦ CV[[true : bool]] ◦ !
= [[t1]] ◦ η ◦ tt ◦ !

and
V[[e2 : τ ]] = [[t2]] ◦ V[[v : τ ]]

Therefore

V[[if e1 then e2 else e3 : τ ]]
= cond∗ ◦ ψ ◦ 〈V[[e1 : bool]], η ◦ 〈[[ttrue]] ◦ V[[e2 : τ ]],

[[tfalse]] ◦ V[[e3 : τ ]]〉〉
= cond∗ ◦ ψ ◦ 〈[[t1]] ◦ η ◦ tt ◦ !, η ◦ 〈[[ttrue]] ◦ V[[e2 : τ ]], as noted

[[tfalse]] ◦ V[[e3 : τ ]]〉〉
= [[t1]] ◦ cond ◦ 〈tt ◦ !, 〈[[ttrue]] ◦ V[[e2 : τ ]], [[tfalse]] ◦ V[[e3 : τ ]]〉〉 Lemma 3.4.3
= [[t1]] ◦ [[ttrue]] ◦ V[[e2 : τ ]]
= [[t1]] ◦ [[ttrue]] ◦ [[t2]] ◦ V[[v : τ ]] as noted
= [[t2 + ttrue + t1]] ◦ V[[v : τ ]]

Case
e1

t1⇒v false e3
t3⇒v v

if e1 then e2 else e3
t3+tfalse+t1⇒v v

: Similar to the e1
t1⇒v true case.
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Case
[rec x.e/x]e t⇒v v

rec x.e
t+trec⇒v v

:

As ` rec x.e : τ , we know that x : τ ` e : τ . Therefore

V[[rec x.e : τ ]] = fixp([[trec]] ◦ V[[x : τ ` e : τ ]])
= [[trec]] ◦ V[[x : τ ` e : τ ]] Fixed point property

◦ 〈id, fixp([[trec]] ◦ V[[x : τ ` e : τ ]])〉
= [[trec]] ◦ V[[x : τ ` e : τ ]] ◦ 〈id,V[[rec x.e : τ ]]〉
= [[trec]] ◦ V[[[rec x.e/x]e : τ ]] Substitution Lemma
= [[trec]] ◦ [[t]] ◦ V[[v : τ ]] induction hypothesis
= [[t + trec]] ◦ V[[v : τ ]]

2

3.4.5 Soundness of the extensional semantics

Corollary 3.4.10 Suppose that ` e : τ , e⇒v v, and CV[[c]] is sound for each constant c. Then

VE[[e : τ ]] = VE[[v : τ ]]

Proof. Assume that ` e : τ and that e⇒v v. By the construction of the intensional operational
semantics, it is clear that for some cost t, e

t⇒v v. Therefore by the soundness of the intensional
semantics, V[[e : τ ]] = [[t]] ◦ V[[v : τ ]]. Thus

VE[[e : τ ]] = EV[[e : τ ]] = E([[t]] ◦ V[[v : τ ]]) = VE[[v : τ ]]

2

3.5 Adequacy of the intensional semantics

Given the separability and adequacy properties of the cost structure, we can prove that the inten-
sional semantics is adequate using the knowledge that the extensional semantics is adequate.

Theorem 3.5.1 For any closed expression e of type τ , V[[e : τ ]] 6= ⊥ if and only if there exists a
closed value v of type τ and a t ∈ T such that e

t⇒v v.

Proof. Suppose that V[[e : τ ]] 6= ⊥. Then by the adequacy properties of the cost structure,

EV[[e : τ ]] = VE[[e : τ ]] 6= ⊥

Therefore, by the adequacy of the extensional semantics there exists a closed value v of type τ such
that e⇒v v. Therefore there must also exist a t ∈ T such that e

t⇒v v.
Now suppose there exists a closed value v of type τ and a t ∈ T such that e

t⇒v v. By
Lemma 3.4.8 there exists a morphism y : 1 → T V[[τ ]] such that V[[v : τ ]] = η ◦ y. Therefore by
soundness V[[e : τ ]] = [[t]] ◦ η ◦ g so E(V[[e : τ ]]) = up ◦ Ey. By the properties of strictness we thus
know that E(V[[e : τ ]]) 6= ⊥, therefore, by the adequacy assumptions V[[e : τ ]] 6= ⊥ as well. 2
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3.6 Creating cost structures

In this section we show that there are non-trivial examples of strong cost structures. We do this in
five stages. First, we introduce a helpful auxiliary notion, that of arrow cost structures. We then
show that given a non-trivial arrow cost structure we can create a cost structure. We also extend
the definition of proper and strong to cover arrow cost structures and show that if the arrow cost
structure is proper or strong, then its associated cost strong is also proper or strong, respectively.
Next, we show that for certain kinds of objects, we can use products to form strong arrow cost
structures. Lastly, we will show that PDom has the necessary properties, including the special
objects needed, to build non-trivial cost structures.

The first structure we define, the arrow cost structure, describes what it means to add cost
to an object but does not assume that the object with cost is strict. It also does not include the
functor E as a method for removing cost, although it does include a collection of morphisms which
remove external cost. We use the term arrow cost structure because the cost structure constructed
from the arrow cost structure uses the arrow category over C. The arrow category has sufficient
structure for us to define the cost-removing function E based on the cost information in the arrow
cost structure. For strictness, the arrow cost structure includes some ability to interact with the
lifting monad, so we can use the lifting monad (in the arrow category) to add strictness and ensure
the necessary adequacy properties.

3.6.1 Arrow categories

The general difficulty found when trying to recover the external semantics from the internal se-
mantics is the need to remove internal costs. The internal costs relating to higher-order types are
particularly difficult to remove because the first argument of the exponentiation functor is con-
travariant. Using the arrow category, we can maintain the extensional semantics so that it can be
easily recovered from the intensional semantics.

Given a category C, its arrow category , C→, has as objects morphisms in C. Given two morphisms
p : X → D and p′ : X ′ → D′ in C, a morphism from p to p′ in C→ is a pair of morphisms (h, d),
where h : X → X ′ and d : D → D′ and

p′ ◦ h = d ◦ p1

For our purposes, an object in the arrow category, p : X → D, represents the projection from
the intensional meaning of a type to its extensional meaning. A morphism in the arrow category
is thus a pair (h, d) where h is the intensional meaning and d is the extensional meaning. With
expressions as morphisms the requirement p′ ◦ h = d ◦ p is equivalent to saying that, if we take the
intensional meaning of an expression and then convert the result to the extensional version, we get
the same meaning as we would if we converted the input (environment) first and then evaluated
the expression extensionally; i.e., the extensional behavior of the intensional semantics is the same
as the extensional semantics. Extracting the extensional semantics is then merely a matter of using
only the extensional parts of the objects and morphisms. Let E be the functor from C→ to C where
for any object p : X → D in C→, Ep = D and for any morphism (h, d) : p → p′, E(h, d) = d. It is
clear then that if d represents the extensional semantics, then E converts an intensional semantics
into an extensional one.

That E is a representation follows from the structure of the arrow category itself. Any object A
in C can be turned into an object idA in C→; in our semantics these correspond to types that have
trivial internal costs, such as the boolean type. Also, given any n-ary functor F : C×. . .×C → C, we
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can derive an n-ary functor F→ : C→× . . .×C→ → C→, where F→(p1, . . . , pn) = F (p1, . . . , pn) and
F→((h1, d1), . . . , (hn, dn)) = (F (h1, . . . , hn), F (d1, . . . , dn)). Furthermore, natural transformations
convert to natural transformations and universal constructions such as 〈−,−〉 convert to universal
constructions. For example, if p1 : X1 → D1 and p2 : D1 → D2 are objects in C→, then their
product is p1 × p2 : X1 × X2 → D1 × D2 in C→, with projections (π1, π1) and (π2, π2) and with
〈(h1, d2), (h2, d2)〉 = (〈h1, h2〉, 〈d1, d2〉). The natural transformation β is converted to a natural
transformation β→ in C→, where β→p1,p2

= (βX1,X2 , βD1,D2); additionally, β→p2,p1
◦ β→p1,p2

= idp1×p2 .
Lastly, if C is a PDom-enriched category, so is C→, where morphisms are ordered pairwise. An

object p : X → D in C→ is strict if and only if X and D are both strict and ⊥p = (⊥X ,⊥D).
Unlike the covariant functions just listed, functors with contravariant arguments (like those

relating to exponentiation) are not so easily converted; to define a projection from [X1 ⇒ X2] to
[D1 ⇒ D2] we need a morphism from D1 to X1. In this case, however, there is no particular reason
why the exponentiation object has to be a morphism from [X1 ⇒ X2] to [D1 ⇒ D2]. Instead we look
at the hom-sets, which the exponentiation objects are supposed to reflect. For p1 : X1 → D1 and
p2 : X2 → D2, Hom(p1, p2) is a subset of Hom(X1, X2)×Hom(D1, D2). Therefore we would expect
the exponentiation of p1 and p2 to be related to a “subset” of [X1 ⇒ X2]× [D1 ⇒ D2]. One method
of modeling subsets in category theory uses a morphism (frequently a monomorphism); a “subset” of
[X1 ⇒ X2]× [D1 ⇒ D2] would then be a morphism ι : B → [X1 ⇒ X2]× [D1 ⇒ D2]. Furthermore,
as ι’s codomain is a product, we can also describe it as a pair of morphisms, ιX : B → [X1 ⇒ X2]
and ιD : B → [D1 ⇒ D2]. The exponentiation object then becomes an example of a common
categorical concept: a pullback .

Definition 3.6.1 Given a pair of morphisms f : B → A and g : D → A, their pullback is an
object P plus a pair of morphisms p : P → B and q : P → D such that f ◦ p = g ◦ q and given any
other object C with morphisms h : C → B and k : C → D such that f ◦h = g ◦k, there is a unique
morphism r : C → P such that the following diagram commutes:

B A

P D

C PPPPPPPPPPPq

kB
B
B
B
B
B
B
B
B
BBN

h

-
q

?

p

-
f

?

g

@
@@R

r

Theorem 3.6.1 Given a Cartesian closed category C, suppose that for any pair of morphisms

p1 : X1 → D1 and p2 : X2 → D2

the pair of morphisms

[id ⇒ p2] : [X1 ⇒ X2] → [X1 ⇒ D2] and [p1 ⇒ id] : [D1 ⇒ D2] → [X1 ⇒ D2]

always has a pullback. Then C→ is Cartesian closed.

Proof. For the morphisms p1 : X1 → X2 and p2 : D1 → D2, let the object Pp1,p2 and the
morphisms, ιXp1,p2

: Pp1,p2 → [X1 ⇒ X2] and ιDp1,p2
: Pp1,p2 → [D1 ⇒ D2], be the pullback. Then
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ιDp1,p2
is the exponentiation of p1 and p2 in C→. Furthermore, appp1,p2

= (uncurry(ιXp1,p2
), appD1,D2

)
and if (h, d) : p× p1 → p2, where p : X → D, then curry(h, d) = (r, curry(d)), where r is the unique
morphism generated by the pullback in the following diagram:

[X1 ⇒ X2] [X1 ⇒ D2]

Pp1,p2 [D1 ⇒ D2]

X PPPPPPPPPPq

curry(d) ◦ p
B
B
B
B
B
B
B
B
B
B
B
BN

curry(h)

-
ιDp1,p2

?

ιXp1,p2

-
[id ⇒ p2]

?

[p1 ⇒ id]

@@

@@R

r

It is straightforward to show that these definitions satisfy all the requirements of a Cartesian closed
category. 2

The category PDom has such pullbacks; in fact, it has all pullbacks. Therefore PDom→ is
Cartesian closed.

Because C→ has many of the same properties as C (such as Cartesian closure), we can ignore the
fact that we are operating in the arrow category when we look at specific examples. A morphism
can be treated as a simple morphism; the fact that it is “actually” a pair of morphisms is of interest
only when we want to extract the extensional semantics.

3.6.2 Cost structures in the arrow category

If we set CI to C→, then, by the meaning we gave to the objects of C→, we would expect that given
p : X → D, then Cp would have the form KX → LD (because EC is L). If we are starting with
an arrow cost structure in C, then we would expect that K would be derived from the elements of
the cost structure.

Let (A, ηA, (−)?, ψA, [[−]]A) be defined similarly to the first five elements of a cost structure,
except on C. Then A is a function on objects of C, for each object X in C, ηA

X : X → AX and
[[t]]AX : AX → AX, for any morphism f : X → AX ′ in C, (f)? : AX → AX ′. Because we assume
that A does not handle strictness itself, we need to add strictness properties in order to form K.
If we set K to LA, then both KX and p : KX → LD will be strict, as desired.

In order for the constructed cost structure to be well-defined, we need to add two elements to
the arrow cost structure. First, given that we will be creating morphisms of the form LAX → LD
(from morphisms of the form X → D), we need a collection of morphisms δ such that for any
object X, δA : AX → X. These morphisms strip away the external costs. The requirements of
δ are needed to ensure that all the morphisms we will be defining are valid; i.e., that removing
external costs can be done before or after a cost-structure related operation without affecting the
extensional value. These properties are:

• δX ◦ ηA
X = idX – adding 0 cost and then removing it has no effect

• δX′ ◦ (f)? = δX′ ◦f ◦ δX′ – removing the cost before and after the application of f : X → AX ′

is the same as simply removing the cost afterwards
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• δX1×X2 ◦ψA
X1,X2

= δX1 × δX2 – removing combined costs is the same as removing the uncom-
bined costs

• δX ◦ [[t]]AX = δX – adding a constant cost had no effect when costs are removed directly
afterwards

We also need a method for controlling the interaction between L and A. This problem typically
appears when combining monads (or monad-like structures). There are three possible natural
transformations that tend to be used (see [18]). For this paper we use rdX : ALAX → LAX. This
morphism has the effect of combining costs (similar to (id)?), but takes into account that one cost
may be ⊥.

To obtain a generic cost structure, we do not require that rd be a natural transformation. All
we require is that rdX ◦ [[t]]ALAX ◦ηA

LAX = L[[t]]AX , which formalizes the notion that rd combines costs,
and that LδX ◦ rdX = LδX ◦ δLAX , which states that we can remove costs either before or after
they are combined. The first condition, with t set to 0, is the same as one of the properties listed
in [18].

To get a proper or strong arrow cost structure we will have to add additional conditions to rd.
All of these conditions can be found in [18].

Definition 3.6.2 Let T be a monoid set and C be a Cartesian closed, PDom-enriched category
with lifts, conditionals, and pullbacks. Then an arrow cost structure of T on C is a septuple
(A, ηA, (−)?, ψA, [[−]]A, δ, rd), where

• A is a function on objects of C
• For any object X, ηA

X : X → AX

• For any morphism f : X → AX ′, (f)? : AX → AX ′

• For any objects X1, X2, ψA
X1,X2

: AX1 ×AX2 → A(X2 ×X2)

• For any object X and any cost t ∈ T , [[t]]AX : AX → AX

• For any object X, δX : AX → X

• For any object X, rdX : ALAX → LAX.

and the following properties hold:

1. For all objects X
[[0]]AX = idAX

2. For all objects X and all t1, t2 ∈ T ,

[[t2]]
A
X ◦ [[t1]]

A
X = [[t1 + t2]]

A
X

3. For all f : X → AX ′ and all t ∈ T ,

(f)? ◦ [[t]]AX ◦ ηA
X = [[t]]AX′ ◦ f

4. For all t1, t2 ∈ T and pairs of objects X1 and X2,

ψA
X1,X2

◦ ([[t1]]
A
X1
× [[t2]]

A
X2

) ◦ (ηA
X1
× ηA

X2
) = [[t2 + t1]]

A
X1×X2

◦ ηA
X1×X2
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5. For all t1, t2 ∈ T and all y1, y2 : 1 → X, if [[t1]]
A
X ◦ ηA

X ◦ y1 ≤ [[t2]]
A
X ◦ ηA

X ◦ y2, then [[t1]]
A = [[t2]]

A

and y1 ≤ y2.

6. For all objects X of C,
rdX ◦ [[t]]ALAX ◦ ηA

LAX = L[[t]]AX

7. For all objects X of C,
δX ◦ ηA

X = idX

8. For all f : X → AX ′,
δ′X ◦ (f)? = δ′X ◦ f ◦ δX

9. For all t ∈ T and all objects X of C,
δX ◦ [[t]]AX = δX

10. For all objects X1 and X2 of C,
δX1×X2 ◦ ψA

X1,X2
= δX1 × δX2

11. For all objects X of C,
LδX ◦ rdX = LδX ◦ δLAX

The new properties (6-11) are shown as diagrams in Figure 3.8.

Definition 3.6.3 An arrow cost structure (A, ηA, (−)?, ψA, [[−]]A, δ, rd) is proper if (A, ηA, (−)?) is
a Kleisli triple (i.e., (A, ηA, (id)?) is a monad) and the following properties hold:

• For all morphisms f : X → AX ′,

rdX′ ◦ (ηA
LAX′ ◦ upAX′ ◦ f)

?
= upAX′ ◦ f?

• For all morphisms f : X → LAX ′,

rdX′ ◦ (ηA
LAX′ ◦ (rdX′ ◦ (ηA

LAX′ ◦ f)
?
)
⊥
)
?

= (rdX′ ◦ (ηA
LAX′ ◦ f)

?
)
⊥ ◦ rdX

As noted, the extra properties are taken from standard properties for combining monads, al-
though written using Kleisli notation. The properties are a bit cleaner when written using mixed
notation. For example, the first property can also be written as

rdX′ ◦AupAX′ ◦Af = upAX′ ◦ f?

The Kleisli form, however, more clearly shows the intuition behind the property. The rd trans-
formations combines a cost with a lifted cost and handles the case where the lifted cost is ⊥. The
above property says that if we know the lifted cost is not ⊥ and that the other cost is 0, then rd as
the same result as the lifted cost.

The second property, written in mixed notation, becomes

rdX′ ◦A(rdX′ ◦Af)⊥ = (rdX′ ◦Af)⊥ ◦ rdX

With this notation the property is more clearly seen to be related to a naturality requirement on
rd.
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?
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?

δ
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¢
¢
¢
¢
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A
A
A
A
A
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A
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id
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?

δ

?

δ
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f
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AX
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¢
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δ
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A
A
A
A
A
A
A
AAU

δ

-
δ × δ

Figure 3.8: New properties of arrow cost categories
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Definition 3.6.4 An arrow cost structure (A, ηA, (−)?, ψA, [[−]]A, δ, rd) is strong if it is proper, if
(A, ηA, (id)?, τA) is a strong monad, where τA = ψA ◦ (id× ηA), and if for all objects X1, X2,

rdX1×X2 ◦ALτA
X1,X2

◦AτL
AX1,X2

◦ τA
LAX1,X2

= LτA
X1,X2

◦ τL
AX1,X2

◦ (rdX1 × id)

where τL = smash ◦ (id× up).

The added properties is essentially a commutative property between rd, τA, and τL, i.e., rd and
be freely applied before or after a sequence of τA and τL.

We can now define the constructed cost structure:

Theorem 3.6.2 If (A, ηA, (−)?, [[−]]A, ψA, δ, rd) is an arrow cost structure of T on C, then there
exists a cost structure (C, η, (−)∗, [[−]], ψ, E) of T on C→ over C, where for any p : X → D and
p′ : X ′ → D′,

• Cp = Lp ◦ LδX : LAX → LD,

• ηp = (upAX ◦ ηA
X , upD),

• For any (h, d) : p → Cp′, (h, d)∗ = ((rdX′ ◦ (ηA
LAX′ ◦ h)?)

⊥
, d⊥)

• For any t ∈ T , [[t]]p = (L[[t]]AX , idLD),

• ψp,p′ = (LψA
X,X′ ◦ smashAX,AX′ , smashD,D′)

• Ep = D, and for any (h, d) : p → p′, E(h, d) = d.

Proof. There are three parts to the proof. We must show that C→ has the necessary properties for
the intensional category, we must show that all of the morphisms defined are valid, and we must
show that all of the properties are defined.

In the previous section we showed that C→ is Cartesian closed and PDom enriched. It is not
difficult to show that C→ has lifts and conditionals as well, given that arrow categories preserve
functors, universal constructions, and orderings.

Next we show that all the morphisms defined are valid. These follow from the properties given
for δ plus the monad properties of lifting. We show that (h, d)∗ is valid below; the others are
straightforward.

For (h, d)∗, because (h, d) is valid, we know that

Lp′ ◦ Lδ ◦ h = d ◦ p

Therefore, by the diagram in Figure 3.9, we know that

(Lp′ ◦ Lδ ◦ rd ◦ (ηA ◦ h)
?
)
⊥

= (d ◦ p ◦ δ)⊥

that is, that

Lp′ ◦ Lδ ◦ (rd ◦ (ηA ◦ h)
?
)
⊥

= d⊥ ◦ Lp ◦ Lδ

Therefore (h, d)∗ is valid.
Lastly, we need to show that the cost structure created satisfies all the relevant properties.
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AX ALAX ′ LAX ′

ALAX ′

X LAX ′ LAX ′ LX ′

D LD′

-(ηA ◦ h)?

?

δ

-rd

?

δ

?

Lδ

-
h

?

p

´
´

´́3ηA

-
id

Q
Q

QQs
δ

-
Lδ

?

Lp′

-
d

Figure 3.9: Proof that (h, d)∗ is valid

Soundness Properties: The soundness properties follow from the equivalent properties of the
arrow cost structure. The most complicated case is the property that

(h, d)∗ ◦ [[t]] ◦ η = (h, d)

which we prove as follows:

Given p : X → D, p′ : X ′ → D′, and (h, d) : p → p′,

(h, d)∗ ◦ [[t]]p ◦ ηp

= ((rdX′ ◦ (ηA
LAX′ ◦ h)?)

⊥
, d⊥) ◦ (L[[t]]AX , idLD) ◦ (upAX ◦ ηA

X , upD)
= ((rdX′ ◦ (ηA

LAX′ ◦ h)?)
⊥ ◦ L[[t]]AX ◦ upAX ◦ ηA

X , d⊥ ◦ upD)

By the monad properties of lifting, the right side, d⊥ ◦ upD, equals d. By the diagram in
Figure 3.10 the left side equals L[[t]]AX′ ◦ h. Thus

(h, d)∗ ◦ [[t]]p ◦ ηp = (L[[t]]AX′ ◦ h, d) = [[t]]p′ ◦ (h, d)

as required.

Separability properties:

1. E is a representation.
The method by which functors are lifted to the arrow categories ensures that E is a
representation of them. Furthermore, by definition E preserves Cartesian closure and
PDom enrichedness.

2. E(C, η, (−)∗, ψ) is the lifting monad.
This follows directly from the definition of E and (C, η, (−)∗, ψ).

3. For all costs t and objects p, E[[t]]p = idEp.
This follows directly from the definition.
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Figure 3.10: Part of proof that soundness properties hold
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Adequacy properties:

1. For all objects p, Cp is strict.
This follows directly from the definition.

2. For all (h, d) : 1 → Cp, (h, d) = ⊥ if and only if E(h, d) = ⊥.
Clearly if (h, d) = ⊥ = (⊥,⊥), then E(h, d) = d = ⊥. Now suppose that d = ⊥, but
h 6= ⊥. As h : 1 → LAX, by the definition of strictness for categories there exists an
x : 1 → AX such that h = up ◦ x. Then

Lp ◦ Lδ ◦ h = Lp ◦ Lδ ◦ up ◦ x = up ◦ p ◦ δ ◦ x

(h, d), however, is a valid morphism in C→, so Lp◦Lδ ◦h = d◦ id1., i.e., up◦p◦δ ◦x = ⊥.
By the definition, of strictness, however, up ◦ p ◦ δ ◦ x 6= ⊥. Therefore h must be ⊥, so
(h, d) = ⊥.

Ordering property:

1. For all costs t, t′ and all morphisms (h, d), (h′, d′) : 1 → p, if

[[t]] ◦ η ◦ (h, d) ≤ [[t′]] ◦ η ◦ (h′, d′)

then [[t]] = [[t′]] and (h, d) ≤ (h′, d′).
First,

[[t]] ◦ η ◦ (h, d) = (L[[t]]A ◦ up ◦ ηA ◦ h, up ◦ d) = (up ◦ [[t]]A ◦ ηA ◦ h, up ◦ d)

and

[[t′]] ◦ η ◦ (h′, d′) = (L[[t′]]A ◦ up ◦ ηA ◦ h′, up ◦ d′) = (up ◦ [[t′]]A ◦ ηA ◦ h′, up ◦ d′)

Thus we know that L[[t]]A ◦ up ◦ ηA ◦h ≤ L[[t′]]A ◦ up ◦ ηA ◦h′ and up ◦ d ≤ up ◦ d′. By the
ordering requirements of L, we thus know that [[t]]A ◦ ηA ◦ h ≤ [[t′]]A ◦ ηA ◦ h′ and d ≤ d′.
By property 5, [[t]] = [[t′]] and h ≤ h′, so (h, d) ≤ (h′, d′) as well.

2

Theorem 3.6.3 If an arrow cost structure (A, ηA, (−)?, ψA, [[−]]A, δ, rd) is proper, then the derived
cost structure (C, η, (−)∗, [[−]], ψ, E) from the previous theorem is proper.
Proof. We need to show that (C, η, (−)∗) forms a Kleisli triple. The first condition is already
shown; what is needed is to show the other two. Thus let p : X → D, p′ : X ′ → D′, p′′ : X ′′ → D′′,
(h, d) : p → Cp′, and (h′, d′) : p′ → Cp′′. Because we know that the arrow category is proper, we
will be freely using both Kleisli notation and monad notation for A in the proofs, such as noting
that (h, d)∗ = ((rd ◦Ah)⊥, d⊥)

• (ηp)
∗ = idCp

η∗ = (up ◦ ηA, up)∗

= ((rd ◦Aup ◦AηA)⊥, up⊥)
= ((up ◦ (ηA)?)

⊥
, id) first property of rd

= ((up)⊥, id)
= (id, id)
= id
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• (h′, d′)∗ ◦ (h, d)∗ = ((h′, d)∗ ◦ (h, d))∗

((h′, d)∗ ◦ (h, d))∗

= (((rd ◦Ah′)⊥, d′⊥) ◦ (h, d))
∗

= (((rd ◦Ah′)⊥ ◦ h, d′⊥ ◦ d))
∗

= ((rd ◦A(rd ◦Ah′)⊥ ◦Ah)
⊥
, (d′⊥ ◦ d)

⊥
)

= (((rd ◦Ah′)⊥ ◦ rd ◦Ah)
⊥
, (d′⊥ ◦ d)

⊥
) second property of rd

= ((rd ◦Ah′)⊥ ◦ (rd ◦Ah)⊥, d′⊥ ◦ d⊥) monad property
= ((rd ◦Ah′)⊥, d′⊥) ◦ ((rd ◦Ah)⊥, d⊥)
= (h′, d′)∗ ◦ (h, d)∗

Thus (C, η, (−)∗) is a Kleisli triple, so the cost structure is proper. 2

Theorem 3.6.4 If an arrow cost structure (A, ηA, (−)?, ψA, [[−]]A, δ, rd) is strong, then the derived
cost structure (C, η, (−)∗, [[−]], ψ, E) from the previous theorem is also strong.
Proof. We already know from Theorem 3.6.3 that (C, η, (−)∗, [[−]], ψ, E) is proper, so all we need
to do is show that the additional strength properties are met. To do this is will be useful to be able
to write τ in terms of τA and τL rather than ψ. Since

τ = ψ ◦ (id× η)
= (LψA ◦ smash, smash) ◦ ((id× up) ◦ (id× ηA), id× up)
= (LψA ◦ smash ◦ (id× up) ◦ (id× ηA), smash ◦ (id× up))
= (LψA ◦ smash ◦ (id× LηA) ◦ (id× up), smash ◦ (id× up))
= (LψA ◦ L(id× ηA) ◦ smash ◦ (id× up), smash ◦ (id× up)) naturality of smash
= (LτA ◦ τL, τL)

we know that for all morphisms p1 : X1 → D1 and p2 : X2 → D2,

τp1,p2 = (LτA
X1,X2

◦ τL
AX1,X2

, τL
D1,D2

)

Furthermore, because the cost structures are proper, we know that C is a functor and that for
any morphism (h, d) : p → p′

C(h, d) = (η ◦ (h, d))∗

= (up ◦ ηA ◦ h, up ◦ d)∗

= ((rd ◦Aup ◦AηA ◦Ah)⊥, (up ◦ d)⊥)
= ((up ◦ (ηA ◦ h)?)

⊥
, Ld) rd property for proper

arrow cost structures
= ((up ◦Ah)⊥, Ld) definition of A
= (LAh,Ld)

We can use these results to prove the three strength properties not already shown:

• Cπ1 ◦ τp1,p2 = π1

Cπ1 ◦ τ = (LAπ1, Lπ1) ◦ (LτA ◦ τL, τL)
= (LAπ1 ◦ LτA ◦ τL, Lπ1 ◦ τL)
= (Lπ1 ◦ τL, Lπ1 ◦ τL) strength property of

τA

= (π1, π1) strength property of
τL

= π1
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• Cαr
p1,p2,p3

◦ τp1×p2,p3 ◦ (τp1,p2 × idp3) = τp1,p2×p3 ◦ αr
Cp1,p2,p3

Cαr ◦ τ ◦ (τ × id)
= (LAαr, Lαr) ◦ (LτA ◦ τL, τL) ◦ ((LτA × id) ◦ (τL × id), τL × id)
= (LAαr ◦ LτA ◦ τL ◦ (LτA × id) ◦ (τL × id), Lαr ◦ τL ◦ (τL × id))
= (LAαr ◦ LτA ◦ L(τA × id) ◦ τL ◦ (τL × id), τL ◦ αr) naturality of τL

= (LτA ◦ Lαr ◦ τL ◦ (τL × id), τL ◦ αr) strength of τA

= (LτA ◦ τL ◦ αr, τL ◦ αr) strength of τL

= τ ◦ αr

• (τp′1,p′2 ◦ ((h1, d1)× (h2, d2)))
∗ ◦ τp1,p2 = τp′1,p′2 ◦ ((h, d)∗ × (h2, d2))

(τ ◦ ((h1, d1)× (h2, d2)))
∗ ◦ τ

= ((LτA ◦ τL, τL) ◦ (h1 × h2, d1 × d2))
∗ ◦ τ

= (LτA ◦ τL ◦ (h1 × h2), τL ◦ (d1 × d2))
∗ ◦ τ

= ((rd ◦A(LτA ◦ τL ◦ (h1 × h2)))
⊥
, (τL ◦ (d1 × d2))

⊥) ◦ (LτA ◦ τL, τL)
= ((rd ◦ALτA ◦AτL ◦A(h1 × h2))

⊥ ◦ LτA ◦ τL, (τL ◦ (d1 × d2))
⊥ ◦ τL)

= ((rd ◦ALτA ◦AτL ◦A(h1 × h2) ◦ τA)⊥ ◦ τL, (τL ◦ (d1 × d2))
⊥ ◦ τL)

= monad property of
(−)⊥

= ((rd ◦ALτA ◦AτL ◦ τA ◦ (Ah1 × h2))
⊥ ◦ τL, (τL ◦ (d1 × d2))

⊥ ◦ τL)
= naturality of τA

= ((LτA ◦ τL ◦ (rd× id) ◦ (Ah1 × h2))
⊥ ◦ τL, (τL ◦ (d1 × d2))

⊥ ◦ τL)
= strength of rd

= (LτA ◦ (τL ◦ (rd× id) ◦ (Ah1 × h2))
⊥ ◦ τL, (τL ◦ (d1 × d2))

⊥ ◦ τL)
= monad property of

(−)⊥

= (LτA ◦ τL ◦ ((rd ◦Ah1)
⊥ × h2), τL ◦ (d1

⊥ × d2)) strength of τL

= (LτA ◦ τL, τL) ◦ ((rd ◦Ah1)
⊥ × h2, d1

⊥ × d2)
= τ ◦ (((rd ◦Ah1)

⊥, d1
⊥)× (h2, d2))

= τ ◦ ((h1, d1)
∗ × (h2, d2))

2

3.6.3 An example of an arrow cost structure

Suppose that we have an object T that is a monoid ; in Set a monoid is a set T with an identity
0 and binary operator + such that a + 0 = 0 + a = a and a + (b + c) = (a + b) + c. For categories
with products a monoid is an object T with an identity morphism e : 1 → T and a morphism
m : T×T → T such that the following diagrams commute:

T

T T×T T-〈id, e ◦ !〉 ¾〈e ◦ !, id〉
@

@
@

@
@

@@R

id

¡
¡

¡
¡

¡
¡¡ª

id

?

m

T×T T

T× (T×T) (T×T)×T T×T-αl
-m× id

?

m

?

id×m

-
m
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Furthermore, assume that for each cost t, there is a morphism [[t]] : 1 → T such that [[0]] = e,
m ◦ 〈[[t1]], [[t2]]〉 = [[t1 + t2]] and the set {[[t]] | t ∈ T} is discretely ordered. These requirements are
trivially satisfied for any monoid by setting [[t]] to e. In PDom the set T itself, with the discrete
ordering, is a non-trivial example, where [[t]] = t and m(t1, t2) = t1 + t2.

From the above monoid we can define an arrow cost structure (T, ηT, (−)?, ψT, [[−]]T, δT, reduce).
First, let TX be X × T, i.e., an object with cost is simply an object paired with an element of
T. Therefore ηT

X : X → X × T pairs X with the 0 cost element represented by e. For a given
morphism f : X → X ′, its lift, (f)? : X ×T → X ′ ×T, applies f to part of the product without
cost and then uses m to combine the cost object from f and the original cost object. For objects
X1, X2, the morphism ψT

X1,X2
: (X1 × T) × (X2 × T) → (X1 × X2) × T uses m to combine the

two cost objects. The morphism [[t]]TX : X × T → X × T uses [[t]] to create a cost object that
represents the constant cost t and then uses m to combine it with the original cost object. The
morphism δT

X : X × T → X simply uses project to remove the cost object. Lastly the morphism
reduceX : L(X × T) × T → L(X × T) uses smash to handle ⊥ and Lm to combine the two cost
objects in non-⊥ cases. Most of the definitions also need to include various product isomorphisms
needed to regroup the objects so that e, m and [[t]] are applicable. The actual definitions are thus
as follows:

TX = X ×T

ηT
X = 〈idX , e ◦ !X〉
f? = (idX′ ×m) ◦ αr

X′,T,T ◦ (f × idT)

ψT
X1,X2

= (idX1×X2 ×m) ◦ (idX1×X2 × βT,T) ◦ φX1,T,X2,T

[[t]]TX = (idX ×m) ◦ (idX × 〈idT, [[t]] ◦ !T〉)
δT
X = π1

reduceX = L(idX ×m) ◦ Lαr
X,T,T ◦ smashX×T,T ◦ (idL(X×T) × upT)

= L(idX)? ◦ smashX×T,T ◦ (idL(X×T) × upT)

This is a valid strong arrow cost structure, as seen below:

Theorem 3.6.5 If C is a Cartesian closed, PDom-enriched category with pullbacks, and T is a
monoid object with [[−]], then the sextuple (T, ηT, (−)?, ψT, [[−]]T, δT, reduce) is a strong arrow cost
structure.
Proof. The eleven properties for an arrow cost structure hold as follows:

Prop. #1: For all objects X, [[0]]TX = idTX :

[[0]]T = (id×m) ◦ (id× 〈id, [[0]] ◦ !〉)
= (id×m) ◦ (id× 〈id, e ◦ !〉)
= id monoid property

Prop. #2: For all objects X and all t1, t2 ∈ T , [[t2]]
T
X ◦ [[t1]]

T
X = [[t1 + t2]]

T
X :

[[t2]]
T
X ◦ [[t1]]

T
X expands out to

(id×m) ◦ (id× 〈id, [[t2]] ◦ !〉) ◦ (id×m) ◦ (id× 〈id, [[t1]] ◦ !〉)
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X ×T X × (T× 1)

X × (T× 1) X × (T× (T×T)) X × (T×T)

X × (T×T) X × ((T×T)×T)

X ×T X × (T×T) X ×T

-id× 〈id, !〉

?

id× 〈id, !〉

HHHHHHHHHHHHHHHj

id× (id× [[t1 + t2]])

?

id× (id× 〈[[t1]], [[t2]]〉)

-
id× (id× 〈[[t1]], [[t2]]〉)

?

id× (id× [[t1]])

-
id× (id×m)

?

id× αl

?

id×m-
id× 〈id, [[t2]] ◦ !〉

?

id×m

?

id× (m× id)

-
id× 〈id, [[t2]] ◦ !〉

-
id×m

Figure 3.11: Proof of property #2

and [[t1 + t2]]
T
X expands out to

(id×m) ◦ (id× 〈id, [[t1 + t2]] ◦ !〉)
The diagram in Figure 3.11 shows that these two expressions are equal.

Prop. #3: For all f : X → TX ′ and all t ∈ T , f? ◦ [[t]]TX ◦ ηT
X = [[t]]TX′ ◦ f :

f? ◦ [[t]]TX ◦ ηT
X expands to

(id×m) ◦ αr ◦ (f × id) ◦ (id×m) ◦ (id× 〈id, [[t]]〉 ◦ !) ◦ 〈id, e ◦ !〉
and [[t]]TX′ ◦ f expands to

(id×m) ◦ (id× 〈id, [[t]] ◦ !〉) ◦ f

The diagram in Figure 3.12 shows that the two are equal.

Prop. #4: For all objects X1 and X2 and all t1, t2 ∈ T ,

ψT
X1,X2

◦ ([[t1]]
T
X1
× [[t2]]

T
X2

) ◦ (ηT
X1
× ηT

X2
) = [[t2 + t1]]

T
X1×X2

◦ ηT
X1×X2

First note that for any t ∈ T ,

m ◦ 〈id, [[t]] ◦ !〉 ◦ e = m ◦ 〈e, [[t]] ◦ !1〉
= m ◦ 〈[[0]], [[t]]〉
= [[0 + t]]
= [[t]]
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X X ×T X × (T×T) X ×T

X ′ ×T (X ′ ×T)×T (X ′ ×T)× (T×T) (X ′ ×T)×T

X ′ ×T X ′ × (T×T) X ′ × (T× (T×T)) X ′ × (T×T)

X ′ ×T X ′ × ((T×T)×T) X ′ ×T

X ′ × (T×T)

-〈id, e ◦ !〉

?

f

-

id×
〈id, [[t]] ◦ !〉

?

f × id

-id×m

?

f × id

?

f × id

-〈id, e ◦ !〉

?

id

-

id×
〈id, [[t]] ◦ !〉

?

αr

-id×m

?

αr

?

αr

-

id×
〈id, e ◦ !〉

HHHHHHHHHHHj

id

-

id× (id×
〈id, [[t]] ◦ !〉)

?

id×m

-id× (id×m)

?

id× αl

?

id×m

HHHHHHHHHHHj

id× 〈id, [[t]] ◦ !〉
?

id× (m× id)

©©©©©©©©©©©*

id×m

Figure 3.12: Proof of property #3
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X1 ×X2 (X1 ×X2)× 1 (X1 ×X2)× 1

(X1 ×T)× (X2 ×T) (X1 ×X2)× (T×T) (X1 ×X2)× (T×T) (X1 ×X2)×T

-〈id, !〉

?

〈id, [[t1]] ◦ !〉
×〈id, [[t2]] ◦ !〉

-id

?

id× 〈[[t1]], [[t2]]〉

@
@

@
@

@
@

@
@

@
@@R

id× 〈[[t2]], [[t1]]〉

?

〈id, [[t2 + t1]]〉

-
φ

-
id× β

-
id×m

Figure 3.13: Proof of property #4

which means that

(id×m) ◦ (id× 〈id, [[t]] ◦ !〉) ◦ 〈id, e ◦ !〉 = 〈id, [[t]] ◦ !〉

Next note that

ψT ◦ ([[t1]]
T × [[t2]]

T) ◦ (ηT × ηT)
= (id×m) ◦ (id× β) ◦ φ ◦ ((id×m)× (id×m))

◦ ((id× 〈id, [[t1]] ◦ !〉)× (id× 〈id, [[t2]] ◦ !〉))
◦ (〈id, e ◦ !〉 × 〈id, e ◦ !〉)

= (id×m) ◦ (id× β) ◦ φ ◦ (〈id, [[t1]] ◦ !〉 × 〈id, [[t2]] ◦ !〉)

and

[[t2 + t1]]
T ◦ ηT = [[t2 + t1]]

T ◦ 〈id, e ◦ !〉
= (id×m) ◦ (id× 〈id, [[t2 + t1]] ◦ !〉) ◦ (id× e) ◦ 〈id, !〉
= 〈id, [[t2 + t1]]〉

That the two are equal is shown in Figure 3.13.

Prop. #5: For all costs t1, t2, and morphisms g1, g2 : 1 → X, if [[t1]]
T
X ◦ ηT

X ◦ g1 ≤ [[t2]]
T
X ◦ ηT

X ◦ g2,
then [[t1]]

T = [[t2]]
T and g1 ≤ g2.

First,
[[t1]]

T ◦ ηT ◦ g1

= (id×m) ◦ (id× 〈id, [[t1]] ◦ !〉) ◦ 〈id, e ◦ !〉 ◦ g1

= 〈g1, m ◦ 〈e, [[t1]]〉 ◦ !1〉
= 〈g1, [[t1]]〉

Similarly, [[t2]]
T ◦ ηT ◦ g2 = 〈g2, [[t1]]〉. Therefore we know immediately that [[t1]] ≤ [[t2]] and

g1 ≤ g2. Because we assumed that the set {[[t]] | t ∈ T} is discretely ordered, [[t1]] = [[t2]].
Therefore [[t1]]

T = [[t2]]
T as well.

Prop. #6: For all objects X, reduceX ◦ [[t]]TLTX ◦ ηT
LTX = L[[t]]TX .
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LA A LA 1 LA

LA×B A×B 1×B LA×B

1

LA× LB L(A×B) LA× LB

?

〈id, f ◦ !〉

¾ up -up

?

〈id, f ◦ !〉

¾ ⊥ -⊥
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢¢®

⊥ ?

〈id, f ◦ !〉

?

〈id, f ◦ !〉

@
@

@
@

@
@

@@R

id× up

¾up× id

?

up× up

@
@

@
@

@
@

@@R

up

¡
¡

¡¡ª
!

-⊥× id

?

⊥× up

¡
¡

¡
¡

¡
¡

¡¡ª

id× up
¡

¡
¡ª

⊥
-

smash
¾
smash

?

L〈id, f ◦ !〉

Figure 3.14: Diagram for strictness property proof.

We prove this property in three stages. First, we need to show that for any f : 1 → B,

smashA,B ◦ (idA × upB) ◦ 〈idLA, f ◦ !LA〉 = L〈idA, f ◦ !A〉

This equation is proven separately because it requires that we check by cases (up versus ⊥).
We do this with the diagram in Figure 3.14, remembering that Ly = (up ◦ y)⊥.

Let g = m ◦ 〈idT, [[t]] ◦ !T〉. Because 〈id, g ◦ e ◦ !〉, we know that

id? ◦ 〈id, g ◦ e ◦ !〉 = id? ◦ [[t]]T ◦ ηT = [[t]]T

Lastly reduceX ◦ [[t]]TX ◦ ηT
X expands to

Lid? ◦ smash ◦ (id× up) ◦ 〈id, g ◦ e ◦ !〉

and the diagram in Figure 3.15 shows that it equals L[[t]]T.

Prop. #7: For all objects X, δT
X ◦ ηT

X = idX .

δT ◦ ηT = π1 ◦ 〈id, e ◦ !〉 = id

Prop. #8: For all f : X → AX ′, δT
X′ ◦ f? = δT

X′ ◦ f ◦ δT
X .

π1 ◦ αr = π1 ◦ π1, so

δT ◦ f? = π1 ◦ (id×m) ◦ αr ◦ (f × id)
= π1 ◦ π1 ◦ (f × id)
= π1 ◦ f ◦ π1

= δT ◦ f ◦ δT
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L(X ×T) L(X ×T)×T L(X ×T)× LT

L(X ×T) L((X ×T)×T)

L(X ×T)

-〈id, g ◦ e ◦ !〉

?

id

-id× up

?

smash

-L〈id, g ◦ e ◦ !〉
PPPPPPPPPPPPPPPPPPPq

L[[t]]T

?

Lid?

Figure 3.15: Proof of property #6

Prop. #9: For all t ∈ T and all objects X, δT
X ◦ [[t]]TX = δT

X .

δT ◦ [[t]]T = π1 ◦ (id×m) ◦ (id× 〈id, [[t]] ◦ !〉) = π1 = δT

Prop. #10: For all objects X1 and X2 of C, δT
X1×X2

◦ ψT
X1,X2

= δT
X1
× δT

X2
.

π1 ◦ φ = π1 × π1, therefore

δT ◦ ψT = π1 ◦ (id×m) ◦ (id× β) ◦ φ
= π1 × π1

= δT × δT

Prop. #11: For all objects X of C, LδT
X ◦ reduceX = LδT

X ◦ δT
LTX .

From the properties described in Chapter 2 for smashed products (and depicted in Fig-
ure 2.13), we know that

Lπ1 ◦ smash ◦ (id× up) = π1

Therefore
LδT ◦ reduce = LδT ◦ L(id)? ◦ smash ◦ (id× up)

= LδT ◦ LδT ◦ smash ◦ (id× up)
= Lπ1 ◦ Lπ1 ◦ smash ◦ (id× up)
= Lπ1 ◦ π1

= LδT ◦ δT

To see that this arrow cost structure is strong, from [26] we know that (T, ηT, (−)?, τT) forms
a strong monad, therefore we only need to show that reduce has the required properties.

First, we can simplify Tf and τT. If f : X → Y ,

Tf = (ηT ◦ f)?

= (id×m) ◦ αr ◦ (〈id, e ◦ !〉 × id) ◦ (f × id)
= (id×m) ◦ (id× 〈e ◦ !, id〉) ◦ (f × id) product isomorphism
= f × id monoid property
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Also,
τT = ψT ◦ (id× ηT)

= (id×m) ◦ (id× β) ◦ φ ◦ (id× 〈id, e ◦ !〉)
= (id×m) ◦ (id× β) ◦ (id× 〈id, e ◦ !〉) ◦ σ product isomorphism
= (id×m) ◦ (id× 〈e ◦ !, id〉) ◦ σ product isomorphism
= σ monoid property

where σ = αl◦(id×β)◦αr is the product isomorphism such that σA,B,C : (A×B)×C → (A×C)×B.
Lastly, because τL = smash ◦ (id× up), we can sometimes use the following expansion of reduce:

reduceX = L(idX ×m) ◦ Lαr
X,T,T ◦ τL

X×T,TC

We can now show that the extra properties of reduce (taken from both the definitions of a
proper and strong arrow cost structure) hold. Because we know that we have a strong monad we
will freely used mixed notation.

• For all morphisms f : X → TX ′, reduceX′ ◦TupTX′ ◦Tf = upTX′ ◦ (f)?

reduce ◦Tup ◦Tf
= L(id×m) ◦ Lαr ◦ smash ◦ (id× up) ◦ (up× id) ◦ (f × id)
= L(id×m) ◦ Lαr ◦ smash ◦ (up× up) ◦ (f × id)
= L(id×m) ◦ Lαr ◦ up ◦ (f × id) property of smash
= up ◦ (id×m) ◦ αr ◦ (f × id) naturality of up
= up ◦ (f)?

• For all morphisms f : X → LTY , reduceX′◦T(reduceX′ ◦Tf)⊥ = (reduceX′ ◦Tf)⊥◦reduceX ,
First, note that

reduce ◦T(reduce ◦Tf)⊥

= L(id×m) ◦ Lαr ◦ τL ◦ ((L(id×m) ◦ Lαr ◦ τL ◦Tf)⊥ × id)
= L(id×m) ◦ Lαr ◦ τL ◦ (L(id×m)× id) ◦ (Lαr × id) ◦ ((τL ◦Tf)⊥ × id)

monad prop. of (−)⊥

= L(id×m) ◦ Lαr ◦ L((id×m)× id) ◦ L(αr × id) ◦ τL ◦ ((τL ◦Tf)⊥ × id)
naturality of τL

= L(id×m) ◦ Lαr ◦ L((id×m)× id) ◦ L(αr × id)
◦ (τL ◦ (τL × id) ◦ ((f × id)× id))⊥ ◦ τL

strength prop. of τL

= (L(id×m) ◦ Lαr ◦ L((id×m)× id) ◦ L(αr × id)
◦ τL ◦ (τL × id) ◦ ((f × id)× id))⊥ ◦ τL

monad prop. of (−)⊥

In figure 3.16, we see that

L(id×m) ◦ Lαr ◦ L((id×m)× id) ◦ L(αr × id) ◦ τL ◦ (τL × id) ◦ ((f × id)× id)
= L(id×m) ◦ Lαr ◦ τL ◦ (f × id) ◦ (id×m) ◦ αr
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(X ×T)×T X × (T×T) X ×T

(L(X ×T)×T)×T L(X ×T)× (T×T) L(X ×T)×T

L((X ×T)×T)×T

L(((X ×T)×T)×T) L((X ×T)× (T×T)) L((X ×T)×T)

L((X × (T×T))×T) L(X × ((T×T)×T)) L(X × (T× (T×T)))

L(X × (T×T))

L((X ×T)×T) L(X × (T×T)) L(X ×T)

-αr

?

(f × id)× id

-id×m

?

f × id

?

f × id

-αr

?
τL × id

-id×m

?

τL

?

τL

?
τL

-Lαr

?

L(αr × id)

-L(id×m)

HHHHHHHHHHHHHHHj

Lαr

J
J

J
J

J
J

J
J

J
J

J
Ĵ

Lαr

-Lαr

?

L((id×m)× id)

-L(id× αl)

?

L(id× (m× id))

HHHHHHj
L(id× (id×m))

©©©©©©¼
L(id×m)

-
Lαr

-
L(id×m)

Figure 3.16: Part of the proof that the cost structure is strong

Aside from naturality and product isomorphisms, the diagram uses two strength properties
of τL and one of the associative monoid properties. From this we then know that

reduce ◦T(reduce ◦Tf)⊥

= (L(id×m) ◦ Lαr ◦ τL ◦ (f × id) ◦ (id×m) ◦ αr)⊥ ◦ τL

= (reduce ◦ (f × id) ◦ (id×m) ◦ αr)⊥ ◦ τL

= (reduce ◦ (f × id))⊥ ◦ L(id×m) ◦ Lαr ◦ τL

= (reduce ◦Tf)⊥ ◦ reduce

• reduceX1×X2 ◦TLτT
X1,X2

◦TτL
TX1,X2

◦ τT
LTX1,X2

= LτT
X1,X2

◦ τL
TX1,X2

◦ (reduceX1 × idX2)
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reduce ◦TLτT ◦TτL ◦ τT

= L(id×m) ◦ Lαr ◦ τL ◦ (Lσ × id) ◦ (τL × id) ◦ σ
= L(id×m) ◦ Lαr ◦ L(σ × id) ◦ τL ◦ (τL × id) ◦ σ naturality of τL

= L(id×m) ◦ Lφ ◦ Lαr ◦ τL ◦ (τL × id) ◦ σ product isomorphism
= L(id×m) ◦ Lφ ◦ τL ◦ αr ◦ σ strength prop. of τL

= L(id×m) ◦ Lφ ◦ τL ◦ (id× β) ◦ αr product isomorphism
= L(id×m) ◦ Lφ ◦ L(id× β) ◦ τL ◦ αr naturality of τL

= L(id×m) ◦ Lφ ◦ L(id× β) ◦ Lαr ◦ τL ◦ (τL × id) strength prop. of τL

= L(id×m) ◦ Lσ ◦ L(αr × id) ◦ τL ◦ (τL × id) product isomorphism
= L(id×m) ◦ Lσ ◦ τL ◦ (Lαr × id) ◦ (τL × id) naturality of τL

= Lσ ◦ L((id×m)× id) ◦ τL ◦ (Lαr × id) ◦ (τL × id) naturality of αr

= Lσ ◦ τL ◦ (L(id×m)× id) ◦ (Lαr × id) ◦ (τL × id) naturality of τL

= LτT ◦ τL ◦ (reduce× id)

Thus (T, ηT, (−)?, ψT, [[−]]T, δT, reduce) is strong. 2

3.6.4 Arrow cost structures and PDom

We have already shown that PDom has all the properties needed to be a base category for an arrow
cost structure. Furthermore, the set T , discretely ordered, is a monoid object with a non-trivial
[[−]] function. Therefore we can form a non-trivial arrow cost structure in PDom. In PDom the
relevant functions and morphisms become the following:

TX = X ×T

ηT
X(x) = 〈x, 0〉

(f)?(x, t) = 〈x′, t′ + t〉, where f(x) = 〈x′, t′〉
ψT

X1,X2
(〈x1, t1〉, 〈x2, t2〉) = 〈〈x1, x2〉, t2 + t1〉

[[t]]TX(x, t′) = (x, t′ + t)
δT
X(x, t) = x

reduceX(⊥, t) = ⊥
reduceX(up(x, t′), t) = up(x, t′ + t)

In PDom→, the morphisms become pairs of functions. To show each function we let int and
ext be functions such that for any morphism (h, d) in PDom→, int(h, d) = h and ext(h, d) = d.
Thus

Cρ(⊥) = ⊥
Cρ(up(x, t)) = up(ρ(x))

int(ηρ)(x) = up〈x, 0〉
ext(ηρ)(y) = up(y)
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int((h, d)∗)(⊥) = ⊥

int((h, d)∗)(up(x, t)) =

{
⊥ h(x) = ⊥
up(x′, t′ + t) h(x) = up(x′, t′)

ext((h, d)∗)(⊥) = ⊥
ext((h, d)∗)(up(y)) = d(y)

int([[t]]ρ)(⊥) = ⊥
int([[t]]ρ)(up(x, t′)) = up(x, t′ + t)

ext([[t]]ρ)(y) = y

int(ψρ1,ρ2)〈⊥, z〉 = ⊥
int(ψρ1,ρ2)〈z,⊥〉 = ⊥

int(ψρ1,ρ2)〈up(x1, t1), up(x2, t2)〉 = up(〈x1, x2〉, t2 + t1)
ext(ψρ1,ρ2)〈⊥, y〉 = ⊥
ext(ψρ1,ρ2)〈y,⊥〉 = ⊥

ext(ψρ1,ρ2)〈up(y1), up(y2)〉 = up(y1, y2)

3.6.5 The intensional semantics in the arrow category

In specifying the intensional semantics using the category we gain an additional advantage: we can
automatically convert the extensional types into intensional types. For cost structures in general,
we assume that for each ground type g there exists an object AV

g such that EAV
g is Ag, and we

assume that for each constructed type δ of arity n there exists an n-ary functor FV
δ such that

EFV
δ = Fδ. For the arrow category, however, we can set AV

g to idAg : Ag → Ag and we can set FV
δ

to the standard extended functor of Fδ, i.e., for all morphisms pi : Xi → Di, 1 ≤ i ≤ n in C,

FV
δ (p1, . . . , pn) = Fδ(p1, . . . pn)

and for morphisms hi : Xi → X ′
i, di : Di → D′

i, 1 ≤ i ≤ n,

FV
δ ((h1, d1), . . . , (hn, dn)) = (Fδ(h1, . . . , h1), Fδ(d1, . . . , dn))

We still need to specify the intensional constants as they contain cost information we cannot
derive from the extensional semantics; however, the building blocks for the constants frequently
have obvious extensions in the arrow category.

3.7 The intensional semantics for FL

In chapter 2 we defined specific constants for the language FL, gave extensional meanings for
them (both operationally and denotationally), and showed that their meanings were adequate. In
this section we define their intensional semantics, both operational and denotational, and show
that they satisfy the assumptions needed for intensional soundness. Intensional adequacy and
extensional soundness then follow from the properties of the cost structure.

The intensional operational semantics for FL are listed in Figure 3.17. The costs for each
constants is chosen primarily to be simple yet still show some interesting examples. Thus for
most constants, the cost is constant. To show some other types of costs, for integer equality and
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apply(+, n,m)
t+⇒ n + m apply(×, n,m)

t∗(n,m)⇒ n ∗m

apply(−̇, n,m)
t−⇒ 0 (n ≤ m) apply(−̇, n,m)

t−⇒ n−m (n > m)

apply(=, n, n) t=⇒ true apply(=, n,m)
t 6=⇒ false (n 6= m)

apply(≤, n, m)
t≤⇒ true (n < m) apply(≤, n,m)

t≤⇒ false (n > m)

apply(fst, <v1, v2>) tfst⇒ v1 apply(snd, <v1, v2>) tsnd⇒ v2

v1(v) t⇒v v′

apply(case, inl(v), v1, v2)
t+tcase⇒ v′

v2(v) t⇒v v′

apply(case, inr(v), v1, v2)
t+tcase⇒ v′

apply(head, v1::v2)
thead⇒ v1 apply(tail, v1::v2)

ttail⇒ v2

Figure 3.17: Call-by-value intensional operational semantics for FL

multiplication, the cost is dependent on the input. For the equality test the cost differs depending
on whether or not the input is 0 (i.e., a successful test has a different cost than an unsuccessful test).
For multiplication, the cost is dependent on the input: t∗(n,m) is an (unspecified) function from
integers to the set of costs (for example, t∗(n,m) could be (log(n)+log(m))tmult). This models cases
where multiplication is not constant. Thus we can examine cases where the intensional semantics
is not a trivial extension of the extensional semantics.

For the extensional semantics, we assumed that the category in use was PDom. Similarly we
are free to limit the cost structure to any consistent with PDom. In particular, we assume that our
cost structure is derived from the arrow cost structure as shown in section 3.6.4. This enables us to
specify morphisms on costs simply by writing functions, which is particularly useful for complicated
cost functions like the one used for multiplication.

We already know how to convert the objects into PDom→. Converting many of the morphisms
is also straightforward. Let the superscript I be added to any of the type-specific morphisms (like
plus or inl) to refer to the versions in PDom→. In most cases, the intensional semantics is simply
the extensional semantics with the type-specific morphisms replaced by their intensional versions,
the lifting monad morphisms replaced by the relevant cost structure morphisms, and then cost
added. When the cost of an operation is not constant the intensional semantics may become more
complicated. In all cases, however, applying E to an intensional meanings returns its extensional
counterpart.

3.7.1 Natural numbers

As nat is a ground type, NI = idN. Furthermore, for all m ∈ N, nm
I = (nm, nm), etc. The cost

of multiplication is a function of its input, so we need a method to convert the values into costs.
Let mcost be a function such that mcost(n,m) = [[t∗(n,m)]]. As N ×N is discretely ordered, all
functions from it are continuous, therefore mcost is also a morphism from N×N to T that calculates
the cost associated with elements in N×N. To create a version of mcost in the intensional category,
let imcost : NI × NI → C(NI × NI) be (upT(N×N) ◦ 〈idN×N, mcost〉, upN×N). The intensional
part of the morphism, upT(N×N) ◦ 〈idN×N, mcost〉 takes two integers, and adds cost corresponding
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CV[[n]] = η ◦ nn
I

CV[[=]] = cond ◦ 〈id, 〈[[t=]] ◦ η, [[t 6=]] ◦ η〉〉 ◦ eqI ◦ (π2 × id)
CV[[≤]] = [[t≤]] ◦ η ◦ leqI ◦ (π2 × id)
CV[[+]] = [[t+]] ◦ η ◦ plusI ◦ (π2 × id)
CV[[−̇]] = [[t−]] ◦ η ◦minusI ◦ (π2 × id)
CV[[×]] = (η ◦ timesI)

∗ ◦ imcost ◦ (π2 × id)

Figure 3.18: Intensional meanings of the integer constants

CV[[pair]] = η ◦ (π2 × id)
CV[[fst]] = [[tfst]] ◦ η ◦ π1 ◦ π2

CV[[snd]] = [[tsnd]] ◦ η ◦ π2 ◦ π2

Figure 3.19: Intensional meanings of the product constants

(via mcost) to the input, lifting the final result. Thus imcost adds non-constant cost to an item,
and the non-constant cost corresponds to mcost. In particular,

imcost ◦ 〈nn
I , nm

I〉 = [[mcost(n, m)]] ◦ η ◦ 〈nn
I , nm

I〉

Because LδT ◦ up ◦ 〈id, mcost〉 = up, imcost is a valid morphism in PDomI .
The only other complicated case is the equality test. For this constant we take advantage of

knowing that the cost can be computed from the result of the function as well as from the input,
thus we can derive the result from the cost structure morphisms and cond.

The intensional semantics are listed in Figure 3.18. Note that

CV[[+]] ◦ 〈〉(nn
I , nm

I) = [[t+]] ◦ η ◦ nn+m
I

and
CV[[×]] ◦ 〈〉(nn

I , nm
I) = [[mcostn,m]] ◦ η ◦ nn∗mI

as expected. Furthermore, given that cond ◦ 〈id, 〈up, up〉〉 = up in PDom and that Eimcost = up,
it is clear that for all of the integer constants c, ECV[[c]] = CV

E [[c]].

3.7.2 Products

We already know, from the conditions of cost structures, that PDom→ has products and that E
preserves them. Because the cost of taking the first or second element of a pair is independent of
the elements of the pair, we can derive the meaning of the constants directly from their extensional
meaning. The intensional meanings are listed in Figure 3.19.
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CV[[inl]] = η ◦ inl ◦ π2

CV[[inr]] = η ◦ inr ◦ π2

CV[[case]] = [[tcase]] ◦ case(vleft, vright) ◦ (π2 × id) ◦ αr

vleft = app ◦ β ◦ (id× π1)
vright = app ◦ β ◦ (id× π2)

Figure 3.20: Intensional meanings of the sum constants

3.7.3 Sums

The category PDom→ has coproducts, and E preserves them. There are two possible definitions
for the intensional version of case(−,−), i.e.,

case((h1, d1), (h2, d2))
I = uncurry([curry(h1, d), curry(h2, d2)])

or

case((h1, d1), (h2, d2))
I = (case(h1, h2), case(d1, d2))

We need not, however, choose between them because, by the properties of the pullback used to
define the exponential, the two definitions are equivalent. Therefore, the intensional meanings of the
sum constants will resemble the extensional meanings except for the additional cost information,
which is constant for case (and 0 for the two constructors). For simplicity, we write case(−,−)I as
case(−,−) when there is no chance of confusion between the intensional and extensional versions.
Figure 3.20 lists the intensional semantics.

3.7.4 Lists

The list functor is raised to the arrow category in the same manner as products and coproducts
were lifted, i.e., for p : X → D, List I(p) = List (p) : List (X) → List (D). We can convert the list
morphisms similarly, i.e. nilIp = (nilX , nilD) and so forth. For hd and tl, however, we do not simply
want the lifted versions; hd : List (A) → LA, so hdI : List I(p) → Lp. For our semantics, however,
we would prefer to use a morphism from List I(p) to Cp. Therefore let ihdp : List I(p) → Cp be
(Lzero ◦ hdX , hdD), which is similar to List Ip except that it also adds 0 cost, making it more useful
for the semantics. Similarly, let itlp : List I(p) → CList I(p) be (Lzero ◦ tlX , tlD). The properties
between the list constants, listed in Figure 3.21, are therefore similar, but not identical, to the ones
found in Figure 2.18 of Chapter 2, in that they use a cost structure instead of the lifting monad.

We now derive the intensional meanings for the constants by using the special morphisms ihd
and itl, converting the lifting monad, and adding cost. The intensional semantics are listed in
Figure 3.22. Note that CV[[head]] ◦ 〈〉(nilI) = ⊥ and CV[[head]] ◦ 〈〉(consI) ◦ 〈p1, p2〉 = [[thead]] ◦ η ◦ p1

as expected.
For the rest of this chapter we will use single symbols (such as f) for morphisms in the arrow

category unless we need to access the individual morphisms within the pair. This allows clearer
formulas without the loss of any critical information.
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ihdp ◦ nilIp = ⊥Tp ihdp ◦ consIp = ηp ◦ π1

itlp ◦ nilIp = ⊥Tp itlp ◦ consIp = ηp ◦ π2

ihdp′ ◦ List I(h, d) = (η ◦ (h, d))∗ ◦ ihdp itlp′ ◦ List I(h, d) = (η ◦ List I(h, d))
∗ ◦ itlp

null?I
p ◦ nilIp = tt null?I

p ◦ consIp = ff ◦ !
null?I

p′ ◦ List I(h, d) = null?p List I(h, d) ◦ nilIp = nilIp′

List I(h, d) ◦ consIp = consIp′ ◦ ((h, d)× (η ◦ List I(h, d))
∗
)

Figure 3.21: List properties in the arrow category

CV[[nil]] = η ◦ nilI

CV[[cons]] = η ◦ consI ◦ (π2 × id)
CV[[head]] = [[thead]] ◦ ihd ◦ π2

CV[[tail]] = [[ttail]] ◦ itl ◦ π2

CV[[nil?]] = [[tnil?]] ◦ η ◦ null?I ◦ π2

Figure 3.22: Intensional meanings of the list constants

3.7.5 Soundness of the intensional semantics

For soundness, all of the constructors and constants of 0 arity factor through η therefore are sound.
Therefore, by Lemma 3.4.8, the meaning of all values factor through η. For all of the other constants
outside of case, there are no premises the the rules of their operational semantics, therefore such
a constant c is sound if for any rule of the form

vapply(c, v1, . . . , vn−1, vn) t⇒ v

where n is the arity of c, if c ∈ Constτ1→τn→τ and for each 1 ≤ i ≤ n, vi is a closed variable of type
τi, then

CV[[c]] ◦ 〈〉(f1, . . . , fn) = [[t]] ◦ V[[v : τ ]]

where for each 1 ≤ i ≤ n, V[[vi : τi]] = η ◦ fi.
The proof that the constants are sound is mostly straightforward; we prove three of the more

difficult cases here.

Multiplication: apply(× n,m)
t∗(n,m)⇒ n ∗m:

First note that for any n ∈ N,

V[[n : nat]] = CV[[n]] ◦ !1
= η ◦ nn

I

Also, as 〈id,mcost〉 ◦ 〈nn, nm〉 = [[t∗(n,m)]]∗ ◦ zero ◦ 〈nn, nm〉,
imcost ◦ 〈nn

I , nm
I〉 = (up ◦ 〈id, mcost〉, up) ◦ (〈nn, nm〉, 〈nn, nm〉)

= (up ◦ 〈id, mcost〉 ◦ 〈nn, nm〉, up ◦ 〈nn, nm〉)
= (up ◦ [[t∗(n,m)]]∗ ◦ zero ◦ 〈nn, nm〉, up ◦ 〈nn, nm〉)
= (L[[t∗(n, m)]]∗, id) ◦ (up ◦ zero, up) ◦ 〈nn

I , nm
I〉

= [[t∗(n,m)]] ◦ η ◦ 〈nn
I , nm

I〉



3.7. THE INTENSIONAL SEMANTICS FOR FL 105

Therefore
CV[[×]] ◦ 〈〉(nn

I , nm
I)

= (η ◦ timesI)∗ ◦ imcost ◦ (π2 × id) ◦ 〈〉(nn
I , nm

I)
= (η ◦ timesI)∗ ◦ imcost ◦ 〈nn

I , nm
I〉

= (η ◦ timesI)∗ ◦ [[t∗(n,m)]] ◦ η ◦ 〈nn
I , nm

I〉
= [[t∗(n,m)]] ◦ η ◦ timesI ◦ 〈nn

I , nm
I〉

= [[t∗(n,m)]] ◦ η ◦ nm∗nI

= [[t∗(n,m)]] ◦ V[[n ∗m : nat]]

Equality test: apply(= n, n) t=⇒ true:

Again, V[[n : nat]] = η ◦ nn
I , so

CV[[=]] ◦ 〈〉(nn
I , nn

I)
= cond ◦ 〈id, 〈[[t=]] ◦ η, [[t6=]] ◦ η〉〉 ◦ eqI ◦ (π2 × id) ◦ 〈〉(nn

I , nn
I)

= cond ◦ 〈id, 〈[[t=]] ◦ η, [[t6=]] ◦ η〉〉 ◦ eqI ◦ 〈nn
I , nn

I〉
= cond ◦ 〈id, 〈[[t=]] ◦ η, [[t6=]] ◦ η〉〉 ◦ tt
= cond ◦ 〈tt, 〈[[t=]] ◦ η ◦ tt, 〈[[t 6=]] ◦ η ◦ tt〉〉〉
= [[t=]] ◦ η ◦ tt
= [[t=]] ◦ V[[true : bool]]

Left sum case:
v1(v) t⇒v v′

apply(case, inl(v), v1, v2)
t+tcase⇒ v′

:

By assumption case inl(v) of left : v1 right : v2 is well typed, therefore there exist types
τ , τ1, and τ2 such that ` v : τ1, ` v1 : τ1 → τ , and ` v2 : τ2 → τ . Furthermore, v, v1 and v2

are all values, so there exist y : 1 → T V[[τ1]], y1 : 1 → T V[[τ1 → τ ]], and y2 : 1 → T V[[τ2 → τ ]]
such that V[[v : τ1]] = η ◦ y, V[[v1 : τ1 → τ ]] = η ◦ y1, V[[v2 : τ2 → τ ]] = η ◦ y2, and

V[[inl(v) : τ1 + τ2]] = η ◦ inl ◦ π2 ◦ y = η ◦ inl ◦ y

By the definition of soundness for constants, we can assume that V[[v1(v) : τ ]] = [[t]]◦V[[v′ : τ ]],
thus

vleft ◦ 〈y, 〈y1, y2〉〉 = app ◦ 〈y1, y〉
= app∗ ◦ ψ ◦ 〈η ◦ y1, η ◦ y〉
= V[[v1(v) : τ ]]
= [[t]] ◦ V[[v′ : τ ]]

Therefore

V[[case inl(v) of left : v1 right : v2 : τ ]]
= [[tcase]] ◦ case(vleft, vright) ◦ (π2 × id) ◦ αr ◦ 〈〉(inl ◦ y, y1, y2)
= [[tcase]] ◦ case(vleft, vright) ◦ 〈inl ◦ y, 〈y1, y2〉〉
= [[tcase]] ◦ vleft ◦ 〈y, 〈y1, y2〉〉
= [[tcase]] ◦ [[t]] ◦ V[[v′ : τ ]]
= [[t + tcase]] ◦ V[[v′ : τ ]]
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3.8 Examples

In this section we examine a number of small example programs. With these programs we not only
demonstrate how the denotational semantics analyzes the particular examples, but also how we
can, through the use of abbreviations, simplify the structure of the meanings so that calculating
costs is as simple denotationally as it was operationally, plus we have a compositional framework
making it easier to build up complicated calculations from simpler ones.

There is significant mathematical structure embedded in the denotational semantics. Some of
the structure is superficial: the form of the semantic clause for an application,

V[[Γ ` e1(e2) : τ ]] = app∗ ◦ ψ ◦ 〈V[[Γ ` e1 : τ ′ → τ ]],V[[Γ ` e2 : τ ′]]〉

is complex primarily because we express it in terms of monad operations and app. In this section
we will simply write the above as

capply(V[[Γ ` e1 : → τ ]],V[[Γ ` e2 : τ ′]])

(where “c” stands for “cost”), and determine those properties that will allow us to reduce equations.
Thus while in the rest of this chapter we were primarily concerned with using familiar structures,
making it easier to prove general properties, in this section we are primarily concerned with compact
structures, making it easier to interpret the meaning of a particular example.

We also include significant structure in the form of the meanings themselves: The meaning
V[[Γ ` e : τ ]] is “actually” a pair of morphisms in an arrow category (at least for FL). We only
needed this category, however, to prove separability and adequacy. When examining particular
examples we only need the general properties of a Cartesian closed category with lifts, so we can
safely treat V[[Γ ` e : τ ]] as a single morphism and not be concerned about its internal structure.

The extra structure that ensures adequacy gives us an additional advantage: We can handle
cases where an expression fails to terminate. For example, Lemma 3.4.7 was restricted to values
because application of constants depends on assumptions about the structure of its input. Without
adequacy we do not have sufficient knowledge about the general structure of non-terminating inputs
to enable us to predict their actions. With adequacy we can be certain that the meaning of a closed
expression of type τ is either ⊥ or of the form [[t]] ◦ η ◦ y where y : 1 → T V[[τ ]] and where η ◦ y is the
meaning of some value v. With the substitution lemma we can also know that a similar property
holds for arbitrary expressions when combined with suitable environments.

3.8.1 Abbreviating applications

Let capply be the family of functions such that for f : A → CT V[[τ1 → . . . → τn → τ ]] and for
fi : A → CT V[[τi]], 1 ≤ i ≤ n, capply(f) = f and

capply(f, f1, . . . , fn) = app∗ ◦ ψ ◦ 〈capply(f, f1, . . . , fn−1), fn〉

Then if Γ ` e : τ1 → . . . → τn → τ , and Γ ` ei : τi, 1 ≤ i ≤ n,

V[[Γ ` ee1 . . . en : τ ]] = capply(V[[Γ ` e : τ0]],V[[Γ ` e1 : τ1]], . . . ,V[[Γ ` en : τn]])

where τ0 = τ1 → . . . → τn → τ . This form is particularly useful when each item is not a simple
expression. We can also now succinctly state formally the property that all functions are strict:
For all f , f1, . . . , fn

capply(f, f1, . . . fn) = ⊥
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whenever any of the fi’s (or f) are ⊥. This property can be proven easily by induction on n − i.
The reverse property, of course, is not necessarily true: capply(V[[head]],V[[nil]]) = ⊥ even though
neither component is ⊥.

What happens if none of the fi’s are ⊥? Then each fi (if their domains are all 1) can be safely
assumed to have the form [[ti]] ◦ η ◦ yi for some yi : 1 → T V[[τi]]. If we assume that all the fi’s and
f are derived from expressions, then we can also assume that capply(f, f1, . . . , fi) is either ⊥ or
of the form [[t]] ◦ η ◦ y for 1 ≤ i ≤ n and for some appropriate y.

If we make these assumptions, and if we further assume that the monoid of costs is commutative,
then we can show, using the structure of the definitions of capply, that

capply(f, f1, . . . , fn) = [[t1 + . . . + tn]] ◦ capply(f, η ◦ y1, . . . , η ◦ yn)

For this to hold it is critical that costs must be commutative: If individual capply(f, f1, . . . , fi)
have non-zero costs (which is true for abstractions) then those costs would be distributed between
the ti’s. Because we are primarily interested in the total cost and not their order of accumulation, we
will normally be interested in a commutative notion of cost, so this requirement does not adversely
affect our understanding of individual programs.

The property just listed indicates that the costs of the inputs to an argument affect the cost of
the output in a highly regular manner and thus can be ignored when analyzing particular programs.
Therefore let apply be a similar family of functions such that apply(f) = f and

apply(f, g1, . . . , gn) = app∗ ◦ ψ ◦ 〈apply(f, g1, . . . , gn−1), η ◦ gn〉
These functions use values for the arguments rather than computations. It is clear from the defi-
nition that apply(f, g1, . . . , gn) = capply(f, η ◦ g1, . . . , η ◦ gn).

There are some additional properties that remove the capply or apply constructs altogether
in certain cases. From Lemma 3.4.7 it is clear that

apply(V[[Γ ` c : τ ]], g1, . . . , gn) = CV[[c]] ◦ 〈〉(g1, . . . , gn)

when n is the arity of c. We can derive a similar result for expressions consisting of abstractions:

Theorem 3.8.1 Suppose that f = [[t]] ◦ V[[Γ ` lam x1.. . . lam xn.e : τ0]] ◦ 〈〉(f1, . . . , fk), where τ0

equals τ1 → . . . → τn → τ (i.e., each xi has type τi), and 〈〉(f1, . . . , fn) : X → T V[[Γ]]. Furthermore
suppose that for 1 ≤ i ≤ n, gi : X → T V[[τi]]. Then

apply(f, g1, . . . , gi)
= [[itapp + t]] ◦ V[[Γ, x1 : τ1, . . . , xi : τi ` lam xi+1.. . . lam xn.e : τi+1 → . . . → τn → τ ]]

◦ 〈〉(f1, . . . , fk, η ◦ g1, . . . , η ◦ gi)

We included the case where f was the meaning of an expression that requires a non-trivial
amount of calculation before becoming an abstraction because we also want to handle expressions
such as

rec z.lam x1.. . . lam xn.e

If f = V[[Γ ` rec z.e : τ ]], then

f = fixp([[trec]] ◦ V[[Γ, z : τ ` e : τ ]])
= [[trec]] ◦ V[[Γ, z : τ ` e : τ ]] ◦ 〈id, fixp([[trec]] ◦ V[[Γ, z : τ ` e : τ ]])〉
= [[trec]] ◦ V[[Γ, z : τ ` e : τ ]] ◦ 〈〉(f)

Therefore, for expressions headed by recursion, we obtain the following:
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Corollary 3.8.2 If f = V[[Γ ` rec z.lam x1.. . . lam xn.e : τ0]], where τ0 = τ1 → . . . → τn → τ ,
then for all gi : T V[[Γ]] → T V[[τi]], 1 ≤ i ≤ n,

apply(f, g1, . . . , gi)
= [[itapp + trec]] ◦ V[[Γ, z : τ, x1 : τ1, . . . xi : τi ` lam xi+1.. . . lam xn.e : τ ′]]

◦ 〈〉(f, η ◦ g1, . . . , η ◦ gi)

where τ ′ = τi+1 → . . . → τn → τ .

Lastly, if Γ ` e : τ , Γ′ is a type environment with n variables, none of which are in Γ, and
〈〉(f1, . . . , fn) : 1 → T V[[Γ′]], then, by repeated applications of the Drop Lemma,

V[[Γ, Γ′ ` e : τ ]] ◦ 〈〉(f1, . . . , fn) = V[[Γ ` e : τ ]]

This property can be used inside capply under the same assumptions on Γ and Γ’:

capply(V[[Γ, Γ′ ` e : τ ]], g1, . . . , gk) ◦ 〈〉(f1, . . . , fn)
= capply(V[[Γ, Γ′ ` e : τ ]] ◦ 〈〉(f1, . . . , fn), g1 ◦ 〈〉(f1, . . . , fn), . . . , gk ◦ 〈〉(f1, . . . , fn))
= capply(V[[Γ ` e : τ ]], g1 ◦ 〈〉(f1, . . . , fn), . . . , gk ◦ 〈〉(f1, . . . , fn))

Therefore the behavior of programs and constants depend only on the behavior of their free
variables, as we would expect from compositionality.

3.8.2 Abbreviating conditionals

We will also find it useful to form abbreviations for conditionals. Let

cond(f, g, h) = cond∗ ◦ ψ ◦ 〈f, η ◦ 〈g, h〉〉

We may also display this in multiple lines, as

cond(f) of
True: g
False: h

Either way, f is a morphism from X to CB, for some object X, while g and h are morphisms
from X to X ′ for some object X ′. Thus cond(f, g, h) is a morphism from X to X ′.

At times we may want to state the test as a general boolean expression (such as n = 0) rather
than a morphism. Let bool be a function such that

bool(x) =

{
tt ◦ ! x is true
ff ◦ ! x if false

Then let cond({x}, g, h) = cond(η ◦ bool(x), g, h). The braces around x are to emphasize that x
is not a morphism but a boolean expression.

There are a number of simple properties associated with these functions. For example,

cond({x}, g, h) = cond∗ ◦ ψ ◦ 〈η ◦ bool(x), η ◦ 〈g, h〉〉 = cond ◦ 〈bool(x), 〈g, h〉〉

Thus if x is true, then cond({x}, g, h) = g; if x is false, then cond({x}, g, h) = h. Additionally we
have the following properties:
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• For any morphisms f : X → CB, g, h : X → X ′, and k : Y → X,

cond(f, g, h) ◦ k = cond(f ◦ k, g ◦ k, h ◦ k)

• For any morphisms x : X → B, g, h : X → CX ′, and any cost t,

cond([[t]] ◦ η ◦ x, g, h) = [[t]] ◦ cond(η ◦ x, g, h)

• For any boolean condition x, any morphisms g, h : X → CX ′, and any cost t,

cond([[t]] ◦ η ◦ bool(x), g, h) = [[t]] ◦ cond({x}, g, h)

• If Γ ` if e1 then e2 else e3 : τ for type τ , type environment Γ, and expressions e1, e2, e3,
then

V[[Γ ` if e1 then e2 else e3 : τ ]]
= cond(V[[Γ ` e1 : bool]], [[ttrue]] ◦ V[[Γ ` e2 : τ ]], [[tfalse]] ◦ V[[Γ ` e3 : τ ]])

3.8.3 Properties of free variables

Because both capply and cond distribute with composition on the right, we can apply a few
properties to variables as well. From the semantic meaning of a variable, we know that

V[[x1 : τ1, . . . , xn : τn ` xi : τi]] ◦ 〈〉(f1, . . . , fn) = fi

and we can use this fact within applications or conditionals. For example

V[[x1 : τ1, . . . , xn : τn ` e(xi) : τ ]] ◦ 〈〉(f1, . . . , fn)
= capply(V[[x1 : τ1, . . . , xn : τn ` e : τi → τ ]], ◦〈〉(f1, . . . , fn), fi)

or simply capply(V[[e : τi → τ ]], fi) when e is closed. Similarly, for any constant c of type τ → bool,

V[[x1 : τ1, . . . , xn : τn ` if c(xi) then e1 else e2 : τ ]] ◦ 〈〉(f1, . . . , fn)
= cond(capply(V[[c]], fi)) of

True: V[[x1 : τ1, . . . , xn : τn ` e1 : τ ]] ◦ 〈〉(f1, . . . , fn)
False: V[[x1 : τ1, . . . , xn : τn ` e2 : τ ]] ◦ 〈〉(f1, . . . , fn)

3.8.4 The length program

We first examine the program

length = rec len.lam l.if nil?(l) then 0 else 1 + len(tail(l))

which is the program examined operationally in Section 3.2.1. The analysis of this program is
clearer if we include some abbreviations for lists. Let [ ] = nilI and let

[a1, . . . , an] = consI ◦ 〈a1, [a2, . . . , an]〉
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CV[[head]] ◦ 〈〉([a1, . . . , an]) = [[thead]] ◦ cond({n = 0},⊥, η ◦ a1)
CV[[tail]] ◦ 〈〉([a1, . . . , an]) = [[ttail]] ◦ cond({n = 0},⊥, η ◦ [a2, . . . , an])
CV[[nil?]] ◦ 〈〉([a1, . . . , an]) = [[tnil?]] ◦ η ◦ bool(n = 0)

Figure 3.23: FL list properties

where, for some type τ , a1, . . . , an are elements of T V[[τ ]]; that is, they are morphisms from 1 to
T V[[τ ]]. If v is a closed value of type list(τ), then there exists an n and a set of morphisms a1, . . . ,
an : 1 → T V[[τ ]] such that V[[v : list(τ)]] = [a1, . . . , an]. Therefore this notation covers all the lists
of interest.

We now can derive properties with lists, as denoted above, and the FL constants themselves,
based on the properties of the primitive list morphisms listed in Figure 3.21. These new properties
are listed in Figure 3.23. They do not include any properties related to List I because those have
no direct equivalent in FL. The property concerning nil? is designed particularly for use with the
conditional: from it we know that, for any morphisms f1, f2 : 1 → CT V[[τ ]],

cond(CV[[nil?]] ◦ 〈〉([a1, . . . , an]), f1, f2) = [[tnil?]] ◦ cond({n = 0}, f1, f2)

We now have sufficient tools to calculate costs for length without exposing internal complex
calculations. Suppose that [a1, . . . , an] : 1 → T V[[list(τ)]], where n may be 0. Let τ0 be the
type list(τ) → nat. We determine the semantics by first calculating some of the inner parts of
the expression. Thus, we begin by calculating the meaning of len(tail(l)), with an environment
r = 〈〉(z, η ◦ y):

V[[len : τ0, l : list(τ) ` len(tail(l)) : nat]] ◦ r
= capply(z,V[[len : τ0, l : list(τ) ` tail(l) : list(τ)]] ◦ r)
= capply(z, capply(V[[tail]], η ◦ y))
= capply(z, CV[[tail]] ◦ 〈〉(y))

We next calculate the meaning of 1 + len(tail(l)):

V[[len : τ0, l : list(τ) ` 1 + len(tail(l)) : nat]] ◦ r
= capply(V[[+]],V[[1]], capply(z, CV[[tail]] ◦ 〈〉(y)))

Lastly,
V[[len : τ0, l : list(τ) ` nil?(l) : bool]] ◦ r

= CV[[nil?]] ◦ 〈〉(y)

which becomes [[tnil?]] ◦ η ◦ bool(n = 0) when y = η ◦ [a1, . . . , an].
Combining the calculations,

apply(V[[length : τ0]], [a1, . . . , an])
= [[tapp + trec]] ◦V[[len : τ0, l : list(τ) ` if nil?(l) then 0 else 1 + len(tail(l)) : nat]]

◦〈〉(V[[length : τ0]], η ◦ [a1, . . . , an])
= [[tnil? + tapp + trec]] ◦ cond({n = 0}) of

True: [[ttrue]] ◦ V[[0]]
False: [[tfalse]] ◦ capply(V[[+]],V[[1]],

capply(V[[length : τ0]], CV[[tail]] ◦ 〈〉([a1, . . . , an])))
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We can now examine particular cases. If y = [ ], then n = 0, so

apply(V[[length : τ0]], [ ])
= [[tnil? + tapp + trec]] ◦ [[ttrue]] ◦ η ◦ n0

I

= [[ttrue + tnil? + tapp + trec]] ◦ η ◦ n0
I

If y = [a1, . . . , an], where n > 0, then

apply(V[[length : τ0]], [a1, . . . , an])
= [[tnil? + tapp + trec]] ◦ [[tfalse]]

◦ capply(V[[+]],V[[1]], capply(V[[length : τ0]], [[ttail]] ◦ η ◦ [a2, . . . , an]))
= [[tfalse + tnil? + tapp + trec]]

◦ capply(V[[+]],V[[1]], [[ttail]] ◦ apply(V[[length : τ0]], [a2, . . . , an]))

If we further assume that apply(V[[length : τ0]], [a2, . . . , an]) = [[t]] ◦ η ◦ y′ for some y′ (i.e., if
we assume that the evaluation terminates), then

apply(V[[length : τ0]], [a1, . . . , an])
= [[tfalse + tnil? + tapp + trec]] ◦ capply(V[[+]], η ◦ n1

I , [[ttail]] ◦ [[t]] ◦ η ◦ y′)
= [[t + ttail + tfalse + tnil? + tapp + trec]] ◦ apply(V[[+]], n1

I , y′)
= [[t + ttail + tfalse + tnil? + tapp + trec]] ◦ [[t+]] ◦ η ◦ plusI ◦ 〈n1

I , y′〉
= [[t + t+ + ttail + tfalse + tnil? + tapp + trec]] ◦ η ◦ plusI ◦ 〈n1

I , y′〉

As it is straightforward, by induction on the length of the list, to show that length always
terminates, we can write the cost function for length as follows:

T (0) = tnil? + ttrue + tapp + trec
T (n) = T (n− 1) + t+ + ttail + tfalse + tnil? + tapp + trec

Using standard methods for solving recurrence equations, we can show that T is the following
function:

T (n) = n(t+ + ttail + tfalse) + (n + 1)(tnil? + tapp + trec) + ttrue

which is the same function found operationally.

3.8.5 The Fibonacci function

The well-known Fibonacci series, 1, 1, 2, 3, 5, . . . , is an interesting example for complexity analysis
because the simplest algorithm for it is extremely inefficient. In this section we will analyze a
program using the inefficient algorithm, and a more efficient one.

We first examine an inefficient program:

fib1 = rec f.lam n.if n ≤ 2 then 1 else f(n−̇1) + f(n−̇2)

To find its meaning, let us first look at n−̇m for some integer m. Because all values of type
nat have form k for some k, we can safely assume that if x : 1 → T V[[nat]], then x = nk

I for some
integer k. Therefore we can assume that the element in the environment for n in the expression
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n−̇m is of the form η ◦ nn
I . Let Γ = f : nat → nat, n : nat, and let zf : 1 → CT V[[nat → nat]].

Then
V[[Γ ` n−̇m : nat]] ◦ 〈〉(zf , η ◦ nn

I)
= capply(V[[−̇]], η ◦ nn

I , η ◦ nm
I)

= [[t−]] ◦ η ◦minusI ◦ 〈nn
I , nm

I〉
=

{
[[t−]] ◦ η ◦ nn−m

I n ≥ m
[[t−]] ◦ η ◦ n0

I n < m

= [[t−]] ◦ η ◦ nn−̇m
I

Similarly,
V[[Γ ` n ≤ 2 : bool]] ◦ 〈〉(zf , η ◦ nn

I)

=

{
[[t≤]] ◦ η ◦ tt ◦ ! n ≤ 2
[[t≤]] ◦ η ◦ ff ◦ ! n > 2

= [[t≤]] ◦ η ◦ bool(n ≤ 2)

Next we find that

V[[Γ ` f(n−̇1) + f(n−̇2) : nat]] ◦ 〈〉(zf , η ◦ nn
I)

= capply(V[[+]], capply(zf , [[t−]] ◦ η ◦ nn−̇1
I), capply(zf , [[t−]] ◦ η ◦ nn−̇2

I))
= capply(V[[+]], [[t−]] ◦ apply(zf , nn−̇1

I), [[t−]] ◦ apply(zf , nn−̇2
I))

Therefore, for the entire function, if we let

fb(n) = apply(V[[fib]], nn
I)

then

fb(n) = capply(V[[fib1]], nn
I)

= [[tapp + trec]] ◦ cond([[t≤]] ◦ η ◦ bool(n ≤ 2)) of
True: [[ttrue]] ◦ η ◦ n1

I

False: [[tfalse]] ◦ capply(V[[+]], [[t−]] ◦ fb(n− 1), [[t−]] ◦ fb(n− 2))
= [[t≤ + tapp + trec]] ◦ cond({n ≤ 2}) of

True: [[ttrue]] ◦ η ◦ n1
I

False: [[tfalse]] ◦ capply(V[[+]], [[t−]] ◦ fb(n− 1), [[t−]] ◦ fb(n− 2))

If n <= 2, then
fb(n) = [[ttrue + t≤ + tapp + trec]] ◦ η ◦ n1

I

and if n > 2, then

fb(n) = [[tfalse + t≤ + tapp + trec]] ◦ capply(V[[+]], [[t−]] ◦ fb(n− 1), [[t−]] ◦ fb(n− 2))

From these equations we can show by induction on n that for all n, fb(n) is not ⊥. Therefore
there exist functions fbt and fbv such that for all n, fb(n) = [[fbt(n)]] ◦ η ◦ nfbv(n)

I . For n = 1 or
n = 2, fbt(n) = ttrue + t≤ + tapp + trec and fbv(n) = 1; for n > 2, we know that

fb(n) = [[tfalse + t≤ + tapp + trec]]
◦ capply(V[[+]], [[t−]] ◦ [[fbt(n− 1)]] ◦ η ◦ nfbv(n−1)

I , [[t−]] ◦ [[fbt(n− 2)]] ◦ η ◦ nfbv(n−2)
I)

= [[tfalse + 2t− + t≤ + tapp + trec + fbt(n− 1) + fbt(n− 2)]] ◦ CV[[+]]
◦ 〈〉(nfbv(n−1)

I , nfbv(n−2)
I)

= [[t+ + tfalse + 2t− + t≤ + tapp + trec + fbt(n− 1) + fbt(n− 2)]] ◦ nfbv(n−1)+fbv(n−2)
I (*)
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From (*) we can see that for n > 2, fbv(n) = fbv(n− 1) + fbv(n− 2), so fbv is, as expected, the
Fibonacci function. From (*) we also see that the cost of the function, fbt satisfies the following:

fbt(1) = fbt(2) = ttrue + t≤ + tapp + trec
fbt(n) = t+ + tfalse + 2t− + t≤ + tapp + trec + fbt(n− 1) + fbt(n− 2) (n > 2)

Thus fbt(n) is bounded below by tapp times the Fibonacci function. This demonstrates that the
particular program is highly inefficient. The problem is that it recalculates the lower values of fbt

multiple times by calculating fbt(n− 1) and fbt(n− 2) independently.
A more efficient program uses an internal recursive function to accumulate the result from the

onset, instead of repeatedly calculating subproblems. Let ifib and fib2 be the following programs:

ifib = rec f.lam a.lam b.lam n.if n ≤ 1 then a else ifib b (a + b) (n−̇1)
fib2 = ifib 1 1

The meaning of ifib is easily calculated: for n = 1 and any integers a and b,

apply(V[[ifib]], na
I , nb

I , n1
I) = [[3tapp + t≤ + trec + ttrue]] ◦ η ◦ na

I

while for n > 1,

apply(V[[ifib]], na
I , nb

I , nn
I)

= [[3tapp + t≤ + trec + tfalse + t− + t+]] ◦ apply(V[[ifib]], nb
I , na+b

I , nn−1
I)

Therefore if apply(V[[ifib]], na
I , nb

I , nn
I) is [[cst(a, b, n)]] ◦ η ◦ val(a, b, n), then we know that

cst(a, b, 1) = 3tapp + t≤ + trec + ttrue

cst(a, b, n) = cst(b, a + b, n− 1) + 3tapp + t≤ + trec + tfalse + t− + t+ (n > 1)
val(a, b, 1) = a
val(a, b, n) = val(b, a + b, n− 1) (n− 1)

from which it follows by an easy inductive argument that

cst(a, b, n) = n(3tapp + t≤ + trec) + (n− 1)(t− + tfalse + t+) + ttrue

val(a, b, 1) = a
val(a, b, 2) = b
val(a, b, n) = fbv(n− 2)a + fbv(n− 1)a (n > 2)
val(1, 1, n) = fbv(n)

Therefore fib2 does return the Fibonacci function, ifib and fib2 are linear in n, and cst(a, b, n)
is independent of a and b.

3.8.6 The twice program

Our next example, which includes higher-order types, is the program

twice = lam f.lam x.f(f(x))
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Let yf : 1 → T V[[τ → τ ]] represent the value assigned to f and let yx : 1 → T V[[τ ]] represent
the value assigned to x. Then

apply(V[[twice]], yf , yx) = [[2tapp]] ◦ V[[f : τ → τ, x : τ ` f(f(x)) : τ ]] ◦ 〈〉(η ◦ yf , η ◦ yx)
= [[2tapp]] ◦ capply(η ◦ yf ,apply(η ◦ yf , yx))

To simplify this further, we need to acquire further information about the behavior of yf .
Certainly, if apply(η ◦ yf , yx) is ⊥, the meaning of the entire expression is⊥. Also, if yf represents a
constant function, i.e., if for all y : 1 → T V[[τ ]], apply(η ◦ yf , y) = [[t]]◦η◦k for some k : 1 → T V[[τ ]],
then

apply(V[[twice]], yf , yx) = [[2tapp]] ◦ capply(η ◦ yf , [[t]] ◦ η ◦ k)
= [[2t + 2tapp]] ◦ η ◦ k

Thus for constant input functions the cost of applying twice is the same as applying the function
twice (regardless of the input).

For a more general solution, suppose that, for any morphism y : 1 → T V[[τ ]],

apply(η ◦ yf , y) = [[cst(y)]] ◦ η ◦ val(y)

where cst is a function from morphisms to costs representing the cost of applying yf , and val is a
function from morphisms to morphisms that returns the final value (without costs) of applying yf .

apply(V[[twice]], yf , yx) = [[2tapp + cst(yx) + cst(val(yx))]] ◦ η ◦ val(val(yx))

This version succinctly shows how twice generates costs. As expected, the cost of twice is the
cost of calculating a function f on the original input y and on the input f(y) plus two applications.

To see how this works with a specific example, let us revisit the Fibonacci function fib2 from
the previous section. With that function, we have that for any nn

I : 1 → T V[[τ ]],

cst(nn
I) = nc1 + (n− 1)c2 + ttrue

val(nn
I) = fbv(n)

Where c1 = 3tapp + t≤ + trec, c2 = t− + tfalse + t+, and fbv(n) is the Fibonacci function. From the
above we thus know that

apply(V[[twice]], yfib, nn
I) = [[2tapp + nc1 + (n− 1)c2 + ttrue + fbv(n)c1 + (fbv(n)− 1)c2 + ttrue]]

◦ η ◦ nfbv(fbv(n))
I

= [[2tapp + (n + fbv(n))c1 + (n− 1 + fbv(n− 1))c2 + 2ttrue]]
◦ η ◦ nfbv(fbv(n))

I

Thus the cost of twice(fib2) is proportional to the Fibonacci value of the argument.

3.8.7 Creating lists with tabulate

Our final example contains higher-order functions and recursion. Let

itab = rec t.lam i.lam f.lam n.if i ≤ n then (f(i))::(t (i + 1) f n) else nil

tabulate = itab(1)

The program tabulate takes a function f and an integer n and creates a list [f(1), . . . , f(n)].
We will need more information about the behavior of f to fully calculate the cost of tabulate, but
some parts of the calculation are independent of the actual function.
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First, if i > n, then

apply(itab, ni
I , zf , nn

I) = [[tfalse + t≤ + 3tapp + trec]] ◦ η ◦ nilI

Otherwise,

apply(itab, ni
I , zf , nn

I) = [[ttrue + t≤ + 3tapp + trec]] ◦ capply(V[[cons]],apply(η ◦ zf , ni
I),

[[t+]] ◦ apply(itab, ni+1
I , zf , nn

I))

By induction on n − j, we can show that if, for some i ≤ j ≤ n, apply(η ◦ zf , nj
I) = ⊥, then

apply(itab, ni
I , f, nn

I) = ⊥ as well. Therefore, for any interesting examples, we should assume
that apply(η ◦ f, nj

I) 6= ⊥ for any j, i ≤ j ≤ n. From that assumption we know that there exist
functions cst and val such that

apply(η ◦ f, nj
I) = [[cst(j)]] ◦ η ◦ val(j)

Thus, when i ≤ n,

apply(itab, ni
I , f, nn

I) = [[cst(i) + ttrue + t≤ + 3tapp + trec]] ◦ capply(V[[cons]], η ◦ val(i),
[[t+]] ◦ apply(itab, ni+1

I , f, nn
I))

If we further assume that itab terminates, then there exist functions tbt(i, n) and tbv(i, n) such
that

apply(itab, ni
I , f, nn

I) = [[tbt(i, n)]] ◦ η ◦ tbv(i, n)

Then

apply(itab, ni
I , f, nn

I)
= [[tbt(i + 1, n) + cst(i) + t+ + ttrue + t≤ + 3tapp + trec]] ◦ η ◦ consI

◦ 〈val(i), tbv(i + 1, n)〉

Thus we get the equations

tbt(i, n) = tfalse + t≤ + 3tapp + trec i > n
tbt(i, n) = tbt(i + 1, n) + cst(i) + t+ + ttrue + t≤ + 3tapp + trec i ≤ n

tbv(i, n) = nilI i > n
tbv(i, n) = consI ◦ 〈val(i), tbv(i + 1, n)〉 i ≤ n

Solving these equations leads to the general forms (for i ≤ n + 1):

tbt(i, n) = tfalse + (n− i + 2)(t≤ + 3tapp + trec) + (n− i + 1)(t+ + ttrue) +
∑n

j=i cst(j)
tbv(i, n) = [val(i), . . . , val(n)]

For tabulate, i = 1, therefore

tbt(1, n) = tfalse + (n + 1)(t≤ + 3tapp + trec) + n(t+ + ttrue) +
∑n

j=1 cst(j)
tbv(1, n) = [val(1), . . . , val(n)]



116 CHAPTER 3. CALL-BY-VALUE

which means that

apply(V[[tabulate]], f, nn
I)

= apply(V[[itab, n1
I , f, nn

I ]])
= [[tfalse + (n + 1)(t≤ + 3tapp + trec) + n(t+ + ttrue) +

∑n
j=1 cst(j)]] ◦ η ◦ [val(1), . . . , val(n)]

From this we can see that the the cost of tabulate is linear except for the costs of applying f
to the arguments of the list. In particular, if we apply tabulate to fib2 from section 3.8.5, then
η ◦ f = V[[fib2]], so cst(i) = i(3tapp + t≤ + trec) + (i− 1)(t− + tfalse + t+) + ttrue. Therefore,

n∑

j=1

cst(j) =
n(n + 1)

2
(3tapp + t≤ + trec) +

n(n− 1)
2

(t− + tfalse + t+) + nttrue

which means that

capply(V[[tabulate]],V[[fib2]], η ◦ nn
I) = [[t]] ◦ η ◦ [fib(1), . . . ,fib(n)]

where

t = 2n(ttrue) +
(n2 − n + 2)

2
tfalse +

n(n + 1)
2

t+ +
n(n− 1)

2
t− +

(n + 1)(n + 2)
2

(t≤ + 3tapp + trec)

i.e., tabulate fib2 is quadratic overall.

3.9 Relating programs

In addition to analyzing individual programs, we may want to compare two different programs or
expressions. For example, we may want to know if program A is always faster than program B,
sometime faster, or always slower. We may also want to know if a certain program transforma-
tion improves the overall speed, or, if the improvement is only occasional, under what conditions
improvement occurs.

In order to compare two programs, however, we need to compare costs. We could simply state
that t1 ≤ t2 if for some cost t, t2 = t1 + t; other orderings, however, may also be useful for
specific purposes (such as one that weighs different base costs separately such that, for example,
tapp becomes less than ttrue). Therefore let ¹ be a cost ordering if it is a preorder and if t1 ¹ t2
implies that, for all costs t, t1 + t ¹ t2 + t and t + t1 ¹ t + t2. This assumes seems very natural
and is likely to hold for any reasonable ordering. We want an ordering to be a preorder because a
non-transitive ordering is not likely to be sensible; it is also easier to state and prove properties if
we can assume that t ¹ t. In practice ¹ will be a partial order when + is commutative; it is rarely
necessary for different costs to be equivalent except when the order of the costs is significant.

If there were no internal costs then we could simply state that given morphisms z1, z2 : 1 → CA,
z1 ¹ z2, if either z1 = z2 = ⊥, or if z1 = [[t1]] ◦ η ◦ y and z2 = [[t2]] ◦ η ◦ y where t1 ¹ t2. This
definition is insufficient for any expression containing internal cost. Therefore we will define an
improvement relation ¹V

τ recursively by type for morphisms from 1 to T V[[τ ]] (and extend it to
related morphisms).

To avoid problems caused by inexpressible functions in the mathematical space (such as one
that gives different results based on internal cost), we will also impose a monotonicity requirement.
The definition of “monotone” depends on both the particular improvement relation ¹V

τ and τ ,
leading to a pair of mutually recursive definitions. We show later in this section that the meanings
of all well-typed expressions are monotone.
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Although the definition of¹V
τ has several possible uses, this section contains only some very basic

ones. Primarily, we would like ¹V
τ to be closely related to its operational equivalent. Operationally,

for ground types and closed expressions, let e1 ≤V e2 mean that e1
t1⇒v v if and only if e1

t1⇒v v
with t1 ¹ t2. Note that requires that the final value v be the same; we are only interested in
comparing extensionally equivalent expression. If ground type values are defined reasonably, in
that V[[v]] = V[[v′]] implies that v = v′, then this definition is equivalent to the definition of ¹V

τ

for ground types. For higher order types and expressions with free variables, we use contexts. A
context C[ ] is an expression with a “hole”, such as lam x.[ ] + 1. The expression C[e1] fills the
hole with the expression e1, i.e., (lam x.[ ] + 1)[e1] = lam x.e1 + 1. Filling the hole is similar to
substitution, but does not avoid trapping bound variables. Thus [x/y](lam x.y) = lam z.x, but
(lam x.[ ])[x] = lam x.x. With contexts we can say that e1 ≤V e2 if for all contexts C[ ] such that
C[e1] and C[e2] are closed expressions of ground type, C[e1] ≤V C[e2]. It is generally difficult
to prove that ≤V holds for higher order expressions, but for most cases we can prove it via the
denotational definition for we can show that V[[e1 : τ ]] ¹V

τ V[[e2 : τ ]] implies that e1 ≤V e2.
A few functions on morphisms are useful for defining monotonicity and the relation ¹V

τ . For
any morphism z : 1 → CA, if, for some cost t, z = [[t]] ◦ η ◦ y, then let val(z) = y and cost(z) = t.
Thus val and cost are partial functions that give us the external cost and intensional value, when
such exist. As we can safely assume, because of adequacy, throughout this section that a morphism
z : 1 → CA is either ⊥ or is of the form [[t]] ◦ η ◦ y, val and cost are undefined only on ⊥.

Lastly, we need to be able to examine the parts of a constructed data type. To prove adequacy
for the extensional semantics, we examined the parts of a constructed data type through the
use of projections ρij . Along with these projections was a method for comparing the overall
structure of a data type, namely composition with Fδ(!, . . . , !). Therefore assume that, given a type
τ = δ(τ1, . . . , τn), for each extensional projection ρij : Fδ(T V

E [[τ1]], . . . , T V
E [[τn]]) → LT V

E [[τi]] there
exists an intensional projection ρI

ij
: FV

δ (T V[[τ1]] → T V[[τn]]) → CT V[[τi]] such that EρI
ij

= ρij . For
a cost structure derived from an arrow cost structure, ρI

ij
= (LηA ◦ ρij , ρij ); this is a valid morphism

because ρij is a natural transformation. For the structure comparison, we can use FV
δ (!, . . . , !), the

intensional version of Fδ(!, . . . , !).
We define monotonicity and ¹V

τ by mutual induction on the structure of τ :

Definition 3.9.1 For each type τ and a cost order ¹, a morphism z : 1 → CT V[[τ ]] is monotone
relative to ¹ if either z = ⊥, or, for some cost t, z = [[t]] ◦ η ◦ y, where y is monotone relative to ¹
if one of the following holds:

• τ is a ground type

• τ = δ(τ1, . . . , τn), and for all intensional projections ρI
ij

, ρI
ij
◦ y is monotone relative to ¹.

• τ = τ1 → τ2 and for all monotone y1, y2 : 1 → T V[[τ1]], apply(η ◦ y, y1) and apply(η ◦ y, y2)
are monotone relative to ¹, and y1 ¹V

τ1 y2 implies that

apply(η ◦ y, y1) ¹V
τ2 apply(η ◦ y, y2)

When the cost order ¹ is understood, we simply say that z is monotone.

Definition 3.9.2 For any type environment Γ, a morphism 〈〉(z1, . . . , zn) : 1 → T V[[Γ]] is monotone
if each zi is monotone. A morphism g : T V[[Γ]] → T V[[τ ]] is monotone if for all monotone r, r′ : 1 →
T V[[Γ]], g ◦ r is monotone and if whenever r ¹V

Γ r′, g ◦ r ¹V
τ g ◦ r′.
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Similarly, a morphism 〈〉(y1, . . . , yn) : 1 → ×(T V[[τ1]], . . . , T V[[τn]]) is monotone if each yi is
monotone, and a morphism g : ×(T V[[τ1]], . . . , T V[[τn]]) → T V[[τ ]] is monotone if for all monotone
x, x′ : 1 → ×(T V[[τ1]], . . . , T V[[τn]]), g ◦ x is monotone and if whenever x ¹V

τ1,...,τn
x′, g ◦ x ¹V

τ g ◦ x′.

With the definition of monotonicity, we now define the improvement relation:

Definition 3.9.3 Given two morphisms y1, y2 : 1 → T V[[τ ]] that are monotone relative to ¹,
y1 ¹V

τ y2 if

• τ is a ground type and y1 = y2.

• τ = δ(τ1, . . . , τn), FV
δ (!, . . . , !) ◦ y1 = FV

δ (!, . . . , !) ◦ y2, and, for each projection ρI
ij

ρI
ij ◦ y1 ¹V

τi
ρI

ij ◦ y2

• τ = τ1 → τ2, and, for all monotone morphisms y : 1 → T V[[τ1]],

apply(η ◦ y1, y) ¹V
τ2 apply(η ◦ y2, y)

Definition 3.9.4 For any monotone morphisms z1, z2 : 1 → CT V[[τ ]], z1 ¹V
τi

z2 if val(z1) exists if
and only if val(z2) exists and, when they exist, cost(z1) ¹ cost(z2), and val(z1) ¹V

τ val(z2).
For any type environment Γ and morphisms 〈〉(z1, . . . , zn), 〈〉(z′1, . . . , z′n) : 1 → T V[[Γ]], we say

that 〈〉(z1, . . . , zn) ¹V
Γ 〈〉(z′1, . . . , z′n) if, for each 1 ≤ i ≤ n, zi ¹V

τi
z′i. For g1, g2 : T V[[Γ]] → T V[[τ ]],

g1 ¹V
τ g2 if, for all monotone r : 1 → T V[[Γ]], g1 ◦ r ¹V

τ g2 ◦ r.
Similarly, for any morphisms 〈〉(y1, . . . , yn), 〈〉(y′1, . . . , y′n) : 1 → ×(T V[[τ1]], . . . , T V[[τn]]), we

say that 〈〉(y1, . . . , yn) ¹V
τ1,...,τn

〈〉(y′1, . . . , y′n) if, for each 1 ≤ i ≤ n, yi ¹V
τi

y′i. Given two
morphisms g1, g2 : ×(T V[[τ1]], . . . , T V[[τn]]) → T V[[τ ]], g1 ¹V

τ g2 if, for all monotone x : 1 →
×(T V[[τ1]], . . . , T V[[τn]]), g1 ◦ x ¹V

τ g2 ◦ x.

It can be easily shown, by induction on the structure of τ , that ¹V
τ is a preorder for each type

τ .
As with soundness and adequacy, we will need to make some assumptions about the behavior

of constants. Because of the way we defined monotonicity, the only assumption needed is that
CV[[c : τ ]] is monotone for each constant c of type τ . It is straightforward to show that raise
preserves monotonicity.

It follows directly from the definition that if z : 1 → CT V[[τ ]] is monotone, so is [[t]] ◦ z.
Similarly, by our definition of cost orderings, if t ¹ t′, then [[t]] ◦ z ¹V

τ [[t′]] ◦ z, and if z ¹V
τ z′, then

[[t]] ◦ z ¹V
τ [[t]] ◦ z′.

It is slightly more difficult to prove that fixed points preserve monotonicity. We can show this
given the following lemma:

Lemma 3.9.1 Let the sequence y1 ≤ y2 ≤ y3 ≤ . . . be monotone morphisms from 1 to T V[[τ ]] and
let the sequence z1 ≤ z2 ≤ z3 ≤ . . . be monotone morphisms from 1 to CT V[[τ ]]. Then the following
four properties hold:

1.
⊔∞

n=1 yn is monotone.

2.
⊔∞

n=1 zn is monotone
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3. For all monotone morphisms y′1 ≤ y′2 ≤ . . . from 1 to T V[[τ ]] such that for each n, yn ¹V
τ y′n,⊔∞

n=1 yn ¹V
τ

⊔∞
n=1 y′n.

4. For all monotone morphisms z′1 ≤ z′2 ≤ . . . from 1 to CT V[[τ ]] such that for each n, zn ¹V
τ z′n,⊔∞

n=1 zn ¹V
τ

⊔∞
n=1 z′n.

Proof. For each type τ we can show that #1 implies #2 and #3 implies #4. To show that #1
implies #2, from the ordering requirement for cost structures, we know that either zn = ⊥ for
all n or there exists a cost t and an integer N such that for all n ≥ N , there exists a monotone
xn : 1 → T V[[τ ]] with zn = [[t]] ◦ η ◦ xn. Thus

∞⊔

n=1

zn =
∞⊔

n=N

([[t]] ◦ η ◦ xn) = [[t]] ◦ η ◦
∞⊔

n=N

xn

Parts #1 and #3 are proven by induction on τ . They may require parts #2 and #4, but only on
smaller types. 2

With this lemma, we can now prove that all expressions are monotone.

Theorem 3.9.2 Let Γ = x1 : τ1, . . . , xn : τn be a type environment and suppose that Γ ` e : τ .
Then V[[Γ ` e : τ ]] is monotone.
Proof. Let r, r′ : 1 → T V[[Γ]] be monotone with r ¹V

Γ r′. Then V[[Γ ` e : τ ]] is monotone if
V[[Γ ` e : τ ]] ◦ r is monotone and if

V[[Γ ` e : τ ]] ◦ r ¹V
τ V[[Γ ` e : τ ]] ◦ r′

We show this by induction on the structure of e. All cases are straightforward; we list a few of the
more complex ones here.

Case e = lam x.e′, τ = τ1 → τ2:

Let f0 = [[tapp]]◦V[[Γ, x : τ1 ` e′ : τ2]]◦ (id×η). Then V[[Γ ` e : τ ]] = η ◦curry(f0). Therefore to
show that V[[Γ ` e : τ ]] is monotone, we need only to show that curry(f0)◦r : 1 → T V[[τ1 → τ2]]
is monotone, and that curry(f0)◦r ¹V

τ1→τ2 curry(f0)◦r′. Let y1 and y2 be monotone morphisms
from 1 to T V[[τ1]] such that y1 ¹V

τ1 y2. First, note that

apply(η ◦ curry(f0) ◦ r, y1) = app ◦ 〈curry(f0) ◦ r, y1〉
= [[tapp]] ◦ V[[Γ, x : τ1 ` e′ : τ2]] ◦ 〈r, η ◦ y1〉

Similarly,

apply(η ◦ curry(f0) ◦ r, y2) = [[tapp]] ◦ V[[Γ, x : τ1 ` e′ : τ2]] ◦ 〈r, η ◦ y2〉
It is clear that 〈r, η ◦ y1〉 and 〈r, η ◦ y2〉 are monotone. Therefore, apply(η ◦ curry(f0) ◦ r, y1)
and apply(η ◦ curry(f0) ◦ r, y2) are monotone with

apply(η ◦ curry(f0) ◦ r, y1) ¹V
τ2 apply(η ◦ curry(f0) ◦ r, y2)

Thus V[[Γ ` e : τ ]] ◦ r is monotone. For the second part, let y : 1 → T V[[τ1]] be monotone.
Then

apply(η ◦ curry(f0) ◦ r, y) = [[tapp]] ◦ V[[Γ, x : τ1 ` e′ : τ2]] ◦ 〈r, η ◦ y〉
¹V

τ2 [[tapp]] ◦ V[[Γ, x : τ1 ` e′ : τ2]] ◦ 〈r′, η ◦ y〉
= apply(η ◦ curry(f0) ◦ r′, y)

Thus η ◦ curry(f0) ◦ r ¹V
τ1→τ2 η ◦ curry(f0) ◦ r′, i.e., V[[Γ ` e : τ ]] ◦ r ¹V

τ V[[Γ ` e : τ ]] ◦ r′.
Therefore V[[Γ ` e : τ ]] is monotone.
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Case e = rec x.e′:

V[[Γ ` e : τ ]] = fixp([[trec]]◦V[[Γ, x : τ ` e′ : τ ]]). By the induction hypothesis V[[Γ, x : τ ` e′ : τ ]]
is monotone, therefore so is [[trec]] ◦ V[[Γ, x : τ ` e′ : τ ]]. We therefore only need to show that
applying the fixed point operator preserves monotonicity. Let f = [[trec]] ◦ V[[Γ, x : τ ` e′ : τ ]]

By the definition of fixp, fixp(f) is the limit of the following morphisms:

f0 = ⊥T V[[τ ]] ◦ !T V[[Γ]]

fn = f ◦ 〈idT V[[Γ]], fn−1〉
We know immediately that f0 = f0 ◦ r is monotone, and, by the induction hypothesis, if

fn−1 ◦ r is monotone, then so is fn ◦ r. Therefore by the first half of Lemma 3.9.1,

(
∞⊔

n=0

fn) ◦ r = fixp(f) ◦ r

is monotone as well. Therefore V[[Γ ` e : τ ]] ◦ r is monotone.

Furthermore, f0◦r = f0◦r′ = ⊥ so f0◦r ¹V
τ f0◦r′. If fn◦r ¹V

τ fn◦r′, then fn+1◦r ¹V
τ fn+1◦r′

as well. Thus by the second half of Lemma 3.9.1,

fixp(f) ◦ r =
∞⊔

n=0

fn ◦ r ¹V
τ

∞⊔

n=0

fn ◦ r′ = fixp(f) ◦ r′

Therefore V[[Γ ` e : τ ]] ◦ r ¹V
τ V[[Γ ` e : τ ]] ◦ r′, so V[[Γ ` e : τ ]] is monotone.

2

Now that we have a definition of ¹V
τ that is known to apply to expressions, we can show that

¹V
τ is also sound relative to the operational version; namely that, for any closed expressions e1, e2

of type τ , V[[e1 : τ ]] ¹V
τ V[[e2 : τ ]] implies that e1≤V e2. This property follows directly from another

property that is useful in its own right: the relation ¹V
τ is compositional, which means that we can

determine that two expression relate by ¹V
τ by showing that their subparts relate.

Theorem 3.9.3 Suppose that for closed expression e1 and e2 of type τ , V[[e1 : τ ]] ¹V
τ V[[e2 : τ ]].

Then for all contexts C[ ], if, for some type environment Γ, Γ ` C[e1] : τ ′, then

V[[Γ ` C[e1] : τ ′]] ¹V
τ ′ V[[Γ ` C[e2] : τ ′]]

Proof. By induction on the structure of C[ ]. First, note that if Γ ` C[e1] : τ ′, then Γ ` C[e2] : τ ′.
Next, while in general C[ ] is assumed to have a hole, its subexpressions may not. For expressions
without a hole, however, C[e1] = C[e2], so the theorem holds trivially. Similarly the theorem holds
immediately when C[ ] = [ ]. Therefore we can assume that the theorem holds on subexpressions
without having to worry about which subexpression has the hole.

For the other cases, let r : 1 → T V[[Γ]] be monotone. Then

V[[Γ ` C[e1] : τ ′]] ¹V
τ ′ V[[Γ ` C[e2] : τ ′]]

when
V[[Γ ` C[e1] : τ ′]] ◦ r ¹V

τ ′ V[[Γ ` C[e2] : τ ′]] ◦ r

All cases are straightforward; we show a few here.
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C[ ] = if C1[ ] then C2[ ] else C3[ ]

By the induction hypothesis V[[Γ ` C1[e1] : bool]] ◦ r ¹V
bool V[[Γ ` C2[e2] : bool]] ◦ r. If

V[[Γ ` C1[e1] : bool]] ◦ r = ⊥, then V[[Γ ` C2[e2] : bool]] ◦ r = ⊥ as well, and

V[[Γ ` if C1[e1] then C2[e1] else C3[e1] : τ ′]] ◦ r
= ⊥
¹V

τ ′ ⊥ = V[[Γ ` if C1[e2] then C2[e2] else C3[e2] : τ ′]] ◦ r

Otherwise there exists costs t and t′, and morphism b : 1 → T V[[bool]], where b is either tt or
ff, such that t ¹ t′, V[[Γ ` C1[e1] : bool]]◦r = [[t]]◦η◦b, and V[[Γ ` C1[e2] : bool]]◦r = [[t′]]◦η◦b
If b is tt, then

V[[Γ ` if C1[e1] then C2[e1] else C3[e1] : τ ′]] ◦ r
= [[ttrue + t]] ◦ V[[Γ ` C2[e1] : τ ′]] ◦ r
¹V

τ ′ [[ttrue + t]] ◦ V[[Γ ` C2[e2] : τ ′]] ◦ r
¹V

τ ′ [[ttrue + t′]] ◦ V[[Γ ` C2[e2] : τ ′]] ◦ r
= V[[Γ ` if C1[e2] then C2[e2] else C3[e2] : τ ′]] ◦ r

Similarly if b is ff, then

V[[Γ ` if C1[e1] then C2[e1] else C3[e1] : τ ′]] ◦ r
= [[tfalse + t]] ◦ V[[Γ ` C3[e1] : τ ′]] ◦ r
¹V

τ ′ [[ttrue + t′]] ◦ V[[Γ ` C3[e2] : τ ′]] ◦ r
= V[[Γ ` if C1[e2] then C2[e2] else C3[e2] : τ ′]] ◦ r

C[ ] = rec x.C ′[ ]

Let f0 ≤ f1 ≤ . . . : T V[[Γ]] → CT V[[τ ′]] be a sequence where f0 = ⊥ ◦ ! and

fn+1 = [[trec]] ◦ V[[Γ, x : τ ′ ` C ′[e1] : τ ′]] ◦ 〈id, fn〉

Then

V[[rec x.C ′[e1]]]τ ′ ◦ r = fixp([[trec]] ◦ V[[Γ, x : τ ′ ` C ′[e1] : τ ′]]) ◦ r = (
∞⊔

n=0

fn) ◦ r =
∞⊔

n=0

(fn ◦ r)

Similarly, let f ′0 ≤ f ′1 ≤ . . . : T V[[Γ]] → CT V[[τ ′]] be a sequence where f ′0 = ⊥ ◦ ! and
f ′n+1 = [[trec]] ◦ V[[Γ, x : τ ′ ` C ′[e2] : τ ′]] ◦ 〈id, f ′n〉. Then V[[rec x.C ′[e2]]]τ ′ ◦ r =

⊔∞
n=0(f

′
n ◦ r).

Now f0◦r ¹V
τ ′ f ′0◦r because both are ⊥. If fn◦r ¹V

τ ′ f ′n◦r, then, by the induction hypothesis,

fn+1 ◦ r = [[trec]] ◦ V[[Γ, x : τ ′ ` C ′[e1] : τ ′]] ◦ 〈id, fn〉 ◦ r
= [[trec]] ◦ V[[Γ, x : τ ′ ` C ′[e1] : τ ′]] ◦ 〈r, fn ◦ r〉
¹V

τ [[trec]] ◦ V[[Γ, x : τ ′ ` C ′[e1] : τ ′]] ◦ 〈r, f ′n ◦ r〉
¹V

τ [[trec]] ◦ V[[Γ, x : τ ′ ` C ′[e2] : τ ′]] ◦ 〈r, f ′n ◦ r〉
= f ′n+1 ◦ r

Thus
⊔∞

n=0(fn ◦ r) ¹V
τ

⊔∞
n=0(f

′
n ◦ r), so V[[Γ ` C[e1] : τ ′]] ¹V

τ V[[Γ ` C[e2] : τ ′]].
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2

To prove soundness of ¹V
τ , we need to make one assumption about the ground type values: that

V[[v]] = V[[v′]] implies that v = v′. While this assumption is not reasonable for higher order types, it
is expected for ground types. If it failed to hold for ground types there would be distinct values of
ground type that are indistinguishable operationally. Also, if our extensional category is PDom,
then we can safely set Ag to be the set of operational values of that type, discretely ordered, and
thus guarantee that the property exists.

Therefore assume that V[[e1 : τ ]] ¹V
τ V[[e2 : τ ]]. Let C[ ] be a context such that, for some ground

type g, C[e1] is a closed expression of type g. Then ` C[e2] : g and V[[C[e1] : g]] ¹V
τ V[[C[e2] : g]]. If

V[[C[e1] : g]] = ⊥, then by adequacy there cannot exist a value v or a cost t such that C[e1]
t⇒v v.

Similarly, V[[C[e2] : g]] = ⊥, so there cannot exist a value v or a cost t such that C[e1]
t⇒v v.

Therefore C[e1] ≤V C[e2]. If V[[C[e1] : g]] is not ⊥, then by adequacy there exists a cost t and a
value v such that C[e1]

t⇒v v, which means that V[[C[e1] : g]] = [[t]] ◦ V[[v : g]]. Thus there exists a
cost t′ such that t ¹ t′ and V[[C[e2] : g]] = [[t′]] ◦ V[[v : g]]. By adequacy and the assumption made

on values, we thus know that C[e2]
t′⇒v v. Therefore C[e1]≤V C[e2], so e1 ≤V e2.

There is one more interesting property we can show, by using a particular cost order (and

thus a particular improvement relation). Given two costs t1, t2, let t1
t¹ t2 if, for some non-

negative integer m, t2 = nt + t1. If we assume that + is commutative, then
t¹ is a cost order.

It is a limited ordering, stating that the cost differs solely by a constant factor times a fixed
cost t‘. If e is a closed expression of type τ , and if for some cost t, e

t⇒v v, then by soundness

V[[e : τ ]] = [[t]] ◦ V[[v : τ ]], so V[[v : τ ]]
t¹g V[[e : τ ]]. Therefore, for any context C[ ], if Γ ` C[e] : τ ,

then V[[Γ ` C[v] : τ ]]
t¹τ V[[Γ ` C[e] : τ ]], as well. This means that replacing an expression with its

value can only affect the cost by some constant factor of t. The exact factor will vary depending on
how many times e is actually evaluated; while e is only evaluated once when applied to a function,
when filling a hole it may be evaluated several times. For example let C[ ] = twice(lam x.[ ])(3).
Then for any expression e (such that e is well typed when x has type nat), C[e] evaluates e twice.
This result is true regardless of the choice of cost order; it is the choice of cost order that made the
result readily apparent.

3.10 Conclusion

In this chapter we developed semantic models for the call-by-value semantics. These models include
the evaluation time as well the final result. The definition of “time” came from the operational
semantics; we counted the number of occurrences of operations such as applying abstractions,
unrolling recursions, taking a conditional, or adding two numbers. This definition of cost is similar
to, but more flexible than, the definition of cost used in [37], which counted the depth of the tree
generated by the evaluation. It is also similar to [50] which counts elementary operations such as
application of a function or equality tests. By setting some of the cost constants (such as ttrue) to
0 we obtain the definition of cost used in ([6], [22])) which counted the number of function calls or
recursion unrollings. We can also emulate the definition used in ([12], [41]) which only counted cost
in the primitive functions. Therefore our definition has an advantage: it is highly flexible, while
still returning the same general costs as in other research.

The original choice of operational semantics has a significant impact on the definition of “time”;
because the operational semantics is relatively abstract, costs are related to abstract operations
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rather than memory accesses or stack manipulations. Also, because the operational semantics uses
substitution for application, values necessarily have 0 cost, and we cannot, in general, distinguish
between the application of different abstractions; both restrictions are necessary in order for the
Substitution Lemma to hold. We also cannot assign costs to the evaluation of variables because free
variables never occur in the operational semantics. In most cases the cost normally attributed to
constructors is directly proportional to the number of applications or recursive calls in a function,
so the overall complexity is the same even without the the cost of forming values. Alternatively,
we can construct additional constants as described in section 3.2. This construction has the effect
of separating the construction of values from the use of already constructed values, which in many
cases can be a useful distinction.

For complexity analysis, it is usually not necessary to distinguish the cost of applying different
functions. If there is a need to do so, however, a less abstract operational model will be required.

In Sections 3.3 through 3.3.1 we developed a denotational semantics including cost. The com-
positionality inherent in the denotational semantics makes it easier to compute and compare costs
of expressions as we do not need to be concerned with external effects. We are also better able to
examine the effects of non-termination, which becomes more important for the call-by-name and
call-by-need semantics.

For the denotational semantics we created a mathematical structure in category theory called
a cost structure. Cost structures resemble strong monads in structure and except for additional
elements governing the additions and removal of costs. We do not need all the properties required
for strong monads in order to form a sound and adequate semantics, although we call a cost
structure that has those properties a strong cost structure. The extra properties are not needed
because, as indicated by adequacy, we are only concerned with elements of the form ⊥ or [[t]]◦η ◦y,
for y : 1 → A.

In defining the structure (T, ηT, (−)?, ψT, [[−]]T, δT, reduce) we showed that non-trivial cost
structures exist and furthermore that the non-trivial cost structure is also strong. In the process
we defined arrow cost structures, which generate cost structures. While they have more elements,
it is generally easier to define arrow cost structures than generic cost structure as the strictness
and separability conditions are more easily proven.

The process of deriving a denotational semantics with cost structures is straightforward: We
replace the lifting monad elements of the extensional semantics by the equivalent elements of the
cost structure and add extra cost as specified by the operational semantics. The denotational
semantics thus derived is sound, adequate and separable. We were, as a result, able to use the
semantics derived to calculate the complexity of a number of examples. We were also able to define
what it meant for a program to be “faster” than another program and that the derived ordering
was compositional.
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Chapter 4

Call-by-name

In this chapter we examine another form of evaluation strategy called call-by-name. When perform-
ing an application e1(e2) under call-by-name the expression e2 is substituted into the appropriate
places in e1 without any initial evaluation. Thus if e1 never needs e2, it is never evaluated; on the
other hand, if e1 needs e2 multiple times, the expression is evaluated multiple times as well.

Because of the inefficiencies of re-evaluation there are not many languages implementations that
use call-by-name directly. Some languages, such as C, have macro definitions which behave like
call-by-name functions; in C, macros are used to avoid the overhead of a function call. Macros
generally are simple enough that the duplication of code is under control. Algol-60 is an example
of a call-by-name language, and it has some language features that take advantage of that fact.
It also has a call-by-value let construct to force evaluation and thus selectively protect against
reevaluation; we will see in section 4.5 that without such a construct many simple programs would
become substantially less efficient.

Frequently, instead of using call-by-name directly, a language will implement call-by-name func-
tionality with the results stored for future use. This implementation is not safe for Algol-60 because
of possible changes in state but is safe for any pure functional language such as Haskell and Miranda.
Such languages are called lazy or call-by-need as opposed to call-by-name.

We include the study of the call-by-name strategy for three reasons: it provides a way to add
non-strict elements without encountering the difficulties of the call-by-need semantics (where one
must keep track of which expressions have already been evaluated); the call-by-name semantics has
been frequently used in definitions of denotational semantics using categories and so is relatively
familiar to many; and it demonstrates the generality of the cost structure because it can be used
for the call-by-name semantics as well as the call-by-value. Note that for some programs we never
re-evaluate an argument, so the cost computed for them should apply even when evaluating under
a call-by-need strategy.

The general form of the language is the same as for call-by-value. One primary exception
is the include of “lazy” constants; namely those that do not automatically evaluate all of their
arguments. Therefore there are now two sets of constructors: the strict constructors, S-Construct,
which behave the same as for the call-by-value, and lazy constructors, L-Construct, which do not
evaluate their subparts. Constructors which evaluate some, but not all, of their subparts are not
considered at this time though they can be simulated if necessary.

Because we now have non-strict constants, it is possible to define if as a constant rather than as
a built-in statement. The gain in insight or simplicity, however, is not worth the loss in consistency
so the if construct is still built into the call-by-name language.

The construction of both the denotational semantics and the operational semantics for the call-
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c
0⇒n c lam x.e

0⇒nlam x.e

e1
t1⇒n ce′1 . . . e′i napply(c, e′1, . . . , e′i, e2)

t′⇒ v

e1(e2)
t′+t1⇒n v

[rec x.e/x]e t⇒n v

rec x.e
t+trec⇒n v

e1
t1⇒nlam x.e′ [e2/x]e′ t2⇒n v

e1(e2)
t2+tapp+t1⇒n v

e1
t1⇒ntrue e2

t2⇒n v

if e1 then e2 else e3
t2+ttrue+t1⇒n v

e1
t1⇒nfalse e3

t3⇒n v

if e1 then e2 else e3
t3+tfalse+t1⇒n v

Figure 4.1: Natural operational semantics for call-by-name functional language

apply(ce1, . . . ,, ei)
0⇒ ce1 . . . ei (i < ar(c))

apply(ce1, . . . ,, ear(c))
0⇒ ce1 . . . ear(c) (c ∈ L-Construct)

e1
t1⇒n v1 . . . en

tn⇒n vn

apply(c, e1, . . . ,, en) tn+...+t1⇒ cv1 . . . vn

(c ∈ S-Construct, n = ar(c))

Figure 4.2: Known rules for constant application

by-name follows the same general pattern as it did for the call-by-value semantics. The operational
semantics is, as before, derived from the extensional semantics given in Chapter 2 by labeling
transitions with costs. Furthermore, the same cost structure used in the previous chapter to
convert the extensional call-by-value denotational semantics to an intensional semantics is sufficient
to convert the call-by-name semantics as well. Therefore in this chapter we repeat the soundness
and adequacy proofs for call-by-name and discuss how the addition of lazy constructors changes
the assumptions we must make about constants. These assumptions, however, still hold for the FL
language, although we need to alter the meaning of some data types to allow laziness, particularly
lists. We end the chapter by re-examining a number of the examples given in the previous chapter.
From these examples we see how using call-by-name can produce a substantial change in the
complexity of a program. The examples also allow us to explore ways to examine costs with lazy
lists when the costs may be spread out throughout the list.

4.1 Operational semantics

The primary operational semantics are listed in Figure 4.1. These are identical to the operational
semantics defined in chapter 2 except that the transitions have been labeled with costs. The
restrictions on the choice of costs are the same as for the call-by-value semantics (e.g., values must
have 0 cost); therefore, the labels are the same as for the call-by-value semantics, given the overall
differences in the semantic rules themselves.

Some of the rules for constants, those that can be specified exactly, are listed in Figure 4.2.
These include rules for constructors (of both types) and incomplete applications.

The intensional and extensional operational semantics are closely related, in that e⇒n v if and
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N [[Γ ` c : τ ]] = raise(ar(c))(CN[[c : τ ]]) ◦ !T N[[Γ]]

N [[Γ ` xi : τi]] = πn
i

N [[Γ ` lam x.e : τ ′ → τ ]] = η ◦ curry(N [[Γ, x : τ ′ ` e : τ ]])
N [[Γ ` e1(e2) : τ ]] = app∗ ◦ ψ ◦ 〈N [[Γ ` e1 : τ ′ → τ ]],

η ◦ N [[Γ ` e2 : τ ′]]〉
N [[Γ ` if e1 then e2 else e3 : τ ]] = cond∗ ◦ ψ ◦ 〈N [[Γ ` e1 : bool]],

〈N [[Γ ` e2 : τ ]],N [[Γ ` e3 : τ ]]〉〉
N [[Γ ` rec x.e : τ ]] = fixp(N [[Γ, x : τ ` e : τ ]])
CN[[true : bool]] = η ◦ tt
CN[[false : bool]] = η ◦ ff
raise(f) = η ◦ curry(f)

Figure 4.3: The converted call-by-name semantics

only if for some cost t, e
t⇒n v. Thus we immediately know that the operational semantics is both

type sound and value sound.

4.2 Denotational semantics

One advantage of the cost structure is that it can also be used for the call-by-name as well as the
call-by-value semantics, and the intensional semantics can be derived from the extensional semantics
using the same general method that we used to derive the call-by-value intensional semantics from
the extensional semantics. Therefore assume that we have a cost structure (C, η, (−)∗, ψ, [[−]]) on
CI over C. To form the call-by-name semantics, we take the extensional semantics from Figure 2.14,
substitute the equivalent parts of the cost structure for the lifting monad, and then determine
where we must add extra cost (such as trec). Figure 4.3 lists the intensional semantics before the
extra costs are added. To see where to add the extra costs, note that, for the operational semantics,
we added extra cost in the same or equivalent places as we did for the call-by-value operational
semantics. Therefore it should not come as a surprise that extra cost is added to the denotational
semantics in the same or equivalent locations as they were added in the call-by-value denotational
semantics. The result is listed in Figure 4.4.

As for the meaning of types, we again assume that for each ground type g there exists an object
AN

g in CI such that EAN
g = Ag. In most cases AN

g = AV
g , but there are ground types (such as lazy

integers) that contain internal costs; in those cases we would expect AN
g to be different.

Similarly, assume that for each constructed type δ of arity n, there is an n-ary functor on CI,
FN

δ , such that EFN
δ = Fδ. In some cases, such as products, FN

δ is the same functor as FV
δ . In other

cases, such as lists, FN
δ is different.

4.3 Soundness of the call-by-name semantics

The soundness proof for the call-by-name denotational semantics is very similar to the soundness
proof for the call-by-value semantics. Other than some technical details concerning application,
the primary difference involves the assumptions made about constants. In particular, the form of
strict constructors differs significantly from that used in the call-by-value case.
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T N[[g]] = AN
g

T N[[δ(τ1, . . . , τn)]] = FN
δ (CT N[[τ1]], . . . , CT N[[τn]])

T N[[τ1 → τ2]] = [CT N[[τ1]] ⇒ CT N[[τ2]]]
T N[[x1 : τ1, . . . , xn : τn]] = ×(CT N[[τ1]], . . . , CT N[[τn]])

N [[Γ ` c : τ ]] = raise(ar(c))(CN[[c : τ ]]) ◦ !T N[[Γ]]

N [[Γ ` xi : τi]] = πn
i

N [[Γ ` lam x.e : τ ′ → τ ]] = η ◦ curry([[tapp]] ◦ N [[Γ, x : τ ′ ` e : τ ]])
N [[Γ ` e1(e2) : τ ]] = app∗ ◦ ψ ◦ 〈N [[Γ ` e1 : τ ′ → τ ]],

η ◦ N [[Γ ` e2 : τ ′]]〉
N [[Γ ` if e1 then e2 else e3 : τ ]] = cond∗ ◦ ψ ◦ 〈N [[Γ ` e1 : bool]], η ◦

η ◦ 〈[[ttrue]] ◦ N [[Γ ` e2 : τ ]],
[[tfalse]] ◦ N [[Γ ` e3 : τ ]]〉〉

N [[Γ ` rec x.e : τ ]] = fixp([[trec]] ◦ N [[Γ, x : τ ` e : τ ]])
CN[[true : bool]] = η ◦ tt
CN[[false : bool]] = η ◦ ff
raise(f) = η ◦ curry(f)

Figure 4.4: Intensional denotational semantics for call-by-name

Therefore we must redefine soundness for constants:

Definition 4.3.1 For the call-by-name semantics, CN[[c : τ ]] is sound at c if the following properties
holds:

• If c has arity 0 or is a lazy constructor then CN[[c : τ ]] factors through ηT N[[τ ]].

• If n is the arity of c, so that for some types τ1, . . . , τn, τ ′, τ = τ1 → . . . → τn → τ ′, and if c is
a strict constructor then there must exists a morphism f : ×(T N[[τ1]], . . . , T N[[τn]]) → T N[[τ ′]]
such that CN[[c : τ ]] = (η ◦ f)∗ ◦ ψ(n).

• For all operational rules of the form

e′1
t1⇒n v′1 . . . e′k

tk⇒n v′k
apply(c, e1, . . ., en) t⇒ v

where n is the arity of c, suppose that for all 1 ≤ i ≤ k and types τ ′i , ` e′i : τ ′i implies that
N [[e′i : τ ′i ]] = [[ti]] ◦N [[v′i : τ ′i ]]. Then if c has type τ1 → . . . → τn → τ and if for each 1 ≤ j ≤ n,
ei has type τi

CN[[c : τ ]] ◦ 〈〉(N [[e1 : τ1]], . . . ,N [[en : τn]]) = [[t]] ◦ N [[v : τ ]]

CN[[−]] is sound if for all c ∈ Constτ , CN[[c : τ ]] is sound at c.

Note that strict constructors of arity greater than 0 do not factor through η. Strict constructors
do not always form values; they do so only when their arguments are values themselves. In a later
section, Lemma 4.3.6 shows that when their arguments are values, the total result does factor
through η.

As before, the constants true and false are sound because their meanings factor through η.
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4.3.1 Technical Lemmas

The switch and drop lemmas show how changes in the environment structure change the meaning of
an expressions; in particular, it shows that the change is simply the addition of a product morphism
that adjusts the inputs to match the new environment. The proofs of these two lemmas are very
much the same as for the call-by-value semantics; we omit the proofs.

Lemma 4.3.1 (Switch Lemma) Let

Γ = x1 : τ1, . . . , xk−1 : τk−1, xk : τk, . . . , xn : τn

Γ′ = x1 : τ1, . . . , xk : τk, xk−1 : τk−1, . . . , xn : τn

Then if Γ ` e : τ ,
N [[Γ ` e : τ ]] = N [[Γ′ ` e : τ ]] ◦ βn

k

Lemma 4.3.2 (Drop Lemma) If Γ ` e : τ and x is not free in e, then

N [[Γ, x : τ ′ ` e : τ ]] = N [[Γ ` e : τ ]] ◦ π1

The substitution lemma shows the relationship between substituting a variable in an expression
and setting its value in the environment. It’s proof is also substantially the same as the call-by-value
version.

Lemma 4.3.3 (Substitution Lemma) Suppose that Γ, x : τ ′ ` e : τ and Γ ` e′ : τ ′. Then

N [[Γ ` [e′/x]e : τ ]] = N [[Γ, x : τ ′ ` e : τ ]] ◦ 〈id,N [[Γ ` e′ : τ ′]]〉
Proof. By induction on the structure of e. The abstraction case, which differs a bit from the
call-by-value version of the proof, is included here. If e = lam y.e′′, where τ = τ1 → τ2, then we
can assume that y 6= x and y is not free in e′. Therefore

N [[Γ ` [e′/x]lam y.e′′ : τ1 → τ2]]
= N [[Γ ` lam y.[e′/x]e′′ : τ1 → τ2]]
= η ◦ curry([[tapp]] ◦ N [[Γ, y : τ1 ` [e′/x]e′′ : τ2]])
= η ◦ curry([[tapp]] ◦ N [[Γ, y : τ1, x : τ ′ ` e′′ : τ2]] Induction hypothesis

◦ 〈id,N [[Γ, y : τ1 ` e′ : τ ′]]〉)
= η ◦ curry([[tapp]] ◦ N [[Γ, y : τ1, x : τ ′ ` e′′ : τ2]] Drop lemma

◦ 〈id,N [[Γ ` e′ : τ ]] ◦ π1〉)
= η ◦ curry([[tapp]] ◦ N [[Γ, x : τ ′, y : τ1 ` e′′ : τ2]] Switch lemma

◦ β ◦ 〈id,N [[Γ ` e′ : τ ]] ◦ π1〉)
= η ◦ curry([[tapp]] ◦ N [[Γ, x : τ ′, y : τ1 ` e′′ : τ2]]

◦ (〈id,N [[Γ ` e′ : τ ]]〉 × id))
= η ◦ curry([[tapp]] ◦ N [[Γ, x : τ ′, y : τ1 ` e′′ : τ2]])

◦ 〈id,N [[Γ ` e′ : τ ]]〉
= N [[Γ, x : τ ′ ` e : τ ]] ◦ 〈id,N [[Γ ` e′ : τ ]]〉

2
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4.3.2 Constant application

For the call-by-value semantics, a constant of arity greater than 0 denoted a function from values
to values. Its action on possibly non-terminating input was uniform over all constants and thus we
defined separately the meaning of constants on expressions. For the call-by-name language, however,
such constants may denote a non-strict function and thus the rules for constants themselves must
take into account non-terminating input. As a result, we give a general rule for ce1 . . . en instead
of cv1 . . . vn because we do not generally know the behavior of c on non-terminating inputs.

Lemma 4.3.4 Suppose that c ∈ Constτ1→...→τn→τ has arity n, that 0 ≤ i ≤ n, and that for
1 ≤ j ≤ i, Γ ` ej : τj. Then

N [[Γ ` ce1 . . . ei : τi+1 → . . . → τn → τ ]] = raise(n−i)(CN[[c]]) ◦ 〈〉(N [[Γ ` e1 : τ1]], . . . ,N [[Γ ` ei : τi]])

Proof. By induction on i. Let τ ′ = τi+1 → . . . → τn → τ .
First, if i = 0 then

N [[Γ ` c : τ ]] = raise(n)(CN[[c : τ ]]) ◦ !T N[[Γ]]

= raise(n−0)(CN[[c : τ ]]) ◦ 〈〉()

Otherwise, if i > 0 then we can assume the lemma holds for i− 1. Therefore

N [[Γ ` ce1 . . . ei : τ ′]]
= N [[Γ ` (ce1 . . . ei−1)(ei) : τ ′]]
= app∗ ◦ ψ ◦ 〈N [[Γ ` ce1 . . . ei−1 : τi → τ ′]], η ◦ N [[Γ ` ei : τi]]〉
= app∗ ◦ ψ ◦ 〈raise(n−(i−1))(CN[[c]]) Induction hypothesis

◦ 〈〉(N [[Γ ` e1 : τ1]], . . . ,N [[Γ ` ei−1 : τi−1]]), η ◦ N [[Γ ` ei : τi]]〉
= app∗ ◦ ψ ◦ 〈η ◦ curry(raise(n−i)(CN[[c]]))

◦ 〈〉(N [[Γ ` e1 : τ1]], . . . ,N [[Γ ` ei−1 : τi−1]]), η ◦ N [[Γ ` ei : τi]]〉
= raise(n−i)(CN[[c]]) ◦ 〈〈〉(N [[Γ ` e1 : τ1]], . . . ,N [[Γ ` ei−1 : τi−1]]), Lemma 3.4.3

N [[Γ ` ei : τi]]〉
= raise(n−i)(CN[[c]]) ◦ 〈〉(N [[Γ ` e1 : τ1]], . . . ,N [[Γ ` ei : τi]])

2

4.3.3 Values

The changes to values and constants slightly alter the proof that the meaning of a value factors
through η. Again the only assumptions required are that constructors and constants of arity 0 are
sound, making this theorem available when proving that other constants are sound.

Because the ψ(n) morphisms are used critically for strict constructors there is one additional
lemma needed for the proof, a generalization of the soundness property concerning ψ. This is a
straightforward generalization - just as ψ combines costs (reversing the order) of its inputs, so does
ψ(n).

Lemma 4.3.5 For any n ≥ 0, if for 1 ≤ i ≤ n, fi : D → Di, then for any t1, . . . , tn ∈ T ,

ψ(n) ◦ 〈〉([[t1]] ◦ η ◦ f1, . . . , [[tn]] ◦ η ◦ fn) = [[tn + . . . + t1]] ◦ η ◦ 〈〉(f1, . . . , fn)
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Proof. Straightforward by induction on n. 2

Lemma 4.3.6 Suppose that for any c ∈ Constτ that is either a constructor or has arity 0, CN[[c : τ ]]
is sound for c. Then for any value Γ ` v : τ , N [[Γ ` v : τ ]] factors through η.
Proof. By induction on the derivation of the proof that v is a value. All of the cases except the
one where v = cv1 . . . var(c) and c is a strict constructor have the same proof as in the call-by-value
version. The exception is proven below.

Suppose that v = cv1 . . . vn where n is the arity of c and c is a strict constructor. As Γ ` v : τ ,
there exist types τ1, . . . , τn such that c ∈ Constructτ1→...→τn→τ and for each 1 ≤ i ≤ n, Γ ` vi : τi.
Also because v is a value each vi must be a value as well so by the induction hypothesis there exist
morphisms fi such that N [[Γ ` vi : τi]] = η ◦fi. Furthermore c is a strict constructor, so there exists
f ′ such that CN[[c]] = (η ◦ f ′)∗ ◦ ψ(n). Thus

N [[Γ ` cv1 . . . vn : τ ]]
= CN[[c]] ◦ 〈〉(N [[Γ ` v1 : τ1]] . . .N [[Γ ` vn : τn]]) Lemma 4.3.4
= (η ◦ f ′)∗ ◦ ψ(n) ◦ 〈〉(η ◦ f1, . . . , η ◦ fn)
= (η ◦ f ′)∗ ◦ η ◦ 〈〉(f1, . . . , fn) Lemma 4.3.5
= η ◦ f ′ ◦ 〈〉(f1, . . . , fn)

showing that the meaning of v factors through η, as required. 2

4.3.4 Soundness

Theorem 4.3.7 Suppose ` e : τ and e
t⇒n v. Then

N [[e : τ ]] = [[t]] ◦ N [[v : τ ]]
Proof. By induction on the structure of the derivation of e

t⇒n v. The only cases that are significantly
different from the proof for the call-by-value cases are the ones involving application. These are
shown below.

Case
e1

t1⇒nlam x.e′ [e2/x]e′ t2⇒n v

e1(e2)
t2+tapp+t1⇒n v

:

Because ` e1(e2) : τ , there exists a type τ ′ such that ` e1 : τ ′ → τ and ` e2 : τ ′.

By the induction hypothesis

N [[e1 : τ ′ → τ ]] = [[t1]] ◦ N [[lam x.e′ : τ ′ → τ ]]
= [[t1]] ◦ η ◦ curry([[tapp]] ◦ N [[x : τ ′ ` e′ : τ ]])

and

N [[[e2/x]e′ : τ ]] = [[t2]] ◦ N [[v : τ ]]

Therefore
N [[e1(e2) : τ ]]

= app∗ ◦ ψ ◦ 〈N [[e1 : τ ′ → τ ]], η ◦ N [[e2 : τ ′]]〉
= app∗ ◦ ψ ◦ 〈[[t1]] ◦ η ◦ curry([[tapp]] ◦ N [[x : τ ′ ` e′ : τ ]]), as noted

η ◦ N [[e2 : τ ′]]〉
= [[t1]] ◦ [[tapp]] ◦ N [[x : τ ′ ` e′ : τ ]] ◦ 〈id,N [[e2 : τ ′]]〉 Lemma 3.4.3
= [[t1]] ◦ [[tapp]] ◦ N [[[e2/x]e′ : τ ]] substitution lemma
= [[t1]] ◦ [[tapp]] ◦ [[t2]] ◦ N [[v : τ ]]
= [[t2 + tapp + t1]] ◦ N [[v : τ ]]
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Case
e1

t1⇒n ce′1 . . . e′i napply(c, e′1, . . . , e′i, e2)
t′⇒ v

e1(e2)
t′+t1⇒n v

:

Because ` e1(e2) : τ , there exists a type τ ′ such that ` e1 : τ ′ → τ and ` e2 : τ ′. Therefore
by type soundness ce′1 . . . , e′i has type τ ′ → τ and there exist types τ1, . . . , τi, such that c has
type τ1 → . . . → τi → τ ′ → τ and for each 1 ≤ j ≤ i, e′j is of type τj .

By the induction hypothesis, N [[e1 : τ ′ → τ ]] = [[t1]] ◦ N [[ce′1 . . . e′i : τ ′ → τ ]]. Furthermore,
since ce′1 . . . e′i is a value, there exists a morphism f such that N [[ce′1 . . . e′i : τ ′ → τ ]] = η ◦ f .

Next note that

N [[e1(e2) : τ ]]
= app∗ ◦ ψ ◦ 〈N [[e1 : τ ′ → τ ]], η ◦ N [[e2 : τ ′]]〉
= app∗ ◦ ψ ◦ 〈[[t1]] ◦ N [[ce′1 . . . e′i : τ ′ → τ ]], η ◦ N [[e2 : τ ′]]〉 induction hypothesis
= app∗ ◦ ψ ◦ 〈[[t1]] ◦ η ◦ f, η ◦ N [[e2 : τ ′]]〉 Lemma 4.3.6
= [[t1]] ◦ app ◦ 〈f,N [[e2 : τ ′]]〉 Lemma 3.4.3
= [[t1]] ◦ app∗ ◦ ψ ◦ 〈η ◦ f, η ◦ N [[e2 : τ ′]]〉 Lemma 3.4.3 (again)
= [[t1]] ◦ app∗ ◦ ψ ◦ 〈N [[ce′1 . . . e′i : τ ′ → τ ]], η ◦ N [[e2 : τ ′]]〉
= [[t1]] ◦ N [[ce′1 . . . e′ie2]]

Let n be the arity of c. There are four possible ways to derive apply(c, e′1, . . . , e′i, e2)
t′⇒ v:

• i < n− 1: Then v = ce′1 . . . e′ie2 and t′ = 0, so

N [[e1(e2) : τ ]] = [[t1]] ◦ N [[ce′1 . . . e′ie2 : τ ]]
= [[t′ + t1]] ◦ N [[v : τ ]]

• i = n− 1 and c is a lazy constructor: As above, v = ce′1 . . . eiv2 and t′ = 0, so the proof
is the same as just shown.

• i = n−1 and c is a strict constructor: Then the derivation of napply(c, e′1, . . . , e′i, e2)
t′⇒ v

has the following form:

e′1
t′1⇒n v′1 . . . e′i

t′i⇒n v′i e2
t2⇒n v2

napply(ce′1 . . . e′n−1, e
′
i)

t′⇒ cv′1 . . . v′iv2

where t′ = t2 + t′i + . . .+ t′1. By the induction hypothesis N [[e′j : τj ]] = [[t′j ]]◦N [[v′j : τj ]] for
each 1 ≤ j ≤ i and N [[e2 : τ ′]] = [[t2]] ◦N [[v2 : τ ′]]. Because each v′j is a value, there must
also exist morphisms f ′j such that for each 1 ≤ j ≤ i, N [[v′j : τj ]] = η ◦ f ′j . Similarly there
must exist a morphism f2 such that N [[v2 : τ ′]] = η ◦ f2. Finally c is a strict constructor,
so there exists a morphism f ′ such that CN[[c]] = (η ◦ f ′)∗ ◦ ψ(n). Next, by the induction
hypothesis and Lemma 4.3.5,

ψ(n) ◦ 〈〉(N [[e′1 : τ1]], . . . ,N [[e′i : τi]],N [[e2 : τ ′]])
= ψ(n) ◦ 〈〉([[t′1]] ◦ N [[v′1 : τ1]], . . . , [[t′i]] ◦ N [[v′i : τi]], [[t2]] ◦ N [[v2 : τ2]])
= ψ(n) ◦ 〈〉([[t′1]] ◦ η ◦ f ′1, . . . , [[t′i]] ◦ η ◦ f ′i , [[t2]] ◦ η ◦ f2)
= [[t2 + t′i + . . . + t′1]] ◦ η ◦ 〈〉(f ′1, . . . , f ′i , f2)
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Therefore

N [[e1(e2) : τ ]]
= [[t1]] ◦ N [[ce′1 . . . e′ie2 : τ ]]
= [[t1]] ◦ CN[[c]] ◦ 〈〉(N [[e′1 : τ1]], . . . ,N [[e′i : τi]],N [[e2 : τ ′]]) Lemma 4.3.4
= [[t1]] ◦ (η ◦ f ′)∗ ◦ ψ(n) ◦ 〈〉(N [[e′1 : τ1]], . . . ,N [[e′i : τi]],N [[e2 : τ ′]])
= [[t1]] ◦ (η ◦ f ′)∗ ◦ [[t2 + t′i + . . . + t′1]] ◦ η ◦ 〈〉(f ′1, . . . , f ′i , f2) as noted
= [[t1]] ◦ [[t2 + t′i + . . . + t′1]] ◦ η ◦ f ′ ◦ 〈〉(f ′1, . . . , f ′i , f2)
= [[t2 + t′i + . . . + t′1 + t1]] ◦ (η ◦ f ′)∗ ◦ η ◦ 〈〉(f ′1, . . . , f ′i , f2)
= [[t′ + t1]] ◦ (η ◦ f ′)∗ ◦ η ◦ 〈〉(f ′1, . . . , f ′i , f2)
= [[t′ + t1]] ◦ (η ◦ f ′)∗ ◦ ψ(n) ◦ 〈〉(η ◦ f ′1, . . . , η ◦ f ′i , f2) Lemma 4.3.5
= [[t′ + t1]] ◦ CN[[c]] ◦ 〈〉(η ◦ f ′1, . . . , η ◦ f ′i , f2)
= [[t′ + t1]] ◦ CN[[c]] ◦ 〈〉(N [[v′1 : τ1]], . . . ,N [[v′i : τi]],N [[v2 : τ ′]])
= [[t′ + t1]] ◦ N [[cv′1 . . . v′i, v2]]

• i = n− 1 and c is not a constructor: Then by the soundness assumptions for constants
and Lemma 4.3.4,

N [[ce′1 . . . e′ie2 : τ ]]
= raise(n−n)(CN[[c]]) ◦ 〈〉(N [[e′1 : τ1]], . . . ,N [[e′i : τi]],N [[e2 : τ ′]])
= CN[[c]] ◦ 〈〉(N [[e′1 : τ1]], . . . ,N [[e′i : τn]],N [[e2 : τ ′]])
= [[t′]] ◦ N [[v : τ ]]

therefore
N [[e1(e2) : τ ]] = [[t1]] ◦ N [[ce′1 . . . e′ie2 : τ ]]

= [[t1]] ◦ [[t′]] ◦ N [[v : τ ]]
= [[t′ + t1]] ◦ N [[v : τ ]]

2

4.3.5 Soundness of the extensional semantics

The definition of the intensional semantics was designed so that EN [[Γ ` e : τ ]] = NE[[Γ ` e : τ ]]. By
the intensional proof of soundness we know that if e

t⇒n v and ` e : τ then N [[e : τ ]] = [[t]]◦N [[v : τ ]].
Therefore, as E[[t]] = id, NE[[e : τ ]] = NE[[v : τ ]], so the extensional semantics is also sound.

4.3.6 Adequacy of the intensional semantics

The proof that the intensional semantics is adequate is essentially the same as it was for the
call-by-value case because it depends primarily on properties of the cost structure.

Theorem 4.3.8 For any closed expression e of type τ , N [[e : τ ]] 6= ⊥ if and only if there exists a
closed value v of type τ and a t ∈ T such that e

t⇒n v.

Proof. Suppose that N [[e : τ ]] 6= ⊥. Then, by the properties of the cost structure, NE[[e : τ ]], which
equals EN [[e : τ ]], is not ⊥ either. By the adequacy of the extensional semantics there exists a
closed value v of type τ such that e⇒n v. Therefore there exists a cost t such that e

t⇒n v.
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Now suppose there exists a closed value v of type τ and a t ∈ T such that e
t⇒n v. By Lemma 4.3.6

there exists a morphism y : 1 → T N[[τ ]] such that N [[v : τ ]] = η ◦ y. Therefore, by soundness,

N [[e : τ ]] = [[t]] ◦ N [[v : τ ]] = [[t]] ◦ η ◦ y 6= ⊥
2

4.4 The language FL

At this point there have been a number of assumptions made about the behavior of constants
without much of an attempt to show that the constants concerning products, etc., satisfy them.
Given the differences in the formation of the constructed data types and projections it does not
automatically follow that the assumptions are reasonable even though they proved to be in the
call-by-value language.

Now that there are both lazy and strict constructors it becomes necessary to indicate which
data types have which constructors. For a number of reasons, including some later examples, it
will highly useful to have lazy lists, so let cons be a lazy constructor. Since the lists constants
resemble product constants more than sum constants it will be more illuminating to let pair be
strict and inl and inr be lazy. This choice also means that functions can return multiple values
as a product, and we still know that the individual parts are also values.

4.4.1 Operational semantics

The operational semantics for the FL constants are listed in Figure 4.5. Again, we simply took the
extensional operational semantics and added cost. For consistency, we chose the same additional
costs for the call-by-name version as we did for the call-by-value. Thus most constants incur an
additional cost independent of the arguments, with the exception of integer multiplication and
integer equality test.

4.4.2 Denotational semantics

For the denotational semantics, it is possible to take advantage of a close relationship between the
call-by-name and call-by-value for the integer constants, in particular, when

vapply(cv1 . . . vn−1, vn) t⇒ v

is a rule for the call-by-value semantics if and only if there is a rule of the form

e1
t1⇒n v1 . . . en

tn⇒n vn

napply(ce1 . . . en−1, en) t+tn+...+t1⇒ v

for the call-by-name semantics. Note that this relationship does hold for constants such as +, but
does not for list-related constants like head. Because T N[[g]] = T V[[g]] for every ground type g of
FL, the meaning of a call-by-name integer constant can be defined in terms of the call-by-value
meanings. This way the soundness of the call-by-value constants can be used to prove the soundness
of the call-by-name constants without having to look at each rule separately.

To see how to define CN[[c]] in terms of CV[[c]], first note that ψ(n) ◦ 〈〉(f1, . . . , fn) = ⊥ whenever
at least one of the fi’s is ⊥. Thus for any of these constants, if an argument fails to terminate and
thus has a meaning of ⊥, then the entire application has a meaning of ⊥.
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e1
t1⇒n n e2

t2⇒n m

napply(+, e1, e2)
t++t2+t1⇒ n + m

e1
t1⇒n n e2

t2⇒n m

napply(×, e1, e2)
t∗(n,m)+t2+t1⇒ n ∗m

e1
t1⇒n n e2

t2⇒n m

napply(−̇, e1, e2)
t−+t2+t1⇒ 0

(n ≤ m)
e1

t1⇒n n e2
t2⇒n m

napply(−̇, e1, e2)
t−+t2+t1⇒ n−m

(n > m)

e1
t1⇒n n e2

t2⇒n n

napply(=, e1, e2)
t=+t2+t1⇒ true

e1
t1⇒n n e2

t2⇒n m

napply(=, e1, e2)
t 6=+t2+t1⇒ false

(n 6= m)

e1
t1⇒n n e2

t2⇒n m

napply(≤, e1, e2)
t≤+t2+t1⇒ true

(n ≤ m)
e1

t1⇒n n e2
t2⇒n m

napply(≤, e1, e2)
t≤+t2+t1⇒ false

(n > m)

e
t⇒n <v1, v2>

napply(fst, e) t+tfst⇒ v1

e
t⇒n <v1, v2>

napply(snd, e) t+tsnd⇒ v2

e
t⇒ninl(e

′) e1(e′)
t1⇒n v

napply(case, e, e1, e2)
t1+t+tcase⇒ v

e
t⇒ninr(e

′) e2(e′)
t2⇒n v

napply(case, e, e1, e2)
t2+t+tcase⇒ v

e
t⇒n e1::e2 e1

t1⇒n v

napply(head, e) t1+t+thead⇒ v

e
t⇒n e1::e2 e2

t2⇒n v

napply(tail, e) t2+t+ttail⇒ v

e
t⇒nnil

napply(nil?, e) t+tnil?⇒ true

e
t⇒n e1::e2

napply(nil?, e) t+tnil?⇒ false

Figure 4.5: Call-by-name application rules for FL

Next suppose that c is one of the integer constants, with arity n and e1, . . . , en are closed
expressions of the appropriate types (called τ1, . . . , τn) that also terminate. Then the meaning of
each ei can be assumed to be a morphism of the form [[ti]] ◦ η ◦ fi, so

[[tn + . . . + t1]] ◦ CV[[c]] ◦ 〈〉(f1, . . . , fn)
= CV[[c]]∗ ◦ [[tn + . . . + t1]] ◦ η ◦ 〈〉(f1, . . . , fn)
= CV[[c]]∗ ◦ ψ(n) ◦ 〈〉([[t1]] ◦ η ◦ f1, . . . , [[tn]] ◦ η ◦ fn)
= CV[[c]]∗ ◦ ψ(n) ◦ 〈〉(N [[Γ ` e1 : τ1]], . . . ,N [[Γ ` en : τn]])

Therefore it seems reasonable to set CN[[c]] to CV[[c]]∗ ◦ψ(n) where n is the arity of c. Intuitively,
the meaning of c evaluates each argument, acts on the resulting values and adds in the cost of
finding the values.

The meanings of the integer and boolean constants are listed in Figure 4.6. Remember that,
for FL, we are operating in the category PDomI .

Products

For products, FN× is the same as FV× , that is, it is the binary product functor CI. This means that
the meaning of τ1 × τ2 is CT N[[τ1]]×CT N[[τ2]]. Because we declared pair strict, the cost stored in
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CN[[n]] = (η ◦ nn
I)
∗ ◦ ψ(0) = η ◦ nn

I

CN[[=]] = (cond ◦ 〈id, 〈[[t=]] ◦ η, [[t 6=]] ◦ η〉〉 ◦ eqI ◦ (π2 × id))
∗ ◦ ψ(2)

CN[[≤]] = ([[t≤]] ◦ η ◦ leqI ◦ (π2 × id))
∗ ◦ ψ(2)

CN[[+]] = ([[t+]] ◦ η ◦ plusI ◦ (π2 × id))
∗ ◦ ψ(2)

CN[[−̇]] = ([[t−]] ◦ η ◦minusI ◦ (π2 × id))
∗ ◦ ψ(2)

CN[[×]] = ((η ◦ timesI)
∗ ◦ imcost ◦ (π2 × id))

∗ ◦ ψ(2)

Figure 4.6: Call-by-name semantics for integer and boolean constants in FL

CN[[pair]] = (η ◦ (η × η) ◦ (π2 × id))∗ ◦ ψ(2)

CN[[fst]] = [[tfst]] ◦ π1
∗ ◦ π2

CN[[snd]] = [[tsnd]] ◦ π2
∗ ◦ π2

Figure 4.7: Call-by-name semantics for product constants in FL

the product will always be 0; the internal cost is there solely to allow us a uniform definition for
constants.

The extensional meaning of pair is L(up × up) ◦ smash ◦ (π2 × id). By converting the lifting
monad to the cost structure we get (η ◦ (η × η))∗ ◦ ψ ◦ (π2 × id). That equation, however, is not
in the form required for sound strict constructors. Therefore we use some of the strong monad
properties of lifting to convert the extensional meaning into the appropriate form:

L(up× up) ◦ smash ◦ (π2 × id)
= L(up× up) ◦ smash ◦ (Lπ2 × id) ◦ (smash× id) ◦ ((up× id)× id)
= L(up× up) ◦ L(π2 × id) ◦ smash ◦ (smash× id) ◦ ((up× id)× id)
= (up ◦ (up× up) ◦ (π2 × id))⊥ ◦ nsmash(2)

Using the cost structure, this becomes

CN[[pair]] = (η ◦ (η × η) ◦ (π2 × id))∗ ◦ ψ(2)

which is of the required form while still ensuring that ECN[[pair]] = CN
E [[pair]].

The extensional meaning of fst is π1
⊥ ◦ π2. Converting to the cost structure gives us π1

∗ ◦ π2.
To that we add the cost of taking the first of a pair, tfst, so

CN[[fst]] = [[tfst]] ◦ π1
∗ ◦ π2

Similarly, CN[[fst]] = [[tsnd]] ◦ π2
∗ ◦ π2. By constructing their meanings from the extensional

meanings we know that ECN[[fst]] = CN
E [[fst]] and ECN[[snd]] = ECN

E [[snd]].

Sums

As for products, the functor for sums is the same as for the call-by-value case, thus the meaning
of τ1 + τ2 is CT N[[τ1]] + CT N[[τ2]]. The extensional meaning of inl is up ◦ inl ◦ π2; therefore the
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CN[[inl]] = η ◦ inl ◦ π2

CN[[inr]] = η ◦ inr ◦ π2

CN[[case]] = [[tcase]] ◦ (case(nleftI, nrightI))
∗ ◦ ψ ◦ ◦(π2 × η) ◦ αr

nleftI = app∗ ◦ ψ ◦ β ◦ (η × π1)
nrightI = app∗ ◦ ψ ◦ β ◦ (η × π2)

Figure 4.8: Call-by-name semantics for sum constants in FL

intensional meaning should be η ◦ inl ◦ π2 (using the definition of inl in PDomI). Similarly the
meaning of inr is η ◦ inr ◦ π2. Both meanings have the form required of sound lazy constructors.

For case, its extensional meaning is

(case(nleft, nright))⊥ ◦ smash ◦ (π2 × up) ◦ αr

where
nleft = app⊥ ◦ smash ◦ β ◦ (up× π1)

nright = app⊥ ◦ smash ◦ β ◦ (up× π2)

Converting to the cost structure we get

CN[[case]] = (case(nleftI, nrightI))
∗ ◦ ψ ◦ (π2 × η) ◦ αr

nleftI = app∗ ◦ ψ ◦ β ◦ (η × π1)
nrightI = app∗ ◦ ψ ◦ β ◦ (η × π2)

we then add cost tcase to the beginning to get the result in Figure 4.8.

Lists

As mentioned, the functor FN
list is not the same as FV

list. Also, because the tail of a list contains
cost, FN

list is also not the lazy list functor Llist lifted to the arrow category.
Because we are using the arrow category PDomI , we can assume that there exists an arrow

cost structure (A, ηA, (−)?, ψA, [[−]]A, δ, rd) from which we created (C, η, (−)∗, ψ, [[−]]). Therefore,
in PDom, let Alist (X) be a domain satisfying the isomorphism

Alist (X) ≈ 1 + (X × LAAlist (X))

with afoldX and aunfoldX as the isomorphisms. Also, given a morphism f : X → X ′, let the
morphism Alist (f) : Alist (X) → Alist (X ′) be the (least) solution to the equation

Alist (f) = afoldX′ ◦ (id + (f × L(ηA ◦ Alist (f))
?
)) ◦ aunfoldX

Unlike the extensional cases, we do not necessarily know via domain theory that these equations
have solutions because we do not know enough about the structure of A. The particular cost
structure defined in section 3.6.3, however, is not only strong, but is based on products. Then we
know that Alist is well defined and a functor. Elements of this domain are similar to lazy lists,
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lhdI
p ◦ lnilIp = ⊥p lhdI

p ◦ lconsIp = ηp ◦ π1

ltlIp ◦ lnilIp = ⊥p ltlIp ◦ lconsIp = π2

lhdI
p′ ◦ ListIf = (η ◦ f)∗ ◦ lhdI

p ltlIp′ ◦ ListIf = (η ◦ ListIf)
∗ ◦ ltlIp

lnull?I
p ◦ lnilIp = tt lnull?I

p ◦ lconsIp = ff ◦ !
lnull?I

p′ ◦ ListIf = lnull?I
p ListI(h, d) ◦ lnilIp = lnilIp′

ListI(h, d) ◦ lconsIp = lconsIp′ ◦ ((h, d)× (η ◦ ListIf)
∗
)

Figure 4.9: Properties of cost lists

except that each tail that is not ⊥ contains a cost as well as the actual list tail. The morphism
Alist (f), however, is still a simple mapping function applying f to each element in the list.

With these definitions we can define morphisms for the list constants; these are the same as for
Llist except that the cost structure A are substituted for the lifting monad L:

anilX = afoldX ◦ inl : 1 → Alist (X)
ahdX = [⊥X , upAX ◦ ηA

X ◦ π1] ◦ aunfoldX : Alist (X) → LAX
anull?X = [tt, ff ◦ !] ◦ aunfoldX : Alist (X) → B

atlX = [⊥X , π2] ◦ aunfoldX : Alist (X) → LAAlist (X)
aconsX = afoldX ◦ inr : X × LAAlist (X) → Alist (X)

The extensional semantics uses the lazy list functor Llist . Therefore we want the extensional
part of the arrow category to be Llist . To convert between them, let f : X → X ′ be an object in
PDomI . Then let γX : Alist (X) → Llist (X) be the (least) solution to the equation.

γX = lfoldX ◦ (id + (id× LγX)) ◦ (id + (id× LδAlist(X))) ◦ aunfoldX

This morphism removes the cost from each tail within the list. Again, if A is a product functor (with
δ a projection) we know that this equation has a solution; it may also have a solution for other arrow
cost structures. Furthermore, it can be shown, using the property that limits preserve naturality in
PDom, that γ is a natural transformation from Alist to Llist , that is, for any morphism f : X → Y ,

γY ◦ Alist (f) = List (f) ◦ γX

This natural transformation can then be used to define cost lists in PDomI . A cost list is
similar to a lazy list except that is built using the cost functors instead of the lifting monad. What
this means is not so much that elements of a list have cost, but that costs are paired with each tail.
Thus taking the tail of a cost list may add extra cost to the result.

Given an morphism p : X → D let ListI(p) = Llist (p)◦γX and, given a morphism (h, d) : p → p′,
let ListI(h, d) = (Alist (h), Llist (d)). For the list primitives, let lnilIp = (anilX , lnilD) and so forth.
These primitives satisfy the properties listed in Figure 4.9. We will be using only these properties
to prove soundness.

To get the meanings of the constants, we take extensional meanings and substitute as we did
for the other constants, except that we also substitute the cost list primitives for the lazy list
primitives. Each of the non-constructors is associated with a single input-independent cost which
we simply add to the equations. The meanings for the list constants is thus as in Figure 4.10.
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CN[[nil]] = η ◦ lnilI

CN[[cons]] = η ◦ lconsI ◦ (π2 × id)
CN[[head]] = [[thead]] ◦ (id∗ ◦ lhdI)

∗ ◦ π2

CN[[tail]] = [[ttail]] ◦ ltlI
∗ ◦ π2

CN[[nil?]] = [[tnil?]] ◦ (η ◦ lnull?I)
∗ ◦ π2

Figure 4.10: Call-by-name semantics for list constants in FL

4.4.3 Soundness

The next step needed shows that all of the constants are sound. For the integer and boolean
constants the semantics was defined in such a way that soundness of the call-by-name semantics
can be derived from the soundness of the call-by-value semantics (and from a straightforward
relation between the two operational semantics).

Theorem 4.4.1 Let c be some constant of arity n such that c ∈ Constτ1→...→τn→τ , and the τi plus
τ are ground types. Also suppose that every call-by-value application rule for c has no premises,
and that

vapply(c, v1, . . . vn) t⇒ v

is a call-by-value application rule for c if and only if

e1
t1⇒n v1 . . . en

tn⇒n vn

napply(c, e1, . . . en) t+tn+...+t1⇒ v

is a call-by-name application rule, and there are no other call-by-name application rules for c with
n arguments. Lastly assume that for all values v of ground type g, N [[v : g]] = V[[v : g]]. Then
f∗ ◦ψ(n) is sound for c in the call-by-name semantics whenever f is sound for c in the call-by-value
semantics.

Proof. Let e1, . . . , en be closed expressions of type τ1, . . . , τn respectively and suppose that

e1
t1⇒n v1 . . . en

tn⇒n vn

napply(c, e1, . . . en) t+tn+...+t1⇒ v

is an application rule for call-by-name. Then by assumption

vapply(c, v1, . . . , vn) t⇒ v

is an application rule for call-by-value. Also we know that for each i, V[[vi : τi]] = N [[vi : τi]] and
V[[v : τ ]] = N [[v : τ ]].

Suppose that for each i, N [[ei : τi]] = [[ti]] ◦ N [[vi : τi]]. Then by Lemma 3.4.8, for each i there
exists an yi such that V[[vi : τi]] = η ◦ yi, so by the soundness assumption for call-by-value

f ◦ 〈〉(y1, . . . , yn) = [[t]] ◦ V[[v : τ ]]
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Therefore
f∗ ◦ ψ(n) ◦ 〈〉(N [[e1 : τ1]], . . . ,N [[en : τn]])

= f∗ ◦ [[tn + . . . + t1]] ◦ η ◦ 〈〉(y1, . . . , yn)
= [[tn + . . . + t1]] ◦ f ◦ 〈〉(y1, . . . , yn)
= [[tn + . . . + t1]] ◦ [[t]] ◦ V[[v : τ ]]
= [[t + tn + . . . + t1]] ◦ N [[v : τ ]]

so f∗ ◦ ψ(n) is sound for c in the call-by-name semantics. 2

For the constants of the language FL all the stated assumptions in this theorem hold. All the
operational rules for integers in the call-by-value semantics are of the form

vapply(c, v1, . . . vn) t⇒ v

and each equivalent rule for the call-by-name semantics is of the form

e1
t1⇒n v1 . . . en

tn⇒n vn

napply(c, e1, . . . en) t+tn+...+t1⇒ v

Furthermore, the values of ground type in FL are the constants true, false, and n for integers n.
By inspection it is clear that their meanings are the same for both call-by-name and call-by-value.

For the other constants each operational rule needs to be examined.

Products

The constant pair is sound; it is a strict constructor and its meaning has the form (η ◦ f)∗ ◦ ψ(2).
For the other constants, it will be useful to know the meaning of <v1, v2> for closed values v1 of
type τ1 and v2 of type τ2. As v1 and v2 are values, there exist morphisms y1 and y2 such that
N [[v1 : τ1]] = η ◦ y1 and N [[v2 : τ2]] = η ◦ y2. Then

N [[<v1, v2> : τ1 × τ2]] = CN[[pair]] ◦ 〈〉(N [[v1 : τ1]],N [[v2 : τ2]])
= (η ◦ (η × η) ◦ (π2 × id))∗ ◦ ψ(2) ◦ 〈〉(N [[v1 : τ1]],N [[v2 : τ2]])
= (η ◦ (η × η) ◦ (π2 × id))∗ ◦ η ◦ 〈〉(y1, y2)
= η ◦ (η × η) ◦ (π2 × id) ◦ 〈〉(y1, y2)
= η ◦ 〈η ◦ y1, η ◦ y2〉
= η ◦ 〈N [[v1 : τ1]],N [[v2 : τ2]]〉

This shows that the meaning of <v1, v2> is the pair of the meaning of v1 and v2, as expected.
From this equation it is possible to show the soundness of the other product constants from

their operational application rules. The proofs for both rules are similar so we only present the
proof of the rule for fst:

e
t⇒n <v1, v2>

napply(fst, e) t+tfst⇒ v1

Because fst ∈ Const(τ1×τ2)→τ1 , e must be a closed variable of type τ1 × τ2. Therefore we can
assume that N [[e : τ1 × τ2]] = [[t]] ◦ N [[<v1, v2>]] = [[t]] ◦ η ◦ 〈N [[v1 : τ1]],N [[v2 : τ2]]〉, so

CN[[fst]] ◦ 〈〉(N [[e : τ1 × τ2]])
= [[tfst]] ◦ π1

∗ ◦ N [[e : τ1 × τ2]]
= [[tfst]] ◦ π1

∗ ◦ [[t]] ◦ η ◦ 〈N [[v1 : τ1]],N [[v2 : τ2]]〉
= [[tfst]] ◦ [[t]] ◦ π1 ◦ 〈N [[v1 : τ1]],N [[v2 : τ2]]〉
= [[t + tfst]] ◦ N [[v1 : τ1]]
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Sums

The constants inl and inr are both sound since they are non-strict constructors that factor through
η. For case the two relevant application rules need to be examined; however, as the proofs that
they are sound are almost identical, we only show the proof for the left-hand case:

e
t⇒ninl(e

′) e1(e′)
t1⇒n v

napply(case, e, e1, e2) t1+t+tcase⇒ v

The type of case is (τ1 + τ2) → (τ1 → τ) → (τ2 → τ) → τ given types τ1, τ2, and τ . Therefore
e must be a closed expression of type τ1 + τ2, e1 a closed expression of type τ1 → τ , and e2 a closed
expression of type τ2 → τ . Thus by assumption

N [[e : τ1 + τ2]] = [[t]] ◦ N [[inl(e′) : τ1 + τ2]]
= [[t]] ◦ CN[[inl]] ◦ 〈〉(N [[e′ : τ1]])
= [[t]] ◦ η ◦ inl ◦ N [[e′ : τ1]]

and N [[e1(e′) : τ ]] = [[t1]] ◦N [[v : τ ]]. Next note that for any morphisms f1, f2, y, y′ and any cost t,

(case(f1, f2))
∗ ◦ ψ ◦ 〈[[t]] ◦ η ◦ inl ◦ y, η ◦ y′〉

= (case(f1, f2))
∗ ◦ [[t]] ◦ η ◦ 〈inl ◦ y, y′〉

= [[t]] ◦ case(f1, f2) ◦ (inl× id) ◦ 〈y, y′〉
= [[t]] ◦ f1 ◦ 〈y, y′〉

and for any morphisms f, f1, f2,

nleftI ◦ 〈f, 〈f1, f2〉〉 = app∗ ◦ ψ ◦ β ◦ (η × π1) ◦ 〈f, 〈f1, f2〉〉
= app∗ ◦ ψ ◦ 〈f1, η ◦ f〉

Thus
nleftI ◦ 〈N [[e′ : τ1]], 〈N [[e1 : τ1 → τ ]],N [[e2 : τ1 → τ ]]〉〉

= app∗ ◦ ψ ◦ 〈N [[e1 : τ1 → τ ]], η ◦ N [[e′ : τ1]]〉
= N [[e1(e′) : τ ]]
= [[t1]] ◦ N [[v : τ ]]

so

CN[[case]] ◦ 〈〉(N [[e : τ1 + τ2]],N [[e1 : τ1 → τ ]],N [[e2 : τ1 → τ ]])
= [[tcase]] ◦ (case(nleftI, nrightI))

∗ ◦ ψ ◦ (π2 × η) ◦ αr

◦ 〈〉(N [[e : τ1 + τ2]],N [[e1 : τ1 → τ ]],N [[e2 : τ1 → τ ]])
= [[tcase]] ◦ (case(nleftI, nrightI))

∗ ◦ ψ ◦ 〈N [[e : τ1 + τ2]],
η ◦ 〈N [[e1 : τ1 → τ ]],N [[e2 : τ1 → τ ]]〉〉

= [[tcase]] ◦ (case(nleftI, nrightI))
∗ ◦ ψ ◦ 〈[[t]] ◦ η ◦ inl ◦ N [[e′ : τ1]],

η ◦ 〈N [[e1 : τ1 → τ ]],N [[e2 : τ1 → τ ]]〉〉
= [[tcase]] ◦ [[t]] ◦ nleftI ◦ 〈N [[e′ : τ1]], 〈N [[e1 : τ1 → τ ]],N [[e2 : τ1 → τ ]]〉〉
= [[t + tcase]] ◦ [[t1]] ◦ N [[v : τ ]]
= [[t1 + t + tcase]] ◦ N [[v : τ ]]

Thus case is sound.
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Lists

The constants cons and nil are sound because they are non-strict constructors that factor through
η. The other constants need to be compared with the operational semantics: two rules for nil?
and one rule each for head and tail (as there are no rules listed for head and tail on nil).

To prove soundness for non-constructor constants it is be helpful to know the meaning of e1::e2.
Let e1 be a closed expression of type τ and e2 be a closed expression of type list(τ). Then

N [[e1::e2 : list(τ)]] = CN[[cons]] ◦ 〈〉(N [[e1 : τ ]],N [[e2 : list(τ)]])
= η ◦ lconsI ◦ (π2 × id) ◦ 〈〉(N [[e1 : τ ]],N [[e2 : list(τ)]])
= η ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉

We then examine the rules individually:

Case
e

t⇒n e1::e2 e1
t1⇒n v

napply(head, e) t1+t+thead⇒ v
:

For some type τ , e and e2 must be closed expressions of type list(τ) and e1 must be a closed
expression of type τ . Then by assumption

N [[e : list(τ)]] = [[t]] ◦ N [[e1::e2 : list(τ)]]
= [[t]] ◦ η ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉

and N [[e1 : τ ]] = [[t1]] ◦ N [[v : τ ]]. Next, note that

(id∗ ◦ lhdI)
∗ ◦ [[t]] ◦ η ◦ lconsI = [[t]] ◦ id∗ ◦ lhdI ◦ lconsI

= [[t]] ◦ id∗ ◦ η ◦ π1

= [[t]] ◦ π1

Therefore

CN[[head]] ◦ 〈〉(N [[e : list(τ)]])
= [[thead]] ◦ (id∗ ◦ lhdI)

∗ ◦ π2 ◦ 〈〉(N [[e : list(τ)]])
= [[thead]] ◦ (id∗ ◦ lhdI)

∗ ◦ [[t]] ◦ η ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[thead]] ◦ [[t]] ◦ π1 ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[t + thead]] ◦ N [[e1 : τ ]]
= [[t1 + t + thead]] ◦ N [[v : τ ]]

so head is sound.

Case
e

t⇒n e1::e2 e2
t2⇒n v

napply(tail, e) t2+t+ttail⇒ v
:

Again for some type τ , e and e2 have type list(τ) and e1 has type τ . Therefore by assumption

N [[e : list(τ)]] = [[t]] ◦ η ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
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as before, and N [[e2 : list(τ)]] = [[t2]] ◦ N [[v : list(τ)]] so

CN[[tail]] ◦ 〈〉(N [[e : list(τ)]])
= [[thead]] ◦ (ltlI)

∗ ◦ [[t]] ◦ η ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[thead]] ◦ [[t]] ◦ ltlI ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[t + thead]] ◦ π2 ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[t2 + t + thead]] ◦ N [[v : τ ]]

Thus tail is sound.

Case
e

t⇒nnil

napply(nil?, e) t+tnil?⇒ true
:

For some type τ , e must be a closed expression of type list(τ). Therefore by assumption

N [[e : list(τ)]] = [[t]] ◦ N [[nil : list(τ)]] = [[t]] ◦ η ◦ lnilI

so
N [[nil?]] ◦ 〈〉(N [[e : list(τ)]])

= [[tnil?]] ◦ (η ◦ lnull?I)∗ ◦ π2 ◦ 〈〉([[t]] ◦ η ◦ lnilI)
= [[tnil?]] ◦ (η ◦ lnull?I)∗ ◦ [[t]] ◦ η ◦ lnilI

= [[tnil?]] ◦ [[t]] ◦ η ◦ lnull?I ◦ lnilI

= [[t + tnil?]] ◦ η ◦ tt
= [[t + tnil?]] ◦ N [[true : bool]]

Case
e

t⇒n e1::e2

napply(nil?, e) t+tnil?⇒ false
:

Again for some τ , e and e2 must be closed expressions of type list(τ) and e1 must be a closed
expression of type list(τ). Then by assumption

N [[e : list(τ)]] = [[t]] ◦ N [[e1::e2]] = [[t]] ◦ η ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉

so

N [[nil?]] ◦ 〈〉(N [[e : list(τ)]])
= [[tnil?]] ◦ (η ◦ lnull?I)∗ ◦ N [[e : list(τ)]]
= [[tnil?]] ◦ (η ◦ lnull?I)∗ ◦ [[t]] ◦ η ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[tnil?]] ◦ [[t]] ◦ η ◦ lnull?I ◦ lconsI ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[t + tnil?]] ◦ η ◦ ff ◦ ! ◦ 〈N [[e1 : τ ]],N [[e2 : list(τ)]]〉
= [[t + tnil?]] ◦ N [[false]]

Thus nil? is sound.
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4.5 Example programs

In this section we examine a few of the small programs used as examples in Chapter 3. With these
programs we intend to show not only the difference between the two evaluation strategies but also
the problems that arise when call-by-name is used without the ability to re-use the result of an
evaluation. We also examine a few other programs that use infinite lists.

There are abbreviations that can, again, significantly simplify the evaluation of examples. For
example, the meaning of a conditional expression is the same in the call-by-name semantics as in
the call-by-value semantics. Therefore we can use the same abbreviations:

bool(x) =

{
tt if x is true
ff otherwise

cond(f, g, h) = cond∗ ◦ ψ ◦ 〈f, η ◦ 〈g, h〉〉
cond({x}, g, h) = cond(η ◦ bool(x), g, h)

When abbreviating applications, the meaning differs, but we can use still use the function
apply, where apply(f) = f and

apply(f, f1, . . . , fn) = app∗ ◦ ψ ◦ 〈apply(f, f1, . . . , fn−1, η ◦ fn)〉

The difference is that when we used apply(f, f1, . . . , fn) for the call-by-value, we assumed that
each fi was a value, i.e., a morphism to T V[[τ ]] for some type τ . For the call by name we instead
assume that each fi can contain cost, i.e., it is a morphism to CT N[[τ ]].

Because the definition of apply is similar to the definition of application for the call-by-name
semantics, it is clear that

N [[Γ ` ee1 . . . en : τ ]] = apply(N [[Γ ` e : τ1 → . . . → τn → τ ]],N [[Γ ` e1 : τ1]], . . . ,N [[Γ ` en : τn]])

Similarly, if the arity of c is at least n,

apply(N [[c]], f1, . . . , fn) = CN[[c]] ◦ 〈〉(f1, . . . , fn)

We also have a similar result when applying abstractions:

Theorem 4.5.1 Suppose that f = [[t]] ◦ N [[Γ ` lam x1.. . . lam xn.e : τ0]] ◦ 〈〉(h1, . . . , hk), where
τ0 equals τ1 → . . . → τn → τ , and 〈〉(h1, . . . , hn) : X → T N[[Γ]]. Furthermore suppose that for
1 ≤ i ≤ n, fi : X → CT N[[τi]]. Then

apply(f, f1, . . . , fi)
= [[i tapp + t]] ◦ N [[Γ, x1 : τ1, . . . , xi : τi ` lam xi+1.. . . lam xn.e : τi+1 → . . . → τn → τ ]]

◦ 〈〉(h1, . . . , hk, f1, . . . , fn)

Proof. By straightforward induction on i. 2

Unlike in the call-by-value version of this theorem, we do not need to assume that + is commu-
tative for the result to hold. We still, however, assume commutativity when calculating the cost of
the examples.
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CN[[head]] ◦ 〈〉([[t]] ◦ η ◦ [ ]) = ⊥
CN[[head]] ◦ 〈〉([[t]] ◦ η ◦ [〈z, r〉+]) = [[t + thead]] ◦ z

CN[[tail]] ◦ 〈〉([[t]] ◦ η ◦ [ ]) = ⊥
CN[[tail]] ◦ 〈〉([[t]] ◦ η ◦ [〈z,⊥〉]) = ⊥

CN[[tail]] ◦ 〈〉([[t]] ◦ η ◦ [〈z1, t1〉, 〈z2, r〉+]) = [[t1 + t + ttail]] ◦ η ◦ [〈z2, r〉+]
CN[[nil?]] ◦ 〈〉([[t]] ◦ η ◦ [ ]) = [[t + tnil?]] ◦ η ◦ tt

CN[[nil?]] ◦ 〈〉([[t]] ◦ η ◦ [〈z, r〉+]) = [[t + tnil?]] ◦ η ◦ ff

Figure 4.11: FL list properties

4.5.1 Lists

The abbreviations used for lists in the previous chapter are insufficient for cost lists. In the first
place, some lists may be infinite. Secondly, and more importantly, there may be extra costs involved
in evaluating the tail of the list and we need to be able to represent that cost.

Therefore let [ ] = lnilI , [〈z,⊥〉] = lconsI ◦ 〈z,⊥〉, and [〈z, t〉] = lconsI ◦ 〈z, [[t]] ◦ η ◦ lnilI〉. We will
use r (as in [〈z, r〉]) to represent either ⊥ or t for some t ∈ T . Next let

[〈z1, t1〉, . . . , 〈zn−1, tn−1〉, 〈zn, r〉] = lconsI ◦ 〈z1, [[t1]] ◦ η ◦ [〈z2, t2〉, . . . , 〈zn, r〉]〉
Note that each zi represents the i’th element of the list (which itself may be contain cost), while
each ti represent the extra cost of taking the i’th tail. For infinite lists we write

[〈z1, t1〉, 〈z2, t2〉, . . .] =
∞⊔

n=1

[〈z1, t1〉, . . . , 〈zn,⊥〉]

For a list that has at least n elements and may be infinite or finite we write [〈z1, t1〉, . . . , 〈zn, r〉+].
It can be shown that the meaning of all closed expressions of type list(τ) can be represented

by one of the above forms. For example, the meaning of rec z.1::z (the infinite list of 1’s) is

[[trec]] ◦ η ◦ [〈η ◦ n1
I , trec〉, 〈η ◦ n1

I , trec〉, . . .]
Note that the meaning shows not only that the list is an infinite list of 1’s, but that each element
of the list is a value and there is a cost of trec (that is, unrolling the recursion) for evaluating each
tail.

Figure 4.11 lists properties of the FL constants and the cost list abbreviations.

4.5.2 The twice program revisited

First we look at the simple higher order function

twice = lam f.lam x.f(f(x))

Let zf : 1 → CT N[[τ → τ ]] and zx : 1 → CT N[[τ ]]. Then

apply(N [[twice]], zf , zx) = [[2tapp]] ◦ N [[f : τ → τ, x : τ ` f(f(x)) : τ ]] ◦ 〈〉(zf , zx)
= [[2tapp]] ◦ apply(zf ,apply(zf , zx))
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Now suppose zf refers to a program that does not evaluate its argument; that is, there exists a
cost tc and a morphism y : 1 → T N[[τ ]] such that for any zx, apply(zf , zx) = [[tc]] ◦ η ◦ y. Then

apply(N [[twice]], zf , zx) = [[2tapp + tc]] ◦ η ◦ y

which shows that the inner f is also never applied.
Next suppose that zf refers to a program such that there exists a cost tc and a function Fv on

values such that for any zx = [[tx]] ◦ η ◦ yx, apply(zf , zx) = [[tc +ntx]] ◦ η ◦Fv(yx). This is a function
that evaluates its argument n times, and has an additional constant cost of tc. For example, zf

could be N [[lam x.x + . . . + x]]. In that case

apply(N [[twice]], zf , zx) = [[2tapp]] ◦ apply(zf , [[tc + ntx]] ◦ η ◦ Fv(gx))
= [[2tapp + tc + n(tc + ntx)]] ◦ η ◦ Fv(Fv(gx))
= [[2tapp + (n + 1)tc + n2tx]] ◦ η ◦ Fv(Fv(gx))

In this case the number of times zx is evaluated increases rapidly with n, as the number of times
zf is applied is n + 1.

4.5.3 The length program revisited

Again we look at the program

length = rec len.lam l.if nil?(l) then 0 else 1 + len(tail(l))

which finds the length of a list. Let τ0 = list(τ) → nat, and

e = if nil?(l) then 0 else 1 + len(tail(l))

Then length = rec len.lam l.e, and

N [[length]] = [[trec]] ◦ N [[len : τ0 ` lam l.e : τ0]] ◦ 〈〉(N [[length]])

Let Γ = len : τ0, l : list(τ). Then, for any z : 1 → CT N[[list(τ)]],

apply(N [[length]], z) = [[tapp + trec]] ◦ N [[Γ ` e : nat]] ◦ 〈〉(N [[length]], z)

If z = ⊥, then

N [[Γ ` nil?(l) : bool]] ◦ 〈〉(N [[length]], z) = CN[[nil?]] ◦ 〈〉(⊥) = ⊥

so apply(N [[length]], z) = ⊥ as well. For z = [[t]] ◦ η ◦ lnilI ,

N [[Γ ` nil?(l) : bool]] ◦ 〈〉(N [[length]], z) = [[t + tnil?]] ◦ η ◦ tt

so

apply(N [[length]], z)
= [[tapp + trec]] ◦ cond(N [[Γ ` nil?(l) : bool]] ◦ 〈〉(N [[length]], z)) of

True: [[ttrue]] ◦ η ◦ n0
I ◦ 〈〉(N [[length]], z)

False: [[tfalse]] ◦ N [[Γ ` 1 + len(tail(l)) : nat]] ◦ 〈〉(N [[length]], z)
= [[t + tnil? + ttrue + tapp + trec]] ◦ η ◦ n0

I
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For z = [[t]] ◦ η ◦ lconsI ◦ 〈a, z′〉,

N [[nil?]] ◦ 〈〉(z) = [[t + tnil?]] ◦ η ◦ ff

and
N [[tail]] ◦ 〈〉(z) = [[t + ttail]] ◦ z′

Therefore

apply(N [[length]], z)
= [[tapp + trec]] ◦ cond([[t + tnil?]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ n0
I

False: [[tfalse]] ◦ CN[[+]] ◦ 〈〉(η ◦ n1
I ,apply(N [[length]], [[t + ttail]] ◦ z′))

= [[tfalse + t + tnil? + tapp + trec]] ◦ CN[[+]] ◦ 〈〉(η ◦ n1
I ,apply(N [[length]], [[t + ttail]] ◦ z′))

Again if z′ = ⊥ then apply(N [[length]], [[t + ttail]] ◦ z′) = ⊥, so apply(N [[length]], z) = ⊥ as
well. Therefore for all lists of the form l = [〈z1, t1〉, . . . , 〈zn,⊥〉], apply(N [[length]], [[t]] ◦ η ◦ l) = ⊥.
By continuity length applied to infinite lists is also ⊥.

Therefore we are only interested in lists of the form [〈z1, t1〉, . . . , 〈zn, tn〉]. In that case, for
n > 0,

apply(N [[length]], [[t]] ◦ η ◦ [〈z1, t1〉, . . . , 〈zn, tn〉])
= [[tfalse + t + tnil? + tapp + trec]] ◦ CN[[+]]

◦ 〈〉(η ◦ n1
I ,apply(N [[length]], [[t1 + t + ttail]] ◦ η ◦ [〈z2, t2〉, . . . , 〈zn, tn〉]))

To find the cost function, suppose that there exist a function N(i) and, for each i, functions
Ti(t′, t′1, . . . , t′i) such that for any t′,

apply(N [[length]], [[t′]] ◦ η ◦ [〈z2, t2〉, . . . , 〈zn, tn〉]) = [[Tn−1(t′, t2, . . . , tn)]] ◦ η ◦ nN(n−1)
I

For the case where n = 1, T0(t′) = t′ + tnil? + ttrue + tapp + trec and N(0) = 0. Then

apply(N [[length]], [[t]] ◦ η ◦ [〈z1, t1〉, . . . , 〈zn, tn〉])
= [[tfalse + t + tnil? + tapp + trec]] ◦ CN[[+]]

◦ 〈〉(η ◦ n1
I , [[Tn−1(t1 + t + ttail, t2, . . . , tn)]] ◦ η ◦ nN(n−1)

I)
= [[tfalse + t + tnil? + tapp + trec + t+ + Tn−1(t1 + t + ttail, t2, . . . , tn)]]

◦ η ◦ nN(n−1)+1
I

Therefore the cost of length is the solution to the equations

T0(t) = t + tnil? + ttrue + tapp + trec

Tn(t, t1, . . . , tn) = t + tnil? + tfalse + tapp + trec + t+ + Tn−1(t1 + t + ttail, t2, . . . , tn)

where t1, . . . , tn are the additional costs within the list. The solutions to these equations,

Tn(t, t1, . . . , tn) = (n + 1)(t + tnil? + tapp + trec + t+) + ntfalse +
n(n + 1)

2
ttail + ttrue +

n∑

i=1

(n− i + 1)ti

is O(n2). This is substantially less efficient than the call-by-value version of length, which was
O(n). The extra cost comes from the repeated calculations of the list and its tails. The first time
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length is called, the list is evaluated. In the recursive calls, not only is the list evaluated, but all
the tails of the list must be evaluated each time as well. Therefore we end up with O(n2) calls to
tail instead of O(n).

To solve this problem we need to add an ability to force the evaluation of an expression and
allow the result to be re-used. This is usually done by adding a let construct, let x = e1 in e2,
with the following operational semantics:

e1⇒n v1 [v1/x]e2⇒n v

let x = e1 in e2⇒n v

Rather than add a new construct to our language directly, we add a new constant vapp with the
type (τ1 → τ2) → τ1 → τ2, which simulates call-by-value application:

e2
t1⇒n v2 e1(v2)

t2⇒n v

napply(vapp, e1, e2)
t2+t1⇒ v

We can then define let x = e1 in e2 to mean vapp (lam x.e2) e1.
For the denotational semantics, let CN[[vapp]] : ×(CT N[[τ1 → τ2]], CT N[[τ1]]) → CT N[[τ2]] be

defined as follows:

CN[[vapp]] = (apply(π1, η ◦ π2))
∗ ◦ ψ ◦ (η × id) ◦ (π2 × id)

There are simpler definitions possible for vapp, but we cannot easily prove them sound for all
possible values of N [[e1]]. To see that this definition is sound, suppose that vapp e1 e2 has type
τ . Then there exists a type τ ′ such that ` e1 : τ ′ → τ and ` e2 : τ ′. Next suppose that
N [[e2 : τ ′]] = [[t1]] ◦ N [[v2 : τ ′]] and N [[e1(v2) : τ ]] = [[t2]] ◦ N [[v : τ ]]. Because v2 is a value we know
that there exists a morphism y : 1 → T N[[τ ′]] such that N [[v2 : τ ′]] = η ◦ y. Therefore

ψ ◦ (η × id) ◦ (π2 × id) ◦ 〈〉(N [[e1 : τ ′ → τ ]],N [[e2 : τ ′]])
= ψ ◦ 〈η ◦ N [[e1 : τ ′ → τ ]], [[t1]] ◦ η ◦ y〉
= [[t1]] ◦ η ◦ 〈N [[e1 : τ ′ → τ ]], y〉

Furthermore,
apply(π1, η ◦ π2) ◦ 〈N [[e1 : τ ′ → τ ]], y〉

= apply(N [[e1 : τ ′ → τ ]], η ◦ y)
= N [[e1(v2) : τ ]]
= [[t2]] ◦ N [[v : τ ]]

Therefore

CN[[vapp]] ◦ 〈〉(N [[e1 : τ ′ → τ ]],N [[e2 : τ ′]])
= (apply(π1, η ◦ π2))

∗ ◦ [[t1]] ◦ η ◦ 〈N [[e1 : τ ′ → τ ]], y〉
= [[t1]] ◦ apply(π1, η ◦ π2) ◦ 〈N [[e1 : τ ′ → τ ]], y〉
= [[t2 + t1]] ◦ N [[v : τ ]]

so vapp is sound.
To evaluate let, if N [[Γ ` e1 : τ ′]] = ⊥, then

N [[Γ ` let x = e1 in e2 : τ ]] = (apply(π1, η ◦ π2))
∗ ◦ ψ ◦ 〈η ◦ N [[Γ ` lam x.e2 : τ ′ → τ ]],⊥〉

= ⊥
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as expected, while if N [[Γ ` e1 : τ ′]] = [[t1]] ◦ η ◦ g1, then

N [[Γ ` let x = e1 in e2 : τ ]] = [[t1]] ◦ apply(N [[Γ ` lam x.e2 : τ ′ → τ ]], η ◦ g1)
= [[tapp + t1]] ◦ N [[Γ, x : τ ′ ` e2 : τ ]] ◦ 〈id, η ◦ g1〉

We now rewrite the length program as follows:

length2 = rec len.lam l.let l1=l in
if (nullp(l1)) then 0 else 1 + len(tail(l1))

It should be clear that, as before, apply(N [[length2]],⊥) = ⊥. Similarly, N [[length2]] applied to
lists of the form [〈z1, t1〉, . . . , 〈zn,⊥〉] and [〈z1, t1〉, . . .] is again ⊥.

However,

apply(N [[length2]], [[t]] ◦ η ◦ [ ]) = [[ttrue + t + tnil? + 2tapp + trec]] ◦ η ◦ n0
I

and

apply(N [[length2]], [[t]] ◦ η ◦ [〈z1, t1〉, . . . , 〈zn, tn〉])
= [[tfalse + t + tnil? + 2tapp + trec]] ◦ CN[[+]]

◦ 〈〉(η ◦ n1
I ,apply(N [[length2]], [[t1 + ttail]] ◦ η ◦ [〈z2, t2〉, . . . , 〈zn, tn〉]))

The extra cost of tapp comes from the extra binding; however, the cost of taking the tail of the list
no longer includes t. Therefore if we assume that

apply(N [[length2]], [[t]] ◦ η ◦ [〈z1, t1〉, . . . , 〈zn, tn〉]) = [[T (n, t, t1, . . . , tn)]] ◦ η ◦ nN(n)
I

then we know that N(n) = n as before and that T satisfies the following equations:

T (0, t) = ttrue + t + tnil? + 2tapp + trec
T (n, t, t1, . . . , tn) = t+ + tfalse + t + tnil? + 2tapp + trec + T (n− 1, t1 + ttail, t2, . . . , tn)

The solution to T ,

T (n, t, t1, . . . , tn) = t + (n + 1)(tnil? + 2tapp + trec) + n(tfalse + t+ + ttail) + ttrue +
n∑

i=1

ti

is now O(n) as in the call-by-value version. Furthermore, the costs embedded in the list are now
evaluated only once.

4.5.4 The program tabulate revisited

In Chapter 3 we examined the program tabulate, defined as follows:

itab = rec t.lam i.lam f.lam n.if i ≤ n then (f(i))::(t (i + 1) f n) else nil

tabulate = itab(1)

This version of tabulate includes extra code to ensure that the list has a finite length. In this
chapter infinite lists are allowed. Therefore let

ntab = rec tb.lam i.lam f.(f(i))::(tb(i + 1)f)
ntabulate = ntab(1)
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This function always creates an infinite list whose elements are f applied to successively higher
integers. Let zf : 1 → CT N[[nat → τ ]]. Then for any cost t and integer n,

apply(N [[ntab]], [[t]] ◦ η ◦ nn
I , zf )

= [[2tapp + trec]] ◦ η ◦ lconsI

◦ 〈apply(zf , [[t]] ◦ η ◦ nn
I),apply(N [[ntab]], [[t + t+]] ◦ η ◦ nn+1

I , zf )〉

Thus the function itself is constant-time, but it creates an infinite list with internal cost. The
cost of the head of the list is the cost of applying zf to n which itself has a cost of t. The cost of
the integer at the next level then becomes t + t+. Therefore we know that

apply(N [[ntabulate]], zf ) = [[2tapp + trec]] ◦ η ◦ [〈z1, 2tapp + trec〉, 〈z2, 2tapp + trec〉 . . .]

where for i > 0, zi = apply(zf , [[(i− 1)t+]] ◦ η ◦ ni
I).

Assuming that zf is not independent of its input, we would like to reduce the accumulation
of t+ at each element. This can be done by using let to evaluate the integer before creating the
list. Then zf is only applied to values, while the cost of adding the integers is moved from the
application of zf to the evaluation of the the tail. Let

ntab′ = rec tb.lam i.lam f.let j = i in (f(j))::(tb(j + 1)f)
ntabulate′ = ntab′(1)

With this program, we have that

apply(N [[ntabulate′]], zf ) = [[3tapp + trec]] ◦ η ◦ [〈z′1, 3tapp + t+ + trec〉, 〈z′2, 3tapp + t+ + trec〉 . . .]

Where for i > 0, z′i = apply(zf , η ◦ ni
I). The extra cost of tapp comes from the extra variable

binding due to the let construction. Thus we have changed form a form where the i’th element
has an additional cost of (i− 1)t+ to a form where each element has the usual cost, but calculating
the tail is slightly more expensive.

4.6 Relating call-by-name programs

As with the call-by-value semantics, we can take an ordering ¹ on costs and extend it to an
improvement relation ¹N

τ on programs. The process of defining ¹N
τ is very similar to that of

defining ¹V
τ ; the primary difference is that a greater number of subparts contain external cost than

in the call-by-value semantics.
The operational definition is essentially the same: Let e1 ≤N e2 hold when for all contexts C[ ]

such that C[e1] and C[e2] are closed expressions of ground type, then C[e1]
t1⇒n v if and only if

C[e2]
t2⇒n v with t1 ¹ t2.

The definition of the denotational relation ¹N
τ is also very similar. It requires that the meaning

of expressions be monotone relative to ¹. Therefore, along with the definition of ¹N
τ , we use an

extension of the definition of monotone to morphisms to the call-by-name meanings of types. The
definitions are mutually recursive.

Definition 4.6.1 A morphism z : 1 → CT N[[τ ]] is monotone relative to a cost order ¹ if either
z = ⊥, or, for some cost t, z = [[t]] ◦ η ◦ y, where y is monotone relative to ¹ if one of the following
holds:
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• τ is a ground type

• τ = δ(τ1, . . . , τn), and for all intensional projections ρN
ij

, id∗ ◦ ρN
ij
◦ y is monotone relative to

¹.

• τ = τ1 → τ2 and for all monotone z1, z2 : 1 → CT N[[τ1]], if apply(η ◦ y, z1) and apply(η ◦ y, z2)
are monotone relative to ¹ and z1 ¹N

τ1 z2 then

apply(η ◦ y, z1) ¹N
τ2 apply(η ◦ y, z2)

When the cost order ¹ is understood, we simply say that z is monotone.

Definition 4.6.2 Given two morphisms y1, y2 : 1 → T N[[τ ]] that are monotone relative to ¹,
y1 ¹N

τ y2 if

• τ is a ground type and y1 = y2.

• τ = δ(τ1, . . . , τn), Fδ(!, . . . , !) ◦ y1 = Fδ(!, . . . , !) ◦ y2, and, for each projection ρN
ij

,

id∗ ◦ ρN
ij ◦ y1 ¹N

τi
id∗ ◦ ρN

ij ◦ y2

• τ = τ1 → τ2, and, for all monotone morphisms z : 1 → T N[[τ1]],

apply(η ◦ y1, z) ¹N
τ2 apply(η ◦ y2, z)

For any monotone morphisms z1, z2 : 1 → CT N[[τ ]], z1 ¹V
τi

z2 if val(z1) exists precisely when val(z2)
exists, and, when they both exist, cost(z1) ¹ cost(z2), and val(z1) ¹N

τ val(z2).

For any type environment Γ, a morphism 〈〉(z1, . . . , zn) : 1 → T N[[Γ]] is monotone if each zi is
monotone. A morphism g : T N[[Γ]] → T N[[τ ]] is monotone if for all monotone r, r′ : 1 → T N[[Γ]],
g ◦ r is monotone and if whenever r ¹N

Γ r′, g ◦ r ¹N
τ g ◦ r′.

Similarly, for any type environment Γ and morphisms 〈〉(z1, . . . , zn), 〈〉(z′1, . . . , z′n) : 1 → T N[[Γ]],
we say that 〈〉(z1, . . . , zn) ¹N

Γ 〈〉(z′1, . . . , z′n) if, for each 1 ≤ i ≤ n, zi ¹N
τi

z′i. Given morphisms
g1, g2 : T N[[Γ]] → T N[[τ ]], g1 ¹N

τ g2 if, for all monotone r : 1 → T N[[Γ]], g1 ◦ r ¹N
τ g2 ◦ r.

It should be clear that ¹N
τ is a pre-order and that for any t ∈ T , z ¹N

τ z′ if and only if
[[t]] ◦ z ¹N

τ [[t]] ◦ z′.
We can show that the improvement relation ¹N

τ is reasonable by showing that for any closed
expressions e1, e2 of type τ , NE[[e1]] ¹N

τ NE[[e2]] implies that e1 ≤N e2. Again, to show this, we
need to prove that the meanings of all expressions are monotone, and that for any context C[ ],
if C[e1] and C[e2] are both closed expressions of type τ ′, then NE[[e1]] ¹N

τ NE[[e2]] implies that
NE[[C[e1]]] ¹N

τ ′ NE[[C[e2]]].

Lemma 4.6.1 Let Γ = x1 : τ1, . . . , xn : τn be a type environment and suppose that Γ ` e : τ . Then
N [[Γ ` e : τ ]] is monotone.

Proof. By induction on e. The proof is straightforward and almost identical to the proof for the
call-by-value semantics. 2
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Theorem 4.6.2 Suppose that for closed expressions e1 and e2 of type τ , N [[e1 : τ ]] ¹N
τ N [[e2 : τ ]].

Then for all contexts C[ ], type environments Γ, and types τ ′ such that both Γ ` C[e1] : τ ′ and
Γ ` C[e2] : τ ′,

N [[Γ ` C[e1] : τ ′]] ¹N
τ ′ N [[Γ ` C[e2] : τ ′]]

Proof. By induction on the structure of C[ ]. The proof is straightforward and also similar to the
proof for the call-by-value semantics. We include the case for application here.

Let r : 1 → T N[[Γ]]. Then N [[Γ ` C[e1] : τ ′]] ¹N
τ ′ N [[Γ ` C[e2] : τ ′]] if

N [[Γ ` C[e1] : τ ′]] ◦ r ¹N
τ ′ N [[Γ ` C[e2] : τ ′]] ◦ r

For application assume that C[ ] = C1[ ](C2[ ]). Even though only one of C1 or C2 may actually
have a hole, we can ignore this fact during the proof, because if Ci does not have a hole, then
Ci[e1] ¹N

τ ′′ Ci[e2] holds immediately.
Because Γ ` C1[e1](C2[e1]) : τ ′ and Γ ` C1[e2](C2[e2]) : τ ′, there exist a type τ ′′ such that

Γ ` C1[e1] : τ ′′ → τ ′, Γ ` C2[e1] : τ ′′, Γ ` C1[e2] : τ ′′ → τ ′, and Γ ` C2[e2] : τ ′′. Therefore
by the induction hypothesis, N [[Γ ` C1[e1] : τ ′′ → τ ′]] ◦ r ¹N

τ ′′→τ ′ N [[Γ ` C1[e2] : τ ′′ → τ ′]] ◦ r
and N [[Γ ` C2[e1] : τ ′′]] ◦ r ¹N

τ ′′ N [[Γ ` C2[e2] : τ ′′]] ◦ r. By Lemma 4.6.1, N [[Γ ` C2[e1] : τ ′′]] ◦ r,
N [[Γ ` C2[e2] : τ ′′]]◦r, N [[Γ ` C1[e1] : τ ′′ → τ ′]]◦r, and N [[Γ ` C1[e2] : τ ′′ → τ ′]]◦r are all monotone.
Therefore by the definition of ¹N

τ ′′→τ ′ ,

N [[Γ ` C1[e1](C2[e1]) : τ ′]] ◦ r
= apply(N [[Γ ` C1[e1] : τ ′′ → τ ′]] ◦ r,N [[Γ ` C2[e1] : τ ′′]] ◦ r)
¹N

τ ′ apply(N [[Γ ` C1[e1] : τ ′′ → τ ′]] ◦ r,N [[Γ ` C2[e2] : τ ′′]] ◦ r)
¹N

τ ′ apply(N [[Γ ` C1[e2] : τ ′′ → τ ′]] ◦ r,N [[Γ ` C2[e2] : τ ′′]] ◦ r)
= N [[Γ ` C1[e2](C2[e2]) : τ ′]] ◦ r

2

Theorem 4.6.3 Suppose that for any ground type g and closed values v, v′ of type g, N [[v :
g]] = N [[v′ : g]] implies that v = v′. Then for any closed expressions e1 and e2 of type τ . If
N [[e1]] ¹N

τ N [[e2]], then e1 ≤N e2.

Proof. Let C[ ] be a context such that C[e1] and C[e2] are closed values of ground type g. Then by
Theorem 4.6.2 N [[C[e1]]] ¹N

g N [[C[e2]]]. This means that if C[e1]
t1⇒n v, then N [[C[e1]]] = [[t1]]◦N [[v]].

Thus, for some cost t2, N [[C[e2]]] = [[t2]] ◦ N [[v]] as well, with t1 ¹ t2. From adequacy we know
that there must exist a value v′ such that C[e2]

t2⇒n v′; this means, however, that N [[v′]] = N [[v]], so
v = v′. Therefore e1 ≤N e2. 2

4.7 Conclusion

The derivation of the intensional call-by-name semantics follows the same pattern as the derivation
of the intensional call-by-value semantics. The differences between them are governed primarily by
the differences between the extensional semantics. Thus it is not surprising that the call-by-name
denotational semantics proves to be sound and adequate relative to the call-by-name operational
semantics, and that the proofs of soundness and adequacy strongly resemble the proofs of soundness
and adequacy for the call-by-value semantics.
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Similarly, when relating programs, the definition of ¹N
τ strongly resembles the definition of ¹V

τ ,
differing only in the way it handles the extra cost in subparts. Thus proving that expressions were
monotone and that ¹N

τ implied ≤N is greatly simplified, as the proofs were almost identical to the
equivalent proofs for the call-by-value definitions.

The uniformity between the call-by-name and call-by-value semantics is also reflected in the
treatment of delayed computations. With a call-by-value evaluation strategy, the only computations
that are delayed are those stored in functional types. With cost structures we are able to treat
the delay due to higher order types and the delay due to lazy structures uniformly. Thus there
is no difficulty handling the delay in the structures such as lazy lists while still maintaining the
ability to handle higher order types. This differs from the approach of [37], where the addition
of higher-order types and lazy structures were handled in substantially different ways, making it
difficult to include both.

When calculating actual examples, we see quickly that limiting ourselves to only call-by-name
application can lead to substantial inefficiency. Call-by-name languages such as Algol solve this
problem by introducing a call-by-value let constructs, and such a construct does solve the problems
with inefficiency if used appropriately. Other languages that use macros in a manner similar to call-
by-name, such as macros in C, do not allow recursion, limiting the degree of inefficiency introduced.

In practice, call-by-name languages are rarely used by themselves; instead, they include some
methods for avoiding reevaluations – either with a let construct or by using a call-by-need eval-
uation strategy. As a call-by-need strategy has the same extensional effect (when we know that
the value of an expression cannot change, something that is not true with Algol-60), it is generally
safe, and sometimes more efficient, to use it rather than a straight call-by-name strategy. It is
not always clear how the cost calculated with the call-by-name semantic relates to actual costs
using a call-by-need evaluation strategy. It is true, however, that, ignoring any extra overhead,
the cost of running a program using a call-by-need evaluation strategy will be less than running a
program using a call-by-name evaluation strategy. Thus many times analyzing a program with the
call-by-name intensional semantics will give us an upper bound on the cost of running a program
using a call-by-need evaluation strategy. Sometimes, when we know that little or no reevaluation
takes place, the bound may be a very good one; for example, the call-by-need cost of ntabulate′

should be very close to the cost found in section 4.5.
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Chapter 5

A Larger Example: Pattern
Matching

5.1 Regular expression search

When evaluating by call-by-value, we can generally determine the cost or complexity of an expres-
sion easily when the expression does not contain any higher-order elements. For example, when
we examined the length function in Chapter 3 we were easily able to determine the cost function;
the power of the full semantics was not needed to determine it. We now turn to a more interesting
example involving higher-order functions.

The higher-order functions examined so far all used functions as inputs which were then applied
a number of times. In practice, many high-order functions use their arguments in this manner. The
example in this chapter, however, builds and applies higher-order functions within it; the outer
function uses only values of first-order types as inputs. These higher-order functions are called
continuations because they describe the future behavior of the overall function, i.e., the action a
function needs to take when it wants to continue processing information. Thus the main function
takes, as one of its arguments, a continuation, does some internal calculation, then, depending
on the result, calls the continuation or a modified continuation on a suitable new argument to
determine the final value.

The example in this section is a function, accept, that takes as input a regular expression and
a string and returns true if the string is in the language described by the regular expression and
false otherwise. For the purposes of discussion, we will use the following notation for the regular
expressions, where the letters r and q indicate regular expressions, and a indicates a single character
in some set I. If R and Q are sets of strings, then we write RQ for the set of strings obtained by
concatenation, that is, RQ = {s1s2 | s1 ∈ R and s2 ∈ Q}. This notation generalizes to Ri (i ≥ 0),
the set of strings obtained by concatenating i strings from R. Finally let Lr be the set of strings
matching r, defined inductively:

a single character La = {a}
rq sequencing Lrq = LrLq

r|q choice Lr|q = Lr ∪ Lq

r∗ repetition Lr∗ =
⋃∞

i=0 Li
r

We assume that repetition has higher precedence than sequencing, which has higher precedence
than choice; thus a|ab∗ is equivalent to a|(a(b∗)). We also assume that sequencing and choice
associate to the right; for example, abc = a(bc). This is not the standard association, but as

155
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sequencing and choice are associative operators (i.e, L(ab)c = La(bc) and L(a|b)|c = La|(b|c)) this
decision is largely immaterial, except that with this choice many of the complexity calculations
become significantly simpler, as will be seen in Example 1-3 of section 5.1.5. Examples 7 and 8 of
section 5.1.7. Lastly, we write [a1a2 . . . an] as shorthand for (a1|a2|...|an).

There is a standard algorithm ([2]) used in many applications of regular expression matching
that has a worst-case complexity proportional to the product of the length of the string being
matched and the size of the regular expression, and is linear in the length of the string in general.
This algorithm, however, does a non-trivial amount of pre-processing work initially. Therefore for
cases where the regular expressions are simple and frequently changing (as in incremental searches
by an editor), the matching algorithm given in this section may be faster.

5.1.1 The algorithm

The algorithm consists of two primary parts: an internal recursive function, acc, taking a contin-
uation as an argument, and an external function, accept, that calls acc with a final continuation
which would be called whenever acc reaches the end of the string to be searched. The function
acc has three arguments: the regular expression (r), the string to match (s), and the continuation
(k). Overall, acc r k s returns true if there exist strings s1 and s2, such that s = s1s2, r matches
s1, and k(s2) returns true. The execution of acc r k s is as follows:

r = a: If the first character of s is a, then call k on the rest of s, otherwise return false.

r = r1|r2: Call acc on r1, s and k; if the result is true, return true, otherwise return the result of
calling acc on r2, s, and k.

r = r1r2: Build a new continuation that, given a string s′, calls acc on r2, k, and s′, and call acc
on r1, s and the new continuation.

r = (r′)∗: First apply the continuation to s to see if any copies of r′ are needed. If k applied to s
is true, return true (the empty string matches (r′)∗). Otherwise, build a new continuation,
strcheck, which takes a string s′ and returns false if s′ = s, otherwise strcheck returns
the result of applying acc to r, k and s′. For the final result return the result of calling acc
on r′, strcheck and s. The check that s = s′ ensures that the algorithm terminates; if no
progress is made by the time the strcheck is called, there is no possible successful match.

In ML, the algorithm becomes the following program, using a suitable data type to represent
regular expressions:
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datatype regexp = CHAR of string | OR of regexp * regexp
| SEQ of regexp * regexp | STAR of regexp

fun acc (CHAR i) k (j::s) = (i = j) andalso (k s)
| acc (CHAR i) k nil = false
| acc (OR (r1, r2)) k s = (acc r1 k s) orelse (acc r2 k s)
| acc (SEQ (r1, r2)) k s = (acc r1 (acc r2 k) s)
| acc (STAR r1) k s
= let

fun strcheck s2 = not (length (s) = length(s2))
andalso (acc (STAR r1) k s2)

in
(k s) orelse (acc r1 strcheck s)

end

We need only to compare string lengths rather than entire strings for the equality check because
acc (STAR r1) k s is designed so that if a recursive call of the form acc (STAR r1) k′ s′ occurs
s’ will be a suffix of s. Therefore comparing lengths gives the same result as comparing contents,
but the calculation can be implemented more efficiently.

The external program calls acc with a continuation that returns true if its input string is
empty (meaning that all characters were matched) and false otherwise, i.e., the standard test for
an empty string, null. In ML it becomes

fun accept r s = acc r null s

5.1.2 Converting from ML

The next step converts the program from ML to a language consistent with the semantic definitions
given in this dissertation. This involves two steps: converting all the types, and converting the
pattern-matching format of ML to λ-expressions. We represent characters as integers for simplicity.
They could be considered as items themselves, or as ASCII code, it matters little to the analysis of
the algorithm. To make the string comparison needed in strcheck constant time, we actually pair
lists of characters with an integer that corresponds to the length of the string; however, so that we
do not have to calculate the length of the string during initialization, we pair a list of characters s
with an integer i such that i = length(s0) − length(s), where s0 is the “original” string, i.e, the
argument of accept. Thus i is the number of characters already read since the call to accept. A
pair of this kind is used to represent a string internally within the body of acc.

Lastly, we need a representation for the regular expression type. The constants given in FL
are insufficient, so we add a new (ground) type, regexp, and new constants. The constructors for
regexp are as follows:

Name Arity Type
Char 1 nat → regexp
Or 2 regexp → regexp → regexp
Seq 2 regexp → regexp → regexp
Star 1 regexp → regexp
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We additionally include one “pattern-matching” primitive function, rcase, of arity 5 such that
for any type τ , rcase has type

regexp → (nat → τ) → (regexp → regexp → τ) → (regexp → regexp → τ)
→ (regexp → τ) → τ

This constant is similar in form to case, except that the different cases for regexp are handled
instead. For clarity we write

rcase (e) of CHAR : e1 | OR : e2 | SEQ : e3 | STAR : e4

to stand for rcase e e1 e2 e3 e4. Its operational rules are as follows:

v1 n
t⇒v v

rcase (Char n) of CHAR : v1 | OR : v2 | SEQ : v3 | STAR : v4
t+trcase⇒v v

v2 r1 r2
t⇒v v

rcase (Or r1 r2) of CHAR : v1 | OR : v2 | SEQ : v3 | STAR : v4
t+trcase⇒v v

v3 r1 r2
t⇒v v

rcase (Seq r1 r2) of CHAR : v1 | OR : v2 | SEQ : v3 | STAR : v4
t+trcase⇒v v

v4 r
t⇒v v

rcase (Star r) of CHAR : v1 | OR : v2 | SEQ : v3 | STAR : v4
t+trcase⇒v v

We also define some “constants” for strings. These are not real constants, but rather abbrevia-
tions which make the final code more understandable and make calculating its meaning easier. For
example, snil? is the equivalent of nil? for strings. Similarly, shead returns the first character
of the string, while, stail returns the rest of the string, adjusting the number of read characters
in the right-hand side of the pair. The function sseen returns the number of “seen” (or read)
characters. If we were using these strings outside of this program, the definition of sseen would be
meaningless, but within the program, this definition of sseen will be sufficient and of constant cost.
It is used instead of the length program so that we do not need to initially evaluate the length of
a string; within the program sseen(s) + length(s) is always the length of the initial string being
matched.

Lastly snew creates a new string from a list of integers. The abbreviations are thus as follows:

string = list(nat) × nat
snil? = lam s.nil?(fst s)
shead = lam s.head(fst s)
stail = lam s.<tail(fst s), (snd s) + 1>
sseen = snd
snew = lam l.<l, 0>

Besides adding a type for regular expressions, the ML version used both pattern matching
and the constants andalso, orelse, and not, none of which are in our language. The pattern
matching is replaced by snil? and rcase. For the boolean constants we can easily assign simple
abbreviations: Let e1 andalso e2 stand for if e1 then e2 else false, and let e1 orelse e2 stand for
if e1 then true else e2. Expanding not in the case where it is used would lead to a less efficient
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program; instead we simply write if e1 then false else e2 for (not e1) andalso e2. We can
now translate each case from the ML version to an (unclosed) expression. Let the code fragments
accchar, accor, accseq, accstar, and strcheck be defined by

accchar =def lam n.if (snil? s) then false
else (shead(s) = n) andalso (stail s)

accor =def lam r1.lam r2.(a r1 k s) orelse (a r2 k s)
accseq =def lam r1.lam r2.a r1 (a r2 k) s
accstar =def lam r1.(k s) orelse (a r1 strcheck s)
strcheck =def lam s′.if (sseen(s) = sseen(s′)) then false

else (a (Star r1) k s′)

The free variables in the above code fragments are a, representing the recursive variable rep-
resenting acc; s, representing the current string to check; and k, representing the continuation.
Additionally, strcheck has the free variable r1 from accstar. The main programs are as follows:

accept =def lam r.lam l.acc r snil? (snew l)
acc =def rec a.lam r.lam k.lam s.

rcase r of CHAR: accchar | OR: accor
| SEQ: accseq | STAR: accstar

5.1.3 Denotational semantic definitions for regexp constants

Before we can calculate the meaning of the two programs, we need to give meanings to the new
constants. As we will be using lists and integers for strings and characters, we only need to provide
meanings in the categories PDom and PDom→.

In the ML program, the regular expression type was defined as the union of four different types:
one containing integers, one containing a regular expression, and two containing pairs of regular
expressions. Therefore let R be the least solution to the pre-domain equation

R ∼= ((N + (R×R)) + (R×R)) + R

The syntactic set of regular expressions (taking some care with parentheses), discretely ordered, is
a solution to the above equation.

We chose the ordering of the subparts of R to match the definition of rcase; the choice of
parentheses was arbitrary.

Because N is discretely ordered and products and sums preserve discreteness in PDom, R is
also discretely ordered. Let

rfold: ((N + (R×R)) + (R×R)) + R → R
runfold: R → ((N + (R×R)) + (R×R)) + R

be the derived isomorphisms. We now can shift to the intensional category PDom→ by setting
RI to idR, rfoldI to (rfold, rfold), and runfoldI to (runfold, runfold). We next need some morphisms
equivalent to the constructors. These simply insert an element into the proper place in the above
sum and then use rfold to convert the sum to R. Thus let rchar, ror, rseq, and rstar be defined as
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CV[[Char]] : ×(NI) → CRI

CV[[Or]] : ×(RI , RI) → CRI

CV[[Seq]] : ×(RI , RI) → CRI

CV[[Star]] : ×(RI) → CRI

CV[[rcase]] ×(RI , [NI ⇒ CRI ], [RI ⇒ C[RI ⇒ CRI ]], [RI ⇒ C[RI ⇒ CRI ]], [RI ⇒ CRI ]) → CRI

CV[[Char]] = η ◦ rchar ◦ π2

CV[[Or]] = η ◦ ror ◦ (π2 × id)
CV[[Seq]] = η ◦ rseq ◦ (π2 × id)
CV[[Star]] = η ◦ rstar ◦ π2

CV[[rcase]] : = [[trcase]] ◦ rcase(app1NI ◦ (id× π4
1), app2 ◦ (id× π4

2),
app2 ◦ (id× π4

3), app1RI ◦ (id× π4
4)) ◦ χ

where app1A : A × [A ⇒ CRI ] → CRI and app2 : (RI × RI) × [RI ⇒ C[RI ⇒ RI ]] → CRI such
that app1 = app ◦β and app2 = app∗ ◦ψ ◦ (app× η) ◦αl ◦β, and χ is the product isomorphism from
×(RI , A, B, C,D) to RI × (×(A, B,C, D)).

Figure 5.1: Semantic definitions of regular expression constants

follows:
rchar : NI → RI = rfoldI ◦ inl ◦ inl ◦ inl

ror : RI ×RI → RI = rfoldI ◦ inl ◦ inl ◦ inr

rseq : RI ×RI → RI = rfoldI ◦ inl ◦ inr

rstar : RI → RI = rfoldI ◦ inr

These four morphisms are the equivalents of inl and inr for the four-part sum. Therefore we
will also need a four-part equivalent to case. Suppose there exist objects p, p′, and morphisms
f1 : NI × p → p′, f2, f3 : (RI × RI) × p → p′, and f4 : RI × p → p′. Each morphism has
as input an element of a regular expression and some “other” argument. In our case the extra
argument contains the function to apply to the regular expression elements. We can thus let rcase
be shorthand for the multiple case check by setting rcase(f1, f2, f3, f4) to be

rcase(f1, f2, f3, f4) : RI × p → p′ = case(case(case(f1, f2), f3), f4) ◦ (runfoldI × id)

The only properties we need for rchar, ror, rseq, rstar are the following:

Lemma 5.1.1 For any f1 : NI × p → p′, f2, f3 : (RI ×RI)× p → p′, and f4 : RI × p → p′,

rcase(f1, f2, f3, f4) ◦ (rchar× id) = f1

rcase(f1, f2, f3, f4) ◦ (ror× id) = f2

rcase(f1, f2, f3, f4) ◦ (rseq× id) = f3, and
rcase(f1, f2, f3, f4) ◦ (rstar× id) = f4

The meanings for the regexp constants are listed in Figure 5.1. The meanings of the construc-
tors are formed by applying a product isomorphism to convert the input from the ×(A1, . . . , An)
form, applying the appropriate constructor morphism defined earlier, and lastly adding trivial cost
via η. For rcase, app1 takes input of the form 〈a, f〉 and returns the result of applying f to a.
app2 is similar, except that it takes a triple 〈〈a1, a2〉, f〉 and applies f first to a1 then a2. Thus
the meaning of rcase takes a regular expression and four functions, each describing how to handle
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each type of regular expression, determines the type of regular expression, and applies the resulting
element to the relevant function.

As Char, Or, Seq, and Star are constructors we immediately know they are sound. For rcase
it is more complicated:

Theorem 5.1.2 CV[[rcase]] is sound for rcase

Proof. The proof involves checking each of the four operational rules. The proofs are all similar;
we prove the case when the operational rule is

v2 r1 r2
t⇒v v

rcase (Or r1 r2) of CHAR : v1 | OR : v2 | SEQ : v3 | STAR : v4
t+trcase⇒v v

By assumption rcase (Or r1 r2) of CHAR : v1 | OR : v2 | SEQ : v3 | STAR : v4 is well typed, therefore
we know that ` r1, r2 : regexp, and there exists a type τ such that

` v1 : nat → τ , ` v2, v3 : regexp → regexp → τ , and `: v4 : regexp → τ

Furthermore, r1, r2, v1, v2, v3, v4 are all values, so there exist morphisms y′1, y′2 : 1 → T V[[regexp]],
y1 : 1 → T V[[nat → τ ]], y2, y3 : 1 → T V[[regexp → regexp → τ ]], and y4 : 1 → T V[[regexp → τ ]]
such that, for i = 1, 2, V[[ri]] = η ◦ y′i, and, for 1 ≤ i ≤ r, V[[vi]] = η ◦ yi. This also means that

V[[Or r1 r2 : regexp]] = η ◦ ror ◦ (π2 × id) ◦ 〈〉(y′1, y′2) = η ◦ ror ◦ 〈y′1, y′2〉

By the definition of soundness, we can assume as an induction hypothesis that for some cost t,
V[[v2 r1 r2 : τ ]] = [[t]] ◦ V[[v : τ ]]. Therefore

app2 ◦ (id× π4
2) ◦ 〈〈y′1, y′2〉, 〈〉(y1, y2, y3, y4)〉

= app∗ ◦ ψ ◦ (app× η) ◦ αl ◦ β ◦ 〈〈y′1, y′2〉, y2〉
= app∗ ◦ ψ ◦ (app× η) ◦ 〈〈y2, y

′
1〉, y′2〉

= app∗ ◦ ψ ◦ 〈app ◦ 〈y2, y
′
1〉, η ◦ y′2〉

= app∗ ◦ ψ ◦ 〈V[[v2(r1) : regexp → τ ]],V[[r2 : regexp]]〉
= V[[v2 r1 r2 : τ ]]
= [[t]] ◦ V[[v : τ ]]

Thus

V[[rcase (Or r1 r2) of CHAR : v1 | OR : v2 | SEQ : v3 | STAR : v4 : τ ]] ◦ 〈〉(ror ◦ 〈y′1, y′2〉, y1, y2, y3, y4)
= [[trcase]] ◦ rcase(app1 ◦ (id× π4

1), app2 ◦ (id× π4
2), app2 ◦ (id× π4

3), app1 ◦ (id× π4
4))

◦ χ ◦ 〈〉(ror ◦ 〈y′1, y′2〉, y1, y2, y3, y4)
= [[trcase]] ◦ rcase(app1 ◦ (id× π4

1), app2 ◦ (id× π4
2), app2 ◦ (id× π4

3), app1 ◦ (id× π4
4))

◦ (ror× id) ◦ 〈〈y′1, y′2〉, 〈〉(y1, y2, y3, y4)〉
= [[trcase]] ◦ app2 ◦ (id× π4

2) ◦ 〈〈y′1, y′2〉, 〈〉(y1, y2, y3, y4)〉
= [[trcase]] ◦ [[t]] ◦ V[[v : τ ]]
= [[t + trcase]] ◦ V[[v : τ ]]

2

Because regexp is a ground type, we know by Theorem A.2.1 that all the constants except
rcase are adequate. It is also straightforward to show that ECV[[rcase]] is adequate; we omit the
formal proof, although it is similar to the proof that case is adequate.
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apply(V[[shead]], 〈[ ], nk〉) = ⊥
apply(V[[shead]], 〈[a1, . . . , an], nk〉) = [[tapp + tfst + thead]] ◦ η ◦ a1

apply(V[[stail]], 〈[ ], nk〉) = ⊥
apply(V[[stail]], 〈[a1, . . . , an], nk〉) = [[tapp + tfst + t+ + tsnd + ttail]] ◦ η ◦ 〈[a2, . . . , an], nk+1〉
apply(V[[snil?]], 〈[a1, . . . , an], nk〉) = [[tapp + tfst + tnil?]] ◦ η ◦ bool(n = 0)
apply(V[[snew]], [a1, . . . , an]) = [[tapp]] ◦ η ◦ 〈[a1, . . . , an], n0〉
apply(V[[sseen]], 〈[a1, . . . , an], nk〉) = [[tsnd]] ◦ η ◦ nk

Figure 5.2: Semantic meanings of string functions

5.1.4 Denotational Interpretation of accept and acc

Before determining the meanings of accept and acc, we first calculate some of the properties of
the string functions. The first five properties are similar to the list properties shown in Figure 2.18
of Chapter 3, except that there is extra cost both because the abbreviations are abstractions, and
because one must use the product functions to access the list part of a string. There is also a cost
associated with calculating the new number of seen characters during a string tail operation. When
snew is applied to a list l, it returns l paired with 0 with an associated cost of one application.
Because the abbreviation sseen is not an abstraction, it does not have the cost of an application,
just the cost of obtaining the second element of the pair. Figure 5.2 contains these properties, which
we use to calculate the meanings of the subprograms. Remember that the notation nk represents
the morphism from 1 to N representing the natural number k.

For the main program, it will be useful to define a few abbreviations, particularly for the value
part of a continuation. First, let

cont = string → bool
acctype = regexp → cont → string → bool

The type cont represents continuations, and acctype represents the type of acc.
Next, we would prefer to use the regular expression notation from the beginning of this section

instead of the morphisms themselves. For any object X in PDom, if (h, d) is a morphism from 1
to idX , then the following diagram must commute:

1 1

X X

-id

-
id

?

h

?

d

Therefore h = d. What this means is that any element in the set X is uniquely identified with a
morphism from 1 to idX in PDom→. Therefore we can identify the set of regular expressions with
the elements of RI . To do this we cannot assume that sequencing and choice are associative; for
instance, (a|b)|c is equivalent to the morphism ror ◦ 〈ror ◦ 〈rchar ◦ a, rchar ◦ b〉, rchar ◦ c〉, but a|(b|c)
is equivalent to the morphism ror ◦ 〈rchar ◦ a, ror ◦ 〈rchar ◦ b, rchar ◦ c〉〉, and there is no particular
reason to believe that these two morphisms are equal. In particular, in examples 6 and 7 we show
that there may be different costs associated with applying accept to these two regular expressions.
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Lastly, there are three types of continuations possible: the initial continuation, one built from
acc, and one built from strcheck. We will frequently want to represent the value portions (the
portions without external cost) of these continuations. The initial continuation, snil?, is a value
and thus factors through η. Therefore there exists a morphism initk : 1 → T V[[cont]] such that

η ◦ initk = V[[snil? : string → bool]]

For strcheck, given morphisms k : 1 → T V[[cont]], r : 1 → T V[[regexp]], and s : 1 → T V[[string]],

V[[a : acctype, Γ1 ` strcheck : cont]] ◦ 〈〉(V[[acc]], η ◦ k, η ◦ s, η ◦ r)
= V[[Γ1 ` [acc/a]strcheck : cont]] ◦ 〈〉(η ◦ k, η ◦ s, η ◦ r)
= η ◦ curry([[tapp]] ◦ V[[Γ1, s′ : string ` e : bool]] ◦ (〈〉(η ◦ k, η ◦ s, η ◦ r)× η))

where

e = if (sseen(s) = sseen(s$’$)) then false
else (acc (Star r1) k s$’$)

that is, [acc/a]strcheck = lam s′.e, and

Γ1 = k : cont, s : string, r1 : regexp

Thus given k, r, and s as above, there exists a morphism checkk(k, s, r) from 1 to T V[[string →
bool]] defined as

checkk(k, s, r) = curry([[tapp]] ◦ V[[Γ1, s
′ : string ` e : bool]] ◦ (〈〉(η ◦ k, η ◦ s, η ◦ r)× η))

and such that

η ◦ checkk(k, s, r) = V[[a : acctype, Γ1 ` strcheck : cont]] ◦ 〈〉(V[[acc]], η ◦ k, η ◦ s, η ◦ r)

The morphism checkk(k, s, r) is the value portion of the meaning of strcheck with k, s, and r
denoting the values of the three free variables k, s, and r1.

Lastly, for acc, given r : 1 → T V[[regexp]], k : 1 → T V[[cont]], and the type assignment
Γ2 = a : acctype, r : regexp, k : cont,

apply(V[[acc]], r, k)
= [[2tapp + trec]] ◦ V[[Γ2 ` lam s.e′ : cont]] ◦ 〈〉(V[[acc]], η ◦ r, η ◦ k)
= [[2tapp + trec]] ◦ η ◦ curry([[tapp]] ◦ V[[Γ2, s : string ` e′ : bool]] ◦ (id× η))

◦ 〈〉(V[[acc]], η ◦ r, η ◦ k)

where

e′ = rcase r of CHAR: accchar OR: accor SEQ: accseq STAR: accstar

Thus for any r, k as above there exists a morphism acck(r, k) from 1 to T V[[cont]] defined as

acck(r, k) = curry([[tapp]] ◦ V[[Γ2, s : string ` e′ : bool]] ◦ (id× η)) ◦ 〈〉(V[[acc]], η ◦ r, η ◦ k)

and such that
apply(V[[acc]], r, k) = [[2tapp + trec]] ◦ acck(r, k)
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The morphism acck(r, k) is the value part of the meaning of acc partially applied to r and k;
it does not include the costs associated with unrolling the recursion or applying the two variables.
It also lacks the external cost structure. It is the value portion of a continuation formed from acc,
r, and k.

We also form an abbreviation for the fully applied acc function. Let

acc(r, k, s) = apply(η ◦ acck(r, k), s)

Then

apply(V[[acc]], r, k, s) = [[2tapp + trec]] ◦ acc(r, k, s)

Because acc(r, k, s) is derived from the continuation it also lacks the cost associated with ap-
plying r and k and unrolling the recursion once. Otherwise it is the same as applying the recursive
function to its three arguments. We use acc(r, k, s) so we can uniformly handle sub-calls to acc
both when they occur through recursion and when they occur through a continuation.

We now look at the subprograms. For clarity, we assign a function for each subprogram which
supplies values for the free variables. Therefore, for k : 1 → T V[[cont]], s : 1 → T V[[string]], and
Γ = a : acctype, k : cont, s : string, let

accchar(k, s) = V[[Γ ` accchar : nat → bool]] ◦ 〈〉(V[[acc]], η ◦ k, η ◦ s)
accor(k, s) = V[[Γ ` accor : nat → bool]] ◦ 〈〉(V[[acc]], η ◦ k, η ◦ s)

accseq(k, s) = V[[Γ ` accseq : nat → bool]] ◦ 〈〉(V[[acc]], η ◦ k, η ◦ s)
accstar(k, s) = V[[Γ ` accstar : nat → bool]] ◦ 〈〉(V[[acc]], η ◦ k, η ◦ s)

These are the meanings of accchar, accor, accseq, and accstar where the free variable a
(which in the program referred to the recursive function) is set to the meaning of acc.

We examine the simplest case first: sequencing. Let r1, r2 be regular expressions, i.e, morphisms
from 1 to T V[[regexp]], let k be a continuation, i.e., a morphism from 1 to T V[[cont]], and s be a
string, i.e., a morphism from 1 to T V[[string]]. Then, for Γ3 = Γ, r1 : regexp, r2 : regexp,

apply(accseq(k, s), r1, r2)
= [[2tapp]] ◦ V[[Γ3 ` a r1 (a r2 k) : bool]] ◦ 〈〉(V[[acc]], η ◦ k, η ◦ s, η ◦ r1, η ◦ r2)
= [[2tapp]] ◦ capply(V[[acc]], η ◦ r1, capply(V[[acc]], η ◦ r2, η ◦ k), η ◦ s)
= [[2tapp]] ◦ capply(V[[acc]], η ◦ r1, [[2tapp + trec]] ◦ η ◦ acck(r2, k), η ◦ s)
= [[4tapp + trec]] ◦ apply(V[[acc]], r1, acck(r2, k), s)
= [[6tapp + 2trec]] ◦ acc(r1, acck(r2, k), s)

This means that accseq(k, s) applies acc to r1, a continuation built from r2 and k, and the s. In
the process there were six applications and two recursion unrolls corresponding to the application
of accseq and two applications of acc.

The Or and Star cases are only slightly more complicated:



5.1. REGULAR EXPRESSION SEARCH 165

apply(accor(k, s), r1, r2)
= [[2tapp]] ◦ V[[Γ3 ` (a r1 k s) orelse (a r2 k s) : bool]]

◦ 〈〉(V[[acc]], η ◦ k, η ◦ s, η ◦ r1, η ◦ r2)
= [[2tapp]] ◦ V[[Γ3 ` if (a r1 k s) then true else (a r2 k s) : bool]]

◦ 〈〉(V[[acc]], η ◦ k, η ◦ s, η ◦ r1, η ◦ r2)
= [[2tapp]] ◦ cond(apply(V[[acc]], r1, k, s)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[tfalse]] ◦ apply(V[[acc]], r2, k, s)

= [[4tapp + trec]] ◦ cond(acc(r1, k, s)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r2, k, s)

Thus accor(k, s) applies acc to r1, k, and s. If the result is true, then accor(k, s) is tt with cost of
4tapp+trec+ttrue plus the cost of evaluating acc(r1, k, s). If the result is false, however, accor is then
the value of acc(r2, k, s) with the additional cost of evaluating acc(r1, k, s) plus 6tapp +2trec + tfalse.

Similarly,

apply(accstar(k, s), r1)
= [[2tapp]] ◦ V[[Γ0, r1 : regexp ` (k s) orelse (a r1 strcheck s) : bool]]

◦ 〈〉(V[[acc]], η ◦ k, η ◦ s, η ◦ r1)
= [[2tapp]] ◦ V[[Γ0, r1 : regexp ` if (k s) then true else (a r1 strcheck s) : bool]]

◦ 〈〉(V[[acc]], η ◦ k, η ◦ s, η ◦ r1)
= [[2tapp]] ◦ cond(apply(η ◦ k, s)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[tfalse]] ◦ apply(V[[acc]], r1, checkk(k, s, r1), s)

= [[2tapp]] ◦ cond(apply(η ◦ k, s)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r1, checkk(k, s, r1), s)

In this case the accstar(k, s) first applies the continuation k to s. If the result is true, then the
result of accstar is true, with a cost of 2tapp + ttrue plus the cost of applying k to s. If the result is
false, then the result of accstar is the result of applying acc to r1, a continuation made with checkk,
and s, with the additional cost of 4tapp + trec + tfalse plus the cost of applying k to s.

For accchar we can better see its meaning if we compute it with different inputs. First, for
any integer i (denoting an arbitrary “length” counter), let snil(i) = 〈nilI , ni〉, and for any string
s = 〈[a1, . . . , an], ni〉 and character a, let scons(a, s) = 〈[a, a1, . . . , an], ni−1〉. Then, for any integer
i and character element a : 1 → T V[[nat]],

apply(accchar(k, snil(i)), a) = [[ttrue + 2tapp + tfst + tnil?]] ◦ η ◦ ff

Thus applying accchar to an empty string results in a value of false (correctly indicating that
there is not a match), with a cost of

ttrue + 2tapp + tfst + tnil?

Of this cost the value tapp+tfst+tnil? is from the test snil (which is an abbreviation for lams.nil?(fsts)),
the other tapp comes from applying the string and the cost ttrue is because the program takes the
first branch when the string does prove to be empty.
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For the non-empty case, let s be any string. Then, for any characters a, a′ : 1 → T V[[nat]],

V[[s : string, n : nat ` shead(s) = n : bool]] ◦ 〈〉(η ◦ scons(a′, s), a)
= capply(V[[=]], [[tapp + tfst + thead]] ◦ η ◦ a′, η ◦ a)
= [[tapp + tfst + thead]] ◦ apply(V[[=]], a′, a)
= [[tapp + tfst + thead]] ◦ cond ◦ 〈bool(a′ = a),

〈[[t=]] ◦ η ◦ bool(a′ = a), [[t 6=]] ◦ η ◦ bool(a′ = a)〉〉
= [[tapp + tfst + thead]] ◦ cond({a′ = a}, [[t=]] ◦ η ◦ tt, [[t 6=]] ◦ η ◦ ff)

The cost here is from applying the function shead. Therefore, for Γ4 = k : acctype, s : string, n :
nat

apply(accchar(k, scons(c′, s)), c)
= [[tapp]] ◦ V[[Γ4 ` (shead(s) = n) andalso (k(stail(s))) : bool]]

◦ 〈〉(η ◦ k, η ◦ scons(c′, s), η ◦ c)
= [[tapp]] ◦ V[[Γ4 ` if shead(s) = n then k(stail(s)) else false : bool]]

◦ 〈〉(η ◦ k, η ◦ scons(c′, s), η ◦ c)
= [[tfalse + 2tapp + tfst + tnil?]]

◦ cond([[tapp + tfst + thead]] ◦ cond({c′ = c}, [[t=]] ◦ η ◦ tt, [[t 6=]] ◦ η ◦ ff)) of
True: [[ttrue]] ◦ capply(η ◦ k,apply(V[[stail]], scons(c′, s)))
False: [[tfalse]] ◦ η ◦ ff

= [[tfalse + 3tapp + 2tfst + tnil? + thead]]
◦ cond({c′ = c}) of

True: [[ttrue + t=]] ◦ capply(η ◦ k, [[tapp + tfst + t+ + tsnd + ttail]] ◦ η ◦ s)
False: [[tfalse + t 6=]] ◦ η ◦ ff

= [[tfalse + 3tapp + 2tfst + tnil? + thead]]
◦ cond({c′ = c}) of

True: [[tapp + tfst + t+ + tsnd + ttail + ttrue + t=]] ◦ apply(η ◦ k, s)
False: [[tfalse + t 6=]] ◦ η ◦ ff

This means that if accchar is applied to a non-empty string s, the first character of s is compared
to the character c. If that match succeeds, then the continuation k is applied to the rest of s and
that result is returned with an additional cost of

4tapp + 3tfst + tsnd + tnil? + thead + ttail + tfalse + ttrue + t= + t+

If the match fails, then the result is false, with a cost of

3tapp + 2tfst + tnil? + thead + 2tfalse + t 6=

Next we need to find the meaning of strcheck. First note that, for suffix strings 〈l1, ni〉 and
〈l2, nj〉 of s,

V[[s : string, s′ : string ` sseen(s) = sseen(s′) : bool]] ◦ 〈〉(η ◦ 〈l1, ni〉, η ◦ 〈l2, nj〉)
= [[2tsnd]] ◦ cond({i = j}, [[t=]] ◦ η ◦ tt, [[t6=]] ◦ η ◦ ff)
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Therefore

apply(η ◦ checkk(k, 〈l, ni〉, r), 〈l′, nj〉)
= [[tapp]] ◦ cond([[2tsnd]] ◦ cond({i = j}, [[t=]] ◦ η ◦ tt, [[t 6=]] ◦ η ◦ ff)) of

True: [[ttrue]] ◦ η ◦ ff
False: [[tfalse]] ◦ η ◦ apply(V[[acc]], rstar ◦ r, k, 〈l′, nj〉)

= [[2tsnd + tapp]] ◦ cond({i = j}) of
True: [[ttrue + t=]] ◦ η ◦ ff
False: [[2tapp + trec + tfalse + t 6=]] ◦ acc(r∗, k, 〈l′, nj〉)

This means that if the input string has the same length as the string in the strcheck function,
the result of applying strcheck is a value of false with a cost of 2tsnd + tapp + ttrue + t=. If the
string has a different length, however, the result is obtained by applying acc to that string with
the original continuation and an additional cost of 2tsnd + 3tapp + trec + tfalse + t 6=.

For the main programs, we have that, for r : 1 → T V[[regexp]] and l : 1 → T V[[list(nat)]]:

apply(V[[accept]], r, l)
= capply(V[[acc]], η ◦ r,V[[snil?]],apply(V[[snew]], l))
= [[tapp]] ◦ apply(V[[acc]], r, initk, 〈l, n0〉)
= [[3tapp + trec]] ◦ acc(r, initk, 〈l, n0〉)

For acc it is cleaner if we treat each type of regular expression separately. Therefore let k : 1 →
T V[[cont]], a : 1 → T V[[nat]], and Γ4 : a : acctype, r : regexp, k : cont, s : string. Then, for any
string s : 1 → T V[[string]],

acc(a, k, s) = [[tapp]] ◦ V[[Γ4 ` rcase . . . : bool]] ◦ 〈〉(V[[acc]], rchar ◦ a, k, s)
= [[trcase + tapp]] ◦ app1 ◦ 〈a, vaccchar(k, s)〉
= [[trcase + tapp]] ◦ app ◦ 〈vaccchar(k, s), a〉
= [[trcase + tapp]] ◦ apply(accchar(k, s), a)

where vaccchar(k, s) is the value part of accchar(k, s), i.e., accchar(k, s) = η ◦ vaccchar(k, s).
Similarly, for r, r′ : 1 → T V[[regexp]],

acc(r∗, k, s) = [[trcase + tapp]] ◦ apply(accstar(k, s), r)
acc(r1|r2, k, s) = [[trcase + tapp]] ◦ apply(accor(k, s), r1, r2)
acc(r1r2, k, s) = [[trcase + tapp]] ◦ apply(accseq(k, s), r1, r2)

Thus for each type of expression, the meaning of acc depends on the meaning of one of the four
subprograms defined earlier. The semantics of the accept program are summarized as follows:

Theorem 5.1.3 The following equations hold for any regular expression r : 1 → T V[[regexp]], list
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of integers l : 1 → T V[[list(nat)]], string s : 1 → T V[[string]], and continuation k : 1 → T V[[cont]]:

apply(V[[accept]], r, l)
= [[3tapp + trec]] ◦ acc(r, initk, 〈l, n0〉)

acc(a, k, s) = [[trcase + tapp]] ◦ apply(accchar(k, s), a)
acc(r∗, k, s) = [[trcase + tapp]] ◦ apply(accstar(k, s), r)

acc(r1|r2, k, s) = [[trcase + tapp]] ◦ apply(accor(k, s), r1, r2)
acc(r1r2, k, s) = [[trcase + tapp]] ◦ apply(accseq(k, s), r1, r2)
apply(accchar(k, snil(i)), a)

= [[ttrue + 2tapp + tfst + tnil?]] ◦ η ◦ ff
apply(accchar(k, scons(c′, s)), c)

= [[tfalse + 3tapp + 2tfst + tnil? + thead]]
◦ cond({c′ = c}) of

True: [[tapp + tfst + t+ + tsnd + ttail + ttrue + t=]] ◦ apply(η ◦ k, s)
False: [[tfalse + t6=]] ◦ η ◦ ff

apply(accstar(k, s), r)
= [[2tapp]] ◦ cond(apply(η ◦ k, s)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r, checkk(k, s, r), s)

apply(accor(k, s), r1, r2)
= [[4tapp + trec]] ◦ cond(acc(r1, k, s)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r2, k, s)

apply(accseq(k, s), r1, r2)
= [[6tapp + 2trec]] ◦ acc(r1, acck(r2, k), s)

apply(η ◦ acck(r, k), s)
= acc(r, k, s)

apply(η ◦ checkk(k, 〈l, ni〉, r), 〈l′, nj〉)
= [[2tsnd + tapp]] ◦ cond({i = j}) of

True: [[ttrue + t=]] ◦ η ◦ ff
False: [[2tapp + trec + tfalse + t 6=]] ◦ acc(r∗, k, 〈l′, nj〉)

apply(η ◦ initk, 〈[a1, . . . , an], nk〉)
= [[tapp + tfst + tnil?]] ◦ η ◦ bool(n = 0)

5.1.5 Examples

Before discussing general properties involving complexity, we shall look at some concrete examples,
that show how varied complexity can be for different types of regular expressions. For these
examples, let an be the list of n a’s.

To make the calculations easier, we would prefer not to concern ourselves with non-terminating
results (i.e., values of ⊥). Fortunately, it is relatively straightforward to show that accept termi-
nates on “normal” inputs; more importantly, that its value (when fully applied) will always have
the form [[t]] ◦ η ◦ b for some cost t and morphism b : 1 → Bool.

Definition 5.1.1 A continuation k : 1 → T V[[cont]] terminates if for all strings s from 1 to
T V[[string]], there exist a cost t and a morphism b from 1 to Bool such that

apply(η ◦ k, s) = [[t]] ◦ η ◦ b
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Theorem 5.1.4 For any regular expression r : 1 → T V[[regexp]], continuation k : 1 → T V[[cont]]
and string s : 1 → T V[[string]], if k terminates, then acc terminates, i.e., there exist a cost t and
a morphism b : 1 → Bool such that

acc(r, k, s) = [[t]] ◦ η ◦ b

Proof. By induction on both the structure of r and the length of s. The proof actually shows a
stronger result, namely that k only needs to terminate on s and its the suffixes. As part of the
proof it also shows that if k terminates, so do acck and checkk. 2

Example 1: r = a1| . . . |an, s = scons(ai, s
′).

For this example n always refers to the number of expression choices, and i always refers to
the choice that actually matches the prefix of the string in question. Assume that at least the
first i of the characters aj ’s are distinct. Suppose that k is a terminating continuation such
that there exists a cost t such that apply(η ◦ k, s′) = [[t]] ◦ η ◦ tt, i.e, k returns true (with cost
t) on the tail of s.

As we are interested in the cost as i and n vary, and as k is assumed to terminate, we can
assume that there exist functions Tor(i, n) and Vor(i, n) such that

acc(r, k, s) = [[Tor(i, n)]] ◦ η ◦ Vor(i, n)

We will now determine what these functions must be. This is done by examining various cases
and building a collection of simple recurrence equations. The functions are then determined
by solving the equations.

• Suppose that n = 1. Then r must be the single character a1 and i must be 1, i.e., the
first character of s is a1 as well. Then

acc(a1, k, s)
= [[5tapp + t= + ttrue + tfalse + 3tfst + tsnd + thead + ttail + tnil? + t+ + trcase]]

◦ apply(η ◦ k, s′)
= [[t + 5tapp + t= + ttrue + tfalse + 3tfst + tsnd + thead + ttail + tnil? + t+ + trcase]]

◦ η ◦ tt

To simplify the rest of the calculations, let

t0 = 5tapp + t= + ttrue + tfalse + 3tfst + tsnd + thead + ttail + tnil? + t+ + trcase

We can therefore deduce that

Tor(1, 1) = t + t0

Vor(1, 1) = tt

• Next suppose that n > 1 and i = 1, i.e., the first character of s is still a1. Because we
originally assumed that (a1| . . . |an) = a1|(a2| . . . |an),
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acc(r, k, s) = [[5tapp + trcase + trec]]
◦ cond(acc(a1, k, s)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + tfalse + trec]] ◦ acc(a2| . . . |an, k, s)

= [[5tapp + trcase + trec]] ◦ [[ttrue + t + t0]] ◦ η ◦ tt
= [[ttrue + t + t0 + 5tapp + trcase + trec]] ◦ η ◦ tt

Thus we know that for n > 1,

Tor(1, n) = ttrue + t + t0 + 5tapp + trcase + trec

Vor(1, n) = tt

Here is where the decision to make choice associate to the right makes the cost calculation
simpler, as we do not also have calculate the cost to reach the first choice operator.

• Lastly suppose that n > 1 and 1 < i ≤ n. Because

acc(a1, k, s) = [[4tapp + 2tfalse + 2tfst + thead + t 6= + tnil? + trcase]] ◦ η ◦ ff

we know that

acc(r, k, s) = [[5tapp + trcase + trec]]
◦ cond([[t′0]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + tfalse + trec]] ◦ acc(a2| . . . |an, k, s)

= [[7tapp + trcase + 2trec + tfalse + t′0]] ◦ acc(a2| . . . |an, k, s)
= [[7tapp + trcase + 2trec + tfalse + t′0 + Tor(i− 1, n− 1)]] ◦ η ◦ Vor(i− 1, n− 1)

where t′0 = 4tapp + 2tfalse + 2tfst + thead + t 6= + tnil? + trcase.
From this we can deduce that

Tor(i, n) = 7tapp + trcase + 2trec + tfalse + t′0 + T (i− 1, n− 1)
Vor(i, n) = Vor(i− 1, n− 1)

Thus it should be clear that the value Vor(i, n) is always tt and that the cost is determined
by the following equations:

Tor(1, 1) = t + t0
Tor(1, n) = ttrue + t + t0 + 5tapp + trcase + trec
Tor(i, n) = 7tapp + trcase + 2trec + tfalse + t′0 + T (i− 1, n− 1)

Solving these, and expanding t0 and t′0 out again, we find that

Tor(i, i) = (11i− 6)tapp + (3i− 2)tfalse + (2i + 1)tfst + i(thead + tnil?) + (i− 1)t 6=
+ (2i− 1)trcase + (2i− 2)trec + t= + t+ + tsnd + ttail + ttrue + t

Tor(i, n) = Tor(i, i) + 5tapp + trcase + trec + ttrue
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The difference in cost comes from expanding one additional choice expression when i < n.
Intuitively, the cost i(thead + tnil?) refer to the number of times the program must compare ai

with the first character of s. In this case, the comparison fails i− 1 times and succeeds once,
thus there is the cost (i − 1)t 6= plus a single t=. Similarly, the factor 3n − 2 on tfalse refers
to the number of times the program checks that s is null, plus twice the number of times the
first character of s fails to match the aj (1 ≤ j < i− 1), as each time that test fails both the
single character test and the first part of a choice test fails with a cost of tfalse. Overall the
cost is linear in i.

Example 2: r = a1| . . . |an, s = scons(b, s′).

This example is similar to Example 1, except that the first character of s is not any of the
characters in r. Suppose that k is a terminating continuation. Then, as this example we are
only varying the size n of r, we can assume that there exist functions Tnomatch and Vnomatch

such that for any n > 1, acc(r, k, s) = [[Tnomatch(n)]]◦η ◦Vnomatch(n). We now determine what
Tnomatch and Vnomatch must be by analyzing the various cases. If n = 1, then r is the single
character a1 and from the previous example we know that

acc(r, k, s) = [[t′0]] ◦ η ◦ ff

where t′0 = 4tapp + 2tfalse + 2tfst + thead + t 6= + tnil? + trcase.

From this we can deduce that
Tnomatch(1) = t′0
Vnomatch(1) = ff

If n > 1 then from the previous example (in particular the case where n > 1 and i > 1) we
know that

acc(r, k, s) = [[7tapp + trcase + 2trec + tfalse + t′0]] ◦ acc(a2| . . . |an, k, s)
= [[7tapp + trcase + 2trec + tfalse + t′0]] ◦ [[Tnomatch(n− 1)]] ◦ η ◦ Vnomatch(n− 1)

From this we know that the functions Tnomatch and Vnomatch must satisfy the following
equations:

Tnomatch(1) = t′0
Tnomatch(n) = Tnomatch(n− 1) + 7tapp + trcase + 2trec + tfalse + t′0
Vnomatch(1) = ff
Vnomatch(n) = Vnomatch(n− 1)

Solving these equations we find that

Tnomatch(n) = (n− 1)(7tapp + trcase + 2trec + tfalse) + nt′0
Vnomatch(n) = ff

or, if we expand t′0,

Tnomatch(n) = (11n− 7)tapp + (3n− 1)tfalse + 2ntfst + (2n− 1)trcase + (2n− 2)trec
+ n(thead + t 6= + tnil?)

In this case it is easier to see where the cost arises. The costs in t′0 are all related to the test
of a single character. The other costs are all related to managing the choice operator. As
there are n characters and n − 1 choices, the total cost is a simple combination of the two.
Overall the cost is linear in the size of the regular expression.
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Example 3: r = a1 . . . an, s = 〈[a1, . . . , an],m〉
For this example n refers to the number of characters in the sequence, and s is a string that
exactly matches that sequence. Let k be any terminating continuation. Because it terminates
we know that there exist a value b : 1 → Bool and a cost tk such that

apply(η ◦ k, snil) = [[tk]] ◦ η ◦ b

As we vary only the size n of the sequence, then we can also assume that there exist functions
Tseq and Vseq such that

acc(r, k, s) = [[Tseq(n)]] ◦ η ◦ Vseq(n)

We can determine what Tseq and Vseq must be by looking at two cases for n:

• Suppose that n = 1. Then r is the single character test a1 and s is a string consisting of
the single character a1. Therefore

acc(r, k, s) = acc(a1, k, s)
= [[t0]] ◦ apply(η ◦ k, snil)
= [[tk + t0]] ◦ η ◦ b

where t0 was defined on page 169 in Example 1. From this we can determine that

Tseq(1) = tk + t0
Vseq(1) = b

• Suppose that n > 1. Then r is a sequence and s has a length of more than 1. Therefore

acc(r, k, s) = [[7tapp + trcase + 2trec]] ◦ acc(a1, acck([a2 . . . an], k), s)
= [[t0 + 7tapp + trcase + 2trec]] ◦ acc(a2 . . . an, k, 〈[a2, . . . , an],m + 1〉)
= [[Tseq(n− 1) + t0 + 7tapp + trcase + 2trec]] ◦ η ◦ Vseq(n− 1)

where acck is the continuation that applies acc for a regular expression consisting of the
rest of the sequence. From this we know that the following equations must hold when
n > 1:

Tseq(n) = t0 + 7tapp + trcase + 2trec + Tseq(n− 1)
Vseq(n) = Vseq(n− 1)

We can thus determine the values of Tseq and Vseq by solving the following recurrence equa-
tions:

Tseq(1) = tk + t0
Tseq(n) = t0 + 7tapp + trcase + 2trec + Tseq(n− 1) (n > 1)
Vseq(1) = b
Vseq(n) = Vseq(n− 1) (n > 1)

Clearly for all n ≥ 1, Vseq(n) must be b, and, if we also expand t0, we know that

Tseq(n) = (12n− 7)tapp + 3ntfst + n(t= + tfalse + thead + tnil? + t+ + tsnd + ttail + ttrue)
+ (2n− 1)trcase + (2n− 2)trec + tk
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Again the cost t0 corresponds to successfully matching a single character, while the cost of
7tapp + trcase + 2trec corresponds to expanding the sequence once. Therefore the total cost
corresponds to n successful matches and n− 1 sequence expansions. Thus overall, the cost is
linear in the size of the regular expression which is the same as the length of the string.

Example 4: r = a∗, s = an.

In this example n (which can be 0) refers to the number of characters a in s. Let k be a
terminating continuation that is false for all strings am when m > 0. Thus we know that for
all 1 ≤ m ≤ n, there exists a cost tkm such that

apply(η ◦ k, am) = [[tkm ]] ◦ η ◦ ff

Because k terminates, there must also exist a cost tk0 and a value bk : 1 → Bool such that

apply(η ◦ k, snil) = [[tk0 ]] ◦ η ◦ bk

An example of such a continuation is the initial continuation initk, where

tk0 = tkm = tapp + tfst + tnil? and bk = tt

To see how the cost of applying acc as n changes and as bk can vary, because k terminates
we can assume that there exist functions Trep and Vrep such that

acc(r, k, s) = [[Trep(n, bk)]] ◦ η ◦ Vrep(n, bk)

We can determine the values of Trep and Vrep by solving recurrence equations built from the
cases where n = 0 and bk = tt, n = 0 and bk = ff, and n > 0.

• Suppose that n = 0 and bk = tt. Then s = snil so

apply(η ◦ k, s) = [[tk0 ]] ◦ η ◦ bk = [[tk0 ]] ◦ η ◦ tt

Therefore

acc(r, k, s) = [[2tapp + trcase]]
◦ cond([[tk0 ]] ◦ η ◦ tt) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + tfalse + trec]] ◦ acc(a, checkk(k, s, a), s)

= [[ttrue + tk0 + 2tapp + trcase]] ◦ η ◦ tt

From this we can deduce that

Trep(0, tt) = ttrue + tk0 + 2tapp + trcase

Vrep(0, tt) = tt

• Suppose that n = 0 and bk = ff. Then s is again snil, so

apply(η ◦ k, s) = [[tk0 ]] ◦ η ◦ bk = [[tk0 ]] ◦ η ◦ ff

Because s is snil, we know that

acc(a, checkk(k, s, a), s) = [[trcase + 3tapp + ttrue + tfst + tnil?]] ◦ η ◦ ff
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Then
acc(r, k, s) = [[2tapp + trcase]]

◦ cond([[tk0 ]] ◦ η ◦ ff) of
True: [[ttrue]] ◦ η ◦ tt
False: [[5tapp + tfalse + trec + trcase + ttrue + tfst + tnil?]] ◦ η ◦ ff

= [[tk0 + 2trcase + 7tapp + tfalse + trec + ttrue + tfst + tnil?]] ◦ η ◦ ff

From this we can derive the following:

Trep(0, ff) = tk0 + 2trcase + 7tapp + tfalse + trec + ttrue + tfst + tnil?

Vrep(0, ff) = ff

• Lastly, suppose that n > 0. Then apply(η ◦ k, s) = [[tkn ]] ◦ η ◦ ff, so

acc(r, k, s) = [[2tapp + trcase]]
◦ cond([[tkn ]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + tfalse + trec]] ◦ acc(a, checkk(k, s, a), s)

= [[tkn + 4tapp + tfalse + trec + trcase]] ◦ acc(a, checkk(k, s, a), s)
= [[t0 + tkn + 4tapp + tfalse + trec + trcase]]

◦ apply(η ◦ checkk(k, s, a), 〈an−1, i + 1〉)
= [[t0 + tkn + 2tsnd + 7tapp + 2tfalse + 2trec + t 6=]] ◦ acc(r, k, an−1)
= [[t0 + tkn + 2tsnd + 7tapp + 2tfalse + 2trec + t 6= + Trep(n− 1)]]

◦ η ◦ Vrep(n− 1)

where t0 is defined in Equation 5.1 in Example 1. From this we can derive the following
equations:

Trep(n, bk) = t0 + tkn + 2tsnd + 7tapp + 2tfalse + 2trec + t 6= + Trep(n− 1)
Vrep(n, bk) = Vrep(n− 1, bk)

Thus we have the following set of equations:

Trep(0, tt) = tk0 + ttrue + 2tapp + trcase

Trep(0,ff) = tk0 + 2trcase + 7tapp + tfalse + trec + ttrue + tfst + tnil?

Trep(n, bk) = t0 + tkn + 2tsnd + 7tapp + 2tfalse + 2trec + t 6= + Trep(n− 1) (n > 0)
Vrep(0, tt) = tt
Vrep(0,ff) = ff

Vrep(n, bk) = Vrep(n− 1, bk) (n > 0)

By solving these equations and expanding t0 we get that for all n ≥ 0

Trep(n, tt) = n(3tsnd + 12tapp + 3tfalse + 2trec + t 6= + t= + ttrue + 3tfst + thead + ttail)
+ n(tnil? + t+ + trcase) + ttrue + 2tapp + trcase +

∑n
i=0 tki

= 3ntsnd + (12n + 2)tapp + 3ntfalse + 2ntrec + nt 6= + nt= + (n + 1)ttrue

+ 3ntfst + nthead + nttail + ntnil? + nt+ + (n + 1)trcase +
∑n

i=0 tki

Trep(n,ff) = n(3tsnd + 12tapp + 3tfalse + 2trec + t 6= + t= + ttrue + 3tfst + thead + ttail)
+ tnil? + t+ + trcase) + 2trcase + 7tapp + tfalse + trec + ttrue + tfst + tnil?

+
∑n

i=0 tki

= 3ntsnd + (12n + 7)tapp + (3n + 1)tfalse + (2n + 1)trec + nt 6= + nt=
+ (n + 1)ttrue + (3n + 1)tfst + nthead + nttail + (n + 1)tnil? + nt+
+ (n + 2)trcase +

∑n
i=0 tki

Vrep(n, b) = b
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There is a greater cost in calculating Trep(n,ff) than Trep(n, tt) because when the continuation
returns true on an empty string, the last repetition case only takes one branch, whereas if the
continuation returns false, the last repetition case takes both branches. Otherwise the cost
comes from a relatively straightforward case of examining each character in the string (and
the continuation at each point); therefore it is not surprising that the cost is proportional to
the length of the string when the cost of the continuation is itself constant.

Example 5: r = (a1| . . . |an)∗, s = 〈am
n , l〉, k = initk.

In this example n is the number of choices in the regular expression, m is the the number
of copies of the character an, and l is the number of characters read so far. For simplicity,
we are assuming that all of the choices aj are different from an for j < n, and we fixed the
continuation. Thus if we allow n and m to vary, given that initk terminates, we can assume
that there exist functions Trep2

and Vrep2
such that

acc(r, k, s) = [[Trep2
(n,m)]] ◦ η ◦ Vrep2

(n,m)

We can determine the values of Trep2
by building recurrence equations from the following

cases: when m = 0, when m > 0 and n = 1, and when m > 0 and n > 1. We similarly
determine Vrep2

by induction on m using the same cases.

• Suppose that m = 0, i.e., s is snil. Then the continuation is true on s, so

acc(r, k, s) = [[4tapp + tfst + tnil? + trcase + ttrue]] ◦ η ◦ tt

Therefore we know that

Trep2
(n, 0) = 4tapp + tfst + tnil? + trcase + ttrue

Vrep2
(n, 0) = tt

• Suppose that m > 0 but n = 1. This is the case where s = am
n and r is an

∗. In this case
we match the conditions for Example 4 (initk satisfies the requirement on continuations).
As for each 0 ≤ i ≤ m,

apply(η ◦ initk, ai) = [[tapp + tfst + tnil?]]

we immediately know that

Trep2
(1,m) = Trep(m, tt)

= 3mtsnd + (12m + 2)tapp + 3mtfalse + 2mtrec + mt6= + mt= + (m + 1)ttrue

+ 3mtfst + mthead + mttail + mtnil? + mt+ + (m + 1)trcase

+
∑m

i=0(tapp + tfst + tnil?)
= 3mtsnd + (13m + 3)tapp + 3mtfalse + 2mtrec + mt6= + mt= + (m + 1)ttrue

+ (4m + 1)tfst + mthead + mttail + (2m + 1)tnil? + mt+ + (m + 1)trcase

Vrep2
(1,m) = Vrep(m, tt) = tt
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• Suppose that m > 0 and n > 1. Then s is not the empty string, so

apply(η ◦ initk, s) = [[tapp + tfst + tnil?]] ◦ η ◦ ff

thus

acc(r, k, s) = [[trcase + 3tapp]]
◦ cond(apply(η ◦ initk, s)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r0, checkk(initk, s, r0), s)

= [[trcase + 6tapp + tfst + tnil? + trec + tfalse]] ◦ acc(r0, checkk(initk, s, r0), s)

where r0 = a1| . . . |an, i.e., r = r0
∗.

Because k terminates, so does checkk(k, s, r0). Furthermore, when we let s′ = 〈am−1
n , l + 1〉

(that is, when s′ is the tail of s) we have

apply(η ◦ checkk(k, s, r0), s′)
= [[2tsnd + 3tapp + trec + tfalse + t6=]] ◦ acc(r, k, s′)
= [[2tsnd + 3tapp + trec + tfalse + t6=]] ◦ [[Trep2

(n,m− 1)]] ◦ η ◦ Vrep2
(n,m− 1)

By the induction hypothesis we know that Vrep2
(n, m − 1) is tt. Therefore all the as-

sumptions needed to use the results of Example 1 are satisfied, where there are n choices,
the index of the matching choice is also n, and

t = 2tsnd + 3tapp + trec + tfalse + t6= + Trep2
(n, m− 1)

Therefore
acc(r0, checkk(k, s, r0), s) = [[Tor(n, n)]] ◦ η ◦ tt

where

Tor(n, n) = (11n− 6)tapp + (3n− 2)tfalse + (2n + 1)tfst + n(thead + tnil?) + (n− 1)t 6=
+ (2n− 1)trcase + (2n− 2)trec + t= + t+ + tsnd + ttail + ttrue + t

= (11n− 3)tapp + (3n− 1)tfalse + (2n + 1)tfst + n(thead + tnil? + t 6=)
+ (2n− 1)trcase + (2n− 1)trec + t= + t+ + 3tsnd + ttail + ttrue

+ Trep2
(n,m− 1)

From this we can derive the following equations:

Trep2
(n,m) = (11n + 3)tapp + 3ntfalse + (2n + 2)tfst + n(thead + t6=) + (n + 1)tnil?

+ 2ntrcase + 2ntrec + t= + t+ + 3tsnd + ttail + ttrue

+ Trep2
(n, m− 1)

Vrep2
(n,m) = tt

Thus we have shown that Vrep2
(n, m) = tt for all n and m, and have the following equations

for Trep2
(n,m):

Trep2
(n, 0) = 4tapp + tfst + tnil? + trcase + ttrue

Trep2
(1,m) = 3mtsnd + (13m + 3)tapp + 3mtfalse + 2mtrec + mt6= + mt= + (m + 1)ttrue

+ (4m + 1)tfst + mthead + mttail + (2m + 1)tnil? + mt+ + (m + 1)trcase

Trep2
(n,m) = (11n + 3)tapp + 3ntfalse + (2n + 2)tfst + n(thead + t 6=) + (n + 1)tnil?

+ 2ntrcase + 2ntrec + t= + t+ + 3tsnd + ttail + ttrue

+ Trep2
(n,m− 1)
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To make the final calculation simpler, let T ′(n) be the following function:

T ′(n) = (11n + 3)tapp + 3ntfalse + (2n + 2)tfst + n(thead + t 6=) + (n + 1)tnil?

+ 2ntrcase + 2ntrec + t= + t+ + 3tsnd + ttail + ttrue

Thus Trep2
(n,m) = T ′(n) + Trep2

(n,m− 1). From this we can easily see that

Trep2
(1,m) = 3mtsnd + (13m + 3)tapp + 3mtfalse + 2mtrec + mt6= + mt= + (m + 1)ttrue

+ (4m + 1)tfst + mthead + mttail + (2m + 1)tnil? + mt+ + (m + 1)trcase

Trep2
(n,m) = mT ′(n) + 4tapp + tfst + tnil? + trcase + ttrue (n > 1)

As the value of T ′(n) is linear in n, Trep2
(n,m) is proportional to nm, which means the cost of

the pattern matching function in this case is O(nm). Intuitively, the cost T ′(n) corresponds
to one round of checking all of the choices (plus some extra administrative cost) which must
be done m times. The additional cost is the cost of successfully testing the empty string. The
cost is different when n = 1 because then the regular expression is not a choice, so there is
less administrative cost.

5.1.6 Complexity analysis

Determining the complexity for accept is significantly more difficult than it was for the examples
in Chapter 3. Unlike those examples, we do not have a straightforward case for inductive formulas
or proofs because acc is not always called recursively with a smaller regular expression or a smaller
string. We can, however, discuss the program inductively; in all cases either the string becomes
smaller or the string stays the same while the regular expression becomes smaller.

The use of continuations also complicates the problem of determining complexity. Because a
continuation may differ throughout a computation, we cannot simply give a functional meaning for
it as we did with the examples in Chapter 3. Furthermore, the number of times a continuation is
called depends critically on the input.

We will not completely solve the first problem, but we can simplify the continuation problem.
During the evaluation of acc on a regular expression r and string s, the program will call the
continuation some number of times on various suffixes of s. If the result of the call is true, then
program as a whole returns true with only an additional constant amount of work. If the result of
the call is false, then the program may return false, or it may eventually call the continuation
again. The program never returns true except by calling a continuation that returns true. If
the continuation always returns false, then, because the program is guaranteed to terminate, the
program eventually returns false. Therefore, for each r and s, there exists a list [s1, . . . , sn] of
strings which represent, in order, the suffixes of s that a continuation will encounter, as long as it
continues to return false. If a continuation returns true at some point, then it was called on s1,
. . . , si for some 1 ≤ i ≤ n, and it returned false for all but si. If two continuations give the same
response on all the si, then the program cannot distinguish between them.

We can thus evaluate r and s with a continuation that mimics the original continuation but
generates no cost and separately evaluate the original continuation on s1 through si. We can thus
separate the cost of the calls to the continuation from the cost of the rest of the evaluation.

We do not have any elements in our language to develop the mimicking continuations (although
we could achieve a similar effect by adding special purpose constants). We can, however, define
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these continuations as morphisms in PDomI . When X is a discretely ordered set in PDom, any
function from X to a predomain Y is continuous and is thus a morphism in PDom. Because each
morphism from 1 to X is uniquely identified with an element of X, any function f from Hom(1, X)
to Y also uniquely defines a morphism f ′ from X to Y . Lastly this morphism in PDom defines a
morphism (f ′, f ′) from idX to idY . Because List (N) is discretely ordered and List I(N) = idList (N),

List I(N)I ×NI = idList (N) × idN = idList (N)×N

that is, the object List I(N)I ×NI in the arrow category is the identity morphism on List (N)×N.
As this is the meaning of string, T V[[string]] = idT V

E [[string]] and T V
E [[string]] is discretely ordered.

Similarly, we can show that T V[[bool]] = idT V
E [[bool]]. Thus any function from extensional strings

(i.e., morphisms from 1 to T V
E [[string]]) to T V

E [[bool]] (which is equivalent to the set {tt,ff}) can
be turned into a morphism from T V[[string]] to T V[[bool]].

We can now define the mimicking continuation in terms of a function from extensional strings
to the set {tt,ff}.
Definition 5.1.2 For any extensional string sE : 1 → T V

E [[string]] and any morphism zE : 1 → LB
in PDom, let ekstr(zE , sE) : T V

E [[string]] → B be the morphism equivalent to the function f0

where f0(s) = ff if either s 6= sE or zE = up ◦ ff, and f0(s) = tt otherwise. For an intensional string
1 → T V[[string]] and a morphism z : 1 → CT V[[bool]] in PDom→, let

ikstr(z, s) : T V[[string]] → T V[[bool]] = (ekstr(E(z), E(s)), ekstr(E(z), E(s)))

be the lifted morphism in the intensional (arrow) category. To convert this to a continuation, let

kstr(z, s) : 1 → T V[[cont]] = curry(η ◦ ikstr(z, s) ◦ π2)

Lastly, given a continuation k : 1 → T V[[cont]], let

kkstr(k, s) : 1 → T V[[cont]] = kstr(apply(η ◦ k, s), s)

Intuitively, ekstr(zE , sE) is equivalent to a simple function from extensional strings to boolean
values that indicates if an input string s′E is equal to sE and, if so, that zE is not known to be
false. Thus ekstr(zE , sE) is a function that is false on all s′E except sE where it “mimics” zE (except
that ⊥ values are converted to tt). The morphism ikstr(z, s) is simply the intensional version of
ekstr(zE , sE), and the morphism kstr(z, s) is the curried version so that it is a continuation itself.
The morphism kkstr(k, s) uses kstr(z, s) to define a continuation that is false everywhere except
on s, where it “mimics” the behavior of k. For terminating k, the behavior is matched exactly
(although without cost).

Definition 5.1.3 Given a continuation k from 1 to T V[[cont]] and a string s from 1 to T V[[string]],
let kkstr(k, s) as defined above be called the mimicking continuation of k on s.

The steps of the definition show that kkstr(k, s) always exists, and apply(η ◦ k, s) = apply(η ◦ k′, s)
implies that kkstr(k, s) = kkstr(k′, s). Furthermore, for any strings s, s′ and morphism z from 1 to
CT V[[bool]],

apply(η ◦ kstr(z, s), s′) = η ◦ ff

when s′ 6= s, and, for any cost t and any b : 1 → T V[[bool]],

apply(η ◦ kstr([[t]] ◦ η ◦ b, s), s) = η ◦ b
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Lastly, apply(η ◦ kstr(⊥, s), s) = η ◦ tt.
Thus we know that kstr(z, s) always terminates, so let kstrof(z, s) be the morphism such that

η ◦ kstrof(z, s) = apply(η ◦ kstr(z, s), s). We can do the same with kkstr(k, s), so let kkstrof(k, s) be
kstrof(apply(η ◦ k, s), s), i.e.,

η ◦ kkstrof(k, s) = apply(η ◦ kkstr(k, s))

Thus kkstrof(k, s) is the value portion of k applied to s.
The mimicking continuation becomes particularly useful when we note that the maximal list of

suffixes [s1, . . . , sn] called by acc for a given regular expression r and string s, is not only the list of
suffixes given to a continuation that always returns false, but also can be defined inductively from
r and s. For example, if r = r1|r2, then acc first checks r1 and then, if the result is false, checks
r2. Therefore the list of suffixes called by acc on r1|r2 and s should be the list of suffixes of r1 and
s appended by the list of suffixes of r2 and s.

Definition 5.1.4 For any regular expression r and any string element s : 1 → T V[[string]], and any
suffixes 〈l, i〉 and 〈l′, i′〉 of s, let Scont(r, s) and S′cont(r, 〈l, i〉, 〈l′, i〉) be defined by mutual induction
as follows:

Scont(a, snil(i)) = [ ]
Scont(a, scons(a, s)) = [s]
Scont(a, scons(a′, s)) = [ ] a′ 6= a

Scont(r|q, s) = Scont(r, s)@Scont(q, s)
Scont(rq, s) = Scont(q, s1)@ . . .@Scont(q, sn) [s1, . . . , sn] = Scont(r, s)
Scont(r∗, s) = [s]@S′cont(r, s, s1)@ . . .@S′cont(r, s, sn) [s1, . . . , sn] = Scont(r, s)

S′cont(r, 〈l, i〉, 〈l′, i〉) = [ ]
S′cont(r, 〈l, i〉, 〈l′, i′〉) = Scont(r∗, 〈l′, i〉) i′ 6= i

Definition 5.1.4 defines a function Scont that takes a regular expression and a string and returns
a list of suffixes; defined inductively on the regular expression and the string s. We will show
this definition matches the intuitive concept of the list of maximal suffixes later (as a corollary to
Theorem 5.1.5), in that the cost of acc(r, k, s) will be directly related to the cost of applying k
to the elements of Scont(r, s). We can, however, immediately check to see if the definition meets
the intuitive concept. For example, as noted above Scont(r|q, s) = Scont(r, s)@Scont(q, s). Similarly,
for sequencing, given a regular expression rq, acc checks r with a continuation that checks q.
Therefore if [s1, . . . , sn] is the list of suffixes from Scont(r, s), then the list of suffixes for Scont(rq, s)
can be defined by replacing each si with the list of suffixes of si derived by q, i.e., Scont(rq, s) =
Scont(q, s1)@ . . . @Scont(q, sn). A similar result holds for r∗, except that we know that s is the first
string in the list, as acc’s first action on r∗ is to immediately call the continuation, and because
of strcheck, we replace each si with S′cont(r

∗, s, si), where S′cont(r, s, s
′) is the same as Scont(r, s′)

except when s = s′, where it is the empty set. This corresponds to the action of strcheck, which
returns false immediately if the strings have the same length. For Scont(a, s), if the first character of
s (assuming it has one) matches a, then the continuation is called on the tail of s′ once; otherwise
the program returns false without calling the continuation. Thus Scont(a, s) is [ ] except when
s = scons(a, s′), where it is [s′].

For a continuation k, we say that k is false on s if, for some cost t, apply(η ◦ k, s) = [[t]] ◦ η ◦ ff.
Similarly, we say that k is true on s if, for some cost t, apply(η ◦ k, s) = [[t]] ◦ η ◦ tt. By adequacy
(and because PDom is the underlying category), for all continuations k and strings s, either k is
false on s, k is true on s, or apply(η ◦ k, s) = ⊥.
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Theorem 5.1.5 For any continuation k : 1 → T V[[cont]], any regular expression r, and any string
s, let [s1, . . . , sn] = Scont(r, s), and let i be the smallest integer where 1 ≤ i ≤ n and k is not false
on si, or n if no such integer exists. Then one of the following two possibilities hold:

• n = 0 and there exists a cost t such that for all continuations k′,

acc(r, k′, s) = [[t]] ◦ η ◦ ff

• n > 0 and

acc(r, k, s) = [[t +
i−1∑

j=1

tj ]] ◦ apply(η ◦ k, si)

where acc(r, kkstr(k, si), s) = [[t]] ◦ η ◦ kkstrof(k, si), and, for 1 ≤ j < i,

apply(η ◦ k, sj) = [[tj ]] ◦ η ◦ ff

Proof. We give here a sketch of the proof; for a more formal proof see Appendix C.
From inspection of the program (and with induction) we can see that the following properties

hold:

• accept can only return true if it calls a continuation that returns true

• If a continuation returns true (or fails to terminate), no more continuations are called.

• The only part of a continuation that is used is its result on the original string or its result on
one of its suffixes.

With these facts it is clear that, assuming Scont(r, s) accurately describes the list of suffixes sent
to the continuation, if Scont(r, s) is empty (i.e, the continuation is never called) then acc(r, k, s)
must be false with a cost independent of k. Furthermore, the only difference between acc(r, k, s)
and acc(r, kkstr(k, si), s) is the cost of applying the continuations. Therefore the theorem holds.2

The formal proof shows that Scont(r, s) does match our intuitive definition, which can be seen
by the result of the theorem when n > 0. Then the cost of the entire operation contains precisely
one call to the continuation for each suffix si in the specified order until the continuation returns
true.

5.1.7 More examples

With Theorem 5.1.5 we can better compare two regular expressions or calculate examples. Because
Scont(r, s) is frequently easier to calculate than acc(r, k, s), we can sometimes use it to obtain a
lower bound on the cost of a particular example. When k is false on all the elements of Scont(r, s),
and produces some cost each time, then acc(r, k, s) = Ω(l), where l is the length of Scont(r, s).

The theorem, however, is primarily used to compare similar regular expressions, as we can
better separate the action of the regular expression from the action of the continuation. We can
compare regular expressions r and r′ by comparing apply(V[[acc]], r) and apply(V[[acc]], r′) via
¹cont→string→bool; however, because all continuations and strings are monotone, the relation
apply(V[[acc]], r) ¹cont→string→bool apply(V[[acc]], r′) holds if and only if for all continuations k
and strings s, acc(r, k, s) ¹bool acc(r, k, s). Therefore
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Definition 5.1.5 Let r ¹ r′ if for all terminating continuations k and strings s,

acc(r, k, s) ¹bool acc(r′, k, s)

Similarly, let (r, s) ¹ (r′, s′) if for all terminating continuations k,

acc(r, k, s) ¹bool acc(r′, k, s′)

The latter definition is useful for the cases where r may be faster than r′ for some strings, but
slower on others.

From the previous section we know that if k is a terminating continuation, then acc(r, k, s) must
have the form [[t]] ◦ η ◦ b, for some t ∈ T and some b : 1 → B. Alternatively, if k returns ⊥ when
called with some substring si, we know that the entire result becomes ⊥. Therefore the behavior
of acc(r, k, s) for all continuations is determined by its behavior on the terminating continuations.

The values of Scont(r, s) and Scont(r′, s′) can also tell us whether or not we can compare the two
regular expressions with ¹ at all, as seen in the following theorem:

Theorem 5.1.6 Suppose that (r, s) ¹ (r′, s′). Then a string s′′ is in the sequence Scont(r, s) if and
only if s′′ is in the sequence Scont(r′, s′), i.e., Scont(r, s) and Scont(r′, s′) refer to the same set of
strings (as opposed to the same sequence).
Proof. Suppose that there exists a string s′′ in the sequence of Scont(r, s) that is not in the sequence
of Scont(r′, s′). Let k = kstr(η ◦ tt, s′′), i.e., k is false on all strings except s′′, where it is true (and
the cost is always 0). Then by Theorem 5.1.5 there must exist costs t1 and t2 such that

acc(r, k, s) = [[t1]] ◦ η ◦ tt and acc(r′, k, s′) = [[t2]] ◦ η ◦ ff

Thus it cannot be true that (r, s) ¹ (r′, s′). By a similar proof we can show that if there is a string
s′′ in the sequence Scont(r′, s′) that is not in Scont(r, s) then again it cannot hold that (r, s) ¹ (r′, s′).
Thus we know that both sequences refer to the same set of strings. 2

To show a stronger result requires that we make some assumptions about the order ¹. For
example, it is reasonable to expect that for any costs t1 and t2, t1 ¹ t1 + t2. This is true for
just about any reasonable ordering we want on costs. We also require a reverse: if t2 6= 0, then
t1 + t2 ¹ t1 does not hold. This does not hold for the trivial ordering on costs, nor does it for
any system where t1 + t2 = t1 for some non-zero cost. However, for most cost systems, such a rule
does hold. With that assumption, we have the following restriction on the relationship between
Scont(r, s) and Scont(r′, s′) when (r, s) ¹ (r′, s′):

Theorem 5.1.7 Suppose that (r, s) ¹ (r′, s′), that for all costs t1 and t2, if t2 6= 0, then t1+t2 6¹ t1,
and that there exists a cost t0 that is not 0. Then all of the following conditions hold:

• The set of strings in Scont(r, s) and Scont(r′, s′) are equal.

• The number of times a string s occurs in Scont(r, s) is less than or equal to the number of
times it occurs in Scont(r′, s′)

Proof. The first condition is just a restatement of Theorem 5.1.6. For the second condition,
assume it does not hold. Then there exists a string s2 that occurs more times in Scont(r, s) than
Scont(r′, s′), that is, for some i > 0 and n > 0, s2 occurs n times in Scont(r′, s′) and n + i times in
Scont(r, s). For any cost t and string s0, let tcont(t, s0) be the continuation defined as follows:

tcont(t, s0) = cond ◦ 〈ikstr(η ◦ tt, s0) ◦ π2, [[t]] ◦ η ◦ ff, η ◦ ff〉
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This means that for any string s′0,

apply(η ◦ tcont(t, s0), s′0) = cond(ikstr(η ◦ tt, s0) ◦ s′0) of
True: [[t]] ◦ η ◦ ff
False: η ◦ ff

= cond({s0 = s′0}) of
True: [[t]] ◦ η ◦ ff
False: η ◦ ff

Thus tcont(t, s0) is false on all strings and has 0 cost except on s0, where the cost is t. Note
that for all costs t and t′ and all strings s0 and s, kkstr(tcont(t, s0), s) = kkstr(tcont(t′, s0), s).

Because s2 is in the sequence Scont(r, s) at least once, and because tcont(t, s0) is always false,
by Theorem 5.1.5 we know that there exists a cost t1 such that for any cost t,

acc(r, kkstr(tcont(t, s2), s) = [[t1]] ◦ η ◦ ff

and thus
acc(r, tcont(t, s2), s) = [[t1 + (n + i)t]] ◦ η ◦ ff

Similarly, there exists a cost t2 such that for any cost t,

acc(r′, kkstr(tcont(t, s2), s′) = [[t2]] ◦ η ◦ ff

and thus
acc(r′, tcont(t, s2), s′) = [[t2 + nt]] ◦ η ◦ ff

Let t′ = t2 + t0. Then

acc(r, tcont(t′, s2), s) = [[t1 + (n + i)t2 + (n + i)t0]] ◦ η ◦ ff

however,
acc(r′, tcont(t′, s2), s′) = [[(n + 1)t2 + nt0]] ◦ η ◦ ff

As i > 0 and t0 is not 0, we know that t1 + (n + i)t2 + (n + i)t0 ¹ (n + 1)t2 + nt0 does not hold.
Thus Scont(r, s) ¹ Scont(r′, s′) cannot hold either. As this is a contradiction, the third condition of
the theorem must hold. 2

For the rest of this section we will be assuming a particular (and common) ordering of the costs,
i.e. t1 ¹ t2 precisely when there exists a t such that t1 + t = t2. For the integers this is the usual
linear ordering. For the free commutative monoid over the set of cost constants (which is what we
use in practice in this section), the ordering not only makes sense if one wants to interpret ¹ as
an indication of one program being faster than another, but also satisfies the assumptions made in
Theorem 5.1.7.

Example 6: r = (a∗)∗, s = 〈an, i〉.
If n = 0, then Scont(a∗, s) = [s], and if n > 0, then Scont(a∗, s) = [s]@Scont(a∗, 〈an−1, i + 1〉).
Therefore Scont(a∗, s) = [〈an, i〉, . . . , 〈a0, i + n〉]. By the definition of S′cont, we know that
S′cont(a

∗, s, 〈an, i〉) = [ ], and for k > 0, S′cont(a
∗, s, 〈an−k, i + k〉) = Scont(r, 〈an−k, i + k〉).

Thus by the definition of Scont,

Scont(r, s) = [s]@S′cont(a
∗, 〈an, i〉)@ . . .@S′cont(a

∗, 〈a0, i + n〉)
= [s]@Scont(r, 〈an−1, i + 1〉)@ . . .@Scont(r, 〈a0, i + n〉)
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Thus, as a function of n, the length of Scont(r, s) can be described by the following function:

L(0) = 1

L(n) = 1 +
n−1∑

k=0

L(k)

This means that the length of Scont(r, s) is 2n, so for any continuation k that is false for each
〈an, i〉, . . . , 〈a0, i + n〉, acc(r, k, s) will have cost Ω(2n). With a similar calculation we can
show that acc(((a∗)∗)∗, k, s) has cost Ω(3n).

Interestingly, the first n + 1 values of Scont(r, s) are 〈an, i〉, . . . , 〈a0, i + n〉, that is, all the
suffixes of s. Therefore if a continuation k is true on some element of Scont(r, s) is it true on
one of the first n + 1 elements. By examination of the code and the semantics it is clear that
between calls to a continuation, the accept program performs a constant amount of work
(i.e., a character comparison, a length comparison, and a single unrolling of the recursive
call). Therefore acc(r, k, s) is O(n) in cost when k is constant in cost.

Example 7: Comparing r1|(r2|r3) and (r1|r2)|r3:

Let r1, r2, r3 be regular expressions, let k be a terminating continuation, and let s be a string.

Because k terminates, there exist costs t1, t2, and t3, and morphisms b1, b2, b3 from 1 to
T V[[bool]] such that

acc(r1, k, s) = [[t1]] ◦ η ◦ b1

acc(r2, k, s) = [[t2]] ◦ η ◦ b2

acc(r3, k, s) = [[t3]] ◦ η ◦ b3

Then

acc(r1|(r2|r3), k, s) = [[5tapp + trcase + trec]]
◦ cond([[t1]] ◦ η ◦ b1) of

True: [[ttrue]] ◦ η ◦ tt
False: [[7tapp + tfalse + trcase + 2trec]]

◦ cond([[t2]] ◦ η ◦ b2) of
True: [[ttrue]] ◦ η ◦ tt
False: [[t3 + 2tapp + tfalse + trec]] ◦ b3

= [[t1 + 5tapp + trcase + trec]]
◦ cond({b1}) of

True: [[ttrue]] ◦ η ◦ tt
False: [[t2 + 7tapp + tfalse + trcase + 2trec]]

◦ cond({b2}) of
True: [[ttrue]] ◦ η ◦ tt
False: [[t3 + 2tapp + tfalse + trec]] ◦ b3

and

acc((r1|r2)|r3, k, s) = [[t1 + 10tapp + 2trcase + 2trec]]
◦ cond(z) of

True: [[ttrue]] ◦ η ◦ tt
False: [[t3 + 2tapp + tfalse + trec]] ◦ b3
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where
z = cond({b1}) of

True: [[ttrue]] ◦ η ◦ tt
False: [[t2 + 2tapp + tfalse + trec]] ◦ η ◦ b2

Now if b1 = tt, then

acc(r1|(r2|r3), k, s) = [[t1 + 5tapp + trcase + trec + ttrue]] ◦ η ◦ tt

while
acc((r1|r2)|r3, k, s) = [[t1 + 10tapp + 2trcase + 2trec + ttrue]] ◦ η ◦ tt

Therefore right association is faster in this case. On the other hand, if b1 = ff, then

acc(r1|(r2|r3), k, s) = [[t1 + t2 + 12tapp + tfalse + 2trcase + 3trec]]
◦ cond({b2}) of

True: [[ttrue]] ◦ η ◦ tt
False: [[t3 + 2tapp + tfalse + trec]] ◦ b3

while

acc((r1|r2)|r3, k, s) = [[t1 + t2 + 12tapp + tfalse + 2trcase + 3trec]]
◦ cond({b2}) of

True: [[ttrue]] ◦ η ◦ tt
False: [[t3 + 2tapp + tfalse + trec]] ◦ b3

Thus when b1 is false, right and left associations are identical. The reason why right associ-
ation is faster when b1 is true is because in that case the function never has to traverse the
right-hand choice, but with left association (or when b1 is false) the entire choice structure is
traversed. The regular expressions are checked in the same order; the only possible change is
the overhead in reaching the regular expressions.

Example 8: Comparing r1(r2r3) and (r1r2)r3.

Let r1, r2, and r3 be regular expressions and let s be a string. Then, for any continuation k,

acc(r1(r2r3), k, s) = [[7tapp + trcase + 2trec]] ◦ acc(r1, acck(r2r3, k), s)

and
acc((r1r2)r3, k, s) = [[14tapp + 2trcase + 4trec]] ◦ acc(r1, acck(r2, acck(r3, k)), s)

For any suffix string s′ (or s),

apply(η ◦ acck(r2r3, k), s′) = [[7tapp + trcase + 2trec]] ◦ acc(r2, acck(r3, k), s′)
= [[7tapp + trcase + 2trec]] ◦ apply(η ◦ acck(r2, acck(r3, k)), s′)

Thus the difference in the meanings of the two expressions is not which continuation is
eventually called, but whether the cost 7tapp+trcase+2trec of traversing a sequence is counted in
the beginning or in the continuation. Therefore the difference between the regular expressions
is dependent on the number of times a continuation is called when evaluating r1 on s. There
are three cases to examine:
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• Suppose that Scont(r1, s) is empty. Then there exists a cost t such that for all continua-
tions k′, acc(r1, k

′, s) = [[t]] ◦ η ◦ ff. Thus

acc(r1(r2r3), k, s) = [[t + 7tapp + trcase + trec]] ◦ η ◦ ff
¹bool [[t + 14tapp + 2trcase + 4trec]] ◦ η ◦ ff

= acc((r1r2)r3, k, s)

Therefore (r1(r2r3), s) ¹ ((r1r2)r3, s)

• Suppose that Scont(r1, s) = [s′], where s′ is s or one of its suffixes. Then

acc(r1(r2r3), k, s) = [[t + 7tapp + trcase + trec]] ◦ apply(η ◦ acck(r2r3, k), s′)
= [[t + 14tapp + 2trcase + 2trec]] ◦ apply(η ◦ acck(r2, acck(r3, k)), s′)
= acc((r1r2)r3, k, s)

where by Theorem 5.1.5 there is a cost t such that

acc(r1, kkstr(acck(r2r3, k), s′), s) = acc(r1, kkstr(acck(r2, acck(r3, k)), s′), s)
= [[t]] ◦ η ◦ kkstrof(acck(r2r3, k), s′)

Because Scont(r1, s) is a singleton, the program will call the continuation evaluating r2

precisely once; therefore it does not matter if the overhead in exploring the sequence is
handled before the continuation or in the continuation.

• Finally, suppose that Scont(r1, s) = [s1, . . . , sn], where n > 1. Let si be the first element
such that apply(η ◦ acck(r2r3, k), si) is not false, or sn if no such element exists. Let si′

be the first element such that

apply(η ◦ acck(r2, acck(r3, k)), si)

is not false or sn if no such element exists. As the two continuations are the same except
for some additional initial costs, si = si′ . Therefore, for each 1 ≤ j < i, there exists a
cost tj such that

apply(η ◦ acck(r2, acck(r3, k)), sj) = [[tj ]] ◦ η ◦ ff

Then, for each 1 ≤ j < i, apply(η ◦ acck(r2r3, k), sj) = [[7tapp + trcase +2trec + ti]] ◦ η ◦ff,
so

acc((r1r2)r3, k, s) = [[14tapp + 2trcase + 4trec]] ◦ acc(r1, acck(r2, acck(r3, k)), s)
= [[t + 14tapp + 2trcase + 4trec +

∑i−1
j=1 ti]]

◦ apply(η ◦ acck(r2, acck(r3, k)), si)
¹bool [[t + 7tapp + trcase + 2trec +

∑i−1
j=1(7tapp + trcase + 2trec + ti)]]

◦ [[7tapp + trcase + 2trec]] ◦ apply(η ◦ acck(r2, acck(r3, k)), si)
= acc(r1(r2r3), k, s)

Therefore, when the length of Scont(r1, s) is greater than 1, ((r1r2)r3, s) ¹ (r1(r2r3), s).
This reflects the property that, when a continuation is called more than once, the extra
overhead in r1(r2r3) is also added more than once.
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Example 9: Comparing r(r1|r2) and (rr1)|(rr2).

Let r, r1, and r2 be regular expressions. One would expect that r(r1|r2) ¹ (rr1)|(rr2); this is
not always the case, however. Let s be any string, and let [s1, . . . , sn] = Scont(r, s). Then

Scont(r(r1|r2), s) = Scont(r1, s1)@Scont(r2, s1)@ . . . @Scont(r1, sn)@Scont(r2, sn)

but

Scont(rr1|rr2, s) = Scont(r1, s1)@ . . . @Scont(r1, sn)@Scont(r2, s1)@ . . . Scont(r2, sn)

Therefore we immediately know that we cannot compare r(r1|r2) and rr1|rr2 for all strings.
For example, for any continuation k and string s,

acc(a(b|c), k, scons(d, s)) ¹bool acc(ab|ac, k, scons(d, s))

but, for any integer i,

acc(a∗bc|a∗ab, initk, 〈[a, b, c], i〉) ¹bool acc(a∗(bc|ab), initk, 〈[a, b, c], i〉)
because the former only needs to call initk once.

Even if Scont(r(r1|r2), s) and Scont(rr1|rr2, s) happen to be equal, we cannot guarantee that
(r(r1|r2), s) ¹ (rr1|rr2, s). For example,

Scont(a∗bc|a∗abd, 〈[a, b, c], i〉) = Scont(a∗(bc|abd), 〈[a, b, c], i〉) = [snil(i + 3)]

because each version has a branch that requires all three characters (and the other branches
fail), but

acc(a∗bc|a∗abd, initk, 〈[a, b, c], i〉) ¹bool acc(a∗(bc|abd), initk, 〈[a, b, c], i〉)
The extra cost comes from having to test abd (in the initial case where a∗ is being tested
against the empty string) unnecessarily.

There are, however, cases where Scont(rr1|rr2, s) ¹ Scont(r(r1|r2), s). For example, suppose
that Scont(r, s) = [ ]. This means that the program fails without ever reaching r1 or r2.
Therefore, as, for all k,

acc(r(r1|r2), k, s) = [[7tapp + trcase + 2trec]] ◦ acc(r, acck(r1|r2, k), s)

and

acc(rr1|rr2, k, s) = [[12tapp + 2trcase + 3trec]]
◦ cond(acc(r, acck(r1, k), s)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[9tapp + tfalse + trcase + 3trec]] ◦ acc(r, acck(r2, k), s)

we know immediately that (r(r1|r2), s) ¹ (rr1|rr2, s) because acc(r, k, s) is always false with
a cost independent of the continuation. In this case not only is there the additional overhead
of exploring the choice operator, but r is checked twice.

Next suppose that Scont(r, s) = [s′], i.e., r matches some prefix of s and has no other matching
choices. Then there exist costs t1 and t2 such that

acc(r, kstr(η ◦ tt, s), s) = [[t1]] ◦ η ◦ tt and acc(r, kstr(η ◦ ff, s), s) = [[t2]] ◦ η ◦ ff
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Therefore, if acck(r1, k) is true on s′ with cost t′1 (i.e., apply(η ◦ acck(r1, k), s′) = [[t′1]]◦η ◦ tt),
then, by Theorem 5.1.5,

acc(r, acck(r1, k), s) = [[t1]] ◦ apply(η ◦ acck(r1, k), s′)
= [[t′1 + t1]] ◦ η ◦ tt

and

acc(r, acck(r1|r2, k), s) = [[t1]] ◦ apply(η ◦ acck(r1|r2, k), s′)
= [[5tapp + trcase + trec + t1]]

◦ cond(acc(r1, k, s′)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + tfalse + trec]] ◦ acc(r2, k, s′)

= [[5tapp + trcase + trec + ttrue + t′1 + t1]] ◦ η ◦ tt

Therefore

acc(r(r1|r2), k, s) = [[7tapp + trcase + 2trec]] ◦ acc(r, acck(r1|r2, k), s)
= [[12tapp + 2trcase + 3trec + ttrue + t′1 + t1]] ◦ η ◦ tt
= [[12tapp + 2trcase + 3trec + t1]]

◦ cond(acc(r1, k, s′)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[9tapp + tfalse + trcase + 3trec + t1]] ◦ acc(r2, k, s′)

= acc(rr1|rr2, k, s)

In this case they are equal, because the second choice operator is never needed (in either case)
and the overhead in exploring the regular expression is also the same.

If, on the other hand, acck(r1, k) is false on s′ with a cost t′1, then

apply(η ◦ acck(r1|r2, k), s′)
= [[5tapp + trcase + trec]] ◦ cond(acc(r1, k, s′)) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + tfalse + trec]] ◦ acc(r2, k, s′)

= [[7tapp + trcase + 2trec + tfalse + t′1]] ◦ acc(r2, k, s′)

so we know that

acc(r(r1|r2), k, s)
= [[7tapp + trcase + 2trec + t]] ◦ apply(η ◦ acck(r1|r2, k), s′)
= [[14tapp + 2trcase + 4trec + tfalse + t + t′1]] ◦ acc(r2, k, s′)

¹bool [[21tapp + 3trcase + 6trec + tfalse + 2t + t′1]] ◦ acc(r2, k, s′)
= [[12tapp + 2trcase + 3trec + t]]

◦ cond(acc(r1, k, s′)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[9tapp + tfalse + trcase + 3trec + t]] ◦ acc(r2, k, s′)

= acc(rr1|rr2, k, s)

where t = t1 if acck(r2, k) is false on s′, and t = t2 otherwise. Therefore

(r(r1|r2), s) ¹ (rr1|rr2, s)
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Again with rr1|rr2, the extra checks on r make it slower.

Even when we cannot compare r(r1|r2) and rr1|rr2 for all continuations, we can compare
them for select continuations. For example, if s1 is the first string in Scont(r, s) and k is true
on some suffix s′ of Scont(r1, s1), then the values of acc(r(r1|r2), k, s) and acc(rr1|rr2, k, s) are
similar to the values in the previous example, and acc(r(r1|r2), k, s) ¹bool acc(rr1|rr2, k, s).

We also can predict the values of acc(r(r1|r2), k, s) and acc(rr1|rr2, k, s) when k is false
everywhere except possibly in Scont(r2, sn). In those cases, we know that, for 1 ≤ i < n,
acc(r1, k, si) and acc(r2, k, si) are both false, which means that there exist costs t′i and t′′i such
that acc(r1, k, si) = [[t′i]] ◦ η ◦ff and acc(r2, k, si) = [[t′′i ]] ◦ η ◦ff. Furthermore there exists a cost
t′n such that acc(r1, k, sn) = [[t′n]] ◦ η ◦ ff.

Let b be tt if k is true in some suffix s′ in Scont(r2, sn) and ff otherwise. Then there exists a
cost [[t′′n]] such that acc(r2, k, sn) = [[t′′n]] ◦ η ◦ b. Therefore, for 1 ≤ i ≤ n,

acc(r1|r2, k, si) = [[5tapp + trcase + trec]] ◦ cond(acc(r1, k, si)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + tfalse + trec]] ◦ acc(r2, k, si)

= [[7tapp + trcase + 2trec + tfalse + t′i + t′′i ]] ◦ η ◦ b

By Theorem 5.1.5 there exist costs t1 and t2 such that acc(r, kstr(η ◦ ff, sn), s) = [[t1]] ◦ η ◦ ff,
and acc(r, kstr(η ◦ b, sn), s) = [[t2]] ◦ η ◦ b. Therefore

acc(r, acck(r1, k), s) = [[t1 +
n∑

i=1

t′i]] ◦ η ◦ ff,

acc(r, acck(r2, k), s) = [[t2 +
n∑

i=1

t′′i ]] ◦ η ◦ b,

and

acc(r, acck(r1|r2, k), s) = [[t2 + 7ntapp + ntrcase + 2ntrec + ntfalse +
n∑

i=1

(t′i + t′′i )]] ◦ η ◦ b

so

acc(r(r1|r2), k, s)
= [[7tapp + trcase + 2trec]] ◦ acc(r, acck(r1|r2, k), s)
= [[t2 + 7(n + 1)tapp + (n + 1)trcase + 2(n + 1)trec + ntfalse +

∑n
i=1(t

′
i + t′′i )]] ◦ η ◦ b

and

acc(rr1|rr2, k, s)
= [[12tapp + 2trcase + 3trec]]

◦ cond(acc(r, acck(r1, k), s)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[9tapp + tfalse + trcase + 3trec]] ◦ acc(r, acck(r2, k), s)

= [[21tapp + 3trcase + 6trec + tfalse + t1 + t2 +
∑n

i=1(t
′
i + t′′i )]] ◦ η ◦ b

To determine which regular expression is faster, we need to know if t1 is greater or less than
(7n−14)tapp+(n−2)trcase+(n−1)tfalse+(2n−4)trec. The cost t1 is approximately n times the
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average cost between calls to the continuations. This average cost, therefore, needs to be less
than 7tapp + trcase + tfalse + 2trec. The only cases where Scont(r, s) is greater than 1 are when
r contains either choice or repetition. In either case t is at least 7tapp + trcase + tfalse + 2trec,
so r(r1|r2) will be faster. Note that n must be at least 2 for the calculated cost to be non-
negative; this is another indication that for n = 1, (r(r1|r2), s) ¹ (rr1|rr2, s).

5.2 Conclusion

The accept program is a relatively simple program that uses continuations. It has an advantage
over the traditional regular expression matching program in that it requires little set up time. It
has a disadvantage, however, that for some regular expressions the cost of evaluating the expression
is slower; sometimes significantly slower. Fortunately for the only regular expressions found that
have an exponential cost (such as (a∗)∗) there exist simpler expressions with non-exponential cost
representing the same set of strings.

Some of the complexities found for particular regular expression came as no surprise. For exam-
ple, the cost of matching a1| . . . |an or a1a2 . . . an are both linear in n, while matching (a1| . . . |an)∗

against a string of m an’s has a complexity of O(nm). Similarly we found that the only difference
between r1|(r2|r3) or (r1|r2)|r3 is possibly the time it takes to reach r1.

Several of the complexity properties, however, were non-intuitive and required careful analysis to
discover them. For example until we compared r(r1|r2) and rr1|rr2 with the help of Theorem 5.1.5
we assumed that the former expression was always faster. The analysis not only proved differently,
but pinpointed the cases where the unfactored expression was faster. Similarly, the difference
between r1(r2r3) and (r1r2)r3 was greater than expected; with each version being potentially faster
depending on the value of Scont. Lastly, our analysis not only showed that there were expressions
that might require exponential cost to match but also showed which strings were being rechecked.
This analysis was made possible by both from the treatment of functional types and the ability to
mathematically substitute values and thus enable us to separate the cost of the continuations from
the cost of the regular expression itself.
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Chapter 6

Conclusions and Future Work

In this dissertation we create a technique for building intensional semantics for functional programs
using either call-by-value or call-by-name evaluation strategies. We start with standard call-by-
value and call-by-name denotational and operational semantics. The depiction of the denotational
semantics is slightly unusual in that we express the treatment of nontermination explicitly through
the use of the lifting monad. From these standard extensional semantics we create intensional
semantics. For the intensional operational semantics, we simply label the transitions with costs
that relate to the steps being taken during execution. For the intensional denotational semantics
we first create a monad-like structure called a cost structure that is capable of representing the cost
of evaluation. We then replace the lifting monad with the cost structure and add constants costs
as needed to correctly represent the cost of evaluation.

We show that the computation of cost is reasonable by proving that the intensional semantic
functions are sound and adequate relative to an operational semantics in which the relationship
between the costs and the steps of the evaluation is clear. We also show that the intensional
semantic functions are consistent with the extensional semantics in that we can easily recover the
extensional denotational semantics from the intensional. Additionally, we show that there are non-
trivial cost structures and that it is possible to derive meaningful information about the behavior
of functions using the intensional semantics. We show this for some simple examples for both the
call-by-name and call-by-value semantics and show results for a more complicated example (using
continuations) using the call-by-value semantics.

The technique used to derive the intensional semantics from the extensional is robust; with
virtually the same technique we are able to derive intensional semantics for both the call-by-
value and call-by-name semantics. We also can easily add several data types and constants to the
language without losing soundness or adequacy. These additional data types include many of the
basic structures used for many kinds of defined data types seen in real programs; we believe that
most data types used in purely applicative programs (i.e., those that do not involve state changes
such as references) should be analyzable by our semantic functions.

There are two factors aiding in this robustness. First, we based our cost structure on monads.
Monads have been much studied in relationship to computer science (see [26], [48], [46]) and have
been shown to be a useful general method for adding structure to semantics or to data types. In
this case we did not need all the properties of a monad to prove the desired results needed from
the cost structure; however, by defining proper and strong cost structures we showed that a cost
structure can have all the properties of a monad or a strong monad. In particular, the non-trivial
example we created for a cost structure did satisfy all the properties of a strong cost structure and
thus was also a strong monad.

191
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Second, because cost analysis and strictness analysis are closely connected (see [45]), we tightly
couple our semantics with the lifting monad. As a result we also gain the ability to build our inten-
sional semantics on top of a well-known extensional semantics with explicit strictness properties.
Furthermore, it is often easy to devise ways to add many additional constants or languages because
there is usually a straightforward technique to convert their extensional semantic properties to the
intensional (such as converting the lifting monad to a cost structure and adding constant costs
where needed). Thus we have a greater guarantee of both the appropriateness and the robustness
of our technique.

What is new about our technique is this combination of internal costs through a monadic
structure plus the tight coupling with the lifting monad. Other techniques that have used monads
to add cost ([12], [41]) tend to ignore strictness properties, making the resulting semantics less
obviously correct and more difficult to generalize. Some earlier approaches that do pay attention
to strictness properties ([37], [6]) handle costs externally and thus do not appear to generalize
naturally to higher order types.

The semantic functions defined in this dissertation give us the ability to analyze complexity for
call-by-value and call-by-name programs. Because of the close relationship between the call-by-
name and call-by-need evaluation strategies, we can also analyze complexity for some call-by-need
programs and approximate costs for others. In some cases, where the complexity inherent in high
order or lazy programs is sufficiently complicated so that normal complexity analysis becomes
difficult, our semantics is particularly useful. This was particularly noticeable when analyzing the
complexity of the continuation-style pattern matching program, whose analysis obviously required
the formulation of intensional properties for continuations. We are able to show complexity results
that are not necessarily intuitive. For example, it was sometimes difficult to tell in advance which
of two extensionally equivalent regular expressions (such as r1(r2|r3) and r1r2|r1r3) are used more
efficiently in the pattern matching program. Furthermore, it was not intuitively obvious that there
would be regular expressions such that the program had exponential time relative to the length of
the string to be matched.

6.1 Related Work

6.1.1 David Sands: Calculi for Time Analysis of Functional Programs

In Sands’ thesis, he calculated cost (in his case, the number of function calls) by, for each function,
creating a separate cost function in the language that calculated the cost instead of the final value.
For example, a program such as

map f x = if (null x) then nil
else (cons (f (hd x)) (map f (tl x)))

would have the following cost function:

cmap f x = 1 + if (null x) then 0
else (f c@ (hd x)) + (cmap f (tl x))

where c@ is an abbreviations for applying the cost function of the application function apply f
x = f(x). The intensional meaning of a function is then taken to be the standard extensional
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meaning of the function paired with the meaning of the cost function, plus some arity information
needed to keep track of higher order types.

For first-order call-by-value functions, the difference between his system and the one in this
dissertation are relatively minor. His system is flexible enough to count the types of costs we
used (and vice versa), with the exception that, because his language structure does not distinguish
between recursive and non-recursive functions, Sands’ system cannot count the number of recursive
calls as opposed to function calls in general. If, however, he had used explicit recursion in his
language definition then such information would probably be available.

For higher-order call-by-value, the difference is greater, but still not substantial. Sands distin-
guished between the application of a curried function that still requires arguments from ones that
do not (as we do for primitive constants). He was thus able to give different costs for applying the
two types of functions. Our system does not currently make such a distinction, although it could be
augmented to do so with a change to the operational semantics so that the arity of a λ-expression
is used to generate different costs of application. Outside of those differences, again either method
gives the same results for the same set of functions.

The real distinction between the two frameworks is when we look at lazy data structures (which
our system has in the call-by-name system). Because Sands added costs by modifying functions,
his system does not appear to generalize easily to the case where computation is delayed because
part of a data structure is not evaluated. Instead his method involved the evaluation of a function
relative to a context, based on Wadler’s projections ([44]), that describes how much of the result is
going to be needed. A projection is an idempotent function f such that f(x) v x. For the purposes
of Sands’ evaluation, a projection removes from a value information that will not be needed. For
example, if a projection returns ⊥ we know that the value will not be used, so we do not need to
include its cost.

The problem with this system occurs when converting the projection for a function call to the
projections needed for each of the arguments. There is no computable way to do so, which can be a
problem even with the primitive (constant) functions (although for most of them, useful solutions
are known), but is a serious problem for higher-order types. Because of this, Sands could only
approximate the cost calculated, and in some cases those approximate costs were arbitrarily poor
(and in a few cases, the automatic cost calculation led to non-termination even though the actual
function terminates).

6.1.2 Jon Shultis: On the Complexity of Higher-Order Program

Shultis ([41]) wrote a technical report discussing a higher-order call-by-value semantics that included
cost. He wrote a denotational semantics for a simple call-by-value language which can be used to
evaluate not only the value but the toll associated with an expression. For expressions of non-
functional type, a toll is similar to a cost in our system (except that Shultis counted the use
of values but not application or recursion). For higher order functions, tolls also resemble what
we called internal cost, i.e., a toll included the cost of applying a function as well as the cost of
evaluating the function. These tolls most closely resemble cost functions in the style of Sands except
that they were presented by Shultis as a mathematical objects rather than as functions written in
the programming language itself. Therefore if Cost is a set of costs (which in Shultis’ case meant
integers), and Value is the set of all possible values (integers, lists, functions, etc), then a function
of type τ1 → . . . → τn → τ therefore had n tolls associated with it: t0 : Cost, t1 : Value→ Cost,
the cost of applying the function to the first argument, and so forth up to tn. The use of tolls
was the primary accomplishment of the paper; Shultis explicitly distinguished between the cost of
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evaluating an expression and the cost of using the expression in future evaluations, analogous to
our distinction between external and internal cost.

In practice, Shultis’ system gives similar costs as ours (or Sands) for most functions. For
example, his system gives the cost of twice a b as (using his notation)

5 + t0
a + t0

b + t1
a(vb) + t1

a(va(vb))

where for x = a or x = b, vx is the value of x, t0
x is the cost of evaluating x, and t1

a(x) is the cost
of applying va to a value. The constant 5 is derived primarily by evaluating λ-expressions. This is
essentially the same as the cost we get for the function, except that instead of the constant 5 we
have the cost of two applications. The examples in his paper all have the same asymptotic costs
as in our system; however, the constants involved are quite different due to the different choice of
base costs.

The work described in [41], however, was only preliminary. There was no attempt to compare his
semantics with any operational model. Shultis did implement his functions in a program and used
that to check some of the more complicated calculations, but this was a simple implementation
of his denotational semantics, not an operational definition. In fact, his system is not sound in
comparison to the operational models used by us or by Sands because his choice of costs included
non-zero costs for values. Even against an operational semantics that distinguishes between values
and expressions that immediately return values, his system adds cost for each re-evaluation of a
value, so it would not be consistent with that operational model.

Also, as his focus was on higher-order types, Shultis did not have a method for handling costs
related to call-by-name evaluation strategies or with lazy data structures (where there is another
form of internal cost).

6.1.3 Douglas Gurr: Semantic Frameworks for Complexity

Douglas Gurr in ([12]) worked on a system of adding complexity to already existing semantic
systems. He does this primarily using two techniques. The first technique uses the product monad
to add complexity to a given language calculus. His use of the product monad closely resembles
our use of cost structures; the differences are minor (such as differences between how costs are
introduced). The primary difference is in how they were used. We were primarily concerned with
internal costs and separability; Gurr was more concerned with the generality of the technique.
Thus he extended the product monad to a monad constructor that took an existing monad and
added the product monad. Gurr was not satisfied with this approach for several reasons. One was
that embedding the cost directly into the semantics in the form of a product limited the type of
categories to which the methodology could be applied. Second, Gurr wanted to be able to compare
complexity of different languages based on different categories, which was more difficult when the
actual costs are build into the structure of that category. Third, he had difficulty with this technique
and higher-order functions, although that was primarily because he only considered external costs
even though the calculus itself potentially included internal costs. Lastly, he wanted to be able to
decide and reason about non-exact complexity and needed a more flexible structure in order to do
so.

To solve his problems Gurr separated the category used to describe the language (C) and the
category used to described the complexity (D) with a functor U from C to D. Thus for a meaning
of a program f : A → B in C he has a cost function from UA to a monoid M of costs. With this
structure he then created a system of measures so that values are assigned sizes and sets of costs
are assigned a specific cost (such as the maximum) to derive a function from sizes to costs. The
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resulting function form sizes to costs, was not compositional, so he extended the system by adding
equivalences to the original cost functions instead of equivalence to the input and output of the
cost functions.

The second system succeeds in its generality, but separating the cost functions from the value
functions makes it difficult to extend this to accommodate internal cost, as required with higher
order or lazy types. Gurr’s first system is very similar to our system, except that we generalized
it differently to remove the explicit use of costs in the system (instead in our framework the costs
are mapped into morphisms that add cost). Also, Gurr did not have a system for explicitly adding
costs except through the use of primitive functions. Lastly, our system maintained internal costs
explicitly, making it more straightforward to handle higher-order and lazy types. Our system,
however, is not as directly general, as Gurr examined systems for adding cost to general categorical
semantics instead of a specific semantics as we did (although we included guidelines for adding cost
to other semantics, just not a formal system).

6.1.4 Other work

There has been other research on semantics with cost. Sands’ work was based on earlier work by
Bjerner ([5]), Bjerner and Holmström ([6]), and Wadler ([45]). These authors explored the process
of determining the time of a lazy functional program based on how much of the result is actually
needed. All of their work was in first-order lazy languages, although none of them explored the
effect of memoization.

There has also been work done in automatic analysis. In particular, there are several papers
([50], [21], [22], [36], [9]) that examine approximate costs of a function relative to its input without
necessarily running the program on its input. Sands’ system is also designed for automatic analysis,
although he did not automate it in his thesis. His system also evaluates cost exactly, and while a cost
function does calculate the value, it must calculate the value of anything needed in a branch or as
an argument to another function. Some other systems, such as [36] and [9], work on approximating
the input in such a way as to calculate cost for a wide variety of inputs

A more recent paper, [16] uses the cost monad to analyze a functional language that uses
arrays. It uses a limited form of functional language to develop cost analysis based on the size and
dimensions of the array and independent of the content of the arrays.

6.2 Future Work

6.2.1 Direct application

The technique developed in this dissertation for computing costs can be used directly in future
projects. One particular use is in analyzing the complexity of other programs. The intensional
semantics is primarily useful for programs, such as accept, that use higher order types in non-trivial
ways, or for programs that manipulate lazy data structures but do not depend on memoization,
such as the stream transformation programs found in [14] or the tabulate program in section 4.5.4.

Another possible use may be formally proving the correctness as well as the improvement in
speed of certain types of local optimizations. Again this technique would be particular useful in
the case where we have data types with internal costs.
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e1 −→ e′1
if e1 then e2 else e3 −→ if e′1 then e2 else e3

if true then e2 else e3 −→ e2

if false then e2 else e3 −→ e3

e1 −→ e′1
e1(e2) −→ e′1(e2)

e2 −→ e′2
v(e2) −→ v(e′2)

(lam x.e)(v2) −→ [v2/x]e rec x.e −→ [rec x.e/x]e

Figure 6.1: A single-step call-by-value operational semantics

6.2.2 Comparisons with other operational semantics

Our choice of operational semantics is based on natural (big-step) transition rules using substitution
because it is highly abstract yet concrete enough to allow costs based on counting the number of
high-level operations. It is worthwhile, however, to see if we can derive sound denotational semantics
relative to other types of operational semantics. For example, can we describe the number of steps
in a single-step operational semantics? How does our semantics compare to an environment-based
operational semantics instead of a substitution-based one? Can we describe costs associated with
abstract machines such as the SECD machine?

Preliminary investigation indicates that we can use cost structures to derive a denotational
semantics that accurately predicts the number of steps in a single-step operational semantics; for
example the call-by-value denotational semantics defined in Chapter 3 is sound relative to the
single step semantics shown in Figure 6.1 when we replace all costs (trec, etc.) with the integer
1. It also seems that an environment-based operational semantics might be a better basis for an
intensional denotational semantics than the substitution-based semantics used in this dissertation.
This is because the substitution-based semantics by nature duplicates code. When the duplicated
code represented a value, it was therefore required that that code have 0 cost. This made it
more difficult to separate constructors, which create values but in practice may spend time doing
so, from the resulting values itself. More critically, we were required to set the cost of applying
an abstraction to be a constant, independent of the abstraction itself. The only reason we were
required to do so is that otherwise the Substitution Lemma fails to hold, thus leading to an unsound
denotational semantics. With an environment-based semantics, we no longer have a need for the
Substitution Lemma, and from preliminary examination it is likely that it is possible to define the
cost of applying an abstraction as a function of the abstraction itself (for example, allowing the
cost to be proportional to the number of free variables in the abstraction), thus allowing greater
flexibility.

For abstract machines the comparison is more complicated, not only because such machines
are further separated from the language itself, but also because there is more than one possible
“cost” associated with such a machine. For example, with the SECD machine, one could count the
number of state transitions or the number of stack operations. It would be useful to find out which
operations can be described compositionally by the intensional semantics.
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6.2.3 Parallelism

Another area for future exploration is the examination of costs associated with parallel compu-
tation. It is unlikely that our technique could be easily adapted to parallel settings that involve
communication between processes, but a simple case of parallelism, where independent expressions
are evaluated in parallel, should be describable using our techniques. For example, we could try
to define compositional semantics for some of the operational semantics in Greiner’s thesis ([10]).
This would require, of course, a change in the cost structure because the set of costs would have to
include two operations (one for combining sequential computation and one for combining parallel
computation). This may turn out to be sufficient to model the case of parallel computation, but
this has not been proven formally.

6.2.4 Call-by-need semantics

The call-by-name semantics is limited because it cannot always accurately describe situations in
lazy languages that where an argument is evaluated either once, or not all, at different locations in
the code and depending on external conditions. For example, given the function lam x.x::x::nil, it
is not possible in the call-by-name strategy to have the expression bound to x evaluated both only
when needed and no more than once.

Therefore another topic for future exploration is to derive an intensional semantics that can
model call-by-need evaluation order. The difficulty encountered when describing call-by-need eval-
uation is that call-by-need evaluation inevitably requires some form of “state” which changes when-
ever a variable is evaluated. Therefore any denotational semantics that describes the costs associ-
ated with a call-by-need evaluation strategy must be able to handle state changes as well.

There are two standard ways in which state might be added within a category theoretic frame-
work such as ours. The first uses the state monad SX = X × [S ⇒ S ×X], where the object S
represents some form of state. In our case as we are keeping track of costs not values we would use
a variant monad SX = X × [S ⇒ S × T ], with T being the object of costs. This could be then
implemented by using a cost structure based on S with some extra functionality added to handle
adding and updating the actual state.

An even more elegant method for adding state in category theory involves the use of a functor
category. A functor category CW has functors from W to C as objects and natural transformations
as morphisms. When used to model state transformations, W represents a category describing
“possible worlds,” which are loosely related to the set of known identifiers. Semantics involving
functor categories has primarily been used to model Algol-like languages ([43], [34], [30]), although
it has also been used to model references in ML-like languages ([42]).

With functor categories, we can theoretically define a cost structure in the category CW . In
addition, we need the ability to evaluate the state of an identifier (and take differing actions based
on the outcome), and to add or remove new identifiers. With these extra structures, we can then
define a semantics that describes a call-by-need semantics, using the new cost structure in place of
the old, and with some possible changes to accommodate new identifiers and the evaluation of old
ones.

Using functor categories is very elegant, even though calculating examples is necessarily more
complex due to the need to manage state. Using a preliminary example (the details of which
are beyond the scope of this chapter) we were able to show that, for example, the cost of applying
length to a list is the same as for the call-by-value semantics plus the cost of evaluating the delayed
costs stored within the tails of the list (the elements of the list are not evaluated).

Unfortunately, at this time we do not know if any cost structures using either the state functor
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or functor categories exist. Unlike the functor category semantics used in Algol and Forsythe, the
values being stored as states are not basic types, but any allowable type. Thus the definition of any
cost structure is circular making it very difficult to show that a solution is feasible, as well as not
allowing any standard induction to prove properties. What makes this different in the call-by-need
case is that a type is being used both covariantly and contravariantly, thus limiting the use of
induction.

It may be possible to find a valid cost structure for this semantics, or it may be necessary to
redesign the semantics. Currently this semantics is based on the operational semantics from [40]. It
is possible that basing the denotational semantics on other operational semantics, particularly those
based on graph reduction (such as in [?]), may provide insights that avoid the current problems.

6.2.5 Space complexity

Lastly, we would find it useful to be able to model space as well as time complexity. In this case the
first step is to define an operational semantics that can describe costs related to space. In particular,
any semantics using straight substitution would be ill suited for examination of space, as it would
be difficult to avoid unnecessary duplication. Both Greiner’s thesis ([10]) and research into compiler
correctness (such as [7]), however, has generated several abstract methods for handling memory,
many of which can then be used or adapted to create an operational model of memory usage. We
could then see if our technique for calculation time-related costs can be adapted to calculating
space related costs.



Appendix A

Adequacy of the call-by-value
extensional semantics

The adequacy proofs for both the call-by-name and call-by-value semantics are taken mostly from
[11], adjusted for the use of category theory and the separation of constants.

A.1 Adequacy of the call-by-value

In order to prove Lemma A.1.4 we need three additional lemmas. The first, Lemma A.1.1 simply
makes proving adequacy easier. The second, Lemma A.1.2, assures us that recursion will work
properly. The third, Lemma A.1.3, generalizes the assumption made about constants.

Lemma A.1.1 For all morphisms z : 1 → LT V
E [[τ ]] and all closed expressions e1, e2 of type τ , if

z -V
τ e1 and if whenever there exists a value v such that e1⇒v v then e2⇒v v, then z -V

τ e2.

Proof. Suppose that z -V
τ e1. If z = ⊥ then z -V

τ e2. Otherwise there exists a value v such that
e1⇒v v and a morphism y : 1 → T V

E [[τ ]] such that z = up ◦ y and y -V∗
τ v. However, e2⇒v v as

well, so z -V
τ e2. 2

Definition A.1.1 A set X of morphisms from A to B is inclusive if the following holds:

1. If f : A → B is in X then for any f ′ : A → B such that f ′ ≤ f , f ′ is in X.

2. If f1 ≤ f2 ≤ . . . are all morphisms from A → B such that each fk is in X, then
⊔∞

k=1 fk is
also in X.

Lemma A.1.2 For all types τ and all closed expressions e of type τ , the set of morphisms z : 1 →
LT V

E [[τ ]] for which z -V
τ e is inclusive.

Proof. To prove #1, if z′ = ⊥ then we immediately know that z -V
τ e, therefore suppose that

z′ 6= ⊥. Then z 6= ⊥, so there exists a value v such that e⇒v v and a morphism y : 1 → T V
E [[τ ]]

such that z = up ◦ y and y -V∗
τ v. Because z′ 6= ⊥ there exists a morphism y′ : 1 → T V

E [[τ ]] such
that z′ = up ◦ y′. What is still needed is proof that y′ -V∗

τ v, done by induction on the type of v:

Case τ = g: Immediate

199
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Case τ = δ(τ1, . . . , τn):

Note that because z′ ≤ z, y′ ≤ y,

up ◦ Fδ(!, . . . , !) ◦ y′ ≤ up ◦ Fδ(!, . . . , !) ◦ y ≤ LFδ(!, . . . , !) ◦ VE[[v : δ(τ1, . . . , τn)]]

Now let p ∈ Pi be a deconstructor. Because y -V∗
δ(τ1,...,τn) v, p◦ y -V

τi
[v/x]ep, and p◦ y′ ≤ p◦ y,

by the induction hypothesis p ◦ y′ -V
τi

[v/x]ep.

Therefore y′ -V∗
δ(τ1,...,τn) v.

Case τ = τ1 → τ2:

Let y1 : 1 → T V
E [[τ1]] and v1 be a closed value of type τ1 such that y1 -V∗

τ1 v1. Then

app ◦ 〈y′, up ◦ y1〉 ≤ app ◦ 〈y, up ◦ y1〉

and app ◦ 〈y, up ◦ y1〉 -V
τ2 v(v1) so by the induction hypothesis

app ◦ 〈y′, up ◦ y1〉 -V
τ2 v(v1)

Thus y′ -V
τ1→τ2 v.

To prove #2, if, for all k ≥ 1, zk = ⊥ then
⊔∞

k=1 zk = ⊥ so we immediately know that⊔∞
k=1 zk -V

τ v. Otherwise for some N , zN 6= ⊥, and thus there exists a value v such that e⇒v v and
there exists a morphism yN such that zN = up ◦ yN and yN -V∗

τ v. Because ⇒v is deterministic, it
must hold that for all k ≥ N , there exists a morphism yk : 1 → T V

E [[τ ]] such that zk = up ◦ yk and
yk -V∗

τ v. Let y =
⊔∞

k=N yk. By the continuity of application, this means that

∞⊔

k=1

zk =
∞⊔

k=N

up ◦ yk = up ◦
∞⊔

k=N

yk = up ◦ y

Therefore we must show that y -V∗
τ v. The rest of the proof follows by induction on the structure

of τ :

Case τ = g:

The lemma follows directly from the fact that the set of morphisms from 1 to T V
E [[τ ]] is a

complete partial order.

Case τ = δ(τ1, . . . , τn):

First note that for each k ≥ 1, up◦Fδ(!, . . . , !)◦yk ≤ LFδ(!, . . . , !)◦VE[[v : δ(τ1, . . . , τn)]]. Thus
by the definition of least upper bounds,

up ◦ Fδ(!, . . . , !) ◦ y = up ◦ Fδ(!, . . . , !) ◦
∞⊔

k=N

yk

=
∞⊔

k=N

up ◦ Fδ(!, . . . , !) ◦ yk

≤ LFδ(!, . . . , !) ◦ VE[[v : δ(τ1, . . . , τn)]]
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Now let p ∈ Pi be a deconstructor. Then for each k ≥ N , p ◦ yk -V
τi

[v/x]ep, therefore by the
induction hypothesis

p ◦ y = p ◦
∞⊔

k=N

yk

=
∞⊔

k=N

(p ◦ yk)

-V
τi

[v/x]ep

Thus y -V∗
δ(τ1,...,τn) v.

Case τ = τ1 → τ2:

Let y1 : 1 → T V
E [[τ1]] and let v1 be a closed value of type τ1 such that y1 -V∗

τ1 v1. Because
each yk -V

τ1→τ2 v, for all k ≥ N , app ◦ 〈yk, up ◦ y1〉 -V
τ2 v(v1). Therefore, by the induction

hypothesis,

app ◦ smash ◦ 〈y, y1〉 = app ◦ 〈⊔∞
k=N yk, y1〉

=
∞⊔

k=N

app ◦ 〈yk, y1〉

-V
τ2 v(v1)

Thus y -V∗
τ1→τ2 v.

2

Lemma A.1.3 Suppose that f is adequate for a constant c ∈ Constτ1→...→τn→τ of arity n. For
some 1 ≤ i ≤ n, and for each 1 ≤ j ≤ i, let yj : 1 → T V

E [[τj ]] and let vj be a closed value of type τj

such that yj -V∗
τj

vj. Then

raise
(n−i)
⊥ (f) ◦ 〈〉(y1, . . . , yi) -V

τi+1→...→τn...τ cv1 . . . vi

Proof. By induction on n− i. If n = i then, by the assumption that f is adequate for c,

raise
(n−i)
⊥ (f) ◦ 〈〉(y1, . . . , yi) = f ◦ 〈〉(y1, . . . , yn)

-V
τ cv1 . . . vn

If n > i, then cv1 . . . vi has type τi+1 → . . . → τn → . . . → τ so let y′ : 1 → T V
E [[τi+1]] and

let v′ be a closed value of type τi+1 such that y′ -V∗
τi+1

v′. Because i < n, raise
(n−i)
⊥ (f) = up ◦

curry(raise(n−i−1)
⊥ (f)) so all we need to do is show that

app ◦ 〈curry(raise(n−i−1)
⊥ (f)) ◦ 〈〉(y1, . . . , yi), y′〉 -V

τi+2→...→τn→τ cv1 . . . viv
′

Let τ0 = τi+2 → . . . → τn → τ . Then by the induction hypothesis

app ◦ 〈curry(raise(n−i−1)
⊥ (f)) ◦ 〈〉(y1, . . . , yi), y′〉 = raise

(n−i−1)
⊥ (f) ◦ 〈〉(y1, . . . , yi, y

′)
-V

τ0 cv1 . . . viv
′
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Thus
raise

(n−1)
⊥ (f) ◦ 〈〉(y1, . . . , yi) -V

τi+1→τ0 cv1 . . . vi

2

Lemma A.1.4 Suppose that Γ ` e : τ , where Γ = x1 : τ1, . . . , xn : τn. Furthermore suppose that
for 1 ≤ i ≤ n, there exist zi : 1 → LT V

E [[τi]] and closed expressions ei of type τi such that zi -V
τi

ei.
Then

VE[[Γ ` e : τ ]] ◦ 〈〉(z1, . . . , zn) -V
τ [e1/x1, . . . , en/xn]e

Proof. Let [s] represent the substitution [e1/x1, . . . , en/xn] and let p0 = 〈〉(f1, . . . , fn).
If VE[[Γ ` e : τ ]] ◦ p0 is ⊥ then the result is immediate, so assume that VE[[Γ ` e : τ ]] ◦ p0 6= ⊥.

The rest follows by induction on the structure of e.

Case e = xi:
VE[[Γ ` xi : τi]] ◦ p0 = πn

i ◦ 〈〉(z1, . . . , zn)
= zi

-V
τi

ei

≡ [s]xi

Case e = c:

By the assumption that CV
E [[−]] is adequate and by Lemma A.1.3,

VE[[Γ ` c : τ ]] ◦ p0 = raise
(ar(c))
⊥ (CV

E [[c : τ ]]) ◦ !T v
⊥ [[Γ]] ◦ p0

= raise
(ar(c))
⊥ (CV

E [[c : τ ]]) ◦ 〈〉()
-V

τ c
≡ [s]c

Case e = lam x.e′, τ = τ ′′ → τ ′:

Let y′′ : 1 → T V
E [[τ ′′]] and let v′′ be a closed value of type τ ′′ such that y′′ -V∗

τ ′′ v′′. Let
y = curry(VE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ (id × up)) ◦ p0. Then VE[[Γ ` e : τ ]] ◦ p0 = up ◦ y. Let
z : 1 → LT V

E [[τ ′]] be the morphism z = app ◦ 〈y, y′′〉. Then VE[[Γ ` e : τ ]] ◦ p0 -V
τ [s]e if

z -V
τ ′ ([s]e)v′′. By the induction hypothesis,

z = app ◦ 〈y, y′〉
= app ◦ smash ◦ 〈up ◦ y, up ◦ y′〉
= app⊥ ◦ smash ◦ 〈up ◦ curry(VE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ (id× up)) ◦ p0, up ◦ y′′〉
= VE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ (id× up) ◦ 〈p0, y

′′〉
= VE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ 〈p0, up ◦ y′′〉

-V
τ ′ [s, v′′/x]e′

≡ [v′′/x]([s]e′)

Suppose that there exists a value v such that [v′′/x]([s]e′)⇒v v. Then, by the operational
rules for application, (lam x.[s]e′)(v′′)⇒v v. Therefore by Lemma A.1.1

z -V
τ ′ (lam x.[s]e′)(v′′) ≡ ([s]lam x.e′)(v′′) ≡ [s]e(v′′)

so VE[[Γ ` e : τ ]] ◦ p0 -V
τ [s]e.
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Case e = e1(e2):

Because Γ ` e1(e2) : τ , there exists a type τ ′ such that Γ ` e1 : τ ′ → τ and Γ ` e2 : τ ′. By
the induction hypothesis VE[[Γ ` e1 : τ ′ → τ ]]◦p0 -V

τ ′→τ [s]e1. If VE[[Γ ` e1 : τ ′ → τ ]]◦p0 = ⊥,
then

VE[[Γ ` e1(e2) : τ ]] ◦ p0

= app⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : τ ′ → τ ]],VE[[Γ ` e2 : τ ]]〉 ◦ p0

= app⊥ ◦ smash ◦ 〈⊥,VE[[Γ ` e2 : τ ]] ◦ p0〉
= ⊥
-V

τ [s]e1(e2)

If VE[[Γ ` e2 : τ ′]] ◦ p0 = ⊥, then

VE[[Γ ` e1(e2) : τ ]] ◦ p0

= app⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : τ ′ → τ ]],VE[[Γ ` e2 : τ ]]〉 ◦ p0

= app⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : τ ′ → τ ]] ◦ p0,⊥〉
= ⊥
-V

τ [s]e1(e2)

Therefore assume that VE[[Γ ` e1 : τ ′ → τ ]] ◦ p0 6= ⊥ and VE[[Γ ` e2 : τ ′]] ◦ p0 6= ⊥. Then
there exist morphisms y1 : 1 → T V

E [[τ ′ → τ ]] and y2 : 1 → T V
E [[τ ′]] and values v1, v2 such

that VE[[Γ ` e1 : τ ′ → τ ]] ◦ p0 = up ◦ y1, VE[[Γ ` e2 : τ ′]] ◦ p0 = up ◦ y2, [s]e1⇒v v1, [s]e2⇒v v2,
y1 -V∗

τ ′→τ v1, and y2 -V∗
τ ′ v2. Therefore by the definition of -V∗ for functional types,

VE[[Γ ` e1(e2) : τ ]] ◦ p0

= app⊥ ◦ smash ◦ 〈VE[[Γ ` e1 : τ ′ → τ ]] ◦ p0,VE[[Γ ` e2 : τ ]] ◦ p0〉
= app⊥ ◦ smash ◦ 〈up ◦ y1, up ◦ y2〉
= app ◦ 〈y1, y2〉
-V

τ v1(v2)

Suppose there exists a value v such that v1(v2)⇒v v. There are two possible derivations of
v1(v2)⇒v v. The first, where v1 is of the form lam x.e′, is the derivation

v1⇒v lam x.e′ v2⇒v v2 [v2/x]e′⇒v
′v

v1(v2)⇒v v

As [s]e1⇒v v1 and [s]e2⇒v v2 the same rule can be applied to derive that ([s]e1)([s]e2)⇒v v
which means that [s]e1(e2)⇒v v.

Otherwise for some constant c, i < ar(c), and values v′1, . . . , v′i, v1 = cv′1 . . . v′i, the derivation
of v1(v2)⇒v v is of the form

v1⇒v cv′1 . . . v′i v2⇒v v2 vapply(v1, v2) ⇒ v

v1(v2)⇒v v

It is possible, once again, to derive that [s]e1(e2)⇒v v. Therefore by Lemma A.1.1,

VE[[Γ ` e1(e2) : τ ]] -V
τ [s]e1(e2)
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Case e = if e1 then e2 else e3:

Let z = VE[[Γ ` e1 : bool]] ◦ p0. By the induction hypothesis z -V
bool [s]e1. If z = ⊥ then

VE[[Γ ` if e1 then e2 else e3 : τ ]] ◦ p0

= cond⊥ ◦ smash ◦ (id× up) ◦ 〈VE[[Γ ` e1 : bool]],
〈VE[[Γ ` e2 : τ ]],VE[[Γ ` e3 : τ ]]〉〉 ◦ p0

= cond⊥ ◦ smash ◦ 〈⊥, up ◦ 〈VE[[Γ ` e2 : τ ]],VE[[Γ ` e3 : τ ]]〉 ◦ p0〉
= ⊥
-V

τ [s]if e1 then e2 else e3

Therefore suppose that z 6= ⊥. Then there exists a morphism y : 1 → T V
E [[bool]] and value

v1 such that z = up ◦ y, [s]e1 ⇒v v1, and y -V∗
bool v1. Because bool is a ground type,

up ◦ v ≤ VE[[v1 : bool]], so by the construction of the boolean object B either y = tt and
v1 = true, or y = ff and v1 = false.

If y = tt, then by the induction hypothesis,

VE[[Γ ` if e1 then e2 else e3 : τ ]] ◦ p0

= cond⊥ ◦ smash ◦ 〈up ◦ tt, up ◦ 〈VE[[Γ ` e2 : τ ]],
VE[[Γ ` e3 : τ ]]〉 ◦ p0〉

= cond ◦ 〈tt, 〈VE[[Γ ` e2 : τ ]],VE[[Γ ` e3 : τ ]]〉 ◦ p0〉
= π1 ◦ 〈VE[[Γ ` e2 : τ ]],VE[[Γ ` e3 : τ ]]〉 ◦ p0

= VE[[Γ ` e2 : τ ]] ◦ p0

-V
τ [s]e2

Suppose there exists a value v such that [s]e2⇒v v. Then by the derivation

[s]e1⇒v true [s]e2⇒v v

if [s]e1 then [s]e2 else [s]e3⇒v v

we know that by Lemma A.1.1

VE[[Γ ` if e1 then e2 else e3 : τ ]] ◦ p0 -V
τ if [s]e1 then [s]e2 else [s]e3

≡ [s]if e1 then e2 else e3

Similarly, if y = ff, then VE[[Γ ` if e1 then e2 else e3 : τ ]] ◦ p0 -V
τ [s]e3, so by similar argu-

ments and the derivation
e1⇒v false [s]e3⇒v v

if e1 then e2 else e3⇒v v

VE[[Γ ` if e1 then e2 else e3 : τ ]] ◦ p0 -V
τ [s]if e1 then e2 else e3.

Case e = rec x.e′:

Let z′0 = ⊥T V
E [[τ ]] and for k > 0 let

z′k = VE[[Γ, x : τ ` e′ : τ ]] ◦ 〈p0, z
′
k−1〉 = VE[[Γ, x : τ ` e′ : τ ]] ◦ 〈〉(z1, . . . , zn, z′k−1)
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By definition z′0 -V
τ [s]rec x.e′. Suppose that z′k−1 -V

τ [s]rec x.e′. Then by induction
hypothesis on e,

z′k = VE[[Γ, x : τ ` e′ : τ ]] ◦ 〈〉(z1, . . . , zn, z′k−1)
-V

τ [s, [s]rec x.e′/x]e′

≡ [[s]rec x.e′/x][s]e′

Suppose that there exists a v such that [[s]rec x.e′/x][s]e′⇒v v. Then by the derivation

[[s]rec x.e′/x]e′⇒v v

[s]rec x.e′⇒v v

and Lemma A.1.1, z′k -V
τ [s]rec x.e′. Thus by induction on k, for all k ≥ 0, z′k -V

τ [s]rec x.e′,
so by the definition of fixp,

VE[[Γ ` rec x.e : τ ]] ◦ p0

= fixp(VE[[Γ, x : τ ` e′ : τ ]]) ◦ p0

= fixp(VE[[Γ, x : τ ` e′ : τ ]] ◦ (p0 × id))
=

⊔∞
k=0 f ′k

-V
τ [s]rec x.e′

2

A.2 Call-by-value adequacy of the FL constants

The proofs that various constants are adequate depends upon Lemma 3.4.8, which states that the
meaning of a value factors through η. While that lemma applies to the intensional semantics, by
applying E throughout it is clear that the extensional meaning of a value factors through up. That
lemma did not depend on the adequacy of the extensional semantics so it is safe to apply it in this
section.

The proof that constants on ground types are adequate applies not just for FL, but for any
language built on top of the base language (that is for any set of constants).

Theorem A.2.1 Suppose that c is a constant of arity n and type τ1 → . . . → τn → τ where each
τi and τ are ground types. Then CV

E [[c]] is adequate for c.
Proof. For 1 ≤ i ≤ n, let yi : 1 → T V

E [[τi]] and let vi be a closed value of type τi such that yi -V∗
τ vi.

Because each τi is a ground type, for all i, up ◦ yi ≤ VE[[vi : τi]]. Furthermore, because each vi is a
value, there exists a y′i : 1 → T V

E [[τi]] such that VE[[vi : τi]] = up ◦ y′i. Therefore

CV
E [[c]] ◦ 〈〉(y1, . . . , yn) ≤ CV

E [[c]] ◦ 〈〉(y′1, . . . , y′n)
= VE[[cv1 . . . vn]]

so, by the definition of -V∗ for ground types, CV
E [[c]] ◦ 〈〉(y1, . . . , yn) -V

τ VE[[cv1 . . . vn]], proving that
c is adequate. 2

The proof that the product, sum, and list constants are adequate is separated into two parts:
first, we define a more intuitive (for that type) definition of -V∗

τ and show that the primary definition
is equivalent. Second, we use the new definition to show that the constants are adequate. While it
is not strictly necessary to separate the proofs, seeing that the standard definition matches a more
intuitive definition is by itself useful.
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A.2.1 Products

For products, there are two deconstructors, p×1 = up◦π1 and p×2 = up◦π2, with related expressions
e×1 = fst(x) and e×2 = snd(x).

Lemma A.2.2 Let y : 1 → T V
E [[τ1×τ2]] and let v be a closed value of type τ1×τ2. Then v‘y -V∗

τ1×τ2 v
if and only if there exist morphisms y1 : 1 → T V

E [[τ1]], y2 : 1 → T V
E [[τ2]] such that y = 〈y1, y2〉,

up ◦ y1 -V
τ1 fst(v1), and up ◦ y2 -V

τ2 snd(v2).

Proof. Suppose that y -V∗
τ1+τ2 v. Then by the uniqueness of products, if we let y1 = π1 ◦ y and

y2 = π2 ◦ y, y = 〈y1, y2〉. Furthermore,

up ◦ y1 = up ◦ π1 ◦ y = up ◦ p×1 -V
τ1 fst(v)

Similarly, up ◦ y2 -V
τ2 snd(v). Therefore the first part of the lemma holds.

To prove the equivalence in the other direction, suppose there exists morphisms y1 : 1 → T V
E [[τ1]]

and y2 : 1 → T V
E [[τ2]] such that y = 〈y1, y2〉, up ◦ y1 -V

τ1 fst(v), and up ◦ y2 -V
τ2 snd(v).

Because v is a value, its meaning factors through up. Therefore there exists a morphism y′ :
1 → T V

E [[τ1 × τ2]] such that VE[[v : τ1 × τ2]] = up ◦ y′. This means that

L(!× !) ◦ VE[[<v1, v2>]] = L(!× !) ◦ up ◦ y′ = up ◦ 〈!, !〉

Because up ◦ 〈!, !〉 is the top value in the predomain of morphisms from 1 to L(1× 1), it is thus
automatically true that up ◦ (!× !) ◦ y ≤ L(!× !) ◦ VE[[<v1, v2>]]. Furthermore,

up ◦ π1 ◦ y = up ◦ y1 -V
τ1 fst(v)

Similarly, up ◦ π2 ◦ y -V
τ2 snd(v). Therefore y -V∗

τ1×τ2 v. 2

With Lemma A.2.2 it is a simple process to show that the product constants are adequate. Let y
be a morphism from 1 to T V

E [[τ1×τ2]] and let v be a closed value of type τ1×τ2 such that y -V∗
τ1×τ2 v.

Then we know that there exist morphisms y1 and y2 such that y = 〈y1, y2〉, up ◦ y1 -V
τ1 fst(v), and

up ◦ y2 -V
τ2 snd(v). Therefore

CV
E [[fst]] ◦ 〈〉(y) = up ◦ π1 ◦ 〈y1, y2〉

= up ◦ y1

-V
τ1 fst(v)

Similarly CV
E [[snd]] ◦ 〈〉(f) -V

τ2 snd(v). Therefore fst and snd are adequate.
For pair, let y1 : 1 → T V

E [[τ1]] and y2 : 1 → T V
E [[τ2]]. Let v1 be a closed value of type τ1, and let v2

be a closed value of type τ2 such that y1 -V∗
τ1 v1 and y2 -V∗

τ2 v2. Then, because fst(<v1, v2>)⇒v v1

and snd(<v1, v2>)⇒v v2, we know that y1 -V∗
τ1 fst(<v1, v2>) and y2 -V∗

τ2 snd(<v1, v2>). Thus

〈y1, y2〉 -V∗
τ1+τ2 <v1, v2>

which means that up ◦ 〈y1, y2〉 -V
τ1+τ2 <v1, v2>. Therefore

CV
E [[pair]] ◦ 〈〉(f1, f2) = up ◦ (π2 × id) ◦ 〈〉(y1, y2)

= up ◦ 〈y1, y2〉
-V

τ1+τ2 <v1, v2>

so pair is adequate.
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A.2.2 Adequacy of Sums

In section 2.7.5 we showed that for any y : 1 → T V
E [[τ1 + τ2]], y -V∗

τ1+τ2 v if and only if one of the
following properties hold:

• For some y′ : 1 → T V
E [[τ1]] and closed term v′ of type τ1, y = inl◦y′, v = inl(v′) and y′ -V∗

τ1 v′,
or

• For some y′ : 1 → T V
E [[τ2]] and closed term v′ of type τ2, y = inr◦y′, v = inr(v′) and y′ -V∗

τ2 v′

We use this lemma to show that the sum constants are adequate. For inl, let v be a closed value
of type τ1 and let y : 1 → T V

E [[τ1]] such that y -V∗
τ1 v. Then we know that

inl ◦ y -V∗
τ1+τ2 inl(v)

However, CV
E [[inl]] ◦ 〈〉(y) = up ◦ inl ◦ y, so CV

E [[inl]] ◦ 〈〉(y) -V
τ1+τ2 inl(v) and thus inl is adequate.

Similarly, we can show that inr is adequate.
For case, let v, v1 and v2 be closed values of types τ1 + τ2, τ1 → τ and τ2 → τ respectively.

Also let y : 1 → T V
E [[τ1 + τ2]], y1 : 1 → T V

E [[τ1 → τ ]], and y2 : 1 → T V
E [[τ2 → τ ]] such that y -V∗

τ1+τ2 v,
y1 -V∗

τ1→τ v1 and y2 -V∗
τ2→τ v2. Then case is adequate if

CV
E [[case]] ◦ 〈〉(y, y1, y2) -V

τ case v of left : v1 right : v2

Suppose that for some y′ : 1 → T V
E [[τ1]], y = inl ◦ y′. Then as y -V∗

τ1+τ2 v, there must exists a
value v′ of type τ1 such that v = inl(v′) and y′ -V∗

τ1 v′. Furthermore, because y1 -V∗
τ1→τ v1,

app ◦ 〈y1, y
′〉 -V

τ v1(v′)

Thus
CV

E [[case]] ◦ 〈〉(y, y1, y2) = case(vleft, vright) ◦ (π2 × id) ◦ αr ◦ 〈〉(y, y1, y2)
= case(vleft, vright) ◦ 〈inl ◦ y′, 〈y1, y2〉〉
= vleft ◦ 〈y′, 〈y1, y2〉〉
= app ◦ β ◦ (id× π1) ◦ 〈y′, 〈y1, y2〉〉
= app ◦ 〈y1, y

′〉
-V

τ v1(v′)

Suppose there exists a value v′′ such that v1(v′)⇒v v′′. Then with the derivation

v1(v′)⇒v v′′

vapply(case(inl(v′))(v1), v2) ⇒ v′′

we know that case inl(v′) of left : v1 right : v2⇒v v′′ as well. Therefore by Lemma A.1.1

CV
E [[case]] ◦ 〈〉(y, y1, y2) -V

τ case v of left : v1 right : v2

A similar proof shows that if, for some morphism y′, y = inr ◦ y′ then

CV[[case]] ◦ 〈〉(y, y1, y2) -V
τ case v of left : v1 right : v2

Therefore case is adequate.
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A.2.3 Adequacy of lists

We have a deconstructor for each potential item on a list, i.e., pL1 = hd and, for n > 1, pLk
=

pLk−1
⊥ ◦ tl. The related expressions are eLk

= head(tail(k−1)(x)).
Because the deconstructors are less aligned with the list constants, proving adequacy is some-

what more complicated; therefore developing a more intuitive method for determining adequacy is
particularly useful.

Lemma A.2.3 Suppose that there exist closed values v1 and v2 with ` v1 : τ and ` v2 : list(τ).
Then, for all k > 0, tail(k)(v1::v2)⇒v v if and only if tail(k−1)(v2)⇒v v.

Proof. Straightforward by induction on k. 2

Lemma A.2.4 Let y : 1 → T V
E [[list(τ)]] and v be a closed value of type list(τ). Then y -V∗

list(τ) v
if and only if one of the following holds:

• y = nil and v = nil, or

• There exist morphisms y1 : 1 → T V
E [[τ ]], y2 : 1 → T V

E [[list(τ)]] and values v1 : τ , v2 : list(τ)
such that y = cons ◦ 〈y1, y2〉, v = v1::v2, y1 -V∗

τ v1, and y2 -V∗
list(τ) v2.

Proof.

⇒: Suppose that y -V∗
list(τ) v.

Suppose that y = nil. Then, because up ◦ List (!) ◦ y ≤ L(List (!)) ◦ VE[[v : list(τ)]], we know
that

up ◦ List (!) ◦ nil = L(List (!)) ◦ up ◦ nil ≤ L(List (!)) ◦ VE[[v : list(τ)]]

The only value of v which can satisfy the previous equation is v = nil, thus proving the
lemma.

If y 6= nil, then there must exist morphisms y1 : 1 → T V
E [[τ ]] and y2 : 1 → T V

E [[list(τ)]] such
that y = cons ◦ 〈y1, y2〉. In that case the only way

up ◦ List ! ◦ y = L(List (!)) ◦ up ◦ z ≤ L(List (!)) ◦ VE[[v : list(τ)]]

can hold is if there exists values v1 and v2 such that v = v1::v2.

What remains is to prove that y1 -V∗
τ v1 and y2 -V∗

list(τ) v2. For y1, using the first projection
we know that

up ◦ y1 = up ◦ π1 ◦ 〈y1, y2〉
= hd ◦ cons ◦ 〈y1, y2〉
= hd ◦ y
-V

τ head(v)

Furthermore, with the following derivation

head⇒v head vapply(head, v1::v2) ⇒ v1

head(v1::v2)⇒v v1

we know that head(v)⇒v v1, so y1 -V∗
τ v1.
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For y2, we know that

up ◦ cons ◦ 〈!, List (!) ◦ y2〉
= up ◦ cons ◦ (!× List (!)) ◦ 〈y1, y2〉
= up ◦ List (!) ◦ cons ◦ 〈y1, y2〉
= up ◦ List (!) ◦ y

Furthermore, as v1 and v2 are values, we know that there exist morphism y′1 and y′2 such
that VE[[v1 : τ ]] = up ◦ y′1 and VE[[v2 : list(τ)]] = up ◦ y′2. Thus

L(List (!)) ◦ VE[[v : list(τ)]] = L(List (!)) ◦ up ◦ cons ◦ 〈y′1, y′2〉
= up ◦ cons ◦ 〈!, List (!) ◦ y′2〉

Thus because the ordering on lists is pointwise, we know that List (!) ◦ y2 ≤ List (!) ◦ y′2, i.e.,

up ◦ List (!) ◦ y2 ≤ up ◦ List (!) ◦ y′2 = L(List (!)) ◦ VE[[v2 : list(τ)]]

Also,
pLk

◦ y2 = pLk
⊥ ◦ up ◦ π2 ◦ 〈y1, y2〉

= pLk
⊥ ◦ tl ◦ cons ◦ 〈y1, y2〉

= pLk+1 ◦ cons ◦ 〈y1, y2〉
= pLk+1 ◦ y

Therefore pLk
◦ y2 =-V

τ [v/x]eLk+1
≡ head(tail(k)(v1::v2)). Suppose there exists a value v′

such that head(tail(k)(v1::v2))⇒v v′. The only derivation possible for the evaluation is

head
0⇒v head tail(k)(v1::v2)⇒v v′::v′′ apply(head, v′::v′′) ⇒ v′

head(tail(k)(v1::v2))⇒v v′

However, by Lemma A.2.3 we know that if tail(k)(v1::v2)⇒v v′::v′′ then tail(k−1)(v2)⇒v

v′::v′′, which means that head(tail(k−1)(v2))⇒v v′. Thus by Lemma A.1.1

pLk
◦ y2 -V

τ [v2/x]eLk
≡ head(tail(k−1)(v2))

so y2 -V∗
list(τ) v2.

⇐: Suppose that one of the properties of the lemma holds.

If y = nil and v = nil, then up ◦ y = VE[[nil]], so

up ◦ List (!) ◦ y = L(List (!)) ◦ up ◦ y = L(List (!)) ◦ VE[[nil]]

Furthermore,
pL1 ◦ y = hd ◦ nil = ⊥

and, for k > 1,
pLk

◦ y = pLk−1
⊥ ◦ tl ◦ nil = ⊥

Therefore for all k > 0, pLk
◦ y = ⊥ -V

τ [v/x]eLk
. Thus y -V∗

list(τ) v.

Otherwise there exist morphisms y1 : 1 → T V
E [[τ ]], y2 : 1 → T V

E [[list(τ)]] and values v1 : τ ,
v2 : list(τ) such that y = cons◦〈y1, y2〉, v = v1::v2, y1 -V∗

τ v1, and y2 -V∗
list(τ) v2. Furthermore,
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as v1 and v2 are values, there exist morphisms y′1 : 1 → T V
E [[τ ]] and y′2 : 1 → T V

E [[list(τ)]] such
that VE[[v1 : τ ]] = up ◦ y′1 and VE[[v2 : list(τ)]] = up ◦ y′2.

By the definition of -V∗
list(τ), we know that

up ◦ List (!) ◦ y2 ≤ L(List (!)) ◦ VE[[v2 : list(τ)]] = up ◦ List (!) ◦ y′2

so List (!) ◦ y2 ≤ List (!) ◦ y′2. Therefore

up ◦ List (!) ◦ y = up ◦ List (!) ◦ cons ◦ 〈y1, y2〉
= up ◦ cons ◦ 〈!, List (!) ◦ y2〉
≤ up ◦ cons ◦ 〈!, List (!) ◦ y′2〉
= up ◦ List (!) ◦ cons ◦ 〈y′1, y′2〉
= L(List (!)) ◦ VE[[v1::v2 : list(τ)]]

Furthermore,
pL1 ◦ y = hd ◦ cons ◦ 〈y1, y2〉

= up ◦ y1

-V
τ v1

As head(v)⇒v v1, this means that pL1 ◦ y -V
τ [v/x]eL1 ≡ head(v).

Next let k > 1. Then

pLk
◦ y = pLk−1

⊥ ◦ tl ◦ cons ◦ 〈y1, y2〉
= pLk−1

⊥ ◦ up ◦ y2

= pLk−1 ◦ y2

-V
τ [v2/x]eLk−1

≡ head(tailk−2(v2))

Suppose there exists a value v′ such that head(tailk−2(v2))⇒v v′. Because the only deriva-
tion possible for head(tailk−2(v2))⇒v v′ is

head⇒v head tailk−2(v2)⇒v v′::v′′ vapply(head, v′::v′′) ⇒ v′

head(tailk−2(v2))⇒v v′

for some value v′′, by Lemma A.2.3 we know that the following derivation exists:

head⇒v head tailk−1(v1::v2)⇒v v′::v′′ vapply(head, v′::v′′) ⇒ v′

head(tailk−1(v1::v2))⇒v v′

Thus by Lemma A.1.1, pLk
◦ y -V

τ [v/x]eLk
. Therefore y -V∗

list(τ) v.

2

What remains to be done is to prove that the list constants are adequate:

nil: Follows directly from Lemma A.2.4.

cons: Let y1 : 1 → T V
E [[τ ]] and y2 : 1 → T V

E [[list(τ)]]. Furthermore suppose v1 and v2 are closed
values of type τ and list(τ) respectively such that y1 -V∗

τ v1 and y2 -V∗
list(τ) v2. Then cons is

adequate if
CV

E [[cons]] ◦ 〈〉(y1, y2) -V
list(τ) v1::v2

However,
VE[[cons]] ◦ 〈〉(y1, y2) = up ◦ cons ◦ 〈y1, y2〉

Therefore it follows directly from Lemma A.2.4 that cons is adequate.
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head: Let y be a morphism from 1 to T V
E [[list(τ)]] and v be a closed value of type list(τ) such that

y -V∗
list(τ) v. If y = nil, then

CV
E [[head]] ◦ 〈〉(y) = hd ◦ nil = ⊥ -V

τ head(v)

Otherwise, by Lemma A.2.4, there exist morphisms y1 : 1 → T V
E [[τ ]], y2 : 1 → T V

E [[list(τ)]] and
values v1 : τ , v2 : list(τ), such that y = cons◦ 〈y1, y2〉, v = v1::v2, y1 -V∗

τ v1 and y2 -V∗
list(τ) v2.

Therefore, as
CV

E [[head]] ◦ 〈〉(y) = hd ◦ cons ◦ 〈y1, y2〉
= up ◦ y1

and head(v)⇒v v1, CV
E [[head]] ◦ 〈〉(y) -V

τ head(v1). Thus head is adequate.

tail: Because of Lemma A.2.4, the proof that tail is similar to the proof that head is adequate.

nil?: Let y : 1 → T V
E [[list(τ)]] and v be a closed value of type list(τ) such that y -V∗

list(τ) v. If
y = nil then v must be nil. Therefore

CV
E [[nil?]] ◦ 〈〉(y) = up ◦ null? ◦ nil = up ◦ tt

As tt -V∗
bool true and nil?(nil) ⇒n true, it must hold that CV

E [[nil?]] ◦ 〈〉(y) -V
bool

nil?(nil).

If y 6= nil then there exist morphisms y1 : 1 → T V
E [[τ ]] and y2 : 1 → T V

E [[list(τ)]] such that
y = cons ◦ 〈y1, y2〉. Therefore there must also exist values v1 and v2 such that v = v1::v2.
Thus nil?(v)⇒nfalse, and

CV
E [[nil?]] ◦ 〈〉(y) = up ◦ null? ◦ cons ◦ 〈y1, y2〉 = up ◦ ff

As ff -V∗
bool false, CV

E [[nil?]] ◦ 〈〉(y) -V
bool nil?(v). Therefore nil? is adequate.



212 APPENDIX A. ADEQUACY OF THE CALL-BY-VALUE EXTENSIONAL SEMANTICS



Appendix B

Adequacy of the call-by-name
extensional semantics

B.1 Adequacy of the call-by-name semantics

Definition B.1.1 For each type τ , let -N
τ be a relation between morphisms from 1 to LT N

E [[τ ]]
and closed expressions of type τ , and -N∗

τ be a relation between morphisms from 1 to T N
E [[τ ]] and

closed values of type τ , defined as follows: given z : 1 → LT N
E [[τ ]] and ` e : τ , z -N

τ e if

1. z = ⊥T N
E [[τ ]], or

2. There exists a closed value v of type τ and a morphism y : 1 → T N
E [[τ ]] such that z = up ◦ y,

e⇒n v, and y -N∗
τ v, where

• y -N∗
g v if up ◦ y ≤ NE[[v : τ ]]

• y -N∗
δ(τ1,...,τn) v if, for each deconstructor p ∈ Pi, down ◦ p ◦ y -N

τi
[v/x]ep and if

Fδ(!, . . . , !) ◦ y ≤ KFδ
[[v : δ(τ1, . . . , τn)]]

• y -N∗
τ ′→τ v if for all z′ : 1 → LT N

E [[τ ′]] and closed expressions e′ such that z′ -N
τ ′ e′,

app ◦ 〈y, z′〉 -N
τ v(e′)

For any c ∈ Constτ1→...→τn→τ of arity n, a morphism f : ×(LT N
E [[τ1]], . . . , LT N

E [[τn]]) → LT N
E [[τ ]]

is adequate for c if for all morphisms zi : 1 → LT N
E [[τi]] (1 ≤ i ≤ n) and closed expressions ei of

type τi such that zi -N
τi

ei,
f ◦ 〈〉(z1, . . . , zn) -N

τ ce1 . . . en

A constant c is adequate if CN
E [[c]] is adequate for c. It is clear that both true and false are

adequate. As with the call-by-value adequacy proof, if z -N
τ e, and if whenever there exists a v

such that e⇒n v, e′⇒n v, then z -N
τ e′.

Lemma B.1.1 Suppose that Γ ` e : τ , where Γ = x1 : τ1, . . . , xn : τn. Furthermore suppose that
for 1 ≤ i ≤ n, there exist zi : 1 → LT N

E [[τi]] and closed expressions ei of type τi such that zi -N
τi

ei.
Then

NE[[Γ ` e : τ ]] ◦ 〈〉(z1, . . . , zn) -N
τ [e1/x1, . . . , en/xn]e

213
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Proof. By induction on the structure of e. Let [s] represent the substitution [e1/x1, . . . , en/xn] and
let p0 = 〈〉(f1, . . . , fn). All of the cases except those of abstraction and application are essentially
the same as in the call-by-value proof so only those cases are included here.

Case e = lam x.e′, τ = τ ′′ → τ ′:

Let f : LT N
E [[τ ′′]] → LT N

E [[τ ′]] be the morphism

f = NE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ 〈p0 ◦ !, id〉
Also let y = curry(NE[[Γ, x : τ ′′ ` e′ : τ ′]]) ◦ p0. Then NE[[Γ ` e : τ : ◦]]p0 = up ◦ y, so it is
sufficent to show that y -N∗

τ lam x.e′.

Let z′′ : 1 → LT N
E [[τ ′′]] and let e′′ be a closed expression of type τ ′′ such that z′′ -N

τ ′′ e′′. Then

app ◦ 〈y, z′′〉 = app ◦ 〈curry(NE[[Γ, x : τ ′′ ` e′ : τ ′]]) ◦ p0, z
′′〉

= NE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ 〈p0, z
′′〉

= NE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ 〈p0 ◦ ! ◦ z′′, z′′〉
= NE[[Γ, x : τ ′′ ` e′ : τ ′]] ◦ 〈p0 ◦ !, id〉 ◦ z′′

= f ◦ z′′

By the induction hypothesis

f ◦ z′′ -N
τ ′ [s][e′′/x]e′

≡ [e′′/x]([s]e′)

Suppose there exists a value v such that [e′′/x]([s]e′)⇒n v. Because lam x.[s]e′⇒nlam x.[s]e′,
by the operational rules for application, (lam x.[s]e′)(e′′)⇒n v as well. Therefore

app ◦ 〈y, z′′〉 = f ◦ z′′ -N
τ ′ (lam x.[s]e′)(e′′) ≡ ([s]lam x.e′)(e′′)

Thus, by the definition of -N∗
τ ′′→τ ′ , NE[[Γ ` lam x.e′ : τ ′′ → τ ′]] ◦ p0 -N

τ ′′→τ ′ [s]lam x.e′.

Case e = e1(e2):

Because Γ ` e1(e2) : τ , there exists a type τ ′ such that Γ ` e1 : τ ′ → τ and Γ ` e2 : τ ′. By the
induction hypothesis NE[[Γ ` e1 : τ ′ → τ ]] ◦ p0 -N

τ ′→τ [s]e1. If NE[[Γ ` e1 : τ ′ → τ ]] ◦ p0 = ⊥,
then

NE[[Γ ` e1(e2) : τ ]] ◦ p0

= app⊥ ◦ smash ◦ 〈NE[[Γ ` e1 : τ ′ → τ ]], up ◦ NE[[Γ ` e2 : τ ]]〉 ◦ p0

= app⊥ ◦ smash ◦ 〈⊥, up ◦ NE[[Γ ` e2 : τ ]] ◦ p0〉
= ⊥
-N

τ [s]e1(e2)

Therefore suppose that NE[[Γ ` e1 : τ ′ → τ ]] ◦ p0 6= ⊥. Then there exists a value v1 and a
morphism y : 1 → T N

E [[τ ′ → τ ]] such that NE[[Γ ` e1 : τ ′ → τ ]] ◦ p0 = up ◦ y, [s]e1⇒n v1, and
y -N∗

τ ′→τ v1. Also NE[[Γ ` e2 : τ ′]] ◦ p0 -N
τ ′ [s]e2, so by the definition of -N∗ for function types,

NE[[Γ ` e1(e2) : τ ]] ◦ p0

= app⊥ ◦ smash ◦ 〈NE[[Γ ` e1 : τ ′ → τ ]] ◦ p0, up ◦ NE[[Γ ` e2 : τ ]] ◦ p0〉
= app ◦ 〈y,NE[[Γ ` e2 : τ ]] ◦ p0〉
-N

τ v1([s]e2)
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Suppose there exists a v such that v1([s]e2)⇒n v.

There are two possible derivations of v1([s]e2)⇒n v. The first, where v1 is of the form lam x.e′,
is the derivation

v1⇒nlam x.e′ [[s]e2/x]e′⇒n v

v1([s]e2)⇒n v

Because [s]e1⇒n v1 the same application rule can be used to derive that ([s]e1)([s]e2)⇒n v,
i.e. that [s]e1(e2)⇒n v.

Otherwise v1 must equal ce′1 . . . e′i for some constant c and expressions e′1, . . . e′i and the
derivation is of the form

v1⇒n ce′1 . . . e′i napply(c, e′1, . . . , e′i, [s]e2) ⇒ v

v1([s]e2)⇒n v

Again as [s]e1⇒n v1 the same rule can be used to derive that [s]e1(e2)⇒n v. Therefore either
way NE[[Γ ` e1(e2) : τ ]] ◦ p0 -N

τ [s]e1(e2).

2

Corollary B.1.2 Suppose that ` e : τ . Then NE[[e : τ ]] 6= ⊥ if and only if there exists a value v
such that e⇒n v.

Proof. If NE[[e : τ ]] 6= ⊥ then as NE[[e]] -N
τ e, there exists a value v such that e⇒n v. If e⇒n v then

by soundness NE[[e : τ ]] = NE[[v : τ ]] and because NE[[v : τ ]] is a value, it factors through up so does
not equal ⊥. 2

B.2 Adequacy of the FL constants

B.2.1 Ground type constants

As with the call-by-value semantics it is possible to show that the ground type constants are
immediately adequate. It is also possible to show that constants representing functions on ground
types (and returning a ground type) are also adequate.

Theorem B.2.1 Suppose that c ∈ T N[[τ1 → . . . → τn → τ ]] has arity n. Furthermore, suppose that
all types τ1, . . . , τn, and τ are ground types. Then CN

⊥[[c]] is adequate for c.

Proof. For 1 ≤ i ≤ n, let zi : 1 → LT v
⊥ [[τi]] and let ei be a closed expression of type τi such that

zi -N
τi

ei. Because each τi is a ground type, for each i, zi ≤ N⊥[[ei : τi]]. Therefore

CN
⊥[[c]] ◦ 〈〉(z1, . . . , zn) = raise

(n−n)
⊥ (CN

⊥[[c]]) ◦ 〈〉(z1, . . . , zn)
≤ raise

(n−n)
⊥ (CN

⊥[[c]]) ◦ 〈〉(N⊥[[e1 : τ1]], . . . ,N⊥[[en : τn]])
= N⊥[[ce1 . . . en : τ ]]
-N

τ ce1 . . . en

Thus because τ is a ground type, by the definition of -N and -N∗ for ground types,

CN
⊥[[c]] ◦ 〈〉(z1, . . . , zn) -N

τ ce1 . . . en
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Therefore CN
⊥[[c]] is adequate for c. 2

All the integer (and boolean) constants satisfy the requirements for the theorem and thus are
all adequate.

As we did for the call-by-value case, we will first show that the definition of adequacy for the
product, sum, and list constants is equivalent to a more intuitive definition (which will not need the
structure function K[[−]]). We then use the more intuitive definition to show that the FL constants
are adequate.

B.2.2 Products

For products, we want the structure function to satisfy the following equation for any closed value
v of type τ1 × τ2:

(!× !) ◦ y = K×[[v : τ1 × τ2]]

where up ◦ y = NE[[v : τ1 × τ2]]. However, (!× !) ◦ y = 〈!, !〉, therefore let K×[[v : τ1 × τ2]] = 〈!, !〉.

Lemma B.2.2 For any y : 1 → T N
E [[τ1 × τ2]], y -N∗

τ1×τ2 v if and only if there exist morphisms
z1 : 1 → LT N

E [[τ1]], z2 : 1 → LT N
E [[τ2]] and values v1 : τ1, v2 : τ2 such that y = 〈z1, z2〉, v = <v1, v2>,

z1 -N
τ1 v1, and z2 -N

τ2 v2.

Proof.

Case ⇒: Suppose that y -N∗
τ1×τ2 v. Then because y is a morphism from 1 to T N

E [[τ1 × τ2]] =
LT N

E [[τ1]]×LT N
E [[τ2]], there must exist morphisms z1 : 1 → LT N

E [[τ1]] and z2 : 1 → LT N
E [[τ2]] such

that y = 〈z1, z2〉 (namely z1 = π1◦y and z2 = π2◦y). Because down◦p×1 = down◦up◦π1 = π1

and down ◦ p×2 = π2, we immediately know that

z1 = π1 ◦ y -N
τ1 fst(v)

and
z2 = π2 ◦ y -N

τ2 snd(v)

Lastly, by the definition of values, there must exist values v1 and v2 such that v = <v1, v2>.
Therefore fst(v)⇒n v1 and snd(v)⇒n v2, so z1 -N

τ1 v1 and z2 -N
τ2 .

Case ⇐: Suppose that there exist morphisms z1 : 1 → LT N
E [[τ1]], z2 : 1 → LT N

E [[τ2]] and values
v1 : τ1, v2 : τ2 such that y = 〈z1, z2〉, v = <v1, v2>, z1 -N

τ1 v1, and z2 -N
τ2 v2. We need to show

that y -N∗
τ1×τ2 v.

Because 〈!, !〉 is the only morphism from 1 to 1× 1, for any morphism y : 1 → T N
E [[τ1 × τ2]],

(!× !) ◦ y = K×[[v : τ1 × τ2]]

Furthermore, as noted above,

down ◦ p×1 ◦ y = π1 ◦ y = z1 -N
τ1 v1

and
down ◦ p×2 ◦ y = π2 ◦ y = z2 -N

τ2 v2

As fst(v)⇒n v1 and snd(v)⇒n v2, we know that

down ◦ p×1 ◦ y -N
τ1 fst(v)
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and
down ◦ p×2 ◦ y -N

τ2 fst(v)

Therefore y -N∗
τ1×τ2 v.

2

We can now check that the constants are adequate. For pair, let z1 be a morphism from 1 to
LT N

E [[τ1]], let z2 be a morphism from 1 to LT N
E [[τ2]], let e1 be a closed expression of type τ1 and let

e2 be a closed expression of type τ2 such that z1 -N
τ1 e1 and z2 -N

τ2 e2. Now suppose that either z1

or z2 is ⊥. Then nsmash(2) ◦ 〈〉(z1, z2) is ⊥, so

CN
⊥[[pair]] ◦ 〈〉(z1, z2) = (up ◦ (up× up) ◦ (π2 × id))⊥ ◦ nsmash(2) ◦ 〈〉(z1, z2)

= (up ◦ (up× up) ◦ (π2 × id))⊥ ◦ ⊥
= ⊥

Therefore CN
⊥[[pair]] ◦ 〈〉(z1, z2) -N

τ1×τ2 pair e1e2.
Otherwise there exists y′1 : 1 → T N

E [[τ1]] and y′2 : 1 → T N
E [[τ2]] such that z1 = up ◦ y′1 and

z2 = up ◦ y′2. Because z1 -N
τ1 e1 and z2 -N

τ2 e2 there exists values v1, v2 such that e1⇒n v1, e2⇒n v2,
y′1 -N∗

τ1 v1, and y′2 -N
τ2 v2. Therefore by the above properties of products

CN
⊥[[pair]] ◦ 〈〉(z1, z2) = (up ◦ (up× up) ◦ (π2 × id))⊥ ◦ nsmash(2) ◦ 〈〉(up ◦ y′1, up ◦ y′2)

= (up ◦ (up× up) ◦ (π2 × id))⊥ ◦ up ◦ 〈〉(y′1, y′2)
= up ◦ (up× up) ◦ (π2 × id) ◦ 〈〉(y′1, y′2)
= up ◦ 〈up ◦ y′1, up ◦ y′2〉
= up ◦ 〈z1, z2〉

-N
τ1×τ2 <v1, v2>

With the following derivation

e1⇒n v1 e2⇒n v2

napply(pair, e1, e2) ⇒ <v1, v2>

we know that <e1, e2>⇒n <v1, v2>. Therefore

CN
⊥[[pair]] ◦ 〈〉(z1, z2) -N

τ1×τ2 <e1, e2>

so pair is adequate.
For fst, let z : 1 → LT N

E [[τ1 × τ2]] and e be a closed expression of type τ1 × τ2 such that
z -N

τ1×τ2 e. If z = ⊥ then
CN
⊥[[fst]] ◦ 〈〉(z) = π1

⊥ ◦ π2 ◦ 〈〉(⊥) = ⊥
so CN

⊥[[fst]]◦〈〉(z) -N
τ1 fst(e). Otherwise there exists a y : 1 → T N

E [[τ1×τ2]] such that z = up◦y and
there exists a closed value v of type τ1× τ2 such that e⇒n v and y -N∗

τ1×τ2 v. Thus by Lemma B.2.2
there exist morphisms z1 : 1 → LT N

E [[τ1]], z2 : 1 → LT N[[τ2]], and closed values v1 and v2 of types
τ1 and τ2, respectively, such that v = <v1, v2>, y = 〈z1, z2〉, and z1 -N

τ1 v1. Therefore

CN
⊥[[fst]] ◦ 〈〉(z) = π1

⊥ ◦ π2 ◦ 〈〉(up ◦ 〈z1, z2〉) = z1 -N
τ1 v1

As fst(v)⇒n v1, we know that CN
⊥[[fst]] ◦ 〈〉(z) -N

τ1 fst(v) as well, therefore fst is adequate.
The proof that snd is adequate is similar.
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B.2.3 Sums

The deconstructors from the call-by-value adequacy proof were p+1 = [up,⊥ ◦ !] and p+2 = [⊥ ◦ !, up]
with

e+1 = case x of left : lam y.y right : rec z.z
and

e+2 = case x of left : rec z.z right : lam y.y

as the related expressions. When combined with down, the deconstructors become [id,⊥ ◦ !] and
[⊥ ◦ !, id].

For the structure function, let v be a value of type τ1 + τ2. Then the only possible definitions
for K+[[−]] such that L(! + !) ◦ NE[[v : τ1 + τ2]] = up ◦ K+[[v : τ1 + τ2]] are

K+[[inl(v) : τ1 + τ2]] = inl : 1 → 1 + 1

and
K+[[inr(v) : τ1 + τ2]] = inr : 1 → 1 + 1

Suppose that y is a morphism from 1 to T N
E [[τ1 + τ2]]. Then either y = inl ◦ z1 for some

z1 : 1 → LT N
E [[τ1]], or y = inr ◦ z2 for some z2 : 1 → LT N

E [[τ2]]. This leads to the following lemma:

Lemma B.2.3 Suppose that y : 1 → T N
E [[τ1 + τ2]] and v is a closed value of type τ1 + τ2. Then

y -N∗
τ1+τ2 v if and only if one of the following holds:

• There exist a morphism z1 : 1 → LT N
E [[τ1]] and a closed expression e1 of type τ1 such that

y = inl ◦ z1, v = inl(e1) and z1 -N
τ1 e1.

• There exist a morphism z2 : 1 → LT N
E [[τ2]] and a closed expression e2 of type τ2 such that

y = inr ◦ z2, v = inr(e2) and z2 -N
τ2 e2.

Proof.

⇒: Suppose that y -N∗
τ1+τ2 v. If there exists some z1 : 1 → LT N

E [[τ1]] such that y = inl ◦ z1, then

! + ! ◦ y = inl = K+[[v : τ1 + τ2]]

so there must exist a closed expression e1 of type τ1 such that v = inl(e1). What is left is to
show that z1 -N

τ1 e1. By the definition of -N
τ1+τ2 ,

z1 = [id,⊥ ◦ !] ◦ inl ◦ z1

= down ◦ p+1 ◦ y
-N

τ1 case v of left : lam y.y right : rec z.z

Suppose there exists a value v1 such that

case v of left : lam y.y right : rec z.z⇒n v1

Because v = inl(e1) there is only one possible derivation:

v⇒ninl(e1)
lam y.y⇒nlam y.y e1⇒n v1

(lam y.y)(e1)⇒n v1

napply(case, v, lam y.y, rec z.z) ⇒ v1

case v of left : lam y.y right : rec z.z⇒n v1
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Therefore e1⇒n v1, so z1 -N
τ1 e1.

If y is not of the form inl◦z1 for some z1, then there must exist a morphism z2 : 1 → LT N
E [[τ2]]

such that y = inr ◦ z2. By a similar proof as above, we can then show that there must exist a
closed expression e2 of type τ2 such that v = inr(e2) and z2 -N

τ2 e2. Thus exactly one of the
listed properties holds, proving the lemma.

⇐: Suppose that one of the listed properties holds. We need to show that y -N∗
τ1+τ2 v.

If the first property holds, then there exist a morphism z1 : 1 → LT N
E [[τ1]] and a closed

expression e1 of type τ1 such that y = inl ◦ z1, v = inr(e1), and z1 -N
τ1 e1. Thus

(! + !) ◦ y = inl = K+[[v : τ1 + τ2]]

Furthermore,
down ◦ p+1 ◦ y = [id,⊥ ◦ !] ◦ (left : ◦)z1 = z1 -N

τ1 e1

and

down ◦ p+2 ◦ y[⊥ ◦ !, id] ◦ (left : ◦)z1 = ⊥ -N
τ2 case v of left : rec z.z right : lam y.y

so all we need to show is that

z1 -N
τ1 case v of left : lam y.y right : rec z.z

Suppose there exists a value v1 such that e1⇒n v1. Then, with the derivation

lam y.y⇒nlam y.y e1⇒n v1

(lam y.y)(e1)⇒n v1

napply(case, v, lam y.y, rec z.z) ⇒ v1

we know that case v of left : lam y.y right : rec z.z⇒n v1 as well. Thus

z1 -N
τ1 case v of left : lam y.y right : rec z.z

so y -N∗
τ1+τ2 v.

Otherwise, the second property must hold, so there exists a morphism z2 : 1 → LT N
E [[τ2]] and

a closed expression e2 of type τ2 such that y = inr ◦ z2, v = inr(e2), and z2 -N
τ2 e2. Using an

argument similar to the one given for the second property we can show that this implies that
y -N∗

τ1+τ2 v.

2

We can now easily prove that the individual constants are adequate. For inl, let e1 be a closed
expression of type τ1 and let z be a morphism from 1 to LT N

E [[τ1]] such that z -N
τ1 e1. Then

CN[[inl]] ◦ 〈〉(z) = up ◦ inl ◦ π2 ◦ z = up ◦ inl ◦ z

so, by Lemma B.2.3, CN
E [[inl]]◦〈〉(z) -N

τ1+τ2 inl(e1). Thus inl is adequate. Similarly, Lemma B.2.3
ensures that inr is adequate.

For case, let e, e1, and e2 be expressions of type τ1 + τ2, τ1 → τ , and τ2 → τ , respectively,
and let z, z1, and z2 be morphisms such that z -N

τ1+τ2 e, z1 -N
τ1→τ e1, and z2 -N

τ1+τ2 e2. From the
definition of case, we know that

CN[[case]] ◦ 〈〉(z, z1, z2) = (case(nleft, nright))⊥ ◦ smash ◦ (π2 × up) ◦ αr ◦ 〈〉(z, z1, z2)
= (case(nleft, nright))⊥ ◦ smash ◦ 〈z, up ◦ 〈z1, z2〉〉
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If z = ⊥, then

CN[[case]] ◦ 〈〉(z, z1, z2) = (case(nleft, nright))⊥ ◦ smash ◦ 〈⊥, up ◦ 〈z1, z2〉〉
= (case(nleft, nright))⊥ ◦ ⊥
= ⊥
-N

τ case e of left : e1 right : e2

If z 6= ⊥, then there exist a value v and a morphism y : 1 → T N
E [[τ1 + τ2]] such that e⇒n v,

z = up ◦ y, and y -N∗
τ1+τ2 v. Then by Lemma B.2.3 there are two possibilities:

• For some z′1 and e′1, y = inl ◦ z′1, v = inl(e′1), and z′1 -N
τ1 e′1

Because z′1 -N
τ1 e′1 and z1 -N

τ1→τ e1 then either z1 = ⊥, in which case

app⊥ ◦ smash ◦ 〈z1, up ◦ z′1〉 = ⊥ -N
τ e1(e′1)

or there exist a morphism y1 : 1 → T N
E [[τ1 → τ ]] such that z1 = up ◦ y1 and a value v1 such

that e1⇒n v1 and y -N∗
τ1→τ v1. In that case

app⊥ ◦ smash ◦ 〈z1, up ◦ z′1〉 = app ◦ 〈y1, z
′
1〉 -N

τ v1(e′1)

If there exists a v′ such that v1(e′1)⇒n v′ then, as e1⇒n v1, e1(e′1)⇒n v′ as well. Thus

app⊥ ◦ smash ◦ 〈z1, up ◦ z′1〉 -N
τ e1(e′1)

Therefore, either way

nleft ◦ 〈z′1, 〈z1, z2〉〉 = app⊥ ◦ smash ◦ β ◦ (up× π1) ◦ 〈z′1, 〈z1, z2〉〉
= app⊥ ◦ smash ◦ 〈z1, up ◦ z′1〉
-N

τ e1(e′1)

so
CN[[case]] ◦ 〈〉(z, z1, z2)

= (case(nleft, nright))⊥ ◦ smash ◦ 〈up ◦ inl ◦ z′1, up ◦ 〈z1, z2〉〉
= case(nleft, nright) ◦ 〈inl ◦ z′1, 〈z1, z2〉〉
= nleft ◦ 〈z′1, 〈z1, z2〉〉
-N

τ e1(e′1)

By the derivation
e⇒ninl(e

′
1) e1(e′1)⇒n v

napply(case, e, e1, e2) ⇒ v

it is clear that, for any value v′, e1(e′1)⇒n v′ implies that case e of left : e1 right : e2⇒n v′.
Therefore

CN[[case]] ◦ 〈〉(z, z1, z2) -N
τ case e of left : e1 right : e2

• For some z′2 and e′2, y = inr ◦ z′2, v = inr(e′2), and z′2 -N
τ2 e′2

As in the previous case, it can be shown that

nright ◦ 〈〉(z′2, 〈z1, z2〉) -N
τ e2(e′2)
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which implies that
CN[[case]] ◦ 〈〉(z, z1, z2) -N

τ e2(e′2)

Also by the derivation
e⇒ninr(e

′
2) e2(e′2)⇒n v

napply(case, e, e1, e2) ⇒ v

it holds that for any value v′, e2(e′2)⇒n v′ implies that case e of left : e1 right : e2⇒n v′

Thus
CN[[case]] ◦ 〈〉(z, z1, z2) -N

τ case e of left : e1 right : e2

Therefore in all cases

CN[[case]] ◦ 〈〉(z, z1, z2) -N
τ case e of left : e1 right : e2

so case is adequate.

B.2.4 Lists

For lazy lists, there is a deconstructor for each potential element of the list, i.e., pLZ
1

= lhd and for
k > 1, pLZ

k
= pLZ

k−1

⊥ ◦ ltl. The related expressions are eLZ
1

= head(x) and, for k > 1,

eL = eLZ
k−1

(tail(x)) ≡ head(tail(k−1)(x))

Defining the structure function is more complicated, because the tail of a non empty list value,
e1::e2 is not a value. If we evaluate e2, it may itself be non-empty, leading to a possibly infinite chain
of evaluations. To prevent this, we first approximate the structure function, ending abruptly after
some finite number of iterations. We can then define KLZ [[−]] to be the limit of the approximations.

Therefore for n ≥ 0, let Fn be the following function from values of list type list(τ) to morphisms
from 1 to T N

E [[list(τ)]]:

Fn[[nil]] = lnil

Fn[[e1::e2]] =

{
lcons ◦ 〈!, up ◦ Fn−1[[v2]]〉 ∃v2.e2⇒n v2 and n > 0
lcons ◦ 〈!,⊥〉 otherwise

It should be clear that each Fn is well defined and that for any value v that has list type,
Fn[[v]] ≤ Fn+1[[v]]. Therefore we can define KLZ [[v : list(τ)]] to be

⊔∞
n=0 Fn[[v]]. KLZ [[v : list(τ)]]

satisfies the following equation:

KLZ [[nil : list(τ)]] = lnil

KLZ [[e1::e2 : list(τ)]] =

{
lcons ◦ 〈!, up ◦ KLZ [[nil : list(τ)]]〉 ∃v2.e2⇒n v2

lcons ◦ 〈!,⊥〉 otherwise

We can now prove that the constants are adequate, again by first showing that the generic
definition of adequacy is equivalent to a more intuitive definition.

Lemma B.2.4 Suppose that there exists closed expressions e1 and e2 of types τ and list(τ), re-
spectively. Then for all k > 0, tail(k)(e1::e2)⇒n v if and only if tail(k−1)(e2)⇒n v.

Proof. Straightforward by induction on k. 2
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Lemma B.2.5 Suppose that e is a closed expression of type list(τ) and that e⇒n v. Then for all
k ≥ 0 and values v′, tail(k)(e)⇒n v′ if and only if tail(k)(v)⇒n v′.

Proof. By straightforward induction on k. 2

Theorem B.2.6 Let y : 1 → T N
E [[list(τ)]] for some type τ and suppose that v is a closed value of

type list(τ). Then y -N∗
list(τ) v if and only if one of the following holds:

• y = lnil and v = nil, or

• There exist morphisms z1 : 1 → LT N
E [[τ ]], z2 : 1 → LT N

E [[list(τ)]] and closed expressions e1 : τ ,
e2 : list(τ) such that y = lcons ◦ 〈z1, z2〉, v = e1::e2, z1 -N

τ e1, and z2 -N
list(τ) e2.

Proof.

⇒: Suppose that y -N
list(τ) v. If y = lnil, then

KLZ [[v : list(τ)]] ≥ Llist (!) ◦ lnil = lnil

The only value v that satisfies the equation is v = nil, fulfilling the lemma.

Otherwise there must exist morphisms z1 : 1 → LT N
E [[τ ]] and z2 : 1 → LT N

E [[list(τ)]] such that
y = lcons ◦ 〈z1, z2〉. Because

KLZ [[v : list(τ)]] ≥ Llist (!) ◦ y = lcons ◦ 〈!, Llist (!) ◦ z2〉

there must exist closed expressions e1 : τ and e2 : list(τ) such that v = e1::e2. We therefore
only need to show that z1 -N

τ e1 and z2 -N
list(τ) e2.

For z1,

z1 = down ◦ up ◦ z1 = down ◦ lhd ◦ lcons ◦ 〈z1, z2〉 = down ◦ lhd ◦ y -N
τ head(v)

Suppose there exists a value v′ such that head(v) ⇒n v′. The only possible derivation of
head(v)⇒n v′ is

head⇒nhead
e1::e2⇒n e1::e2 e1⇒n v′

apply(head, e1::e2) ⇒ v′

head(v)⇒n v′

Therefore e1⇒n v′, so z1 -N
τ e1.

For z2,

up ◦ lcons ◦ 〈!, Llist (!) ◦ z2〉 ≤ up ◦ KLZ [[v : list(τ)]]
= up ◦ lcons ◦ 〈!, z′〉

where z′ = up ◦KLZ [[v2 : list(τ)]] if there exists a v2 such that e2⇒n v2 and z′ = ⊥ otherwise.
Furthermore, by the pointwise ordering of lists, Llist (!) ◦ z2 ≤ z′.

If z2 = ⊥, then z2 -N
list(τ) e2. Otherwise there exists a morphism y2 : 1 → T N

E [[list(τ)]] such
that z2 = up ◦ y2. Thus Llist (!) ◦ z2 = up ◦ ! ≤ z′, so z′ 6= ⊥. Therefore there exists a value v2

such that e2⇒n v2. We immediately know that Llist ! ◦ y2 ≤ up ◦ z′ = up ◦ KLZ [[v2 : list(τ)]].
What is left to show is that for all deconstructors pLZ

k
, pLZ

k
◦ y2 -N

list(τ) [v2/x]eLZ
k
.
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Let k ≥ 1. Then

down ◦ pLZ
k
◦ y2 = (down ◦ pLZ

k
)⊥ ◦ ltl ◦ lcons ◦ 〈z1, z2〉

= down ◦ pLZ
k+1

◦ lcons ◦ 〈z1, z2〉
= down ◦ pLZ

k+1
◦ y

-N
τ [e1::e2/x]eLZ

k+1

≡ eLZ
k
(tail(e1::e2))

Suppose there exists a value v such that eLZ
k
(tail(e1::e2))⇒n v, i.e., head(tail(k)(e1::e2))⇒n

v. The derivation of this evaluation must include the rule

tail(k)(e1::e2)⇒n e′1::e′2 e′1⇒n v

napply(head, tail(k)(e1::e2)) ⇒ v

Thus, by Lemma B.2.4, tail(k−1)(e2)⇒n e′1::e′2, and by Lemma B.2.5 tail(k−1)(v2)⇒n e′1::e′2.
Thus via the derivation

tail(k−1)(v2)⇒n e′1::e′2 e′1
t2⇒n v

napply(head, tail(k−1)(v2)) ⇒ v

we know that head(tail(k−1)(v2))⇒n v, so

pLZ
k
◦ y2 -N

τ head(tail(k−1)(v2)) ≡ [v2/x]eLZ
k

Thus y2 -N∗
list(τ) v2.

Case ⇐: Suppose that the properties of the lemma hold. If y = lnil and v = nil, then

Llist (!) ◦ y = lnil = KLZ [[nil : list(τ)]]

Furthermore, for all k ≥ 1,

down ◦ pLZ
k
◦ y = down ◦ pLZ

k
◦ lnil = ⊥ -N

τ [v/x]eLZ
k

Thus y -N∗
list(τ) v.

Otherwise there exists morphisms z1 : 1 → LT N
E [[τ ]], z2 : 1 → LT N

E [[list(τ)]] and closed
expression e1 : τ1, e2 : τ2 such that y = lcons ◦ 〈z1, z2〉, v = e1::e2, z1 -N

τ e1 and z2 -N
list(τ) e2.

For structure,
Llist (!) ◦ y = Llist (!) ◦ lcons ◦ 〈z1, z2〉

= lcons ◦ 〈!, Llist (!) ◦ z2〉
If z2 = ⊥, then

lcons ◦ 〈!, L(Llist (!)) ◦ z2〉 = lcons ◦ 〈!,⊥〉 ≤ KLZ [[v : list(τ)]]

Otherwise, as z2 -N
list(τ) e2, there exists a value v2 and a morphism y2 such that e2 ⇒n v2,

z2 = up ◦ y2, and y2 -N∗
list(τ) v2. Therefore

L(Llist (!)) ◦ z2 = up ◦ Llist (!) ◦ y2 ≤ up ◦ KLZ [[v2 : list(τ)]]
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Thus by the ordering on lists,

Llist (!) ◦ y ≤ lcons ◦ 〈!, up ◦ KLZ [[v2 : list(τ)]]〉
= KLZ [[v : list(τ)]]

For deconstructors,

down ◦ pLZ
1
◦ y = down ◦ lhd ◦ lcons ◦ 〈z1, z2〉

= down ◦ upz1

= z1

-N
τ e1

Suppose there exists a value v1 such that e1⇒n v1. Given the derivation

e1::e2⇒n e1::e2 e1⇒n v1

napply(head, e1::e2) ⇒ v1

we know that [v/x]eLZ
1
≡ head(e1::e2)⇒n v1 as well. Therefore down ◦ pLZ

1
◦ y -N

τ [v/x]eLZ
1
.

For k > 1, we know that by monad properties down ◦ g⊥ = (down ◦ g)⊥. Therefore

down ◦ pLZ
k
◦ y = down ◦ pLZ

k−1

⊥ ◦ ltl ◦ lcons ◦ 〈z1, z2〉
= down ◦ pLZ

k−1

⊥ ◦ ltl ◦ lcons ◦ 〈z1, z2〉
= (down ◦ pLZ

k−1
)⊥ ◦ z2

If z2 = ⊥ then

down ◦ pLZ
k
◦ y = (down ◦ pLZ

k−1
)⊥ ◦ z2 = ⊥ -N

τ [e1::e2/x]eLZ
k

If z2 6= ⊥ then there exist a value v2 and a morphism y2 such that e2⇒n v2, z2 = up ◦ y2, and
y2 -N∗

list(τ) v2. Therefore

down ◦ pLZ
k
◦ y = (down ◦ pLZ

k−1
)⊥ ◦ z2

= down ◦ pLZ
k−1

◦ y2

-N
τ [v2/x]eLZ

k−1

≡ head(tail(k−2)(v2))

Suppose that head(tail(k−2)(v2))⇒n v2 for some value v2. Its derivation then must include
the following:

tail(k−2)(v2)⇒n e′1::e′2 e′1⇒n v′

napply(head, tail(k−2)(v2)) ⇒ v′

for some closed expressions e′1 and e′2. By Lemma B.2.5 tail(k−2)(e2) ⇒n e′1::e′2 and by
Lemma B.2.4 tail(k−1)(v)⇒n e′1::e′2 so with the rule

tail(k−1)(v)⇒n e′1::e′2 e′1⇒n v2

napply(head, tail(k−1)(v)) ⇒ v2

we know that [v/x]eLZ
k
⇒n v. Therefore pLZ

k
◦ y -N

τ [v/x]eLZ
k
, which means that y -N∗

list(τ) v.
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2

With the above theorem, it is simple to show that the four list constants are adequate.

nil:

By the second rule of Theorem B.2.6,

CN
E [[nil]] = up ◦ lnil -N

list(τ) nil

so nil is adequate.

cons: Let z1 : 1 → LT N
E [[τ ]] and e1 be a closed expression of type τ such that z1 -N

τ e1. Similarly,
let z2 : 1 → LT N

E [[list(τ)]] and e2 be a closed expression of type list(τ) such that z2 -N
list(τ) e2.

Then by the third rule of Theorem B.2.6,

CN
⊥[[cons]] ◦ 〈〉(z1, z2) = up ◦ lcons ◦ 〈z1, z2〉 -N

list(τ) e1::e2

so cons is adequate.

head: Let z : 1 → LT N
E [[list(τ)]] and e be a closed expression of type list(τ) such that z -N

list(τ) e.
If z = ⊥ or z = up ◦ lnil then

CN
⊥[[head]] ◦ 〈〉(z) = (down ◦ lhd)⊥ ◦ z = ⊥ -N

τ head(e)

Therefore assume that for some z1, z2, z = up ◦ lcons ◦ 〈z1, z2〉. This means that there
exist a value v and a morphism y : 1 → T N

E [[list(τ)]] such that e ⇒n v, z = up ◦ y, and
y -N∗

list(τ) v. Therefore there must exist expressions e1 and e2 such that v = e1::e2, z1 -N
τ e1,

and z2 -N
list(τ) e2. Therefore

CN
⊥[[head]] ◦ 〈〉(z) = (down ◦ lhd)⊥ ◦ up ◦ lcons ◦ 〈z1, z2〉

= down ◦ lhd ◦ lcons ◦ 〈z1, z2〉
= down ◦ up ◦ z1

= z1

-N
τ e1

Suppose e2⇒n v1. Then via the rule

e⇒n e1::e2 e1⇒n v1

napply(head, e) ⇒ v1

head(e)⇒n v1 as well. Therefore CN
⊥[[head]] ◦ 〈〉(z) -N

τ head(e), so head is adequate.

tail: Due to Theorem B.2.6, the proof is similar to the one above.

nil?: The proof that this is adequate is very similar to the call-by-value proof.
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Appendix C

The Accept program: Theorem 5.1.5

Remember from Chapter ?? that kkstrof(k, s) is the value of applying k to s except that ⊥ is
converted to tt. Also, kkstr(k, s) is the continuation that is false (with zero cost) such that for all
strings s′ except s, where it returns the value of kkstrof(k, s).

Theorem 5.1.5 For any continuation k : 1 → T V[[cont]], any regular expression r, and any
string s, let [s1, . . . , sn] = Scont(r, s), and let i be the smallest integer 1 ≤ i ≤ n where k is not false
on s, or n if no such integer exists. Then one of the following two possibilities hold:

• either n = 0 and there exists a cost t such that for all continuations k′,

acc(r, k′, s) = [[t]] ◦ η ◦ ff

• or n > 0 and

acc(r, k, s) = [[t +
i−1∑

j=1

tj ]] ◦ apply(η ◦ k, si)

where acc(r, kkstr(k, si), s) = [[t]] ◦ η ◦ kkstrof(k, si), and, for 1 ≤ j < i,

apply(η ◦ k, sj) = [[tj ]] ◦ η ◦ ff

Proof. By induction on the structure of r and the length of s. There are a number of cases to
check; however, we can simplify them somewhat by letting

kap([s1, . . . , sn])(k, i) = apply(η ◦ k, si)

when n > 0 (and thus 1 ≤ i ≤ n), and

kap([ ])(k, i) = η ◦ ff

when n = 0 (and thus i = 0 as well). Then, the theorem implies that

acc(r, k, s) = [[t +
i−1∑

j=1

tj ]] ◦ kap(Scont(r, s))(k, i)

even when n and thus i are 0. The converse is not necessarily true, as the theorem states a more
general result when n = 0.

We divide the proof first into cases depending on the structure of r. Within each case we
will generally divide into additional cases. The sub-cases vary depending on which type of regular
expression we are examining: for example, when r = a, the proof depends on the structure of s,
but when r = r1r2, the result depends on the lengths of the lists Scont(r1, s) and Scont(r1r2, s).

227
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Case r = a: We have three cases to check, depending on the structure of s:

• s = snil(m): By definition, Scont(r, s) = [ ], so n = 0 and we must show that the first
result holds. For any continuation k′,

acc(a, k′, snil(m))
= [[trcase + tapp]] ◦ apply(accchar(k′, snil(m)), a)
= [[ttrue + tfst + tnil? + trcase + 3tapp]] ◦ η ◦ ff

which satisfies the theorem with t = ttrue + tfst + tnil? + trcase + 3tapp.
• s = scons(a′, s′), a 6= a′: This case is similar to the previous case in that for all k′,

acc(r, k′, s) returns false with a constant time.
• s = scons(a, s′): Then Scont(r, s) = [s′], so we must show that the second part of the

theorem holds with i = 1 (as no other value for i is possible). First, for any continuation
k′,

acc(a, k′, scons(a, s′))
= [[trcase + tapp]] ◦ [[tfalse + 3tapp + 2tfst + tnil? + thead]]

◦ [[tapp + tfst + t+ + tsnd + ttail + ttrue + t=]] ◦ apply(η ◦ k′, s′)
= [[t+ + tsnd + ttail + ttrue + t= + tfalse + 3tfst + tnil? + thead + trcase + 5tapp]]

◦ apply(η ◦ k′, s′)

Thus let t = t+ + tsnd + ttail + ttrue + t= + tfalse +3tfst + tnil? + thead + trcase +5tapp. Then

acc(r, k, s) = [[t]] ◦ apply(η ◦ k, s′)

where

acc(r, kkstr(k, s′), s) = [[t]] ◦ apply(η ◦ kkstr(k, s′), s′) = [[t]] ◦ η ◦ kkstrof(k, s′)

Because i = 1 and s′ = si, we thus know that the theorem holds.

Case r = r1|r2: Let [s1, . . . , sn] = Scont(r1, s) and [s′1, . . . , s′m] = Scont(r2, s). Then

Scont(r1|r2, s) = [s1, . . . , sn, s′1, . . . , s
′
m]

Let s′′j = sj for 1 ≤ j ≤ n and s′′j = s′j−n for n < j ≤ n + m. Let i be the smallest integer
such that 1 ≤ i ≤ n + m and k does not return false on s′′i , or n + m if no such integer exists.
We have three cases that depend on the size of n and m and on the value of i relative to n
and m:

• n+m = 0: Then n and m are both 0, so by the induction hypothesis for any continuation
k′ there exist costs t1 and t2 such that

acc(r1, k
′, s) = [[t1]] ◦ η ◦ ff and acc(r2, k

′, s) = [[t2]] ◦ η ◦ ff

Therefore
acc(r1|r2, k

′, s)
= [[trcase + tapp]] ◦ apply(accor(k′, s), r1, r2)
= [[trcase + 5tapp + trec]] ◦ cond([[t1]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[tfalse + 2tapp + trec]] ◦ acc(r2, k, s)

= [[t1 + trcase + 5tapp + trec]] ◦ [[tfalse]] ◦ [[t2]] ◦ η ◦ ff
= [[t2 + tfalse + t1 + trcase + 7tapp + 2trec]] ◦ η ◦ ff

so the theorem holds with t = t2 + tfalse + t1 + trcase + 7tapp + 2trec.
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• n + m > 0 and i ≤ n: Then n > 0, so by the induction hypothesis

acc(r1, k, s) = [[t1 +
i−1∑

j=1

t′j ]] ◦ apply(η ◦ k, si)

where
acc(r1, kkstr(k, si), s) = [[t1]] ◦ η ◦ kkstrof(k, si)

and, for 1 ≤ j < i,
apply(η ◦ k, sj) = [[t′j ]] ◦ η ◦ ff

Suppose that, k is false on si, i.e., for some cost t′i, apply(η ◦ k, si) = [[t′i]] ◦ η ◦ ff. Then
i = n = n + m, which means that m = 0. In that case there exists a cost t2 such that

acc(r2, k, s) = [[t2]] ◦ η ◦ ff

Therefore,

acc(r1|r2, kkstr(k, si), s)
= [[trcase + 5tapp + trec]] ◦ cond([[t1]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ [[t2]] ◦ η ◦ ff

= [[t2 + tfalse + t1 + trcase + 7tapp + 2trec]] ◦ η ◦ ff

so let t = t2 + tfalse + t1 + trcase + 7tapp + 2trec. Then

acc(r1|r2, k, s)
= [[trcase + 5tapp + trec]] ◦ cond([[t1 +

∑i−1
j=1 t′j ]] ◦ [[t′i]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ [[t2]] ◦ η ◦ ff

= [[t2 + tfalse + trcase + 7tapp + 2trec + t1 +
∑i

j=1 t′j ]] ◦ η ◦ ff

= [[t +
∑i−1

j=1 t′j ]] ◦ [[t′i]] ◦ η ◦ ff

= [[t +
∑i−1

j=1 t′j ]] ◦ apply(η ◦ k, si)

If k is not false on si, then kkstrof(k, si) = tt, so

acc(r1, kkstr(k, si), s) = [[t1]] ◦ η ◦ tt

and thus

acc(r1|r2, kkstr(k, si), s)
= [[trcase + 5tapp + trec]] ◦ cond([[t1]] ◦ η ◦ tt) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r2, kkstr(k, si), s)

= [[ttrue + t1 + trcase + 5tapp + trec]] ◦ η ◦ tt

Therefore let t = ttrue + t1 + trcase +5tapp + trec. Now, we know that k is not false on si,
which means that either apply(η ◦ k, si) = ⊥ or, for some t′, apply(η ◦ k, si) = [[t′]]◦η◦tt.
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If the former, then

acc(r1|r2, k, s)
= [[trcase + 5tapp + trec]] ◦ cond(⊥) of

True: [[ttrue]] ◦ η ◦ tt
False: [[tfalse]] ◦ acc(r2, k, s)

= ⊥
= [[t +

∑i−1
j=1 t′j ]] ◦ apply(η ◦ k, si)

Otherwise,

acc(r1|r2, k, s)
= [[trcase + 5tapp + trec]] ◦ cond([[t1 +

∑i−1
j=1 t′j ]] ◦ [[t′]] ◦ η ◦ tt) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r2, k, s)

= [[ttrue + t′ + t1 +
∑i−1

j=1 t′j + trcase + 5tapp + trec]] ◦ η ◦ tt

= [[t +
∑i−1

j=1 t′j ]] ◦ [[t′]] ◦ η ◦ tt

= [[t +
∑i−1

j=1 t′j ]] ◦ apply(η ◦ k, si)

• n+m > 0 and i > n: Then k is false on all sj , 1 ≤ j ≤ n, so by the induction hypothesis,

acc(r1, k, s) = [[t1 +
n−1∑

j=1

t′j ]] ◦ kap([s1, . . . , sn])(k, n)

where acc(r1, kkstr(k, sn), s) = [[t1]] ◦ η ◦ kkstrof(k, sn) = [[t1]] ◦ η ◦ff. Because k is false on
[s1, . . . , sn], we know that there exists a cost t′n such that kap([s1, . . . , sn])(k, n) equals
[[t′n]] ◦ η ◦ ff. Therefore

acc(r1, k, s) = [[t1 +
n∑

j=1

t′j ]] ◦ η ◦ ff

Also, because kkstr(k, s′′i ) has the same values on [s1, . . . , sn] as kkstr(k, sn),

acc(r1, kkstr(k, s′′i ), s) = [[t1]] ◦ η ◦ ff

as well. Lastly, by the induction hypothesis,

acc(r2, k, s) = [[t2 +
i−n−1∑

j=1

t′′j ]] ◦ apply(η ◦ k, s′i−n)

where acc(r2, kkstr(k, s′i−n), s) = [[t2]] ◦ η ◦ kkstrof(k, s′i−n) and, for 1 ≤ j < i− n,

apply(η ◦ k, s′j) = [[t′′j ]] ◦ η ◦ ff

For n < j < i, let t′j = t′′j−n. Then, as s′′i = s′i−n,

acc(r1|r2, kkstr(k, s′′i ), s)
= [[trcase + 5tapp + trec]]

◦ cond([[t1]] ◦ η ◦ ff) of
True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ [[t2]] ◦ η ◦ kkstrof(k, s′′i )

= [[t2 + tfalse + t1 + trcase + 7tapp + 2trec]] ◦ η ◦ kkstrof(k, s′′i )
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so, if t = t2 + tfalse + t1 + trcase + 7tapp + 2trec,

acc(r1|r2, k, s)
= [[trcase + 5tapp + trec]]

◦ cond([[t1 +
∑n

j=1 t′j ]] ◦ η ◦ ff) of
True: [[ttrue]] ◦ η ◦ tt

False: [[2tapp + trec + tfalse]] ◦ [[t2 +
∑i−1

j=n+1 t′j ]] ◦ apply(η ◦ k, s′i−n)
= [[t +

∑i−1
j=1 t′j ]] ◦ apply(η ◦ k, s′′i )

As there are no other possible values for m, n, and i, the theorem holds when r = r1|r2.

Case r = r1r2: Let [s1, . . . , sn] = Scont(r1, s) and [s′1, . . . , s′m] = Scont(r1r2, s). By the definition of
Scont, we know that [s′1, . . . , s′m] can be partitioned as follows:

Scont(r2,s1)︷ ︸︸ ︷
s′1 . . . s′i1 |

Scont(r2,s2)︷ ︸︸ ︷
s′i1+1 . . . s′i2 | . . . |

Scont(r2,sn)︷ ︸︸ ︷
s′in−1+1 . . . s′m

We need to check three cases based on the values of n and m:

• n = 0: Then by the definition of Scont, m = 0 as well, and by the induction hypothesis,
there exists a cost t′ such that, for all continuations k′,

acc(r1, k
′, s) = [[t′]] ◦ η ◦ ff

Therefore, for all continuations k′,

acc(r1r2, k
′, s)

= [[trcase + tapp]] ◦ apply(accseq(k′, s), r1, r2)
= [[trcase + 7tapp + 2trec]] ◦ acc(r1, acck(r2, k

′), s)
= [[t′ + trcase + 7tapp + 2trec]] ◦ η ◦ ff

proving that the theorem holds in this case with t = t′ + trcase + 5tapp + 2trec.

• n > 0 and m = 0: This means that for all 1 ≤ j ≤ n, Scont(r2, sj) = [ ]. Then by
the induction hypothesis for each 1 ≤ j ≤ n there exists a cost t′j such that for all
continuations k′

acc(r2, k
′, sj) = [[t′j ]] ◦ η ◦ ff

This also means that, for all continuations k′, acck(r2, k
′) is false on each sj as well,

so kkstr(acck(r2, k
′), sn) is the same morphism for all k′. Therefore, by the induction

hypothesis, there exists a cost t1 such that acc(r1, kkstr(acck(r2, k
′), sn), s) = [[t1]] ◦ η ◦ ff

and

acc(r1r2, kkstr(k′, sn), s)
= [[trcase + 7tapp + 2trec]] ◦ acc(r1, acck(r2, k

′), s)
= [[trcase + 7tapp + 2trec]] ◦ [[t1 +

∑n−1
j=1 t′j ]] ◦ apply(η ◦ acck(r2, k

′), sn)
= [[t1 + trcase + 7tapp + 2trec +

∑n−1
j=1 t′j ]] ◦ acc(r2, k′, sn)

= [[t1 + trcase + 7tapp + 2trec +
∑n

j=1 t′j ]] ◦ η ◦ ff

proving that the theorem holds in this case with t = t1 + trcase +7tapp +2trec +
∑n

j=1 t′j .
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• n > 0 and m > 0: If we set i0 to 0 and in to m, then we know that there exists an integer
j such that i(j−1) < i ≤ ij . For j′ < j, we know that for each i(j′−1) < h ≤ ij′ , there
exists a cost t′h such that apply(η ◦ k, s′h) = [[t′h]] ◦ η ◦ ff, and therefore by the induction
hypothesis,

acc(r2, k, sj′) = [[tj′ +
∑ij′−1

h=i(j′−1)+1 t′h]] ◦ apply(η ◦ k, s′ij′ )

= [[tj′ +
∑ij′

h=i(j′−1)+1 t′h]] ◦ η ◦ ff

where acc(r2, kkstr(k, s′ij′ ), sj′) = [[tj′ ]] ◦ η ◦ kkstrof(k, s′ij′ ) which equals [[tj′ ]] ◦ η ◦ ff.
Furthermore, for i(j−1) < h < i, there exists a cost t′h such that apply(η ◦ k, s′h) equals
[[t′h]] ◦ η ◦ ff, and that, by the induction hypothesis,

acc(r2, k, sj) = [[tj +
i−1∑

h=i(j−1)+1

t′h]] ◦ apply(η ◦ k, s′i)

where acc(r2, kkstr(k, s′i), sj) = [[tj ]]◦η ◦kkstrof(k, s′i). Lastly, we know there exists a cost
t0 such that

acc(r1, kkstr(k, sj), s) = [[t0]] ◦ η ◦ kkstrof(k, sj)

Next we need to find the value of acc(r1r2, kkstr(k, s′i), s). By the induction hypothesis
and the values given above, we have that

acc(r1r2, kkstr(k, s′i), s)
= [[trcase + 7tapp + 2trec]] ◦ acc(r1, acck(r2, kkstr(k, s′i)), s)
= [[trcase + 7tapp + 2trec]] ◦ [[t0 +

∑j−1
j′=1 t′j ]] ◦ apply(η ◦ acck(r2, kkstr(k, s′i)), sj)

= [[t0 + trcase + 7tapp + 2trec +
∑j

j′=1 t′j ]] ◦ η ◦ kkstrof(k, s′i)

Therefore let t = t0 + trcase + 5tapp + trec +
∑j

j′=1 t′j . Then

acc(r1r2, k, s)
= [[trcase + 7tapp + 2trec]] ◦ acc(r1, acck(r2, k), s)
= [[trcase + 7tapp + 2trec]] ◦ [[t0 +

∑j−1
j′=1(t

′
j +

∑ij′
h=i(j′−1)+1 t′h)]]

◦ apply(η ◦ acck(r2, k), sj)
= [[t0 + trcase + 7tapp + 2trec +

∑j−1
j′=1(t

′
j +

∑ij′
h=i(j′−1)+1 t′h)]] ◦ [[t′j +

∑i−1
h=i(j−1)+1]]

◦ apply(η ◦ k, s′i)
= [[t0 + trcase + 7tapp + 2trec +

∑j
j′=1 t′j +

∑i−1
h=1 t′h]] ◦ apply(η ◦ k, s′i)

= [[t +
∑i−1

h=1 t′h]] ◦ apply(η ◦ k, s′i)

Case r = (r′)∗: Let [s1, . . . , sn] = Scont(r′, s) and [s, s′1, . . . , s′m] = Scont((r′)
∗, s). Then there are

several cases depending on the value of i and whether k is false or not on s. Note that there
is always an i ≥ 1 as Scont((r′)

∗) always starts with s (because the program always calls the
continuation on s when evaluating a repetition).

• i = 1 and k is false on s: Then the length of Scont((r′)
∗, s) must be one, so m must

be 0. This could happen in two ways. First n could be 0. Then, as in the sequential
case, we know that by the induction hypothesis there exists a cost t′ such that for any
continuation k′,

acc(r′, k′, s) = [[t′]] ◦ η ◦ ff
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Also, as k is false on s, there exists a cost t0 such that apply(η ◦ k, s) = [[t0]] ◦ η ◦ ff.
Therefore apply(η ◦ kkstr(k, s), s) = η ◦ ff and

acc((r′)∗, kkstr(k, s), s)
= [[3tapp + trcase]]

◦ cond(apply(η ◦ kkstr(k, s), s)) of
True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(kkstr(k, s), s, r), s)

= [[5tapp + trcase + trec + tfalse]] ◦ [[t′]] ◦ η ◦ ff
= [[t′ + 5tapp + trcase + trec + tfalse]] ◦ η ◦ kkstrof(k, s)

thus, setting t to t′ + 5tapp + trcase + trec + tfalse,

acc((r′)∗, k, s)
= [[3tapp + trcase]] ◦ cond([[t0]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ [[t′]] ◦ η ◦ ff

= [[t′ + 5tapp + trcase + trec + tfalse + t0]] ◦ η ◦ ff
= [[t]] ◦ apply(η ◦ k, s)

proving that the theorem holds in this case.
Alternatively, if n is not 0, then for all sj , if sj 6= s, then Scont((r′)

∗, sj) = [ ], so for those
cases by the induction hypothesis there exists a cost t′j such that for any continuation
k′,

acc((r′)∗, k′, sj) = [[t′j ]] ◦ η ◦ ff

In order to evaluate r′, however, we need to know the value of checkk(k′, sj , r
′) on all sj ,

including the ones that equal s. By the above statement, for sj 6= s, and any continuation
k′

apply(η ◦ checkk(k′, s, r′), sj)
= [[2tsnd + tapp]] ◦ [[2tapp + trec + tfalse + t 6=]] ◦ acc((r′)∗, k′, sj)
= [[t′j + trec + tfalse + t 6= + 2tsnd + 3tapp]] ◦ η ◦ ff

and, for sj = s,

apply(η ◦ checkk(k′, s, r′), sj)
= [[2tsnd + tapp]] ◦ [[ttrue + t=]] ◦ η ◦ ff
= [[ttrue + t= + 2tsnd + tapp]] ◦ η ◦ ff

If we set t′′j = ttrue+t=+2tsnd+tapp when sj = s and t′′j = t′j+trec+tfalse+t 6=+2tsnd+3tapp

otherwise, then, by the induction hypothesis,

acc(r′, checkk(k′, s, r′), s)
= [[t +

∑n−1
j=1 t′′j ]] ◦ apply(η ◦ checkk(k, s, r′), sn)

= [[t +
∑n

j=1 t′′j ]] ◦ η ◦ ff

where acc(r′, kkstr(checkk(k′, s, r′), sn), s) = [[t]] ◦ η ◦ kkstrof(checkk(k′, s, r′), sn). Note
that for any continuation k′, kkstr(checkk(k′, s, r′), sn) is the same morphism, so the cost
t is independent of the continuation as well.
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Finally, as k is false on s, there exists a cost t0 such that apply(η ◦ k, s) = [[t0]] ◦ η ◦ ff,
Therefore,

acc((r′)∗, kkstr(k, s), s)
= [[3tapp + trcase]] ◦ cond(η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(k, s, r′), s)

= [[5tapp + trcase + trec + tfalse]] ◦ [[t +
∑n

j=1 t′j ]] ◦ η ◦ ff

= [[5tapp + trcase + trec + tfalse + t +
∑n

j=1 t′j ]] ◦ η ◦ ff

so, if t′′ = 5tapp + trcase + trec + tfalse + t +
∑n

j=1 t′j ,

acc((r′)∗, k, s)
= [[3tapp + trcase]] ◦ cond([[t0]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(k, s, r′), s)

= [[5tapp + trcase + trec + tfalse + t +
∑n

j=1 t′j ]] ◦ [[t0]] ◦ η ◦ ff

= [[t′′]] ◦ apply(η ◦ k, s)

• i = 1 and k is not false on s. Then either apply(η ◦ k, s) = ⊥ or, there exists a cost t0
such that apply(η ◦ k, s) = [[t0]] ◦ η ◦ tt. Either way, apply(kkstr(k, s), s) = η ◦ tt, so

acc((r′)∗, kkstr(k, s), s)
= [[3tapp + trcase]] ◦ cond(η ◦ tt) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(k, s, r′), s)

= [[ttrue + 3tapp + trcase]] ◦ η ◦ tt

Therefore, for t = ttrue + 2tapp + trcase, if apply(η ◦ k, s) = ⊥,

acc((r′)∗, kkstr(k, s), s)
= [[3tapp + trcase]] ◦ cond(⊥) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(k, s, r′), s)

= ⊥
= [[t]] ◦ apply(η ◦ k, s)

otherwise, if apply(η ◦ k, s) = [[t0]] ◦ η ◦ tt, then

acc((r′)∗, kkstr(k, s), s)
= [[3tapp + trcase]] ◦ cond([[t0]] ◦ η ◦ tt) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(k, s, r′), s)

= [[t]] ◦ [[t0]] ◦ η ◦ tt
= [[t]] ◦ apply(η ◦ k, s)

proving that the theorem holds in this case.
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• i > 1. Then k must be false on s, so there exists a cost t0 such that apply(η ◦ k, s)
equals [[t0]] ◦ η ◦ ff.

Let [s′′1, . . . , s′′n′] be the sublist of [s1, . . . , sn] such that each s′′i is not equal to s. Then,
as with sequencing, [s, s′1, . . . , s′m] can be partitioned as follows:

s|
Scont(r,s′′1 )︷ ︸︸ ︷
s′1 . . . s′i1 |

Scont(r,s′′2 )︷ ︸︸ ︷
s′i1+1 . . . s′i2 | . . . |

Scont(r,s′′n′ )︷ ︸︸ ︷
s′i(n′−1)+1 . . . s′m

Therefore there exists a j′′ such that s′i−1 (the i’th entry) is in the partition s′ij′′−1+1 . . . s′ij′′ .
Now for all i′′ < j′′, k is false on s′ii′′−1+1 through s′ii′′ , so by the induction hypothesis
(as each s′′i′′ is by assumption smaller than s),

acc((r′)∗, k, s′′i′′) = [[t′′i′′ +
ii′′−1∑

h′=i(i′′−1)+1

t′h′ ]]◦apply(η ◦ k, s′ii′′ ) = [[t′′i′′ +
ii′′∑

h′=i(i′′−1)+1

t′h′ ]]◦η ◦ff

where acc((r′)∗, kkstr(k, s′ii′′ ), s
′′
i′′) = [[t′′i′ ]] ◦ η ◦ kkstrof(k, s′ii′′ ) = [[ti′′ ]] ◦ η ◦ ff and, for

i(i′′−1) +1 ≤ h′ ≤ ii′′ , apply(k, s′h′) = [[t′h′ ]]◦η ◦ff. Because k is false on s′ii′′ , kkstr(k, s′ii′′ )
is false on all strings. Furthermore, by the definition of i, either k is false on s′i−1 or for
all i(i′′−1) + 1 ≤ h′ ≤ ii′′ , s′h′ is not equal to s′i−1. Therefore kkstr(k, s′i−1) is also false on
s′h′ , so

acc((r′)∗, kkstr(k, s′i−1), s
′′
i′′) = [[t′′i′′ ]] ◦ η ◦ ff

as well. For j′′, we know that for i(j′′−1) + 1 ≤ h′ < i − 1, there exists a cost t′h′ such
that apply(η ◦ k, s′h′) = [[t′h′ ]] ◦ η ◦ ff, and that by the induction hypothesis

acc((r′)∗, k, s′′j′′) = [[t′′j′′ +
i−2∑

h′=i(j′′−1)

t′h′ ]] ◦ apply(η ◦ k, s′i−1)

where acc((r′)∗, kkstr(k, s′i−1), s
′′
j′′) = [[t′′j′′ ]] ◦ η ◦ kkstrof(k, s′i−1).

To use this with r′, we need to find the cost associated with applying both checkk(k, s, r′)
and checkk(kkstr(k, s′i−1), s, r

′) to strings in Scont(r′, s). For i′′ < j′′,

apply(η ◦ checkk(kkstr(k, s′i−1), s, r
′), s′′i′′)

= [[2tsnd + tapp]]
◦ cond({false}) of

True: [[ttrue + t=]] ◦ η ◦ ff
False: [[2tapp + trec + tfalse + t6=]] ◦ acc((r′)∗, kkstr(k, s′i−1), s

′′
i′′)

= [[3tapp + 2tsnd + trec + tfalse + t6= + t′′i′′ ]] ◦ η ◦ ff
apply(η ◦ checkk(k, s, r′), s′′i′′)

= [[3tapp + 2tsnd + trec + tfalse + t6= + t′′i′′ +
∑ii′′

h′=ii′′−1+1 t′h′ ]] ◦ η ◦ ff



236 APPENDIX C. THE ACCEPT PROGRAM: THEOREM 5.1.5180

Also, for j′′,

apply(η ◦ checkk(kkstr(k, s′i−1), s, r
′), s′′j′′)

= [[2tsnd + tapp]]
◦ cond({false}) of

True: [[ttrue + t=]] ◦ η ◦ ff
False: [[2tapp + trec + tfalse + t6=]] ◦ acc((r′)∗, kkstr(k, s′i−1), s

′′
j′′)

= [[3tapp + 2tsnd + trec + tfalse + t6= + t′′j′′ ]] ◦ η ◦ kkstrof(k, s′j′)
apply(η ◦ checkk(k, s, r′), s′′j′′)

= [[3tapp + 2tsnd + trec + tfalse + t6= + t′′j′′ +
∑i−2

h′=ij′′−1+1 t′h′ ]] ◦ apply(η ◦ k, s′i−1)

Furthermore, when the string does not change, we have that for any continuation k′

apply(η ◦ checkk(k′, s, r′), s) = [[2tsnd + tapp + ttrue + t=]] ◦ η ◦ ff

Let j refer to the element of Scont(r′, s) corresponding to s′′j′′ , i.e., sj = s′′j′′ . For 1 ≤ h ≤ j,
if sh = s, then let th = 2tsnd + tapp + ttrue + t=, otherwise there exists an h′′ such that
sh = s′′h′′ and let th = 3tapp + 2tsnd + trec + tfalse + t 6= + t′′h′′ . Next note that by the
equations above, for 1 ≤ h < j,

apply(η ◦ kkstr(checkk(kkstr(k, s′i−1), s, r
′), sh))

= apply(η ◦ kkstr(checkk(k, s, r′), sh))
= η ◦ ff

and
apply(η ◦ kkstr(checkk(kkstr(k, s′i−1), s, r

′), sj))
= apply(η ◦ kkstr(checkk(k, s, r′), sj))
= η ◦ kkstrof(k, s′i−1)

Thus, if k′ is either kkstr(checkk(kkstr(k, s′i−1), s, r
′), sh) or kkstr(checkk(k, s, r′), sh), there

exists a single cost t′ such that

acc(r′, k′, s) = [[t′]] ◦ η ◦ kkstrof(k, s′i−1)

and, by the induction hypothesis,

acc(r′, checkk(kkstr(k, s′i−1, s, r
′), s))

= [[t′ +
∑j−1

h=1 th]] ◦ apply(η ◦ checkk(kkstr(k, s′i−1), s, r
′), sj)

= [[t′ +
∑j

h=1 th]] ◦ η ◦ kkstrof(k, s′i−1)
acc(r′, checkk(k, s, r′), s)

= [[t′ +
∑j

h=1 th +
∑(i−2)

h′=1 t′h′ ]] ◦ apply(η ◦ k, s′i−1)

Therefore

acc((r′)∗, kkstr(k, s′i−1), s)
= [[tapp]] ◦ cond(η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(kkstr(k, s′i−1), s, r

′), s)
= [[3tapp + trec + tfalse + t′ +

∑j
h=1 th]] ◦ ηη ◦ kkstrof(k, s′i−1)
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so let t = 3tapp + trec + tfalse + t′ +
∑j

h=1 th. Lastly, let t′0 = t0 (the cost of applying k
to s). Then

acc((r′)∗, k, s)
= [[tapp]] ◦ cond([[t′0]] ◦ η ◦ ff) of

True: [[ttrue]] ◦ η ◦ tt
False: [[2tapp + trec + tfalse]] ◦ acc(r′, checkk(k, s, r′), s)

= [[3tapp + trec + tfalse + t′0 + t′ +
∑j

h=1 th +
∑(i−2)

h′=1 t′h′ ]] ◦ apply(η ◦ k, s′i−1)
= [[t +

∑i−2
h=0 t′h]] ◦ apply(η ◦ k, s′i−1)

thus showing that the theorem holds in this case.

2
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